WorldWideScience

Sample records for core melt accidents

  1. Nuclear power reactor core melt accidents. Current State of Knowledge

    International Nuclear Information System (INIS)

    Jacquemain, Didier; Cenerino, Gerard; Corenwinder, Francois; Raimond, Emmanuel IRSN; Bentaib, Ahmed; Bonneville, Herve; Clement, Bernard; Cranga, Michel; Fichot, Florian; Koundy, Vincent; Meignen, Renaud; Corenwinder, Francois; Leteinturier, Denis; Monroig, Frederique; Nahas, Georges; Pichereau, Frederique; Van-Dorsselaere, Jean-Pierre; Couturier, Jean; Debaudringhien, Cecile; Duprat, Anna; Dupuy, Patricia; Evrard, Jean-Michel; Nicaise, Gregory; Berthoud, Georges; Studer, Etienne; Boulaud, Denis; Chaumont, Bernard; Clement, Bernard; Gonzalez, Richard; Queniart, Daniel; Peltier, Jean; Goue, Georges; Lefevre, Odile; Marano, Sandrine; Gobin, Jean-Dominique; Schwarz, Michel; Repussard, Jacques; Haste, Tim; Ducros, Gerard; Journeau, Christophe; Magallon, Daniel; Seiler, Jean-Marie; Tourniaire, Bruno; Durin, Michel; Andreo, Francois; Atkhen, Kresna; Daguse, Thierry; Dubreuil-Chambardel, Alain; Kappler, Francois; Labadie, Gerard; Schumm, Andreas; Gauntt, Randall O.; Birchley, Jonathan

    2015-11-01

    For over thirty years, IPSN and subsequently IRSN has played a major international role in the field of nuclear power reactor core melt accidents through the undertaking of important experimental programmes (the most significant being the Phebus-FP programme), the development of validated simulation tools (the ASTEC code that is today the leading European tool for modelling severe accidents), and the coordination of the SARNET (Severe Accident Research Network) international network of excellence. These accidents are described as 'severe accidents' because they can lead to radioactive releases outside the plant concerned, with serious consequences for the general public and for the environment. This book compiles the sum of the knowledge acquired on this subject and summarises the lessons that have been learnt from severe accidents around the world for the prevention and reduction of the consequences of such accidents, without addressing those from the Fukushima accident, where knowledge of events is still evolving. The knowledge accumulated by the Institute on these subjects enabled it to play an active role in informing public authorities, the media and the public when this accident occurred, and continues to do so to this day. Following the introduction, which describes the structure of this book and highlights the objectives of R and D on core melt accidents, this book briefly presents the design and operating principles (Chapter 2) and safety principles (Chapter 3) of the reactors currently in operation in France, as well as the main accident scenarios envisaged and studied (Chapter 4). The objective of these chapters is not to provide exhaustive information on these subjects (the reader should refer to the general reference documents listed in the corresponding chapters), but instead to provide the information needed in order to understand, firstly, the general approach adopted in France for preventing and mitigating the consequences of core melt

  2. Examination of offsite emergency protective measures for core melt accidents

    International Nuclear Information System (INIS)

    Aldrich, D.C.; McGrath, P.E.; Ericson, D.M. Jr.; Jones, R.B.; Rasmussen, N.C.

    Evacuation, sheltering followed by population relocation, and iodine prophylaxis are evaluated as offsite public protective measures in response to potential nuclear reactor accidents involving core-melt. Evaluations were conducted using a modified version of the Reactor Safety Study consequence model. Models representing each protective measure were developed and are discussed. Potential PWR core-melt radioactive material releases are separated into two categories, ''Melt-through'' and ''Atmospheric,'' based upon the mode of containment falure. Protective measures are examined and compared for each category in terms of projected doses to the whole body and thyroid. Measures for ''Atmospheric'' accidents are also examined in terms of their influence on the occurrence of public health effects

  3. Large population center and core melt accident considerations in siting

    International Nuclear Information System (INIS)

    Camarinopoulos, L.; Yadigaroglu, G.

    1983-01-01

    The problem of providing suitable demographic siting criteria in the presence of a very large population center in an otherwise sparsely populated region is addressed. Simple calculations were performed making maximum use of pretabulated results of studies where core melt accidents are considered. These show that taking into consideration the air flow patterns in the region can lower the expected population doses from core melt accidents more effectively than distance alone. Expected doses are compared to the annual background radiation dose. A simple siting criterion combining geographical considerations with the probability of a release reaching the large population center is proposed

  4. Termination of light-water reactor core-melt accidents with a chemical core catcher: the core-melt source reduction system (COMSORS)

    International Nuclear Information System (INIS)

    Forsberg, C.W.; Parker, G.W.; Rudolph, J.C.; Osborne-Lee, I.W.; Kenton, M.A.

    1996-09-01

    The Core-Melt Source Reduction System (COMSORS) is a new approach to terminate light-water reactor core melt accidents and ensure containment integrity. A special dissolution glass is placed under the reactor vessel. If core debris is released onto the glass, the glass melts and the debris dissolves into the molten glass, thus creating a homogeneous molten glass. The molten glass, with dissolved core debris, spreads into a wide pool, distributing the heat for removal by radiation to the reactor cavity above or by transfer to water on top of the molten glass. Expected equilibrium glass temperatures are approximately 600 degrees C. The creation of a low-temperature, homogeneous molten glass with known geometry permits cooling of the glass without threatening containment integrity. This report describes the technology, initial experiments to measure key glass properties, and modeling of COMSORS operations

  5. Examination of offsite radiological emergency measures for nuclear reactor accidents involving core melt

    International Nuclear Information System (INIS)

    Aldrich, D.C.; McGrath, P.E.; Rasmussen, N.C.

    1978-06-01

    Evacuation, sheltering followed by population relocation, and iodine prophylaxis are evaluated as offsite public protective measures in response to nuclear reactor accidents involving core-melt. Evaluations were conducted using a modified version of the Reactor Safety Study consequence model. Models representing each measure were developed and are discussed. Potential PWR core-melt radioactive material releases are separated into two categories, ''Melt-through'' and ''Atmospheric,'' based upon the mode of containment failure. Protective measures are examined and compared for each category in terms of projected doses to the whole body and thyroid. Measures for ''Atmospheric'' accidents are also examined in terms of their influence on the occurrence of public health effects

  6. EPRTM engineered features for core melt mitigation in severe accidents

    International Nuclear Information System (INIS)

    Fischer, Manfred; Henning, Andreas

    2009-01-01

    For the prevention of accident conditions, the EPR TM relies on the proven 3-level safety concepts inherited from its predecessors, the French 'N4' and the German 'Konvoi' NPP. In addition, a new, fourth 'beyond safety' level is implemented for the mitigation of postulated severe accidents (SA) with core melting. It is aimed at preserving the integrity of the containment barrier and at significantly reducing the frequency and magnitude of activity releases into the environment under such extreme conditions. Loss of containment integrity is prevented by dedicated design measures that address short- and long-term challenges, like: the melt-through of the reactor pressure vessel under high internal pressure, energetic hydrogen/steam explosions, containment overpressure failure, and basemat melt-through. The EPR TM SA systems and components that address these issues are: - the dedicated SA valves for the depressurization the primary circuit, - the provisions for H 2 recombination, atmospheric mixing, steam dilution, - the core melt stabilization system, - the dedicated SA containment heat removal system. The core melt stabilization system (CMSS) of the EPR TM is based on a two-stage ex-vessel approach. After its release from the RPV the core debris is first accumulated and conditioned in the (dry) reactor pit by the addition of sacrificial concrete. Then the created molten pool is spread into a lateral core catcher to establish favorable conditions for the later flooding, quenching and cooling with water passively drained from the Internal Refueling Water Storage Tank. Long-term heat removal from the containment is achieved by sprays that are supplied with water by the containment heat removal system. Complementing earlier publications focused on the principle function, basic design, and validation background of the EPR TM CMSS, this paper describes the state achieved after detailed design, as well as the technical solutions chosen for its main components, including

  7. Severe accident mitigation and core melt retention in the European pressurized reactor (EPR)

    International Nuclear Information System (INIS)

    Fischer, Manfred

    2003-01-01

    For the mitigation of severe accidents, the FPR has adopted and improved the defense-in-depth approaches of its predecessors, the French 'N4' and the German 'Konvoi' PWR's. Beyond these evolutionary changes, it includes a new, 4-th level of defense aimed at limiting the consequences of a postulated severe accident with core melting. This involves a strengthening of the confinement function and the avoidance of large early releases, by the prevention of scenarios and events with potentially high loads on the containment, incl. RPV failure at high pressure. The remaining low-pressure accidents are mitigated by dedicated design measures. The paper gives an overview and of the measures for H 2 -mitigation and steam explosion and focuses on a detailed description of the precautions and design measures for the stabilization and long-term cooling of the molten core. In the EPR the latter is achieved by melt spreading into a large outside-cooled crucible lateral to the pit, which is passively flooded and cooled with water from the IRWST. The separation of functions between pit and spreading room not only isolates the core catcher from the various loads during RPV failure, but also avoids any risks related to an unintended initiation of flooding during power operation. A stable state of the melt is reached after a few hours. Complete solidification is achieved within days. The core catcher can optionally be cooled actively by the CHRS, which avoids further steaming into the containment and establishes ambient pressure conditions in the long term. (author)

  8. Core-melting accidents in Chernobyl and Harrisburg

    International Nuclear Information System (INIS)

    Loon, A.J. van; Vonderen, A.C.M. van

    1987-01-01

    This publication deals with the essences of the reactor accident in Chernobylsk and the conclusions to be drawn from these with regard to reactor safety. Therein the technical differences between the reactor types in the West and the East play an important role. Also attention is spent to the now generally accepted philosophy that by simplification and making use of proven technologies, a further deminishing of the risks can be achieved step by step. In ch.'s 2 and 4 the origin and course of the accidents in respectively Chernobylsk and Harrisburg are analyzed; in the analysis of the Chernobylsk accident also date have been used which were provided by the Sovjet-Union, supplied with results of studies of the U.S. Department of Energy (DOE). In ch. 3 this information is compared with the insights which have grown at KEMA about these on the base of reactor physical and thermohydraulic considerations and of computer calculations reproducing the course of the accident. An important question is if, and if so: to which extent, an accident such as the one in Chernobylsk also can take place in the West. In order to answer that question as accurate as possible the consequences of core meltings accidents and the risk for such an accident taking place are pursued. In ch. 6 the legal frameworks are indicated by which the risk may be limited and by which eventually yet occurring damage may be arranged. Ch. 7 finally deals with the lessons which the accidents in Chernobylsk and Harrisburg have learnt us and with the possible consequences of these for the further application of nuclear power in the Netherlands. (H.W.). 105 refs.; 42 figs.; 17 refs

  9. Nuclear Power Reactor Core Melt Accidents. Current State of Knowledge

    International Nuclear Information System (INIS)

    Bentaib, Ahmed; Bonneville, Herve; Clement, Bernard; Cranga, Michel; Fichot, Florian; Koundy, Vincent; Meignen, Renaud; Corenwinder, Francois; Leteinturier, Denis; Monroig, Frederique; Nahas, Georges; Pichereau, Frederique; Van-Dorsselaere, Jean-Pierre; Cenerino, Gerard; Jacquemain, Didier; Raimond, Emmanuel; Ducros, Gerard; Journeau, Christophe; Magallon, Daniel; Seiler, Jean-Marie; Tourniaire, Bruno

    2013-01-01

    For over thirty years, IPSN and subsequently IRSN has played a major international role in the field of nuclear power reactor core melt accidents through the undertaking of important experimental programmes (the most significant being the Phebus- FP programme), the development of validated simulation tools (the ASTEC code that is today the leading European tool for modelling severe accidents), and the coordination of the SARNET (Severe Accident Research Network) international network of excellence. These accidents are described as 'severe accidents' because they can lead to radioactive releases outside the plant concerned, with serious consequences for the general public and for the environment. This book compiles the sum of the knowledge acquired on this subject and summarises the lessons that have been learnt from severe accidents around the world for the prevention and reduction of the consequences of such accidents, without addressing those from the Fukushima accident, where knowledge of events is still evolving. The knowledge accumulated by the Institute on these subjects enabled it to play an active role in informing public authorities, the media and the public when this accident occurred, and continues to do so to this day

  10. In vessel core melt progression phenomena

    International Nuclear Information System (INIS)

    Courtaud, M.

    1993-01-01

    For all light water reactor (LWR) accidents, including the so called severe accidents where core melt down can occur, it is necessary to determine the amount and characteristics of fission products released to the environment. For existing reactors this knowledge is used to evaluate the consequences and eventual emergency plans. But for future reactors safety authorities demand decrease risks and reactors designed in such a way that fission products are retained inside the containment, the last protective barrier. This requires improved understanding and knowledge of all accident sequences. In particular it is necessary to be able to describe the very complex phenomena occurring during in vessel core melt progression because they will determine the thermal and mechanical loads on the primary circuit and the timing of its rupture as well as the fission product source term. On the other hand, in case of vessel failure, knowledge of the physical and chemical state of the core melt will provide the initial conditions for analysis of ex-vessel core melt progression and phenomena threatening the containment. Finally a good understanding of in vessel phenomena will help to improve accident management procedures like Emergency Core Cooling System water injection, blowdown and flooding of the vessel well, with their possible adverse effects. Research and Development work on this subject was initiated a long time ago and is still in progress but now it must be intensified in order to meet the safety requirements of the next generation of reactors. Experiments, limited in scale, analysis of the TMI 2 accident which is a unique source of global information and engineering judgment are used to establish and assess physical models that can be implemented in computer codes for reactor accident analysis

  11. Examination of off-site emergency protective measures for core melt accidents

    International Nuclear Information System (INIS)

    Aldrich, D.C.; Ericson, D.M. Jr.; Jones, R.B.

    1978-01-01

    Results from the Reactor Safety Study (RSS) have shown that to cause significant impacts off-site, i.e., sufficient quantities of biologically important radionuclides released, it is necessary to have a core melt accident. To mitigate the impact of such potential accidents, the design of appropriate emergency response actions requires information as to the relative merit of publicly available protective measures. In order to provide this information, a study using the consequence model developed for the RSS is being conducted to evaluate (in terms of reduced public health effects and dose exposure) potential off-site protective strategies. The paper describes the methods being used in the study as well as the results and conclusions obtained

  12. On the sequence of core-melt accidents: Fission product release, source terms and Chernobyl release

    Energy Technology Data Exchange (ETDEWEB)

    Albrecht, H

    1986-01-01

    There is a sketch of our ideas on the course of a core melt-out accident in a PWR. There is then a survey of the most important results on fission product release, which were obtained by experiments on the SASCHA melt-out plant. The 3rd part considers questions which are important for determining source terms for the environment and the last part contains some considerations on radioactivity release from the Chernobyl reactor.

  13. Event course analysis of core disruptive accidents

    International Nuclear Information System (INIS)

    Hering, W.; Homann, C.; Sengpiel, W.; Struwe, D.; Messainguiral, C.

    1995-01-01

    The theortical studies of the behavior of a PWR core in a meltdown accident are focused on hydrogen release, materials redistribution in the core area including forming of an oxide melt pool, quantity of melt and its composition, and temperatures attained by the RPV internals (esp. in the upper plenum) during the accident up to the time of melt relocation into the lower plenum. The calculations are done by the SCDAP/RELAP5 code. For its validation selected CORA results and Phebus FPTO results have been used. (orig.)

  14. The influence of chemistry on core melt accidents

    International Nuclear Information System (INIS)

    Liljenzin, J.O.

    1990-01-01

    Chemical reactions play an important role in assessing the safety of nuclear power plants. The main source of heat in the early stage of an accident is due to a chemical reaction between steam and the circonium encapsulating the nuclear fuel. The heating and melting of fuel leads to a release of fission products which rapidly condense to form particles suspended in the surrounding gas. These aerosols are the main carriers of radioactivity as they may transport active material from the reactor vessel into the reactor containment building where it is deposited. The content of fission products in the aerosol particles and their chemical form determine their interaction with water molecules. Chemical forces laed to an absorption of water in the particles which transforms them into droplets with increased mass. The particles become spherical and hence deposit more rapidly on surrounding surfaces. There is a rapid reaction between boron carbide and stainless steel in the control blades of boiling water reactors. There is only a small formation of boric acid. This leads to a smaller formation of volatile iodine compounds. But the alloying process is likely to cause melting of the control blades so the are removed from the reactor core, a process which may have negative secondary effects. It has been found that a series of materials that are present in the reactor containment are likely to participate in various chemical reactions during an accident. Among these are electric cables, motors, thermal insulation, surface coatings and sheet metal. Metallic surface coatings and sheet metal can be some of the main sources of hydrogen. Effects from chemical reactions can be more accurately predicted by the new SHMAPP code, developed within this project, combining thermal, hydraulic and chemical phenomena. (AB)

  15. Post-accident core coolability of light water reactors

    International Nuclear Information System (INIS)

    Michio, I.; Teruo, I.; Tomio, Y.; Tsutao, H.

    1983-01-01

    A study on post-accident core coolability of LWR is discussed based on the practical fuel failure behavior experienced in NSRR, PBF, PNS and others. The fuel failure behavior at LOCA, RIA and PCM conditions are reviewed, and seven types of fuel failure modes are extracted as the basic failure mechanism at accident conditions. These are: cladding melt or brittle failure, molten UO 2 failure, high temperature cladding burst, low temperature cladding burst, failure due to swelling of molten UO 2 , failure due to cracks of embrittled cladding for irradiated fuel rods, and TMI-2 core failure. The post-accident core coolability at each failure mode is discussed. The fuel failures caused actual flow blockage problems. A characteristic which is common among these types is that the fuel rods are in the conditions violating the present safety criteria for accidents, and UO 2 pellets are in melting or near melting hot conditions when the fuel rods failed

  16. Evaluation of Melt Behavior with initial Melt Velocity under SFR Severe Accidents

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Hyo; Bang, In Cheol [UNIST, Ulsan (Korea, Republic of); Jerng, Dong Wook [Chung-Ang Univ, Seoul (Korea, Republic of)

    2015-10-15

    In the current Korean sodium-cooled fast reactor (SFR) program, early dispersion of the molten metallic fuel within a subchannel is suggested as one of the inherent safety strategies for the initiating phase of hypothetical core disruptive accident (HCDA). The safety strategy provides negative reactivity driven by the melt dispersal, so it could reduce the possibility of the recriticality event under a severe triple or more fault scenario for SFR. Since the behavior of the melt dispersion is unpredictable, it depends on the accident condition, particularly core region. While the voided coolant channel region is usually developed in the inner core, the unvoided coolant channel region is formed in the outer core. It is important to confirm the fuel dispersion with the core region, but there are not sufficient existing studies for them. From the existing studies, the coolant vapor pressure is considered as one of driving force to move the melt towards outside of the core. There is a complexity of the phenomena during intermixing of the melt with the coolant after the horizontal melt injections. It is too difficult to understand the several combined mechanisms related to the melt dispersion and the fragmentation. Thus, it could be worthwhile to study the horizontal melt injections at lower temperature as a preliminary study in order to identify the melt dispersion phenomena. For this reason, it is required to clarify whether the coolant vapor pressure is the driving force of the melt dispersion with the core region. The specific conditions to be well dispersed for the molten metallic fuel were discussed in the experiments with the simulant materials. The each melt behavior was compared to evaluate the melt dispersion under the coolant void condition and the boiling condition. As the results, the following results are remarked: 1. The upward melt dispersion did not occur for a given melt and coolant temperature in the nonboiling range. Over current range of conditions

  17. Evaluation of Melt Behavior with initial Melt Velocity under SFR Severe Accidents

    International Nuclear Information System (INIS)

    Heo, Hyo; Bang, In Cheol; Jerng, Dong Wook

    2015-01-01

    In the current Korean sodium-cooled fast reactor (SFR) program, early dispersion of the molten metallic fuel within a subchannel is suggested as one of the inherent safety strategies for the initiating phase of hypothetical core disruptive accident (HCDA). The safety strategy provides negative reactivity driven by the melt dispersal, so it could reduce the possibility of the recriticality event under a severe triple or more fault scenario for SFR. Since the behavior of the melt dispersion is unpredictable, it depends on the accident condition, particularly core region. While the voided coolant channel region is usually developed in the inner core, the unvoided coolant channel region is formed in the outer core. It is important to confirm the fuel dispersion with the core region, but there are not sufficient existing studies for them. From the existing studies, the coolant vapor pressure is considered as one of driving force to move the melt towards outside of the core. There is a complexity of the phenomena during intermixing of the melt with the coolant after the horizontal melt injections. It is too difficult to understand the several combined mechanisms related to the melt dispersion and the fragmentation. Thus, it could be worthwhile to study the horizontal melt injections at lower temperature as a preliminary study in order to identify the melt dispersion phenomena. For this reason, it is required to clarify whether the coolant vapor pressure is the driving force of the melt dispersion with the core region. The specific conditions to be well dispersed for the molten metallic fuel were discussed in the experiments with the simulant materials. The each melt behavior was compared to evaluate the melt dispersion under the coolant void condition and the boiling condition. As the results, the following results are remarked: 1. The upward melt dispersion did not occur for a given melt and coolant temperature in the nonboiling range. Over current range of conditions

  18. Radioactive contamination of Danish territory after core-melt accidents at the Barsebaeck power plant

    International Nuclear Information System (INIS)

    Gjoerup, H.L.; Jensen, N.O.; Hedemann Jensen, P.; Kristensen, L.; Nielsen, O.J.; Petersen, E.L.; Petersen, T.; Roed, J.; Thykier-Nielsen, S.; Heikel Vinter, F.; Warming, L.; Aarkrog, A.

    1982-03-01

    An assessment is made of the radioactive contamination of Danish territory in the event of a core-melt accident at the Barsebaeck nuclear power plant in Sweden. Accidents including both core melt-down and containment failure are considered. Consequences are calculated for a BWR-3 release under common meteorological conditions and for a BWR-2 release under extreme meteorological conditions. Calculations are based on experiments and theoretical work relating to deposition velocities for different types of surface, shielding effect of structures, and weathering. The effects are described of different dose-reducing measures, e.g., decontamination, relocation, destruction of contaminated foodstuffs. The collective effective dose equivalent from external gamma radiation from deposited activity integrated over a time period of 30 years, is calculated to be 3.6 Megamanrem in the BWR-3 case without dose-reducing measures. For the BWR-2 case, the corresponding dose is approx. 41 Megamanrem. A combination of temporary relocation, hosing of roads etc. and digging of gardens is estimated to reduce these doses to approx. 2.5 Megamanrem and approx. 15 Megamanrem, respectively. The collective committed effective dose equivalent from the consumption of contaminated foodstuffs is calculated to 23 Megamanrem in the BWR-3 case without dose-reducing measures. This dose could be reduced to 0.2 Megamanrem if contaminated crops are destroyed during the first year after the accident and if changes are made in agricultural production in the contaminated area. The corresponding doses in the BWR-2 case would be 197 Megamanrem and 1.4 Megmanrem, respectively. (author)

  19. Event course analysis of core disruptive accidents; Ereignisablaufanalyse kernzerstoerender Unfaelle

    Energy Technology Data Exchange (ETDEWEB)

    Hering, W.; Homann, C.; Sengpiel, W.; Struwe, D.; Messainguiral, C.

    1995-08-01

    The theortical studies of the behavior of a PWR core in a meltdown accident are focused on hydrogen release, materials redistribution in the core area including forming of an oxide melt pool, quantity of melt and its composition, and temperatures attained by the RPV internals (esp. in the upper plenum) during the accident up to the time of melt relocation into the lower plenum. The calculations are done by the SCDAP/RELAP5 code. For its validation selected CORA results and Phebus FPTO results have been used. (orig.)

  20. SWR 1000 severe accident control through in-vessel melt retention by external RPV cooling

    Energy Technology Data Exchange (ETDEWEB)

    Kolev, N.I. [Framatome Advanced Nuclear Power, NDSI, Erlangen (Germany)

    2001-07-01

    Framatome Advanced Nuclear Power is being designing a new generation NPP with boiling water reactor SWR1000. Besides of various of modern passive and active safety features the system is also designed for controlling of a postulated severe accident with extreme low probability of occurrence. This work presents the rationales behind the decision to select the external cooling as a safety management strategy during severe accident. Bounding scenery are analyzed regarding the core melting, melt-water interaction during relocation of the melt from the core region into the lower head and the external coolability of the lower head. The conclusion is reached that the external cooling for the SWR1000 is a valuable strategy for accident management during postulated severe accidents. (authors)

  1. SWR 1000 severe accident control through in-vessel melt retention by external RPV cooling

    International Nuclear Information System (INIS)

    Kolev, N.I.

    2001-01-01

    Framatome Advanced Nuclear Power is being designing a new generation NPP with boiling water reactor SWR1000. Besides of various of modern passive and active safety features the system is also designed for controlling of a postulated severe accident with extreme low probability of occurrence. This work presents the rationales behind the decision to select the external cooling as a safety management strategy during severe accident. Bounding scenery are analyzed regarding the core melting, melt-water interaction during relocation of the melt from the core region into the lower head and the external coolability of the lower head. The conclusion is reached that the external cooling for the SWR1000 is a valuable strategy for accident management during postulated severe accidents. (authors)

  2. Modeling of melt retention in EU-APR1400 ex-vessel core catcher

    Energy Technology Data Exchange (ETDEWEB)

    Granovsky, V. S.; Sulatsky, A. A.; Khabensky, V. B.; Sulatskaya, M. B. [Alexandrov Research Inst. of Technology NITI, Sosnovy Bor (Russian Federation); Gusarov, V. V.; Almyashev, V. I.; Komlev, A. A. [Saint Petersburg State Technological Univ. SPbSTU, St.Petersburg (Russian Federation); Bechta, S. [KTH, Stockholm (Sweden); Kim, Y. S. [KHNP, 1312 Gil 70, Yuseongdaero, Yuseong-gu, Daejeon (Korea, Republic of); Park, R. J.; Kim, H. Y.; Song, J. H. [KAERI, 989 Gil 111, Daedeokdaero, Yuseong-gu, Daejeon (Korea, Republic of)

    2012-07-01

    A core catcher is adopted in the EU-APR1400 reactor design for management and mitigation of severe accidents with reactor core melting. The core catcher concept incorporates a number of engineering solutions used in the catcher designs of European EPR and Russian WER-1000 reactors, such as thin-layer corium spreading for better cooling, retention of the melt in a water-cooled steel vessel, and use of sacrificial material (SM) to control the melt properties. SM is one of the key elements of the catcher design and its performance is critical for melt retention efficiency. This SM consists of oxide components, but the core catcher also includes sacrificial steel which reacts with the metal melt of the molten corium to reduce its temperature. The paper describes the required properties of SM. The melt retention capability of the core catcher can be confirmed by modeling the heat fluxes to the catcher vessel to show that it will not fail. The fulfillment of this requirement is demonstrated on the example of LBLOCA severe accident. Thermal and physicochemical interactions between the oxide and metal melts, interactions of the melts with SM, sacrificial steel and vessel, core catcher external cooling by water and release of non-condensable gases are modeled. (authors)

  3. Modelling of RPV lower head under core melt severe accident condition using OpenFOAM

    International Nuclear Information System (INIS)

    Madokoro, Hiroshi; Kretzschmar, Frank; Miassoedov, Alexei

    2017-01-01

    Although six years have been passed since the tragic severe accident at Fukushima Daiichi, still large uncertainties exist in modeling of core degradation and reactor pressure vessel (RPV) failure. It is extremely important to obtain a better understanding of complex phenomena in the lower head in order to improve accident management measures. The possible failure mode of reactor pressure vessel and its failure time are especially a matter of importance. Thermal behavior of the molten pool can be simulated by the Phase-change Effective Convectivity Model (PECM), which is a distributed-parameter model developed in the Royal Institute of Technology (KTH), Sweden. The model calculates convective currents not using a pure CFD approach but based on so called “characteristic velocities” that are determined by empirical correlations depending on the geometry and physical properties of the molten pool. At the Karlsruhe Institute of Technology (KIT), the PECM has been implemented in the open-source CFD software OpenFOAM in order to receive detailed predictions of a core melt behavior in the RPV lower head under severe accident conditions. An advantage of using OpenFOAM is that it is very flexible to add and modify models and physical properties. In the current work, the solver is extended to couple PECM with a structure analysis model of the vessel wall. The model considers thermal expansion, plasticity, creep and damage. The model and physical properties are based on those implemented in ANSYS. Although the previous implementation had restriction that the amount of and geometry of the melt cannot be changed, our coupled model allows flexibility of the melt amount and geometry. The extended solver was used to simulate the LIVE-L1 and -L7V experiments and has demonstrated good prediction of the temperature distribution in the molten pool and heat flux distribution through the vessel wall. Regarding the vessel failure the model was applied to one of the FOREVER tests

  4. Melt Fragmentation Characteristics of Metal Fuel with Melt Injection Mass during Initiating Phase of SFR Severe Accidents

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Hyo; Lee, Min Ho; Bang, In Cheol [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of); Jerng, Dong Wook [Chung-Ang Univ., Seoul (Korea, Republic of)

    2016-05-15

    The PGSFR has adopted the metal fuel for its inherent safety under severe accident conditions. However, this fuel type is not demonstrated clearly yet under the such severe accident conditions. Additional experiments for examining these issues should be performed to support its licensing activities. Under initiating phase of hypothetic core disruptive accident (HCDA) conditions, the molten metal could be better dispersed and fragmented into the coolant channel than in the case of using oxide fuel. This safety strategy provides negative reactivity driven by a good dispersion of melt. If the coolant channel does not sufficient coolability, the severe recriticality would occur within the core region. Thus, it is important to examine the extent of melt fragmentation. The fragmentation behaviors of melt are closely related to a formation of debris shape. Once the debris shape is formed through the fragmentation process, its coolability is determined by the porosity or thermal conductivity of the melt. There were very limited studies for transient irradiation experiments of the metal fuel. These studies were performed by Transient Reactor Test Facility (TREAT) M series tests in U.S. The TREAT M series tests provided basic information of metal fuel performance under transient conditions. The effect of melt injection mass was evaluated in terms of the fragmentation behaviors of melt. These behaviors seemed to be similar between single-pin and multi-pins failure condition. However, the more melt was agglomerated in case of multi-pins failure.

  5. Risk reduction of core-melt accidents in advaned CAPRA burner cores

    International Nuclear Information System (INIS)

    Maschek, W.; Struwe, D.; Eigemann, M.

    1997-01-01

    As part of the CAPRA Program (Consommation Accrue de Plutonium dans les RApides) the feasibility of fast reactors is investigated to burn plutonium and also to destruct minor actinides. The design of CAPRA cores shows significant differences compared to conventional cores. Especially the high Pu-enrichment has an important influence on the core melt-down behavior and the associated recriticality risk. To cope with this risk, inherent design features and special measures/devices are investigated for their potential of early fuel discharge to reduce the criticality of the reactor core. An assessment of such measures/devices is given and experimental needs are formulated. 11 refs., 5 figs

  6. Core melt retention and cooling concept of the ERP

    Energy Technology Data Exchange (ETDEWEB)

    Weisshaeupl, H [SIEMENS/KWU, Erlangen (Germany); Yvon, M [Nuclear Power International, Paris (France)

    1996-12-01

    For the French/German European Pressurized Water Reactor (EPR) mitigative measures to cope with the event of a severe accident with core melt down are considered already at the design stage. Following the course of a postulated severe accident with reactor pressure vessel melt through one of the most important features of a future design must be to stabilize and cool the melt within the containment by dedicated measures. This measures should - as far as possible - be passive. One very promising solution for core melt retention seems to be a large enough spreading of the melt on a high temperature resistant protection layer with water cooling from above. This is the favorite concept for the EPR. In dealing with the retention of a molten core outside of the RPV several ``steps`` from leaving the RPV to finally stabilize the melt have to gone through. These steps are: collection of the melt; transfer of the melt; distribution of the melt; confining; cooling and stabilization. The technical features for the EPR solution of a large spreading of the melt are: Dedicated spreading chamber outside the reactor pit (area about 150 m{sup 2}); high temperature resistant protection layers (e.g. Zirconia bricks) at the bottom and part of the lateral structures (thus avoiding melt concrete interaction); reactor pit and spreading compartment are connected via a discharge channel which has a slope to the spreading area and is closed by a steel plate, which will resist the core melt for a certain time in order to allow a collection of the melt; the spreading compartments is connected with the In-Containment Refuelling Water Storage Tank (IRWST) with pipes for water flooding after spreading. These pipes are closed and will only be opened by the hot melt itself. It is shown how the course of the different steps mentioned above is processed and how each of these steps is automatically and passively achieved. (Abstract Truncated)

  7. Experimental study of in-and-ex-vessel melt cooling during a severe accident

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Baik; Yoo, K J; Park, C K; Seok, S D; Park, R J; Yi, S J; Kang, K H; Ham, Y S; Cho, Y R; Kim, J H; Jeong, J H; Shin, K Y; Cho, J S; Kim, D H

    1997-07-01

    After code damage during a severe accident in a nuclear reactor, the degraded core has to be cooled down and the decay heat should be removed in order to cease the accident progression and maintain a stable state. The cooling of core melt is divided into in-vessel and ex-vessel cooling depending on the location of molten core which is dependent on the timing of vessel failure. Since the cooling mechanism varies with the conditions of molten core and surroundings and related phenomena, it contains many phenomenological uncertainties so far. In this study, an experimental study for verification of in-vessel corium cooling and several separate effect experiments for ex-vessel cooling are carried out to verify in- and ex-vessel cooling phenomena and finally to develop the accident management strategy and improve engineered reactor design for the severe accidents. SONATA-IV (Simulation of Naturally Arrested Thermal Attack in Vessel) program is set up for in-vessel cooling and a progression of the verification experiment has been done, and an integral verification experiment of the containment integrity for ex-vessel cooling is planned to be carried out based on the separate effect experiments performed in the first phase. First phase study of SONATA-IV is proof of principle experiment and it is composed of LALA (Lower-plenum Arrested Vessel Attack) experiment to find the gap between melt and the lower plenum during melt relocation and to certify melt quenching and CHFG (Critical Heat Flux in Gap) experiment to certify heat transfer mechanism in an artificial gap. As separate effect experiments for ex-vessel cooling, high pressure melt ejection experiment related to the initial condition for debris layer formation in the reactor cavity, crust formation and heat transfer experiment in the molten pool and molten core concrete interaction experiment are performed. (author). 150 refs., 24 tabs., 127 figs.

  8. An assessment of Class-9 (core-melt) accidents for PWR dry-containment systems

    International Nuclear Information System (INIS)

    Theofanous, T.G.; Saito, M.

    1981-01-01

    The phenomenology of core-melt accidents in dry containments was examined for the purpose of identifying the margins of safety in such Class-9 situations. The scale (geometry) effects appear to crucially limit the extent (severity) of steam explosions. This together with the established reduced explosivity of the corium-A/water system, and the inherently high capability of dry containments (redinforced concrete, and shields in some cases, seismic design etc.) lead to the conclusion that failure due to steam explosions may be considered essentially incredible. These premixture scaling considerations also impact ultimate debris disposition and coolability and need additional development. A water-flooded reactor cavity would have beneficial effects in limiting (but not necessarily eliminating) melt-concrete interactions. Independently of the initial degree of quenching and/or scale of fragmentation, mechanisms exist that drive the system towards ultimate stability (coolability). Additional studies, with intermediate-scale prototypic materials are recommended to better explore these mechanisms. Containment heat removal systems must provide the crucial capability of mitigating such accidents. Passive systems should be explored and assessed against currently available and/or improved active systems taking into account the rather loose time constraints required for activation. It appears that containment margins for accommodating the hydrogen problem are limited. This problem appears to stand out not only in terms of potential consequences but also in terms of lack of any readily available and clear cut solutions at this time. (orig.)

  9. Catalogue of generic plant states leading to core melt in PWRs: includes appendix 1: detailed description of sequences leading to core melt

    International Nuclear Information System (INIS)

    1996-11-01

    The Task Group on thermal-hydraulic system behaviour was given a mandate from PWG 2 on Coolant System-Behaviour with the approval of CSNI to deal with the topic of Accident Management. A writing group was set up to identify generic plant states leading to core melt for pressurized water reactors (PWR) and find 'possible approaches to accident management measures' (AM-Measures) for dealing with them. From a matrix of 15 initiating events and 12 system failures (i.e. from 180 possibilities), 32 event sequences have been identified as leading to core melt. Each sequence has been divided into characteristic plant state intervals according to safety function challenges. For each of the 141 defined characteristic plant state intervals, the members of the Writing Group made proposals for AM-Measures

  10. Simulant - water experiments to characterize the debris bed formed in severe core melt accidents

    International Nuclear Information System (INIS)

    Mathai, Amala M.; Anandan, J.; Sharma, Anil Kumar; Murthy, S.S.; Malarvizhi, B.; Lydia, G.; Das, Sanjay Kumar; Nashine, B.K.; Selvaraj, P.

    2015-01-01

    Molten Fuel Coolant Interaction (WO) and debris bed configuration on the core catcher plate assumes importance in assessing the Post Accident Heat Removal (PARR) of a heat generating debris bed. The key factors affecting the coolability of the debris bed are the bed porosity, morphology of the fragmented particles, degree of spreading/heaping of the debris on the core catcher and the fraction of lump formed. Experiments are conducted to understand the fragmentation kinetics and subsequent debris bed formation of molten woods metal in water at interface temperatures near the spontaneous nucleation temperature of water. Morphology of the debris particles is investigated to understand the fragmentation mechanisms involved. The spreading behavior of the debris on the catcher plate and the particle size distribution are presented for 5 kg and 10 kg melt inventories. Porosity of the undisturbed bed on the catcher plate is evaluated using a LASER sensor technique. (author)

  11. Simulation experiment on the flooding behaviour of core melts: KATS-9

    International Nuclear Information System (INIS)

    Fieg, G.; Massier, H.; Schuetz, W.; Stegmaier, U.; Stern, G.

    2000-11-01

    For future Light Water Reactors special devices (core catchers) are being developed to prevent containment failure by basement erosion after reactor pressure vessel meltthrough during a core meltdown accident. Quick freezing of the molten core masses is desirable to reduce release of radioactivity. Several concepts of core catcher devices have been proposed based on the spreading of corium melt onto flat surfaces with subsequent water cooling. A KATS-experiment has been performed to investigate the flooding behaviour of high temperature melts using alumina-iron thermite melts as a simulant. The oxidic thermite melt is conditioned by adding other oxides to simulate a realistic corium melt as close as possible in terms of liquidus and solidus temperatures. Before flooding with water, spreading of the separate oxidic and metallic melts has been done in one-dimensional channels with a silicate concrete as the substrate. The flooding rate was, in relation to the melt surface, identical to the flooding rate in EPR. (orig.) [de

  12. Calculation of individual and population doses on Danish territory resulting from hypothetical core-melt accidents at the Barsebaeck reactor

    International Nuclear Information System (INIS)

    1977-01-01

    Individual and population doses within Danish territory are calculated from hypothetical, severe core-melt accidents at the Swedish nuclear plant at Barsebaeck. The fission product inventory of the Barsebaeck reactor is calculated. The release fractions for the accidents are taken from WASH-1400. Based on parametric studies, doses are calculated for very unfavourable, but not incredible weather conditions. The probability of such conditions in combination with wind direction towards Danish territory is estimated. Doses to bone marrow, lungs, GI-tract and thyroid are calculated based on dose models developed at Risoe. These doses are found to be consistent with doses calculated with the models used in WASH-1400. (author)

  13. Scoping Analysis on Core Disruptive Accident in PGSFR (2015 Results)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Won; Chang, Won-Pyo; Ha, Kwi-Seok; Ahn, Sang June; Kang, Seok Hun; Choi, Chi-Woong; Lee, Kwi Lim; Jeong, Jae-Ho; Kim, Jin Su; Jeong, Taekyeong [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    In general, the severe accident is classified by three phases. The first phase is the initiation (pre-disassembly) phase that occurs the gradual core meltdown from accident initiation to the point of neutronic shutdown with an intact geometry. The second phase is the transition phase that happens the fuel transition from a solid to a liquid phase. Fuel and cladding can melt to form a molten pool and core can boil, then criticality conditions can recur. The third phase is the disassembly phase. In other words, this phase is Core Disruptive Accident (CDA). Power excursion is followed until the core is disassembled in this phase. In the early considerations of Liquid Metal Fast Breeder Reactor (LMFBR) energetics, the term Hypothetical Core Disruptive Accidents (HCDAs) was in common use. This was not only to connote the extremely low probability of initiation of such accidents, but also the tentative nature of our understanding of their behavior and resulting consequences. A numerical analysis is conducted to estimate the energy release, pressure behavior and core expansion behavior induced by CDA of PGSFR using CDA-ER and CDA-CEME codes. Conservatively, the calculated results of energy release and pressure behavior induced by CDA without Doppler effect in PGSFR when whole cores were melted (100 $/s) were 7.844 GJ and 4.845 GPa, respectively. With Doppler effect, the analyzed maximum energy release and pressure were 6.696 GJ and 3.449 GPa, respectively. The calculated results of the core expansion behavior during 0.015 seconds after the explosion without Doppler effect in PGSFR when whole cores were melted (100 $/s) were as follows: The total energy is calculated to be 1.87 GJ. At 0.01 s, the kinetic energy of the sodium is 1.85 GJ, while the expansion work and internal energy of the bubble are 19.7 MJ and 0.98 J, respectively. With Doppler effect, the total energy is calculated to be 1.33 GJ. At 0.01 s, the kinetic energy of the sodium is 1.31 GJ, while the expansion

  14. Methods to prevent the source term of methyl lodide during a core melt accident

    Energy Technology Data Exchange (ETDEWEB)

    Karhu, A. [VTT Energy (Finland)

    1999-11-01

    The purpose of this literature review is to gather available information of the methods to prevent a source term of methyl iodide during a core melt accident. The most widely studied methods for nuclear power plants include the impregnated carbon filters and alkaline additives and sprays. It is indicated that some deficiencies of these methods may emerge. More reactive impregnants and additives could make a great improvement. As a new method in the field of nuclear applications, the potential of transition metals to decompose methyl iodide, is introduced in this review. This area would require an additional research, which could elucidate the remaining questions of the reactions. The ionization of the gaseous methyl iodide by corona-discharge reactors is also shortly described. (au)

  15. An assessment of the radiological consequences of releases to groundwater following a core-melt accident at the Sizewell PWR

    International Nuclear Information System (INIS)

    Maul, P.R.

    1984-03-01

    In the extremely unlikely event of a degraded core accident at the proposed Sizewell PWR it is theoretically possible for the core to melt through the containment, after which activity could enter groundwater directly or as a result of subsequent leaching of the core in the ground. The radiological consequences of such an event are analysed and compared with the analysis undertaken by the NRPB for the corresponding releases to atmosphere. It is concluded that the risks associated with the groundwater route are much less important than those associated with the atmospheric route. The much longer transport times in the ground compared with those in the atmosphere enable countermeasures to be taken, if necessary, to restrict doses to members of the public to very low levels in the first few years following the accident. The entry of long-lived radionuclides into the sea over very long timescales results in the largest contribution to population doses, but these are delivered at extremely low dose rates which would be negligible compared with background exposure. (author)

  16. Studies on melt-water-structure interaction during severe accidents

    International Nuclear Information System (INIS)

    Sehgal, B.R.; Dinh, T.N.; Okkonen, T.J.; Bui, V.A.; Nourgaliev, R.R.; Andersson, J.

    1996-10-01

    Results of a series of studies, on melt-water-structure interactions which occur during the progression of a core melt-down accident, are described. The emphasis is on the in-vessel interactions and the studies are both experimental and analytical. Since, the studies performed resulted in papers published in proceedings of the technical meetings, and in journals, copies of a set of selected papers are attached to provide details. A summary of the results obtained is provided for the reader who does not, or cannot, venture into the perusal of the attached papers. (au)

  17. Studies on melt-water-structure interaction during severe accidents

    Energy Technology Data Exchange (ETDEWEB)

    Sehgal, B.R.; Dinh, T.N.; Okkonen, T.J.; Bui, V.A.; Nourgaliev, R.R.; Andersson, J. [Royal Inst. of Technology, Div. of Nucl. Power Safety, Stockholm (Sweden)

    1996-10-01

    Results of a series of studies, on melt-water-structure interactions which occur during the progression of a core melt-down accident, are described. The emphasis is on the in-vessel interactions and the studies are both experimental and analytical. Since, the studies performed resulted in papers published in proceedings of the technical meetings, and in journals, copies of a set of selected papers are attached to provide details. A summary of the results obtained is provided for the reader who does not, or cannot, venture into the perusal of the attached papers. (au).

  18. Comparison of SAS3A and MELT-III predictions for a transient overpower hypothetical accident

    International Nuclear Information System (INIS)

    Wilburn, N.P.

    1976-01-01

    A comparison is made of the predictions of the two major codes SAS3A and MELT-III for the hypothetical unprotected transient overpower accident in the FFTF. The predictions of temperatures, fuel restructuring, fuel melting, reactivity feedbacks, and core power are compared

  19. Containment loading during severe core damage accidents

    International Nuclear Information System (INIS)

    Fermandjian, J.; Evrard, J.M.; Cenerino, C.; Berthion, Y.; Carvallo, G.

    1984-11-01

    The objective of the article is to study the influence of the state of the reactor cavity (dry or flooded) and of the corium coolability on the thermal-hydraulics in the containment in the case of an accident sequence involving core melting and subsequent containment basemat erosion, in a 900 MWe PWR unit. Calculations are performed by using the JERICHO thermal hydraulics code

  20. Neutronics simulations on hypothetical power excursion and possible core melt scenarios in CANDU6

    International Nuclear Information System (INIS)

    Kim, Yonghee

    2015-01-01

    LOCA (Loss of coolant accident) is an outstanding safety issue in the CANDU reactor system since the coolant void reactivity is strongly positive. To deal with the LOCA, the CANDU systems are equipped with specially designed quickly-acting secondary shutdown system. Nevertheless, the so-called design-extended conditions are requested to be taken into account in the safety analysis for nuclear reactor systems after the Fukushima accident. As a DEC scenario, the worst accident situation in a CANDU reactor system is a unprotected LOCA, which is supposed to lead to a power excursion and possibly a core melt-down. In this work, the hypothetical unprotected LOCA scenario is simulated in view of the power excursion and fuel temperature changes by using a simplified point-kinetics (PK) model accounting for the fuel temperature change. In the PK model, the core reactivity is assumed to be affected by a large break LOCA and the fuel temperature is simulated to account for the Doppler effect. In addition, unlike the conventional PK simulation, we have also considered the Xe-I model to evaluate the impact of Xe during the LOCA. Also, we tried to simulate the fuel and core melt-down scenario in terms of the reactivity through a series of neutronics calculations for hypothetical core conditions. In case of a power excursion and possible fuel melt-down situation, the reactor system behavior is very uncertain. In this work, we tried to understand the impacts of fuel melt and relocation within the pressure vessel on the core reactivity and failure of pressure and calandria tubes. (author)

  1. Analysis of severe core damage accident progression for the heavy water reactor

    International Nuclear Information System (INIS)

    Tong Lili; Yuan Kai; Yuan Jingtian; Cao Xuewu

    2010-01-01

    In this study, the severe accident progression analysis of generic Canadian deuterium uranium reactor 6 was preliminarily provided using an integrated severe accident analysis code. The selected accident sequences were multiple steam generator tube rupture and large break loss-of-coolant accidents because these led to severe core damage with an assumed unavailability for several critical safety systems. The progressions of severe accident included a set of failed safety systems normally operated at full power, and initiative events led to primary heat transport system inventory blow-down or boil off. The core heat-up and melting, steam generator response,fuel channel and calandria vessel failure were analyzed. The results showed that the progression of a severe core damage accident induced by steam generator tube rupture or large break loss-of-coolant accidents in a CANDU reactor was slow due to heat sinks in the calandria vessel and vault. (authors)

  2. Visualization Study of Melt Dispersion Behavior for SFR with a Metallic Fuel under Severe Accidents

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Hyo Heo; Park, Seong Dae; Bang, In Cheol [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of); Jerng, Dong Wook [Jungang Univ., Seoul (Korea, Republic of)

    2015-05-15

    The safety strategy provides negative reactivity driven by the melt dispersal, so it could reduce the possibility of the recriticality event under a severe triple or more fault scenario for SFR. Since the behavior of the melt dispersion is unpredictable, it depends on the accident condition, particularly core region. While the voided coolant channel region is usually developed in the inner core, the unvoided coolant channel region is formed in the outer core. It is important to confirm the fuel dispersion with the core region, but there are not sufficient existing studies for them. From the existing studies, the coolant vapor pressure is considered as one of driving force to move the melt towards outside of the core. There is a complexity of the phenomena during intermixing of the melt with the coolant after the horizontal melt injections. It is too difficult to understand the several combined mechanisms related to the melt dispersion and the fragmentation. The specific conditions to be well dispersed for the molten metallic fuel were discussed in the experiments with the simulant materials. The each melt behavior was compared to evaluate the melt dispersion under the coolant void condition and the boiling condition.

  3. Prediction of thermoplastic failure of a reactor pressure vessel under a postulated core melt accident

    International Nuclear Information System (INIS)

    Duijvestijn, G.; Birchley, J.; Reichlin, K.

    1997-01-01

    This paper presents the lower head failure calculations performed for a postulated accident scenario in a commercial nuclear power plant. A postulated one inch break in the primary coolant circuit leads to dryout and subsequent meltdown of the core. The reference plant is a pressurized water reactor without penetrations in the reactor vessel lower head. The molten core material accumulates in the lower head, eventually causing failure of the vessel. The analysis investigates flow conditions in the melt pool, temperature evolution in the reactor vessel wall, and structure mechanical evaluation of the vessel under strong thermal loads and a range of internal pressures. The calculations were performed using the ADINA finite element codes. The analysis focusses on the failure processes, time and mode of failure. The most likely mode of failure at low pressure is global rupture due to gradual accumulation of creep strain over a large part of the heated area. In contrast, thermoplasticity becomes important at high pressure or following a pressure spike and can lead to earlier local failure. In situations in which part of the heat load is concentrated over a small area, resulting in a hot spot, local failure occurs, but not until the temperatures are close to the melting point. At low pressure, in particular, the hot spot area remains intact until the structure is molten across more than half of the thickness. (author) 14 figs., 16 refs

  4. Evaluation of downmotion time interval molten materials to core catcher during core disruptive accidents postulated in LMFR

    International Nuclear Information System (INIS)

    Voronov, S.A.; Kiryushin, A.I.; Kuzavkov, N.G.; Vlasichev, G.N.

    1994-01-01

    Hypothetical core disruptive accidents are postulated to clear potential of a reactor plant to withstand extreme conditions and to generate measures for management and mitigation of accidents consequence. In Russian advanced reactors there is a core catcher below the diagrid to prevent vessel bottom melting and to localize fuel debris. In this paper the calculation technique and estimation of relocation time of molten fuel and materials are presented in the case of core disruptive accidents postulated for LMFR reactor. To evaluate minimum interval of fuel relocation time the calculations for different initial data are provided. Large mass of materials between the core and the catcher in LMFR reactor hinders molten materials relocation toward the vessel bottom. That condition increases the time interval of reaching core catcher by molten fuel. Computations performed allowed to evaluate the minimum molten materials relocation time from the core to the core catcher. This time interval is in a range of 3.5-5.5 hours. (author)

  5. Comparison of advanced mid-sized reactors regarding passive features, core damage frequencies and core melt retention features

    International Nuclear Information System (INIS)

    Wider, H.

    2005-01-01

    New Light Water Reactors, whose regular safety systems are complemented by passive safety systems, are ready for the market. The special aspect of passive safety features is their actuation and functioning independent of the operator. They add significantly to reduce the core damage frequency (CDF) since the operator continues to play its independent role in actuating the regular safety devices based on modern instrumentation and control (I and C). The latter also has passive features regarding the prevention of accidents. Two reactors with significant passive features that are presently offered on the market are the AP1000 PWR and the SWR 1000 BWR. Their passive features are compared and also their core damage frequencies (CDF). The latter are also compared with those of a VVER-1000. A further discussion about the two passive plants concerns their mitigating features for severe accidents. Regarding core-melt retention both rely on in-vessel cooling of the melt. The new VVER-1000 reactor, on the other hand features a validated ex-vessel concept. (author)

  6. Study on severe fuel damage and in-vessel melt progression

    International Nuclear Information System (INIS)

    Kim, Hee Dong; Kim, Sang Baik; Lee, Gyu Jung

    1992-06-01

    In-vessel core melt progression describes the progression of the state of a reactor core from core uncovery up to reactor vessel melt through in uncovered accidents or through temperature stabilization in accidents recovered by core reflooding. Melt progression can be thought as two parts; early melt progression and late melt progression. Early phase of core melt progression includes the progression of core material melting and relocation, which mostly consist of metallic materials. On the other hand, the late phase of core melt progression involves ceramic material melt and relocation to the lower plenum and heat-up the reactor vessel lower head. A large number of information are available for the early melt progression through experiments such as SFD, DF, FLHT test and utilized in the severe accident analysis codes. However, understanding of the late phase melt progression phenomenology is based primary on TMI-2 core examinations and not much experimental information is available. Especilally, the great uncertainties exist in vessel failure mode, melt composition, mass, and temperature. Further research is planned to perform to reduce the uncertainties in understanding of core melt down accidents as parts of long term melt progression research program. A study on the core melt progression at KAERI has been being performed through the Severe Accident Research Program with USNRC. KAERI staff had participated in the PBF SFD experiments at INEL and analyses of experiments were performed using SCDAP code. Experiments of core melt program have not been carried out at KAERI yet. It is planned that further research on core melt down accidents will be performed, which is related to design of future generations of nuclear reactors as parts of long-term project for improvement of nuclear reactor safety. (Author)

  7. Ex-Vessel Core Melt Modeling Comparison between MELTSPREAD-CORQUENCH and MELCOR 2.1

    Energy Technology Data Exchange (ETDEWEB)

    Robb, Kevin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Farmer, Mitchell [Argonne National Lab. (ANL), Argonne, IL (United States); Francis, Matthew W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-03-01

    System-level code analyses by both United States and international researchers predict major core melting, bottom head failure, and corium-concrete interaction for Fukushima Daiichi Unit 1 (1F1). Although system codes such as MELCOR and MAAP are capable of capturing a wide range of accident phenomena, they currently do not contain detailed models for evaluating some ex-vessel core melt behavior. However, specialized codes containing more detailed modeling are available for melt spreading such as MELTSPREAD as well as long-term molten corium-concrete interaction (MCCI) and debris coolability such as CORQUENCH. In a preceding study, Enhanced Ex-Vessel Analysis for Fukushima Daiichi Unit 1: Melt Spreading and Core-Concrete Interaction Analyses with MELTSPREAD and CORQUENCH, the MELTSPREAD-CORQUENCH codes predicted the 1F1 core melt readily cooled in contrast to predictions by MELCOR. The user community has taken notice and is in the process of updating their systems codes; specifically MAAP and MELCOR, to improve and reduce conservatism in their ex-vessel core melt models. This report investigates why the MELCOR v2.1 code, compared to the MELTSPREAD and CORQUENCH 3.03 codes, yield differing predictions of ex-vessel melt progression. To accomplish this, the differences in the treatment of the ex-vessel melt with respect to melt spreading and long-term coolability are examined. The differences in modeling approaches are summarized, and a comparison of example code predictions is provided.

  8. External cooling: The SWR 1000 severe accident management strategy. Part 1: motivation, strategy, analysis: melt phase, vessel integrity during melt-water interaction

    International Nuclear Information System (INIS)

    Kolev, Nikolay Ivanov

    2004-01-01

    This paper provides the description of the basics behind design features for the severe accident management strategy of the SWR 1000. The hydrogen detonation/deflagration problem is avoided by containment inertization. In-vessel retention of molten core debris via water cooling of the external surface of the reactor vessel is the severe accident management concept of the SWR 1000 passive plant. During postulated bounding severe accidents, the accident management strategy is to flood the reactor cavity with Core Flooding Pool water and to submerge the reactor vessel, thus preventing vessel failure in the SWR 1000. Considerable safety margins have determined by using state of the art experiment and analysis: regarding (a) strength of the vessel during the melt relocation and its interaction with water; (b) the heat flux at the external vessel wall; (c) the structural resistance of the hot structures during the long term period. Ex-vessel events are prevented by preserving the integrity of the vessel and its penetrations and by assuring positive external pressure at the predominant part of the external vessel in the region of the molten corium pool. Part 1 describes the motivation for selecting this strategy, the general description of the strategy and the part of the analysis associated with the vessel integrity during the melt-water interaction. (author)

  9. Phenomena in the interaction among a core melt and protective and sacrificial materials

    International Nuclear Information System (INIS)

    Steinwarz, W.; Koller, W.; Dyllong, N.; Fischer, M.; Hellmann, S.; Lansmann, V.; Nie, M.; Haefner, W.; Alkan, Z.; Andrae, P.; Rensing, B.

    2000-01-01

    In a postulated core meltdown accident in a light water reactor there are bound to be interactions, in the ex-vessel phase, among the core melt and the structural materials within and below the reactor cavity. In existing plants, these structural materials normally are structural concrete, while future, evolutionary reactor lines are to have sacrificial and protective materials specially designed for this hypothetical case. To add to the state of knowledge about the phenomena occurring, experiments need to be conducted under conditions as realistic as possible. Within the research programs funded by the European Union, the German Federal Ministry for Economics, and the German nuclear power plant operators, experiments on a laboratory as well as an industrial scale on these problems are being carried out in the two projects called CORESA (COrium on REfractory and SAcrificial materials) and ECOSTAR (Ex-vessel COre melt STAbilization Research). The experiments are accompanied by an extensive analytical theoretical program also serving to advance and validate computer codes on the problems under investigation. The projects, which are carried out with international European participation, are expected to allow a concept to be developed for managing postulated accident scenarios involving core meltdown for innovative nuclear power plants, and to provide findings on risk evaluation of plants now in operation so as to further develop accident management measures. (orig.) [de

  10. Investigation on Melt-Structure-Water Interactions (MSWI) during severe accidents

    Energy Technology Data Exchange (ETDEWEB)

    Sehgal, B.R.; Yang, Z.L.; Dinh, T.N.; Nourgaliev, R.R.; Bui, V.A.; Haraldsson, H.O.; Li, H.X.; Konovakhin, M.; Paladino, D.; Leung, W.H [Royal Inst. of Tech., Stockholm (Sweden). Div. of Nuclear Power Safety

    1999-08-01

    This report is the final report for the work performed in 1998 in the research project Melt Structure Water Interactions (MSWI), under the auspices of the APRI Project, jointly funded by SKI, HSK, USNRC and the Swedish and Finnish power companies. The present report describes results of advanced analytical and experimental studies concerning melt-water-structure interactions during the course of a hypothetical severe core meltdown accident in a light water reactor (LWR). Emphasis has been placed on phenomena and properties which govern the fragmentation and breakup of melt jets and droplets, melt spreading and coolability, and thermal and mechanical loadings of a pressure vessel during melt-vessel interaction. Many of the investigations performed in support of this project have produced papers which have been published in the proceedings of technical meetings. A short summary of the results achieved in these papers is provided in this overview. Both experimental and analytical studies were performed to improve knowledge about phenomena of melt-structure-water interactions. We believe that significant technical advances have been achieved during the course of these studies. It was found that: the solidification has a strong effect on the drop deformation and breakup. Initially appearing at the drop surface and, later, thickening inwards, the solid crust layer dampens the instability waves on the drop surface and, therefore, hinders drop deformation and breakup. The drop thermal properties also affect the thermal behavior of the drop and, therefore, have impact on its deformation behavior. The jet fragmentation process is a function of many related phenomena. The fragmentation rate depends not only on the traditional parameters, e.g. the Weber number, but also on the melt physical properties, which change as the melt cools down from the liquidus to the solidus temperature. Additionally, the crust formed on the surface of the melt jet will also reduce the propensity

  11. Investigation on Melt-Structure-Water Interactions (MSWI) during severe accidents

    International Nuclear Information System (INIS)

    Sehgal, B.R.; Yang, Z.L.; Dinh, T.N.; Nourgaliev, R.R.; Bui, V.A.; Haraldsson, H.O.; Li, H.X.; Konovakhin, M.; Paladino, D.; Leung, W.H

    1999-08-01

    This report is the final report for the work performed in 1998 in the research project Melt Structure Water Interactions (MSWI), under the auspices of the APRI Project, jointly funded by SKI, HSK, USNRC and the Swedish and Finnish power companies. The present report describes results of advanced analytical and experimental studies concerning melt-water-structure interactions during the course of a hypothetical severe core meltdown accident in a light water reactor (LWR). Emphasis has been placed on phenomena and properties which govern the fragmentation and breakup of melt jets and droplets, melt spreading and coolability, and thermal and mechanical loadings of a pressure vessel during melt-vessel interaction. Many of the investigations performed in support of this project have produced papers which have been published in the proceedings of technical meetings. A short summary of the results achieved in these papers is provided in this overview. Both experimental and analytical studies were performed to improve knowledge about phenomena of melt-structure-water interactions. We believe that significant technical advances have been achieved during the course of these studies. It was found that: the solidification has a strong effect on the drop deformation and breakup. Initially appearing at the drop surface and, later, thickening inwards, the solid crust layer dampens the instability waves on the drop surface and, therefore, hinders drop deformation and breakup. The drop thermal properties also affect the thermal behavior of the drop and, therefore, have impact on its deformation behavior. The jet fragmentation process is a function of many related phenomena. The fragmentation rate depends not only on the traditional parameters, e.g. the Weber number, but also on the melt physical properties, which change as the melt cools down from the liquidus to the solidus temperature. Additionally, the crust formed on the surface of the melt jet will also reduce the propensity

  12. Assessment of uncertainties in core melt phenomenology and their impact on risk at the Z/IP facilities

    International Nuclear Information System (INIS)

    Pratt, W.T.; Ludewig, H.; Bari, R.A.; Meyer, J.F.

    1983-01-01

    An evaluation of core meltdown accidents in the Z/IP facilities has been performed. Containment event trees have been developed to relate the progression of a given accident to various potential containment building failure modes. An extensive uncertainty analysis related to core melt phenomenology has been performed. A major conclusion of the study is that large variations in parameters associated with major phenomenological uncertainties have a relatively minor impact on risk when external initiators are considered. This is due to the inherent capability fo the Z/IP containment buildings to contain a wide range of core meltdown accidents. 12 references, 2 tables

  13. Thermal and hydraulic behaviour of CANDU cores under severe accident conditions - final report. Vol. 1

    International Nuclear Information System (INIS)

    Rogers, J.T.

    1984-06-01

    This report gives the results of a study of the thermo-hydraulic aspects of severe accident sequences in CANDU reactors. The accident sequences considered are the loss of the moderator cooling system and the loss of the moderator heat sink, each following a large loss-of-coolant accident accompanied by loss of emergency coolant injection. Factors considered include expulsion and boil-off of the moderator, uncovery, overheating and disintegration of the fuel channels, quenching of channel debris, re-heating of channel debris following complete moderator expulsion, formation and possible boiling of a molten pool of core debris and the effectiveness of the cooling of the calandria wall by the shield tank water during the accident sequences. The effects of these accident sequences on the reactor containment are also considered. Results show that there would be no gross melting of fuel during moderator expulsion from the calandria, and for a considerable time thereafter, as quenched core debris re-heats. Core melting would not begin until about 135 minutes after accident initiation in a loss of the moderator cooling system and until about 30 minutes in a loss of the moderator heat sink. Eventually, a pool of molten material would form in the bottom of the calandria, which may or may not boil, depending on property values. In all cases, the molten core would be contained within the calandria, as long as the shield tank water cooling system remains operational. Finally, in the period from 8 to 50 hours after the initiation of the accident, the molten core would re-solidify within the calandria. There would be no consequent damage to containment resulting from these accident sequences, nor would there be a significant increase in fission product releases from containment above those that would otherwise occur in a dual failure LOCA plus LOECI

  14. Transient debris freezing and potential wall melting during a severe reactivity initiated accident experiment

    International Nuclear Information System (INIS)

    El-Genk, M.S.; Moore, R.L.

    1981-01-01

    It is important to light water reactor (LWR) safety analysis to understand the transient freezing of molten core debris on cold structures following a hypothetical core meltdown accident. The purpose of this paper is to (a) present the results of a severe reactivity initiated accident (RIA) in-pile experiment with regard to molten debris distribution and freezing following test fuel rod failure, (b) analyze the transient freezing of molten debris (primarily a mixture of UO/sub 2/ fuel and Zircaloy cladding) deposited on the inner surface of the test shroud wall upon rod failure, and (c) assess the potential for wall melting upon being contacted by the molten debris. 26 refs

  15. Proposed model for fuel-coolant mixing during a core-melt accident

    International Nuclear Information System (INIS)

    Corradini, M.L.

    1983-01-01

    If complete failure of normal and emergency coolant flow occurs in a light water reactor, fission product decay heat would eventually cause melting of the reactor fuel and cladding. The core melt may then slump into the lower plenum and later into the reactor cavity and contact residual liquid water. A model is proposed to describe the fuel-coolant mixing process upon contact. The model is compared to intermediate scale experiments being conducted at Sandia. The modelling of this mixing process will aid in understanding three important processes: (1) fuel debris sizes upon quenching in water, (2) the hydrogen source term during fuel quench, and (3) the rate of steam production. Additional observations of Sandia data indicate that the steam explosion is affected by this mixing process

  16. Research activities at JAERI on core material behaviour under severe accident conditions

    International Nuclear Information System (INIS)

    Uetsuka, H.; Katanashi, S.; Ishijima, K.

    1996-01-01

    At the Japan Atomic Energy Research Institute (JAERI), experimental studies on physical phenomena under the condition of a severe accident have been conducted. This paper presents the progress of the experimental studies on fuel and core materials behaviour such as the thermal shock fracture of fuel cladding due to quenching, the chemical interaction of core materials at high temperatures and the examination of TMI-2 debris. The mechanical behaviour of fuel rod with heavily embrittled cladding tube due to the thermal shock during delayed reflooding have been investigated at the Nuclear Safety Research Reactor (NSSR) of JAERI. A test fuel rod was heated in steam atmosphere by both electric and nuclear heating using the NSSR, then the rod was quenched by reflooding at the test section. Melting of core component materials having relatively low melting points and their eutectic reaction with other materials significantly influence on the degradation and melt down of fuel bundles during severe accidents. Therefore basic information on the reaction of core materials is necessary to understand and analyze the progress of core melting and relocation. Chemical interactions have been widely investigated at high temperatures for various binary systems of core component materials including absorber materials such as Zircaloy/Inconel, Zircaloy/stainless steel, Zircaloy/(Ag-In-Cd), stainless steel B 4 C and Zircaloy/B 4 C. It was found that the reaction generally obeyed a parabolic rate law and the reaction rate was determined for each reaction system. Many debris samples obtained from the degraded core of TMI-2 were transported to JAERI for numerous examinations and analyses. The microstructural examination revealed that the most part of debris was ceramic and it was not homogeneous in a microscopic sense. The thermal diffusivity data was also obtained for the temperature range up to about 1800K. The data from the large scale integral experiments were also obtained through the

  17. How to arrest a core meltdown accident (doing nothing)

    International Nuclear Information System (INIS)

    Baron, Jorge H.

    2000-01-01

    In the eventual situation of a severe accident in a nuclear reactor, the molten core is able to relocate inside the pressure vessel. This may lead to the vessel failure, due to the thermal attack of the molten core (at approximation of 3000K) on the vessel steel wall. The vessel failure implies the failure of a very important barrier that contains the radioactive materials generated during the reactor operation, with a significant risk of producing high radiation doses both on operators and on the public. It is expected, for the new generation of nuclear reactors, that these will be required to withstand (by design) a core melt down accident, without the need for an immediate evacuation of the surrounding population. In this line, the use of a totally passive system is postulated, which fulfills the objective of containing the molten core inside the pressure vessel, at low temperature (approximation 1200K) precluding its failure. The conceptual design of a passive in-vessel core catcher is presented in this paper, built up of zinc, and designed for the CAREM-25 nuclear power plant. (author)

  18. Fuel and control rod failure behavior during degraded core accidents

    International Nuclear Information System (INIS)

    Chung, K.S.

    1984-01-01

    As a part of the pretest and posttest analyses of Light Water Reactor Source Term Experiments (STEP) which are conducted in the Transient Reactor Test (TREAT) facility, this paper investigates the thermodynamic and material behaviors of nuclear fuel pins and control rods during severe core degradation accidents. A series of four STEP tests are being performed to simulate the characteristics of the power reactor accidents and investigate the behavior of fission product release during these accidents. To determine the release rate of the fission products from the fuel pins and the control rod materials, information concerning the timing of the clad failure and the thermodynamic conditions of the fuel pins and control rods are needed to be evaluated. Because the phase change involves a large latent heat and volume expansion, and the phase change is a direct cause of the clad failure, the understanding of the phase change phenomena, particularly information regarding how much of the fuel pin and control rod materials are melted are very important. A simple energy balance model is developed to calculate the temperature profile and melt front in various heat transfer media considering the effects of natural convection phenomena on the melting and freezing front behavior

  19. Overview of core disruptive accidents

    International Nuclear Information System (INIS)

    Marchaterre, J.F.

    1977-01-01

    An overview of the analysis of core-disruptive accidents is given. These analyses are for the purpose of understanding and predicting fast reactor behavior in severe low probability accident conditions, to establish the consequences of such conditions and to provide a basis for evaluating consequence limiting design features. The methods are used to analyze core-disruptive accidents from initiating event to complete core disruption, the effects of the accident on reactor structures and the resulting radiological consequences are described

  20. Experiments and analyses on melt jet impingement during severe accidents

    International Nuclear Information System (INIS)

    Sehgal, B.R.; Green, J.A.; Dinh, T.N.; Dong, W.

    1997-01-01

    Relocation of melt from the core region, during a nuclear reactor severe accident, presents the potential for erosion of the reactor pressure vessel (RPV) wall as a result of melt jet impingement. The extent of vessel erosion will depend upon a variety of parameters, including jet diameter, velocity, composition, superheat, angle of inclination, and the presence of an overlying water or melt pool. Experiments have been conducted at the Royal Institute of Technology Division of Nuclear Power Safety (RIT/NPS) which employ a variety of melt and pressure vessel simulant materials, such as water, salt-ice, Cerrobend alloy and molten salt. These experiments have revealed that the erosion depth of the vessel simulant in the jet stagnation zone can be adequately predicted by the Saito correlation, which is based on turbulent heat transfer, while initial erosion rates are seen to be in line with the laminar-stagnation-zone model. A transition between the laminar and turbulent regimes was realized in most cases and is attributed to the roughness of the surface in the eroded cavity formed

  1. Studies of Behavior Melting Temperature Characteristics for Multi Thermocouple In-Core Instrument Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Donghyup; Chae, Myoungeun; Kim, Sungjin; Lee, Kyulim [Woojin inc, Hwasung (Korea, Republic of)

    2015-05-15

    Bottom-up type in-core instruments (ICIs) are used for the pressurized water reactors of OPR-1000, APR- 1400 in order to measure neutron flux and temperature in the reactor. It is a well-known technique and a proven design using years in the nuclear field. ICI consists of one pair of K-type thermocouple, five self-powered neutron detectors (SPNDs) and one back ground detector. K-type thermocouple's purpose is to measure the core exit temperature (CET) in the reactor. The CET is a very important factor for operating nuclear power plants and it is 327 .deg. C when generally operating the reactor in the nuclear power plant(NPP) in case of OPR- 1000. If the CET will exceed 650 .deg. C, Operators in the main control room should be considered to be an accident situation in accordance with a severe accident management guidance(SAMG). The Multi Thermocouple ICI is a new designed ICI assuming severe accident conditions. It consists of four more thermocouples than the existing design, so it has five Ktype thermocouples besides the thermocouple measuring CET is located in the same elevation as the ICI. Each thermocouple is able to be located in the desired location as required. The Multi Thermocouple ICI helps to measure the temperature distribution of the entire reactor. In addition, it will measure certain point of melted core because of the in-vessel debris of nuclear fuel when an accident occurs more seriously. In this paper, to simulate a circumstance such as a nuclear reactor severe accident was examined. In this study, the K-type thermocouples of Multi Thermocouple ICI was confirmed experimentally to be able to measure up to 1370 .deg. C before the thermocouples have been melted. And after the thermocouples were melted by debris, it was able to be monitored that the signal of EMF directed the infinite value of voltage. Therefore through the results of the test, it can be assumed that if any EMF data among the Multi Thermocouple ICI will direct the infinite value

  2. Studies of Behavior Melting Temperature Characteristics for Multi Thermocouple In-Core Instrument Assembly

    International Nuclear Information System (INIS)

    Shin, Donghyup; Chae, Myoungeun; Kim, Sungjin; Lee, Kyulim

    2015-01-01

    Bottom-up type in-core instruments (ICIs) are used for the pressurized water reactors of OPR-1000, APR- 1400 in order to measure neutron flux and temperature in the reactor. It is a well-known technique and a proven design using years in the nuclear field. ICI consists of one pair of K-type thermocouple, five self-powered neutron detectors (SPNDs) and one back ground detector. K-type thermocouple's purpose is to measure the core exit temperature (CET) in the reactor. The CET is a very important factor for operating nuclear power plants and it is 327 .deg. C when generally operating the reactor in the nuclear power plant(NPP) in case of OPR- 1000. If the CET will exceed 650 .deg. C, Operators in the main control room should be considered to be an accident situation in accordance with a severe accident management guidance(SAMG). The Multi Thermocouple ICI is a new designed ICI assuming severe accident conditions. It consists of four more thermocouples than the existing design, so it has five Ktype thermocouples besides the thermocouple measuring CET is located in the same elevation as the ICI. Each thermocouple is able to be located in the desired location as required. The Multi Thermocouple ICI helps to measure the temperature distribution of the entire reactor. In addition, it will measure certain point of melted core because of the in-vessel debris of nuclear fuel when an accident occurs more seriously. In this paper, to simulate a circumstance such as a nuclear reactor severe accident was examined. In this study, the K-type thermocouples of Multi Thermocouple ICI was confirmed experimentally to be able to measure up to 1370 .deg. C before the thermocouples have been melted. And after the thermocouples were melted by debris, it was able to be monitored that the signal of EMF directed the infinite value of voltage. Therefore through the results of the test, it can be assumed that if any EMF data among the Multi Thermocouple ICI will direct the infinite value

  3. Development of MPS Method for Analyzing Melt Spreading Behavior and MCCI in Severe Accidents

    Science.gov (United States)

    Yamaji, Akifumi; Li, Xin

    2016-08-01

    Spreading of molten core (corium) on reactor containment vessel floor and molten corium-concrete interaction (MCCI) are important phenomena in the late phase of a severe accident for assessment of the containment integrity and managing the severe accident. The severe accident research at Waseda University has been advancing to show that simulations with moving particle semi-implicit (MPS) method (one of the particle methods) can greatly improve the analytical capability and mechanical understanding of the melt behavior in severe accidents. MPS models have been developed and verified regarding calculations of radiation and thermal field, solid-liquid phase transition, buoyancy, and temperature dependency of viscosity to simulate phenomena, such as spreading of corium, ablation of concrete by the corium, crust formation and cooling of the corium by top flooding. Validations have been conducted against experiments such as FARO L26S, ECOKATS-V1, Theofanous, and SPREAD for spreading, SURC-2, SURC-4, SWISS-1, and SWISS-2 for MCCI. These validations cover melt spreading behaviors and MCCI by mixture of molten oxides (including prototypic UO2-ZrO2), metals, and water. Generally, the analytical results show good agreement with the experiment with respect to the leading edge of spreading melt and ablation front history of concrete. The MPS results indicate that crust formation may play important roles in melt spreading and MCCI. There is a need to develop a code for two dimensional MCCI experiment simulation with MPS method as future study, which will be able to simulate anisotropic ablation of concrete.

  4. Core loss during a severe accident (COLOSS)

    International Nuclear Information System (INIS)

    Adroguer, B.; Bertrand, F.; Chatelard, P.; Cocuaud, N.; Van Dorsselaere, J.P.; Bellenfant, L.; Knocke, D.; Bottomley, D.; Vrtilkova, V.; Belovsky, L.; Mueller, K.; Hering, W.; Homann, C.; Krauss, W.; Miassoedov, A.; Schanz, G.; Steinbrueck, M.; Stuckert, J.; Hozer, Z.; Bandini, G.; Birchley, J.; Berlepsch, T. von; Kleinhietpass, I.; Buck, M.; Benitez, J.A.F.; Virtanen, E.; Marguet, S.; Azarian, G.; Caillaux, A.; Plank, H.; Boldyrev, A.; Veshchunov, M.; Kobzar, V.; Zvonarev, Y.; Goryachev, A.

    2005-01-01

    The COLOSS project was a 3-year shared-cost action, which started in February 2000. The work-programme performed by 19 partners was shaped around complementary activities aimed at improving severe accident codes. Unresolved risk-relevant issues regarding H 2 production, melt generation and the source term were studied through a large number of experiments such as (a) dissolution of fresh and high burn-up UO 2 and MOX by molten Zircaloy (b) simultaneous dissolution of UO 2 and ZrO 2 (c) oxidation of U-O-Zr mixtures (d) degradation-oxidation of B 4 C control rods. Corresponding models were developed and implemented in severe accident computer codes. Upgraded codes were then used to apply results in plant calculations and evaluate their consequences on key severe accident sequences in different plants involving B 4 C control rods and in the TMI-2 accident. Significant results have been produced from separate-effects, semi-global and large-scale tests on COLOSS topics enabling the development and validation of models and the improvement of some severe accident codes. Breakthroughs were achieved on some issues for which more data are needed for consolidation of the modelling in particular on burn-up effects on UO 2 and MOX dissolution and oxidation of U-O-Zr and B 4 C-metal mixtures. There was experimental evidence that the oxidation of these mixtures can contribute significantly to the large H 2 production observed during the reflooding of degraded cores under severe accident conditions. The plant calculation activity enabled (a) the assessment of codes to calculate core degradation with the identification of main uncertainties and needs for short-term developments and (b) the identification of safety implications of new results. Main results and recommendations for future R and D activities are summarized in this paper

  5. Melt propagation in dry core debris beds

    International Nuclear Information System (INIS)

    Dosanjh, S.S.

    1989-01-01

    During severe light water reactor accidents like Three Mile Island Unit 2, the fuel rods can fragment and thus convert the reactor core into a large particle bed. The postdryout meltdown of such debris beds is examined. A two-dimensional model that considers the presence of oxidic (UO 2 and ZrO 2 ) as well as metallic (e.g., zirconium) constituents is developed. Key results are that a dense metallic crust is created near the bottom of the bed as molten materials flow downward and freeze; liquid accumulates above the blockage and, if zirconium is present, the pool grows rapidly as molten zirconium dissolved both UO 2 and ZrO 2 particles; if the melt wets the solid, a fraction of the melt flows radially outward under the action of capillary forces and freezes near the radial boundary; in a nonwetting system, all of the melt flows into the bottom of the bed; and when zirconium and iron are in intimate contact and the zirconium metal atomic fraction is > 0.33, these metals can liquefy and flow out of the bed very early in the meltdown sequence

  6. The modeling of core melting and in-vessel corium relocation in the APRIL code

    Energy Technology Data Exchange (ETDEWEB)

    Kim. S.W.; Podowski, M.Z.; Lahey, R.T. [Rensselaer Polytechnic Institute, Troy, NY (United States)] [and others

    1995-09-01

    This paper is concerned with the modeling of severe accident phenomena in boiling water reactors (BWR). New models of core melting and in-vessel corium debris relocation are presented, developed for implementation in the APRIL computer code. The results of model testing and validations are given, including comparisons against available experimental data and parametric/sensitivity studies. Also, the application of these models, as parts of the APRIL code, is presented to simulate accident progression in a typical BWR reactor.

  7. analysis of reactivity accidents in MTR for various protection system parameters and core condition

    International Nuclear Information System (INIS)

    Mohamed, F.M.

    2011-01-01

    Egypt Second Research Reactor (ETRR-2) core was modified to irradiate LEU (Low Enriched Uranium) plates in two irradiation boxes for fission 99 Mo production. The old core comprising 29 fuel elements and one Co Irradiation Device (CID) and the new core comprising 27 fuel elements, CID, and two 99 Mo production boxes. The in core irradiation has the advantage of no special cooling or irradiation loop is required. The purpose of the present work is the analysis of reactivity accidents (RIA) for ETRR-2 cores. The analysis was done to evaluate the accidents from different point of view:1- Analysis of the new core for various Reactor Protection System (RPS) parameters 2- Comparison between the two cores. 3- Analysis of the 99 Mo production boxes.PARET computer code was employed to compute various parameters. Initiating events in RIA involve various modes of reactivity insertion, namely, prompt critical condition (p=1$), accidental ejection of partial and complete CID uncontrolled withdrawal of a control rod accident, and sudden cooling of the reactor core. The time histories of reactor power, energy released, and the maximum fuel, clad and coolant temperatures of fuel elements and LEU plates were calculated for each of these accidents. The results show that the maximum clad temperatures remain well below the clad melting of both fuel and uranium plates during these accidents. It is concluded that for the new core, the RIA with scram will not result in fuel or uranium plate failure.

  8. Analysis of core melt accident in Fukushima Daiichi-Unit 1 nuclear reactor

    International Nuclear Information System (INIS)

    Tanabe, Fumiya

    2011-01-01

    In order to obtain a profound understanding of the serious situation in Unit 1 and Unit 2/3 reactors of Fukushima Daiichi Nuclear Power Station (hereafter abbreviated as 1F1 and 1F2/3, respectively), which was directly caused by tsunami due to a huge earthquake on 11 March 2011, analyses of severe core damage are performed. In the present report, the analysis method and 1F1 analysis are described. The analysis is essentially based on the total energy balance in the core. In the analysis, the total energy vs. temperature curve is developed for each reactor, which is based on the estimated core materials inventory and material property data. Temperature and melt fraction are estimated by comparing the total energy curve with the total stored energy in the core material. The heat source is the decay heat of fission products and actinides together with reaction heat from the zirconium steam reaction. (author)

  9. Melt spreading code assessment, modifications, and initial application to the EPR core catcher design

    International Nuclear Information System (INIS)

    Farmer, M.T.; Basu, S.

    2009-01-01

    The Evolutionary Power Reactor (EPR) is a 1,600-MWe Pressurized Water Reactor (PWR) that is undergoing a design certification review by the U.S. Nuclear Regulatory Commission (NRC). The EPR severe accident design philosophy is predicated upon the fact that the projected power rating results in a narrow margin for in-vessel melt retention by external flooding. As a result, the design addresses ex-vessel core melt stabilization using a mitigation strategy that includes: 1) an external core melt retention system to temporarily hold core melt released from the vessel; 2) a layer of 'sacrificial' material that is admixed with the melt while in the core melt retention system; 3) a melt plug that, when failed, provides a pathway for the mixture to spread to a large core spreading chamber; and finally, 4) cooling and stabilization of the spread melt by controlled top and bottom flooding. The melt spreading process relies heavily on inertial flow of a low-viscosity admixed melt to a segmented spreading chamber, and assumes that the melt mass will be distributed to a uniform height in the chamber. The spreading phenomenon thus needs to be modeled properly in order to adequately assess the EPR design. The MELTSPREAD code, developed at Argonne National Laboratory, can model segmented, and both uniform and non-uniform spreading. The NRC is using MELTSPREAD to evaluate melt spreading in the EPR design. The development of MELTSPREAD ceased in the early 1990's, and so the code was first assessed against the more contemporary spreading database and code modifications, as warranted, were carried out before performing confirmatory plant calculations. This paper provides principle findings from the MELTSPREAD assessment activities and resulting code modifications, and also summarizes the results of initial scoping calculations for the EPR plant design and preliminary plant analyses, along with the plan for performing the final set of plant calculations including sensitivity studies

  10. Accident termination by element dropout in the GCFR

    International Nuclear Information System (INIS)

    Torri, A.; Tomkins, J.L.

    1976-01-01

    Severe loss-of-flow accidents are being investigated for the GCFR in order to assess the risk from those low-probability accidents which lead to a loss of coolable core geometry. Accident mitigating phenomena unique to the GCFR have been identified for the loss of decay heat removal accident. Circumferential assembly duct melting is calculated to occur at the core mid-plane before the fuel within the assembly melts. The GCFR core assemblies are top-mounted and there is clearance between assemblies to accommodate swelling and thermal distortions without interference. No lateral core clamping system is employed and there are no structures in the plenum below the core. Thus it is possible for the lower portion of the individual assemblies, including most of the fuel, to drop to the cavity floor unless interference or bonding between assemblies develops during the accident. Due to the delay in duct corner melting the melt front at the duct mid-flat progresses over about one-half of the core height. The possibility of inter-element bonding by molten duct steel dislocated into the gap between assemblies has been recognized and a test program to verify the duct melting sequence and to investigate the duct dropout is being planned at the Los Alamos Scientific Laboratory

  11. In-core melt progression for the MAAP 4 codes

    International Nuclear Information System (INIS)

    Wu, C.-D.; Paik, Chan Y.; Henry, Robert E.; Ply, Martin G.

    2004-01-01

    The MAAP 4 core melt progression model contains provisions for the formation of a molten debris pool surrounded by a crust during late phase core degradation. A predominantly oxidic molten pool with a predominantly metallic lower crust may naturally develop through a combination of models for real material phase diagrams, mechanistic relocation, and rules to recognize extremely low porosity and the liquid fractions of adjacent highly degraded nodes. Pool size and shape thus becomes relatively independent of core nodalization (which only governs the coarseness of the crust location). An upper pool crust is mechanistically allowed during consideration of radiative and convective heat losses from the pool top surface to surrounding core nodes, the core barrel, and upper internals. Circulation within the pool causes mass and energy exchange between participating pool nodes, and determines the heat fluxes to the boundary crusts. Side and bottom node failure is predicted based on the time, temperature, and stress. Calculations demonstrate that this concept allows simulation of the degraded core geometry observed during the TMI-2 accident. (author)

  12. Method and device for catching reactor core melt-down masses in hypothetical accidents of nuclear power plants

    International Nuclear Information System (INIS)

    Morlock, G.; Wiesemes, J.; Bachner, D.

    1977-01-01

    The device is to receive the afterheat of the molten core and in this way to prevent afterflow of coolant and a new criticality. A tank below the reactor pressure vessel, with the proper diameter, contains a store of salt or a salt mixture suitable to receive the afterheat of a core melt-down as heat of fusion or conversion. Above the salt, there is a layer of thermoplastics or of a material forming a hardening foam. Coolant eventually continuing to flow out is separated from the core melt by this barrier layer, and thus the build-up of high steam pressures is prevented. Neutron-absorbing materials, like boron salts mixed to the salts, as well as a subdivision of the salt surface, e.g. by means of canalizing firebricks, prevent the formation of new criticality. Further installations within the tank, like pipings or channels, permit the introduction of water after cooling down of the core or salt melt-down mass and to wash out the brine with all radioactive and other constituents for transport to reprocessing or ultimate storage. (HP) [de

  13. Study on severe accident induced by large break loss of coolant accident for pressureized water reactor

    International Nuclear Information System (INIS)

    Zhang Longfei; Zhang Dafa; Wang Shaoming

    2007-01-01

    Using the best estimate computer code SCDAP/RELAP5/MOD3.2 and taking US Westinghouse corporation Surry nuclear power plant as the reference object, a typical three-loop pressurized water reactor severe accident calculation model was established and 25 cm large break loss of coolant accident (LBLOCA) in cold and hot leg of primary loop induced core melt accident was analyzed. The calculated results show that core melt progression is fast and most of the core material melt and relocated to the lower plenum. The lower head of reactor pressure vessel failed at an early time and the cold leg break is more severe than the hot leg break in primary loop during LBLOCA. (authors)

  14. LACOMERA - large scale experiments on core degradation, melt retention and coolability at the Forschungszentrum Karslruhe

    International Nuclear Information System (INIS)

    Miassoedov, A.; Alsmeyer, H.; Meyer, L.

    2003-01-01

    The LACOMERA project at the Forschungszentrum Karlsruhe is a 3 year shared-cost action within the Fifth Framework Programme which started in September 2002. The overall objectives of the LACOMERA project are to provide research institutions from the EU member countries and associated states access to large scale experimental facilities at the Forschungszentrum Karlsruhe which shall be used to increase the knowledge of the quenching of a degraded core and regaining melt coolability in the reactor pressure vessel, of possible melt dispersion to the cavity, of molten core concrete interaction and of ex-vessel melt coolability. One major aspect is to understand how these events affect the safety of European reactors so as to lead to soundly-based accident management procedures. The project will bring together interested partners of different European member states in the area of severe accident analysis and control, with the goal to increase the public confidence in the use of nuclear energy. Moreover, partners from the newly associated states should be included as far as possible, and therefore the needs of Eastern, as well as Western, reactors will be considered in LACOMERA project. The project offers a unique opportunity to get involved in the networks and activities supporting VVER safety, and for Eastern experts to get an access to large scale experimental facilities in a Western research organisation to improve understanding of material properties and core behaviour under severe accident conditions. As a result of the first call for proposals a project on air ingress test in the QUENCH facility has been selected. A second call for proposals is opened with a deadline of 31 December 2003. (author)

  15. Results of out-of-pile experiments to investigate the possibilities of cooling a core melt with internal heat production

    International Nuclear Information System (INIS)

    Fieg, G.

    1976-01-01

    After serious hypothetical reactor accidents, melted core materials with internal heat production can occur in large quantities. A retention of these molten core masses within the containment must be ensured. The knowledge of the heat transport from volume-heated layers is necessary to clarify this matter. (orig./LH) [de

  16. Bayesian estimation of core-melt probability

    International Nuclear Information System (INIS)

    Lewis, H.W.

    1984-01-01

    A very simple application of the canonical Bayesian algorithm is made to the problem of estimation of the probability of core melt in a commercial power reactor. An approximation to the results of the Rasmussen study on reactor safety is used as the prior distribution, and the observation that there has been no core melt yet is used as the single experiment. The result is a substantial decrease in the mean probability of core melt--factors of 2 to 4 for reasonable choices of parameters. The purpose is to illustrate the procedure, not to argue for the decrease

  17. Assessment of Core Failure Limits for Light Water Reactor Fuel under Reactivity Initiated Accidents

    International Nuclear Information System (INIS)

    Jernkvist, Lars Olof; Massih, Ali R.

    2004-12-01

    Core failure limits for high-burnup light water reactor UO 2 fuel rods, subjected to postulated reactivity initiated accidents (RIAs), are here assessed by use of best-estimate computational methods. The considered RIAs are the hot zero power rod ejection accident (HZP REA) in pressurized water reactors and the cold zero power control rod drop accident (CZP CRDA) in boiling water reactors. Burnup dependent core failure limits for these events are established by calculating the fuel radial average enthalpy connected with incipient fuel pellet melting for fuel burnups in the range of 30 to 70 MWd/kgU. The postulated HZP REA and CZP CRDA result in lower enthalpies for pellet melting than RIAs that take place at rated power. Consequently, the enthalpy thresholds presented here are lower bounds to RIAs at rated power. The calculations are performed with best-estimate models, which are applied in the FRAPCON-3.2 and SCANAIR-3.2 computer codes. Based on the results of three-dimensional core kinetics analyses, the considered power transients are simulated by a Gaussian pulse shape, with a fixed width of either 25 ms (REA) or 45 ms (CRDA). Notwithstanding the differences in postulated accident scenarios between the REA and the CRDA, the calculated core failure limits for these two events are similar. The calculated enthalpy thresholds for fuel pellet melting decrease gradually with fuel burnup, from approximately 960 J/gUO 2 at 30 MWd/kgU to 810 J/gUO 2 at 70 MWd/kgU. The decline is due to depression of the UO 2 melting temperature with increasing burnup, in combination with burnup related changes to the radial power distribution within the fuel pellets. The presented fuel enthalpy thresholds for incipient UO 2 melting provide best-estimate core failure limits for low- and intermediate-burnup fuel. However, pulse reactor tests on high-burnup fuel rods indicate that the accumulation of gaseous fission products within the pellets may lead to fuel dispersal into the coolant at

  18. The role of systems availability and operator actions in accident management

    International Nuclear Information System (INIS)

    Lutz, R.J. Jr.; Scobel, J.H.

    1988-01-01

    Traditional analyses of severe accidents, such as those presented in Probabilistic Risk Assessment (PRA) studies of nuclear power stations, have generally been performed on the assumption that all means of cooling the reactor core are lost and that no operator actions to mitigate the consequences or progression of the severe accident are performed. The assumption to neglect the availability of safety systems and operator actions which do not prevent core melting can lead to erroneous conclusions regarding the plant severe accident profile. Recent work in severe accident management has identified the need to perform analyses which consider all systems availabilities and operator actions, irrespective of their contribution to the prevention of core melting. These new analyses have far reaching conclusions. The analysis results indicate an unacceptably high degree of simplicity in the present severe accident analyses for Probabilistic Risk Assessment studies; the simplicity is in the assumption that systems availabilities and operator actions which do not impact core melt frequency can be neglected in the severe accident analyses. This results in overly pessimistic predictions of the time of core melting and the subsequent potential for recovery of core cooling prior to core melting. This simplicity can have a considerable impact on severe accident decision making, particularly in the evaluation of alternate plant design features and the priorities for research studies

  19. Analysis of the loss of coolant accident for LEU cores of Pakistan research reactor-1

    International Nuclear Information System (INIS)

    Khan, L.A.; Bokhari, I.H.; Raza, S.H.

    1993-12-01

    Response of LEU cores for PARR-1 to a Loss of Coolant Accident (LOCA) has been studied. It has been assumed that pool water drains out to double ended rupture of primary coolant pipe or complete shearing of an experimental beam tube. Results show that for an operating power level of 10 MW, both the first high power and equilibrium cores would enter into melting conditions if the pool drain time is less than 22 h and 11 h respectively. However, an Emergency Core Cooling System (ECCS) capable of spraying the core at flow rate of 8.3 m/sup 3/h, for the above mentioned duration, would keep the peak core temperature much below the critical value. Maximum operating power levels below which melting would not occur have been assessed to 3.4 MW and 4.8 MW, respectively, for the first high power and equilibrium cores. (author) 5 figs

  20. Detonability of containment building atmospheres during core-meltdown accidents

    International Nuclear Information System (INIS)

    Jaung, R.; Berlad, L.; Pratt, W.

    1983-01-01

    During Core-Meltdown Accidents in Light Water Reactors, significant quantities of combustible gases could be released to the containment building. The highest possible peak pressure fields that may occur through combustion processes are associated with detonation phenomena. Accordingly, it is necessary to understand and identify the possible ways in which detonations may or may not occur. Although no comprehensive theory of detonation is currently available, there are useful guidelines, which can be derived from current theoretical concepts and the body of experimental data. This paper examines these guidelines and indicates how they may be used to evaluate the possible occurrence of detonation-related combustion processes. In particular, this study identifies three features that an initiation source must achieve if it is to ultimately result in a stable detonation. One of these features requires post-shock initial conditions that lead to very short ignition delays. This concept is used to examine the possibility of achieving quasi-steady detonation phenomena in nuclear reactor containment buildings during postulated core-melt accidents

  1. Assessment of accident energetics in LMFBR core-disruptive accidents

    International Nuclear Information System (INIS)

    Fauske, H.K.

    1977-01-01

    An assessment of accident energetics in LMFBR core-disruptive accidents is given with emphasis on the generic issues of energetic recriticality and energetic fuel-coolant interaction events. Application of a few general behavior principles to the oxide-fueled system suggests that such events are highly unlikely following a postulated core meltdown event

  2. Managing severe reactor accidents. A review and evaluation of our knowledge on reactor accidents and accident management

    International Nuclear Information System (INIS)

    Gustavsson, Veine

    2002-11-01

    The report gives a review of the results from the last years research on severe reactor accidents, and an opinion on the possibilities to refine the present strategies for accident management in Swedish and Finnish BWRs. The following aspect of reactor accidents are the major themes of the study: 1. Early pressure relief from hydrogen production; 2. Recriticality in re-flooded, degraded core; 3. Melt-through; 4. Steam explosion after melt-through; 5. Coolability of the melt after after melt-through; 6. Hydrogen fire in the reactor containment; 7. Leaking containment; 8. Hydrogen fire in the reactor building; 9. Long-time developments after a severe accident; 10. Accidents during shutdown for overhaul; 11. Information need for remedial actions. Possibilities for improving the strategies in each of these areas are discussed. The review shows that our knowledge is sufficient in the areas 1, 2, 4, 6, 8. For the other areas, more research is needed

  3. Reactivity accident analysis in MTR cores

    International Nuclear Information System (INIS)

    Waldman, R.M.; Vertullo, A.C.

    1987-01-01

    The purpose of the present work is the analysis of reactivity transients in MTR cores with LEU and HEU fuels. The analysis includes the following aspects: the phenomenology of the principal events of the accident that takes place, when a reactivity of more than 1$ is inserted in a critical core in less than 1 second. The description of the accident that happened in the RA-2 critical facility in September 1983. The evaluation of the accident from different points of view: a) Theoretical and qualitative analysis; b) Paret Code calculations; c) Comparison with Spert I and Cabri experiments and with post-accident inspections. Differences between LEU and HEU RA-2 cores. (Author)

  4. In-core fuel disruption experiments simulating LOF accidents for homogeneous and heterogeneous core LMFBRs: FD2/4 series

    International Nuclear Information System (INIS)

    Wright, S.A.; Mast, P.K.; Schumacher, Gustav; Fischer, E.A.

    1982-01-01

    A series of Fuel Disruption (FD) experiments simulating LOF accidents transients for homogeneous- and heterogeneous-core LMFBRs is currently being performed in the Annular Core Research Reactor at SNL. The test fuel is observed with high-speed cinematography to determine the timing and the mode of the fuel disruption. The five experiments performed to date show that the timing and mode of fuel disruption depend on the power level, fuel temperature (after preheat and at disruption), and the fuel temperature gradient. Two basic modes of fuel disruption were observed; solid-state disruption and liquid-state swelling followed by slumping. Solid-state dispersive fuel behavior (several hundred degrees prior to fuel melting) is only observed at high power levels (6P 0 ), low preheat temperatures (2000 K), and high thermal gradients (2800 K/mm). The swelling/slumping behavior was observed in all cases near the time of fuel melting. Computational models have been developed that predict the fuel disruption modes and timing observed in the experiments

  5. Development of severe accident analysis code - A study on the molten core-concrete interaction under severe accidents

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Chang Hyun; Lee, Byung Chul; Huh, Chang Wook; Kim, Doh Young; Kim, Ju Yeul [Seoul National University, Seoul (Korea, Republic of)

    1996-07-01

    The purpose of this study is to understand the phenomena of the molten core/concrete interaction during the hypothetical severe accident, and to develop the model for heat transfer and physical phenomena in MCCIs. The contents of this study are analysis of mechanism in MCCIs and assessment of heat transfer models, evaluation of model in CORCON code and verification in CORCON using SWISS and SURC Experiments, and 1000 MWe PWR reactor cavity coolability, and establishment a model for prediction of the crust formation and temperature of melt-pool. The properties and flow condition of melt pool covering with the conditions of severe accident are used to evaluate the heat transfer coefficients in each reviewed model. Also, the scope and limitation of each model for application is assessed. A phenomenological analysis is performed with MELCOR 1.8.2 and MELCOR 1.8.3 And its results is compared with corresponding experimental reports of SWISS and SURC experiments. And the calculation is performed to assess the 1000 MWe PWR reactor cavity coolability. To improve the heat transfer model between melt-pool and overlying coolant and analyze the phase change of melt-pool, 2 dimensional governing equations are established using the enthalpy method and computational program is accomplished in this study. The benchmarking calculation is performed and its results are compared to the experiment which has not considered effects of the coolant boiling and the gas injection. Ultimately, the model shall be developed for considering the gas injection effect and coolant boiling effect. 66 refs., 10 tabs., 29 refs. (author)

  6. Experiments and analyses on melt-structure-water interactions during severe accidents

    International Nuclear Information System (INIS)

    Seghal, B.R.; Dinh, T.N.; Bui, V.A.; Green, J.A.; Nourgaliev, R.R.; Okkonen, T.O.; Dinh, A.T.

    1998-04-01

    This report is the final report for the research project Melt Structure Water Interactions (MSWI). It describes results of analytical and experimental studies concerning MSWI during the course of a hypothetical core meltdown accident in a LWR. Emphasis has been placed on phenomena which govern vessel failure mode and timing and the mechanisms and properties which govern the fragmentation and breakup of melt jets and droplets. It was found that: 2-D effects significantly diminished the focusing effect of an overlying metallic layer on top of an oxide melt pool. This result improves the feasibility of in-vessel retention of a melt pool through external cooling of the lower head; phenomena related to hole ablation and melt discharge, in the event of vessel failure, are affected significantly by crust formation; the jet fragmentation process is a function of many related phenomena. The fragmentation rate depends not only on the traditional parameters but also on the melt physical properties, which change as the melt cools down from liquid to solid temperature; film boiling was investigated by developing a two-phase flow model and inserting it in a multi-D fluid dynamics code. It was concluded that the thickness of the film on the surface of a melt jet would be small and that the effects of the film on the process should not be large. This conclusion is contrary to the modeling employed in some other codes. The computer codes were developed and validated against the data obtained in the MSWI Project. The melt vessel interaction thermal analysis code describes the process of melt pool formation and convection and the resulting vessel thermal loadings. In addition, several innovative models were developed to describe the melt-water interaction process. The code MELT-3D treats the melt jet as a collection of particles whose movement is described with a three-dimensional Eulerian formulation. The model (SIPHRA) tracks the melt jet with an additional equation, using the

  7. The interaction of a core melt with concrete

    International Nuclear Information System (INIS)

    Reimann, M.; Holleck, H.; Skokan, A.; Perinic, D.

    1977-01-01

    In its fourth phase, a hypothetic core melt interacts with the concrete of the reactor foundation. This phase may last several days. Experimental laboratory investigations and theoretical models on the basis of model experiments aim at determining the time curve of the temperature of the core melt in order to quantify the processes up to the solidification of the melt and the end of concrete destroyal. Material interactions: 1) The two phases of the core melt, oxidic and metallic, remain separate for a long period of time. In dependence of the degree of oxidation of the system, the elemental distribution and, in particular, the fission products in the melt may be assessed. 2) The changes in the material values of the core melt in dependence of the temperature curve may be qualitatively assessed. 3) The solidification temperature of the oxidic phase of the core melt may be given in dependence of (UO 2 + ZrO 2 ) content. Thermal interactions: 1) The ratio vertical/radial erosion, which determines the cavity shape, is described in the correct order of magnitude by the extended film model. 2) The correct order of magnitude of the erosion rates is described by the concrete destruction model coupled with the film model. 3) The effects of the different concrete destruction enthalpies and concrete compositions (amount of gaseous decomposition products) may be estimated by the model calculations. (orig./HP) [de

  8. Reaction- and melting behaviour of LWR-core components UO2, Zircaloy and steel during the meltdown period

    International Nuclear Information System (INIS)

    Hofmann, P.

    1976-07-01

    The reaction behaviour of the UO 2 , Zircaloy-4 and austenitic steel core components was investigated as a function of temperature (till melting temperatures) under inert and oxidizing conditions. Component concentrations varied between that of Corium-A (65 wt.% UO 2 , 18% Zry, 17% steel) and that of Corium-E (35 wt.% UO 2 , 10% Zry, 55% steel). In addition, Zircaloy and stainless steel were used with different degrees of oxidation. The paper describes systematically the phases that arise during heating and melting. The integral composition of the melts and the qualitative as well as quantitative analysis of the phases present in solidified corium are given. In some cases melting points have been determined. The reaction and melting behaviour of the corium specimens strongly depends on the concentration and on the degree of oxidation of the core components. First liquid phases are formed at the Zry-steel interface at about 1,350 0 C. The maximum temperatures of about 2,500 0 C for the complete melting of the corium-specimens are well below the UO 2 melting point. Depending on the steel content and/or degree of oxidation of Zry and steel, a homogeneous metallic or oxide melt or two immiscible melts - one oxide and the other metallic - are obtained. During the melting experiments performed under inert gas conditions the chemical composition of the molten specimens generally change by evaporation losses of single elements, especially of uranium, zirconium and oxygen. The total weight losses go up to 30%; under oxidizing conditions they are substantially smaller due to the occurrence of different phases. In air or water vapor, the occurrence of the phases and the melting behaviour of the core components are strongly influenced by the oxidation rate and the oxygen supply to the surface of the melt. In the case of the hypothetical core melting accident, a heterogeneous melt (oxide and metallic) is probable after the meltdown period. (orig./RW) [de

  9. Package of programs for calculating accidents involving melting of the materials in a fast-reactor vessel

    International Nuclear Information System (INIS)

    Vlasichev, G.N.

    1994-01-01

    Methods for calculating one-dimensional nonstationary temperature distribution in a system of physically coupled materials are described. Six computer programs developed for calculating accident processes for fast reactor core melt are described in the article. The methods and computer programs take into account melting, solidification, and, in some cases, vaporization of materials. The programs perform calculations for heterogeneous systems consisting of materials with arbitrary but constant composition and heat transfer conditions at material boundaries. Additional modules provide calculations of specific conditions of heat transfer between materials, the change in these conditions and configuration of the materials as a result of coolant boiling, melting and movement of the fuel and structural materials, temperature dependences of thermophysical properties of the materials, and heat release in the fuel. 11 refs., 3 figs

  10. Analysis and research status of severe core damage accidents

    International Nuclear Information System (INIS)

    1984-03-01

    The Severe Core Damage Research and Analysis Task Force was established in Nuclear Safety Research Center, Tokai Research Establishment, JAERI, in May, 1982 to make a quantitative analysis on the issues related with the severe core damage accident and also to survey the present status of the research and provide the required research subjects on the severe core damage accident. This report summarizes the results of the works performed by the Task Force during last one and half years. The main subjects investigated are as follows; (1) Discussion on the purposes and necessities of severe core damage accident research, (2) proposal of phenomenological research subjects required in Japan, (3) analysis of severe core damage accidents and identification of risk dominant accident sequences, (4) investigation of significant physical phenomena in severe core damage accidents, and (5) survey of the research status. (author)

  11. Molten Core - Concrete interactions in nuclear accidents. Theory and design of an experimental facility

    International Nuclear Information System (INIS)

    Sevon, T.

    2005-11-01

    In a hypothetical severe accident in a nuclear power plant, the molten core of the reactor may flow onto the concrete floor of containment building. This would cause a molten core . concrete interaction (MCCI), in which the heat transfer from the hot melt to the concrete would cause melting of the concrete. In assessing the safety of nuclear reactors, it is important to know the consequences of such an interaction. As background to the subject, this publication includes a description of the core melt stabilization concept of the European Pressurized water Reactor (EPR), which is being built in Olkiluoto in Finland. The publication includes a description of the basic theory of the interaction and the process of spalling or cracking of concrete when it is heated rapidly. A literature survey and some calculations of the physical properties of concrete and corium. concrete mixtures at high temperatures have been conducted. In addition, an equation is derived for conservative calculation of the maximum possible concrete ablation depth. The publication also includes a literature survey of experimental research on the subject of the MCCI and discussion of the results and deficiencies of the experiments. The main result of this work is the general design of an experimental facility to examine the interaction of molten metals and concrete. The main objective of the experiments is to assess the probability of spalling, or cracking, of concrete under pouring of molten material. A program of five experiments has been designed, and pre-test calculations of the experiments have been conducted with MELCOR 1.8.5 accident analysis program and conservative analytic calculations. (orig.)

  12. Reentrainment of aerosols during the filtered venting after a severe core melt accident

    International Nuclear Information System (INIS)

    Mueller, M.

    1997-01-01

    The major objective of this project is the experimental determination of the aerosol reentrainment from boiling pool during controlled filtered venting of the containment vessel after a severe core melt accident. For this reason a linear downscaled (1:20) model containment with an inner free volume of 5 m 3 is provided. Both, water soluble and unsoluble model substances are used as fission product simulants. The major advantage of the pilot plant is the ability to run it at steady state conditions of any period of time. Further, modelling of the aerosol reentrainment from boiling pool allows upscaling of results on nuclear power plants. The deterministic aerosol reentrainment model can also be used to calculate entrainment phenomena in the process industries such at distillation columns or at flash evaporators. Steady state experiments with water soluble model substances clearly reveal enhanced aerosol reentrainment from boiling pool due to increasing boiling pool concentration of fission product simulants and due to increasing gas velocities above the boiling pool surface. But there can be seen no influence of corium concrete interactions on the aerosol reentrainment. Compared to the steam production due to the decay heat the resulting gas volume flux is negligible. Next, there can be seen aerosol reentrainment from boiling pool only above boiling pool areas. Further, experiments under steady state conditions with unsoluble fission product simulants show on the one hand scrubbing effects in the boiling pool, on the other hand no aerosol reentrainment of solid particles 3 μm. The so called reentrainment factor - ratio between fission product simulant in the venting system and in the boiling pool - is for water soluble model substances in the range of 10 -5 , for unsoluble fission product simulants in the range of 10 -6 . (author) figs., tabs., 57 refs

  13. Coolability in the frame of core melt accidents in light water reactors. Model development and validation for ATHLET-CD and ASTEC. Final report; Kuehlbarkeit im Rahmen von Kernschmelzunfaellen bei Leichtwasserreaktoren. Modellentwicklung und Validierung fuer ATHLET-CD und ASTEC. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Buck, Michael; Pohlner, Georg; Rahman, Saidur; Berkhan, Ana

    2015-07-15

    The code system ATHLET/ATHLET-CD is being developed in the frame of the reactor safety research of the German Federal Ministry for Economic Affairs and Energy (BMWi) within the topic analysis of transients and accident sequences. It serves for simulation of transients and accidents to be used in safety analyses for light water reactors. In the present project the development and validation of models for ATHLET-CD for description of the processes during severe accidents are continued. These works should enable broad safety analyses by a mechanistic description of the processes even during late phases of a degrading core and by this a profound estimation on coolability and accident management options during every phase. With the actual status of modelling in ATHLET-CD analyses on coolability are made to give a solid base for estimates about stabilization by cooling or accident progression, dependent on the scenario. The modeling in the MEWA module, describing the processes in a severely degraded core in ATHLET-CD, is extended on the processes in the lower plenum. For this, the model on melt pool behavior is extended and linked to the RPV wall. The coupling between MEWA and the thermal-hydraulics of ATHLET-CD is improved. The validation of the models is continued by calculations on new experiments and comparing analyses done in the frame of the European Network SARNET-2. For the European integral code ASTEC contributions from the modeling for ATHLET-CD will be done, especially by providing a model for the melt behavior in the lower plenum of a LWR. This report illustrates the work carried out in the frame of this project, and shows results of calculations and the status of validation by recalculations on experiments for debris bed coolability, melt pool behavior as well as jet fragmentation and debris bed formation.

  14. Generalized Thermohydraulics Module GENFLO for Combining With the PWR Core Melting Model, BWR Recriticality Neutronics Model and Fuel Performance Model

    International Nuclear Information System (INIS)

    Miettinen, Jaakko; Hamalainen, Anitta; Pekkarinen, Esko

    2002-01-01

    Thermal hydraulic simulation capability for accident conditions is needed at present in VTT in several programs. Traditional thermal hydraulic models are too heavy for simulation in the analysis tasks, where the main emphasis is the rapid neutron dynamics or the core melting. The GENFLO thermal hydraulic model has been developed at VTT for special applications in the combined codes. The basic field equations in GENFLO are for the phase mass, the mixture momentum and phase energy conservation equations. The phase separation is solved with the drift flux model. The basic variables to be solved are the pressure, void fraction, mixture velocity, gas enthalpy, liquid enthalpy, and concentration of non-condensable gas fractions. The validation of the thermohydraulic solution alone includes large break LOCA reflooding experiments and in specific for the severe accident conditions QUENCH tests. In the recriticality analysis the core neutronics is simulated with a two-dimensional transient neutronics code TWODIM. The recriticality with one rapid prompt peak is expected during a severe accident scenario, where the control rods have been melted and ECCS reflooding is started after the depressurization. The GENFLO module simulates the BWR thermohydraulics in this application. The core melting module has been developed for the real time operator training by using the APROS engineering simulators. The core heatup, oxidation, metal and fuel pellet relocation and corium pool formation into the lower plenum are calculated. In this application the GENFLO model simulates the PWR vessel thermohydraulics. In the fuel performance analysis the fuel rod transient behavior is simulated with the FRAPTRAN code. GENFLO simulates the subchannel around a single fuel rod and delivers the heat transfer on the cladding surface for the FRAPTRAN. The transient boundary conditions for the subchannel are transmitted from the system code for operational transient, loss of coolant accidents and

  15. Final results of the XR2-1 BWR metallic melt relocation experiment

    International Nuclear Information System (INIS)

    Gauntt, R.O.; Humphries, L.L.

    1997-08-01

    This report documents the final results of the XR2-1 boiling water reactor (BWR) metallic melt relocation experiment, conducted at Sandia National Laboratories for the U.S. Nuclear Regulatory Commission. The objective of this experiment was to investigate the material relocation processes and relocation pathways in a dry BWR core following a severe nuclear reactor accident such as an unrecovered station blackout accident. The imposed test conditions (initial thermal state and the melt generation rates) simulated the conditions for the postulated accident scenario and the prototypic design of the lower core test section (in composition and in geometry) ensured that thermal masses and physical flow barriers were modeled adequately. The experiment has shown that, under dry core conditions, the metallic core materials that melt and drain from the upper core regions can drain from the core region entirely without formation of robust coherent blockages in the lower core. Temporary blockages that suspended pools of molten metal later melted, allowing the metals to continue draining downward. The test facility and instrumentation are described in detail. The test progression and results are presented and compared to MERIS code analyses. 6 refs., 55 figs., 4 tabs

  16. Overview of LWR severe accident research activities at the Karlsruhe Institute of Technology

    International Nuclear Information System (INIS)

    Miassoedov, Alexei; Albrecht, Giancarlo; Foit, Jerzy-Jan; Jordan, Thomas; Steinbrück, Martin; Stuckert, Juri; Tromm, Walter

    2012-01-01

    The research activities in the light water reactor (LWR) severe accidents domain at Karlsruhe Institute of Technology (KIT) are concentrated on the in- and ex-vessel core melt behavior. The overall objective is to investigate the core melt scenarios from the beginning of core degradation to melt formation and relocation in the vessel, possible melt dispersion to the reactor cavity and to the containment, corium concrete interaction and corium coolability in the reactor cavity, and hydrogen behaviour in reactor systems. The results of the experiments contribute to a better understanding of the core melt sequences and thus improve safety of existing and, in the long-term, of future reactors by severe accident mitigation measures and by safety installations where required. This overview paper describes the experimental facilities used at KIT for severe accident research and gives an overview of the main directions and objectives of the R&D work. (author)

  17. Modeling of heat and mass transfer processes during core melt discharge from a reactor pressure vessel

    Energy Technology Data Exchange (ETDEWEB)

    Dinh, T.N.; Bui, V.A.; Nourgaliev, R.R. [Royal Institute of Technology, Stockholm (Sweden)] [and others

    1995-09-01

    The objective of the paper is to study heat and mass transfer processes related to core melt discharge from a reactor vessel is a severe light water reactor accident. The phenomenology of the issue includes (1) melt convection in and heat transfer from the melt pool in contact with the vessel lower head wall; (2) fluid dynamics and heat transfer of the melt flow in the growing discharge hole; and (3) multi-dimensional heat conduction in the ablating lower head wall. A program of model development, validation and application is underway (i) to analyse the dominant physical mechanisms determining characteristics of the lower head ablation process; (ii) to develop and validate efficient analytic/computational methods for estimating heat and mass transfer under phase-change conditions in irregular moving-boundary domains; and (iii) to investigate numerically the melt discharge phenomena in a reactor-scale situation, and, in particular, the sensitivity of the melt discharge transient to structural differences and various in-vessel melt progression scenarios. The paper presents recent results of the analysis and model development work supporting the simulant melt-structure interaction experiments.

  18. Thermal-hydraulic studies on molten core-concrete interactions

    International Nuclear Information System (INIS)

    Greene, G.A.

    1986-10-01

    This report discusses studies carried out in connection with light water power reactor accidents. Recent assessments have indicated that the consequences of molten-core concrete interactions dominate the considerations of severe accidents. The two areas of interest that have been investigated are interlayer heat and mass transfer and liquid-liquid boiling. Interlayer heat and mass transfer refers to processes that occur within a core melt between the stratified, immiscible phases of core oxides and metals. Liquid-liquid boiling refers to processes that occur at the melt-concrete on melt-coolant interface

  19. Principles of application of mechanical design measures to control severe accident phenomena, applied to the melt retention concept of the EPR

    International Nuclear Information System (INIS)

    Bittermann, D.

    2000-01-01

    To retain and stabilize a core melt within the containment, the phenomena which principally have to be dealt with are related to melt discharge, spreading, retention and cooling, plus specific phenomena like melt dispersal and ex-vessel melt water interaction. For the elaboration of mechanical design measures provided to stabilize a melt within the containment, boundary conditions may occur which could pose extremely high thermal and mechanical loads on the structures. This file describes an approach characterized by the idea to influence the course of severe accident scenarios as much as possible in order to generate boundary conditions for mitigation means ''by design'', which enables the development of a mitigation concept with maximum confidence in the effectiveness of the measures provided. (orig.)

  20. Analysis of ex-vessel melt jet breakup and coolability. Part 1: Sensitivity on model parameters and accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Moriyama, Kiyofumi; Park, Hyun Sun, E-mail: hejsunny@postech.ac.kr; Hwang, Byoungcheol; Jung, Woo Hyun

    2016-06-15

    Highlights: • Application of JASMINE code to melt jet breakup and coolability in APR1400 condition. • Coolability indexes for quasi steady state breakup and cooling process. • Typical case in complete breakup/solidification, film boiling quench not reached. • Significant impact of water depth and melt jet size; weak impact of model parameters. - Abstract: The breakup of a melt jet falling in a water pool and the coolability of the melt particles produced by such jet breakup are important phenomena in terms of the mitigation of severe accident consequences in light water reactors, because the molten and relocated core material is the primary heat source that governs the accident progression. We applied a modified version of the fuel–coolant interaction simulation code, JASMINE, developed at Japan Atomic Energy Agency (JAEA) to a plant scale simulation of melt jet breakup and cooling assuming an ex-vessel condition in the APR1400, a Korean advanced pressurized water reactor. Also, we examined the sensitivity on seven model parameters and five initial/boundary condition variables. The results showed that the melt cooling performance of a 6 m deep water pool in the reactor cavity is enough for removing the initial melt enthalpy for solidification, for a melt jet of 0.2 m initial diameter. The impacts of the model parameters were relatively weak and that of some of the initial/boundary condition variables, namely the water depth and melt jet diameter, were very strong. The present model indicated that a significant fraction of the melt jet is not broken up and forms a continuous melt pool on the containment floor in cases with a large melt jet diameter, 0.5 m, or a shallow water pool depth, ≤3 m.

  1. Severe accident tests and development of domestic severe accident system codes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    According to lessons learned from Fukushima-Daiichi NPS accidents, the safety evaluation will be started based on the NRA's New Safety Standards. In parallel with this movement, reinforcement of Severe Accident (SA) Measures and Accident Managements (AMs) has been undertaken and establishments of relevant regulations and standards are recognized as urgent subjects. Strengthening responses against nuclear plant hazards, as well as realistic protection measures and their standardization is also recognized as urgent subjects. Furthermore, decommissioning of Fukushima-Daiichi Unit1 through Unit4 is promoted diligently. Taking into account JNES's mission with regard to these SA Measures, AMs and decommissioning, movement of improving SA evaluation methodologies inside and outside Japan, and prioritization of subjects based on analyses of sequences of Fukushima-Daiichi NPS accidents, three viewpoints was extracted. These viewpoints were substantiated as the following three groups of R and D subjects: (1) Obtaining near term experimental subjects: Containment venting, Seawater injection, Iodine behaviors. (2) Obtaining mid and long experimental subjects: Fuel damage behavior at early phase of core degradation, Core melting and debris formation. (3) Development of a macroscopic level SA code for plant system behaviors and a mechanistic level code for core melting and debris formation. (author)

  2. Severe accident tests and development of domestic severe accident system codes

    International Nuclear Information System (INIS)

    2013-01-01

    According to lessons learned from Fukushima-Daiichi NPS accidents, the safety evaluation will be started based on the NRA's New Safety Standards. In parallel with this movement, reinforcement of Severe Accident (SA) Measures and Accident Managements (AMs) has been undertaken and establishments of relevant regulations and standards are recognized as urgent subjects. Strengthening responses against nuclear plant hazards, as well as realistic protection measures and their standardization is also recognized as urgent subjects. Furthermore, decommissioning of Fukushima-Daiichi Unit1 through Unit4 is promoted diligently. Taking into account JNES's mission with regard to these SA Measures, AMs and decommissioning, movement of improving SA evaluation methodologies inside and outside Japan, and prioritization of subjects based on analyses of sequences of Fukushima-Daiichi NPS accidents, three viewpoints was extracted. These viewpoints were substantiated as the following three groups of R and D subjects: (1) Obtaining near term experimental subjects: Containment venting, Seawater injection, Iodine behaviors. (2) Obtaining mid and long experimental subjects: Fuel damage behavior at early phase of core degradation, Core melting and debris formation. (3) Development of a macroscopic level SA code for plant system behaviors and a mechanistic level code for core melting and debris formation. (author)

  3. Analyses of systems availability and operator actions to support the development of severe accident procedures

    International Nuclear Information System (INIS)

    Lutz, R.J. Jr.; Scobel, J.H.

    1989-01-01

    This paper reports on traditional analyses of severe accidents, such as those presented in Probabilistic Risk Assessment (PRA) studies of nuclear power stations, that have generally been performed on the assumption that all means of cooling the reactor core are lost and that no operator actions to mitigate the consequences or progression of the severe accident are performed. The assumption to neglect the availability of safety systems and operator actions which do not prevent core melting can lead to erroneous conclusions regarding the plant severer accident profile. Recent work in severe accident management has identified the need to perform analyses which consider all systems availabilities and operator actions, irrespective of their contribution to the prevention of core melting. These new analyses indicate that the traditional analyses result in overfly pessimistic predictions of the time of core melting and the subsequent potential for recovery of core cooling prior to core melting. Additionally, since the traditional analyses do not model all of the operator actions which are prescribed, the impact of additional severe accident operator actions on the progression and consequences of the accident cannot be reliably identified. Further, the more detailed analysis can change the focus of the importance of various system to the prevention of core damage and the mitigation of severe accident consequences. Finally, the simplicity of the traditional analyses can have a considerable impact on severe accident decision making, particularly in the evaluation of alternate plant design features and the priorities for research studies

  4. A volatile-rich Earth's core inferred from melting temperature of core materials

    Science.gov (United States)

    Morard, G.; Andrault, D.; Antonangeli, D.; Nakajima, Y.; Auzende, A. L.; Boulard, E.; Clark, A. N.; Lord, O. T.; Cervera, S.; Siebert, J.; Garbarino, G.; Svitlyk, V.; Mezouar, M.

    2016-12-01

    Planetary cores are mainly constituted of iron and nickel, alloyed with lighter elements (Si, O, C, S or H). Understanding how these elements affect the physical and chemical properties of solid and liquid iron provides stringent constraints on the composition of the Earth's core. In particular, melting curves of iron alloys are key parameter to establish the temperature profile in the Earth's core, and to asses the potential occurrence of partial melting at the Core-Mantle Boundary. Core formation models based on metal-silicate equilibration suggest that Si and O are the major light element components1-4, while the abundance of other elements such as S, C and H is constrained by arguments based on their volatility during planetary accretion5,6. Each compositional model implies a specific thermal state for the core, due to the different effect that light elements have on the melting behaviour of Fe. We recently measured melting temperatures in Fe-C and Fe-O systems at high pressures, which complete the data sets available both for pure Fe7 and other binary alloys8. Compositional models with an O- and Si-rich outer core are suggested to be compatible with seismological constraints on density and sound velocity9. However, their crystallization temperatures of 3650-4050 K at the CMB pressure of 136 GPa are very close to, if not higher than the melting temperature of the silicate mantle and yet mantle melting above the CMB is not a ubiquitous feature. This observation requires significant amounts of volatile elements (S, C or H) in the outer core to further reduce the crystallisation temperature of the core alloy below that of the lower mantle. References 1. Wood, B. J., et al Nature 441, 825-833 (2006). 2. Siebert, J., et al Science 339, 1194-7 (2013). 3. Corgne, A., et al Earth Planet. Sc. Lett. 288, 108-114 (2009). 4. Fischer, R. a. et al. Geochim. Cosmochim. Acta 167, 177-194 (2015). 5. Dreibus, G. & Palme, H. Geochim. Cosmochim. Acta 60, 1125-1130 (1995). 6. Mc

  5. The role of fission product in whole core accidents - research in the USA

    Energy Technology Data Exchange (ETDEWEB)

    Dietrich, L W [Argonne National Laboratory, Division of Reactor Analysis and Safety, Argonne, IL (United States); Jackson, J F [Los Alamos Scientific Laboratory, Q Division - Energy, Los Alamos, NM (United States)

    1977-07-01

    Clinch River Breeder Reactor (CRBR) Project, is balanced, consisting of a reliability programme to prevent malfunctions or accidents, backup systems to accommodate malfunctions or accidents, and systems to cope with the consequences of CDAs. In connection with the CRBR, the Nuclear Regulatory Commission (NRC) has established that {sup t}he probability of core melt and disruptive accidents can and must be reduced to a sufficiently low level to justify their exclusion from the design basis accident spectrum (a goal probability of 10{sup -6} per reactor-year for dose exceeding current guidelines has been established). Thus, CDA accommodation is approached on the basis of reasonable conservatism in evaluation and mitigation. The ERDA fast reactor safety research programme is presently directed towards establishment of four 'lines of assurance' (LOA). The four lines of assurance are: prevent core disruptive accidents; limit core damage; control CDA progression; attenuate radiological consequences. The considerations of fission product effects germane to the present paper are primarily of concern in evaluation of the second and third lines. Since fission products have the potential for dispersing fuel from the core region and thereby producing reactor shutdown, knowledge of their effects can contribute to demonstrating that there is a low probability (10{sup -2} ) of a CDA initiator producing whole-core involvement. Similarly, knowledge of fission product effects can contribute to demonstrating that there Is a low probability of a whole-core disruptive accident leading to sufficient energy release to challenge the containment capability.

  6. Melt spreading code assessment, modifications, and application to the EPR core catcher design

    International Nuclear Information System (INIS)

    Farmer, M.T.

    2009-01-01

    The Evolutionary Power Reactor (EPR) is under consideration by various utilities in the United States to provide base load electrical production, and as a result the design is undergoing a certification review by the U.S. Nuclear Regulatory Commission (NRC). The severe accident design philosophy for this reactor is based upon the fact that the projected power rating results in a narrow margin for in-vessel melt retention by external cooling of the reactor vessel. As a result, the design addresses ex-vessel core melt stabilization using a mitigation strategy that includes: (1) an external core melt retention system to temporarily hold core melt released from the vessel; (2) a layer of 'sacrificial' material that is admixed with the melt while in the core melt retention system; (3) a melt plug in the lower part of the retention system that, when failed, provides a pathway for the mixture to spread to a large core spreading chamber; and finally, (4) cooling and stabilization of the spread melt by controlled top and bottom flooding. The overall concept is illustrated in Figure 1.1. The melt spreading process relies heavily on inertial flow of a low-viscosity admixed melt to a segmented spreading chamber, and assumes that the melt mass will be distributed to a uniform height in the chamber. The spreading phenomenon thus needs to be modeled properly in order to adequately assess the EPR design. The MELTSPREAD code, developed at Argonne National Laboratory, can model segmented, and both uniform and nonuniform spreading. The NRC is thus utilizing MELTSPREAD to evaluate melt spreading in the EPR design. MELTSPREAD was originally developed to support resolution of the Mark I containment shell vulnerability issue. Following closure of this issue, development of MELTSPREAD ceased in the early 1990's, at which time the melt spreading database upon which the code had been validated was rather limited. In particular, the database that was utilized for initial validation consisted

  7. Status of degraded core issues. Synthesis paper prepared by G. Bandini in collaboration with the NEA task group on degraded core cooling

    International Nuclear Information System (INIS)

    2001-02-01

    The in-vessel evolution of a severe accident in a nuclear reactor is characterised, generally, by core uncover and heat-up, core material oxidation and melting, molten material relocation and debris behaviour in the lower plenum up to vessel failure. The in-vessel core melt progression involves a large number of physical and chemical phenomena that may depend on the severe accident sequence and the reactor type under consideration. Core melt progression has been studied in the last twenty years through many experimental works. Since then, computer codes are being developed and validated to analyse different reactor accident sequences. The experience gained from the TMI-2 accident also constitutes an important source of data. The understanding of core degradation process is necessary to evaluate initial conditions for subsequent phases of the accident (ex-vessel and within the containment), and define accident management strategies and mitigative actions for operating and advanced reactors. This synthesis paper, prepared within the Task Group on Degraded Core Cooling (TG-DCC) of PWG2, contains a brief summary of current views on the status of degraded core issues regarding light water reactors. The in-vessel fission product release and transport issue is not addressed in this paper. The areas with remaining uncertainties and the needs for further experimental investigation and model development have been identified. The early phase of core melt progression is reasonably well understood. Remaining uncertainties may be addressed on the basis of ongoing experimental activities, e.g. on core quenching, and research programs foreseen in the near future. The late phase of core melt progression is less understood. Ongoing research programs are providing additional valuable information on corium molten pool behaviour. Confirmatory research is still required. The pool crust behaviour and material relocation into the lower plenum are the areas where additional research should

  8. CARNSORE: Hypothetical reactor accident study

    International Nuclear Information System (INIS)

    Walmod-Larsen, O.; Jensen, N.O.; Kristensen, L.; Meide, A.; Nedergaard, K.L.; Nielsen, F.; Lundtang Petersen, E.; Petersen, T.; Thykier-Nielsen, S.

    1984-06-01

    Two types of design-basis accident and a series of hypothetical core-melt accidents to a 600 MWe reactor are described and their consequences assessed. The PLUCON 2 model was used to calculate the consequences which are presented in terms of individual and collective doses, as well as early and late health consequences. The site proposed for the nucelar power station is Carnsore Point, County Wexford, south-east Ireland. The release fractions for the accidents described are those given in WASH-1400. The analyses are based on the resident population as given in the 1979 census and on 20 years of data from the meteorological stations at Rosslare Harbour, 8.5 km north of the site. The consequences of one of the hypothetical core-melt accidents are described in detail in a meteorological parametric study. Likewise the consequences of the worst conceivable combination of situations are described. Finally, the release fraction in one accident is varied and the consequences of a proposed, more probable ''Class 9 accident'' are presented. (author)

  9. Core catcher concepts future PWR-Plants

    International Nuclear Information System (INIS)

    Alsmeyer, H.; Werle, H.

    1994-01-01

    Light water reactors of the next generation should have still greater passive safety, even in the most serious accidents. This includes the long term safe inclusion of the core inventory in the case of core meltdown accidents. The three concepts for cooling the liquefied core outside the reactor pressure vessel examined by KfK should remove the post-shutdown heat by direct contact of the melt with water. The geometric distribution of the melt increases its surface area, so that favourable conditions for heat removal from the poorly thermally-conducting melt are created and complete quick solidification occurs. The experiments examine both the relocation and distribution mechanisms of the melt and the reactions occurring when water enters. As strong interaction is possible on direct contact of the melt with water, an important aim is experimental determination and limitation of any resulting mechanical stresses. (orig./HP) [de

  10. Correlation for downward melt penetration into a miscible low-density substrate

    International Nuclear Information System (INIS)

    Fang, L.J.; Cheung, F.B.; Pedersen, D.R.; Linehan, J.H.

    1984-01-01

    Downward penetration of a sacrificial bed material or a concrete basemat structure by an overlying layer of core melt resulting from a hypothetical core disruptive accident has been a major issue in post accident heat removal studies. One characteristic feature of this problem is that the solid substrate, when molten, is miscible with and lighter than the core melt so that the rate of penetration is strongly dependent upon the motion of natural convection in the melt layer driven by the density difference between the core melt and the molten substrate. This fundamentally interesting and technologically important problem has been investigated by a number of researchers. Significantly different melting rates, however, were observed in these studies. Questions concerning the occurrence of flow transition and its effect on melt penetration remain to be answered. To promote the understanding of the phenomena and to strengthen the data base of melt penetration, simulation experiments were conducted using various kinds of salt solutions (KI, NaCl, CaCl 2 , and MgCl 2 solutions) as the working fluid and an air-bubble-free ice slab as the solid substrate

  11. PWR degraded core analysis

    International Nuclear Information System (INIS)

    Gittus, J.H.

    1982-04-01

    A review is presented of the various phenomena involved in degraded core accidents and the ensuing transport of fission products from the fuel to the primary circuit and the containment. The dominant accident sequences found in the PWR risk studies published to date are briefly described. Then chapters deal with the following topics: the condition and behaviour of water reactor fuel during normal operation and at the commencement of degraded core accidents; the generation of hydrogen from the Zircaloy-steam and the steel-steam reactions; the way in which the core deforms and finally melts following loss of coolant; debris relocation analysis; containment integrity; fission product behaviour during a degraded core accident. (U.K.)

  12. State of the Art Report for the In-Vessel Late Core Melt Progression

    International Nuclear Information System (INIS)

    Kim, Hee Dong; Kang, Kyoung Ho; Park, Rae Joon

    2009-04-01

    The formation of corium pool in the reactor vessel lower head and its behavior is still an important issue. This issue is closely related to understanding of the core melting, its course, critical phases and timing during severe accidents and the influence of these processes on the accident progression, especially the evaluation of in-vessel retention by external reactor vessel cooling (IVR-ERVC) as a severe accident management strategy. The previous researches focused on the quisi-steady state behavior of molten corium pool in the lower head and related in-vessel retention problem. However, questions of the feasibility of the in-vessel retention concept for high power density reactor and uncertainties due to layering effect require further studies. These researches are rather essential to consider the whole evolution of the accident including formation and growth of the molten pool and the characteristic of corium arrival in the lower head and molten pool behavior after the core debris remelting. The general objective of the LIVE program performed at FzK is to study the corium pool formation and behavior with emphasis on the transient behavior through the large scale 3-D experiments. In this report, description of LIVE experimental facility and results of performance test are briefly summarized and the process to select the simulant is depicted. Also, the results of LIVE L1 and L2 tests and analytical models are included. These experimental results are very useful to development and verification of the model of molten corium pool behavior

  13. Analysis of core degradation and relocation phenomena and scenarios in a Nordic-type BWR

    Energy Technology Data Exchange (ETDEWEB)

    Galushin, Sergey, E-mail: galushin@kth.se; Kudinov, Pavel, E-mail: pkudinov@kth.se

    2016-12-15

    Highlights: • A data base of the debris properties in lower plenum generated using MELCOR code. • The timing of safety systems has significant effect on the relocated debris properties. • Loose coupling between core relocation and vessel failure analyses was established. - Abstract: Severe Accident Management (SAM) in Nordic Boiling Water Reactors (BWR) employs ex-vessel cooling of core melt debris. The melt is released from the failed vessel and poured into a deep pool of water located under the reactor. The melt is expected to fragment, quench, and form a debris bed, coolable by a natural circulation and evaporation of water. Success of the strategy is contingent upon melt release conditions from the vessel and melt-coolant interaction that determine (i) properties of the debris bed and its coolability (ii) potential for energetic melt-coolant interactions (steam explosions). Risk Oriented Accident Analysis Methodology (ROAAM+) framework is currently under development for quantification of the risks associated with formation of non-coolable debris bed and occurrence of steam explosions, both presenting a credible threats to containment integrity. The ROAAM+ framework consist of loosely coupled models that describe each stage of the accident progression. Core relocation analysis framework provides initial conditions for melt vessel interaction, vessel failure and melt release frameworks. The properties of relocated debris and melt release conditions, including in-vessel and ex-vessel pressure, lower drywell pool depth and temperature, are sensitive to the accident scenarios and timing of safety systems recovery and operator actions. This paper illustrates a methodological approach and relevant data for establishing a connection between core relocation and vessel failure analysis in ROAAM+ approach. MELCOR code is used for analysis of core degradation and relocation phenomena. Properties of relocated debris are obtained as functions of the accident scenario

  14. Severe Accident Mitigation by using Core Catcher applicable for Korea standard nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hae Kyun; Kim, Sang Nyung [Kyung Hee Univ., Yongin (Korea, Republic of)

    2013-10-15

    Nuclear power plants have been designed and operated in order to prevent severe accident because of their risk that contains tremendous radioactive materials that are potentially hazardous. Moreover, the government requested the nuclear industry to implement a severe accident management strategy for existing reactors to mitigate the risk of potential severe accidents. However, Korea standard nuclear power plant(APR-1400 and OPR-1000) are much more vulnerable for severe accident management than that of developed countries. Due to the design feature of reactor cavity in Korea standard nuclear power plant, inequable and serious Molten Core-Concrete Interaction(MCCI) may cause considerable safety problem to the reactor containment liner. At worst, it brings the release of radioactive materials to the environment. This accident applies to the fourth level of defense in depth(IAEA 1996), 'severe accident'. This study proposes and designs the 'slope' to secure reactor containment liner integrity when the corium spreads out from the destroyed reactor vessel to the reactor cavity due to the core melting accident. For this, make the initial corium distribution evenly exploit the 'slope' on the basis of the study of Ex-vessel corium behavior to prevent inequable and serious MCCI, in order to mitigate severe accident. The viscosity has a dominant position in the calculation. According to the result, the spread out distance on the slope is 10.7146841m, considering the rough surface of the concrete(slope) and margin of reactor cavity end(under 11m). Easy to design, production and economic feasibility are the advantage of the designed slope in this study. However, the slope design may unsuitable when the sequences of the accidents did not satisfy the assumptions as mentioned. Despite of those disadvantages, the slope will show a great performance to mitigate the severe accident. As mentioned in assumption, the corium releasing time property was

  15. Severe Accident Mitigation by using Core Catcher applicable for Korea standard nuclear power plant

    International Nuclear Information System (INIS)

    Park, Hae Kyun; Kim, Sang Nyung

    2013-01-01

    Nuclear power plants have been designed and operated in order to prevent severe accident because of their risk that contains tremendous radioactive materials that are potentially hazardous. Moreover, the government requested the nuclear industry to implement a severe accident management strategy for existing reactors to mitigate the risk of potential severe accidents. However, Korea standard nuclear power plant(APR-1400 and OPR-1000) are much more vulnerable for severe accident management than that of developed countries. Due to the design feature of reactor cavity in Korea standard nuclear power plant, inequable and serious Molten Core-Concrete Interaction(MCCI) may cause considerable safety problem to the reactor containment liner. At worst, it brings the release of radioactive materials to the environment. This accident applies to the fourth level of defense in depth(IAEA 1996), 'severe accident'. This study proposes and designs the 'slope' to secure reactor containment liner integrity when the corium spreads out from the destroyed reactor vessel to the reactor cavity due to the core melting accident. For this, make the initial corium distribution evenly exploit the 'slope' on the basis of the study of Ex-vessel corium behavior to prevent inequable and serious MCCI, in order to mitigate severe accident. The viscosity has a dominant position in the calculation. According to the result, the spread out distance on the slope is 10.7146841m, considering the rough surface of the concrete(slope) and margin of reactor cavity end(under 11m). Easy to design, production and economic feasibility are the advantage of the designed slope in this study. However, the slope design may unsuitable when the sequences of the accidents did not satisfy the assumptions as mentioned. Despite of those disadvantages, the slope will show a great performance to mitigate the severe accident. As mentioned in assumption, the corium releasing time property was conservatively calculated

  16. Load histories from steam explosions during core melt accidents

    International Nuclear Information System (INIS)

    Jacobs, H.; Kolev, N.I.

    1992-01-01

    For the analysis of steam explosions a multicomponent multiphase thermohydraulic code is required which describes at least the motions of melt, water, and steam by separate velocity fields. One example of these very rare codes is the IVA3 code the development of which was brought to an interim close in 1991. As an example of a typical application of this code, precalculations of the FARO LWR Scoping Test 2 performed at Ispra are discussed. Unfortunately, the calculation results cannot be compared directly to the test results because of important differences between planned and achieved test parameters. Above all, only about one third of the planned melt mass actually entered the water. The test was performed in a closed vessel at an initial pressure of 50 bar. The water was saturated at this temperature and its level was at 1 m height. The simulation starts with the release of 50 kg of simulated corium from an intermediate catcher at about 3.2 m height. The calculation predicts a gradual pressure rise without fast transients worth mentioning from 50 to about 76 bar within roughly one second and stabilizes slightly below the maximum. Also described are the material distributions predicted during the process and the 'mixed' masses according to two different criteria. The former indicate that the melt jet penetrates the water without desintegrating while being surrounded by a thick vapor layer. Subsequently the melt collects at the level bottom and much of the liquid water is blown upwards by the steam being produced. The amounts of mass being 'mixed' with liquid water (and thus are thought to potentially participate in a steam explosion) remain below 10% for the known Theofanous criterion and below 30% for a more conservative criterion. It is however more important that the calculation demonstrates that further mixing could be the result of the onset of a steam explosion. This may strongly limit the usefulness of local mixing criteria. (orig./DG)

  17. Comparison of the behaviour of two core designs for ASTRID in case of severe accidents

    Energy Technology Data Exchange (ETDEWEB)

    Bertrand, F., E-mail: frederic.bertrand@cea.fr [CEA, DEN, DER, F-13108 Saint Paul-lez-Durance (France); Marie, N.; Prulhière, G.; Lecerf, J. [CEA, DEN, DER, F-13108 Saint Paul-lez-Durance (France); Seiler, J.M. [CEA, DEN, DTN, F-38054 Grenoble (France)

    2016-02-15

    Highlights: • Low void worth CFV and SFRv2 cores are compared for ASTRID pre-conceptual design. • Severe accident behaviour is assessed with a simplified calculation approach and tools. • Mitigation to limit reactivity inserted by core compaction is easier for CFV than for SFRv2 core. • When facing arbitrary reactivity ramps, CFV core would lead to lower energy release than SFRv2 core. • Time scale for core degradation is one order of magnitude larger for CFV than for SFRv2. - Abstract: The present paper is dedicated to the studies carried out during the first stage of the pre-conceptual design of the French demonstrator of fourth generation SFR reactors (ASTRID) in order to compare the behaviour of two envisaged core concepts under severe accident transients. Among the two studied core concepts, whose powers are 1500 MWth, the first one is a classical homogeneous core (called SFRv2) with large pin diameter whose the sodium overall voiding reactivity effect is 5 $. The second concept is an axially heterogeneous core (called CFV) whose global void reactivity effect is negative (−1.2 $ at the end of cycle at the equilibrium). The comparison of the cores relies on two typical accident families: a reactivity insertion (unprotected transient overpower, UTOP) and an overall loss of core cooling (unprotected loss of flow, ULOF). In the first part of the comparison, the primary phase of an UTOP is studied in order to assess typical features of the transient behaviour: power and reactivity evolutions, material heating and melting/vaporization and mechanical energy release due to fuel vapor expansion. The second part of the comparison deals with the calculation of the reactivity potential for degraded states (molten pools) representative of the secondary phase of a mild UTOP and of a strong UTOP (strong or mild qualifies the reactivity ramp inserted). According to the reactivity potential, the amount of fuel to extract from the core and the amount of absorber

  18. Core degradation and fission product release

    International Nuclear Information System (INIS)

    Wright, R.W.; Hagen, S.J.L.

    1992-01-01

    Experiments on core degradation and melt progression in severe LWR accidents have provided reasonable understanding of the principal processes involved in the early phase of melt progression that extends through core degradation and metallic material melting and relocation. A general but not a quantitative understanding of late phase melt progression that involves ceramic material melting and relocation has also been obtained, primarily from the TMI-2 core examination. A summary is given of the current state of knowledge on core degradation and melt progression obtained from these integral experiments and of the principal remaining significant uncertainties. A summary is also given of the principal results on in-vessel fission product release obtained from these experiments. (author). 8 refs, 5 figs, 3 tabs

  19. MELCOR Severe Accident Analysis on the SMART Reactor

    International Nuclear Information System (INIS)

    Kim, Tae Woon; Jin, Young Ho; Kim, Young In; Kim, Keung Koo; Wang, Ziao; Revankar, Shripad

    2014-01-01

    A severe accident is analyzed for Korea SMR reactor, SMART. Core melt down sequences are analyzed for SMART reactor core using MELCOR version 1.8.5. MELCOR is developed by Sandia National Laboratory for US NRC for the simulation of severe accidents in nuclear power plants. Two cases are simulated here and compared between them; one is the case for core having 3 concentric rings and the other is the case for core having 5 concentric rings. One inch break LOCA scenario is simulated and compared between these two core models. Time sequences for the thermal hydraulic behaviors of RPV and thermal heatup behaviors of reactor core are explained in graphically. Thermal hydraulic behavior such as the change of pressure, level, mass, and temperature of RPV is explained. Thermal heatup behavior of reactor core such as oxidation of cladding, hydrogen generation, core slumping down to lower plenum, and finally creep rupture of PRV lower head is explained. Engineered safety features such as safety injection systems (SIS), and Passive residual heat removal systems (PHRS), etc. are assumed to be not working. One inch break of severe accident is simulated on Korean SMR (SMART) Integral PWR with MELCOR code version 1.8.5. Core melt progression and lower head failure time is very slow compared to other commercial reactors. Simulation on 3 and 5 radial rings core models gives very similar pattern in core cell failure timings. Other various accident scenarios (for example, SBO in Fukushima) will be tried further. Containment behaviors and source term behaviors in severe accident conditions will be analyzed in future

  20. Assessment of fission product release from the reactor containment building during severe core damage accidents in a PWR

    International Nuclear Information System (INIS)

    Fermandjian, J.; Evrard, J.M.; Generino, G.

    1984-07-01

    Fission product releases from the RCB associated with hypothetical core-melt accidents ABβ, S 2 CDβ and TLBβ in a PWR-900 MWe have been performed using French computer codes (in particular, the JERICHO Code for containment response analysis and AEROSOLS/B1 for aerosol behavior in the containment) related to thermalhydraulics and fission product behavior in the primary system and in the reactor containment building

  1. Core fusion accidents in nuclear power reactors. Knowledge review

    International Nuclear Information System (INIS)

    Bentaib, Ahmed; Bonneville, Herve; Clement, Bernard; Cranga, Michel; Fichot, Florian; Koundy, Vincent; Meignen, Renaud; Corenwinder, Francois; Leteinturier, Denis; Monroig, Frederique; Nahas, Georges; Pichereau, Frederique; Van-Dorsselaere, Jean-Pierre; Cenerino, Gerard; Jacquemain, Didier; Raimond, Emmanuel; Ducros, Gerard; Journeau, Christophe; Magallon, Daniel; Seiler, Jean-Marie; Tourniaire, Bruno

    2013-01-01

    This reference document proposes a large and detailed review of severe core fusion accidents occurring in nuclear power reactors. It aims at presenting the scientific aspects of these accidents, a review of knowledge and research perspectives on this issue. After having recalled design and operation principles and safety principles for reactors operating in France, and the main studied and envisaged accident scenarios for the management of severe accidents in French PWRs, the authors describe the physical phenomena occurring during a core fusion accident, in the reactor vessel and in the containment building, their sequence and means to mitigate their effects: development of the accident within the reactor vessel, phenomena able to result in an early failure of the containment building, phenomena able to result in a delayed failure with the corium-concrete interaction, corium retention and cooling in and out of the vessel, release of fission products. They address the behaviour of containment buildings during such an accident (sizing situations, mechanical behaviour, bypasses). They review and discuss lessons learned from accidents (Three Mile Island and Chernobyl) and simulation tests (Phebus-PF). A last chapter gives an overview of software and approaches for the numerical simulation of a core fusion accident

  2. Noble gas confinement for reactor fuel melting accidents

    International Nuclear Information System (INIS)

    Monson, P.R.

    1984-01-01

    In the unlikely event of a fuel melting accident, radioactive material would be released into the reactor room. This radioactive material would consist of particulate matter, iodine, tritium, and the noble gases krypton and xenon. In the case of reactors with containment domes the gases would be contained for subsequent cleanup. For reactors without contaiment the particulates and the iodine can be effectively removed with HEPA and carbon filters of current technology; however, noble gases cannot be easily removed and would be released to the atmosphere. In either case, it would be highly desirable to have a system that could be brought online to treat this contaminated air to minimize the population dose. A low temperature adsorption system has been developed at the Savannah River Laboratory to remove the airborne radioactive material from such a fuel melting accident. Over two dozen materials have been tested in extensive laboratory studies, and hydrogen mordenite and silver mordenite were found to be the most promising adsorbents. A full-scale conceptual design has also been developed. Results of the laboratory studies and the conceptual design are discussed along with plans for further development of this concept

  3. Noble gas confinement for reactor fuel melting accidents

    International Nuclear Information System (INIS)

    Monson, P.R.

    1985-01-01

    In the unlikely event of a fuel melting accident radioactive material would be released into the reactor room. This radioactive material would consist of particulate matter, iodine, tritium, and the noble gases krypton and xenon. In the case of reactors with containment domes, the gases would be contained for subsequent cleanup. For reactors without containment the particulates and the iodine can be effectively removed with HEPA and carbon filters of current technology; however, noble gases cannot be easily removed and would be released to the atmosphere. In either case, it would be highly desirable to have a system that could be brought online to treat this contaminated air to minimize the population dose. A low temperature adsorption system has been developed at the Savannah River Laboratory to remove the airborne radioactive material from such a fuel melting accident. Over two dozen materials have been tested in extensive laboratory studies, and hydrogen mordensite and silver mordenite were found to be the most promising absorbents. A full-scale conceptual design has also been developed. Results of the laboratory studies and the conceptual design will be discussed along with plans for further development of this concept

  4. LWR and HTGR coolant dynamics: the containment of severe accidents

    International Nuclear Information System (INIS)

    Theofanous, T.G.; Gherson, P.; Nourbakhsh, H.P.; Hu, K.; Iyer, K.; Viskanta, R.; Lommers, L.

    1983-07-01

    This is the final report of a project containing three major tasks. Task I deals with the fundamental aspects of energetic fuel/coolant interactions (steam explosions) as they pertain to LWR core melt accidents. Task II deals with the applied aspects of LWR core melt accident sequences and mechanisms important to containment response, and includes consideration of energetic fuel/coolant interaction events, as well as non-explosive ones, corium material disposition and eventual coolability, and containment pressurization phenomena. Finally, Task III is concerned with HTGR loss of forced circulation accidents. This report is organized into three major parts corresponding to these three tasks respectively

  5. MDEP Common Position CP-EPRWG-04. Common position on EPR containment heat removal system in accident conditions

    International Nuclear Information System (INIS)

    2015-01-01

    The importance of the integrity of the containment as a fundamental barrier to protect the people and environment against the effects of a nuclear accident is well established. In this regard, an essential objective is that the necessity for off-site counter-measures to reduce radiological consequences be limited or even eliminated. The design should provide engineering means to address those sequences which would otherwise lead to large or early releases, even in case of severe external hazards. The plant shall be designed so that it can be brought into a controlled and stable state and the containment function can be maintained, under accident conditions in which there is a significant amount of radioactive material in the containment, i.e. resulting from severe degradation of the reactor core. It is expected that due consideration to these requirements is to be given while tailoring long term loss of electrical power mitigation strategies. In order to reliably maintain the containment barrier, the regulators believe that: - safety features specifically designed for fulfilling safety functions required in core melt accidents shall be independent to the extent reasonably practicable from the Systems, Structures and Components (SSC) of the other levels of defense; - safety features specifically designed for fulfilling safety functions required in core melt accidents shall be safety classified and adequately qualified for the core melt accident environmental conditions for the time frame for which they are required to operate. In the light of the Fukushima Daiichi accident, the regulators believe that those safety features shall be designed with an adequate margin as compared to the levels of natural hazards considered for the site hazard evaluation; - the systems and components necessary for ensuring the containment function in a core melt accident shall have reliability commensurate with the function that they are required to fulfil. This may require redundancy of

  6. How to demonstrate adequacy of protection against a core melt

    International Nuclear Information System (INIS)

    Hock, R.

    1996-01-01

    After the Chernobyl accident the public - and consequently the politicians - in Western countries requested improvements in safety for future reactors even in those designs where the type of accident which had destroyed the Chernobyl plant is excluded by fundamental physics. When the major German and French suppliers of nuclear power stations, Siemens and Framatome, decided to develop jointly a next generation reactor type, this political 'request' had to be taken into account. It was decided to include safety features to mitigate the consequences of a core melt - the severest type of accident in a western light water reactor - should it occur despite the many other safety features which are included in this design in order to reduce the probability of occurrence of this type of event to extremely low values. The question arose: How to demonstrate the adequacy of his additional protection? It was evident that the methodology proposed by ICRP namely to demonstrate that the risk of individual members of the public caused by 'probabilistic events' is sufficiently low, could not be used: Due to the low probability of occurrence the contribution of this kind of accident to the risk of any average member of a critical group would already be sufficiently low even if there were no additional countermeasures. In addition, this approach would not cover severe societal effects potentially caused by such an accident. We therefore introduced a different methodology in order to demonstrate the adequacy of additional design features which are only required 'just in case': The consequences of such an unlikely but nevertheless very severe event shall be restricted to the plant itself. Severe consequences outside the immediate vicinity of the plant shall be excluded by the design. (author)

  7. Severe accident management. Optimized guidelines and strategies

    International Nuclear Information System (INIS)

    Braun, Matthias; Löffler, Micha; Plank, Hermann; Asse, Dietmar; Dimmelmeier, Harald

    2014-01-01

    The highest priority for mitigating the consequences of a severe accident with core melt lies in securing containment integrity, as this represents the last barrier against fission product release to the environment. Containment integrity is endangered by several physical phenomena, especially highly transient phenomena following high-pressure reactor pressure vessel failure (like direct containment heating or steam explosions which can lead to early containment failure), hydrogen combustion, quasi-static over-pressure, temperature failure of penetrations, and basemat penetration by core melt. Each of these challenges can be counteracted by dedicated severe accident mitigation hardware, like dedicated primary circuit depressurization valves, hydrogen recombiners or igniters, filtered containment venting, containment cooling systems, and core melt stabilization systems (if available). However, besides their main safety function these systems often have also secondary effects that need to be considered. Filtered containment venting causes (though limited) fission product release into the environment, primary circuit depressurization leads to loss of coolant, and an ex-vessel core melt stabilization system as well as hydrogen igniters can generate high pressure and temperature loads on the containment. To ensure that during a severe accident any available systems are used to their full beneficial extent while minimizing their potential negative impact, AREVA has implemented a severe accident management for German nuclear power plants. This concept makes use of extensive numerical simulations of the entire plant, quantifying the impact of system activations (operational systems, safety systems, as well as dedicated severe accident systems) on the accident progression for various scenarios. Based on the knowledge gained, a handbook has been developed, allowing the plant operators to understand the current state of the plant (supported by computational aids), to predict

  8. Energetics of LMFBR core disruptive accidents

    International Nuclear Information System (INIS)

    Marchaterre, J.F.

    1979-01-01

    In general, in the design of fast reactor systems, containment design margins are specified by investigating the response of the containment to core disruptive accidents. The results of these analyses are then translated into criteria which the designers must meet. Currently, uniform and agreed upon criteria are lacking, and in this time while they are being developed, the designer should be aware of the considerations which go into the particular criteria he must work with, and participate in their development. This paper gives an overview of the current state of the art in assessing core disruptive accidents and the design implications of this process. (orig.)

  9. Acoustic detection of melt particles

    International Nuclear Information System (INIS)

    Costley, R.D. Jr.

    1988-01-01

    The Reactor Safety Research Department at Sandia National Laboratories is investigating a type of Loss of Coolant Accident (LOCA). In this particular type of accident, core meltdown occurs while the pressure within the reactor pressure vessel (RPV) is high. If one of the instrument tube penetrations in the lower head fails, melt particles stream through the cavity and into the containment vessel. This experiment, which simulates this type accident, was performed in the Surtsev Direct Heating Test Facility which is approximately a 1:10 linear scaling of a large dry containment volume. A 1:10 linear scale model of the reactor cavity was placed near the bottom of the Surtsey vessel so that the exit of the cavity was at the vertical centerline of the vessel. A pressure vessel used to create the simulated molten core debris was located at the scaled height of the RPV. In order to better understand how the melt leaves the cavity and streams into the containment an array of five acoustic sensors was placed directly in the path of the melt particles about 30 feet from the exit of the sealed cavity. Highly damped, broadband sensors were chosen to minimize ringing so that individual particle hits could be detected. The goal was to count the signals produced by the individual particle hits to get some idea of how the melt particles left the cavity. This document presents some of the results of the experiment. 9 figs

  10. Proposal for computer investigation of LMFBR core meltdown accidents

    International Nuclear Information System (INIS)

    Boudreau, J.E.; Harlow, F.H.; Reed, W.H.; Barnes, J.F.

    1974-01-01

    The environmental consequences of an LMFBR accident involving breach of containment are so severe that such accidents must not be allowed to happen. Present methods for analyzing hypothetical core disruptive accidents like a loss of flow with failure to scram cannot show conclusively that such accidents do not lead to a rupture of the pressure vessel. A major deficiency of present methods is their inability to follow large motions of a molten LMFBR core. Such motions may lead to a secondary supercritical configuration with a subsequent energy release that is sufficient to rupture the pressure vessel. The Los Alamos Scientific Laboratory proposes to develop a computer program for describing the dynamics of hypothetical accidents. This computer program will utilize implicit Eulerian fluid dynamics methods coupled with a time-dependent transport theory description of the neutronic behavior. This program will be capable of following core motions until a stable coolable configuration is reached. Survey calculations of reactor accidents with a variety of initiating events will be performed for reactors under current design to assess the safety of such reactors

  11. A condensed review of the core catcher in the LMR

    International Nuclear Information System (INIS)

    Lee, Yong Bum; Hahn, Do hee

    2001-03-01

    The overwhelming emphasis in reactor safety is on the prevention of core meltdown. Moreover, although there have been several accidents that have resulted in some fuel melting, to date there have been no accidents severe enough to cause the syndrome of core collapse, reactor vessel melt-through, containment penetration, and dispersal into the ground. Nevertheless, a number of proposals have been made for the design of core catcher systems to control or stop the motion of the molten core mass should such an accident take place. Core catchers may differ in both their location within the reactor system and in the mechanism that is used to cool and control the motion of the core debris. In this report the classification, configuration and main features of the core catcher are described. And also, the core catcher provisions in constructed and planned LMRs (Liquid Metal Reactors) are summarized

  12. Thermal interaction of core melt debris with the TMI-2 baffle, core-former, and lower head structures

    International Nuclear Information System (INIS)

    Cronenberg, A.W.; Tolman, E.L.

    1987-09-01

    Recent inspection of the TMI-2 core-former baffle walls (vertical), former plates (horizontal), and lower plenum has been conducted to assess potential damage to these structures. Video observations show evidence of localized melt failure of the baffle walls, whereas fiberoptics data indicate the presence of resolidified debris on the former plates. Lower plenum inspection also confirms the presence of 20 tons or more of core debris in the lower plenum. These data indicate massive core melt relocation and the potential for melt attack on vessel structural components. This report presents analyses aimed at developing an understanding of melt relocation behavior and damage progression to TMI-2 vessel components. Thermal analysis indicates melt-through of the baffle plates, but maintenance of structural integrity of the former plates and lower head. Differences in the damage of these structures is attributed largely to differences in contact time with melt debris and pressure of water. 29 refs., 17 figs., 9 tabs

  13. Uncertainties and severe-accident management

    International Nuclear Information System (INIS)

    Kastenberg, W.E.

    1991-01-01

    Severe-accident management can be defined as the use of existing and or alternative resources, systems, and actions to prevent or mitigate a core-melt accident. Together with risk management (e.g., changes in plant operation and/or addition of equipment) and emergency planning (off-site actions), accident management provides an extension of the defense-indepth safety philosophy for severe accidents. A significant number of probabilistic safety assessments have been completed, which yield the principal plant vulnerabilities, and can be categorized as (a) dominant sequences with respect to core-melt frequency, (b) dominant sequences with respect to various risk measures, (c) dominant threats that challenge safety functions, and (d) dominant threats with respect to failure of safety systems. Severe-accident management strategies can be generically classified as (a) use of alternative resources, (b) use of alternative equipment, and (c) use of alternative actions. For each sequence/threat and each combination of strategy, there may be several options available to the operator. Each strategy/option involves phenomenological and operational considerations regarding uncertainty. These include (a) uncertainty in key phenomena, (b) uncertainty in operator behavior, (c) uncertainty in system availability and behavior, and (d) uncertainty in information availability (i.e., instrumentation). This paper focuses on phenomenological uncertainties associated with severe-accident management strategies

  14. Severe Accident Research Program plan update

    International Nuclear Information System (INIS)

    1992-12-01

    In August 1989, the staff published NUREG-1365, ''Revised Severe Accident Research Program Plan.'' Since 1989, significant progress has been made in severe accident research to warrant an update to NUREG-1365. The staff has prepared this SARP Plan Update to: (1) Identify those issues that have been closed or are near completion, (2) Describe the progress in our understanding of important severe accident phenomena, (3) Define the long-term research that is directed at improving our understanding of severe accident phenomena and developing improved methods for assessing core melt progression, direct containment heating, and fuel-coolant interactions, and (4) Reflect the growing emphasis in two additional areas--advanced light water reactors, and support for the assessment of criteria for containment performance during severe accidents. The report describes recent major accomplishments in understanding the underlying phenomena that can occur during a severe accident. These include Mark I liner failure, severe accident scaling methodology, source term issues, core-concrete interactions, hydrogen transport and combustion, TMI-2 Vessel Investigation Project, and direct containment heating. The report also describes the major planned activities under the SARP over the next several years. These activities will focus on two phenomenological issues (core melt progression, and fuel-coolant interactions and debris coolability) that have significant uncertainties that impact our understanding and ability to predict severe accident phenomena and their effect on containment performance SARP will also focus on severe accident code development, assessment and validation. As the staff completes the research on severe accident issues that relate to current generation reactors, continued research will focus on efforts to independently evaluate the capability of new advanced light water reactor designs to withstand severe accidents

  15. Simulant melt experiments on performance of the in-vessel core catcher

    International Nuclear Information System (INIS)

    Kang, Kyoung-Ho; Park, Rae-Joon; Kim, Sang-Baik; Suh, K.Y.; Cheung, F.B.; Rempe, J.L.

    2007-01-01

    In order to enhance the feasibility of in-vessel retention (IVR) of molten core material during a severe accident for high-power reactors, an in-vessel core catcher (IVCC) was designed and evaluated as part of a joint United States-Korean International Nuclear Energy Research Initiative (INERI). The proposed IVCC is expected to increase the thermal margin for success of IVR by providing an 'engineered gap' for heat transfer from materials that relocate during a severe accident and potentially serving as a sacrificial material under a severe accident. In this study, LAVA-GAP experiments were performed to investigate the thermal and mechanical performance of the IVCC using the alumina melt as simulant. The LAVA-GAP experiments aim to examine the feasibility and sustainability of the IVCC under the various test conditions using 1/8th scale hemispherical test sections. As a feasibility test of the proposed IVCC in this INERI project, the effects of IVCC base steel materials, internal coating materials, and gap size between the IVCC and the vessel lower head were examined. The test results indicated that the internally coated IVCC has high thermal performance compared with the uncoated IVCC. In terms of integrity of the base steel, carbon steel is superior to stainless steel and the effect of bond coat is found to be trivial for the tests performed in this study. The thermal load is mitigated via boiling heat removal in the gap between the IVCC and the vessel lower head. The current test results imply that gaps less than 10 mm are not enough to guarantee effective cooling induced by water ingression and steam venting there through. Selection of endurable material and pertinent gap size is needed to implement the proposed IVCC concept into advanced reactor designs

  16. BWR core melt progression phenomena: Experimental analyses

    International Nuclear Information System (INIS)

    Ott, L.J.

    1992-01-01

    In the BWR Core Melt in Progression Phenomena Program, experimental results concerning severe fuel damage and core melt progression in BWR core geometry are used to evaluate existing models of the governing phenomena. These include control blade eutectic liquefaction and the subsequent relocation and attack on the channel box structure; oxidation heating and hydrogen generation; Zircaloy melting and relocation; and the continuing oxidation of zirconium with metallic blockage formation. Integral data have been obtained from the BWR DF-4 experiment in the ACRR and from BWR tests in the German CORA exreactor fuel-damage test facility. Additional integral data will be obtained from new CORA BWR test, the full-length FLHT-6 BWR test in the NRU test reactor, and the new program of exreactor experiments at Sandia National Laboratories (SNL) on metallic melt relocation and blockage formation. an essential part of this activity is interpretation and use of the results of the BWR tests. The Oak Ridge National Laboratory (ORNL) has developed experiment-specific models for analysis of the BWR experiments; to date, these models have permitted far more precise analyses of the conditions in these experiments than has previously been available. These analyses have provided a basis for more accurate interpretation of the phenomena that the experiments are intended to investigate. The results of posttest analyses of BWR experiments are discussed and significant findings from these analyses are explained. The ORNL control blade/canister models with materials interaction, relocation and blockage models are currently being implemented in SCDAP/RELAP5 as an optional structural component

  17. Coolability of severely degraded CANDU cores. Revised

    International Nuclear Information System (INIS)

    Meneley, D.A.; Blahnik, C.; Rogers, J.T.; Snell, V.G.; Nijhawan, S.

    1996-01-01

    Analytical and experimental studies have shown that the separately cooled moderator in a CANDU reactor provides an effective heat sink in the event of a loss-of-coolant accident (LOCA) accompanied by total failure of the emergency core cooling system (ECCS). The moderator heat sink prevents fuel melting and maintains the integrity of the fuel channels, therefore terminating this severe accident short of severe core damage. Nevertheless, there is a probability, however low, that the moderator heat sink could fail in such an accident. The pioneering work of Rogers (1984) for such a severe accident using simplified models showed that the fuel channels would fail and a bed of dry, solid debris would be formed at the bottom of the calandria which would heat up and eventually melt. However, the molten pool of core material would be retained in the calandria vessel, cooled by the independently cooled shield-tank water, and would eventually resolidify. Thus, the calandria vessel would act inherently as a 'core-catcher' as long as the shield tank integrity is maintained. The present paper reviews subsequent work on the damage to a CANDU core under severe accident conditions and describes an empirically based mechanistic model of this process. It is shown that, for such severe accident sequences in a CANDU reactor, the end state following core disassembly consists of a porous bed of dry solid, coarse debris, irrespective of the initiating event and the core disassembly process. (author)

  18. Coolability of severely degraded CANDU cores

    International Nuclear Information System (INIS)

    Meneley, D.A.; Blahnik, C.; Rogers, J.T.; Snell, V.G.; Mijhawan, S.

    1995-07-01

    Analytical and experimental studies have shown that the separately cooled moderator in a CANDU reactor provides an effective heat sink in the event of a loss-of-coolant accident (LOCA) accompanied by total failure of the emergency core cooling system (ECCS). The moderator heat sink prevents fuel melting and maintains the integrity of the fuel channels, therefore terminating this severe accident short of severe core damage. Nevertheless, there is a probability, however low, that the moderator heat sink could fail in such an accident. The pioneering work of Rogers (1984) for such a severe accident using simplified models showed that the fuel channels would fail and a bed of dry, solid debris would be formed at the bottom of the calandria which would heat up and eventually melt. However, the molten pool of core material would be retained in the calandria vessel, cooled by the independently cooled shield-tank water, and would eventually re solidify. Thus, the calandria vessel would act inherently as a core-catcher as long as the shield tank integrity is maintained. The present paper reviews subsequent work on the damage to a CANDU core under severe accident conditions and describes an empirically based mechanistic model of this process. It is shown that, for such severe accident sequences in a CANDU reactor, the end state following core disassembly consists of a porous bed of dry solid, coarse debris, irrespective of the initiating event and the core disassembly process. (author). 48 refs., 3 tabs., 18 figs

  19. Assessment of CRBR core disruptive accident energetics

    International Nuclear Information System (INIS)

    Theofanous, T.G.; Bell, C.R.

    1984-03-01

    The results of an independent assessment of core disruptive accident energetics for the Clinch River Breeder Reactor are presented in this document. This assessment was performed for the Nuclear Regulatory Commission under the direction of the CRBR Program Office within the Office of Nuclear Reactor Regulation. It considered in detail the accident behavior for three accident initiators that are representative of three different classes of events; unprotected loss of flow, unprotected reactivity insertion, and protected loss of heat sink. The primary system's energetics accommodation capability was realistically, yet conservatively, determined in terms of core events. This accommodation capability was found to be equivalent to an isentropic work potential for expansion to one atmosphere of 2550 MJ or a ramp rate of about 200 $/s applied to a classical two-phase disassembly

  20. A review of the core catcher design in LMR

    International Nuclear Information System (INIS)

    Lee, Yong Bum; Hahn, Do Hee

    2001-08-01

    The overwhelming emphasis in reactor safety is on the prevention of core meltdown. Moreover, although there have been several accidents that have resulted in some fuel melting, to date there have been no accidents severe enough to cause the syndrome of core collapse, reactor vessel melt-through, containment penetration, and dispersal into the ground. Nevertheless, a number of proposals have been made for the design of core catcher systems to control or stop the motion of the molten core mass should such an accident take place. Core catchers may differ in both their location within the reactor system and in the mechanism that is used to cool and control the motion of the core debris. In this report the classification, configuration and main features of the core catcher are described. And also, The core catcher design technologies and processes are presented. Finally the core catcher provisions in constructed and planned LMRs (Liquid Metal Reactors) are summarized and the preliminary assessment on the core catcher installation in KALIMER is presented

  1. Quench cooling of superheated debris beds in containment during LWR core meltdown accidents

    International Nuclear Information System (INIS)

    Ginsberg, T.; Chen, J.C.

    1984-01-01

    Light water reactor core meltdown accident sequence studies suggest that superheated debris beds may settle on the concrete floor beneath the reactor vessel. A model for the heat transfer processes during quench of superheated debris beds cooled by an overlying pool of water has been presented in a prior paper. This paper discusses the coolability of decay-heated debris beds from the standpoint of their transient quench characteristics. It is shown that even though a debris bed configuration may be coolable from the point of view of steady-state decay heat removal, the quench behavior from an initially elevated temperature may lead to bed melting prior to quench of the debris

  2. Application of multicomponent medium model for numerical simulation of reactor element melting and melt relocation under severe accidents

    International Nuclear Information System (INIS)

    Vladimir Ya Kumaev

    2005-01-01

    Full text of publication follows: Numerical simulation of the melting processes is necessary in substantiating the safety of new generation reactors to determine the quantitative characteristics of the melt formed, destruction of reactor vessel and components, melt interaction processes in the melt localization systems (MLS), formation and transport of hydrogen, radioactive aerosols under severe accidents. The results of computations will be applied in developing the procedures for severe accident management and mitigation of its consequences and designing melt localization systems. The report is devoted to the development and application of the two-dimensional and three-dimensional versions of the DINCOR code intended for numerical simulation of the thermal hydraulic processes in a multicomponent medium with solid-liquid phase changes. The basic set of equations of multicomponent medium is presented. The numerical method to solve the governing equations is discussed. Some examples of two-dimensional code applications are presented. The experience of application of the code has shown that joint calculations of hydrodynamics, heat transfer, stratification and chemical interaction enable the process description accuracy to be significantly increased and the number of initial experimental data to be reduced. The multicomponent medium model can be used as the base for the development of a three-dimensional version of the code. At the same time, it was established that the models being used need be further developed. The most important problems are the following: -development of the local mathematical models of liquefaction and solidification of materials under front melting and melting due to the action of internal sources; -development of the model of incompressible components separation; -development of the models of dissolution and chemical interaction of multicomponent medium components. In conclusion possible verification of the computer code is discussed. (author)

  3. Prevention and mitigation of severe accidents

    International Nuclear Information System (INIS)

    Weisshaeupl, H.

    1996-01-01

    For the European Pressurized water Reactor (EPR), jointly developed by French and German industry, great emphasis is laid to gain further improvement in prevention of severe accidents based on the accumulative experience and proven technology of the French and German PWR reactors. In this evolutionary development, a balanced and comprehensive approach in respect to implement new passive features has been chosen. Improvements in each step of the defense in depth concept lead to a further decrease in the probability of occurrence of a severe accident with partial or even gross melting of the core. The different phenomenons that occur during such an hypothetical accident must be taken into account during the conception of specific measurements necessary to mitigate accident consequences. To cope with the consequences of a severe accident with core melt down means to deal with different phenomena which may threaten the integrity of the containment or may lead to an enhanced fission product release into the environment: high pressure reactor pressure vessel failure; energetic molten fuel coolant interaction; direct containment heating, molten core concrete interaction; hydrogen combustion; long term pressure and temperature increase in the containment. The EPR approach follows the recommendations from the DFD (Deutsch-Franzosischer Direktionsausschuss), jointly prepared by the French and German safety authorities. The EPR concept consist to prevent or eliminate as far as possible scenarios which are connected with high loads (high pressure failure of the reactor pressure vessel, or global hydrogen detonation etc..) by dedicated design provisions, and to deal with the consequences of severe accident scenarios which are not ruled out by specific safety measures. The measures comprise: the primary system depressurization; the control of hydrogen; the stabilisation and cooling of the melted core; the containment heat removal. They are completed by specific characteristics

  4. Spread of fission products after a nuclear melt-down accident

    International Nuclear Information System (INIS)

    Andriesse, C.D.; Tanke, R.H.J.

    1987-01-01

    In this article experimental investigation is described into the spread of fission products within a nuclear power plant, which after an accident involving melting of the nucleus, will be possible in spite of prohibiting constructions for the case of severe unbalancing of generated and carried-off energy. 6 refs.; 4 figs

  5. Deterministic analyses of severe accident issues

    International Nuclear Information System (INIS)

    Dua, S.S.; Moody, F.J.; Muralidharan, R.; Claassen, L.B.

    2004-01-01

    Severe accidents in light water reactors involve complex physical phenomena. In the past there has been a heavy reliance on simple assumptions regarding physical phenomena alongside of probability methods to evaluate risks associated with severe accidents. Recently GE has developed realistic methodologies that permit deterministic evaluations of severe accident progression and of some of the associated phenomena in the case of Boiling Water Reactors (BWRs). These deterministic analyses indicate that with appropriate system modifications, and operator actions, core damage can be prevented in most cases. Furthermore, in cases where core-melt is postulated, containment failure can either be prevented or significantly delayed to allow sufficient time for recovery actions to mitigate severe accidents

  6. Perspectives on the economic risks of LWR accidents

    International Nuclear Information System (INIS)

    Ritchie, L.T.; Burke, R.P.

    1986-01-01

    Models which can be used for the analysis of the economic risks from events which may occur during LWR operation have been developed. The models include capabilities to estimate both onsite and offsite costs of LWR events ranging from routine plant forced outages to severe core-melt accidents resulting in large releases of radioactive material to the environment. The economic consequence models have been applied in studies of the economic risks from the operation of US LWR plants. The results of the analyses provide some important perspectives regarding the economic risks of LWR accidents. The analyses indicate that economic risks, in contrast to public health risks, are dominated by the onsite costs of relatively high-frequency forced outage events. Even for severe (e.g., core-melt) accidents, expected offsite costs are less than expected onsite costs for a typical US plant

  7. γ radiation level simulation and analysis with MCNP in EPR containment during severe accident

    International Nuclear Information System (INIS)

    Zeng Jun; Liu Shuhuan; Wang Yang; Zhai Liang

    2013-01-01

    The γ dosimetry model based on the EPR core structure, material composition and the designed shielding system was established. The γ-ray dose rate distributions in EPR containment under different conditions including normal operation state, loss-of-coolant accident and core melt severe accident were simulated with MCNP5, and the calculation results under normal operation state and severe accident were compared and analyzed respectively with that of the designed limit. The study results may provide some relative data reference for EPR core accident prediction and reactor accident emergency decision making. (authors)

  8. Fuel Rod Melt Progression Simulation Using Low-Temperature Melting Metal Alloy

    International Nuclear Information System (INIS)

    Seung Dong Lee; Suh, Kune Y.; GoonCherl Park; Un Chul Lee

    2002-01-01

    The TMI-2 accident and various severe fuel damage experiments have shown that core damage is likely to proceed through various states before the core slumps into the lower head. Numerous experiments were conducted to address when and how the core can lose its original geometry, what geometries are formed, and in what processes the core materials are transported to the lower plenum of the reactor pressure vessel. Core degradation progresses along the line of clad ballooning, clad oxidation, material interaction, metallic blockage, molten pool formation, melt progression, and relocation to the lower head. Relocation into the lower plenum may occur from the lateral periphery or from the bottom of the core depending upon the thermal and physical states of the pool. Determining the quantities and rate of molten material transfer to the lower head is important since significant amounts of molten material relocated to the lower head can threaten the vessel integrity by steam explosion and thermal and mechanical attack of the melt. In this paper the focus is placed on the melt flow regime on a cylindrical fuel rod utilizing the LAMDA (Lumped Analysis of Melting in Degrading Assemblies) facility at the Seoul National University. The downward relocation of the molten material is a combination of the external film flow and the internal pipe flow. The heater rods are 0.8 m long and are coated by a low-temperature melting metal alloy. The electrical internal heating method is employed during the test. External heating is adopted to simulate the exothermic Zircaloy-steam reaction. Tests are conducted in several quasi-steady-state conditions. Given the variable boundary conditions including the heat flux and the water level, observation is made for the melting location, progression, and the mass of molten material. Finally, the core melt progression model is developed from the visual inspection and quantitative analysis of the experimental data. As the core material relocates

  9. Release of fission products during controlled loss-of-coolant accidents and hypothetical core meltdown accidents

    International Nuclear Information System (INIS)

    Albrecht, H.; Malinauskas, A.P.

    1978-01-01

    A few years ago the Projekt Nukleare Sicherheit joined the United States Nuclear Regulatory Commission in the development of a research program which was designed to investigate fission product release from light water reactor fuel under conditions ranging from spent fuel shipping cask accidents to core meltdown accidents. Three laboratories have been involved in this cooperative effort. At Argonne National Laboratory (ANL), the research effort has focused on noble gas fission product release, whereas at Oak Ridge National Laboratory (ORNL) and at Kernforschungszentrum Karlsruhe (KfK), the studies have emphasized the release of species other than the noble gases. In addition, the ORNL program has been directed toward the development of fission product source terms applicable to analyses of spent fuel shipping cask accidents and controlled loss-of-coolant accidents, and the KfK program has been aimed at providing similar source terms which are characteristic of core meltdown accidents. The ORNL results are presented for fission product release from defected fuel rods into a steam atmosphere over the temperature range 500 to 1200 0 C, and the KfK results for release during core meltdown sequences

  10. Simulation of heat and mass transfer processes in molten core debris-concrete systems. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Felde, D K

    1979-01-01

    The heat and mass transport phenomena taking place in volumetrically-heated fluids have become of interest in recent years due to their significance in assessments of fast reactor safety and post-accident heat removal (PAHR). Following a hypothetical core disruptive accident (HCDA), the core and reactor internals may melt down. The core debis melting through the reactor vessel and guard vessel may eventually contact the concrete of the reactor cell floor. The interaction of the core debris with the concrete as well as the melting of the debris pool into the concrete will significantly affect efforts to prevent breaching of the containment and the resultant release of radioactive effluents to the environment.

  11. Sensitivity analysis of thermal hydraulic response in containment at core meltdown accident

    International Nuclear Information System (INIS)

    Kobayashi, Kensuke; Ishigami, Tsutomu; Horii, Hideo; Chiba, Takemi.

    1985-01-01

    A sensitivity analysis of thermal hydraulic response in a containment during a 'station blackout' (the loss of all AC power) accident at Browns Ferry unit one plant was performed with the computer code MARCH 1.0. In the analysis, the plant station batteries were assumed to be available for 4h after the initiation of the accident. The thermal hydraulic response in the containment was calculated by varying several input data for MARCH 1.0 independently and the deviation among calculated results were investigated. The sensitivity analysis showed that (a) the containment would fail due to the overtemperature without any operator actions for plant recovery, which would be strongly dependent on the model of the debris-concrete interaction and the input parameters for specifying the containment failure modes in MARCH 1.0, (b) a core melting temperature and an amount of water left in a primary system at the end of the meltdown were identified as important parameters which influenced the time of the containment failure, and (c) experimental works regarding the parameters mentioned above could be recommended. (author)

  12. How to arrest a core meltdown accident (doing nothing); Como detener un accidente con fusion de nucleo (sin hacer nada)

    Energy Technology Data Exchange (ETDEWEB)

    Baron, Jorge H [Autoridad Regulatoria Nuclear, Buenos Aires (Argentina)

    2000-07-01

    In the eventual situation of a severe accident in a nuclear reactor, the molten core is able to relocate inside the pressure vessel. This may lead to the vessel failure, due to the thermal attack of the molten core (at approximation of 3000K) on the vessel steel wall. The vessel failure implies the failure of a very important barrier that contains the radioactive materials generated during the reactor operation, with a significant risk of producing high radiation doses both on operators and on the public. It is expected, for the new generation of nuclear reactors, that these will be required to withstand (by design) a core melt down accident, without the need for an immediate evacuation of the surrounding population. In this line, the use of a totally passive system is postulated, which fulfills the objective of containing the molten core inside the pressure vessel, at low temperature (approximation 1200K) precluding its failure. The conceptual design of a passive in-vessel core catcher is presented in this paper, built up of zinc, and designed for the CAREM-25 nuclear power plant. (author)

  13. State-of-the-Art Report on Molten Corium Concrete Interaction and Ex-Vessel Molten Core Coolability

    International Nuclear Information System (INIS)

    Bonnet, Jean-Michel; Cranga, Michel; Vola, Didier; Marchetto, Cathy; Kissane, Martin; ); Robledo, Fernando; Farmer, Mitchel T.; Spengler, Claus; Basu, Sudhamay; Atkhen, Kresna; Fargette, Andre; Fisher, Manfred; Foit, Jerzi; Hotta, Akitoshi; Morita, Akinobu; Journeau, Christophe; Moiseenko, Evgeny; Polidoro, Franco; Zhou, Quan

    2017-01-01

    Activities carried out over the last three decades in relation to core-concrete interactions and melt coolability, as well as related containment failure modes, have significantly increased the level of understanding in this area. In a severe accident with little or no cooling of the reactor core, the residual decay heat in the fuel can cause the core materials to melt. One of the challenges in such cases is to determine the consequences of molten core materials causing a failure of the reactor pressure vessel. Molten corium will interact, for example, with structural concrete below the vessel. The reaction between corium and concrete, commonly referred to as MCCI (molten core concrete interaction), can be extensive and can release combustible gases. The cooling behaviour of ex-vessel melts through sprays or flooding is also complex. This report summarises the current state of the art on MCCI and melt coolability, and thus should be useful to specialists seeking to predict the consequences of severe accidents, to model developers for severe-accident computer codes and to designers of mitigation measures

  14. Source terms associated with two severe accident sequences in a 900 MWe PWR

    International Nuclear Information System (INIS)

    Fermandjian, J.; Evrard, J.M.; Berthion, Y.; Lhiaubet, G.; Lucas, M.

    1983-12-01

    Hypothetical accidents taken into account in PWR risk assessment result in fission product release from the fuel, transfer through the primary circuit, transfer into the reactor containment building (RCB) and finally release to the environment. The objective of this paper is to define the characteristics of the source term (noble gases, particles and volatile iodine forms) released from the reactor containment building during two dominant core-melt accident sequences: S 2 CD and TLB according to the ''Reactor Safety Study'' terminology. The reactor chosen for this study is a French 900 MWe PWR unit. The reactor building is a prestressed concrete containment with an internal liner. The first core-melt accident sequence is a 2-break loss-of-coolant accident on the cold leg, with failure of both system and the containment spray system. The second one is a transient initiated by a loss of offsite and onsite power supply and auxiliary feedwater system. These two sequences have been chosen because they are representative of risk dominant scenarios. Source terms associated with hypothetical core-melt accidents S 2 CD and TLB in a French PWR -900 MWe- have been performed using French computer codes (in particular, JERICHO Code for containment response analysis and AEROSOLS/31 for aerosol behavior in the containment)

  15. Accident-tolerant control rod

    International Nuclear Information System (INIS)

    Ohta, Hirokazu; Sawabe, Takashi; Ogata, Takanari

    2013-01-01

    Boron carbide (B 4 C) and hafnium (Hf) metal are used for the neutron absorber materials of control rods in BWRs, and silver-indium-cadmium (Ag-In-Cd) alloy is used in PWRs. These materials are clad with stainless steel. The eutectic point of B 4 C and iron (Fe) is about 1150 deg. C and the melting point of Ag-In-Cd alloy is about 800 deg. C, which are lower than the temperature of zircaloy - steam reaction increases rapidly (∼1200 deg. C). Accordingly, it is possible that the control rods melt and collapse before the reactor core is significantly damaged in the case of severe accidents. Since the neutron absorber would be separated from the fuels, there is a risk of re-criticality, when pure water or seawater is injected for emergency cooling. In order to ensure sub-criticality and extend options of emergency cooling in the course of severe accidents, a concept of accident-tolerant control rod (ACT) has been derived. ACT utilises a new absorber material having the following properties: - higher neutron absorption than current control rod; - higher melting or eutectic temperature than 1200 deg. C where rapid zircaloy oxidation occurs; - high miscibility with molten fuel materials. The candidate of a new absorber material for ATC includes gadolinia (Gd 2 O 3 ), samaria (Sm 2 O 3 ), europia (Eu 2 O 3 ), dysprosia (Dy 2 O 3 ), hafnia (HfO 2 ). The melting point of these materials and the liquefaction temperature with Fe are higher than the rapid zircaloy oxidation temperature. ACT will not collapse before the core melt-down. After the core melt-down, the absorber material will be mixed with molten fuel material. The current absorber materials, such as B 4 C, Hf and Ag-In-Cd, are charged at the tip of ATC in which the neutron flux is high, and a new absorber material is charged in the low-flux region. This design could minimise the degradation of a new absorber material by the neutron absorption and the influence of ATC deployment on reactor control procedure. As a

  16. Stability Analysis of the EBR-I Mark-II Core Meltdown Accident

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Jae-Yong; Kang, Chang Mu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    The purpose of this paper is to analyze the stability of the EBR-I core meltdown accident using the NuSTAB code. The result of NuSTAB analysis is compared with previous stability analysis by Sandmeier using the root locus method. The Experimental Breeder Reactor I (EBR-1) at Argonne National Laboratory was designed to demonstrate fast reactor breeding and to prove the use of liquid-metal coolant for power production and reached criticality in August 1951. The EBR-I reactor was undergoing a series of physics experiments and the Mark-II core was melted accidentally on Nov. 29, 1955. The experiment was going to increase core temperature to 500C to see if the reactor loses reactivity, and scram when the power reached 1500 kW or doubling of fission rate per second. However the operator scrammed with a slow moving control and missed the shutdown by two seconds and caused the core meltdown. The NuSTAB code has an advantage of analyzing space-dependent fast reactors and predicting regional oscillations compared to the point kinetics. Also, NuSTAB can be useful when the coupled neutronic-thermal-hydraulic codes cannot be used for stability analysis. Future work includes analyses of the PGSFR for various operating conditions as well as further validation of the NuSTAB calculations against SFR stability experiments when such experiments become available.

  17. Joint research project WASA-BOSS: Further development and application of severe accident codes. Assessment and optimization of accident management measures. Project B: Accident analyses for pressurized water reactors with the application of the ATHLET-CD code; Verbundprojekt WASA-BOSS: Weiterentwicklung und Anwendung von Severe Accident Codes. Bewertung und Optimierung von Stoerfallmassnahmen. Teilprojekt B: Druckwasserreaktor-Stoerfallanalysen unter Verwendung des Severe-Accident-Codes ATHLET-CD

    Energy Technology Data Exchange (ETDEWEB)

    Jobst, Matthias; Kliem, Soeren; Kozmenkov, Yaroslav; Wilhelm, Polina

    2017-02-15

    Within the framework of the project an ATHLET-CD input deck for a generic German PWR of type KONVOI has been created. This input deck was applied to the simulation of severe accidents from the accident categories station blackout (SBO) and small-break loss-of-coolant accidents (SBLOCA). The complete accident transient from initial event at full power until the damage of reactor pressure vessel (RPV) is covered and all relevant severe accident phenomena are modelled: start of core heat up, fission product release, melting of fuel and absorber material, oxidation and release of hydrogen, relocation of molten material inside the core, relocation to the lower plenum, damage and failure of the RPV. The model has been applied to the analysis of preventive and mitigative accident management measures for SBO and SBLOCA transients. Therefore, the measures primary side depressurization (PSD), injection to the primary circuit by mobile pumps and for SBLOCA the delayed injection by the cold leg hydro-accumulators have been investigated and the assumptions and start criteria of these measures have been varied. The time evolutions of the transients and time margins for the initiation of additional measures have been assessed. An uncertainty and sensitivity study has been performed for the early phase of one SBO scenario with PSD (until the start of core melt). In addition to that, a code -to-code comparison between ATHLET-CD and the severe accident code MELCOR has been carried out.

  18. Survey of melt interactions with core retention material

    International Nuclear Information System (INIS)

    Powers, D.A.

    1979-01-01

    A survey of the interactions of up to 220 kg stainless steel melts at 1973 0 K with the candidate core retention materials borax, firebrick, high alumina cement, and magnesia is described. Data collected for the interactions include rates of material erosion, aerosol generation, gas evolution, and upward heat flux. Borax acts as an ablative solid that rapidly quenches the melt. Firebrick is ablated by the steel melt at a rate of 8.2 x 10 -6 m/s. High alumina cement is found to be an attractive melt retention material especially if it can be used in the unhydrated form. Magnesia is also found to be an attractive material though it can be eroded by the molten oxides of steel

  19. Containment severe accident thermohydraulic phenomena

    International Nuclear Information System (INIS)

    Frid, W.

    1991-08-01

    This report describes and discusses the containment accident progression and the important severe accident containment thermohydraulic phenomena. The overall objective of the report is to provide a rather detailed presentation of the present status of phenomenological knowledge, including an account of relevant experimental investigations and to discuss, to some extent, the modelling approach used in the MAAP 3.0 computer code. The MAAP code has been used in Sweden as the main tool in the analysis of severe accidents. The dependence of the containment accident progression and containment phenomena on the initial conditions, which in turn are heavily dependent on the in-vessel accident progression and phenomena as well as associated uncertainties, is emphasized. The report is in three parts dealing with: * Swedish reactor containments, the severe accident mitigation programme in Sweden and containment accident progression in Swedish PWRs and BWRs as predicted by the MAAP 3.0 code. * Key non-energetic ex-vessel phenomena (melt fragmentation in water, melt quenching and coolability, core-concrete interaction and high temperature in containment). * Early containment threats due to energetic events (hydrogen combustion, high pressure melt ejection and direct containment heating, and ex-vessel steam explosions). The report concludes that our understanding of the containment severe accident progression and phenomena has improved very significantly over the parts ten years and, thereby, our ability to assess containment threats, to quantify uncertainties, and to interpret the results of experiments and computer code calculations have also increased. (au)

  20. Thermal-hydraulic uncertainties affecting severe accident progression

    International Nuclear Information System (INIS)

    Haskin, F.E.; Behr, V.L.

    1984-01-01

    To provide the proper technical bases for decisions regarding severe accidents, the US Nuclear Regulatory Commission (NRC) is sponsoring the following activities: (a) a variety of severe accident research programs, combined under the Severe Accident Research Plan; (b) nationwide task forces on containment loading, containment response, and fission product source terms; (c) a review by the American Physical Society of state-of-the-art methods for calculating radiological source terms; and (d) technical exchange meetings with the Industry Degraded Core (IDCOR) program. One of the means for integrating this developing array of technical information is the Severe Accident Risk Reduction Program (SARRP). One of the current SARRP objectives is to utilize insights gained from the activities listed above to characterize the relative likelihoods of competing containment failure modes for core-melt accidents

  1. Influence of gas generation on high-temperature melt/concrete interactions

    International Nuclear Information System (INIS)

    Powers, D.A.

    1979-01-01

    Accidents involving fuel melting and eventual contact between the high temperature melt and structural concrete may be hypothesized for both light water thermal reactors and liquid metal cooled breeder reactors. Though these hypothesized accidents have a quite low probability of occurring, it is necessary to investigate the probable natures of the accidents if an adequate assessment of the risks associated with the use of nuclear reactors is to be made. A brief description is given of a program addressing the nature of melt/concrete interactions which has been underway for three years at Sandia Laboratories. Emphasis in this program has been toward the behavior of prototypic melts of molten core materials with concrete representative of that found in existing or proposed reactors. The goals of the experimentation have been to identify phenomena particularly pertinent to questions of reactor safety, and phenomena particularly pertinent to questions of reactor safety, and provide quantitative data suitable for the purposes of risk assessment

  2. Recriticality, a Key Phenomenon to Investigate in Core Disruptive Accident Scenarios of Current and Future Fast Reactor Designs

    International Nuclear Information System (INIS)

    Maschek, W.; Rineiski, A.; Flad, M.; Kriventsev, V.; Gabrielli, F.; Morita, K.

    2012-01-01

    Final comments and conclusions: • Modern plants, should have performed better under Fukushima type event. • In future fast reactor systems significantly higher active and passive safety features are installed, which should cope with events like Fukushima. • One important lesson: put a focus on rare initiators, accident routes and consequences that are neither expected nor have been observed, events that are categorized under ‘black swans’. • Importance of severe accident research demonstrated - both analytically and experimentally for assessing and interpreting accident scenarios and developments. Precondition for developing preventive & mitigative safety measures. Passive safety measures are in the focus of advanced design options and must work under conditions of multiple loads and aggravating events. • Fast reactor systems behavior as the SFR under severe accident conditions: – In fast spectrum systems as the SFR the core is not in its neutronically most reactive configuration and SFRs may be loaded with MAs for waste management; – Recriticalities have a high probability because of the higher enrichment levels; – Short time scales have to be envisioned for core melt-down; – Decay heat levels might be significantly higher, if MA bearing fuel is involved. • Improve design by measures for prevention and/or mitigation of recriticalities; – High reliability of simulations required for proof; • Assessment of fuel relocated on peripheral structures; • Preventive/mitigating measures should not replace containment measures

  3. Implications for accident management of adding water to a degrading reactor core

    International Nuclear Information System (INIS)

    Kuan, P.; Hanson, D.J.; Pafford, D.J.; Quick, K.S.; Witt, R.J.

    1994-02-01

    This report evaluates both the positive and negative consequences of adding water to a degraded reactor core during a severe accident. The evaluation discusses the earliest possible stage at which an accident can be terminated and how plant personnel can best respond to undesired results. Specifically discussed are (a) the potential for plant personnel to add water for a range of severe accidents, (b) the time available for plant personnel to act, (c) possible plant responses to water added during the various stages of core degradation, (d) plant instrumentation available to understand the core condition and (e) the expected response of the instrumentation during the various stages of severe accidents

  4. Implications for accident management of adding water to a degrading reactor core

    Energy Technology Data Exchange (ETDEWEB)

    Kuan, P.; Hanson, D.J.; Pafford, D.J.; Quick, K.S.; Witt, R.J. [EG and G Idaho, Inc., Idaho Falls, ID (United States)

    1994-02-01

    This report evaluates both the positive and negative consequences of adding water to a degraded reactor core during a severe accident. The evaluation discusses the earliest possible stage at which an accident can be terminated and how plant personnel can best respond to undesired results. Specifically discussed are (a) the potential for plant personnel to add water for a range of severe accidents, (b) the time available for plant personnel to act, (c) possible plant responses to water added during the various stages of core degradation, (d) plant instrumentation available to understand the core condition and (e) the expected response of the instrumentation during the various stages of severe accidents.

  5. Joint research project WASA-BOSS: Further development and application of severe accident codes. Assessment and optimization of accident management measures. Project B: Accident analyses for pressurized water reactors with the application of the ATHLET-CD code

    International Nuclear Information System (INIS)

    Jobst, Matthias; Kliem, Soeren; Kozmenkov, Yaroslav; Wilhelm, Polina

    2017-02-01

    Within the framework of the project an ATHLET-CD input deck for a generic German PWR of type KONVOI has been created. This input deck was applied to the simulation of severe accidents from the accident categories station blackout (SBO) and small-break loss-of-coolant accidents (SBLOCA). The complete accident transient from initial event at full power until the damage of reactor pressure vessel (RPV) is covered and all relevant severe accident phenomena are modelled: start of core heat up, fission product release, melting of fuel and absorber material, oxidation and release of hydrogen, relocation of molten material inside the core, relocation to the lower plenum, damage and failure of the RPV. The model has been applied to the analysis of preventive and mitigative accident management measures for SBO and SBLOCA transients. Therefore, the measures primary side depressurization (PSD), injection to the primary circuit by mobile pumps and for SBLOCA the delayed injection by the cold leg hydro-accumulators have been investigated and the assumptions and start criteria of these measures have been varied. The time evolutions of the transients and time margins for the initiation of additional measures have been assessed. An uncertainty and sensitivity study has been performed for the early phase of one SBO scenario with PSD (until the start of core melt). In addition to that, a code -to-code comparison between ATHLET-CD and the severe accident code MELCOR has been carried out.

  6. Simulation of severe accidents in COTELS experiments

    International Nuclear Information System (INIS)

    Vasilev, Yu.S.; Zhdanov, V.S.; Kolodeshnikov, A.A.; Kadyrov, Kh. G.; Turkebaev, T.E.; Tsaj, K.V.; Suslov, E.E.

    1999-01-01

    At present, the issue of atomic reactor operation safety is of a great attention. It is evident that the accident accompanied with a core materials melting is an improbable event. To fully assess a hazard of a reactor use and enhance its safety, it is necessary to predict a possible accident progress and specify possible consequences of severe accidents and eliminating measures. In COTELS experiments, aimed at investigation of interaction of corium with concrete and water, the corium s imulator m elt is discharged on the concrete. The concrete erosion parameters, composition and rate of aerosol and gas escaping are recorded. The solidified melt and concrete fragments structure is studied after the testing, using the X-ray diffractometer DRON-3. This paper gives consideration to possible mechanisms of formation of uranium-containing and other phases of products of interaction of the corium melt with concrete and water

  7. Environmental Impact Assessment following a Nuclear Accident to a Candu NPP

    International Nuclear Information System (INIS)

    Margeanu, C.A.; Margeanu, S.; Olteanu, Gh.

    2009-01-01

    The paper presents calculations of nuclear accident consequences to public and environment, for a Candu NPP using advanced fuel in two hypothetical accident scenarios: (1) large LOCA followed by partial core melting with early containment failure; (2) late core disassembly and containment bypass through ECCS. During both accidents a release occurs, radioactive contaminants being dispersed into atmosphere. As reference, estimations for Candu standard UO 2 fuel were used. The radioactive core inventory was obtained by using ORIGEN-S computer code included in ORNL,SCALE 5 programs package. Radiological consequences assessment to public and environment was performed by means of PC COSYMA computer code

  8. Flowing and freezing of molten core materials during unprotected loss of flow accidents in sodium cooled fast reactors

    International Nuclear Information System (INIS)

    Maschek, W.; Royl, P.

    1988-09-01

    Flowing and freezing of mobile core materials change the fissile material distribution and core-inventory under hypothetical accident conditions and determine the path to permanent shutdown of the neutronic events and the energetic potentials. The report classifies the bondary conditions for such flowing and freezing processes by going through the different situations under which these processes can occur in the scenario of the unprotected loss of flow (ULOF) accident. The classification is based on ULOF-accident simulations for a homogeneous reactor core concept of a 300 MWe LMFBR (e. g. SNR-300), but many boundary conditions are also characteristic for other core designs. A review of the relevant experiments is then made to correlate the available experimental information with these classified boundary conditions and to look at the resulting flowing and freezing processes. Boundary conditions that have been experimentally shown to be important are assigned high priorities. The data are specifically valued in relation to these boundary conditions of high priorities. The review includes the major experimental programs with published results. The discussion shows that the results from most clean condition tests for melt relocations are valuable for a better understanding of basic phenomena and analytical model development, but are not directly applicable to real accident conditions. The database for relevant boundary conditions from the ULOF scenario is limited and largely included in integral sequence tests from which quantitative information for modelling is difficult to obtain. Needs for additional investigations are identified. The suggestions are mainly restricted to investigations of the early phase of fuel removal. They are given with reference to candidate facilities and include relocations in the subassemblies and in the inter-subassembly gaps. Particular emphasis is put on the leading edge properties and possible driving forces to which more attention

  9. Problem of corium melt coolability in passive protection systems against severe accidents in the containment

    Directory of Open Access Journals (Sweden)

    Ali Kalvand

    2018-05-01

    Full Text Available Paper is devoted to the development of the mathematical model and analysis of the problem of corium melt interaction with low-temperature melting blocks in the passive protection systems against severe accidents at the NPP, which is of high importance for substantiation of the nuclear power safety, for building and successful op-erating of passive protection systems. In the third-generation reactors passive protection systems against severe accidents at the NPP are mandatory, therefore this paper is of importance for the nuclear power safety. A few configurations for the cooling blocks’ distribution have been considered and an analysis of the blocks’ melting and corium’s cooling in the pool under reactor vessel have been done, which can serve more effective for further improvement of the safety current systems and for the development of new ones. The ways for solution of the problems and the methods for their successful elaboration were discussed. The developed mathematical models and the analysis performed in the paper might be helpful for the design of passive protection systems of the cori-um melt retention inside the containment after corium melt eruption from the broken reactor vessel.

  10. Quench cooling of superheated debris beds in containment during LWR core meltdown accidents

    International Nuclear Information System (INIS)

    Ginsberg, T.; Chen, J.C.

    1984-01-01

    Light water reactor core meltdown accident sequence studies suggest that superheated debris beds may settle on the concrete floor beneath the reactor vessel. A model for the heat transfer processes during quench (removal of stored energy from initial temperature to saturation temperature) of superheated debris beds cooled by an overlying pool of water has been presented in a prior paper. This paper discusses the coolability of decay-heated debris beds from the standpoint of their transient quench characteristics. It is shown that even though a debris bed configuration may be coolable from the point of view of steady-state decay heat removal, the quench behavior from an initially elevated temperature may lead to bed melting prior to quench of the debris

  11. Case for integral core-disruptive accident analysis

    International Nuclear Information System (INIS)

    Luck, L.B.; Bell, C.R.

    1985-01-01

    Integral analysis is an approach used at the Los Alamos National Laboratory to cope with the broad multiplicity of accident paths and complex phenomena that characterize the transition phase of core-disruptive accident progression in a liquid-metal-cooled fast breeder reactor. The approach is based on the combination of a reference calculation, which is intended to represent a band of similar accident paths, and associated system- and separate-effect studies, which are designed to determine the effect of uncertainties. Results are interpreted in the context of a probabilistic framework. The approach was applied successfully in two studies; illustrations from the Clinch River Breeder Reactor licensing assessment are included

  12. Severe accident progression perspectives for Mark I containments based on the IPE results

    International Nuclear Information System (INIS)

    Lin, C.C.; Lehner, J.R.; Pratt, W.T.; Drouin, M.

    1995-01-01

    Based on level 2 analyses in IPE (Individual Plant Examination) submittals accident progression, perspectives were obtained for all containment types. These perspectives consisted of insights on containment failure modes, releases therein, and factors responsible for the results. To illustrate the types of perspectives acquired on severe accident progresssion, insights obtained for (BWR) Mark I containments are discussed here. Mark I containments have high strength but small volumes and rely on pressure suppression pools to condense steam released from the reactor coolant system during an accident. Accidents causing structural failure of the drywell shortly after the core debris melts through the reactor vessel were found to be dominant contributors to risk. Importance of individual containment failure mechanisms depends on plant features and in some cases on modeling assumptions; however the following mechanisms were found important: drywell shell melt-through caused by direct contact with core debris and drywell failure caused by rapid pressure/temperature pulses at time of vessel melt-through. Drywell failure caused by gradual pressure/temperature buildup due to gases and steam released during core/concrete interactions is important in some IPEs. In other IPEs vent was an important contributor. However, accidents that bypass containment (eg interfacing systems LOCA)or involve containment isolation failure were not important contributors to the CDF in any of the IPEs for Mark I plants. These accidents are also not important to risk (even though they can involve large fission product release) because their frequencies of occurrence are so much lower than frequencies of early structural failure caused by other accidents that dominate the CDF

  13. Assessment of mass fraction and melting temperature for the application of limestone concrete and siliceous concrete to nuclear reactor basemat considering molten core-concrete interaction

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ho Jae; Kim, Do Gyeum [Korea Institute of Civil Engineering and Building Technology, Goyang (Korea, Republic of); Cho, Jae Leon [Korea Hydro and Nuclear Power Co., Ulsan (Korea, Republic of); Yoon, Eui Sik [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of); Cho, Myung Suk [Korea Hydro and Nuclear Power Co., Central Research Institute, Daejeon (Korea, Republic of)

    2016-04-15

    Severe accident scenarios in nuclear reactors, such as nuclear meltdown, reveal that an extremely hot molten core may fall into the nuclear reactor cavity and seriously affect the safety of the nuclear containment vessel due to the chain reaction caused by the reaction between the molten core and concrete. This paper reports on research focused on the type and amount of vapor produced during the reaction between a high-temperature molten core and concrete, as well as on the erosion rate of concrete and the heat transfer characteristics at its vicinity. This study identifies the mass fraction and melting temperature as the most influential properties of concrete necessary for a safety analysis conducted in relation to the thermal interaction between the molten core and the basemat concrete. The types of concrete that are actually used in nuclear reactor cavities were investigated. The H2O content in concrete required for the computation of the relative amount of gases generated by the chemical reaction of the vapor, the quantity of CO2 necessary for computing the cooling speed of the molten core, and the melting temperature of concrete are evaluated experimentally for the molten core-concrete interaction analysis.

  14. Incorporation of Certain Hydrophobic Excipients in the Core of Melt ...

    African Journals Online (AJOL)

    Patrick Erah

    incorporation of hydrophobic materials (talc or magnesium stearate) in the core of such granules may further retard .... (500mg) was filled into a capsule shell and ... of the drug particles. The effect of melt granulation on the release profiles of paracetamol is shown in Fig 1. The melt granulations displayed a retarded release.

  15. Licensing decisions and safety research related to LMFBR accidents

    International Nuclear Information System (INIS)

    Denise, R.P.; Speis, T.P.; Kelber, C.N.; Curtis, R.T.

    1977-01-01

    The licensing approach which ensures adequate protection of the public health and safety against serious accidents is described. This paper describes the role of core melt and core disruptive accidents in the design, safety research, and licensing processes, using the Clinch River Breeder Reactor (CRBR) as a focal point. Major design attention is placed on the prevention of these accidents so that the probability of core melt accidents is reduced to a sufficiently low level that they are not treated as design basis accidents. Additional requirements are placed upon the design to further reduce residual risk. This licensing process is supported by a confirmatory research program designed to provide an independent basis for licensing judgements. It has as a goal the resolution of generic safety issues prior to the establishment of a commercial LMFBR industry. The program includes accident analysis, experiments in materials interactions, aerosol transport and system integrity and planning for new safety test facilities. The problems are approached in a multi-disciplinary functional manner that identifies key safety issues and centralizes efforts to resolve them. The near term objectives of the program support the licensing of the Clinch River Breeder Reactor (CRBR) and the proposed Prototype Large Breeder Reactor (PLBR). The long term objectives of the program support the licensing of commercial LMFBRs during the late 1980's and beyond. This safety research is designed to provide an independent basis for the licensing judgements which must be made by the Nuclear Regulatory Commission

  16. The WAIS Melt Monitor: An automated ice core melting system for meltwater sample handling and the collection of high resolution microparticle size distribution data

    Science.gov (United States)

    Breton, D. J.; Koffman, B. G.; Kreutz, K. J.; Hamilton, G. S.

    2010-12-01

    Paleoclimate data are often extracted from ice cores by careful geochemical analysis of meltwater samples. The analysis of the microparticles found in ice cores can also yield unique clues about atmospheric dust loading and transport, dust provenance and past environmental conditions. Determination of microparticle concentration, size distribution and chemical makeup as a function of depth is especially difficult because the particle size measurement either consumes or contaminates the meltwater, preventing further geochemical analysis. Here we describe a microcontroller-based ice core melting system which allows the collection of separate microparticle and chemistry samples from the same depth intervals in the ice core, while logging and accurately depth-tagging real-time electrical conductivity and particle size distribution data. This system was designed specifically to support microparticle analysis of the WAIS Divide WDC06A deep ice core, but many of the subsystems are applicable to more general ice core melting operations. Major system components include: a rotary encoder to measure ice core melt displacement with 0.1 millimeter accuracy, a meltwater tracking system to assign core depths to conductivity, particle and sample vial data, an optical debubbler level control system to protect the Abakus laser particle counter from damage due to air bubbles, a Rabbit 3700 microcontroller which communicates with a host PC, collects encoder and optical sensor data and autonomously operates Gilson peristaltic pumps and fraction collectors to provide automatic sample handling, melt monitor control software operating on a standard PC allowing the user to control and view the status of the system, data logging software operating on the same PC to collect data from the melting, electrical conductivity and microparticle measurement systems. Because microparticle samples can easily be contaminated, we use optical air bubble sensors and high resolution ice core density

  17. Development of Severe Accident Containment Analysis Package

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chang-Hwan; Kim, Dong-Min; Seo, Jea-Uk; Lee, Dea-Young; Park, Soon-Ho; Lee, Jae-Gwon; Lee, Jin-Yong; Lee, Byung-Chul [FNC Technology Co., Yongin (Korea, Republic of)

    2016-10-15

    In safety viewpoint, the pressure and temperature of the containment is the important parameters, of course, the local hydrogen concentration is also the parameter of the major concern because of its flammability and the risk of the detonation. In addition, there are possibilities of occurrence of other relevant phenomena following the reactor core melting such as DCH(direct containment heating) due to HPME(high pressure melt ejection), steam explosion due to fuel-coolant interaction in the reactor cavity and molten core concrete interaction at the late stage. It is important to predict the containment responses during a severe accident by a reasonable accuracy for establishing of effective mitigation strategies and preparation of the safety features required. In this paper, the overview of the SACAP development status is presented. SACAP is developed so as to be able to analyze, so called, Ex-Vessel severe accident phenomena including thermal-hydraulics, combustible gas burn, direct containment heating, steam explosion and molten core-concrete interaction. At the parallel time, SACAP and In-Vessel analysis module named CSPACE are processed for integration through MPI communication coupling. Development of the integrated severe accident analysis code system will be completed in following one year to make the code revision zero to be released.

  18. Penetration of a heated pool into a melting miscible substrate

    International Nuclear Information System (INIS)

    Eck, G.; Werle, H.

    1986-01-01

    Core-catchers have been proposed, which, after a core disruptive accident in a nuclear reactor, prevent containment failure caused by contact of the molten debris with the underlying ex-vessel structural materials. Most of these core-catchers are provided with sacrificial layers which on melting consume some fraction of the decay heat and dilute the heat sources and the fissionable material as the core masses are dissolved by the molten sacrificial material. Dilution of the core masses results in relatively low heat fluxes and temperatures at the wall of the core-catcher and, in addition, reduces the probability of recriticality. An experimental study was conducted on melting systems consisting of a liquid over-lying a solid substrate, which after melting of the solid, are mutually miscible. To initiate melting, the liquid was heated either by a planar heater from above or internally by an ac current. The density of the liquid was varied systematically, and it was found that downward heat transfer increases strongly with this parameter. In addition to heat transfer, mass transfer was studied by measuring the local concentration of the molten material in the liquid. A few experiments were performed in which sideward melting and two-dimensional pool growth were investigated

  19. Numerical analysis of the induction melting process of oxide fuel material

    International Nuclear Information System (INIS)

    Kondala Rao, R.; Mangarjuna Rao, P.; Nashine, B.K.; Selvaraj, P.

    2015-01-01

    For the experimental simulation of Molten Fuel-Coolant Interaction (MFCI) phenomenon under hypothetical core meltdown accident scenario in a nuclear reactor, it is required to generate the molten pool of core materials. For this purpose, a laboratory scale Cold wall Crucible induction melting system has been developed. To optimize the system for efficient and reliable melting process, it is required to have comprehensive knowledge on the heat and mass transfer processes along with electromagnetic process that occur during the melting of core materials. Hence, a 2D axi-symmetric numerical model has been developed using a multiphysics software to simulate the induction melting process. The phase change phenomenon is taken into account by using enthalpy formulation. The experimental data available in literature for magnetic field and flow field are used for model validation. The model predicted temperatures are also in good agreement with experimentally measured values. The validated model has been used to study the induction melting behavior of UO_2 fuel material. (author)

  20. Safety against releases in severe accidents. Final report

    International Nuclear Information System (INIS)

    Lindholm, I.; Berg, Oe.; Nonboel, E.

    1997-12-01

    The work scope of the RAK-2 project has involved research on quantification of the effects of selected severe accident phenomena for Nordic nuclear power plants, development and testing of a computerised accident management support system and data collection and description of various mobile reactors and of different reactor types existing in the UK. The investigations of severe accident phenomena focused mainly on in-vessel melt progression, covering a numerical assessment of coolability of a degraded BWR core, the possibility and consequences of a BWR reactor to become critical during reflooding and the core melt behavior in the reactor vessel lower plenum. Simulant experiments were carried out to investigate lower head hole ablation induced by debris discharge. In addition to the in-vessel phenomena, a limited study on containment response to high pressure melt ejection in a BWR and a comparative study on fission product source term behaviour in a Swedish PWR were performed. An existing computerised accident management support system (CAMS) was further developed in the area of tracking and predictive simulation, signal validation, state identification and user interface. The first version of a probabilistic safety analysis module was developed and implemented in the system. CAMS was tested in practice with Barsebaeck data in a safety exercise with the Swedish nuclear authority. The descriptions of the key features of British reactor types, AGR, Magnox, FBR and PWR were published as data reports. Separate reports were issued also on accidents in nuclear ships and on description of key features of satellite reactors. The collected data were implemented in a common Nordic database. (au)

  1. WASA-BOSS. Development and application of Severe Accident Codes. Evaluation and optimization of accident management measures. Subproject F. Contributions to code validation using BWR data and to evaluation and optimization of accident management measures. Final report

    International Nuclear Information System (INIS)

    Di Marcello, Valentino; Imke, Uwe; Sanchez Espinoza, Victor

    2016-09-01

    The exact knowledge of the transient course of events and of the dominating processes during a severe accident in a nuclear power station is a mandatory requirement to elaborate strategies and measures to minimize the radiological consequences of core melt. Two typical experiments using boiling water reactor assemblies were modelled and simulated with the severe accident simulation code ATHLET-CD. The experiments are related to the early phase of core degradation in a boiling water reactor. The results reproduce the thermal behavior and the hydrogen production due to oxidation inside the bundle until relocation of material by melting. During flooding of the overheated assembly temperatures and hydrogen oxidation are under estimated. The deviations from the experimental results can be explained by the missing model to simulate bore carbide oxidation of the control rods. On basis of a hypothetical loss of coolant accident in a typical German boiling water reactor the effectivity of flooding the partial degraded core is investigated. This measure of mitigation is efficient and prevents failure of the reactor pressure vessel if it starts before molten material is relocated into the lower plenum. Considerable amount of hydrogen is produced by oxidation of the metallic components.

  2. Severe accident simulation at Olkiuoto

    Energy Technology Data Exchange (ETDEWEB)

    Tirkkonen, H.; Saarenpaeae, T. [Teollisuuden Voima Oy (TVO), Olkiluoto (Finland); Cliff Po, L.C. [Micro-Simulation Technology, Montville, NJ (United States)

    1995-09-01

    A personal computer-based simulator was developed for the Olkiluoto nuclear plant in Finland for training in severe accident management. The generic software PCTRAN was expanded to model the plant-specific features of the ABB Atom designed BWR including its containment over-pressure protection and filtered vent systems. Scenarios including core heat-up, hydrogen generation, core melt and vessel penetration were developed in this work. Radiation leakage paths and dose rate distribution are presented graphically for operator use in diagnosis and mitigation of accidents. Operating on an graphically for operator use in diagnosis and mitigation of accidents. Operating on an 486 DX2-66, PCTRAN-TVO achieves a speed about 15 times faster than real-time. A convenient and user-friendly graphic interface allows full interactive control. In this paper a review of the component models and verification runs are presented.

  3. High enrichment to low enrichment core's conversion. Accidents analysis

    International Nuclear Information System (INIS)

    Abbate, P.; Rubio, R.; Doval, A.; Lovotti, O.

    1990-01-01

    This work analyzes the different accidents that may occur in the reactor's facility after the 20% high-enriched uranium core's conversion. The reactor (of 5 thermal Mw), built in the 50's and 60's, is of the 'swimming pool' type, with light water and fuel elements of the curve plates MTR type, enriched at 93.15 %. This analysis includes: a) accidents by reactivity insertion; b) accidents by coolant loss; c) analysis by flow loss and d) fission products release. (Author) [es

  4. XPS and EPXMA investigation and chemical speciation of aerosol samples formed in LWR core melting experiments

    International Nuclear Information System (INIS)

    Moers, H.; Jenett, H.; Kaufmann, R.; Klewe-Nebenius, H.; Pfennig, G.; Ache, H.J.

    1985-09-01

    Aerosol samples consisting of fission products and elements of light water reactor structural materials were collected during simulating in a laboratory scale the heat-up phase of a core melt accident. The aerosol particles were formed in a steam atmosphere at temperatures between 1200 and 1900 0 C of the melting charge. The investigation of the samples by use of X-ray photoelectron spectroscopy (XPS) permitted the chemical speciation of the detected aerosol constituents silver, cadmium, indium, tellurium, iodine, and cesium. A comparison of the elemental analysis results obtained from XPS with those achieved from electron probe X-ray micro analysis (EPXMA) revealed that aerosol particle surface and aerosol particle bulk are principally composed of the same elements and that these compositions vary with release temperature. In addition, quantitative differences between the composition of surface and bulk have only been observed for those aerosol samples which were collected at higher melting charge temperatures. In order to obtain direct information on chemical species below the surface selected samples were argon ion bombarded. Changes in composition and chemistry were monitored by XPS, and the results were interpreted in light of the effects, which were observed when appropriate standard samples were sputtered. (orig.) [de

  5. Study of diluting and absorber materials to control reactivity during a postulated core melt down accident in Generation IV reactors

    International Nuclear Information System (INIS)

    Plevacova, K.

    2010-01-01

    In order to limit the consequences of a hypothetical core meltdown accident in Generation IV Sodium Fast Reactors, absorber materials in or near the core, such as boron carbide B 4 C, and diluting materials in the core catcher will be used to prevent recriticality within the mixture of molten oxide fuel and molten structures called corium. The aim of the PhD thesis was to select materials of both types and to understand their behaviour during their interaction with corium, from chemical and thermodynamic point of view. Concerning B 4 C, thermodynamic calculations and experiments agree with the formation of two immiscible phases at high temperature in the B 4 C - UO 2 system: one oxide and one boride. This separation of phases can reduce the efficiency of the neutrons absorption inside the molten fuel contained in the oxide phase. Moreover, a volatilization of a part of the boron element can occur. According to these results, the necessary quantity of B 4 C to be introduced should be reconsidered for postulated severe accident sequence. Other solution could be the use of Eu 2 O 3 or HfO 2 as absorber material. These oxides form a solid solution with the oxide fuel. Concerning the diluting materials, mixed oxides Al 2 O 3 - HfO 2 and Al 2 O 3 - Eu 2 O 3 were preselected. These systems being completely unknown to date at high temperature in association with UO 2 , first points on the corresponding ternary phase diagrams were researched. Contrary to Al 2 O 3 - Eu 2 O 3 - UO 2 system, the Al 2 O 3 - HfO 2 - UO 2 mixture presents only one eutectic and thus only one solidification path which makes easier forecasting the behaviour of corium in the core catcher. (author) [fr

  6. Severe accident management: a summary of the VAHTI and ROIMA projects

    International Nuclear Information System (INIS)

    Sairanen, R.

    1998-01-01

    Two severe accident research projects: 'Severe Accident Management' (VAHTI), 1994-96 and 'Reactor Accidents' Phenomena and Simulation (ROIMA) 1997-98. have been conducted at VTT Energy within the RETU research programme. The main objective was to assist the severe accident management programmes of the Finnish nuclear power plants. The projects had several subtopics. These included thermal hydraulic validation of the APROS code, studies of failure mode of the BWR pressure vessel, investigation of core melt progression within a BWR pressure vessel, containment phenomena, development of a computerised severe accident training tool, and aerosol behaviour experiments. The last topic is summarised by another paper in the seminar. The projects have met the objectives set at the project commencement. Calculation tools have been developed and validated suitable for analyses of questions specific for the Finnish plants. Experimental fission product data have been produced that can be used to validate containment aerosol codes. The tools and results have been utilised in plant assessments. One of the main achievements has been the computer code PASULA for analysis of interactions between core melt and pressure vessel. The code has been applied to pressure vessel penetration analysis. The results have shown the importance of the nozzle construction. Modelling possibilities have recently improved by addition of a creep and porous debris models. Cooling of a degraded BWR core has been systematically studied as joint Nordic projects with a set of severe accident codes. Estimates for coolable conditions have been provided. Recriticality due to reflooding of a damaged core has been evaluated. (orig.)

  7. Role of fission product in whole core accidents: research in the USA

    International Nuclear Information System (INIS)

    Jackson, J.F.; Deitrich, L.W.

    1977-01-01

    The techniques being developed in the United States for analyzing postulated whole-core accidents in LMFBRs are briefly reviewed. The key mechanistic analysis methods are discussed in detail. Important research projects in the area of fission product effects are examined. Some typical results on the role of fission products in whole-core accidents are presented

  8. Recent progress in the LACOMERA Project (Large-Scale Experiments on Core Degradation, Melt Retention and Coolability) at the Forschungszentrum Karslruhe

    International Nuclear Information System (INIS)

    Miassoedov, A.; Alsmeyer, H.; Eppinger, B.; Meyer, L.; Steinbrueck, M.

    2004-01-01

    The LACOMERA Project at the Forschungszentrum Karlsruhe (FZK) is a 3 year action within the 5 th Framework Programme of the EU. The overall objective of the project is to offer research institutions from the EU member countries and associated states access to four large-scale experimental facilities QUENCH, LIVE, DISCO-H, and COMET which can be used to investigate core melt scenarios from the beginning of core degradation to melt formation and relocation in the vessel, possible melt dispersion to the reactor cavity, and finally corium concrete interaction and corium coolability in the reactor cavity. As a result of two calls for proposals, seven organisations from four countries are expected to profit from the LACOMERA Project participating in preparation, conduct and analysis of the following experiments: QUENCH-L1: Air ingression impact on core degradation. The test has provided unique data for the investigation of air ingress phenomenology in conditions as representative as possible of the reactor case regarding the source term. QUENCH-L2: Boil-off of a flooded bundle. The test will be of a generic interest for all reactor types, providing a link between the severe accident and design basis areas, and would deliver oxidation and thermal hydraulic data at high temperatures. LIVE-L1: Simulation of melt relocation into the Reactor Pressure Vessel (RPV) lower head for VVER conditions. The experiment will provide important information on the melt pool behaviour during the stages of air circulation at the outer RPV surface with a subsequent flooding of the lower head. LIVE-L2: Transient corium spreading and its impact on the heat fluxes to the RPV wall and on the final shape of the melt in the RPV lower head. The test will address the questions of melt stabilisation and the effects of crust formation near the RPV wall for a nonsymmetrical melt pool shape. COMET-L1: Long-term 2D concrete ablation in siliceous concrete cavity at intermediate decay heat power level with

  9. RBMK-1500 accident management for loss of long-term core cooling

    International Nuclear Information System (INIS)

    Uspuras, E.; Kaliatka, A.

    2001-01-01

    Results of the Level 1 probabilistic safety assessment of the Ignalina NPP has shown that in topography of the risk, transients dominate above the accidents with LOCAs and failure of the core long-term cooling are the main factors to frequency of the core damage. Previous analyses have shown, that after initial event, as a rule, the reactivity control, as well as short-term and intermediate cooling are provided. However, the acceptance criteria of the long-term cooling are not always carried out. It means that from this point of view the most dangerous accident scenarios are the scenarios related to loss of the core long-term cooling. On the other hand, the transition to the core condition due to loss of the long-term cooling specifies potential opportunities for the management of the accident consequences. Hence, accident management for the mitigation of the accident consequences should be considered and developed. The most likely initiating event, which probably leads to the loss of long term cooling accident, is station blackout. The station blackout is the loss of normal electrical power supply for local needs with an additional failure on start-up of all diesel generators. In the case of loss of electrical power supply MCPs, the circulating pumps of the service water system and MFWPs are switched-off. At the same time, TCV of both turbines are closed. Failure of diesel generators leads to the non-operability of the ECCS long-term cooling subsystem. It means the impossibility to feed MCC by water. The analysis of the station blackout for Ignalina NPP was performed using RELAP5 code. (author)

  10. KATS experiments to simulate corium spreading in the EPR core catcher concept

    International Nuclear Information System (INIS)

    Eppinger, B.; Fieg, G.; Schuetz, W.; Stegmaier, U.

    2001-01-01

    In future Light Water Reactors special devices (core catchers) might be required to prevent containment failure by basement erosion after reactor pressure vessel melt-through during a core meltdown accident. Quick freezing of the molten core masses is desirable to reduce release of radioactivity. Several concepts of core catcher de-vices have been proposed based on the spreading of corium melt onto flat surfaces with subsequent cooling by flooding with water. Therefore a series of experiments to investigate high temperature melt spreading on flat surfaces has been carried out using alumina-iron thermite melts as a simulant. The oxidic thermite melt is conditioned by adding other oxides to simulate a realistic corium melt as close as possible. Spreading of oxidic and metallic melts have been performed in one- and two-dimensional geometry. Substrates were chemically inert ceramic layers, dry concrete and concrete with a shallow water layer on top. (authors)

  11. Screening and analysis of beyond design basis accident of 49-2 SPR

    International Nuclear Information System (INIS)

    Zhang Yadong; Guo Yue; Wu Yuanyuan; Zou Yao

    2015-01-01

    The beyond design basis accident was analyzed to ensure safe operation of 49-2 Swimming Pool Reactor (SPR) after design life. Because it's difficult to use PSA method, the unconditional assumed severe accidents were adopted to obtain a conservative result. The main conclusions were obtained by analyzing anticipated transients without scram in station blackout (SBO ATWS), horizontal channel rupture, core uncovering after shutdown and emergency response capacity. The results show that the core is safe in SBO ATWS, and the fuel elements will not melt as long as the core are not exposed in 2.5 h in loss of coolant accident caused by horizontal channel rupture and other factors. The passive siphon breaker function and various ways of emergency core makeup can ensure that the core is not exposed. (authors)

  12. Molten LWR core material interactions with water and with concrete

    International Nuclear Information System (INIS)

    Dahlgren, D.A.; Buxton, L.D.; Muir, J.F.; Murfin, W.B.; Nelson, L.S.; Powers, D.A.

    1977-01-01

    Nuclear power reactors are designed and operated to minimize the possibility of fuel melting. Nevertheless, in order to assess the risks associated with reactor operation, a realistic assessment is required for postulated accident sequences in which melting occurs. To investigate the experimental basis of the fuel melt accident analyses, a comprehensive review was performed at Sandia Laboratories. The results of that study indicated several phenomenological areas where additional experimental data should be gathered to verify common assumptions made in risk studies. In particular, vapor explosions and molten core material/concrete interactions were identified for further study. Results of these studies are presented

  13. Analysis of molten fuel behavior in coolant channel during severe accidents in KALIMER

    International Nuclear Information System (INIS)

    Suk, Soo Dong; Lee, Yong Bum; Hahn, Do Hee

    2004-11-01

    Preliminary safety analyses of the KALIMER-600 design have shown that the design has inherent safety characteristics and is capable of accommodating double fault initiators such as ATWS events without boiling coolant or melting fuel. For the future design of liquid metal reactor, however, the evaluation of the safety performance and the determination of containment requirements may require consideration of tripe-fault accident sequences of extremely low probability of occurrence that leads to fuel melting. For any postulated accident sequence which leads to core melting, in-vessel retention of the core debris will required as a design requirement for the future design of LMR. For sodium-cooled core designs with metallic fuel, one of the major phenomenological modeling uncertainties to be resolved is the potential for freezing and plugging of molten metallic fuel in above- and below-core structures and possibly in inter-subassembly spaces. In this study, scoping analyses were carried out to evaluate the penetration depths in the coolant channels by molten fuel mixture during the unprotected loss-of-flow accidents in the core of the KALIMER-600. It is assumed in the analyses that a solid fuel crust would start to form upon contact with the coolant channel structure temperature of which is below the fuel solidus. The analysis results predict that the coolant channels would be plugged by the freezing molten fuel in the inlet lower shield as well as in the outlet, fission-gas-plenum region for the KALIMER-600 design

  14. Modeling the economic consequences of LWR accidents

    International Nuclear Information System (INIS)

    Burke, R.P.; Aldrich, D.C.; Rasmussen, N.C.

    1984-01-01

    Models to be used for analyses of economic risks from events which may occur during LWR plant operation are developed in this study. The models include capabilities to estimate both onsite and offsite costs of LWR events ranging from routine plant outages to severe core-melt accidents resulting in large releases of radioactive material to the environment. The models can be used by both the nuclear power industry and regulatory agencies in cost-benefit analyses for decisionmaking purposes. The newly developed economic consequence models are applied in an example to estimate the economic risks from operation of the Surry Unit 2 plant. The analyses indicate that economic risks from US LWR operation, in contrast to public health risks, are dominated by relatively high-frequency forced outage events. Even for severe (e.g., core-melt) accidents, expected offsite costs are less than expected onsite costs for the Surry site. The implications of these conclusions for nuclear power plant operation and regulation are discussed

  15. Ex-vessel melt-coolant interactions in deep water pool: Studies and accident management for Swedish BWRs

    International Nuclear Information System (INIS)

    Sienicki, J.J.; Chu, C.C.; Spencer, B.W.; Frid, W.; Loewenhielm, G.

    1993-01-01

    In Swedish BWRs having an annular suppression pool, the lower drywell beneath the reactor vessel is flooded with water to mitigate against the effects of melt release into the drywell during a severe accident. The THIRMAL code has been used to analyze the effectiveness of the water pool to protect lower drywell penetrations by fragmenting and quenching the melt as it relocates downward through the water. Experiments have also been performed to investigate the benefits of adding surfactants to the water to reduce the likelihood of fine-scale debris formation from steam explosions. This paper presents an overview of the accident management approach and surfactant investigations together with results from the THIRMAL analyses

  16. Transport-diffusion comparisons for small core LMFBR disruptive accidents

    International Nuclear Information System (INIS)

    Tomlinson, E.T.

    1977-11-01

    A number of numerical experiments were performed to assess the validity of diffusion theory for calculating the reactivity state of various small core LMFBR disrupted geometries. The disrupted configurations correspond, in general, to various configurations predicted by SAS3A for transient undercooling (TUC) and transient overpower (TOP) accidents for homogeneous cores and to the ZPPR-7 configurations for heterogeneous core. In all TUC cases diffusion theory was shown to be inadequate for the calculation of reactivity changes during core disassembly

  17. Transuranium contamination in BWRs after fuel accidents and its impact on decommissioning exposures and costs

    Energy Technology Data Exchange (ETDEWEB)

    Lundgren, K.

    1996-12-01

    The theme of the present study is to quantify the amount of transuranium activity in different parts of the plant after various fuel accidents, and which impact such contamination has on radiation exposure and costs for decommissioning the plant. The consequences of four different accident degrees have been treated: Common fuel failures, e.g. in line with recent experiences from Swedish BWRs; Fuel channel obstruction resulting in partial melting of one fuel assembly; Total loss of electric power resulting in partial meltdown of the core, but with primary circuit intact preventing a massive contamination of the containment; A LOCA followed by a core meltdown and melting and penetration of the reactor pressure vessel. The amount of transuranium activity distributed, the form of this activity and the plant contamination are evaluated for these accidents. The costs and exposures have been split up on cleanup activities after the accident and decommissioning. 75 refs.

  18. Transuranium contamination in BWRs after fuel accidents and its impact on decommissioning exposures and costs

    International Nuclear Information System (INIS)

    Lundgren, K.

    1996-12-01

    The theme of the present study is to quantify the amount of transuranium activity in different parts of the plant after various fuel accidents, and which impact such contamination has on radiation exposure and costs for decommissioning the plant. The consequences of four different accident degrees have been treated: Common fuel failures, e.g. in line with recent experiences from Swedish BWRs; Fuel channel obstruction resulting in partial melting of one fuel assembly; Total loss of electric power resulting in partial meltdown of the core, but with primary circuit intact preventing a massive contamination of the containment; A LOCA followed by a core meltdown and melting and penetration of the reactor pressure vessel. The amount of transuranium activity distributed, the form of this activity and the plant contamination are evaluated for these accidents. The costs and exposures have been split up on cleanup activities after the accident and decommissioning. 75 refs

  19. Safety against releases in severe accidents. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lindholm, I.; Berg, Oe.; Nonboel, E. [eds.

    1997-12-01

    The work scope of the RAK-2 project has involved research on quantification of the effects of selected severe accident phenomena for Nordic nuclear power plants, development and testing of a computerised accident management support system and data collection and description of various mobile reactors and of different reactor types existing in the UK. The investigations of severe accident phenomena focused mainly on in-vessel melt progression, covering a numerical assessment of coolability of a degraded BWR core, the possibility and consequences of a BWR reactor to become critical during reflooding and the core melt behavior in the reactor vessel lower plenum. Simulant experiments were carried out to investigate lower head hole ablation induced by debris discharge. In addition to the in-vessel phenomena, a limited study on containment response to high pressure melt ejection in a BWR and a comparative study on fission product source term behaviour in a Swedish PWR were performed. An existing computerised accident management support system (CAMS) was further developed in the area of tracking and predictive simulation, signal validation, state identification and user interface. The first version of a probabilistic safety analysis module was developed and implemented in the system. CAMS was tested in practice with Barsebaeck data in a safety exercise with the Swedish nuclear authority. The descriptions of the key features of British reactor types, AGR, Magnox, FBR and PWR were published as data reports. Separate reports were issued also on accidents in nuclear ships and on description of key features of satellite reactors. The collected data were implemented in a common Nordic database. (au) 39 refs.

  20. Analysis of natural convection in volumetrically-heated melt pools

    International Nuclear Information System (INIS)

    Sehgal, B.R.; Dinh, T.N.; Nourgaliev, R.R.

    1996-12-01

    Results of series of studies on natural convection heat transfer in decay-heated core melt pools which form in a reactor lower plenum during the progression of a core meltdown accident are described. The emphasis is on modelling and prediction of turbulent heat transfer characteristics of natural convection in a liquid pool with an internal energy source. Methods of computational fluid dynamics, including direct numerical simulation, were applied for investigation

  1. Modelling and analysis of severe accidents for VVER-1000 reactors

    International Nuclear Information System (INIS)

    Tusheva, Polina

    2012-01-01

    Accident conditions involving significant core degradation are termed severe accidents /IAEA: NS-G-2.15/. Despite the low probability of occurrence of such events, the investigation of severe accident scenarios is an important part of the nuclear safety research. Considering a hypothetical core melt down scenario in a VVER-1000 light water reactor, the early in-vessel phase focusing on the thermal-hydraulic phenomena, and the late in-vessel phase focusing on the melt relocation into the reactor pressure vessel (RPV) lower head, are investigated. The objective of this work is the assessment of severe accident management procedures for VVER-1000 reactors, i.e. the estimation of the maximum period of time available for taking appropriate measures and particular decisions by the plant personnel. During high pressure severe accident sequences it is of prime importance to depressurize the primary circuit in order to allow for effective injection from the emergency core cooling systems and to avoid reactor pressure vessel failure at high pressure that could cause direct containment heating and subsequent challenge to the containment structure. Therefore different accident management measures were investigated for the in-vessel phase of a hypothetical station blackout accident using the severe accident code ASTEC, the mechanistic code ATHLET and the multi-purpose code system ANSYS. The analyses performed on the PHEBUS ISP-46 experiment, as well as simulations of small break loss of coolant accident and station blackout scenarios were used to contribute to the validation and improvement of the integral severe accident code ASTEC. Investigations on the applicability and the effectiveness of accident management procedures in the preventive domain, as well as detailed analyses on the thermal-hydraulic phenomena during the early in-vessel phase of a station blackout accident have been performed with the mechanistic code ATHLET. The results of the simulations show, that the

  2. SEVERE ACCIDENT MANAGEMENT STATUS AT Loviisa

    International Nuclear Information System (INIS)

    Kymalainen, O.; Tuomisto, H.

    1997-01-01

    Some of the specific design features of IVO's Loviisa Plant, most notably the ice-condenser containment, strongly affect the plant response in a hypothetical core melt accident. They have together with the relatively stringent Finnish regulatory requirements forced IVO to develop a tailor made severe accident management strategy for Loviisa. The low design pressure of the ice-condenser containment complicates the design of the hydrogen management system. On the other hand, the ice-condensers and the water available from them are facilitating factors regarding in-vessel retention of corium by external cooling of reactor pressure vessel. This paper summarizes the Finnish severe accident requirements, IVO's approach to severe accidents, and its application to the Loviisa Plant

  3. Summary of treat experiments on oxide core-disruptive accidents

    International Nuclear Information System (INIS)

    Dickerman, C.E.; Rothman, A.B.; Klickman, A.E.; Spencer, B.W.; DeVolpi, A.

    1979-02-01

    A program of transient in-reactor experiments is being conducted by Argonne National Laboratory in the Transient Reactor Test (TREAT) facility to guide and support analyses of hypothetical core-disruptive accidents (HCDA) in liquid-metal fast breeder reactors (LMFBR). Test results provide data needed to establish the response of LMFBR cores to hypothetical accidents producing fuel failure, coolant boiling, and the movement of coolant, molten fuel, and molten cladding. These data include margins to fuel failure, the modes of failure and movements, and evidence for identification of the mechanisms which determine the failure and movements. A key element in the program is the fast-neutron hodoscope, which detects fuel movement as a function of time during experiments

  4. Turbulence model for melt pool natural convection heat transfer

    International Nuclear Information System (INIS)

    Kelkar, K.M.; Patankar, S.V.

    1994-01-01

    Under severe reactor accident scenarios, pools of molten core material may form in the reactor core or in the hemispherically shaped lower plenum of the reactor vessel. Such molten pools are internally heated due to the radioactive decay heat that gives rise to buoyant flows in the molten pool. The flow in such pools is strongly influenced by the turbulent mixing because the expected Rayleigh numbers under accidents scenarios are very high. The variation of the local heat flux over the boundaries of the molten pools are important in determining the subsequent melt progression behavior. This study reports results of an ongoing effort towards providing a well validated mathematical model for the prediction of buoyant flow and heat transfer in internally heated pool under conditions expected in severe accident scenarios

  5. Reactor Core Coolability Analysis during Hypothesized Severe Accidents of OPR1000

    International Nuclear Information System (INIS)

    Lee, Yongjae; Seo, Seungwon; Kim, Sung Joong; Ha, Kwang Soon; Kim, Hwan-Yeol

    2014-01-01

    Assessment of the safety features over the hypothesized severe accidents may be performed experimentally or numerically. Due to the considerable time and expenditures, experimental assessment is implemented only to the limited cases. Therefore numerical assessment has played a major role in revisiting severe accident analysis of the existing or newly designed power plants. Computer codes for the numerical analysis of severe accidents are categorized as the fast running integral code and detailed code. Fast running integral codes are characterized by a well-balanced combination of detailed and simplified models for the simulation of the relevant phenomena within an NPP in the case of a severe accident. MAAP, MELCOR and ASTEC belong to the examples of fast running integral codes. Detailed code is to model as far as possible all relevant phenomena in detail by mechanistic models. The examples of detailed code is SCDAP/RELAP5. Using the MELCOR, Carbajo. investigated sensitivity studies of Station Black Out (SBO) using the MELCOR for Peach Bottom BWR. Park et al. conduct regulatory research of the PWR severe accident. Ahn et al. research sensitivity analysis of the severe accident for APR1400 with MELCOR 1.8.4. Lee et al. investigated RCS depressurization strategy and developed a core coolability map for independent scenarios of Small Break Loss-of-Coolant Accident (SBLOCA), SBO, and Total Loss of Feed Water (TLOFW). In this study, three initiating cases were selected, which are SBLOCA without SI, SBO, and TLOFW. The initiating cases exhibit the highest probability of transitioning into core damage according to PSA 1 of OPR 1000. The objective of this study is to investigate the reactor core coolability during hypothesized severe accidents of OPR1000. As a representative indicator, we have employed Jakob number and developed JaCET and JaMCT using the MELCOR simulation. Although the RCS pressures for the respective accident scenarios were different, the JaMCT and Ja

  6. Evaluation of a cavity flooding strategy for the prevention of reactor vessel failure in a severe accident

    Energy Technology Data Exchange (ETDEWEB)

    Park, Rae Joon; Je, Moo Sung; Park, Chang Kyoo [Korea Atomic Energy Research Institute, TaeJon (Korea, Republic of)

    1994-10-01

    As a part of the evaluation of accident management strategies for severe accident prevention or mitigation in a station blackout scenario for YGN 3 and 4, an external vessel cooling strategy for the prevention of reactor vessel failure has been estimated using the MAAP4 computer code. The sensitivity studies have been performed such as actuating timings and the number of spray pumps used. To explore external vessel cooling strategies, containment spray pumps were actuated by varying time spanning core uncovery, core melting and relocation of molten core material. It was shown that flooding of the reactor cavity using the containment spray system may prevent reactor vessel failure but may not prevent the failure of the relocation of molten core material during the station blackout sequence of YGN 3 and 4. Reactor vessel failure can be prevented by external vessel cooling using condensed water from the operation of two containment spray pumps at the time of core melting and using water from the operation of one containment spray pumps at the time of core melting and using water from the operation of one containment spray pump at the time of core uncovery. (Author) 46 refs., 26 figs., 5 tabs.

  7. An Interconnected Network of Core-Forming Melts Produced by Shear Deformation

    Science.gov (United States)

    Bruhn, D.; Groebner, N.; Kohlstedt, D. L.

    2000-01-01

    The formation mechanism of terrestrial planetary is still poorly understood, and has been the subject of numerous experimental studies. Several mechanisms have been proposed by which metal-mainly iron with some nickel-could have been extracted from a silicate mantle to form the core. Most recent models involve gravitational sinking of molten metal or metal sulphide through a partially or fully molten mantle that is often referred to as a'magma ocean. Alternative models invoke percolation of molten metal along an interconnected network (that is, porous flow) through a solid silicate matrix. But experimental studies performed at high pressures have shown that, under hydrostatic conditions, these melts do not form an interconnected network, leading to the widespread assumption that formation of metallic cores requires a magma ocean. In contrast, here we present experiments which demonstrate that shear deformation to large strains can interconnect a significant fraction of initially isolated pockets of metal and metal sulphide melts in a solid matrix of polycrystalline olivine. Therefore, in a dynamic (nonhydrostatic) environment, percolation remains a viable mechanism for the segregation and migration of core-forming melts in a solid silicate mantle.

  8. Post-facta Analyses of Fukushima Accident and Lessons Learned

    Energy Technology Data Exchange (ETDEWEB)

    Tanabe, Fumiya [Sociotechnical Systems Safety Research Institute, Ichige (Japan)

    2014-08-15

    Independent analyses have been performed of the core melt behavior of the Unit 1, Unit 2 and Unit 3 reactors of Fukushima Daiichi Nuclear Power Station on 11-15 March 2011. The analyses are based on a phenomenological methodology with measured data investigation and a simple physical model calculation. Estimated are time variation of core water level, core material temperature and hydrogen generation rate. The analyses have revealed characteristics of accident process of each reactor. In the case of Unit 2 reactor, the calculated result suggests little hydrogen generation because of no steam generation in the core for zirconium-steam reaction during fuel damage process. It could be the reason of no hydrogen explosion in the Unit 2 reactor building. Analyses have been performed also on the core material behavior in another chaotic period of 19-31 March 2011, and it resulted in a re-melt hypothesis that core material in each reactor should have melted again due to shortage of cooling water. The hypothesis is consistent with many observed features of radioactive materials dispersion into the environment.

  9. Safety evaluation of accident-tolerant FCM fueled core with SiC-coated zircalloy cladding for design-basis-accidents and beyond DBAs

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Ji-Han, E-mail: chunjh@kaeri.re.kr; Lim, Sung-Won; Chung, Bub-Dong; Lee, Won-Jae

    2015-08-15

    Highlights: • Thermal conductivity model of the FCM fuel was developed and adopted in the MARS. • Scoping analysis for candidate FCM FAs was performed to select feasible FA. • Preliminary safety criteria for FCM fuel and SiC/Zr cladding were set up. • Enhanced safety margin and accident tolerance for FCM-SiC/Zr core were demonstrated. - Abstract: The FCM fueled cores proposed as an accident tolerant concept is assessed against the design-basis-accident (DBA) and the beyond-DBA (BDBA) scenarios using MARS code. A thermal conductivity model of FCM fuel is incorporated in the MARS code to take into account the effects of irradiation and temperature that was recently measured by ORNL. Preliminary analyses regarding the initial stored energy and accident tolerant performance were carried out for the scoping of various cladding material candidates. A 16 × 16 FA with SiC-coated Zircalloy cladding was selected as the feasible conceptual design through a preliminary scoping analysis. For a selected design, safety analyses for DBA and BDBA scenarios were performed to demonstrate the accident tolerance of the FCM fueled core. A loss of flow accident (LOFA) scenario was selected for a departure-from-nucleate-boiling (DNB) evaluation, and large-break loss of coolant accident (LBLOCA) scenario for peak cladding temperature (PCT) margin evaluation. A control element assembly (CEA) ejection accident scenario was selected for peak fuel enthalpy and temperature. Moreover, a station blackout (SBO) and LBLOCA without a safety injection (SI) scenario were selected as a BDBA. It was demonstrated that the DBA safety margin of the FCM core is satisfied and the time for operator actions for BDBA s is evaluated.

  10. Nuclear reactor melt-retention structure to mitigate direct containment heating

    Science.gov (United States)

    Tutu, Narinder K.; Ginsberg, Theodore; Klages, John R.

    1991-01-01

    A light water nuclear reactor melt-retention structure to mitigate the extent of direct containment heating of the reactor containment building. The structure includes a retention chamber for retaining molten core material away from the upper regions of the reactor containment building when a severe accident causes the bottom of the pressure vessel of the reactor to fail and discharge such molten material under high pressure through the reactor cavity into the retention chamber. In combination with the melt-retention chamber there is provided a passageway that includes molten core droplet deflector vanes and has gas vent means in its upper surface, which means are operable to deflect molten core droplets into the retention chamber while allowing high pressure steam and gases to be vented into the upper regions of the containment building. A plurality of platforms are mounted within the passageway and the melt-retention structure to direct the flow of molten core material and help retain it within the melt-retention chamber. In addition, ribs are mounted at spaced positions on the floor of the melt-retention chamber, and grid means are positioned at the entrance side of the retention chamber. The grid means develop gas back pressure that helps separate the molten core droplets from discharged high pressure steam and gases, thereby forcing the steam and gases to vent into the upper regions of the reactor containment building.

  11. Heat up and potential failure of BWR upper internals during a severe accident

    Energy Technology Data Exchange (ETDEWEB)

    Robb, Kevin R [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-01-01

    In boiling water reactors, the steam dome, steam separators, and dryers above the core are comprised of approximately 100 tons of stainless steel. During a severe accident in which the coolant boils away and exothermic oxidation of zirconium occurs, gases (steam and hydrogen) are superheated in the core region and pass through the upper internals. Historically, the upper internals have been modeled using severe accident codes with relatively simple approximations. The upper internals are typically modeled in MELCOR as two lumped volumes with simplified heat transfer characteristics, with no structural integrity considerations, and with limited ability to oxidize, melt, and relocate. The potential for and the subsequent impact of the upper internals to heat up, oxidize, fail, and relocate during a severe accident was investigated. A higher fidelity representation of the shroud dome, steam separators, and steam driers was developed in MELCOR v1.8.6 by extending the core region upwards. This modeling effort entailed adding 45 additional core cells and control volumes, 98 flow paths, and numerous control functions. The model accounts for the mechanical loading and structural integrity, oxidation, melting, flow area blockage, and relocation of the various components. The results indicate that the upper internals can reach high temperatures during a severe accident; they are predicted to reach a high enough temperature such that they lose their structural integrity and relocate. The additional 100 tons of stainless steel debris influences the subsequent in-vessel and ex-vessel accident progression.

  12. Analysis of natural convection in volumetrically-heated melt pools

    Energy Technology Data Exchange (ETDEWEB)

    Sehgal, B.R.; Dinh, T.N.; Nourgaliev, R.R. [Royal Inst. of Tech., Stockholm (Sweden). Div. of Nuclear Power Safety

    1996-12-01

    Results of series of studies on natural convection heat transfer in decay-heated core melt pools which form in a reactor lower plenum during the progression of a core meltdown accident are described. The emphasis is on modelling and prediction of turbulent heat transfer characteristics of natural convection in a liquid pool with an internal energy source. Methods of computational fluid dynamics, including direct numerical simulation, were applied for investigation. Refs, figs, tabs.

  13. France-Japan collaboration on the severe accident studies for ASTRID. Outcomes and future work program

    International Nuclear Information System (INIS)

    Serre, F.; Bertrand, F.; Bachrata, A.; Marie, N.; Kubo, Shigenobu; Kamiyama, Kenji; Carluec, B.; Farges, B.; Koyama, K.

    2017-01-01

    The ASTRID reactor (Advanced Sodium Technological Reactor for Industrial Demonstration) is a technological demonstrator of GenIV sodium-cooled fast reactor (SFR) designed by the CEA with its industrial partners, with very high levels of requirements. In the ASTRID project, the safety objectives are first to prevent the core melting, in particular by the development of an innovative core (named CFV core) with low void worth and complementary safety prevention devices, and second, to enhance the reactor resistance to severe accidents by design. In order to mitigate the consequences of hypothetical core melting situations, specific provisions (mitigation devices) are added to the core and to the reactor. To meet these ASTRID objectives, a large R and D program was launched in the Severe Accident domain by the CEA, with collaboration of AREVA NP, JAEA, MFBR and MHI organizations, in the frame of the France-Japan ASTRID and SFRs collaboration agreement. This R and D program covers exchanges on severe accident conditions to be studied for the SFR safety cases, the methodology to study these situations, ASTRID severe accident simulations, the comparison and understanding of the ASTRID and JSFR reactor behavior under these situations, the development and adaptation of simulation tools, and, despite an already large existing experimental database, a complementary experimental program to improve the knowledge and reduce the uncertainties. This paper will present the collaboration work performed on the Severe Accidents studies. (author)

  14. Structural assessment of TAPS core shroud under accident loads

    International Nuclear Information System (INIS)

    Bhasin, Vivek; Kushwaha, H.S.; Mahajan, S.C.; Kakodkar, A.

    1996-09-01

    Over the last few years, the Core Shroud of Boiling Water Reactors (BWRs) operating in foreign countries, have developed cracks at weld locations. As a first step for assessment of structural safety of Tarapur Atomic Power Station (TAPS) core shroud, its detailed stress analysis was done for postulated accident loads. This report is concerned with structural assessment of core shroud, of BWR at TAPS, subjected to loads resulting from main steam line break (MSLB), recirculation line break (RLB) and safe shut down earthquake. The stress analysis was done for core shroud in healthy condition and without any crack since, visual examination conducted till now, do not indicate presence of any flaw. Dynamic structural analysis for MSLB and RLB events was done using dynamic load factor (DLF) method. The complete core shroud and its associated components were modelled and analysed using 3D plate/shell elements. Since, the components of core shroud are submerged in water, hence, hydrodynamic added mass was also considered for evaluation of natural frequencies. It was concluded that from structural point of view, adequate safety margin is available under all the accident loads. Nonlinear analysis was done to evaluate buckling/collapse load. The collapse/buckling load have sufficient margin against the allowable limits. The displacements are low hence, the insertion of control rod may not be affected. (author)

  15. Shock loading of reactor vessel following hypothetical core disruptive accident

    International Nuclear Information System (INIS)

    Srinivas, G.; Doshi, J.B.

    1990-01-01

    Hypothetical Core Disruptive Accident (HCDA) has been historically considered as the maximum credible accident in Fast Breeder Reactor systems. Environmental consequences of such an accident depends to a great extent on the ability of the reactor vessel to maintain integrity during the shock loading following an HCDA. In the present paper, a computational model of the reactor core and the surrounding coolant with a free surface is numerical technique. The equations for conservation of mass, momentum and energy along with an equation of state are considered in two dimensional cylindrical geometry. The reactor core at the end of HCDA is taken as a bubble of hot, vaporized fuel at high temperature and pressure, formed at the center of the reactor vessel and expanding against the surrounding liquid sodium coolant. The free surface of sodium at the top of the vessel and the movement of the core bubble-liquid coolant interface are tracked by Marker and Cell (MAC) procedure. The results are obtained for the transient pressure at the vessel wall and also for the loading on the roof plug by the impact of the slug of liquid sodium. The computer code developed is validated against a benchmark experiment chosen to be ISPRA experiment reported in literature. The computer code is next applied to predict the loading on the Indian Prototype Fast Breeder Reactor (PFBR) being developed at Kalpakkam

  16. Event sequence quantification for a loss of shutdown cooling accident in the GCFR

    International Nuclear Information System (INIS)

    Frank, M.; Reilly, J.

    1979-10-01

    A summary is presented of the core-wide sequence of events of a postulated total loss of forced and natural convection decay heat removal in a shutdown Gas-Cooled Fast Reactor (GCFR). It outlines the analytical methods and results for the progression of the accident sequence. This hypothetical accident proceeds in the distinct phases of cladding melting, assembly wall melting and molten steel relocation into the interassembly spacing, and fuel relocation. It identifies the key phenomena of the event sequence and the concerns and mechanisms of both recriticality and recriticality prevention

  17. Ex-vessel melt-coolant interactions in deep water pool: studies and accident management for Swedish BWRs

    International Nuclear Information System (INIS)

    Chu, C.C.; Sienicki, J.J.; Spencer, B.W.; Frid, W.; Loewenhielm, G.

    1995-01-01

    In Swedish BWRs having an annular suppression pool, the lower drywell beneath the reactor vessel is flooded with water to mitigate against the effects of melt release into the drywell during a severe accident. The THIRMAL-1 code has been used to analyze the effectiveness of the water pool to protect lower drywell penetrations by fragmenting and quenching the melt as it relocates downward through the water. Experiments have also been performed to investigate the benefits of adding surfactants to the water to reduce the likelihood of fine-scale debris formation from steam explosions. This paper presents an overview of the accident management approach and surfactant investigations together with results from the THIRMAL-1 analyses. A description of the modeling incorporated in THIRMAL-1 is also provided. (orig.)

  18. Analysis of space-time core dynamics on reactor accident at Chernobyl

    International Nuclear Information System (INIS)

    Takano, Makoto; Shindo, Ryuichi; Yamashita, Kiyonobu; Sawa, Kazuhiro

    1987-05-01

    Regarding reactor accident at Chernobyl in USSR, core dynamics has been analyzed by COMIC code which solves space-time dependent diffusion equation in three-dimension taking spatial thermohydraulic effect into account. The code was originally developed for high temperature gas-cooled reactors (HTGR), however, has been modified to include light water as coolant, instead of helium, for analysis of the accident. In the analysis, emphasis is placed on spatial effects on core dynamics. The analyses are performed for the cases of modeling the core fully and partially where 6 fuel channels surround one control rod channel. The result shows that the speed of applying void reactivity averaged over the core depends on the power and coolant flow distributions. Therefore, these distributions have potential to influence on the value and the time of peak power estimated by calculation. (author)

  19. The Analysis of Surrounding Structure Effect on the Core Degradation Progress with COMPASS Code

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Jun Ho; Son, Dong Gun; Kim, Jong Tae; Park, Rae Jun; Kim, Dong Ha [KAERI, Daejeon (Korea, Republic of)

    2015-05-15

    In line with the importance of severe accident analysis after Fukushima accident, the development of integrated severe accident code has been launched by the collaboration of three institutes in Korea. KAERI is responsible to develop modules related to the in-vessel phenomena, while other institutes are to the containment and severe accident mitigation facility, respectively. In the first phase, the individual severe accident module has been developed and the construction of integrated analysis code is planned to perform in the second phase. The basic strategy is to extend the design basis analysis codes of SPACE and CAP, which are being validated in Korea for the severe accident analysis. In the first phase, KAERI has targeted to develop the framework of severe accident code, COMPASS (COre Meltdown Progression Accident Simulation Software), covering the severe accident progression in a vessel from a core heat-up to a vessel failure as a stand-alone fashion. In order to analyze the effect of surrounding structure, the melt progression has been compared between the central zone and the most outer zone under the condition of constant radial power peaking factor. Figure 2 and 3 shows the fuel element temperature and the clad mass at the central zone, respectively. Due to the axial power peaking factor, the axial node No.3 has the highest temperature, while the top and bottom nodes have the lowest temperature. When the clad temperature reaches to the Zr melting temperature (2129.15K), the Zr starts to melt. The axial node No.2 reaches to the fuel melting temperature about 5000 sec and the molten fuel relocates to the node No.1, which results to the blockage of flow area in node No.1. The blocked flow area becomes to open about 6100 sec due to the molten ZrO{sub 2} mass relocation to core support plate. Figure 4 and 5 shows the fuel element temperature and the clad mass at the most outer zone, respectively. It is shown that the fuel temperature increase more slowly

  20. Analyses of severe accident scenarios in RBMK-1500

    International Nuclear Information System (INIS)

    Kaliatka, A.; Rimkevicius, S.; Uspuras, E.; Urbonavicius, E.

    2006-01-01

    Even though research of severe accidents in light water reactors is performed around the world for several decades many questions remain. Research is mostly performed for vessel-type reactors. RBMK is a channel type light water reactor, which differs from the vessel-type reactors in several aspects. These differences impose some specifics in the accident phenomena and processes that occur during severe accidents. Severe accident research for RBMK reactors is taking first steps and very little information is available in the open literature. The existing severe accident analysis codes are developed for vessel-type reactors and their application to the analysis of accidents in RBMK is not straightforward. This paper presents the results of an analysis of large loss-of-coolant accident scenarios with loss of coolant injection to the core of RBMK-1500. The analysis performed considers processes in the reactor core, in the reactor cooling system and in the confinement until the fuel melting started. This paper does not aim to answer all the questions regarding severe accidents in RBMK but rather to start a discussion, identify the expected timing of the key phenomena. (orig.)

  1. Accident at Three Mile Island nuclear power plant and lessons learned

    International Nuclear Information System (INIS)

    Ashrafi, A.; Farnoudi, F.; Tochai, M.T.M.; Mirhabibi, N.

    1986-01-01

    On March 28, 1979, the TMI, unit 2 nuclear power plant experienced a loss of coolant accident (LOCA) which has had a major impact among the others, upon the safety of nuclear power plants. Although a small part of the reactor core melted in this accident, but due to well performance of the vital safety equipment, there was no serious radioactivity release to the environment, and the accident has had no impact on the basic safety goals. A brief scenario of the accident, its consequences and the lessons learned are discussed

  2. Characteristics of debris in the lower head of a BWR in different severe accident scenarios

    International Nuclear Information System (INIS)

    Phung, Viet-Anh; Galushin, Sergey; Raub, Sebastian; Goronovski, Andrei; Villanueva, Walter; Kööp, Kaspar; Grishchenko, Dmitry; Kudinov, Pavel

    2016-01-01

    Highlights: • Station blackout scenario with delayed recovery of safety systems in a Nordic BWR is considered. • Genetic algorithm and random sampling methods are used to explore accident scenario domain. • Main groups of scenarios are identified. • Ranges and distributions of characteristics of debris bed in the lower head are determined. - Abstract: Nordic boiling water reactors (BWRs) adopt ex-vessel debris cooling to terminate severe accident progression. Core melt released from the vessel into a deep pool of water is expected to fragment and form a coolable debris bed. Characteristics of corium melt ejection from the vessel determine conditions for molten fuel–coolant interactions (FCI) and debris bed formation. Non-coolable debris bed or steam explosion can threaten containment integrity. Vessel failure and melt ejection mode are determined by the in-vessel accident progression. Characteristics (such as mass, composition, thermal properties, timing of relocation, and decay heat) of the debris bed formed in the process of core relocation into the vessel lower plenum define conditions for the debris reheating, remelting, melt-vessel structure interactions, vessel failure and melt release. Thus core degradation and relocation are important sources of uncertainty for the success of the ex-vessel accident mitigation strategy. The goal of this work is improve understanding how accident scenario parameters, such as timing of failure and recovery of different safety systems can affect characteristics of the debris in the lower plenum. Station blackout scenario with delayed power recovery in a Nordic BWR is considered using MELCOR code. The recovery timing and capacity of safety systems were varied using genetic algorithm (GA) and random sampling methods to identify two main groups of scenarios: with relatively small ( 100 tons) amount of relocated debris. The domains are separated by the transition regions, in which relatively small variations of the input

  3. Characteristics of debris in the lower head of a BWR in different severe accident scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Phung, Viet-Anh, E-mail: vaphung@kth.se; Galushin, Sergey, E-mail: galushin@kth.se; Raub, Sebastian, E-mail: raub@kth.se; Goronovski, Andrei, E-mail: andreig@kth.se; Villanueva, Walter, E-mail: walterv@kth.se; Kööp, Kaspar, E-mail: kaspar@safety.sci.kth.se; Grishchenko, Dmitry, E-mail: dmitry@safety.sci.kth.se; Kudinov, Pavel, E-mail: pavel@safety.sci.kth.se

    2016-08-15

    Highlights: • Station blackout scenario with delayed recovery of safety systems in a Nordic BWR is considered. • Genetic algorithm and random sampling methods are used to explore accident scenario domain. • Main groups of scenarios are identified. • Ranges and distributions of characteristics of debris bed in the lower head are determined. - Abstract: Nordic boiling water reactors (BWRs) adopt ex-vessel debris cooling to terminate severe accident progression. Core melt released from the vessel into a deep pool of water is expected to fragment and form a coolable debris bed. Characteristics of corium melt ejection from the vessel determine conditions for molten fuel–coolant interactions (FCI) and debris bed formation. Non-coolable debris bed or steam explosion can threaten containment integrity. Vessel failure and melt ejection mode are determined by the in-vessel accident progression. Characteristics (such as mass, composition, thermal properties, timing of relocation, and decay heat) of the debris bed formed in the process of core relocation into the vessel lower plenum define conditions for the debris reheating, remelting, melt-vessel structure interactions, vessel failure and melt release. Thus core degradation and relocation are important sources of uncertainty for the success of the ex-vessel accident mitigation strategy. The goal of this work is improve understanding how accident scenario parameters, such as timing of failure and recovery of different safety systems can affect characteristics of the debris in the lower plenum. Station blackout scenario with delayed power recovery in a Nordic BWR is considered using MELCOR code. The recovery timing and capacity of safety systems were varied using genetic algorithm (GA) and random sampling methods to identify two main groups of scenarios: with relatively small (<20 tons) and large (>100 tons) amount of relocated debris. The domains are separated by the transition regions, in which relatively small

  4. Severe accident training simulator APROS SA

    International Nuclear Information System (INIS)

    Raiko, Eerikki; Salminen, Kai; Lundstroem, Petra; Harti, Mika; Routamo, Tomi

    2003-01-01

    APROS SA is a severe accident training simulator based on the APROS simulation environment. APROS SA has been developed in Fortum Nuclear Services Ltd to serve as a training tool for the personnel of the Loviisa NPP. Training with APROS SA gives the personnel a deeper understanding of the severe accident phenomena and thus it is an important part of the implementation of the severe accident management strategy. APROS SA consists of two parts, a comprehensive Loviisa plant model and an external severe accident model. The external model is an extension to the Loviisa plant model, which allows the simulation to proceed into the severe accident phase. The severe accident model has three submodels: the core melting and relocation model, corium pool model and fission product model. In addition to these, a new thermal-hydraulic solver is introduced to the core region of the Loviisa plant model to replace the more limited APROS thermal-hydraulic solver. The full APROS SA training simulator has a graphical user interface with visualizations of both severe accident management panels at the operator room and the important physical phenomena during the accident. This paper describes the background of the APROS SA training simulator, the severe accident submodels and the graphical user interface. A short description how APROS SA will be used as a training tool at the Loviisa NPP is also given

  5. Effect of engineered safety features on the risk of hypothetical LMFBR accidents

    International Nuclear Information System (INIS)

    Cybulskis, P.

    1978-01-01

    The risks of hypothetical core-disruptive accidents in liquid-metal-cooled fast breeder reactors which involve meltthrough of the reactor vessel are compared for two plant designs: one design without specific provisions to accommodate such an accident and the other design with an ex-vessel core catcher and a cvity hot liner. The approach to risk analysis used is that developed in the Reactor Safety Study (WASH-1400). Since the probability of occurrence of such an event has not been evaluated, however, insight into the potential risk is gained only on a relative basis. The principal conclusions of this study are: (1) adding a core catcher--hot liner reduces the probabilty of accidents having major consequences; (2) the degree to which hot liner--core catcher systems can reduce the risk of melt-through accidents is limited by the failure probability of these systems; (3) fractional radioactive releases to the environment in the liquid-metal-cooled fast breeder reactor accidents considered are comparable to those from the light-water reactors evaluated in WASH-1400; (4) since sodium--concrete reactions are a dominant driving force during the accident, the integrity of the cavity liner is as important as the function of the core catcher; (5) there may be other accidents or paths to radioactive releases that are not affected by the addition of a hot liner--core catcher

  6. NKS/RAK-2. Protection against radioactive release in reactor accidents

    International Nuclear Information System (INIS)

    Lindholm, I.

    1995-01-01

    The work scope of RAK-2 project is divided into three subprojects: 1. Severe accident phenomenology. 2. Computerized accident management. 3. Reactors in Nordic surroundings. All three subprojects are ongoing. The project work on three subareas is in general progressing according to the time schedule and budget. The construction of melt jet breakup test facility at Kungliga Tekniska Hoegskolan (KTH) has been delayed due to complexity of the test arrangement and due to meeting the necessary safety requirements connected to tests mixing water and high temperature melts. Because of the delay in melt jet break up tests a slight redirection of the KTH work for NKS was taken. The present KTH work concentrates on theoretical studies of melt pool behavior in the lower head and on theoretical/experimental studies on core melt discharge from the pressure vessel failure. It is expected that single drop melt-water interaction experiments to study the thermal fragmentation phenomenon will begin in very early 1996. The recriticality studies are well underway, but the work is proposed to continue in 1996 to get more analyses carried out. (au)

  7. Phenomenological studies on melt-structure-water interactions (MSWI) during severe accidents

    International Nuclear Information System (INIS)

    Sehgal, B.R.; Yang, Z.L.; Haraldsson, H.O.; Nourgaliev, R.R.; Konovalikhin, M.; Paladino, D.; Gubaidullin, A.A.; Kolb, G.; Theerthan, A.

    2000-05-01

    This is the annual report for the work performed in 1999 in the research project Melt-Structure-Water Interactions During Severe Accidents in LWRs, under the auspices of the APRI Project, jointly funded by SKI, HSK, USNRC and the Swedish and Finnish power companies. The emphasis of the work is placed on phenomena and properties which govern the fragmentation and breakup of melt jets and droplets, melt spreading and coolability, and thermal and mechanical loadings of a pressure vessel during melt-vessel interaction. We believe that significant technical advances have been achieved during the course of these studies. It was found that: The coolant temperature has significant influence on the characteristics of debris fragments produced from the breakup of an oxidic melt jet. At low subcooling the fragments are relatively large and irregular compared to the smaller particles produced at high subcooling. The melt jet density has considerable effect on the fragment size produced. As the melt density increases the fragment size becomes smaller. The mass mean size of the debris changes proportionally to the square root of the coolant to melt density ratio. The melt superheat has little effect on the debris particle size distribution produced during the melt jet fragmentation. The impingement velocity of the jet has significant impact on the fragmentation process. At lower jet velocity the melt fragments agglomerate and form a cake of large size debris. When the jet velocity is increased more complete fragmentation is obtained. The scaling methodology for melt spreading, developed during 1998, has been further validated against almost all of the spreading experimental data available so far. Experimental results for the dryout heat flux of homogeneous particulate debris beds with top flooding compare well with the Lipinski correlation. For the stratified particle beds, the fine particle layer resting on the top of another particle layer dominates the dryout processes

  8. Phenomenological studies on melt-structure-water interactions (MSWI) during severe accidents

    Energy Technology Data Exchange (ETDEWEB)

    Sehgal, B.R.; Yang, Z.L.; Haraldsson, H.O.; Nourgaliev, R.R.; Konovalikhin, M.; Paladino, D.; Gubaidullin, A.A.; Kolb, G.; Theerthan, A. [Royal Inst. of Tech., Stockholm (Sweden). Div. of Nuclear Power Safety

    2000-05-01

    This is the annual report for the work performed in 1999 in the research project Melt-Structure-Water Interactions During Severe Accidents in LWRs, under the auspices of the APRI Project, jointly funded by SKI, HSK, USNRC and the Swedish and Finnish power companies. The emphasis of the work is placed on phenomena and properties which govern the fragmentation and breakup of melt jets and droplets, melt spreading and coolability, and thermal and mechanical loadings of a pressure vessel during melt-vessel interaction. We believe that significant technical advances have been achieved during the course of these studies. It was found that: The coolant temperature has significant influence on the characteristics of debris fragments produced from the breakup of an oxidic melt jet. At low subcooling the fragments are relatively large and irregular compared to the smaller particles produced at high subcooling. The melt jet density has considerable effect on the fragment size produced. As the melt density increases the fragment size becomes smaller. The mass mean size of the debris changes proportionally to the square root of the coolant to melt density ratio. The melt superheat has little effect on the debris particle size distribution produced during the melt jet fragmentation. The impingement velocity of the jet has significant impact on the fragmentation process. At lower jet velocity the melt fragments agglomerate and form a cake of large size debris. When the jet velocity is increased more complete fragmentation is obtained. The scaling methodology for melt spreading, developed during 1998, has been further validated against almost all of the spreading experimental data available so far. Experimental results for the dryout heat flux of homogeneous particulate debris beds with top flooding compare well with the Lipinski correlation. For the stratified particle beds, the fine particle layer resting on the top of another particle layer dominates the dryout processes

  9. Power Excursion Accident Analysis of Research Water Reactor

    International Nuclear Information System (INIS)

    Khaled, S.M.; Doaa, G.M.

    2009-01-01

    A three-dimensional neutronic code POWEX-K has been developed, and it has been coupled with the sub-channel thermal-hydraulic core analysis code SV based on the Single Mass Velocity Model. This forms the integrated neutronic/thermal hydraulics code system POWEX-K/SV for the accident analysis. The Training and Research Reactors at Budapest University of Technology and Economics (BME-Reactor) has been taken as a reference reactor. The cross-section generation procedure based on WIMS. The code uses an implicit difference approach for both the diffusion equations and thermal-hydraulics modules, with reactivity feedback effects due to coolant and fuel temperatures. The code system was applied to analyzing power excursion accidents initiated by ramp reactivity insertion of 1.2 $. The results show that the reactor is inherently safe in case of such accidents i.e. no core melt is expected even if the safety rods do not fall into the core

  10. Study on coolability of melt pool with different strategies

    International Nuclear Information System (INIS)

    Kulkarni, P.P.; Nayak, A.K.

    2014-01-01

    Highlights: • Experiments have been performed to test quenching of molten pool with different schemes. • Top flooding, bottom flooding and indirect cooling schemes were used. • A single simulant material with same mass and initial temperature was used. • Bottom flooding technique is found to be the most effective technique. • A comparison of all the three techniques has been presented. - Abstract: After the Fukushima accident, there have been a lot of concerns regarding long term core melt stabilization following a severe accident in nuclear reactors. Several strategies have been contemplated for quenching and stabilization of core melt like top flooding, bottom flooding, indirect cooling, etc. However, the effectiveness of these schemes is yet to be determined properly, for which, lot of experiments are needed. Several experiments have been performed for coolability of molten pool under top flooding condition. A few experiments have been performed for study of coolability of melt pool under bottom flooding as well as for indirect cooling. Besides, these tests are very scattered because they involve different simulant materials, initial temperatures and masses of melt, which makes it very difficult to judge the effectiveness of a particular technique and advantage over the other. In the present paper we have carried out different experiments wherein a single simulant material with same mass was cooled with different techniques starting from the same initial temperature. The result showed that, while top flooding and indirect cooling took several hours to cool, bottom flooding took a few minutes to cool the melt which makes it the most effective technique

  11. Source term analyses under severe accidents for KNGR

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yong Mann; Park, Soo Yong

    2001-03-01

    In this study, in-containment source term for LOFW (Loss of Feed Water), which has appeared the most frequent core melt accident, is calculated and compared with NUREG-1465 source term. This study provides not only new source term data using MELCOR1.8.4 and its state-of-the-art models but also evaluating basis of KNGR design and its mitigation capability under severe accidents. As the selected accident is identical with LOFW-S17, which has been analyzed using MAAP by KEPCO with only difference of 2 SITs, mutual comparison of the results is especially expected.

  12. Application of the Severe Accident Code ATHLET-CD. Coolant injection to primary circuit of a PWR by mobile pump system in case of SBLOCA severe accident scenario

    Energy Technology Data Exchange (ETDEWEB)

    Jobst, Matthias; Wilhelm, Polina; Kliem, Soeren; Kozmenkov, Yaroslav [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Reactor Safety

    2017-06-01

    The improvement of the safety of nuclear power plants is a continuously on-going process. The analysis of transients and accidents is an important research topic, which significantly contributes to safety enhancements of existing power plants. In case of an accident with multiple failures of safety systems, core uncovery and heat-up can occur. In order to prevent the accident to turn into a severe one or to mitigate the consequences of severe accidents, different accident management measures can be applied. By means of numerical analyses performed with the compute code ATHLET-CD, the effectiveness of coolant injection with a mobile pump system into the primary circuit of a PWR was studied. According to the analyses, such a system can stop the melt progression if it is activated prior to 10 % of total core is molten.

  13. Application of the Severe Accident Code ATHLET-CD. Coolant injection to primary circuit of a PWR by mobile pump system in case of SBLOCA severe accident scenario

    International Nuclear Information System (INIS)

    Jobst, Matthias; Wilhelm, Polina; Kliem, Soeren; Kozmenkov, Yaroslav

    2017-01-01

    The improvement of the safety of nuclear power plants is a continuously on-going process. The analysis of transients and accidents is an important research topic, which significantly contributes to safety enhancements of existing power plants. In case of an accident with multiple failures of safety systems, core uncovery and heat-up can occur. In order to prevent the accident to turn into a severe one or to mitigate the consequences of severe accidents, different accident management measures can be applied. By means of numerical analyses performed with the compute code ATHLET-CD, the effectiveness of coolant injection with a mobile pump system into the primary circuit of a PWR was studied. According to the analyses, such a system can stop the melt progression if it is activated prior to 10 % of total core is molten.

  14. Core failure accident pathways and ways to control it

    International Nuclear Information System (INIS)

    Mayinger, F.

    1982-01-01

    In the German Risk Study accidents are assumed to result in core meltdown whenever the criteria spelt out in the guidelines of the Advisory Committee on Reactor Safeguards are no longer met. This assumption must be seen in the light of an earlier state of the art in which no detailed information could be obtained about intermediate stages in emergency core cooling systems working according to permit up to the complete failure of all heat removal systems. However, experimental studies and theoretical analyses conducted over the past few years have advanced the state of the art such that it is now possible to predict with considerably more physical reality the behavior of a core in a loss-of-coolant accident. These findings are not only based on calculations, but also on the results of experiments in large facilities allowing direct comparisons to be made with conditions in nuclear power plants. Studies of the effects of systems failures both in major leakages and in the small leakages regarded to be much more dangerous show much more favorable conditions with respect to core coolability than had to be anticipated on the basis of earlier assumptions. This also implies that it would neither be necessary nor meaningful to reinforce emergency core cooling systems. Instead, it is much more important, besides having technically highly qualified and thoroughly trained operating crews, to inform those crews reliably of the hydrodynamic and thermodynamic state of the primary system, especially the core. (orig.) [de

  15. Prediction of corium debris characteristics in lower plenum of a nordic BWR in different accident scenarios using MELCOR code - 15367

    International Nuclear Information System (INIS)

    Phung, V.A.; Galushin, S.; Raub, S.; Goronovski, A.; Villanueva, W.; Koeoep, K; Grishchenko, D.; Kudinov, P.

    2015-01-01

    Severe accident management strategy in Nordic boiling water reactors (BWRs) relies on ex-vessel core debris coolability. The mode of corium melt release from the vessel determines conditions for ex-vessel accident progression and threats to containment integrity, e.g., formation of a non-coolable debris bed and possibility of energetic steam explosion. In-vessel core degradation and relocation is an important stage which determines characteristics of corium debris in the vessel lower plenum, such as mass, composition, thermal properties, timing of relocation, and decay heat. These properties affect debris reheating and remelting, melt interactions with the vessel structures, and possibly vessel failure and melt ejection mode. Core degradation and relocation is contingent upon the accident scenario parameters such as recovery time and capacity of safety systems. The goal of this work is to obtain a better understanding of the impact of the accident scenarios and timing of the events on core relocation phenomena and resulting properties of the debris bed in the vessel lower plenum of Nordic BWRs. In this study, severe accidents in a Nordic BWR reference plant are initiated by a station black out event, which is the main contributor to core damage frequency of the reactor. The work focuses on identifying ranges of debris bed characteristics in the lower plenum as functions of the accident scenario with different recovery timing and capacity of safety systems. The severe accident analysis code MELCOR coupled with GA-IDPSA is used in this work. GA-IDPSA is a Genetic Algorithm-based Integrated Deterministic Probabilistic Safety Analysis tool, which has been developed to search uncertain input parameter space. The search is guided by different target functions. Scenario grouping and clustering approach is applied in order to estimate the ranges of debris characteristics and identify scenario regions of core relocation that can lead to significantly different debris bed

  16. WASA-BOSS. Development and application of Severe Accident Codes. Evaluation and optimization of accident management measures. Subproject F. Contributions to code validation using BWR data and to evaluation and optimization of accident management measures. Final report; WASA-BOSS. Weiterentwicklung und Anwendung von Severe Accident Codes. Bewertung und Optimierung von Stoerfallmassnahmen. Teilprojekt F. Beitraege zur Codevalidierung anhand von SWR-Daten und zur Bewertung und Optimierung von Stoerfallmassnahmen. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Di Marcello, Valentino; Imke, Uwe; Sanchez Espinoza, Victor

    2016-09-15

    The exact knowledge of the transient course of events and of the dominating processes during a severe accident in a nuclear power station is a mandatory requirement to elaborate strategies and measures to minimize the radiological consequences of core melt. Two typical experiments using boiling water reactor assemblies were modelled and simulated with the severe accident simulation code ATHLET-CD. The experiments are related to the early phase of core degradation in a boiling water reactor. The results reproduce the thermal behavior and the hydrogen production due to oxidation inside the bundle until relocation of material by melting. During flooding of the overheated assembly temperatures and hydrogen oxidation are under estimated. The deviations from the experimental results can be explained by the missing model to simulate bore carbide oxidation of the control rods. On basis of a hypothetical loss of coolant accident in a typical German boiling water reactor the effectivity of flooding the partial degraded core is investigated. This measure of mitigation is efficient and prevents failure of the reactor pressure vessel if it starts before molten material is relocated into the lower plenum. Considerable amount of hydrogen is produced by oxidation of the metallic components.

  17. Simulation of melt spreading in consideration of phase transitions

    Energy Technology Data Exchange (ETDEWEB)

    Spengler, C. [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, Koeln (Germany)

    2002-07-01

    The analysis of melt spreading and relocation phenomena in the containment of LWR power plants in case of hypothetical severe accidents leading to core melting is an important issue for reactor safety investigations. For the simulation of melt spreading the code LAVA has been developed on the basis of a method from the related subject of volcanology by adding more detailed models for heat transfer phenomena and flow rheology. The development is supported by basic analysis of the spreading of gravity currents as well as experimental investigations of the rheology of solidifying melts. These exhibit strong non-Newtonian effects in case of a high content of solids in the freezing melt. The basic model assumption in LAVA is the ideal Bingham plastic approach to the non-Newtonian, shear-thinning characteristic of solidifying melts. For the recalculation of melt spreading experiments, the temperature-dependent material properties for solidifying melt mixtures have been calculated using correlations from the literature. With the parameters and correlations for the rheological material properties approached by results from literature, it was possible to recalculate successfully recent spreading experiments with simulant materials and prototypic reactor core materials. An application to the behaviour of core melt in the reactor cavity assumed a borderline case for the issue of spreading. This limit is represented by melt conditions (large solid fraction, low volume flux), under which the melt is hardly spreadable. Due to the persistent volume flux the reactor cavity is completely, but inhomogeneously filled with melt. The degree of inhomogeneity is rather small, so it is concluded, that for the long-term coolability of a melt pool in narrow cavities the spreading of melt will probably have only negligible influence. (orig.)

  18. Core disruptive accident analysis in prototype fast breeder reactor

    International Nuclear Information System (INIS)

    Chellapandi, P.; Velusamy, K.; Kannan, S.E.; Singh, Om Pal; Chetal, S.C.; Bhoje, S.B.

    2002-01-01

    Liquid metal cooled fast breeder reactors, in particular, pool type have many inherent and engineered safety features and hence a core disruptive accident (CDA) involving melt down of the whole core is a very low probable event ( -6 /ry). The important mechanical consequences such as straining of the main vessel including top shield, structural integrity of safety grade decay heat exchangers (DHX) and intermediate heat exchangers (IHX) sodium release to reactor containment building (RCB) through the penetrations in the top shield, sodium fire and consequent temperature and pressure rise in RCB are theoretically analysed using computer codes. Through the analyses with these codes, it is demonstrated that an energetic CDA capability to the maximum 100 MJ mechanical energy in PFBR can be well contained in the primary containment. The sodium release to RCB is 350 kg and pressure rise in RCB is ∼10 kPa. In order to raise the confidence on the theoretical predictions, very systematic experimental program has been carried out. Totally 67 tests were conducted. This experimental study indicated that the primary containment is integral. The main vessel can withstand the energy release of ∼1200 MJ. The structural integrity of IHX and DHX is assured up to 200 MJ. The transient force transmitted to reactor vault is negligible. The average water leak measured under simulated tests for 122 MJ work potential is about 1.8 kg and the maximum leak is 2.41 kg. Extrapolation of the measured maximum leak based on simulation principles yields ∼ 233 kg of sodium leak in the reactor. Based on the above-mentioned theoretical and experimental investigations, the design pressure of 20 kPa is used for PFBR

  19. Development of a DNBR evaluation method for the CEA ejection accident in SMART core

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Dae Hyun; Yoo, Y. J.; In, W. K.; Chang, M. H. [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-12-01

    A methodology applicable to the analysis of the CEA ejection accident in SMART is developed for the evaluation of the fraction of fuel failure caused by DNB. The transient behavior of the core thermal-hydraulic conditions is calculated by the subchannel analysis code MATRA. The minimum DNBR during the accident is calculated by KRB-1 CHF correlation considering the 1/8 symmetry of hot assembly. The variation of hot assembly power during the accident is simulated by the LTC(Limiting transient Curve) which is determined from the analysis of power distribution data resulting from the three-dimensional core dynamics calculations. The initial condition of the accident is determined by considering LOC(Limiting Conditions for Operation) of SMART core. Two different methodologies for the evaluation of DNB failure rate are established; a deterministic method based on the DNB envelope, and a probabilistic method based on the DNB probability of each fuel rod. The methodology developed in this study is applied to the analysis of CEA ejection accident in the preliminary design core of SMART. As the result, the fractions of DNB fuel failure by the deterministic method and the probabilistic method are calculated as 38.7% and 7.8%, respectively. 16 refs., 16 figs., 5 tabs. (Author)

  20. Development of a parametric containment event tree model for a severe BWR accident

    Energy Technology Data Exchange (ETDEWEB)

    Okkonen, T [OTO-Consulting Ay, Helsinki (Finland)

    1995-04-01

    A containment event tree (CET) is built for analysis of severe accidents at the TVO boiling water reactor (BWR) units. Parametric models of severe accident progression and fission product behaviour are developed and integrated in order to construct a compact and self-contained Level 2 PSA model. The model can be easily updated to correspond to new research results. The analyses of the study are limited to severe accidents starting from full-power operation and leading to core melting, and are focused mainly on the use and effects of the dedicated severe accident management (SAM) systems. Severe accident progression from eight plant damage states (PDS), involving different pre-core-damage accident evolution, is examined, but the inclusion of their relative or absolute probabilities, by integration with Level 1, is deferred to integral safety assessments. (33 refs., 5 figs., 7 tabs.).

  1. The internal core catcher in Super Phenix 1

    International Nuclear Information System (INIS)

    Le Rigoleur, C.; Kayser, G.; Maurin, G.; Magnon, B.

    1982-07-01

    The internal core catcher in SUPER PHENIX 1 is described here in some detail. The fuel retention capabilities are presented for situations of increasing severity. The first situation corresponds to the core catcher design. It relates to a hypothetical subassembly accident that would cause a limited quantity of fuel, corresponding to the mass of seven subassemblies, to be deposited on the core catcher. For this situation and at all levels of the analysis, the most conservative assumptions are made in order to prove the integrity of the core catcher. The second situation corresponds to a hypothetical larger core melt accident. In this case, for some of the parameters, assumptions are made that correspond to the most likely situations based on engineering considerations. Then the maximum retention capabilities are presented

  2. The Effective Convectivity Model for Simulation and Analysis of Melt Pool Heat Transfer in a Light Water Reactor Pressure Vessel Lower Head

    International Nuclear Information System (INIS)

    Tran, Chi Thanh

    2009-09-01

    Severe accidents in a Light Water Reactor (LWR) have been a subject of intense research for the last three decades. The research in this area aims to reach understanding of the inherent physical phenomena and reduce the uncertainties in their quantification, with the ultimate goal of developing models that can be applied to safety analysis of nuclear reactors, and to evaluation of the proposed accident management schemes for mitigating the consequences of severe accidents. In a hypothetical severe accident there is likelihood that the core materials will be relocated to the lower plenum and form a decay-heated debris bed (debris cake) or a melt pool. Interactions of core debris or melt with the reactor structures depend to a large extent on the debris bed or melt pool thermal hydraulics. In case of inadequate cooling, the excessive heat would drive the structures' overheating and ablation, and hence govern the vessel failure mode and timing. In turn, threats to containment integrity associated with potential ex-vessel steam explosions and ex-vessel debris uncoolability depend on the composition, superheat, and amount of molten corium available for discharge upon the vessel failure. That is why predictions of transient melt pool heat transfer in the reactor lower head, subsequent vessel failure modes and melt characteristics upon the discharge are of paramount importance for plant safety assessment. The main purpose of the present study is to develop a method for reliable prediction of melt pool thermal hydraulics, namely to establish a computational platform for cost-effective, sufficiently-accurate numerical simulations and analyses of core Melt-Structure-Water Interactions in the LWR lower head during a postulated severe core-melting accident. To achieve the goal, an approach to efficient use of Computational Fluid Dynamics (CFD) has been proposed to guide and support the development of models suitable for accident analysis. The CFD method, on the one hand, is

  3. Severe accident mitigation through containment design

    International Nuclear Information System (INIS)

    Bergeron, K.D.

    1990-01-01

    Recent U.S. Department of Energy plans to construct a Heavy Water Reactor for the production of defense nuclear materials have created a unique opportunity to explore ways to mitigate severe accident concerns in the design stage. Drawing on an extensive background in US-NRC-sponsored severe accident work, Sandia National Laboratories has been exploring a number of Heavy Water New Production Reactor (HW-NPR) containment design strategies that might mitigate the consequences of a core-melt accident without greatly impacting construction cost or reactor operations. Severe accident specialists have undertaken these assessments with the intent of providing the plant designers with some of the phenomenological advantages and disadvantages of various mitigation strategies. This paper will highlight some of the more interesting concepts and summarize the results obtained. (author). 9 refs., 2 tabs

  4. Severe accident mitigation through containment design

    International Nuclear Information System (INIS)

    Bergeron, K.D.

    1990-01-01

    Recent US Department of Energy plans to construct a Heavy Water Reactor for the production of defense nuclear materials have created a unique opportunity to explore ways to mitigate severe accident concerns in the design stage. Drawing on an extensive background in USNRC-sponsored severe accident work, Sandia National Laboratories has been exploring a number of Heavy Water New Production Reactor (HW-NPR) containment design strategies that might mitigate the consequences of a core-melt accident without greatly impacting construction cost or reactor operations. Severe accident specialists have undertaken these assessments with the intent of providing the plant designers with some of the phenomenological advantages and disadvantages of various mitigation strategies. This paper will highlight some of the more interesting concepts and summarize the results obtained. 9 refs., 2 tabs

  5. Reference accident (Core disruption accident - safety analysis detailed report no. 11)

    Energy Technology Data Exchange (ETDEWEB)

    1988-01-15

    The PEC safety analysis led to the conclusion that all credible sequences (incident sequences characterized by a frequency of occurrence above 10/sup minus 7/ events per year) are limited to the design basis conditions of components of the plant protection systems, and that none of them leads to a release of mechanical energy or to an extensive damage of the core and primary containment structures event in the case of failure to scram. Nevertheless, as is done in other countries for similar reactors, some events beyond the limits of credibility were considered for the PEC reactor. These were defined on a absolutely hypothetical basis that involves severe core disruption and dynamic loading of primary containment boundary. A series of containments, each having a different role, was designed to mitigate the radiological effects of a postulated core disruptive accident. The final aim was to demonstrate that residual heat can be removed and that the release of radioactivity to the environment is within acceptable limits.

  6. Universal viscosity growth in metallic melts at megabar pressures: the vitreous state of the Earth's inner core

    International Nuclear Information System (INIS)

    Brazhkin, Vadim V; Lyapin, A G

    2000-01-01

    Experimental data on and theoretical models for the viscosity of various types of liquids and melts under pressure are reviewed. Experimentally, the least studied melts are those of metals, whose viscosity is considered to be virtually constant along the melting curve. The authors' new approach to the viscosity of melts involves the measurement of the grain size in solidified samples. Measurements on liquid metals at pressures up to 10 GPa using this method show, contrary to the empirical approach, that the melt viscosity grows considerably along the melting curves. Based on the experimental data and on the critical analysis of current theories, a hypothesis of a universal viscosity behavior is introduced for liquids under pressure. Extrapolating the liquid iron results to the pressures and temperatures at the Earth's core reveals that the Earth's outer core is a very viscous melt with viscosity values ranging from 10 2 Pa s to 10 11 Pa s depending on the depth. The Earth's inner core is presumably an ultraviscous (>10 11 Pa s) glass-like liquid - in disagreement with the current idea of a crystalline inner core. The notion of the highly viscous interior of celestial bodies sheds light on many mysteries of planetary geophysics and astronomy. From the analysis of the pressure variation of the melting and glass-transition temperatures, an entirely new concept of a stable metallic vitreous state arises, calling for further experimental and theoretical study. (reviews of topical problems)

  7. Zircaloy-oxidation and hydrogen-generation rates in degraded-core accident situations

    International Nuclear Information System (INIS)

    Chung, H.M.; Thomas, G.R.

    1983-02-01

    Oxidation of Zircaloy cladding is the primary source of hydrogen generated during a degraded-core accident. In this paper, reported Zircaloy oxidation rates, either measured at 1500 to 1850 0 C or extrapolated from the low-temperature data obtained at 0 C, are critically reviewed with respect to their applicability to a degraded-core accident situation in which the high-temperature fuel cladding is likely to be exposed to and oxidized in mixtures of hydrogen and depleted steam, rather than in an unlimited flux of pure steam. New results of Zircaloy oxidation measurements in various mixtures of hydrogen and steam are reported for >1500 0 C. The results show significantly smaller oxidation and, hence, hydrogen-generation rates in the mixture, compared with those obtained in pure steam. It is also shown that a significant fraction of hydrogen, generated as a result of Zircaloy oxidation, is dissolved in the cladding material itself, which prevents that portion of hydrogen from reaching the containment building space. Implications of these findings are discussed in relation to a more realistic method of quantifying the hydrogen source term for a degraded-core accident analysis

  8. Core damage frequency estimation using accident sequence precursor data: 1990-1993

    International Nuclear Information System (INIS)

    Martz, H.F.

    1998-01-01

    The Nuclear Regulatory Commission's (NRC's) ongoing Accident Sequence Precursor (ASP) program uses probabilistic risk assessment (PRA) techniques to assess the potential for severe core damage (henceforth referred to simply as core damage) based on operating events. The types of operating events considered include accident sequence initiators, safety equipment failures, and degradation of plant conditions that could increase the probability that various postulated accident sequences occur. Such operating events potentially reduce the margin of safety available for prevention of core damage an thus can be considered as precursors to core damage. The current process for identifying, analyzing, and documenting ASP events is described in detail in Vanden Heuval et al. The significance of a Licensee Event Report (LER) event (or events) is measured by means of the conditional probability that the event leads to core damage, the so-called conditional core damage probability or, simply, CCDP. When the first ASP study results were published in 1982, it covered the period 1969--1979. In addition to identification and ranking of precursors, the original study attempted to estimate core damage frequency (CDF) based on the precursor events. The purpose of this paper is to compare the average annual CDF estimates calculated using the CCDP sum, Cooke-Goossens, Bier, and Abramson estimators for various reactor classes using the combined ASP data for the four years, 1990--1993. An important outcome of this comparison is an answer to the persistent question regarding the degree and effect of the positive bias of the CCDP sum method in practice. Note that this paper only compares the estimators with each other. Because the true average CDF is unknown, the estimation error is also unknown. Therefore, any observations or characterizations of bias are based on purely theoretical considerations

  9. SCDAP/RELAP5 modeling of movement of melted material through porous debris in lower head

    International Nuclear Information System (INIS)

    Siefken, L. J.; Harvego, E. A.

    2000-01-01

    A model is described for the movement of melted metallic material through a ceramic porous debris bed. The model is designed for the analysis of severe accidents in LWRs, wherein melted core plate material may slump onto the top of a porous bed of relocated core material supported by the lower head. The permeation of the melted core plate material into the porous debris bed influences the heatup of the debris bed and the heatup of the lower head supporting the debris. A model for mass transport of melted metallic material is applied that includes terms for viscosity and turbulence but neglects inertial and capillary terms because of their small value relative to gravity and viscous terms in the momentum equation. The relative permeability and passability of the porous debris are calculated as functions of debris porosity, particle size, and effective saturation. An iterative numerical solution is used to solve the set of nonlinear equations for mass transport. The effective thermal conductivity of the debris is calculated as a function of porosity, particle size, and saturation. The model integrates the equations for mass transport with a model for the two-dimensional conduction of heat through porous debris. The integrated model has been implemented into the SCDAP/RELAP5 code for the analysis of the integrity of LWR lower heads during severe accidents. The results of the model indicate that melted core plate material may permeate to near the bottom of a 1m deep hot porous debris bed supported by the lower head. The presence of the relocated core plate material was calculated to cause a 12% increase in the heat flux on the external surface of the lower head

  10. Behaviour of LWR core materials under accident conditions. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    1996-12-01

    At the invitation of the Government of the Russian Federation, following a proposal of the International Working Group on Water Reactor Fuel Performance and Technology, the IAEA convened a Technical Committee Meeting on Behaviour of LWR Core Materials Under Accident Conditions from 9 to 13 October 1995 in Dimitrovgrad to analyze and evaluate the behaviour of LWR core materials under accident conditions with special emphasis on severe accidents. In-vessel severe accidents phenomena were considered in detail, but specialized thermal hydraulic aspects as well as ex-vessel phenomena were outside the scope of the meeting. Forty participants representing eight countries attended the meeting. Twenty-three papers were presented and discussed during five sessions. Refs, figs, tabs

  11. Simulant melt experiments on performance of the in-vessel core catcher

    International Nuclear Information System (INIS)

    Kyoung-Ho Kang; Rae-Joon Park; Sang-Baik Kim; Suh, K.Y.; Cheung, F.B.; Rempe, J.L.

    2005-01-01

    Full text of publication follows: LAVA-GAP experiments are in progress to investigate the performance of the in-vessel core catcher using alumina melt as a corium simulant. The hemispherical in-vessel core catcher made of carbon steel was installed inside the lower head vessel with uniform gap of 5 mm or 10 mm to the inner surface of the lower head vessel. As a performance test of the in-vessel core catcher, the effects of base steel and internal coating materials and gap thickness between the core catcher and the lower head vessel were examined in this study. In the LAVA-GAP-2 and LAVA-GAP-3 tests, the base steel was carbon steel and the gap thickness was 10 mm. On the other hand, in the LAVA-GAP-4 and LAVA-GAP-5 tests, the base steel was stainless steel and the gap thickness was 5 mm. Actual composition of the coating material for the LAVA-GAP-4 test was 92% of ZrO 2 - 8% of Y 2 O 3 including 95% of Ni - 5% of Al bond coat same as the LAVA-GAP-3 test. In these tests, the thickness of ZrO 2 internal coating was 0.5 mm. To examine the effects of the coating material, in-vessel core catcher with a 0.6 mm-thick ZrO 2 coating without bond coat was used in the LAVA-GAP-5 test. This report summarizes the experimental results and the post metallurgical inspection results of the LAVA-GAP-4 and LAVA-GAP- 5 tests. In the LAVA-GAP-4 and LAVA-GAP-5 tests, the core catcher was failed and it was stuck to the inner surface of the lower head vessel. LAVA-GAP-4 and LAVA-GAP-5 test results imply that 5 mm thick gap is rather small for sufficient water ingression and steam venting through the gap. In case of small gap size, water is boiled off and steam increases pressure inside the gap and so water can not ingress into the gap at the initial heat up stage. Metallurgical inspections on the test specimens indicate that the internal coating layer might melt totally and dispersed in the base steel and the solidified iron melt and so the detection frequencies of Zr and O are trivial all

  12. Considerations on the influence of fission products in whole core accidents

    International Nuclear Information System (INIS)

    Meyer Heine, A.; Pattoret, A.; Schmitz, F.

    1977-01-01

    If the hypothetical Whole Core Accidents which are taken into account in reactor safety analysis can change from one country to another, there is nevertheless a general agreement over their description and main phases. Furthermore the important parameters have also been identified by every laboratory. During the development of such core accidents the role of the fission products in essential. It is not the purpose of this paper to give an exhaustive description of the phases which can be influenced by the fission products, we will try however to focus this study on the most important ones. In a second step we will discuss the equation of state of irradiated fuels; here again one principal preoccupation being to quantify the influence of fission products on reactor accidents. It is not our purpose to enter on the fundamental aspects of the equation of state. The studies and the experimental program launched at the CEA will then be described. Special attention will be directed towards the eventual role of fission products in molten fuel-coolant interactions (MFCls) or the events leading to the initiation of whole core accidents. This paper will be limited to oxide fuels. Whether the whole core accident is initiated by a reactivity defect or a coolant coast-down, one has to deal with four great categories of phenomena. Loss of flow: the power is around the nominal value, while the coolant flow has been reduced by a factor of 5 to 10. This induces boiling and clad weakening. Will the plenum pressure lead to a clad rupture? In case of a rupture, what will be the effect on the voiding of the channel? Transient over power: influence of gases from gaseous and volatile fission products on the fuel movements? MFCIs: Influence of the fission products in the mode of contact between fuel and coolant? Influence on the fuel characteristics. Sodium vapour bubble expansion: influence of the fission products on the heat transfer and eventual condensation of the bubble?

  13. Simulation of core melt spreading with lava: theoretical background and status of validation

    International Nuclear Information System (INIS)

    Allelein, H.-J.; Breest, A.; Spengler, C.

    2000-01-01

    The goal of this paper is to present the GRS R and D achievements and perspectives of its approach to simulate ex-vessel core melt spreading. The basic idea followed by GRS is the analogy of core melt spreading to volcanic lava flows. A fact first proposed by Robson (1967) and now widely accepted is that lava rheologically behaves as a Bingham fluid, which is characterized by yield stress and plastic viscosity. Recent experimental investigations by Epstein (1996) reveal that corium-concrete mixtures may be described as Bingham fluids. The GRS code LAVA is based on a successful lava flow model, but is adapted to prototypic corium and corium-simulation spreading. Furthermore some detailed physical models such as a thermal crust model on the free melt surface and a model for heat conduction into the substratum are added. Heat losses of the bulk, which is represented by one mean temperature, are now determined by radiation and by temperature profiles in the upper crust and in the substratum. In order to reduce the weak mesh dependence of the original algorithm, a random space method of cellular automata is integrated, which removes the mesh bias without increasing calculation time. LAVA is successfully validated against a lot of experiments using different materials spread. The validation process has shown that LAVA is a robust and fast running code to simulate corium-type spreading. LAVA provides all integral information of practical interest (spreading length, height of the melt after stabilization) and seems to be an appropriate tool for handling large core melt masses within a plant application. (orig.)

  14. Re criticality assessment following reactor core damage in Fukushima unit 2

    International Nuclear Information System (INIS)

    Jeong, Hae Sun; Song, Jin Ho; Park, Chang Je; Ha, Kwang Soon; Song, Yong Mann; Ryu, Eun Hyun

    2012-01-01

    Following the severe core damage accident at the Fukushima nuclear power plants (NPPs), many researchers have studied a possible Re criticality caused by core melting or corium. However, no one can accurately examine the internal conditions of the reactor vessel, and thus there have been different opinions from some organizations depending on their assumption and analysis methods. If there is a potential Re criticality in the reactor vessel, some counter plans for the accident management should be established to prevent and mitigate re criticality, and to return the plant to a safe and stable state. In this study, the criticality level following a severe core damage accident was first analyzed using the MCNPX 2.6.0 code. Based on this result, practical strategies in terms of accident management were obtained by charging soluble boron (H 3B O 3) into re flooded water

  15. Status of the French R/D program on the severe accident issue to develop Gen IV SFRs - 15373

    International Nuclear Information System (INIS)

    Serre, F.; Bertrand, F.; Journeau, C.; Suteau, C.; Verwaede, D.; Schmitt, D.; Farges, B.

    2015-01-01

    The ASTRID reactor (Advanced Sodium Technological Reactor for Industrial Demonstration) is a technological demonstrator designed by the CEA with its industrial partners, with very high levels of requirements. In the ASTRID project, the safety objectives are to prevent core melting, in particular by the development of an innovative core with complementary safety prevention devices, and to enhance the reactor resistance to severe accident by design. To mitigate the consequences of hypothetical core melting situations, specific dispositions or mitigation devices will be added to the core and to the reactor. It is also required to provide a robust safety demonstration (with high level of confidence). Therefore a new approach for severe accident issue has been defined: to the well-known 'lines of defense' method, a 'lines of mitigation' method is added. To meet these ASTRID, or future SFR, requirements, a large R/D program was launched in the Severe Accident domain, with a large number of partners. This paper will present the status of the CEA R/D related to the SFR Severe Accident issue, the collaboration framework (with industrial partners and R/D foreign organizations), and the future R/D plans to support the ASTRID project and possible developments for future Gen IV commercial SFR. (authors)

  16. Computer codes developed in FRG to analyse hypothetical meltdown accidents

    International Nuclear Information System (INIS)

    Hassmann, K.; Hosemann, J.P.; Koerber, H.; Reineke, H.

    1978-01-01

    It is the purpose of this paper to give the status of all significant computer codes developed in the core melt-down project which is incorporated in the light water reactor safety research program of the Federal Ministry of Research and Technology. For standard pressurized water reactors, results of some computer codes will be presented, describing the course and the duration of the hypothetical core meltdown accident. (author)

  17. USNRC severe core damage assessment program

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, J E [EG and G Idaho, Inc., Idaho Falls (USA); Johnston, W V; Kelber, C N [Nuclear Regulatory Commission, Washington, DC (USA)

    1981-01-01

    The accident at the Three Mile Island nuclear power station has significantly altered the perception of the importance of beyond-design-basis accidents in licensing and safety reviews of light-water reactors in the USA. Increased consideration will be given by the United States Nuclear Regulatory Commission to low-probability, high-risk core melt accidents in future licensing proceedings. To this end, the USNRC is mounting experimental and analytic methods development programs to provide the technical basis for future LWR design and licensing criteria related to class-9 accidents. The scope, objectives, and content of five major new programs addressing safety and licensing issues for beyond-design-basis accidents are reviewed and the rationale and logic for formulation of the programs is discussed.

  18. Use of fuel failure correlations in accident analysis

    International Nuclear Information System (INIS)

    O'Dell, L.D.; Baars, R.E.; Waltar, A.E.

    1975-05-01

    The MELT-III code for analysis of a Transient Overpower (TOP) accident in an LMFBR is briefly described, including failure criteria currently applied in the code. Preliminary results of calculations exploring failure patterns in time and space in the reactor core are reported and compared for the two empirical fuel failure correlations employed in the code. (U.S.)

  19. Study on structural failure of RPV with geometric discontinuity under severe accident

    Energy Technology Data Exchange (ETDEWEB)

    Mao, J.F., E-mail: jianfeng-mao@163.com [Institute of Process Equipment and Control Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310032 (China); Engineering Research Center of Process Equipment and Re-manufacturing, Ministry of Education (China); Zhu, J.W. [Institute of Process Equipment and Control Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310032 (China); Department of Mechanical and Electrical engineering, Huzhou Vocational & Technical College Huzhou, Zhejiang 313000 (China); Bao, S.Y., E-mail: bsy@zjut.edu.cn [Institute of Process Equipment and Control Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310032 (China); Engineering Research Center of Process Equipment and Re-manufacturing, Ministry of Education (China); Luo, L.J. [Institute of Process Equipment and Control Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310032 (China); Gao, Z.L. [Institute of Process Equipment and Control Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310032 (China); Engineering Research Center of Process Equipment and Re-manufacturing, Ministry of Education (China)

    2016-10-15

    Highlights: • The RPV failure is investigated in depth under severe accident. • The creep and plastic damage are the major contributor to RPV failure. • A elastic core is found at the midpoint of the highly-eroded region. • Weakest location has some ‘accommodating’ quality to prevent ductile tearing. • The internal pressure is critical for the determination of structural failure. - Abstract: A severe accident management strategy known as ‘in-vessel retention (IVR)’ is widely adopted in most of advanced nuclear power plants. The IVR mitigation is assumed to be able to arrest the degraded melting core and maintain the structural integrity of reactor pressure vessel (RPV) within a prescribed period of time. This traditional concept of IVR without consideration of internal pressure effect wasn’t challenged until the occurrence of Fukushima accident on 2011, which showed that the structural behavior had not been appropriately assessed, and a certain pressure (up to 8.0 MPa) still existed inside the RPV. Accordingly, the paper tries to address the related issue on whether lower head (LH) integrity can be maintained, when the LH is subjected to the thermal-mechanical loads created during such a severe accident. Because of the presence of the high temperature melt (∼1300 °C) on the inside of RPV, some local material is melted down to create a unique RPV with geometric discontinuity, while the outside of RPV submerged in cavity water will remain in nucleate boiling (at ∼150 °C). Therefore, the failure mechanisms of RPV can span a wide range of structural behaviors, such as melt-through, creep damage, plastic yielding as well as thermal expansion. Through meticulous investigation, it is found that the RPV failure is mainly caused by creep and plasticity, especially for the inside of highly-eroded region. The elastic core (or layer) is found to exist in the proximity of mid-section of the highly-eroded wall. However, the elastic core is squeezed into

  20. MELT-IIIB: an updated version of the melt code

    International Nuclear Information System (INIS)

    Tabb, K.K.; Lewis, C.H.; O'Dell, L.D.; Padilla, A. Jr.; Smith, D.E.; Wilburn, N.P.

    1979-04-01

    The MELT series is a reactor modeling code designed to investigate a wide variety of hypothetical accident conditions, particularly the transient overpower sequence. MELT-IIIB is the latest in the series

  1. Melting of Fe-Si-O alloys: the Fate of Coexisting Si and O in the Core

    Science.gov (United States)

    Arveson, S. M.; Lee, K. K. M.

    2017-12-01

    The light element budget of Earth's core plays an integral role in sustaining outer core convection, which powers the geodynamo. Many experiments have been performed on binary iron compounds, but the results do not robustly agree with seismological observations and geochemical constraints. Earth's core is almost certainly made up of multiple light elements, so the future of core composition studies lies in ternary (or higher order) systems in order to examine interactions between light elements. We perform melting experiments on Fe-Si-O alloys in a laser-heated diamond-anvil cell to 80 GPa and 4000 K. Using 2D multi- wavelength imaging radiometry together with textural and chemical analysis of quenched samples, we measure the high-pressure melting curves and determine partitioning of light elements between the melt and the coexisting solid. Quenched samples are analyzed both in map view and in cross section using scanning electron microscopy (SEM) and electron microprobe analysis (EPMA) to examine the 3D melt structure and composition. Partitioning of light elements between molten and solid alloys dictates (1) the density contrast at the ICB, which drives compositional convection in the outer core and (2) the temperature of the CMB, an integral parameter for understanding the deep Earth. Our experiments suggest silicon and oxygen do not simply coexist in the melt and instead show complex solubility based on temperature. Additionally, we do not find evidence of crystallization of SiO2 at low oxygen content as was recently reported.11 Hirose, K., et al., Crystallization of silicon dioxide and compositional evolution of the Earth's core. Nature, 2017. 543(7643): p. 99-102.

  2. Study on entry criteria for severe accident management during hot leg LBLOCAs in a PWR

    International Nuclear Information System (INIS)

    Zhang, Longfei; Zhang, Dafa; Wang, Shaoming

    2007-01-01

    The risk of Large Break Loss of Coolant Accidents (LBLOCA) has been considered an important safety issue since the beginning of the nuclear power industry. The rapid depressurization occurs in the primary coolant circuit when a large break appears in a Pressurized Water Reactors (PWR).Then the coolant temperature reaches saturation at a very low pressure. The core outlet fluid temperatures maybe not reliable indicators of the core damage states at a such lower pressure. The problem is how to decide the time for water injection in the SAM (Severe Accident Management). An alternative entry criterion is the fluid temperature just above the hot channel in which the fluid temperature showed maximum among all the channels. For that reason, a systematic study of entry criterion of SAM for different hot leg break sizes in a 3-loop PWR has been started using the detailed system thermal hydraulic and severe accident analysis code package, RELAP/SCDAPSIM. Best estimate calculations of the large break LOCA of 15 cm, 20 cm and 25 cm without accident managements and in the case of high-pressure safety injection as the accident management were performed in this paper. The analysis results showed that the core exit temperatures are not reliable indicators of the peak core temperatures and core damage states once peak core temperatures reach 1500 K, and the proposed entry criteria for SAM at the time when the core outlet temperature reaches 900 K is not effective to prevent core melt. Then other analyses were performed with a parameter of fluid temperature just above the hot channel. The latter analysis showed that earlier water injection when the fluid temperature just above the hot channel reaches 900 K is effective to prevent further core melt. Since fuel surface and hot channel have spatial distribution and depend on a period of cycle operation, a series of thermocouples are required to install just above the fuel assembly. The maximum exit temperature of 900 K that captured by

  3. Melting of iron at the Earth's core conditions by molecular dynamics simulation

    Directory of Open Access Journals (Sweden)

    Y. N. Wu

    2011-09-01

    Full Text Available By large scale molecular dynamics simulations of solid-liquid coexistence, we have investigated the melting of iron under pressures from 0 to 364 GPa. The temperatures of liquid and solid regions, and the pressure of the system are calculated to estimate the melting point of iron. We obtain the melting temperature of iron is about 6700±200K under the inner-outer core boundary, which is in good agreement with the result of Alfè et al. By the pair analysis technique, the microstructure of liquid iron under higher pressures is obviously different from that of lower pressures and ambient condition, indicating that the pressure-induced liquid-liquid phase transition may take place in iron melts.

  4. A fast running method for predicting the efficiency of core melt spreading for application in ASTEC

    International Nuclear Information System (INIS)

    Spengler, C.

    2010-01-01

    The integral Accident Source Term Evaluation Code (ASTEC) is jointly developed by the French Institut de Radioprotection et de Surete Nucleaire (IRSN) and the German Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH to simulate the complete scenario of a hypothetical severe accident in a nuclear light water reactor, from the initial event until the possible radiological release of fission products out of the containment. In the frame of the new series of ASTEC V2 versions appropriate model extensions to the European Pressurised Water Reactor (EPR) are under development. With view to assessing with ASTEC the proper operation of the ex-vessel melt retention and coolability concept of the EPR with regard to melt spreading an approximation of the area finally covered by the corium and of the distance run by the corium front before freezing is required. A necessary capability of ASTEC is in a first step to identify such boundary cases, for which there is a potential that the melt will freeze before the spreading area is completely filled. This paper presents a fast running method for estimating the final extent of the area covered with melt on which a simplified criterion in ASTEC for detecting such boundary cases will be based. If a boundary case is detected the application of a more-detailed method might be necessary to assess further the consequences for the accident sequence. The major objective here is to provide a reliable method for estimating the final result of the spreading and not to provide highly detailed methods to simulate the dynamics of the transient process. (orig.)

  5. Severe Accident Recriticality Analyses (SARA)

    Energy Technology Data Exchange (ETDEWEB)

    Frid, W. [Swedish Nuclear Power Inspectorate, Stockholm (Sweden); Hoejerup, F. [Risoe National Lab. (Denmark); Lindholm, I.; Miettinen, J.; Puska, E.K. [VTT Energy, Helsinki (Finland); Nilsson, Lars [Studsvik Eco and Safety AB, Nykoeping (Sweden); Sjoevall, H. [Teoliisuuden Voima Oy (Finland)

    1999-11-01

    Recriticality in a BWR has been studied for a total loss of electric power accident scenario. In a BWR, the B{sub 4}C control rods would melt and relocate from the core before the fuel during core uncovery and heat-up. If electric power returns during this time-window unborated water from ECCS systems will start to reflood the partly control rod free core. Recriticality might take place for which the only mitigating mechanisms are the Doppler effect and void formation. In order to assess the impact of recriticality on reactor safety, including accident management measures, the following issues have been investigated in the SARA project: 1. the energy deposition in the fuel during super-prompt power burst, 2. the quasi steady-state reactor power following the initial power burst and 3. containment response to elevated quasi steady-state reactor power. The approach was to use three computer codes and to further develop and adapt them for the task. The codes were SIMULATE-3K, APROS and RECRIT. Recriticality analyses were carried out for a number of selected reflooding transients for the Oskarshamn 3 plant in Sweden with SIMULATE-3K and for the Olkiluoto 1 plant in Finland with all three codes. The core state initial and boundary conditions prior to recriticality have been studied with the severe accident codes SCDAP/RELAP5, MELCOR and MAAP4. The results of the analyses show that all three codes predict recriticality - both superprompt power bursts and quasi steady-state power generation - for the studied range of parameters, i. e. with core uncovery and heat-up to maximum core temperatures around 1800 K and water flow rates of 45 kg/s to 2000 kg/s injected into the downcomer. Since the recriticality takes place in a small fraction of the core the power densities are high which results in large energy deposition in the fuel during power burst in some accident scenarios. The highest value, 418 cal/g, was obtained with SIMULATE-3K for an Oskarshamn 3 case with reflooding

  6. Severe Accident Recriticality Analyses (SARA)

    International Nuclear Information System (INIS)

    Frid, W.; Hoejerup, F.; Lindholm, I.; Miettinen, J.; Puska, E.K.; Nilsson, Lars; Sjoevall, H.

    1999-11-01

    Recriticality in a BWR has been studied for a total loss of electric power accident scenario. In a BWR, the B 4 C control rods would melt and relocate from the core before the fuel during core uncovery and heat-up. If electric power returns during this time-window unborated water from ECCS systems will start to reflood the partly control rod free core. Recriticality might take place for which the only mitigating mechanisms are the Doppler effect and void formation. In order to assess the impact of recriticality on reactor safety, including accident management measures, the following issues have been investigated in the SARA project: 1. the energy deposition in the fuel during super-prompt power burst, 2. the quasi steady-state reactor power following the initial power burst and 3. containment response to elevated quasi steady-state reactor power. The approach was to use three computer codes and to further develop and adapt them for the task. The codes were SIMULATE-3K, APROS and RECRIT. Recriticality analyses were carried out for a number of selected reflooding transients for the Oskarshamn 3 plant in Sweden with SIMULATE-3K and for the Olkiluoto 1 plant in Finland with all three codes. The core state initial and boundary conditions prior to recriticality have been studied with the severe accident codes SCDAP/RELAP5, MELCOR and MAAP4. The results of the analyses show that all three codes predict recriticality - both superprompt power bursts and quasi steady-state power generation - for the studied range of parameters, i. e. with core uncovery and heat-up to maximum core temperatures around 1800 K and water flow rates of 45 kg/s to 2000 kg/s injected into the downcomer. Since the recriticality takes place in a small fraction of the core the power densities are high which results in large energy deposition in the fuel during power burst in some accident scenarios. The highest value, 418 cal/g, was obtained with SIMULATE-3K for an Oskarshamn 3 case with reflooding

  7. Fuel relocation modeling in the SAS4A accident analysis code system

    International Nuclear Information System (INIS)

    Tentner, A.M.; Miles, K.J.

    1985-01-01

    SAS4A is a new code system which has been designed for analyzing the initial phase of Hypothetical Core Disruptive Accidents (HCDAs) up to gross melting or failure of the subassembly walls. During such postulated accident scenarios as the Loss-of-Flow (LOF) and Transient-Overpower (TOP) events, the relocation of the fuel plays a key role in determining the sequence of events and the amount of energy produced before neutronic shutdown. This paper discusses the general strategy used in modeling the various phenomena which lead to fuel relocation and presents the key fuel relocation models used in SAS4A. The implications of these models for the whole-core accident analysis as well as recent results of fuel motion experiment analyses are also presented

  8. Fuel relocation modeling in the SAS4A accident analysis code system

    International Nuclear Information System (INIS)

    Tentner, A.M.; Miles, K.J.; Kalimullah; Hill, D.J.

    1986-01-01

    The SAS4A code system has been designed for the analysis of the initial phase of Hypothetical Core Disruptive Accidents (HCDAs) up to gross melting or failure of the subassembly walls. During such postulated accident scenarios as the Loss-of-Flow (LOF) and Transient-Overpower (TOP) events, the relocation of the fuel plays a key role in determining the sequence of events and the amount of energy produced before neutronic shutdown. This paper discusses the general strategy used in modelong the various phenomena which lead to fuel relocation and presents the key fuel relocation models used in SAS4A. The implications of these models for the whole-core accident analysis as well as recent results of fuel relocation are emphasized. 12 refs

  9. Method of reducing the hazard which may occur as a consequence of a reactor core meltdown

    International Nuclear Information System (INIS)

    Donne, M.D.; Dorner, S.; Schumacher, G.

    1978-01-01

    The core melt resulting from a meltdown accident of a GFB, LWR or LMFRR is collected by a core catcher from graphite placed below the core. The core melt is penetrating step by step into a borate store in the collecting vessel and is dissolving in it. Therefore the borate at the same time will absorb the decay heat. In order to remove the solidified and cooled down melted mass water is applied eliminating the borate. The remaining oxide state of the powdery core is sucked off again from the core catcher together with the water. The borate store (e.g. alkali borate) itself consists of separate layers with shaped parts, the coverings of which are made of steel, iron, cast iron, nickel, iron or nickel alloys, ceramic material or glass. (DG) [de

  10. Method of reducing the hazard which may occur as a consequence of a reactor core meltdown

    International Nuclear Information System (INIS)

    Donne, M.D.; Dorner, S.; Schumacher, G.

    1985-01-01

    The core melt resulting from a meltdown accident of a GFB, LWR or LMFRR is collected by a core catcher from graphite placed below the core. The core melt is penetrating step by step into a borate store in the collecting vessel and is dissolving in it. Therefore the borate at the same time will absorb the decay heat. In order to remove the solidified and cooled down melted mass water is applied eliminating the borate. The remaining oxide states of the powdery core is sucked off again from the core catcher together with the water. The borate store (e.g. alkali borate) itself consists of separate layers with shaped parts, the coverings of which are made of steel, iron, cast iron, nickel, iron or nickel alloys, ceramic material or glass. (orig./PW)

  11. Phenomena occurring in the reactor coolant system during severe core damage accidents

    International Nuclear Information System (INIS)

    Malinauskas, A.P.

    1989-01-01

    The reactor coolant system (RCS) of a nuclear power plant consists of the reactor pressure vessel and the piping and associated components that are required for the continuous circulation of the coolant which is used to maintain thermal equilibrium throughout the system. In the event of an accident, the RCS also serves as one of several barriers to the escape of radiotoxic material into the biosphere. In contrast to normal operating conditions, severe core damage accidents are characterized by significant temporal and spatial variations in heat and mass fluxes, and by eventual geometrical changes within the RCS. Furthermore, the difficulties in describing the system in the severe accident mode are compounded by the occurrence of chemical reactions. These reactions can influence both the thermal and the mass transport behavior of the system. In addition, behavior of the reactor vessel internals and of materials released from the core region (especially the radioactive fission products) in the course of the accident likewise become of concern to the analyst. This report addresses these concerns. 9 refs., 1 tab

  12. Mitigation of severe accidents in AREVA's Gen 3+ nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, M., E-mail: manfred.fischer@areva.com; Henning, A.; Surmann, R.

    2014-04-01

    The current AREVA Gen 3+ PWR designs (EPR™ and ATMEA1) are based on the proven defense-in-depth safety concepts inherited from their predecessors, the French “N4” and the German “Konvoi” reactors. Complemented by specific enhancements, including higher redundancy and diversity as well as the use of passive systems, this leads to very low values of the core damage frequency (CDF). Notwithstanding this very low probability, dedicated design measures have been implemented to improve the response of the plant in case of a postulated severe accident (SA) with core melting. This way not only the frequency of large-early-releases (LERF) but also the related radiological consequences are drastically reduced. Situations that potentially lead to high loads that can challenge the short-term integrity of the containment, like RPV melt-through under high pressure, energetic hydrogen/steam explosions, as well as long-term containment failure caused by internal over-pressure are avoided by a combination of preventive measures and dedicated systems. At the example of the EPR{sup TM}, the paper gives an overview of the severe accident mitigation strategy and the related measures and systems of AREVAs current Gen 3+ reactors, with special focus on the function of the core melt stabilization system.

  13. Test Data for USEPR Severe Accident Code Validation

    Energy Technology Data Exchange (ETDEWEB)

    J. L. Rempe

    2007-05-01

    This document identifies data that can be used for assessing various models embodied in severe accident analysis codes. Phenomena considered in this document, which were limited to those anticipated to be of interest in assessing severe accidents in the USEPR developed by AREVA, include: • Fuel Heatup and Melt Progression • Reactor Coolant System (RCS) Thermal Hydraulics • In-Vessel Molten Pool Formation and Heat Transfer • Fuel/Coolant Interactions during Relocation • Debris Heat Loads to the Vessel • Vessel Failure • Molten Core Concrete Interaction (MCCI) and Reactor Cavity Plug Failure • Melt Spreading and Coolability • Hydrogen Control Each section of this report discusses one phenomenon of interest to the USEPR. Within each section, an effort is made to describe the phenomenon and identify what data are available modeling it. As noted in this document, models in US accident analysis codes (MAAP, MELCOR, and SCDAP/RELAP5) differ. Where possible, this report identifies previous assessments that illustrate the impact of modeling differences on predicting various phenomena. Finally, recommendations regarding the status of data available for modeling USEPR severe accident phenomena are summarized.

  14. Review of the TMI-2 accident evaluation and vessel investigation projects

    Energy Technology Data Exchange (ETDEWEB)

    Ladekarl Thomsen, Knud

    1998-03-01

    The results of the TMI-2 Accident Evaluation Programme and the Vessel Investigation Project have been reviewed as part of a literature study on core meltdown and in-vessel coolability. The emphasis is placed on the late phase melt progression, which is of special relevance to the NKS-sponsored RAK-2.1 project on Severe Accident Phenomenology. The body of the report comprises three main sections, The TMI-2 Accident Scenario, Core Region and Relocation Path Investigations, and Lower Head Investigations. In the final discussion, the lower head gap formation mechanism is explained in terms of thermal contraction and fracturing of the debris crust. This model seems more plausible than the MAAP model based on creep expansion of the lower head. (au) 1 tab., 33 ills., 31 refs.

  15. Thermohydraulics in a high-temperature gas-cooled reactor primary loop during early phases of unrestricted core-heatup accidents

    International Nuclear Information System (INIS)

    Kroeger, P.G.; Colman, J.; Hsu, C.J.

    1983-01-01

    In High Temperature Gas Cooled Reactor (HTGR) siting considerations, the Unrestricted Core Heatup Accidents (UCHA) are considered as accidents of highest consequence, corresponding to core meltdown accidents in light water reactors. Initiation of such accidents can be, for instance, due to station blackout, resulting in scram and loss of all main loop forced circulation, with none of the core auxiliary cooling system loops being started. The result is a slow but continuing core heatup, extending over days. During the initial phases of such UCHA scenarios, the primary loop remains pressurized, with the system pressure slowly increasing until the relief valve setpoint is reached. The major objectives of the work described here were to determine times to depressurization as well as approximate loop component temperatures up to depressurization

  16. A framework for the assessment of severe accident management strategies

    International Nuclear Information System (INIS)

    Kastenberg, W.E.; Apostolakis, G.; Dhir, V.K.

    1993-09-01

    Severe accident management can be defined as the use of existing and/or altemative resources, systems and actors to prevent or mitigate a core-melt accident. For each accident sequence and each combination of severe accident management strategies, there may be several options available to the operator, and each involves phenomenological and operational considerations regarding uncertainty. Operational uncertainties include operator, system and instrumentation behavior during an accident. A framework based on decision trees and influence diagrams has been developed which incorporates such criteria as feasibility, effectiveness, and adverse effects, for evaluating potential severe accident management strategies. The framework is also capable of propagating both data and model uncertainty. It is applied to several potential strategies including PWR cavity flooding, BWR drywell flooding, PWR depressurization and PWR feed and bleed

  17. A framework for the assessment of severe accident management strategies

    Energy Technology Data Exchange (ETDEWEB)

    Kastenberg, W.E. [ed.; Apostolakis, G.; Dhir, V.K. [California Univ., Los Angeles, CA (United States). Dept. of Mechanical, Aerospace and Nuclear Engineering] [and others

    1993-09-01

    Severe accident management can be defined as the use of existing and/or altemative resources, systems and actors to prevent or mitigate a core-melt accident. For each accident sequence and each combination of severe accident management strategies, there may be several options available to the operator, and each involves phenomenological and operational considerations regarding uncertainty. Operational uncertainties include operator, system and instrumentation behavior during an accident. A framework based on decision trees and influence diagrams has been developed which incorporates such criteria as feasibility, effectiveness, and adverse effects, for evaluating potential severe accident management strategies. The framework is also capable of propagating both data and model uncertainty. It is applied to several potential strategies including PWR cavity flooding, BWR drywell flooding, PWR depressurization and PWR feed and bleed.

  18. SWR-1000 concept on control of severe accidents

    International Nuclear Information System (INIS)

    Meyer, P.J.

    1998-01-01

    It is essential for the SWR-1000 probabilistic safety concept to consider the results from experiments and reliability system failure within the probabilistic safety analyses for passive systems. Active and passive safety features together reduce the probability of the occurrence of beyond design basis accidents in order to limit their consequences in accordance with the German law. As a reference case we analyzed the most probable core melt accident sequence with a very conservative assumption. An initial event, stuck open of safety and relief valves without the probability of active and passive feeding systems of the pressure vessel, was considered. Other sequences of the loss of coolant accidents lead to lower probability

  19. Melt cooling by bottom flooding. The COMET core-catcher concept

    International Nuclear Information System (INIS)

    Foit, Jerzy Jan; Alsmeyer, Hans; Tromm, Walter; Buerger, Manfred; Journeau, Christophe

    2009-01-01

    The COMET concept has been developed to cool an ex-vessel corium melt in case of a hypothetical severe accident leading to vessel melt-through. After erosion of a sacrificial concrete layer the melt is passively flooded by bottom injection of coolant water. The open porosities and large surface that are generated during melt solidification form a porous permeable structure that is permanently filled with the evaporating water and thus allows an efficient short-term as well as long-term removal of the decay heat. The advantages of this concept are the fast cool-down and complete solidification of the melt within less than one hour typically. This stops further release of fission products from the corium. A drawback may be the fast release of steam during the quenching process. Several experimental series have been performed by FZK (Germany) to test and optimise the functionality of the different variants of the COMET concept. Thermite generated melts of iron and aluminium oxide were used. The large scale COMET-H test series with sustained inductive heating includes nine experiments performed with an array of water injection channels embedded in a sacrificial concrete layer. Variation of the water inlet pressure and melt height showed that melts up to 50 cm height can be safely cooled with an overpressure of the coolant water of 0.2 bar. The CometPC concept is based on cooling by flooding the melt from the bottom through layers of porous, water filled concrete. The third variant of the COMET design, CometPCA, uses a layer of porous, water filled concrete CometPCA from which flow channels protrude into the layer of sacrificial concrete. This modified concept combines the advantages of the original COMET concept with flow channels and the high resistance of a water-filled porous concrete layer against downward melt attack. Four large scale CometPCA experiments (FZK, Germany) have demonstrated an efficient cooling of melts up to 50 cm height using the recommended water

  20. Severe accident analysis using MARCH 1.0 code

    International Nuclear Information System (INIS)

    Guimaraes, A.C.F.

    1987-09-01

    The description and utilization of the MARCH 1.0 computer code, which aim to analyse physical phenomena associated with core meltdown accidents in PWR type reactors, are presented. The primary system is modeled as a single volume which is partitioned into a gas (steam and hydrogen) region and a water region. March predicts blowdown from the primary system in single phase. Based on results of the probabilistic safety analysis for the Zion and Indian Point Nuclear Power Plants, the S 2 HFX sequence accident for Angra-1 reactor is studied. The S 2 HFX sequence means that the loss of coolant accident occurs through small break in primary system with bot total failures of the reactor safety system and containment in yours recirculation modes, leading the core melt and the containment failure due to overpressurization. The obtained results were considered reasonable if compared with the results obtained for the Zion and Indian Point nuclear power plants. (Author) [pt

  1. Nuclear fuel in a reactor accident.

    Science.gov (United States)

    Burns, Peter C; Ewing, Rodney C; Navrotsky, Alexandra

    2012-03-09

    Nuclear accidents that lead to melting of a reactor core create heterogeneous materials containing hundreds of radionuclides, many with short half-lives. The long-lived fission products and transuranium elements within damaged fuel remain a concern for millennia. Currently, accurate fundamental models for the prediction of release rates of radionuclides from fuel, especially in contact with water, after an accident remain limited. Relatively little is known about fuel corrosion and radionuclide release under the extreme chemical, radiation, and thermal conditions during and subsequent to a nuclear accident. We review the current understanding of nuclear fuel interactions with the environment, including studies over the relatively narrow range of geochemical, hydrological, and radiation environments relevant to geological repository performance, and discuss priorities for research needed to develop future predictive models.

  2. Accident source terms for Light-Water Nuclear Power Plants. Final report

    International Nuclear Information System (INIS)

    Soffer, L.; Burson, S.B.; Ferrell, C.M.; Lee, R.Y.; Ridgely, J.N.

    1995-02-01

    In 1962 tile US Atomic Energy Commission published TID-14844, ''Calculation of Distance Factors for Power and Test Reactors'' which specified a release of fission products from the core to the reactor containment for a postulated accident involving ''substantial meltdown of the core''. This ''source term'', tile basis for tile NRC's Regulatory Guides 1.3 and 1.4, has been used to determine compliance with tile NRC's reactor site criteria, 10 CFR Part 100, and to evaluate other important plant performance requirements. During the past 30 years substantial additional information on fission product releases has been developed based on significant severe accident research. This document utilizes this research by providing more realistic estimates of the ''source term'' release into containment, in terms of timing, nuclide types, quantities and chemical form, given a severe core-melt accident. This revised ''source term'' is to be applied to the design of future light water reactors (LWRs). Current LWR licensees may voluntarily propose applications based upon it

  3. Model for melt blockage (slug) relocation and physico-chemical interactions during core degradation under severe accident conditions

    International Nuclear Information System (INIS)

    Veshchunov, M.S.; Shestak, V.E.

    2008-01-01

    The model describing massive melt blockage (slug) relocation and physico-chemical interactions with steam and surrounding fuel rods of a bundle is developed on the base of the observations in the CORA tests. Mass exchange owing to slug oxidation and fuel rods dissolution is described by the previously developed 2D model for the molten pool oxidation. Heat fluxes in oxidising melt along with the oxidation heat effect at the melt relocation front are counterbalanced by the heat losses in the surrounding media and the fusion heat effect of the Zr claddings attacked by the melt. As a result, the slug relocation velocity is calculated from the heat flux matches at the melt propagation front (Stefan problem). A numerical module simulating the slug behaviour is developed by tight coupling of the heat and mass exchange modules. The new model demonstrates a reasonable capability to simulate the main features of the massive slug behaviour observed in the CORA-W1 test

  4. Aerosols behavior inside a PWR during an accident

    International Nuclear Information System (INIS)

    Hervouet, C.

    1983-01-01

    During very hypothetical accidents occurring in a pressurized water ractor, radioactive aerosols can be released, during core-melt, inside the reactor containment building. A good knowledge of their behavior in the humid containment atmosphere (mass concentration and size distribution) is essential in order to evaluate their harmfulness in case of environment contamination and to design possible filtration devices. Accordingly the Safety Analysis Department of the Atomic Energy Commission uses several computer models, describing the particle formation (BOIL/MARCH), then behavior in the primary circuits (TRAP-MELT), and in the reactor containment building (AEROSOLS-PARFDISEKO-III B). On the one hand, these models have been improved, in particular the one related to the aerosol formation (nature and mass of released particles) using recent experimental results. On the other hand, sensitivity analyses have been performed with the AEROSOLS code which emphasize the particle coagulation parameters: agglomerate shape factors and collision efficiency. Finally, the different computer models have been applied to the study of aerosol behavior during a 900 MWe PWR accident: loss-of-coolant-accident (small break with failure of all safety systems) [fr

  5. Severe accident assessment. Results of the reactor safety research project VAHTI

    International Nuclear Information System (INIS)

    Sairanen, R.

    1997-10-01

    The report provides a summary of the publicly funded nuclear reactor safety research project Severe Accident Management (VAHTI). The project has been conducted at the Technical Research Centre of Finland (VTT) during the years 1994-96. The main objective was to assist the severe accident management programmes of the Finnish nuclear power plants. The project was divided into five work packages: (1) thermal hydraulic validation of the APROS code, (2) core melt progression within a BWR pressure vessel, (3) failure mode of the BWR pressure vessel, (4) Aerosol behaviour experiments, and (5) development of a computerized severe accident training tool

  6. Integral thermal model of severe accident dynamics of NPP with containment

    International Nuclear Information System (INIS)

    Arutyunyan, R.V.; Bol'shov, L.A.; Vasil'ev, A.D.; Kamennov, G.P.

    1991-01-01

    An analytical model of the interaction of reactor core remains with concrete during severe accidents at nuclear power plants is considered. Time dependences of side and radial concrete melting are plotted. Time dependences of containment atmosphere temperature and pressure during a severe accident at nuclear power plants are investigated analytically and numerically. The sensitivity of the results to the coefficient values in the problem is studied within the range of their concertainty. The Kaverna-1 is described. The results of modelling a severe NPP accident which have been obtained using the Kaverna-1 package are presented

  7. Analysis of hypothetical LMFBR whole-core accidents in the USA

    International Nuclear Information System (INIS)

    Ferguson, D.R.; Deitrich, L.W.; Brown, N.W.; Waltar, A.E.

    1978-01-01

    The issue of hypothetical whole-core accidents continues to play a significant role in assessment of the potential risk to the public associated with LMFBR operation in the USA. The paper briefly characterizes the changing nature of this role, with emphasis on the current risk-oriented perspective. It then describes the models and codes used for accident analysis in the USA which have been developed under DOE sponsorship and summarizes some specific applications of the codes to the current generation of fast reactors. An assessment of future trends in this area concludes the paper

  8. The radiological consequences of degraded core accidents for the Sizewell PWR The impact of adopting revised frequencies of occurrence

    CERN Document Server

    Kelly, G N

    1983-01-01

    The radiological consequences of degraded core accidents postulated for the Sizewell PWR were assessed in an earlier study and the results published in NRPB-R137. Further analyses have since been made by the Central Electricity Generating Board (CEGB) of degraded core accidents which have led to a revision of their predicted frequencies of occurrence. The implications of these revised frequencies, in terms of the risk to the public from degraded core accidents, are evaluated in this report. Increases, by factors typically within the range of about 1.5 to 7, are predicted in the consequences, compared with those estimated in the earlier study. However, the predicted risk from degraded core accidents, despite these increases, remains exceedingly small.

  9. Severe Accident Simulation of the Laguna Verde Nuclear Power Plant

    Directory of Open Access Journals (Sweden)

    Gilberto Espinosa-Paredes

    2012-01-01

    Full Text Available The loss-of-coolant accident (LOCA simulation in the boiling water reactor (BWR of Laguna Verde Nuclear Power Plant (LVNPP at 105% of rated power is analyzed in this work. The LVNPP model was developed using RELAP/SCDAPSIM code. The lack of cooling water after the LOCA gets to the LVNPP to melting of the core that exceeds the design basis of the nuclear power plant (NPP sufficiently to cause failure of structures, materials, and systems that are needed to ensure proper cooling of the reactor core by normal means. Faced with a severe accident, the first response is to maintain the reactor core cooling by any means available, but in order to carry out such an attempt is necessary to understand fully the progression of core damage, since such action has effects that may be decisive in accident progression. The simulation considers a LOCA in the recirculation loop of the reactor with and without cooling water injection. During the progression of core damage, we analyze the cooling water injection at different times and the results show that there are significant differences in the level of core damage and hydrogen production, among other variables analyzed such as maximum surface temperature, fission products released, and debris bed height.

  10. Severe accident analysis to prevent high pressure scenarios in the EPR TM

    International Nuclear Information System (INIS)

    Azarian, G.; Gandrille, P.; Gasperini, M.; Klein, R.

    2010-01-01

    The EPR TM has incorporated several design features in order to specifically address major severe accident safety issues. In particular, it was designed with the objective to transfer high pressure core melt scenarios into a low pressure scenario with high reliability so that a high pressure vessel failure can be practically eliminated. It is the key issue in the defense-in-depth approach, for a postulated severe accident with core melting, to prevent any risk of containment failure due to possible Direct Containment Heating or due to reactor vessel rocketing which results from vessel failure at high pressure. Temperature-induced steam generator tube rupture, which could lead to a radiological containment bypass, has also to be prevented. On the basis of the analysis of the main high pressure core melt scenarios which are calculated with the MAAP4.07 code which was developed to support the EPR TM, this paper explores the benefits of primary depressurization by dedicated valves on transient evolutions. It specifically addresses the thermal response of the structures by sensitivity studies involving the timing of valve actuation. It outlines that a grace period of at least one hour is available for a delayed valve actuation without inducing excessive loads and without increasing the risk of a temperature-induced steam generator tube rupture. (authors)

  11. Oxidation effect on steel corrosion and thermal loads during corium melt in-vessel retention

    Energy Technology Data Exchange (ETDEWEB)

    Granovsky, V.S.; Khabensky, V.B.; Krushinov, E.V.; Vitol, S.A.; Sulatsky, A.A.; Almjashev, V.I. [Alexandrov Scientific-Research Technology Institute (NITI), Sosnovy Bor (Russian Federation); Bechta, S.V. [KTH, Stockholm (Sweden); Gusarov, V.V. [SPb State Technology University (SPbGTU), St. Petersburg (Russian Federation); Barrachin, M. [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), St Paul lez Durance (France); Bottomley, P.D., E-mail: paul.bottomley@ec.europa.eu [EC-Joint Research Centre, Institute for Transuranium Elements (ITU), Karlsruhe (Germany); Fischer, M. [AREVA GmbH, Erlangen (Germany); Piluso, P. [Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Cadarache, St Paul lez Durance (France)

    2014-10-15

    Highlights: • The METCOR facility simulates vessel steel corrosion in contact with corium. • Steel corrosion rates in UO{sub 2+x}–ZrO{sub 2}–FeO{sub y} coria accelerate above 1050 K. • However corrosion rates can also be limited by melt O{sub 2} supply. • The impact of this on in-vessel retention (IVR) strategy is discussed. - Abstract: During a severe accident with core meltdown, the in-vessel molten core retention is challenged by the vessel steel ablation due to thermal and physicochemical interaction of melt with steel. In accidents with oxidizing atmosphere above the melt surface, a low melting point UO{sub 2+x}–ZrO{sub 2}–FeO{sub y} corium pool can form. In this case ablation of the RPV steel interacting with the molten corium is a corrosion process. Experiments carried out within the International Scientific and Technology Center's (ISTC) METCOR Project have shown that the corrosion rate can vary and depends on both surface temperature of the RPV steel and oxygen potential of the melt. If the oxygen potential is low, the corrosion rate is controlled by the solid phase diffusion of Fe ions in the corrosion layer. At high oxygen potential and steel surface layer temperature of 1050 °C and higher, the corrosion rate intensifies because of corrosion layer liquefaction and liquid phase diffusion of Fe ions. The paper analyzes conditions under which corrosion intensification occurs and can impact on in-vessel melt retention (IVR)

  12. The role of fission products in whole core accidents

    Energy Technology Data Exchange (ETDEWEB)

    Baker, A R [FRSD, UKAEA, RNPDE, Risley, Warrington (United Kingdom); Teague, H J [SRD, UKAEA, Culcheth, Warrington (United Kingdom)

    1977-07-01

    The review of the role of fission products in whole-core accidents falls into two parts. Firstly, there is a discussion of the hypothetical accidents usually considered in the UK and how they are dealt with. Secondly, there is a discussion of individual topics where fission products are known to be important or might be so. There is a brief discussion of the UK work on the establishment of an equation of state for unirradiated fuel and how this might be extended to incorporate fission product effects. The main issue is the contribution of fission products to the effective vapour pressure and the experimental programme on the pulsed reactor VIPER investigates this. Fission products may influence the probability of occurrence and the severity of MFCIs. Finally, the fission product effects in the pre-disassembly, disassembly and recriticality stages of an accident are discussed. (author)

  13. Comparative study of heterogeneous and homogeneous LMFBR cores in some accident conditions

    International Nuclear Information System (INIS)

    Renard, A.; Evrard, G.

    1978-01-01

    An heterogeneous design and a homogeneous one of a LMFBR core with the same power and similar dimensions are compared from the safety point-of-view. The comparison is performed for several accident conditions, such as Loss-of-Flow and Transient Overpower, with the same failure criteria and model assumptions for both cores. Qualitative trends are deduced from the behaviour of the core designs in the investigated transient conditions. (author)

  14. Severe accident management; the approach in the USA. Applications of US methods in Europe. Other approaches in Europe

    International Nuclear Information System (INIS)

    Vayssier, G.

    1999-01-01

    In this lecture severe accident management, applications of US methods in Europe are presented. Author deals with historical perspective, US industry position to core melt accidents, method of Westinghouse owners group, method of Combustion Engineering owners group, method of Babcock and Wilcox Owners group, interaction with/inspection by the USNRC and with assessment of US SAMG methods

  15. Post-accident heat removal research: A state of the art review

    International Nuclear Information System (INIS)

    Mueller, U.; Schulenberg, T.

    1983-11-01

    For a realistic assessment of the consequence of extremely unlikely reactor accidents resulting in core degradation or core meltdown key questions are how to remove the decay heat from the reactor system and how to retain the radioactive core debris within the containment. Usually, this complex of questions is referred to as Post-Accident Heat Removal (PAHR). In this article the research work on PAHR performed by various institutions during the last decade has been reviewed. The main results have been summarized under the chapter headings ''Accident Scenarios,'' - ''Core Debris Accommodation Concepts,'' and ''PAHR Topics.'' Particular emphasis has been placed on the presentation of the following problems: characteristics and coolability of solid core debris in the vector vessel, heat removal from molten pools of core material, and core-melt interaction with structural materials. Some unresolved or insufficiently answered questions relating to special ''PAHR Topics'' have been mentioned or discussed at the end of the particular Chapter. Problem areas of major uncertainty have been identified and listed at the end of the review article. They include the following subjects: formation of debris beds and bed characteristics, post dryout behaviour of particle beds, long-term availability and proper location of heat sinks, creep rupture of structures under high thermal loads. (orig.) [de

  16. Accident response in France

    International Nuclear Information System (INIS)

    Duco, J.; L'Homme, A.; Queniart, D.

    1988-07-01

    French PWR power plant design relies basically on a deterministic approach. A probabilistic approach was introduced in France in the early seventies to define safety provisions against external impacts. In 1977 an overall safety objective was issued by the safety authority in terms of an upper probability limit for having unacceptable consequences. Additional measures were taken (the ''H'' operating procedures) to complement the automatic systems normally provided by the initial design, so as to safisfy the safety objective. The TMI-2 accident enhanced the interest in confused situations in which possible multiple equipment failure and/or unappropriate previous actions of the operators impede the implementation of any of the existing event-oriented procedures. In such situations, the objective becomes to avoid core-melt by any means available: this is the goal of the Ul symptom-oriented procedure. Whenever a core-melt occurs, the radioactive releases into the environment must be compatible with the feasibility of the off-site emergency plans; that means that for some hypothetical, but still conceivable scenarios, provisions have to be made to delay and limit the consequences of the loss of the containment: the U2, U4 and U5 ultimate procedures have been elaborated for that purpose. For the case of an emergency, a nationwide organization has been set up to provide the plant operator with a redundant technical expertise, to help him save his plant or mitigate the radiological consequences of a core-melt

  17. Analyses of containment loading by hydrogen burning during hypothetical core meltdown accidents

    International Nuclear Information System (INIS)

    Bracht, K.; Tiltmann, M.

    1983-01-01

    The possibility of occurance of violent hydrogen burning during a LWR meltdown accident and its consequences to containment atmosphere conditions are discussed. Two accident sequences with low and high system pressure during the in-vessel-melt phase of a meltdown accident are considered. In both sequences only deflagration, but no detonation may become possible, presuming homogeneity of the containment atmospheres. In a low pressure szenario the pressure increase due to deflagration will not reach the failure pressure of the containment, if combustion takes place when the flammability limit is reached. For the special situation of a rapid release of steam and hydrogen after a high-pressure failure of a reactor pressure vessel, calculations with a multicompartment code show that the possibility for hydrogen burning does not exist. Thus, an additional augmentation of the steam spike as a consequence of the failure of the pressure vessel cannot occur. (orig.)

  18. A 400-year ice core melt layer record of summertime warming in the Alaska Range

    Science.gov (United States)

    Winski, D.; Osterberg, E. C.; Kreutz, K. J.; Wake, C. P.; Ferris, D. G.; Campbell, S. W.; Baum, M.; Raudzens Bailey, A.; Birkel, S. D.; Introne, D.; Handley, M.

    2017-12-01

    Warming in high-elevation regions has socially relevant impacts on glacier mass balance, water resources, and sensitive alpine ecosystems, yet very few high-elevation temperature records exist from the middle or high latitudes. While many terrestrial paleoclimate records provide critical temperature records from low elevations over recent centuries, melt layers preserved in alpine glaciers present an opportunity to develop calibrated, annually-resolved temperature records from high elevations. We present a 400-year temperature record based on the melt-layer stratigraphy in two ice cores collected from Mt. Hunter in the Central Alaska Range. The ice core record shows a 60-fold increase in melt frequency and water equivalent melt thickness between the pre-industrial period (before 1850) and present day. We calibrate the melt record to summer temperatures based on local and regional weather station analyses, and find that the increase in melt production represents a summer warming of at least 2° C, exceeding rates of temperature increase at most low elevation sites in Alaska. The Mt. Hunter melt layer record is significantly (p<0.05) correlated with surface temperatures in the central tropical Pacific through a Rossby-wave like pattern that induces high temperatures over Alaska. Our results show that rapid alpine warming has taken place in the Alaska Range for at least a century, and that conditions in the tropical oceans contribute to this warming.

  19. Contribution of Anticipated Transients Without Scram (ATWS) to core melt at United States nuclear power plants

    International Nuclear Information System (INIS)

    Giachetti, R.T.

    1989-09-01

    This report looks at WASH-1400 and several other Probabilistic Risk Assessments (PRAs) and Probabilistic Safety Studies (PSSs) to determine the contribution of Anticipated Transients Without Scram (ATWS) events to the total core melt probability at eight nuclear power plants in the United States. After considering each plant individually, the results are compared from plant to plant to see if any generic conclusions regarding ATWS, or core melt in general, can be made. 8 refs., 34 tabs

  20. Coupled 3D-neutronics / thermal-hydraulics analysis of an unprotected loss-of-flow accident for a 3600 MWth SFR core

    International Nuclear Information System (INIS)

    Sun, K.; Chenu, A.; Mikityuk, K.; Krepel, J.; Chawla, R.

    2012-01-01

    The core behaviour of a large (3600 MWth) sodium-cooled fast reactor (SFR) is investigated in this paper with the use of a coupled TRACE/PARCS model. The SFR neutron spectrum is characterized by several performance advantages, but also leads to one dominating neutronics drawback - a positive sodium void reactivity. This implies a positive reactivity effect when sodium coolant is removed from the core. In order to evaluate such feedback in terms of the dynamics, a representative unprotected loss-of-flow (ULOF) transient, i.e. flow run-down without SCRAM in which sodium boiling occurs, is analyzed. Although analysis of a single transient cannot allow general conclusions to be drawn, it does allow better understanding of the underlying physics and can lead to proposals for improving the core response during such an accident. The starting point of this study is the reference core design considered in the framework of the Collaborative Project on the European Sodium Fast Reactor (CP-ESFR). To reduce the void effect, the core has been modified by introducing an upper sodium plenum (along with a boron layer) and by reducing the core height-to-diameter ratio. For the ULOF considered, a sharp increase in core power results in melting of the fuel in the case of the reference core. In the modified core, a large dryout leads to melting of the clad. It seems that, for the hypothetical event considered, fuel failure cannot be avoided with just improvement of the neutronics design; therefore, thermal-hydraulics optimization has been considered. An innovative assembly design is proposed to prevent sodium vapour blocking the fuel channel. This results in preventing a downward propagation of the sodium boiling to the core center, thus limiting it to the upper region. Such a void map introduces a negative coolant density reactivity feedback, which dominates the total reactivity change. As a result, the power level and the fuel temperature are effectively reduced, and a large dryout

  1. Coupled 3D-neutronics / thermal-hydraulics analysis of an unprotected loss-of-flow accident for a 3600 MWth SFR core

    Energy Technology Data Exchange (ETDEWEB)

    Sun, K. [Paul Scherrer Institut PSI, 5232 Villigen PSI (Switzerland); Ecole Polytechnique Federale de Lausanne EPFL, 1015 Lausanne (Switzerland); Chenu, A. [Ecole Polytechnique Federale de Lausanne EPFL, 1015 Lausanne (Switzerland); Mikityuk, K.; Krepel, J. [Paul Scherrer Institut PSI, 5232 Villigen PSI (Switzerland); Chawla, R. [Paul Scherrer Institut PSI, 5232 Villigen PSI (Switzerland); Ecole Polytechnique Federale de Lausanne EPFL, 1015 Lausanne (Switzerland)

    2012-07-01

    The core behaviour of a large (3600 MWth) sodium-cooled fast reactor (SFR) is investigated in this paper with the use of a coupled TRACE/PARCS model. The SFR neutron spectrum is characterized by several performance advantages, but also leads to one dominating neutronics drawback - a positive sodium void reactivity. This implies a positive reactivity effect when sodium coolant is removed from the core. In order to evaluate such feedback in terms of the dynamics, a representative unprotected loss-of-flow (ULOF) transient, i.e. flow run-down without SCRAM in which sodium boiling occurs, is analyzed. Although analysis of a single transient cannot allow general conclusions to be drawn, it does allow better understanding of the underlying physics and can lead to proposals for improving the core response during such an accident. The starting point of this study is the reference core design considered in the framework of the Collaborative Project on the European Sodium Fast Reactor (CP-ESFR). To reduce the void effect, the core has been modified by introducing an upper sodium plenum (along with a boron layer) and by reducing the core height-to-diameter ratio. For the ULOF considered, a sharp increase in core power results in melting of the fuel in the case of the reference core. In the modified core, a large dryout leads to melting of the clad. It seems that, for the hypothetical event considered, fuel failure cannot be avoided with just improvement of the neutronics design; therefore, thermal-hydraulics optimization has been considered. An innovative assembly design is proposed to prevent sodium vapour blocking the fuel channel. This results in preventing a downward propagation of the sodium boiling to the core center, thus limiting it to the upper region. Such a void map introduces a negative coolant density reactivity feedback, which dominates the total reactivity change. As a result, the power level and the fuel temperature are effectively reduced, and a large dryout

  2. Viscosity measurements on metal melts at high pressure and viscosity calculations for the earth's core

    International Nuclear Information System (INIS)

    Mineev, Vladimir N; Funtikov, Aleksandr I

    2004-01-01

    A review is given of experimental and calculated data on the viscosity of iron-based melts on the melting curve. The interest in these data originates in the division of opinion on whether viscosity increases rather moderately or considerably in the high-pressure range. This disagreement is especially pronounced in the interpretation of the values of molten iron and its compounds in the environment of the earth's outer core. The conclusion on a substantial rise in viscosity mostly follows from the universal law, proposed by Brazhkin and Lyapin [1], of viscosity changing along the metal melting curve in the high-pressure range. The review analyzes available experimental and computational data, including the most recent ones. Data on viscosity of metals under shock wave compression in the megabar pressure range are also discussed. It is shown that data on viscosity of metal melts point to a small increase of viscosity on the melting curve. Specifics are discussed of the phase diagram of iron made more complex by the presence of several phase transitions and by the uncertainty in the position of the melting curve in the high-pressure range. Inaccuracies that arise in extrapolating the results of viscosity measurements to the pressure range corresponding to the earth's core environment are pointed out. (reviews of topical problems)

  3. Perspectives on phenomenology and simulation of severe accident in light water reactors

    International Nuclear Information System (INIS)

    Sugimoto, Jun

    2014-01-01

    Severe accident phenomena in light water reactors (LWRs) are generally characterized by their physically and chemically complex processes involved with high temperature core melt, multi-component and multi-phase flows, transport of radioactive materials and sometimes highly non-equilibrium state. Severe accident phenomenology is usually categorized into four phases; (1) fuel degradation, (2) in-vessel phenomena, (3) ex-vessel phenomena and (4) fission product release and transport. Among these, ex-vessel phenomena consist of five subcategories; 1) direct containment heating, 2) fuel coolant interaction (steam explosion), 3) molten core concrete interaction, 4) hydrogen behaviour and control and 5) containment failure/leakage. In the field of simulation of severe accident, severe accident analytical codes have been developed in the United States, EU and Japan, such as MAAP, MELCOR, ASTEC, THALES and SAMPSON. Many different kinds of analytical codes for the specific severe accident phenomena have also been developed worldwide. After the accident at Fukushima Daiichi Nuclear Power Station, review of severe accident research issues has been conducted and several issues are reconsidered, such as effects of BWR core degradation behaviors, sea water injection, pool scrubbing under rapid depressurization, containment failure/leakage and re-criticality. Some new experimental and analytical efforts have been started after the Fukushima accident. The present paper describes the perspectives on phenomenology and simulation of severe accident in LWRs, with the emphasis of insights obtained in the review of Fukushima accident. (author)

  4. Interpretation of the results of the CORA-33 dry core BWR test

    International Nuclear Information System (INIS)

    Ott, L.J.; Hagen, S.

    1993-01-01

    All BWR degraded core experiments performed prior to CORA-33 were conducted under ''wet'' core degradation conditions for which water remains within the core and continuous steaming feeds metal/steam oxidation reactions on the in-core metallic surfaces. However, one dominant set of accident scenarios would occur with reduced metal oxidation under ''dry'' core degradation conditions and, prior to CORA-33, this set had been neglected experimentally. The CORA-33 experiment was designed specifically to address this dominant set of BWR ''dry'' core severe accident scenarios and to partially resolve phenomenological uncertainties concerning the behavior of relocating metallic melts draining into the lower regions of a ''dry'' BWR core. CORA-33 was conducted on October 1, 1992, in the CORA tests facility at KfK. Review of the CORA-33 data indicates that the test objectives were achieved; that is, core degradation occurred at a core heatup rate and a test section axial temperature profile that are prototypic of full-core nuclear power plant (NPP) simulations at ''dry'' core conditions. Simulations of the CORA-33 test at ORNL have required modification of existing control blade/canister materials interaction models to include the eutectic melting of the stainless steel/Zircaloy interaction products and the heat of mixing of stainless steel and Zircaloy. The timing and location of canister failure and melt intrusion into the fuel assembly appear to be adequately simulated by the ORNL models. This paper will present the results of the posttest analyses carried out at ORNL based upon the experimental data and the posttest examination of the test bundle at KfK. The implications of these results with respect to degraded core modeling and the associated safety issues are also discussed

  5. Three Mile Island accident

    International Nuclear Information System (INIS)

    Barre, B.; Olivier, E.; Roux, J.P.; Pelle, P.

    2010-01-01

    Deluded by equivocal instrumentation signals, operators at TMI-2 (Three Mile Island - unit 2) misunderstood what was going on in the reactor and for 2 hours were taking inadequate decisions that turned a reactor incident into a major nuclear event that led to the melting of about one third of the core. The TMI accident had worldwide impacts in the domain of nuclear safety. The main consequences in France were: 1) the introduction of the major accident approach and the reinforcement of crisis management; 2) the improvement of the reactor design, particularly that of the pressurizer valves; 3) the implementation of safety probabilistic studies; 4) a better taking into account of the feedback experience in reactor operations; and 5) a better taking into account of the humane factor in reactor safety. (A.C.)

  6. Accidents and transients analyses of a super fast reactor with single flow pass core

    International Nuclear Information System (INIS)

    Sutanto,; Oka, Yoshiaki

    2014-01-01

    Highlights: • Safety analysis of a Super FR with single flow pass core is conducted. • Loss of feed water flow leads to a direct effect on the loss of fuel channel flow. • The core pressure is sensitive to LOCA accidents due to the direct effect. • Small LOCA introduces a critical break. • The safety criteria for all selected events are satisfied. - Abstract: The supercritical water cooled fast reactor with single flow pass core has been designed to simplify refueling and the structures of upper and lower mixing plenums. To evaluate the safety performance, safety analysis has been conducted with regard to LOCA and non-LOCA accidents including transient events. Safety analysis results show that the safety criteria are satisfied for all selected events. The total loss of feed water flow is the most important accident which the maximum cladding surface temperature (MCST) is high due to a direct effect of the accident on the total loss of flow in all fuel assemblies. However, actuation of the ADS can mitigate the accident. Small LOCA also introduces a critical break at 7.8% break which results high MCST at BOC because the scram and ADS are not actuated. Early ADS actuation is effective to mitigate the accident. In large LOCA, 100% break LOCA results a high MCST of flooding phase at BOC due to high power peaking at the bottom part. Use of high injection flow rate by 2 LPCI units is effective to decrease the MCST

  7. A Basic Study on the Ejection of ICI Nozzle under Severe Accidents

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jong Rae; Bae, Ji Hoon; Bang, Kwang Hyun [Korea Maritime and Ocean University, Busan (Korea, Republic of); Park, Jong Woong [Dongguk University, Gyeongju (Korea, Republic of)

    2016-05-15

    Nozzle injection should be blocked because it affect to the environment if its melting core exposes outside. The purpose of this study is to carry out the thermos mechanical analysis due to debris relocation under severe accidents and to predict the nozzle ejection calculated considering the contact between the nozzle and lower head, and the supports of pipe cables. As a result of analyzing process of severe accidents, there was melting reaction between nozzle and the lower head. In this situation, we might predict the non-uniform contact region of nozzle hole of lower head and nozzle outside, delaying ejection of nozzles. But after melting, the average remaining length of the nozzle was 120mm and the maximum vertical displacement of lower nozzle near the weld is 3.3mm so there would be no nozzle this model, because the cable supports restrains the vertical displacement of nozzle.

  8. Effect of Fuel Structure Materials on Radiation Source Term in Reactor Core Meltdown

    International Nuclear Information System (INIS)

    Jeong, Hae Sun; Ha, Kwang Soon

    2014-01-01

    The fission product (Radiation Source) releases from the reactor core into the containment is obligatorily evaluated to guarantee the safety of Nuclear Power Plant (NPP) under the hypothetical accident involving a core meltdown. The initial core inventory is used as a starting point of all radiological consequences and effects on the subsequent results of accident assessment. Hence, a proper evaluation for the inventory can be regarded as one of the most important part over the entire procedure of accident analysis. The inventory of fission products is typically evaluated on the basis of the uranium material (e.g., UO2 and USi2) loaded in nuclear fuel assembly, except for the structure materials such as the end fittings, grids, and some kinds of springs. However, the structure materials are continually activated by the neutrons generated from the nuclear fission, and some nuclides of them (e.g., 14 C and 60 Co) can significantly influence on accident assessment. During the severe core accident, the structure components can be also melted with the melting points of temperature relatively lower than uranium material. A series of the calculation were performed by using ORIGEN-S module in SCALE 6.1 package code system. The total activity in each part of structure materials was specifically analyzed from these calculations. The fission product inventory is generally evaluated based on the uranium materials of fuel only, even though the structure components of the assembly are continually activated by the neutrons generated from the nuclear fission. In this study, the activation calculation of the fuel structure materials was performed for the initial source term assessment in the accident of reactor core meltdown. As a result, the lower end fitting and the upper plenum greatly contribute to the total activity except for the cladding material. The nuclides of 56 Mn, '5 1 Cr, 55 Fe, 58 Co, 54 Mn, and 60 Co are analyzed to mainly effect on the activity. This result

  9. COMSORS: A light water reactor chemical core catcher

    International Nuclear Information System (INIS)

    Forsberg, C.W.; Parker, G.W.; Rudolph, J.C.; Osborne-Lee, I.W.

    1997-01-01

    The Core-Melt Source Reduction System (COMSORS) is a new approach to terminate lightwater reactor (LWR) core-melt accidents and ensure containment integrity. A special dissolution glass made of lead oxide (PbO) and boron oxide (B 2 O 3 ) is placed under the reactor vessel. If molten core debris is released onto the glass, the following sequence happens: (1) the glass absorbs decay heat as its temperature increases and the glass softens; (2) the core debris dissolves into the molten glass; (3) molten glass convective currents create a homogeneous high-level waste (HLW) glass; (4) the molten glass spreads into a wider pool, distributing the heat for removal by radiation to the reactor cavity above or transfer to water on top of the molten glass; and (5) the glass solidifies as increased surface cooling area and decreasing radioactive decay heat generation allows heat removal to exceed heat generation

  10. On the failure modes of alternative containment designs following postulated core meltdown

    International Nuclear Information System (INIS)

    Chan, C.K.; Knee, H.E.; Okrent, D.

    1977-01-01

    The containment response to a postulated core meltdown accident in a PWR ice condenser containment, a BWR Mark III containment and a BWR non-inerted Mark I containment has been examined to see if the WASH-1400 containment failure mode judgement for the Surry large, dry containment and the Peach Bottom Mark I inerted-containment are likely to be appropriate for these alternative containment plant designs. For the PWR, the representative accident chosen for the analysis is a large cold leg break accompanied by a loss of all electric power while the BWR respresentative event chosen is a recirculation line break without adequate core cooling function. Two containment event paths are studied for each of these two cases, depending on whether or not containment vapor suppression function is assumed to be available. Both the core and the containment pressure and temperature response to the accident events are computed for the four time intervals which characterize (a) blowdown of the pipe break, (b) core melt, (c) vessel melt-through, and (d) containment foundation penetration. The calculations are based on a best esimate of the most probable sequence, but certain phenomena and events were followed down multiple tracks. It appears that the non-inerted Mark I containment is not so vulnerable to overpressurization from hydrogen burning as the Mark III; however, acceptable temperatures may be exceeded. (Auth.)

  11. On the sequence and consequences of the Chernobyl reactor accident

    Energy Technology Data Exchange (ETDEWEB)

    Hennies, H H

    1986-01-01

    A serious reactor accident occurred on April 26, 1986 at Chernobyl near Kiev (Soviet Union) where, after melting of the core, there was a considerable release of radioactivity to the environment and to the atmosphere. The radioactivity release caused irradiation of the operating staff, which led to 24 deaths by June 1986. Hardly anything is known about the irradiation of the environment of the reactor plant, but the population within a radius of 30 km was evacuated. The radioactivity released into the atmosphere spread all over Europe, and Germany was affected a few days after the accident. The article gives a short description of the plant which suffered the accident, one tries to describe the course of the accident and to discuss the applicability to German plants.

  12. Shock Compression and Melting of an Fe-Ni-Si Alloy: Implications for the Temperature Profile of the Earth's Core and the Heat Flux Across the Core-Mantle Boundary

    Science.gov (United States)

    Zhang, Youjun; Sekine, Toshimori; Lin, Jung-Fu; He, Hongliang; Liu, Fusheng; Zhang, Mingjian; Sato, Tomoko; Zhu, Wenjun; Yu, Yin

    2018-02-01

    Understanding the melting behavior and the thermal equation of state of Fe-Ni alloyed with candidate light elements at conditions of the Earth's core is critical for our knowledge of the region's thermal structure and chemical composition and the heat flow across the liquid outer core into the lowermost mantle. Here we studied the shock equation of state and melting curve of an Fe-8 wt% Ni-10 wt% Si alloy up to 250 GPa by hypervelocity impacts with direct velocity and reliable temperature measurements. Our results show that the addition of 10 wt% Si to Fe-8 wt% Ni alloy slightly depresses the melting temperature of iron by 200-300 (±200) K at the core-mantle boundary ( 136 GPa) and by 600-800 (±500) K at the inner core-outer core boundary ( 330 GPa), respectively. Our results indicate that Si has a relatively mild effect on the melting temperature of iron compared with S and O. Our thermodynamic modeling shows that Fe-5 wt% Ni alloyed with 6 wt% Si and 2 wt% S (which has a density-velocity profile that matches the outer core's seismic profile well) exhibits an adiabatic profile with temperatures of 3900 K and 5300 K at the top and bottom of the outer core, respectively. If Si is a major light element in the core, a geotherm modeled for the outer core indicates a thermal gradient of 5.8-6.8 (±1.6) K/km in the D″ region and a high heat flow of 13-19 TW across the core-mantle boundary.

  13. Melting and solidification behavior of Cu/Al and Ti/Al bimetallic core/shell nanoparticles during additive manufacturing by molecular dynamics simulation

    Science.gov (United States)

    Rahmani, Farzin; Jeon, Jungmin; Jiang, Shan; Nouranian, Sasan

    2018-05-01

    Molecular dynamics (MD) simulations were performed to investigate the role of core volume fraction and number of fusing nanoparticles (NPs) on the melting and solidification of Cu/Al and Ti/Al bimetallic core/shell NPs during a superfast heating and slow cooling process, roughly mimicking the conditions of selective laser melting (SLM). One recent trend in the SLM process is the rapid prototyping of nanoscopically heterogeneous alloys, wherein the precious core metal maintains its particulate nature in the final manufactured part. With this potential application in focus, the current work reveals the fundamental role of the interface in the two-stage melting of the core/shell alloy NPs. For a two-NP system, the melting zone gets broader as the core volume fraction increases. This effect is more pronounced for the Ti/Al system than the Cu/Al system because of a larger difference between the melting temperatures of the shell and core metals in the former than the latter. In a larger six-NP system (more nanoscopically heterogeneous), the melting and solidification temperatures of the shell Al roughly coincide, irrespective of the heating or cooling rate, implying that in the SLM process, the part manufacturing time can be reduced due to solidification taking place at higher temperatures. The nanostructure evolution during the cooling of six-NP systems is further investigated. [Figure not available: see fulltext.

  14. Modelling of heat transfer between molten core and concrete with account of phase changes in the melt

    International Nuclear Information System (INIS)

    Petukhov, S.M.; Zemlianoukhin, V.V.

    1992-01-01

    The analysis of the process of heat transfer between molten corium and concrete in the case of severe accident in a PWR is performed. It is shown that Bradley's model may be improved for the case of an oxidic melt. A new model is developed and incorporated in the WECHSL-Mod2 Code. Post-test calculations of melt-concrete interaction experiments are carried out. The comparison and analysis of the experimental results and calculations are presented. (9 figures) (Author)

  15. Analysis of a postulated accident scenario involving loss of forced flow in a LMFBR

    International Nuclear Information System (INIS)

    Moreira, M.L.

    1985-01-01

    A model to analyse a postulated accident scenario involving loss of forced flow in the reactor vessel of a LMFBR is used. Five phases of the accident are analysed: Natural Circulation, Subcooled Boiling, Nucleate Boiling, Core Dryout and Cladding melt. The heat conduction in the fuel cladding, coolant and lower and upper plenum are calculated by a lump-parameter model. Physical data of a prototype LMFBR reactor were used for the calculation. (author)

  16. Analysis methodology for RBMK-1500 core safety and investigations on corium coolability during a LWR severe accident

    Energy Technology Data Exchange (ETDEWEB)

    Jasiulevicius, Audrius

    2003-07-01

    This thesis presents the work involving two broad aspects within the field of nuclear reactor analysis and safety. These are: - development of a fully independent reactor dynamics and safety analysis methodology of the RBMK-1500 core transient accidents and - experiments on the enhancement of coolability of a particulate bed or a melt pool due to heat removal through the control rod guide tubes. The first part of the thesis focuses on the development of the RBMK-1500 analysis methodology based on the CORETRAN code package. The second part investigates the issue of coolability during severe accidents in LWR type reactors: the coolability of debris bed and melt pool for in-vessel and ex-vessel conditions. The first chapter briefly presents the status of developments in both the RBMK-1500 core analysis and the corium coolability areas. The second chapter describes the generation of the RBMK-1500 neutron cross section data library with the HELIOS code. The cross section library was developed for the whole range of the reactor conditions. The results of the benchmarking with the WIMS-D4 code and validation against the RBMK Critical Facility experiments is also presented here. The HELIOS generated neutron cross section data library provides a close agreement with the WIMS-D4 code results. The validation against the data from the Critical Experiments shows that the HELIOS generated neutron cross section library provides excellent predictions for the criticality, axial and radial power distribution, control rod reactivity worths and coolant reactivity effects, etc. The reactivity effects of voiding for the system, fuel assembly and additional absorber channel are underpredicted in the calculations using the HELIOS code generated neutron cross sections. The underprediction, however, is much less than that obtained when the WIMS-D4 code generated cross sections are employed. The third chapter describes the work, performed towards the accurate prediction, assessment and

  17. Research and development strategy on the behavior of containments during severe accidents

    International Nuclear Information System (INIS)

    Lecomte, C.

    1990-06-01

    In case of an hypothetical severe accident leading to core melting, the last barrier preventing radionucleide release in the environnment is the containment of the main reactor building. The French research and development programmes aimed at understanding the containment behavior during severe accidents relate to several domains; some of them are: - assessment of hydrogen behavior - corium behavior and coolability - ultimate resistance of the containments and leaktightness - caracterization of filtered venting procedure. All these aspects are covered by code calculations and experimental developments

  18. A study of core melting phenomena in reactor severe accident of PWR

    Energy Technology Data Exchange (ETDEWEB)

    Jeun, Gyoo Dong; Park, Shane; Kim, Jong Sun; Kim, Sung Joong [Hanyang Univ., Seoul (Korea, Republic of); Kim, Jin Man [Korea Maritime Univ., Busan (Korea, Republic of)

    2001-03-15

    In the 4th year, SCDAP/RELAP5 best estimate input data obtained from the TMI-2 accident analysis were applied to the analysis of domestic nuclear power plant. Ulchin nuclear power plant unit 3, 4 were selected as reference plant and steam generator tube rupture, station blackout SCDAP/RELAP5 calculation were performed to verify the adequacy of the best estimate input parameters and the adequacy of related models. Also, System 80+ EVSE simulation was executed to study steam explosion phenomena in the reactor cavity and EVSE load test was performed on the simplified reactor cavity geometry using TRACER-II code.

  19. Summary of severe accident assessment for Atucha 2 Nuclear Power Plant using RELAP5/SCDAPSIM Mod3.6

    International Nuclear Information System (INIS)

    Bonelli, Analia; Mazzantini, Oscar; Siefken, Larry; Allison, Chris

    2014-01-01

    A severe accident assessment was performed for the Atucha 2 Nuclear Power Plant in Argentina. Atucha 2 is a PHWR, cooled and moderated by heavy water, presently in commissioning process. Its 451 fuel assemblies are 6.03m high and each composed of 37 Zircaloy clad fuel rods. Each assembly is placed inside an individual Zircaloy coolant channel. Heavy water coolant flows inside the channels which are all immersed inside the moderator tank. The RPV lower plenum is occupied by a massive steel structure called 'filling body' that was designed to minimize heavy water inventory. Due to some unique design characteristics, severe accident progression in Atucha 2 is expected to be somewhat different from that predicted for regular PWRs. Therefore, a very detailed assessment was performed, focused on the different accident stages and expected phenomena by the use of different input models and nodalizations. When possible, linking to available experimental data was performed. RELAP/SCDAPSIM Mod 3.6 was the computer code selected to perform this task. The modeling of Atucha 2's unique characteristics required several extensions to the code. For the severe accident assessment of Atucha 2, three different input models were developed that were key instruments for the debugging and evaluation process. A Single Channel Model was used to evaluate the first stages of core heatup (including the boiloff of the channels and moderator tank), an RPV standalone model was used to assess the interaction between components in the complete core and for the evaluation of late in-core melting and relocation. Then, a Lower Plenum standalone model was developed to assess the behavior of the melted and slumped core material on top of the filling body and to analyze ex-vessel cooling as a possible severe accident management action. For each of the cases, highlights of key results are shown and general conclusions are drawn. In the case of a severe accident with significant meltdown of

  20. The development of severe accident analysis technology

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Heuy Dong; Cho, Sung Won; Kim, Sang Baek; Park, Jong Hwa; Lee, Kyu Jung; Park, Lae Joon; Hu, Hoh; Hong, Sung Wan [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1993-07-01

    The objective of the development of severe accident analysis technology is to understand the severe accident phenomena such as core melt progression and to provide a reliable analytical tool to assess severe accidents in a nuclear power plant. Furthermore, establishment of the accident management strategies for the prevention/mitigation of severe accidents is also the purpose of this research. The study may be categorized into three areas. For the first area, two specific issues were reviewed to identify the further research direction, that is the natural circulation in the reactor coolant system and the fuel-coolant interaction as an in-vessel and an ex-vessel phenomenological study. For the second area, the MELCOR and the CONTAIN codes have been upgraded, and a validation calculation of the MELCOR has been performed for the PHEBUS-B9+ experiment. Finally, the experimental program has been established for the in-vessel and the ex-vessel severe accident phenomena with the in-pile test loop in KMRR and the integral containment test facilities, respectively. (Author).

  1. MORECA: A computer code for simulating modular high-temperature gas-cooled reactor core heatup accidents

    International Nuclear Information System (INIS)

    Ball, S.J.

    1991-10-01

    The design features of the modular high-temperature gas-cooled reactor (MHTGR) have the potential to make it essentially invulnerable to damage from postulated core heatup accidents. This report describes the ORNL MORECA code, which was developed for analyzing postulated long-term core heatup scenarios for which active cooling systems used to remove afterheat following the accidents can be assumed to the unavailable. Simulations of long-term loss-of-forced-convection accidents, both with and without depressurization of the primary coolant, have shown that maximum core temperatures stay below the point at which any significant fuel failures and fission product releases are expected. Sensitivity studies also have been done to determine the effects of errors in the predictions due both to uncertainties in the modeling and to the assumptions about operational parameters. MORECA models the US Department of Energy reference design of a standard MHTGR

  2. APRI-6. Accident Phenomena of Risk Importance

    International Nuclear Information System (INIS)

    Garis, Ninos; Ljung, J

    2009-06-01

    Since the early 1980s, nuclear power utilities in Sweden and the Swedish Radiation Safety Authority (SSM) collaborate on the research in severe reactor accidents. In the beginning focus was mostly on strengthening protection against environmental impacts after a severe reactor accident, for example by develop systems for the filtered relief of the reactor containment. Since the early 90s, this focus has shifted to the phenomenological issues of risk-dominant significance. During the years 2006-2008, the partnership continued in the research project APRI-6. The aim was to show whether the solutions adopted in the Swedish strategy for incident management provides adequate protection for the environment. This is done by studying important phenomena in the core melt estimating the amount of radioactivity that can be released to the atmosphere in a severe accident. To achieve these objectives the research has included monitoring of international research on severe accidents and evaluation of results and continued support for research of severe accidents at the Royal Inst. of Technology (KTH) and Chalmers University. The follow-up of international research has promoted the exchange of knowledge and experience and has given access to a wealth of information on various phenomena relevant to events in severe accidents. The continued support to KTH has provided increased knowledge about the possibility of cooling the molten core in the reactor tank and the processes associated with coolability in the confinement and about steam explosions. Support for Chalmers has increased knowledge of the accident chemistry, mainly the behavior of iodine and ruthenium in the containment after an accident

  3. APRI-6. Accident Phenomena of Risk Importance

    Energy Technology Data Exchange (ETDEWEB)

    Garis, Ninos; Ljung, J [eds.; Swedish Radiation Safety Authority, Stockholm (Sweden); Agrenius, Lennart [ed.; Agrenius Ingenjoersbyraa AB, Stockholm (Sweden)

    2009-06-15

    Since the early 1980s, nuclear power utilities in Sweden and the Swedish Radiation Safety Authority (SSM) collaborate on the research in severe reactor accidents. In the beginning focus was mostly on strengthening protection against environmental impacts after a severe reactor accident, for example by develop systems for the filtered relief of the reactor containment. Since the early 90s, this focus has shifted to the phenomenological issues of risk-dominant significance. During the years 2006-2008, the partnership continued in the research project APRI-6. The aim was to show whether the solutions adopted in the Swedish strategy for incident management provides adequate protection for the environment. This is done by studying important phenomena in the core melt estimating the amount of radioactivity that can be released to the atmosphere in a severe accident. To achieve these objectives the research has included monitoring of international research on severe accidents and evaluation of results and continued support for research of severe accidents at the Royal Inst. of Technology (KTH) and Chalmers University. The follow-up of international research has promoted the exchange of knowledge and experience and has given access to a wealth of information on various phenomena relevant to events in severe accidents. The continued support to KTH has provided increased knowledge about the possibility of cooling the molten core in the reactor tank and the processes associated with coolability in the confinement and about steam explosions. Support for Chalmers has increased knowledge of the accident chemistry, mainly the behavior of iodine and ruthenium in the containment after an accident.

  4. Transient refractory material dissolution by a volumetrically-heated melt

    Energy Technology Data Exchange (ETDEWEB)

    Seiler, Jean Marie, E-mail: jean-marie.seiler@cea.fr [CEA, DEN, DTN, 17 Rue des Martyrs, 38054 Grenoble Cedex 9 (France); Ratel, Gilles [CEA, DEN, DTN, 17 Rue des Martyrs, 38054 Grenoble Cedex 9 (France); Combeau, Hervé [Institut Jean Lamour, UMR 7198, Lorraine University, Ecole des Mines de Nancy, Parc de Saurupt, 54042 Nancy Cedex (France); Gaus-Liu, Xiaoyang; Kretzschmar, Frank; Miassoedov, Alexei [Karlsruhe Institut of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2014-12-15

    Highlights: • We describe a test investigating ceramic dissolution by a molten non-eutectic melt. • The evolution of the interface temperature between melt and refractory is measured. • A theoretical model describing dissolution kinetics is proposed. • When dissolution stops, interface temperature is the liquidus temperature of the melt. - Abstract: The present work addresses the question of corium–ceramic interaction in a core catcher during a core-melt accident in a nuclear power plant. It provides an original insight into transient aspects concerning dissolution of refractory material by a volumetrically heated pool. An experiment with simulant material (LIVECERAM) is presented. Test results clearly show that dissolution of solid refractory material can occur in a non-eutectic melt at a temperature which is lower than the melting temperature of the refractory material. During the dissolution transient, the interface temperature rises above the liquidus temperature, corresponding to the instantaneous average composition of the melt pool. With constant power dissipation in the melt and external cooling of the core-catcher, a final steady-state situation is reached. Dissolution stops when the heat flux (delivered by the melt to the refractory) can be removed by conduction through the residual thickness of the ceramic, with T{sub interface} = T{sub liquidus} (calculated for the average composition of the final liquid pool). The final steady state corresponds to a uniform pool composition and uniform interface temperature distribution. Convection in the pool is governed by natural thermal convection and the heat flux distribution is therefore similar to what would be obtained for a single component pool. An interpretation of the experiment with two model-based approaches (0D and 1D) is presented. The mass transfer kinetics between the interface and the bulk is controlled by a diffusion sublayer within the boundary layer. During the dissolution transient

  5. Melting Penetration Simulation of Fe-U System at High Temperature Using MPS-LER

    International Nuclear Information System (INIS)

    Mustari, A P A; Irwanto, Dwi; Yamaji, A

    2016-01-01

    Melting penetration information of Fe-U system is necessary for simulating the molten core behavior during severe accident in nuclear power plants. For Fe-U system, the information is mainly obtained from experiment, i.e. TREAT experiment. However, there is no reported data on SS304 at temperature above 1350°C. The MPS-LER has been developed and validated to simulate melting penetration on Fe-U system. The MPS-LER modelled the eutectic phenomenon by solving the diffusion process and by applying the binary phase diagram criteria. This study simulates the melting penetration of the system at higher temperature using MPS-LER. Simulations were conducted on SS304 at 1400, 1450 and 1500°C. The simulation results show rapid increase of melting penetration rate. (paper)

  6. Degraded core studies at INEL

    International Nuclear Information System (INIS)

    Buescher, B.J.; Howe, T.M.; Miller, R.W.

    1982-01-01

    During 1980, planning of prototypical severe fuel damage tests to be conducted in the Power Burst Facility (PBF) to investigate fuel behavior in severe accidents up to temperatures of 2400 0 K was initiated. This first series of tests is designated Phase I. Also, a code development effort was initiated to provide a reliable predictive tool for core behavior during severe accidents. During 1981, an assessment of capabilities and preliminary planning were begun for an in-pile experimental program to investigate the behavior of larger arrays of previously irradiated fuel rods at temperatures through UO 2 melting. This latter series of tests is designated Phase II

  7. Experiments on the behaviour of thermite melt injected into sodium: Final report on the THINA test results

    International Nuclear Information System (INIS)

    Huber, F.; Kaiser, A.; Peppler, W.

    1994-01-01

    During hypothetical accidents of fast breeder reactors the core melts and part of the core material inventory is ejected into the upper coolant plenum. As a consequence, a fuel to coolant thermal interaction occurs between the melt and the sodium. A series of simulating experiments was carried out in KfK/IRS to improve the knowledge about the phenomenology of molten fuel/coolant interactions and to support theoretical work on the safety of fast breeder reactors. In the tests, a thermite melt of up to 3270 K is injected from below into a sodium pool the temperature of which is between 770 and 820 K. The masses of the melt and the sodium are about five and 150 kg, respectively. Thermal interactions have been observed to occur as a sequence of small local pressure events mainly during the melt injection. Large-scale vapour explosions have not been observed. Generally, the conversion ratios of thermal to mechanical energy have been low. (author)

  8. Consequence analysis of core damage states following severe accidents for the CANDU reactor design

    International Nuclear Information System (INIS)

    Wahba, N.N.; Kim, Y.T.; Lie, S.G.

    1997-01-01

    The analytical methodology used to evaluate severe accident sequences is described. The relevant thermal-mechanical phenomena and the mathematical approach used in calculating the timing of the accident progression and source term estimate are summarized. The postulated sever accidents analyzed, in general, mainly differ in the timing to reach and progress through each defined c ore damage state . This paper presents the methodology and results of the timing and steam discharge calculations as well as source term estimate out of containment for accident sequences classified as potentially leading to core disassembly following a small break loss-of-coolant accident (LOCA) scenario as a specific example. (author)

  9. Overview of severe accident research at JAERI

    International Nuclear Information System (INIS)

    Sugimoto, Jun

    1999-01-01

    Severe accident research at JAERI aims at the confirmation of the safety margin, the quantification of the associated risk, and the evaluation of the effectiveness of the accident management measures of the nuclear power reactors, in accordance with the government five-year nuclear safety research program. JAERI has been conducting a wide range of severe accident research activities both in experiment and analysis, such as melt coolant interactions, fission product behaviors in coolant system, containment integrity and assessment of accident management measures. Molten core/coolant interaction and in-vessel molten coolability have been investigated in ALPHA Program. MUSE experiments in ALPHA Program has been conducted for the precise energy measurement due to steam explosion in melt jet and stratified geometries. In VEGA Program, which aims at FP release from irradiated fuels at high temperature and high pressure under various atmospheric conditions, the facility construction is almost completed. In WIND Program the revaporization of aerosols due to decay heating and also the integrity of the piping from this heat source are being investigated. Code development activities are in progress for an integrated source term analysis with THALES, fission product behaviors with ART, steam explosion with JASMINE, and in-vessel debris behaviors with CAMP. The experimental analyses and reactor application have made progress by participating international standard problem and code comparison exercises, along with the use of introduced codes, such as SCDAP/RELAP5 and MELCOR. The outcome of the severe accident research will be utilized for the evaluation of more reliable severe accident scenarios, detailed implementation of the accident management measures, and also for the future reactor development, basically through the sophisticated use of verified analytical tools. (author)

  10. Characterisation of Ceramic-Coated 316LN Stainless Steel Exposed to High-Temperature Thermite Melt and Molten Sodium

    Science.gov (United States)

    Ravi Shankar, A.; Vetrivendan, E.; Shukla, Prabhat Kumar; Das, Sanjay Kumar; Hemanth Rao, E.; Murthy, S. S.; Lydia, G.; Nashine, B. K.; Mallika, C.; Selvaraj, P.; Kamachi Mudali, U.

    2017-11-01

    Currently, stainless steel grade 316LN is the material of construction widely used for core catcher of sodium-cooled fast reactors. Design philosophy for core catcher demands its capability to withstand corium loading from whole core melt accidents. Towards this, two ceramic coatings were investigated for its application as a layer of sacrificial material on the top of core catcher to enhance its capability. Plasma-sprayed thermal barrier layer of alumina and partially stabilised zirconia (PSZ) with an intermediate bond coat of NiCrAlY are selected as candidate material and deposited over 316LN SS substrates and were tested for their suitability as thermal barrier layer for core catcher. Coated specimens were exposed to high-temperature thermite melt to simulate impingement of molten corium. Sodium compatibility of alumina and PSZ coatings were also investigated by exposing samples to molten sodium at 400 °C for 500 h. The surface morphology of high-temperature thermite melt-exposed samples and sodium-exposed samples was examined using scanning electron microscope. Phase identification of the exposed samples was carried out by x-ray diffraction technique. Observation from sodium exposure tests indicated that alumina coating offers better protection compared to PSZ coating. However, PSZ coating provided better protection against high-temperature melt exposure, as confirmed during thermite melt exposure test.

  11. Phenomenological Studies on Melt-Structure-Water Interactions (MSWI) during Postulated Severe Accidents

    International Nuclear Information System (INIS)

    Sehgal, B.R.; Park, H.S.; Giri, A.; Karbojian, A.; Jasiulevicius, A.; Hansson, R.C.; Chikkanagoudar, U.; Shiferaw, D.; Stepanyan, A.

    2004-01-01

    This is the annual report for the work performed in year 2003 in the research project 'Melt-Structure-Water Interactions (MSWI) During Severe Accidents in LWRs', under the auspices of the APRI Project, jointly funded by SKI, HSK, and the Swedish and Finnish power companies. The emphasis of the work was placed on phenomena and parameters, which govern the droplet fragmentation in steam explosions, in-vessel and ex-vessel melt/debris coolability, melt pool convection, and the thermal and mechanical loadings of a pressure vessel during melt-vessel interaction. Most research projects in 2002, such as the COMECO, POMECO and MISTEE programs, were continued. An analysis of the FOREVER experiments using the RELAP code to investigate the melt coolability, bubble dynamics and bubble stability to investigate the dynamic behavior of vapor bubble during steam explosions and associated melt fragmentation, quenching boiling experiment to investigate the thermal behavior of single melt droplet were newly initiated. The SIMECO experiment to investigate the three-layer melt pool convection was restarted. The experimental facilities for these projects were fully functional during year 2003. Many of the investigations performed during the course of the MSWI project have produced papers, which have been published in the proceedings of technical meetings and Journals. Significant technical advances were achieved during the course of these studies. These were: A series of experiments on single drop steam explosions was performed to investigate the fine fragmentation process of a metallic melt drop in various thermal conditions. For the first time, transient fine fragmentation process of a melt drop during explosion phase of a steam explosion was visualized continuously and quantified. Different triggering behavior with respect to the coolant subcooling was observed. The analyses on bubble dynamics during a single drop steam explosion and vapor bubble stability estimated the dynamic

  12. On-site releases of noble gases and iodine in the event of core meltdown in a swimming pool reactor

    International Nuclear Information System (INIS)

    Montaignac, E. de.

    1976-10-01

    Research aimed at defining a standard model accident for swimming pool type reactors, has led to the adoption to the so-called BORAX accident which involves complete meltdown of the reactor core. This type of accident-an accident related to dimensional problems- is useful for calculations concerning reactor components which have to withstand the mechanical forces resulting from the accident. A study of the radiobiological consequences of this type of accident, involving the entire reactor core, required research to determine as accurately as possible how the iodine, noble gases and solid fission products are distributed between the melted core and the site. The joint document in the annexure served as the basis for discussion at the meeting (BEVS/SESR) on 9th March 1973, at which the SESR set the standard parameter values to be used for estimating fission product distributions on the site. (author)

  13. Effect of periodic melting on geochemical and isotopic signals in an ice core from Lomonosovfonna, Svalbard

    NARCIS (Netherlands)

    Pohjola, V.A.; Moore, J.C.; Isaksson, E.; Jauhiainen, T.; Wal, R.S.W. van de; Martma, T.; Meijer, H.A.J.; Vaikmäe, R.

    2002-01-01

    [1] We examine the quality of atmospherically deposited ion and isotope signals in an ice core taken from a periodically melting ice field, Lomonosovfonna in central Spitsbergen, Svalbard. The aim is to determine the degree to which the signals are altered by periodic melting of the ice. We use

  14. Behavior of a corium jet in high pressure melt ejection from a reactor pressure vessel

    International Nuclear Information System (INIS)

    Frid, W.

    1988-04-01

    Discharge of the molten core debris from a pressurized reactor vessel has been recognized as an important accident scenario for pressurized water reactors. Recent high-pressure melt streaming experiments conducted at Sandia National Laboratories, designed to study cavity and containment events related to melt ejection, have resulted in two important observations: (1) Expansion and breakup of the ejected molten jet. (2) Significant aerosol generation during the ejection process. The expansion and breakup of the jet in the experiments are attributed to rapid evolution of the pressurizing gas (nitrogen or hydrogen) dissolved in the melt. It has been concluded that aerosol particles may be formed by condensation of melt vapor and mechanical breakup of the melt and generation. It was also shown that the above stated phenomena are likely to occur in reactor accidents. This report provides results from analytical and experimental investigations on the behavior of a gas supersaturated molten jet expelled from a pressurized vessel. Aero-hydrodynamic stability of liquid jets in gas, stream degassing of molten metals, and gas bubble nucleation in molten metals are relevant problems that are addressed in this work

  15. Quantification of the ex-vessel severe accident risks for the Swedish boiling water reactors. A scoping study performed for the APRI project

    International Nuclear Information System (INIS)

    Okkonen, T.; Dinh, T.N.; Bui, V.A.; Sehgal, B.R.

    1995-07-01

    Results of a scoping study to quantify the ex-vessel severe accident risks for the Swedish BWRs are reported. The study considers that a pool of water is established in the containment prior to vessel failure, as prescribed by the accident management scheme for the newer Swedish BWRs. The integrated methodology developed and employed combines probabilistic and deterministic treatment of the various melt-structure-water interaction processes occurring in sequence. The potential steam explosion, and the melt attack on the containment basemat, are treated with enveloping analyses. Uncertain parameters in the models and the initial conditions are treated with Monte Carlo simulations. Independent models are developed for melt coolability and possible attack on the concrete basemat. It is found that, with current models, the melt discharge scenarios, in which a large amount of accumulated melt may be released from the vessel, could subject the containment to large steam explosion loads. However, the uncertainties are so large that no definite conclusion can be drawn. The assessment of ex-vessel core debris coolability is disturbed by similar phenomenological uncertainties. Presently, coolability of the core debris can not be demonstrated. 133 refs

  16. Quantification of the ex-vessel severe accident risks for the Swedish boiling water reactors. A scoping study performed for the APRI project

    Energy Technology Data Exchange (ETDEWEB)

    Okkonen, T; Dinh, T N; Bui, V A; Sehgal, B R [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Energy Systems Technology

    1995-07-01

    Results of a scoping study to quantify the ex-vessel severe accident risks for the Swedish BWRs are reported. The study considers that a pool of water is established in the containment prior to vessel failure, as prescribed by the accident management scheme for the newer Swedish BWRs. The integrated methodology developed and employed combines probabilistic and deterministic treatment of the various melt-structure-water interaction processes occurring in sequence. The potential steam explosion, and the melt attack on the containment basemat, are treated with enveloping analyses. Uncertain parameters in the models and the initial conditions are treated with Monte Carlo simulations. Independent models are developed for melt coolability and possible attack on the concrete basemat. It is found that, with current models, the melt discharge scenarios, in which a large amount of accumulated melt may be released from the vessel, could subject the containment to large steam explosion loads. However, the uncertainties are so large that no definite conclusion can be drawn. The assessment of ex-vessel core debris coolability is disturbed by similar phenomenological uncertainties. Presently, coolability of the core debris can not be demonstrated. 133 refs.

  17. The possibility and the effects of a steam explosion in the BWR lower head on recriticality of a BWR core

    International Nuclear Information System (INIS)

    Sehgal, B.R.; Dinh, T.N.

    2002-12-01

    The report describes an analysis considering a BWR postulated severe accident scenario during which the late vessel automatic depressurization brings the water below the level of the bottom core plate. The subsequent lack of ECCS leads to core heat up during which the control rods melt and the melt deposits on the core plate. At that point of time in the scenario, the core fuel bundles are still intact and the Zircaloy clad oxidation is about to start. The objective of the study is to provide the conditions of reflood into the hot core due to the level swell or a slug delivered from the lower head as the control rod melt drops into the water. These conditions are employed in the neutronic analysis with the RECRIT code to determine if the core recriticality may be achieved. (au)

  18. Behavior of LWR fuel elements under accident conditions

    International Nuclear Information System (INIS)

    Albrecht, H.; Bocek, M.; Erbacher, F.; Fiege, A.; Fischer, M.; Hagen, S.; Hofmann, P.; Holleck, H.; Karb, E.; Leistikow, S.; Melang, S.; Ondracek, G.; Thuemmler, F.; Wiehr, K.

    1977-01-01

    to evaluate the influence of irradiation and high burnup on fuel failure mechanisms during accident conditions. Under the extreme hypothetical assumption that in the case of a LOCA simultaneously all emergency core cooling systems fail, the consequences of a core meltdown accident and the possibilities to mitigate the consequences are investigated. Results are described on the meltdown behavior of LWR fuel rods, on the reaction behavior of mixtures of molten core components, and the most important core melt properties, on the interaction process of core melts with the concrete structure of a reactor and the associated fission product release

  19. Evaluation of an experiment modelling heat transfer from the melt pool for use in VVER 440/213 reactors

    International Nuclear Information System (INIS)

    Skop, J.

    2003-12-01

    The strategy of confining core melt within the reactor vessel is among promising strategies to mitigate severe accidents of VVER 440/213 reactors. This strategy consists in residual heat removal from the melt by external vessel cooling from the outside, using water from the flooded reactor downcomer. This approach can only be successful if the critical heat flux on the external vessel surface is not exceeded. This can be assessed based on the parameters of heat transfer from the core melt pool in the conditions of natural circulation within the pool. Those parameters are the subject of the report. A basic description of the terms and physical basis of the strategy of confining core melt inside the vessel is given in Chapter 2, which also briefly explains similarity theory, based on which the results obtained on experimental facilities, using simulation materials, can be related to the actual situation inside a real reactor. Chapter 3 presents an overview of experimental work addressing the characteristics of heat transfer from the core melt pool in natural circulation conditions and a description of the experimental facilities. An overview of the results emerging from the experiments and their evaluation with respect to their applicability to reactors in Czech nuclear power plants are given in Chapter 4

  20. Study on severe accident fuel dispersion behavior in the Advanced Neutron Source reactor at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Kim, S.H.; Taleyarkhan, R.P.; Navarro-Valenti, S.; Georgevich, V.; Xiang, J.Y.

    1995-01-01

    Core flow blockage events are a leading contributor to core damage initiation risk in the Advanced Neutron Source (ANS) reactor. During such an accident, insufficient cooling of the fuel could result in core heatup and melting under full coolant flow condition. Coolant inertia forces acting on the melt surface would likely break up the melt into small particles. Under thermal-hydraulic conditions of ANS coolant channel, micro-fine melt particles are expected. Heat transfer between melt particle and coolant, which affects particle breakup, was studied. The study indicates that the thermal effect on melt fragmentation seems to be negligible because the time corresponding to the breakup due to hydrodynamic forces is much shorter than the time for the melt surface to solidify. The study included modeling and analyses to predict transient behavior and transport of debris particles throughout the coolant system. The transient model accounts for the surface forces acting on the particle that results from the pressure variation on the surface, inertia, virtual mass, viscous force due to relative motion of particle in the coolant, gravitation, and resistance due to inhomogenous coolant velocity radially across piping due to possible turbulent coolant motions. Results indicate that debris particles would reside longest in heat exchangers because of lower coolant velocity there. Also core debris tends to move together upon melting and entrainment

  1. Accident source terms for boiling water reactors with high burnup cores.

    Energy Technology Data Exchange (ETDEWEB)

    Gauntt, Randall O.; Powers, Dana Auburn; Leonard, Mark Thomas

    2007-11-01

    The primary objective of this report is to provide the technical basis for development of recommendations for updates to the NUREG-1465 Source Term for BWRs that will extend its applicability to accidents involving high burnup (HBU) cores. However, a secondary objective is to re-examine the fundamental characteristics of the prescription for fission product release to containment described by NUREG-1465. This secondary objective is motivated by an interest to understand the extent to which research into the release and behaviors of radionuclides under accident conditions has altered best-estimate calculations of the integral response of BWRs to severe core damage sequences and the resulting radiological source terms to containment. This report, therefore, documents specific results of fission product source term analyses that will form the basis for the HBU supplement to NUREG-1465. However, commentary is also provided on observed differences between the composite results of the source term calculations performed here and those reflected NUREG-1465 itself.

  2. Development of the BWR Dry Core Initial and Boundary Conditions for the SNL XR2 Experiments; TOPICAL

    International Nuclear Information System (INIS)

    Ott, L.J.

    1994-01-01

    The objectives of the Boiling Water Reactor Experimental Analysis and Model Development for Severe Accidents (BEAMD) Program at the Oak Ridge National Laboratory (ORNL) are: (1) the development of a sound quantitative understanding of boiling water reactor (BWR) core melt progression; this includes control blade and channel box effects, metallic melt relocation and possible blockage formation under severe accident conditions, and (2) provision of BWR melt progression modeling capabilities in SCDAP/RELAP5 (consistent with the BWR experimental data base). This requires the assessment of current modeling of BWR core melt progression against the expanding BWR data base. Emphasis is placed upon data from the BWR tests in the German CORA test facility and from the ex-reactor experiments[Sandia National Laboratories (SNL)] on metallic melt relocation and blockage formation in BWRs, as well as upon in-reactor data from the Annular Core Research Reactor (ACRR) DF-4 BWR test (conducted in 1986 at SNL). The BEAMD Program is a derivative of the BWR Severe Accident Technology Programs at ORNL. The ORNL BWR programs have studied postulated severe accidents in BWRs and have developed a set of models specific to boiling water reactor response under severe accident conditions. These models, in an experiment-specific format, have been successfully applied to both pretest and posttest analyses of the DF-4 experiment, and the BWR severe fuel damage (SFD) experiments performed in the CORA facility at the Kernforschungszentrum Karlsruhe (KfK) in Germany, resulting in excellent agreement between model prediction and experiment. The ORNL BWR models have provided for more precise predictions of the conditions in the BWR experiments than were previously available. This has provided a basis for more accurate interpretation of the phenomena for which the experiments are performed. The experiment-specific models, as used in the ORNL DF-4 and CORA BWR experimental analyses, also provide a basis

  3. Preliminary Design of Optimized Reactor Insulator for Severe Accident Mitigation of APR1400

    International Nuclear Information System (INIS)

    Heo, Sun; Lee, Jae-Gon; Kang, Yong-Chul

    2007-01-01

    APR1400, a Korean evolutionary advance light water reactor, has many advanced safety feature to prevent and mitigate of design basis accident (DBA) and severe accident. When reactor cooling system (RCS) fails to cooling its core, the core melted down and the molten core gathers together on bottom of reactor vessel. The molten core hurts reactor vessel and is released to containment, which raises the release of radioactive isotopes and the heating of the containment atmosphere. Finally, the corium is accumulated in the bottom of reactor cavity and it also raises the Molten Core and Concrete Interaction (MCCI) and the heating of containment atmosphere. There are two strategies to cooling molten core. Those are in-vessel retention and ex-vessel cooling. At the early stage of APR1400 design, only ex-vessel cooling which is cooling of the molten core outside the vessel after vessel failure is considered based on EPRI Utility Requirement Document (URD) for Evolutionary LWR. However, a need has been arisen to reflect current research findings on severe accident phenomena and mitigation technologies to Korean URD and IVRERVC (In-Vessel corium Retention using Ex-Reactor Vessel Cooling) was adopted APR1400. The ERVC is not considered as a licensing design basis but based on the defense-in-depth principle and safety margin basis, which is the top-tier requirement of the severe accident mitigation design as stated in the KURD. The Severe Accident Management strategy for APR1400 is intended to aid the plant operating staff to secure reactor vessel integrity in the early stage of the severe accident. As a part of a design implementation of IVR-ERVC for APR1400, we developed the preliminary design requirement, design specification and conceptual design

  4. Importance of individual fission nuclide to incontainment radioactive reading during PWR accidents

    International Nuclear Information System (INIS)

    Li Junfeng; Shi Zhongqi

    2004-01-01

    Containment radiation level is one of the most important base for core damage assessment and protective actions recommendation during accidents. Incontainment radioactive reading calculations is the precondition of using this kind of method. Importance of individual nuclides were compared during normal coolant release, gap release and core melt. Conclusions are deduced that when the spray is off, the radioactive reading in containment is mainly from iodine and noble gas, and the spray is on, the radioactive reading is mainly from noble gas. (authors)

  5. ACCIDENT PHENOMENA OF RISK IMPORTANCE PROJECT - Continued RESEARCH CONCERNING SEVERE ACCIDENT PHENOMENA AND MANAGEMENT IN Sweden

    International Nuclear Information System (INIS)

    Rolandson, S.; Mueller, F.; Loevenhielm, G.

    1997-01-01

    Since 1988 all reactors in Sweden have mitigating measures, such as filtered vents, implemented. In parallel with the work of implementing these measures, a cooperation effort (RAMA projects) between the Swedish utilities and the Nuclear Power Inspectorate was performed to acquire sufficient knowledge about severe accident research work. The on-going project has the name Accident Phenomena of Risk Importance 3. In this paper, we will give background information about severe accident management in Sweden. In the Accident Phenomena of Risk Importance 3 project we will focus on the work concerning coolability of melted core in lower plenum which is the main focus of the In-vessel Coolability Task Group within the Accident Phenomena of Risk Importance 3 project. The Accident Phenomena of Risk Importance 3 project has joined on international consortium and the in-vessel cooling experiments are performed by Fauske and Associates, Inc. in Burr Ridge, Illinois, United States America, Sweden also intends to do one separate experiment with one instrument penetration we have in Swedish/Finnish BWR's. Other parts of the Accident Phenomena of Risk Importance 3 project, such as support to level 2 studies, the research at Royal Institute of Technology and participation in international programs, such as Cooperative Severe Accident Research Program, Advanced Containment Experiments and PHEBUS will be briefly described in the paper

  6. Measuring technique of super high temperature thermal properties of reactor core materials

    International Nuclear Information System (INIS)

    Ono, Akira; Baba, Tetsuya; Watanabe, Hideo; Matsumoto, Tsuyoshi

    1998-01-01

    In this study, thermal properties of reactor core materials used for water cooled reactors and FBR were tried to develop a technique to measure their melt states at less than 3,000degC in order to contribute more correct evaluation of the reactor core behavior at severe accident. Then, a thermal property measuring method of high temperature melt by using floating method was investigated and its fundamental design was begun to investigate under a base of optimum judgement on the air flow floating throw-down method. And, in order to measure emissivity of melt specimen surface essential for correct temperature measurement using the throw down method, a spectroscopic emissivity measuring unit using an ellipsometer was prepared and induced. On the thermal properties measurement using the holding method, a specimen container to measure thermal diffusiveness of the high temperature melts by using laser flashing method was tried to prepare. (G.K.)

  7. Study on mitigation of in-vessel release of fission products in severe accidents of PWR

    International Nuclear Information System (INIS)

    Huang, G.F.; Tong, L.L.; Li, J.X.; Cao, X.W.

    2010-01-01

    Research highlights: → In-vessel release of fission products in severe accidents for 600 MW PWR is analyzed. → Mitigation effect of primary feed-and-bleed on in-vessel release is investigated. → Mitigation effect of secondary feed-and-bleed on in-vessel release is studied. → Mitigation effect of ex-vessel cooling on in-vessel release is evaluated. - Abstract: During the severe accidents in a nuclear power plant, large amounts of fission products release with accident progression, including in-vessel and ex-vessel release. Mitigation of fission products release is demanded for alleviating radiological consequence in severe accidents. Mitigation countermeasures to in-vessel release are studied for Chinese 600 MW pressurized water reactor (PWR), including feed-and-bleed in primary circuit, feed-and-bleed in secondary circuit and ex-vessel cooling. SBO, LOFW, SBLOCA and LBLOCA are selected as typical severe accident sequences. Based on the evaluation of in-vessel release with different startup time of countermeasure, and the coupling relationship between thermohydraulics and in-vessel release of fission products, some results are achieved. Feed-and-bleed in primary circuit is an effective countermeasure to mitigate in-vessel release of fission products, and earlier startup time of countermeasure is more feasible. Feed-and-bleed in secondary circuit is also an effective countermeasure to mitigate in-vessel release for most severe accident sequences that can cease core melt progression, e.g. SBO, LOFW and SBLOCA. Ex-vessel cooling has no mitigation effect on in-vessel release owing to inevitable core melt and relocation.

  8. The role of fission gas in the analysis of hypothetical core disruptive accidents

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, E A [Gesellschaft fuer Kernforschung mbH, INR Kernforschungszentrum, Karlsruhe (Germany)

    1977-07-01

    This paper summarizes recent work at Karlsruhe with the goal of understanding the effects of fission gas in hypothetical core disruptive accidents. The fission gas behavior model is discussed. The computer programs LANGZEIT and KURZZEIT describe the long-term and the transient gas behavior, respectively. Recent improvements in the modeling and a comparison of results with experimental data are reported. A somewhat detailed study of the role of fission gas in transient overpower (TOP) accidents was carried out. If pessimistic assumptions, like pin failure near the axial midplane are made, these accidents end in core disassembly. The codes HOPE and KADIS were used to analyze the initiating and the disassembly phase in these studies. Improvements of the codes are discussed. They include an automatic data transfer from HOPE to KADIS, and a new equation of state in KADIS, with an improved model for fission gas behavior. The analysis of a 15 cents/sec reactivity ramp accident is presented. Different pin failure criteria are used. In the cases selected, the codes predict an energetic disassembly. For the much discussed loss-of-flow driven TOP, detailed models are presently not available at Karlsruhe. Therefore, only a few comments and the results of a few scoping calculations will be presented.

  9. Modelling of melting and solidification transport phenomena during hypothetical NPP severe accidents

    International Nuclear Information System (INIS)

    Sarler, B.

    1992-01-01

    A physical and mathematical framework to deal with the transport phenomena occuring during melting and solidification of the hypothetical NPP severe accidents is presented. It concentrates on the transient temperature, velocity, and species concentration distributions during such events. The framework is based on the Mixture Continuum Formulation of the components and phases, cast in the boundary-domain integral shape structured by the fundamental solution of the Laplace equation. The formulation could cope with various solid-liquid sub-systems through the inclusion of the specific closure relations. The deduced system of boundary-domain integral equations for conservation of mass, energy, momentum, and species could be solved by the boundary element discrete approximative method. (author) [sl

  10. ALWR severe accident issue resolution in support of updated emergency planning

    International Nuclear Information System (INIS)

    Additon, Stephen L.; Leaver, David E.; Sorrell, Steven W.; Theofanous, Theo G.

    2004-01-01

    The Advanced Light Water Reactor (ALWR) Program in the U.S. is a cooperative, cost-sharing undertaking between the U.S. government, industry, and a number of international participants, with the objective of developing the next generation of nuclear power plants. The ALWR designs emphasize improvements in safety and operational reliability through simplification, improved safety margins, innovative passive safety systems, enhanced man-machine interfaces, and incorporation of the lessons learned from the operation of existing LWR plants. An important component of the improved safety characteristics of ALWRs is the consideration of severe accidents in the plant design. The U.S. Department of Energy (DOE) initiated the Advanced Reactor Severe Accident Program (ARSAP) to assist in the transfer of severe accident technology from the U.S. national laboratories to the industry to implement this approach. The basic design requirements for this new generation of nuclear power plants were developed, under the management of the Electric Power Research Institute (EPRI) by the utilities and documented in the Utility Requirements Document (URD). The URD safety policy is based on the traditional 'defense-in-depth' approach, which emphasizes prevention through safety systems which prevent accidents from progressing to core damage, and mitigation to ensure that accidents are mitigated and contained. In a major departure from previous practice, severe accidents, including postulated core melt events, are specifically included in the defense-in-depth design considerations for ALWRs. As a result of this approach, the emergency planning assumptions and criteria warrant a review and reevaluation for ALWR designs. ALWRs present a risk profile that is significantly different than that which served as the basis for the emergency planning requirements for operating plants. The determination of this profile necessarily requires the characterization of the severe accident response of ALWRs

  11. SCDAP: a light water reactor computer code for severe core damage analysis

    International Nuclear Information System (INIS)

    Marino, G.P.; Allison, C.M.; Majumdar, D.

    1982-01-01

    Development of the first code version (MODO) of the Severe Core Damage Analysis Package (SCDAP) computer code is described, and calculations made with SCDAP/MODO are presented. The objective of this computer code development program is to develop a capability for analyzing severe disruption of a light water reactor core, including fuel and cladding liquefaction, flow, and freezing; fission product release; hydrogen generation; quenched-induced fragmentation; coolability of the resulting geometry; and ultimately vessel failure due to vessel-melt interaction. SCDAP will be used to identify the phenomena which control core behavior during a severe accident, to help quantify uncertainties in risk assessment analysis, and to support planning and evaluation of severe fuel damage experiments and data. SCDAP/MODO addresses the behavior of a single fuel bundle. Future versions will be developed with capabilities for core-wide and vessel-melt interaction analysis

  12. Behavior of a corium jet in high pressure melt ejection from a reactor pressure vessel

    International Nuclear Information System (INIS)

    Frid, W.E.

    1986-01-01

    A model has been developed to calculate the expansion and fragmentation of a corium jet, due to the evolution of dissolved gas, during a postulated core meltdown accident. Parametric calculations have been performed for a PWR high pressure accident scenario. Jet breakup occurs within a few jet diameters from the RPV. The diameter of the fragmented jet at the level of the reactor cavity floor is predicted to be 40-130 times the discharge diameter. Particles generated by fragmentation of corium melt are predicted to be in the 30-150 μm size range

  13. Analysis methodology for RBMK-1500 core safety and investigations on corium coolability during a LWR severe accident

    International Nuclear Information System (INIS)

    Jasiulevicius, Audrius

    2003-01-01

    This thesis presents the work involving two broad aspects within the field of nuclear reactor analysis and safety. These are: - development of a fully independent reactor dynamics and safety analysis methodology of the RBMK-1500 core transient accidents and - experiments on the enhancement of coolability of a particulate bed or a melt pool due to heat removal through the control rod guide tubes. The first part of the thesis focuses on the development of the RBMK-1500 analysis methodology based on the CORETRAN code package. The second part investigates the issue of coolability during severe accidents in LWR type reactors: the coolability of debris bed and melt pool for in-vessel and ex-vessel conditions. The first chapter briefly presents the status of developments in both the RBMK-1500 core analysis and the corium coolability areas. The second chapter describes the generation of the RBMK-1500 neutron cross section data library with the HELIOS code. The cross section library was developed for the whole range of the reactor conditions. The results of the benchmarking with the WIMS-D4 code and validation against the RBMK Critical Facility experiments is also presented here. The HELIOS generated neutron cross section data library provides a close agreement with the WIMS-D4 code results. The validation against the data from the Critical Experiments shows that the HELIOS generated neutron cross section library provides excellent predictions for the criticality, axial and radial power distribution, control rod reactivity worths and coolant reactivity effects, etc. The reactivity effects of voiding for the system, fuel assembly and additional absorber channel are underpredicted in the calculations using the HELIOS code generated neutron cross sections. The underprediction, however, is much less than that obtained when the WIMS-D4 code generated cross sections are employed. The third chapter describes the work, performed towards the accurate prediction, assessment and

  14. Severe accident research and management in Nordic Countries - A status report

    International Nuclear Information System (INIS)

    Frid, W.

    2002-01-01

    The report describes the status of severe accident research and accident management development in Finland, Sweden, Norway and Denmark. The emphasis is on severe accident phenomena and issues of special importance for the severe accident management strategies implemented in Sweden and in Finland. The main objective of the research has been to verify the protection provided by the accident mitigation measures and to reduce the uncertainties in risk dominant accident phenomena. Another objective has been to support validation and improvements of accident management strategies and procedures as well as to contribute to the development of level 2 PSA, computerised operator aids for accident management and certain aspects of emergency preparedness. Severe accident research addresses both the in-vessel and the ex-vessel accident progression phenomena and issues. Even though there are differences between Sweden and Finland as to the scope and content of the research programs, the focus of the research in both countries is on in-vessel coolability, integrity of the reactor vessel lower head and core melt behaviour in the containment, in particular the issues of core debris coolability and steam explosions. Notwithstanding that our understanding of these issues has significantly improved, and that experimental data base has been largely expanded, there are still important uncertainties which motivate continued research. Other important areas are thermal-hydraulic phenomena during reflooding of an overheated partially degraded core, fission product chemistry, in particular formation of organic iodine, and hydrogen transport and combustion phenomena. The development of severe accident management has embraced, among other things, improvements of accident mitigating procedures and strategies, further work at IFE Halden on Computerised Accident Management Support (CAMS) system, as well as plant modifications, including new instrumentation. Recent efforts in Sweden in this area

  15. Models and correlations of the DEBRIS Late-Phase Melt Progression Model

    International Nuclear Information System (INIS)

    Schmidt, R.C.; Gasser, R.D.

    1997-09-01

    The DEBRIS Late Phase Melt Progression Model is an assembly of models, embodied in a computer code, which is designed to treat late-phase melt progression in dry rubble (or debris) regions that can form as a consequence of a severe core uncover accident in a commercial light water nuclear reactor. The approach is fully two-dimensional, and incorporates a porous medium modeling framework together with conservation and constitutive relationships to simulate the time-dependent evolution of such regions as various physical processes act upon the materials. The objective of the code is to accurately model these processes so that the late-phase melt progression that would occur in different hypothetical severe nuclear reactor accidents can be better understood and characterized. In this report the models and correlations incorporated and used within the current version of DEBRIS are described. These include the global conservation equations solved, heat transfer and fission heating models, melting and refreezing models (including material interactions), liquid and solid relocation models, gas flow and pressure field models, and the temperature and compositionally dependent material properties employed. The specific models described here have been used in the experiment design analysis of the Phebus FPT-4 debris-bed fission-product release experiment. An earlier DEBRIS code version was used to analyze the MP-1 and MP-2 late-phase melt progression experiments conducted at Sandia National Laboratories for the US Nuclear Regulatory Commission

  16. A study on the development of framework and supporting tools for severe accident management

    International Nuclear Information System (INIS)

    Chang, Hyun Sop

    1996-02-01

    Through the extensive research on severe accidents, knowledge on severe accident phenomenology has constantly increased. Based upon such advance, probabilistic risk studies have been performed for some domestic plants to identify plant-specific vulnerabilities to severe accidents. Severe accident management is a program devised to cover such vulnerabilities, and leads to possible resolution of severe accident issues. This study aims at establishing severe accident management framework for domestic nuclear power plants where severe accident management program is not yet established. Emphasis is given to in-vessel and ex-vessel accident management strategies and instrumentation availability for severe accident management. Among the various strategies investigated, primary system depressurization is found to be the most effective means to prevent high pressure core melt scenarios. During low pressure core melt sequences, cooling of in-vessel molten corium through reactor cavity flooding is found to be effective. To prevent containment failure, containment filtered venting is found to be an effective measure to cope with long-term and gradual overpressurization, together with appropriate hydrogen control measure. Investigation of the availability of Yonggwang 3 and 4 instruments shows that most of instruments essential to severe accident management lose their desired functions during the early phase of severe accident progression, primarily due to the environmental condition exceeded ranges of instruments. To prevent instrument failure, a wider range of instruments are recommended to be used for some severe accident management strategies such as reactor cavity flooding. Severe accidents are generally known to accompany a number of complex phenomena and, therefore, it is very beneficial when severe accident management personnel is aided by appropriately designed supporting systems. In this study, a support system for severe accident management personnel is developed

  17. Steady-state thermal hydraulic analysis and flow channel blockage accident analysis of JRR-3 silicide core

    International Nuclear Information System (INIS)

    Kaminaga, Masanori

    1997-03-01

    JRR-3 is a light water moderated and cooled, beryllium and heavy water reflected pool type research reactor using low enriched uranium (LEU) plate-type fuels. Its thermal power is 20 MW. The core conversion program from uranium-aluminum (UAl x -Al) dispersion type fuel (aluminide fuel) to uranium-silicon-aluminum (U 3 Si 2 -Al) dispersion type fuel (silicide fuel) is currently conducted at the JRR-3. This report describes about the steady-state thermal hydraulic analysis results and the flow channel blockage accident analysis result. In JRR-3, there are two operation mode. One is high power operation mode up to 20 MW, under forced convection cooling using the primary and the secondary cooling systems. The other is low power operation mode up to 200 kW, under natural circulation cooling between the reactor core and the reactor pool without the primary and the secondary cooling systems. For the analysis of the flow channel blockage accident, COOLOD code was used. On the other hand, steady-state thermal hydraulic analysis for both of the high power operation mode under forced convection cooling and low power operation under natural convection cooling, COOLOD-N2 code was used. From steady-state thermal hydraulic analysis results of both forced and natural convection cooling, fuel temperature, minimum DNBR etc. meet the design criteria and JRR-3 LEU silicide core has enough safety margin under normal operation conditions. Furthermore, flow channel blockage accident analysis results show that one channel flow blockage accident meet the safety criteria for accident conditions which have been established for JRR-3 LEU silicide core. (author)

  18. Thermohydraulic behaviour and heat transfer in the molten core

    International Nuclear Information System (INIS)

    Reineke, H.H.

    1977-01-01

    Increasing the application of nuclear reactors to produce electrical power extremely unprobable accidents should be investigated too. In the Federal Republic of Germany, a research program is performed for some years engaged in accidents at light water reactors in which the melting of the reactor core is presumed. A part of this program is to investigate the thermohydraulic and the heat transfer behavior in an accumulation of molten core material. The knowledge of these events is necessary to analyse the accident exactly. Further on the results of this work are of great importance to build a catcher for the molten core material. As a result of the decay heat the molten material is heated up and the density differences induce a free convection motion. In this work the thermohydraulic behavior and the distribution of the escaping heat fluxes for several accumulations of molten core material were determined. The numerical methods for solving the system of partial differential equation were used to develop computer codes, able to compute the average and local heat fluxes at the walls enclosing the molten core material and the inside increase of the temperature. The numerical computations were confirmed and verified by experimental investigations. In these investigations the molten core material was always assumed as a homogeneous fluid. In this case, the results could be reproduced by simple power laws

  19. Modelling of the Molten Core Concrete Interaction (MCCI)

    International Nuclear Information System (INIS)

    Guillaume, M.

    2008-01-01

    Severe accidents of nuclear power plants are very unlikely to occur, yet it is necessary to be able to predict the evolution of the accident. In some situations, heat generation due to the disintegration of fission products could lead to the melting of the core. If the molten core falls on the floor of the building, it would provoke the melting of the concrete floor. The objective of the studies is to calculate the melting rate of the concrete floor. The work presented in this report is in the continuity of the segregation phase model of Seiler and Froment. It is based on the results of the ARTEMIS experiments. Firstly, we have developed a new model to simulate the transfers within the interfacial area. The new model explains how heat is transmitted to concrete: by conduction, convection and latent heat generation. Secondly, we have modified the coupled modelling of the pool and the interfacial area. We have developed two new models: the first one is the 'liquidus model', whose main hypothesis is that there is no resistance to solute transfer between the pool and the interfacial area. The second one is 'the thermal resistance model', whose main hypothesis is that there is no solute transfer and no dissolution of the interfacial area. The second model is able to predict the evolution of the pool temperature and the melting rate in the tests 3 and 4, with the condition that the obstruction time of the interfacial area is about 10 5 s. The model is not able to explain precisely the origin of this value. The liquidus model is able to predict correctly the evolution of the pool temperature and the melting rate in the tests 2 and 6. (author) [fr

  20. The severe accidents and source term problems approach in France

    International Nuclear Information System (INIS)

    Bussac, J.; Cogne, F.; Pelce, J.

    1986-01-01

    The French methodology described in this report aims at providing operators with a comprehensive body which should enable them to tackle any situation or type of accident whose occurrence does not appear to be physically unconceivable. It is no longer considered that the early failure of the containment can result from a conceivable accidental sequence and is therefore no longer taken into consideration, except, however, when examining and selecting the site criteria. Prevention measures and relatively inexpensive remedies allow a substantial reduction in the probability of core melting and, if melting occurs, in the probability of loss of leaktightness and the level of possible releases out of the containment. This implies very special attention to accident management and operators' actions, to which great importance is attached. We must not stop research because of the lack of experimental data concerning problems which have not yet been completely settled and there is a real need for an integral check program for the code systems existing or in development

  1. Systematic technology evaluation program for SiC/SiC composite-based accident-tolerant LWR fuel cladding and core structures: Revision 2015

    Energy Technology Data Exchange (ETDEWEB)

    Katoh, Yutai [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, Kurt A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-08-01

    Fuels and core structures in current light water reactors (LWR’s) are vulnerable to catastrophic failure in severe accidents as unfortunately evidenced by the March 2011 Fukushima Dai-ichi Nuclear Power Plant Accident. This vulnerability is attributed primarily to the rapid oxidation kinetics of zirconium alloys in a water vapor environment at very high temperatures. Zr alloys are the primary material in LWR cores except for the fuel itself. Therefore, alternative materials with reduced oxidation kinetics as compared to zirconium alloys are sought to enable enhanced accident-tolerant fuels and cores.

  2. Material effects on multiphase phenomena in late phases of severe accidents of nuclear reactors; Effets des materiaux sur les phenomenes multiphasiques se produisant lors des phases avancees d'accident grave de reacteur nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Seiler, J.M.; Froment, K

    2003-07-01

    This paper reviews and presents work carried out in the French Atomic Energy Commission (CEA) on the subject of nuclear severe accidents, i.e. those which are accompanied by melting of the nuclear core material. The emphasis is on the (crucial) thermodynamic and material behaviour of corium melts in the solidus-liquidus temperature interval, which is linked to the thermal hydraulic description. A global model approach is proposed. The work is presented in the context of the overall international effort in the area. (authors)

  3. A study on transient heat transfer of the EU-ABWR external core catcher using the phase-change effective convectivity model

    International Nuclear Information System (INIS)

    Tran Chi Thanh; Nguyen Viet Hung; Tahara, Mika; Kojima, Yoshihiro; Hamazaki, Ryoichi; Kudinov, Pavel

    2015-01-01

    In advanced designs of Nuclear Power Plants (NPPs), for mitigation of severe accident consequences, on the one hand, the In-Vessel Retention (IVR) concept has been implemented. On the other hand in other new NPP designs (Generation III and III+) with large power reactors, the External Core Catcher (ECC) has been widely adopted. Assessment of ECC design robustness is largely based on analysis of heat transfer of a melt pool formed in the ECC. Transient heat transfer analysis of an ECC is challenging due to (i) uncertainty in the in-vessel accident progression and subsequent vessel failure modes; (ii) long transient, (iii) high Rayleigh number and complex flows involving phase change of the melt pool formed in an ECC. The present paper is concerned with analysis of transient melt pool heat transfer in the ECC of new Advanced Boiling Water Reactor (ABWR) designed by Toshiba Corporation (Japan). According to the ABWR severe accident management strategy, the ECC is initially dry. In order to prevent steam explosion flooding is initiated after termination of melt relocation from the vessel. The ECC full of melt is cooled from the top directly by water and from the bottom through the ECC walls. In order to assess sustainability of the ECC, heat transfer simulation of a stratified melt pool formed in the ECC is carried out. The problem addressed in this work is heat flux distribution at ECC boundaries when cooling is applied (i) from the bottom, (ii) from the top and from the bottom. To perform melt pool heat transfer simulation, we employ Phase-change Effective Convectivity Model (PECM) which was originally developed as a computationally efficient, sufficiently accurate, 2D/3D accident analysis tools for simulation of transient melt pool heat transfer in the reactor lower plenum. Thermal loads from the melt pool to ECC boundaries are determined for selected ex-vessel accident scenarios. Performance of the ECC, efficiency of severe accident management (SAM) measures and

  4. Experiments on the lower plenum response during a severe accident

    International Nuclear Information System (INIS)

    Henry, Robert E.; Hammersley, Robert J.; Klopp, George T.; Merilo, Mati

    2004-01-01

    Severe accident evaluations for nuclear reactors consider the response when the core materials have been overheated sufficient to melt and change geometry. One possible consequence of this is that molten core debris could drain into the lower plenum, as occurred in the TMI-2 accident. Given this state, several physical processes need to be analyzed, i.e. the extent of debris particulation and cooling, the potential for thermal attack of lower plenum structures, the thermal transient of the RPV and the potential for external cooling of the RPV lower head. These are important and complex processes, the evaluations of which need to be guided by well founded experiments. To support the development of the MAAP codes, recent experiments have been performed on specific issues such as: 1. the response of lower head penetrations submerged in a high temperature melt, 2. the net steam generation rate when molten debris drains into the lower plenum, 3. the formation of a contact resistance when molten debris drains through water and contacts the RPV wall and 4. the potential for external cooling of the RPV lower head. This paper discusses these experiments and their results. More importantly, it discusses how these are used in formulating models to represent the lower plenum response in the MAAP codes. (author)

  5. CANDU safety under severe accidents

    International Nuclear Information System (INIS)

    Snell, V.G.; Howieson, J.Q.; Alikhan, S.; Frescura, G.M.; King, F.; Rogers, J.T.; Tamm, H.

    1996-01-01

    The characteristics of the CANDU reactor relevant to severe accidents are set first by the inherent properties of the design, and second by the Canadian safety/licensing approach. The pressure-tube concept allows the separate, low-pressure, heavy-water moderator to act as a backup heat sink even if there is no water in the fuel channels. Should this also fail, the calandria shell itself can contain the debris, with heat being transferred to the water-filled shield tank around the core. Should the severe core damage sequence progress further, the shield tank and the concrete reactor vault significantly delay the challenge to containment. Furthermore, should core melt lead to containment overpressure, the containment behaviour is such that leaks through the concrete containment wall reduce the possibility of catastrophic structural failure. The Canadian licensing philosophy requires that each accident, together with failure of each safety system in turn, be assessed (and specified dose limits met) as part of the design and licensing basis. In response, designers have provided CANDUs with two independent dedicated shutdown systems, and the likelihood of Anticipated Transients Without Scram is negligible. Probabilistic safety assessment studies have been performed on operating CANDU plants, and on the 4 x 880 MW(e) Darlington station now under construction; furthermore a scoping risk assessment has been done for a CANDU 600 plant. They indicate that the summed severe core damage frequency is of the order of 5 x 10 -6 /year. 95 refs, 3 tabs

  6. CANDU safety under severe accidents

    Energy Technology Data Exchange (ETDEWEB)

    Snell, V G; Howieson, J Q [Atomic Energy of Canada Ltd. (Canada); Alikhan, S [New Brunswick Electric Power Commission (Canada); Frescura, G M; King, F [Ontario Hydro (Canada); Rogers, J T [Carleton Univ., Ottawa, ON (Canada); Tamm, H [Atomic Energy of Canada Ltd. (Canada). Whiteshell Research Lab.

    1996-12-01

    The characteristics of the CANDU reactor relevant to severe accidents are set first by the inherent properties of the design, and second by the Canadian safety/licensing approach. The pressure-tube concept allows the separate, low-pressure, heavy-water moderator to act as a backup heat sink even if there is no water in the fuel channels. Should this also fail, the calandria shell itself can contain the debris, with heat being transferred to the water-filled shield tank around the core. Should the severe core damage sequence progress further, the shield tank and the concrete reactor vault significantly delay the challenge to containment. Furthermore, should core melt lead to containment overpressure, the containment behaviour is such that leaks through the concrete containment wall reduce the possibility of catastrophic structural failure. The Canadian licensing philosophy requires that each accident, together with failure of each safety system in turn, be assessed (and specified dose limits met) as part of the design and licensing basis. In response, designers have provided CANDUs with two independent dedicated shutdown systems, and the likelihood of Anticipated Transients Without Scram is negligible. Probabilistic safety assessment studies have been performed on operating CANDU plants, and on the 4 x 880 MW(e) Darlington station now under construction; furthermore a scoping risk assessment has been done for a CANDU 600 plant. They indicate that the summed severe core damage frequency is of the order of 5 x 10{sup -6}/year. 95 refs, 3 tabs.

  7. Structural failure analysis of reactor vessels due to molten core debris

    International Nuclear Information System (INIS)

    Pfeiffer, P.A.

    1993-01-01

    Maintaining structural integrity of the reactor vessel during a postulated core melt accident is an important safety consideration in the design of the vessel. This paper addresses the failure predictions of the vessel due to thermal and pressure loadings from the molten core debris depositing on the lower head of the vessel. Different loading combinations were considered based on a wet or dry cavity and pressurization of the vessel based on operating pressure or atmospheric (pipe break). The analyses considered both short term (minutes) and long term (days) failure modes. Short term failure modes include creep at elevated temperatures and plastic instabilities of the structure. Long term failure modes are caused by creep rupture that lead to plastic instability of the structure. The analyses predict the reactor vessel will remain intact after the core melt has deposited on the lower vessel head

  8. Code package {open_quotes}SVECHA{close_quotes}: Modeling of core degradation phenomena at severe accidents

    Energy Technology Data Exchange (ETDEWEB)

    Veshchunov, M.S.; Kisselev, A.E.; Palagin, A.V. [Nuclear Safety Institute, Moscow (Russian Federation)] [and others

    1995-09-01

    The code package SVECHA for the modeling of in-vessel core degradation (CD) phenomena in severe accidents is being developed in the Nuclear Safety Institute, Russian Academy of Science (NSI RAS). The code package presents a detailed mechanistic description of the phenomenology of severe accidents in a reactor core. The modules of the package were developed and validated on separate effect test data. These modules were then successfully implemented in the ICARE2 code and validated against a wide range of integral tests. Validation results have shown good agreement with separate effect tests data and with the integral tests CORA-W1/W2, CORA-13, PHEBUS-B9+.

  9. Parametric study of recriticality in a boiling water reactor severe accident

    International Nuclear Information System (INIS)

    Shamoun, B.I.; Witt, R.J.

    1994-01-01

    Recriticality is possible in a severe accident if unborated or low boron concentration water is added to a damaged core after control rod melting but before fuel melting. Recriticality in a severe accident in a boiling water reactor was parametrically investigated using the TWODANT code. Eigenvalue calculations for a unit central fuel cell with reflective boundary conditions were performed by solving the two-dimensional multigroup steady-state Boltzman transport equation using TWODANT. Two sets of calculations were performed in this work. The first set of calculations was carried out under three types of normal operating conditions to provide reference values for the accident calculations: (a) cold rodded condition, (b) cold unrodded condition, and (c) hot full-power condition. The eigenvalues at these conditions were found to be 1.055, 1.208, and 1.098, respectively. The second set of calculations was carried out after the melting of the control element and during the reflood phase, under the following reflood conditions: (a) reflood with unborated water and (b) reflood with borated water. For the reflood case with unborated water, five values of void fractions were considered (100, 60, 40, 20, and 0%). Decreasing void fractions represent greater refill levels during the reflood process. The system pressure was taken to be 7 MPa, while the moderator temperature was set to 560 K. Plotting the eigenvalue compared with the fraction of control materials lost indicates recriticality is only possible if nearly 100% of the control material is lost from the core. Eigenvalue calculations were repeated for short- and long-term recovery conditions of the reflood phase corresponding to maximum moderator density at 4 MPa pressure and 525 K moderator temperature and for 1 MPa pressure and 325 K moderator temperature, respectively. Recriticality was again observed to be a concern only after losing 95% ore more of control materials from the unit cell

  10. An overview of the severe accident research activities within the LACOMERA platform at the Forschungszentrum Karlsruhe

    International Nuclear Information System (INIS)

    Miassoedov, A.; Alsmeyer, H.; Meyer, L.; Steinbrueck, M.; Tromm, W.

    2006-01-01

    The LACOMERA project at the Forschungszentrum Karlsruhe, Germany, is a 4 year action within the 5th Framework Programme of the EU which started in September 2002. Overall objective of the project is to offer research institutions from the EU member countries and associated states access to four large-scale experimental facilities QUENCH, LIVE, DISCO, and COMET. These facilities can be used to investigate core melt scenarios from the beginning of core degradation to melt formation and relocation in the vessel, possible melt dispersion to the reactor cavity, and finally corium concrete interaction and corium coolability in the reactor cavity. The paper summarises the main results obtained in the following experiments performed up to now. QUENCH-L1: Impact of air ingression on core degradation. The test provides unique data for the investigation of air ingress phenomenology in conditions as representative of a spent fuel pool accident as possible; QUENCH-L2: Boil-off of a flooded bundle. The test is of a generic interest for all reactor types, provided a link between the severe accident and design basis areas, and would deliver oxidation and thermal hydraulic data at high temperatures. DISCO-L1: Thermal hydraulic behaviour of the corium melt dispersion neglecting the chemical effects such as hydrogen generation and combustion. COMET-L1: Long-term 2D concrete ablation in a siliceous concrete cavity at intermediate decay heat power level with a top flooding phase after a phase of dry concrete erosion. COMET-L2: Investigation of long-term melt-concrete interaction of metallic corium in a cylindrical siliceous concrete cavity under dry conditions with decay heat simulation of intermediate power during the first test phase, and subsequently at reduced power during the second test phase. (author)

  11. Severe accident research in France

    International Nuclear Information System (INIS)

    Duco, J.; Reocreux, M.; Tattegrain, A.

    1988-01-01

    French PWR power plant design relies basically on a deterministic approach. Nevertheless, an overall safety objective was issued in 1977 by the safety authority which set an upper probability limit for having unacceptable consequences; this resulted, in particular, in the elaboration of the ''H'' procedures, aimed at reducing significantly the risk of core uncovery subsequent to the loss of redunbant safety-related systems. The U1 symptom-oriented procedure, based on the nuclear steam supply system ''cooling states'', was introduced later, in order to prevent core melting in situations where the operating crew was confused by multiple failures and/or inappropriate previous actions. In the event that a core-melt should occur, the ultimate procedures U2, U4 and U5 - the latter providing a venting of the containment through a filtration system - should enable the radioactive releases to be limited to characteristics compatible with the feasibility of the off-site emergency plans. Such emergency management procedures necessitate a significant study effort in order to be elaborated and qualified; this also presupposes that an adequate level of scientific knowledge has been gained as regards the response of specific components of a PWR under beyond-design conditions. The purpose of severe accident research in France is to attain a level of basic knowledge such that emergency procedures may be conceived and ultimately tested

  12. Behaviour of molten reactor fuels under accident conditions

    International Nuclear Information System (INIS)

    Xavier Swamikannu, A.; Mathews, C.K.

    1980-01-01

    The behaviour of molten reactor fuels under accident conditions has received considerable importance in recent times. The chemical processes that occur in the molten state among the fuel, the clad components and the concrete of the containment building under the conditions of a core melt down accident in oxide fuelled reactors have been reviewed with the purpose of identifying areas of developmental work required to be performed to assess and minimize the consequences of such an accident. This includes the computation and estimation of vapour pressure of various gaseous species over the fuel, the clad and the coolant, providing of sacrificial materials in the concrete in order to protect the containment building in order to prevent release of radioactive gases into the atmosphere and understanding the distribution and chemical state of fission products in the molten fuel in order to provide for the effective removal of their decay heats. (auth.)

  13. Oxidation behavior analysis of cladding during severe accidents with combined codes for Qinshan Phase II Nuclear Power Plant

    International Nuclear Information System (INIS)

    Shi, Xingwei; Cao, Xinrong; Liu, Zhengzhi

    2013-01-01

    Highlights: • A new verified oxidation model of cladding has been added in Severe Accident Program (SAP). • A coupled analysis method utilizing RELAP5 and SAP codes has been developed and applied to analyze a SA caused by LBLOCA. • Analysis of cladding oxidation under a SA for Qinshan Phase II Nuclear Power Plant (QSP-II NPP) has been performed by SAP. • Estimation of the production of hydrogen has been achieved by coupled codes. - Abstract: Core behavior at a high temperature is extremely complicated during transition from Design Basic Accident (DBA) to the severe accident (SA) in Light Water Reactors (LWRs). The progression of core damage is strongly affected by the behavior of fuel cladding (oxidation, embrittlement and burst). A Severe Accident Program (SAP) is developed to simulate the process of fuel cladding oxidation, rupture and relocation of core debris based on the oxidation models of cladding, candling of melted material and mechanical slumping of core components. Relying on the thermal–hydraulic boundary parameters calculated by RELAP5 code, analysis of a SA caused by the large break loss-of-coolant accident (LBLOCA) without mitigating measures for Qinshan Phase II Nuclear Power Plant (QSP-II NPP) was performed by SAP for finding the key sequences of accidents, estimating the amount of hydrogen generation and oxidation behavior of the cladding

  14. LFR core design for prevention & mitigation of severe accidents

    International Nuclear Information System (INIS)

    Grasso, Giacomo

    2012-01-01

    Conclusions: • Aiming at fully complying Gen-IV safety requirements – even in case of Fukushima-like events –, prevention and mitigation strategies must be stressed in FR design. • The safety of Lead-cooled Fast Reactors can rely on intrinsic features due to the coolant, such as: • the practical impossibility of Lead boiling, hence the unreliability of core (only) voiding for wide safety margins, and the retention of corium; • the high density of lead, for the buoyancy of Control Rods (allowing their safe positioning below the core), and the dispersion of molten core up to the setting up of a “cold melting pot”. • the possibility to adopt wide coolant channels for encouraging natural circulation, without affecting the hardness of the neutron spectrum; • the hard neutron spectrum allows the adiabatic operation of LFRs (which implies minimal criticality swings even through long cycles) with small amounts of Mas (hence with a negligible detriment to the safety features); • an effective reduction of the coolant density effect simply through the shortening of the active height

  15. Proceedings of the Workshop on in-vessel core debris retention and coolability

    International Nuclear Information System (INIS)

    1999-01-01

    This conference on in-vessel core debris retention and coolability is composed of 37 papers grouped in three sessions: session 1 (Keynote papers: Key phenomena of late phase core melt progression, accident management strategies and status quo of severe fuel damage codes, In-vessel retention as a severe accident management scheme, GAREC analyses in support of in-vessel retention concept, Latest findings of RASPLAV project); session 2 - Experiments and model development with five sub-sessions: sub-session 1 (Debris bed heat transfer: Debris and Pool Formation/Heat Transfer in FARO-LWR: Experiments and Analyses, Evaporation and Flow of Coolant at the Bottom of a Particle-Bed modelling Relocated Debris, Investigations on the Coolability of Debris in the Lower Head with WABE-2D and MESOCO-2D, Uncertainty and Sensitivity Analysis of the Heat Transfer Mechanisms in the Lower Head, Simulation of the Arrival and Evolution of Debris in a PWR Lower Head with the SFD ICARE2 code), sub-session 2 (Corium properties, molten pool natural convection, and crust formation: Physico-chemistry and corium properties for in-vessel retention, Experimental data on heat flux distribution from volumetrically heated pool with frozen boundaries, Thermal hydraulic phenomena in corium pools - numerical simulation with TOLBIAC and experimental validation with BALI, TOLBIAC code simulations of some molten salt RASPLAV experiments, SIMECO experiments on in-vessel melt pool formation and heat transfer with and without a metallic layer, Numerical investigation of turbulent natural convection heat transfer in an internally-heated melt pool and metallic layer, Current status and validation of CON2D and 3D code, Free convection of heat-generating fluid in a constrained during experimental simulation of heat transfer in slice geometry), sub-session 3 (Gap formation and gap cooling: Quench of molten aluminum oxide associated with in-vessel debris retention by RPV internal water, Experimental investigations

  16. Study of corium radial spreading between fuel rods in a PWR core

    International Nuclear Information System (INIS)

    Roche, S.; Gatt, J.M.

    1996-01-01

    In the framework of severe accident studies for PWR like Three Mile Island Unit 2 (TMI-2), the reactor core essentially constituted of fuel rods begins to heat and then to melt. During the early degradation phase, a melt (essentially UO2 and ZrO2) that constitutes the corium flows first along the rods, and after a blockage formation, may radially propagate towards the core periphery. A simplified model has been elaborated to study the corium freezing phenomena during its crossflow between the fuel rods. The corium spreads on an horizontal support made, of either a corium crust, or a grid assembly. The model solves numerically the interface energy balance equation at the solid-liquid corium interface and the monodimensional heat balance equation in transient process with convective terms and heat source (residual power). ''Zukauskas'' correlations are used to calculate heat transfer coefficients. The model can be integrated in severe accident codes like ICARE II (IPSN) describing the in-vessel degradation scenarios. (author). 5 refs, 10 figs

  17. Severe Accidents: French Regulatory Practice for Nuclear Power Plants

    International Nuclear Information System (INIS)

    Colin, M.

    1997-01-01

    In the framework of a continuous and iterative process, the French Safety Authority asks the utility EDF to implement equipment and procedure modifications on the operating reactors, in order to cope with the most likely Severe Accident sequences. As a result of Probabilistic Safety Assessments published in 1990, important equipment and procedure modifications are being implemented on the French PWRs to improve the safety in shutdown states. The implementation of another set of modifications against some reactivity accident sequences is also in progress. More recently, the Safety Authority expressed specific Severe Accident requirements in terms of instrumentation, equipment qualification, high pressure core melt accidents and hydrogen risk prevention. In that respect, EDF was asked to implement hydrogen recombiners on its reactors. On the other hand, the French Safety authority is involved with its German counterpart in the assessment process of the European Pressurized Water Reactor Project. In consistency with the common recommendations of the Safety Authorities involved, Severe Accident provisions for this reactor are being taken into account at the design stage

  18. Study of top reflooding in case of severe accident and in particular oxidation of Uranium, Zirconium, Oxygen melts

    International Nuclear Information System (INIS)

    Brunet-Thibault, E.

    2006-12-01

    In 1979, the Three Mile Island (TMI) accident occurred in United States and accelerated research activities in the field of severe accidents. Severe accident management procedures imply massive water injections to flood the core. The work of this thesis bent principally over this reflooding. The first part of the study concerns the core oxidation enhancement during the reflooding phase which leads to a rough increase of the concentration of burnable hydrogen in the containment. This is why the study carried on the analysis of the contribution of the oxidation of U-Zr-O mixtures, towards the total production of hydrogen during reflooding. In the second part, the study concerns top flooding modelling i.e.: with injection of water in the hot legs. Here, we attempted to define bases and realize a model allowing to describe this type of reflooding. These models were validated on the simulation of the parameter with MAAP4 code. (author)

  19. IAEA report on the Fukushima-Daiichi accident and safety standards

    International Nuclear Information System (INIS)

    Mizumachi, Wataru

    2011-01-01

    On March 11th, 2011, 4th largest earthquake attacked Fukushima Nuclear Power Plant and around one hour later, the enormous Tsunami attacked it also. After the large earthquake attacked, the automatic shutdown was performed and the emergency diesel generators automatically started and Isolation condenser cooled down the core for unit 1 and RCIC cooled down the cores for unit 2 and 3. However, the large Tsunami damaged all emergency diesel generators and all ECCS pumps. The core melted and the hydrogen gas were generated by the steam and the zircaloy reaction. The hydrogen leaked into the reactor building and then the reactor building blasted by the hydrogen. IAEA has organized the Great East Japan Earthquake Expert Mission on Fukushima-daiichi accident and they reported to the formal meeting in the headquater in Viena. They made 15 conclusions and 16 lessons and learned. IAEA chairman officially summarized 28 recommendations from them. USNRC published 'Recommendations for Enhanuing Reactor Safety in the 21st Century 'where they summarized 12 Recommendations on Fukushima Accident. Here is the summary of these recommendations. (author)

  20. Neutronic analysis of LMFBRs during severe core disruptive accidents

    International Nuclear Information System (INIS)

    Tomlinson, E.T.

    1979-01-01

    A number of numerical experiments were performed to assess the validity of diffusion theory and various perturbation methods for calculating the reactivity state of a severely disrupted liquid metal cooled fast breeder reactor (LMFBR). The disrupted configurations correspond, in general, to phases through which an LMFBR core could pass during a core disruptive accident (CDA). Two-reactor models were chosen for this study, the two zone, homogeneous Clinch River Breeder Reactor and the Large Heterogeneous Reactor Design Study Core. The various phases were chosen to approximate the CDA results predicted by the safety analysis code SAS3D. The calculational methods investigated in this study include the eigenvalue difference technique based on both discrete ordinate transport theory and diffusion theory, first-order perturbation theory, exact perturbation theory, and a new hybrid perturbation theory. Selected cases were analyzed using Monte Carlo methods. It was found that in all cases, diffusion theory and perturbation theory yielded results for the change in reactivity that significantly disagreed with both the discrete ordinate and Monte Carlo results. These differences were, in most cases, in a nonconservative direction

  1. Analysis of the core reflooding of a PWR reactor under a loss-of-coolant postulated accident

    International Nuclear Information System (INIS)

    Austregesilo Filho, H.

    1978-12-01

    The main purpose of this work is to analyse the termohydraulic behaviour of emergency cooling water, during reflooding of a PWR core submitted to a postulated loss-of-coolant accident, with the scope of giving the boundary conditions needed to verify fuel element and containment integrity. The analytical model presented was applied to the simulation of Angra I core reflooding phase, after a double-ended break between pressure vessel and discharge of one of the main coolant pumps. For this accident, with a discharge coefficient of C sub(D) = 0.4, the highest peak cladding temperature is expected. (author) [pt

  2. Analytical and Experimental Study for Validation of the Device to Confine BN Reactor Melted Fuel

    International Nuclear Information System (INIS)

    Rogozhkin, S.; Osipov, S.; Sobolev, V.; Shepelev, S.; Kozhaev, A.; Mavrin, M.; Ryabov, A.

    2013-01-01

    To validate the design and confirm the design characteristics of the special retaining device (core catcher) used for protection of BN reactor vessel in the case of a severe beyond-design basis accident with core melting, computational and experimental studies were carried out. The Tray test facility that uses water as coolant was developed and fabricated by OKBM; experimental studies were performed. To verify the methodical approach used for the computational study, experimental results obtained in the Tray test facility were compared with numerical simulation results obtained by the STAR-CCM+ CFD code

  3. Evaluation of long-term post-accident core cooling of Three Mile Island Unit 2

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-04-15

    On the basis of current understanding of the accident scenario and available data, the staff reports here on its evaluation of the condition of the core and the core flow resistance as it might affect ability to cool the core by natural circulation. The natural circulation cooling capability of TMI-2 for the estimated core flow resistance and a variety of other conditions is evaluated and a comparison of the Base Case and off-nominal plant configurations is presented. The potential for and effects of natural convection core cooling are addressed, and the staff recommendations for reactor performance acceptance criteria upon initiation of natural convection are presented.

  4. How did Fukushima-Dai-ichi core meltdown change the probability of nuclear accidents?

    International Nuclear Information System (INIS)

    Escobar Rangel, Lina; Leveque, Francois

    2012-10-01

    How to predict the probability of a nuclear accident using past observations? What increase in probability the Fukushima Dai-ichi event does entail? Many models and approaches can be used to answer these questions. Poisson regression as well as Bayesian updating are good candidates. However, they fail to address these issues properly because the independence assumption in which they are based on is violated. We propose a Poisson Exponentially Weighted Moving Average (PEWMA) based in a state-space time series approach to overcome this critical drawback. We find an increase in the risk of a core meltdown accident for the next year in the world by a factor of ten owing to the new major accident that took place in Japan in 2011. (authors)

  5. ALPHA visual data collection. STX005-025: melt drop steam explosion experiments

    International Nuclear Information System (INIS)

    Moriyama, Kiyofumi; Yamano, Norihiro; Maruyama, Yu; Kudo, Tamotsu; Sugimoto, Jun

    1999-03-01

    Steam explosion is a phenomenon in which a high temperature liquid gives its internal energy to a low temperature volatile liquid extremely quickly causing rapid evaporation and shock wave generation. In the field of nuclear reactor safety research regarding severe accidents in LWRs, steam explosions involving molten fuel and coolant has been recognized as a potential threat to the integrity of the reactor containment vessel. In the ALPHA (Assessment of Loads and Performance of Containment in Hypothetical Accident) program, experiments were performed to investigate the phenomenology of vapor explosions using iron-alumina thermite melt as a simulant of molten core. This report collects the experimental results especially emphasizing the visual observations by high speed photography. (author)

  6. Determination of the availability of core exit thermocouples during severe accident situations

    International Nuclear Information System (INIS)

    Edson, J.L.

    1985-04-01

    This report presents the findings and recommendations of the Nuclear Power Plant Instrumentation Evaluation (NPPIE) program concerning signal validation methods to determine the on-line availability of core exit thermocouples during accident situations. Methods of selecting appropriate signal validation techniques are discussed and sources of error identified. This report shows that through the use of these techniques the existence of high-temperature-caused errors may be detected as they occur. Specific recommendations for application of selected signal validation techniques to core exit thermocouples and other measurement systems are made. 23 refs., 22 figs., 3 tabs

  7. The influence of chemistry on severe accident phenomena in integral tests

    International Nuclear Information System (INIS)

    Hobbins, R.R.; Osetek, D.J.; Hagrman, D.L.

    1988-01-01

    The influence of chemical processes on severe accident phenomena in integral tests is reviewed and recommendations for areas of additional work are made. The results reviewed include those from tests conducted in the in-pile facilities at ACRR, PBF, and TREAT and the TMI-2 accident. Progress has been made in understanding the influence of chemistry on important severe accident phenomena such as core melt progression, hydrogen generation, aerosol generation and transport, and fission product release and transport (including revaporization). An example is the chemistry of volatile fission products, especially iodine and tellurium. Areas where understanding is inadequate are also apparent, such as chemical interactions between fission product vapors and aerosols. Influential chemical processes reviewed include oxidation by steam and interactions among control, structural, fuel, fission product, and aerosol materials

  8. Application of the core-concrete interaction code Wechsl to reactor case

    International Nuclear Information System (INIS)

    Cenerino, G.

    1986-09-01

    The WECHSL code, developed at Kernforschungszentrum Karlsruhe, West-Germany, is used for core melt accidents in nuclear power plants. The first calculations, considering silicate and limestone/common sand concretes of different compositions, analyze the influence of the initial mass of Zirconium in the corium and, in one case, the effect of sump water ingression on the top of the melt. Moreover, for a limestone concrete, a sensitivity study is made on the melting temperature of the concrete influencing the decomposition enthalpy. The main conclusion of that paper is that, in any case, the temperature of the melt drops rapidly from the initial temperature to a temperature level close to the solidification temperature of the metal phase in a relatively short period of time (approximately 15 minutes) and then a balance between the removed heat from the melt and heating sources inside the melt is established

  9. Core disruptive accident and recriticality analysis with FX2-POOL

    International Nuclear Information System (INIS)

    Abramson, P.B.

    1976-01-01

    The current state of development of FX2-POOL, a two-dimensional hydrodynamic, thermodynamic and neutronic scoping model for Hypothetical Core Disruptive Accident analysis is described. Checkout comparisons to VENUS for prompt burst conditions were good. Use of FX2-POOL to examine the importance of fuel to steel heat transfer during a prompt burst indicates that heat transfer plays no important role on that time scale. Scoping studies of material thermohydrodynamics for about 20 to 30 milliseconds following the prompt burst indicate that heat transfer is important on the time scale necessary for the CDA bubble to grow to the size of the original core. Preliminary results are presented for energetics of boiling fuel steel pools which are forced recritical by local surface pressurization

  10. Validation and application of the system code ATHLET-CD for BWR severe accident analyses

    Energy Technology Data Exchange (ETDEWEB)

    Di Marcello, Valentino, E-mail: valentino.marcello@kit.edu; Imke, Uwe; Sanchez, Victor

    2016-10-15

    Highlights: • We present the application of the system code ATHLET-CD code for BWR safety analyses. • Validation of core in-vessel models is performed based on KIT CORA experiments. • A SB-LOCA scenario is simulated on a generic German BWR plant up to vessel failure. • Different core reflooding possibilities are investigated to mitigate the accident consequences. • ATHLET-CD modelling features reflect the current state of the art of severe accident codes. - Abstract: This paper is aimed at the validation and application of the system code ATHLET-CD for the simulation of severe accident phenomena in Boiling Water Reactors (BWR). The corresponding models for core degradation behaviour e.g., oxidation, melting and relocation of core structural components are validated against experimental data available from the CORA-16 and -17 bundle tests. Model weaknesses are discussed along with needs for further code improvements. With the validated ATHLET-CD code, calculations are performed to assess the code capabilities for the prediction of in-vessel late phase core behaviour and reflooding of damaged fuel rods. For this purpose, a small break LOCA scenario for a generic German BWR with postulated multiple failures of the safety systems was selected. In the analysis, accident management measures represented by cold water injection into the damaged reactor core are addressed to investigate the efficacy in avoiding or delaying the failure of the reactor pressure vessel. Results show that ATHLET-CD is applicable to the description of BWR plant behaviour with reliable physical models and numerical methods adopted for the description of key in-vessel phenomena.

  11. Assessment of two BWR accident management strategies

    International Nuclear Information System (INIS)

    Hodge, S.A.; Petek, M.

    1991-01-01

    Candidate mitigative strategies for management of in-vessel events during the late phase (after core degradation has occurred) of postulated BWR severe accidents were considered at Oak Ridge National Laboratory (ORNL) during 1990. The identification of new strategies was subject to the constraint that they should, to the maximum extent possible, make use of the existing equipment and water resources of the BWR facilities and not require major equipment modifications or additions. As a result of this effort, two of these candidate strategies were recommended for additional assessment. The first is a strategy for containment flooding to maintain the core and structural debris within the reactor vessel in the event that vessel injection cannot be restored to terminate a severe accident sequence. The second strategy pertains to the opposite case, for which vessel injection would be restored after control blade melting had begun; its purpose is to provide an injection source of borated water at the concentration necessary to preclude criticality upon recovering a damaged BWR core. Assessments of these two strategies have been performed during 1991 under the auspices of the Detailed Assessment of BWR In-Vessel Strategies Program. This paper provides a discussion of the motivation for and purpose of these strategies and the potential for their success. 33 refs., 9 figs

  12. Assessment of two BWR accident management strategies

    International Nuclear Information System (INIS)

    Hodge, S.A.; Petek, M.

    1994-01-01

    Candidate mitigative strategies for the management of in-vessel events during the late phase (after-core degradation has occurred) of postulated boiling water reactor (BWR) severe accidents were considered at Oak Ridge National Laboratory (ORNL) during 1990. The identification of new strategies was subject to the constraint that they should, to the maximum extent possible, make use of the existing equipment and water resources of the BWR facilities, and not require major equipment modifications or additions. As a result of this effort, two of these candidate strategies were recommended for further assessment. The first was a strategy for containment flooding to maintain the core and structural debris within the reactor vessel in the event that vessel injection cannot be restored to terminate a severe accident sequence. The second strategy pertained to the opposite case, for which vessel injection would be restored after control blade melting had begun; its purpose was to provide an injection source of borated water at the concentration necessary to preclude criticality upon recovering a damaged BWR core. Assessments of these two strategies were performed during 1991 and this paper provides a discussion of the motivation for and purpose of these strategies, and the potential for their success. ((orig.))

  13. The effect of melt composition on metal-silicate partitioning of siderophile elements and constraints on core formation in the angrite parent body

    Science.gov (United States)

    Steenstra, E. S.; Sitabi, A. B.; Lin, Y. H.; Rai, N.; Knibbe, J. S.; Berndt, J.; Matveev, S.; van Westrenen, W.

    2017-09-01

    We present 275 new metal-silicate partition coefficients for P, S, V, Cr, Mn, Co, Ni, Ge, Mo, and W obtained at moderate P (1.5 GPa) and high T (1683-1883 K). We investigate the effect of silicate melt composition using four end member silicate melt compositions. We identify possible silicate melt dependencies of the metal-silicate partitioning of lower valence elements Ni, Ge and V, elements that are usually assumed to remain unaffected by changes in silicate melt composition. Results for the other elements are consistent with the dependence of their metal-silicate partition coefficients on the individual major oxide components of the silicate melt composition suggested by recently reported parameterizations and theoretical considerations. Using multiple linear regression, we parameterize compiled metal-silicate partitioning results including our new data and report revised expressions that predict their metal-silicate partitioning behavior as a function of P-T-X-fO2. We apply these results to constrain the conditions that prevailed during core formation in the angrite parent body (APB). Our results suggest the siderophile element depletions in angrite meteorites are consistent with a CV bulk composition and constrain APB core formation to have occurred at mildly reducing conditions of 1.4 ± 0.5 log units below the iron-wüstite buffer (ΔIW), corresponding to a APB core mass of 18 ± 11%. The core mass range is constrained to 21 ± 8 mass% if light elements (S and/or C) are assumed to reside in the APB core. Incorporation of light elements in the APB core does not yield significantly different redox states for APB core-mantle differentiation. The inferred redox state is in excellent agreement with independent fO2 estimates recorded by pyroxene and olivine in angrites.

  14. New finite element-based modeling of reactor core support plate failure

    Energy Technology Data Exchange (ETDEWEB)

    Pandazis, Peter; Lovasz, Liviusz [Gesellschaft fuer Anlagen- und Reaktorsicherheit gGmbH, Garching (Germany). Forschungszentrum; Babcsany, Boglarka [Budapest Univ. of Technology and Economics, Budapest (Hungary). Inst. of Nuclear Techniques; Hajas, Tamas

    2017-12-15

    ATHLET-CD is the severe accident module of the code system AC{sup 2} that is designed to simulate the core degradation phenomena including fission product release and transport in the reactor circuit, as well as the late phase processes in the lower plenum. In case of a severe accident degradation of the reactor core occurs, the fuel assemblies start to melt. The evolution of such processes is usually accompanied with the failure of the core support plate and relocation of the molten core to the lower plenum. Currently, the criterion for the failure of the support plate applied by ATHLET-CD is a user-defined signal which can be a specific time or process variable like mass, temperature, etc. A new method, based on FEM approach, was developed that could lead in the future to a more realistic criterion for the failure of the core support plate. This paper presents the basic idea and theory of this new method as well as preliminary verification calculations and an outlook on the planned future development.

  15. Studies of severe accidents in light-water reactors

    International Nuclear Information System (INIS)

    1987-01-01

    From 10 to 12 November 1986 some 80 delegates met under the auspices of the CEC working group on the safety of light-water reactors. The participants from EC Member States were joined by colleagues from Sweden, Finland and the USA and met to discuss the subject of severe accidents in LWRs. Although this seminar had been planned well before Chernobyl, the ''severe-accident-that-really-happened'' made its mark on the seminar. The four main seminar topics were: (i) high source-term accident sequences identified in PSAs, (ii) containment performance, (iii) mitigation of core melt consequences, (iv) severe accident management in LWRs. In addition to the final panel discussion there was also a separate panel discussion on lessons learned from the Chernobyl accident. These proceedings include the papers presented during the seminar and they are arranged following the seminar programme outline. The presentations and discussions of the two panels are not included in the proceedings. The general conclusions and directions following from these two panels were, however, considered in a seminar review paper which was published in the March 1987 issue of Nuclear Engineering International

  16. Essential severe accident mitigation measures for operating and future PWR's

    Energy Technology Data Exchange (ETDEWEB)

    Bittermann, Dietmar; Eckardt, Bernd A.; Lechleuthner, Michael [Framatome ANP GmbH, Erlangen (Germany)

    2003-04-01

    obtaining realistic information on airborne material in the containment atmosphere, on the conditions of the core and for effective accident management decisions. These new in-situ sampling technology was developed and implemented to avoid the strong deposition errors of iodine and aerosols in conventional pipe extraction systems. The venting system is introduced for operating plants and can also be used for future plants although it is not required for the EPR. The Sliding Pressure Venting System consists mainly of a venturi scrubber unit with integrated high efficient metal fiber filter followed by means for super sonic throttling and operation under the sliding containment pressure conditions. Due to this special design and operation the system dimensions could be kept small in spite of obtaining high retention rates for aerosols of >99.99% and that for molecular iodide is >99.5%. For the EPR additional measures for maintaining the containment integrity are foreseen: {center_dot} use of highly reliable dedicated valves for depressurization which supplement normal bleed valves to eliminate high pressure RPV failure {center_dot} use of a core melt retention device for melt stabilization by means of spreading of the melt within a large compartment adjacent to the reactor pit, followed by flooding, quenching and cooling of the melt from the top and via a bottom cooling structure; {center_dot} use of a dedicated active two-train containment heat removal system which needs to operate not earlier than 12h after start of the accident.

  17. Behavior of concrete in contact with molten corium in the case of a hypothetical core melt accident

    International Nuclear Information System (INIS)

    Peehs, M.; Skokan, A.; Reimann, M.

    1979-01-01

    The temperature-dependent properties of basaltic and limestone concrete as needed for predicting Corium melt propagation in concrete (elongation behavior, specific heat and degradation enthalpy, thermal diffusivity, and conductivity) are determined experimentally together with the chemical and physical reactions occurring in heated concrete. The determined oxidation potential of -335 kJ/mole for molten Corium interacting with the concrete is in accordance with the observed H 2 generation due to the melt internal oxidation of zirconium, chromium, and iron. The liquefaction temperatures of the different concretes investigated are approx. 1300 to 1400 0 C. The relatively high degradation enthalpy of basaltic and limestone concrete is the reason for the barrier effect of concrete against propagating molten Corium

  18. FE-simulation of the viscoplastic behaviour of different RPV steels in the frame of in-vessel melt retentions scenarios

    International Nuclear Information System (INIS)

    Altstadt, E.; Willschuetz, H.G.; Mueller, G.

    2004-01-01

    Assuming the hypothetical scenario of a severe accident with subsequent core meltdown and formation of a melt pool in the reactor pressure vessel (RPV) lower plenum of a Light Water Reactor (LWR) leads to the question about the behavior of the RPV. One accident management strategy could be to stabilize the in-vessel debris configuration in the RPV as one major barrier against uncontrolled release of heat and radio nuclides. To get an improved understanding and knowledge of the melt pool convection and the vessel creep and possible failure processes and modes occurring during the late phase of a core melt down accident the FOREVER-experiments (Failure Of REactor VEssel Retention) have been performed at the Division of Nuclear Power Safety of the Royal Institute of Technology Stockholm. These experiments are simulating the behavior of the lower head of the RPV under the thermal loads of a convecting melt pool with decay heating, and under the pressure loads that the vessel experiences in a depressurization scenario. The geometrical scale of the experiments is 1:10 compared to a common LWR. This paper deals with the experimental, numerical, and metallographical results of the creep failure experiment EC-FOREVER-4, where the American pressure vessel steel SA533B was applied for the lower head. For comparison the results of the experiment EC-FOREVER-3B, build of the French 16MND5 steel, are discussed, too. Emphasis is put on the differences in the viscoplastic behaviour of different heats of the RPV steel. For this purpose, the creep tests in the frame of the LHF/OLHF experiments are reviewed, too. As a hypothesis it is stated that the sulphur content could be responsible for differences in the creep behaviour. (orig.)

  19. In-vessel core degradation code validation matrix

    International Nuclear Information System (INIS)

    Haste, T.J.; Adroguer, B.; Gauntt, R.O.; Martinez, J.A.; Ott, L.J.; Sugimoto, J.; Trambauer, K.

    1996-01-01

    The objective of the current Validation Matrix is to define a basic set of experiments, for which comparison of the measured and calculated parameters forms a basis for establishing the accuracy of test predictions, covering the full range of in-vessel core degradation phenomena expected in light water reactor severe accident transients. The scope of the review covers PWR and BWR designs of Western origin: the coverage of phenomena extends from the initial heat-up through to the introduction of melt into the lower plenum. Concerning fission product behaviour, the effect of core degradation on fission product release is considered. The report provides brief overviews of the main LWR severe accident sequences and of the dominant phenomena involved. The experimental database is summarised. These data are cross-referenced against a condensed set of the phenomena and test condition headings presented earlier, judging the results against a set of selection criteria and identifying key tests of particular value. The main conclusions and recommendations are listed. (K.A.)

  20. Thermohydraulics in a high-temperature gas-cooled reactor prestressed-concrete reactor vessel during unrestricted core-heatup accidents

    International Nuclear Information System (INIS)

    Kroeger, P.G.; Colman, J.; Araj, K.

    1983-01-01

    The hypothetical accident considered for siting considerations in High Temperature Gas-Cooled Reactors (HTGR) is the so called Unrestricted Core Heatup Accident (UCHA), in which all forced circulation is lost at initiation, and none of the auxillary cooling loops can be started. The result is a gradual slow core heatup, extending over days. Whether the liner cooling system (LCS) operates during this time is of crucial importance. If it does not, the resulting concrete decomposition of the prestressed concrete reactor vessel (PCRV) will ultimately cause containment building (CB) failure after about 6 to 10 days. The primary objective of the work described here was to establish for such accident conditions the core temperatures and approximate fuel failure rates, to check for potential thermal barrier failures, and to follow the PCRV concrete temperatures, as well as PCRV gas releases from concrete decomposition. The work was done for the General Atomic Corporation Base Line Zero reactor of 2240 MW(t). Most results apply at least qualitatively also to other large HTGR steam cycle designs

  1. Accident analyses in nuclear power plants following external initiating events and in the shutdown state. Final report

    International Nuclear Information System (INIS)

    Loeffler, Horst; Kowalik, Michael; Mildenberger, Oliver; Hage, Michael

    2016-06-01

    The work which is documented here provides the methodological basis for improvement of the state of knowledge for accident sequences after plant external initiating events and for accident sequences which begin in the shutdown state. The analyses have been done for a PWR and for a BWR reference plant. The work has been supported by the German federal ministry BMUB under the label 3612R01361. Top objectives of the work are: - Identify relevant event sequences in order to define characteristic initial and boundary conditions - Perform accident analysis of selected sequences - Evaluate the relevance of accident sequences in a qualitative way The accident analysis is performed with the code MELCOR 1.8.6. The applied input data set has been significantly improved compared to previous analyses. The event tree method which is established in PSA level 2 has been applied for creating a structure for a unified summarization and evaluation of the results from the accident analyses. The computer code EVNTRE has been applied for this purpose. In contrast to a PSA level 2, the branching probabilities of the event tree have not been determined with the usual accuracy, but they are given in an approximate way only. For the PWR, the analyses show a considerable protective effect of the containment also in the case of beyond design events. For the BWR, there is a rather high probability for containment failure under core melt impact, but nevertheless the release of radionuclides into the environment is very limited because of plant internal retention mechanisms. This report concludes with remarks about existing knowledge gaps and with regard to core melt sequences, and about possible improvements of the plant safety.

  2. Theoretical and experimental methods to determine the properties of molten core components and reaction products. Pt. 2

    International Nuclear Information System (INIS)

    Nazare, S.; Ondracek, G.; Schulz, B.

    1975-10-01

    In the course of a loss of coolant accident, a sequence of events would be initiated that ultimately could lead to core melting. The course of these events and the consequences of core meltdown would in part be determined by the properties of the core materials and the products of their interaction. On the basis of available theoretical and experimental results, the report attempts an estimation of properties such as: 1) work of adhesion between UO 2 - and (U,Zr) liquid phase, 2) heat of fusion of some melts, 3) heat capacity of liquid reaction products, 4) viscosity of liquid reaction products, 5) thermal conductivity of liquid reaction products. Experimental work is suggested for those cases, where the estimates need to be improved or verified. (orig.) [de

  3. Analysis of forces on core structures during a loss-of-coolant accident. Final report

    International Nuclear Information System (INIS)

    Griggs, D.P.; Vilim, R.B.; Wang, C.H.; Meyer, J.E.

    1980-08-01

    There are several design requirements related to the emergency core cooling which would follow a hypothetical loss-of-coolant accident (LOCA). One of these requirements is that the core must retain a coolable geometry throughout the accident. A possible cause of core damage leading to an uncoolable geometry is the action of forces on the core and associated support structures during the very early (blowdown) stage of the LOCA. An equally unsatisfactory design result would occur if calculated deformations and failures were so extensive that the geometry used for calculating the next stages of the LOCA (refill and reflood) could not be known reasonably well. Subsidiary questions involve damage preventing the operation of control assemblies and loss of integrity of other needed safety systems. A reliable method of calculating these forces is therefore an important part of LOCA analysis. These concerns provided the motivation for the study. The general objective of the study was to review the state-of-the-art in LOCA force determination. Specific objectives were: (1) determine state-of-the-art by reviewing current (and projected near future) techniques for LOCA force determination, and (2) consider each of the major assumptions involved in force determination and make a qualitative assessment of their validity

  4. Comparative analysis of unprotected loss-of-flow accidents for the 1.0 m EFR-LVC core using different computer codes

    International Nuclear Information System (INIS)

    Royl, P.; Frizonnet, J.M.; Moran, J.

    1993-02-01

    A comparative analysis of the unprotected loss of flow (ULOF) accident has been performed for the LVC core (Lower Void Core) of the European Fast Reactor EFR with the FRAX5B and FRAX5C codes from the AEA-T, the PHYSURAC code from CEA and the SAS4A REF92 code system developed jointly between KfK, CEA and PNC. The accident is triggered by the run down of the coolant pumps with failure to trip the reactor by the primary and/or secondary shutdown system. Only a limited amount of mitigating reactivity from the third shutdown line was considered so that the accident can progress into boiling and core disruption. This code outlines the important modelling differences and compares the different simulations. The discussion of the rather wide spectrum of calculated accident progressions identifies the generic differences, relates them to the applied models, and summarizes the key points that are responsible for the different progressions. A comparison of the consequence spectrum from all simulations indicates zero work energies for the majority of the calculations. All simulations show up the need for a continued accident analysis into the early and late transition phase

  5. JERICHO computer code: PWR containment response during severe accidents description and sensitivity analysis

    International Nuclear Information System (INIS)

    Fermandjian, J.; Evrard, J.M.

    1983-12-01

    The JERICHO code has been developed in order to study the thermodynamic behaviour inside the reactor containment building for the complete spectrum of accident sequences likely to occur in such a reactor, including models for the various mass and energy transfer phenomena, for water spray, for hydrogen and carbon monoxide flammability limits and combustion, as well as for containment venting. Sensitivity analyses have been performed on a severe accident sequence, (namely, small LOCA with failure of the emergency core cooling and containment spray systems), involving core melting and subsequent concrete containment basemat erosion. The effect of various models, such as mass and energy transfer to the structures, has been studied. The influence of the concrete composition, of the fission product deposition and of the thermal degradation of the reactor cavity concrete walls on long term thermodynamic behaviour has also been investigated

  6. Modeling of reflood of severely damaged reactor core

    International Nuclear Information System (INIS)

    Bachrata, A.

    2012-01-01

    The TMI-2 accident and recently Fukushima accident demonstrated that the nuclear safety philosophy has to cover accident sequences involving massive core melt in order to develop reliable mitigation strategies for both, existing and advanced reactors. Although severe accidents are low likelihood and might be caused only by multiple failures, accident management is implemented for controlling their course and mitigating their consequences. In case of severe accident, the fuel rods may be severely damaged and oxidized. Finally, they collapse and form a debris bed on core support plate. Removal of decay heat from a damaged core is a challenging issue because of the difficulty for water to penetrate inside a porous medium. The reflooding (injection of water into core) may be applied only if the availability of safety injection is recovered during accident. If the injection becomes available only in the late phase of accident, water will enter a core configuration that will differ from original rod bundle geometry and will resemble to the severe damaged core observed in TMI-2. The higher temperatures and smaller hydraulic diameters in a porous medium make the coolability more difficult than for intact fuel rods under typical loss of coolant accident conditions. The modeling of this kind of hydraulic and heat transfer is a one of key objectives of this. At IRSN, part of the studies is realized using an European thermo-hydraulic computer code for severe accident analysis ICARE-CATHARE. The objective of this thesis is to develop a 3D reflood model (implemented into ICARE-CATHARE) that is able to treat different configurations of degraded core in a case of severe accident. The proposed model is characterized by treating of non-equilibrium thermal between the solid, liquid and gas phase. It includes also two momentum balance equations. The model is based on a previously developed model but is improved in order to take into account intense boiling regimes (in particular

  7. Loss of coolant accident mitigation for liquid metal cooled space reactors

    International Nuclear Information System (INIS)

    Georgevich, Vladimir; Best, Frederick; Erdman, Carl

    1989-01-01

    A loss of coolant accident (LOCA) in a liquid metal-cooled space reactor system has been considered as a possible accident scenario. Development of new concepts that will prevent core damage by LOCA caused elevated temperatures is the primary motivation of this work. Decay heat generated by the fission products in the reactor core following shutdown is sufficiently high to melt the fuel unless energy can be removed from the pins at a sufficiently rapid rate. There are two major reasons that prevent utilization of traditional emergency cooling methods. One is the absence of gravity and the other is the vacuum condition outside the reactor vessel. A concept that overcomes both problems is the Saturated Wick Evaporation Method (SWEM). This method involves placing wicking structures at specific locations in the core to act as energy sinks. One of its properties is the isothermal behaviour of the liquid in the wick. The absorption of energy by the surface at the isothermal temperature will direct the energy into an evaporation process and not in sensible heat addition. The use of this concept enables establishment of isothermal positions within the core. A computer code that evaluates the temperature distribution of the core has been developed and the results show that this design will prevent fuel meltdown. (author)

  8. FARO tests corium-melt cooling in water pool: Roles of melt superheat and sintering in sediment

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Gisuk [Department of Mechanical Engineering, Wichita State University, Wichita, KS 67260 (United States); Kaviany, Massoud [Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109 (United States); Division of Advance Nuclear Engineering, POSTECH, Pohang, Gyeongbuk 790-784 (Korea, Republic of); Moriyama, Kiyofumi [Division of Advance Nuclear Engineering, POSTECH, Pohang, Gyeongbuk 790-784 (Korea, Republic of); Park, Hyun Sun, E-mail: hejsunny@postech.ac.kr [Division of Advance Nuclear Engineering, POSTECH, Pohang, Gyeongbuk 790-784 (Korea, Republic of); Hwang, Byoungcheol; Lee, Mooneon; Kim, Eunho; Park, Jin Ho [Division of Advance Nuclear Engineering, POSTECH, Pohang, Gyeongbuk 790-784 (Korea, Republic of); Nasersharifi, Yahya [Department of Mechanical Engineering, Wichita State University, Wichita, KS 67260 (United States)

    2016-08-15

    Highlights: • The numerical approach for FARO experimental data is suggested. • The cooling mechanism of ex-vessel corium is suggested. • The predicted minimum pool depth for no cake formation is suggested. - Abstract: The FARO tests have aimed at understanding an important severe accident mitigation action in a light water reactor when the accident progresses from the reactor pressure vessel boundary. These tests have aimed to measure the coolability of a molten core material (corium) gravity dispersed as jet into a water pool, quantifying the loose particle diameter distribution and fraction converted to cake under range of initial melt superheat and pool temperature and depth. Under complete hydrodynamic breakup of corium and consequent sedimentation in the pool, the initially superheated corium can result in debris bed consisting of discrete solid particles (loose debris) and/or a solid cake at the bottom of the pool. The success of the debris bed coolability requires cooling of the cake, and this is controlled by the large internal resistance. We postulate that the corium cake forms when there is a remelting part in the sediment. We show that even though a solid shell forms around the melt particles transiting in the water pool due to film-boiling heat transfer, the superheated melt allows remelting of the large particles in the sediment (depending on the water temperature and the transit time) using the COOLAP (Coolability Analysis with Parametric fuel-cooant interaction models) code. With this remelting and its liquid-phase sintering of the non-remelted particles, we predict the fraction of the melt particles converting to a cake through liquid sintering. Our predictions are in good agreement with the existing results of the FARO experiments. We address only those experiments with pool depths sufficient/exceeding the length required for complete breakup of the molten jet. Our analysis of the fate of molten corium aimed at devising the effective

  9. VVER-specific features regarding core degradation - Status Report

    International Nuclear Information System (INIS)

    Hozer, Z.; Trambauer, K.; Duspiva, J.

    1999-01-01

    The objective of this report is to compare VVER reactors to pressurised water reactors (PWRs) of Western design from the point of view of core degradation phenomena using the terminology which was applied to the systematisation of severe accident phenomena in earlier CSNI reports. In the following the acronym 'PWR' is used for a PWR of Western design. The basic design features are described and the most important parameters are summarised in order to identify the differences between the two reactor types. In some specific cases the comparison shows more similarities with boiling water reactors (BWRs) than with PWRs. The known VVER experimental support is also summarised. RBMKs are not included in this report, as this reactor type is not operated in OECD countries, furthermore its design is completely different from those of VVERs and PWRs. The scope of this report is limited to in-vessel severe fuel damage phenomena. Neither thermal hydraulic processes involving no core degradation, nor containment phenomena, are discussed in detail. The VVER (water-cooled water-moderated power reactor) is a pressurised light water reactor of Soviet design. It operates on the same principles as a Western PWR reactor and uses similar technological systems. The primary coolant is pressurised water, which heats up in the reactor core and steam is produced on the secondary side of steam generators. The comparison of basic geometrical and technological parameters pointed out some differences between a PWR and a VVER, but it should be noted that differences exist even between two Western PWRs of different design. The VVER reactors are special types of PWRs, the most important design features of which are the horizontal steam generators and the hexagonal core structure. Similarity between PWR and VVER reactors was found in the comparison of dominant accidents sequences leading to core melt. The accident progression sequence consists of the same steps for VVERs and PWRs. The larger water

  10. The German risk study. Pt. 1

    International Nuclear Information System (INIS)

    Heuser, F.W.

    1980-01-01

    With reference to a representative PWR plant of the 1300 MWe-type some 100 accident sequences leading to core melt have been investigated. An overall core melt frequency of about 9 x 10 - 5 per reactor and per year has been obtained as a mean value. According to the analysis performed the main contributions to the core melt frequency result from uncoped small LOCAs in the reactor coolant loops, and some transients (e.g. Loss of Offsite Power). Furtheron, assuming failure of engineered safety features, the course of core melt accidents and potential containment failure modes (overpressure, leakage, steam explosion) are analyzed. Thereby the course of a core melt accident leading to overpressure failure of the containment is discussed in some detail. The activity release in the environment resulting from different accident sequences is determined. (orig./RW)

  11. What kind of accidents can happen in a nuclear power plant

    International Nuclear Information System (INIS)

    Debes, M.

    1995-01-01

    The lessons drawn from real reactor accidents are of great value. The safety approach in France relies on defence in depth and takes into account accidents in the plant design, completed by a probabilistic approach and experience feedback. Ultimate procedure are implemented on the basis of severe accidents studies which include core melting or partial containment defect, in order to mitigate their consequences even if they are improbable, and to enable a proper implementation of emergency planning countermeasures. The accident hypothesis and consequences are considered to draw the emergency planning procedures. Off site countermeasures, such as in house-confinement, limited evacuation or iodine distribution, are efficient in limiting the consequences for the public. Experience feedback, in association with a proactive vigilance and prevention policy, is developed in order to detect and correct in a proactive way the root causes of any deviation, even minor, so as to avoid multiple failures and ensure safety. (author). 4 refs., 2 figs., 1 tab

  12. Control rod drop accident analysis for the mixed core project in Ling Ao NPS

    International Nuclear Information System (INIS)

    Zhang Shishun; Zhou Zhou; Xiao Min

    2004-01-01

    AFA-2G assemblies in Ling Ao NPS (LNPS) have been replaced gradually by AFA-3G assemblies from cycle 2 and subsequent cycles. the enrichment of the fuels will be increased from 3.2% to 3.7% from cycle 3 in Ling Ao. Therefore, the study of ling Ao mixed core and increased enrichment have been performed since 2001. Lots of accidents need to be re-analyzed in Ling Ao NPS in order to verify its safety requirements for the new fuel management. Control rod drop accident for LNPS was re-analyzed in 2001 in frame of FRAMATOME ANP analytical methodology. The analytical codes used in the accident analysis include SCIENCE, ESPADON, CINEMA, CANTAL and FLICA III. The control rod drop accident analysis is performed with respect to the 10 reference cycles of the generic fuel management design for Ling Ao mixed core and increased enrichment study. The pre-drop FδH for the first transition cycles and other cycles are 1.52 and 1.55, respectively. For detected dropped rod configurations, the negative flux rate protection system actuates a reactor trip. For the non-detected dropped rod configurations, the minimum DNBR values have been evaluated with conservative analysis methodology and assumptions and the DNBR fuel design limit is respected the analytical results shows that, for all the non-detected dropped rod configurations, the minimum DNB margin is about 2% which occurs in AFA-2G fuel assembly in the first transition cycle. (author)

  13. Severe accident recriticality analyses (SARA)

    Energy Technology Data Exchange (ETDEWEB)

    Frid, W. E-mail: wiktor.frid@ski.se; Hoejerup, F.; Lindholm, I.; Miettinen, J.; Nilsson, L.; Puska, E.K.; Sjoevall, H

    2001-11-01

    quasi steady-state power following initial power excursion was in most cases approximately 20% of the nominal reactor power, according to SIMULATE-3K and APROS. However, in some RECRIT cases higher power levels, approaching 50% of the nominal power, were predicted leading to fuel temperatures exceeding the melting point, as a result of insufficient cooling of the fuel. Long-term containment response to recriticality was assessed through MELCOR calculations for the Olkiluoto 1 plant. At a stabilised reactor power of 19% of nominal power, the containment failure due to overpressurisation was predicted to occur 1.3 h after recriticality, if the accident is not mitigated. The SARA studies have clearly shown the sensitivity of recriticality phenomena to thermal-hydraulic modelling, the specifics of accident scenario, such as distribution of boron-carbide, and importance of multi-dimensional kinetics for determination of local power distribution in the core. The results of the project have pointed out the importance of adequate accident management strategies to be used by reactor operators and emergency staff during recovery actions. Recommendations in this area are given in the paper.

  14. Severe accident recriticality analyses (SARA)

    International Nuclear Information System (INIS)

    Frid, W.; Hoejerup, F.; Lindholm, I.; Miettinen, J.; Nilsson, L.; Puska, E.K.; Sjoevall, H.

    2001-01-01

    -state power following initial power excursion was in most cases approximately 20% of the nominal reactor power, according to SIMULATE-3K and APROS. However, in some RECRIT cases higher power levels, approaching 50% of the nominal power, were predicted leading to fuel temperatures exceeding the melting point, as a result of insufficient cooling of the fuel. Long-term containment response to recriticality was assessed through MELCOR calculations for the Olkiluoto 1 plant. At a stabilised reactor power of 19% of nominal power, the containment failure due to overpressurisation was predicted to occur 1.3 h after recriticality, if the accident is not mitigated. The SARA studies have clearly shown the sensitivity of recriticality phenomena to thermal-hydraulic modelling, the specifics of accident scenario, such as distribution of boron-carbide, and importance of multi-dimensional kinetics for determination of local power distribution in the core. The results of the project have pointed out the importance of adequate accident management strategies to be used by reactor operators and emergency staff during recovery actions. Recommendations in this area are given in the paper

  15. A backward method to estimate the Dai-ichi reactor core damage using radiation exposure in the environment

    International Nuclear Information System (INIS)

    PM Udiyani; S Kuntjoro; S Widodo

    2016-01-01

    The Fukushima accident resulted in the melting of the reactor core due to loss of supply of coolant when the reactor stopped from operating conditions. The earthquake and tsunami caused loss of electricity due to the flooding that occurred in the reactor. The absence of the coolant supply after reactor shutdown resulted in heat accumulation, causing the temperature of the fuel to rise beyond its melting point. In the early stages of the accident, operator could not determine the severity of the accident and the percentage of the reactor core damaged. The available data was based on the radiation exposure in the environment that was reported by the authorities. The aim of this paper is to determine the severity of the conditions in the reactor core based on the radiation doses measured in the environment. The method is performed by backward counting based on the measuring radiation exposure and radionuclides releases source term. The calculation was performed by using the PC-COSYMA code. The results showed that the core damage fraction at Dai-ichi Unit 1 was 70%, and the resulting individual effective dose in the exclusion area is 401 mSv, while the core damage fraction at Unit 2 was 30%, and the resulting individual effective dose was 9.1 mSv, while for Unit 3, the core damage fraction was 25% for an individual effective dose of 92.2 mSv. The differences between the results of the calculation for estimation of core damage proposed in this paper with the previously reported results is probably caused by the applied model for assessment, differences in postulations and assumptions, and the incompleteness of the input data. This difference could be reduced by performing calculations and simulations for more varied assumptions and postulations. (author)

  16. Consideration of BORAX-type reactivity accidents applied to research reactors

    International Nuclear Information System (INIS)

    Couturier, Jean; Meignen, Renaud; Bourgois, Thierry; Biaut, Guillaume; Mireau, Jean-Pierre; Natta, Marc

    2011-01-01

    Most of the research reactors discussed in this document are pool-type reactors in which the reactor vessel and some of the reactor coolant systems are located in a pool of water. These reactors generally use fuel in plate assemblies formed by a compact layer of uranium (or U 3 Si 2 ) and aluminium particles, sandwiched between two thin layers of aluminium serving as cladding. The fuel melting process begins at 660 deg. C when the aluminium melts, while the uranium (or U 3 Si 2 ) particles may remain solid. The accident that occurred in the American SL-1 reactor in 1961, together with tests carried out in the United States as of 1954 in the BORAX-1 reactor and then, in 1962, in the SPERT-1 reactor, showed that a sudden substantial addition of reactivity in this type of reactor could lead to explosive mechanisms caused by degradation, or even fast meltdown, of part of the reactor core. This is what is known as a 'BORAX-type' accident. The aim of this document is first to briefly recall the circumstances of the SL-1 reactor accident, the lessons learned, how this operational feedback has been factored into the design of various research reactors around the world and, second, to describe the approach taken by France with regard to this type of accident and how, led by IRSN, this approach has evolved in the last decade. (authors)

  17. The MELTSPREAD Code for Modeling of Ex-Vessel Core Debris Spreading Behavior, Code Manual – Version3-beta

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, M. T. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-09-01

    MELTSPREAD3 is a transient one-dimensional computer code that has been developed to predict the gravity-driven flow and freezing behavior of molten reactor core materials (corium) in containment geometries. Predictions can be made for corium flowing across surfaces under either dry or wet cavity conditions. The spreading surfaces that can be selected are steel, concrete, a user-specified material (e.g., a ceramic), or an arbitrary combination thereof. The corium can have a wide range of compositions of reactor core materials that includes distinct oxide phases (predominantly Zr, and steel oxides) plus metallic phases (predominantly Zr and steel). The code requires input that describes the containment geometry, melt “pour” conditions, and cavity atmospheric conditions (i.e., pressure, temperature, and cavity flooding information). For cases in which the cavity contains a preexisting water layer at the time of RPV failure, melt jet breakup and particle bed formation can be calculated mechanistically given the time-dependent melt pour conditions (input data) as well as the heatup and boiloff of water in the melt impingement zone (calculated). For core debris impacting either the containment floor or previously spread material, the code calculates the transient hydrodynamics and heat transfer which determine the spreading and freezing behavior of the melt. The code predicts conditions at the end of the spreading stage, including melt relocation distance, depth and material composition profiles, substrate ablation profile, and wall heatup. Code output can be used as input to other models such as CORQUENCH that evaluate long term core-concrete interaction behavior following the transient spreading stage. MELTSPREAD3 was originally developed to investigate BWR Mark I liner vulnerability, but has been substantially upgraded and applied to other reactor designs (e.g., the EPR), and more recently to the plant accidents at Fukushima Daiichi. The most recent round of

  18. Specialists' meeting on role of fission products in whole core accidents

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-07-01

    Safety of nuclear reactors has been a central concern of the nuclear energy industry from the very beginning. This concern, and the resultant excellence of design, fabrication, and operation, aided by extensive engineered safety features, has given nuclear energy its superior record of protection of the environment and of the public health and safety. With respect to the fast reactor, it was recognized early in the program that there exists a theoretical possibility of a core compaction leading to significant energy release. The considerations of fission product effects are primarily on of the main concerns in evaluation of safety issues. Since fission products have the potential for dispersing fuel from the core region and thereby producing reactor shutdown, knowledge of their effects can contribute to demonstrating that there is a low probability producing whole-core involvement. Similarly, knowledge of fission product effects can contribute to demonstrating that there is a low probability of a whole-core disruptive accident leading to sufficient energy release to challenge the containment capability.

  19. Specialists' meeting on role of fission products in whole core accidents

    International Nuclear Information System (INIS)

    1977-01-01

    Safety of nuclear reactors has been a central concern of the nuclear energy industry from the very beginning. This concern, and the resultant excellence of design, fabrication, and operation, aided by extensive engineered safety features, has given nuclear energy its superior record of protection of the environment and of the public health and safety. With respect to the fast reactor, it was recognized early in the program that there exists a theoretical possibility of a core compaction leading to significant energy release. The considerations of fission product effects are primarily on of the main concerns in evaluation of safety issues. Since fission products have the potential for dispersing fuel from the core region and thereby producing reactor shutdown, knowledge of their effects can contribute to demonstrating that there is a low probability producing whole-core involvement. Similarly, knowledge of fission product effects can contribute to demonstrating that there is a low probability of a whole-core disruptive accident leading to sufficient energy release to challenge the containment capability

  20. Nickel and helium evidence for melt above the core-mantle boundary.

    Science.gov (United States)

    Herzberg, Claude; Asimow, Paul D; Ionov, Dmitri A; Vidito, Chris; Jackson, Matthew G; Geist, Dennis

    2013-01-17

    High (3)He/(4)He ratios in some basalts have generally been interpreted as originating in an incompletely degassed lower-mantle source. This helium source may have been isolated at the core-mantle boundary region since Earth's accretion. Alternatively, it may have taken part in whole-mantle convection and crust production over the age of the Earth; if so, it is now either a primitive refugium at the core-mantle boundary or is distributed throughout the lower mantle. Here we constrain the problem using lavas from Baffin Island, West Greenland, the Ontong Java Plateau, Isla Gorgona and Fernandina (Galapagos). Olivine phenocryst compositions show that these lavas originated from a peridotite source that was about 20 per cent higher in nickel content than in the modern mid-ocean-ridge basalt source. Where data are available, these lavas also have high (3)He/(4)He. We propose that a less-degassed nickel-rich source formed by core-mantle interaction during the crystallization of a melt-rich layer or basal magma ocean, and that this source continues to be sampled by mantle plumes. The spatial distribution of this source may be constrained by nickel partitioning experiments at the pressures of the core-mantle boundary.

  1. Crust behavior and erosion rate prediction of EPR sacrificial material impinged by core melt jet

    Energy Technology Data Exchange (ETDEWEB)

    Li, Gen; Liu, Ming, E-mail: ming.liu@mail.xjtu.edu.cn; Wang, Jinshi; Chong, Daotong; Yan, Junjie

    2017-04-01

    Highlights: • A numerical code was developed to analyze melt jet-concrete interaction in the frame of MPS method. • Crust and ablated concrete layer at UO{sub 2}-ZrO{sub 2} melt and concrete interface periodically developed and collapsed. • Concrete surface temperature fluctuated around a low temperature and ablation temperature. • Concrete erosion by Fe-Zr melt jet was significantly faster than that by UO{sub 2}-ZrO{sub 2} melt jet. - Abstract: Sacrificial material is a special ferro-siliceous concrete, designed in the ex-vessel core melt stabilization system of European Pressurized water Reactor (EPR). Given a localized break of RPV lower head, the melt directly impinges onto the dry concrete in form of compact jet. The concrete erosion behavior influences the failure of melt plug, and further affects melt spreading. In this study, a numerical code was developed in the frame of Moving Particle Semi-implicit (MPS) method, to analyze the crust behavior and erosion rate of sacrificial concrete, impinged by prototypic melt jet. In validation of numerical modeling, the time-dependent erosion depth and erosion configuration matched well with the experimental data. Sensitivity study of sacrificial concrete erosion indicates that the crust and ablated concrete layer presented at UO{sub 2}-ZrO{sub 2} melt and concrete interface, whereas no crust could be found in the interaction of Fe-Zr melt with concrete. The crust went through stabilization-fracture-reformation periodic process, accompanied with accumulating and collapsing of molten concrete layer. The concrete surface temperature fluctuated around a low temperature and ablation temperature. It increased as the concrete surface layer was heated to melting, and dropped down when the cold concrete was revealed. The erosion progression was fast in the conditions of small jet diameter and large concrete inclination angle, and it was significantly faster in the erosion by metallic melt jet than by oxidic melt jet.

  2. Study on severe accident fuel dispersion behavior in the advanced neutron source reactor at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S.H.; Taleyarkhan, R.P.; Navarro-Valenti, S. [Oak Ridge National Lab., TN (United States)] [and others

    1995-09-01

    Core flow blockage events have been determined to represent a leading contributor to core damage initiation risk in the Advanced Neutron Source (ANS) reactor. During such an accident, insufficient cooling of the fuel in a few adjacent blocked coolant channels out of several hundred channels, could also result in core heatup and melting under full coolant flow condition in other coolant channels. Coolant inertia forces acting on the melt surface would likely break up the melt into small particles. Under thermal-hydraulic conditions of ANS coolant channel, micro-fine melt particles are expected. Hat transfer between melt particle and coolant, which affects the particle breakup characteristics, was studied. The study indicates that the thermal effect on melt fragmentation seems to be negligible because the time corresponding to the breakup due to hydrodynamic forces is much shorter than the time for the melt surface to solidify. The study included modeling and analyses to predict transient behavior and transport of debris particles throughout the coolant system. The transient model accounts for the surface forces acting on the particle that results from the pressure variation on the surface, inertia, virtual mass, viscous force due to the relative motion of the particle in the coolant, gravitation, and resistance due to inhomogenous coolant velocity radially across piping due to possible turbulent coolant motions. The results indicate that debris particles would reside longest in heat exchangers because of lower coolant velocity there. Also they are entrained and move together in a cloud.

  3. Integrated severe accident containment analysis with the CONTAIN computer code

    International Nuclear Information System (INIS)

    Bergeron, K.D.; Williams, D.C.; Rexroth, P.E.; Tills, J.L.

    1985-12-01

    Analysis of physical and radiological conditions iunside the containment building during a severe (core-melt) nuclear reactor accident requires quantitative evaluation of numerous highly disparate yet coupled phenomenologies. These include two-phase thermodynamics and thermal-hydraulics, aerosol physics, fission product phenomena, core-concrete interactions, the formation and combustion of flammable gases, and performance of engineered safety features. In the past, this complexity has meant that a complete containment analysis would require application of suites of separate computer codes each of which would treat only a narrower subset of these phenomena, e.g., a thermal-hydraulics code, an aerosol code, a core-concrete interaction code, etc. In this paper, we describe the development and some recent applications of the CONTAIN code, which offers an integrated treatment of the dominant containment phenomena and the interactions among them. We describe the results of a series of containment phenomenology studies, based upon realistic accident sequence analyses in actual plants. These calculations highlight various phenomenological effects that have potentially important implications for source term and/or containment loading issues, and which are difficult or impossible to treat using a less integrated code suite

  4. Phenomenological Studies on Melt-Structure-Water Interactions (MSWI) during Postulated Severe Accidents: Year 2004 Activity. APRI 5 report

    Energy Technology Data Exchange (ETDEWEB)

    Sehgal, B.R.; Park, H.S.; Nayak, A.K.; Hansson, R.C.; Chiferaw, D.; Stepanyan, A.; Rao, R.S.; Karbojian, A. [Royal Inst. of Technology, Stockholm (Sweden). Div. of Nuclear Power Safety

    2005-04-01

    This report presents descriptions of the major results obtained in the research program 'Melt-Structure-Water Interaction (MSWI)' at NPS/RIT during the year 2004. The primary objectives of the MSWI Project in year 2004 were to study (1) the in-vessel and exvessel melt/debris bed coolability process when melt is flooded with water, and (2) the energetics and characteristics of steam explosions. Our general approaches are to establish scaling relationships so that the data obtained in the experiments could be extended to prototypical accident geometries and conditions, develop phenomenological or computational models for the processes under investigation and validate the existing and newly developed models against data obtained at RIT and at other laboratories. In 2004, several experimental programs, such as the COMECO (Corium MElt COolability), POMECO (POrous MEdia COolability) and MISTEE (Micro-Interactions in STeam Explosion Experiments) programs were continued. The SIMECO (Simulation of MElt Coolability) program was restarted in 2004. The construction of the POMECO-GRAND (POrous MEdia COolability) facility was delayed due to lack of finances. However, existing POMECO facility was modified to study 3-D effects on debris coolability. In this report, the results from the COMECO experiment with high temperature oxidic melt, from the POMECO experiments for the multi-dimensional effects on debris bed coolability, from the SIMECO experiment for three-layer pool configuration and from the MISTEE experiments for steam explosion characteristics and loads are described. For analytical efforts, results from the COMETA code for the entire process of the steam explosions are discussed.

  5. Natural convection of the oxide pool in a three-layer configuration of core melts

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Su-Hyeon; Park, Hae-Kyun; Chung, Bum-Jin, E-mail: bjchung@khu.ac.kr

    2017-06-15

    Highlights: • Natural convection of oxide pool in 3-layer configuration during IVR was investigated. • High Ra was achieved by using mass transfer experiments based on analogy concept. • Heat ratio to light metal layer was 14% higher for 3-layer configuration than 2-layer one. • Heat transfer to heavy metal layer was poor and hence heat load to side wall increased. • Angular heat loads to side wall showed strengthened heat focusing at uppermost location. - Abstract: We investigated the natural convection of the oxide layer in a three-layer configuration of core melts in a severe accident. In order to achieve high modified Rayleigh numbers of 10{sup 12}–10{sup 13}, mass transfer experiments were performed using a copper sulfate electroplating system based upon the analogy between heat and mass transfer. Four different cooling conditions of the top and the bottom plates were tested. The upward heat ratios were 14% higher for three-layer than for two-layer due to the reduced heights and the downward heat ratios were lower the same amount. The local Nusselt numbers for the top and the bottom plates were measured and compared with the two layer configuration. To explore the heat load to the reactor vessel, the angle-dependent heat fluxes at the side wall, were measured and compared with the two-layer configuration. Heat load to the side wall and peak heat at the uppermost location were intensified for the three-layer configuration.

  6. Prevention and investigations of core degradation in case of beyond design accidents of the 2400 MWTH gas-cooled fast reactor

    International Nuclear Information System (INIS)

    Bertrand, F.; Gatin, V.; Bentivoglio, F.; Gueneau, C.

    2011-01-01

    The present paper deals with studies carried out to assess the ability of the core of the Gas Fast Reactor (GFR) to withstand beyond design accidents. The work presented here is aimed at simulating the behaviour of this core by using analytical models whose input parameters are calculated with the CATHARE2 code. Among possible severe accident initiators, the Unprotected Loss Of Coolant Accident (ULOCA of 3 Inches diameter) is investigated in detail in the paper with CATHARE2. Additionally, a simplified pessimistic assessment of the effect of a postulated power excursion that could result from the failure of prevention provisions is presented. (author)

  7. Sulfur Saturation Limits in Silicate Melts and their Implications for Core Formation Scenarios for Terrestrial Planets

    Science.gov (United States)

    Holzheid, Astrid; Grove, Timothy L.

    2002-01-01

    This study explores the controls of temperature, pressure, and silicate melt composition on S solubility in silicate liquids. The solubility of S in FeO-containing silicate melts in equilibrium with metal sulfide increases significantly with increasing temperature but decreases with increasing pressure. The silicate melt structure also exercises a control on S solubility. Increasing the degree of polymerization of the silicate melt structure lowers the S solubility in the silicate liquid. The new set of experimental data is used to expand the model of Mavrogenes and O'Neill(1999) for S solubility in silicate liquids by incorporating the influence of the silicate melt structure. The expected S solubility in the ascending magma is calculated using the expanded model. Because the negative pressure dependence of S solubility is more influential than the positive temperature dependence, decompression and adiabatic ascent of a formerly S-saturated silicate magma will lead to S undersaturation. A primitive magma that is S-saturated in its source region will, therefore, become S-undersaturated as it ascends to shallower depth. In order to precipitate magmatic sulfides, the magma must first cool and undergo fractional crystallization to reach S saturation. The S content in a metallic liquid that is in equilibrium with a magma ocean that contains approx. 200 ppm S (i.e., Earth's bulk mantle S content) ranges from 5.5 to 12 wt% S. This range of S values encompasses the amount of S (9 to 12 wt%) that would be present in the outer core if S is the light element. Thus, the Earth's proto-mantle could be in equilibrium (in terms of the preserved S abundance) with a core-forming metallic phase.

  8. An internal core catcher for a pool L.M.F.B.R. and connected studies

    International Nuclear Information System (INIS)

    Le Rigoleur, C.; Kayser, G.

    1979-01-01

    This paper describes an internal core catcher for a pool LMFBR. Problems related to retention of debris are studied: downward progression of debris from the core to the core catcher, debris bed formation, heat transfer below the core catcher plate and to the main vessel, mechanical resistance. These results are used to estimate the performances of the internal core catcher for a given core melt-down-accident. It is seen that for a uniform thickness layer on the core catcher the retention capabilities are satisfactory. Then the problem of a heap of debris is approached. Dryout is studied. Uncertainties related to the bed characteristics and problems of extended dryout beds are put forward

  9. Cleanup of large areas contaminated as a result of a nuclear accident

    International Nuclear Information System (INIS)

    1989-01-01

    The purposes of the report are to provide an overview of the methodology and technology available to clean up contaminated areas and to give preliminary guidance on matters related to the planning, implementation and management of such cleanups. This report provides an integrated overview of important aspects related to the cleanup of very large areas contaminated as a result of a serious nuclear accident, including information on methods and equipment available to: characterize the affected area and the radioactive fallout; stabilize or isolate the contamination; and clean up contaminated urban, rural and forested areas. The report also includes brief sections on planning and management considerations and the transport and disposal of the large volumes of wastes arising from such cleanups. For the purposes of this report, nuclear accidents which could result in the deposition of decontamination over large areas if the outer containment fails badly include: 1) An accident with a nuclear weapon involving detonation of the chemical high explosive but little, if any, nuclear fission. 2) A major loss of medium/high level liquid waste (HLLW) due to an explosion/fire at a storage site for such waste. 3) An accident at a nuclear power plant (NPP), for example a loss of coolant accident, which results in some core disruption and fuel melting. 4) An accident at an NPP involving an uncontrolled reactivity excursion resulting in the violent ejection of a reactor core material and rupture of the containment building. 117 refs, 32 figs, 12 tabs

  10. Degraded core accidents: review of aerosol behaviour in the containment of a PWR

    International Nuclear Information System (INIS)

    Nichols, A.L.; Walker, B.C.

    1981-09-01

    Low probability-high consequence accidents have become an important issue in reactor safety studies. Such accidents would involve damage to the core and the subsequent release of radioactive fission products into the environment. Aerosols play a major role in the transport and removal of these fission products in the reactor building containment. The aerosol mechanisms, computer modelling codes and experimental studies used to predict aerosol behaviour in the containment of a PWR are reviewed. There are significant uncertainties in the aerosol source terms and specific recommendations have been made for further studies, particularly with respect to code development and high density aerosol-fission product transport within closed systems. (author)

  11. Resuspension of fission products during severe accidents in light-water reactors

    International Nuclear Information System (INIS)

    Borkowski, R.; Bunz, H.; Schoeck, W.

    1986-05-01

    This report investigates the influence of resuspension phenomena on the overall radiological source term of core melt accidents in a pressurized water reactor. A review of the existing literature is given and the literature data are applied to calculations of the source term. A large scatter in the existing data was found. Depending on the scenario and on the data set chosen for the calculations the relative influence of resuspended fission products on the source term ranges from dominant to negligible. (orig.) [de

  12. The Fukushima Daiichi nuclear accident final report of the AESJ investigation committee

    CERN Document Server

    Atomic Energy Society of Japan

    2015-01-01

    The Magnitude 9 Great East Japan Earthquake on March 11, 2011, followed by a massive tsunami struck  TEPCO’s Fukushima Daiichi Nuclear Power Station and triggered an unprecedented core melt/severe accident in Units 1 – 3. The radioactivity release led to the evacuation of local residents, many of whom still have not been able to return to their homes. As a group of nuclear experts, the Atomic Energy Society of Japan established the Investigation Committee on the Nuclear Accident at the Fukushima Daiichi Nuclear Power Station, to investigate and analyze the accident from scientific and technical perspectives for clarifying the underlying and fundamental causes, and to make recommendations. The results of the investigation by the AESJ Investigation Committee has been compiled herewith as the Final Report. Direct contributing factors of the catastrophic nuclear incident at Fukushima Daiichi NPP initiated by an unprecedented massive earthquake/ tsunami – inadequacies in tsunami measures, severe accident ma...

  13. Core dynamics of HTR under ATWS and accident conditions

    International Nuclear Information System (INIS)

    Nabbi, R.

    1988-05-01

    The systematic classification of the ATWS has been undertaken by analogy to the considerations made for LWR. The initiating events of ATWS and protection actions of safety systems resulting from monitoring of the system variables have been described. The main emphasis of this work is the analysis of the core dynamic consequences of scram failure during the anticipated transients. The investigation has shown that because of the temperature feedback mechanisms a temperature rise during the ATWS results in a self-shutdown of the reactor. Further inherent safety features of the HTR - conditioned by the high heat capacity of the core and by the compressibility of the coolant - do effectively counteract an undesirable increase of temperature and pressure in the primary circuit. In case of the long-term failure of the forced cooling and following core heatup, neutron physical phenomena appear which determine the reactivity behaviour of the HTR. They are, for instance, the decay of Xenon 135, release of the fission products and subsiding of the top reflector. The results of the computer simulations show that a recriticality has to be excluded during the first 2 days if the reactor is shutdown by the reflector rods at the beginning of the accident. (orig./HP) [de

  14. Specific features of RBMK severe accidents progression and approach to the accident management

    International Nuclear Information System (INIS)

    Vasilevskij, V.P.; Nikitin, Yu.M.; Petrov, A.A.; Potapov, A.A.; Cherkashov, Yu.M.

    2001-01-01

    Fundamental construction features of the LWGR facilities (absence of common external containment shell, disintegrated circulation circuit and multichannel reactor core, positive vapor reactivity coefficient, high mass of thermally capacious graphite moderator) predetermining development of assumed heavy non-projected accidents and handling them are treated. Rating the categories of the reactor core damages for non-projected accidents and accident types producing specific grope of damages is given. Passing standard non-projected accidents, possible methods of attack accident consequences, as well as methods of calculated analysis of non-projected accidents are demonstrated [ru

  15. In-situ rock melting applied to lunar base construction and for exploration drilling and coring on the moon

    International Nuclear Information System (INIS)

    Rowley, J.C.; Neudecker, J.W.

    1984-01-01

    An excavation technology based upon melting of rock and soil has been extensively developed at the prototype hardware and conceptual design levels for terrestrial conditions. Laboratory and field tests of rock-melting penetration have conclusively indicated that this excavation method is insensitive to rock, soil types, and conditions. Especially significant is the ability to form in-place glass linings or casings on the walls of boreholes, tunnels, and shafts. These factors indicate the unique potential for in situ construction of primary lunar base facilities. Drilling and coring equipment for resource exploration on the moon can also be devised that are largely automated and remotely operated. It is also very likely that lunar melt-glasses will have changed mechanical properties when formed in anhydrous and hard vacuum conditions. Rock melting experiments and prototype hardware designs for lunar rock-melting excavation applications are suggested

  16. Diversified emergency core cooling in CANDU with a passive moderator heat rejection system

    Energy Technology Data Exchange (ETDEWEB)

    Spinks, N [AECL Research, Chalk River Labs., Chalk River, ON (Canada)

    1996-12-01

    A passive moderator heat rejection system is being developed for CANDU reactors which, combined with a conventional emergency-coolant injection system, provides the diversity to reduce core-melt frequency to order 10{sup -7} per unit-year. This is similar to the approach used in the design of contemporary CANDU shutdown systems which leads to a frequency of order 10{sup -8} per unit-year for events leading to loss of shutdown. Testing of a full height 1/60 power-and-volume-scaled loop has demonstrated the feasibility of the passive system for removal of moderator heat during normal operation and during accidents. With the frequency of core-melt reduced, by these measures, to order 10{sup -7} per unit year, no need should exist for further mitigation. (author). 3 refs, 2 figs.

  17. Severe accident analysis in a two-loop PWR nuclear power plant with the ASTEC code

    International Nuclear Information System (INIS)

    Sadek, Sinisa; Amizic, Milan; Grgic, Davor

    2013-01-01

    The ASTEC/V2.0 computer code was used to simulate a hypothetical severe accident sequence in the nuclear power plant Krsko, a 2-loop pressurized water reactor (PWR) plant. ASTEC is an integral code jointly developed by Institut de Radioprotection et de Surete Nucleaire (IRSN, France) and Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS, Germany) to assess nuclear power plant behaviour during a severe accident. The analysis was conducted in 2 steps. First, the steady state calculation was performed in order to confirm the applicability of the plant model and to obtain correct initial conditions for the accident analysis. The second step was the calculation of the station blackout accident with a leakage of the primary coolant through degraded reactor coolant pump seals, which was a small LOCA without makeup capability. Two scenarios were analyzed: one with and one without the auxiliary feedwater (AFW). The latter scenario, without the AFW, resulted in earlier core damage. In both cases, the accident ended with a core melt and a reactor pressure vessel failure with significant release of hydrogen. In addition, results of the ASTEC calculation were compared with results of the RELAP5/SCDAPSIM calculation for the same transient scenario. The results comparison showed a good agreement between predictions of those 2 codes. (orig.)

  18. Radionuclide release and aerosol generation during core debris interactions with concrete

    International Nuclear Information System (INIS)

    Powers, D.A.

    1986-01-01

    During severe accidents at nuclear power plants, it is possible for the reactor fuel to melt and penetrate the reactor vessel. This can lead to vigorous interaction of core materials (UO 2 , ZrO 2 , Zr, and stainless steel) with structural concrete. Sparging of the molten core debris by gases (H 2 O and CO 2 ) liberated from the concrete can lead to rapid release of radionuclides from the core debris. A theoretical description of this release process has been developed and is called the VANESA model. The treatments in the VANESA model of the thermodynamics of radionuclide vaporization and the kinetic barriers to vaporization will be described. Predictions obtained from the model will be compared to the results of tests of core debris/concrete interactions

  19. Analysis of multiple failure accident scenarios for development of probabilistic safety assessment model for KALIMER-600

    International Nuclear Information System (INIS)

    Kim, T.W.; Suk, S.D.; Chang, W.P.; Kwon, Y.M.; Jeong, H.Y.; Lee, Y.B.; Ha, K.S.; Kim, S.J.

    2009-01-01

    A sodium-cooled fast reactor (SFR), KALIMER-600, is under development at KAERI. Its fuel is the metal fuel of U-TRU-Zr and it uses sodium as coolant. Its advantages are found in the aspects of an excellent uranium resource utilization, inherent safety features, and nonproliferation. The probabilistic safety assessment (PSA) will be one of the initiating subjects for designing it from the aspects of a risk informed design (RID) as well as a technology-neutral licensing (TNL). The core damage is defined as coolant voiding, fuel melting, or cladding damage. Accident scenarios which lead to the core damage should be identified for the development of a Level-1 PSA model. The SSC-K computer code is used to identify the conditions which lead to core damage. KALIMER-600 has passive safety features such as passive shutdown functions, passive pump coast-down features, and passive decay heat removal systems. It has inherent reactivity feedback effects such as Doppler, sodium void, core axial expansion, control rod axial expansion, core radial expansion, etc. The accidents which are analyzed are the multiple failure accidents such as an unprotected transient overpower, a loss of flow, and a loss of heat sink events with degraded safety systems or functions. The safety functions to be considered here are a reactor trip, inherent reactivity feedback features, the pump coast-down, and the passive decay heat removal. (author)

  20. In-vessel core melt retention by RPV external cooling for high power PWR. MAAP 4 analysis on a LBLOCA scenario without SI

    International Nuclear Information System (INIS)

    Cognet, C.; Gandrille, P.

    1999-01-01

    In-, ex-vessel reflooding or both simultaneously can be envisaged as Accident Management Measures to stop a Severe Accident (SA) in vessel. This paper addresses the possibility of in-vessel core melt retention by RPV external flooding for a high power PWR (4250 MWth). The reactor vessel is assumed to have no lower head penetration and thermal insulation is neglected. The effects of external cooling of high power density debris, where the margin for such a strategy is low, are investigated with the MAAP4 code. MAAP4 code is used to verify the system capability to flood the reactor pit and to predict simultaneously the corium relocation into the lower head with the thermal and mechanical response of the RPV in transient conditions. The corium pool cooling and holding in the RPV lower head is analysed. Attention is paid to the internal heat exchanges between corium components. This paper focuses particularly the heat transfer between oxidic and metallic phases as well as between the molten metallic phase and the RPV wall of utmost importance for challenging the RPV integrity in vicinity of the metallic phase. The metal segregation has a decisive influence upon the attack of the vessel wall due to a very strong peaking of the lateral flux ('focusing effect'). Thus, the dynamics of the formation of the metallic layer characterized by a growing inventory of steel, both from a partial vessel ablation and the degradation of internals steel structures by the radiative heat flux from the debris, is displayed. The analysed sequence is a surge line rupture near the hot leg (LBLOCA) leading to the fastest accident progression

  1. Consequence analysis of core meltdown accidents in liquid metal fast reactor

    International Nuclear Information System (INIS)

    Suk, S.D.; Hahn, D.

    2001-01-01

    Core disruptive accidents have been investigated at Korea Atomic Energy Research Institute(KAERI) as part of work to demonstrate the inherent and ultimate safety of the conceptual design of the Korea Advanced Liquid Metal Reactor(KALIMER), a 150 Mw pool-type sodium cooled prototype fast reactor that uses U-Pu-Zr metallic fuel. In this study, a simple method was developed using a modified Bethe-Tait method to simulate the kinetics and hydraulic behavior of a homogeneous spherical core over the period of the super-prompt critical power excursion induced by the ramp reactivity insertion. Calculations of energy release during excursions in the sodium-voided core of the KALIMER were subsequently performed using the method for various reactivity insertion rates up to 100 $/s, which has been widely considered to be the upper limit of ramp rates due to fuel compaction. Benchmark calculations were made to compare with the results of more detailed analysis for core meltdown energetics of the oxide fuelled fast reactor. A set of parametric studies was also performed to investigate the sensitivity of the results on the various thermodynamics and reactor parameters. (author)

  2. Reduction of PWR containment pressure after hypothetical accidents by water-cooling of the outer containment surface - annular space spray system

    International Nuclear Information System (INIS)

    Cremer, J.; Dietrich, D.P.; Roedder, P.

    1980-12-01

    The consequences of a core melt-out accident in the vicinity of a nuclear power station are determined by the integrity of the safety containment. This can be adversely affected by different events during the course of the core melt-out accident. The most important phenomenon is the contact between the melt and sump water. Due to the evaporation of the sump water, there is a continuous rise in pressure of the safety containment, which finally leads to failure due to excess pressure. In order to reduce the fission product release due to the resulting leakage, one must try to reduce the pressure as quickly as possible. As heat cannot be removed from the steel containment to the environment because of the thick concrete containment, it is best to bypass the insulating effect of the concrete by cooling the steel containment from outside. The aim of this investigation is therefore to work out a technically relatively simple system, which offers the possibility of backfitting, setting to work and repair. Such a system is an annular space spray system, by which the annular space between the concrete and steel containment has water pumped to the level of the dome and evenly sprayed over the top hemisphere. Mobile pumps on fire engines belonging to the fire brigade are sufficient to supply the cooling water and these will be available some hours after the accident occurs. The used spray water without any radioactive components is collected outside the reactor building and/or drained off. (orig./GL) [de

  3. Planetesimal core formation with partial silicate melting using in-situ high P, high T, deformation x-ray microtomography

    Science.gov (United States)

    Anzures, B. A.; Watson, H. C.; Yu, T.; Wang, Y.

    2017-12-01

    Differentiation is a defining moment in formation of terrestrial planets and asteroids. Smaller planetesimals likely didn't reach high enough temperatures for widescale melting. However, we infer that core formation must have occurred within a few million years from Hf-W dating. In lieu of a global magma ocean, planetesimals likely formed through inefficient percolation. Here, we used in-situ high temperature, high pressure, x-ray microtomography to track the 3-D evolution of the sample at mantle conditions as it underwent shear deformation. Lattice-Boltzmann simulations for permeability were used to characterize the efficiency of melt percolation. Mixtures of KLB1 peridotite plus 6.0 to 12.0 vol% FeS were pre-sintered to achieve an initial equilibrium microstructure, and then imaged through several consecutive cycles of heating and deformation. The maximum calculated melt segregation velocity was found to be 0.37 cm/yr for 6 vol.% FeS and 0.61 cm/year for 12 vol.% FeS, both below the minimum velocity of 3.3 cm/year required for a 100km planetesimal to fully differentiate within 3 million years. However, permeability is also a function of grain size and thus the samples having smaller grains than predicted for small planetesimals could have contributed to low permeability and also low migration velocity. The two-phase (sulfide melt and silicate melt) flow at higher melt fractions (6 vol.% and 12 vol.% FeS) was an extension of a similar study1 containing only sulfide melt at lower melt fraction (4.5 vol.% FeS). Contrary to the previous study, deformation did result in increased permeability until the sample was sheared by twisting the opposing Drickamer anvils by 360 degrees. Also, the presence of silicate melt caused the FeS melt to coalesce into less connected pathways as the experiment with 6 vol.% FeS was found to be less permeable than the one with 4.5 vol.% FeS but without any partial melt. The preliminary data from this study suggests that impacts as well as

  4. Safeguarding of emergency core cooling in case of loss-of-coolant accidents with insulation material release

    International Nuclear Information System (INIS)

    Pointner, W.; Broecker, A.

    2012-01-01

    The report on safeguarding of emergency core cooling in case of loss-of-coolant accidents with insulation material release covers the following issues: assessment of the relevant status for PWR, evaluation of the national and international (USA, Canada, France) status, actualization of recommendations, transferability from PWR to BWR. Generic studies on the core cooling capability in case of insulation material release in BWR-type reactors were evaluated.

  5. Methodological aspects of core meltdown accidents frequency estimates

    International Nuclear Information System (INIS)

    Matthis, P.

    1984-01-01

    A survey is given of the work of the ecological institute relating to models and methods used in the German Risk Study for the assessment of core meltdown accident frequency. A statistical model used by the ecological institute for the estimation of the outage behaviour of components is taken as a comparison, which leads to the conclusion that no appropriate methods for the assessment of component reliability are available to date. Furthermore, there are no secured methods for error propagation computation. The lower limits for the ranges of reliability of components are calculated by approximation. As a result of imperfect modelling and of a number of methodical inaccuracies and neglects, the German Risk Study underestimates the ranges of component reliability by a factor of 3 to 70 (depending on the type of component). (RF) [de

  6. Regulatory approach to enhanced human performance during accidents

    International Nuclear Information System (INIS)

    Palla, R.L. Jr.

    1990-01-01

    It has become increasingly clear in recent years that the risk associated with nuclear power is driven by human performance. Although human errors have contributed heavily to the two core-melt events that have occurred at power reactors, effective performance during an event can also prevent a degraded situation from progressing to a more serious accident, as in the loss-of-feedwater event at Davis-Besse. Sensitivity studies in which human error rates for various categories of errors in a probabilistic risk assessment (PRA) were varied confirm the importance of human performance. Moreover, these studies suggest that actions taken during an accident are at least as important as errors that occur prior to an initiating event. A program that will lead to enhanced accident management capabilities in the nuclear industry is being developed by the US Nuclear Regulatory Commission (NRC) and industry and is a key element in NRC's integration plan for closure of severe-accident issues. The focus of the accident management (AM) program is on human performance during accidents, with emphasis on in-plant response. The AM program extends the defense-in-depth principle to plant operating staff. The goal is to take advantage of existing plant equipment and operator skills and creativity to find ways to terminate accidents that are beyond the design basis. The purpose of this paper is to describe the NRC's objectives and approach in AM as well as to discuss several human performance issues that are central to AM

  7. Design requirements for innovative homogeneous reactor, lesson learned from Fukushima accident

    Science.gov (United States)

    Arbie, Bakri; Pinem, Suryan; Sembiring, Tagor; Subki, Iyos

    2012-06-01

    The Fukushima disaster is the largest nuclear accident since the 1986 Chernobyl disaster, but it is more complex as multiple reactors and spent fuel pools are involved. The severity of the nuclear accident is rated 7 in the International Nuclear Events Scale. Expert said that "Fukushima is the biggest industrial catastrophe in the history of mankind". According to Mitsuru Obe, in The Wall Street Journal, May 16th of 2011, TEPCO estimates the nuclear fuel was exposed to the air less than five hours after the earthquake struck. Fuel rods melted away rapidly as the temperatures inside the core reached 2800 C within six hours. In less than 16 hours, the reactor core melted and dropped to the bottom of the pressure vessel. The information should be evaluated in detail. In Germany several nuclear power plant were shutdown, Italy postponed it's nuclear power program and China reviewed their nuclear power program. Different news come from Britain, in October 11, 2011, the Safety Committee said all clear for nuclear power in Britain, because there are no risk of strong earthquake and tsunami in the region. Due to this severe fact, many nuclear scientists and engineer from all over the world are looking for a new approach, such as homogeneous reactor which was developed in Oak Ridge National Laboratory in 1960-ies, during Dr. Alvin Weinberg tenure as the Director of ORNL. The paper will describe the design requirement that will be used as the basis for innovative homogeneous reactor. Innovative Homogeneous Reactor is expected to reduce core melt by two decades (4), since the fuel is intermix homogeneously with coolant and secondly we eliminate the used fuel rod which need to be cooled for a long period of time. In order to be successful for its implementation of the innovative system, testing and validation, three phases of development will be introduced. The first phase is Low Level Goals is really the proof of concept;the Medium Level Goal is Technical Goalsand the High

  8. Fukushima Daiichi Unit 1 Ex-Vessel Prediction: Core Concrete Interaction

    International Nuclear Information System (INIS)

    Robb, Kevin R; Farmer, Mitchell; Francis, Matthew W

    2015-01-01

    Lower head failure and corium concrete interaction were predicted to occur at Fukushima Daiichi Unit 1 (1F1) by several different system-level code analyses, including MELCOR v2.1 and MAAP5. Although these codes capture a wide range of accident phenomena, they do not contain detailed models for ex-vessel core melt behavior. However, specialized codes exist for analysis of ex-vessel melt spreading (e.g., MELTSPREAD) and long-term debris coolability (e.g., CORQUENCH). On this basis, an analysis was carried out to further evaluate ex-vessel behavior for 1F1 using MELTSPREAD and CORQUENCH. Best-estimate melt pour conditions predicted by MELCOR v2.1 and MAAP5 were used as input. MELTSPREAD was then used to predict the spatially dependent melt conditions and extent of spreading during relocation from the vessel. The results of the MELTSPREAD analysis are reported in a companion paper. This information was used as input for the long-term debris coolability analysis with CORQUENCH.

  9. Investigation of a hydrogen mitigation system during large break loss-of-coolant accident for a two-loop pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Dehjourian, Mehdi; Rahgoshay, Mohmmad; Jahanfamia, Gholamreza [Dept. of Nuclear Engineering, Science and Research Branch, Islamic Azad University of Tehran, Tehran (Iran, Islamic Republic of); Sayareh, Reza [Faculty of Electrical and Computer Engineering, Kerman Graduate University of Technology, Kerman (Iran, Islamic Republic of); Shirani, Amir Saied [Faculty of Engineering, Shahid Beheshti University, Tehran (Iran, Islamic Republic of)

    2016-10-15

    Hydrogen release during severe accidents poses a serious threat to containment integrity. Mitigating procedures are necessary to prevent global or local explosions, especially in large steel shell containments. The management of hydrogen safety and prevention of over-pressurization could be implemented through a hydrogen reduction system and spray system. During the course of the hypothetical large break loss-of-coolant accident in a nuclear power plant, hydrogen is generated by a reaction between steam and the fuel-cladding inside the reactor pressure vessel and also core concrete interaction after ejection of melt into the cavity. The MELCOR 1.8.6 was used to assess core degradation and containment behavior during the large break loss-of-coolant accident without the actuation of the safety injection system except for accumulators in Beznau nuclear power plant. Also, hydrogen distribution in containment and performance of hydrogen reduction system were investigated.

  10. Modeling of spreading of the melted corium jet inside the pool of emergency heat removal during severe accidents at NPP

    Directory of Open Access Journals (Sweden)

    I. V. Kazachkov

    2012-03-01

    Full Text Available Important nuclear power safety problem in touch with modeling of melted corium jet spreading inside the coolant pool is considered in the paper. It appears by development of the passive protection systems against se-vere accidents. The non-linear mathematical developed model is presented for the jet under reactor vessel pool for one of the perspective passive protection systems and the results of its analysis and studies are given. The performed analysis and the results of the numerical simulation done on the base of the model have allowed estab-lishing the interesting behaviors of the system, which may be useful for the scientists, as well as the engineers-constructors of the passive protection systems against severe accidents.

  11. Material properties influence on steam explosion efficiency. Prototypic versus simulant melts, eutectic versus non-eutectic melts

    International Nuclear Information System (INIS)

    Leskovar, M.; Mavko, B.

    2006-01-01

    A steam explosion may occur during a severe nuclear reactor accident if the molten core comes into contact with the coolant water. A strong enough steam explosion in a nuclear power plant could jeopardize the containment integrity and so lead to a direct release of radioactive material to the environment. Details of processes taking place prior and during the steam explosion have been experimentally studied for a number of years with adjunct efforts in modelling these processes to address the scaling of these experiments. Steam explosion experiments have shown that there are important differences of behaviour between simulant and prototypical melts, and that also at prototypical melts the fuel coolant interactions depend on the composition of the corium. In experiments with prototypic materials no spontaneous steam explosions occurred (except with an eutectic composition), whereas with simulant materials the steam explosions were triggered spontaneously. The energy conversion ratio of steam explosions with prototypic melts is at least one order of magnitude lower than the energy conversion ratio of steam explosions with simulant melts. Although the different behaviour of prototypic and simulant melts has been known for a number of years, there is no reliable explanation for these differences. Consequently it is not possible to reliably estimate whether corium would behave so non-explosive also in reactor conditions, where the mass of poured melt is nearly three orders of magnitude larger than in experimental conditions. An even more fascinating material effect was observed recently at corium experiments with eutectic and non-eutectic compositions. It turned out that eutectic corium always exploded spontaneously, whereas non-eutectic corium never exploded spontaneously. In the paper, a possible explanation of both material effects (prototypic/simulant melts, eutectic/non-eutectic corium) on the steam explosion is provided. A model for the calculation of the

  12. Development of Lower Plenum Molten Pool Module of Severe Accident Analysis Code in Korea

    International Nuclear Information System (INIS)

    Son, Donggun; Kim, Dong-Ha; Park, Rae-Jun; Bae, Jun-Ho; Shim, Suk-Ku; Marigomen, Ralph

    2014-01-01

    To simulate a severe accident progression of nuclear power plant and forecast reactor pressure vessel failure, we develop computational software called COMPASS (COre Meltdown Progression Accident Simulation Software) for whole physical phenomena inside the reactor pressure vessel from a core heat-up to a vessel failure. As a part of COMPASS project, in the first phase of COMPASS development (2011 - 2014), we focused on the molten pool behavior in the lower plenum, heat-up and ablation of reactor vessel wall. Input from the core module of COMPASS is relocated melt composition and mass in time. Molten pool behavior is described based on the lumped parameter model. Heat transfers in between oxidic, metallic molten pools, overlying water, steam and debris bed are considered in the present study. The models and correlations used in this study are appropriately selected by the physical conditions of severe accident progression. Interaction between molten pools and reactor vessel wall is also simulated based on the lumped parameter model. Heat transfers between oxidic pool, thin crust of oxidic pool and reactor vessel wall are considered and we solve simple energy balance equations for the crust thickness of oxidic pool and reactor vessel wall. As a result, we simulate a benchmark calculation for APR1400 nuclear power plant, with assumption of relocated mass from the core is constant in time such that 0.2ton/sec. We discuss about the molten pool behavior and wall ablation, to validate our models and correlations used in the COMPASS. Stand-alone SIMPLE program is developed as the lower plenum molten pool module for the COMPASS in-vessel severe accident analysis code. SIMPLE program formulates the mass and energy balance for water, steam, particulate debris bed, molten corium pools and oxidic crust from the first principle and uses models and correlations as the constitutive relations for the governing equations. Limited steam table and the material properties are provided

  13. The Impact of Fukushima Accidents on LWR Safety and the Nuclear Power Risks

    International Nuclear Information System (INIS)

    Sehgal, B. R.

    2014-01-01

    The history of the consideration of severe accidents (SA) safety begins really with WASH-1400 [1] initiated by USNRC in early 1970s. The WASH-1400 considered accidents of decreasing probability and increasing consequence.The accidents considered, occurred due to successive faults which lead to at least the melting of the core and a possible radioactivity release to the environment. The increasing consequence accidents would entail additional failures e.g., vessel failure, late containment failure, containment bypass, early containment failure etc. These additional failures would lead to larger releases of radioactivity and thus larger consequences for the public in the vicinity of the plant. WASH -1400 did not provide estimates of the costs for cleanup of the contaminated land area. Also there were no estimates of the economic costs involved in removal of the molten fuel and the decommissioning of the stricken plant. The emphasis in WASH-1400 was primarily with physical damage to the population in the vicinity of the plant and peripherally with the societal, social and economic costs of a severe accident in a large LWR plant

  14. Study on confinement function of reactor containment during late phase severe accident

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    During a severe accident reactor containment integrity is maintained by accident management. However, gas leakage from containment is inevitable after the severe accident. A large amount of hydrogen and rare gases are produced due to core damage or melting. These non-condensable gases cause the containment pressure much higher than atmospheric pressure even after residual heat removal system recovery especially for BWR with smaller containment volume. Besides, iodine confined in water pool is re-evaporated under radiation field. The present study consists of realistic evaluation of fission products source term inside containment, quantitative evaluation of iodine re-evaporation effect and the experimental study of hydrogen treatment in BWR using ammonia production method by catalyst. Activities in fiscal year 2012 are that modification of MELCOR fission product chemical model was done and verified by experimental data, and that effects of CsI on ammonia production rate for Ru catalyst were conducted. (author)

  15. Transient response of small molten salt reactor at duct blockage accident

    International Nuclear Information System (INIS)

    Yamamoto, Takahisa; Mitachi, Koshi; Ikeuchi, Koji; Suzuki, Takashi

    2005-01-01

    This paper performed transient core analysis of a small Molten Salt Reactor (MSR) at the time of a duct blockage accident. The numerical model employed in this study consists of continuity and momentum conservation equations for fuel salt flow, two group diffusion equations for fast and thermal neutron fluxes, balance equations for six-group delayed neutron precursors and energy conservation equations for fuel salt and graphite moderator. The analysis shows that (1) the effective multiplication factor and reactor power after the blockage accident hardly change because of the self-control performance of the MSR, (2) fuel salt and graphite moderator temperatures rise at the blockage point and its vicinity, drastically but locally, (3) the highest temperature after the blockage accident is 1 363 K, very lower than the boiling point of fuel salt and melt point of reactor vessel, (4) fast and thermal neutron fluxes distributions after the blockage accident hardly change, and (5) delayed neutron precursors accumulate at the blockage point, especially 1st delayed neutron precursor due to is large decay constant. These results lead that the safety of MSR is assured in the blockage accident. (author)

  16. APRI-7 Accident Phenomena of Risk Importance. A progress report on research in the field of severe accidents in 2009-2011

    International Nuclear Information System (INIS)

    Garis, Ninos; Agrell, Maria; Glaenneskog, Henrik

    2012-01-01

    Knowledge of the phenomena that may occur during severe accidents in a nuclear power plant is an important prerequisite for being able to predict the plant behavior, in order to formulate procedures and instructions for incident handling, for contingency planning, and to get good quality at the accident analysis and risk studies. Since the early 80's nuclear power companies and authorities in Sweden has collaborated in research on severe reactor accidents. Cooperation in the beginning was mostly linked to strengthening the protection against environmental impacts after a severe reactor accident, in particular to develop systems for filtered depressurization of the reactor containment. Since the early 90's the cooperation has partially changed and shifted to the phenomenological questions of risk dominance. During the years 2009-2011, cooperation continued in the research-program APRI-7. The aim was to show whether the solutions adopted in the Swedish strategy for accident management provides reasonable protection for the environment. This was done by gaining detailed knowledge of both important phenomena in the hearth melting behavior, and the amount of radioactivity that can be discharged to the surroundings during a severe accident. To achieve this aim, the research program has included a follow-up of international research in severe accidents and evaluation of results, and continued to support research at KTH and Chalmers Univ. of severe accidents. The follow-up of international research has promoted the exchange of knowledge and experience and has provided access to a wealth of information about various phenomena relevant to the events at severe accidents. This was important to obtain a good basis for assessment of abatement measures in the Swedish nuclear reactors. Continuing support to the Royal Inst. of Technology has provided increased knowledge about the ability to cool the molten core of the reactor vessel and the processes associated with cooling the

  17. Annual technical meeting of the NRC cooperative severe accident research program

    International Nuclear Information System (INIS)

    Silver, E.G.

    1993-01-01

    This brief report summarizes the 1992 annual technical meeting of the NRC Cooperative Severe Accident Research Program (CSARP-92) held at the Hyatt Regency Hotel in Bethesda, Maryland, May 4-8, 1992. The report is taken mainly from coverage of the meeting published in the June 5, 1992, issue of Atomic Energy Clearinghouse. Results of this meeting are formalized at the Water Reactor Safety Information Meetings (WRSIM) that are held annually in October. Nuclear Safety summarizes the annual WRSIM meetings and provides a list of the presentations that were given. Interested readers are encouraged to review listed topics to identify specific topic areas in severe accident research. Sessions were held on in-vessel core melt progression; fuel-coolant interactions; fission-product behavior; direct containment heating; and severe accident code development, assessment, and validation. Summaries of the individual technical sessions and the current state of the art in these areas were given by the chairmen

  18. Reactivity Accidents in CAREM-25 Core with and Without Safety Systems Actuation

    International Nuclear Information System (INIS)

    Gimenez, Marcelo; Vertullo, Alicia; Schlamp, Miguel

    2000-01-01

    A reactivity accident in CAREM core can be provoked by different initiating events, a cold water injection in pressure vessel, a secondary side steam line breakage and a failure in the absorbing rods drive system.The present work analyses inadverted control rod withdraws transients.Maximum worth control rod (2.5 $) at normal velocity (1 cm/s) is adopted for the simulations (Reactivity ramp of 0.018 $/s).Different scenarios considering actuation of first shutdown system (FSS), second shutdown system (SSS) and selflimiting conditions were modeled.Results of the accident with actuation of FSS show that safety margins are well above critical values (DNBR and CPR).In the cases with failure of the FSS and success of SSS or selflimited, safety margins are below critical values, however, the SSS provides a reduction of elapsed time under advised margins

  19. In-vessel core degradation in LWR severe accidents: a state of the art report to CSNI january 1991

    International Nuclear Information System (INIS)

    1991-11-01

    This state of the art report on in-vessel core degradation has been produced at the request of CSNI Principal Working Group 2. The objective of the report is to present to CSNI member countries the status of research and related information on in-vessel degraded core behaviour in both Pressurised Water Reactors (PWR) and Boiling Water Reactors (BWR). Information on experiments, codes and comparisons of calculations with experiments up to january 1991 is summarised and reviewed. Integrated codes, which are wider in scope than just in-vessel degradation are covered as well as specialist, degraded core codes. Implications for PWR and BWR plant calculations are considered. Conclusions and recommendations for research, plant calculations and further CSNI activity in this area are the subject of the final chapter. A major conclusion of the report is that early phase core degradation is relatively well understood. However, codes need further development to bring them up to date with the experimental database, particularly to include low temperature liquefaction processes. These processes significantly affect early phase core degradation and their neglect could affect assessments of accident management actions (including recriticality in BWR severe accidents)

  20. Considerations relating to the presence of water in the reactor cavity during severe accidents

    International Nuclear Information System (INIS)

    Perez, F.; Morales, M.D.

    1994-01-01

    The purpose of this paper is to present some of the factors, both positive and negative, associated with the presence of water in the reactor cavity. The presence of water in the reactor cavity is one of the factors whose influence on the evolution of severe accidents must be determined since, on the one hand, it has an impact on some of the most significant severe accident phenomena and, on the other, it could be an important factor when preparing accident management strategies resulting from containment analyses. In spite of the initial intuitive impression that water in the reactor cavity must always be beneficial, certain phenomena, such as the following must also be taken into account before developing accident management strategies: - Higher production of steam - Possibility of steam explosions - Increased production of H 2 due to oxidation of steel components of the melted core ejected from the vessel - More oxidation energy released due to the presence of oxygen in the cavity (Author)

  1. Consideration of severe accidents in design of advanced WWER reactors

    International Nuclear Information System (INIS)

    Fedorov, V.G.; Rogov, M.F.; Podshibyakin, A.K.; Fil, N.S.; Volkov, B.E.; Semishkin, V.P.

    1998-01-01

    Severe accident related requirements formulated in General Regulations for Nuclear Power Plant Safety (OPB-88), in Nuclear Safety Regulations for Nuclear Power Stations' Reactor Plants (PBYa RU AS-89) and in other NPP nuclear and radiation guides of the Russian Gosatomnadzor are analyzed. In accordance with these guides analyses of beyond design basis accidents should be performed in the reactor plant design. Categorization of beyond design basis accidents leading to severe accidents should be made on occurrence probability and severity of consequences. Engineered features and measures intended for severe accident management should be provided in reactor plant design. Requirements for severe accident analyses and for development of measures for severe accident management are determined. Design philosophy and proposed engineered measures for mitigation of severe accidents and decrease of radiation releases are demonstrated using examples of large, WWER-1000 (V-392), and medium size WWER-640 (V-407) reactor plant designs. Mitigation of severe accidents and decrease of radiation releases are supposed to be conducted on basis of consistent realization of the defense in depth concept relating to application of a system of barriers on the path of spreading of ionizing radiation and radioactive materials to the environment and a set of engineered measures protecting these barriers and retaining their effectiveness. Status of fulfilled by OKB Gidropress and other Russian organizations experimental and analytical investigations of severe accident phenomena supporting design decisions and severe accident management procedures is described. Status of the works on retention of core melt inside the WWER-640 reactor vessel is also characterized

  2. Comparative analysis of a hypothetical 0.1 $/SEC transient overpower accident in an irradiated LMFBR core using different computer models

    International Nuclear Information System (INIS)

    Cacciabue, P.C.; Fremont, R. de; Renard, A.

    1982-01-01

    The Report gives the results of comparative calculations performed by the Whole Core Accident Codes Group which is a subgroup of the Safety Working Group of the Fast Reactor Coordinating Committee for a hypothetical transient overpower accident in an irradiated LMFBR core. Different computer codes from members of the European Community and the United States were used. The calculations are based on a Benchmark problem, using commonly agreed input data for the most important phenomena, such as the fuel pin failure threshold, FCl parameters, etc. Beside this, results with alternative assumptions for theoretical modelling are presented with the scope to show in a parametric way the influence of more advanced modelling capabilities and/or better (so-called best estimate) input data for the most important phenomena on the accident sequences

  3. An investigation of core liquid level depression in small break loss-of-coolant accidents

    International Nuclear Information System (INIS)

    Schultz, R.R.; Watkins, J.C.; Motley, F.E.; Stumpf, H.; Chen, Y.S.

    1991-08-01

    Core liquid level depression can result in partial core dryout and heatup early in a small break loss-of-coolant accident (SBLOCA) transient. Such behavior occurs when steam, trapped in the upper regions of the reactor primary system (between the loop seal and the core inventory), moves coolant out of the core region and uncovers the rod upper elevations. The net result is core liquid level depression. Core liquid level depression and subsequent core heatups are investigated using subscale data from the ROSA-IV Program's 1/48-scale Large Scale Test Facility (LSTF) and the 1/1705-scale Semiscale facility. Both facilities are Westinghouse-type, four-loop, pressurized water reactor simulators. The depression phenomena and factors which influence the minimum core level are described and illustrated using examples from the data. Analyses of the subject experiments, conducted using the TRAC-PF1/MOD1 (Version 12.7) thermal-hydraulic code, are also described and summarized. Finally, the response of a typical Westinghouse four-loop plant (RESAR-3S) was calculated to qualitatively study coal liquid level depression in a full-scale system. 31 refs., 37 figs., 6 tabs

  4. Performance experiments on the in-vessel core catcher during severe accidents

    International Nuclear Information System (INIS)

    Kang, Kyoung Ho; Park, Rae Joon; Cho, Young Rho; Kim, Sang Baik

    2004-01-01

    A US-Korean International Nuclear Energy Research Initiative (INERI) project has been initiated by the Idaho National Engineering and Environmental Laboratory (INEEL), Seoul National University (SNU), Pennsylvania State University (PSU), and the Korean Atomic Energy Research Institute (KAERI) to determine if IVR is feasible for high power reactors up to 1500 MWe by investigating the performance of enhanced ERVC and in-vessel core catcher. This program is initially focusing on the Korean Advanced Power Reactor 1400 MWe (APR1400) design. As for the enhancement of the coolability through the ERVC, boiling tests are conducted by using appropriate coating material on the vessel outer surface to promote downward facing boiling and selecting an improved vessel/insulation design to facilitate water flow and steam venting through the insulation in this program. Another approach for successful IVR are investigated by applying the in-vessel core catcher to provide an 'engineered gap' between the relocated core materials and the water-filled reactor vessel and a preliminary design for an in-vessel core catcher was developed during the first year of this program. Feasibility experiments using the LAVA facility, named LAVA-GAP experiments, are in progress to investigate the core catcher performance based on the conceptual design of the in-vessel core catcher proposed in this INERI project. The experiments were performed using 60kg of Al 2 O 3 thermite melt as a core material simulant with a 1/8 linear scale mock-up of the reactor vessel lower plenum. The hemispherical in-vessel core catcher was installed inside the lower head vessel maintaining a uniform gap of 10mm from the inner surface of the lower head vessel. Two types of the core catchers were used in these experiments. The first one was a single layered in-vessel core catcher without internal coating and the second one was a two layered in-vessel core catcher with an internal coating of 0.5mm-thick ZrO 2 via the plasma

  5. Thermal and hydraulic behaviour of CANDU cores under severe accident conditions - final report

    International Nuclear Information System (INIS)

    Rogers, J.T.

    1984-06-01

    This volume of appendices presents listings and sample runs of the computer codes used in the study of the thermalhydraulic behaviour of CANDU reactor cores during severe loss of coolant accidents. The codes, written in standard FORTRAN, are MODBOIL, to calculate moderator temperatures, pressures and water levels; DEBRIS, to calculate the transient temperature distribution in the debris of calandria and pressure tubes and fuel pellets; MOLTENPOOL, to calculate the temperature history in a pool of molten debris; CONFILM, to calculate the behaviour of a condensing film of vaporized core debris on the calandria wall, and BLDG, to calculate the pressurization of the containment during the expulsion of moderator through pressure relief ducts. In addition there are discussions of the average condensation heat transfer coefficient for vaporized core material on the calandria wall, and of vapor explosions

  6. Advanced neutron source reactor conceptual safety analysis report, three-element-core design: Chapter 15, accident analysis

    International Nuclear Information System (INIS)

    Chen, N.C.J.; Wendel, M.W.; Yoder, G.L.; Harrington, R.M.

    1996-02-01

    In order to utilize reduced enrichment fuel, the three-element-core design for the Advanced Neutron Source has been proposed. The proposed core configuration consists of inner, middle, and outer elements, with the middle element offset axially beneath the inner and outer elements, which are axially aligned. The three-element-core RELAP5 model assumes that the reactor hardware is changed only within the core region, so that the loop piping, heat exchangers, and pumps remain as assumed for the two-element-core configuration. To assess the impact of changes in the core region configuration and the thermal-hydraulic steady-state conditions, the safety analysis has been updated. This report gives the safety margins for the loss-of-off-site power and pressure-boundary fault accidents based on the RELAP5 results. AU margins are greater for the three-element-core simulations than those calculated for the two-element core

  7. Thermal hydraulic features of the TMI accident

    International Nuclear Information System (INIS)

    Tolman, B.

    1985-01-01

    The TMI-2 accident resulted in extensive core damage and recent data confirms that the reactor vessel was challenged from molten core materials. A hypothesized TMI accident sencario is presented that consistently explains the TMI data and is also consistent with research findings from independent severe fuel damage experiements. The TMI data will prove useful in confirming our understanding of severe core damage accidents under realistic reactor systems conditions. This understanding will aid in addressing safety and regulatory issues related to severe core damage accidents in light water reactors

  8. Analysis of system and of course of events

    International Nuclear Information System (INIS)

    Hoertner, H.; Kersting, E.J.; Puetter, B.M.

    1986-01-01

    The analysis of the system and of the course of events is used to determine the frequency of core melt-out accidents and to describe the safety-related boundary conditions of appropriate accidents. The lecture is concerned with the effect of system changes in the reference plant and the effect of triggering events not assessed in detail or not sufficiently assessed in detail in phase A of the German Risk Study on the frequency of core melt-out accidents, the minimum requirements for system functions for controlling triggering events, i.e. to prevent core melt-out accidents, the reliability data important for reliability investigations and frequency assessments. (orig./DG) [de

  9. Recent insights from severe accident research and implications for containment criteria for advanced LWRs

    International Nuclear Information System (INIS)

    Speis, T.P.; King, T.L.; Eltawila, F.

    1992-01-01

    The Severe Accident Research Program (SARP) was begun after the TMI-2 accident in March, 1979. The rule for dealing with the generation of large quantity of hydrogen in BWRs and Ice Condenser PWRs was promulgated by the Nuclear Regulatory Commission (NRC). The NRC issued severe Accident Policy Statement in 1985, and the revised SARP in 1989. In this paper, the current understanding of the more important phenomena and the associated mechanical and thermal loads to the containment is described, and the on-going works are summarized. The containment loadings in severe accidents are listed, and direct containment heating and the liner failure in BWR Mark I are added. A great deal of informations obtained on the early phase of melt progression are shown. The current understanding of the severe accident phenomena related to the containment and the on-going related research efforts are discussed more in detail. Fuel-coolant interaction including alpha-mode containment failure, direct containment heating, hydrogen deflagration and detonation, core-concrete interaction and debris coolability are described. (K.I.)

  10. Analysis of reactivity accidents of the RSG-GAS core with silicide fuel

    International Nuclear Information System (INIS)

    Tukiran

    2002-01-01

    The fuels of RSG-GAS reactor is changed from uranium oxide to uranium silicide. For time being, the fuel of RSG-GAS core are mixed up between oxide and silicide fuels with 250 gr of loading and 2.96 g U/cm 3 of density, respectively. While, silicide fuel with 300 gr of loading is still under research. The advantages of silicide fuels are can be used in high density, so that, it can be stayed longer in the core at higher burn-up, therefore, the length of cycle is longer. The silicide fuel in RSG-GAS core is used in step-wise by using mixed up core. Firstly, it is used silicide fuel with 250 gr of loading and then, silicide fuel with 300 gr of loading (3.55 g U/cm 3 of density). In every step-wise of fuel loading must be analysed its safety margin. In this occasion, it is analysed the reactivity accident of RSG-GAS core with 300 gr of silicide fuel loading. The calculation was done by using POKDYN code which available at P2TRR. The calculation was done by reactivity insertion at start up and power rangers. From all cases which were have been done, the results of analysis showed that there is no anomaly and safety margin break at RSG-GAS core with 300 gr silicide fuel loading

  11. Containment loadings due to hydrogen burning in LWR core meltdown accidents

    International Nuclear Information System (INIS)

    Cybulskis, P.

    1981-01-01

    The potential pressure loadings due to hydrogen burning under conditions representative of meltdown accident conditions are examined for a variety of PWR and BWR containment designs. For the PWR, the large dry, ice condenser, as well as subatmospheric containments are considered. For the BWR, MARK I, II, and III pressure suppression containments are evaluated. The key factors considered are: free volume, design pressure, extend to hydrogen generation, and the flammability of the atmosphere under a range of accident conditions. The potential for and the possible implications of hydrogen detonation are also considered. The results of these analyses show that the accumulation and rapid burning of the quantities of hydrogen that would be generated during core meltdown accidents will lead to pressures above design levels in all of the containments considered. As would be expected, containments characterized by small volumes and/or low design pressures are the most vulnerable to damage due to hydrogen burning. Large volume, high pressure designs may also be threatened but offer significantly more potential for accomodating hydrogen burns. The attainment of detonable hydrogen mixtures is made easier by smaller containment volumes. Detonable mixtures are also possible in the larger volume containments, but imply the accumulation of hydrogen for long periods of time without prior ignition. Hydrogen detonations, if they occur, would probably challenge the integrity of any of the containments considered. (orig.)

  12. A Brief Review of Past INL Work Assessing Radionuclide Content in TMI-2 Melted Fuel Debris: The Use of 144Ce as a Surrogate for Pu Accountancy

    Energy Technology Data Exchange (ETDEWEB)

    D. L. Chichester; S. J. Thompson

    2013-09-01

    This report serves as a literature review of prior work performed at Idaho National Laboratory, and its predecessor organizations Idaho National Engineering Laboratory (INEL) and Idaho National Engineering and Environmental Laboratory (INEEL), studying radionuclide partitioning within the melted fuel debris of the reactor of the Three Mile Island 2 (TMI-2) nuclear power plant. The purpose of this review is to document prior published work that provides supporting evidence of the utility of using 144Ce as a surrogate for plutonium within melted fuel debris. When the TMI-2 accident occurred no quantitative nondestructive analysis (NDA) techniques existed that could assay plutonium in the unconventional wastes from the reactor. However, unpublished work performed at INL by D. W. Akers in the late 1980s through the 1990s demonstrated that passive gamma-ray spectrometry of 144Ce could potentially be used to develop a semi-quantitative correlation for estimating plutonium content in these materials. The fate and transport of radioisotopes in fuel from different regions of the core, including uranium, fission products, and actinides, appear to be well characterized based on the maximum temperature reached by fuel in different parts of the core and the melting point, boiling point, and volatility of those radioisotopes. Also, the chemical interactions between fuel, fuel cladding, control elements, and core structural components appears to have played a large role in determining when and how fuel relocation occurred in the core; perhaps the most important of these reaction appears to be related to the formation of mixed-material alloys, eutectics, in the fuel cladding. Because of its high melting point, low volatility, and similar chemical behavior to plutonium, the element cerium appears to have behaved similarly to plutonium during the evolution of the TMI-2 accident. Anecdotal evidence extrapolated from open-source literature strengthens this logical feasibility for

  13. Concept for the analysis of hydrogen problems in nuclear power plants after accidents

    International Nuclear Information System (INIS)

    PreuBer, G.; Freudenstein, K.F.; Reinders, R.

    1997-01-01

    After accidents in nuclear power plants, which lead to a overheating of the core up to a partial or complete core melting, hydrogen is produced due to the reaction of fuel cladding and other metallic structures of the core with the cooling water. This hydrogen enters the containment through a leak of the primary system or at reactor pressure vessel failure. The danger of fast deflagration or explosions appears which may affect the containment. For the analysis of the containment phenomena two different types of computer codes are used, lumped parameter codes and 3D codes. This paper describes the advantages and the limitations of both methods. The codes used by Siemens KWU are presented with some examples for hydrogen analyses. A prospect of further development is given. (author)

  14. Analysis of Accident Scenarios for the Development of Probabilistic Safety Assessment Model for the Metallic Fuel Sodium-Cooled Fast Reactor

    International Nuclear Information System (INIS)

    Kim, Tae Woon; Park, S. Y.; Yang, J. E.; Kwon, Y. M.; Jeong, H. Y.; Suk, S. D.; Lee, Y. B.

    2009-03-01

    The safety analysis reports which were reported during the development of sodium cooled fast reactors in the foreign countries are reviewed for the establishment of Probabilistic Safety Analysis models for the domestic SFR which are under development. There are lots of differences in the safety characteristics between the mixed oxide (MOX) fuel SFR and metallic fuel SFR. Metallic fuel SFR is under development in Korea while MOX fuel SFR is under development in France, Japan, India and China. Therefore the status on the development of fast reactors in the foreign countries are reviewed at first and then the safety characteristics between the MOX fuel SFR and the metallic fuel SFR are reviewed. The core damage can be defined as coolant voiding, fuel melting, cladding damage. The melting points of metallic fuel and the MOX fuel is about 1000 .deg. C and 2300 .deg. C, respectively. The high energy stored in the MOX fuel have higher potential to voiding of coolant compared to the possibility in the metallic fuel. The metallic fuel has also inherent reactivity feedback characteristic that the metallic fuel SFR can be shutdown safely in the events of transient overpower, loss of flow, and loss of heat sink without scram. The metallic fuel has, however, lower melting point due to the eutectic formation between the uranium in metallic fuel and the ferrite in metallic cladding. It is needed to identify the core damage accident scenarios to develop Level-1 PSA model. SSC-K computer code is used to identify the conditions in which the core damage can occur in the KALIMER-600 SFR. The accident cases which are analyzed are the triple failure accidents such as unprotected transient over power events, loss of flow events, and loss of heat sink events with impaired safety systems or functions. Through the analysis of the triple failure accidents for the KALIMER-600 SFR, it is found that the PSA model developed for the PRISM reactor design can be applied to KALIMER-600. However

  15. Exploratory study of molten core material/concrete interactions, July 1975--March 1977

    International Nuclear Information System (INIS)

    Powers, D.A.; Dahlgren, D.A.; Muir, J.F.; Murfin, W.D.

    1978-02-01

    An experimental study of the interaction between high-temperature molten materials and structural concrete is described. The experimental efforts focused on the interaction of melts of reactor core materials weighing 12 to 200 kg at temperatures 1700 to 2800 0 C with calcareous and basaltic concrete representative of that found in existing light-water nuclear reactors. Observations concerning the rate and mode of melt penetration into concrete, the nature and generation rate of gases liberated during the interaction, and heat transfer from the melt to the concrete are described. Concrete erosion is shown to be primarily a melting process with little contribution from mechanical spallation. Water and carbon dioxide thermally released from the concrete are extensively reduced to hydrogen and carbon monoxide. Heat transfer from the melt to the concrete is shown to be dependent on gas generation rate and crucible geometry. Interpretation of results from the interaction experiments is supported by separate studies of the thermal decomposition of concretes, response of bulk concrete to intense heat fluxes (28 to 280 W/cm 2 ), and heat transfer from molten materials to decomposing solids. The experimental results are compared to assumptions made in previous analytic studies of core meltdown accidents in light-water nuclear reactors. A preliminary computer code, INTER, which models and extrapolates results of the experimental program is described. The code allows estimation of the effect of physical parameters on the nature of the melt/concrete interaction

  16. Mitigation of severe accidents in light water reactors: Chapter 8

    International Nuclear Information System (INIS)

    Kastenberg, W.E.; Catton, I.

    1983-01-01

    As part of the NRC program on degraded core and core-melt accidents beyond the design basis, the work presented here focuses on containment mitigation systems. Included are studies aimed at estimating the risk reduction potential for filtered-vented containment systems, passive containment heat removal systems, and features to mitigate against hydrogen burns and base mat penetration. Specific aspects of mitigation for Zion, Indian Poin and Limerick plants are considered. For Zion, consideration of a filtered-vented containment system and a passive containment heat removal system was considered. For Indian Point, the use of heat pipes for passive heat removal was considered. Lastly, for Limerick a low-volume filtered venting system was found to provide a risk reduction factor on the order of 17, when based on man-rem reduction

  17. The Accident Analysis Due to Reactivity Insertion of RSG GAS 3.55 g U/cc Silicide Core

    International Nuclear Information System (INIS)

    Endiah Puji-Hastuti; Surbakti, Tukiran

    2004-01-01

    The fuels of RSG-GAS reactor was changed from uranium oxide with 250 g U of loading or 2.96 g U/cc of fuel loading to uranium silicide with the same loading. The silicide fuels can be used in higher density, staying longer in the reactor core and hence having a longer cycle length. The silicide fuel in RSG-GAS core was made up in step-wise by using mixed up core Firstly, it was used silicide fuel with 250 g U of loading and then, silicide fuel with 300 g U of loading (3.55 g U/cc of fuel loading). In every step-wise of fuel loading, it must be analyzed its safety margin. In this occasion, the reactivity accident of RSG-GAS core with 300 g U of silicide fuel loading is analyzed. The calculation was done using EUREKA-2/RR code available at P2TRR. The calculation was done by reactivity insertion at start up and power rangers. The worst case accident is transient due to control rod with drawl failure at start up by means of lowest initial power (0.1 W), either in power range. From all cases which have been done, the results of analysis showed that there is no anomaly and safety margin break at RSG-GAS core with 300 g U silicide fuel loading. (author)

  18. A view of treatment process of melted nuclear fuel on a severe accident plant using a molten salt system

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, R.; Takahashi, Y.; Nakamura, H.; Mizuguchi, K. [Power and Industrial Research and Development Center, Toshiba Corporation Power Systems Company, 4-1 Ukishima-cho, Kawasaki-ku, Kawasaki 210-0862 (Japan); Oomori, T. [Chemical System Design and Engineering Department, Toshiba Corporation Power Systems Company, 8 Shinsugita-cho, Isogo-ku, Yokohama 235-8523 (Japan)

    2013-07-01

    At severe accident such as Fukushima Daiichi Nuclear Power Plant Accident, the nuclear fuels in the reactor would melt and form debris which contains stable UO2-ZrO2 mixture corium and parts of vessel such as zircaloy and iron component. The requirements for solution of issues are below; -) the reasonable treatment process of the debris should be simple and in-situ in Fukushima Daiichi power plant, -) the desirable treatment process is to take out UO{sub 2} and PuO{sub 2} or metallic U and TRU metal, and dispose other fission products as high level radioactive waste; and -) the candidate of treatment process should generate the smallest secondary waste. Pyro-process has advantages to treat the debris because of the high solubility of the debris and its total process feasibility. Toshiba proposes a new pyro-process in molten salts using electrolysing Zr before debris fuel being treated.

  19. WASA-BOSS. Development and application of Severe Accident Codes. Evaluation and optimization of accident management measures. Subproject E. Improvement of the lower head model in MELCOR and calculations in connection with the FUKUSHIMA accident. Final report; WASA-BOSS. Weiterentwicklung und Anwendung von Severe Accident Codes. Bewertung und Optimierung von Stoerfallmassnahmen. Teilprojekt E. Verbesserung des Lower Head-Modelles fuer MELCOR und MELCOR-Rechnungen zu Fukushima. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Kretzschmar, Frank; Dietrich, Philipp; Gabriel, Stephan; Miassoedov, Alexei

    2016-12-15

    The knowledge of the key phenomena, which govern the chronological sequence of a core melt accident, is a crucial precondition for the development of SAMGs (Severe Management Guides) to avoid and mitigate the radiological consequences for the population and the environment. In the frame of a dissertation a new model has been coupled with MELCOR, which describes the thermal interaction of a core melt with the RPV (reactor pressure vessel) wall in the lower plenum. This model allows a better description of this phenomenon. The method to couple extern programs with MELCOR had been already developed and used in a former dissertation at KIT-IKET. The model has been validated recalculating according experiments in the LIVE facility. Afterwards a defined accident scenario has been calculated for a German generic KONVOI power plant. 12 months after the start of the project a MELCOR input has been developed using data delivered by the Ruhr university of Bochum (subproject ''Simulation des Unfalls in Fukushima-Daichi zur Bewertung des Stoerfall-Analysecodes ATHLET-CD''). The results of this simulation have made a contribution to review the current understanding of the FUKUSHIMA sequence. HZDR and KIT-IKET have agreed in the course of the project, that KIT-IKET will develop a MELCOR input of a german generic KONVOI power plant following an ATHLET-CDinput of HZDR. Using this MELCOR input, a comparative analysis has been performed.

  20. The Fukushima Daiichi Accident. Technical Volume 2/5. Safety Assessment

    International Nuclear Information System (INIS)

    2015-08-01

    safety systems. Section 2.4 describes the accident management provisions and their implementation. All components of accident management are discussed, both preventive (before core melt) and mitigative (after core melt or severe accident). The section covers hardware provisions, emergency operating procedures, severe accident operating procedures, human resources and organizational arrangements, including training and drills. Interface with the off-site emergency arrangements is also discussed. Section 2.5 deals with the governmental, legal and regulatory framework for nuclear safety in Japan up to the time of the Fukushima Daiichi accident. It evaluates this framework and its contribution to the accident, and identifies lessons learned. Section 2.6 analyses the human and organizational aspects of the accident. It examines the main stakeholders of nuclear safety in Japan and shows how their actions were interrelated and interconnected, thereby reinforcing basic assumptions about nuclear safety that prevented them from adequately preparing for such an accident. The section analyses why the accident happened despite advancements in nuclear safety in areas such as solid design, peer reviews, regulatory frameworks, safety assessment methodologies, years of successful operating experience, defence in depth, emergency preparedness, severe accident management guidelines (SAMGs) and a strong international commitment to nuclear safety. Finally, Section 2.7 addresses the role of operating experience in improving plant design and operation in order to continuously improve nuclear safety and support defence in depth. The section assesses the TEPCO operating experience programme and the extent to which lessons were learned from events both in Japan and internationally, and the design changes made

  1. Relap5 simulation for severe accident analysis of RSG-GAS Reactor

    International Nuclear Information System (INIS)

    Andi Sofrany Ekariansyah; Endiah P-Hastuti; Sudarmono

    2018-01-01

    The research reactor in the world is to be known safer than power reactor due to its simpler design related to the core and operational characteristics. Nevertheless, potential hazards of research reactor to the public and the environment can not be ignored due to several special features. Therefore the level of safety must be clearly demonstrated in the safety analysis report (SAR) using safety analysis, which is performed with various approaches and methods supported by computational tools. The purpose of this research is to simulate several accidents in the Indonesia RSG-GAS reactor, which may lead to the fuel damage, to complement the severe accident analysis results that already described in the SAR. The simulation were performed using the thermal hydraulic code of RELAP5/SCDAP/Mod3.4 which has the capability to model the plate-type of RSG-GAS fuel elements. Three events were simulated, which are loss of primary and secondary flow without reactor trip, blockage of core subchannels without reactor trip during full power, and loss of primary and secondary flow followed by reactor trip and blockage of core subchannel. The first event will harm the fuel plate cladding as showed by its melting temperature of 590 °C. The blockage of one or more subchannels in the one fuel element results in different consequences to the fuel plates, in which at least two blocked subchannels will damage one fuel plate, even more the blockage of one fuel element. The combination of loss of primary and secondary flow followed by reactor trip and blockage of one fuel element has provided an increase of fuel plate temperature below its melting point meaning that the established natural circulation and the relative low reactor power is sufficient to cool the fuel element. (author)

  2. Behaviour of contact layer material between cermet fuel element core and can

    International Nuclear Information System (INIS)

    Gavrilin, S.S.; Permyakov, L.N.; Simakov, G.A.; Chernikov, A.S.

    1996-01-01

    The structural state of the contact layer between the shell of the Zr1Nb alloy and cermet fuel element core containing up to 70% of uranium dioxides is experimental studied. The silumin alloy was used as contact material. The results of studies on interaction zones, formed on the Zr1Nb - silumin boundary after fuel elements manufacture and also under temperature conditions, modeling the maximum design and hypothetical accidents accompanied by the contact material melting, are presented [ru

  3. Experimental results for TiO2 melting and release using cold crucible melting

    International Nuclear Information System (INIS)

    Hong, S. W.; Min, B. T.; Park, I. G.; Kim, H. D.

    2000-01-01

    To simulate the severe accident phenomena using the real reactor material which melting point is about 2,800K, the melting and release method for materials with high melting point should be developed. This paper discusses the test results for TiO 2 materials using the cold crucible melting method to study the melting and release method of actual corium. To melt and release of few kg of TiO2, the experimental facility is manufactured through proper selection of design parameters such as frequency and capacity of R.F generator, crucible size and capacity of coolant. The melting and release of TiO 2 has been successfully performed in the cold crucible of 15cm in inner diameter and 30cm in height with 30kW RF power generator of 370 KHz. In the melt delivery experiment, about 2.6kg of molten TiO2, 60% of initial charged mass, is released. Rest of it is remained in the watercage in form of the rubble crust formed at the top of crucible and melt crust formed at the interface between the water-cage and melt. Especially, in the melt release test, the location of the working coil is important to make the thin crust at the bottom of the crucible

  4. Melting in super-earths.

    Science.gov (United States)

    Stixrude, Lars

    2014-04-28

    We examine the possible extent of melting in rock-iron super-earths, focusing on those in the habitable zone. We consider the energetics of accretion and core formation, the timescale of cooling and its dependence on viscosity and partial melting, thermal regulation via the temperature dependence of viscosity, and the melting curves of rock and iron components at the ultra-high pressures characteristic of super-earths. We find that the efficiency of kinetic energy deposition during accretion increases with planetary mass; considering the likely role of giant impacts and core formation, we find that super-earths probably complete their accretionary phase in an entirely molten state. Considerations of thermal regulation lead us to propose model temperature profiles of super-earths that are controlled by silicate melting. We estimate melting curves of iron and rock components up to the extreme pressures characteristic of super-earth interiors based on existing experimental and ab initio results and scaling laws. We construct super-earth thermal models by solving the equations of mass conservation and hydrostatic equilibrium, together with equations of state of rock and iron components. We set the potential temperature at the core-mantle boundary and at the surface to the local silicate melting temperature. We find that ancient (∼4 Gyr) super-earths may be partially molten at the top and bottom of their mantles, and that mantle convection is sufficiently vigorous to sustain dynamo action over the whole range of super-earth masses.

  5. Mitigative techniques and analysis of generic site conditions for ground-water contamination associated with severe accidents

    Energy Technology Data Exchange (ETDEWEB)

    Shafer, J.M.; Oberlander, P.L.; Skaggs, R.L.

    1984-04-01

    The purpose of this study is to evaluate the feasibility of using ground-water contaminant mitigation techniques to control radionuclide migration following a severe commercial nuclear power reactor accident. The two types of severe commercial reactor accidents investigated are: (1) containment basemat penetration of core melt debris which slowly cools and leaches radionuclides to the subsurface environment, and (2) containment basemat penetration of sump water without full penetration of the core mass. Six generic hydrogeologic site classifications are developed from an evaluation of reported data pertaining to the hydrogeologic properties of all existing and proposed commercial reactor sites. One-dimensional radionuclide transport analyses are conducted on each of the individual reactor sites to determine the generic characteristics of a radionuclide discharge to an accessible environment. Ground-water contaminant mitigation techniques that may be suitable, depending on specific site and accident conditions, for severe power plant accidents are identified and evaluated. Feasible mitigative techniques and associated constraints on feasibility are determined for each of the six hydrogeologic site classifications. The first of three case studies is conducted on a site located on the Texas Gulf Coastal Plain. Mitigative strategies are evaluated for their impact on contaminant transport and results show that the techniques evaluated significantly increased ground-water travel times. 31 references, 118 figures, 62 tables.

  6. Mitigative techniques and analysis of generic site conditions for ground-water contamination associated with severe accidents

    International Nuclear Information System (INIS)

    Shafer, J.M.; Oberlander, P.L.; Skaggs, R.L.

    1984-04-01

    The purpose of this study is to evaluate the feasibility of using ground-water contaminant mitigation techniques to control radionuclide migration following a severe commercial nuclear power reactor accident. The two types of severe commercial reactor accidents investigated are: (1) containment basemat penetration of core melt debris which slowly cools and leaches radionuclides to the subsurface environment, and (2) containment basemat penetration of sump water without full penetration of the core mass. Six generic hydrogeologic site classifications are developed from an evaluation of reported data pertaining to the hydrogeologic properties of all existing and proposed commercial reactor sites. One-dimensional radionuclide transport analyses are conducted on each of the individual reactor sites to determine the generic characteristics of a radionuclide discharge to an accessible environment. Ground-water contaminant mitigation techniques that may be suitable, depending on specific site and accident conditions, for severe power plant accidents are identified and evaluated. Feasible mitigative techniques and associated constraints on feasibility are determined for each of the six hydrogeologic site classifications. The first of three case studies is conducted on a site located on the Texas Gulf Coastal Plain. Mitigative strategies are evaluated for their impact on contaminant transport and results show that the techniques evaluated significantly increased ground-water travel times. 31 references, 118 figures, 62 tables

  7. ILK statement on the consequences of the Chernobyl accident. Taking stock after twenty years

    International Nuclear Information System (INIS)

    2006-01-01

    The Chernobyl reactor accident was the consequence of a reactor design which was not inherently safe, and of a lack of 'safety culture'. The RBMK-type reactor (a Russian graphite-moderated light water reactor design: reaktor bolshoi moshnosty kanalny=high-power channel reactor) had not been designed to a satisfactory safety level, and the operating staff were not informed on the weak spots in plant design. The combination of these factors caused the worst nuclear accident, completely destroying the reactor. The consequences may be seen as the product of two severe accidents superimposed upon each other: the explosion of the reactor, and core melt-down associated with an intense, persistent fire of the graphite moderator. The Statement contains analyses of these points: Release, Propagation and Deposition of Radioactive Materials; Protective Measures; Impact on the Environment and Agriculture; Assessment of Radiation Exposure; Health Impact; Psychological and Societal Impacts; Potential Residual Risks. (orig.)

  8. Release of gases and their influence on containment integrity during a hypothetical meltdown accident

    International Nuclear Information System (INIS)

    Hassmann, K.; Reimann, M.

    1981-01-01

    The sequence of a hypothetical core melt down accident has been subdivided into four phases. Heating up of the core until failure of the core support structure is the first phase. It starts at a certain water level in the reactor pressure vessel (RPV) and ends with the failure of the grid plate. The second phase is characterized by the evaporation of the water in the lower plenum of the RPV. The second phase lasts until a molten core debris is formed. The third phase is concerned with the heating up of the pressure vessel after formation of a molten pool in the lower plenum of the RPV. After pressure vessel failure, the molten corium will interact in the fourth phase with the concrete structure beneath the pressure vessel. In this paper the gas release during all four accident phases and the resulting pressure-time history within the containment of a German standard PWR is given, taking into account violent combustion of hydrogen. In particular, the differences caused by dsestruction of concrete with silicious and with calcareous aggregates has been analyzed. The basis for the results in the 4th phase is the WECHSL code. Long term containment calculations have been performed with the COCMEL-code

  9. Neutronic Analysis and Radiological Safety of RSG-GAS Reactor on 300 Grams Uranium Silicide Core

    International Nuclear Information System (INIS)

    Pande Made Udiyani; Lily Suparlina; Rokhmadi

    2007-01-01

    As starting of usage silicide U 250 g fuel element in the core of RSG-GAS and will be continued with usage of silicide U 300 g fuel element, hence done beforehand neutronic analyse and radiological safety of RSG-GAS. Calculation done by ORIGEN2.1 code to calculate source term, and also by PC-COSYMA code to calculate radiological safety of radioactive dispersion from RSG-GAS. Calculation of radioactive dispersion done at condition of reactor is postulated be happened an accident of LOCA causing one fuel element to melt. Neutronic analysis indicate that silicide U 250 g full core shall to be operated beforehand during 625 MWD before converted to silicide U 300 g core. During operation of transition core with mixture of silicide U 250 g and 300 g, all parameter fulfill criterion of safety Designed Balance core of silicide U 300 g will be reached at the time of fifth full core. Result of calculation indicate that through mixture core of silicide U 250 and 300 g proposed can form silicide U 300 g balance core of reactor RSG-GAS safely. Calculation of radiology safety by deterministic for silicide U 300 g balance core, and accident postulation which is equal to core of silicide U 250 g yield output in the form of radiation activity (radionuclide concentration in the air and deposition on the ground), radiation dose (collective and individual), radiation effect (short- and long-range), which accepted by society in each perceived sector. Result of calculation indicated that dose accepted by society is not pass permitted boundary for public society if happened accident. (author)

  10. German risk study for nuclear power plants. Vol. 5

    International Nuclear Information System (INIS)

    Bracht, K.F.; Javeri, V.; Keusenhoff, J.; Meier, S.; Roehrs, W.; Scharfe, A.; Tiltmann, M.; Mayinger, F.

    1980-01-01

    This appendix contains the analyses on core melt accidents carried out for the German risk study. These accidents constitute a major portion of the event sequences relevant to the risk. It deals, in particular, with the processes involved in the reactor core melt, the behaviour of the containment vessel including the possible types of failures, and the consequences of possible steam explosions. The investigations were performed for limiting cases for which a complete failure of the emergency core cooling and residual heat removal system is anticipated. Under these conditions, the reactor core melts down and penetrates the reactor pressure vessel bottom. In the course of the following interaction between core melt and concrete foundation, the melt is assumed to come into contact with the sump water. The evaporation of the sump water leads to an overpressure failure of the containment vessel within approximately one day after accident initiation. A destruction of the containment as a consequence of a steam explosion is considered highly unprobable. (orig.) [de

  11. Passive Decay Heat Removal Strategy of Integrated Passive Safety System (IPSS) for SBO-combined Accidents

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Ho; Chang, Soon Heung; Jeong, Yong Hoon [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-10-15

    The weak points of nuclear safety would be in outmoded nuclear power plants like the Fukushima reactors. One of the systems for the safety enhancement is integrated passive safety system (IPSS) proposed after the Fukushima accidents. It has the five functions for the prevention and mitigation of a severe accident. Passive decay heat removal (PDHR) strategy using IPSS is proposed for coping with SBO-combined accidents in this paper. The two systems for removing decay heat before core-melt were applied in the strategy. The accidents were simulated by MARS code. The reference reactor was OPR1000, specifically Ulchin-3 and 4. The accidents included loss-of-coolant accidents (LOCA) because the coolant losses could be occurred in the SBO condition. The examples were the stuck open of PSV, the abnormal open of SDV and the leakage of RCP seal water. Also, as LOCAs with the failure of active safety injection systems were considered, various LOCAs were simulated in SBO. Based on the thermal hydraulic analysis, the probabilistic safety analysis was carried out for the PDHR strategy to estimate the safety enhancement in terms of the variation of core damage frequency. AIMS-PSA developed by KAERI was used for calculating CDF of the plant. The IPSS was applied in the PDHR strategy which was developed in order to cope with the SBO-combined accidents. The estimation for initiating SGGI or PSIS was based on the pressure in RCS. The simulations for accidents showed that the decay heat could be removed for the safety duration time in SBO. The increase of safety duration time from the strategy provides the increase of time for the restoration of AC power.

  12. Safety criteria for the future LMFBR's in France and main safety issues for the rapide 1500 project

    International Nuclear Information System (INIS)

    Justin, F.; Natta, M.; Orzoni, G.

    1985-04-01

    The main safety criteria for future LMFBR in France and the related issues for the RAPIDE 1500 project are presented and discussed. The evolutions with respect to SUPERPHENIX options and requirements are emphasized, in particular for the concerns of the prevention of core melt accidents, fuel damage limits and related required performances of the protection system, since one main option is not to consider whole core melt accidents in the containment design. One shall also point out the advantages of some mitigating features which were nevertheless added in the containment design, although without any explicit consideration for core melt accidents

  13. Strategy-oriented display concept to assist severe accident management

    International Nuclear Information System (INIS)

    Jeong, Kwangsub; Ha, Jaejoo

    2000-01-01

    The Critical Function Monitoring System (CFMS) is a typical Safety Parameter Display System (SPDS) to assist the operation of Korean Standard Nuclear Power Plants during normal and emergency operation, and SPDS for severe accident is being developed in Korea. When the existing CFMS is used under a severe accident situation, some problems are expected from: (1) different design basis, i.e. prevention of core melt vs. protection of radiation release to environment, (2) different parameters for decision-making, and (3) different domain and depth of information to restore the plant. To resolve the above problems, a concept, 'Strategy-Oriented Information Display' concept, for displaying information for severe accident management is developed in this paper. Whereas the existing SPDS structure is based on the critical safety function, the developed concept is based on the severe accident management strategy. The display for each strategy includes the plant parameters to check the status of plant and component with the logical or graphical views necessary for executing the strategy. As the application of the proposed concept, KAERI is developing a display system, the prototype severe accident SPDS, Severe Accident Management Display System (SAMDIS), to assist plant personnel for executing Korean Severe Accident Management Guidelines. CFMS is developed for a general display suitable to all situations with various displays. On the contrary, SAMDIS provides all the relevant information on one screen based on the proposed concept. The SAMDIS screen shows more extensive area than CFMS and thus plant personnel can recognize the overall plant status at a glance. This concept is quite effective when used with severe accident management guidelines because of the relatively macroscopic characteristics of a severe accident management strategy. (author)

  14. Evaluation of High-Pressure RCS Natural Circulations Under Severe Accident Conditions

    International Nuclear Information System (INIS)

    Lee, Byung Chul; Bang, Young Suk; Suh, Nam Duk

    2006-01-01

    Since TMI-2 accident, the occurrence of severe accident natural circulations inside RCS during entire in-vessel core melt progressions before the reactor vessel breach had been emphasized and tried to clarify its thermal-hydraulic characteristics. As one of consolidated outcomes of these efforts, sophisticated models have been presented to explain the effects of a variety of engineering and phenomenological factors involved during severe accident mitigation on the integrity of RCS pressure boundaries, i.e. reactor pressure vessel(RPV), RCS coolant pipe and steam generator tubes. In general, natural circulation occurs due to density differences, which for single phase flow, is typically generated by temperature differences. Three natural circulation flows can be formed during severe accidents: in-vessel, hot leg countercurrent flow and flow through the coolant loops. Each of these flows may be present during high-pressure transients such as station blackout (SBO) and total loss of feedwater (TLOFW). As a part of research works in order to contribute on the completeness of severe accident management guidance (SAMG) in domestic plants by quantitatively assessing the RCS natural circulations on its integrity, this study presents basic approach for this work and some preliminary results of these efforts with development of appropriately detailed RCS model using MELCOR computer code

  15. Damage of reactor buildings occurred at the Fukushima Daiichi accident. Focusing on sequence leading to hydrogen explosions

    International Nuclear Information System (INIS)

    Naito, Masanori

    2011-01-01

    Fukushima Daiichi accident discharged enormous radioactive materials confined inside into the environment due to hydrogen explosions occurred at reactor buildings and forced many people to live the refugee life. This article described overview of Great East Japan Earthquake, specifications of Fukushima Daiichi nuclear power plants, sequence of plant status after earthquake occurrence and computerized simulation of plant behavior of Unit 1 leading to core melt and hydrogen explosion. Simulation results with estimated and assumed conditions showed water level decreased to bottom of reactor core after 4 hrs and 15 minutes passed, core melt started after 6 hrs and 49 minutes passed, failure of core support plate after 7 hrs and 18 minutes passed and through failure of penetration at bottom of pressure vessel after 7 hrs and 25 minutes passed. Hydrogen concentration at operating floor of reactor building of Unit 1 would be 15% accumulated and the pressure would amount to about 5 bars after hydrogen explosion if reactor building did not rupture with leak-tight structure. Since reactor building was not pressure-proof structure, walls of operating floor would rupture before 5 bars attained. (T. Tanaka)

  16. Intersubassembly incoherencies and grouping techniques in LMFBR hypothetical overpower accident

    International Nuclear Information System (INIS)

    Wilburn, N.P.

    1977-10-01

    A detailed analysis was made of the FTR core using the 100-channel MELT-IIIA code. Results were studied for the transient overpower accident (where 0.5$/sec and 1$/sec ramps) and in which the Damage Parameter and the Failure Potential criteria were used. Using the information obtained from these series of runs, a new method of grouping the subassemblies into channels has been developed. Also, it was demonstrated that a 7-channel representation of the FTR core using this method does an adequate job of representing the behavior during a hypothetical disruptive transient overpower core accident. It has been shown that this new 7-channel grouping method does a better job than an earlier 20-channel grouping. It has also been demonstrated that the incoherency effects between subassemblies as shown during the 76-channel representation of the reactor can be adequately modeled by 7-channels, provided the 7-channels are selected according to the criteria stated in the report. The overall results of power and net reactivity were shown to be only slightly different in the two cases of the 7-channel and the 76-channel runs. Therefore, it can be concluded that any intersubassembly incoherencies can be modeled adequately by a small number of channels, provided the subassemblies making up these channels are selected according to the criteria stated

  17. Incorporation of phenomenological uncertainties in probabilistic safety analysis - application to LMFBR core disruptive accident energetics

    Energy Technology Data Exchange (ETDEWEB)

    Najafi, B; Theofanous, T G; Rumble, E T; Atefi, B

    1984-08-01

    This report describes a method for quantifying frequency and consequence uncertainty distribution associated with core disruptive accidents (CDAs). The method was developed to estimate the frequency and magnitude of energy impacting the reactor vessel head of the Clinch River Breeder Plant (CRBRP) given the occurrence of hypothetical CDAs. The methodology is illustrated using the CRBR example.

  18. Fragmentation and quench behavior of corium melt streams in water

    International Nuclear Information System (INIS)

    Spencer, B.W.; Wang, K.; Blomquist, C.A.; McUmber, L.M.; Schneider, J.P.

    1994-02-01

    The interaction of molten core materials with water has been investigated for the pour stream mixing mode. This interaction plays a crucial role during the later stages of in-vessel core melt progression inside a light water reactor such as during the TMI-2 accident. The key issues which arise during the molten core relocation include: (i) the thermal attack and possible damage to the RPV lower head from the impinging molten fuel stream and/or the debris bed, (ii) the molten fuel relocation pathways including the effects of redistribution due to core support structure and the reactor lower internals, (iii) the quench rate of the molten fuel through the water in the lower plenum, (iv) the steam generation and hydrogen generation during the interaction, (v) the transient pressurization of the primary system, and (vi) the possibility of a steam explosion. In order to understand these issues, a series of six experiments (designated CCM-1 through -6) was performed in which molten corium passed through a deep pool of water in a long, slender pour stream mode. Results discussed include the transient temperatures and pressures, the rate and magnitude of steam/hydrogen generation, and the posttest debris characteristics

  19. Method of assessing severe accident management strategies

    International Nuclear Information System (INIS)

    Kastenberg, W.E.; Apostolakis, G.; Dhir, V.K.; Okrent, D.; Jae, M.; Lim, H.; Milici, T.; Park, H.; Swider, J.; Xing, L.; Yu, D.

    1991-01-01

    Accident management can be defined as the innovative use of existing and or alternative resources, systems, and actions to prevent or mitigate a severe accident. A significant number of probabilistic safety assessments (PSAs) have been completed that yield the principal plant vulnerabilities. These vulnerabilities can be categorized as (1) dominant sequences with respect to core-melt frequency. (2) dominant sequences with respect to various risk measures. (3) dominant threats that challenge safety functions. (4) dominant threats with respect to failure of safety systems. For each sequence/threat and each combination of strategy, there may be several options available to the operator. Each strategy/option involves phenomenological and operational considerations regarding uncertainty. These considerations include uncertainties in key phenomena, operator behavior, system availability and behavior, and available information. This paper presents a methodology for assessing severe accident management strategies given the key uncertainties delineated at two workshops held at the University of California, Los Angeles. Based on decision trees and influence diagrams, the methodology is currently being applied to two case studies: cavity flooding in a pressurized water reactor (PWR) to prevent vessel penetration or failure, and drywell flooding in a boiling water reactor to prevent vessel and/or containment failure

  20. Modeling of molten core-concrete interactions and fission-product release

    International Nuclear Information System (INIS)

    Norkus, J.K.; Corradini, M.L.

    1991-09-01

    The study of molten core-concrete interaction is important in estimating the possible consequences of a severe nuclear reactor accident. CORCON-Mod2 is a computer program which models the thermal, chemical, and physical phenomena associated with molten core-concrete interactions. Models have been added to extend and improve the modeling of these phenomena. An ideal solution chemical equilibrium methodology is presented to predict the fission-product vaporization release. Additional chemical species have been added, and the calculation of chemical equilibrium has been expanded to the oxidic layer and to the mixed layer configuration. Recent experiments performed at Argonne National Laboratory are compared to CORCON predictions of melt temperature, erosion depth, and release fraction of fission products. The results consistently underpredicted the melt temperatures and erosion rates. However, the predictions of release of Te, Ba, Sr, and U were good. A sensitivity study of the effects of initial temperature, concrete type, use of the mixing option, degree of zirconium oxidation, cavity size, and amount of control material on erosion, gas production, and release of radioactive materials was performed for a PWR and a BWR. The initial melt temperature had the greatest effect on the results of interest. Concrete type and cavity size also had important effects. 78 refs., 35 figs., 40 tabs