WorldWideScience

Sample records for core mantle boundary

  1. Melting and Crystallization at Core Mantle Boundary

    Science.gov (United States)

    Fiquet, G.; Pradhan, G. K.; Siebert, J.; Auzende, A. L.; Morard, G.; Antonangeli, D.; Garbarino, G.

    2015-12-01

    Early crystallization of magma oceans may generate original compositional heterogeneities in the mantle. Dense basal melts may also be trapped in the lowermost mantle and explain mantle regions with ultralow seismic velocities (ULVZs) near the core-mantle boundary [1]. To test this hypothesis, we first constructed the solidus curve of a natural peridotite between 36 and 140 gigapascals using laser-heated diamond anvil cells. In our experiments, melting at core-mantle boundary pressures occurs around 4100 ± 150 K, which is a value that can match estimated mantle geotherms. Similar results were found for a chondritic mantle [2] whereas much lower pyrolitic melting temperatures were recently proposed from textural and chemical characterizations of quenched samples [3]. We also investigated the melting properties of natural mid ocean ridge basalt (MORB) up to core-mantle boundary (CMB) pressures. At CMB pressure (135 GPa), we obtain a MORB solidus temperature of 3950 ±150 K. If our solidus temperatures are in good agreement with recent results proposed for a similar composition [4], the textural and chemical characterizations of our recovered samples made by analytical transmission electron microscope indicate that CaSiO3 perovskite (CaPv) is the liquidus phase in the entire pressure range up to CMB. The partial melt composition is enriched in FeO, which suggests that such partial melts could be gravitationnally stable at the core mantle boundary. Our observations are tested against calculations made using a self-consistent thermodynamic database for the MgO-FeO-SiO2 system from 20 GPa to 140 GPa [5]. These observations and calculations provide a first step towards a consistent thermodynamic modelling of the crystallization sequence of the magma ocean, which shows that the existence of a dense iron rich and fusible layer above the CMB at the end of the crystallization is plausible [5], which is in contradiction with the conclusions drawn in [4]. [1] Williams

  2. Melting of subducted basalt at the core-mantle boundary.

    Science.gov (United States)

    Andrault, Denis; Pesce, Giacomo; Bouhifd, Mohamed Ali; Bolfan-Casanova, Nathalie; Hénot, Jean-Marc; Mezouar, Mohamed

    2014-05-23

    The geological materials in Earth's lowermost mantle control the characteristics and interpretation of seismic ultra-low velocity zones at the base of the core-mantle boundary. Partial melting of the bulk lower mantle is often advocated as the cause, but this does not explain the nonubiquitous character of these regional seismic features. We explored the melting properties of mid-oceanic ridge basalt (MORB), which can reach the lowermost mantle after subduction of oceanic crust. At a pressure representative of the core-mantle boundary (135 gigapascals), the onset of melting occurs at ~3800 kelvin, which is ~350 kelvin below the mantle solidus. The SiO2-rich liquid generated either remains trapped in the MORB material or solidifies after reacting with the surrounding MgO-rich mantle, remixing subducted MORB with the lowermost mantle.

  3. Iron-carbonate interaction at Earth's core-mantle boundary

    Science.gov (United States)

    Dorfman, S. M.; Badro, J.; Nabiei, F.; Prakapenka, V.; Gillet, P.

    2015-12-01

    Carbon storage and flux in the deep Earth are moderated by oxygen fugacity and interactions with iron-bearing phases. The amount of carbon stored in Earth's mantle versus the core depends on carbon-iron chemistry at the core-mantle boundary. Oxidized carbonates subducted from Earth's surface to the lowermost mantle may encounter reduced Fe0 metal from disproportionation of Fe2+ in lower mantle silicates or mixing with the core. To understand the fate of carbonates in the lowermost mantle, we have performed experiments on sandwiches of single-crystal (Ca0.6Mg0.4)CO3 dolomite and Fe foil in the laser-heated diamond anvil cell at lower mantle conditions of 49-110 GPa and 1800-2500 K. Syntheses were conducted with in situ synchrotron X-ray diffraction to identify phase assemblages. After quench to ambient conditions, samples were sectioned with a focused Ga+ ion beam for composition analysis with transmission electron microscopy. At the centers of the heated spots, iron melted and reacted completely with the carbonate to form magnesiowüstite, iron carbide, diamond, magnesium-rich carbonate and calcium carbonate. In samples heated at 49 and 64 GPa, the two carbonates exhibit a eutectoid texture. In the sample heated at 110 GPa, the carbonates form rounded ~150-nm-diameter grains with a higher modal proportion of interspersed diamonds. The presence of reduced iron in the deep lower mantle and core-mantle boundary region will promote the formation of diamonds in carbonate-bearing subducted slabs. The complete reaction of metallic iron to oxides and carbides in the presence of mantle carbonate supports the formation of these phases at the Earth's core-mantle boundary and in ultra-low velocity zones.

  4. Melting of MORB at core-mantle boundary

    Science.gov (United States)

    Pradhan, Gopal K.; Fiquet, Guillaume; Siebert, Julien; Auzende, Anne-Line; Morard, Guillaume; Antonangeli, Daniele; Garbarino, Gaston

    2015-12-01

    We investigated the melting properties of natural mid-ocean ridge basalt (MORB) up to core-mantle boundary (CMB) pressures using laser-heated diamond anvil cell. Textural and chemical characterizations of quenched samples were performed by analytical transmission electron microscopy. We used in situ X-ray diffraction primarily for phase identification whereas our melting criterion based on laser power versus temperature plateau combined with textural analysis of recovered solidus and subsolidus samples is accurate and unambiguous. At CMB pressure (135 GPa), the MORB solidus temperature is 3970 (± 150) K. Quenched melt textures observed in recovered samples indicate that CaSiO3 perovskite (CaPv) is the liquidus phase in the entire pressure range up to CMB. The partial melt composition derived from the central melt pool is enriched in FeO, which suggests that such melt pockets may be gravitationally stable at the core mantle boundary.

  5. Dynamo tests for stratification below the core-mantle boundary

    Science.gov (United States)

    Olson, Peter; Landeau, Maylis; Reynolds, Evan

    2017-10-01

    Evidence from seismology, mineral physics, and core dynamics suggests a layer with an overall stable stratification in the Earth's outer core, possibly thermal in origin, extending below the core-mantle boundary (CMB) for several hundred kilometers. Yet vigorous deep mantle convection with locally elevated heat flux implies locally unstable thermal stratification below the CMB, consistent with interpretations of non-dipole geomagnetic field behavior that favor upwelling flows in places below the CMB. To resolve this apparent inconsistency, we investigate the structure of convection and magnetic fields in the core using numerical dynamos with laterally heterogeneous boundary heat flux. Strongly heterogeneous boundary heat flux generates localized convection beneath the CMB that coexists with an overall stable stratification there. Our partially stratified dynamos are distinguished by their time average magnetic field structures. Without stratification or with stratification confined to a thin layer, the octupole component is small and the CMB magnetic field structure includes polar intensity minima. With more extensive stratification, the octupole component is large and the magnetic field structure includes intense patches or high intensity lobes in the polar regions. Comparisons with the time-averaged geomagnetic field are generally favorable for partial stratification in a thin (<400 km) layer but unfavorable for stratification in a thick (∼1000 km) layer beneath the CMB.

  6. Geomagnetic spikes on the core-mantle boundary

    Science.gov (United States)

    Davies, Christopher; Constable, Catherine

    2017-05-01

    Extreme variations of Earth's magnetic field occurred in the Levant region around 1000 BC, when the field intensity rapidly rose and fell by a factor of 2. No coherent link currently exists between this intensity spike and the global field produced by the core geodynamo. Here we show that the Levantine spike must span >60° longitude at Earth's surface if it originates from the core-mantle boundary (CMB). Several low intensity data are incompatible with this geometric bound, though age uncertainties suggest these data could have sampled the field before the spike emerged. Models that best satisfy energetic and geometric constraints produce CMB spikes 8-22° wide, peaking at O(100) mT. We suggest that the Levantine spike reflects an intense CMB flux patch that grew in place before migrating northwest, contributing to growth of the dipole field. Estimates of Ohmic heating suggest that diffusive processes likely govern the ultimate decay of geomagnetic spikes.

  7. The core-mantle boundary region under the Gulf of Alaska : no ULVZ for shear waves

    NARCIS (Netherlands)

    Castle, John C.; Hilst, R.D. van der

    2000-01-01

    The Earth's core-mantle boundary (CMB) marks the boundary between the hot, molten iron core and the silicate mantle and is a thermal, chemical, and flow boundary. Previous observations of very slow compressional wavespeeds suggest that thin ultra-low-velocity zones (ULVZs), possibly composed of a mi

  8. A sharp and flat section of the core-mantle boundary

    Science.gov (United States)

    Vidale, J.E.; Benz, H.M.

    1992-01-01

    THE transition zone between the Earth's core and mantle plays an important role as a boundary layer for mantle and core convection1. This zone conducts a large amount of heat from the core to the mantle, and contains at least one thermal boundary layer2,3; the proximity of reactive silicates and molten iron leads to the possibility of zones of intermediate composition4. Here we investigate one region of the core-mantle boundary using seismic waves that are converted from shear to compressional waves by reflection at the boundary. The use of this phase (known as ScP), the large number of receiving stations, and the large aperture of our array all provide higher resolution than has previously been possible5-7. For the 350-km-long section of the core-mantle boundary under the northeast Pacific sampled by the reflections, the local boundary topography has an amplitude of less than 500 m, no sharp radial gradients exist in the 400 km above the boundary, and the mantle-lo-core transition occurs over less than 1 km. The simplicity of the structure near and above the core-mantle boundary argues against chemical heterogeneity at the base of the mantle in this location.

  9. Numerical simulations of thermal-chemical instabilities at the core-mantle boundary

    Science.gov (United States)

    Hansen, Ulrich; Yuen, David A.

    1988-01-01

    Numerical simulations of thermal-chemical instabilities in the D-double-prime layer at the core-mantle boundary are presented which show that strong lateral heterogeneities in the composition and density fields can be initiated and maintained dynamically if there is continuous replenishment of material from subduced slabs coming from the upper mantle. These chemical instabilities have a tendency to migrate laterally and may help to support core-mantle boundary topography with short and long wavelengths. The thermal-chemical flows produce a relatively stagnant D-double-prime layer with strong lateral and temporal variations in basal heat flux, which gives rise to thermal core-mantle interactions influencing the geodynamo.

  10. Steady state toroidal magnetic field at earth's core-mantle boundary

    Science.gov (United States)

    Levy, Eugene H.; Pearce, Steven J.

    1991-01-01

    Measurements of the dc electrical potential near the top of earth's mantle have been extrapolated into the deep mantle in order to estimate the strength of the toroidal magnetic field component at the core-mantle interface. Recent measurements have been interpreted as indicating that at the core-mantle interface, the magnetic toroidal and poloidal field components are approximately equal in magnitude. A motivation for such measurements is to obtain an estimate of the strength of the toroidal magnetic field in the core, a quantity important to our understanding of the geomagnetic field's dynamo generation. Through the use of several simple and idealized calculation, this paper discusses the theoretical relationship between the amplitude of the toroidal magnetic field at the core-mantle boundary and the actual amplitude within the core. Even with a very low inferred value of the toroidal field amplitude at the core-mantle boundary, (a few gauss), the toroidal field amplitude within the core could be consistent with a magnetohydrodynamic dynamo dominated by nonuniform rotation and having a strong toroidal magnetic field.

  11. Steady state toroidal magnetic field at earth's core-mantle boundary

    Science.gov (United States)

    Levy, Eugene H.; Pearce, Steven J.

    1991-01-01

    Measurements of the dc electrical potential near the top of earth's mantle have been extrapolated into the deep mantle in order to estimate the strength of the toroidal magnetic field component at the core-mantle interface. Recent measurements have been interpreted as indicating that at the core-mantle interface, the magnetic toroidal and poloidal field components are approximately equal in magnitude. A motivation for such measurements is to obtain an estimate of the strength of the toroidal magnetic field in the core, a quantity important to our understanding of the geomagnetic field's dynamo generation. Through the use of several simple and idealized calculation, this paper discusses the theoretical relationship between the amplitude of the toroidal magnetic field at the core-mantle boundary and the actual amplitude within the core. Even with a very low inferred value of the toroidal field amplitude at the core-mantle boundary, (a few gauss), the toroidal field amplitude within the core could be consistent with a magnetohydrodynamic dynamo dominated by nonuniform rotation and having a strong toroidal magnetic field.

  12. Effect of width, amplitude, and position of a core mantle boundary hot spot on core convection and dynamo action

    CERN Document Server

    Dietrich, Wieland; Hori, Kumiko

    2015-01-01

    Within the fluid iron cores of terrestrial planets, convection and the resulting generation of global magnetic fields are controlled by the overlying rocky mantle. The thermal structure of the lower mantle determines how much heat is allowed to escape the core. Hot lower mantle features, such as the thermal footprint of a giant impact or hot mantle plumes, will locally reduce the heat flux through the core mantle boundary (CMB), thereby weakening core convection and affecting the magnetic field generation process. In this study, we numerically investigate how parametrised hot spots at the CMB with arbitrary sizes, amplitudes, and positions affect core convection and hence the dynamo. The effect of the heat flux anomaly is quantified by changes in global flow symmetry properties, such as the emergence of equatorial antisymmetric, axisymmetric (EAA) zonal flows. For purely hydrodynamic models, the EAA symmetry scales almost linearly with the CMB amplitude and size, whereas self-consistent dynamo simulations typ...

  13. Core-mantle boundary deformations and J2 variations resulting from the 2004 Sumatra earthquake

    CERN Document Server

    Cannelli, V; De Michelis, P; Piersanti, A; Florindo, F

    2007-01-01

    The deformation at the core-mantle boundary produced by the 2004 Sumatra earthquake is investigated by means of a semi-analytic theoretical model of global coseismic and postseismic deformation, predicting a millimetric coseismic perturbation over a large portion of the core-mantle boundary. Spectral features of such deformations are analysed and discussed. The time-dependent postseismic evolution of the elliptical part of the gravity field (J2) is also computed for different asthenosphere viscosity models. Our results show that, for asthenospheric viscosities smaller than 10^18 Pa s, the postseismic J2 variation in the next years is expected to leave a detectable signal in geodetic observations.

  14. Melting curve of the deep mantle applied to properties of early magma ocean and actual core-mantle boundary

    Science.gov (United States)

    Andrault, Denis; Lo Nigro, Giacomo; Bolfan-Casanova, Nathalie; Bouhifd, Mohamed A.; Garbarino, Gaston; Mezouar, Mohamed

    2010-05-01

    Our planet experienced partial melting early in its history as a consequence of energy release due to accretion. Partial mantle melting could still happen today in the lowermost mantle. Occurrence of melting is primordial for the chemical segregation between the different Earth's reservoirs and for the dynamics of the whole planet. Melting of iron-alloys is relatively easy to achieve, but the silicated mantle happens to be more refractory. We investigated experimentally melting properties of two starting material, forsterite and chondritic-mantle, at pressures ranging from 25 to 140 GPa, using laser-heated diamond anvil cell coupled with synchrotron radiation. We show that partial melting in the lowermost mantle, as suggested by seismology on the basis of the ultra-low velocity zones (ULVZ), requires temperatures above 4200 K at the core-mantle boundary. At low pressures, our curve plots significantly lower than previous reports. Compared to recent estimates of mantle geotherm, while this temperature remains possible if the Earth's core is very hot, it is more likely that ULVZs correspond to high concentration of incompatible elements driven down to the D"-layer by subducting slabs or extracted out from the outer core. When our chondritic melting curve is coupled with recent isentropic temperature profiles for a magma ocean, we obtain a correlation between magma ocean depth and the potential temperature (Tp) at its surface; an ocean depth of 1000 km (equivalent to ~40 GPa) corresponds to Tp=2000 K, which happens to be significantly hotter than the estimated surface temperature of a sustained magma ocean. It emphasizes the importance of a lid at the magma ocean surface at an epoch as early as that of core-mantle segregation.

  15. Seismic evidence for slab graveyards atop the Core Mantle Boundary beneath the Indian Ocean Geoid Low

    Science.gov (United States)

    Padma Rao, B.; Ravi Kumar, M.

    2014-11-01

    The Indian Ocean Geoid Low (IOGL) that spans a vast areal extent south of the Indian subcontinent is a spectacular feature on the Earth, whose origin still remains ambiguous. In this study, we investigate the seismic character of the lower mantle below this geoid low utilizing the travel time and amplitude residuals of high quality S and ScS phases from 207 earthquakes recorded at 276 stations in the epicentral distance range of 36°-90°. For comparison, we also perform a similar exercise for a region of geoid high in the vicinity. Results reveal large variations in the ScS travel times indicating that the lowermost mantle beneath the IOGL region is heterogeneous. The ScS-S differential travel times are ∼3 s slower than those predicted by the IASP91 model, primarily due to velocity increase in the lowermost mantle beneath the IOGL region and ∼2 s higher than the IASP91 beneath the geoid high region, due to velocity decrease in the lowermost mantle. The largest negative residuals from manual method (-7.72 s) are concentrated below the IOGL. Iterative matching of differential travel time residuals reveals that the maximum positive and negative residuals can be explained in terms of a reduction in shear velocity of 0.9% and an increase of 1.6% respectively in a ∼1000 km thick layer above the Core Mantle Boundary. Further, the ScS/S amplitude residuals beneath the IOGL are positive, implying high impedance contrast at the Core Mantle Boundary, owing to the presence of high velocity material. We attribute these high velocities to the presence of dehydrated high density slab graveyards atop the Core Mantle Boundary beneath the Indian Ocean. Release of water at the mid-to-upper mantle depths due to the dehydration of subducted slabs causing a reduction in density and velocity of the ambient mantle, could be responsible for the geoid low.

  16. Earth's core-mantle boundary - Results of experiments at high pressures and temperatures

    Science.gov (United States)

    Knittle, Elise; Jeanloz, Raymond

    1991-01-01

    Laboratory experiments document that liquid iron reacts chemically with silicates at high pressures (above 2.4 x 10 to the 10th Pa) and temperatures. In particular, (Mg,Fe)SiO3 perovskite, the most abundant mineral of earth's lower mantle, is expected to react with liquid iron to produce metallic alloys (FeO and FeSi) and nonmetallic silicates (SiO2 stishovite and MgSiO3 perovskite) at the pressures of the core-mantle boundary, 14 x 10 to the 10th Pa. The experimental observations, in conjunction with seismological data, suggest that the lowermost 200 to 300 km of earth's mantle, the D-double-prime layer, may be an extremely heterogeneous region as a result of chemical reactions between the silicate mantle and the liquid iron alloy of earth's core. The combined thermal-chemical-electrical boundary layer resulting from such reactions offers a plausible explanation for the complex behavior of seismic waves near the core-mantle boundary and could influence earth's magnetic field observed at the surface.

  17. Mapping geomagnetic secular variation at the core-mantle boundary

    DEFF Research Database (Denmark)

    Holme, R.; Olsen, Nils; Bairstow, F. L.

    2011-01-01

    , the coherence of the maps up to harmonic degree 13 suggests that it is possible to obtain useful insight from their examination. Low SV is confirmed under the Pacific, but also revealed under the North Atlantic and Antarctica. These features are more readily explained in terms of dynamo control through thermal......-fit by functions proportional to l(l + 1) where l is the spherical harmonic degree. The ratio of the two spectra defines a timescale for geomagnetic variations of approximately 10 yrs for all resolvable harmonic degrees. The blue spectra should prevent meaningful maps of the SV being generated; nevertheless...... core–mantle coupling than by electromagnetic screening. Comparison with maps from measurements prior to the recent satellites, using the ‘Comprehensive Model’, suggests that models back to at least 1970 are sufficiently good to enable direct comparison of the SV....

  18. Tomography of core-mantle boundary and lowermost mantle coupled by geodynamics: joint models of shear and compressional velocity

    Directory of Open Access Journals (Sweden)

    Gaia Soldati

    2015-03-01

    Full Text Available We conduct joint tomographic inversions of P and S travel time observations to obtain models of delta v_P  and delta v_S in the entire mantle. We adopt a recently published method which takes into account the geodynamic coupling between mantle heterogeneity and core-mantle boundary (CMB topography by viscous flow, where sensitivity of the seismic travel times to the CMB is accounted for implicitly in the inversion (i.e. the CMB topography is not explicitly inverted for. The seismic maps of the Earth's mantle and CMB topography that we derive can explain the inverted seismic data while being physically consistent with each other. The approach involved scaling P-wave velocity (more sensitive to the CMB to density anomalies, in the assumption that mantle heterogeneity has a purely thermal origin, so that velocity and density heterogeneity are proportional to one another. On the other hand, it has sometimes been suggested that S-wave velocity might be more directly sensitive to temperature, while P heterogeneity is more strongly influenced by chemical composition. In the present study, we use only S-, and not P-velocity, to estimate density heterogeneity through linear scaling, and hence the sensitivity of core-reflected P phases to mantle structure. Regardless of whether density is more closely related to P- or S-velocity, we think it is worthwhile to explore both scaling approaches in our efforts to explain seismic data. The similarity of the results presented in this study to those obtained by scaling P-velocity to density suggests that compositional anomaly has a limited impact on viscous flow in the deep mantle.

  19. Variation of thermal conductivity and heat flux at the Earth's core mantle boundary

    Science.gov (United States)

    Ammann, Michael W.; Walker, Andrew M.; Stackhouse, Stephen; Wookey, James; Forte, Alessandro M.; Brodholt, John P.; Dobson, David P.

    2014-03-01

    The two convective systems that dominate Earth's internal dynamics meet at the boundary between the rocky mantle and metallic liquid core. Energy transfer between processes driving plate tectonics and the geodynamo is controlled by thermal conduction in the lowermost mantle (D″). We use atomic scale simulations to determine the thermal conductivity of MgSiO3 perovskite and post-perovskite under D″ conditions and probe how these two convective systems interact. We show that the thermal conductivity of post-perovskite (∼12 W/mK) is 50% larger than that of perovskite under the same conditions (∼8.5 W/mK) and is anisotropic, with conductivity along the a-axis being 40% higher than conductivity along the c-axis. This enhances the high heat flux into cold regions of D″ where post-perovskite is stable, strengthening the feedback between convection in the core and mantle. Reminiscent of the situation in the lithosphere, there is potential for deformation induced texturing associated with mantle convection to modify how the mantle is heated from below. We test this by coupling our atomic scale results to models of texture in D″ and suggest that anisotropic thermal conductivity may help to stabilise the roots of mantle plumes over their protracted lifetime.

  20. Fate of MgSiO3 melts at core-mantle boundary conditions.

    Science.gov (United States)

    Petitgirard, Sylvain; Malfait, Wim J; Sinmyo, Ryosuke; Kupenko, Ilya; Hennet, Louis; Harries, Dennis; Dane, Thomas; Burghammer, Manfred; Rubie, Dave C

    2015-11-17

    One key for understanding the stratification in the deep mantle lies in the determination of the density and structure of matter at high pressures, as well as the density contrast between solid and liquid silicate phases. Indeed, the density contrast is the main control on the entrainment or settlement of matter and is of fundamental importance for understanding the past and present dynamic behavior of the deepest part of the Earth's mantle. Here, we adapted the X-ray absorption method to the small dimensions of the diamond anvil cell, enabling density measurements of amorphous materials to unprecedented conditions of pressure. Our density data for MgSiO3 glass up to 127 GPa are considerably higher than those previously derived from Brillouin spectroscopy but validate recent ab initio molecular dynamics simulations. A fourth-order Birch-Murnaghan equation of state reproduces our experimental data over the entire pressure regime of the mantle. At the core-mantle boundary (CMB) pressure, the density of MgSiO3 glass is 5.48 ± 0.18 g/cm(3), which is only 1.6% lower than that of MgSiO3 bridgmanite at 5.57 g/cm(3), i.e., they are the same within the uncertainty. Taking into account the partitioning of iron into the melt, we conclude that melts are denser than the surrounding solid phases in the lowermost mantle and that melts will be trapped above the CMB.

  1. Between a rock and a hot place: the core-mantle boundary.

    Science.gov (United States)

    Wookey, James; Dobson, David P

    2008-12-28

    The boundary between the rocky mantle and iron core, almost 2900 km below the surface, is physically the most significant in the Earth's interior. It may be the terminus for subducted surface material, the source of mantle plumes and a control on the Earth's magnetic field. Its properties also have profound significance for the thermochemical and dynamic evolution of the solid Earth. Evidence from seismology shows that D'' (the lowermost few hundred kilometres of the mantle) has a variety of anomalous features. Understanding the origin of these observations requires an understanding of the elastic and deformation properties of the deep Earth minerals. Core-mantle boundary pressures and temperatures are achievable in the laboratory using diamond anvil cell (DAC) apparatus. Such experiments have led to the recent discovery of a new phase, 'post-perovskite', which may explain many hitherto poorly understood properties of D''. Experimental work is also done using analogue minerals at lower pressures and temperatures; these circumvent some of the limits imposed by the small sample size allowed by the DAC. A considerable contribution also comes from theoretical methods that provide a wealth of otherwise unavailable information, as well as verification and refinement of experimental results. The future of the study of the lowermost mantle will involve the linking of the ever-improving seismic observations with predictions of material properties from theoretical and experimental mineral physics in a quantitative fashion, including simulations of the dynamics of the deep Earth. This has the potential to dispel much of the mystery that still surrounds this remote but important region.

  2. Asteroids and meteorites - Origin of stony-iron meteorites at mantle-core boundaries

    Science.gov (United States)

    Greenberg, R.; Chapman, C. R.

    1984-01-01

    Stony-iron meteorites formed at the core/mantle interfaces of small asteroidal parents. The mesosiderites formed when the thick crust of a largely molten parent body (100-200 km in diameter) foundered and sank through the mantle to the core. Pallasites formed in smaller parent bodies (50-100 km) in which olivine crystals from the partially molten mantle sank to the core/mantle interface and rafted there. Subsequent collisions stripped away the rocky mantles of both kinds of parent bodies, exposing the stony-iron surfaces of their cores to direct impacts, which continue to knock off meteorite fragments.

  3. Ultra-low velocity zone heterogeneities at the core-mantle boundary from diffracted PKKPab waves

    Science.gov (United States)

    Ma, Xiaolong; Sun, Xinlei

    2017-08-01

    Diffracted waves around Earth's core could provide important information of the lowermost mantle that other seismic waves may not. We examined PKKPab diffraction waves from 52 earthquakes occurring at the western Pacific region and recorded by USArray to probe the velocity structure along the core-mantle boundary (CMB). These diffracted waves emerge at distances up to 10° past the theoretical cutoff epicentral distance and show comparable amplitudes. We measured the ray parameters of PKKPab diffraction waves by Radon transform analysis that is suitable for large-aperture arrays. These ray parameters show a wide range of values from 4.250 to 4.840 s/deg, suggesting strong lateral heterogeneities in sampling regions at the base of the mantle. We further estimated the P-wave velocity variations by converting these ray parameters and found the CMB regions beneath the northwestern edge of African Anomaly (Ritsma et al. in Science 286:1925-1928, 1999) and southern Sumatra Islands exhibit velocity reductions up to 8.5% relative to PREM. We suggest that these low velocity regions are Ultra-low velocity zones, which may be related to partial melt or iron-enriched solids.[Figure not available: see fulltext.

  4. Assessing the feasibility and consequences of nuclear georeactors in the Earths core mantle boundary

    CERN Document Server

    De Meijer, R J

    2008-01-01

    We assess the likelihood and geochemical consequences of the presence of nuclear georeactors in the core mantle boundary region (CMB) between Earths silicate mantle and metallic core. Current geochemical models for the Earths interior predict that U and Th in the CMB are concentrated exclusively in the mineral calcium silicate perovskite (CaPv), leading to predicted concentration levels of approximately 12 ppm combined U and Th, 4.5 Ga ago if CaPv is distributed evenly throughout the CMB. Assuming a similar behaviour for primordial 244Pu provides a considerable flux of neutrons from spontaneous fission. We show that an additional concentration factor of only an order of magnitude is required to both ignite and maintain self sustaining georeactors based on fast fission. Continuously operating georeactors with a power of 5 TW can explain the observed isotopic compositions of helium and xenon in the Earths mantle. Our hypothesis requires the presence of elevated concentrations of U and Th in the CMB, and is amen...

  5. Lattice thermal conductivity of MgSiO3 perovskite and post-perovskite at the core-mantle boundary

    Science.gov (United States)

    Ohta, K.; Yagi, T.; Taketoshi, N.; Hirose, K.; Komabayashi, T.; Baba, T.; Ohishi, Y.; Hernlund, J. W.

    2011-12-01

    Heat in the Earth's interior is transported dominantly by convection in the mantle and core, and by conduction at thermal boundary layers. The thermal conductivity of the bottom thermal boundary layer of the mantle determines the magnitude of heat flux from the core, and is intimately related to the formation of mantle plumes, the long-term thermal evolution of both mantle and core, and the driving force for generation of the geomagnetic field (Lay et al. 2008). However, the thermal conductivity and diffusivity have been poorly constrained at the high pressures of Earth's lowermost mantle. Previous estimates of the thermal conductivity in this region ranged widely between 5 and 30 W/m/K, and it has been often assumed to be 10 W/m/K (Lay et al. 2006). The lattice thermal diffusivity of MgSiO3 perovskite, a primary mineral in the Earth's lower mantle, has only been measured at 1 bar (Osako and Ito 1991). And the thermal diffusivity of post-perovskite has not been investigated so far. We measured the lattice component of thermal diffusivities of both MgSiO3 perovskite and post-perovskite to 144 GPa using a light pulse thermoreflectance technique in a diamond anvil cell (Yagi et al. 2011). The estimated lattice thermal conductivity of perovskite-dominant lowermost mantle is about 9 W/m/K, while post-perovskite-dominant one exhibits ~50% higher diffusivity than perovskite at equivalent pressure. Since many previous calculations assumed a lowermost mantle conductivity of 10 W/m/K, compatible with values obtained in this study, the present findings do not significantly alter the magnitude of heat flow from the core estimated using the post-perovskite double-crossing model (e.g., Lay et al. 2006). Indeed, the present results continue to support the notion of high core-mantle boundary heat flow along with a large degree of secular cooling necessary to sustain a geodynamo even in the absence of an inner core.

  6. Investigation on the stability of FeCO3 down to the core mantle boundary

    Science.gov (United States)

    Cerantola, Valerio; Bykova, Elena; McCammon, Catherine; Merlini, Marco; Dubrovinsky, Leonid

    2015-04-01

    In the last century, the high intensification of CO2 amount in the atmosphere together with the observed climate change have increasingly focused scientists' attention on the carbon cycle and its evolution at the Earth's surface. However, carbon is continuously transported from the surface into the deep Earth via subduction, mainly by means of carbonates. Fe-bearing carbonates (i.e. FeCO3) in particular are potential carbon carrier down to the deep lower mantle, indeed the presence of iron influences the stability of this phase at high pressures and high temperatures (HPHT), partly due to the spin-pairing of Fe-d electrons. In this study we perform HPHT experiments on FeCO3 in order to study its stability and eventually determine its decomposition products at the relative P and T conditions. Experiments were performed using synthetic FeCO3 crystals in a laser-heated diamond anvil cell (DAC) at 100 GPa an T > 1500 K in order to generate the conditions prevailing in the Earth's lower mantle. X-Ray Single Crystal Diffraction (XRSD) and Synchrotron Mössbauer Source (SMS) analyses were carried out at ESRF and APS synchrotron facilities. All samples were enriched in 57Fe to ensure a strong signal for Mössbauer spectroscopy. At 100 GPa we observed the complete transformation of FeCO3 into two new hp-carbonates, with Fe in different oxidation states depending on the heating temperatures and C in four-fold coordination with O. Laser heating at T > 2000 K generates a new phase with only Fe3+ in the structure: Fe4(CO4)3. Laser heating at 1600 K< T < 2000 K triggers a different redox reaction, where half of the Fe atoms are in 2+ and half in 3+ valence states: Fe(2)2+Fe(2)3+C4O13. Mössbauer spectra confirm the XRSD results by providing the exact amount of Fe-atoms in two different valence states. We assert Fe-rich carbonates can exist in regions down to the core mantle boundary, provided however the presence of an environment with relatively high fO2 e.g. in the proximity

  7. The effect of a rough core-mantle boundary on PKKP

    NARCIS (Netherlands)

    Doornbos, D.J.

    Scattering by a slightly-rough core—mantle boundary (CMB) with small-scale radial variations of up to a few hundred metres, has been an attractive (though non-unique) interpretation of at least part of the precursors to PKLKP. Here it is shown that a slightly-rough CMB has an observable effect on

  8. Strong seismic scatterers near the core-mantle boundary north of the Pacific Anomaly

    Science.gov (United States)

    Ma, Xiaolong; Sun, Xinlei; Wiens, Douglas A.; Wen, Lianxing; Nyblade, Andrew; Anandakrishnan, Sridhar; Aster, Rick; Huerta, Audrey; Wilson, Terry

    2016-04-01

    Tomographic images have shown that there are clear high-velocity heterogeneities to the north of the Pacific Anomaly near the core-mantle boundary (CMB), but the detailed structure and origin of these heterogeneities are poorly known. In this study, we analyze PKP precursors from earthquakes in the Aleutian Islands and Kamchatka Peninsula recorded by seismic arrays in Antarctica, and find that these heterogeneities extend ∼400 km above the CMB and are distributed between 30° and 45°N in latitude. The scatterers show the largest P-wave velocity perturbation of 1.0-1.2% in the center (160-180°E) and ∼0.5% to the west and east (140-160°E, 180-200°E). ScS-S differential travel-time residuals reveal similar features. We suggest that these seismic scatterers are the remnants of ancient subducted slab material. The lateral variations may be caused either by different slabs, or by variations in slab composition resulting from their segregation process.

  9. Seismic Anisotropy from the Core-Mantle Boundary to the Surface

    Science.gov (United States)

    Lynner, Colton Lee

    splitting measurements of SK(K)S phases that sample the lowermost mantle beneath Africa. In Chapter 4, I present measurements of SKS and SKKS splitting at station DBIC in the Cote D'Ivoire. The splitting pattern is dominated by null measurements over a wide range of backazimuths, with non-null measurements found over a very limited backazimuthal range. Splitting at DBIC has previously been interpreted in terms of upper mantle anisotropy, but we argue that an apparently isotropic upper mantle can best explain this splitting pattern with a contribution from anisotropy in the lowermost mantle. In Chapter 5, I present SKS and SKKS splitting measurements that likely reflects a contribution from lowermost mantle anisotropy beneath Africa. The vast majority of discrepant pairs sample the boundary of the African large low shear-wave velocity province (LLSVP), which dominates the lower mantle structure beneath this region. In general, I observe little or no splitting of phases that have passed through the LLSVP itself and significant splitting for phases that have sampled the boundary of the LLSVP. I infer that the D" region just outside the LLSVP boundary is strongly deformed, while its interior remains undeformed (or weakly deformed). In Chapter 6, I examine the anisotropic structure of the mid-mantle (transition zone and uppermost lower mantle) beneath the Japan, Izu-Bonin, and South America subduction systems. In each region, I observe consistent splitting with delay times as large as 1 sec, indicating the presence of anisotropy at mid-mantle depths. Clear splitting of phases originating from depths as great as ~600km argues for a contribution from anisotropy in the uppermost lower mantle as well as the transition zone. The goal of Chapter 7 is to evaluate predicted sub-slab splitting from 3D geodynamic models using a variety of different anisotropic fabric types. This builds on Chapter 3; in which only very simplified sub-slab dynamics and approximated LPO fabrics were used

  10. Identifying regions of strong scattering at the core-mantle boundary from analysis of PKKP precursor energy

    Science.gov (United States)

    Rost, S.; Earle, P.S.

    2010-01-01

    We detect seismic scattering from the core-mantle boundary related to the phase PKKP (PK. KP) in data from small aperture seismic arrays in India and Canada. The detection of these scattered waves in data from small aperture arrays is new and allows a better characterization of the fine-scale structure of the deep Earth especially in the southern hemisphere. Their slowness vector is determined from array processing allowing location of the heterogeneities at the core-mantle boundary using back-projection techniques through 1D Earth models. We identify strong scattering at the core-mantle boundary (CMB) beneath the Caribbean, Patagonia and the Antarctic Peninsula as well as beneath southern Africa. An analysis of the scattering regions relative to sources and receivers indicates that these regions represent areas of increased scattering likely due to increased heterogeneities close to the CMB. The 1. Hz array data used in this study is most sensitive to heterogeneity with scale lengths of about 10. km. Given the small size of the scatterers, a chemical origin of the heterogeneities is likely. By comparing the location of the fine-scale heterogeneity to geodynamical models and tomographic images, we identify different scattering mechanisms in regions related to subduction (Caribbean and Patagonia) and dense thermo chemical piles (Southern Africa). ?? 2010 Elsevier B.V.

  11. Short scale variation in presence and structure of complex core-mantle boundary regions beneath northern Mexico

    Science.gov (United States)

    Jasbinsek, J. J.

    2016-12-01

    A set of nine intermediate depth earthquakes with closely spaced epicenters in Central America recorded at a small aperture array in the western United States contain clear core-mantle boundary (CMB) reflections. Cross-correlation of [0.5,2] Hz bandpass filtered seismograms at the 11 station array results in well-constrained stacked PcP and ScP waveforms. Most events contain both PcP and ScP waveforms, providing two distinct areas of core-mantle boundary sampling. In approximately half of the stacked waveforms, additional pre- and/or post-cursory arrivals are observed with both PcP and ScP suggesting the presence of complicated CMB structures. Commonly the extra arrivals have the visual appearance of reverberations. Two primary observations are made: (1) One-dimensional forward modeling indicates that simple one-layer ultra-low velocity zone (ULVZ) models do not accurately reproduce the PcP and ScP waveforms, instead multi-layer ULVZ models provide a better fit to the waveforms, (2) Spatially the pattern of CMB regions requiring extra structure is contiguous, but change to a simple CMB structure over short distance scales. The simple one-dimensional modeling explored here cannot uniquely constrain the three-dimensional CMB structure, but provides insight into potential CMB structure that may be resolvable with higher accuracy and more computationally intensive forward seismogram modeling.

  12. Waves in the core and mechanical core-mantle interactions

    DEFF Research Database (Denmark)

    Jault, D.; Finlay, Chris

    2015-01-01

    the motions in the direction parallel to the Earth'srotation axis. This property accounts for the signicance of the core-mantle topography.In addition, the stiening of the uid in the direction parallel to the rotation axis gives riseto a magnetic diusion layer attached to the core-mantle boundary, which would...

  13. Application of Core Dynamics Modeling to Core-Mantle Interactions

    Science.gov (United States)

    Kuang, Weijia

    2003-01-01

    Observations have demonstrated that length of day (LOD) variation on decadal time scales results from exchange of axial angular momentum between the solid mantle and the core. There are in general four core-mantle interaction mechanisms that couple the core and the mantle. Of which, three have been suggested likely the dominant coupling mechanism for the decadal core-mantle angular momentum exchange, namely, gravitational core-mantle coupling arising from density anomalies in the mantle and in the core (including the inner core), the electromagnetic coupling arising from Lorentz force in the electrically conducting lower mantle (e.g. D-layer), and the topographic coupling arising from non-hydrostatic pressure acting on the core-mantle boundary (CMB) topography. In the past decades, most effort has been on estimating the coupling torques from surface geomagnetic observations (kinematic approach), which has provided insights on the core dynamical processes. In the meantime, it also creates questions and concerns on approximations in the studies that may invalidate the corresponding conclusions. The most serious problem is perhaps the approximations that are inconsistent with dynamical processes in the core, such as inconsistencies between the core surface flow beneath the CMB and the CMB topography, and that between the D-layer electric conductivity and the approximations on toroidal field at the CMB. These inconsistencies can only be addressed with numerical core dynamics modeling. In the past few years, we applied our MoSST (Modular, Scalable, Self-consistent and Three-dimensional) core dynamics model to study core-mantle interactions together with geodynamo simulation, aiming at assessing the effect of the dynamical inconsistencies in the kinematic studies on core-mantle coupling torques. We focus on topographic and electromagnetic core-mantle couplings and find that, for the topographic coupling, the consistency between the core flow and the CMB topography is

  14. A conceptual model for kimberlite emplacement by solitary interfacial mega-waves on the core mantle boundary

    Science.gov (United States)

    Sim, B. L.; Agterberg, F. P.

    2006-07-01

    If convection in the Earth's liquid outer core is disrupted, degrades to turbulence and begins to behave in a chaotic manner, it will destabilize the Earth's magnetic field and provide the seeds for kimberlite melts via turbulent jets of silicate rich core material which invade the lower mantle. These (proto-) melts may then be captured by extreme amplitude solitary nonlinear waves generated through interaction of the outer core surface with the base of the mantle. A pressure differential behind the wave front then provides a mechanism for the captured melt to ascend to the upper mantle and crust so quickly that emplacement may indirectly promote a type of impact fracture cone within the relatively brittle crust. These waves are very rare but of finite probability. The assumption of turbulence transmission between layers is justified using a simple three-layer liquid model. The core derived melts eventually become frozen in place as localised topographic highs in the Mohorovicic discontinuity (Moho), or as deep rooted intrusive events. The intrusion's final composition is a function of melt contamination by two separate sources: the core contaminated mantle base and subducted Archean crust. The mega-wave hypothesis offers a plausible vehicle for early stage emplacement of kimberlite pipes and explains the age association of diamondiferous kimberlites with magnetic reversals and tectonic plate rearrangements.

  15. Immiscible silicate liquids and phosphoran olivine in Netschaëvo IIE silicate: Analogue for planetesimal core-mantle boundaries

    Science.gov (United States)

    Van Roosbroek, Nadia; Hamann, Christopher; McKibbin, Seann; Greshake, Ansgar; Wirth, Richard; Pittarello, Lidia; Hecht, Lutz; Claeys, Philippe; Debaille, Vinciane

    2017-01-01

    We have investigated a piece of the Netschaëvo IIE iron meteorite containing a silicate inclusion by means of electron microprobe analysis (EMPA) and transmission electron microscopy (TEM). Netschaëvo contains chondrule-bearing clasts and impact melt rock clasts were also recently found. The examined inclusion belongs to the latter and is characterized by a porphyritic texture dominated by clusters of coarse-grained olivine and pyroxene, set in a fine-grained groundmass that consists of new crystals of olivine and a hyaline matrix. This matrix material has a quasi-basaltic composition in the inner part of the inclusion, whereas the edge of the inclusion has a lower SiO2 concentration and is enriched in MgO, P2O5, CaO, and FeO. Close to the metal host, the inclusion also contains euhedral Mg-chromite crystals and small (olivine crystallites containing up to 14 wt% P2O5, amorphous material, and interstitial Cl-apatite crystals. The Si-rich silicate glass globules show a second population of Fe-rich silicate glass droplets, indicating they formed by silicate liquid immiscibility. Together with the presence of phosphoran olivine and quenched Cl-apatite, these textures suggest rapid cooling and quenching as a consequence of an impact event. Moreover, the enrichment of phosphorus in the silicate inclusion close to the metal host (phosphoran olivine and Cl-apatite) indicates that phosphorus re-partitioned from the metal into the silicate phase upon cooling. This probably also took place in pallasite meteorites that contain late-crystallizing phases rich in phosphorus. Accordingly, our findings suggest that oxidation of phosphorus might be a general process in core-mantle environments, bearing on our understanding of planetesimal evolution. Thus, the Netschaëvo sample serves as a natural planetesimal core-mantle boundary experiment and based on our temperature estimates, the following sequence of events takes place: (i) precipitation of olivine (1400-1360 °C), (ii) re

  16. Probing the core-mantle boundary beneath Europe and Western Eurasia: A detailed study using PcP

    Science.gov (United States)

    Gassner, Alexandra; Thomas, Christine; Krüger, Frank; Weber, Michael

    2015-09-01

    We use PcP (the core reflected P phase) recordings of deep earthquakes and nuclear explosions from the Gräfenberg (Germany) and NORSAR (Norway) arrays to investigate the core-mantle boundary region beneath Europe and western Eurasia. We find evidence for a previously unknown ultra-low velocity zone 600 km south-east of Moscow, located at the edge of a middle-size low shear- velocity region imaged in seismic tomography that is located beneath the Volga river region. The observed amplitude variations of PcP can be modelled by velocity reductions of P and S-waves of -5% and -15%, respectively, with a density increase of +15%. Travel time delays of pre-and postcursors are indicating a thickness of about 13 km for this ultra-low velocity region (ULVZ). However, our modelling also reveals highly ambiguous amplitude variations of PcP and a reflection off the top of the anomaly for various ULVZs and topography models. Accordingly, large velocity contrasts of up to -10% in VP and -20% in VS cannot be excluded. In general, the whole Volga river region shows a complex pattern of PcP amplitudes caused most likely by CMB undulations. Further PcP probes beneath Paris, Kiev and northern Italy indicate likely normal CMB conditions, whereas the samples below Finland and the Hungary-Slovakia border yield strongly amplified PcP signals suggesting strong CMB topography effects. We evaluate the amplitude behaviour of PcP as a function of distance and several ULVZ models using the 1D reflectivity and the 2D Gauss beam method. The influence of the velocity and density perturbations is analysed as well as the anomaly thickness, the dominant period of the source wavelet and interface topographies. Strong variation of the PcP amplitude are obtained as a function of distance and of the impedance contrast. We also consider two types of topographies: undulations atop the CMB in the presence of flat ULVZs and vice versa. Where a broad range of CMB topography dimensions lead to large Pc

  17. Extraction of weak PcP phases using the slant-stacklet transform - II: constraints on lateral variations of structure near the core-mantle boundary

    Science.gov (United States)

    Ventosa, Sergi; Romanowicz, Barbara

    2015-11-01

    Resolving the topography of the core-mantle boundary (CMB) and the structure and composition of the D″ region is key to improving our understanding of the interaction between the Earth's mantle and core. Observations of traveltimes and amplitudes of short-period teleseismic body waves sensitive to lowermost mantle provide essential constraints on the properties of this region. Major challenges are low signal-to-noise ratio of the target phases and interference with other mantle phases. In a previous paper (Part I), we introduced the slant-stacklet transform to enhance the signal of the core-reflected (PcP) phase and to isolate it from stronger signals in the coda of the P wave. Then we minimized a linear misfit between P and PcP waveforms to improve the quality of PcP-P traveltime difference measurements as compared to standard cross-correlation methods. This method significantly increases the quantity and the quality of PcP-P traveltime observations available for the modelling of structure near the CMB. Here we illustrate our approach in a series of regional studies of the CMB and D″ using PcP-P observations with unprecedented resolution from high-quality dense arrays located in North America and Japan for events with magnitude Mw>5.4 and distances up to 80°. In this process, we carefully analyse various sources of errors and show that mantle heterogeneity is the most significant. We find and correct bias due to mantle heterogeneities that is as large as 1 s in traveltime, comparable to the largest lateral PcP-P traveltime variations observed. We illustrate the importance of accurate mantle corrections and the need for higher resolution mantle models for future studies. After optimal mantle corrections, the main signal left is relatively long wavelength in the regions sampled, except at the border of the Pacific large-low shear velocity province (LLSVP). We detect the northwest border of the Pacific LLSVP in the western Pacific from array observations in

  18. Geodynamo Modeling of Core-Mantle Interactions

    Science.gov (United States)

    Kuang, Wei-Jia; Chao, Benjamin F.; Smith, David E. (Technical Monitor)

    2001-01-01

    Angular momentum exchange between the Earth's mantle and core influences the Earth's rotation on time scales of decades and longer, in particular in the length of day (LOD) which have been measured with progressively increasing accuracy for the last two centuries. There are four possible coupling mechanisms for transferring the axial angular momentum across the core-mantle boundary (CMB): viscous, magnetic, topography, and gravitational torques. Here we use our scalable, modularized, fully dynamic geodynamo model for the core to assess the importance of these torques. This numerical model, as an extension of the Kuang-Bloxham model that has successfully simulated the generation of the Earth's magnetic field, is used to obtain numerical results in various physical conditions in terms of specific parameterization consistent with the dynamical processes in the fluid outer core. The results show that depending on the electrical conductivity of the lower mantle and the amplitude of the boundary topography at CMB, both magnetic and topographic couplings can contribute significantly to the angular momentum exchange. This implies that the core-mantle interactions are far more complex than has been assumed and that there is unlikely a single dominant coupling mechanism for the observed decadal LOD variation.

  19. Ultrahigh-pressure structure of GeO2 glass with coordination number >6: implications for structure of magma at the core-mantle boundary

    Science.gov (United States)

    Kono, Y.; Kenney-Benson, C.; Ikuta, D.; Shibazaki, Y.; Wang, Y.; Shen, G.

    2016-12-01

    Silicate magma at the core-mantle boundary is one of the most important components in understanding nature and evolution of the Earth's deep interior. However, structure and properties of silicate magmas at the pressure condition of the core-mantle boundary remain poorly understood, because of experimental challenges. Pioneering work by Murakami and Bass (2010) showed a kink in the pressure dependence of shear-wave velocity in SiO2 glass around 140 GPa, which was interpreted as evidence of ultrahigh pressure structural transition. However, no structural information is available under such high pressures. Here we show new experimental evidence of ultrahigh pressure structural transition in GeO2 glass with Ge-O coordination number (CN) significantly greater than 6, investigated using a newly developed double-stage large volume cell combined with multi-angle energy dispersive X-ray diffraction technique for in situ amorphous structure measurement (Kono et al., 2016). The Ge-O coordination number (CN) is found to remain constant at 6 between 22.6 and 37.9 GPa. At higher pressures, CN begins to increase rapidly to 6.4 at 49.4 GPa and reaches 7.4 at 91.7 GPa. The structural change to CN higher than 6 is closely associated with the change in oxygen packing fraction (OPF). This transformation begins when the OPF in GeO2 glass is close to the maximal dense packing state (the Kepler conjecture= 0.74), which provides new insights into structural changes in network-forming glasses and liquids with CN higher than 6 at ultrahigh pressure conditions. For example, extrapolation of OPF-pressure trend in SiO2 glass shows that OPF of SiO2glass reaches to 0.74 around 108 GPa, where structural change to CN higher than 6 is expected. The data imply that silicate magma at the core-mantle boundary may possess ultrahigh-pressure structure with CN higher than 6. References Kono, Y., Kenney-Benson, C., Ikuta, D., Shibazaki, Y., Wang, Y., & Shen, G. (2016). Ultrahigh-pressure polyamorphism in

  20. On the likelihood of post-perovskite near the core-mantle boundary: A statistical interpretation of seismic observations

    NARCIS (Netherlands)

    Cobden, L.; Mosca, I.; Trampert, J.; Ritsema, J.

    2012-01-01

    Recent experimental studies indicate that perovskite, the dominant lower mantle mineral, undergoes a phase change to post-perovskite at high pressures. However, it has been unclear whether this transition occurs within the Earth’s mantle, due to uncertainties in both the thermochemical state of the

  1. Can the mantle control the core?: Energetics and dynamics

    Science.gov (United States)

    Nakagawa, T.

    2011-12-01

    The sustainability of magnetic field generation is discussed from a coupled model of numerical mantle convection simulation and core energetics theory. The pattern of geomagnetic field could be also controlled as a consequence of mantle convection [e.g. Amit and Choblet, 2009]. Our previous studies have suggested that the best-fit scenario for explaining both sustainability of magnetic field generation caused by dynamo actions and the size of inner core would be strongly controlled by the heat transfer of mantle convection with strongly compositional heterogeneities [Nakagawa and Tackley, 2004; Nakagawa and Tackley, 2010]. Here we investigate effects of initial mantle temperature and radioactive heat source in a convecting mantle with extremely high initial temperature at the core-mantle boundary that has been suggested from the hypothesis of early Earth [Labrosse et al., 2007] for checking how the mantle can control the thermal evolution of the core. Main consequence is that the amount of heat production rate and initial mantle temperature are not very sensitive to the thermal evolution of Earth's core but the convective vigor seems to be sensitive to the results. For the mantle side, the Urey ratio is not very good constraint for understanding thermal evolution of the whole Earth. In addition, we also show an example of numerical dynamo simulations with both a stably stratified layer and lateral variation of heat flux across the core-mantle boundary (CMB), which expands a paper by Nakagawa [2011], evaluated from numerical mantle convection simulations for checking how the mantle can control the dynamics of the core, which checks dead or alive for the magnetic field generated by dynamo actions with strongly lateral variation of CMB heat flux.

  2. Fe-FeO and Fe-Fe3C melting relations at Earth's core-mantle boundary conditions: Implications for a volatile-rich or oxygen-rich core

    Science.gov (United States)

    Morard, G.; Andrault, D.; Antonangeli, D.; Nakajima, Y.; Auzende, A. L.; Boulard, E.; Cervera, S.; Clark, A.; Lord, O. T.; Siebert, J.; Svitlyk, V.; Garbarino, G.; Mezouar, M.

    2017-09-01

    Eutectic melting temperatures in the Fe-FeO and Fe-Fe3C systems have been determined up to 150 GPa. Melting criteria include observation of a diffuse scattering signal by in situ X-Ray diffraction, and textural characterisation of recovered samples. In addition, compositions of eutectic liquids have been established by combining in situ Rietveld analyses with ex situ chemical analyses. Gathering these new results together with previous reports on Fe-S and Fe-Si systems allow us to discuss the specific effect of each light element (Si, S, O, C) on the melting properties of the outer core. Crystallization temperatures of Si-rich core compositional models are too high to be compatible with the absence of extensive mantle melting at the core-mantle boundary (CMB) and significant amounts of volatile elements such as S and/or C (>5 at%, corresponding to >2 wt%), or a large amount of O (>15 at% corresponding to ∼5 wt%) are required to reduce the crystallisation temperature of the core material below that of a peridotitic lower mantle.

  3. Constraints on the Small Scale Heterogeneity in D" from Precursors to Short Distance PcP Wave and Implication for Roughness of Core-Mantle Boundary

    Science.gov (United States)

    Ni, S.; Zhang, B.

    2016-12-01

    Volumetric heterogeneity in D" layer and topography variation of the Core Mantle Boundary (CMB) are well established on large scales (thousand kms) to intermediate scales with seismological approaches. However, there are controversies regarding the level of heterogeneity in D" layer at small scales ( a few km - 10 km), with lower bound estimate of 0.1% to a few percent. And there are very limited reports of small scale topography of CMB. We take advantage of the small amplitude PcP waves at near podal distances (0-10 degree), and use the ratio of short period (1 Hz) PcP and its precursors to constrain level of small scale heterogeneity in the D" layer. We computed short period synthetic seismograms with 2D finite code for a series of volumetric heterogeneity models in the crust and in D", and find that PcP is not observable if the heterogeneity in D" is above 2%. We will present evidences of clearly observed PcP at short distances and argue for weak small scale heterogeneity in D". Assuming topography of CMB is related to isostasy, the volumetric heterogeneity in D" can be used to estimate CMB roughness.

  4. Core cooling by subsolidus mantle convection. [thermal evolution model of earth

    Science.gov (United States)

    Schubert, G.; Cassen, P.; Young, R. E.

    1979-01-01

    Although vigorous mantle convection early in the thermal history of the earth is shown to be capable of removing several times the latent heat content of the core, a thermal evolution model of the earth in which the core does not solidify can be constructed. The large amount of energy removed from the model earth's core by mantle convection is supplied by the internal energy of the core which is assumed to cool from an initial high temperature given by the silicate melting temperature at the core-mantle boundary. For the smaller terrestrial planets, the iron and silicate melting temperatures at the core-mantle boundaries are more comparable than for the earth; the models incorporate temperature-dependent mantle viscosity and radiogenic heat sources in the mantle. The earth models are constrained by the present surface heat flux and mantle viscosity and internal heat sources produce only about 55% of the earth model's present surface heat flow.

  5. Does the thermal wind exist near the Earth's core boundary?

    Science.gov (United States)

    Dolginov, A. Z.

    1993-01-01

    Temperature distribution in the Earth core determines many important processes such as the following: convective motion, magnetic field generation, matter exchange between the core and the mantle, and the thermal flux. This distribution depends on conditions in the core-mantle boundary and on the distribution of the thermal conductivity in the mantle. Seismic tomography shows that large horizontal temperature and compositional gradients exists at the core-mantle boundary. The simple assumption that these inhomogeneities are extended into the top of the core contradicts the common opinion that the horizontal temperature gradient (the thermal wind) wipes them out in a short time. However, this conclusion has been obtained without taking into account that the core volume is closed and the motion, if it is started, can lead to a small redistribution of composition that stops this motion.

  6. On models of Mars’ interior and amplitudes of forced nutations. 1. The effects of deviation of Mars from its equilibrium state on the flattening of the core mantle boundary

    Science.gov (United States)

    Zharkov, V. N.; Gudkova, T. V.; Molodensky, S. M.

    2009-02-01

    In a static approach the effects of deviation of Mars from its equilibrium state on the flattening of the core-mantle boundary (CMB) are studied. The calculations are performed for a set of interior structure models with 50- and 100-km thick crust and averaged crustal density varying in the range of 2700-3200 kg m -3, which are based on new values for the moment of inertia and the elastic tidal Love number k2s defined by Konopliv et al. [Konopliv, A.S., Yoder, C.F., Standish, E.M., Yuan, D.-N., Sjorgen, W.L., 2006. A global solution for the Mars static and seasonal gravity, Mars orientation, Phobos and Deimos masses, and Mars ephemeris. Icarus, 182, 23-50]. The models differ in density contrast at the crust-mantle boundary and the core radius. The observational data constrain the radius of a liquid core to be within 1700-1800 km. For joint interpretation of gravity and topography data an outer surface of a hydrostatical model is chosen as a reference surface. The Green's functions (or loading factors) technique for the case of a single anomalous density wave located at two depth level is used to compute the second-degree CMB deformation, and then the CMB flattening. Two types of models have been calculated: an elastic model and a model with an elastic lithosphere and weakened layers below it (relaxed values of shear modulus); the effective shear modulus of the mantle is reduced in comparison with an elastic one and in extreme case it is approaching zero everywhere except the elastic lithosphere. Non-equilibrium state of Mars results in three-axiality of the core-mantle boundary. For an elastic case the deformation of CMB leads to the large decrease of the semiaxis b, going through the central region of Tharsis rise, by 660-780 m, and the increase of the equatorial semiaxis a by 240-300 m, and the polar axis c by 400-490 m. Tharsis rise plays a constitutive role for the CMB deformation. The second-degree harmonics in the expansion of non-equilibrium part of gravity

  7. Deep mantle heat flow and thermal evolution of the Earth's core based on thermo-chemical mantle convection

    Science.gov (United States)

    Nakagawa, T.; Tackley, P.; Buffett, B.

    2004-12-01

    A coupled core-mantle evolution model that combines the global heat balance in the core with a fully-dynamical thermo-chemical mantle convection [Nakagawa and Tackley, 2004 published in EPSL] is used to investigate the deep mantle heat flow that is required to sustain the magnetic field generated by the geodynamo process. Effects of a radioactive heat source due to potassium in the core are also included in the global heat balance in the Earth??s core. Two important parameters are checked in this study; (1) density variation between depleted hartzbergite and basaltic material (0 to 3 percent) and (2) concentration of radioactive potassium in the core alloy (0ppm to 400ppm). The parameter set that most closely satisfies the criteria of size of the inner core (1220km at present time) is around 2 percent of density difference in a convecting mantle and 200ppm of radioactive heat source in the core. The concentration of potassium in the core is consistent with the geochemical approach [Murthy et al., 2003] but smaller than other successful thermal evolution models [Labrosse, 2003; Nimmo et al., 2004]. Heat flow through the core-mantle boundary and the contribution of radioactive heat sources in the core are consistent with theoretical estimates [e.g. Buffett, 2002] and geochemical constraints [Gessmann and Wood, 2002]. The power available to the geodynamo, based on the predicted heat flow through the core-mantle boundary, is approximately four times greater than the value predicted by numerical models of the geodynamo [Christensen and Kutzner, 2004] but closer to theoretical estimates [e.g. Buffett, 2002].

  8. The source of the Earth's long wavelength geoid anomalies: Implications for mantle and core dynamics

    Science.gov (United States)

    Hager, B. H.; Richards, M. A.; Oconnell, R. J.

    1985-01-01

    The long wavelength components of the Earth's gravity field result mainly from density contrasts associated with convection in the mantle. Direct interpretation of the geoid for mantle convection is complicated by the fact that convective flow results in dynamically maintained deformation of the surface of the Earth, the core mantle boundary (CMB), and any interior chemical boundaries which might exist. These boundary deformations effect the geoid opposite in sign and are comparable in magnitude to those of the interior density contrasts driving the flow. The total difference of two relatively large quantities.

  9. Cascaded Evolution of Mantle Plumes and Metallogenesis of Core- and Mantle-derived Elements

    Institute of Scientific and Technical Information of China (English)

    NIU Shuyin; HOU Quanlin; HOU Zengqian; SUN Aiqun; WANG Baode; LI Hongyang; XU Chuanshi

    2003-01-01

    Mineral deposits are unevenly distributed in the Earth's crust, which is closely related to the formation andevolution of the Earth. In the early history of the Earth, controlled by the gravitational contraction and thermal expansion,lighter elements, such as radioactive, halogen-family, rare and rare earth elements and alkali metals. migrated upwards;whereas heavier elements, such as iron-family and platinum-family elements, base metals and noble metals, had atendency of sinking to the Earth's core, so that the elements iron, nickel, gold and silver are mainly concentrated in theEarth's core. However, during the formation of the stratified structure of the Earth, the existence of temperature, pressureand viscosity differences inside and outside the Earth resulted in vertical material movement manifested mainly bycascaded evolution of mantle plumes in the Earth. The stratifications and vertical movement of the Earth wereinterdependent and constituted the motive force of the mantle-core movement. The cascaded evolution of mantle plumesopens the passageways for the migration of deep-seated ore-forming material, and thus elements such as gold and silverconcentrated in the core and on the core-mantle boundary migrate as the gaseous state together with the hot material flowof mantle plumes against the gravitational force through the passageways to the lithosphere, then migrate as the mixed gas-liquid state to the near-surface level and finally are concentrated in favorable structural expansion zones, forming mineraldeposits. This is possibly the important metallogenic mechanism for gold, silver, lead, zinc, copper and other manyelements. Take for example the NE-plunging crown of the Fuping mantle-branch structure, the paper analyzes ductile-brittle shear zone-type gold fields (Weijiayu) at the core of the magmatic-metamorphic complex, principal detachment-type gold fields (Shangmingyu) and hanging-wall cover fissure-vein-type lead-zinc polymetallic ore fields

  10. Moho vs crust-mantle boundary: Evolution of an idea

    Science.gov (United States)

    O'Reilly, Suzanne Y.; Griffin, W. L.

    2013-12-01

    The concept that the Mohorovicic Discontinuity (Moho) does not necessarily coincide with the base of the continental crust as defined by rock-type compositions was introduced in the early 1980s. This had an important impact on understanding the nature of the crust-mantle boundary using information from seismology and from deep-seated samples brought to the surface as xenoliths in magmas, or as tectonic terranes. The use of empirically-constrained P-T estimates to plot the locus of temperature vs depth for xenoliths defined a variety of geotherms depending on tectonic environment. The xenolith geotherms provided a framework for constructing lithological sections through the deep lithosphere, and revealed that the crust-mantle boundary in off-craton regions commonly is transitional over a depth range of about 5-20 km. Early seismic-reflection data showed common layering near the Moho, correlating with the petrological observation of multiple episodes of basaltic intrusion around the crust-mantle boundary. Developments in seismology, petrophysics and experimental petrology have refined interpretation of lithospheric domains. The expansion of in situ geochronology (especially zircon U-Pb ages and Hf-isotopes; Os isotopes of mantle sulfides) has defined tectonic events that affected whole crust-mantle sections, and revealed that the crust-mantle boundary can change in depth through time. However, the nature of the crust-mantle boundary in cratonic regions remains enigmatic, mainly due to lack of key xenoliths or exposed sections. The observation that the Moho may lie significantly deeper than the crust-mantle boundary has important implications for modeling the volume of the crust. Mapping the crust using seismic techniques alone, without consideration of the petrological problems, may lead to an overestimation of crustal thickness by 15-30%. This will propagate to large uncertainties in the calculation of elemental mass balances relevant to crust-formation processes

  11. Thermochemical flows couple the Earth's inner core growth to mantle heterogeneity.

    Science.gov (United States)

    Aubert, Julien; Amit, Hagay; Hulot, Gauthier; Olson, Peter

    2008-08-07

    Seismic waves sampling the top 100 km of the Earth's inner core reveal that the eastern hemisphere (40 degrees E-180 degrees E) is seismically faster, more isotropic and more attenuating than the western hemisphere. The origin of this hemispherical dichotomy is a challenging problem for our understanding of the Earth as a system of dynamically coupled layers. Previously, laboratory experiments have established that thermal control from the lower mantle can drastically affect fluid flow in the outer core, which in turn can induce textural heterogeneity on the inner core solidification front. The resulting texture should be consistent with other expected manifestations of thermal mantle control on the geodynamo, specifically magnetic flux concentrations in the time-average palaeomagnetic field over the past 5 Myr, and preferred eddy locations in flows imaged below the core-mantle boundary by the analysis of historical geomagnetic secular variation. Here we show that a single model of thermochemical convection and dynamo action can account for all these effects by producing a large-scale, long-term outer core flow that couples the heterogeneity of the inner core with that of the lower mantle. The main feature of this thermochemical 'wind' is a cyclonic circulation below Asia, which concentrates magnetic field on the core-mantle boundary at the observed location and locally agrees with core flow images. This wind also causes anomalously high rates of light element release in the eastern hemisphere of the inner core boundary, suggesting that lateral seismic anomalies at the top of the inner core result from mantle-induced variations in its freezing rate.

  12. Sulfur in Earth's Mantle and Its Behavior During Core Formation

    Science.gov (United States)

    Chabot, Nancy L.; Righter,Kevin

    2006-01-01

    The density of Earth's outer core requires that about 5-10% of the outer core be composed of elements lighter than Fe-Ni; proposed choices for the "light element" component of Earth's core include H, C, O, Si, S, and combinations of these elements [e.g. 1]. Though samples of Earth's core are not available, mantle samples contain elemental signatures left behind from the formation of Earth's core. The abundances of siderophile (metal-loving) elements in Earth's mantle have been used to gain insight into the early accretion and differentiation history of Earth, the process by which the core and mantle formed, and the composition of the core [e.g. 2-4]. Similarly, the abundance of potential light elements in Earth's mantle could also provide constraints on Earth's evolution and core composition. The S abundance in Earth's mantle is 250 ( 50) ppm [5]. It has been suggested that 250 ppm S is too high to be due to equilibrium core formation in a high pressure, high temperature magma ocean on early Earth and that the addition of S to the mantle from the subsequent accretion of a late veneer is consequently required [6]. However, this earlier work of Li and Agee [6] did not parameterize the metalsilicate partitioning behavior of S as a function of thermodynamic variables, limiting the different pressure and temperature conditions during core formation that could be explored. Here, the question of explaining the mantle abundance of S is revisited, through parameterizing existing metal-silicate partitioning data for S and applying the parameterization to core formation in Earth.

  13. An early geodynamo driven by exsolution of mantle components from Earth's core.

    Science.gov (United States)

    Badro, James; Siebert, Julien; Nimmo, Francis

    2016-08-18

    Recent palaeomagnetic observations report the existence of a magnetic field on Earth that is at least 3.45 billion years old. Compositional buoyancy caused by inner-core growth is the primary driver of Earth's present-day geodynamo, but the inner core is too young to explain the existence of a magnetic field before about one billion years ago. Theoretical models propose that the exsolution of magnesium oxide--the major constituent of Earth's mantle--from the core provided a major source of the energy required to drive an early dynamo, but experimental evidence for the incorporation of mantle components into the core has been lacking. Indeed, terrestrial core formation occurred in the early molten Earth by gravitational segregation of immiscible metal and silicate melts, transporting iron-loving (siderophile) elements from the silicate mantle to the metallic core and leaving rock-loving (lithophile) mantle components behind. Here we present experiments showing that magnesium oxide dissolves in core-forming iron melt at very high temperatures. Using core-formation models, we show that extreme events during Earth's accretion (such as the Moon-forming giant impact) could have contributed large amounts of magnesium to the early core. As the core subsequently cooled, exsolution of buoyant magnesium oxide would have taken place at the core–mantle boundary, generating a substantial amount of gravitational energy as a result of compositional buoyancy. This amount of energy is comparable to, if not more than, that produced by inner-core growth, resolving the conundrum posed by the existence of an ancient magnetic field prior to the formation of the inner core.

  14. Investigation of geomagnetic field forecasting and fluid dynamics of the core. [determination of the bundary between the core and mantle of the Earth

    Science.gov (United States)

    Benton, E. R. (Principal Investigator)

    1981-01-01

    Progress in the use of MAGSAT data to confirm that the radius of the Earth's core-mantle boundary can be accurately determined magnetically is reported. The MAGSAT data was used in conjunction with a high quality manfield model for epoch 1965. The unsigned flux linking the core and mantle of the Earth is considered to be a legitimate invariant for a span of time. The value from MAGSAT of this constant is 16.056 GWb (gigawebers).

  15. Seismic and Gravitational Studies of Melting in the Mantle’s Thermal Boundary Layers

    Science.gov (United States)

    2007-06-01

    1993a]). However, the transition from layer 2c to layer 3 (commonly identified as the transition from sheeted dikes to gabbros formed by crystallization...except the region of interest (in our case. the core-inaiitle boundary). The lack of real- world heterogeneity and attenuation in the upper mantle...structures is to be of use in understanding CMB structure in the real world , the collection and creative exploitation of 2-D and 3-D array data sets with

  16. Initial Feasibility Study to Drill and Core the Ocean Mantle

    OpenAIRE

    2011-01-01

    An initial feasibility study (Pilisi and Whitney, 2011) of drilling through the Mohorovičić discontinuity (Moho) into the oceanic mantle specifically focused on future requirements for planning, drilling and coring a hole 500 m into the oceanic mantle from three candidate locations in the Pacific Ocean (Cocos Plate, Baja California, and offshore Hawaii). The study points out some of the critical issues that need to be resolved before embarking upon such a challengingproject. It was conducted ...

  17. An early geodynamo driven by exsolution of mantle components from Earth’s core

    Science.gov (United States)

    Badro, James; Siebert, Julien; Nimmo, Francis

    2016-08-01

    Recent palaeomagnetic observations report the existence of a magnetic field on Earth that is at least 3.45 billion years old. Compositional buoyancy caused by inner-core growth is the primary driver of Earth’s present-day geodynamo, but the inner core is too young to explain the existence of a magnetic field before about one billion years ago. Theoretical models propose that the exsolution of magnesium oxide—the major constituent of Earth’s mantle—from the core provided a major source of the energy required to drive an early dynamo, but experimental evidence for the incorporation of mantle components into the core has been lacking. Indeed, terrestrial core formation occurred in the early molten Earth by gravitational segregation of immiscible metal and silicate melts, transporting iron-loving (siderophile) elements from the silicate mantle to the metallic core and leaving rock-loving (lithophile) mantle components behind. Here we present experiments showing that magnesium oxide dissolves in core-forming iron melt at very high temperatures. Using core-formation models, we show that extreme events during Earth’s accretion (such as the Moon-forming giant impact) could have contributed large amounts of magnesium to the early core. As the core subsequently cooled, exsolution of buoyant magnesium oxide would have taken place at the core-mantle boundary, generating a substantial amount of gravitational energy as a result of compositional buoyancy. This amount of energy is comparable to, if not more than, that produced by inner-core growth, resolving the conundrum posed by the existence of an ancient magnetic field prior to the formation of the inner core.

  18. Hydrogen storage in Earth's mantle and core

    Science.gov (United States)

    Prewitt, Charles T.

    1994-01-01

    Two different approaches to explaining how hydrogen might be stored in the mantle are illustrated by a number of papers published over the past 25-30 years, but there has been little attempt to provide objective comparisons of the two. One approach invokes the presence in the mantle of dense hydrous magnesium silicates (DHMS) stable at elevated pressures and temperatures. The other involves nominally anhydrous minerals (NAM) that contain hydrogen as a minor constituent on the ppm level. Experimental studies on DHMS indicate these phases may be stable to pressures and temperatures as high at 16 GPa and 1200 C. This temperature is lower than that indicated by a mantle geotherm at 16 GPa, but may be reasonable for a subducting slab. It is possible that other DHMS could be stable to even higher pressures, but little is known about maximum temperature limits. For NAM, small amounts of hydrogen (up to several hundred ppm) have been detected in olivine, orthopyroxene, clinopyroxene, and garnet recovered from xenoliths in kimberlites, eclogites, and alkali basalts; it has been demonstrated that synthetic wadsleyite and perovskite can accommodate significant amounts of hydrogen. A number of problems are associated with each possibility. For NAM originating in the mantle, one would like to assume that the hydrogen measured in samples recovered on Earth's surface was incorporated when the phase-crystallized at high temperatures and pressures, but it could have been introduced during transport to the surface. Major problems for the DHMS proponents are that none of these phases have been found as minerals and little is yet known about their stabilities in systems containing other cations such as Fe, Al, and Ca.

  19. Short wavelength topography on the inner-core boundary.

    Science.gov (United States)

    Cao, Aimin; Masson, Yder; Romanowicz, Barbara

    2007-01-02

    Constraining the topography of the inner-core boundary is important for studies of core-mantle coupling and the generation of the geodynamo. We present evidence for significant temporal variability in the amplitude of the inner core reflected phase PKiKP for an exceptionally high-quality earthquake doublet, observed postcritically at the short-period Yellowknife seismic array (YK), which occurred in the South Sandwich Islands within a 10-year interval (1993/2003). This observation, complemented by data from several other doublets, indicates the presence of topography at the inner-core boundary, with a horizontal wavelength on the order of 10 km. Such topography could be sustained by small-scale convection at the top of the inner core and is compatible with a rate of super rotation of the inner core of approximately 0.1-0.15 degrees per year. In the absence of inner-core rotation, decadal scale temporal changes in the inner-core boundary topography would provide an upper bound on the viscosity at the top of the inner core.

  20. Dynamics of axial torsional libration under the mantle-inner core gravitational interaction

    Science.gov (United States)

    Chao, B. F.

    2017-01-01

    The aims of this paper are (i) formulating the dynamics of the mantle-inner core gravitational (MICG) interaction in terms of the spherical-harmonic multipoles of mass density. The modeled MICG system is composed of two concentric rigid bodies (mantle and inner core) of near-spherical but otherwise heterogeneous configuration, with a fluid outer core in between playing a passive role. We derive the general equation of motion for the vector rotation but only focus on the polar component that describes the MICG axial torsional libration. The torsion constant and hence the square of the natural frequency of the libration is proportional to the product of the equatorial ellipticities of the mantle and inner-core geoid embodied in their multipoles (of two different types) of degree 2 and order 2 (such as the Large Low-Shear-Velocity Provinces above the core-mantle boundary) and (ii) studying the geophysical implications upon equating the said MICG libration to the steady 6 year oscillation that are observed in the Earth's spin rate or the length-of-day variation (ΔLOD). In particular, the MICG torsion constant is found to be Γ>˜z = CIC σz2 ≈ 6.5 × 1019 N m, while the inner core's (BIC - AIC) ≈ 1.08 × 1031 kg m2 gives the inner core triaxiality (BIC - AIC)/CIC ≈ 1.8 × 10-4, about 8 times the whole-Earth value. It is also asserted that the required inner-core ellipticity amounts to no more than 140 m in geoid height, much smaller than the sensitivity required for the seismic wave travel time to resolve the variation of the inner core.

  1. Whole planet coupling between climate, mantle, and core: Implications for rocky planet evolution

    Science.gov (United States)

    Foley, Bradford J.; Driscoll, Peter E.

    2016-05-01

    Earth's climate, mantle, and core interact over geologic time scales. Climate influences whether plate tectonics can take place on a planet, with cool climates being favorable for plate tectonics because they enhance stresses in the lithosphere, suppress plate boundary annealing, and promote hydration and weakening of the lithosphere. Plate tectonics plays a vital role in the long-term carbon cycle, which helps to maintain a temperate climate. Plate tectonics provides long-term cooling of the core, which is vital for generating a magnetic field, and the magnetic field is capable of shielding atmospheric volatiles from the solar wind. Coupling between climate, mantle, and core can potentially explain the divergent evolution of Earth and Venus. As Venus lies too close to the sun for liquid water to exist, there is no long-term carbon cycle and thus an extremely hot climate. Therefore, plate tectonics cannot operate and a long-lived core dynamo cannot be sustained due to insufficient core cooling. On planets within the habitable zone where liquid water is possible, a wide range of evolutionary scenarios can take place depending on initial atmospheric composition, bulk volatile content, or the timing of when plate tectonics initiates, among other factors. Many of these evolutionary trajectories would render the planet uninhabitable. However, there is still significant uncertainty over the nature of the coupling between climate, mantle, and core. Future work is needed to constrain potential evolutionary scenarios and the likelihood of an Earth-like evolution.

  2. Was core formation violent enough to homogenize the early mantle?

    Science.gov (United States)

    Cooperman, S. A.; Kaula, W. M.

    1985-01-01

    The dynamics of iron, its thermal state and its phase in the accreting Earth probably played a major role in the Earth's early thermal evolution. Plausible impact thermal histories make it possible that pure iron was molten in the accreting Earth after it was about 10% grown. Hence, iron eutectic alloys (FeS, FeO) certainly were. Additionally, the initial temperature of the core is an important constraint on the secular cooling of the early Earth and on the strength of the early geodynamo. Whether iron is solid or molten would influence geochemical equilibria in the upper and lower mantle; the mode of core formation, by spherical or near-spherical blobs, stalk-like instabilities, or something more catastrophic would influence the partitioning of siderophiles between silicate and iron phases. Early descent of iron (during accretion) favors partitioning according to low-pressure phase equilibria, whereas late descent favors higher pressure. The later core formation occurs, the greater the heat pulse, due to the strong dependence of gravitational potential energy on planetary radius. The heat may homogenize the mantle if core formation is global; otherwise, heterogeneity of iron differentiation may leave some of the pre-archean mantle unaffected. The larger the chunks of proto-core (and hence smaller surface/volume ratios) the greater the heterogeneity.

  3. Hydrothermal experiments on serpentinization at crust/mantle boundary

    Science.gov (United States)

    Oyanagi, R.; Okamoto, A.; Tsuchiya, N.

    2013-12-01

    Serpentinization commonly proceeds in seafloor hydrothermal systems at mid-ocean ridges, along the bending faults, and at the boundary of wedge mantle and subducting plate. Silica activity are key factors in controlling reaction paths and the rate of serpentinization (e.g., Frost and Beard, 2007; Klein et al., 2009; Ogasawara et al.,2013). However, most of the previous experimental studies focused on bulk solid materials and solutions within the reaction vessel, and local changes of products reaction rate in response to concentration gradient have not been clarified. Ogasawara et al. (2013) conducted hydrothermal experiments in Ol-Opx-H2O system, and modeled the progress of serpentinization by coupled reactions and silica diffusion. In their experiment, reaction product is only serpentine and no talc or brucite were found. In this study, we conducted hydrothermal experiments in olivine (Ol)-quartz (Qtz)-H2O and Ol-plagioclase (Pl)-H2O systems as the analogue of crust/mantle boundary. The condition was 250 degreeC and at a vapor-saturated pressure. Composite powders (composed of Qtz/Ol zone, or Pl/Ol zone) were set in tube-in-tube vessels, and then loaded into autocrave with fluid ( NaOHaq, pH = 13.8 at 25 degreeC ). Runnig time is up to 25 days and maximum water content in the products is 12 wt% H2O. After the experiments, solution chemistry and the extent of serpentinization were analyzed in detail. In the Ol-Qtz-H2O experiments, we observed systematic changes of reaction products in the Ol zone. Smectite and serpentine was formed at Ol-Qtz boundary due to high Na concentration although talc is expected to form in MgO-SiO2-H2O system at Ol-Qtz boundary. Mg/Si ratio of products from EDS analyze shows high Si gradient near the boundary indicate that amount of smectite decreased with increasing distance from the Ol-Qtz boundary and only serpentine zone was observed at ~10mm. At >10mm away from Ol-Qtz boundary, serpentine ( chrysotile nano tubes) and brucite was

  4. Mars Thermal History: Core, Atmosphere, Mantle, Phobos and Surface (MaTH CAMPS)

    Science.gov (United States)

    Wicks, J. K.; Weller, M. B.; Towles, N. J.; Thissen, C.; Knezek, N. R.; Johnston, S.; Hongsresawat, S.; Duncan, M. S.; Black, B. A.; Schmerr, N. C.; Panning, M. P.; Montesi, L.; Manga, M.; Lognonne, P. H.

    2014-12-01

    The death of the Martian dynamo ~4.1 Ga and sustained volcanism throughout Martian history place fundamental constraints on the thermal history of the planet. To explore the implications for mantle structure, we constructed holistic models of Mars that include the core, mantle, lithosphere/surface, atmosphere, and an atmospheric capture of Phobos in a collaborative effort begun at the CIDER 2014 summer program. For our thermal model of the core, we employ an iterative solver and parameterized phase diagram to compute pressure, density, and temperature in the core for a variety of initial accretion temperatures and bulk compositions. We use this model to constrain core-mantle boundary (CMB) temperature and heat flow. We couple this model for the evolution of the core with a one-dimensional parameterized convection model for the mantle. The upper boundary condition is set by the state of the Martian atmosphere. We consider the effect of a distinct compositional layer at the base of the mantle that may represent dense magma ocean crystallization products or a primitive layer untouched by magma ocean processes. We find successful models that allow sufficient CMB heat flow to power an early dynamo and the potential of melt generation through extended periods of Mars' history. In addition to dynamo and magmatism timing, other diagnostics allow us to compare model outputs to modern observables. The mass, moment of inertia, and tidal Love number of our model planet are compared directly to measured values. Additionally, deformation and stress on the lithosphere due to internal volume changes and changes in surface loading predicted by our thermal evolution models could be recorded in the Martian crust. Finally, coupling temperature-dependent tidal dissipation affects Phobos' orbital secular evolution and gives constraint on mantle temperatures. These constraints are discussed for the different scenarios of Phobos capture. We present a suite of models that satisfy the

  5. Effect of core--mantle and tidal torques on Mercury's spin axis orientation

    CERN Document Server

    Peale, Stanton J; Hauck,, Steven A; Solomon, Sean C

    2014-01-01

    The rotational evolution of Mercury's mantle and its core under conservative and dissipative torques is important for understanding the planet's spin state. Dissipation results from tides and viscous, magnetic and topographic core--mantle interactions. The dissipative core--mantle torques take the system to an equilibrium state wherein both spins are fixed in the frame precessing with the orbit, and in which the mantle and core are differentially rotating. This equilibrium exhibits a mantle spin axis that is offset from the Cassini state by larger amounts for weaker core--mantle coupling for all three dissipative core--mantle coupling mechanisms, and the spin axis of the core is separated farther from that of the mantle, leading to larger differential rotation. The relatively strong core--mantle coupling necessary to bring the mantle spin axis to its observed position close to the Cassini state is not obtained by any of the three dissipative core--mantle coupling mechanisms. For a hydrostatic ellipsoidal core...

  6. Initial Feasibility Study to Drill and Core the Ocean Mantle

    Directory of Open Access Journals (Sweden)

    Nicolas Pilisi

    2011-09-01

    Full Text Available An initial feasibility study (Pilisi and Whitney, 2011 of drilling through the Mohorovičić discontinuity (Moho into the oceanic mantle specifically focused on future requirements for planning, drilling and coring a hole 500 m into the oceanic mantle from three candidate locations in the Pacific Ocean (Cocos Plate, Baja California, and offshore Hawaii. The study points out some of the critical issues that need to be resolved before embarking upon such a challengingproject. It was conducted on the basis of data provided by the Integrated Ocean Drilling Program–Management International (IODP-MI, the Center for Deep Earth Exploration (CDEX operating the drilling vessel Chikyu within IODP, public domain information, and past experience that Blade Energy Partners (hereafter mentioned as “Blade”; http://www.blade-energy.com/ has had with frontier projects in the offshore deepwater oil and gas and geothermal industries.

  7. Sensitivity of the geomagnetic axial dipole to thermal core-mantle interactions

    Science.gov (United States)

    Bloxham

    2000-05-04

    Since the work of William Gilbert in 1600 (ref. 1), it has been widely believed that the Earth's magnetic field, when suitably time-averaged, is that of a magnetic dipole positioned at the Earth's centre and aligned with the rotational axis. This 'geocentric axial dipole' (GAD) hypothesis has been the central model for the study of the Earth's magnetic field--it underpins almost all interpretations of palaeomagnetic data, whether for studies of palaeomagnetic secular variation, for plate tectonic reconstructions, or for studies of palaeoclimate. Although the GAD hypothesis appears to provide a good description of the Earth's magnetic field over at least the past 100 Myr (ref. 2), it is difficult to test the hypothesis for earlier periods, and there is some evidence that a more complicated model is required for the period before 250 Myr ago. Kent and Smethurst suggested that this additional complexity might be because the inner core would have been smaller at that time. Here I use a numerical geodynamo model and find that reducing the size of the inner core does not significantly change the character of the magnetic field. I also consider an alternative process that could lead to the breakdown of the GAD hypothesis on this timescale, the evolution of heat-flux variations at the core-mantle boundary, induced by mantle convection. I find that a simple pattern of heat-flux variations at the core-mantle boundary, which is plausible for times before the Mesozoic era, results in a strong octupolar contribution to the field, consistent with previous findings.

  8. Linking mantle dynamics, plate tectonics and surface processes in the active plate boundary zones of eastern New Guinea (Invited)

    Science.gov (United States)

    Baldwin, S.; Moucha, R.; Fitzgerald, P. G.; Hoke, G. D.; Bermudez, M. A.; Webb, L. E.; Braun, J.; Rowley, D. B.; Insel, N.; Abers, G. A.; Wallace, L. M.; Vervoort, J. D.

    2013-12-01

    Eastern New Guinea lies within the rapidly obliquely converging Australian (AUS)- Pacific (PAC) plate boundary zone and is characterized by transient plate boundaries, rapidly rotating microplates and a globally significant geoid high. As the AUS plate moved northward in the Cenozoic, its leading edge has been a zone of subduction and arc accretion. The variety of tectonic settings in this region permits assessment of the complex interplay among mantle dynamics, plate tectonics, and surface processes. Importantly, the timescale of tectonic events (e.g., subduction, (U)HP exhumation, seafloor spreading) are within the valid bounds of mantle convection models. A record of changes in bathymetry and topography are preserved in high standing mountain belts, exhumed extensional gneiss domes and core complexes, uplifted coral terraces, and marine sedimentary basins. Global seismic tomography models indicate accumulation of subducted slabs beneath eastern New Guinea at the bottom of the upper mantle (i.e., 250-300 km). Preliminary global-scale backward advected mantle convection models, driven by density inferred from joint seismic-geodynamic tomography models, exhibit large-scale flow associated with these subducted slab remnants and predict the timing and magnitude (up to 1500 m) of dynamic topography change (both subsidence and uplift) since the Oligocene. In this talk we will explore the effects of large-scale background mantle flow and plate tectonics on the evolution of topography and bathymetry in eastern New Guinea, and discuss possible mechanisms to explain basin subsidence and surface uplift in the region.

  9. Thermal evolution of Earth's mantle and core: Influence of reference viscosity and concentration of radioactive elements in the mantle

    Science.gov (United States)

    Nakagawa, T.; Tackley, P. J.

    2010-12-01

    In a series of studies on the thermal evolution of Earth’s mantle and core [Nakagawa and Tackley, 2004; 2005; 2010], we have assumed a reference viscosity (at T=1600 K and P=0) of 1022 Pa.s and a concentration of radioactive elements based on the surface heat flux of the Earth’s mantle (6x10-12 W/kg). In addition, the initial mantle temperature in these studies was also based on the mantle adiabat estimated from present potential temperature (1600 K). Problems with these models are that (1) the average mantle temperature increases in the initial phase of the calculation and (2) the final (present-day) surface heat flux is a factor of two lower than expected from observational constraints (46 TW [Jaupart et al., 2007]), which means the Urey ratio is higher than the expected value (~0.3) [Jaupert et al., 2007; Korenaga, 2007]. Here we present results of a coupled model of thermo-chemical mantle convection in a 2-D spherical annulus and parameterized core heat balance, in which we vary (i) the reference viscosity down to 1020 Pa.s, giving a "surface" Rayleigh number of 109, (ii) the concentration of radioactive heat-producing elements in the mantle are tried (either a theoretical estimate [Schubert et al., 2001; 25 TW], geochemical estimate [McDonough and Sun, 1995; 20 TW] and modified geochemical estimate [Lyubetskaya and Korenaga, 2006; 16 TW]) and (iii) the initial mantle adiabat (up to 2500 K at the surface). Preliminary results indicate a preference for an initial mantle adiabat of more than 2500 K and the modified geochemical estimate of radioactive element concentration, in order to understand the current thermal state of Earth’s mantle when the reference viscosity is 1022 Pa s. Results with lower reference viscosity will be presented.

  10. A thermodynamic recipe for baking the Earth's lower mantle and core as a whole

    Science.gov (United States)

    Tirone, Max; Faak, Kathi

    2016-04-01

    nowhere to be found, while the model is only accessible on few commercial thermodynamic programs. The latest developments regarding all these related issues will be discussed in this contribution. In particular some self-consistent but preliminary results will be presented addressing the following topics: - some details regarding the implementation of the liquid model for Gibbs free energy minimizations, - the physically consistent behavior of thermodynamic properties of certain solid phases like (Fe,O,Si) BCC, FCC, HCP and liquid components, - selected phase diagrams at core conditions in the system Fe-Si-O, - derived geotherms linking the inner-outer core with the core-mantle boundary. - brief outline of the future geodynamic applications.

  11. Electrical conductivity of the lowermost mantle explains absorption of core torsional waves at the equator

    CERN Document Server

    Schaeffer, Nathanaël

    2016-01-01

    Torsional Alfv{\\'e}n waves propagating in the Earth's core have been inferred by inversion techniques applied to geomagnetic models. They appear to propagate across the core but vanish at the equator, exchanging angular momentum between core and mantle. Assuming axial symmetry, we find that an electrically conducting layer at the bottom of the mantle can lead to total absorption of torsional waves that reach the equator. We show that the reflection coefficient depends on G Br , where Br is the strength of the radial magnetic field at the equator, and G the conductance of the lower mantle there. With Br = 7e-4 T., torsional waves are completely absorbed when they hit the equator if G = 1.3e8 S. For larger or smaller G, reflection occurs. As G is increased above this critical value, there is less attenuation and more angular momentum exchange. Our finding dissociates efficient core-mantle coupling from strong ohmic dissipation in the mantle.

  12. RHUM-RUM investigates La Réunion mantle plume from crust to core

    Science.gov (United States)

    Sigloch, Karin; Barruol, Guilhem

    2013-04-01

    RHUM-RUM (Réunion Hotspot and Upper Mantle - Réunions Unterer Mantel) is a French-German passive seismic experiment designed to image an oceanic mantle plume - or lack of plume - from crust to core beneath La Réunion Island, and to understand these results in terms of material, heat flow and plume dynamics. La Réunion hotspot is one of the most active volcanoes in the world, and its hotspot track leads unambiguously to the Deccan Traps of India, one of the largest flood basalt provinces on Earth, which erupted 65 Ma ago. The genesis and the origin at depth of the mantle upwelling and of the hotspot are still very controversial. In the RHUM-RUM project, 57 German and French ocean-bottom seismometers (OBS) are deployed over an area of 2000 km x 2000 km2 centered on La Réunion Island, using the "Marion Dufresne" and "Meteor" vessels. The one-year OBS deployment (Oct. 2012 - Oct. 2013) will be augmented by terrestrial deployments in the Iles Eparses in the Mozambique Channel, in Madagascar, Seychelles, Mauritius, Rodrigues and La Réunion islands. A significant number of OBS will be also distributed along the Central and South West Indian Ridges to image the lower-mantle beneath the hotspot, but also to provide independent opportunity for the study of these slow to ultra-slow ridges and of possible plume-ridge interactions. RHUM-RUM aims to characterize the vertically ascending flow in the plume conduit, as well as any lateral flow spreading into the asthenosphere beneath the western Indian Ocean. We want to establish the origin of the heat source that has been fueling this powerful hotspot, by answering the following questions: Is there a direct, isolated conduit into the deepest mantle, which sources its heat and material from the core-mantle boundary? Is there a plume connection to the African superswell at mid-mantle depths? Might the volcanism reflect merely an upper mantle instability? RHUM-RUM also aims at studying the hotspot's interaction with the

  13. Gravitational Core-Mantle Coupling and the Acceleration of the Earth

    Science.gov (United States)

    Rubincam, David Parry; Smith, David E. (Technical Monitor)

    2001-01-01

    Gravitational core-mantle coupling may be the cause of the observed variable acceleration of the Earth's rotation on the 1000 year timescale. The idea is that density inhomogeneities which randomly come and go in the liquid outer core gravitationally attract density inhomogeneities in the mantle and crust, torquing the mantle and changing its rotation state. The corresponding torque by the mantle on the core may also explain the westward drift of the magnetic field of 0.2 deg per year. Gravitational core-mantle coupling would stochastically affect the rate of change of the Earth's obliquity by just a few per cent. Its contribution to polar wander would only be about 0.5% the presently observed rate. Tidal friction is slowing down the rotation of the Earth, overwhelming a smaller positive acceleration from postglacial rebound. Coupling between the liquid outer core of the Earth and the mantle has long been a suspected reason for changes in the length-of-day. The present investigation focuses on the gravitational coupling between the density anomalies in the convecting liquid outer core and those in the mantle and crust as a possible cause for the observed nonsecular acceleration on the millenial timescale. The basic idea is as follows. There are density inhomogeneities caused by blobs circulating in the outer core like the blobs in a lava lamp; thus the outer core's gravitational field is not featureless. Moreover, these blobs will form and dissipate somewhat randomly. Thus there will be a time variability to the fields. These density inhomogeneities will gravitationally attract the density anomalies in the mantle.

  14. Importance of initial buoyancy field on evolution of mantle thermal structure: Implications of surface boundary conditions

    Directory of Open Access Journals (Sweden)

    Petar Glišović

    2015-01-01

    Full Text Available Although there has been significant progress in the seismic imaging of mantle heterogeneity, the outstanding issue that remains to be resolved is the unknown distribution of mantle temperature anomalies in the distant geological past that give rise to the present-day anomalies inferred by global tomography models. To address this question, we present 3-D convection models in compressible and self-gravitating mantle initialised by different hypothetical temperature patterns. A notable feature of our forward convection modelling is the use of self-consistent coupling of the motion of surface tectonic plates to the underlying mantle flow, without imposing prescribed surface velocities (i.e., plate-like boundary condition. As an approximation for the surface mechanical conditions before plate tectonics began to operate we employ the no-slip (rigid boundary condition. A rigid boundary condition demonstrates that the initial thermally-dominated structure is preserved, and its geographical location is fixed during the evolution of mantle flow. Considering the impact of different assumed surface boundary conditions (rigid and plate-like on the evolution of thermal heterogeneity in the mantle we suggest that the intrinsic buoyancy of seven superplumes is most-likely resolved in the tomographic images of present-day mantle thermal structure. Our convection simulations with a plate-like boundary condition reveal that the evolution of an initial cold anomaly beneath the Java-Indonesian trench system yields a long-term, stable pattern of thermal heterogeneity in the lowermost mantle that resembles the present-day Large Low Shear Velocity Provinces (LLSVPs, especially below the Pacific. The evolution of subduction zones may be, however, influenced by the mantle-wide flow driven by deeply-rooted and long-lived superplumes since Archean times. These convection models also detect the intrinsic buoyancy of the Perm Anomaly that has been identified as a unique

  15. LAB as Boundary Between Fossil and Present-day Mantle Seismic Anisotropy

    Science.gov (United States)

    Plomerova, J.; Babuska, V.

    2009-12-01

    Besides the importance of the crust-mantle boundary discovered by Mohorovicic hundred years ago, the significance of the first-order active upper mantle boundary between the lithosphere and asthenospere has been increasing during several last decades, after a general acceptance of the Earth’s plate-tectonic concept. Topology of the lithosphere-asthenosphere boundary (LAB) and structure of the continental lithosphere record the geodynamic development of outer parts of the Earth. Knowledge of the Moho relief and of crustal velocities is crucial for the LAB and lithosphere modelling, as the upper mantle studies require applying proper crustal corrections. We present a uniform updated model of the European lithosphere-asthenosphere boundary recalculated from data collected during our regional studies of seismic anisotropy and other tomographic experiments, and show results of mapping of large-scale domains of mantle lithosphere characterized by uniform fossil fabrics. Thanks to a long memory of the fabric of the deep continental lithosphere, we define the LAB as a boundary between a fossil anisotropy in the mantle lithosphere and an underlying seismic anisotropy related to present-day flow in the asthenosphere. Analysis of static terms of teleseismic P-wave travel time deviations shows the LAB topology is more distinct beneath the Phanerozoic part of Europe compared with its Precambrian part. The LAB deepens down to ~220 km beneath the two Alpine roots, the South Carpathians and eastward of the Trans-European Suture Zone. Decomposition of the relative residuals into the static and directional-dependent terms of P residuals, shear-wave splitting analysis and joint inversion of the anisotropic parameters, reveal the mantle lithosphere consists of domains with consistent olivine fabrics, which can be modelled by peridotite aggregates with plunging foliation or lineation. Changes of the fossil fabric allow us to map the domain boundaries within the mantle lithosphere. We

  16. Sensitivities of Earth's core and mantle compositions to accretion and differentiation processes

    Science.gov (United States)

    Fischer, Rebecca A.; Campbell, Andrew J.; Ciesla, Fred J.

    2017-01-01

    The Earth and other terrestrial planets formed through the accretion of smaller bodies, with their core and mantle compositions primarily set by metal-silicate interactions during accretion. The conditions of these interactions are poorly understood, but could provide insight into the mechanisms of planetary core formation and the composition of Earth's core. Here we present modeling of Earth's core formation, combining results of 100 N-body accretion simulations with high pressure-temperature metal-silicate partitioning experiments. We explored how various aspects of accretion and core formation influence the resulting core and mantle chemistry: depth of equilibration, amounts of metal and silicate that equilibrate, initial distribution of oxidation states in the disk, temperature distribution in the planet, and target:impactor ratio of equilibrating silicate. Virtually all sets of model parameters that are able to reproduce the Earth's mantle composition result in at least several weight percent of both silicon and oxygen in the core, with more silicon than oxygen. This implies that the core's light element budget may be dominated by these elements, and is consistent with ≤1-2 wt% of other light elements. Reproducing geochemical and geophysical constraints requires that Earth formed from reduced materials that equilibrated at temperatures near or slightly above the mantle liquidus during accretion. The results indicate a strong tradeoff between the compositional effects of the depth of equilibration and the amounts of metal and silicate that equilibrate, so these aspects should be targeted in future studies aiming to better understand core formation conditions. Over the range of allowed parameter space, core and mantle compositions are most sensitive to these factors as well as stochastic variations in what the planet accreted as a function of time, so tighter constraints on these parameters will lead to an improved understanding of Earth's core composition.

  17. Planetary Lithosphere-Outer Core-Inner Core-Mantle Coupled Evolution Over the Entire Age of the Solar System

    Science.gov (United States)

    Tackley, P. J.; Nakagawa, T.; Louro Lourenço, D. J.; Rozel, A.

    2016-12-01

    Core evolution is determined by the heat flux extracted by the mantle as a function of time, which is itself dependent on the tectonic mode of the lithosphere and its evolution with time (Nakagawa & Tackley, 2015), as well as other factors. Thus, lithosphere, mantle and core must be treated as a coupled system in order to understand long-term core evolution. We have performed coupled modelling of mantle and core using a 2D or 3D mantle convection code with parameterized core. By plastic yielding the lithosphere may develop plate tectonics, stagnant lid, or episodic lid modes of tectonics, and the mode can change with time. Our recent models demonstrate that crustal production arising from partial melting plays a major role in facilitating plate tectonics; when this is included plate tectonics or episodic lithospheric overturn can occur even when purely thermal models predict a stagnant lithosphere (Lourenco et al, 2016). These models also demonstrate transitions between tectonic models as the planet cools. Considering Earth's core evolution, there is only a limited parameter range in which the heat extracted from the core is large enough at all times for a geodynamo to exist, but small enough that the core did not cool more than observed, a balance that becomes even more difficult if the core thermal conductivity is as high as recently thought (Nakagawa & Tackley, 2013). Models typically predict too much core cooling, which can be reduced by dense layering above the CMB: in particular such a dense, compositionally-distinct layer existing from early times is important for avoiding early too-rapid core cooling (Nakagawa & Tackley, 2014). Our latest models treat Earth evolution from the magma ocean phase to the present day (Lourenco et al., presented at this meeting). In these models an initially very hot core cools extremely rapidly until it reaches the rheological transition of mantle rock ( 40% melt fraction). Therefore, it is difficult for the core temperature at

  18. Mantle formation, coagulation and the origin of cloud/core-shine: II. Comparison with observations

    CERN Document Server

    Ysard, N; Jones, A P; Dartois, E; Godard, M; Gavilan, L

    2016-01-01

    Many dense interstellar clouds are observable in emission in the near-IR, commonly referred to as "Cloudshine", and in the mid-IR, the so-called "Coreshine". These C-shine observations have usually been explained with grain growth but no model has yet been able to self-consistently explain the dust spectral energy distribution from the near-IR to the submm. We want to demonstrate the ability of our new core/mantle evolutionary dust model THEMIS (The Heterogeneous dust Evolution Model at the IaS), which has been shown to be valid in the far-IR and submm, to reproduce the C-shine observations. Our starting point is a physically motivated core/mantle dust model. It consists of 3 dust populations: small aromatic-rich carbon grains; bigger core/mantle grains with mantles of aromatic-rich carbon and cores either made of amorphous aliphatic-rich carbon or amorphous silicate. We assume an evolutionary path where these grains, when entering denser regions, may first form a second aliphatic-rich carbon mantle (coagulat...

  19. Convection Destroys the Core/Mantle Structure in Hybrid C/O/Ne White Dwarfs

    CERN Document Server

    Brooks, Jared; Bildsten, Lars; Quataert, Eliot; Paxton, Bill

    2016-01-01

    A hybrid C/O/Ne white dwarf (WD) -- an unburned C/O core surrounded by an O/Ne/Na mantle -- can be formed if the carbon flame is quenched in a super-AGB (SAGB) star or white dwarf merger remnant. We show that this segregated hybrid structure becomes unstable to rapid mixing within 2,000 years of the onset of WD cooling. Carbon burning includes a weak reaction that removes electrons, resulting in a lower electron-to-baryon ratio ($Y_{\\rm e}$) in the regions processed by carbon burning compared to the unburned C/O core, making the O/Ne mantle denser than the C/O core as the WD cools. This is unstable to efficient mixing. We use the results of $\\texttt{MESA}$ models with different size C/O cores to quantify the rate at which the cores mix with the mantle as they cool. In all cases, we find that the WDs undergo significant core/mantle mixing on timescales shorter than the time available to grow the WD to the Chandrasekhar mass ($M_{\\rm Ch}$) by accretion. As a result, hybrid WDs that reach $M_{\\rm Ch}$ due to lat...

  20. Impact of core-cladding boundary shape on the waveguide properties of hollow core microstructured fibers

    Science.gov (United States)

    Pryamikov, A. D.; Alagashev, G. K.; Kosolapov, A. F.; Biriukov, A. S.

    2016-12-01

    In this paper we consider an interaction between the air core modes (ACMs) of hollow core waveguide microstructures and core-cladding boundary walls in various shapes. The analysis is based on well-established models such as the ARROW (anti-resonant reflecting optical waveguide) model and on the models proposed for the first time. In particular, we consider the dynamics of light localization in the polygonal core cladding boundary wall as dependant on the type of its discrete rotational symmetry. Based on our findings we analyze the mechanisms of light localization in the core-cladding boundary walls of negative curvature hollow core microstructured fibers (NC HCMFs).

  1. Impact of core cladding boundary shape on the waveguide properties of hollow core microstructured fibers

    CERN Document Server

    Pryamikov, A D; Biriukov, A S

    2016-01-01

    In this paper we consider an interaction between the air core modes of hollow core waveguide microstructures and core cladding boundary walls in various shapes. The analysis is based on well established models such as the anti-resonant reflecting optical waveguide model and on the models proposed for the first time. In particular, we consider the dynamics of light localization in the polygonalcore cladding boundary wall as dependant on the type of its discrete rotational symmetry. Based on our findings we analyze the mechanisms of light localization in the core cladding boundary walls of negative curvature hollow core microstructured fibers.

  2. Light localization in hollow core fibers with a complicated shape of the core cladding boundary

    CERN Document Server

    Pryamikov, A D; Alagashev, G K

    2016-01-01

    In this paper we present a theoretical and numerical analysis of light localization in hollow core microstructured fibers (HCMFs) with a complicated shape of the core cladding boundary. The analysis is based on well established models (for example, the ARROW model) and also on the models proposed for the first time. In particular, we consider local and nonlocal mechanisms of light localization in the waveguide structures with a determined type of discrete rotational symmetry of the core cladding boundary. We interpret and analyze mechanisms of light localization in negative curvature hollow core microstructured fibers (NC HCMFs) and simplified HC PCFs with a polygonal shape of the core cladding boundary.

  3. Early stages of core segregation recorded by Fe isotopes in an asteroidal mantle

    OpenAIRE

    Barrat, Jean-Alix; Rouxel, O; Wang, K; Moynier, F; Yamaguchi, A; Bischoff, A; Langlade, J

    2015-01-01

    International audience; Ureilites displays  56 Fe values higher than average chondrite. 29-Segregation of Fe-sulfide melts explains the high  56 Fe values in ureilites. 30-Formation of a core can begin at very low degrees of melting through the circulation of a Fe-S melt 31 through a silicate mantle. 32 33 Earth and Planetary Science Letters, in press (11/3/15). 34 2 35 Abstract 36 37 Ureilite meteorites are achondrites that are debris of the mantle of a now disrupted 38 differentiated aste...

  4. The Effect of Lower Mantle Metallization on Magnetic Field Generation in Rocky Exoplanets

    CERN Document Server

    Vilim, Ryan; Elkins-Tanton, Linda

    2013-01-01

    Recent theoretical and experimental evidence indicates that many of the materials that are thought to exist in the mantles of terrestrial exoplanets will metallize and become good conductors of electricity at mantle pressures. This allows for strong electromagnetic coupling of the core and the mantle in these planets. We use a numerical dynamo model to study the effect of a metallized lower mantle on the dynamos of terrestrial exoplanets using several inner core sizes and mantle conductivities. We find that the addition of an electrically conducting mantle results in stronger core-mantle boundary fields because of the increase in magnetic field stretching. We also find that a metallized mantle destabilizes the dynamo resulting in less dipolar, less axisymmetric poloidal magnetic fields at the core-mantle boundary. The conducting mantle efficiently screens these fields to produce weaker surface fields. We conclude that a conducting mantle will make the detection of extrasolar terrestrial magnetic fields more d...

  5. Partitioning of Phosphorus and Molybdenum between the Earth's Mantle and Core and the Conditions of Core Formation

    Science.gov (United States)

    Acuff, K. M.; Danielson, L.; Righter, K.; Lee, C. T.

    2008-01-01

    There are several hypotheses on the specific processes that might have occurred during the formation of the Earth. One hypothesis that has been proposed is that early in the Earth's formation, there was a magma ocean present, and within this body, siderophile elements separated out of the silicate liquid to form the metal core. This study addresses this hypothesis. P and Mo are moderately siderophile elements that are present in both the mantle and the core. The concentrations of P and Mo in silicate vs. metal can be measured and in turn used to determine the temperatures, pressures, oxygen fugacity and melt composition required to achieve the same concentrations as observed in the mantle. The data here include eight experiments examining the partitioning of P and Mo between metallic liquid and silicate liquid. The purpose of the experiments has been to gain a greater understanding of core-mantle separation during the Earth formation process and examines temperature effect on P and Mo, which has not been systematically studied before.

  6. Modelling of Equilibrium Between Mantle and Core: Refractory, Volatile, and Highly Siderophile Elements

    Science.gov (United States)

    Righter, K.; Danielson, L.; Pando, K.; Shofner, G.; Lee, C. -T.

    2013-01-01

    Siderophile elements have been used to constrain conditions of core formation and differentiation for the Earth, Mars and other differentiated bodies [1]. Recent models for the Earth have concluded that the mantle and core did not fully equilibrate and the siderophile element contents of the mantle can only be explained under conditions where the oxygen fugacity changes from low to high during accretion and the mantle and core do not fully equilibrate [2,3]. However these conclusions go against several physical and chemical constraints. First, calculations suggest that even with the composition of accreting material changing from reduced to oxidized over time, the fO2 defined by metal-silicate equilibrium does not change substantially, only by approximately 1 logfO2 unit [4]. An increase of more than 2 logfO2 units in mantle oxidation are required in models of [2,3]. Secondly, calculations also show that metallic impacting material will become deformed and sheared during accretion to a large body, such that it becomes emulsified to a fine scale that allows equilibrium at nearly all conditions except for possibly the length scale for giant impacts [5] (contrary to conclusions of [6]). Using new data for D(Mo) metal/silicate at high pressures, together with updated partitioning expressions for many other elements, we will show that metal-silicate equilibrium across a long span of Earth s accretion history may explain the concentrations of many siderophile elements in Earth's mantle. The modeling includes refractory elements Ni, Co, Mo, and W, as well as highly siderophile elements Au, Pd and Pt, and volatile elements Cd, In, Bi, Sb, Ge and As.

  7. Non-chondritic iron isotope ratios in planetary mantles as a result of core formation

    Science.gov (United States)

    Elardo, Stephen M.; Shahar, Anat

    2017-02-01

    Information about the materials and conditions involved in planetary formation and differentiation in the early Solar System is recorded in iron isotope ratios. Samples from Earth, the Moon, Mars and the asteroid Vesta reveal significant variations in iron isotope ratios, but the sources of these variations remain uncertain. Here we present experiments that demonstrate that under the conditions of planetary core formation expected for the Moon, Mars and Vesta, iron isotopes fractionate between metal and silicate due to the presence of nickel, and enrich the bodies' mantles in isotopically light iron. However, the effect of nickel diminishes at higher temperatures: under conditions expected for Earth's core formation, we infer little fractionation of iron isotopes. From our experimental results and existing conceptual models of magma ocean crystallization and mantle partial melting, we find that nickel-induced fractionation can explain iron isotope variability found in planetary samples without invoking nebular or accretionary processes. We suggest that near-chondritic iron isotope ratios of basalts from Mars and Vesta, as well as the most primitive lunar basalts, were achieved by melting of isotopically light mantles, whereas the heavy iron isotope ratios of terrestrial ocean floor basalts are the result of melting of near-chondritic Earth mantle.

  8. Detectability of temporal changes in fine structures near the inner core boundary beneath the eastern hemisphere

    Science.gov (United States)

    Yu, Wen-che

    2016-04-01

    The inner core boundary (ICB), where melting and solidification of the core occur, plays a crucial role in the dynamics of the Earth's interior. To probe temporal changes near the ICB beneath the eastern hemisphere, I analyze differential times of PKiKP (dt(PKiKP)), double differential times of PKiKP-PKPdf, and PKiKP coda waves from repeating earthquakes in the Southwest Pacific subduction zones. Most PKiKP differential times are within ±30 ms, comparable to inherent travel time uncertainties due to inter-event separations, and suggest no systematic changes as a function of calendar time. Double differential times measured between PKiKP codas and PKiKP main phases show promising temporal changes, with absolute values of time shifts of >50 ms for some observations. However, there are discrepancies among results from different seismographs in the same calendar time window. Negligible changes in PKiKP times, combined with changes in PKiKP coda wave times on 5 year timescales, favor a smooth inner core boundary with fine-scale structures present in the upper inner core. Differential times of PKiKP can be interpreted in the context of either melting based on translational convection, or growth based on thermochemical mantle-inner core coupling. Small dt(PKiKP) values with inherent uncertainties do not have sufficient resolution to distinguish the resultant longitudinal (melting) and latitudinal (growth) dependencies predicted on the basis of the two models on 5 year timescales.

  9. HSE Abundances in Angrites and HEDs: Core-Mantle Equilibration or Late Accretion Addition of a Chondritic Component

    Science.gov (United States)

    Rai, N.; Downes, H.; Smith, C. L.

    2016-08-01

    Using metal-silicate partitioning of HSEs together with their mantle abundances in Vesta and the APB respectively, we test whether formation of a metallic core could have led to the observed abundances of the HSEs, in the mantles of these bodies.

  10. Reversal Frequency, Core-Mantle Conditions, and the SCOR-field Hypothesis

    Science.gov (United States)

    Hoffman, K. A.

    2009-12-01

    One of the most intriguing results from paleomagnetic data spanning the past 108 yr comes from the work of McFadden et al. (1991) who found that the variation in the rate of polarity reversal is apparently tied to the temporal variation in the harmonic content of the full-polarity field. Their finding indicates that it is the relative importance of the two dynamo families--i.e. the Primary Family (PF), the field antisymmetric about the equator, and the Secondary Family (SF), the field symmetric about the equator--that largely determines reversal frequency. More specifically, McFadden et al. found that as the relative significance of the SF increases, as is observed during the Cenozoic, so too does reversal rate. Such a finding is reminiscent of the seminal work of Allan Cox who some forty years ago proposed that interactions with the non-dipole field may provide the trigger for reversal of the axial dipole (AD) field. Hence, new questions arise: Do the two dynamo family fields interact in this manner, and, if so, how can such an interaction physically occur in the fluid core? Gaussian coefficient terms comprising the PF and SF have degree and order (n + m) that sum to an odd and even number, respectively. The most significant field term in the PF is by far that of the axial dipole (g10). The entire SF, starting with the equatorial dipole terms (g11 and h11) and the axial quadrupole (g20), are constituents of the non-axial dipole (NAD) field. By way of both paleomagnetic transition and geomagnetic data Hoffman and Singer (2008) recently proposed (1) that field sources exist within the shallow core (SCOR-field) associated with fluid motions affected by long-lived core-mantle boundary conditions; (2) that these SCOR-field sources are largely separated from, i.e. in “poor communication” with, deep field convection roll-generated sources; and (3) that the deep sources are largely responsible for the AD field, leaving the SCOR-field to be the primary source for the

  11. Melting of iron close to Earth's inner core boundary conditions and beyond

    CERN Document Server

    Harmand, M; Mazevet, S; Bouchet, J; Denoeud, A; Dorchies, F; Feng, Y; Fourment, C; Galtier, E; Gaudin, J; Guyot, F; Kodama, R; Koenig, M; Lee, H J; Miyanishi, K; Morard, G; Musella, R; Nagler, B; Nakatsutsumi, M; Ozaki, N; Recoules, V; Toleikis, S; Vinci, T; Zastrau, U; Zhu, D; Benuzzi-Mounaix, A

    2014-01-01

    Several important geophysical features such as heat flux at the Core-Mantle Boundary or geodynamo production are intimately related with the temperature profile in the Earth's core. However, measuring the melting curve of iron at conditions corresponding to the Earth inner core boundary under pressure of 330 GPa has eluded scientists for several decades. Significant discrepancies in previously reported iron melting temperatures at high pressure have called into question the validity of dynamic measurements. We report measurements made with a novel approach using X-ray absorption spectroscopy using an X-ray free electron laser source coupled to a laser shock experiment. We determine the state of iron along the shock Hugoniot up to 420 GPa (+/- 50) and 10800 K (+/- 1390) and find an upper boundary for the melting curve of iron by detecting solid iron at 130 GPa and molten at 260, 380 and 420 GPa along the shock Hugoniot. Our result establishes unambiguous agreement between dynamic measurement and recent extrapo...

  12. The inner core thermodynamics of the tropical cyclone boundary layer

    Science.gov (United States)

    Williams, Gabriel J.

    2016-10-01

    Although considerable progress has been made in understanding the inner-core dynamics of the tropical cyclone boundary layer (TCBL), our knowledge of the inner-core thermodynamics of the TCBL remains limited. In this study, the inner-core budgets of potential temperature (θ), specific humidity ( q), and reversible equivalent potential temperature (θ _e) are examined using a high-resolution multilevel boundary layer model. The potential temperature budgets show that the heat energy is dominated by latent heat release in the eyewall, evaporative cooling along the outer edge of the eyewall, and upward surface fluxes of sensible and latent heat from the underlying warm ocean. It is shown that the vertical θ advection overcompensates the sum of radial advective warming from the boundary layer outflow jet and latent heating for the development of cooling in the eyewall within the TCBL. The moisture budgets show the dominant upward transport of moisture in the eyewall updrafts, partly by the boundary-layer outflow jet from the bottom eye region, so that the eyewall remains nearly saturated. The θ _e budgets reveal that the TCBL is maintained thermodynamically by the upward surface flux of higher-θ _e air from the underlying warm ocean, the radial transport of low-θ _e air from the outer regions of the TCBL, and the dry adiabatic cooling associated by eyewall updrafts. These results underscore the significance of vertical motion and the location of the boundary layer outflow jet in maintaining the inner core thermal structure of the TCBL.

  13. Complete synthetic seismograms based on a spherical self-gravitating Earth model with an atmosphere-ocean-mantle-core structure

    Science.gov (United States)

    Wang, Rongjiang; Heimann, Sebastian; Zhang, Yong; Wang, Hansheng; Dahm, Torsten

    2017-09-01

    A hybrid method is proposed to calculate complete synthetic seismograms based on a spherically symmetric and self-gravitating Earth with a multilayered structure of atmosphere, ocean, mantle, liquid core and solid core. For large wavelengths, a numerical scheme is used to solve the geodynamic boundary-value problem without any approximation on the deformation and gravity coupling. With decreasing wavelength, the gravity effect on the deformation becomes negligible and the analytical propagator scheme can be used. Many useful approaches are used to overcome the numerical problems that may arise in both analytical and numerical schemes. Some of these approaches have been established in the seismological community and the others are developed for the first time. Based on the stable and efficient hybrid algorithm, an all-in-one code QSSP is implemented to cover the complete spectrum of seismological interests. The performance of the code is demonstrated by various tests including the curvature effect on teleseismic body and surface waves, the appearance of multiple reflected, teleseismic core phases, the gravity effect on long period surface waves and free oscillations, the simulation of near-field displacement seismograms with the static offset, the coupling of tsunami and infrasound waves, and free oscillations of the solid Earth, the atmosphere and the ocean. QSSP is open source software that can be used as a stand-alone FORTRAN code or may be applied in combination with a Python toolbox to calculate and handle Green's function databases for efficient coding of source inversion problems.

  14. Importance of initial buoyancy field on evolution of mantle thermal structure:Implications of surface boundary conditions

    Institute of Scientific and Technical Information of China (English)

    Petar Glisovic; Alessandro M. Forte

    2015-01-01

    Although there has been significant progress in the seismic imaging of mantle heterogeneity, the outstanding issue that remains to be resolved is the unknown distribution of mantle temperature anomalies in the distant geological past that give rise to the present-day anomalies inferred by global tomography models. To address this question, we present 3-D convection models in compressible and self-gravitating mantle initialised by different hypothetical temperature patterns. A notable feature of our forward convection modelling is the use of self-consistent coupling of the motion of surface tectonic plates to the underlying mantle flow, without imposing prescribed surface velocities (i.e., plate-like boundary condition). As an approximation for the surface mechanical conditions before plate tectonics began to operate we employ the no-slip (rigid) boundary condition. A rigid boundary condition dem-onstrates that the initial thermally-dominated structure is preserved, and its geographical location is fixed during the evolution of mantle flow. Considering the impact of different assumed surface boundary conditions (rigid and plate-like) on the evolution of thermal heterogeneity in the mantle we suggest that the intrinsic buoyancy of seven superplumes is most-likely resolved in the tomographic images of present-day mantle thermal structure. Our convection simulations with a plate-like boundary condition reveal that the evolution of an initial cold anomaly beneath the Java-Indonesian trench system yields a long-term, stable pattern of thermal heterogeneity in the lowermost mantle that resembles the present-day Large Low Shear Velocity Provinces (LLSVPs), especially below the Pacific. The evolution of sub-duction zones may be, however, influenced by the mantle-wide flow driven by deeply-rooted and long-lived superplumes since Archean times. These convection models also detect the intrinsic buoyancy of the Perm Anomaly that has been identified as a unique slow feature

  15. Differentiation and delivery of an enriched deep mantle reservoir during iron descent to the core.

    Science.gov (United States)

    Weeraratne, D. S.; Fleck, J.; Rains, C.; McGeehee, J.; Klein, S. M.; Rincon, J. M.; Olson, P.

    2015-12-01

    Planetary interior differentiation from a bulk silicate chondrite composition is shown by geochemical studies to occur early in planetary evolution producing separated enriched and depleted mantle reservoirs with important implications for the mantle and crustal compositions that we observe today. The absence of an enriched component at the Earth's surface, however, and has lead to implications of a reservoir at the base of the mantle, but the mechanism of differentiation or downward transport of this enriched material is unknown. Here we present results from laboratory fluid dynamic experiments using liquid metal to show that metal-silicate segregation from a metal pond which forms in a magma ocean following meteorite impacts will entrain magma ocean silicate material to the base of the mantle during metal descent to the core. We model liquid iron and silicate magma using emulsified liquid metal gallium in high viscosity glucose solutions which provide the buoyancy ratios and Stokes flow regimes expected for planetary interiors. Preliminary results indicate that emulsion metal droplets sink together as a Rayleigh-Taylor instability and forms a trailing conduit of buoyant solution. Metal droplets form a pile at the base of the box where the low density solution collects, grows, and initially rises back to the surface as a thermo-chemical plume. The remaining buoyant material, which surrounds each droplet, slowly migrates upwards and rises out of the metal pile. These physical experiments scaled to planetary interiors provide important tests of purely theoretical or numerical approximations and indicate that metal-silicate segregation is consistent with rapid core formation times and contributes simultaneously to complex mantle differentiation at all depths. Our observation of entrainment of a silicate-metal conduit provides a model for differentiation and sequestration of an enriched reservoir from a magma ocean to the base of the mantle. The composition and

  16. An early geodynamo driven by exsolution of mantle components from Earth’s core

    Science.gov (United States)

    Badro, James; Siebert, Julien; Nimmo, Francis

    2016-01-01

    Terrestrial core formation occurred in the early molten Earth by gravitational segregation of immiscible metal and silicate melts, stripping iron-loving elements from the silicate mantle to the metallic core1–3, and leaving rock-loving components behind. Here we performed experiments showing that at high enough temperature, Earth’s major rock-loving component, magnesium oxide, can also dissolve in core-forming metallic melts. Our data clearly point to a dissolution reaction, and are in agreement with recent DFT calculations4. Using core formation models5, we further show that a high-temperature event during Earth’s accretion (such as the Moon-forming giant impact6) can contribute significant amounts of magnesium to the early core. As it subsequently cools, the ensuing exsolution7 of buoyant magnesium oxide generates a substantial amount of gravitational energy. This energy is comparable to if not significantly higher than that produced by inner core solidification8 — the primary driver of the Earth’s current magnetic field9–11. Since the inner core is too young12 to explain the existence of an ancient field prior to ~1 billion years, our results solve the conundrum posed by the recent paleomagnetic observation13 of an ancient field at least 3.45 Gyr old. PMID:27437583

  17. Mercury's capture into the 3/2 spin-orbit resonance including the effect of core-mantle friction

    CERN Document Server

    Correia, Alexandre C M; 10.1016/j.icarus.2008.12.034

    2009-01-01

    The rotation of Mercury is presently captured in a 3/2 spin-orbit resonance with the orbital mean motion. The capture mechanism is well understood as the result of tidal interactions with the Sun combined with planetary perturbations. However, it is now almost certain that Mercury has a liquid core, which should induce a contribution of viscous friction at the core-mantle boundary to the spin evolution. This last effect greatly increases the chances of capture in all spin-orbit resonances, being 100% for the 2/1 resonance, and thus preventing the planet from evolving to the presently observed configuration. Here we show that for a given resonance, as the chaotic evolution of Mercury's orbit can drive its eccentricity to very low values during the planet's history, any previous capture can be destabilized whenever the eccentricity becomes lower than a critical value. In our numerical integrations of 1000 orbits of Mercury over 4 Gyr, the spin ends 99.8% of the time captured in a spin-orbit resonance, in partic...

  18. Mantle rock exposures at oceanic core complexes along mid-ocean ridges

    Directory of Open Access Journals (Sweden)

    Ciazela Jakub

    2015-12-01

    Full Text Available The mantle is the most voluminous part of the Earth. However, mantle petrologists usually have to rely on indirect geophysical methods or on material found ex situ. In this review paper, we point out the in-situ existence of oceanic core complexes (OCCs, which provide large exposures of mantle and lower crustal rocks on the seafloor on detachment fault footwalls at slow-spreading ridges. OCCs are a common structure in oceanic crust architecture of slow-spreading ridges. At least 172 OCCs have been identified so far and we can expect to discover hundreds of new OCCs as more detailed mapping takes place. Thirty-two of the thirty-nine OCCs that have been sampled to date contain peridotites. Moreover, peridotites dominate in the plutonic footwall of 77% of OCCs. Massive OCC peridotites come from the very top of the melting column beneath ocean ridges. They are typically spinel harzburgites and show 11.3–18.3% partial melting, generally representing a maximum degree of melting along a segment. Another key feature is the lower frequency of plagioclase-bearing peridotites in the mantle rocks and the lower abundance of plagioclase in the plagioclase-bearing peridotites in comparison to transform peridotites. The presence of plagioclase is usually linked to impregnation with late-stage melt. Based on the above, OCC peridotites away from segment ends and transforms can be treated as a new class of abyssal peridotites that differ from transform peridotites by a higher degree of partial melting and lower interaction with subsequent transient melt.

  19. Determining the Metal/Silicate Partition Coefficient of Germanium: Implications for Core and Mantle Differentiation.

    Science.gov (United States)

    King, C.; Righter, K.; Danielson, L.; Pando, K.; Lee, C.

    2010-01-01

    Currently there are several hypotheses for the thermal state of the early Earth. Some hypothesize a shallow magma ocean, or deep magma ocean, or heterogeneous accretion which requires no magma ocean at all. Previous models are unable to account for Ge depletion in Earth's mantle relative to CI chondrites. In this study, the element Ge is used to observe the way siderophile elements partition into the metallic core. The purpose of this research is to provide new data for Ge and to further test these models for Earth's early stages. The partition coefficients (D(sub Ge) = c(sub metal)/c(sub silicate), where D = partition coefficient of Ge and c = concentration of Ge in the metal and silicate, respectively) of siderophile elements were studied by performing series of high pressure, high temperature experiments. They are also dependent on oxygen fugacity, and metal and silicate composition. Ge is a moderately siderophile element found in both the mantle and core, and has yet to be studied systematically at high temperatures. Moreover, previous work has been limited by the low solubility of Ge in silicate melts (less than 100 ppm and close to detection limits for electron microprobe analysis). Reported here are results from 14 experiments studying the partitioning of Ge between silicate and metallic liquids. The Ge concentrations were then analyzed using Laser Ablation Inductively Coupled Mass Spectrometry (LA-ICP-MS) which is sensitive enough to detect ppm levels of Ge in the silicate melt.

  20. Dislocation-accommodated grain boundary sliding as the major deformation mechanism of olivine in the Earth's upper mantle.

    Science.gov (United States)

    Ohuchi, Tomohiro; Kawazoe, Takaaki; Higo, Yuji; Funakoshi, Ken-Ichi; Suzuki, Akio; Kikegawa, Takumi; Irifune, Tetsuo

    2015-10-01

    Understanding the deformation mechanisms of olivine is important for addressing the dynamic processes in Earth's upper mantle. It has been thought that dislocation creep is the dominant mechanism because of extrapolated laboratory data on the plasticity of olivine at pressures below 0.5 GPa. However, we found that dislocation-accommodated grain boundary sliding (DisGBS), rather than dislocation creep, dominates the deformation of olivine under middle and deep upper mantle conditions. We used a deformation-DIA apparatus combined with synchrotron in situ x-ray observations to study the plasticity of olivine aggregates at pressures up to 6.7 GPa (that is, ~200-km depth) and at temperatures between 1273 and 1473 K, which is equivalent to the conditions in the middle region of the upper mantle. The creep strength of olivine deforming by DisGBS is apparently less sensitive to pressure because of the competing pressure-hardening effect of the activation volume and pressure-softening effect of water fugacity. The estimated viscosity of olivine controlled by DisGBS is independent of depth and ranges from 10(19.6) to 10(20.7) Pa·s throughout the asthenospheric upper mantle with a representative water content (50 to 1000 parts per million H/Si), which is consistent with geophysical viscosity profiles. Because DisGBS is a grain size-sensitive creep mechanism, the evolution of the grain size of olivine is an important process controlling the dynamics of the upper mantle.

  1. New observational and experimental evidence for a plume-fed asthenosphere boundary layer in mantle convection

    Science.gov (United States)

    Morgan, J. P.; Hasenclever, J.; Shi, C.

    2013-03-01

    The textbook view is that the asthenosphere is the place beneath the tectonic plates where competing temperature and pressure effects on mantle rheology result in the lowest viscosity region of Earth's mantle. We think the sub-oceanic asthenosphere exists for a different reason, that instead it is where rising plumes of hot mantle stall and spread out beneath the strong tectonic plates. Below this plume-fed asthenosphere is a thermal and density inversion with cooler underlying average-temperature mantle. Here we show several recent seismic studies that are consistent with a plume-fed asthenosphere. These include the seismic inferences that asthenosphere appears to resist being dragged down at subduction zones, that a sub-oceanic thermal inversion ∼250-350 km deep is needed to explain the seismic velocity gradient there for an isochemical mantle, that a fast 'halo' of shear-wave travel-times surrounds the Hawaiian plume conduit, and that an apparent seismic reflector is found ∼300 km beneath Pacific seafloor near Hawaii. We also present 2D axisymmetric and 3D numerical experiments that demonstrate these effects in internally consistent models with a plume-fed asthenosphere. If confirmed, the existence of a plume-fed asthenosphere will change our understanding of the dynamics of mantle convection and melting, and the links between surface plate motions and mantle convection.

  2. Core-Mantle Partitioning of Volatile Siderophile Elements and the Origin of Volatile Elements in the Earth

    Science.gov (United States)

    Nickodem, K.; Righter, K.; Danielson, L.; Pando, K.; Lee, C.

    2012-01-01

    There are currently several hypotheses on the origin of volatile siderophile elements in the Earth. One hypothesis is that they were added during Earth s accretion and core formation and mobilized into the metallic core [1], others claim multiple stage origin [2], while some hypothesize that volatiles were added after the core already formed [3]. Several volatile siderophile elements are depleted in Earth s mantle relative to the chondrites, something which continues to puzzle many scientists. This depletion is likely due to a combination of volatility and core formation. The Earth s core is composed of Fe and some lighter constituents, although the abundances of these lighter elements are unknown [4]. Si is one of these potential light elements [5] although few studies have analyzed the effect of Si on metal-silicate partitioning, in particular the volatile elements. As, In, Ge, and Sb are trace volatile siderophile elements which are depleted in the mantle but have yet to be extensively studied. The metal-silicate partition coefficients of these elements will be measured to determine the effect of Si. Partition coefficients depend on temperature, pressure, oxygen fugacity, and metal and silicate composition and can constrain the concentrations of volatile, siderophile elements found in the mantle. Reported here are the results from 13 experiments examining the partitioning of As, In, Ge, and Sb between metallic and silicate liquid. These experiments will examine the effect of temperature, and metal-composition (i.e., Si content) on these elements in or-der to gain a greater understanding of the core-mantle separation which occurred during the Earth s early stages. The data can then be applied to the origin of volatile elements in the Earth.

  3. Theoretical prediction of new mineral phases in Earth's mantle and core (Invited)

    Science.gov (United States)

    Oganov, A. R.

    2010-12-01

    After theoretical-experimental discovery of MgSiO3 post-perovskite [1,2], many other important mineral phases have been proposed in the deep Earth’s interior. We have developed [3] and further enhanced [4] an evolutionary method for predicting the most stable crystal structure at given thermodynamic conditions. Here, I will illustrate several examples from our recent works. For example, we have predicted new phases of CaCO3, MgCO3 and CO2 at Earth’s mantle pressures, and many of these phases have already found experimental support [5-7]. These results shed new light on the behavior of carbon in the Earth’s mantle [7]. More recently, we have studied the behavior of methane at high pressures and temperatures [8], and we confirm that indeed CH4 should break down under pressure - first, into hydrocarbons (ethane, butane) and hydrogen, and then into diamond and hydrogen. Crucial role here is played by lattice vibrations (zero-point vibrations and entropic factor). These vibrational effects are frequently neglected, but we have demonstrated that without them the decomposition into diamond and hydrogen would not be possible. Considering variable-composition systems, we have demonstrated [9] that FeSi with the CsCl-type structure is the only iron silicide stable at pressures of the Earth’s inner core. Similar studies can be performed also for Fe-O, Fe-S, Fe-O and Fe-H systems, addressing the common assumptions on their behavior at ultrahigh pressures of the inner core. REFERENCES: [1] Murakami M., et al., Science 304, 855-858 (2004). [2] Oganov A.R., Ono S., Nature 430, 445-448 (2004). [3] Oganov A.R., Glass C.W., J. Chem. Phys. 124, 244704 (2006). [4] Lyakhov A.O., Oganov A.R., Valle M. Comp. Phys. Comm. 181, 1623-1632 (2010). [5] Oganov A.R., Glass C.W., Ono S., Earth Planet. Sci. Lett. 241, 95-103 (2006). [6] Ono S., Kikegawa T., Ohishi Y. Am. Mineral. 92, 1246-1249 (2007). [7] Oganov A.R., et al., Earth Planet. Sci. Lett. 273, 38-47 (2008). [8] Gao G., Oganov A

  4. Irregular topography at the Earth’s inner core boundary

    Science.gov (United States)

    Dai, Zhiyang; Wang, Wei; Wen, Lianxing

    2012-01-01

    Compressional seismic wave reflected off the Earth’s inner core boundary (ICB) from earthquakes occurring in the Banda Sea and recorded at the Hi-net stations in Japan exhibits significant variations in travel time (from -2 to 2.5 s) and amplitude (with a factor of more than 4) across the seismic array. Such variations indicate that Earth’s ICB is irregular, with a combination of at least two scales of topography: a height variation of 14 km changing within a lateral distance of no more than 6 km, and a height variation of 4–8 km with a lateral length scale of 2–4 km. The characteristics of the ICB topography indicate that small-scale variations of temperature and/or core composition exist near the ICB, and/or the ICB topographic surface is being deformed by small-scale forces out of its thermocompositional equilibrium position and is metastable. PMID:22547788

  5. Irregular topography at the Earth's inner core boundary.

    Science.gov (United States)

    Dai, Zhiyang; Wang, Wei; Wen, Lianxing

    2012-05-15

    Compressional seismic wave reflected off the Earth's inner core boundary (ICB) from earthquakes occurring in the Banda Sea and recorded at the Hi-net stations in Japan exhibits significant variations in travel time (from -2 to 2.5 s) and amplitude (with a factor of more than 4) across the seismic array. Such variations indicate that Earth's ICB is irregular, with a combination of at least two scales of topography: a height variation of 14 km changing within a lateral distance of no more than 6 km, and a height variation of 4-8 km with a lateral length scale of 2-4 km. The characteristics of the ICB topography indicate that small-scale variations of temperature and/or core composition exist near the ICB, and/or the ICB topographic surface is being deformed by small-scale forces out of its thermocompositional equilibrium position and is metastable.

  6. Core-Mantle Partitioning of Volatile Elements and the Origin of Volatile Elements in Earth and Moon

    Science.gov (United States)

    Righter, K.; Pando, K.; Danielson, L.; Nickodem, K.

    2014-01-01

    Depletions of siderophile elements in mantles have placed constraints on the conditions on core segregation and differentiation in bodies such as Earth, Earth's Moon, Mars, and asteroid 4 Vesta. Among the siderophile elements there are a sub-set that are also volatile (volatile siderophile elements or VSE; Ga, Ge, In, As, Sb, Sn, Bi, Zn, Cu, Cd), and thus can help to constrain the origin of volatile elements in these bodies, and in particular the Earth and Moon. One of the fundamental observations of the geochemistry of the Moon is the overall depletion of volatile elements relative to the Earth, but a satisfactory explanation has remained elusive. Hypotheses for Earth include addition during accretion and core formation and mobilized into the metallic core, multiple stage origin, or addition after the core formed. Any explanation for volatile elements in the Earth's mantle must also be linked to an explanation of these elements in the lunar mantle. New metal-silicate partitioning data will be applied to the origin of volatile elements in both the Earth and Moon, and will evaluate theories for exogenous versus endogenous origin of volatile elements.

  7. Rutile is holding Nb and Ta in the mantle, negligible Nb and Ta in the core

    Science.gov (United States)

    McDonough, W. F.; Rudnick, R. L.

    2008-12-01

    Continental Crust has a significant depletion in Nb and Ta relative to La that has been attributed to convergent margin (arc) magmatism and greater retention of Nb and Ta in the mantle source. This depleted pattern is a consequence of the plotting order of elements, which has been established by the relative partitioning behavior of elements during MORB-OIB genesis. It is our hypothesis that rutile in subducting slabs or delaminated lower continental crust is the important phase causing Nb(Ta)-depletion in the continental crust, as well as lowering its Nb/Ta. Experimental studies reveal a range of Nb/Ta fractionation responses in residual rutile depending on temperature and phase relations(melting vs dehydration). Examples of rutile-bearing, refractory eclogites have been identified that serve as analog materials for residues of the continental crust. These rutiles have radiogenic Hf isotopes (Vervoort, unpubl. data), and thus are not recent precipitates from metasomatic melts, as has been recently suggested. What remains is to understand the total silicate Earth's mass balance. In this regard, it is worth noting that early Archean Barbarton komatiites possess chondritic La/Nb ratios, and Nb/Ta ~15, a value comparable to Allende CV3 chondrite. This observation is not consistent with the storage of Nb (or Ta) in the core and suggests that the silicate Earth controls the planetary budget of Nb and Ta. Constraints on the amount of Nb in the core must be evaluated by multi-element approaches, using ratios of refractory lithophile elements. Chondritic ratios for La/Nb and Nb/Ta are not defined simply as a single value with a restricted range and are not always constant, with examples of both negligible and distinct differences between groups of chondrites. The database for chondrites is still small for Nb and Ta.

  8. Zoned mantle convection.

    Science.gov (United States)

    Albarède, Francis; Van Der Hilst, Rob D

    2002-11-15

    We review the present state of our understanding of mantle convection with respect to geochemical and geophysical evidence and we suggest a model for mantle convection and its evolution over the Earth's history that can reconcile this evidence. Whole-mantle convection, even with material segregated within the D" region just above the core-mantle boundary, is incompatible with the budget of argon and helium and with the inventory of heat sources required by the thermal evolution of the Earth. We show that the deep-mantle composition in lithophilic incompatible elements is inconsistent with the storage of old plates of ordinary oceanic lithosphere, i.e. with the concept of a plate graveyard. Isotopic inventories indicate that the deep-mantle composition is not correctly accounted for by continental debris, primitive material or subducted slabs containing normal oceanic crust. Seismological observations have begun to hint at compositional heterogeneity in the bottom 1000 km or so of the mantle, but there is no compelling evidence in support of an interface between deep and shallow mantle at mid-depth. We suggest that in a system of thermochemical convection, lithospheric plates subduct to a depth that depends - in a complicated fashion - on their composition and thermal structure. The thermal structure of the sinking plates is primarily determined by the direction and rate of convergence, the age of the lithosphere at the trench, the sinking rate and the variation of these parameters over time (i.e. plate-tectonic history) and is not the same for all subduction systems. The sinking rate in the mantle is determined by a combination of thermal (negative) and compositional buoyancy and as regards the latter we consider in particular the effect of the loading of plates with basaltic plateaux produced by plume heads. Barren oceanic plates are relatively buoyant and may be recycled preferentially in the shallow mantle. Oceanic plateau-laden plates have a more pronounced

  9. A Mercury-like component of early Earth yields uranium in the core and high mantle (142)Nd.

    Science.gov (United States)

    Wohlers, Anke; Wood, Bernard J

    2015-04-16

    Recent (142)Nd isotope data indicate that the silicate Earth (its crust plus the mantle) has a samarium to neodymium elemental ratio (Sm/Nd) that is greater than that of the supposed chondritic building blocks of the planet. This elevated Sm/Nd has been ascribed either to a 'hidden' reservoir in the Earth or to loss of an early-formed terrestrial crust by impact ablation. Since removal of crust by ablation would also remove the heat-producing elements--potassium, uranium and thorium--such removal would make it extremely difficult to balance terrestrial heat production with the observed heat flow. In the 'hidden' reservoir alternative, a complementary low-Sm/Nd layer is usually considered to reside unobserved in the silicate lower mantle. We have previously shown, however, that the core is a likely reservoir for some lithophile elements such as niobium. We therefore address the question of whether core formation could have fractionated Nd from Sm and also acted as a sink for heat-producing elements. We show here that addition of a reduced Mercury-like body (or, alternatively, an enstatite-chondrite-like body) rich in sulfur to the early Earth would generate a superchondritic Sm/Nd in the mantle and an (142)Nd/(144)Nd anomaly of approximately +14 parts per million relative to chondrite. In addition, the sulfur-rich core would partition uranium strongly and thorium slightly, supplying a substantial part of the 'missing' heat source for the geodynamo.

  10. Seismological evidence for a localized mushy zone at the Earth's inner core boundary.

    Science.gov (United States)

    Tian, Dongdong; Wen, Lianxing

    2017-08-01

    Although existence of a mushy zone in the Earth's inner core has been hypothesized several decades ago, no seismic evidence has ever been reported. Based on waveform modeling of seismic compressional waves that are reflected off the Earth's inner core boundary, here we present seismic evidence for a localized 4-8 km thick zone across the inner core boundary beneath southwest Okhotsk Sea with seismic properties intermediate between those of the inner and outer core and of a mushy zone. Such a localized mushy zone is found to be surrounded by a sharp inner core boundary nearby. These seismic results suggest that, in the current thermo-compositional state of the Earth's core, the outer core composition is close to eutectic in most regions resulting in a sharp inner core boundary, but deviation from the eutectic composition exists in some localized regions resulting in a mushy zone with a thickness of 4-8 km.The existence of a mushy zone in the Earth's inner core has been suggested, but has remained unproven. Here, the authors have discovered a 4-8 km thick mushy zone at the inner core boundary beneath the Okhotsk Sea, indicating that there may be more localized mushy zones at the inner core boundary.

  11. Investigations of Eurasian Seismic Sources and Upper Mantle Structure

    Science.gov (United States)

    1989-05-25

    in classical Earth models include the free surface, the Mohorovicic (M) discontinuity, the core-mantle boundary (CMB), and the inner core-outer core...rather to the superposition of first- and higher-order reverberations generated at the Mohorovicic (M) discontinuity. Figure 3.1 depicts the effect of

  12. The tungsten isotopic composition of Eoarchean rocks: Implications for early silicate differentiation and core-mantle interaction on Earth

    Science.gov (United States)

    Iizuka, Tsuyoshi; Nakai, Shun'ichi; Sahoo, Yu Vin; Takamasa, Asako; Hirata, Takafumi; Maruyama, Shigenori

    2010-03-01

    We have measured 182W/ 184W for Eoarchean rocks from the Itsaq Gneiss Complex (3.8-3.7 Ga pillow meta-basalts, a meta-tonalite, and meta-sediments) and Acasta Gneiss Complex (4.0-3.6 Ga felsic orthogneisses) to assess possible W isotopic heterogeneity within the silicate Earth and to constrain W isotopic evolution of the mantle. The data reveal that 182W/ 184W values in the Eoarchean samples are uniform within the analytical error and indistinguishable from the modern accessible mantle signature, suggesting that the W isotopic composition of the upper mantle has not changed significantly since the Eoarchean era. The results imply either that chemical communication between the mantle and core has been insignificant in post-Hadean times, or that a lowermost mantle with a distinctive W isotope signature has been isolated from mantle convective cycling. Most terrestrial rock samples have a 0.2 ɛ142Nd/ 144Nd higher than the chondrite average. This requires either the presence of a hidden enriched reservoir formed within the first 30 Ma of the Solar System, or the bulk Earth having a ˜ 5% higher Sm/Nd than the chondrite average. We explored the relevance of the 182Hf- 182W isotope system to the 146Sm- 142Nd isotope system during early silicate differentiation events on Earth. In this context, we demonstrate that the lack of resolvable 182W excesses in the Itsaq rocks, despite 142Nd excesses compared to the modern accessible mantle, is more consistent with the view that the bulk Earth has a non-chondritic Sm/Nd. In the non-chondritic Sm/Nd Earth model, the 182W- 142Nd chronometry constrains the age of the source mantle depletion for the Itsaq samples to more than ˜ 40 Ma after the Solar System origin. Our results cannot confirm the previous report of 182W anomalies in the Eoarchean Itsaq meta-sediments, which were interpreted as reflecting an impact-derived meteoritic component.

  13. Radiative conductivity and abundance of post-perovskite in the lowermost mantle

    CERN Document Server

    Lobanov, Sergey S; Lin, Jung-Fu; Goncharov, Alexander F

    2016-01-01

    Thermal conductivity of the lowermost mantle governs the heat flow out of the core energizing planetary-scale geological processes. Yet, there are no direct experimental measurements of thermal conductivity at relevant pressure-temperature conditions of Earth's core-mantle boundary. Here we determine the radiative conductivity of post-perovskite at near core-mantle boundary conditions by optical absorption measurements in a laser-heated diamond anvil cell. Our results show that the radiative conductivity of Mg0.9Fe0.1SiO3 post-perovskite (< 1.2 W/m/K) is ~ 40% smaller than bridgmanite at the base of the mantle. By combining this result with the present-day core-mantle heat flow and available estimations on the lattice thermal conductivity we conclude that post-perovskite is as abundant as bridgmanite in the lowermost mantle which has profound implications for the dynamics of the deep Earth.

  14. Lower mantle heterogeneity, dynamic topography and the geoid

    Science.gov (United States)

    Hager, B. H.; Clayton, R. W.; Richards, M. A.; Comer, R. P.; Dziewonski, A. M.

    1985-01-01

    Density contrasts in the lower mantle, recently imaged using seismic tomography, drive convective flow which results in kilometers of dynamically maintained topography at the core-mantle boundary and at the earth's surface. The total gravity field due to interior density constrasts and boundary topography predicts the largest wavelength components of the geoid remarkably well. Neglecting dynamic surface deformation leads to geoid anomalies of opposite sign than are observed.

  15. Dust evolution, a global view: III. Core/mantle grains, organic nano-globules, comets and surface chemistry

    Science.gov (United States)

    Jones, A. P.

    2016-12-01

    Within the framework of The Heterogeneous dust Evolution Model for Interstellar Solids (THEMIS), this work explores the surface processes and chemistry relating to core/mantle interstellar and cometary grain structures and their influence on the nature of these fascinating particles. It appears that a realistic consideration of the nature and chemical reactivity of interstellar grain surfaces could self-consistently and within a coherent framework explain: the anomalous oxygen depletion, the nature of the CO dark gas, the formation of `polar ice' mantles, the red wing on the 3 μm water ice band, the basis for the O-rich chemistry observed in hot cores, the origin of organic nano-globules and the 3.2 μm `carbonyl' absorption band observed in comet reflectance spectra. It is proposed that the reaction of gas phase species with carbonaceous a-C(:H) grain surfaces in the interstellar medium, in particular the incorporation of atomic oxygen into grain surfaces in epoxide functional groups, is the key to explaining these observations. Thus, the chemistry of cosmic dust is much more intimately related with that of the interstellar gas than has previously been considered. The current models for interstellar gas and dust chemistry will therefore most likely need to be fundamentally modified to include these new grain surface processes.

  16. Deep Mantle Seismic Modeling and Imaging

    Science.gov (United States)

    Lay, Thorne; Garnero, Edward J.

    2011-05-01

    Detailed seismic modeling and imaging of Earth's deep interior is providing key information about lower-mantle structures and processes, including heat flow across the core-mantle boundary, the configuration of mantle upwellings and downwellings, phase equilibria and transport properties of deep mantle materials, and mechanisms of core-mantle coupling. Multichannel seismic wave analysis methods that provide the highest-resolution deep mantle structural information include network waveform modeling and stacking, array processing, and 3D migrations of P- and S-wave seismograms. These methods detect and identify weak signals from structures that cannot be resolved by global seismic tomography. Some methods are adapted from oil exploration seismology, but all are constrained by the source and receiver distributions, long travel paths, and strong attenuation experienced by seismic waves that penetrate to the deep mantle. Large- and small-scale structures, with velocity variations ranging from a fraction of a percent to tens of percent, have been detected and are guiding geophysicists to new perspectives of thermochemical mantle convection and evolution.

  17. The demography of range boundaries versus range cores in eastern US tree species.

    Science.gov (United States)

    Purves, Drew W

    2009-04-22

    Regional species-climate correlations are well documented, but little is known about the ecological processes responsible for generating these patterns. Using the data from over 690,000 individual trees I estimated five demographic rates--canopy growth, understorey growth, canopy lifespan, understorey lifespan and per capita reproduction--for 19 common eastern US tree species, within the core and the northern and southern boundaries, of the species range. Most species showed statistically significant boundary versus core differences in most rates at both boundary types. Differences in canopy and understorey growth were relatively small in magnitude but consistent among species, being lower at the northern (average -17%) and higher at the southern (average +12%) boundaries. Differences in lifespan were larger in magnitude but highly variable among species, except for a marked trend for reduced canopy lifespan at the northern boundary (average -49%). Differences in per capita reproduction were large and statistically significant for some species, but highly variable among species. The rate estimates were combined to calculate two performance indices: R(0) (a measure of lifetime fitness in the absence of competition) was consistently lower at the northern boundary (average -86%) whereas Z* (a measure of competitive ability in closed forest) showed no sign of a consistent boundary-core difference at either boundary.

  18. Magnetic mapping of (carbonated) oceanic crust-mantle boundary: New insights from Linnajavri, northern Norway

    Science.gov (United States)

    Tominaga, M.; Beinlich, A.; Tivey, M.; Andrade Lima, E.; Weiss, B. P.

    2012-12-01

    The contribution of lower oceanic crust and upper mantle to marine magnetic anomalies has long been recognized, but the detailed magnetic character of this non-volcanic source layer remains to be fully defined. Here, we report preliminary results of a magnetic survey and source characterization of a "carbonated" oceanic Moho (petrological "Mohorovicic discontinuity") sequence observed at the Linnajavri Serpentinite Complex (LSC), northern Norway. The LSC is located at 67° 36'N and 16° 24'E within the upper Allochthon of the Norwegian Caledonides and represents a dismembered ophiolite. Particularly in the southern ("Ridoalggicohkka") area of the LSC, gabbro, serpentinite and its talc-carbonate (soapstone) and quartz-carbonate (listvenite) altered equivalents are extraordinarily well-exposed [1]. An intact oceanic Moho is exposed here, despite its complex tectonic setting. The small degree of arctic rock weathering (≤ 2 mm weathering surface) allowed for detailed regional-scale surface magnetic mapping across alteration fronts (serpentinite-soapstone; soapstone-listvenite) and lithological contacts (soapstone-gabbro). Magnetic mapping was conducted using a handheld 3-axis magnetometer, surface-towed resistivity meter and Teka surface magnetic susceptometer with sample spacing of 1 m. Geophysical field mapping was combined with petrological observations and scanning SQUID microscopy (SM) mapping conducted on thin sections from rock samples that were drilled along the survey lines. Regional scale magnetic mapping indicates that the total magnetic field across both the "carbonated" Moho and the soapstone-serpentinite interfaces show higher frequency changes in their magnetic anomaly character and amplitudes than the surface-towed resistivity data. SQUID microscopy mapping of both natural remanence magnetization (NRM) and anhysteretic remanence magnetization (ARM) on gabbro, serpentinite, soapstone, and listvenite samples, with a sensor-sample separation of ˜190

  19. Strong, Multi-Scale Heterogeneity in Earth's Lowermost Mantle.

    Science.gov (United States)

    Tkalčić, Hrvoje; Young, Mallory; Muir, Jack B; Davies, D Rhodri; Mattesini, Maurizio

    2015-12-17

    The core mantle boundary (CMB) separates Earth's liquid iron outer core from the solid but slowly convecting mantle. The detailed structure and dynamics of the mantle within ~300 km of this interface remain enigmatic: it is a complex region, which exhibits thermal, compositional and phase-related heterogeneity, isolated pockets of partial melt and strong variations in seismic velocity and anisotropy. Nonetheless, characterising the structure of this region is crucial to a better understanding of the mantle's thermo-chemical evolution and the nature of core-mantle interactions. In this study, we examine the heterogeneity spectrum from a recent P-wave tomographic model, which is based upon trans-dimensional and hierarchical Bayesian imaging. Our tomographic technique avoids explicit model parameterization, smoothing and damping. Spectral analyses reveal a multi-scale wavelength content and a power of heterogeneity that is three times larger than previous estimates. Inter alia, the resulting heterogeneity spectrum gives a more complete picture of the lowermost mantle and provides a bridge between the long-wavelength features obtained in global S-wave models and the short-scale dimensions of seismic scatterers. The evidence that we present for strong, multi-scale lowermost mantle heterogeneity has important implications for the nature of lower mantle dynamics and prescribes complex boundary conditions for Earth's geodynamo.

  20. Inner Core Rotation from Geomagnetic Westward Drift and a Stationary Spherical Vortex in Earth's Core

    Science.gov (United States)

    Voorhies, C. V.

    1999-01-01

    The idea that geomagnetic westward drift indicates convective leveling of the planetary momentum gradient within Earth's core is pursued in search of a differentially rotating mean state, upon which various oscillations and secular effects might be superimposed. The desired state conforms to roughly spherical boundary conditions, minimizes dissipative interference with convective cooling in the bulk of the core, yet may aide core cooling by depositing heat in the uppermost core and lower mantle. The variational calculus of stationary dissipation applied to a spherical vortex within the core yields an interesting differential rotation profile akin to spherical Couette flow bounded by thin Hartmann layers. Four boundary conditions are required. To concentrate shear induced dissipation near the core-mantle boundary, these are taken to be: (i) no-slip at the core-mantle interface; (ii) geomagnetically estimated bulk westward flow at the base of the core-mantle boundary layer; (iii) no-slip at the inner-outer core interface; and, to describe magnetic locking of the inner core to the deep outer core, (iv) hydrodynamically stress-free at the inner-outer core boundary. By boldly assuming the axial core angular momentum anomaly to be zero, the super-rotation of the inner core is calculated to be at most 1.5 degrees per year.

  1. A model for osmium isotopic evolution of metallic solids at the core-mantle boundary

    National Research Council Canada - National Science Library

    Munir Humayun

    2011-01-01

      Radiogenic and unradiogenic Os isotopes require a new physical model A cumulate pile model of the CMB provides a suitable explanation Other isotope systematics are consistent with this model Some...

  2. Using pre-critical PKiKP-PcP phases to constrain the regional structures of the inner core boundary beneath East Asia

    Science.gov (United States)

    Shen, Zhongyin; Ai, Yinshuang; He, Yumei; Jiang, Mingming

    2016-03-01

    We collected 177 pre-critical PKiKP-PcP records, assembling a wealth of traveltime and amplitude data. These observations sample the inner core boundary (ICB) beneath East Asia with good spatial coverage. Combined with previous studies, our results demonstrate a 100-km-wide anomaly with positive PKiKP-PcP traveltime residuals surrounded by negatives beneath the Yellow Sea area (123°E, 33°N) (Yellow Sea anomaly). After correcting the elliptic effects and mantle Vp heterogeneities based on the tomography models, the residuals of the Yellow Sea anomaly remain at least 0.6 s faster than those of the surrounding areas, suggesting a thickening of 2-3 km between the ICB and core mantle boundary (CMB). Due to the negative CMB topography along the western Pacific rim, we attribute this anomaly mainly to negative ICB topography. Across the northern border of the Yellow Sea anomaly, PKiKP/PcP amplitude ratios increase by approximately 50% from north to south, which can be explained by an approximately 0.6 g/cm3 raise in ICB density contrast. These traveltime and amplitude features suggest a mosaic structure at the ICB beneath the Yellow Sea areas.

  3. Nature of the seismic lithosphere-asthenosphere boundary within normal oceanic mantle from high-resolution receiver functions

    Science.gov (United States)

    Olugboji, Tolulope Morayo; Park, Jeffrey; Karato, Shun-ichiro; Shinohara, Masanao

    2016-04-01

    Receiver function observations in the oceanic upper mantle can test causal mechanisms for the depth, sharpness, and age dependence of the seismic wave speed decrease thought to mark the lithosphere-asthenosphere boundary (LAB). We use a combination of frequency-dependent harmonic decomposition of receiver functions and synthetic forward modeling to provide new seismological constraints on this "seismic LAB" from 17 ocean-bottom stations and 2 borehole stations in the Philippine Sea and northwest Pacific Ocean. Underneath young oceanic crust, the seismic LAB depth follows the ˜1300 K isotherm but a lower isotherm (˜1000 K) is suggested in the Daito ridge, the Izu-Bonin-Mariana trench, and the northern Shikoku basin. Underneath old oceanic crust, the seismic LAB lies at a constant depth ˜70 km. The age dependence of the seismic LAB depth is consistent with either a transition to partial-melt conditions or a subsolidus rheological change as the causative factor. The age dependence of interface sharpness provides critical information to distinguish these two models. Underneath young oceanic crust, the velocity gradient is gradational, while for old oceanic crust, a sharper velocity gradient is suggested by the receiver functions. This behavior is consistent with the prediction of the subsolidus model invoking anelastic relaxation mediated by temperature and water content, but is not readily explained by a partial-melt model. The Ps conversions display negligible two-lobed or four-lobed back azimuth dependence in harmonic stacks, suggesting that a sharp change in azimuthal anisotropy with depth is not responsible for them. We conclude that these ocean-bottom observations indicate a subsolidus elastically accommodated grain-boundary sliding (EAGBS) model for the seismic LAB. Because EAGBS does not facilitate long-term ductile deformation, the seismic LAB may not coincide with the conventional transition from lithosphere to asthenosphere corresponding to a change in

  4. Seismic anisotropy; a window on how the Earth works: multiple mechanisms and sites, from shallow mantle to inner core

    Science.gov (United States)

    Osmaston, Miles

    2013-04-01

    Since the seismic anisotropy (SA) in the uppermost oceanic mantle was discovered [1] and attributed to the shearing of olivine by an MOR-divergent flow velocity gradient, rheological mobility interpretations of this type have dominated studies of SA there and elsewhere in the Earth. Here I describe two other SA-generating mechanisms. I will reason that one of these, the anisotropic crystallization from melt, bids fair largely to replace the shearing one and be present in even larger volumes of the Earth, both within its outer 100km and in the Inner Core. The other, the layered deposition of disparate substances, offers to explain the ULVZs and SA in D''. We start with the Upper Mantle. New constraints on its rheological properties and dynamical behaviour have come from two directions. Firstly, contrary to the seismologists' rule-book, the oceanic LVZ is no longer to be thought of as mobile because the presence of interstitial melt strips out the water-weakening of the mineral structure [2, 3]. So we require a substitute for the divergent-flow model for MORs. In fact it also has three other, apparently unrecognized, dynamical inconsistencies. One of these [4] is that there are in the record many rapid changes of spreading rate and direction, and ridge jumps. This cannot happen with a process driven by slow-to-change body forces. Secondly, during the past decade, my work on the global dynamics for the past 150Ma (I will show examples) has shown [4 - 7] that the tectospheres of cratons must extend to very close to the bottom of the upper mantle. And that East Antarctica's 'keel' must actually reach it, because its CW rotation [7] suggests it has been picking up an electromagnetic torque from the CMB via the lower mantle. Xenoliths suggest that the reason for this downwards extent of 'keels' is the same as [3]. To meet these two sets of constraints I will demonstrate my now not-so-new MOR model, which has a narrow, wall-accreting subaxial crack. Among its many features

  5. Highly siderophile element (HSE) abundances in the mantle of Mars are due to core formation at high pressure and temperature

    Science.gov (United States)

    Righter, K.; Danielson, L. R.; Pando, K. M.; Williams, J.; Humayun, M.; Hervig, R. L.; Sharp, T. G.

    2015-04-01

    Highly siderophile elements (HSEs) can be used to understand accretion and core formation in differentiated bodies, due to their strong affinity for FeNi metal and sulfides. Coupling experimental studies of metal-silicate partitioning with analyses of HSE contents of Martian meteorites can thus offer important constraints on the early history of Mars. Here, we report new metal-silicate partitioning data for the PGEs and Au and Re across a wide range of pressure and temperature space, with three series designed to complement existing experimental data sets for HSE. The first series examines temperature effects for D(HSE) in two metallic liquid compositions—C-bearing and C-free. The second series examines temperature effects for D(Re) in FeO-bearing silicate melts and FeNi-rich alloys. The third series presents the first systematic study of high pressure and temperature effects for D(Au). We then combine our data with previously published partitioning data to derive predictive expressions for metal-silicate partitioning of the HSE, which are subsequently used to calculate HSE concentrations of the Martian mantle during continuous accretion of Mars. Our results show that at midmantle depths in an early magma ocean (equivalent to approximately 14 GPa, 2100 °C), the HSE contents of the silicate fraction are similar to those observed in the Martian meteorite suite. This is in concert with previous studies on moderately siderophile elements. We then consider model calculations that examine the role of melting, fractional crystallization, and sulfide saturation/undersaturation in establishing the range of HSE contents in Martian meteorites derived from melting of the postcore formation mantle. The core formation modeling indicates that the HSE contents can be established by metal-silicate equilibrium early in the history of Mars, thus obviating the need for a late veneer for HSE, and by extension volatile siderophile elements, or volatiles in general.

  6. Radial And Lateral Topographic Scales of the Inner-Core Boundary

    Science.gov (United States)

    Zheng, Y.; Cormier, V. F.; Fehler, M. C.

    2012-12-01

    Strong seismic evidence suggests that the inner core boundary region is dynamic. First, the strong PKP-df coda wave train in the previous time-lapse studies using earthquake doublets cannot be explained by simple rotation of the anisotropic inner core. Second, the observed PKiKP reflection amplitude from nuclear tests does not follow the prediction of a simple spherical model such as the PREM or IASP91. Third, observed amplitude and the traveltime of the PKP C-diff arrival favor different but inconsistent models (PREM-like linear gradient and IASP91-like no gradient, respectively) for the lowermost outer core. Fourth, we observed a seismic phase that had not been reported in the literature in the range of 150-153 degrees, which is about 2.0 seconds after the PKP-df and it has slightly positive slowness deviation compared to the PKIKP-df. Seismic migration showed that this arrival is associated with scattering objects above the turning depth of the PKIKP-df, close to the inner-core boundary. Using an elastic boundary element method, which takes into account of the fluid-solid boundary condition, we simulated high frequency (> 1 Hz) wave propagation and scattering in the inner core boundary region. We propose the presence of inner core topography as a plausible mechanism to explain all these observations. Our preliminary results by modeling the PKiKP amplitude showed that the previously proposed "mosaic structure" of the inner core could be well explained by inner core topography, with horizontal scale ~ 10km and vertical scale ~2km. In addition, for a fluid-solid boundary, topography can generate a strong Scholte wave, which is an interface wave (like the Rayleigh wave) whose amplitude decays exponentially away from the boundary. The Scholte wave can leak energy out of the C-diff wave therefore reducing the C-diff amplitude. Modeling the PKiKP, PKP-df coda and PKP C-diff allows us to place vertical and horizontal topographic bounds for the inner-core boundary.

  7. Mid-mantle heterogeneities and iron spin transition in the lower mantle: Implications for mid-mantle slab stagnation

    Science.gov (United States)

    Shahnas, M. H.; Yuen, D. A.; Pysklywec, R. N.

    2017-01-01

    Recent high pressure experimental results reveal that the elastic and transport properties of mantle materials are impacted by the electronic spin transition in iron under lower mantle pressure and temperature conditions. The electronic transition in ferropericlase (Fp), the second major constituent mineral of the lower mantle material, is associated with a smooth increase in density starting from the mid-mantle depth to the core-mantle boundary (CMB). The transition also yields softening in the elastic moduli and an increase in the thermal expansivity over the transition zone in the lower mantle. Although there is not yet robust experimental evidence for spin-transition induced density change in the perovskite (Pv) phase (the major constituent mineral in the lower mantle), the spin transition in the octahedral (B) site in Al-free perovskite causes a bulk modulus hardening (increase in the bulk modulus) in the mineral. We have incorporated these physical processes into high resolution 3D-spherical control volume models for mantle convection. A series of numerical experiments explore how the electronic spin transition in iron modifies the mantle flow, and in particular the fate of sinking cold slabs. Such mid-mantle stagnations are prevalent globally in seismic tomographic inversions, but previous explanations for their existence are not satisfactory. Employing density anomalies from the iron spin transition in ferropericlase and density anomaly models for perovskite, we study the influence of the spin transition in the minerals of the lower mantle on mantle flow. Our model results reveal that while the spin transition-induced property variations in ferropericlase enhance mixing in the lower depths of the mantle, the density anomaly arising from the hardening in the bulk modulus of Al-free perovskite can be effective in slowing the descent of slabs and may cause stagnation at mid-mantle levels. A viscosity hill in the lower mantle may further enhance the stagnation

  8. Mantle updrafts and mechanisms of oceanic volcanism

    Science.gov (United States)

    Anderson, Don L.; Natland, James H.

    2014-10-01

    Convection in an isolated planet is characterized by narrow downwellings and broad updrafts-consequences of Archimedes' principle, the cooling required by the second law of thermodynamics, and the effect of compression on material properties. A mature cooling planet with a conductive low-viscosity core develops a thick insulating surface boundary layer with a thermal maximum, a subadiabatic interior, and a cooling highly conductive but thin boundary layer above the core. Parts of the surface layer sink into the interior, displacing older, colder material, which is entrained by spreading ridges. Magma characteristics of intraplate volcanoes are derived from within the upper boundary layer. Upper mantle features revealed by seismic tomography and that are apparently related to surface volcanoes are intrinsically broad and are not due to unresolved narrow jets. Their morphology, aspect ratio, inferred ascent rate, and temperature show that they are passively responding to downward fluxes, as appropriate for a cooling planet that is losing more heat through its surface than is being provided from its core or from radioactive heating. Response to doward flux is the inverse of the heat-pipe/mantle-plume mode of planetary cooling. Shear-driven melt extraction from the surface boundary layer explains volcanic provinces such as Yellowstone, Hawaii, and Samoa. Passive upwellings from deeper in the upper mantle feed ridges and near-ridge hotspots, and others interact with the sheared and metasomatized surface layer. Normal plate tectonic processes are responsible both for plate boundary and intraplate swells and volcanism.

  9. Diffusion of hydrogen in olivine grain boundaries and implications for the survival of water-rich zones in the Earth's mantle

    Science.gov (United States)

    Demouchy, Sylvie

    2010-06-01

    Nominally anhydrous minerals (NAMs) of Earth's mantle can contain hydrogen as atomic impurity in their crystal structures. This hydrogen substantially modifies many physical properties of Earth's mantle rocks. Also, the Earth's deep interior is made of rocks where minerals are separated by nanometer-scale interfaces call grain boundaries and interphase boundaries. These grain boundaries should carefully be considered as a potential hydrogen reservoir as well. I report here an experimental investigation of hydrogen diffusion through grain boundaries in olivine polycrystalline aggregates. Hot-press and diffusion experiments were performed using a gas-medium high-pressure vessel at a confining pressure of 300 MPa, over a temperature range of 1000-1200 °C. The diffusion assembly consisted of a dense polycrystalline cylinder of natural olivine from San Carlos (Arizona) mixed with olivine singles crystals of millimeter size. This mixture was couple with a talc cylinder. Ni capsule were used to buffer the oxygen fugacity at Ni-NiO level. Experiment durations varied from 3 min to 4 h. The presence of hydrogen in the sample was quantified using Fourier transform infrared spectroscopy. The calculation of the diffusion coefficients was based on the estimation of the length of polycrystalline solid affected by the diffusion of hydrogen. The absence or presence of hydrogen was recorded by the large olivines behaving here as “hydrogen sensor”, which are implanted in the aggregate. The results indicate that effective hydrogen diffusivity which includes grain boundaries effect in olivine aggregate is barely one order of magnitude faster than hydrogen diffusion in an olivine single crystal with a diffusivity ∼ 8.5 × 10- 10 m2 s- 1 at 1000 °C and only twice faster ∼ 2.1 × 10- 9 m2 s- 1 at 1200 °C. Calculations of the diffusion data in relation to the Arrhenius Law, yield an activation energy of ∼ 70 ± 10 kJ mol- 1. From these effective diffusivities and combined with

  10. Compositional variations in spinel-hosted pargasite inclusions in the olivine-rich rock from the oceanic crust-mantle boundary zone

    Science.gov (United States)

    Tamura, Akihiro; Morishita, Tomoaki; Ishimaru, Satoko; Hara, Kaori; Sanfilippo, Alessio; Arai, Shoji

    2016-05-01

    The crust-mantle boundary zone of the oceanic lithosphere is composed mainly of olivine-rich rocks represented by dunite and troctolite. However, we still do not fully understand the global variations in the boundary zone, and an effective classification of the boundary rocks, in terms of their petrographical features and origin, is an essential step in achieving such an understanding. In this paper, to highlight variations in olivine-rich rocks from the crust-mantle boundary, we describe the compositional variations in spinel-hosted hydrous silicate mineral inclusions in rock samples from the ocean floor near a mid-ocean ridge and trench. Pargasite is the dominant mineral among the inclusions, and all of them are exceptionally rich in incompatible elements. The host spinel grains are considered to be products of melt-peridotite reactions, because their origin cannot be ascribed to simple fractional crystallization of a melt. Trace-element compositions of pargasite inclusions are characteristically different between olivine-rich rock samples, in terms of the degree of Eu and Zr anomalies in the trace-element pattern. When considering the nature of the reaction that produced the inclusion-hosting spinel, the compositional differences between samples were found to reflect a diversity in the origin of the olivine-rich rocks, as for example in whether or not a reaction was accompanied by the fractional crystallization of plagioclase. The differences also reflect the fact that the melt flow system (porous or focused flow) controlled the melt/rock ratios during reaction. The pargasite inclusions provide useful data for constraining the history and origin of the olivine-rich rocks and therefore assist in our understanding of the crust-mantle boundary of the oceanic lithosphere.

  11. Sediments at the top of Earth's core.

    Science.gov (United States)

    Buffett, B A; Garnero, E J; Jeanloz, R

    2000-11-17

    Unusual physical properties at the core-mantle boundary have been inferred from seismic and geodetic observations in recent years. We show how both types of observations can be explained by a layer of silicate sediments, which accumulate at the top of the core as Earth cools. Compaction of the sediments expels most of the liquid iron but leaves behind a small amount of core material, which is entrained in mantle convection and may account for the isotopic signatures of core material in some hot spot plumes. Extraction of light elements from the liquid core also enhances the vigor of convection in the core and may increase the power available to the geodynamo.

  12. Vertical velocity of mantle flow of East Asia and adjacent areas

    Institute of Scientific and Technical Information of China (English)

    CHENG Xianqiong; ZHU Jieshou; CAI Xuelin

    2007-01-01

    Based on the high-resolution body wave tomo- graphic image and relevant geophysical data, we calculated the form and the vertical and tangential velocities of mantle flow. We obtained the pattern of mantle convection for East Asia and the West Pacific. Some important results and under- standings are gained from the images of the vertical velocity of mantle flow for East Asia and the West Pacific. There is an upwelling plume beneath East Asia and West Pacific, which is the earth's deep origin for the huge rift valley there. We have especially outlined the tectonic features of the South China Sea, which is of the "工" type in the upper mantle shield type in the middle and divergent in the lower; the Siberian clod downwelling dives from the surface to near Core and mantle bounary (CMB), which is convergent in the upper mantle and divergent in the lower mantle; the Tethyan subduction region, centered in the Qinghai-Tibet plateau, is visible from 300 to 2 000 km, which is also convergent in the upper mantle and divergent in the lower mantle. The three regions of mantle convection beneath East Asia and the West Pacific are in accordance with the West Pacific, Ancient Asia and the Tethyan structure regions. The mantle upwelling orig- inates from the core-mantle boundary and mostly occurs in the middle mantle and the lower part of the upper mantle. The velocities of the vertical mantle flow are about 1-4 cm per year and the tangential velocities are 1-10 cm per year. The mantle flow has an effect on controlling the movement of plates and the distributions of ocean ridges, subduction zones and collision zones. The mantle upwelling regions are clearly related with the locations ofhotspots on the earth's surface.

  13. Water Release from Cold Serpentinized Forearc Mantle During Subduction Associated with Changes in Incoming Oceanic Plate Thermal Structure and Plate Boundary Kinematics: New Insights

    Science.gov (United States)

    Kirby, S. H.

    2015-12-01

    Kirby, Wang, and Brocher (Earth Planets and Space, 2014) recently showed how the change in kinematics of the California margin from subduction motion to continental transform motion with the birth and growth of the San Andreas Fault System (SAFS) beginning at about 33 Ma BP likely led to a warming of the former forearc mantle and the release of water by serpentinite dehydration. Such discharges from serpentinized mantle increase fluid pressures along the SAFS under the Coast Ranges and this gives insights into both the low sliding resistance for the SAFS and the mobilization and ascent of some serpentinized mantle peridotites through the crust. Thermal modeling by others has also shown that changes in the incoming plate age and subduction rate can also lead to warming of the forearc mantle during subduction. This development gives insights into the Mesozoic and Paleogene ages of emplacement of some, but not all, California serpentinites. Recent mineralogical and geochemical observations of serpentinized blocks in serpentinize mélange bodies in the San Francisco Bay Area (Uno and Kirby, 2015; Lewis and Kirby, 2015, this session) suggest that these rocks sustained multiple stages of serpentinization that are broadly consistent with the model of Kirby et al. (2014). Previous studies of localized late-stage silica-carbonate-water alteration of serpentinite bodies in California by carbonated water suggest that this alteration occurred largely in Neogene time when the highest rate of water release from the former forearc mantle probably happened. I also suggest that the occurrence of serpentinite belts emplaced in Cenozoic time during changing plate-boundary kinematics, such as the Cenozoic closing of the Tethys Ocean bordering Eurasia and arc reversal and decreasing convergence rates under the Greater Antilles, may give insights into the serpentinite belts in those regions.

  14. Thermal convection in Earth's inner core with phase change at its boundary

    CERN Document Server

    Deguen, Renaud; Cardin, Philippe

    2013-01-01

    Inner core translation, with solidification on one hemisphere and melting on the other, provides a promising basis for understanding the hemispherical dichotomy of the inner core, as well as the anomalous stable layer observed at the base of the outer core - the F-layer - which might be sustained by continuous melting of inner core material. In this paper, we study in details the dynamics of inner core thermal convection when dynamically induced melting and freezing of the inner core boundary (ICB) are taken into account. If the inner core is unstably stratified, linear stability analysis and numerical simulations consistently show that the translation mode dominates only if the viscosity $\\eta$ is large enough, with a critical viscosity value, of order $3 10^{18}$ Pas, depending on the ability of outer core convection to supply or remove the latent heat of melting or solidification. If $\\eta$ is smaller, the dynamical effect of melting and freezing is small. Convection takes a more classical form, with a one...

  15. Water Release from Cold Serpentinized Forearc Mantle During Subduction Associated with Changes in Incoming Oceanic Plate Thermal Structure and Plate Boundary Kinematics: New Insights into Serpentinite Belts and Plate-Boundary Rheology

    Science.gov (United States)

    Kirby, Stephen

    2016-04-01

    Kirby, Wang, and Brocher (Earth Planets and Space, 2014) recently showed how the change in kinematics of the California margin from subduction motion to continental transform motion with the birth and growth of the San Andreas Fault System (SAFS) beginning at about 33 Ma BP likely led to a warming of the former forearc mantle and the release of water from serpentinized mantle by dehydration and a likely increase in fluid pressures along the SAFS. Such a mantle source of pressurized water gives insights into both the low sliding resistance for the SAFS and the mobilization and ascent of some serpentinized mantle peridotites through the crust. Thermal modeling by others has also shown that changes in the incoming plate age and subduction rate can also lead to warming of the forearc mantle during subduction. This development gives insights into the Mesozoic and Paleogene ages of emplacement of some, but not all, California serpentinites. Recent mineralogical and geochemical observations of serpentinite blocks in serpentinize mélange bodies in the San Francisco Bay Area (Uno and Kirby, 2014 AGU Meeting and Lewis and Kirby, 2015 AGU Meeting) suggest that these rocks sustained multiple stages of serpentinization that are broadly consistent with the model of Kirby et al. (2014). A new development comes from interpretation of investigations in the literature of localized late-stage silica-carbonate-water alteration of serpentinite bodies in California that this alteration occurred largely in Neogene time when the highest rates of water release from the former forearc mantle probably occurred. This presentation also suggests that the occurrence of serpentinite belts emplaced in Cenozoic time during changing plate-boundary kinematics, such as the Cenozoic closing of the Tethys Ocean bordering Eurasia by subduction and collision and arc reversal and decreasing convergence rates under the Greater Antilles and Colombia and New Guinea, may give insights into the serpentinite

  16. Nitrogen and carbon fractionation during core-mantle differentiation at shallow depth

    Science.gov (United States)

    Dalou, Celia; Hirschmann, Marc M.; von der Handt, Anette; Mosenfelder, Jed; Armstrong, Lora S.

    2017-01-01

    One of the most remarkable observations regarding volatile elements in the solar system is the depletion of N in the bulk silicate Earth (BSE) relative to chondrites, leading to a particularly high and non-chondritic C:N ratio. The N depletion may reflect large-scale differentiation events such as sequestration in Earth's core or massive blow off of Earth's early atmosphere, or alternatively the characteristics of a late-added volatile-rich veneer. As the behavior of N during early planetary differentiation processes is poorly constrained, we determined together the partitioning of N and C between Fe-N-C metal alloy and two different silicate melts (a terrestrial and a martian basalt). Conditions spanned a range of fO2 from ΔIW-0.4 to ΔIW-3.5 at 1.2 to 3 GPa, and 1400 °C or 1600 °C, where ΔIW is the logarithmic difference between experimental fO2 and that imposed by the coexistence of crystalline Fe and wüstite.

  17. On the admissible range of the radial temperature gradient and Brünt-Väisäla frequency in the mantle and core: I. Main relations

    Science.gov (United States)

    Molodenskii, S. M.

    2017-03-01

    The question of ambiguity in the solution of the inverse problem for determining the Brünt-Väisäla frequency in the Earth's mantle from the entire set of the up-to-date data on seismicity, free oscillations, and forced nutations of the Earth, as well as the data on the Earth's total mass and total moment of inertia, is considered. Based on the results of a series of numerical experiments, the band of admissible distributions of the Brünt-Väisäla frequency and mantle density with depth is calculated. This estimate is used for investigating the convective and gravitational stability of the different regions of the mantle against relatively small adiabatic and nonadiabatic perturbations. The generalization of the known Rayleigh criterion of convective stability of homogeneous and a nonself-gravitating incompressible viscous fluid for the case of a compressible self-gravitating fluid is given. A system of the ordinary eight-order differential equations with complex coefficients and homogeneous boundary conditions, whose eigenvalues determine the transition from the stable state to instability, is obtained. Examples of the numerical determination of these eignevalues are presented. For interpreting the data about the band of the admissible distributions of the Brünt-Väisäla frequency with depth, the notion of the effective bulk modulus of the medium at different depths is introduced. This quantity governs the depth changes in temperature in a convecting mantle and allows us to make a conclusion about the role of heat conduction and the radial heterogeneity of the mantle composition without imposing any constraints on the convection mechanism. It is shown that within the present-day observation errors in the frequencies of the Earth's free oscillations, the simplest reasonable model is that in which the ratio of the effective bulk modulus to its adiabatic value in the lower and middle mantle is 1.043 ± 0.05. The closeness of this value to unity indicates that

  18. Significant Atmospheric Boundary Layer Change Observed above an Agulhas Current Warm Cored Eddy

    Directory of Open Access Journals (Sweden)

    C. Messager

    2016-01-01

    Full Text Available The air-sea impact of a warm cored eddy ejected from the Agulhas Retroflection region south of Africa was assessed through both ocean and atmospheric profiling measurements during the austral summer. The presence of the eddy causes dramatic atmospheric boundary layer deepening, exceeding what was measured previously over such a feature in the region. This deepening seems mainly due to the turbulent heat flux anomaly above the warm eddy inducing extensive deep and persistent changes in the atmospheric boundary layer thermodynamics. The loss of heat by turbulent processes suggests that this kind of oceanic feature is an important and persistent source of heat for the atmosphere.

  19. Evolution of Prolate Molecular Clouds at HII Boundaries: I. Formation of fragment-core structures

    CERN Document Server

    Kinnear, Timothy M; White, Glenn J; Goodwin, Simon

    2014-01-01

    The evolution of a prolate cloud at an Hii boundary is investigated using Smoothed Particle Hydrodynamics (SPH). The prolate molecular clouds in our investigation are set with their semi-major axis perpendicular to the radiative direction of a plane parallel ionising Extreme Ultraviolet (EUV) flux. Simulations on three high mass prolate clouds reveal that EUV radiation can trigger distinctive high density core formation embedded in a final linear structure. This contrasts with results of the previous work in which only an isotropic Far Ultraviolet (FUV) interstellar background flux was applied. A systematic investigation on a group of prolate clouds of equal mass but different initial densities and geometric shapes finds that the distribution of the cores over the final linear structure changes with the initial conditions of the prolate cloud and the strength of the EUV radiation flux. These highly condensed cores may either scatter over the full length of the final linear structure or form two groups of high...

  20. Redox-induced lower mantle density contrast and effect on mantle structure and primitive oxygen

    Science.gov (United States)

    Gu, Tingting; Li, Mingming; McCammon, Catherine; Lee, Kanani K. M.

    2016-09-01

    The mantle comprises nearly three-quarters of Earth's volume and through convection connects the deep interior with the lithosphere and atmosphere. The composition of the mantle determines volcanic emissions, which are intimately linked to evolution of the primitive atmosphere. Fundamental questions remain on how and when the proto-Earth mantle became oxidized, and whether redox state is homogeneous or developed large-scale structures. Here we present experiments in which we subjected two synthetic samples of nearly identical composition that are representative of the lower mantle (enstatite chondrite), but synthesized under different oxygen fugacities, to pressures and temperatures up to 90 GPa and 2,400 K. In addition to the mineral bridgmanite, compression of the more reduced material also produced Al2O3 as a separate phase, and the resulting assemblage is about 1 to 1.5% denser than in experiments with the more oxidized material. Our geodynamic simulations suggest that such a density difference can cause a rapid ascent and accumulation of oxidized material in the upper mantle, with descent of the denser reduced material to the core-mantle boundary. We suggest that the resulting heterogeneous redox conditions in Earth's interior can contribute to the large low-shear velocity provinces in the lower mantle and the evolution of atmospheric oxygen.

  1. Coring and High-Resolution Imaging of the Permian-Triassic Boundary in Deltadalen, Svalbard

    Science.gov (United States)

    Planke, Sverre

    2016-04-01

    The Permian-Triassic extinction was likely triggered by the voluminous igneous activity of the Siberian Traps. There are, however, limited information available about the effects of the Siberian Traps volcanism in Permian to Triassic sedimentary successions outside Siberia. We drilled two boreholes across the Permian-Triassic boundary (PTB) in Deltadalen, Svalbard, in August 2014, to better document the extinction event and environmental changes in the sedimentary succession in this region. Even though the PTB event is studied in several outcrops to varying degree if scrutiny on Svalbard, a scientific core is important for understanding the details of the PTB event, as outcrops may not permit studies at the appropriate levels of resolution, exposure or confidence. The Deltadalen site was chosen as an optimal drilling location after field work in the Isfjorden area in 2013 and early 2014. The almost 100 m deep holes were fully cored and penetrated the Triassic Vikinghøgda Formation (about 85 m recovered) and the Permian Kapp Starostin Formation (about 15 m). The main lithologies include Permian chert-rich green glauconitic sandstones and Triassic mudstones. A 10 m thick sedimentary reference outcrop section across the PTB was further logged and sampled in a nearby river valley. A comprehensive core analysis program is now underway. High-resolution XRF, MST and hyperspectral core scanning has been completed along the entire core surface, while high-resolution CT scanning has been carried out for whole core sections. The DD-1 core has subsequently been split, photographed, described, and sampled for geochemical, micropaleontological, petrological and magnetic analyses. Almost 10 bentonite layers have furthermore been sampled for volcanological and geochronological studies. Our goal is that the cores will become an important future reference section of the PTB in Svalbard and the high-Arctic, and help constrain the extent of the regional effects of explosive volcanism

  2. Metal-silicate partitioning of U: Implications for the heat budget of the core and evidence for reduced U in the mantle

    Science.gov (United States)

    Chidester, Bethany A.; Rahman, Zia; Righter, Kevin; Campbell, Andrew J.

    2017-02-01

    Earth's core might require an internal heat source, such as radioactive decay, to explain the presence of the magnetic field through geologic time. To investigate whether U would be an important heat source in the core, we performed metal-silicate partitioning experiments of U at P-T (up to 67 GPa and 5400 K) conditions more relevant to a magma ocean scenario than has previously been reported. This study finds the partitioning of U to be strongly dependent on ƒO2, temperature, the S content of the metal and the SiO2 content of the silicate during core-mantle differentiation. Differentiation at mean conditions of 42-58 GPa and 3900-4200 K would put 1.4-3.5 ppb U (2-8 wt% S) in the core, amounting to a maximum of 1.4 (+1/-0.7) TW of heat 4.5 billion years ago. This is likely not enough heat to mitigate early widespread mantle melting. It was also found that U likely exists in the 2+ oxidation state in silicate melts in the deep Earth, a state which has not been previously observed in nature.

  3. The nature of the earth's core

    Science.gov (United States)

    Jeanloz, Raymond

    1990-01-01

    The properties of the earth's core are overviewed with emphasis on seismologically determined regions and pressures and seismologically measured density, elastic wave velocities, and gravitational acceleration. Attention is given to solid-state convection of the inner core, and it is noted that though seismological results do not conclusively prove that the inner core is convective, the occurrence and magnitude of seismic anisotropy are explained by the effects of solid-state convection. Igneous petrology and geochemistry of the inner core, a layer at the base of the mantle and contact metasomatism at the core-mantle boundary, and evolution of the core-mantle system are discussed. It is pointed out that high-pressure melting experiments indicate that the temperature of the core is ranging from 4500 to 6500 K, and a major implication of such high temperature is that the tectonics and convection of the mantle, as well as the resulting geological processes observed at the surface, are powered by heat from the core. As a result of the high temperatures, along with the compositional contrast between silicates and iron alloy, the core-mantle boundary is considered to be most chemically active region of the earth.

  4. Whole-mantle convection with tectonic plates preserves long-term global patterns of upper mantle geochemistry.

    Science.gov (United States)

    Barry, T L; Davies, J H; Wolstencroft, M; Millar, I L; Zhao, Z; Jian, P; Safonova, I; Price, M

    2017-05-12

    The evolution of the planetary interior during plate tectonics is controlled by slow convection within the mantle. Global-scale geochemical differences across the upper mantle are known, but how they are preserved during convection has not been adequately explained. We demonstrate that the geographic patterns of chemical variations around the Earth's mantle endure as a direct result of whole-mantle convection within largely isolated cells defined by subducting plates. New 3D spherical numerical models embedded with the latest geological paleo-tectonic reconstructions and ground-truthed with new Hf-Nd isotope data, suggest that uppermost mantle at one location (e.g. under Indian Ocean) circulates down to the core-mantle boundary (CMB), but returns within ≥100 Myrs via large-scale convection to its approximate starting location. Modelled tracers pool at the CMB but do not disperse ubiquitously around it. Similarly, mantle beneath the Pacific does not spread to surrounding regions of the planet. The models fit global patterns of isotope data and may explain features such as the DUPAL anomaly and long-standing differences between Indian and Pacific Ocean crust. Indeed, the geochemical data suggests this mode of convection could have influenced the evolution of mantle composition since 550 Ma and potentially since the onset of plate tectonics.

  5. Mantle formation, coagulation, and the origin of cloud/core shine. I. Modelling dust scattering and absorption in the infrared

    Science.gov (United States)

    Jones, A. P.; Köhler, M.; Ysard, N.; Dartois, E.; Godard, M.; Gavilan, L.

    2016-04-01

    Context. The observed cloudshine and coreshine (C-shine) have been explained in terms of grain growth leading to enhanced scattering from clouds in the J, H, and K photometric bands and the Spitzer IRAC 3.6 and 4.5 μm bands. Aims: Using our global dust-modelling approach THEMIS (The Heterogeneous dust Evolution Model at the IaS), we explore the effects of dust evolution in dense clouds, through aliphatic-rich carbonaceous mantle formation and grain-grain coagulation. Methods: We model the effects of wide band gap a-C:H mantle formation and the low-level aggregation of diffuse interstellar medium dust in the moderately-extinguished outer regions of molecular clouds. Results: The formation of wide band gap a-C:H mantles on amorphous silicate and amorphous carbon (a-C) grains leads to a decrease in their absorption cross-sections but no change in their scattering cross-sections at near-infrared wavelengths, resulting in higher albedos. Conclusions: The evolution of dust, with increasing density and extinction in the diffuse-to-dense molecular cloud transition, through mantle formation and grain aggregation, appears to be a likely explanation for the observed C-shine.

  6. SH-wave propagation in the whole mantle using high-order finite differences

    OpenAIRE

    H. Igel; Michael Weber;  

    1995-01-01

    Finite-difference approximations to the wave equation in spherical coordinates are used to calculate synthetic seismograms for global Earth models. High-order finite-difference (FD) schemes were employed to obtain accurate waveforms and arrival times. Application to SH-wave propagation in the mantle shows that multiple reflections from the core-mantle boundary (CMB), with travel times of about one hour, can be modeled successfully. FD techniques, which are applicable in generally heterogeneou...

  7. Iron-silica interaction at extreme conditions and the electrically conducting layer at the base of Earth's mantle.

    Science.gov (United States)

    Dubrovinsky, L; Dubrovinskaia, N; Langenhorst, F; Dobson, D; Rubie, D; Gessmann, C; Abrikosov, I A; Johansson, B; Baykov, V I; Vitos, L; Le Bihan, T; Crichton, W A; Dmitriev, V; Weber, H-P

    2003-03-01

    The boundary between the Earth's metallic core and its silicate mantle is characterized by strong lateral heterogeneity and sharp changes in density, seismic wave velocities, electrical conductivity and chemical composition. To investigate the composition and properties of the lowermost mantle, an understanding of the chemical reactions that take place between liquid iron and the complex Mg-Fe-Si-Al-oxides of the Earth's lower mantle is first required. Here we present a study of the interaction between iron and silica (SiO2) in electrically and laser-heated diamond anvil cells. In a multianvil apparatus at pressures up to 140 GPa and temperatures over 3,800 K we simulate conditions down to the core-mantle boundary. At high temperature and pressures below 40 GPa, iron and silica react to form iron oxide and an iron-silicon alloy, with up to 5 wt% silicon. At pressures of 85-140 GPa, however, iron and SiO2 do not react and iron-silicon alloys dissociate into almost pure iron and a CsCl-structured (B2) FeSi compound. Our experiments suggest that a metallic silicon-rich B2 phase, produced at the core-mantle boundary (owing to reactions between iron and silicate), could accumulate at the boundary between the mantle and core and explain the anomalously high electrical conductivity of this region.

  8. Effects of crystal preferred orientation on upper-mantle flow near plate boundaries: rheologic feedbacks and seismic anisotropy

    Science.gov (United States)

    Blackman, D. K.; Boyce, D. E.; Castelnau, O.; Dawson, P. R.; Laske, G.

    2017-09-01

    Insight into upper-mantle processes can be gained by linking flow-induced mineral alignment to regional deformation and seismic anisotropy patterns. Through a series of linked micro-macro scale numerical experiments, we explore the rheologic effects of crystal preferred orientation (CPO) and evaluate the magnitude of possible impacts on the pattern of flow and associated seismic signals for mantle that includes a cooling, thickening young oceanic lithosphere. The CPO and associated anisotropic rheology, computed by a micromechanical polycrystal model, are coupled with a large scale flow model (Eulerian Finite Element method) via a local viscosity tensor field, which quantifies the stress:strain rate response of a textured polycrystal. CPO is computed along streamlines throughout the model space and the corresponding viscosity tensor field at each element defines the local properties for the next iteration of the flow field. Stable flow and CPO distributions were obtained after several iterations for the two dislocation glide cases tested: linear and nonlinear stress:strain rate polycrystal behaviour. The textured olivine polycrystals are found to have anisotropic viscosity tensors in a significant portion of the model space. This directional dependence in strength impacts the pattern of upper-mantle flow. For background asthenosphere viscosity of ˜1020 Pa s and a rigid lithosphere, the modification of the corner flow pattern is not drastic but the change could have geologic implications. Feedback in the development of CPO occurs, particularly in the region immediately below the base of the lithosphere. Stronger fabric is predicted below the flanks of a spreading centre for fully coupled, power-law polycrystals than was determined using prior linear, intermediate coupling polycrystal models. The predicted SKS splitting is modestly different (˜0.5 s) between the intermediate and fully coupled cases for oceanic plates less than 20 Myr old. The magnitude of azimuthal

  9. On the existence and structure of a mush at the inner core boundary of the Earth

    CERN Document Server

    Deguen, Renaud; Brito, Daniel

    2008-01-01

    It has been suggested about 20 years ago that the liquid close to the inner core boundary (ICB) is supercooled and that a sizable mushy layer has developed during the growth of the inner core. The morphological instability of the liquid-solid interface which usually results in the formation of a mushy zone has been intensively studied in metallurgy, but the freezing of the inner core occurs in very unusual conditions: the growth rate is very small, and the pressure gradient has a key role, the newly formed solid being hotter than the adjacent liquid. We investigate the linear stability of a solidification front under such conditions, pointing out the destabilizing role of the thermal and solutal fields, and the stabilizing role of the pressure gradient. The main consequence of the very small solidification rate is the importance of advective transport of solute in liquid, which tends to remove light solute from the vicinity of the ICB and to suppress supercooling, thus acting against the destabilization of th...

  10. Sediment cores and chemistry for the Kootenai River White Sturgeon Habitat Restoration Project, Boundary County, Idaho

    Science.gov (United States)

    Barton, Gary J.; Weakland, Rhonda J.; Fosness, Ryan L.; Cox, Stephen E.; Williams, Marshall L.

    2012-01-01

    The Kootenai Tribe of Idaho, in cooperation with local, State, Federal, and Canadian agency co-managers and scientists, is assessing the feasibility of a Kootenai River habitat restoration project in Boundary County, Idaho. This project is oriented toward recovery of the endangered Kootenai River white sturgeon (Acipenser transmontanus) population, and simultaneously targets habitat-based recovery of other native river biota. Projects currently (2010) under consideration include modifying the channel and flood plain, installing in-stream structures, and creating wetlands to improve the physical and biological functions of the ecosystem. River restoration is a complex undertaking that requires a thorough understanding of the river. To assist in evaluating the feasibility of this endeavor, the U.S. Geological Survey collected and analyzed the physical and chemical nature of sediment cores collected at 24 locations in the river. Core depths ranged from 4.6 to 15.2 meters; 21 cores reached a depth of 15.2 meters. The sediment was screened for the presence of chemical constituents that could have harmful effects if released during restoration activities. The analysis shows that concentrations of harmful chemical constituents do not exceed guideline limits that were published by the U.S. Army Corps of Engineers in 2006.

  11. Strong, Multi-Scale Heterogeneity in Earth’s Lowermost Mantle

    Science.gov (United States)

    Tkalčić, Hrvoje; Young, Mallory; Muir, Jack B.; Davies, D. Rhodri; Mattesini, Maurizio

    2015-01-01

    The core mantle boundary (CMB) separates Earth’s liquid iron outer core from the solid but slowly convecting mantle. The detailed structure and dynamics of the mantle within ~300 km of this interface remain enigmatic: it is a complex region, which exhibits thermal, compositional and phase-related heterogeneity, isolated pockets of partial melt and strong variations in seismic velocity and anisotropy. Nonetheless, characterising the structure of this region is crucial to a better understanding of the mantle’s thermo-chemical evolution and the nature of core-mantle interactions. In this study, we examine the heterogeneity spectrum from a recent P-wave tomographic model, which is based upon trans-dimensional and hierarchical Bayesian imaging. Our tomographic technique avoids explicit model parameterization, smoothing and damping. Spectral analyses reveal a multi-scale wavelength content and a power of heterogeneity that is three times larger than previous estimates. Inter alia, the resulting heterogeneity spectrum gives a more complete picture of the lowermost mantle and provides a bridge between the long-wavelength features obtained in global S-wave models and the short-scale dimensions of seismic scatterers. The evidence that we present for strong, multi-scale lowermost mantle heterogeneity has important implications for the nature of lower mantle dynamics and prescribes complex boundary conditions for Earth’s geodynamo. PMID:26674394

  12. Seismic Structure in the Vicinity of the Inner Core Boundary beneath northeastern Asia

    Science.gov (United States)

    Ibourichene, A. S.; Romanowicz, B. A.

    2016-12-01

    The inner core boundary (ICB) separates the solid inner core from the liquid outer core. The crystallization of iron occurring at this limit induces the expulsion of lighter elements such as H, O, S, Si into the outer core, generating chemically-driven convection, which provides power for the geodynamo. Both the F layer, right above the ICB, and the uppermost inner core, are affected by this process so that their properties provide important constraints for a better understanding of core dynamics and, ultimately, the generation and sustained character of the earth's magnetic field. In this study, we investigate the evolution of model parameters (P-velocity, density and quality factor) with depth in the vicinity of the ICB. For this purpose, we combine observations of two body wave phases sensitive to this region: the PKP(DF) phase refracted in the inner core and the PKiKP reflected on the ICB. Variations in the PKP(DF)/PKiKP amplitude ratio and PKP(DF)-PKiKP differential travel times can be related to structure around the ICB. We use waveform data from earthquakes located in Sumatra and recorded by the dense USArray seismic network, which allows us to sample ICB structure beneath northeastern Asia. Observed waveforms are compared to synthetics computed using the DSM method (e.g., Geller et Takeuchi, 1995) in model AK135 (e.g., Montagner & Kennett, 1996) in order to measure amplitude and travel time anomalies. Previous studies (e.g., Tanaka, 1997 ; Cao and Romanowicz, 2004, Yu and Wen, 2006; Waszek and Deuss, 2011) have observed an hemispherical pattern in the vicinity of the ICB exhibiting a faster and more attenuated eastern hemisphere compared to the western hemisphere. The region studied is located in the eastern hemisphere. We find that, on average, travel time anomalies are consistent with previous studies of the eastern hemisphere, however, amplitude ratios are not. We conduct a parameter search for the 1D model that best fits our data. We also consider

  13. Magnetohydrodynamic Convection in the Outer Core and its Geodynamic Consequences

    Science.gov (United States)

    Kuang, Weijia; Chao, Benjamin F.; Fang, Ming

    2004-01-01

    The Earth's fluid outer core is in vigorous convection through much of the Earth's history. In addition to generating and maintaining Earth s time-varying magnetic field (geodynamo), the core convection also generates mass redistribution in the core and a dynamical pressure field on the core-mantle boundary (CMB). All these shall result in various core-mantle interactions, and contribute to surface geodynamic observables. For example, electromagnetic core-mantle coupling arises from finite electrically conducting lower mantle; gravitational interaction occurs between the cores and the heterogeneous mantle; mechanical coupling may also occur when the CMB topography is aspherical. Besides changing the mantle rotation via the coupling torques, the mass-redistribution in the core shall produce a spatial-temporal gravity anomaly. Numerical modeling of the core dynamical processes contributes in several geophysical disciplines. It helps explain the physical causes of surface geodynamic observables via space geodetic techniques and other means, e.g. Earth's rotation variation on decadal time scales, and secular time-variable gravity. Conversely, identification of the sources of the observables can provide additional insights on the dynamics of the fluid core, leading to better constraints on the physics in the numerical modeling. In the past few years, our core dynamics modeling efforts, with respect to our MoSST model, have made significant progress in understanding individual geophysical consequences. However, integrated studies are desirable, not only because of more mature numerical core dynamics models, but also because of inter-correlation among the geophysical phenomena, e.g. mass redistribution in the outer core produces not only time-variable gravity, but also gravitational core-mantle coupling and thus the Earth's rotation variation. They are expected to further facilitate multidisciplinary studies of core dynamics and interactions of the core with other

  14. The Elephants' Graveyard: Constraints from Mantle Plumes on the Fate of Subducted Slabs and Implications for the Style of Mantle Convection

    Science.gov (United States)

    Lassiter, J. C.

    2007-12-01

    The style of mantle convection (e.g., layered- vs. whole-mantle convection) is one of the most hotly contested questions in the Geological Sciences. Geochemical arguments for and against mantle layering have largely focused on mass-balance evidence for the existence of "hidden" geochemical reservoirs. However, the size and location of such reservoirs are largely unconstrained, and most geochemical arguments for mantle layering are consistent with a depleted mantle comprising most of the mantle mass and a comparatively small volume of enriched, hidden material either within D" or within seismically anomalous "piles" beneath southern Africa and the South Pacific. The mass flux associated with subduction of oceanic lithosphere is large and plate subduction is an efficient driver of convective mixing in the mantle. Therefore, the depth to which oceanic lithosphere descends into the mantle is effectively the depth of the upper mantle in any layered mantle model. Numerous geochemical studies provide convincing evidence that many mantle plumes contain material which at one point resided close to the Earth's surface (e.g., recycled oceanic crust ± sediments, possibly subduction-modified mantle wedge material). Fluid dynamic models further reveal that only the central cores of mantle plumes are involved in melt generation. The presence of recycled material in the sources of many ocean island basalts therefore cannot be explained by entrainment of this material during plume ascent, but requires that recycled material resides within or immediately above the thermo-chemical boundary layer(s) that generates mantle plumes. More recent Os- isotope studies of mantle xenoliths from OIB settings reveal the presence not only of recycled crust in mantle plumes, but also ancient melt-depleted harzburgite interpreted to represent ancient recycled oceanic lithosphere [1]. Thus, there is increasing evidence that subducted slabs accumulate in the boundary layer(s) that provide the source

  15. Density structure of Earth's lowermost mantle from Stoneley mode splitting observations

    Science.gov (United States)

    Koelemeijer, Paula; Deuss, Arwen; Ritsema, Jeroen

    2017-05-01

    Advances in our understanding of Earth's thermal evolution and the style of mantle convection rely on robust seismological constraints on lateral variations of density. The large-low-shear-wave velocity provinces (LLSVPs) atop the core-mantle boundary beneath Africa and the Pacific are the largest structures in the lower mantle, and hence severely affect the convective flow. Here, we show that anomalous splitting of Stoneley modes, a unique class of free oscillations that are perturbed primarily by velocity and density variations at the core-mantle boundary, is explained best when the overall density of the LLSVPs is lower than the surrounding mantle. The resolved density variations can be explained by the presence of post-perovskite, chemical heterogeneity or a combination of the two. Although we cannot rule out the presence of a ~100-km-thick denser-than-average basal structure, our results support the hypothesis that LLSVPs signify large-scale mantle upwelling in two antipodal regions of the mantle.

  16. Tectonic plates, D (double prime) thermal structure, and the nature of mantle plumes

    Science.gov (United States)

    Lenardic, A.; Kaula, W. M.

    1994-01-01

    It is proposed that subducting tectonic plates can affect the nature of thermal mantle plumes by determining the temperature drop across a plume source layer. The temperature drop affects source layer stability and the morphology of plumes emitted from it. Numerical models are presented to demonstrate how introduction of platelike behavior in a convecting temperature dependent medium, driven by a combination of internal and basal heating, can increase the temperature drop across the lower boundary layer. The temperature drop increases dramatically following introduction of platelike behavior due to formation of a cold temperature inversion above the lower boundary layer. This thermal inversion, induced by deposition of upper boundary layer material to the system base, decays in time, but the temperature drop across the lower boundary layer always remains considerably higher than in models lacking platelike behavior. On the basis of model-inferred boundary layer temperature drops and previous studies of plume dynamics, we argue that generally accepted notions as to the nature of mantle plumes on Earth may hinge on the presence of plates. The implication for Mars and Venus, planets apparently lacking plate tectonics, is that mantle plumes of these planets may differ morphologically from those of Earth. A corollary model-based argument is that as a result of slab-induced thermal inversions above the core mantle boundary the lower most mantle may be subadiabatic, on average (in space and time), if major plate reorganization timescales are less than those acquired to diffuse newly deposited slab material.

  17. Learning in the Permaculture Community of Practice in England: An Analysis of the Relationship between Core Practices and Boundary Processes

    Science.gov (United States)

    Ingram, Julie; Maye, Damian; Kirwan, James; Curry, Nigel; Kubinakova, Katarina

    2014-01-01

    Purpose: This article utilizes the Communities of Practice (CoP) framework to examine learning processes among a group of permaculture practitioners in England, specifically examining the balance between core practices and boundary processes. Design/methodology/approach: The empirical basis of the article derives from three participatory workshops…

  18. Learning in the Permaculture Community of Practice in England: An Analysis of the Relationship between Core Practices and Boundary Processes

    Science.gov (United States)

    Ingram, Julie; Maye, Damian; Kirwan, James; Curry, Nigel; Kubinakova, Katarina

    2014-01-01

    Purpose: This article utilizes the Communities of Practice (CoP) framework to examine learning processes among a group of permaculture practitioners in England, specifically examining the balance between core practices and boundary processes. Design/methodology/approach: The empirical basis of the article derives from three participatory workshops…

  19. Correction and update to 'The earth's C21 and S21 gravity coefficients and the rotation of the core'

    Science.gov (United States)

    Wahr, John

    1990-01-01

    Wahr (1987) used satellite constraints on C21 and S21 (the spherical harmonic coefficients of the earth's external gravitational potential) to infer certain properties of the core and core/mantle boundary. It is shown here, contrary to the claim by Wahr, that it is not possible to use C21 and S21 to placed bounds on the core's products of inertia. As a result, Wahr's constraints on the l = 2, m = 1 components of the core/mantle boundary topography and on the angular orientation of the inner core with respect to the earth's rotation vector are not justified. On the other hand, Wahr's conclusions about the time-averaged torque between the core and mantle and the resulting implications for the l = 2, m = 1 components of fluid pressure at the top of the core can be strengthened. Wahr's conclusions about the mean rotational flow in the core are unaltered.

  20. Variations of the boundary geometry of 3-dimensional hyperbolic convex cores

    CERN Document Server

    Bonahon, F

    1997-01-01

    A fundamental object in a hyperbolic 3-manifold M is its convex core C(M), defined as the smallest closed non-empty convex subset of M. We investigate the way the geometry of the boundary S of C(M) varies as we vary the hyperbolic metric of M. Thurston observed that the intrinsic metric of S is hyperbolic, and that its bending is described by a measured geodesic lamination. We show that, as the hyperbolic metric of the 3--manifold M varies differentiably, the hyperbolic metric of the surface S varies in a C^1, but usually not C^2, manner. Differentiability properties for the bending measured lamination are conceptually less simple, because the space ML(S) of measured geodesic laminations on S has no natural differentiable structure. However, ML(S) is a piecewise linear manifold, and we also show that the bending measured geodesic lamination varies differentiably in a piecewise linear sense. The two results are proved simultaneously, mixing the differentiable and piecewise linear contexts. In particular, the '...

  1. Melting of the Earth's inner core.

    Science.gov (United States)

    Gubbins, David; Sreenivasan, Binod; Mound, Jon; Rost, Sebastian

    2011-05-19

    The Earth's magnetic field is generated by a dynamo in the liquid iron core, which convects in response to cooling of the overlying rocky mantle. The core freezes from the innermost surface outward, growing the solid inner core and releasing light elements that drive compositional convection. Mantle convection extracts heat from the core at a rate that has enormous lateral variations. Here we use geodynamo simulations to show that these variations are transferred to the inner-core boundary and can be large enough to cause heat to flow into the inner core. If this were to occur in the Earth, it would cause localized melting. Melting releases heavy liquid that could form the variable-composition layer suggested by an anomaly in seismic velocity in the 150 kilometres immediately above the inner-core boundary. This provides a very simple explanation of the existence of this layer, which otherwise requires additional assumptions such as locking of the inner core to the mantle, translation from its geopotential centre or convection with temperature equal to the solidus but with composition varying from the outer to the inner core. The predominantly narrow downwellings associated with freezing and broad upwellings associated with melting mean that the area of melting could be quite large despite the average dominance of freezing necessary to keep the dynamo going. Localized melting and freezing also provides a strong mechanism for creating seismic anomalies in the inner core itself, much stronger than the effects of variations in heat flow so far considered.

  2. From the Atlas to the Variscan Core of Iberia: Progress on the Knowledge of Mantle Anisotropy from SKS Splitting

    Science.gov (United States)

    Diaz Cusi, J.; Grevemeyer, I.; Thomas, C.; Harnafi, M.

    2012-12-01

    The data provided by the dense Iberarray broad-band seismic network deployed in the framework of the large-scale TopoIberia project, as well as from permanent broad-band stations operating in Morocco, Portugal and Spain has allowed to get a large scale view of the anisotropic properties of the mantle beneath the western termination of the Mediterranean region and its transition to the Atlantic ocean. In this contribution we will gather the previously presented results with the analysis of the data provided by IberArray stations in the central part of Iberia, broad-band OBSs deployments in the Alboran Sea and the Gulf of Cadiz and new seismic networks deployed in the High Atlas and the Moroccan Meseta. The High Atlas has been investigated using data from a broad-band network installed by the Univ. of Munster with a primary focus on the study of the properties of the deep mantle. Additionally, up to 10 Iberarray stations have been shifted southward to complete the survey along the Atlas and to investigate the Moroccan Meseta. In agreement with the results presented by the Picasso team along a profile crossing the Atlas northward, the anisotropy observed in this area is small (0.6 - 0.9 s) with a fast polarization direction (FPD) oriented roughly E-W. It is important to note that there is a very significant number of high quality events without evidence for anisotropy. This may be the result of the combined effect of two or more anisotropic layers or of the presence of a large vertical component of flow in the upper mantle. Moving northwards, the first TopoIberia-Iberarray deployment in the Betics-Alboran zone has evidenced a spectacular rotation of the FPD along the Gibraltar arc following the curvature of the Rif-Betic chain, from roughly N65E beneath the Betics to close to N65W beneath the Rif chain. To complete this image, we have now processed data from two OBS deployments in the Alboran Sea and Gulf of Cadiz installed by Geomar as part of the TopoMed project

  3. Thermal convection of an internally heated infinite Prandtl number fluid in a spherical shell. [earth core-mantle-surface model

    Science.gov (United States)

    Schubert, G.; Zebib, A.

    1980-01-01

    A Galerkin technique is used to study the finite-amplitude axisymmetric steady convective motions of an infinite Prandtl number Boussinesq fluid in a spherical shell. Two types of heating are considered: in one case, convection is driven both by internal heat sources in the fluid and by an externally imposed temperature drop across the shell boundaries; in the other case, only internal heat sources drive convection and the lower boundary of the shell is adiabatic. Two distinct classes of axisymmetric steady states are found to be possible: states characterized by temperature and radial velocity fields that are symmetric about an equatorial plane; and a class of solutions that does not possess any symmetry properties about the equatorial plane.

  4. The Grüneisen parameter and its higher order derivatives for the Earth lower mantle and core

    Science.gov (United States)

    Shanker, J.; Sunil, K.; Sharma, B. S.

    2017-01-01

    In the present study we propose a simple formula for the reciprocal γ versus pressure-bulk modulus ratio. This formula satisfies the boundary conditions at zero pressure and also at infinite pressure which is a basic requirement for any thermodynamic relationship or equation of state to be physically acceptable. It should be mentioned that the infinite pressure values of thermoelastic properties (Kumar et al., 2015; Stacey, 2005) are the extrapolated values in the limit of infinite pressure by considering the material to remain in the same structure or same phase. In fact, no material can exist at infinite pressure. This point has been elaborated very convincingly by Stacey and Davis (2004).

  5. Preservation of Primordial Mantle in the Aftermath of a Giant Impact

    Science.gov (United States)

    Lock, S. J.; Stewart, S. T.; Mukhopadhyay, S.

    2016-12-01

    Terrestrial planets experience a number of giant impacts in the final stages of accretion. These highly energetic events force planets into hot, partially vaporized, and occasionally rapidly-rotating states. However, recent measurements of Xe and W isotopes in mantle plume-derived basalts imply that the terrestrial mantle was not homogenized during this violent stage of Earth's accretion. Understanding the physical structure of post-impact states is key for interpreting these primitive mantle signatures. Post-impact states are highly thermally stratified: the lowermost mantle has lower entropy than the rest of the mantle. Usually, the lowermost mantle is near the solidus or partially molten. The high-entropy portion of the mantle is super-liquidus, smoothly grading to a silicate vapor atmosphere. Here, we consider the competing processes acting on these distinct layers as the mantle establishes a single thermal gradient. If the whole mantle chemically mixed during cooling, then any pre-impact chemical signature would be erased. Previous work has neglected the critical time period between the highly vaporized post-impact state and a fully-condensed silicate body, i.e., a separated magma ocean and atmosphere. The post-impact structure cools rapidly by radiation from the photosphere, causing contraction of the body and redistribution of mass and angular momentum. One consequence of contraction is that the pressure in the mantle increases significantly (on the order of several to 10s GPa at the core mantle boundary) over 10s-1000s years. The increased pressure causes part of the mantle to solidify. Significantly, the timescale for pressure-induced freezing is shorter than the timescale for thermal equilibration between the low and high entropy mantle layers and the timescale for melt percolation (both >100s yrs). Therefore, pressure-induced freezing in the aftermath of a giant impact may be an important factor in preserving primordial Xe and W signatures in the lower

  6. Lower mantle thermal structure deduced from seismic tomography, mineral physics and numerical modelling

    Science.gov (United States)

    Cadek, O.; Yuen, D. A.; Steinbach, V.; Chopelas, A.; Matyska, C.

    1994-01-01

    The long-wavelength thermal anomalies in the lower mantle have been mapped out using several seismic tomographic models in conjunction with thermodynamic parameters derived from high-pressure mineral physics experiments. These parameters are the depth variations of thermal expansivity and of the proportionality factor between changes in density and seismic velocity. The giant plume-like structures in the lower mantle under the Pacific Ocean and Africa have outer fringes with thermal anomalies around 300-400 K, but very high temperatures are found in the center of the plumes near the base of the core-mantle boundary. These extreme values can exceed +1500 K and may reflect large hot thermal anomalies in the lower mantle, which are supported by recent measurements of high melting temperatures of perovskite and iron. Extremely cold anomalies, around -1500 K, are found for anomalies in the deep mantle around the Pacific rim and under South America. Numerical simulations show that large negative thermal anomalies in the mid-lower mantle have modest magnitudes of around -500 K. correlation pattern exists between the present-day locations of cold masses in the lower mantle and the sites of past subduction since the Cretaceous. Results from correlation analysis show that the slab mass-flux in the lower mantle did not conform to a steady-state nature but exhibited time-dependent behavior.

  7. Boundary Effects for One-Dimensional Bariev Model with Hard-Core Repulsion

    Institute of Scientific and Technical Information of China (English)

    LIXiao-Jun; YUERui-Hong

    2004-01-01

    For the Bariev model for correlated hopping in one dimension under open boundary conditions, the Bethe ansatz equations are analyzed for both a repulsive and an attractive interaction in several limiting cases, i.e., the ground state, the weak and strong coupling limits. The contributions of the boundary fields to both the magnetic susceptibility and the specific heat are obtained.

  8. Boundary Effects for One-Dimensional Bariev Model with Hard-Core Repulsion

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-Jun; YUE Rui-Hong

    2004-01-01

    For the Bariey model for correlated hopping in one dimension under open boundary conditions, the Bethe ansatz equations are analyzed for both a repulsive and an attractive interaction in several limiting cases, i.e., the ground state, the weak and strong coupling limits. The contributions of the boundary fields to both the magnetic susceptibility and the specific heat are obtained.

  9. Excitation of the Slichter mode by collision with a meteoroid or pressure variations at the surface and core boundaries

    CERN Document Server

    Rosat, S; 10.1016/J.PEPI.2011.10.007

    2012-01-01

    We use a normal-mode formalism to compute the response of a spherical, self-gravitating anelastic PREM-like Earth model to various excitation sources at the Slichter mode period. The formalism makes use of the theory of the Earth's free oscillations based upon an eigenfunction expansion methodology. We determine the complete response in the form of Green's function obtained from a generalization of Betti's reciprocity theorem. Surficial (surface load, fluid core pressure), internal (earthquakes, explosions) and external (object impact) sources of excitation are investigated to show that the translational motion of the inner-core would be best excited by a pressure acting at the core boundaries at time-scales shorter than the Slichter eigenperiods.

  10. Rapid core field variations during the satellite era: Investigations using stochastic process based field models

    DEFF Research Database (Denmark)

    Finlay, Chris; Olsen, Nils; Gillet, Nicolas

    . We report spherical harmonic spectra, comparisons to observatory monthly means, and maps of the radial field at the core-mantle boundary, from the resulting ensemble of core field models. We find that inter-annual fluctuations in the external field (for example related to high solar-driven activity...

  11. Multiscale seismic tomography and mantle dynamics

    Science.gov (United States)

    Zhao, Dapeng

    2010-05-01

    Multiscale (local, regional and global) tomographic studies are made to determine the 3-D structure of the Earth, particularly for imaging mantle plumes and subducting slabs. Plume-like slow anomalies are clearly visible under the major hotspot regions in most parts of the mantle, in particular, under Hawaii, Iceland, Kerguelen, South Pacific and Africa (Zhao, 2001, 2004, 2009). The slow anomalies under South Pacific and Africa have lateral extensions of over 1000 km and exist in the entire mantle, representing two superplumes. The Pacific superplume has a larger spatial extent and stronger slow anomalies than that of the Africa superplume. The Hawaiian plume is not part of the Pacific superplume but an independent whole-mantle plume (Zhao, 2004, 2009). The slow anomalies under hotspots usually do not show a straight pillar shape, but exhibit winding images, suggesting that plumes are not fixed in the mantle but can be deflected by the mantle flow. As a consequence, hotspots are not really fixed but can wander on the Earth's surface, as evidenced by the recent paleomagnetic and numeric modeling studies. Wider and more prominent slow anomalies are visible at the core-mantle boundary (CMB) than most of the lower mantle, and there is a good correlation between the distribution of slow anomalies at the CMB and that of hotspots on the surface, suggesting that most of the strong mantle plumes under the hotspots originate from the CMB. However, there are some small-scaled, weak plumes originating from the transition zone or mid mantle depths (Zhao et al., 2006; Zhao, 2009; Lei et al., 2009; Gupta et al., 2009). Clear images of subducting slabs and magma chambers in the upper-mantle wedge beneath active arc volcanoes are obtained, indicating that geodynamic systems associated with arc magmatism and back-arc spreading are related to deep processes, such as convective circulation in the mantle wedge and dehydration reactions of the subducting slab (Zhao et al., 2002, 2007

  12. Correlation between mobile continents and elevated temperatures in the subcontinental mantle

    Science.gov (United States)

    Jain, Charitra; Rozel, Antoine; Tackley, Paul

    2016-04-01

    Rolf et al. (EPSL, 2012) and Coltice et al. (Science, 2012) have previously shown that continents exert a first order influence on Earth's mantle flow by affecting convective wavelength and surface heat flow. With stationary continents, Heron and Lowman (JGR, 2014) highlighted the decreasing role of continental insulation on subcontinental temperatures with higher Rayleigh number (Ra). However, the question whether there exists a correlation between mobile continents and elevated temperatures in the subcontinental mantle or not remains to be answered. By systematically varying parameters like core-mantle boundary (CMB) temperature, continental size, and mantle heating modes (basal and internal); we model thermo-chemical mantle convection with 2D spherical annulus geometry (Hernlund and Tackley, PEPI 2008) using StagYY (Tackley, PEPI 2008). Starting with a simple incompressible model having mobile continents, we observe this correlation. Furthermore, this correlation still holds when the model complexity is gradually increased by introducing internal heating, compressibility, and melting. In general, downwellings reduce the mantle temperature away from the continents, thereby resulting in correlation between mobile continents and elevated temperatures in the subcontinental mantle. For incompressible models (Boussinesq approximation), correlation exists and the dominant degree of convection varies with the continental distribution. When internal heating is switched on, correlation is observed but it is reduced as there are less cold regions in the mantle. Even for compressible models with melting, big continents are able to focus the heat underneath them. The dominant degree of convection changes with continental breakup. Additionally, correlation is observed to be higher in the upper mantle (300 - 1000 km) compared to the lower mantle (1000 - 2890 km). At present, mobile continents in StagYY are simplified into a compositionally distinct field drifting at the top of

  13. Cold Thermal Anomalous Structure within Lower Mantle and Its Geodynamic Implications

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The lateral temperature anomalous structure of the lower mantle is reconstructed from the seismic tomographical model and high temperature and high pressure laboratory results. A significant correlation between the distribution of the cold anomaly and the location of past subduction belts shows that the shallower anomaly corresponds to the younger subduction sites, while the deeper anomaly to the older ones. This correlation also suggests that the cold anomaly may have come from the subduction slabs and the scale of mantle convection may have been completed. The coldest and largest anomaly is concentrated near the core-mantle boundary (CMB). Few cold anomalies float in the shallower and middle parts of the lower mantle, suggesting that the downward migration of the subduction slabs, discontinuous and step-like, may be divided into the following three stages: subduction, stagnation at the 670 km discontinuity due to the phase transition, and disintegration when the size exceeds the critical point.

  14. Compressibility of water in magma and the prediction of density crossovers in mantle differentiation.

    Science.gov (United States)

    Agee, Carl B

    2008-11-28

    Hydrous silicate melts appear to have greater compressibility relative to anhydrous melts of the same composition at low pressures (planetary differentiation. From these compression curves, crystal-liquid density crossovers are predicted for the mantles of the Earth and Mars. For the Earth, trapped dense hydrous melts may reside atop the 410km discontinuity, and, although not required to be hydrous, atop the core-mantle boundary (CMB), in accord with seismic observations of low-velocity zones in these regions. For Mars, a density crossover at the base of the upper mantle is predicted, which would produce a low-velocity zone at a depth of approximately 1200km. If perovskite is stable at the base of the Martian mantle, then density crossovers or trapped dense hydrous melts are unlikely to reside there, and long-lived, melt-induced, low-velocity regions atop the CMB are not predicted.

  15. Properties of grain boundary networks in the NEEM ice core analyzed by combined transmission and reflection optical microscopy

    Science.gov (United States)

    Binder, Tobias; Weikusat, Ilka; Garbe, Christoph; Svensson, Anders; Kipfstuhl, Sepp

    2014-05-01

    Microstructure analysis of ice cores is vital to understand the processes controlling the flow of ice on the microscale. To quantify the microstructural variability (and thus occurring processes) on centimeter, meter and kilometer scale along deep polar ice cores, a large number of sections has to be analyzed. In the last decade, two different methods have been applied: On the one hand, transmission optical microscopy of thin sections between crossed polarizers yields information on the distribution of crystal c-axes. On the other hand, reflection optical microscopy of polished and controlled sublimated section surfaces allows to characterize the high resolution properties of a single grain boundary, e.g. its length, shape or curvature (further developed by [1]). Along the entire NEEM ice core (North-West Greenland, 2537 m length) drilled in 2008-2011 we applied both methods to the same set of vertical sections. The data set comprises series of six consecutive 6 x 9 cm2 sections in steps of 20 m - in total about 800 images. A dedicated method for automatic processing and matching both image types has recently been developed [2]. The high resolution properties of the grain boundary network are analyzed. Furthermore, the automatic assignment of c-axis misorientations to visible sublimation grooves enables us to quantify the degree of similarity between the microstructure revealed by both analysis techniques. The reliability to extract grain boundaries from both image types as well as the appearance of sublimation groove patterns exhibiting low misorientations is investigated. X-ray Laue diffraction measurements (yielding full crystallographic orientation) have validated the sensitivity of the surface sublimation method for sub-grain boundaries [3]. We introduce an approach for automatic extraction of sub-grain structures from sublimation grooves. A systematic analysis of sub-grain boundary densities indicates a possible influence of high impurity contents (amongst

  16. DEEP-LEVEL GEODYNAMICS: BOUNDARIES OF THE PROCESS ACCORDING TO GEOCHEMIC AND PETROLOGIC DATA

    Directory of Open Access Journals (Sweden)

    Alexei V. Ivanov

    2015-09-01

    Full Text Available Geochemical features for volcanic rocks and petrologic data for deep-seated inclusions, which can be used to infer mass transfer between different geospheres, are reviewed. It is typically believed that slabs can subduct as deep as the core-mantle boundary with the following recycling by plumes coming up to the sublithospheric regions of magma generation. However, the petrologic evidence of the deepest accessible material is limited by the depth of the uppermost lower mantle (~650–700km, i.e. by the depth of the deepest earthquakes. Ferropericlase inclusions in some diamonds do not exclude involvement of deeper mantle horizons, yet do not unambiguously support it. No unambiguous confirmation of involvement of the lower mantle into magma generation underneath volcanically active regions is obtained from geochemical data either, while the geochemical data suggest complete chemical isolation of the Earth’s core from the upper mantle processes.

  17. Toward a coherent model for the melting behavior of the deep Earth's mantle

    Science.gov (United States)

    Andrault, D.; Bolfan-Casanova, N.; Bouhifd, M. A.; Boujibar, A.; Garbarino, G.; Manthilake, G.; Mezouar, M.; Monteux, J.; Parisiades, P.; Pesce, G.

    2017-04-01

    , F and DFeBg/melt. In the lower mantle, density inversions (i.e. sinking melts) appear to be restricted to low F values and highest mantle pressures. The coherent melting model has direct geophysical implications: (i) in the early Earth, the magma ocean crystallization could not occur for a core temperature higher than ∼5400 K at the core-mantle boundary (CMB). This temperature corresponds to the melting of pure Bg at 135 GPa. For a mantle composition more realistic than pure Bg, the right CMB temperature for magma ocean crystallization could have been as low as ∼4400 K. (ii) There are converging arguments for the formation of a relatively homogeneous mantle after magma ocean crystallization. In particular, we predict the bulk crystallization of a relatively large mantle fraction, when the temperature becomes lower than the pseudo-eutectic temperature. Some chemical segregation could still be possible as a result of some Bg segregation in the lowermost mantle during the first stage of the magma ocean crystallization, and due to a much later descent of very low F, Fe-enriched, melts toward the CMB. (iii) The descent of such melts could still take place today. There formation should to be related to incipient mantle melting due to the presence of volatile elements. Even though, these melts can only be denser than the mantle (at high mantle depths) if the controversial value of DFeBg/melt is indeed as low as suggested by some experimental studies. This type of melts could contribute to produce ultra-low seismic velocity anomalies in the lowermost mantle.

  18. Thermal and compositional stratification of the inner core

    CERN Document Server

    Labrosse, Stéphane

    2014-01-01

    The improvements on the knowledge of the seismic structure of the inner core and the complexities thereby revealed ask for a dynamical origin. Sub-solidus convection was one of the early suggestions to explain the seismic anisotropy but requires an unstable density gradient either from thermal or compositional origin, or both. Temperature and composition profiles in the inner core are computed using a unidimensional model of core evolution including diffusion in the inner core and fractional crystallization at the the inner core boundary (ICB). The thermal conductivity of the core has been recently revised upwardly and, moreover, found increasing with depth. Values of the heat flow across the core mantle boundary (CMB) sufficient to maintain convection in the whole outer core are not sufficient to make the temperature in the inner core super-isentropic and therefore prone to thermal instability. An unreasonably high CMB heat flow is necessary to this end. The compositional stratification results from a compet...

  19. Ensemble data assimilation for the reconstruction of mantle circulation

    Science.gov (United States)

    Bocher, Marie; Coltice, Nicolas; Fournier, Alexandre; Tackley, Paul

    2016-04-01

    The surface tectonics of the Earth is the result of mantle dynamics. This link between internal and surface dynamics can be used to reconstruct the evolution of mantle circulation. This is classically done by imposing plate tectonics reconstructions as boundary conditions on numerical models of mantle convection. However, this technique does not account for uncertainties in plate tectonics reconstructions and does not allow any dynamical feedback of mantle dynamics on surface tectonics to develop. Mantle convection models are now able to produce surface tectonics comparable to that of the Earth to first order. We capitalize on these convection models to propose a more consistent integration of plate tectonics reconstructions into mantle convection models. For this purpose, we use the ensemble Kalman filter. This method has been developed and successfully applied to meteorology, oceanography and even more recently outer core dynamics. It consists in integrating sequentially a time series of data into a numerical model, starting from an ensemble of possible initial states. The initial ensemble of states is designed to represent an approximation of the probability density function (pdf) of the a priori state of the system. Whenever new observations are available, each member of the ensemble states is corrected considering both the approximated pdf of the state, and the pdf of the new data. Between two observation times, each ensemble member evolution is computed independently, using the convection model. This technique provides at each time an approximation of the pdf of the state of the system, in the form of a finite ensemble of states. We perform synthetic experiments to assess the efficiency of this method for the reconstruction of mantle circulation.

  20. Iron carbonates in the Earth's lower mantle: reality or imagination?

    Science.gov (United States)

    Cerantola, V.; McCammon, C. A.; Merlini, M.; Bykova, E.; Kupenko, I.; Ismailova, L.; Chumakov, A. I.; Kantor, I.; Dubrovinsky, L. S.; Prescher, C.

    2015-12-01

    Carbonates play a fundamental role in the recycling of carbon inside our planet due to their presence in oceanic slabs that sink through the Earth's interior. Through this process, iron carbonates are potential stable carbon-bearing minerals in the deep mantle in part due to spin crossover of ferrous iron. Our goal is to identify which minerals may be the dominant carriers of carbon into the deep mantle at the relevant conditions of fO2, P and T. All experiments were performed using synthetic FeCO3 and MgFeCO3 single crystals in laser heated diamond anvil cells up to 100 GPa and 3000 K in order to simulate the conditions prevailing in the Earth's lower mantle. Transformation and decomposition products of the original carbonates were characterized at different synchrotron facilities by means of single-crystal XRD, synchrotron Mössbauer source spectroscopy and XANES techniques. At deep lower mantle conditions, we observed the transformation of FeCO3 to two new HP-carbonate structures, monoclinic Fe22+Fe23+C4O13 and trigonal Fe43+(CO4)3, both characterized by the presence of CO4 tetrahedra with different degrees of polymerization. At shallower depths in the lower mantle where temperatures are lower following the geotherm, Fe-carbonates decompose to different Fe-oxides instead of new HP-carbonates. However, at slab temperatures several hundred degrees lower than the surrounding mantle, carbonates could be stabilized until reaching conditions that trigger their transformation to HP-structures. We postulate that Fe-rich carbonates could exist in regions down to the core-mantle boundary in the proximity of subducting slabs, i.e., a "cold" environment with relatively high fO2.

  1. Tokamak magnetohydrodynamic equilibrium states with axisymmetric boundary and a 3D helical core.

    Science.gov (United States)

    Cooper, W A; Graves, J P; Pochelon, A; Sauter, O; Villard, L

    2010-07-16

    Magnetohydrodynamic (MHD) equilibrium states with imposed axisymmetric boundary are computed in which a spontaneous bifurcation develops to produce an internal three-dimensional (3D) configuration with a helical structure in addition to the standard axisymmetric system. Equilibrium states with similar MHD energy levels are shown to develop very different geometric structures. The helical equilibrium states resemble saturated internal kink mode structures.

  2. Mantle hydrocarbons: abiotic or biotic?

    Science.gov (United States)

    Sugisaki, R; Mimura, K

    1994-06-01

    Analyses of 227 rocks from fifty localities throughout the world showed that mantle derived rocks such as tectonized peridotites in ophiolite sequences (tectonites) arid peridotite xenoliths in alkali basalts contain heavier hydrocarbons (n-alkanes), whereas igneous rocks produced by magmas such as gabbro arid granite lack them. The occurrence of hydrocarbons indicates that they were not derived either from laboratory contamination or from held contamination; these compounds found in the mantle-derived rocks are called here "mantle hydrocarbons." The existence of hydrocarbons correlates with petrogenesis. For example, peridotite cumulates produced by magmatic differentiation lack hydrocarbons whereas peridotite xenoliths derived from the mantle contain them. Gas chromatographic-mass spectrometric records of the mantle hydrocarbons resemble those of aliphatics in meteorites and in petroleum. Features of the hydrocarbons are that (a) the mantle hydrocarbons reside mainly along grain boundaries and in fluid inclusions of minerals; (b) heavier isoprenoids such as pristane and phytane are present; and (c) delta 13C of the mantle hydrocarbons is uniform (about -27%). Possible origins for the mantle hydrocarbons are as follows. (1) They were in organically synthesized by Fischer-Tropsch type reaction in the mantle. (2) They were delivered by meteorites and comets to the early Earth. (3) They were recycled by subduction. The mantle hydrocarbons in the cases of (1) and (2) are abiogenic and those in (3) are mainly biogenic. It appears that hydrocarbons may survive high pressures and temperatures in the mantle, but they are decomposed into lighter hydrocarbon gases such as CH4 at lower pressures when magmas intrude into the crust; consequently, peridotite cumulates do not contain heavier hydrocarbons but possess hydrocarbon gases up to C4H10.

  3. Where is mantle's carbon?

    Science.gov (United States)

    Oganov, A. R.; Ono, S.; Ma, Y.

    2008-12-01

    Petrology: Field Observations and High Pressure Experimentation: A Tribute to Francis R. (Joe) Boyd. Geochemical Soc., Special Publication No. 6. Eds: Y. Fei, C.M. Bertka, B.O. Mysen. 4.Oganov A.R., Ono S., Ma Y., Glass C.W., Garcia A. (2008). Novel high-pressure structures of MgCO3, CaCO3 and CO2 and their role in the Earth's lower mantle. Earth Planet. Sci. Lett. 273, 38-47 5.Scott H.P.,, Williams Q., Knittle E. (2001). Stability and equation of state of Fe3C to 73 GPa: Implications for carbon in the Earth's core. Geoph. Res. Lett. 28, 1875-1878. 6.Oganov A.R., Glass C.W., Ono S. (2006). High-pressure phases of CaCO3: crystal structure prediction and experiment. Earth Planet. Sci. Lett. 241, 95-103. 7.Isshiki M., Irifune T., Hirose K., Ono S., Ohishi Y., Watanuki T., Nishibori E., Takadda M., and Sakata M. (2004). Stability of Magnesite and its high-pressure form in the lowermost mantle. Nature 427, 60-63. 8.Skorodumova N.V., Belonoshko A.B., Huang L., Ahuja R., Johansson B. (2005) Stability of the MgCO3 structures under lower mantle conditions. Am. Mineral. 90, 1008-1011. 9.Panero W.R., Kabbes J.E. (2008). Mantle-wide sequestration of carbon in silicates and the structure of magnesite II. Geophys. Res. Lett. 35, L14307. 10.Oganov A.R., Glass C.W. (2006). Crystal structure prediction using ab initio evolutionary algorithms: principles and applications. J. Chem. Phys. 124, art. 244704.

  4. A stratified layer of light elements at the top of the outer core

    Science.gov (United States)

    McDonough, W. F.; Buffett, B. A.; Cormier, V. F.; Cottaar, S.; Day, E. A.; Dou, S.; French, S. W.; Irving, J. C.; Kavner, A.; Panning, M. P.; Parai, R.; Rose, I.

    2010-12-01

    Earth’s core is thought to have formed from sinking metal diapirs that segregated at mid-mantle conditions. Consequently, the core and mantle may not be in chemical equilibrium. Recent experiments suggest that at the pressures and temperatures of the core, lower mantle oxides and silicates may have an increased solubility in iron. Geodynamic calculations predict that if a core/mantle chemical reaction delivers a flux of oxygen to the core, a low-density, stratified layer, estimated to be 60-70 km thick, may form at the top of the core. Seismological, geochemical, and mineral physics data pertinent to the conditions at the top of the core combined with geodynamic models provide critical tests of the stratified outer core hypothesis. A linear combination of normal mode observations with a composite sensitivity restricted to VP in the outermost outer core is inverted. Travel time measurements of SmKS and PmKP are obtained from seismograms stacked over dense arrays. Forward modeling tests the sensitivity of these different data to predicted seismic models, and aids in identifying features that might mask the signal, e.g., topography on the core-mantle boundary, ultra-low velocity zones, and heterogeneities in the lowermost mantle. Chemical and isotopic ratios are used to consider the residual products of putative core-mantle exchange events, together with mass and charge balance, and allow to assess compositional constraints on both the core and mantle. Development of a stable, stratified O-enriched layer at the top of the outer core over Earth history may ultimately limit chemical communication between the mantle and the rest of the outer core. Implications for movement of siderophile trace elements (e.g. W, P and Pb) across the CMB over time are evaluated. Mineral physics estimates of high pressure and temperature equations of state of relevant mantle and core materials provide data to calculate density and sound velocities at outer core conditions to predict

  5. In-situ crystal structure determination of seifertite SiO 2 at 129 GPa: Studying a minor phase near Earth’s core–mantle boundary

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Li; Popov, Dmitry; Meng, Yue; Wang, Junyue; Ji, Cheng; Li, Bing; Mao, Ho-kwang

    2016-01-01

    Seifertite SiO₂ likely exists as a minor phase near the core–mantle boundary. By simulating the pressure and temperature conditions near the core–mantle boundary, seifertite was synthesized as a minor phase in a coarse-grained, polycrystalline sample coexisting with the (Mg,Fe)SiO₃ post-perovskite (pPv) phase at 129 GPa and 2500 K. Here we report the first in situ single-crystal structure determination and refinement of seifertite at high pressure and after a temperature quench from laser heating. We improved the data coverage of a minor phase from a diamond-anvil cell (DAC) by merging single-crystal data of seifertite from six selected grains that had different orientations. Observed systematic absences of reflections from the six individual grains allowed only one space group: Pbcn. The refined results of seifertite are in good agreement with the predictions from previous first-principles calculations at high pressure. This approach provides a method for structure determination of a minor phase in a mineral assemblage synthesized under P-T conditions representative of the deep Earth.

  6. Numerical Modeling of Deep Mantle Flow: Thermochemical Convection and Entrainment

    Science.gov (United States)

    Mulyukova, Elvira; Steinberger, Bernhard; Dabrowski, Marcin; Sobolev, Stephan

    2013-04-01

    ) upwelling of the ambient material in the vicinity of the dense material (mechanism of selective withdrawal (Lister, 1989)), and (iii) cold downwellings sliding along the bottom boundary, and forcing the dense material upwards. The objective of this study is to compare the efficiency of entrainment by each of these mechanisms, and its dependence on the density and viscosity anomaly of the dense material with respect to the ambient mantle. To perform this study, we have developed a two-dimensional FEM code to model thermal convection in a hollow cylinder domain with presence of chemical heterogeneities, and using a realistic viscosity profile. We present the results of the simulations that demonstrate the entrainment mechanisms described above. In addition, we perfom numerical experiments in a Cartesian box domain, where the bottom right boundary of the box is deformed to resemble the geometry of an LLSVP edge. In some of the experiments, the bottom left part of the boundary is moving towards the right boundary, simulating a slab sliding along the core-mantle boundary towards an LLSVP. These experiments allow a detailed study of the process of entrainment, and its role in the thermochemical evolution of the Earth.

  7. Slow differential rotation of the Earth's inner core indicated by temporal changes in scattering

    Science.gov (United States)

    Vidale; Dodge; Earle

    2000-05-25

    The finding that the Earth's inner core might be rotating faster than the mantle has important implications for our understanding of core processes, including the generation of the Earth's magnetic field. But the reported signal is subtle--a change of about 0.01 s per year in the separation of two seismic waves with differing paths through the core. Subsequent studies of such data have generally supported the conclusion that differential rotation exists, but the difficulty of accurately locating historic earthquakes and possible biases induced by strong lateral variations in structure near the core-mantle boundary have raised doubt regarding the proposed inner-core motion. Also, a study of free oscillations constrained the motion to be relatively small compared to previous estimates and it has been proposed that the interaction of inner-core boundary topography and mantle heterogeneity might lock the inner core to the mantle. The recent detection of seismic waves scattered in the inner core suggests a simple test of inner-core motion. Here we compare scattered waves recorded in Montana, USA, from two closely located nuclear tests at Novaya Zemlya, USSR, in 1971 and 1974. The data show small but coherent changes in scattering which point toward an inner-core differential rotation rate of 0.15 degrees per year--consistent with constraints imposed by the free-oscillation data.

  8. Lunar maria - result of mantle plume activity?

    Science.gov (United States)

    Sharkov, E.

    It is generally accepted that lunar maria are the result of catastrophic impact events. However, comparative studying of the Earth's and the Moon's tectonomagmatic evolution could evidence about another way of these specific structures origin. Such studies showed that the both planetary bodies evolved on the close scenario: their geological development began after solidification of global magmatic oceans which led to appearance of their primordial crusts: granitic on the Earth and anorthositic - on the Moon. The further evolution of the both bodies occurred in two stages. For their first stages, lasted ˜2.5 mlrd. years on the Earth and ˜1.5 mlrd. years on the Moon, were typical melts, generated in depleted mantle (Bogatikov et al., 2000). However, at the boundary 2.2-2.0 Ga ago on the Earth and 3.9-3.8 Ga on the Moon another type of magmas appeared: geochemical enriched Fe-Ti picrites and basalts, characteristic for the terrestrial Phanerozoic plume-related situations, and basaltic mare magmatism with high-Ti varieties on the Moon. It suggests that evolution of the Earth's magmatism was linked with ascending of mantle plumes (superplumes) of two generation: (1) generated in the mantle, depleted during solidification of magmatic ocean and Archean magmatic activity, and (2) generated at the core-mantle boundary (CMB). The latter were enriched in the mantle fluid components (Fe, Ti, alkalies, etc); this lighter material could ascend to shallower depths, leading to change of tectonic processes, in particular, to appearance of plate tectonics as the major type of tectonomagmatic activity till now (Bogatikov et al., 2000). By analogy to the Earth, magmatism of the Moon was also linked with ascending of mantle plumes: (1) generated in the depleted mantle (magnesian suite) and (2) generated at the lunar CMB with liquid at that time metallic core (mare basalt and picrites with high-Ti varieties). Like on the Earth, these plumes were lighter than the older plumes, and

  9. Mantle superplumes induce geomagnetic superchrons

    Directory of Open Access Journals (Sweden)

    Peter eOlson

    2015-07-01

    Full Text Available We use polarity reversal systematics from numerical dynamos to quantify the hypothesis that the modulation of geomagnetic reversal frequency, including geomagnetic superchrons, results from changes in core heat flux related to growth and collapse of lower mantle superplumes. We parameterize the reversal frequency sensitivity from numerical dynamos in terms of average core heat flux normalized by the difference between the present-day core heat flux and the core heat flux at geomagnetic superchron onset. A low-order polynomial fit to the 0-300 Ma Geomagnetic Polarity Time Scale (GPTS reveals that a decrease in core heat flux relative to present-day of approximately 30% can account for the Cretaceous Normal Polarity and Kiaman Reverse Polarity Superchrons, whereas the hyper-reversing periods in the Jurassic require a core heat flux equal to or higher than present-day. Possible links between GPTS transitions, large igneous provinces (LIPs, and the two lower mantle superplumes are explored. Lower mantle superplume growth and collapse induce GPTS transitions by increasing and decreasing core heat flux, respectively. Age clusters of major LIPs postdate transitions from hyper-reversing to superchron geodynamo states by 30-60 Myr, suggesting that superchron onset may be contemporaneous with LIP-forming instabilities produced during collapses of lower mantle superplumes.

  10. Lead isotope ratios in six lake sediment cores from Japan Archipelago: Historical record of trans-boundary pollution sources

    Energy Technology Data Exchange (ETDEWEB)

    Hosono, Takahiro, E-mail: hosono@kumamoto-u.ac.jp [Priority Organization for Innovation and Excellence, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555 (Japan); Alvarez, Kelly [Priority Organization for Innovation and Excellence, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555 (Japan); Kuwae, Michinobu [Senior Research Fellow Center, Ehime University, 2-5 Bunkyo-cho, Matsuyama 790-8577 (Japan)

    2016-07-15

    Sediment cores from six lakes situated from north to south on the Japanese Archipelago were collected during 2009–2010 to investigate the hypothesis that deposition of lead (Pb) was coming from East Asia (including China, South Korea and eastern part of Russia). Accumulation rates and ages of the lake sediment were estimated by the {sup 210}Pb constant rate of supply model and {sup 137}Cs inputs to reconstruct the historical trends of Pb accumulation. Cores from four lakes located in the north and central Japan, showed clear evidence of Pb pollution with a change in the {sup 206}Pb/{sup 207}Pb and {sup 208}Pb/{sup 207}Pb ratios in the recent sediment as compared to the deeper sediment. Among the six studied lakes, significant inputs of anthropogenic lead emissions were observed at Lake Mikazuki (north Hokkaido in north Japan), Lake Chokai (north of Honshu), and Lake Mikuriga (central part of Honshu). Pb isotopic comparison of collected core sediment and previously reported data for wet precipitation and aerosols from different Asian regions indicate that, before 1900, Pb accumulated in these three lakes was not affected by trans-boundary sources. Lake Mikazuki started to receive Pb emissions from Russia in early 1900s, and during the last two decades, this lake has been affected by trans-boundary Pb pollution from northern China. Lake Chokai has received Pb pollutant from northern China since early 1900s until 2009, whereas for the Lake Mikuriga the major Pb contaminant was transported from southern China during the past 100 years. The results of our study demonstrate that Japan Archipelago has received trans-boundary Pb emissions from different parts of East Asian region depending on location, and the major source region has changed historically. - Highlights: • Historical trend of Pb pollution was recorded in six Japanese Lakes. • Pb concentration and Pb isotope ratios were determined for sediment cores. • High [Pb] and less radiogenic Pb isotope ratios

  11. Inference of mantle viscosity for depth resolutions of GIA observations

    Science.gov (United States)

    Nakada, Masao; Okuno, Jun'ichi

    2016-11-01

    Inference of the mantle viscosity from observations for glacial isostatic adjustment (GIA) process has usually been conducted through the analyses based on the simple three-layer viscosity model characterized by lithospheric thickness, upper- and lower-mantle viscosities. Here, we examine the viscosity structures for the simple three-layer viscosity model and also for the two-layer lower-mantle viscosity model defined by viscosities of η670,D (670-D km depth) and ηD,2891 (D-2891 km depth) with D-values of 1191, 1691 and 2191 km. The upper-mantle rheological parameters for the two-layer lower-mantle viscosity model are the same as those for the simple three-layer one. For the simple three-layer viscosity model, rate of change of degree-two zonal harmonics of geopotential due to GIA process (GIA-induced J˙2) of -(6.0-6.5) × 10-11 yr-1 provides two permissible viscosity solutions for the lower mantle, (7-20) × 1021 and (5-9) × 1022 Pa s, and the analyses with observational constraints of the J˙2 and Last Glacial Maximum (LGM) sea levels at Barbados and Bonaparte Gulf indicate (5-9) × 1022 Pa s for the lower mantle. However, the analyses for the J˙2 based on the two-layer lower-mantle viscosity model only require a viscosity layer higher than (5-10) × 1021 Pa s for a depth above the core-mantle boundary (CMB), in which the value of (5-10) × 1021 Pa s corresponds to the solution of (7-20) × 1021 Pa s for the simple three-layer one. Moreover, the analyses with the J˙2 and LGM sea level constraints for the two-layer lower-mantle viscosity model indicate two viscosity solutions: η670,1191 > 3 × 1021 and η1191,2891 ˜ (5-10) × 1022 Pa s, and η670,1691 > 1022 and η1691,2891 ˜ (5-10) × 1022 Pa s. The inferred upper-mantle viscosity for such solutions is (1-4) × 1020 Pa s similar to the estimate for the simple three-layer viscosity model. That is, these analyses require a high viscosity layer of (5-10) × 1022 Pa s at least in the deep mantle, and suggest

  12. Importance of the Small-Scale Processes Melting, Plate Boundary Formation and Mineralogy on the Large-Scale, Long-Term Thermo-Chemical Evolution of Earth's Mantle-Plate System

    Science.gov (United States)

    Tackley, P.

    2015-12-01

    Seismic observations of the deep Earth reveal the presence of two large low shear velocity provinces (LLSVPs) that are typically inferred to be dense chemically-distinct material, as well as discontinuities that are typically linked to the post-perovskite (pPv) phase transition. Several possible origins of chemically-dense material have been proposed, including recycling of mid-ocean ridge basalt (MORB), primordial differentiation events, crystallisation of a basal magma ocean, or some combination of these creating a basal melange (BAM; Tackley 2012 Earth Sci. Rev.). Each of these possibilities would result in a different composition hence different mineralogy. In order to constrain this we have been running calculations of thermo-chemical mantle evolution over 4.5 billion years that include melting-induced differentiation, plate tectonics induced by strongly temperature-dependent viscosity and plastic yielding, core cooling and compressibility with reasonable assumptions about the pressure-dependence of other material properties. Some of our simulations start from a magma ocean state so initial layering is developed self-consistently. Already-published results (Nakagawa et al., 2009 GCubed, 2010 PEPI, 2012 GCubed) already indicate the importance of exact MORB composition on the amount of MORB segregating above the CMB, which in turn influences mantle thermal structure and the evolution of the core and geodynamo. In more recent results we have been additionally including primordial material. We find that melting-induced differentiation has several first-order effects on the dynamics, including (i) making plate tectonics easier (through stresses associated with lateral variations in crustal thickness) and (ii) reducing heat flux through the CMB (due to the build-up of dense material above the CMB); also (iii) tectonic mode (continuous plate tectonics, episodic lid or stagnant lid) also makes a first-order difference to mantle structure and dynamics. This emphasises

  13. Subduction History and the Evolution of Earth's Lower Mantle

    Science.gov (United States)

    Bull, Abigail; Shephard, Grace; Torsvik, Trond

    2016-04-01

    Understanding the complex structure, dynamics and evolution of the deep mantle is a fundamental goal in solid Earth geophysics. Close to the core-mantle boundary, seismic images reveal a mantle characterised by (1) higher than average shear wave speeds beneath Asia and encircling the Pacific, consistent with sub ducting lithosphere beneath regions of ancient subduction, and (2) large regions of anomalously low seismic wavespeeds beneath Africa and the Central Pacific. The anomalously slow areas are often referred to as Large Low Shear Velocity Provinces (LLSVPs) due to the reduced velocity of seismic waves passing through them. The origin, composition and long-term evolution of the LLSVPs remain enigmatic. Geochemical inferences of multiple chemical reservoirs at depth, strong seismic contrasts, increased density, and an anticorrelation of shear wave velocity to bulk sound velocity in the anomalous regions imply that heterogeneities in both temperature and composition may be required to explain the seismic observations. Consequently, heterogeneous mantle models place the anomalies into the context of thermochemical piles, characterised by an anomalous component whose intrinsic density is a few percent higher relative to that of the surrounding mantle. Several hypotheses have arisen to explain the LLSVPs in the context of large-scale mantle convection. One end member scenario suggests that the LLSVPs are relatively mobile features over short timescales and thus are strongly affected by supercontinent cycles and Earth's plate motion history. In this scenario, the African LLSVP formed as a result of return flow in the mantle due to circum-Pangean subduction (~240 Ma), contrasting a much older Pacific LLSVP, which may be linked to the Rodinia supercontinent and is implied to have remained largely unchanged since Rodinian breakup (~750-700 Ma). This propounds that Earth's plate motion history plays a controlling role in LLSVP development, suggesting that the location

  14. Eddy viscosity of core flow inferred from comparison between time evolutions of the length-of-day and a core surface flow model

    Science.gov (United States)

    Matsushima, M.

    2016-12-01

    Diffusive processes of large scales in the Earth's core are dominated not by the molecular diffusion but by the eddy diffusion. To carry out numerical simulations of realistic geodynamo models, it is important to adopt appropriate parameters. However, the eddy viscous diffusion, or the eddy viscosity, is not a property of the core fluid but of the core flow. Hence it is significant to estimate the eddy viscosity from core flow models. In fact, fluid motion near the Earth's core surface provides useful information on core dynamics, features of the core-mantle boundary (CMB), and core-mantle coupling, for example. Such core fluid motion can be estimated from spatial and temporal distributions of the geomagnetic field. Most of core surface flow models rely on the frozen-flux approximation (Roberts and Scott, 1965), in which the magnetic diffusion is neglected. It should be noted, however, that there exists a viscous boundary layer at the CMB, where the magnetic diffusion may play an important role in secular variations of geomagnetic field. Therefore, a new approach to estimation of core surface flow has been devised by Matsushima (2015). That is, the magnetic diffusion is explicitly incorporated within the viscous boundary layer, while it is neglected below the boundary layer at the CMB which is assumed to be a spherical surface. A core surface flow model between 1840 and 2015 has been derived from a geomagnetic field model, COV-OBS.x1 (Gillet et al., 2015). Temporal variations of core flows contain information on phenomena in relation with core-mantle coupling, such as the LOD (length-of-day), and spin-up/spin-down of core flows. In particular, core surface flows inside the viscous boundary layer at the CMB may reveal an interesting feature in relation with Earth's rotation. We have examined time series of the LOD and vorticity derived from the core surface flow model. We have found a possible correlation between the LOD and the axial component of global vorticity

  15. Melting in the FeOsbnd SiO2 system to deep lower-mantle pressures: Implications for subducted Banded Iron Formations

    Science.gov (United States)

    Kato, Chie; Hirose, Kei; Nomura, Ryuichi; Ballmer, Maxim D.; Miyake, Akira; Ohishi, Yasuo

    2016-04-01

    Banded iron formations (BIFs), consisting of layers of iron oxide and silica, are far denser than normal mantle material and should have been subducted and sunk into the deep lower mantle. We performed melting experiments on Fe2SiO4 from 26 to 131 GPa in a laser-heated diamond-anvil cell (DAC). The textural and chemical characterization of a sample recovered from the DAC revealed that SiO2 is the liquidus phase for the whole pressure range examined in this study. The chemical compositions of partial melts are very rich in FeO, indicating that the eutectic melt compositions in the FeOsbnd SiO2 binary system are very close to the FeO end-member. The eutectic temperature is estimated to be 3540 ± 150 K at the core-mantle boundary (CMB), which is likely to be lower than the temperature at the top of the core at least in the Archean and Paleoproterozoic eons, suggesting that subducted BIFs underwent partial melting in a thermal boundary layer above the CMB. The FeO-rich melts formed by partial melting of the BIFs were exceedingly dense and therefore migrated downward. We infer that such partial melts have caused iron enrichment in the bottom part of the mantle, which may have contributed to the formation of ultralow velocity zones (ULVZs) observed today. On the other hand, solid residues left after the segregation of the FeO-rich partial melts have been almost pure SiO2, and therefore buoyant in the deep lower mantle to be entrained in mantle upwellings. They have likely been stretched and folded repeatedly by mantle flow, forming SiO2 streaks within the mantle "marble cake". Mantle packages enhanced by SiO2 streaks may be the origin of seismic scatterers in the mid-lower mantle.

  16. High-Resolution Imaging of Structure and Dynamics of the Lowermost Mantle

    Science.gov (United States)

    Zhao, Chunpeng

    This research investigates Earth structure in the core-mantle boundary (CMB) region, where the solid rocky mantle meets the molten iron alloy core. At long wavelengths, the lower mantle is characterized by two nearly antipodal large low shear velocity provinces (LLSVPs), one beneath the Pacific Ocean the other beneath Africa and the southern Atlantic Ocean. However, fine-scale LLSVP structure as well as its relationship with plate tectonics, mantle convection, hotspot volcanism, and Earth's outer core remains poorly understood. The recent dramatic increase in seismic data coverage due to the EarthScope experiment presents an unprecedented opportunity to utilize large concentrated datasets of seismic data to improve resolution of lowermost mantle structures. I developed an algorithm that identifies anomalously broadened seismic waveforms to locate sharp contrasts in shear velocity properties across the margins of the LLSVP beneath the Pacific. The result suggests that a nearly vertical mantle plume underlies Hawaii that originates from a peak of a chemically distinct reservoir at the base of the mantle, some 600-900 km above the CMB. Additionally, acute horizontal Vs variations across and within the northern margin of the LLSVP beneath the central Pacific Ocean are inferred from forward modeling of differential travel times between S (and Sdiff) and SKS, and also between ScS and S. I developed a new approach to expand the geographic detection of ultra-low velocity zones (ULVZs) with a new ScS stacking approach that simultaneously utilizes the pre- and post-cursor wavefield. Strong lateral variations in ULVZ thicknesses and properties are found across the LLSVP margins, where ULVZs are thicker and stronger within the LLSVP than outside of it, consistent with convection model predictions. Differential travel times, amplitude ratios, and waveshapes of core waves SKKS and SKS are used to investigate CMB topography and outermost core velocity structure. 1D and 2D

  17. Localized temporal variation of Earth's inner-core boundary from high-quality waveform doublets

    Science.gov (United States)

    Xin, Danhua

    2016-04-01

    The accurate determination of the topography of an Earth's internal boundary is difficult because of the possible trade-off with the velocity of the media above it. Here we use waveform-doublet method to map the ICB topography. A waveform doublet is a pair of earthquakes occurring at essentially the same spatial position and received by the same station with high similarity in their waveforms (Poupinet et al. 1984), which make the exact detection of the ICB topography possible. In this study, we used this method to detect temporal change of the ICB using doublets from the Western Pacific (WP) area to increase global coverage of the ICB. Compared with previous study using doublets from South Sandwich Islands (SSI) (Song and Dai, 2008), the new samples showed negligible temporal change of the ICB.

  18. A Fault-Cored Anticline Boundary Element Model Incorporating the Combined Fault Slip and Buckling Mechanisms

    Directory of Open Access Journals (Sweden)

    Wen-Jeng Huang

    2016-02-01

    Full Text Available We develop a folding boundary element model in a medium containing a fault and elastic layers to show that anticlines growing over slipping reverse faults can be significantly amplified by mechanical layering buckling under horizontal shortening. Previous studies suggested that folds over blind reverse faults grow primarily during deformation increments associated with slips on the fault during and immediately after earthquakes. Under this assumption, the potential for earthquakes on blind faults can be determined directly from fold geometry because the amount of slip on the fault can be estimated directly from the fold geometry using the solution for a dislocation in an elastic half-space. Studies that assume folds grown solely by slip on a fault may therefore significantly overestimate fault slip. Our boundary element technique demonstrates that the fold amplitude produced in a medium containing a fault and elastic layers with free slip and subjected to layer-parallel shortening can grow to more than twice the fold amplitude produced in homogeneous media without mechanical layering under the same amount of shortening. In addition, the fold wavelengths produced by the combined fault slip and buckling mechanisms may be narrower than folds produced by fault slip in an elastic half space by a factor of two. We also show that subsurface fold geometry of the Kettleman Hills Anticline in Central California inferred from seismic reflection image is consistent with a model that incorporates layer buckling over a dipping, blind reverse fault and the coseismic uplift pattern produced during a 1985 earthquake centered over the anticline forelimb is predicted by the model.

  19. GyPSuM: A Detailed Tomographic Model of Mantle Density and Seismic Wave Speeds

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, N A; Forte, A M; Boschi, L; Grand, S P

    2010-03-30

    GyPSuM is a tomographic model fo mantle seismic shear wave (S) speeds, compressional wave (P) speeds and detailed density anomalies that drive mantle flow. the model is developed through simultaneous inversion of seismic body wave travel times (P and S) and geodynamic observations while considering realistic mineral physics parameters linking the relative behavior of mantle properties (wave speeds and density). Geodynamic observations include the (up to degree 16) global free-air gravity field, divergence of the tectonic plates, dynamic topography of the free surface, and the flow-induced excess ellipticity of the core-mantle boundary. GyPSuM is built with the philosophy that heterogeneity that most closely resembles thermal variations is the simplest possible solution. Models of the density field from Earth's free oscillations have provided great insight into the density configuration of the mantle; but are limited to very long-wavelength solutions. Alternatively, simply scaling higher resolution seismic images to density anomalies generates density fields that do not satisfy geodynamic observations. The current study provides detailed density structures in the mantle while directly satisfying geodynamic observations through a joint seismic-geodynamic inversion process. Notable density field observations include high-density piles at the base of the superplume structures, supporting the fundamental results of past normal mode studies. However, these features are more localized and lower amplitude than past studies would suggest. When we consider all seismic anomalies in GyPSuM, we find that P and S-wave speeds are strongly correlated throughout the mantle. However, correlations between the high-velocity S zones in the deep mantle ({approx} 2000 km depth) and corresponding P-wave anomalies are very low suggesting a systematic divergence from simplified thermal effects in ancient subducted slab anomalies. Nevertheless, they argue that temperature variations are

  20. Geoantineutrino Spectrum and Slow Nuclear Burning on the Boundary of the Liquid and Solid Phases of the Earth's core

    CERN Document Server

    Rusov, V D; Khotyaintseva, E N; Kosenko, S I; Litvinov, D A; Pavlovich, V N; Tarasov, V A; Vaschenko, V N; Zelentsova, T N

    2004-01-01

    The problem of the geoantineutrino deficit and the experimental results of the interaction of uranium dioxide and carbide with iron-nickel and silica-alumina melts at high pressure (5-10 GPa) and temperature (1600- 22000 C) have induced us to consider the possible consequences of made by V. Anisichkin and A. Ershov supposition that there is an actinoid shell on boundary of liquid and solid phases of the Earth's core. We have shown that the activation of a natural nuclear reactor operating as the solitary waves of nuclear burning in 238U- and/or 232Th-medium (in particular, the neutron-fission progressive wave of Feoktistov and/or Teller-Ishikawa-Wood) such physical consequent can be. The simplified model of the kinetics of accumulation and burnup in U-Pu fuel cycle of Feoktistov is developed. The results of the numerical simulation of neutron-fission wave in two-phase UO2/Fe medium on a surface of the Earth's solid core are presented. On the basis of O'Nions-Ivensen-Hamilton model of the geochemical evolution...

  1. Iron geochemistry of the mantle

    Science.gov (United States)

    Humayun, M.; Campbell, T. J.; Brandon, A. D.; Davis, F. A.; Hirschmann, M. M.

    2011-12-01

    The Fe/Mg ratio is an important constraint on the compositionally controlled density of the mantle. However, this ratio cannot be inferred from erupted lavas from OIB or MORB sources, but must be determined directly from mantle peridotites. Recently, the Fe/Mn ratio of erupted lavas has been used as an indicator of potential Fe variability in the mantle driven by core-mantle interaction, recycled oceanic crust, or even variations in the temperature of mantle melting. The classic compilation of McDonough & Sun (1995) provided the currently accepted Fe/Mn ratio of the upper mantle, 60±10. The uncertainty on this ratio allows for 15-30% variability in mantle iron abundances, which is equivalent to a density variation larger than observed by seismic tomography in the mantle. To better understand the relationship between mantle peridotites and erupted lavas, and to search for real variability in the Fe/Mn ratio of mantle peridotites, we report precise new ICP-MS measurements of the transition element geochemistry of suites of mantle xenoliths that have known Fe/Mg ratios. For 12 Kilbourne Hole xenoliths, we observe a clear correlation between Fe/Mn and MgO (or Fe/Mg) over an Fe/Mn range of 59-72. Extrapolation of this trend to a Primitive Mantle (PM) MgO content of 37.8 yields an Fe/Mn of 59±1 for the PM. Our new analyses of KLB-1 powder and fused glass beads yield an Fe/Mn of 61.4 for both samples, which plots on the Kilbourne Hole Fe/Mn vs. MgO trend. A set of ten xenoliths from San Carlos yield a wide range of Fe/Mn (56-65) not correlated with MgO content. The San Carlos xenoliths may have experienced a metasomatic effect that imprinted variable Fe/Mn. A clinopyroxene-rich lithology from San Carlos yields an Fe/Mn of 38, which plots on an extension of the Kilbourne Hole Fe/Mn vs. MgO trend. These new results, and those from other xenolith localities being measured in our lab, provide new constraints on the compositional variability of the Earth's upper mantle. Mc

  2. The 2016 Case for Mantle Plumes and a Plume-Fed Asthenosphere (Augustus Love Medal Lecture)

    Science.gov (United States)

    Morgan, Jason P.

    2016-04-01

    The process of science always returns to weighing evidence and arguments for and against a given hypothesis. As hypotheses can only be falsified, never universally proved, doubt and skepticism remain essential elements of the scientific method. In the past decade, even the hypothesis that mantle plumes exist as upwelling currents in the convecting mantle has been subject to intense scrutiny; from geochemists and geochronologists concerned that idealized plume models could not fit many details of their observations, and from seismologists concerned that mantle plumes can sometimes not be 'seen' in their increasingly high-resolution tomographic images of the mantle. In the place of mantle plumes, various locally specific and largely non-predictive hypotheses have been proposed to explain the origins of non-plate boundary volcanism at Hawaii, Samoa, etc. In my opinion, this debate has now passed from what was initially an extremely useful restorative from simply 'believing' in the idealized conventional mantle plume/hotspot scenario to becoming an active impediment to our community's ability to better understand the dynamics of the solid Earth. Having no working hypothesis at all is usually worse for making progress than having an imperfect and incomplete but partially correct one. There continues to be strong arguments and strong emerging evidence for deep mantle plumes. Furthermore, deep thermal plumes should exist in a mantle that is heated at its base, and the existence of Earth's (convective) geodynamo clearly indicates that heat flows from the core to heat the mantle's base. Here I review recent seismic evidence by French, Romanowicz, and coworkers that I feel lends strong new observational support for the existence of deep mantle plumes. I also review recent evidence consistent with the idea that secular core cooling replenishes half the mantle's heat loss through its top surface, e.g. that the present-day mantle is strongly bottom heated. Causes for

  3. CORE

    DEFF Research Database (Denmark)

    Krigslund, Jeppe; Hansen, Jonas; Hundebøll, Martin

    2013-01-01

    different flows. Instead of maintaining these approaches separate, we propose a protocol (CORE) that brings together these coding mechanisms. Our protocol uses random linear network coding (RLNC) for intra- session coding but allows nodes in the network to setup inter- session coding regions where flows...... intersect. Routes for unicast sessions are agnostic to other sessions and setup beforehand, CORE will then discover and exploit intersecting routes. Our approach allows the inter-session regions to leverage RLNC to compensate for losses or failures in the overhearing or transmitting process. Thus, we...... increase the benefits of XORing by exploiting the underlying RLNC structure of individual flows. This goes beyond providing additional reliability to each individual session and beyond exploiting coding opportunistically. Our numerical results show that CORE outperforms both forwarding and COPE...

  4. CORE

    DEFF Research Database (Denmark)

    Krigslund, Jeppe; Hansen, Jonas; Hundebøll, Martin

    2013-01-01

    different flows. Instead of maintaining these approaches separate, we propose a protocol (CORE) that brings together these coding mechanisms. Our protocol uses random linear network coding (RLNC) for intra- session coding but allows nodes in the network to setup inter- session coding regions where flows...... intersect. Routes for unicast sessions are agnostic to other sessions and setup beforehand, CORE will then discover and exploit intersecting routes. Our approach allows the inter-session regions to leverage RLNC to compensate for losses or failures in the overhearing or transmitting process. Thus, we...... increase the benefits of XORing by exploiting the underlying RLNC structure of individual flows. This goes beyond providing additional reliability to each individual session and beyond exploiting coding opportunistically. Our numerical results show that CORE outperforms both forwarding and COPE...

  5. Pressure regimes and core formation in the accreting earth

    Science.gov (United States)

    Newsom, H. E.

    1992-01-01

    Recent work suggests that a large degree of melting is required to segregate metal from silicates, suggesting a connection with the formation of magma oceans. At low pressures metallic liquids do not wet silicate minerals, preventing the metal from aggregating into large masses that can sink. At high pressures, above 25 GPa, the dihedral angles of grains in contact with oxygen-rich metallic liquids may be reduced enough to allow percolation of metal, but this has not been confirmed. Physical models of core formation and accretion may therefore involve the formation of magma oceans and the segregation of metal at both high and low pressures. Models of core formation involving different pressure regimes are discussed as well as chemical evidence bearing on the models. Available geophysical data is ambiguous. The nature of the 670 km boundary (chemical difference or strictly phase change) between the upper and lower mantle is in doubt. There is some evidence that plumes are derived from the lower mantle, and seismic tomography strongly indicates that penetration of subducting oceanic crust into the lower mantle, but the tomography data also indicates that the 670 km discontinuity is a significant barrier to general mantle convection. The presence of the D' layer at the base of the lower mantle could be a reaction zone between the mantle and core indicating core-mantle disequilibrium, or D' layer could be subducted material. The abundance of the siderophile elements in the mantle could provide clues to the importance of high pressure processes in Earth, but partition coefficients at high pressures are only beginning to be measured.

  6. Mineralogical effects on the detectability of the postperovskite boundary

    Science.gov (United States)

    Grocholski, Brent; Catalli, Krystle; Shim, Sang-Heon; Prakapenka, Vitali

    2016-03-01

    The discovery of a phase transition in Mg-silicate perovskite (Pv) to postperovskite (pPv) at lowermost mantle pressure-temperature (P - T) conditions may provide an explanation for the discontinuous increase in shear wave velocity found in some regions at a depth range of 200 to 400 km above the core-mantle boundary, hereafter the D'' discontinuity. However, recent studies on binary and ternary systems showed that reasonable contents of Fe2+ and Al for pyrolite increase the thickness (width of the mixed phase region) of the Pv - pPv boundary (400-600 km) to much larger than the D'' discontinuity (≤ 70 km). These results challenge the assignment of the D'' discontinuity to the Pv - pPv boundary in pyrolite (homogenized mantle composition). Furthermore, the mineralogy and composition of rocks that can host a detectable Pv → pPv boundary are still unknown. Here we report in situ measurements of the depths and thicknesses of the Pv → pPv transition in multiphase systems (San Carlos olivine, pyrolitic, and midocean ridge basaltic compositions) at the P - T conditions of the lowermost mantle, searching for candidate rocks with a sharp Pv - pPv discontinuity. Whereas the pyrolitic mantle may not have a seismologically detectable Pv → pPv transition due to the effect of Al, harzburgitic compositions have detectable transitions due to low Al content. In contrast, Al-rich basaltic compositions may have a detectable Pv - pPv boundary due to their distinct mineralogy. Therefore, the observation of the D'' discontinuity may be related to the Pv → pPv transition in the differentiated oceanic lithosphere materials transported to the lowermost mantle by subducting slabs.

  7. Mineralogical effects on the detectability of the postperovskite boundary

    Energy Technology Data Exchange (ETDEWEB)

    Grocholski, Brent; Catalli, Krystle; Shim, Sang-Heon; Prakapenka, Vitali (UC); (MIT)

    2017-05-02

    The discovery of a phase transition in Mg-silicate perovskite (Pv) to postperovskite (pPv) at lowermost mantle pressure-temperature (P - T) conditions may provide an explanation for the discontinuous increase in shear wave velocity found in some regions at a depth range of 200 to 400 km above the core-mantle boundary, hereafter the D{double_prime} discontinuity. However, recent studies on binary and ternary systems showed that reasonable contents of Fe{sup 2+} and Al for pyrolite increase the thickness (width of the mixed phase region) of the Pv - pPv boundary (400-600 km) to much larger than the D{double_prime} discontinuity ({le} 70 km). These results challenge the assignment of the D{double_prime} discontinuity to the Pv - pPv boundary in pyrolite (homogenized mantle composition). Furthermore, the mineralogy and composition of rocks that can host a detectable Pv {yields} pPv boundary are still unknown. Here we report in situ measurements of the depths and thicknesses of the Pv {yields} pPv transition in multiphase systems (San Carlos olivine, pyrolitic, and midocean ridge basaltic compositions) at the P - T conditions of the lowermost mantle, searching for candidate rocks with a sharp Pv - pPv discontinuity. Whereas the pyrolitic mantle may not have a seismologically detectable Pv {yields} pPv transition due to the effect of Al, harzburgitic compositions have detectable transitions due to low Al content. In contrast, Al-rich basaltic compositions may have a detectable Pv - pPv boundary due to their distinct mineralogy. Therefore, the observation of the D{prime} discontinuity may be related to the Pv {yields} pPv transition in the differentiated oceanic lithosphere materials transported to the lowermost mantle by subducting slabs.

  8. Reconciling laboratory and observational models of mantle rheology in geodynamic modelling

    Science.gov (United States)

    King, Scott D.

    2016-10-01

    Experimental and geophysical observations constraining mantle rheology are reviewed with an emphasis on their impact on mantle geodynamic modelling. For olivine, the most studied and best-constrained mantle mineral, the tradeoffs associated with the uncertainties in the activation energy, activation volume, grain-size and water content allow the construction of upper mantle rheology models ranging from nearly uniform with depth to linearly increasing from the base of the lithosphere to the top of the transition zone. Radial rheology models derived from geophysical observations allow for either a weak upper mantle or a weak transition zone. Experimental constraints show that wadsleyite and ringwoodite are stronger than olivine at the top of the transition zone; however the uncertainty in the concentration of water in the transition zone precludes ruling out a weak transition zone. Both observational and experimental constraints allow for strong or weak slabs and the most promising constraints on slab rheology may come from comparing inferred slab geometry from seismic tomography with systematic studies of slab morphology from dynamic models. Experimental constraints on perovskite and ferropericlase strength are consistent with general feature of rheology models derived from geophysical observations and suggest that the increase in viscosity through the top of the upper mantle could be due to the increase in the strength of ferropericlase from 20-65 GPa. The decrease in viscosity in the bottom half of the lower mantle could be the result of approaching the melting temperature of perovskite. Both lines of research are consistent with a high-viscosity lithosphere, a low viscosity either in the upper mantle or transition zone, and high viscosity in the lower mantle, increasing through the upper half of the lower mantle and decreasing in the bottom half of the lower mantle, with a low viscosity above the core. Significant regions of the mantle, including high

  9. Mantle formation, coagulation and the origin of cloud/core shine: I. Modelling dust scattering and absorption in the infra-red

    CERN Document Server

    Jones, A P; Ysard, N; Dartois, E; Godard, M; Gavilan, L

    2016-01-01

    Context. The observed cloudshine and coreshine (C-shine) have been explained in terms of grain growth leading to enhanced scatter- ing from clouds in the J, H and K photometric bands and the Spitzer IRAC 3.6 and 4.5 {\\mu}m bands. Aims. Using our global dust modelling approach THEMIS (The Heterogeneous dust Evolution Model at the IaS) we explore the effects of dust evolution in dense clouds, through aliphatic-rich carbonaceous mantle formation and grain-grain coagulation. Methods. We model the effects of wide band gap a-C:H mantle formation and the low-level aggregation of diffuse interstellar medium dust in the moderately-extinguished outer regions of molecular clouds. Results. The formation of wide band gap a-C:H mantles on amorphous silicate and amorphous carbon (a-C) grains leads to a decrease in their absorption cross-sections but no change in their scattering cross-sections at near-IR wavelengths, resulting in higher albedos. Conclusions. The evolution of dust, with increasing density and extinction in t...

  10. The forced precession of the Moon's inner core

    Science.gov (United States)

    Dumberry, Mathieu; Wieczorek, Mark A.

    2016-07-01

    The tilt angle of the 18.6 year precession of the Moon's solid inner core is unknown, but it is set by a balance between gravitational and pressure torques acting on its elliptical figure. We show here that to first order, the angle of precession of the inner core of a planetary body is determined by the frequency of the free inner core nutation, ωficn, relative to the precession frequency, Ωp. If |ωficn|≪|Ωp|, the inner core is blind to the gravitational influence of the mantle. If |ωficn|≫|Ωp|, the inner core is gravitationally locked to the mantle and is nearly aligned with it. If ωficn≈Ωp, large inner core tilt angles can result from resonant excitation. Viscous inner core relaxation and electromagnetic coupling can attenuate large tilt angles. For the specific case of the Moon, we show that ωficn is to within a factor of 2 of Ωp = 2π/18.6 yr-1. For a rigid inner core, this implies a tilt of 2 to 5° with respect to the mantle, and larger if ωficn is very close to Ωp. More modest tilt angles between 0 and 0.5° result if viscous relaxation within the inner core occurs on a timescale of one lunar day. Predictions from our model may be used in an attempt to detect the gravity signal resulting from a tilted inner core, to determine the past history of the inner core tilt angle, and to assess models of dynamo generation powered by differential rotation at the core-mantle and inner core boundaries.

  11. Platinum-group elements in the cores of potassium feldspar spherules from the Cretaceous-Tertiary boundary at Caravaca (Spain

    Directory of Open Access Journals (Sweden)

    Palomo, I.

    1994-04-01

    Full Text Available The abundant spherules present in the Cretaceous-Tertiary boundary layer at Caravaca are diagenetically transformed to potassium feldspar. Before our study no possible relicts of the precursor material had been reported. but in this paper we describe the presence of cores in these spherules that could represent a relict of the «unknown precursor». These cores are made up of C mixed with Si. Mg. AL Cr. Ca among other elements. Laser Ablation System analysis also reveals an enrichment in pe;E could suggest an extraterrestrial origin for this material. PI. Pd and Ir do not show a chondritic ratio: however. asevere modification of their concentration could be expected during the early diagenetic processes.Las esférulas existentes en la lámina de sedimento del tránsito Cretácico-Terciario de la sección de Caravaca han sido transformadas diagenéticamente a feldespato potásico. En este trabajo se describe la existencia de núcleos encontrados en el interior de las esférulas. los cuales' pueden representar relictos del material precursor. Dichos núcleos están constituidos por C. Si. Mg, AL Cr y Ca entre otros elementos. Se pone de relieve, por vez primera, su notable enriquecimiento en elementos del grupo del platino, cuyas relaciones no condríticas pueden ser debidas a la existencia de importantes modificaciones en su concentración inicial causadas por los procesos diagenéticos y por la existencia de materia orgánica.

  12. Magnetodynamo Lifetimes for Rocky, Earth-Mass Exoplanets with Contrasting Mantle Convection Regimes

    CERN Document Server

    van Summeren, Joost; Conrad, Clinton P

    2013-01-01

    We used a thermal model of an iron core to calculate magnetodynamo evolution in Earth-mass rocky planets to determine the sensitivity of dynamo lifetime and intensity to planets with different mantle tectonic regimes, surface temperatures, and core properties. The heat flow at the core-mantle boundary (CMB) is derived from numerical models of mantle convection with a viscous/pseudo-plastic rheology that captures the phenomenology of plate-like tectonics. Our thermal evolution models predict a long-lived (~8 Gyr) field for Earth and similar dynamo evolution for Earth-mass exoplanets with plate tectonics. Both elevated surface temperature and pressure-dependent mantle viscosity reduce the CMB heat flow but produce only slightly longer-lived dynamos (~8-9.5 Gyr). Single-plate ("stagnant lid") planets with relatively low CMB heat flow produce long-lived (~10.5 Gyr) dynamos. These weaker dynamos can cease for several billions of years and subsequently reactivate due to the additional entropy production associated ...

  13. Thermal evolution of Earth with magnesium precipitation in the core

    Science.gov (United States)

    O'Rourke, Joseph G.; Korenaga, Jun; Stevenson, David J.

    2017-01-01

    Vigorous convection in Earth's core powers our global magnetic field, which has survived for over three billion years. In this study, we calculate the rate of entropy production available to drive the dynamo throughout geologic time using one-dimensional parameterizations of the evolution of Earth's core and mantle. To prevent a thermal catastrophe in models with realistic Urey ratios, we avoid the conventional scaling for plate tectonics in favor of one featuring reduced convective vigor for hotter mantle. We present multiple simulations that capture the effects of uncertainties in key parameters like the rheology of the lower mantle and the overall thermal budget. Simple scaling laws imply that the heat flow across the core/mantle boundary was elevated by less than a factor of two in the past relative to the present. Another process like the precipitation of magnesium-bearing minerals is therefore required to sustain convection prior to the nucleation of the inner core roughly one billion years ago, especially given the recent, upward revision to the thermal conductivity of the core. Simulations that include precipitation lack a dramatic increase in entropy production associated with the formation of the inner core, complicating attempts to determine its age using paleomagnetic measurements of field intensity. Because mantle dynamics impose strict limits on the amount of heat extracted from the core, we find that the addition of radioactive isotopes like potassium-40 implies less entropy production today and in the past. On terrestrial planets like Venus with more sluggish mantle convection, even precipitation of elements like magnesium may not sustain a dynamo if cooling rates are too slow.

  14. Lithophile and siderophile element systematics of Earth's mantle at the Archean-Proterozoic boundary: Evidence from 2.4 Ga komatiites

    Science.gov (United States)

    Puchtel, I. S.; Touboul, M.; Blichert-Toft, J.; Walker, R. J.; Brandon, A. D.; Nicklas, R. W.; Kulikov, V. S.; Samsonov, A. V.

    2016-05-01

    likely ancient mafic crust. The large positive 182W anomaly present in the tonalites requires that the precursor crust incorporated a primordial component with Hf/W that became fractionated, relative to the bulk mantle, within the first 50 Ma of Solar System history. The absolute HSE abundances in the mantle source of the Vetreny komatiite system are estimated to be 66 ± 7% of those in the present-day Bulk Silicate Earth. This observation, coupled with the normal 182W/184W composition of the komatiitic basalts, when corrected for crustal contamination (μ182W = -0.5 ± 4.5 ppm), indicates that the W-HSE systematics of the Vetreny komatiite system most likely were established as a result of late accretion of chondritic material to Earth. Our present results, combined with isotopic and chemical data available for other early and late Archean komatiite systems, are inconsistent with the model of increasing HSE abundances in komatiitic sources as a result of slow downward mixing into the mantle of chondritic material accreted to Earth throughout the Archean. The observed HSE concentration variations rather reflect sluggish mixing of diverse post-magma ocean domains characterized by variably-fractionated lithophile and siderophile element abundances.

  15. Geomagnetism of earth's core

    Science.gov (United States)

    Benton, E. R.

    1983-01-01

    Instrumentation, analytical methods, and research goals for understanding the behavior and source of geophysical magnetism are reviewed. Magsat, launched in 1979, collected global magnetometer data and identified the main terrestrial magnetic fields. The data has been treated by representing the curl-free field in terms of a scalar potential which is decomposed into a truncated series of spherical harmonics. Solutions to the Laplace equation then extend the field upward or downward from the measurement level through intervening spaces with no source. Further research is necessary on the interaction between harmonics of various spatial scales. Attempts are also being made to analytically model the main field and its secular variation at the core-mantle boundary. Work is also being done on characterizing the core structure, composition, thermodynamics, energetics, and formation, as well as designing a new Magsat or a tethered satellite to be flown on the Shuttle.

  16. Geomagnetism of earth's core

    Science.gov (United States)

    Benton, E. R.

    1983-01-01

    Instrumentation, analytical methods, and research goals for understanding the behavior and source of geophysical magnetism are reviewed. Magsat, launched in 1979, collected global magnetometer data and identified the main terrestrial magnetic fields. The data has been treated by representing the curl-free field in terms of a scalar potential which is decomposed into a truncated series of spherical harmonics. Solutions to the Laplace equation then extend the field upward or downward from the measurement level through intervening spaces with no source. Further research is necessary on the interaction between harmonics of various spatial scales. Attempts are also being made to analytically model the main field and its secular variation at the core-mantle boundary. Work is also being done on characterizing the core structure, composition, thermodynamics, energetics, and formation, as well as designing a new Magsat or a tethered satellite to be flown on the Shuttle.

  17. A Consensus on Mantle Potential Temperatures? (Invited)

    Science.gov (United States)

    Putirka, K. D.

    2009-12-01

    C. All three groups further estimate that MORs exhibit a T range of 100 deg. C (Herzberg & Asimow, 2008; Lee et al., 2009) or 140 deg. C (Putirka et al., 2007). The agreement is especially remarkable given that each group uses different methods and/or equations. These absolute Tp values are furthermore consistent with a broad array of geophysical and experimental observations, including ocean floor bathymetry and heat flow (Stein & Stein, 1996), estimates for the peridotite solidus (Hirschmann, 2000), seismic estimates for depths of melting beneath MORs (MELT seismic Team, 1998), phase transitions at 670 km for a pyrolite mantle (Hirose, 2002), and excess bathymetry at Hawaii (Sleep, 1990). In addition, when pressures are calculated based on Si-activity (and T) for ocean islands (Putirka, 2008; RiMG), P is correlated with other indicators of partial melting depths, such as FeOt, and Na/Ti (Putirka, 2008 RiMG); these cross correlations indicate that inter-ocean island P and T estimates are real, and that thermal differences are an important control on melt composition. Finally, 3He/4He (a possible lower mantle signature; Kurz, 1993) positively correlates with both F and Tp for ocean islands (Putirka, 2008, Geology, p. e176), providing perhaps the most direct evidence in support of Morgan’s (1971) model that thermal plumes are driven by excess heat from the core-mantle boundary.

  18. Searching for structure in the mid-mantle: Observations of converted phases beneath Iceland and Europe

    Science.gov (United States)

    Jenkins, J.; Deuss, A. F.; Cottaar, S.

    2016-12-01

    Until recently, most of the lower mantle was considered to be well-mixed with strong heterogeneity restricted to the lowermost several hundred kilometers above the core-mantle boundary, also known as the D'' layer. However, several recent studies have started to hint at a potential change in earth structure at mid-mantle depths, with evidence from both seismic tomography (Fukao and Obayashi 2013, French and Romanowichz, 2015) and global viscosity structure (Rudolph et al., 2015). We present the first continental-wide search for mid-mantle P to S wave converted phases and find most observations come from approximately 1000 km depth beneath Iceland and Western Europe. Conversions are identified using a data set of 50,000 high quality receiver functions which are systematically searched for robust signals from the mid-mantle. Potential P to s conversions are analysed in terms of slowness to determine whether they are true observations from depth or simply surface multiples arriving at similar times. We find broad regions with robust signals from approximately 1000 km depth in several locations; beneath Iceland and across Western Europe, beneath Ireland, Scotland, Eifel and south towards NW Italy and Spain. Similar observations have previously been observed mainly in subduction zone settings, and have been hypothesised to be caused by down-going oceanic crustal material. Here we present observations which correlate with slow seismic velocities in recent tomographic models (Rickers et al., (2013); French and Romanowicz, (2015)). These low velocities appear to be a channel deviating from the broad mantle plume beneath Iceland at mid-mantle depths. We hypothesise that the mid-mantle seismic signals we observe are caused by either a phase transition occurring locally in a specific composition or by small-scale chemical heterogeneities swept along with upwelling material and ponding around 1000 km.

  19. Metal-core piezoelectric fiber-based smart layer for damage detection using sparse virtual element boundary measurement

    Science.gov (United States)

    Zhang, Chao; Cheng, Li; Qiu, Jinhao; Wang, Hongyuan

    2016-04-01

    Metal-core Piezoelectric Fiber (MPF) was shown to have great potential to be a structurally integrated sensor for structural health monitoring (SHM) applications. Compared with the typical foil strain gauge, MPF is more suitable for high frequency strain measurement and can create direct conversion of mechanical energy into electric energy without the need for complex signal conditioners or gauge bridges. In this paper, a MPF-based smart layer is developed as an embedded network of distributed strain sensors that can be surface-mounted on a thin-walled structure. Each pair of the adjacent MPFs divides the entire structure into several "virtual elements (VEs)". By exciting the structure at the natural frequency of the VE, a "weak" formulation of the previously developed Pseudo-excitation (PE) approach based on sparse virtual element boundary measurement (VEBM) is proposed to detect the damage. To validate the effectiveness of the VEBM based approach, experiments are conducted to locate a small crack in a cantilever beam by using a MPF- based smart layer and a Laser Doppler Vibrometer (LDV). Results demonstrate that the proposed VEBM approach not only inherits the enhanced noise immunity capability of the "weak" formulation of the PE approach, but also allows a significant reduction in the number of measurement points as compared to the original version of the PE approach.

  20. The Effect of an Electrically Conducting Lower Mantle on Dynamo Generated Planetary Magnetic Fields

    Science.gov (United States)

    Vilim, R.; Stanley, S.

    2012-12-01

    Recent studies have shown that the lower mantles of Earth[1], Mercury[2], and large terrestrial exoplanets[3, 4] may be good conductors of electricity. This raises questions about the effect of an electrically conducting lower mantle on magnetic field generation in these planets. A core dynamo generated magnetic field can interact with an electrically conducting mantle in two ways. First, magnetic fields lines can be be frozen into the solid mantle. The flows in the core can then stretch the magnetic field lines at the core mantle boundary increasing their strength. Second, any field observed at the surface will be attenuated due to the screening effect, which preferentially attenuates the components of the magnetic field that vary quickest in time. We use a numerical dynamo model to investigate the effect of a conducting mantle on dynamo generated planetary magnetic fields. [1] Ohta, K., Cohen, R. E., Hirose, K., Haule, K., Shimizu, K., and Ohishi, Y. (2012). Experimental and Theoretical Evidence for Pressure-Induced Metallization in FeO with Rocksalt-Type Structure. PRL, 108, 026403 [2] Smith, D. E., Zuber, M. T., Phillips, R. J., Solomon, S. C., Hauck, S. A. II, Lemoine, F. G., Mazarico, E., Neumann, G.A., Peale, S.J., Margot, J.L., Johnson C.L., Torrence, M.H., Perry, M.E., Rowlands D.D., Goossens, S., Head, J.W., Taylor, A.H. (2012). Gravity Field and Internal Structure of Mercury from MESSENGER. Science [3] Nellis, W. J. (2011). Metallic liquid hydrogen and likely Al2O3 metallic glass. The European Physical Journal Special Topics, 196, 121-130 [4] Tsuchiya, T. (2011). Prediction of a hexagonal SiO2 phase affecting stabilities of MgSiO3 and CaSiO3 at multimegabar pressures. PNAS, 108, 1252-1255

  1. Past Plate Motions and The Evolution of Earth's Lower Mantle: Relating LLSVPs and Plume Distribution

    Science.gov (United States)

    Bull, A. L.; Torsvik, T. H.; Shephard, G. E.

    2015-12-01

    Seismic tomography elucidates broad, low shear-wave velocity structures in the lower mantle beneath Africa and the central Pacific with uncertain physical and compositional origins. The anomalously slow areas, which cover nearly 50% of the core-mantle boundary, are often referred to as Large Low Shear Velocity Provinces (LLSVPs) due to the reduced velocity of seismic waves passing through them. Several hypotheses have arisen to explain the LLSVPs in the context of large-scale mantle convection. One end-member scenario infers a spatial correlation between LLSVP margins at depth and the reconstructed surface eruption sites of hotspots, kimberlites, and Large Igneous Provinces. Such a correlation has been explained by the preferential triggering of plumes at LLSVP margins by impingement of the subducting lithosphere upon the lower thermal boundary layer at the interface between ambient mantle and the higher density structures. This scenario propounds that Earth's plate motion history plays a controlling role in plume development, and that the location, geometry and morphology of plumes may be influenced by the movement of subducting slabs. Here, we investigate what is necessary to create such a pattern of plume distribution in relation to LLSVPs. We consider what effect past plate motions may have had on the evolution of Earth's lower mantle, and discuss the development of mantle plumes in terms of subduction dynamics. We integrate plate tectonic histories and numerical models of mantle convection to investigate the role that subduction history plays in the development and evolution of plumes in the presence of LLSVPs. To test whether an interaction exists between the surface location of subduction and plume eruption sites, and if so, to what degree over time, we apply varying shifts to the absolute reference frame of the plate reconstruction. With this method, we are able to change the location of subduction at the surface and thus the global flow field. This in turn

  2. Compositional Evolution of the Mantle

    Science.gov (United States)

    Bennett, V. C.

    2003-12-01

    The mantle is the Earth's largest chemical reservoir comprising 82% of its total volume and 65% of its mass. The mantle constitutes almost all of the silicate Earth, extending from the base of the crust (which comprises only 0.6% of the silicate mass) to the top of the metallic core at 2,900 km depth. The chemical compositions of direct mantle samples such as abyssal peridotites (Chapter 2.04) and peridotite xenoliths (Chapter 2.05), and of indirect probes of the mantle such as basalts from mid-ocean ridge basalts (MORBs) and ocean island basalts (OIBs) (Chapter 2.03), and some types of primitive granites, tell us about the compositional state of the modern mantle, with ever increasingly detailed information providing strong evidence for chemical complexity and heterogeneity at all scales (Chapter 2.03). This chemical heterogeneity must reflect the complex physical interplay of a number of distinct long-lived geochemical reservoirs that are identified primarily by their radiogenic isotopic compositions.Many of the chapters in this volume provide detailed images of the current chemical and physical state of the Earth's mantle, whereas other contributions examine the starting composition for the Earth (Chapter 2.01). This chapter attempts to link these two areas by tracking the composition of the mantle through time. The first part of this chapter is a summary of the empirical evidence for secular change in the chemical composition of the mantle from the formation of the Earth at 4.56 Ga throughto the present day. The emphasis is on results from the long-lived radiogenic isotopic systems, in particular 147Sm-143Nd, 176Lu-176Hf, 87Rb-87Sr, and 187Re-187Os systems as these isotopic data provide some of the best constraints on the composition of the mantle in the first half of Earth history, and the timing and extent of chemical differentiation that has affected the mantle over geologic time. Selected trace element data and the "short-lived" 146Sm-142Nd isotopic systems

  3. Upper- and mid-mantle interaction between the Samoan plume and the Tonga-Kermadec slabs

    Science.gov (United States)

    Chang, Sung-Joon; Ferreira, Ana M. G.; Faccenda, Manuele

    2016-02-01

    Mantle plumes are thought to play a key role in transferring heat from the core-mantle boundary to the lithosphere, where it can significantly influence plate tectonics. On impinging on the lithosphere at spreading ridges or in intra-plate settings, mantle plumes may generate hotspots, large igneous provinces and hence considerable dynamic topography. However, the active role of mantle plumes on subducting slabs remains poorly understood. Here we show that the stagnation at 660 km and fastest trench retreat of the Tonga slab in Southwestern Pacific are consistent with an interaction with the Samoan plume and the Hikurangi plateau. Our findings are based on comparisons between 3D anisotropic tomography images and 3D petrological-thermo-mechanical models, which self-consistently explain several unique features of the Fiji-Tonga region. We identify four possible slip systems of bridgmanite in the lower mantle that reconcile the observed seismic anisotropy beneath the Tonga slab (VSH>VSV) with thermo-mechanical calculations.

  4. Upper- and mid-mantle interaction between the Samoan plume and the Tonga-Kermadec slabs.

    Science.gov (United States)

    Chang, Sung-Joon; Ferreira, Ana M G; Faccenda, Manuele

    2016-02-29

    Mantle plumes are thought to play a key role in transferring heat from the core-mantle boundary to the lithosphere, where it can significantly influence plate tectonics. On impinging on the lithosphere at spreading ridges or in intra-plate settings, mantle plumes may generate hotspots, large igneous provinces and hence considerable dynamic topography. However, the active role of mantle plumes on subducting slabs remains poorly understood. Here we show that the stagnation at 660 km and fastest trench retreat of the Tonga slab in Southwestern Pacific are consistent with an interaction with the Samoan plume and the Hikurangi plateau. Our findings are based on comparisons between 3D anisotropic tomography images and 3D petrological-thermo-mechanical models, which self-consistently explain several unique features of the Fiji-Tonga region. We identify four possible slip systems of bridgmanite in the lower mantle that reconcile the observed seismic anisotropy beneath the Tonga slab (V(SH)>V(SV)) with thermo-mechanical calculations.

  5. Thermal and electrical conductivity of iron at Earth's core conditions.

    Science.gov (United States)

    Pozzo, Monica; Davies, Chris; Gubbins, David; Alfè, Dario

    2012-04-11

    The Earth acts as a gigantic heat engine driven by the decay of radiogenic isotopes and slow cooling, which gives rise to plate tectonics, volcanoes and mountain building. Another key product is the geomagnetic field, generated in the liquid iron core by a dynamo running on heat released by cooling and freezing (as the solid inner core grows), and on chemical convection (due to light elements expelled from the liquid on freezing). The power supplied to the geodynamo, measured by the heat flux across the core-mantle boundary (CMB), places constraints on Earth's evolution. Estimates of CMB heat flux depend on properties of iron mixtures under the extreme pressure and temperature conditions in the core, most critically on the thermal and electrical conductivities. These quantities remain poorly known because of inherent experimental and theoretical difficulties. Here we use density functional theory to compute these conductivities in liquid iron mixtures at core conditions from first principles--unlike previous estimates, which relied on extrapolations. The mixtures of iron, oxygen, sulphur and silicon are taken from earlier work and fit the seismologically determined core density and inner-core boundary density jump. We find both conductivities to be two to three times higher than estimates in current use. The changes are so large that core thermal histories and power requirements need to be reassessed. New estimates indicate that the adiabatic heat flux is 15 to 16 terawatts at the CMB, higher than present estimates of CMB heat flux based on mantle convection; the top of the core must be thermally stratified and any convection in the upper core must be driven by chemical convection against the adverse thermal buoyancy or lateral variations in CMB heat flow. Power for the geodynamo is greatly restricted, and future models of mantle evolution will need to incorporate a high CMB heat flux and explain the recent formation of the inner core.

  6. Melting experiments on peridotite to lowermost mantle conditions

    Science.gov (United States)

    Tateno, Shigehiko; Hirose, Kei; Ohishi, Yasuo

    2014-06-01

    Melting experiments on a pyrolitic mantle material were performed in a pressure range from 34 to 179 GPa based on laser-heated diamond-anvil cell (DAC) techniques. The textural and chemical characterizations of quenched samples were made by using field-emission-type electron microprobe (FE-EPMA). Melts formed by 46 to 77 wt.% partial melting in this study were ultrabasic in composition and became more depleted in SiO2 and more enriched in FeO with increasing pressure. Melting textures indicate that the liquidus phase changed from ferropericlase to MgSiO3-rich perovskite at least above 34 GPa and further to post-perovskite. The first phase to melt (disappear) changed from CaSiO3 perovskite to (Mg,Fe)O ferropericlase between 68 and 82 GPa. The stability of ferropericlase above solidus temperature shrinks with increasing pressure (melting last below 34 GPa and first 82 GPa), resulting in higher (MgO + FeO)/SiO2 ratio in partial melt at higher pressure. Additionally, the Fe-Mg distribution coefficients (KD) between perovskite/post-perovskite and melt decreased considerably with increasing pressure, leading to strong Fe-enrichment in partial melts. It supports dense partial melts in a deep lower mantle, which migrate downward to the core mantle boundary (CMB).

  7. Compositional layering within the large low shear-wave velocity provinces (LLSVPs) in the lower mantle

    Science.gov (United States)

    Ballmer, Maxim; Lekic, Vedran; Schumacher, Lina; Ito, Garrett; Thomas, Christine

    2016-04-01

    Seismic tomography reveals two antipodal LLSVPs in the Earth's mantle, each extending from the core-mantle boundary (CMB) up to ~1000 km depth. The LLSVPs are thought to host primordial mantle materials that bear witness of early-Earth processes, and/or subducted basalt that has accumulated in the mantle over billions of years. A compositional distinction between the LLSVPs and the ambient mantle is supported by anti-correlation of bulk-sound and shear-wave velocity (Vs) anomalies as well as abrupt lateral gradients in Vs along LLSVP margins. Both of these observations, however, are mainly restricted to the LLSVP bottom domains (2300~2900 km depth), or hereinafter referred to as "deep distinct domains" (DDD). Seismic sensitivity calculations suggest that DDDs are more likely to be composed of primordial mantle material than of basaltic material. On the other hand, the seismic signature of LLSVP shallow domains (1000~2300 km depth) is consistent with a basaltic composition, though a purely thermal origin cannot be ruled out. Here, we explore the dynamical, seismological, and geochemical implications of the hypothesis that the LLSVPs are compositionally layered with a primordial bottom domain (or DDD) and a basaltic shallow domain. We test this hypothesis using 2D thermochemical mantle-convection models. Depending on the density difference between primordial and basaltic materials, the materials either mix or remain separate as they join to form thermochemical piles in the deep mantle. Separation of both materials within these piles provides an explanation for LLSVP seismic properties, including substantial internal vertical gradients in Vs observed at 400-700 km height above the CMB, as well as out-of-plane reflections on LLSVP sides over a range of depths. Predicted geometry of thermochemical piles is compared to LLSVP and DDD shapes as constrained by seismic cluster analysis. Geodynamic models predict short-lived "secondary" plumelets to rise from LLSVP roofs and

  8. Erosion of icy cores in giant gas planets

    CERN Document Server

    Wilson, Hugh F

    2010-01-01

    Using ab initio simulations we investigate whether water ice is stable in the cores of giant planets, or whether it dissolves into the layer of metallic hydrogen above. By Gibbs free energy calculations we find that for pressures between 10 and 40 Mbar the ice-hydrogen interface is unstable at temperatures above approximately 3000 K, far below the temperature of the core-mantle boundaries in Jupiter and Saturn that are of the order of 10000 K. This implies that the cores of solar and extrasolar giant planets are at least partially eroded.

  9. Core merging and stratification following giant impact

    Science.gov (United States)

    Landeau, Maylis; Olson, Peter; Deguen, Renaud; Hirsh, Benjamin H.

    2016-10-01

    A stratified layer below the core-mantle boundary has long been suspected on the basis of geomagnetic and seismic observations. It has been suggested that the outermost core has a stratified layer about 100 km thick that could be due to the diffusion of light elements. Recent seismological evidence, however, supports a layer exceeding 300 km in thickness of enigmatic origin. Here we show from turbulent mixing experiments that merging between projectile and planetary core following a giant impact can lead to a stratified layer at the top of the core. Scaling relationships between post-impact core structure and projectile properties suggest that merging between Earth's protocore and a projectile core that is enriched in light elements and 20 times less massive can produce the thick stratification inferred from seismic data. Our experiments favour Moon-forming impact scenarios involving a projectile smaller than the proto-Earth and suggest that entrainment of mantle silicates into the protocore led to metal-silicate equilibration under extreme pressure-temperature conditions. We conclude that the thick stratified layer detected at the top of Earth's core can be explained as a vestige of the Moon-forming giant impact during the late stages of planetary accretion.

  10. Earth rotation and core topography

    Science.gov (United States)

    Hager, Bradford H.; Clayton, Robert W.; Spieth, Mary Ann

    1988-01-01

    The NASA Geodynamics program has as one of its missions highly accurate monitoring of polar motion, including changes in length of day (LOD). These observations place fundamental constraints on processes occurring in the atmosphere, in the mantle, and in the core of the planet. Short-timescale (t less than or approx 1 yr) variations in LOD are mainly the result of interaction between the atmosphere and the solid earth, while variations in LOD on decade timescales result from the exchange of angular momentum between the mantle and the fluid core. One mechanism for this exchange of angular momentum is through topographic coupling between pressure variations associated with flow in the core interacting with topography at the core-mantel boundary (CMB). Work done under another NASA grant addressing the origin of long-wavelength geoid anomalies as well as evidence from seismology, resulted in several models of CMB topography. The purpose of work supported by NAG5-819 was to study further the problem of CMB topography, using geodesy, fluid mechanics, geomagnetics, and seismology. This is a final report.

  11. Numerical modeling of mantle plume diffusion

    Science.gov (United States)

    Krupsky, D.; Ismail-Zadeh, A.

    2004-12-01

    To clarify the influence of the heat diffusion on the mantle plume evolution, we develop a two-dimensional numerical model of the plume diffusion and relevant efficient numerical algorithm and code to compute the model. The numerical approach is based on the finite-difference method and modified splitting algorithm. We consider both von Neumann and Direchlet conditions at the model boundaries. The thermal diffusivity depends on pressure in the model. Our results show that the plume is disappearing from the bottom up - the plume tail at first and its head later - because of the mantle plume geometry (a thin tail and wide head) and higher heat conductivity in the lower mantle. We study also an effect of a lateral mantle flow associated with the plate motion on the distortion of the diffusing mantle plume. A number of mantle plumes recently identified by seismic tomography seem to disappear in the mid-mantle. We explain this disappearance as the effect of heat diffusion on the evolution of mantle plume.

  12. Constraining lowermost mantle structure with PcP/P amplitude ratios from large aperture arrays

    Science.gov (United States)

    Ventosa, S.; Romanowicz, B. A.

    2015-12-01

    Observations of weak short-period teleseismic body waves help to resolve lowermost mantle structure at short wavelengths, which is essential for understanding mantle dynamics and the interactions between the mantle and core. Their limited amount and uneven distribution are however major obstacles to solve for volumetric structure of the D" region, topography of the core-mantle boundary (CMB) and D" discontinuity, and the trade-offs among them. While PcP-P differential travel times provide important information, there are trade-offs between velocity structure and core-mantle boundary topography, which PcP/P amplitude ratios can help resolve, as long as lateral variations in attenuation and biases due to focusing are small or can be corrected for. Dense broadband seismic networks help to improve signal-to-noise ratio (SNR) of the target phases and signal-to-interference ratio (SIR) of other mantle phases when the slowness difference is large enough. To improve SIR and SNR of teleseismic PcP data, we have introduced the slant-stacklet transform to define coherent-guided filters able to separate and enhance signals according to their slowness, time of arrival and frequency content. We thus obtain optimal PcP/P amplitude ratios in the least-square sense using two short sliding windows to match the P signal with a candidate PcP signal. This method allows us to dramatically increase the amount of high-quality observations of short-period PcP/P amplitude ratios by allowing for smaller events and wider epicentral distance and depth ranges.We present the results of measurement of PcP/P amplitude ratios, sampling regions around the Pacific using dense arrays in North America and Japan. We observe that short-period P waves traveling through slabs are strongly affected by focusing, in agreement with the bias we have observed and corrected for due to mantle heterogeneities on PcP-P travel time differences. In Central America, this bias is by far the stronger anomaly we observe

  13. Consequences of an unstable chemical stratification on mantle dynamics

    Science.gov (United States)

    Plesa, Ana-Catalina; Tosi, Nicola; Breuer, Doris

    2013-04-01

    Early in the history of terrestrial planets, the fractional crystallization of primordial magma oceans may have led to the formation of large scale chemical heterogeneities. These may have been preserved over the entire planetary evolution as suggested for Mars by the isotopic analysis of the so-called SNC meteorites. The fractional crystallization of a magma ocean leads to a chemical stratification characterized by a progressive enrichment in heavy elements from the core-mantle boundary to the surface. This results in an unstable configuration that causes the overturn of the mantle and the subsequent formation of a stable chemical layering. Assuming scaling parameters appropriate for Mars, we first performed simulations of 2D thermo-chemical convection in Cartesian geometry with the numerical code YACC [1]. We investigated systems heated either solely from below or from within by varying systematically the buoyancy ratio B, which measures the relative importance of chemical to thermal buoyancy, and the mantle rheology, by considering systems with constant, strongly temperature-dependent and plastic viscosity. We ran a large set of simulations spanning a wide parameter space in order to understand the basic physics governing the magma ocean cumulate overturn and its consequence on mantle dynamics. Moreover, we derived scaling laws that relate the time over which chemical heterogeneities can be preserved (mixing time) and the critical yield stress (maximal yield stress that allows the lithosphere to undergo brittle failure) to the buoyancy ratio. We have found that the mixing time increases exponentially with B, while the critical yield stress shows a linear dependence. We investigated then Mars' early thermo-chemical evolution using the code GAIA in a 2D cylindrical geometry [2] and assuming a detailed magma ocean crystallization sequence as obtained from geochemical modeling [3]. We used an initial composition profile adapted from [3], accounted for an exothermic

  14. In situ visualization on cores with different boundary conditions through X-ray computed tomography scanner (CT-Scanner) during spontaneous imbibition

    Science.gov (United States)

    Kim, T.; Kovscek, A. R.

    2013-12-01

    Spontaneous imbibition (SI) is defined as displacement of non-wetting phase by wetting phase through the action of capillary forces in porous media. Spontaneous imbibition may occur as countercurrent or cocurrent multiphase flow. SI is an important test of rock wettability and is relevant to oil recovery from rocks of many different types of wettability. The rate of SI depends on permeability and water/oil relative permeability, medium shapes and boundary conditions, fluid viscosity, interfacial tension, and wettability, among other factors. This study investigates the effect of characteristic length (CL), boundary conditions (BC), and initial water saturation on the rate of spontaneous imbibition. We conduct countercurrent and cocurrent SI tests using cylindrical Berea sandstone (water-wet) and Indiana limestone (weakly wetting) through an X-ray computed tomography scanner and an imbibition cell with different boundary conditions and initial water saturations. Brine (1 wt% NaCl) is used as the wetting fluid. Also, decane (n-C10) and Blandol are used as non-wetting fluids, respectively to compare the effect of mobility ratio. The observed 2-D and 3-D saturation profile histories within each rock show clearly different imbibition patterns for each boundary condition. Also, low permeability limestones have more heterogeneous features than sandstones. The effect of characteristic length (CL) on the imbibition recovery curve was investigated using dimensionless time (tD). CL had an inverse effect on the rate of spontaneous imbibition within the same core samples. In addition, we used three different boundary conditions (BC) including (1) all faces open (AFO), (2) two ends open (TEO, i.e., inlet and outlet face), and (3) one end open (OEO, i.e., one face of the core) systems. BC experiments showed the effect of total open surface area for the oil production rate of spontaneous imbibition with different Swi. In addition, the generalized correlation (Aronofsy's equation

  15. Beyond Waveform Forward Modeling: The Lowermost Mantle Beneath the East of Australia

    Science.gov (United States)

    Pachhai, S.; Tkalcic, H.

    2012-12-01

    Seismic imaging of the lowermost mantle provides key information about its structure and dynamics, shaping constraints on mantle convection and heat transfer between the core and mantle. Ultra low velocity zones (ULVZs) sitting on top of the core-mantle boundary (CMB) are identified as small-scale structures with a sharp decrease in P- and S-wave velocity and an increase in density. Apart from small-scale features, it is also crucial to accurately image the large-scale features in the mantle because the dynamics of a boundary layer is closely coupled to the upwelling and downwelling motions of a convective system. Due to a high computational cost that more sophisticated inversion technique would impose, waveform forward modeling of the core-reflected and core-refracted waves is a widely used method for the investigation of ULVZs and other features of the lowermost mantle. In forward modeling, the density, velocity and thickness of layers are varied in a trial and error or simple grid-search fashion until they produce synthetic seismograms that match the main features observed in the seismic waveforms. It is often possible to convincingly model the observed waveforms by an ULVZ with different properties and geometry making forward solutions highly non-unique. It is also possible to generate a structural model that fits the waveform data, but is not necessarily required by the data. In order to address this problem we utilize transdimensional inversion, which is a Bayesian method that utilizes an ensemble of models representing the posterior probability distribution. The method treats the number of free parameters (e.g. the number of layers at the base of the mantle, their thicknesses, densities and velocities) as unknowns in the problem. Furthermore, the noise in the data is used to constrain the complexity of the model. This method thus carries the potential to advance our understanding about lowermost mantle structure and dynamics. Southwest Pacific subduction

  16. The effect of plumes and a free surface on mantle dynamics with continents and self-consistent plate tectonics

    Science.gov (United States)

    Jain, Charitra; Rozel, Antoine; Tackley, Paul

    2014-05-01

    Rolf et al. (EPSL, 2012) and Coltice et al. (Science, 2012) investigated the thermal and dynamical influences of continents on plate tectonics and the thermal state of Earth's mantle, but they did not explicitly consider the influence of mantle plumes. When present, strong mantle plumes arising from the deep mantle can impose additional stresses on the continents, thereby facilitating continental rifting (Storey, Nature 1995; Santosh et al., Gondwana Research 2009) and disrupting the supercontinent cycle (Philips and Bunge, Geology 2007). In recent years, several studies have characterized the relation between the location of the plumes and the continents, but with contradicting observations. While Heron and Lowman (GRL, 2010; Tectonophysics, 2011) propose regions where downwelling has ceased (irrespective of overlying plate) as the preferred location for plumes, O'Neill et al. (Gondwana Research, 2009) show an anti-correlation between the average positions of subducting slabs at continental margins, and mantle plumes at continental/oceanic interiors. Continental motion is attributed to the viscous stresses imparted by the convecting mantle and the extent of this motion depends on the heat budget of the mantle. Core-mantle boundary (CMB) heat flux, internal heating from decay of radioactive elements, and mantle cooling contribute to this heat budget. Out of these sources, CMB heat flux is not well defined; however, the recent determination that the core's thermal conductivity is much higher than previously thought requires a CMB heat flow of at least 12 TW (de Koker et al., PNAS 2012; Pozzo et al., Nature 2012; Gomi et al., PEPI 2013), much higher than early estimates of 3-4 TW (Lay et al., Nature 2008). Thus, it is necessary to characterize the effect of increased CMB heat flux on mantle dynamics. In almost all mantle convection simulations, the top boundary is treated as a free-slip surface whereas Earth's surface is a deformable free surface. With a free

  17. Upper boundary of the Pacific plate subducting beneath Hokkaido, Japan, estimated from ScSp phase

    OpenAIRE

    Osada, Kinue; Yoshizawa, Kazunori; YOMOGIDA, Kiyoshi

    2010-01-01

    Three-dimensional geometry of the upper boundary of the Pacific plate subducting beneath Hokkaido, Japan, was obtained using the ScSp phase: the phase converted from ScS (S wave reflected at the core-mantle boundary) to P wave at the plate boundary. Taking the advantage of a dense seismic network, "Hi-net", recently deployed across the Japanese islands, we applied several seismic array analyses to the recorded waveform data for a large nearby deep earthquake, in order to enhance very weak ScS...

  18. Geophysical and geochemical constraints on geoneutrino fluxes from Earth's mantle

    CERN Document Server

    Šrámek, Ondřej; Kite, Edwin S; Lekić, Vedran; Dye, Steve; Zhong, Shijie

    2012-01-01

    Knowledge of the amount and distribution of radiogenic heating in the mantle is crucial for understanding the dynamics of the Earth, including its thermal evolution, the style and planform of mantle convection, and the energetics of the core. Although the flux of heat from the surface of the planet is robustly estimated, the contributions of radiogenic heating and secular cooling remain poorly defined. Constraining the amount of heat-producing elements in the Earth will provide clues to understanding nebula condensation and planetary formation processes in early Solar System. Mantle radioactivity supplies power for mantle convection and plate tectonics, but estimates of mantle radiogenic heat production vary by a factor of up to 30. Recent experimental results demonstrate the potential for direct assessment of mantle radioactivity through observations of geoneutrinos, which are emitted by naturally occurring radionuclides. Predictions of the geoneutrino signal from the mantle exist for several established est...

  19. Phosphates in pallasite meteorites as probes of mantle processes in small planetary bodies

    Science.gov (United States)

    Davis, Andrew M.; Olsen, Edward J.

    1991-01-01

    Trace element analyses of the phosphates minerals in stony-iron pallasite meteorites are used here to investigate the magmatic history of the silicate portions of pallasites. In Eagle Station and seven other pallasites, the phosphates have relatively low concentrations of REEs and are strongly enriched in heavy relative to light REE. These patterns are consistent with formation of phosphate by subsolidus reactions between metal and silicate, in which phosphate inherits the REE pattern of olivine. In Springwater and Santa Rosalia, calcium-rich phosphates have higher concentrations of REE, are enriched in light relative to heavy REE, and have negative europium anomalies. These patterns are consistent with crystallization of phosphate from a europium-depleted chondritic liquid. This is unlikely to have happened near the base of the differentiating parent-body mantle; it suggests that some pallasites may come from regions of their parent bodies much nearer the surface than the core-mantle boundary.

  20. How Mercury can be the most reduced terrestrial planet and still store iron in its mantle

    Science.gov (United States)

    Malavergne, Valérie; Cordier, Patrick; Righter, Kevin; Brunet, Fabrice; Zanda, Brigitte; Addad, Ahmed; Smith, Thomas; Bureau, Hélène; Surblé, Suzy; Raepsaet, Caroline; Charon, Emeline; Hewins, Roger H.

    2014-05-01

    Mercury is notorious as the most reduced planet with the highest metal/silicate ratio, yet paradoxically data from the MESSENGER spacecraft show that its iron-poor crust is high in sulfur (up to ˜6 wt%, ˜80× Earth crust abundance) present mainly as Ca-rich sulfides on its surface. These particularities are simply impossible on the other terrestrial planets. In order to understand the role played by sulfur during the formation of Mercury, we investigated the phase relationships in Mercurian analogs of enstatite chondrite-like composition experimentally under conditions relevant to differentiation of Mercury (˜1 GPa and 1300-2000 °C). Our results show that Mg-rich and Ca-rich sulfides, which both contain Fe, crystallize successively from reduced silicate melts upon cooling below 1550 °C. As the iron concentration in the reduced silicates stays very low (≪1 wt%), these sulfides represent new host phases for both iron and sulfur in the run products. Extrapolated to Mercury, these results show that Mg-rich sulfide crystallization provides the first viable and fundamental means for retaining iron as well as sulfur in the mantle during differentiation, while sulfides richer in Ca would crystallize at shallower levels. The distribution of iron in the differentiating mantle of Mercury was mainly determined by its partitioning between metal (or troilite) and Mg-Fe-Ca-rich sulfides rather than by its partitioning between metal (or troilite) and silicates. Moreover, the primitive mantle might also be boosted in Fe by a reaction at the core mantle boundary (CMB) between Mg-rich sulfides of the mantle and FeS-rich outer core materials to produce (Fe, Mg)S. The stability of Mg-Fe-Ca-rich sulfides over a large range of depths up to the surface of Mercury would be consistent with sulfur, calcium and iron abundances measured by MESSENGER.

  1. Anticorrelated seismic velocity anomalies from post-perovskite in the lowermost mantle

    Science.gov (United States)

    Hutko, Alexander R.; Lay, T.; Revenaugh, Justin; Garnero, E.J.

    2008-01-01

    Earth's lowermost mantle has thermal, chemical, and mineralogical complexities that require precise seismological characterization. Stacking, migration, and modeling of over 10,000 P and S waves that traverse the deep mantle under the Cocos plate resolve structures above the core-mantle boundary. A small -0.07 ?? 0.15% decrease of P wave velocity (Vp) is accompanied by a 1.5 ?? 0.5% increase in S wave velocity (Vs) near a depth of 2570 km. Bulk-sound velocity [Vb = (V p2 - 4/3Vs2)1/2] decreases by -1.0 ?? 0.5% at this depth. Transition of the primary lower-mantle mineral, (Mg1-x-y FexAly)(Si,Al) O3 perovskite, to denser post-perovskite is expected to have a negligible effect on the bulk modulus while increasing the shear modulus by ???6%, resulting in local anticorrelation of Vb and Vs anomalies; this behavior explains the data well.

  2. 3D spherical models of Martian mantle convection constrained by melting history

    Science.gov (United States)

    Sekhar, Pavithra; King, Scott D.

    2014-02-01

    While most of Tharsis rise was in place by end of the Noachian period, at least one volcano on Tharsis swell (Arsia Mons) has been active within the last 2 Ma. This places an important constraint on mantle convection and on the thermal evolution of Mars. The existence of recent volcanism on Mars implies that adiabatic decompression melting and, hence, upwelling convective flow in the mantle remains important on Mars at present. The thermal history on Mars can be constrained by the history of melt production, specifically generating sufficient melt in the first billion years of the planets history to produce Tharsis rise as well as present day melt to explain recent volcanism. In this work, mantle convection simulations were performed using finite element code CitcomS in a 3D sphere starting from a uniformly hot mantle and integrating forward in time for the age of the solar system. We implement constant and decaying radioactive heat sources; and vary the partitioning of heat sources between the crust and mantle, and consider decreasing core-mantle boundary temperature and latent heat of melting. The constant heat source calculations produce sufficient melt to create Tharsis early in Martian history and continue to produce significant melt to the present. Calculations with decaying radioactive heat sources generate excessive melt in the past, except when all the radiogenic elements are in the crust, and none produce melt after 2 Gyr. Producing a degree-1 or degree-2 structure may not be pivotal to explain the Tharsis rise: we present multi-plume models where not every plume produces melt. The Rayleigh number controls the timing of the first peak of volcanism while late-stage volcanism is controlled more by internal mantle heating. Decreasing the Rayleigh number increases the lithosphere thickness (i.e., depth), and increasing lithosphere thickness increases the mean mantle temperature. Increasing pressure reduces melt production while increasing temperature

  3. Thermal conductivity of MgO, MgSiO3 perovskite and post-perovskite in the Earth's deep mantle

    CERN Document Server

    Haigis, Volker; Jahn, Sandro; 10.1016/j.epsl.2012.09.002

    2012-01-01

    We report lattice thermal conductivities of MgO and MgSiO3 in the perovskite and post-perovskite structures at conditions of the Earth's lower mantle, obtained from equilibrium molecular dynamics simulations. Using an advanced ionic interaction potential, the full conductivity tensor was calculated by means of the Green-Kubo method, and the conductivity of MgSiO3 post-perovskite was found to be significantly anisotropic. The thermal conductivities of all three phases were parameterized as a function of density and temperature. Assuming a Fe-free lower-mantle composition with mole fractions xMgSiO3 = 0.66 and xMgO = 0.34, the conductivity of the two-phase aggregate was calculated along a model geotherm. It was found to vary considerably with depth, rising from 9.5 W/(mK) at the top of the lower mantle to 20.5 W/(mK) at the top of the thermal boundary layer above the core-mantle boundary. Extrapolation of experimental data suggests that at deep-mantle conditions, the presence of a realistic amount of iron impur...

  4. Ethnic Boundaries in Core Discussion Networks : A Multilevel Social Network Study of Turks and Moroccans in the Netherlands

    NARCIS (Netherlands)

    van Tubergen, F.A.

    2015-01-01

    This study examines ethnic segregation of core discussion networks in the Netherlands. The analysis is based on Netherlands Longitudinal Lifecourse Study, a large-scale survey of the Dutch population aged 15–45 that contains an oversample of first- and second-generation immigrants from Turkey and Mo

  5. Numerical models of the Earth’s thermal history: Effects of inner-core solidification and core potassium

    Science.gov (United States)

    Butler, S. L.; Peltier, W. R.; Costin, S. O.

    2005-09-01

    Recently there has been renewed interest in the evolution of the inner core and in the possibility that radioactive potassium might be found in significant quantities in the core. The arguments for core potassium come from considerations of the age of the inner core and the energy required to sustain the geodynamo [Nimmo, F., Price, G.D., Brodholt, J., Gubbins, D., 2004. The influence of potassium on core and geodynamo evolution. Geophys. J. Int. 156, 363-376; Labrosse, S., Poirier, J.-P., Le Mouël, J.-L., 2001. The age of the inner core. Earth Planet Sci. Lett. 190, 111-123; Labrosse, S., 2003. Thermal and magnetic evolution of the Earth's core. Phys. Earth Planet Int. 140, 127-143; Buffett, B.A., 2003. The thermal state of Earth's core. Science 299, 1675-1677] and from new high pressure physics analyses [Lee, K., Jeanloz, R., 2003. High-pressure alloying of potassium and iron: radioactivity in the Earth's core? Geophys. Res. Lett. 30 (23); Murthy, V.M., van Westrenen, W., Fei, Y.W., 2003. Experimental evidence that potassium is a substantial radioactive heat source in planetary cores. Nature 423, 163-165; Gessmann, C.K., Wood, B.J., 2002. Potassium in the Earth's core? Earth Planet Sci. Lett. 200, 63-78]. The Earth's core is also located at the lower boundary of the convecting mantle and the presence of radioactive heat sources in the core will affect the flux of heat between these two regions and will, as a result, have a significant impact on the Earth's thermal history. In this paper, we present Earth thermal history simulations in which we calculate fluid flow in a spherical shell representing the mantle, coupled with a core of a given heat capacity with varying degrees of internal heating in the form of K40 and varying initial core temperatures. The mantle model includes the effects of the temperature dependence of viscosity, decaying radioactive heat sources, and mantle phase transitions. The core model includes the thermal effects of inner core

  6. Technology for Boundaries

    DEFF Research Database (Denmark)

    Bødker, Susanne; Kristensen, Jannie Friis; Nielsen, Christina

    2003-01-01

    This paper presents a study of an organisation, which is undergoing a process transforming organisational and technological boundaries. In particular, we shall look at three kinds of boundaries: the work to maintain and change the boundary between the organisation and its customers; boundaries.......After analysing the history and the current boundary work, the paper will propose new technological support for boundary work. In particular the paper will suggest means of supporting boundaries when these are productive and for changing boundaries when this seems more appropriate. In total, flexible technologies...... seem a core issue when dealing with technology for boundaries....

  7. Mantle convection and plate tectonics on Earth-like exoplanets

    Science.gov (United States)

    Sotin, C.; Schubert, G.

    2009-12-01

    plumes for calculating the driving force. It is suggested that the formation of hot plumes at the core-mantle boundary and their interaction with the upper thermal boundary layer may play an important role in triggering plate tectonics. Part of this work has been carried out at the Jet Propulsion Laboratory-California Institute of Technology, under contract with NASA.

  8. Supercontinents, mantle dynamics and plate tectonics: A perspective based on conceptual vs. numerical models

    Science.gov (United States)

    Yoshida, Masaki; Santosh, M.

    2011-03-01

    The periodic assembly and dispersal of supercontinents through the history of the Earth had considerable impact on mantle dynamics and surface processes. Here we synthesize some of the conceptual models on supercontinent amalgamation and disruption and combine it with recent information from numerical studies to provide a unified approach in understanding Wilson Cycle and supercontinent cycle. Plate tectonic models predict that superdownwelling along multiple subduction zones might provide an effective mechanism to pull together dispersed continental fragments into a closely packed assembly. The recycled subducted material that accumulates at the mantle transition zone and sinks down into the core-mantle boundary (CMB) provides the potential fuel for the generation of plumes and superplumes which ultimately fragment the supercontinent. Geological evidence related to the disruption of two major supercontinents (Columbia and Gondwana) attest to the involvement of plumes. The re-assembly of dispersed continental fragments after the breakup of a supercontinent occurs through complex processes involving 'introversion', 'extroversion' or a combination of both, with the closure of the intervening ocean occurring through Pacific-type or Atlantic-type processes. The timescales of the assembly and dispersion of supercontinents have varied through the Earth history, and appear to be closely linked with the processes and duration of superplume genesis. The widely held view that the volume of continental crust has increased over time has been challenged in recent works and current models propose that plate tectonics creates and destroys Earth's continental crust with more crust being destroyed than created. The creation-destruction balance changes over a supercontinent cycle, with a higher crustal growth through magmatic influx during supercontinent break-up as compared to the tectonic erosion and sediment-trapped subduction in convergent margins associated with supercontinent

  9. Primary magmas and mantle temperatures through time

    Science.gov (United States)

    Ganne, Jérôme; Feng, Xiaojun

    2017-03-01

    Chemical composition of mafic magmas is a critical indicator of physicochemical conditions, such as pressure, temperature, and fluid availability, accompanying melt production in the mantle and its evolution in the continental or oceanic lithosphere. Recovering this information has fundamental implications in constraining the thermal state of the mantle and the physics of mantle convection throughout the Earth's history. Here a statistical approach is applied to a geochemical database of about 22,000 samples from the mafic magma record. Potential temperatures (Tps) of the mantle derived from this database, assuming melting by adiabatic decompression and a Ti-dependent (Fe2O3/TiO2 = 0.5) or constant redox condition (Fe2+/∑Fe = 0.9 or 0.8) in the magmatic source, are thought to be representative of different thermal "horizons" (or thermal heterogeneities) in the ambient mantle, ranging in depth from a shallow sublithospheric mantle (Tp minima) to a lower thermal boundary layer (Tp maxima). The difference of temperature (ΔTp) observed between Tp maxima and minima did not change significantly with time (˜170°C). Conversely, a progressive but limited cooling of ˜150°C is proposed since ˜2.5 Gyr for the Earth's ambient mantle, which falls in the lower limit proposed by Herzberg et al. [2010] (˜150-250°C hotter than today). Cooling of the ambient mantle after 2.5 Ga is preceded by a high-temperature plateau evolution and a transition from dominant plumes to a plate tectonics geodynamic regime, suggesting that subductions stabilized temperatures in the Archaean mantle that was in warming mode at that time.abstract type="synopsis">Plain Language SummaryThe Earth's upper mantle constitutes a major interface between inner and outer envelops of the planet. We explore at high resolution its thermal state evolution (potential temperature of the ambient mantle, Tp) in depth and time using a multi-dimensional database of mafic lavas chemistry (>22,000 samples formed in

  10. Thermal and electrical conductivity of iron at Earth's core conditions

    CERN Document Server

    Pozzo, Monica; Gubbins, David; Alfè, Dario

    2012-01-01

    The Earth acts as a gigantic heat engine driven by decay of radiogenic isotopes and slow cooling, which gives rise to plate tectonics, volcanoes, and mountain building. Another key product is the geomagnetic field, generated in the liquid iron core by a dynamo running on heat released by cooling and freezing to grow the solid inner core, and on chemical convection due to light elements expelled from the liquid on freezing. The power supplied to the geodynamo, measured by the heat-flux across the core-mantle boundary (CMB), places constraints on Earth's evolution. Estimates of CMB heat-flux depend on properties of iron mixtures under the extreme pressure and temperature conditions in the core, most critically on the thermal and electrical conductivities. These quantities remain poorly known because of inherent difficulties in experimentation and theory. Here we use density functional theory to compute these conductivities in liquid iron mixtures at core conditions from first principles- the first directly comp...

  11. Using archaeomagnetic field models to constrain the physics of the core: robustness and preferred locations of reversed flux patches

    Science.gov (United States)

    Terra-Nova, Filipe; Amit, Hagay; Hartmann, Gelvam A.; Trindade, Ricardo I. F.

    2016-09-01

    Archaeomagnetic field models cover longer timescales than historical models and may therefore resolve the motion of geomagnetic features on the core-mantle boundary (CMB) in a more meaningful statistical sense. Here we perform a detailed appraisal of archaeomagnetic field models to infer some aspects of the physics of the outer core. We characterize and compare the identification and tracking of reversed flux patches (RFPs) in order to assess the RFPs robustness. We find similar behaviour within a family of models but differences among different families, suggesting that modelling strategy is more influential than data set. Similarities involve recurrent positions of RFPs, but no preferred direction of motion is found. The tracking of normal flux patches shows similar qualitative behaviour confirming that RFPs identification and tracking is not strongly biased by their relative weakness. We also compare the tracking of RFPs with that of the historical field model gufm1 and with seismic anomalies of the lowermost mantle to explore the possibility that RFPs have preferred locations prescribed by lower mantle lateral heterogeneity. The archaeomagnetic field model that most resembles the historical field is interpreted in terms of core dynamics and core-mantle thermal interactions. This model exhibits correlation between RFPs and low seismic shear velocity in co-latitude and a shift in longitude. These results shed light on core processes, in particular we infer toroidal field lines with azimuthal orientation below the CMB and large fluid upwelling structures with a width of about 80° (Africa) and 110° (Pacific) at the top of the core. Finally, similar preferred locations of RFPs in the past 9 and 3 kyr of the same archaeomagnetic field model suggest that a 3 kyr period is sufficiently long to reliably detect mantle control on core dynamics. This allows estimating an upper bound of 220-310 km for the magnetic boundary layer thickness below the CMB.

  12. The earth's C21 and S21 gravity coefficients and the rotation of the core

    Science.gov (United States)

    Wahr, John M.

    1987-01-01

    Observational results for the earth's C21 and S21 gravity coefficients can be used to constrain the mean equatorial rotation of the core with respect to the mantle. Current satellite gravity solutions suggest the equatorial rotation rate is no larger than 1 x 10 to the -7th times the earth's diurnal spin rate, a limit more than one order of magnitude smaller than the polar rotation rate inferred from the westward drift of the earth's magnetic field. The next generation gravity solutions should improve this constraint by more than one order of magnitude. Implications for the fluid pressure at the core-mantle boundary and for the shape of that boundary are discussed.

  13. Rapid core field variations during the satellite era: Investigations using stochastic process based field models

    DEFF Research Database (Denmark)

    Finlay, Chris; Olsen, Nils; Gillet, Nicolas

    We present a new ensemble of time-dependent magnetic field models constructed from satellite and observatory data spanning 1997-2013 that are compatible with prior information concerning the temporal spectrum of core field variations. These models allow sharper field changes compared to traditional....... We report spherical harmonic spectra, comparisons to observatory monthly means, and maps of the radial field at the core-mantle boundary, from the resulting ensemble of core field models. We find that inter-annual fluctuations in the external field (for example related to high solar-driven activity...

  14. Mars' core and magnetism.

    Science.gov (United States)

    Stevenson, D J

    2001-07-12

    The detection of strongly magnetized ancient crust on Mars is one of the most surprising outcomes of recent Mars exploration, and provides important insight about the history and nature of the martian core. The iron-rich core probably formed during the hot accretion of Mars approximately 4.5 billion years ago and subsequently cooled at a rate dictated by the overlying mantle. A core dynamo operated much like Earth's current dynamo, but was probably limited in duration to several hundred million years. The early demise of the dynamo could have arisen through a change in the cooling rate of the mantle, or even a switch in convective style that led to mantle heating. Presently, Mars probably has a liquid, conductive outer core and might have a solid inner core like Earth.

  15. The Lowermost Mantle Beneath Central America Imaged by Kirchhoff Migration of Scatterers and Reflectors

    Science.gov (United States)

    Hutko, A.; Lay, T.; Revenaugh, J.

    2007-05-01

    We use tens of thousands of seismograms from South and Central American earthquakes recorded by western North American seismic networks to image the lowermost mantle beneath Central America using a 3D Kirchhoff migration method. P wave studies of the deep mantle often rely on some form of stacking of many records in order to enhance the signal-to-noise ratio of weak phases generated by deep structure, such as reflections off of the D" discontinuity. These methods, however, often assume one-dimensional structure, which is at odds with the evidence for significant heterogeneity. Kirchhoff migration is a three-dimensional stacking method that allows interactions with structure outside of the source-receiver plane, thus illuminating a much larger volume. The D" discontinuity beneath Central America has been readily observed in S wave studies and may be the result of the shear wave velocity increase associated with the recently discovered perovskite to post-perovskite phase transition. This phase transition is expected to have weaker effects on P wave velocities than on S wave velocities and the sharpness of this transition is unknown. Using data at post-critical distances, we observe structures consistent with a P velocity discontinuity about 200 km above the core-mantle boundary (CMB). Observing this using short period data suggests that the boundary must be less than a few 10s of km thick, while observation with lower frequency broadband data exclude the possibility of it being a thin layer. Whether this discontinuity is co-located for both P and S waves is difficult to resolve. Both the broadband and the short period P wave data sets also reveal a sharp out-of-plane scatterer, which may be located close to the CMB. The short period data also indicate reflectivity about 400 km above the CMB, well above the D" discontinuity, and similar reflectivity is observed under the Central Pacific. This feature appears to be more consistent with a discontinuity than a scatterer

  16. Molecular carbon isotope variations in core samples taken at the Permian-Triassic boundary layers in southern China

    Science.gov (United States)

    Wang, Ruiliang; Zhang, Shuichang; Brassell, Simon; Wang, Jiaxue; Lu, Zhengyuan; Ming, Qingzhong; Wang, Xiaomei; Bian, Lizeng

    2012-07-01

    Stable carbon isotope composition (δ13C) of carbonate sediments and the molecular (biomarker) characteristics of a continuous Permian-Triassic (PT) layer in southern China were studied to obtain geochemical signals of global change at the Permian-Triassic boundary (PTB). Carbonate carbon isotope values shifted toward positive before the end of the Permian period and then shifted negative above the PTB into the Triassic period. Molecular carbon isotope values of biomarkers followed the same trend at and below the PTB and remained negative in the Triassic layer. These biomarkers were acyclic isoprenoids, ranging from C15 to C40, steranes (C27 dominates) and terpenoids that were all significantly more abundant in samples from the Permian layer than those from the Triassic layer. The Triassic layer was distinguished by the dominance of higher molecular weight (waxy) n-alkanes. Stable carbon isotope values of individual components, including n-alkanes and acyclic isoprenoids such as phytane, isop-C25, and squalane, are depleted in δ13C by up to 8-10‰ in the Triassic samples as compared to the Permian. Measured molecular and isotopic variations of organic matter in the PT layers support the generally accepted view of Permian oceanic stagnation followed by a massive upwelling of toxic deep waters at the PTB. A series of large-scale (global) outgassing events may be associated with the carbon isotope shift we measured. This is also consistent with the lithological evidence we observed of white thin-clay layers in this region. Our findings, in context with a generally accepted stagnant Permian ocean, followed by massive upwelling of toxic deep waters might be the major causes of the largest global mass extinction event that occurred at the Permian-Triassic boundary.

  17. Observations of grain boundary structures and inclusions in the NEEM ice core by combination of light and scanning electron microscopy

    Science.gov (United States)

    Shigeyama, Wataru; Nagatsuka, Naoko; Homma, Tomoyuki; Takata, Morimasa; Goto-Azuma, Kumiko; Weikusat, Ilka; Drury, Martyn R.; Kuiper, Ernst-Jan N.; Pennock, Gill M.; Mateiu, Ramona V.; Azuma, Nobuhiko; Dahl-Jensen, Dorthe

    2017-04-01

    Dynamics of ice sheets is governed by the flow of the ice and this flow results from the internal deformation of the ice aggregate. The deformation properties of the ice are known to be dependent on several factors, such as microstructure (e.g. crystal grain size and orientation) and impurities. It is well known that ice from glacial periods in ice sheets has a high impurity concentration, and the deformation is reported to be faster than that of non-glacial ice (Faria et al., 2014). However, the mechanisms of the deformation are still not well understood. For a better understanding of ice sheet dynamics, it is a prerequisite to elucidate deformation mechanisms of such impurity-rich ice. The microstructure of a material is a factor that influences mechanical properties and is also an indicator of the dominant deformation mechanisms. The effects of impurities on the deformation and the microstructure depend on chemical compositions, states (viz. insoluble inclusions or soluble ions) and locations of the impurities in the crystal lattice. Therefore, in order to better understand the deformation mechanisms in ice, investigation of relationship between the microstructure and characteristics of the impurities is important. We examined the relationship between grain boundaries and inclusions. Light microscopy (LM) is commonly used to map grain boundary structures on a large area of the ice samples (up to 10 × 10 cm); however, observation of small inclusions NEEM glacial ice (1548 m depth, 19.2 kyr BP). The initial results show inclusions observed by LM formed aggregates of sub-micrometer-sized particles, whose main constituents were silicates. Reference Faria, S. H., I. Weikusat and N. Azuma (2014). The microstructure of polar ice. Part II: State of the art, Journal of Structural Geology 61: 21-49.

  18. Analysis of the flow structure and heat transfer in a vertical mantle heat exchanger

    DEFF Research Database (Denmark)

    Knudsen, Søren; Morrison, GL; Behnia, M

    2005-01-01

    initially mixed and initially stratified inner tank and mantle. The analysis of the heat transfer showed that the flow in the mantle near the inlet is mixed convection flow and that the heat transfer is dependent on the mantle inlet temperature relative to the core tank temperature at the mantle level. (C......The flow structure inside the inner tank and inside the mantle of a vertical mantle heat exchanger was investigated using a full-scale tank designed to facilitate flow visualisation. The flow structure and velocities in the inner tank and in the mantle were measured using a Particle Image...... Velocimetry (PIV) system. A Computational Fluid Dynamics (CFD) model of the vertical mantle heat exchanger was also developed for a detailed evaluation of the heat flux at the mantle wall and at the tank wall. The flow structure was evaluated for both high and low temperature incoming flows and for both...

  19. Cosmochemical Estimates of Mantle Composition

    Science.gov (United States)

    Palme, H.; O'Neill, H. St. C.

    2003-12-01

    In 1794 the German physicist Chladni published a small book in which he suggested the extraterrestrial origin of meteorites. The response was skepticism and disbelief. Only after additional witnessed falls of meteorites did scientists begin to consider Chladni's hypothesis seriously. The first chemical analyses of meteorites were published by the English chemist Howard in 1802, and shortly afterwards by Klaproth, a professor of chemistry in Berlin. These early investigations led to the important conclusion that meteorites contained the same elements that were known from analyses of terrestrial rocks. By the year 1850, 18 elements had been identified in meteorites: carbon, oxygen, sodium, magnesium, aluminum, silicon, phosphorous, sulfur, potassium, calcium, titanium, chromium, manganese, iron, cobalt, nickel, copper, and tin (Burke, 1986). A popular hypothesis, which arose after the discovery of the first asteroid Ceres on January 1, 1801 by Piazzi, held that meteorites came from a single disrupted planet between Mars and Jupiter. In 1847 the French geologist Boisse (1810-1896) proposed an elaborate model that attempted to account for all known types of meteorites from a single planet. He envisioned a planet with layers in sequence of decreasing densities from the center to the surface. The core of the planet consisted of metallic iron surrounded by a mixed iron-olivine zone. The region overlying the core contained material similar to stony meteorites with ferromagnesian silicates and disseminated grains of metal gradually extending into shallower layers with aluminous silicates and less iron. The uppermost layer consisted of metal-free stony meteorites, i.e., eucrites or meteoritic basalts. About 20 years later, Daubrée (1814-1896) carried out experiments by melting and cooling meteorites. On the basis of his results, he came to similar conclusions as Boisse, namely that meteorites come from a single, differentiated planet with a metal core, a silicate mantle

  20. Well-Hidden Grain Boundary in the Monolayer MoS2 Formed by a Two-Dimensional Core-Shell Growth Mode.

    Science.gov (United States)

    Zhang, Wenting; Lin, Yue; Wang, Qi; Li, Weijie; Wang, Zhifeng; Song, Jiangluqi; Li, Xiaodong; Zhang, Lijie; Zhu, Lixin; Xu, Xiaoliang

    2017-09-22

    Guided by the hexagonal lattice symmetry, triangles and hexagons are the most basic morphological units for two-dimensional (2D) transition metal dichalcogenides (TMDs) synthesized by chemical vapor deposition (CVD). Also, it is widely acknowledged that these units start from the single nucleation site and then grow epitaxially. Accordingly, the triangular monolayer (ML) samples are generally considered as single crystals. Here, we report a 2D core-shell growth mode in the CVD process for ML-MoS2, which leads to one kind of "pseudo" single-crystal triangles containing triangular outline grain boundaries (TO-GBs). It is difficult to be optically distinguished from the "true" single-crystal triangles. The weakening of Raman peaks and the remarkable enhancement of photoluminescence (PL) are found at the built-in TO-GBs, which could be useful for high-performance optoelectronics. In addition, the electrical measurements indicate that the TO-GBs are conductive. Furthermore, TO-GBs and the common grain boundaries (CO-GBs) can coexist in a single flake, whereas their optical visibility and optical modifications (Raman and PL) are quite different. This work is helpful in further understanding the growth mechanism of 2D TMD materials and may also play a significant role in related nanodevices.

  1. Kinematics and dynamics of the East Pacific Rise linked to a stable, deep-mantle upwelling.

    Science.gov (United States)

    Rowley, David B; Forte, Alessandro M; Rowan, Christopher J; Glišović, Petar; Moucha, Robert; Grand, Stephen P; Simmons, Nathan A

    2016-12-01

    Earth's tectonic plates are generally considered to be driven largely by negative buoyancy associated with subduction of oceanic lithosphere. In this context, mid-ocean ridges (MORs) are passive plate boundaries whose divergence accommodates flow driven by subduction of oceanic slabs at trenches. We show that over the past 80 million years (My), the East Pacific Rise (EPR), Earth's dominant MOR, has been characterized by limited ridge-perpendicular migration and persistent, asymmetric ridge accretion that are anomalous relative to other MORs. We reconstruct the subduction-related buoyancy fluxes of plates on either side of the EPR. The general expectation is that greater slab pull should correlate with faster plate motion and faster spreading at the EPR. Moreover, asymmetry in slab pull on either side of the EPR should correlate with either ridge migration or enhanced plate velocity in the direction of greater slab pull. Based on our analysis, none of the expected correlations are evident. This implies that other forces significantly contribute to EPR behavior. We explain these observations using mantle flow calculations based on globally integrated buoyancy distributions that require core-mantle boundary heat flux of up to 20 TW. The time-dependent mantle flow predictions yield a long-lived deep-seated upwelling that has its highest radial velocity under the EPR and is inferred to control its observed kinematics. The mantle-wide upwelling beneath the EPR drives horizontal components of asthenospheric flows beneath the plates that are similarly asymmetric but faster than the overlying surface plates, thereby contributing to plate motions through viscous tractions in the Pacific region.

  2. Geoantineutrino Spectrum, 3He/4He - ratio radial distribution and Slow Nuclear Burning on the Boundary of the Liquid and Solid Phases of the Earth's core

    CERN Document Server

    Rusov, V D; Vaschenko, V N; Tarasov, V A; Zelentsova, T N; Bolshakov, V N; Litvinov, D A; Kosenko, S I; Byegunova, O A

    2006-01-01

    The problem of the geoantineutrino deficit and the experimental results of the interaction of uranium dioxide and carbide with iron-nickel and silica-alumina melts at high pressure (5-10 Gpa) and temperature (1600-22000 C) have motivated us to consider the possible consequences of the assumption made by V.Anisichkin and coauthors that there is an actinid shell on boundary of liquid and solid phases of the Earth's core. We have shown that the activation of a natural nuclear reactor operating as the solitary waves of nuclear burning in 238U- and/or 232Th-medium (in particular, the neutron-fission progressive wave of Feoktistov and/or Teller-Ishikawa-Wood) can be such a physical consequence. The simplified model of the kinetics of accumulation and burnup in U-Pu fuel cycle of Feoktistov is developed. The results of the numerical simulation of neutron-fission wave in two-phase UO2/Fe medium on a surface of the Earth's solid core are presented. The georeactor model of 3He origin and the 3He/4He-ratio distribution ...

  3. Application of normal mode theory to seismic source and structure problems: Seismic investigations of upper mantle lateral heterogeneity. Ph.D. Thesis

    Science.gov (United States)

    Okal, E. A.

    1978-01-01

    The theory of the normal modes of the earth is investigated and used to build synthetic seismograms in order to solve source and structural problems. A study is made of the physical properties of spheroidal modes leading to a rational classification. Two problems addressed are the observability of deep isotropic seismic sources and the investigation of the physical properties of the earth in the neighborhood of the Core-Mantle boundary, using SH waves diffracted at the core's surface. Data sets of seismic body and surface waves are used in a search for possible deep lateral heterogeneities in the mantle. In both cases, it is found that seismic data do not require structural differences between oceans and continents to extend deeper than 250 km. In general, differences between oceans and continents are found to be on the same order of magnitude as the intrinsic lateral heterogeneity in the oceanic plate brought about by the aging of the oceanic lithosphere.

  4. Geodynamic models of plumes from the margins of large thermo-chemical piles in the Earth's lowermost mantle

    Science.gov (United States)

    Steinberger, B. M.; Gassmoeller, R.; Mulyukova, E.

    2012-12-01

    We present geodynamic models featuring mantle plumes that are almost exclusively created at the margins of large thermo-chemical piles in the lowermost mantle. The models are based on global plate reconstructions since 300 Ma. Sinking subducted slabs not only push a heavy chemical layer ahead, such that dome-shaped structures form, but also push the thermal boundary layer (TBL) toward the chemical domes. At the steep edges it is forced upwards and begins to rise — in the lower part of the mantle as sheets, which then split into individual plumes higher in the mantle. The models explain why Large Igneous Provinces - commonly assumed to be caused by plumes forming in the TBL above the core-mantle boundary (CMB) - and kimberlites during the last few hundred Myr erupted mostly above the margins of the African and Pacific Large Low Shear Velocity Provinces (LLSVPs) of the lowermost mantle, which are probably chemically distinct from and heavier than the overlying mantle. Computations are done with two different codes, one based on spherical harmonic expansion, and CITCOM-S. The latter is combined with a self-consistent thermodynamic material model for basalt, harzburgite, and peridotite, which is used to derive a temperature- and presssure dependent database for parameters like density, thermal expansivity and specific heat. In terms of number and distribution of plumes, results are similar in both cases, but in the latter model, plume conduits are narrower, due to consideration of realistic lateral - in addition to radial - viscosity variations. For the latter case, we quantitatively compare the computed plume locations with actual hotspots and find that the good agreement is very unlikely (probability geometry, we also show results obtained with a 2-D finite element code. These results allow us to assess how much the computed long-term stability of the piles is affected by numerical diffusion. We have also conducted a systematic investigation, which configurations

  5. Using PKiKP coda to determine inner core structure: 1. Synthesis of coda envelopes using single-scattering theories

    Science.gov (United States)

    Leyton, Felipe; Koper, Keith D.

    2007-05-01

    Previous seismic studies have reported evidence of scattered seismic energy coming from the inner core (IC). This implies that the IC has lateral variations in structure or composition with a scale length of tens of kilometers. In the present study, we focus on synthesizing the coda following precritical PKiKP and try to determine the location of the heterogeneities that produce this coda, using previously reported observations as a guide. Using a single-scattering approximation and ray theory, we generate synthetic PKiKP coda envelopes from six distinctive places inside the Earth: within the lower mantle on the source and receiver side, along the core-mantle boundary on the source and receiver side, along the inner core boundary, and within the inner core. We use two approaches to generate synthetic coda from topography on a boundary surface and one that is appropriate for volumetric scattering. In our computations we calculate the arrival time, ray parameter, and amplitude of the seismic waves and take into account errors in the back azimuth, as well as source and receiver effects. We find that previously reported "spindle"-shaped or growing coda can only be produced from volumetric heterogeneities located in the shallowest 350 km of the IC; however, strong trade-offs between the different parameters describing the volumetric heterogeneities (i.e., characteristic wavelengths, RMS velocity or impedance contrast, and total volume) preclude the determination of a unique model. Additionally, we find that reasonable models of topography at the core-mantle boundary can produce large variations of the PKiKP amplitude due to focusing and defocusing effects. Therefore complexity at the inner core boundary is not necessarily required to account for dramatic amplitude variations in the direct PKiKP amplitudes.

  6. Bottom-up control of geomagnetic secular variation by the Earth's inner core.

    Science.gov (United States)

    Aubert, Julien; Finlay, Christopher C; Fournier, Alexandre

    2013-10-10

    Temporal changes in the Earth's magnetic field, known as geomagnetic secular variation, occur most prominently at low latitudes in the Atlantic hemisphere (that is, from -90 degrees east to 90 degrees east), whereas in the Pacific hemisphere there is comparatively little activity. This is a consequence of the geographical localization of intense, westward drifting, equatorial magnetic flux patches at the core surface. Despite successes in explaining the morphology of the geomagnetic field, numerical models of the geodynamo have so far failed to account systematically for this striking pattern of geomagnetic secular variation. Here we show that it can be reproduced provided that two mechanisms relying on the inner core are jointly considered. First, gravitational coupling aligns the inner core with the mantle, forcing the flow of liquid metal in the outer core into a giant, westward drifting, sheet-like gyre. The resulting shear concentrates azimuthal magnetic flux at low latitudes close to the core-mantle boundary, where it is expelled by core convection and subsequently transported westward. Second, differential inner-core growth, fastest below Indonesia, causes an asymmetric buoyancy release in the outer core which in turn distorts the gyre, forcing it to become eccentric, in agreement with recent core flow inversions. This bottom-up heterogeneous driving of core convection dominates top-down driving from mantle thermal heterogeneities, and localizes magnetic variations in a longitudinal sector centred beneath the Atlantic, where the eccentric gyre reaches the core surface. To match the observed pattern of geomagnetic secular variation, the solid material forming the inner core must now be in a state of differential growth rather than one of growth and melting induced by convective translation.

  7. Shear wave splitting and subcontinental mantle deformation

    Science.gov (United States)

    Silver, Paul G.; Chan, W. Winston

    1991-09-01

    deformational episode and rules out the addition of undeformed material to this layer by subsequent "underplating" or conductive growth of the thermal boundary layer. One of the most important issues in the study of orogenies is the need to reconcile the formation of thickened lithosphere with the paradoxically high mantle temperatures often associated with orogenic episodes. Most efforts to date have focussed on modes of deformation whereby the cold lithospheric mantle is removed (by convective instability or delamination) and replaced by warm asthenosphere. These models, however, are incompatible with the evidence for preserved coherent lithospheric deformation; rather, the deformed mantle appears to have been heated in place. We suggest that the elevated mantle temperatures may be due to the strain heating accompanying the deformation.

  8. Melting of CaO and CaSiO3 at Deep Mantle Condition Using First Principles Simulations

    Science.gov (United States)

    Bajgain, S. K.; Ghosh, D. B.; Karki, B. B.

    2015-12-01

    Accurate prediction of melting temperatures of major mantle minerals at high pressures is important to understand the Hadean Earth as well as to explain the observed seismic anomalies at ultra-low velocity zone (ULVZ). To further investigate the geophysical implications of our recent first principles study of molten CaO and CaSiO­3, we calculated the melting temperatures of the corresponding solid phases by integrating the Clausius-Clapeyron equation. The melting behavior of their high-pressure phases can constrain the lower mantle solidus. Our calculations show melting temperature of 5700 ± 500 kelvins for CaSiO3 and 7800 ± 600 kelvins for CaO at the base of the lower mantle (136 GPa). The bulk sound velocities of CaO and CaSiO3 liquids at the core-mantle boundary are found to be 40 % lower than P-wave seismic velocity and 22 % lower than that of MgSiO3 liquid. With substantial decrease of melting temperature by freezing point depression and iron partitioning, the partial melting of multi-component silicate and its gravitational buoyancy at ULVZ cannot be ruled out.

  9. High-K calc-alkaline magmatism at the Archaean-Proterozoic boundary: implications for mantle metasomatism and continental crust petrogenesis. Example of the Bulai pluton (Central Limpopo Belt, South Africa)

    Science.gov (United States)

    Laurent, Oscar; Martin, Hervé; Doucelance, Régis; Moyen, Jean-François; Paquette, Jean-Louis

    2010-05-01

    The Neoarchaean Bulai pluton, intrusive within the supracrustal granulites of the Central Limpopo Belt (Limpopo Province, South Africa) is made up of large volumes of porphyritic granodiorites with subordinate enclaves and dykes which have monzodioritic and charno-enderbitic compositions. New U-Pb LA-ICP-MS dating on separated zircons yielded pluton emplacement ages ranging between 2.60 and 2.63 Ga, which are slightly older than previous proposed ages (~ 2.57-2.61 Ga). The whole-rock major- and trace-element composition of the Bulai pluton evidences unequivocal affinities with "high-Ti" late-Archaean sanukitoids. It belongs to a high-K calc-alkaline differentiation suite, with metaluminous affinities (0.7 affinities, such as eNd ranging between -0.5 and 0.5, and in addition, are very rich in all incompatible trace elements, which is particularly obvious in monzodioritic enclaves and enderbites where primitive mantle-normalized LILE and LREE contents are up to 300. These characteristics point to an enriched mantle source for the Bulai batholith. Chondrite normalized, REE patterns are strongly fractionated ([La/Yb]N ~ 25-80), mainly due to high LREE contents (LaN ~ 250-630), and chiefly high HFSE contents (Nb ~ 15-45 ppm ; up to 770 ppm Zr) indicate that the metasomatic agent is a silicic melt rather than a hydrous fluid. Moreover, based on high Nb/Ta, Th/Rb, La/Rb and low Sr/Nd and Ba/La, we suggest that the metasomatic agent is a granitic melt generated by melting of terrigenous sediments. Interactions of this melt with mantle peridotites implies that sediments are located under a mantle slice; geometry which is easily achieved in subduction zone settings. This conclusion is supported by the fact that Bulai trace element patterns are very similar to those of sub-actual potassic magmas generated in magmatic arc environments by interactions between mantle and terrigenous sediments (e.g. Sunda arc). Geochemical modeling indicates that the mafic facies of the Bulai

  10. How Irreversible Heat Transport Processes Drive Earth's Interdependent Thermal, Structural, and Chemical Evolution Providing a Strongly Heterogeneous, Layered Mantle

    Science.gov (United States)

    Hofmeister, A.; Criss, R. E.

    2013-12-01

    Because magmatism conveys radioactive isotopes plus latent heat rapidly upwards while advecting heat, this process links and controls the thermal and chemical evolution of Earth. We present evidence that the lower mantle-upper mantle boundary is a profound chemical discontinuity, leading to observed heterogeneities in the outermost layers that can be directly sampled, and construct an alternative view of Earth's internal workings. Earth's beginning involved cooling via explosive outgassing of substantial ice (mainly CO) buried with dust during accretion. High carbon content is expected from Solar abundances and ice in comets. Reaction of CO with metal provided a carbide-rich core while converting MgSiO3 to olivine via oxidizing reactions. Because thermodynamic law (and buoyancy of hot particles) indicates that primordial heat from gravitational segregation is neither large nor carried downwards, whereas differentiation forced radioactive elements upwards, formation of the core and lower mantle greatly cooled the Earth. Reference conductive geotherms, calculated using accurate and new thermal diffusivity data, require that heat-producing elements are sequestered above 670 km which limits convection to the upper mantle. These irreversible beginnings limit secular cooling to radioactive wind-down, permiting deduction of Earth's inventory of heat-producing elements from today's heat flux. Coupling our estimate for heat producing elements with meteoritic data indicates that Earth's oxide content has been underestimated. Density sorting segregated a Si-rich, peridotitic upper mantle from a refractory, oxide lower mantle with high Ca, Al and Ti contents, consistent with diamond inclusion mineralogy. Early and rapid differentiation means that internal temperatures have long been buffered by freezing of the inner core, allowing survival of crust as old as ca.4 Ga. Magmatism remains important. Melt escaping though stress-induced fractures in the rigid lithosphere imparts a

  11. The CaCO3-Fe interaction: Kinetic approach for carbonate subduction to the deep Earth's mantle

    Science.gov (United States)

    Martirosyan, N. S.; Yoshino, T.; Shatskiy, A.; Chanyshev, A. D.; Litasov, K. D.

    2016-10-01

    The CaCO3-Fe0 system, as a model for redox reactions between carbonates and reduced lithologies at the slab-mantle interface during subduction or at core-mantle boundary, was investigated systematically at temperatures from 650 to 1400 °C and pressures from 4 to 16 GPa using multianvil apparatus. CaCO3 reduction via reaction: 3 CaCO3 (aragonite) + 13 Fe0 (metal) = Fe7C3 (carbide) + 3 CaFe2O3 (Ca-wüstite) was observed. The thickness of the reaction-product layer (Δx) increases linearly with the square root of time in the time-series experiments (t), indicating diffusion-controlled process. The reaction rate constant (k = Δx2/2t) is log-linear relative to 1/T. Its temperature dependences was determined to be k [m2/s] = 2.1 × 10-7exp(-162[kJ/mol]/RT) at 4-6 GPa and k [m2/s] = 2.6 × 10-11exp(-65[kJ/mol]/RT) at 16 GPa. The sluggish kinetics of established CaCO3-Fe0 interaction suggests that significant amount of carbonates could survive during subduction from metal saturation boundary near 250 km depth down to the transition zone and presumably to the lower mantle if melting of carbonates is not involved.

  12. Converted phases from sharp 1000 km depth mid-mantle heterogeneity beneath Western Europe

    Science.gov (United States)

    Jenkins, J.; Deuss, A.; Cottaar, S.

    2017-02-01

    Until recently, most of the lower mantle was generally considered to be well-mixed with strong heterogeneity restricted to the lowermost several hundred kilometres above the core-mantle boundary, known as the D″ layer. However several recent studies have started to hint at a potential change in Earth's structure at mid-mantle depths beneath the transition zone. Here we present a continental-wide search of Europe and the North Atlantic for mid-mantle P-to-s wave converted phases. Our data set consists of close to 50,000 high quality receiver functions. These are combined in slowness and depth stacks to identify seismic discontinuities in the range of 800-1400 km depth to determine at which depths and in which tectonic settings these features exist. Receiver functions are computed in different frequency bands to resolve the sharpness of the observed discontinuities. We find most seismic velocity jumps are observed between 975-1050 km depth, localised beneath western Europe and Iceland. The shear wave velocity jumps are roughly 1-2.5% velocity increase with depth occurring over less than 8 km in width. The most robust observations are coincident with areas of active upwelling (under Iceland) and an elongate lateral low velocity anomaly imaged in recent tomographic models which has been interpreted as diverted plume material at depth. The lack of any suggested phase change in a normal pyrolitic mantle composition at around 1000 km depth indicates the presence of regional chemical heterogeneity within the mid-mantle, potentially caused by diverted plume material. We hypothesise that our observations represent either a phase change within chemically distinct plume material itself, or are caused by small scale chemical heterogeneities entrained within the upwelling plume, either in the form of recycled basaltic material or deep sourced chemically distinct material from LLSVPs. Our observations, which cannot be directly linked to an area of either active or ancient

  13. Mantle flow influence on the evolution of subduction systems.

    Science.gov (United States)

    Chertova, Maria; Spakman, Wim; Steinberger, Bernhard

    2016-04-01

    Evolution of the subducting slab has been widely investigated in the past two decades be means of numerical and laboratory modeling, including analysis of the factors controlling its behavior. However, until present, relatively little attention has been paid to the influence of the mantle flow. While for large subduction zones, due to the high slab buoyancy force, this effect might be small, mantle flow might be a primary factor controlling the evolution of a regional subduction zone. Here we investigate the impact of prescribed mantle flow on the evolution of both generic and real-Earth subduction models by means of 3D thermo-mechanical numerical modeling. The generic setup consists of a laterally symmetric subduction model using a 3000×2000×1000 km modeling domain with a lateral slab width varying from 500 to 1500 km. Non-linear rheology is implemented including diffusion, dislocation creep and a viscosity-limiter. To satisfy mass conservation, while implementing mantle inflow on some side boundaries, we keep other sides open (Chertova et al. 2012). To test the mantle flow influence on the dynamics of real-Earth subduction zone we adopt the numerical model from Chertova et al. (2014) for the evolution of the western Mediterranean subduction since 35 Ma. First, this model was tested with the arbitrary mantle flow prescribed on one of the four side boundaries or for the combination of two boundaries. In the last set of experiments, for side boundary conditions we use time-dependent estimates of actual mantle flow in the region based on Steinberger (2015) given for every 1 My. We demonstrate that for the western-Mediterranean subduction, the surrounding mantle flow is of second-order compared to slab buoyancy in controlling the dynamics of the subducting slab. Introducing mantle flow on the side boundaries might, however, improve the fit between the modeled and real slab imaged by tomography, although this may also trade-off with varying rheological parameters of

  14. Transient climate simulations of the deglaciation 21-9 thousand years before present; PMIP4 Core experiment design and boundary conditions

    Science.gov (United States)

    Ivanovic, Ruza; Gregoire, Lauren; Kageyama, Masa; Roche, Didier; Valdes, Paul; Burke, Andrea; Drummond, Rosemarie; Peltier, W. Richard; Tarasov, Lev

    2016-04-01

    The last deglaciation, which marked the transition between the last glacial and present interglacial periods, was punctuated by a series of rapid (centennial and decadal) climate changes. Numerical climate models are useful for investigating mechanisms that underpin the events, especially now that some of the complex models can be run for multiple millennia. We have set up a Paleoclimate Modelling Intercomparison Project (PMIP) working group to coordinate efforts to run transient simulations of the last deglaciation, and to facilitate the dissemination of expertise between modellers and those engaged with reconstructing the climate of the last 21 thousand years. Here, we present the design of a coordinated Core simulation over the period 21-9 thousand years before present (ka) with time varying orbital forcing, greenhouse gases, ice sheets, and other geographical changes. A choice of two ice sheet reconstructions is given. Additional focussed simulations will also be coordinated on an ad-hoc basis by the working group, for example to investigate the effect of ice sheet and iceberg meltwater, and the uncertainty in other forcings. Some of these focussed simulations will concentrate on shorter durations around specific events to allow the more computationally expensive models to take part. Ivanovic, R. F., Gregoire, L. J., Kageyama, M., Roche, D. M., Valdes, P. J., Burke, A., Drummond, R., Peltier, W. R., and Tarasov, L.: Transient climate simulations of the deglaciation 21-9 thousand years before present; PMIP4 Core experiment design and boundary conditions, Geosci. Model Dev. Discuss., 8, 9045-9102, doi:10.5194/gmdd-8-9045-2015, 2015.

  15. Reduced lattice thermal conductivity of Fe-bearing bridgmanite in Earth's deep mantle: Reduced Conductivity of Fe-Bridgmanite

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Wen-Pin [Institute of Earth Sciences, Academia Sinica, Taipei Taiwan; Deschamps, Frédéric [Institute of Earth Sciences, Academia Sinica, Taipei Taiwan; Okuchi, Takuo [Institute for Planetary Materials, Okayama University, Misasa Japan; Lin, Jung-Fu [Department of Geological Sciences, Jackson School of Geosciences, University of Texas at Austin, Austin Texas USA

    2017-07-01

    Complex seismic, thermal, and chemical features have been reported in Earth's lowermost mantle. In particular, possible iron enrichments in the large low shear-wave velocity provinces (LLSVPs) could influence thermal transport properties of the constituting minerals in this region, altering the lower mantle dynamics and heat flux across core-mantle boundary (CMB). Thermal conductivity of bridgmanite is expected to partially control the thermal evolution and dynamics of Earth's lower mantle. Importantly, the pressure-induced lattice distortion and iron spin and valence states in bridgmanite could affect its lattice thermal conductivity, but these effects remain largely unknown. Here we precisely measured the lattice thermal conductivity of Fe-bearing bridgmanite to 120 GPa using optical pump-probe spectroscopy. The conductivity of Fe-bearing bridgmanite increases monotonically with pressure but drops significantly around 45 GPa due to pressure-induced lattice distortion on iron sites. Our findings indicate that lattice thermal conductivity at lowermost mantle conditions is twice smaller than previously thought. The decrease in the thermal conductivity of bridgmanite in mid-lower mantle and below would promote mantle flow against a potential viscosity barrier, facilitating slabs crossing over the 1000 km depth. Modeling of our results applied to LLSVPs shows that variations in iron and bridgmanite fractions induce a significant thermal conductivity decrease, which would enhance internal convective flow. Our CMB heat flux modeling indicates that while heat flux variations are dominated by thermal effects, variations in thermal conductivity also play a significant role. The CMB heat flux map we obtained is substantially different from those assumed so far, which may influence our understanding of the geodynamo.

  16. High-pressure metallization of FeO and implications for the earth's core

    Science.gov (United States)

    Knittle, Elise; Jeanloz, Raymond

    1986-01-01

    The phase diagram of FeO has been experimentally determined to pressures of 155 GPa and temperatures of 4000 K using shock-wave and diamond-cell techniques. A metallic phase of FeO is observed at pressures greater than 70 GPa and temperatures exceeding 1000 K. The metallization of FeO at high pressures implies that oxygen can be present as the light alloying element of the earth's outer core, in accord with the geochemical predictions of Ringwood (1977 and 1979). The high pressures necessary for this metallization suggest that the core has acquired its composition well after the initial stages of the earth's accretion. Direct experimental observations at elevated pressures and temperatures indicate that core-forming alloy can react chemically with oxides such as those forming the mantle. The core and mantle may never have reached complete chemical equilibrium, however. If this is the case, the core-mantle boundary is likely to be a zone of active chemical reactions.

  17. Observation of magnetic diffusion in the Earth's outer core from Magsat, Orsted, and CHAMP data

    DEFF Research Database (Denmark)

    Chulliat, A.; Olsen, Nils

    2010-01-01

    , Orsted, and CHAMP satellites. A detectable change of magnetic fluxes through patches delimited by curves of zero radial magnetic field at the core-mantle boundary is associated with a failure of the frozen flux assumption. For each epoch (1980 and 2005), we calculate spatially regularized models...... increase of the global misfit. However, applying the constraint leads to a detectable increase of the scalar residuals at satellite altitude in the region of St. Helena, strongly suggesting a local failure of the frozen flux assumption. The observed flux expulsion within the St. Helena patch could result...... from the formation of a pair of "core spots," as predicted by numerical simulations of the geodynamo....

  18. Variable Water Concentrations in the Asthenospheric and Lithospheric Mantle Underneath the Eastern United States

    Science.gov (United States)

    Soles, B.; Brennan, G. W.; Johnson, E. A.; Mazza, S. E.; Gazel, E.

    2014-12-01

    An Eocene (47-48 Ma) volcanic swarm in NW Virginia represents the youngest episode of volcanism in the Eastern US, possibly initiated by delamination of lithospheric mantle (Mazza 2014). The Eocene swarm is located along the MAGIC seismic array (Crampton 2013). The phenocrysts and mantle xenocrysts within these volcanic rocks are the most direct constraints on the water content of the mantle in this region and will aid interpretation of geophysical data. In this study, we measured structural hydroxyl concentrations, [OH], in clinopyroxene (cpx) and olivine (ol) xenocrysts and cpx phenocrysts from three basaltic intrusions: Mole Hill, a volcanic neck, Trimble Knob, a diatreme, and Rt.631, a dike. Polarized FTIR spectra were obtained at JMU and the Smithsonian Institution. Mineral compositions were obtained on the electron microprobe at the USGS, Reston. The cpx xenocrysts show hydration profiles, whereas cpx phenocrysts have flat or dehydration profiles. Cpx xenocryst cores contain [OH]=25-300 ppm H2O and ol xenocrysts have [OH]6 wt% at Trimble Knob. P and T were calculated using equilibrium exchange reactions from Putirka (2008). Xenocryst rims from Mole Hill have P=13.7±1.7 kbar and T=1287±24°C, and cpx phenocrysts from the Rt.631 dike record similar conditions of P=16.1±2.8 kbar and T=1339±37°C. A cpx phenocryst from Trimble Knob has P=23.8±4.0 kbar and T=1143±124°C. We interpret our data to indicate a dry lithospheric mantle as represented by the cpx and ol xenocrysts, underplated by a wet layer at the lithosphere-asthenosphere boundary produced by fractional crystallization of magma generated deeper in the asthenosphere, as represented by the cpx phenocrysts.

  19. A Model for Earth's Mantle Dynamic History for The Last 500 Ma and Its Implications for Continental Vertical Motions and Geomagnetism

    Science.gov (United States)

    Zhong, S.; Olson, P.; Zhang, N.

    2012-12-01

    Seismic tomography studies indicate that the Earth's mantle structure is characterized by African and Pacific seismically slow velocity anomalies (i.e., thermochemical piles) and circum Pacific seismically fast anomalies (i.e., degree 2) in the lower mantle. Mantle convection calculations including plate motion history for the last 120 Ma suggest that these degree 2 thermochemical structures result from plate subduction history (e.g., McNamara and Zhong, 2005). Given the important controls of mantle structure and dynamics on surface tectonics and volcanism and geodynamo in the core, an important question is the long-term evolution of mantle structures, for example, was the mantle structure in the past similar to the present-day's degree 2 structure, or significantly different from the present day? To address this question, we constructed a proxy model of plate motions for the African hemisphere for the last 450 Ma using the paleogeographic reconstruction of continents constrained by paleomagnetic and geological observations (e.g., Pangea assembly and breakup). Coupled with assumed oceanic plate motions for the Pacific hemisphere before 120 Ma, this proxy model for the plate motion history is used in three dimensional spherical models of mantle convection to study the evolution of mantle structure since the Early Paleozoic. Our model calculations reproduce well the present day degree 2 mantle structure including the African and Pacific thermochemical piles, and present-day surface heat flux, bathymetry and dynamic topography. Our results suggest that while the mantle in the African hemisphere before the assembly of Pangea is dominated by the cold downwelling structure resulting from plate convergence between Gondwana and Laurussia, it is unlikely that the bulk of the African superplume structure can be formed before ˜230 Ma. Particularly, the last 120 Ma plate motion plays an important role in generating the African thermochemical pile. We reconstruct temporal

  20. An integral approach to investigate planetary cores

    Science.gov (United States)

    Fei, Y.

    2012-12-01

    The same core-mantle differentiation process was in operation during the early formation of the terrestrial planets, but it led to unique cores for the Earth, Venus, Mars, and Mercury, with different magnetic fields, reflecting their different dynamic, physical, and chemical states. Assuming all terrestrial planets shared the same materials of the building block, the differences must be resulted from the different conditions of the early accretion and the subsequent planetary evolution unique to each planet. The pressures at the core-mantle boundary of the terrestrial planets range from as low as 7 GPa to 136 GPa. The physical state (liquid or solid) for each planetary core is closely tied to the melting and chemical composition of the cores. In order to determine the minimal temperature of a liquid core or the maximal temperature of a solid core, we have systematically investigated melting relations in the binary systems Fe-FeS, Fe-C, and Fe-FeSi, move toward unravelling the crystallization sequence and element partitioning between solid and liquid metal in the ternary and quaternary systems up to 25 GPa, using multi-anvil apparatus. We have developed new techniques to analyze the quenched samples recovered from laser-heating diamond-anvil cell experiments using combination of focus ion beam (FIB) milling, high-resolution SEM imaging, and quantitative chemical analysis with silicon drift detector EDS. With precision milling of the laser-heating spot, we determined melting using quenching texture criteria imaged with high-resolution SEM and the sulfur partitioning between solid and liquid at submicron spatial resolution. We have also re-constructed 3D image of the laser-heating spot at multi-megabar pressures to better constrain melting point and understanding melting process. The new techniques allow us to extend precise measurements of melting relations to core pressures in the laser-heating diamond-anvil cell. In addition to the static experiments, we also used

  1. Implementation and application of adaptive mesh refinement for thermochemical mantle convection studies

    OpenAIRE

    Leng, Wei; Zhong, Shijie

    2011-01-01

    Numerical modeling of mantle convection is challenging. Owing to the multiscale nature of mantle dynamics, high resolution is often required in localized regions, with coarser resolution being sufficient elsewhere. When investigating thermochemical mantle convection, high resolution is required to resolve sharp and often discontinuous boundaries between distinct chemical components. In this paper, we present a 2-D finite element code with adaptive mesh refinement techniques for si...

  2. The role of thermodynamics in mantle convection: is mantle-layering intermittent?

    Science.gov (United States)

    Stixrude, L. P.; Cagney, N.; Lithgow-Bertelloni, C. R.

    2016-12-01

    We examine the thermal evolution of the Earth using a 1D model in which mixing length theory is used to characterise the role of thermal convection. Unlike previous work, our model accounts for the complex role of thermodynamics and phase changes through the use of HeFESTo (Stixrude & Lithgow-Bertelloni, Geophys. J. Int. 184, 2011), a comprehensive thermodynamic model that enables self-consistent computation of phase equilibria, physical properties (e.g. density, thermal expansivity etc.) and mantle isentropes. Our model also accounts for the freezing of the inner core, radiogenic heating and Arrhenius rheology, and is validated by comparing our results to observations, including the present-day size of the inner core and the heat flux at the surface.If phase changes and the various thermodynamic effects on mantle properties are neglected, the results are weakly dependent on the initial conditions, as has been observed in several previous studies. However, when these effects are accounted for, the initial temperature profile has a strong influence on the thermal evolution of the mantle, because small changes in the temperature and phase-assemblage can lead to large changes in the local physical properties and the adiabatic gradient.The inclusion of thermodynamic effects leads to some new and interesting insights. We demonstrate that the Clapeyron slope and the thermal gradient at the transition zone both vary significantly with time; this causes the mantle to switch between a layered state, in which convection across the transition zone is weak or negligible, and an un-layered state, in which there is no resistance to mass transfer between the upper and lower mantles.Various plume models describe plumes either rising directly from the CMB to the lithosphere, or stalling at the transition zone before spawning new plumes in the upper mantle. The observance of switching behaviour indicates that both models may be applicable depending on the state of the mantle: plumes

  3. Experimental constraints on melting temperatures in the MgO-SiO2 system at lower mantle pressures

    Science.gov (United States)

    Baron, Marzena A.; Lord, Oliver T.; Myhill, Robert; Thomson, Andrew R.; Wang, Weiwei; Trønnes, Reidar G.; Walter, Michael J.

    2017-08-01

    Eutectic melting curves in the system MgO-SiO2 have been experimentally determined at lower mantle pressures using laser-heated diamond anvil cell (LH-DAC) techniques. We investigated eutectic melting of bridgmanite plus periclase in the MgO-MgSiO3 binary, and melting of bridgmanite plus stishovite in the MgSiO3-SiO2 binary, as analogues for natural peridotite and basalt, respectively. The melting curve of model basalt occurs at lower temperatures, has a shallower dT / dP slope and slightly less curvature than the model peridotitic melting curve. Overall, melting temperatures detected in this study are in good agreement with previous experiments and ab initio simulations at ∼25 GPa (Liebske and Frost, 2012; de Koker et al., 2013). However, at higher pressures the measured eutectic melting curves are systematically lower in temperature than curves extrapolated on the basis of thermodynamic modelling of low-pressure experimental data, and those calculated from atomistic simulations. We find that our data are inconsistent with previously computed melting temperatures and melt thermodynamic properties of the SiO2 endmember, and indicate a maximum in short-range ordering in MgO-SiO2 melts close to Mg2SiO4 composition. The curvature of the model peridotite eutectic relative to an MgSiO3 melt adiabat indicates that crystallization in a global magma ocean would begin at ∼100 GPa rather than at the bottom of the mantle, allowing for an early basal melt layer. The model peridotite melting curve lies ∼ 500 K above the mantle geotherm at the core-mantle boundary, indicating that it will not be molten unless the addition of other components reduces the solidus sufficiently. The model basalt melting curve intersects the geotherm at the base of the mantle, and partial melting of subducted oceanic crust is expected.

  4. Double layering of a thermochemical plume in the upper mantle beneath Hawaii

    Science.gov (United States)

    Ballmer, M. D.; Ito, G.; Wolfe, C. J.; Cadio, C.; Solomon, S. C.

    2012-04-01

    Volcanism far from plate boundaries has traditionally been explained by "classical" plume theory. Classical plumes are typically described as narrow thermal upwellings that rise through the entire mantle to be deflected into a thin (Iceland, are indeed well explained by near-classical thermal plumes. High-resolution seismic velocity images obtained from the PLUME project support the concept of a deep-rooted mantle plume beneath the Hawaiian hotspot. However, in detail these images challenge traditional concepts inasmuch as they indicate a low-velocity body in the upper mantle that is too thick (~400 km) and asymmetric to be interpreted as a classical pancake. Classical plume theory is, moreover, inconsistent with several geochemical characteristics of Hawaiian magmas, which point to a heterogeneous mantle source involving mafic lithologies such as eclogite and not an exclusively thermal (i.e., isochemical) origin¹. To explore the dynamical and melting behavior of plumes containing a substantial fraction (~15%) of eclogite, we performed three-dimensional numerical simulations of thermochemical convection. Relative to ambient-mantle peridotite, eclogite is intrinsically dense. This density contrast is sensitive to phase changes in the upper mantle; the contrast peaks at 410-300 km and lessens at about 250-190 km depth, where eclogite is subsequently removed by melting. For a plume core with an eclogite content >12%, these effects locally increase the density beyond that of the ambient mantle. Therefore, the upwelling column forms a broad and thick pool at depths of 450-300 km (which we term the deep eclogite pool, or DEP). As the DEP is well supported by the deeper stem of the plume and its non-eclogitic outskirts, it inflates to release a shallow thermal plume. This latter plume sustains hotspot volcanism and feeds a hot shallow pancake that compensates the seafloor swell. Our model predictions reconcile a range of characteristics for Hawaiian volcanism. We find

  5. Propagating buoyant mantle upwelling on the Reykjanes Ridge

    Science.gov (United States)

    Martinez, Fernando; Hey, Richard

    2017-01-01

    Crustal features of the Reykjanes Ridge have been attributed to mantle plume flow radiating outward from the Iceland hotspot. This model requires very rapid mantle upwelling and a "rheological boundary" at the solidus to deflect plume material laterally and prevent extreme melting above the plume stem. Here we propose an alternative explanation in which shallow buoyant mantle upwelling instabilities propagate along axis to form the crustal features of the ridge and flanks. As only the locus of buoyant upwelling propagates this mechanism removes the need for rapid mantle plume flow. Based on new geophysical mapping we show that a persistent sub-axial low viscosity channel supporting buoyant mantle upwelling can explain the current oblique geometry of the ridge as a reestablishment of its original configuration following an abrupt change in opening direction. This mechanism further explains the replacement of ridge-orthogonal crustal segmentation with V-shaped crustal ridges and troughs. Our findings indicate that crustal features of the Reykjanes Ridge and flanks are formed by shallow buoyant mantle instabilities, fundamentally like at other slow spreading ridges, and need not reflect deep mantle plume flow.

  6. ON THE VIGOR OF MANTLE CONVECTION IN SUPER-EARTHS

    Energy Technology Data Exchange (ETDEWEB)

    Miyagoshi, Takehiro [Institute for Research on Earth Evolution, Japan Agency for Marine-Earth Science and Technology, 3173-25 Showa-machi, Kanazawa-ku, Yokohama 236-0001 (Japan); Tachinami, Chihiro [Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Meguro, Tokyo 152-8551 (Japan); Kameyama, Masanori [Geodynamics Research Center, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577 (Japan); Ogawa, Masaki, E-mail: miyagoshi@jamstec.go.jp, E-mail: ctchnm.geo@gmail.com, E-mail: kameyama@sci.ehime-u.ac.jp, E-mail: cmaogawa@mail.ecc.u-tokyo.ac.jp [Department of Earth Sciences and Astronomy, University of Tokyo at Komaba, 3-8-1 Komaba, Meguro, Tokyo 153-8902 (Japan)

    2014-01-01

    Numerical models are presented to clarify how adiabatic compression affects thermal convection in the mantle of super-Earths ten times the Earth's mass. The viscosity strongly depends on temperature, and the Rayleigh number is much higher than that of the Earth's mantle. The strong effect of adiabatic compression reduces the activity of mantle convection; hot plumes ascending from the bottom of the mantle lose their thermal buoyancy in the middle of the mantle owing to adiabatic decompression, and do not reach the surface. A thick lithosphere, as thick as 0.1 times the depth of the mantle, develops along the surface boundary, and the efficiency of convective heat transport measured by the Nusselt number is reduced by a factor of about four compared with the Nusselt number for thermal convection of incompressible fluid. The strong effect of adiabatic decompression is likely to inhibit hot spot volcanism on the surface and is also likely to affect the thermal history of the mantle, and hence, the generation of magnetic field in super-Earths.

  7. Mantle structure beneath the western edge of the Colorado Plateau

    Science.gov (United States)

    Sine, C.R.; Wilson, D.; Gao, W.; Grand, S.P.; Aster, R.; Ni, J.; Baldridge, W.S.

    2008-01-01

    Teleseismic traveltime data are inverted for mantle Vp and Vs variations beneath a 1400 km long line of broadband seismometers extending from eastern New Mexico to western Utah. The model spans 600 km beneath the moho with resolution of ???50 km. Inversions show a sharp, large-magnitude velocity contrast across the Colorado Plateau-Great Basin transition extending ???200 km below the crust. Also imaged is a fast anomaly 300 to 600 km beneath the NW portion of the array. Very slow velocities beneath the Great Basin imply partial melting and/or anomalously wet mantle. We propose that the sharp contrast in mantle velocities across the western edge of the Plateau corresponds to differential lithospheric modification, during and following Farallon subduction, across a boundary defining the western extent of unmodified Proterozoic mantle lithosphere. The deep fast anomaly corresponds to thickened Farallon plate or detached continental lithosphere at transition zone depths. Copyright 2008 by the American Geophysical Union.

  8. Accumulation of 'anti-continent' at the base of the mantle and its recycling in mantle plumes

    Science.gov (United States)

    Tatsumi, Yoshiyuki; Suzuki, Toshihiro; Ozawa, Haruka; Hirose, Kei; Hanyu, Takeshi; Ohishi, Yasuo

    2014-10-01

    The continental crust is a unique reservoir of light elements in the solid Earth; it possesses an intermediate composition and is believed to have been created principally along volcanic arcs, which are major sites of terrestrial andesitic magmatism. Mantle-derived arc magmas are, however, generally mafic or basaltic. A simple mechanism to overcome this apparent dilemma and generate andesitic melts in such a setting is through the partial remelting of an initial mafic arc crust by heat supplied from underplating basaltic magmas. An antithesis to the formation of continental crust in this way should be the production of refractory melting residue, here referred to as 'anti-continent'. This anti-continent is likely to detach from arc crust as a result of a density inversion and descend into the upper mantle. High-pressure experiments demonstrate that sinking anti-continent is, in contrast to the subducting oceanic crust, always denser than the surrounding mantle, suggesting that it penetrates through the upper-lower mantle boundary, without stagnation, and accumulates at the base of the mantle to form a 200-400 km thick mass known as the D″ layer. Geochemical modeling provides further evidence that this accumulating anti-continent contributes to a deep-seated hotspot source. Therefore, through complementary processes, Earth creates buoyant continents and dense anti-continents at the top and the base of the mantle, respectively, and has recycled portions of anti-continent in mantle plumes.

  9. Mineralogy and geochemistry of the Neo-Tethyan Orhaneli ultramafic suite, NW Turkey: Evidence for the initiation and evolution of magmatic processes in a developing crust-mantle boundary

    Science.gov (United States)

    Uysal, Ibrahim; Dokuz, Abdurrahman; Kapsiotis, Argyris; Kaliwoda, Melanie; Karsli, Orhan; Müller, Dirk; Aydin, Faruk

    2017-04-01

    The eastern Orhaneli ophiolitic massif, located in NW Anatolia, Turkey, forms part of the northwestern branch of the so-called Neotethys Ocean across the Izmir-Ankara-Erzincan Suture Zone. It is comprised mainly of a well preserved ultramafic suite, dominated by voluminous dunite exposures, accompanied by subsidiary harzburgite occurrences. The entire suite is commonly cross cut by a complex network of relatively undeformed clinopyroxenite veins. Clinopyroxene and spinel compositions in harzburgites are moderately depleted, whereas their whole-rock heavy rare earth element (HREE) abundances are consistent with harzburgite formation after approximately 19% dry melting of a spinel-bearing fertile mantle protolith at an extentional geotectonic regime. Nevertheless, textural data indicate that protracted dissolution of pyroxene coupled with precipitation of olivine happened during the transformation of harzburgites to replacive dunites, containing olivine with high Fo [Fo = 100×Mg/(Mg + Fe2+)] content (91.3-94.2) and spinel with elevated Cr# [100×Cr/(Cr + Al)] values (78-82). Such highly depleted mineralogical signatures imply that dunite for harzburgite substitution occurred under hydrous melting conditions in the mantle region above a subducted oceanic slab. Enrichments in incompatible elements (e.g., Cs, Rb and Sr) and the characteristic U-shaped chondrite-normalized rare earth elements (REE) profiles exhibited by replacive dunites along with the elevated TiO2 (0.20-0.36 wt.%) contents in their accessory spinels indicate that the reactive melt had an intermediate affinity between boninite and island arc tholeiite (IAT) regimes. The metasomatic reaction triggered an additional 8% melting of the harzburgite residue. The resultant melt fractionated (,almost in situ,) to crystallize cumulate dunites composed of olivine with relatively high Fo content (88.8-92.3), spinel with moderate Cr# values (62-74), as well as clinopyroxene with a depleted composition (low TiO2

  10. Impingement of Deep Mantle-Derived Upwelling Beneath Northern, Subducted Extension of the East Pacific Rise and Palinspastically Restored Cenozoic Mafic Magmatism in Western North America

    Science.gov (United States)

    Rowley, D. B.; Moucha, R.; Forte, A. M.; Mitrovica, J. X.; Simmons, N. A.; Grand, S. P.

    2009-12-01

    Reconstruction of the retrodicted whole mantle flow, based on presently imaged distribution of variations in seismic velocity and its correlation to density (Simmons et al. 2009), over the past 30 Ma, in the North American fixed frame of reference, reveals that the northern, now subducted, extension of the East Pacific Rise is coincident with mantle buoyancy arising from near the core-mantle boundary and extending to the base of the lithosphere (Moucha et al. 2009 GRL, in press). Divergence of the reconstructed flow near the surface is independent of the surface plate(s) and results in predicted geological manifestations distinct from those predicted by traditional plate driven models of flow. Most particularly the retrodicted flow-related dynamic topography results in progressive west to east sweep of surface uplift, that is now centered on the Colorado Plateau (Moucha et al. 2008, 2009 GRL, in press). In addition, and the primary focus of the current study is the relationship between this retrodicted mantle-wide flow and the history of magmatism within the western U.S. and adjacent Mexico. There is a close spatial correlation between the impingement of upwelling with palinspastic restored western North America (McQuarrie and Wernicke, 2005) and onset and distribution of magmatism, particularly of mafic compositions as revealed in the Navdat (www.navdat.org) database. Although often attributed to effects of opening of a slab window (Snyder and Dickinson, 1979, McQuarrie and Oskins, 2008) associated with continued plate-driven separation, this model predicts active mantle flow induced upwelling and divergence resulting in mantle melting that sweeps across east-northeast across southern Basin and Range to the Rio Grande Rift with time and as seen in the distribution of magmatism in this region.

  11. A new back-and-forth iterative method for time-reversed convection modeling: Implications for the Cenozoic evolution of 3-D structure and dynamics of the mantle

    Science.gov (United States)

    Glišović, Petar; Forte, Alessandro M.

    2016-06-01

    The 3-D distribution of buoyancy in the convecting mantle drives a suite of convection-related manifestations. Although seismic tomography is providing increasingly resolved images of the present-day mantle heterogeneity, the distribution of mantle density variations in the geological past is unknown, and, by implication, this is true for the convection-related observables. The one major exception is tectonic plate motions, since geologic data are available to estimate their history and they currently provide the only available constraints on the evolution of 3-D mantle buoyancy in the past. We developed a new back-and-forth iterative method for time-reversed convection modeling with a procedure for matching plate velocity data at different instants in the past. The crucial aspect of this reconstruction methodology is to ensure that at all times plates are driven by buoyancy forces in the mantle and not vice versa. Employing tomography-based retrodictions over the Cenozoic, we estimate the global amplitude of the following observables: dynamic surface topography, the core-mantle boundary ellipticity, the free-air gravity anomalies, and the global divergence rates of tectonic plates. One of the major benefits of the new data assimilation method is the stable recovery of much shorter wavelength changes in heterogeneity than was possible in our previous work. We now resolve what appears to be two-stage subduction of the Farallon plate under the western U.S. and a deeply rooted East African Plume that is active under the Ethiopian volcanic fields during the Early Eocene.

  12. Nickel isotopic composition of the mantle

    Science.gov (United States)

    Gall, Louise; Williams, Helen M.; Halliday, Alex N.; Kerr, Andrew C.

    2017-02-01

    This paper presents a detailed high-precision study of Ni isotope variations in mantle peridotites and their minerals, komatiites as well as chondritic and iron meteorites. Ultramafic rocks display a relatively large range in δ60 Ni (permil deviation in 60 Ni /58 Ni relative to the NIST SRM 986 Ni isotope standard) for this environment, from 0.15 ± 0.07‰ to 0.36 ± 0.08‰, with olivine-rich rocks such as dunite and olivine cumulates showing lighter isotope compositions than komatiite, lherzolite and pyroxenite samples. The data for the mineral separates shed light on the origin of these variations. Olivine and orthopyroxene display light δ60 Ni whereas clinopyroxene and garnet are isotopically heavy. This indicates that peridotite whole-rock δ60 Ni may be controlled by variations in modal mineralogy, with the prediction that mantle melts will display variable δ60 Ni values due to variations in residual mantle and cumulate mineralogy. Based on fertile peridotite xenoliths and Phanerozoic komatiite samples it is concluded that the upper mantle has a relatively homogeneous Ni isotope composition, with the best estimate of δ60Nimantle being 0.23 ± 0.06‰ (2 s.d.). Given that >99% of the Ni in the silicate Earth is located in the mantle, this also defines the Ni isotope composition of the Bulk Silicate Earth (BSE). This value is nearly identical to the results obtained for a suite of chondrites and iron meteorites (mean δ60 Ni 0.26 ± 0.12‰ and 0.29 ± 0.10‰, respectively) showing that the BSE is chondritic with respect to its Ni isotope composition, with little to no Ni mass-dependent isotope fractionation resulting from core formation.

  13. The Earth's Inner Core: a Black Box

    Science.gov (United States)

    Tkalčić, Hrvoje

    2016-04-01

    that interact with the inner core boundary. iv) Recent studies have revealed complex structures in the lowermost mantle and outermost inner core that impose complex boundary conditions on the geodynamo. It is possible that the lowermost mantle structure is "mapped" onto the surface of the inner core through convection patterns in the outer core. There is much potential to make further progress on this topic due to the improving quality and increasing number of data and the continual advancements in mathematical geophysics, which can now provide uncertainty maps in addition to tomograms. v) The rotational dynamics of the inner core is still not well understood despite recent progress. While this topic is difficult to address seismologically due to the lack of the north-south ray-paths, the emergence of novel approaches to inverse problems and new seismological classes of data, such as interferometry datasets, is promising.

  14. Seismic anisotropy of upper mantle in eastern Tibetan Plateau and related crust-mantle coupling pattern

    Institute of Scientific and Technical Information of China (English)

    Paul; SILVER; Lucy; FLESCH

    2007-01-01

    By using the polarization analysis of teleseismic SKS waveform data recorded at 116 seismic stations which respectively involved in China National Digital Seismograph Network, and Yunnan, Sichuan, Gansu and Qinghai regional digital networks, and portable broadband seismic networks deployed in Sichuan, Yunnan and Tibet, we obtained the SKS fast-wave direction and the delay time between fast and slow waves of each station by use of the stacking analysis method, and finally acquired the fine image of upper mantle anisotropy in the eastern Tibetan Plateau and its adjacent regions. We analyzed the crust-mantle coupling deformation on the basis of combining the GPS observation results and the upper mantle anisotropy distribution in the study area. The Yunnan region out of the plateau has dif-ferent features of crust-mantle deformation from the inside plateau. There exists a lateral transitional zone of crust-mantle coupling in the eastern edge of the Tibetan Plateau, which is located in the region between 26° and 27°N in the west of Sichuan and Yunnan. To the south of transitional zone, the fast-wave direction is gradually turned from S60°―70°E in southwestern Yunnan to near EW in south-eastern Yunnan. To the north of transitional zone in northwestern Yunnan and the south of western Sichuan, the fast-wave direction is nearly NS. From crust to upper mantle, the geophysical parameters (e.g. the crustal thickness, the Bouguer gravity anomaly, and tectonic stress direction) show the feature of lateral variation in the transitional zone, although the fault trend on the ground surface is inconsis-tent with the fast-wave direction. This transitional zone is close by the eastern Himalayan syntaxis, and it may play an important role in the plate boundary dynamics.

  15. Seismic anisotropy of upper mantle in eastern Tibetan Plateau and related crust-mantle coupling pattern

    Institute of Scientific and Technical Information of China (English)

    WANG ChunYong; CHANG LiJun; L(U) ZhiYong; QIN JiaZheng; SU Wei; Paul SILVER; Lucy FLESCH

    2007-01-01

    By using the polarization analysis of teleseismic SKS waveform data recorded at 116 seismic stations which respectively involved in China National Digital Seismograph Network, and Yunnan, Sichuan,Gansu and Qinghai regional digital networks, and portable broadband seismic networks deployed in Sichuan, Yunnan and Tibet, we obtained the SKS fast-wave direction and the delay time between fast and slow waves of each station by use of the stacking analysis method, and finally acquired the fine image of upper mantle anisotropy in the eastern Tibetan Plateau and its adjacent regions. We analyzed the crust-mantle coupling deformation on the basis of combining the GPS observation results and the upper mantle anisotropy distribution in the study area. The Yunnan region out of the plateau has different features of crust-mantle deformation from the inside plateau. There exists a lateral transitional zone of crust-mantle coupling in the eastern edge of the Tibetan Plateau, which is located in the region between 26° and 27°N in the west of Sichuan and Yunnan. To the south of transitional zone, the fast-wave direction is gradually turned from S60°-70°E in southwestern Yunnan to near EW in southeastern Yunnan. To the north of transitional zone in northwestern Yunnan and the south of western Sichuan, the fast-wave direction is nearly NS. From crust to upper mantle, the geophysical parameters(e.g. the crustal thickness, the Bouguer gravity anomaly, and tectonic stress direction) show the feature of lateral variation in the transitional zone, although the fault trend on the ground surface is inconsistent with the fast-wave direction. This transitional zone is close by the eastern Himalayan syntaxis, and it may play an important role in the plate boundary dynamics.

  16. Earth's deformation due to the dynamical perturbations of the fluid outer core

    Institute of Scientific and Technical Information of China (English)

    徐建桥; 孙和平

    2002-01-01

    The elasto-gravitational deformation response of the Earth's solid parts to the perturbations of the pressure and gravity on the core-mantle boundary (CMB) and the solid inner core boundary (ICB), due to the dynamical behaviors of the fluid outer core (FOC), is discussed. The internal load Love numbers, which are formulized in a general form in this study, are employed to describe the Earth's deformation. The preliminary reference Earth model (PREM) is used as an example to calculate the internal load Love numbers on the Earth's surface, CMB and ICB, respectively. The characteristics of the Earth's deformation variation with the depth and the perturbation periods on the boundaries of the FOC are also investigated. The numerical results indicate that the internal load Love numbers decrease quickly with the increasing degree of the spherical harmonics of the displacement and depend strongly on the perturbation frequencies, especially on the high frequencies. The results, obtained in this work, can be used to construct the boundary conditions for the core dynamics of the long-period oscillations of the Earth's fluid outer core.

  17. Anelastic convection in the mantle with variable properties

    Science.gov (United States)

    Quareni, F.; Marzocchi, W.; Mulargia, F.

    1991-08-01

    The convective motion and the thermal state of the Earth's mantle are investigated through the mean-field approximation, deriving the steady-state solutions of the set of conservation equations in cartesian geometry for a compressible fluid with variable viscosity, bulk modulus, thermal expansion and thermal conductivity. The density and bulk modulus are taken from the Preliminary Reference Earth Model (PREM) and the Grüneisen parameter is evaluated through the Debye-Brillouin formulation, which has been proven to be an effective approximation. Thermal expansion is derived from the thermodynamical definition of the Grüneisen parameter, and thermal conductivity and the other thermodynamic parameters are written in terms of the elastic constants according to the quasi-harmonic theory. Comparison of the solutions obtained with an exponential density profile following the Adams-Williamson equation of state and the polynomial profile of the PREM shows that the detail of the radial behaviour of density has a minor influence. The radial variation of thermal expansivity is found to produce a lower thermal gradient at high Rayleigh numbers through a complex feedback mechanism involving buoyancy and adiabatic heating. The radial dependence of thermal conductivity strongly affects both the mechanical and thermal state of the convective cells and inhibits the formation of thermal boundary layers at the bottom of the cells. In this case, the temperature dependence of the viscosity determines a 'cold' and a 'hot' branch, which may be related to the composition of the outer core.

  18. Mantle plumes beneath the South Pacific superswell revealed by finite frequency P tomography using regional seafloor and island data

    Science.gov (United States)

    Obayashi, M.; Yoshimitsu, J.; Sugioka, H.; Ito, A.; Isse, T.; Shiobara, H.; Reymond, D.; Suetsugu, D.

    2016-11-01

    We present a new tomographic image beneath the South Pacific superswell, using finite frequency P wave travel time tomography with global and regional data. The regional stations include broadband ocean-bottom seismograph stations. The tomographic image shows slow anomalies of 200-300 km in diameter beneath most hot spots in the studied region, extending continuously from the shallow upper mantle to 400 km depth. Narrow and weak slow anomalies are detected at depths of 500-1000 km, connecting the upper mantle slow anomalies with large-scale slow anomalies with lateral dimension of 1000-2000 km prevailing below 1000 km depth down to the core-mantle boundary. There are two slow anomalies around the Society hot spot at depths shallower than 400 km, which both emerge from the same slow anomaly at 500 km depth. One of them is located beneath the Society hot spot and the other underlies 500 km east of the Society hot spot, where no volcanism is observed.

  19. Volatile cycling and the thermal evolution of planetary mantle

    Science.gov (United States)

    Sandu, Constantin

    The thermal histories of terrestrial planets are investigated using two parameterized mantle convection models for either Earth like planets and planets with no active plate tectonics. Using parameterized models of mantle convection, we performed computer simulations of planetary cooling and volatile cycling. The models estimate the amount of volatile in mantle reservoir, and calculate the outgassing and regassing rates. A linear model of volatile concentration-dependent is assumed for the activation energy of the solid-state creep in the mantle. The kinematic viscosity of the mantle is thus dynamically affected by the activation energy through a variable concentration in volatile. Mantle temperature and heat flux is calculated using a model derived from classic thermal boundary layer theory of a single layered mantle with temperature dependent viscosity. The rate of volatile exchanged between mantle and surface is calculated by balancing the amount of volatiles degassed in the atmosphere by volcanic and spreading related processes and the amount of volatiles recycled back in the mantle by the subduction process. In the cases that lack plate tectonics, the degassing efficiency is dramatically reduced and the regassing process is absent. The degassing effect is dependent on average spreading rate of tectonic plates and on the amount of volatile in the melt extract in the transition zone between mantle and upper boundary laver. The regassing effect is dependent on the subduction rate and on the amount of volatile present on a hydrated layer on top of the subducting slab. The degassing and regassing parameters are all related to the intensity of the convection in the mantle and to the surface temperature of the planet, and they are regulated by the amount of volatiles in reservoir. Comparative study with the previous models display significant differences and improve the versatility of the model. The optimum efficiency factors found are in the range of 0.01--0.06 for

  20. The ruthenium isotopic composition of the oceanic mantle

    Science.gov (United States)

    Bermingham, K. R.; Walker, R. J.

    2017-09-01

    The approximately chondritic relative, and comparatively high absolute mantle abundances of the highly siderophile elements (HSE), suggest that their concentrations in the bulk silicate Earth were primarily established during a final ∼0.5 to 1% of ;late accretion; to the mantle, following the cessation of core segregation. Consequently, the isotopic composition of the HSE Ru in the mantle reflects an amalgamation of the isotopic compositions of late accretionary contributions to the silicate portion of the Earth. Among cosmochemical materials, Ru is characterized by considerable mass-independent isotopic variability, making it a powerful genetic tracer of Earth's late accretionary building blocks. To define the Ru isotopic composition of the oceanic mantle, the largest portion of the accessible mantle, we report Ru isotopic data for materials from one Archean and seven Phanerozoic oceanic mantle domains. A sample from a continental lithospheric mantle domain is also examined. All samples have identical Ru isotopic compositions, within analytical uncertainties, indicating that Ru isotopes are well mixed in the oceanic mantle, defining a μ100Ru value of 1.2 ± 7.2 (2SD). The only known meteorites with the same Ru isotopic composition are enstatite chondrites and, when corrected for the effects of cosmic ray exposure, members of the Main Group and sLL subgroup of the IAB iron meteorite complex which have a collective CRE corrected μ100Ru value of 0.9 ± 3.0. This suggests that materials from the region(s) of the solar nebula sampled by these meteorites likely contributed the dominant portion of late accreted materials to Earth's mantle.

  1. Magma underplating and Hannuoba present crust-mantle transitional zone composition: Xenolith petrological and geochemical evidence

    Institute of Scientific and Technical Information of China (English)

    FAN Qicheng; ZHANG Hongfu; SUI Jianli; ZHAI Mingguo; SUN Qian; LI Ni

    2005-01-01

    On the basis of mineral assemblage, mineralogy, petrology, and major, trace elemental and isotopic geochemistry of the underplated granulite- and eclogite-facies accumulate, peridotite and pyroxenite xenoliths entrained in Hannuoba Cenozoic basalts, this work constrained the petrological constituents for the crust-mantle transitional zone, which is supported by the results of high-temperature and pressure velocity experiments on rocks and geophysics deep survey. Present lower part of lower crust is mainly composed of granulite-facies mafic accumulates (dominantly plagioclase websterite) and crust-mantle transitional zone dominantly composed of eclogite-facies pyroxenites with or without garnet and spinel lherzolites; Archaean terrain granulite is only nominally early lower crust. Magma underplating in the crust-mantle boundary led to the crustal vertical accretion and the formation of the crust-mantle transitional zone, which is a significant mechanism for the chemical adjustment of the crust-mantle boundary since the Phanerozoic.

  2. On the consequences of strong stable stratification at the top of earth's outer core

    Science.gov (United States)

    Bloxham, Jeremy

    1990-01-01

    The consequences of strong stable stratification at the top of the earth's fluid outer core are considered, concentrating on the generation of the geomagnetic secular variation. It is assumed that the core near the core-mantle boundary is both strongly stably stratified and free of Lorentz forces: it is found that this set of assumptions severely limits the class of possible motions, none of which is compatible with the geomagnetic secular variation. Relaxing either assumption is adequate: tangentially geostrophic flows are consistent with the secular variation if the assumption that the core is strongly stably stratified is relaxed (while retaining the assumption that Lorentz forces are negligible); purely toroidal flows may explain the secular variation if Lorentz forces are included.

  3. Changes in Earth's core-generated magnetic field, as observed by Swarm

    DEFF Research Database (Denmark)

    Finlay, Chris; Olsen, Nils; Gillet, Nicolas

    By far the largest part of the Earth's magnetic field is generated by motions taking place within our planet's liquid metal outer core. Variations of this core-generated field thus provide us with a unique means of probing the dynamics taking place in the deepest reaches of the Earth....... In this contribution, we will present the core-generated magnetic field, and its recent time changes, as seen by ESA's Earth explorer mission Swarm. We will present a new time-dependent geomagnetic field model, called CHAOS-6, derived from satellite data collected by the Swarm constellation, as well as data from...... of the source region, the core-mantle boundary, we present maps of the detailed structure of the geodynamo, and how this is presently evolving. Both the trend (secular variation) and accelerations in the field changes since the launch of the Swarm mission will be presented. Assuming that field changes...

  4. Reconstructing the Cenozoic evolution of the mantle: Implications for mantle plume dynamics under the Pacific and Indian plates

    Science.gov (United States)

    Glišović, Petar; Forte, Alessandro M.

    2014-03-01

    The lack of knowledge of the initial thermal state of the mantle in the geological past is an outstanding problem in mantle convection. The resolution of this problem also requires the modelling of 3-D mantle evolution that yields maximum consistency with a wide suite of geophysical constraints. Quantifying the robustness of the reconstructed thermal evolution is another major concern. To solve and estimate the robustness of the time-reversed (inverse) problem of mantle convection, we analyse two different numerical techniques: the quasi-reversible (QRV) and the backward advection (BAD) methods. Our investigation extends over the 65 Myr interval encompassing the Cenozoic era using a pseudo-spectral solution for compressible-flow thermal convection in 3-D spherical geometry. We find that the two dominant issues for solving the inverse problem of mantle convection are the choice of horizontally-averaged temperature (i.e., geotherm) and mechanical surface boundary conditions. We find, in particular, that the inclusion of thermal boundary layers that yield Earth-like heat flux at the top and bottom of the mantle has a critical impact on the reconstruction of mantle evolution. We have developed a new regularisation scheme for the QRV method using a time-dependent regularisation function. This revised implementation of the QRV method delivers time-dependent reconstructions of mantle heterogeneity that reveal: (1) the stability of Pacific and African ‘large low shear velocity provinces’ (LLSVP) over the last 65 Myr; (2) strong upward deflections of the CMB topography at 65 Ma beneath: the North Atlantic, the south-central Pacific, the East Pacific Rise (EPR) and the eastern Antarctica; (3) an anchored deep-mantle plume ascending directly under the EPR (Easter and Pitcairn hotspots) throughout the Cenozoic era; and (4) the appearance of the transient Reunion plume head beneath the western edge of the Deccan Plateau at 65 Ma. Our reconstructions of Cenozoic mantle

  5. The Formation of Boundary Clinopyroxenes and Associated Glass Veins in Type B1 CAIs

    Energy Technology Data Exchange (ETDEWEB)

    Paque, J M; Beckett, J R; Ishii, H A; Toppani, A; Burnett, D S; Teslich, N; Dai, Z R; Bradley, J P

    2008-05-18

    We used focused ion beam thin section preparation and scanning transmission electron microscopy (FIB/STEM) to examine the interfacial region between spinel and host melilite for three spinel grains, two from the mantle and one from the core of an Allende type B1 inclusion, and a second pair of spinel grains from a type B1 inclusion from the Leoville carbonaceous chondrite. The compositions of boundary clinopyroxenes decorating spinel surfaces are generally consistent with those of coarser clinopyroxenes from the same region of the inclusion, suggesting little movement of spinels between mantle and core regions after the formation of boundary clinopyroxenes. The host melilite displays no anomalous compositions near the interface, and anorthite or other late-stage minerals are not observed, suggesting that crystallization of residual liquid was not responsible for the formation of boundary clinopyroxenes. Allende spinels display either direct spinel-melilite contact or an intervening boundary clinopyroxene between the two phases. In the core, boundary clinopyroxene is mantled by a thin (1-2 {micro}m thick) layer of normally zoned (X{sub Ak} increasing away from the melilite-clinopyroxene contact) melilite with X{sub Ak} matching that of the host melilite at the melilite-melilite contact. In the mantle, X{sub Ak} near boundary spinels is constant. Spinels in a Leoville type B1 inclusion are more complex with boundary clinopyroxene, as observed in Allende, but also variable amounts of glass ({approx}1 {micro}m width), secondary calcite, perovskite, and an unknown Mg-, Al-, OH-rich and Ca-, Si-poor crystalline phase that may be a layered double hydrate. Glass compositions are consistent to first order with a precursor consisting mostly of Mg-carpholite or sudoite with some aluminous diopside. One possible scenario of formation for the glass veins is that open system alteration of melilite produced a porous, hydrated aggregate of Mg-carpholite or sudoite + aluminous

  6. How grain boundaries affect the efficiency of poly-CdTe solar-cells: A fundamental atomic-scale study of grain boundary dislocation cores using CdTe bi-crystal thin films.

    Energy Technology Data Exchange (ETDEWEB)

    Klie, Robert [Univ. of Illinois, Chicago, IL (United States)

    2016-10-25

    It is now widely accepted that grain boundaries in poly-crystalline CdTe thin film devices have a detrimental effect on the minority carrier lifetimes, the open circuit voltage and therefore the overall solar-cell performance. The goal of this project was to develop a fundamental understanding of the role of grain boundaries in CdTe on the carrier life-time, open-circuit voltage, Voc, and the diffusion of impurities. To achieve this goal, i) CdTe bi-crystals were fabricated with various misorientation angels, ii) the atomic- and electronic structures of the grain boundaries were characterized using scanning transmission electron microscopy (STEM), and iii) first-principles density functional theory modeling was performed on the structures determined by STEM to predict the grain boundary potential. The transport properties and minority carrier lifetimes of the bi-crystal grain boundaries were measured using a variety of approaches, including TRPL, and provided feedback to the characterization and modeling effort about the effectiveness of the proposed models.

  7. Magnetic Probing of Core Geodynamics

    Science.gov (United States)

    Voorhies, Coerte V.

    2004-01-01

    To better understand geomagnetic theory and observation, we can use spatial magnetic spectra for the main field and secular variation to test core dynmcal hypotheses against seismology. The hypotheses lead to theoretical spectra which are fitted to observational spectra. Each fit yields an estimate of the radius of Earth's core and uncertainty. If this agrees with the seismologic value, then the hypothes pass the test. A new way to obtain theoretical spectra extends the hydromagnetic scale analysis of Benton to scale-variant field and flow. For narrow scale flow and a dynamically weak field by the top of Earth's core, this yields a generalized Stevenson-McLeod spectrum for the core-source field, and a secular variation spectrum modulated by a cubic polynomial in spherical harmonic degree n. The former passes the tests. The latter passes many tests, but does not describe rapid dipole decline and quadrupole rebound; some tests suggest it is a bit hard, or rich in narrow scale change. In a core geodynamo, motion of the fluid conductor does work against the Lorentz force. This converts kinetic into magnetic energy which, in turn, is lost to heat via Ohmic dissipation. In the analysis at lentgh-scale l/k, if one presumes kinetic energy is converted in either eddy- overturning or magnetic free-decay time-scales, then Kolmogorov or other spectra in conflict with observational spectra can result. Instead, the rate work is done roughly balances the dissipation rate, which is consistent with small scale flow. The conversion time-scale depends on dynamical constraints. These are summarized by the magneto-geostrophic vertical vorticity balance by the top of the core, which includes anisotropic effects of rotation, the magnetic field, and the core- mantle boundary. The resulting theoretical spectra for the core-source field and its SV are far more compatible with observation. The conversion time-scale of order l20 years is pseudo-scale-invarient. Magnetic spectra of other

  8. Mantle Xenoliths of Cerro Mercedes, Costa Rica, Central America

    Science.gov (United States)

    Lindsay, F. N.; Carr, M. J.; Herzberg, C. T.; Feigenson, M. D.

    2003-12-01

    Mantle peridotite occurs as xenoliths in lavas and bombs at Cerro Mercedes, a Plio-Quaternary potassic alkaline basalt volcano approximately 70 km behind the volcanic front of northern Costa Rica (Tournon and Alvarado, 1997). Mineral exploration led to the first discovery of abundant mantle xenoliths in Central America (Vargas and Alfaro, 1992). The compositions of 71 xenoliths recovered in January 2003 include dunite, harzburgite, lherzolite and olivine websterite. Twenty xenoliths have a diameter of at least 3 cm. The nodules are abundant in basalt outcrops and the rare bombs. In spite of substantial soil development in a rain forest environment, both xenoliths and host lava remain well preserved. Olivine, pyroxenes and spinel are common, plagioclase is present and garnet appears to be absent. There is no obvious shearing or deformation and several pyroxenes are as much as 1 cm in diameter. The mineralogy suggests a relatively shallow upper mantle source, within either the lithosphere or possibly the uppermost asthenosphere. Cerro Mercedes, at latitude 10° 58' N and longitude 82° 21' W, lies along the Rio San Juan, which is locally the border between Nicaragua and Costa Rica, Central America. This location approximately coincides with a boundary between dominantly depleted mantle to the northwest and OIB or Galapagos-like mantle to the southeast. We will use mineralogical data to better define the likely depths and oxidation states of representative nodules and isotopic data to define the type of mantle source.

  9. Evidence for back scattering of near-podal seismic P'P' waves from the 150-220 km zone in Earth's upper mantle

    Energy Technology Data Exchange (ETDEWEB)

    Tkalcic, H; Flanagan, M P; Cormier, V F

    2005-07-15

    The deepest and most inaccessible parts of Earth's interior--the core and core-mantle boundary regions can be studied from compressional waves that turn in the core and are routinely observed following large earthquakes at epicentral distances between 145{sup o} and 180{sup o} (also called P', PKIKP or PKP waves). P'P' (PKPPKP) are P' waves that travel from a hypocenter through the Earth's core, reflect from the free surface and travel back through the core to a recording station on the surface. P'P' waves are sometimes accompanied by precursors, which were reported first in the 1960s as small-amplitude arrivals on seismograms at epicentral distances of about 50{sup o}-70{sup o}. Most prominent of these observed precursors were explained by P'P' waves generated by earthquakes or explosions that did not reach the Earth's surface but were reflected from the underside of first order velocity discontinuities at 410 and 660 km in the upper mantle mantle. Here we report the discovery of hitherto unobserved near-podal P'P' waves (at epicentral distance less than 10{sup o}) and very prominent precursors preceding the main energy by as much as 55 seconds. We interpret these precursors as a back scattered energy from undocumented structure in the upper mantle, in a zone between 150 and 220 km depth beneath Earth's surface. From these observations, we identify a frequency dependence of Q (attenuation quality factor) in the lithosphere that can be modeled by a flat relaxation spectrum below about 0.05-0.1 Hz and increasing with as the first power of frequency above this value, confirming pioneering work by B. Gutenberg.

  10. Evidence for back scattering of near-podal seismic P'P' waves from the 150-220 km zone in Earth's upper mantle

    Energy Technology Data Exchange (ETDEWEB)

    Tkalcic, H; Flanagan, M P; Cormier, V F

    2005-07-15

    The deepest and most inaccessible parts of Earth's interior--the core and core-mantle boundary regions can be studied from compressional waves that turn in the core and are routinely observed following large earthquakes at epicentral distances between 145{sup o} and 180{sup o} (also called P', PKIKP or PKP waves). P'P' (PKPPKP) are P' waves that travel from a hypocenter through the Earth's core, reflect from the free surface and travel back through the core to a recording station on the surface. P'P' waves are sometimes accompanied by precursors, which were reported first in the 1960s as small-amplitude arrivals on seismograms at epicentral distances of about 50{sup o}-70{sup o}. Most prominent of these observed precursors were explained by P'P' waves generated by earthquakes or explosions that did not reach the Earth's surface but were reflected from the underside of first order velocity discontinuities at 410 and 660 km in the upper mantle mantle. Here we report the discovery of hitherto unobserved near-podal P'P' waves (at epicentral distance less than 10{sup o}) and very prominent precursors preceding the main energy by as much as 55 seconds. We interpret these precursors as a back scattered energy from undocumented structure in the upper mantle, in a zone between 150 and 220 km depth beneath Earth's surface. From these observations, we identify a frequency dependence of Q (attenuation quality factor) in the lithosphere that can be modeled by a flat relaxation spectrum below about 0.05-0.1 Hz and increasing with as the first power of frequency above this value, confirming pioneering work by B. Gutenberg.

  11. Obliquity along plate boundaries

    Science.gov (United States)

    Philippon, Mélody; Corti, Giacomo

    2016-12-01

    Most of the plate boundaries are activated obliquely with respect to the direction of far field stresses, as roughly only 8% of the plate boundaries total length shows a very low obliquity (ranging from 0 to 10°, sub-orthogonal to the plate displacement). The obliquity along plate boundaries is controlled by (i) lateral rheological variations within the lithosphere and (ii) consistency with the global plate circuit. Indeed, plate tectonics and magmatism drive rheological changes within the lithosphere and consequently influence strain localization. Geodynamical evolution controls large-scale mantle convection and plate formation, consumption, and re-organization, thus triggering plate kinematics variations, and the adjustment and re-orientation of far field stresses. These geological processes may thus result in plate boundaries that are not perpendicular but oblique to the direction of far field stresses. This paper reviews the global patterns of obliquity along plate boundaries. Using GPlate, we provide a statistical analysis of present-day obliquity along plate boundaries. Within this framework, by comparing natural examples and geological models, we discuss deformation patterns and kinematics recorded along oblique plate boundaries.

  12. Lasting mantle scars lead to perennial plate tectonics.

    Science.gov (United States)

    Heron, Philip J; Pysklywec, Russell N; Stephenson, Randell

    2016-06-10

    Mid-ocean ridges, transform faults, subduction and continental collisions form the conventional theory of plate tectonics to explain non-rigid behaviour at plate boundaries. However, the theory does not explain directly the processes involved in intraplate deformation and seismicity. Recently, damage structures in the lithosphere have been linked to the origin of plate tectonics. Despite seismological imaging suggesting that inherited mantle lithosphere heterogeneities are ubiquitous, their plate tectonic role is rarely considered. Here we show that deep lithospheric anomalies can dominate shallow geological features in activating tectonics in plate interiors. In numerical experiments, we found that structures frozen into the mantle lithosphere through plate tectonic processes can behave as quasi-plate boundaries reactivated under far-field compressional forcing. Intraplate locations where proto-lithospheric plates have been scarred by earlier suturing could be regions where latent plate boundaries remain, and where plate tectonics processes are expressed as a 'perennial' phenomenon.

  13. Lasting mantle scars lead to perennial plate tectonics

    Science.gov (United States)

    Heron, Philip J.; Pysklywec, Russell N.; Stephenson, Randell

    2016-06-01

    Mid-ocean ridges, transform faults, subduction and continental collisions form the conventional theory of plate tectonics to explain non-rigid behaviour at plate boundaries. However, the theory does not explain directly the processes involved in intraplate deformation and seismicity. Recently, damage structures in the lithosphere have been linked to the origin of plate tectonics. Despite seismological imaging suggesting that inherited mantle lithosphere heterogeneities are ubiquitous, their plate tectonic role is rarely considered. Here we show that deep lithospheric anomalies can dominate shallow geological features in activating tectonics in plate interiors. In numerical experiments, we found that structures frozen into the mantle lithosphere through plate tectonic processes can behave as quasi-plate boundaries reactivated under far-field compressional forcing. Intraplate locations where proto-lithospheric plates have been scarred by earlier suturing could be regions where latent plate boundaries remain, and where plate tectonics processes are expressed as a `perennial' phenomenon.

  14. Seismological mapping of fine structure near the base of the Earth's mantle

    Science.gov (United States)

    Vidale, J.E.; Benz, H.M.

    1993-01-01

    THE Earth's core-mantle boundary (CMB) juxtaposes liquid iron and crystalline silicates, and is a region of large vertical thermal gradients. The D??? region, which extends up to 200-300 km above the CMB, often has elevated shear-wave velocity and suggestions of lateral variations in structure1. Recent improvements in our ability to assemble and analyse records from regional seismic networks have allowed us to examine long profiles of travel times, amplitudes and waveforms from more than a thousand short-period seismometers2. We observe, across Canada and the United States, P waves that have grazed the CMB from the powerful nuclear test in Lop Nor, China, on 21 May 1992. First-arrival travel times and large secondary arrivals are consistent with a 1.5% compressional velocity increase with depth ???130 km above the CMB - about half the thickness of D??? in this locality3. Our observations, together with evidence for the absence of such a thin, fast layer in neighbouring regions, suggest the presence of lateral heterogeneity in composition or phase at the base of the mantle.

  15. Deep Structures and Initiation of Plate Tectonics in Thermochemical Mantle Convection Models

    Science.gov (United States)

    Hansen, U.; Stein, C.

    2015-12-01

    Recently deep thermochemical structures have been studied intensively. The observed large anomalies with reduced seismic velocities (LLSVPs) beneath Africa and the Pacific are obtained in numerical models as an initial dense layer at the core-mantle boundary (CMB) is pushed up to piles by the convective flow (e.g., McNamara et al., EPSL 229, 1-9, 2010). Adding a dense CMB layer to a model featuring active plate tectonics, Trim et al. (EPSL 405, 1-14, 2014) find that surface mobility is strongly hindered by the dense material and can even vanish completely for a CMB layer that has a too high density or too large a volume.In a further study we employed a fully rheological model in which oceanic plates form self-consistently. We observe that an initial dense CMB layer strongly affects the formation of plates and therefore the onset time of plate tectonics. We present a systematic 2D parameter study exploring the time of plate initiation and discuss the resulting deep thermal and thermochemical structures in a self-consistent thermochemical mantle convection system.

  16. Olivine crystals align during diffusion creep of Earth's upper mantle.

    Science.gov (United States)

    Miyazaki, Tomonori; Sueyoshi, Kenta; Hiraga, Takehiko

    2013-10-17

    The crystallographic preferred orientation (CPO) of olivine produced during dislocation creep is considered to be the primary cause of elastic anisotropy in Earth's upper mantle and is often used to determine the direction of mantle flow. A fundamental question remains, however, as to whether the alignment of olivine crystals is uniquely produced by dislocation creep. Here we report the development of CPO in iron-free olivine (that is, forsterite) during diffusion creep; the intensity and pattern of CPO depend on temperature and the presence of melt, which control the appearance of crystallographic planes on grain boundaries. Grain boundary sliding on these crystallography-controlled boundaries accommodated by diffusion contributes to grain rotation, resulting in a CPO. We show that strong radial anisotropy is anticipated at temperatures corresponding to depths where melting initiates to depths where strongly anisotropic and low seismic velocities are detected. Conversely, weak anisotropy is anticipated at temperatures corresponding to depths where almost isotropic mantle is found. We propose diffusion creep to be the primary means of mantle flow.

  17. Geomagnetic Secular Variation Prediction with Thermal Heterogeneous Boundary Conditions

    Science.gov (United States)

    Kuang, Weijia; Tangborn, Andrew; Jiang, Weiyuan

    2011-01-01

    It has long been conjectured that thermal heterogeneity at the core-mantle boundary (CMB) affects the geodynamo substantially. The observed two pairs of steady and strong magnetic flux lobes near the Polar Regions and the low secular variation in the Pacific over the past 400 years (and perhaps longer) are likely the consequences of this CMB thermal heterogeneity. There are several studies on the impact of the thermal heterogeneity with numerical geodynamo simulations. However, direct correlation between the numerical results and the observations is found very difficult, except qualitative comparisons of certain features in the radial component of the magnetic field at the CMB. This makes it difficult to assess accurately the impact of thermal heterogeneity on the geodynamo and the geomagnetic secular variation. We revisit this problem with our MoSST_DAS system in which geomagnetic data are assimilated with our geodynamo model to predict geomagnetic secular variations. In this study, we implement a heterogeneous heat flux across the CMB that is chosen based on the seismic tomography of the lowermost mantle. The amplitude of the heat flux (relative to the mean heat flux across the CMB) varies in the simulation. With these assimilation studies, we will examine the influences of the heterogeneity on the forecast accuracies, e.g. the accuracies as functions of the heterogeneity amplitude. With these, we could be able to assess the model errors to the true core state, and thus the thermal heterogeneity in geodynamo modeling.

  18. Importance of Mantle Viscosity in Interseismic Deformation

    Science.gov (United States)

    Wang, K.; He, J.; Hu, Y.

    2012-12-01

    The role of mantle viscosity in subduction earthquake cycles was postulated when the plate tectonics theory had just gained wide acceptance. The process was described using Elsasser's 1-D model for diffusion of stress from the subduction boundary to the plate interior. Main features of interseismic surface deformation predicted by this elegantly simple model were later verified by GPS observations following giant subduction earthquakes. However, and intriguingly, the vast majority of interseismic deformation models developed in the era of space geodesy assume an elastic Earth, incorrectly regarding interseismic deformation as a subdued mirror image of coseismic deformation. The reason is four-fold. (1) The 1-D model and subsequent 2-D viscoelastic models failed to recognize the role of rupture length in the strike direction and could not self-consistently explain deformation following medium and small earthquakes. (2) Based on global mantle viscosity models derived from glacial isostatic adjustment studies, the viscoelastic mantle should indeed behave elastically in earthquake cycles of a few hundred years. (3) The effect of viscous mantle deformation can often be equivalently described by deep fault creep in a purely elastic Earth. (4) The use of an elastic model provides convenience in inverting geodetic data to determine fault locking and creep. Here we use 3D finite element models to show that the main characteristics of surface deformation following subduction earthquakes of all sizes can be explained with a viscoelastic Earth in which the mantle wedge is less viscous than global upper-mantle average of 1020 - 1021 Pa s by one to two orders of magnitude. Following giant earthquakes, such as 1700 Cascadia, 1960 Chile, 1964 Alaska, 2004 Sumatra, and 2011 Japan, upper-plate land deformation undergoes phases of wholesale seaward motion, opposing motion of coastal and inland areas, and wholesale landward motion. The "speed" of the evolution scales inversely with

  19. The life cycle of continental rifts: Numerical models of plate tectonics and mantle convection.

    Science.gov (United States)

    Ulvrova, Martina; Brune, Sascha; Williams, Simon

    2017-04-01

    Plate tectonic processes and mantle convection form a self-organized system whose surface expression is characterized by repeated Wilson cycles. Conventional numerical models often capture only specific aspects of plate-mantle interaction, due to imposed lateral boundary conditions or simplified rheologies. Here we study continental rift evolution using a 2D spherical annulus geometry that does not require lateral boundary conditions. Instead, continental extension is driven self-consistently by slab pull, basal drag and trench suction forces. We use the numerical code StagYY to solve equations of conservation of mass, momentum and energy and transport of material properties. This code is capable of computing mantle convection with self-consistently generated Earth-like plate tectonics using a pseudo-plastic rheology. Our models involve an incompressible mantle under the Boussinesq approximation with internal heat sources and basal heating. Due to the 2D setup, our models allow for a comparably high resolution of 10 km at the mantle surface and 15 km at the core mantle boundary. Viscosity variations range over 7 orders of magnitude. We find that the causes for rift initiation are often related to subduction dynamics. Some rifts initiate due to increasing slab pull, others because of developing trench suction force, for instance by closure of an intra-oceanic back-arc basin. In agreement with natural settings, our models reproduce rifts forming in both young and old collision zones. Our experiments show that rift dynamics follow a characteristic evolution, which is independent of the specific setting: (1) continental rifts initiate during tens of million of years at low extension rates (few millimetres per year) (2) the extension velocity increases during less than 10 million years up to several tens of millimetres per year. This speed-up takes place before lithospheric break-up and affects the structural architecture of rifted margins. (3) high divergence rates

  20. Rotation and Magnetism of Earth's Inner Core

    Science.gov (United States)

    Glatzmaier; Roberts

    1996-12-13

    Three-dimensional numerical simulations of the geodynamo suggest that a super- rotation of Earth's solid inner core relative to the mantle is maintained by magnetic coupling between the inner core and an eastward thermal wind in the fluid outer core. This mechanism, which is analogous to a synchronous motor, also plays a fundamental role in the generation of Earth's magnetic field.

  1. Mantle convection and the distribution of geochemical reservoirs in the silicate shell of the Earth

    Science.gov (United States)

    Walzer, Uwe; Hendel, Roland

    2010-05-01

    We present a dynamic 3-D spherical-shell model of mantle convection and the evolution of the chemical reservoirs of the Earth`s silicate shell. Chemical differentiation, convection, stirring and thermal evolution constitute an inseparable dynamic system. Our model is based on the solution of the balance equations of mass, momentum, energy, angular momentum, and four sums of the number of atoms of the pairs 238U-206Pb, 235U-207Pb, 232Th-208Pb, and 40K-40Ar. Similar to the present model, the continental crust of the real Earth was not produced entirely at the start of the evolution but developed episodically in batches [1-7]. The details of the continental distribution of the model are largely stochastic, but the spectral properties are quite similar to the present real Earth. The calculated Figures reveal that the modeled present-day mantle has no chemical stratification but we find a marble-cake structure. If we compare the observational results of the present-day proportion of depleted MORB mantle with the model then we find a similar order of magnitude. The MORB source dominates under the lithosphere. In our model, there are nowhere pure unblended reservoirs in the mantle. It is, however, remarkable that, in spite of 4500 Ma of solid-state mantle convection, certain strong concentrations of distributed chemical reservoirs continue to persist in certain volumes, although without sharp abundance boundaries. We deal with the question of predictable and stochastic portions of the phenomena. Although the convective flow patterns and the chemical differentiation of oceanic plateaus are coupled, the evolution of time-dependent Rayleigh number, Rat , is relatively well predictable and the stochastic parts of the Rat(t)-curves are small. Regarding the juvenile growth rates of the total mass of the continents, predictions are possible only in the first epoch of the evolution. Later on, the distribution of the continental-growth episodes is increasingly stochastic

  2. Magnectic Probing of Core Geodynamics

    Science.gov (United States)

    Voorhies, Coerte

    2004-01-01

    To better understand geomagnetic theory and observation, we can use spatial magnetic spectra for the main field and secular variation to test core dynamical hypotheses against seismology. The hypotheses lead to theoretical spectra which are fitted to observational spectra. Each fit yields an estimate of the radius of Earth s core and uncertainty. If this agrees with the seismologic value, then the hypotheses pass the test. A new way to obtain theoretical spectra extends the hydromagnetic scale analysis of Benton to scale-variant field and flow. For narrow scale flow and a dynamically weak field by the top of Earth s core, this yields a JGR-PI, and a secular variation spectrum modulated by a cubic polynomial in spherical harmonic degree n. The former passes the tests. The latter passes many tests, but does not describe rapid dipole decline and quadrupole rebound; some tests suggest it is a bit hard, or rich in narrow scale change.In a core geodynamo, motion of the fluid conductor does work against the Lorentz force. This converts kinetic into magnetic energy which, in turn, is lost to heat via Ohmic dissipation. In the analysis at length- scale l/k, if one presumes kinetic energy is converted in either eddy- overturning or magnetic free-decay time-scales, then Kolmogorov or other spectra in conflict with observational spectra can result. Instead, the rate work is done roughly balances the dissipation rate, which is consistent with small scale flow. The conversion time-scale depends on dynamical constraints. These are summarized by the magneto- geostrophic vertical vorticity balance by the top of the core, which includes anisotropic effects of rotation, the magnetic field, and the core-mantle boundary. The resulting theoretical spectra for the core- source field and its SV are far more compatible with observation. The conversion time-scale of order 120 years is pseudo-scale-invariant. Magnetic spectra of other planets may differ; however, if a transition to non

  3. Lithology and temperature: How key mantle variables control rift volcanism

    Science.gov (United States)

    Shorttle, O.; Hoggard, M.; Matthews, S.; Maclennan, J.

    2015-12-01

    Continental rifting is often associated with extensive magmatic activity, emplacing millions of cubic kilometres of basalt and triggering environmental change. The lasting geological record of this volcanic catastrophism are the large igneous provinces found at the margins of many continents and abrupt extinctions in the fossil record, most strikingly that found at the Permo-Triassic boundary. Rather than being considered purely a passive plate tectonic phenomenon, these episodes are frequently explained by the involvement of mantle plumes, upwellings of mantle rock made buoyant by their high temperatures. However, there has been debate over the relative role of the mantle's temperature and composition in generating the large volumes of magma involved in rift and intra-plate volcanism, and even when the mantle is inferred to be hot, this has been variously attributed to mantle plumes or continental insulation effects. To help resolve these uncertainties we have combined geochemical, geophysical and modelling results in a two stage approach: Firstly, we have investigated how mantle composition and temperature contribute to melting beneath Iceland, the present day manifestation of the mantle plume implicated in the 54Ma break up of the North Atlantic. By considering both the igneous crustal production on Iceland and the chemistry of its basalts we have been able to place stringent constraints on the viable temperature and lithology of the Icelandic mantle. Although a >100°C excess temperature is required to generate Iceland's thick igneous crust, geochemistry also indicates that pyroxenite comprises 10% of its source. Therefore, the dynamics of rifting on Iceland are modulated both by thermal and compositional mantle anomalies. Secondly, we have performed a global assessment of the mantle's post break-up thermal history to determine the amplitude and longevity of continental insulation in driving excess volcanism. Using seismically constrained igneous crustal

  4. Seismic Velocity Anomalies in the Outer Core: The Final Frontier

    Science.gov (United States)

    Stevenson, D. J.

    2008-12-01

    driving the geodynamo, as would arise if of order 10km of mantle underplating occurred over all of geologic time. The amount of suspended material will be tiny at any one time, illustrating the remarkable sensitivity of seismic waves to the microstructure of the medium. Consequences of this picture include some dissipation (finite Q) in the outer core and a significant frequency dependence of this effect, but precise predictions are difficult because of uncertainties in particle kinetics and convective velocities. The two-phase region may also influence radial seismic velocity profiles, particularly in the layers immediately adjacent to the boundaries (e.g., the layer just below the core-mantle boundary), an effect that has been suggested in the literature on many occasions. Even so, this explanation for lateral variability remains marginal at best, suggesting that the claimed observation is either not real or that some other explanation still awaits discovery.

  5. Intraplate volcanism and mantle dynamics in East Asia: Big mantle wedge (BMW) model (Invited)

    Science.gov (United States)

    Zhao, D.

    2009-12-01

    In the East Asia continent there are many Cenozoic volcanoes, but only a few are still active now, such as the Changbai, Wudalianchi, and Tengchong volcanoes which have erupted several times in the past 1000 years. Although many studies have been made by using various approaches, the origin of the intraplate volcanoes in East Asia is still not very clear. Recently we used regional and global seismic tomography to determine high-resolution 3-D mantle structure under Western Pacific to East Asia (Zhao, 2004; Huang and Zhao, 2006; Zhao et al., 2009). Our results show prominent low-velocity anomalies from the surface down to 410 km depth beneath the intraplate volcanoes and a broad high-velocity anomaly in the mantle transition zone under East Asia. Focal-mechanism solutions of deep earthquakes indicate that the subducting Pacific slab under the Japan Sea and the East Asia margin is subject to compressive stress regime. These results suggest that the Pacific slab meets strong resistance at the 660-km discontinuity and so it becomes stagnant in the mantle transition zone under East Asia. The Philippine Sea slab has also subducted down to the mantle transition zone under western Japan and the Ryukyu back-arc region. The western edge of the stagnant slab is generally parallel with the Japan trench and the Ryukyu trench and roughly coincides with a prominent surface topography and gravity boundary in East China, which is located approximately 1800 km west of the trenches. The upper mantle under East Asia has formed a big mantle wedge (BMW) above the stagnant slab. The BMW exhibits low seismic-velocity and high electrical-conductivity, which is hot and wet because of the deep dehydration reactions of the stagnant slab and the convective circulation process in the BMW. These processes lead to the upwelling of hot and wet asthenospheric materials and thinning and fracturing of the continental lithosphere, leading to the formation of the active intraplate volcanoes in East

  6. Motion of the Mantle in the Translational Modes of the Earth and Mercury

    Science.gov (United States)

    Grinfeld, Pavel; Wisdom, Jack

    2005-01-01

    Slichter modes refer to the translational motion of the inner core with respect to the outer core and the mantle. The polar Slichter mode is the motion of the inner core along the axis of rotation. Busse presented an analysis of the polar mode which yielded an expression for its period. Busse's analysis included the assumption that the mantle was stationary. This approximation is valid for planets with small inner cores, such as the Earth whose inner core is about 1/60 of the total planet mass. On the other hand, many believe that Mercury's core may be enormous. If so, the motion of the mantle should be expected to produce a significant effect. We present a formal framework for including the motion of the mantle in the analysis of the translational motion of the inner core. We analyze the effect of the motion of the mantle on the Slichter modes for a non-rotating planet with an inner core of arbitrary size. We omit the effects of viscosity in the outer core, magnetic effects, and solid tides. Our approach is perturbative and is based on a linearization of Euler's equations for the motion of the fluid and Newton's second law for the motion of the inner core. We find an analytical expression for the period of the Slichter mode. Our result agrees with Busse's in the limiting case of small inner core. We present the unexpected result that even for Mercury the motion of the mantle does not significantly change the period of oscillation.

  7. The post-stishovite phase transition in hydrous alumina-bearing SiO2 in the lower mantle of the earth.

    Science.gov (United States)

    Lakshtanov, Dmitry L; Sinogeikin, Stanislav V; Litasov, Konstantin D; Prakapenka, Vitali B; Hellwig, Holger; Wang, Jingyun; Sanches-Valle, Carmen; Perrillat, Jean-Philippe; Chen, Bin; Somayazulu, Maddury; Li, Jie; Ohtani, Eiji; Bass, Jay D

    2007-08-21

    Silica is the most abundant oxide component in the Earth mantle by weight, and stishovite, the rutile-structured (P4(2)/mnm) high-pressure phase with silica in six coordination by oxygen, is one of the main constituents of the basaltic layer of subducting slabs. It may also be present as a free phase in the lower mantle and at the core-mantle boundary. Pure stishovite undergoes a displacive phase transition to the CaCl(2) structure (Pnnm) at approximately 55 GPa. Theory suggests that this transition is associated with softening of the shear modulus that could provide a significant seismic signature, but none has ever been observed in the Earth. However, stishovite in natural rocks is expected to contain up to 5 wt % Al(2)O(3) and possibly water. Here we report the acoustic velocities, densities, and Raman frequencies of aluminum- and hydrogen-bearing stishovite with a composition close to that expected in the Earth mantle at pressures up to 43.8(3) GPa [where (3) indicates an uncertainty of 0.3 GPa]. The post-stishovite phase transition occurs at 24.3(5) GPa (at 298 K), far lower than for pure silica at 50-60 GPa. Our results suggest that the rutile-CaCl(2) transition in natural stishovite (with 5 wt % Al(2)O(3)) should occur at approximately 30 GPa or approximately 1,000-km depth at mantle temperatures. The major changes in elastic properties across this transition could make it visible in seismic profiles and may be responsible for seismic reflectors observed at 1,000- to 1,400-km depth.

  8. Radial profiles of temperature and viscosity in the Earth's mantle inferred from the geoid and lateral seismic structure

    NARCIS (Netherlands)

    Cadek, O.; Berg, A.P. van den

    1998-01-01

    In the framework of dynamical modelling of the geoid, we have estimated basic features of the radial profile of temperature in the mantle. The applied parameterization of the geotherm directly characterizes thermal boundary layers and values of the thermal gradient in the upper and lower mantle.

  9. Melting of Bridgmanite to 135 Gpa: Toward a Coherent Model for the Melting Behavior in the Lower Mantle

    Science.gov (United States)

    Andrault, D.; Pesce, G.; Mezouar, N.

    2015-12-01

    the deep mantle applied to properties of early magma ocean and actual core-mantle boundary. Earth Planet. Sci. Lett. 304, 251-259.

  10. Seismic evidence for the depression of the D″ discontinuity beneath the Caribbean: Implication for slab heating from the Earth's core

    Science.gov (United States)

    Ko, Justin Yen-Ting; Hung, Shu-Huei; Kuo, Ban-Yuan; Zhao, Li

    2017-06-01

    The lowermost 100-300 km of the Earth's mantle commonly regarded as the thermal boundary layer (TBL) of mantle circulation is characterized by its complex physical properties. Beneath the Caribbean this so-called D″ layer features relatively high velocities and abrupt impedance increase at the top (designated as the D″ discontinuity). These seismic characteristics have been attributed to the accumulation of ancient subducted slab material and the phase transition in the major lower mantle mineral of pervoskite. Geodynamic models predict that the blanketing cold slabs may trap enough heat from core to be buoyantly destabilized, and eventually broken apart and entrained into the bottom of the convection cell. Here we explore the D″ structure with unprecedented resolution through modeling traveltimes, amplitudes, and waveform shapes from the USArray. We find an east-to-west asymmetrical undulation of the D″ discontinuity with a V-shaped depression of ∼70-160 km over a lateral distance of 600 km beneath northern South America. The shear velocity perturbations vary in the same trend showing the most pronounced reduction of ∼3-4% below the thinnest D″ layer in close proximity to an intermittently undetected discontinuity. The strong correlation between the D″ topography and velocity variations indicates the phase transition boundary has been perturbed or even disrupted by the large lateral temperature gradient of slab material which has been reheated from the core over extended periods of time.

  11. Inner core structure behind the PKP core phase triplication

    NARCIS (Netherlands)

    Blom, Nienke A.; Deuss, Arwen; Paulssen, Hanneke; Waszek, Lauren

    2015-01-01

    The structure of the Earth's inner core is not well known between depths of ∼100–200 km beneath the inner core boundary. This is a result of the PKP core phase triplication and the existence of strong precursors to PKP phases, which hinder the measurement of inner core compressional PKIKP waves at e

  12. Inner core structure behind the PKP core phase triplication

    NARCIS (Netherlands)

    Blom, Nienke A.; Deuss, Arwen; Paulssen, Hanneke; Waszek, Lauren

    The structure of the Earth's inner core is not well known between depths of ∼100–200 km beneath the inner core boundary. This is a result of the PKP core phase triplication and the existence of strong precursors to PKP phases, which hinder the measurement of inner core compressional PKIKP waves at

  13. The high-pressure phase diagram of Fe(0.94)O - A possible constituent of the earth's core

    Science.gov (United States)

    Knittle, Elise; Jeanloz, Raymond

    1991-01-01

    Electrical resistivity measurements to pressures of 83 GPa and temperatures ranging from 300 K to 4300 K confirm the presence of both crystalline and liquid metallic phases of FeO at pressures above 60-70 GPa and temperatures above 1000 K. By experimentally determinig the melting temperature of FeO to 100 GPa and of a model-core composition at 83 GPa, it is found that the solid-melt equilibria can be described by complete solid solution across the Fe-FeO system at pressures above 70 GPa. The results indicate that oxygen is a viable and likely candidate for the major light alloying element of the earth's liquid outer core. The data suggest that the temperature at the core-mantle boundary is close to 4800 K and that heat lost out of the core accounts for more than 20 percent of the heat flux observed at the surface.

  14. Global Existence and Uniqueness of Solutions for a Free Boundary Problem Modeling the Growth of Tumors with a Necrotic Core and a Time Delay in Process of Proliferation

    Directory of Open Access Journals (Sweden)

    Shihe Xu

    2014-01-01

    Full Text Available We study a mathematical model for the growth of necrotic tumors with time delays in proliferation. By transforming this problem into an initial-boundary value problem in fixed domain of a coupled system of a parabolic equation and one integrodifferential equation with time delays, in which all equations involve discontinuous terms, and using the approximation method combined with Schauder fixed point theorem, we prove that this problem has a unique global solution in any time interval [0,T].

  15. Continent-sized anomalous zones with low seismic velocity at the base of Earth's mantle

    Science.gov (United States)

    Garnero, Edward J.; McNamara, Allen K.; Shim, Sang-Heon

    2016-07-01

    Seismic images of Earth's interior reveal two massive anomalous zones at the base of the mantle, above the core, where seismic waves travel slowly. The mantle materials that surround these anomalous regions are thought to be composed of cooler rocks associated with downward advection of former oceanic tectonic plates. However, the origin and composition of the anomalous provinces is uncertain. These zones have long been depicted as warmer-than-average mantle materials related to convective upwelling. Yet, they may also be chemically distinct from the surrounding mantle, and potentially partly composed of subducted or primordial material, and have therefore been termed thermochemical piles. From seismic, geochemical and mineral physics data, the emerging view is that these thermochemical piles appear denser than the surrounding mantle materials, are dynamically stable and long-lived, and are shaped by larger-scale mantle flow. Whether remnants of a primordial layer or later accumulations of more-dense materials, the composition of the piles is modified over time by stirring and by chemical reactions with material from the surrounding mantle, underlying core and potentially from volatile elements transported into the deep Earth by subducted plates. Upwelling mantle plumes may originate from the thermochemical piles, so the unusual chemical composition of the piles could be the source of distinct trace-element signatures observed in hotspot lavas.

  16. Earthquake calamity warning from space station: orbital dynamics coupling geology mantle convection

    Science.gov (United States)

    Szu, Harold H.; Liu, Han-Shou

    2009-04-01

    It is not surprising that the earthquakes happened among clashing tectonic plate boundaries where numerous earthquake stations exist. Then, why do we need more? The significance of Sichuan and Tongshan earthquakes of China is a wakeup call that major earthquakes of logarithmic Richter scales beyond 7 could happen exactly within a single tectonic plate surprisingly. Thus, the previous border surveillance is broadened to areas coverage. Judging the success of archival survey of NASA with the gravitational potential by Liu et al., we review a unified earthquakes theory covering both the peripheral and the central plate in this paper, so that we can take seriously the need of a comprehensive global surveillance of natural calamity in the Space. The earth surface crust, like a kitchen kettle lid, covers tightly the melted mantle rock layer, like a pea soup cooking in the kettle. Given the time they will all become bubbling, rattling & shaking, known as the Bernard instability. This instability is ubiquitous for any liquid state matter being heated from below, if and only if it has a real positive thermal expansion coefficient. Likewise, the earth mantle is being cooked from below by an enormously hot fireball of the size of a moon. The heat comes from the radioactive decay confined within the core over eon's age. Due to the enormous gravitation attraction being always real positive and additive, the inner core is bifurcated into 2 regimes, a heat-melted liquid metal regime, where the earth magnetic field is produced and predicted by Faraday induction law. And further inside there exists a tightly squeezed solid metal ball regime, due to the gigantic weight compression, as confirmed by sonar experiments. The complexity of earth Bernard instability is due to the extra rotational Coriolis force that makes the up-down thermal convection side-way, creating the mass imbalance and permitting in-situ measurements feasible at a distance.

  17. Quasi-geostrophic modes in the Earth's fluid core with an outer stably stratified layer

    CERN Document Server

    Vidal, Jérémie

    2015-01-01

    Seismic waves sensitive to the outermost part of the Earth's liquid core seem to be affected by a stably stratified layer at the core-mantle boundary. Such a layer could have an observable signature in both long-term and short-term variations of the magnetic field of the Earth, which are used to probe the flow at the top of the core. Indeed, with the recent SWARM mission, it seems reasonable to be able to identify waves propagating in the core with period of several months, which may play an important role in the large-scale dynamics. In this paper, we characterize the influence of a stratified layer at the top of the core on deep quasi-geostrophic (Rossby) waves. We compute numerically the quasi-geostrophic eigenmodes of a rapidly rotating spherical shell, with a stably stratified layer near the outer boundary. Two simple models of stratification are taken into account, which are scaled with commonly accepted values of the Brunt-V{\\"a}is{\\"a}l{\\"a} frequency in the Earth's core. In the absence of magnetic fi...

  18. The dynamics of plate tectonics and mantle flow: from local to global scales.

    Science.gov (United States)

    Stadler, Georg; Gurnis, Michael; Burstedde, Carsten; Wilcox, Lucas C; Alisic, Laura; Ghattas, Omar

    2010-08-27

    Plate tectonics is regulated by driving and resisting forces concentrated at plate boundaries, but observationally constrained high-resolution models of global mantle flow remain a computational challenge. We capitalized on advances in adaptive mesh refinement algorithms on parallel computers to simulate global mantle flow by incorporating plate motions, with individual plate margins resolved down to a scale of 1 kilometer. Back-arc extension and slab rollback are emergent consequences of slab descent in the upper mantle. Cold thermal anomalies within the lower mantle couple into oceanic plates through narrow high-viscosity slabs, altering the velocity of oceanic plates. Viscous dissipation within the bending lithosphere at trenches amounts to approximately 5 to 20% of the total dissipation through the entire lithosphere and mantle.

  19. Shear-wave velocity structure of the crust and upper mantle beneath the Kola Peninsula

    Science.gov (United States)

    Dricker, I. G.; Roecker, S. W.; Kosarev, G. L.; Vinnik, L. P.

    We determined the shear-wave velocity structure of the crust and upper mantle beneath the central part of the Kola peninsula from the analysis of P-wave receiver functions and mantle P-SV converted phases recorded at stations Apatity (APA) and Lovozero (LVZ). The times of P-SV converted phases from the 410 and 660 km discontinuities are close to those predicted by the IASP91 model. Phase conversions at the crust-mantle boundary beneath the Baltic shield northeast of LVZ and southwest of APA are consistent with a sharp transition from crust to mantle at a depth of 40 km, while conversions from the intervening Khibina plutonic region are consistent with a gradual transition between depths of 20 and 40 km. We infer that short (∼50 km) wavelength lateral variations in the crust-mantle transition persist in this region, despite the inactivity of the Kola peninsula since Devonian times.

  20. Postcollisional mantle-derived magmatism, underplating and implications for basement of the Junggar Basin

    Institute of Scientific and Technical Information of China (English)

    韩宝福; 何国琦; 王式洸

    1999-01-01

    The late Paleozoic postcollisional granitoids, mafic-ultramafic complexes, and volcanic rocks are extensively distributed around the Junggar Basin; they are generally characterized by positive εNd(t) values, implying that the magmas were mantle-derived and contaminated with crustal materials to some extents. The emplacement of mantle-derived magmas and their differentiates in the upper crust is the expression of deep geological processes at shallow level, while much more mantle-derived magmas were underplated in the lower crust and the region near the crust-mantle boundary, being component part of basement of the Junggar Basin. The postcollisional mafic-ultramafic complexes would not be generated by re-melting of residual oceanic crust, which was considered as the basement of the Junggar Basin, unless very high degrees of partial melting occurred. Even if old continental crust had been present before collision, it would have been strongly modified by the mantle-derived magma underplating. This inter

  1. Equation of state and phase diagram of Fe-16Si alloy as a candidate component of Earth's core

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Rebecca A.; Campbell, Andrew J.; Caracas, Razvan; Reaman, Daniel M.; Dera, Przymyslaw; Prakapenka, Vitali B. (Ecole); (UC)

    2016-07-29

    The outer core of the Earth contains several weight percent of one or more unknown light elements, which may include silicon. Therefore it is critical to understand the high pressure–temperature properties and behavior of an iron–silicon alloy with a geophysically relevant composition (16 wt% silicon). We experimentally determined the melting curve, subsolidus phase diagram, and equations of state of all phases of Fe–16 wt%Si to 140 GPa, finding a conversion from the D03 crystal structure to a B2+hcp mixture at high pressures. The melting curve implies that 3520 K is a minimum temperature for the Earth's outer core, if it consists solely of Fe–Si alloy, and that the eutectic composition in the Fe–Si system is less than 16 wt% silicon at core–mantle boundary conditions. Comparing our new equation of state to that of iron and the density of the core, we find that for an Fe–Ni–Si outer core, 11.3±1.5 wt% silicon would be required to match the core's observed density at the core–mantle boundary. We have also performed first-principles calculations of the equations of state of Fe3Si with the D03 structure, hcp iron, and FeSi with the B2 structure using density-functional theory.

  2. The Topographic Torque on a Bounding Surface of a Rotating Gravitating Fluid and the Excitation by Core Motions of Decadal Fluctuations in the Earth's Rotation

    Science.gov (United States)

    Hide, Raymond

    1995-01-01

    General expressions (with potential applications in several areas of geophysical fluid dynamics) are derived for all three components of the contribution made by the geostrophic part of the pressure field associated with flow in a rotating gravitating fluid to the topographic torque exerted by the fluid on a rigid impermeable bounding surface of any shape. When applied to the Earth's liquid metallic core, which is bounded by nearly spherical surfaces and can be divided into two main regions, the "torosphere" and "polosphere," the expressions reduce to formulae given previously by the author, thereby providing further support for his work and that of others on the role of topographic coupling at the core-mantle boundary in the excitation by core motions of Earth rotation fluctuations on decadal time scales. They also show that recent criticisms of that work are vitiated by mathematical and physical errors. Contrary to these criticisms, the author's scheme for exploiting Earth rotation and other geophysical data (either real or simulated in computer models) in quantitative studies of the topography of the core-mantle boundary (CMB) by intercomparing various models of (a) motions in the core based on geomagnetic secular variation data and (b) CMB topography based on seismological and gravity data has a sound theoretical basis. The practical scope of the scheme is of course limited by the accuracy of real data, but this is a matter for investigation, not a priori assessment.

  3. Trans-Pacific whole mantle structure

    Science.gov (United States)

    Liu, Lijun; Tan, Ying; Sun, Daoyuan; Chen, Min; Helmberger, Don

    2011-04-01

    Recent reports on modeling USArray data reveal mostly vertical microplates with little resemblance to preliminary reference Earth model (PREM). Such complexity at plate boundaries makes it difficult to form reliable images of ocean basins using global paths. Here, we report on modeling stacked seismograms obtained from the first broadband array (TriNet) situated on the edge of the Pacific Plate, southern California, with no major subduction zone blocking its view. Extended records, including multi-S and ScS waves up to four bounces from 18 Tonga-Fiji deep events (140 to 620 km) are analyzed to check the validity of existing models and derive the whole mantle shear velocity structure along this corridor. Synthetics generated from 3-D tomographic models do not fit the upper mantle triplication data or the mantle reverberations associated with the ScS multiples as well as the 1-D model PAC06. We construct a hybrid model (HPAC), which remains one dimensional down to 800 km (PAC06). The lower portion of HPAC is essentially the tomography model S20RTS with velocity variation inflated by a factor of 2 for the lowermost 600 km. Thus, the mid-Pacific large low shear velocity province (LLSVP) has a lower shear velocity of about 2% relative to PREM and extends into the midmantle, similar to that beneath South Africa. Moreover, rapid changes in the differential (ScS-S) and (ScS2-S) times as a function of distance suggest ultra low velocity zones near the eastern edge and under the LLSVP, again similar to that found beneath Africa.

  4. Lasting mantle scars lead to perennial plate tectonics

    OpenAIRE

    Heron, Philip J.; Pysklywec, Russell N.; Stephenson, Randell

    2016-01-01

    Mid-ocean ridges, transform faults, subduction and continental collisions form the conventional theory of plate tectonics to explain non-rigid behaviour at plate boundaries. However, the theory does not explain directly the processes involved in intraplate deformation and seismicity. Recently, damage structures in the lithosphere have been linked to the origin of plate tectonics. Despite seismological imaging suggesting that inherited mantle lithosphere heterogeneities are ubiquitous, their p...

  5. Petrological processes in mantle plume heads: Evidence from study of mantle xenoliths in the late Cenozoic alkali Fe-Ti basalts in Western Syria

    Science.gov (United States)

    Sharkov, Evgenii

    2015-04-01

    It is consensus now that within-plate magmatism is considered with ascending of mantle plumes and adiabatic melting of their head. At the same time composition of the plumes' matter and conditions of its adiabatic melting are unclear yet. The major source of objective information about it can be mantle xenoliths in alkali basalts and basanites which represent fragments of material of the plume heads above magma-generation zone. They are not represent material in melting zone, however, carry important information about material of modern mantle plumes, its phase composition and components, involved in melting. Populations of mantle xenoliths in basalts are characterized by surprising sameness in the world and represented by two major types: (1) dominated rocks of ``green'' series, and (2) more rare rocks of ``black'' series, which formed veins in the ``green'' series matrix. It can evidence about common composition of plume material in global scale. In other words, the both series of xenoliths represent two types of material of thermochemical mantle plumes, ascended from core-mantle boundary (Maruyama, 1994; Dobretsov et al., 2001). The same types of xenoliths are found in basalts and basanites of Western Syria (Sharkov et al., 1996). Rocks of ``green'' series are represented by Sp peridotites with cataclastic and protogranular structures and vary in composition from dominated spinel lherzolites to spinel harzburgites and rare spinel pyroxenites (websterites). It is probably evidence about incomplete homogenizing of the plume head matter, where material, underwent by partial melting, adjoins with more fertile material. Such heterogeneity was survived due to quick cooling of upper rim of the plume head in contact with relatively cold lithosphere. Essential role among xenoliths of the ``black'' series play Al-Ti-augite and water-bearing phases like hornblende (kaersutute) and Ti-phlogopite. Rocks of this series are represented by wehrlite, clinopyroxenite, amphibole

  6. Origin and Distribution of Water Contents in Continental and Oceanic Lithospheric Mantle

    Science.gov (United States)

    Peslier, Anne H.

    2013-01-01

    The water content distribution of the upper mantle will be reviewed as based on the peridotite record. The amount of water in cratonic xenoliths appears controlled by metasomatism while that of the oceanic mantle retains in part the signature of melting events. In both cases, the water distribution is heterogeneous both with depth and laterally, depending on localized water re-enrichments next to melt/fluid channels. The consequence of the water distribution on the rheology of the upper mantle and the location of the lithosphere-asthenosphere boundary will also be discussed.

  7. Redox conditions for mantle plumes

    Science.gov (United States)

    Heister, L. E.; Lesher, C. E.

    2005-12-01

    The vanadium to scandium ratio (V/Sc) for basalts from mid-ocean ridge (MOR) and arc environments has been proposed as a proxy for fO2 conditions during partial melting (e.g. [1] and [2]). Contrary to barometric measurements of the fO2 of primitive lavas, the V/Sc ratio of the upper mantle at mid-ocean ridges and arcs is similar, leading previous authors to propose that the upper mantle has uniform redox potential and is well-buffered. We have attempted to broaden the applicability of the V/Sc parameter to plume-influenced localities (both oceanic and continental), where mantle heterogeneities associated with recycled sediments, mafic crust, and metasomatized mantle, whether of shallow or deep origin, exist. We find that primitive basalts from the North Atlantic Igneous Province (NAIP), Hawaii (both the Loa and Kea trends), Deccan, Columbia River, and Siberian Traps show a range of V/Sc ratios that are generally higher (average ~9) than those for MOR (average ~ 6.7) or arc (average ~7) lavas. Based on forward polybaric decompression modeling, we attribute these differences to polybaric melting and melt segregation within the garnet stability field rather than the presence of a more oxidized mantle in plume-influenced settings. Like MORB, the V/Sc ratios for plume-influenced basalts can be accounted for by an oxidation state approximately one log unit below the Ni-NiO buffer (NNO-1). Our analysis suggests that source heterogeneities have little, if any, resolvable influence on mantle redox conditions, although they have significant influence on the trace element and isotopic composition of mantle-derived melts. We suggest that variations in the redox of erupted lavas is largely a function of shallow lithospheric processes rather than intrinsic to the mantle source, regardless of tectonic setting. [1] Li and Lee (2004) EPSL, [2] Lee et al. (2005) J. of Petrology

  8. Mantle olivine xenocrysts entrained in Mesozoic basalts from the North China craton:Implication for replacement process of lithospheric mantle

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hongfu; YING Jifeng; XU Ping; MA Yuguang

    2004-01-01

    Mesoxzoic(125 Ma) Fangcheng basalts from Shandong Province contain clearly zoned olivines that are rare in terrestrial samples and provide first evidence for the replacement of lithospheric mantle from high-Mg peridotites to low-Mg peridotites through peridotite-melt reaction. Zoned olivines have compostions in the core(Mg#=87.2-90.7)similar to those olivines from the mantle peridotitic xenoliths entrained in Cenozoic basalts from the North China craton and in the rim (Mg#=76.8-83.9)close to olivine phenocrysts of the host basalts (75.7-79.0).These compositional features as well as rounded crystal shapes and smaller grain sizes (300-800μm)demonstrate that these zoned olivines are mantle xenocrysts ,I.e.an important type of the replacement of lithospheric mantle.The reaction resulted in the transformation of the Paleozoic refractory (high-Mg)peridotites to the late Mesozoic fertile (low-Mg) and radiogenic isotope-enriched peridotites,leading to the loss of old lithospheric mantle.

  9. The Effect of Water on Seismic Wave Speeds of the Martian Mantle.

    Science.gov (United States)

    Martin, J. F.; Panero, W. R.

    2016-12-01

    We calculate the distribution of water between mineral phases of the Martian mantle, and the effects of water on the seismic wave speeds along realistic thermal profiles and compositions. We address a range of potential compositions and thermal profiles of the Martian mantle to reflect uncertainty in core heat-flux and mantle composition. We calculate the mantle mineralogy self-consistently along each potential profile and derive water partition coefficients for all phases from a suite of synthesis and mineralogical data to supplement ab initio calculations. Self-consistent water contents for each mineral phase are then calculated along a 1D profile using the derived coefficients and a range of bulk water contents. We present the change in seismic wave speeds due to water storage in the mantle for interpretation of seismic data returned by the NASA InSight Mission, set to land on Mars in November 2018.

  10. Possible links between long-term geomagnetic variations and whole-mantle convection processes

    NARCIS (Netherlands)

    Biggin, A.J.; Steinberger, B.; Aubert, J.; Suttie, N.; Holme, R.; Torsvik, T.H.; van der Meer, D.G.; van Hinsbergen, D.J.J.

    2012-01-01

    The Earth's internal magnetic field varies on timescales of months to billions of years. The field is generated by convection in the liquid outer core, which in turn is influenced by the heat flowing from the core into the base of the overlying mantle. Much of the magnetic field's variation is thoug

  11. Dynamic topography as constraints on stress and viscosity in the mantle and lithosphere

    Science.gov (United States)

    Zhong, S.

    2015-12-01

    Mantle convection generates stress in the mantle and lithosphere. The lithosphere stress is responsible for localized deformation including seismic deformation at plate boundaries, and localized stress highs in lithosphere are also suggested to cause dynamically self-consistent generation of plate tectonics and continental lithosphere instability, as the stress exceeds a threshold or yield stress. Modeling load-induced deformation at oceanic islands (e.g., Hawaii) constrains lithospheric stress at 100-200 MPa in the plate interiors, leading to a lower limit on lithospheric yield stress (Zhong and Watts, 2013). However, convection-induced lithospheric stress is poorly understood, ranging from 500 MPa to tens of MPa as reported in mantle convection studies. The magnitude and distribution of lithospheric and mantle stress depend critically on buoyancy and viscosity, particularly the latter. Unfortunately, lithospheric and mantle viscosity is also poorly constrained. For example, the inferred lower mantle viscosity from post-glacial rebound and geoid modeling studies ranges from 1023 Pas to 1022 Pas (e.g., Mitrovica and Forte, 2004; Simons and Hager, 1996; Paulson et al., 2007). In addition to the stress, the lower mantle viscosity may also affect the time evolution of mantle structure including sinking rate of slabs and formation of the degree-2 mantle seismic structure. Therefore, it is important to develop independent constraints on mantle viscosity and convection-induced stress. In this study, I demonstrate that dynamic topography can be used to place first-order constraints on both lithospheric stress and mantle viscosity. For a given superadiabatic temperature difference across the mantle (e.g., 2500 K), a larger mantle viscosity (or a smaller Rayleigh number) leads to a larger lithospheric stress and a larger dynamic topography. To be consistent with the inferred dynamic topography, the lower mantle viscosity is constrained to be significantly smaller than 1023

  12. The origin of spongy texture in minerals of mantle xenoliths from the Western Qinling, central China

    Science.gov (United States)

    Su, Ben-Xun; Zhang, Hong-Fu; Sakyi, Patrick Asamoah; Yang, Yue-Heng; Ying, Ji-Feng; Tang, Yan-Jie; Qin, Ke-Zhang; Xiao, Yan; Zhao, Xin-Miao; Mao, Qian; Ma, Yu-Guang

    2011-03-01

    Spongy textures are observed in mantle peridotite xenoliths hosted in Cenozoic kamafugites from the Western Qinling, central China. These textures are mainly developed in clinopyroxenes and spinels, and occur as spongy rims consisting of low-Na clinopyroxene, ilmenite, and bubbles, enclosing nonspongy cores. The ilmenites and bubbles exhibit shapes and sizes that vary with the width of the spongy rims. The spongy-textured minerals preserve primary shapes and well-defined grain boundaries and do not show apparent interaction with contact minerals or observed melts except the subsequent melts forming melt pockets. The xenocrysts display reactive zoning textures with host magmas rather than spongy textures. Compositionally, the spongy rims are enriched in Ca, Ti, and most trace elements, have high Cr#, and are depleted in Na, Al, Fe, AlVI, and AlIV/AlVI compared with the cores. These observations suggest that melts/host magmas did not play any significant role in the formation of the spongy textures. We therefore propose that spongy-textured clinopyroxenes and spinels in Western Qinling peridotite xenoliths developed from a decompression-induced partial melting event prior to formation of melt pockets and xenolith entrainment in host magmas.

  13. Deep Martian Mantle Melting and Implications for the Source Regions of Martian Basalts

    Science.gov (United States)

    Liebske, C.

    2016-12-01

    The chemical compositions of Martian SNC meteorites (Shergotty, Nakhla and Chassigny types) show significant variations in major and trace element contents, suggesting that parental magmas originate from different geochemical reservoirs. Radiogenic isotope systematics further indicate that some reservoirs were strongly influenced by silicate differentiation processes about 4.5 Gyr ago, placing such events in tight vicinity to core formation, and therefore favour magma ocean crystallisation and differentiation as a plausible mechanism for generating a diversity of sources. However, any predictions of geochemical signatures resulting from large scale magma ocean differentiation require precise knowledge of melting relations of a primordial bulk silicate Mars composition to be known. The aim of this study is to investigate solidus and liquids temperatures, mineral modes and melt fractions for the bulk silicate Mars (BSM) composition proposed by Taylor (2013, Chemie der Erde 73, 401-420) in a self consistent set of experiments from ambient to core-mantle boundary (estimated at around 20 GPa) pressures. Specific emphasis is put on the presure range greater than 10 GPa to more rigorously investigate the potential role of majoritic garnet during magma ocean differentiation. The new results, combined with data from previous studies on phase relations and mineral-melt element partitioning, are being used to derive time-integrated geochemical models to discuss fractionation mechanisms that could lead to the distinct chemical signatures of source regions proposed for martian meteorites.

  14. The Origin of Non-chondritic HSE Ratios in the Earth's Mantle

    Science.gov (United States)

    Laurenz, V.; Rubie, D. C.; Frost, D. J.; Jacobson, S. A.; Morbidelli, A.; Palme, H.; Vogel, A. K.

    2015-12-01

    It is generally thought that Earth's mantle abundances of highly siderophile elements (HSE) were established by the addition of a chondritic late veneer to a mantle that was stripped of HSEs by core formation. A long-standing problem with this hypothesis is that the mantle's suprachondritic Pd/Ir and Ru/Ir ratios cannot be reconciled with any known meteorite group. To address this issue, we modelled the effect of metal-silicate segregation on abundances of the HSE and S in the Earth's mantle by including these elements in a combined accretion/core-formation model. Because in our model only a small fraction of the mantle equilibrates with core-forming metal, the bulk mantle HSE abundances are too large by the end of accretion. Sulfur abundances also greatly exceed S-saturation levels at magma ocean crystallisation temperatures, leading to the formation of a global immiscible sulfide melt that segregated to the core, thus removing HSEs from the mantle [1]. To better constrain the role of sulfide segregation on the HSE budget of the mantle, we experimentally determined the sulfide-silicate partitioning of Pt, Pd, Ru and Ir under high P-T conditions. Results show that Pd and Ru are less chalcophile at pressures above ~20 GPa compared to Pt and Ir, as opposed to the metal-silicate system where Ru is more siderophile than Pt [2]. These results are included in our model, which now involves localized segregation of core-forming metal followed by widespread exsolution and segregation of immiscible sulfide liquids. Platinum and Ir are efficiently extracted from the mantle whereas significant concentrations of Ru and Pd remain. Late veneer addition occurs after sulfide segregation has ceased due to magma ocean solidification. This model reproduces perfectly the non-chondritic Ru/Ir and Pd/Ir ratios of the mantle, reflecting incomplete removal of Ru and Pd from the mantle with core-forming sulfide melts. [1] O'Neill (1991) GCA 55, 1159-1172. [2] Mann et al. (2012) GCA 84, 593-613.

  15. Mantle Volatiles - Distribution and Consequences

    Science.gov (United States)

    Luth, R. W.

    2003-12-01

    Volatiles in the mantle have, for many years, been the subject of intensive study from a number of perspectives. They are of interest because of their potential effects on melting relationships, on transport of major and trace elements, and on the rheological and other physical properties of the mantle. By convention, "volatiles" in this context are constituents that are liquid or gaseous at normal Earth surface conditions. This review will look at the behavior of C-O-H-S-halogen volatiles, beginning with H2O and C-O volatiles.There have been tremendous strides made recently towards understanding how volatiles in general and water in particular is transported and stored in the mantle. This progress is based on research on a number of fronts: studies of mantle-derived samples have provided insight into the nature and occurrence of hydrous phases such as amphibole, mica, and chlorite, and have provided constraints on the capacity of nominally anhydrous minerals (NAMs) such as olivine, pyroxenes, and garnet to contain "water" by a variety of substitution mechanisms. Experimental studies on mantle-derived magmas have provided constraints on volatile contents in their source regions. Other studies have constrained the pressure, temperature, and composition conditions over which hydrous phases are stable in the mantle.Fundamental questions remain about the geochemical cycling of volatiles in the mantle, and between the mantle and the surface. Much attention has focused on the capability of hydrous phases such as amphibole, mica, serpentine, chlorite, and a family of "dense hydrous magnesian silicates" (DHMSs) to act as carriers of water in subducting slabs back into the mantle. It has been clear since the work of Ito et al. (1983) that there is a discrepancy between the amount of volatiles subducted into the mantle and those returned to the surface by arc magmatism. A recent overview of volatile cycling in subduction systems by Bebout (1996) suggests that 5-15% of the H2

  16. Transient climate simulations of the deglaciation 21–9 thousand years before present; PMIP4 Core experiment design and boundary conditions

    Directory of Open Access Journals (Sweden)

    R. F. Ivanovic

    2015-10-01

    Full Text Available The last deglaciation, which marked the transition between the last glacial and present interglacial periods, was punctuated by a series of rapid (centennial and decadal climate changes. Numerical climate models are useful for investigating mechanisms that underpin the events, especially now that some of the complex models can be run for multiple millennia. We have set up a Paleoclimate Modelling Intercomparison Project (PMIP working group to coordinate efforts to run transient simulations of the last deglaciation, and to facilitate the dissemination of expertise between modellers and those engaged with reconstructing the climate of the last 21 thousand years. Here, we present the design of a coordinated Core simulation over the period 21–9 thousand years before present (ka with time varying orbital forcing, greenhouse gases, ice sheets, and other geographical changes. A choice of two ice sheet reconstructions is given, but no ice sheet or iceberg meltwater should be prescribed in the Core simulation. Additional focussed simulations will also be coordinated on an ad-hoc basis by the working group, for example to investigate the effect of ice sheet and iceberg meltwater, and the uncertainty in other forcings. Some of these focussed simulations will focus on shorter durations around specific events to allow the more computationally expensive models to take part.

  17. Transient climate simulations of the deglaciation 21-9 thousand years before present (version 1) - PMIP4 Core experiment design and boundary conditions

    Science.gov (United States)

    Ivanovic, Ruza F.; Gregoire, Lauren J.; Kageyama, Masa; Roche, Didier M.; Valdes, Paul J.; Burke, Andrea; Drummond, Rosemarie; Peltier, W. Richard; Tarasov, Lev

    2016-07-01

    The last deglaciation, which marked the transition between the last glacial and present interglacial periods, was punctuated by a series of rapid (centennial and decadal) climate changes. Numerical climate models are useful for investigating mechanisms that underpin the climate change events, especially now that some of the complex models can be run for multiple millennia. We have set up a Paleoclimate Modelling Intercomparison Project (PMIP) working group to coordinate efforts to run transient simulations of the last deglaciation, and to facilitate the dissemination of expertise between modellers and those engaged with reconstructing the climate of the last 21 000 years. Here, we present the design of a coordinated Core experiment over the period 21-9 thousand years before present (ka) with time-varying orbital forcing, greenhouse gases, ice sheets and other geographical changes. A choice of two ice sheet reconstructions is given, and we make recommendations for prescribing ice meltwater (or not) in the Core experiment. Additional focussed simulations will also be coordinated on an ad hoc basis by the working group, for example to investigate more thoroughly the effect of ice meltwater on climate system evolution, and to examine the uncertainty in other forcings. Some of these focussed simulations will target shorter durations around specific events in order to understand them in more detail and allow for the more computationally expensive models to take part.

  18. Mapping the mass distribution of Earth's mantle using satellite-derived gravity gradients

    Science.gov (United States)

    Panet, Isabelle; Pajot-Métivier, Gwendoline; Greff-Lefftz, Marianne; Métivier, Laurent; Diament, Michel; Mandea, Mioara

    2014-02-01

    The dynamics of Earth's mantle are not well known. Deciphering mantle flow patterns requires an understanding of the global distribution of mantle density. Seismic tomography has been used to derive mantle density distributions, but converting seismic velocities into densities is not straightforward. Here we show that data from the GOCE (Gravity field and steady-state Ocean Circulation Explorer) mission can be used to probe our planet's deep mass structure. We construct global anomaly maps of the Earth's gravitational gradients at satellite altitude and use a sensitivity analysis to show that these gravitational gradients image the geometry of mantle mass down to mid-mantle depths. Our maps highlight north-south-elongated gravity gradient anomalies over Asia and America that follow a belt of ancient subduction boundaries, as well as gravity gradient anomalies over the central Pacific Ocean and south of Africa that coincide with the locations of deep mantle plumes. We interpret these anomalies as sinking tectonic plates and convective instabilities between 1,000 and 2,500km depth, consistent with seismic tomography results. Along the former Tethyan Margin, our data also identify an east-west-oriented mass anomaly likely in the upper mantle. We suggest that by combining gravity gradients with seismic and geodynamic data, an integrated dynamic model for Earth can be achieved.

  19. Polar Order and Symmetry Breaking at the Boundary between Bent-Core and Rodlike Molecular Forms: When 4-Cyanoresorcinol Meets the Carbosilane End Group.

    Science.gov (United States)

    Westphal, Eduard; Gallardo, Hugo; Caramori, Giovanni Finoto; Sebastián, Nerea; Tamba, Maria-Gabriela; Eremin, Alexey; Kawauchi, Susumu; Prehm, Marko; Tschierske, Carsten

    2016-06-01

    Two isomeric achiral bent-core liquid crystals involving a 4-cyanoresorcinol core and containing a carbosilane unit as nanosegregating segment were synthesized and were shown to form ferroelectric liquid-crystalline phases. Inversion of the direction of one of the COO groups in these molecules leads to a distinct distribution of the electrostatic potential along the surface of the molecule and to a strong change of the molecular dipole moments. Thus, a distinct degree of segregation of the carbosilane units and consequent modification of the phase structure and coherence length of polar order result. For the compound with larger dipole moment (CN1) segregation of the carbosilane units is suppressed, and this compound forms paraelectric SmA and SmC phases; polar order is only achieved after transition to a new LC phase, namely, the ferroelectric leaning phase (SmCLs PS ) with the unique feature that tilt direction and polar direction coincide. The isomeric compound CN2 with a smaller dipole moment forms separate layers of the carbosilane groups and shows a randomized polar SmA phase (SmAPAR ) and ferroelectric polydomain SmCs PS phases with orthogonal combination of tilt and polar direction and much higher polarizations. Thus, surprisingly, the compound with the smaller molecular dipole moment shows increased polar order in the LC phases. Besides ferroelectricity, mirror-symmetry breaking with formation of a conglomerate of macroscopic chiral domains was observed in one of the SmC phases of CN1. These investigations contribute to the general understanding of the development of polar order and chirality in soft matter.

  20. Testing Absolute Plate Reference Frames and the Implications for the Generation of Geodynamic Mantle Heterogeneity Structure

    Science.gov (United States)

    Shephard, G. E.; Bunge, H.; Schuberth, B. S.; Müller, D.; Talsma, A.; Moder, C.

    2010-12-01

    Several absolute reference frames for Cretaceous-Tertiary plate tectonic reconstructions have been proposed over the last decade. They include reference frames based on hotspot tracks displaying age progression, and assuming either fixed or moving hotspots, as well as palaeomagnetically-based reference frames, a subduction reference frame and hybrid reference frames. All these alternative reference frames imply a particular history of the location of subduction zones through time, the associated subduction history, and the evolution of mantle heterogeneity via the mixing of subducted slab material with the mantle. Therefore it is possible to evaluate the observed distribution of subducted slab material in the mantle versus that predicted by a forward geodynamic model in which the plate kinematic history given by a particular absolute plate is coupled with a mantle convection model. We present a comparison of five alternative absolute plate motion models in terms of their consequences for global deep mantle structure by utilizing the 3-D spherical finite element mantle convection code TERRA, coupled with the global plate tectonic reconstruction software GPlates. We impose global palaeo-plate boundaries and plate velocities back to 140 Ma as surface boundary conditions for each absolute rotation model and forward model the associated subduction history. The correlation of seismic tomography with the predicted present-day mantle structure from each of plate models is then assessed using well-imaged slabs. We will present and discuss a comparison of geodynamically predicted mantle heterogeneity and seismic tomography to infer the robustness of each absolute reference frame through time, thus providing additional constraints for the integration of plate tectonics and mantle dynamics.

  1. Morphology of seismically slow lower-mantle structures

    Science.gov (United States)

    Cottaar, Sanne; Lekic, Vedran

    2016-11-01

    Large low shear velocity provinces (LLSVPs), whose origin and dynamic implication remain enigmatic, dominate the lowermost mantle. For decades, seismologists have created increasingly detailed pictures of the LLSVPs through tomographic models constructed with different modeling methodologies, data sets, parametrizations and regularizations. Here, we extend the cluster analysis methodology of Lekic et al., to classify seismic mantle structure in five recent global shear wave speed (VS) tomographic models into three groups. By restricting the analysis to moving depth windows of the radial profiles of VS, we assess the vertical extent of features. We also show that three clusters are better than two (or four) when representing the entire lower mantle, as the boundaries of the three clusters more closely follow regions of high lateral VS gradients. Qualitatively, we relate the anomalously slow cluster to the LLSVPs, the anomalously fast cluster to slab material entering the lower mantle and the neutral cluster to `background' lower mantle material. We obtain compatible results by repeating the analysis on recent global P-wave speed (VP) models, although we find less agreement across VP models. We systematically show that the clustering results, even in detail, agree remarkably well with a wide range of local waveform studies. This suggests that the two LLSVPs consist of multiple internal anomalies with a wide variety of morphologies, including shallowly to steeply sloping, and even overhanging, boundaries. Additionally, there are indications of previously unrecognized meso-scale features, which, like the Perm anomaly, are separated from the two main LLSVPs beneath the Pacific and Africa. The observed wide variety of structure size and morphology offers a challenge to recreate in geodynamic models; potentially, the variety can result from various degrees of mixing of several compositionally distinct components. Finally, we obtain new, much larger estimates of the volume

  2. Water concentrations in mantle peridotite minerals

    Science.gov (United States)

    Warren, J. M.; Hauri, E. H.

    2010-12-01

    The concentration and distribution of volatiles in the mantle is important for constraining many key properties, including melting systematics at ridges and subduction zones. We present measurements of water concentrations in nominally anhydrous minerals from abyssal, orogenic and xenolith peridotites. Analyses of fresh and altered samples from a variety of locations are used to assess the extent to which mineral water concentrations reflect primary mantle compositions, versus diffusive loss and/or hydration due to secondary processes. Water concentrations were measured in olivine (Ol), orthopyroxene (Opx) and clinopyroxene (Cpx) by ion microprobe, using mineral specific standards and monitoring background concentrations by analysis of synthetic forsterite. Analytical reproducibility, based on 11 repeat analyses of an Ol grain, is 10%, while background H2O levels varied from 7-19 ppm. Samples include xenoliths from Pali Aike, Samoa and Spitsbergen, along with unusually fresh oceanic peridotites from the Gakkel Ridge and the Tonga Trench. In addition, samples were analyzed from the Southwest Indian Ridge (SWIR) and the Josephine Peridotite, both of which have moderate degrees of alteration. In olivine, water concentrations are Pali Aike xenoliths, which have water concentrations of 16-33 ppm. On average, peridotite Opx have 187 ppm and Cpx have 474 ppm. Pyroxenite veins from the Southwest Indian Ridge have systematically lower concentrations, with an average of 12 ppm in Opx and 55 ppm in Cpx. Water partition coefficients for Opx/Ol have an average value of 28 and Cpx/Ol of 57, significantly higher than previous estimates (e.g., Hirth and Kohlstedt, 1996). Excluding the pyroxenites, the average Cpx/Opx partition coefficient is 2, in agreement with published estimates. This suggests that Cpx and Opx preserve mantle water concentrations, whereas Ol has undergone hydrogen loss. Mineral rims have water concentrations that are within error of core concentrations. The

  3. Time-dependent heat transfer in the spherical Earth: Implications on the power and thermal evolution of the core

    Science.gov (United States)

    Hofmeister, A. M.; Criss, R. E.

    2015-12-01

    We quantitatively investigate the time-dependence of heat conduction for a post-core, spherical Earth that is not convecting, due to compositional layering, based on hundreds of measurements of thermal diffusivity (D) for insulators and metals. Consistency of our solutions for widely ranging input parameters indicates how additional heat transfer mechanisms (mantle magmatism and convection) affect thermal evolution of the core. We consider 1) interior starting temperatures (T) of 273-5000 K, which represent variations in primordial heat, 2) different distributions and decay of long-lived radioactive isotopes, 3) additional heat sources in the core (primordial or latent heat), and 4) variable depth-T dependence of D. Our new analytical solution for cooling of a constant D sphere validates our numerical results. The bottom line is that the thermally insulating nature of minerals, combined with constraints of spherical geometry, limits steep thermal gradients to the upper mantle, consistent with the short length scale (x ~700 km) of cooling over t = 4.5 Ga indicated by dimensional analysis [x2 ~ 4Dt], and with plate tectonics. Consequently, interior temperatures vary little so the core has remained hot and is possibly warming. Findings include: 1) Constant vs. variable D affects thermal profiles only in detail, with D for the metallic core being inconsequential. 2) The hottest zone in Earth may lie in the uppermost lower mantle; 3) Most radiogenic heat is released in Earth's outermost 1000 km thereby driving an active outer shell; 4) Earth's core is essentially isothermal and is thus best described by the liquid-solid phase boundary; 5) Deeply sequestered radioactivity or other heat will melt the core rather than by run the dynamo (note that the heat needed to have melted the outer core is 10% of radiogenic heat generated over Earth's history); 6) Inefficient cooling of an Earth-sized mass means that heat essentially remains where it is generated, until it is removed

  4. Models of the earth's core

    Science.gov (United States)

    Stevenson, D. J.

    1981-01-01

    Combined inferences from seismology, high-pressure experiment and theory, geomagnetism, fluid dynamics, and current views of terrestrial planetary evolution lead to models of the earth's core with five basic properties. These are that core formation was contemporaneous with earth accretion; the core is not in chemical equilibrium with the mantle; the outer core is a fluid iron alloy containing significant quantities of lighter elements and is probably almost adiabatic and compositionally uniform; the more iron-rich inner solid core is a consequence of partial freezing of the outer core, and the energy release from this process sustains the earth's magnetic field; and the thermodynamic properties of the core are well constrained by the application of liquid-state theory to seismic and labroatory data.

  5. Origin of azimuthal seismic anisotropy in oceanic plates and mantle

    Science.gov (United States)

    Becker, Thorsten W.; Conrad, Clinton P.; Schaeffer, Andrew J.; Lebedev, Sergei

    2014-09-01

    Seismic anisotropy is ubiquitous in the Earth's mantle but strongest in its thermo-mechanical boundary layers. Azimuthal anisotropy in the oceanic lithosphere and asthenosphere can be imaged by surface waves and should be particularly straightforward to relate to well-understood plate kinematics and large-scale mantle flow. However, previous studies have come to mixed conclusions as to the depth extent of the applicability of paleo-spreading and mantle flow models of anisotropy, and no simple, globally valid, relationships exist. Here, we show that lattice preferred orientation (LPO) inferred from mantle flow computations produces a plausible global background model for asthenospheric anisotropy underneath oceanic lithosphere. The same is not true for absolute plate motion (APM) models. A ˜200 km thick layer where the flow model LPO matches observations from tomography lies just below the ˜1200 °C isotherm of a half-space cooling model, indicating strong temperature-dependence of the processes that control the development of azimuthal anisotropy. We infer that the depth extent of shear, and hence the thickness of a relatively strong oceanic lithosphere, can be mapped this way. These findings for the background model, and ocean-basin specific deviations from the half-space cooling pattern, are found in all of the three recent and independent tomographic models considered. Further exploration of deviations from the background model may be useful for general studies of oceanic plate formation and dynamics as well as regional-scale tectonic analyses.

  6. Using pattern recognition to infer parameters governing mantle convection

    Science.gov (United States)

    Atkins, Suzanne; Valentine, Andrew P.; Tackley, Paul J.; Trampert, Jeannot

    2016-08-01

    The results of mantle convection simulations are fully determined by the input parameters and boundary conditions used. These input parameters can be for initialisation, such as initial mantle temperature, or can be constant values, such as viscosity exponents. However, knowledge of Earth-like values for many input parameters are very poorly constrained, introducing large uncertainties into the simulation of mantle flow. Convection is highly non-linear, therefore linearised inversion methods cannot be used to recover past configurations over more than very short periods of time, which makes finding both initial and constant simulation input parameters very difficult. In this paper, we demonstrate a new method for making inferences about simulation input parameters from observations of the mantle temperature field after billions of years of convection. The method is fully probabilistic. We use prior sampling to construct probability density functions for convection simulation input parameters, which are represented using neural networks. Assuming smoothness, we need relatively few samples to make inferences, making this approach much more computationally tractable than other probabilistic inversion methods. As a proof of concept, we show that our method can invert the amplitude spectra of temperature fields from 2D convection simulations, to constrain yield stress, surface reference viscosity and the initial thickness of primordial material at the CMB, for our synthetic test cases. The best constrained parameter is yield stress. The reference viscosity and initial thickness of primordial material can also be inferred reasonably well after several billion years of convection.

  7. Oxygen isotope heterogeneity of the mantle beneath the Canary Islands: insights from olivine phenocrysts

    Science.gov (United States)

    Gurenko, Andrey A.; Bindeman, Ilya N.; Chaussidon, Marc

    2011-08-01

    A relatively narrow range of oxygen isotopic ratios ( δ 18O = 5.0-5.4‰) is preserved in olivine of mantle xenoliths, mid-ocean ridge (MORB), and most ocean island basalts (OIB). The values in excess of this range are generally attributed either to the presence of a recycled component in the Earth's mantle or to shallow level contamination processes. A viable way forward to trace source heterogeneity is to find a link between chemical (elemental and isotopic) composition of the earlier crystallized mineral phases (olivine) and the composition of their parental magmas, then using them to reconstruct the composition of source region. The Canary hotspot is one of a few that contains ~1- to 2-Ga-old recycled ocean crust that can be traced to the core-mantle boundary using seismic tomography and whose origin is attributed to the mixing of at least three main isotopically distinct mantle components i.e. HIMU, DMM, and EM. This work reports ion microprobe and single crystal laser fluorination oxygen isotope data of 148 olivine grains also analyzed for major and minor elements in the same spot. The olivines are from 20 samples resembling the most primitive shield stage picrite through alkali basalt to basanite series erupted on Gran Canaria, Tenerife, La Gomera, La Palma and El Hierro, Canary Islands, for which shallow level contamination processes were not recognized. A broad range of δ 18Oolivine values from 4.6 to 6.1‰ was obtained and explained by stable, long-term oxygen isotope heterogeneity of crystal cumulates present under different volcanoes. These cumulates are thought to have crystallized from mantle-derived magmas uncontaminated at crustal depth, representing oxygen isotope heterogeneity of source region. A relationship between Ni × FeO/MgO and δ 18Oolivine values found in one basanitic lava erupted on El Hierro, the westernmost island of the Canary Archipelago, was used to estimate oxygen isotope compositions of partial melts presumably originated from

  8. Rogue mantle helium and neon.

    Science.gov (United States)

    Albarède, Francis

    2008-02-15

    The canonical model of helium isotope geochemistry describes the lower mantle as undegassed, but this view conflicts with evidence of recycled material in the source of ocean island basalts. Because mantle helium is efficiently extracted by magmatic activity, it cannot remain in fertile mantle rocks for long periods of time. Here, I suggest that helium with high 3He/4He ratios, as well as neon rich in the solar component, diffused early in Earth's history from low-melting-point primordial material into residual refractory "reservoir" rocks, such as dunites. The difference in 3He/4He ratios of ocean-island and mid-ocean ridge basalts and the preservation of solar neon are ascribed to the reservoir rocks being stretched and tapped to different extents during melting.

  9. Seismic Constraints on the Mantle Viscosity Structure beneath Antarctica

    Science.gov (United States)

    Wiens, Douglas; Heeszel, David; Aster, Richard; Nyblade, Andrew; Wilson, Terry

    2015-04-01

    Lateral variations in upper mantle viscosity structure can have first order effects on glacial isostatic adjustment. These variations are expected to be particularly large for the Antarctic continent because of the stark geological contrast between ancient cratonic and recent tectonically active terrains in East and West Antarctica, respectively. A large misfit between observed and predicted GPS rates for West Antarctica probably results in part from the use of a laterally uniform viscosity structure. Although not linked by a simple relationship, mantle seismic velocities can provide important constraints on mantle viscosity structure, as they are both largely controlled by temperature and water content. Recent higher resolution seismic models for the Antarctic mantle, derived from data acquired by new seismic stations deployed in the AGAP/GAMSEIS and ANET/POLENET projects, offer the opportunity to use the seismic velocity structure to place new constraints on the viscosity of the Antarctic upper mantle. We use an Antarctic shear wave velocity model derived from array analysis of Rayleigh wave phase velocities [Heeszel et al, in prep] and examine a variety of methodologies for relating seismic, thermal and rheological parameters to compute a suite of viscosity models for the Antarctic mantle. A wide variety of viscosity structures can be derived using various assumptions, but they share several robust common elements. There is a viscosity contrast of at least two orders of magnitude between East and West Antarctica at depths of 80-250 km, reflecting the boundary between cold cratonic lithosphere in East Antarctica and warm upper mantle in West Antarctica. The region beneath the Ellsworth-Whitmore Mtns and extending to the Pensacola Mtns. shows intermediate viscosity between the extremes of East and West Antarctica. There are also significant variations between different parts of West Antarctica, with the lowest viscosity occurring beneath the Marie Byrd Land (MBL

  10. Seismic velocity variations beneath central Mongolia: Evidence for upper mantle plumes?

    Science.gov (United States)

    Zhang, Fengxue; Wu, Qingju; Grand, Stephen P.; Li, Yonghua; Gao, Mengtan; Demberel, Sodnomsambuu; Ulziibat, Munkhuu; Sukhbaatar, Usnikh

    2017-02-01

    Central Mongolia is marked by wide spread recent volcanism as well as significant topographic relief even though it is far from any plate tectonic boundaries. The cause of the recent magmatism and topography remains uncertain partially because little is known of the underlying mantle seismic structure due to the lack of seismic instrumentation in the region. From August 2011 through August 2013, 69 broadband seismic stations were deployed in central Mongolia. Teleseismic traveltime residuals were measured using waveform correlation and were inverted to image upper mantle P and S velocity variations. Significant lateral variations in seismic velocity are imaged in the deep upper mantle (100 to 800 km depth). Most significant are two continuous slow anomalies from the deep upper mantle to near the surface. One slow feature has been imaged previously and may be a zone of deep upwelling bringing warm mantle to beneath the Hangay Dome resulting in uplift and magmatism including the active Khanuy Gol and Middle Gobi volcanoes. The second, deep low velocity anomaly is seen in the east from 800 to 150 km depth. The anomaly ends beneath the Gobi Desert that is found to have fast shallow mantle indicating a relatively thick lithosphere. We interpret the second deep slow anomaly as a mantle upwelling that is deflected by the thick Gobi Desert lithosphere to surrounding regions such as the Hentay Mountains to the north. The upwellings are a means of feeding warmer than normal asthenospheric mantle over a widely distributed region beneath Mongolia resulting in distributed volcanic activity and uplift. There is no indication that the upwellings are rooted in the deep lower mantle i.e. classic plumes. We speculate the upwellings may be related to deep subduction of the Pacific and Indian plates and are thus plumes anchored in the upper mantle.

  11. Insights on slab-driven mantle flow from advances in three-dimensional modelling

    Science.gov (United States)

    Jadamec, Margarete A.

    2016-10-01

    The wealth of seismic observations collected over the past 20 years has raised intriguing questions about the three-dimensional (3D) nature of the mantle flow field close to subduction zones and provided a valuable constraint for how the plate geometry may influence mantle flow proximal to the slab. In geodynamics, there has been a new direction of subduction zone modelling that has explored the 3D nature of slab-driven mantle flow, motivated in part by the observations from shear wave splitting, but also by the observed variations in slab geometries worldwide. Advances in high-performance computing are now allowing for an unprecedented level of detail to be incorporated into numerical models of subduction. This paper summarizes recent advances from 3D geodynamic models that reveal the complex nature of slab-driven mantle flow, including trench parallel flow, toroidal flow around slab edges, mantle upwelling at lateral slab edges, and small scale convection within the mantle wedge. This implies slab-driven mantle deformation zones occur in the asthenosphere proximal to the slab, wherein the mantle may commonly flow in a different direction and rate than the surface plates, implying laterally variable plate-mantle coupling. The 3D slab-driven mantle flow can explain, in part, the lateral transport of geochemical signatures in subduction zones. In addition, high-resolution geographically referenced models can inform the interpretation of slab structure, where seismic data are lacking. The incorporation of complex plate boundaries into high-resolution, 3D numerical models opens the door to a new avenue of research in model construction, data assimilation, and modelling workflows, and gives 3D immersive visualization a new role in scientific discovery.

  12. Crust-mantle accommodation of Africa-Eurasia convergence in the NW-Moroccan margin

    Science.gov (United States)

    Zlotnik, S.; Jimenez-Munt, I.; Fernandez, M.

    2011-12-01

    Recent studies carried out in NW-Africa indicate prominent variations of the lithosphere-asthenosphere boundary (LAB) depth. The studies combine gravity, geoid, surface heat flow, elevation and seismic data along a profile running from the Tagus Abyssal Plain to the Sahara Platform and crossing the Gorringe Bank, the NW Moroccan Margin and the Atlas Mountains. The resulting mantle density anomalies show a prominent lithospheric mantle thickening beneath the margin (LAB >200 km-depth) followed by thinning beneath the Atlas Mountains (LAB ~90 km-depth). A combination of mantle underthrusting due to oblique convergence together with a viscous dripping fed by lateral mantle dragging can explain the imaged lithospheric structure. The model is consistent with a strong decoupled crustal-mantle mechanical response to the Africa-Eurasia convergence and results in positive/negative dynamic topography in regions with thickened/thinned crust. In this work we go a step further analysing, by means of dynamic numerical simulations, the viscous dragging and the Rayleigh-Taylor-like process. Our goal is to understand the initial lithospheric mantle structure suitable to produce the inferred dynamic process. In addition, we study the key factors controlling the deformation of the lithospheric mantle when submitted to convergence. Using the numerical framework Underworld to carry out the simulations we found the key factors controlling the process. Chief among these factors are lithospheric/mantle viscosity ratio and initial mantle and crustal structure. Nevertheless, the process is not very sensitive to the usual power law parameters for mantle rocks (activation energy and volume, power law exponent, etc.), indicating the importance of the rheology of the upper half of the lithosphere, where the power law is not active. These results allow us to speculate on the past and future evolution of the NW-Moroccan margin which could show the appropriated conditions for subduction initiation.

  13. Illuminating the electrical conductivity of the lowermost mantle from below

    Science.gov (United States)

    Jault, Dominique

    2015-07-01

    The magnetic field that originates in the earth's core is transformed across the electrically conducting mantle before being observed, at the earth's surface or above. Assuming that the conductivity depends only on radius, it has been customary to treat the mantle as a linear time-invariant filter for the core magnetic field, with properties (as a function of the frequency ω) specified by the transfer function Γ(ω). An high-frequency approximation to Γ(ω), which is derived from a three terms WKBJ expansion with ω-1/2 as small parameter, is found here to reproduce adequately, for low harmonic degrees and/or thin conducting layers, the exact solution, which is evaluated numerically. It is contrasted with the low-frequency estimation of Γ, which consists in a perturbation procedure and in writing Γ(ω) as a series in powers of ω (ω → 0). The low-frequency theory is applied to the magnetic variations produced by the geostrophic core flows with about 6 yr period as the phase of these flows is independently determined from their effect on the length of the day. Apart from that, the low-frequency approximation overestimates the screening by the mantle of high-frequency signals, especially the low harmonic degree ones. In practice, the attenuating factor defined from the O(ω2) term in the expansion of Γ as ω → 0 cannot be retrieved from analyses of geomagnetic time-series. Application of the mantle filter theory hinges on our knowledge about the time spectrum of the magnetic field at the core surface. The low-frequency theory had been previously applied to observatory series on the assumption that geomagnetic jerks occurring in the core are rare and isolated events. Rather than following up these earlier studies, I note that the spectral density function for the second time derivative of the main magnetic field coefficients is approximately independent of ω in a frequency range for which the mantle has undoubtedly negligible influence. In the absence of

  14. Rhenium - osmium heterogeneity of enriched mantle basalts explained by composition and behaviour of mantle-derived sulfides

    Science.gov (United States)

    Harvey, J.; Dale, C. W.; Gannoun, A.; Burton, K. W.

    2010-12-01

    Analyses of enriched mantle (EM) -basalts, using lithophile element-based isotope systems have long provided evidence for discrete, but variable mantle reservoirs [1]. Upon partial melting, the isotopic fingerprint of each reservoir is imparted upon the partial melt produced. However, recent work involving the Re-Os isotope systematics of EM-basalts [2] suggests that it may not be so simple to delimit these previously well defined mantle reservoirs; the “mantle zoo” [3] may contain more reservoirs than previously envisaged. However, a simple model, with varying contributions from two populations of compositionally distinct mantle sulfides can readily account for the observed heterogeneities in Re-Os isotope systematics of such basalts without additional mantle reservoirs. Rhenium-osmium elemental and isotopic analyses of individual sulfide grains separated from spinel lherzolites from Kilbourne Hole, NM, USA demonstrate that two discrete populations of mantle sulfide exist in terms of both Re-Os systematics and textural relationship with co-existing silicates. One population, with a rounded morphology, is preserved in silicate grains and typically possesses high [Os], low [Re] with unradiogenic, typically sub-chondritic, 187Os/188Os attributable to long term isolation in a low-Re environment. By contrast, irregular-shaped sulfides, preserved along silicate grain boundaries, possess low [Os], higher [Re] and a wider range of, but generally supra-chondritic, 187Os/188Os ([Os] typically ≤ 1-2 ppm, 187Os/188Os ≤ 0.3729; this study). This population is thought to represent metasomatic sulfide (e.g. [4,5]). Uncontaminated silicate phases contain negligible Os (mobilized and incorporated into the melt, adding their radiogenic 187Os/188Os signature. Only when sulfides armored within silicates are exposed to the melt through continued partial melting will enclosed sulfides add their high [Os] and unradiogenic 187Os/188Os to the aggregate melt. Platinum-group element

  15. Experimental Constraints on the Chemical Differentiation of Mercurys Mantle

    Science.gov (United States)

    Boujibar, A.; Righter, K.; Pando, K.; Danielson, L.

    2015-01-01

    Mercury is known as being the most reduced terrestrial planet with the highest core/mantle ratio. Results from MESSENGER spacecraft have shown that its surface is FeO-poor (2-4 wt%) and S-rich (up to 6-7 wt%), which confirms the reducing nature of its silicate mantle. In addition several features suggest important melting stages of the Mercurian mantle: widespread volcanic deposits on its surface, a high crustal thickness (approximately 10% of the planet's volume) and chemical compositions of its surface suggesting several stages of differentiation and remelting processes. Therefore it is likely that igneous processes like magma ocean crystallization and continuous melting have induced chemical and mineralogical heterogeneities in the Mercurian mantle. The extent and nature of compositional variations produced by partial melting remains poorly constrained for the particular compositions of Mercury (very reducing conditions, low FeO-contents and high sulfur-contents). Melting experiments with bulk Mercury-analogue compositions are scarce and with poorly con-trolled starting compositions. Therefore additional experimental data are needed to better understand the differentiation processes that lead to the observed chemical compositions of Mercury's surface.

  16. Pitfalls in modeling mantle convection with internal heat production

    Science.gov (United States)

    Korenaga, Jun

    2017-05-01

    The mantle of the Earth, and probably of other terrestrial planets as well, is heated from below and within. The heating mode of mantle convection is thus mixed heating, and it is also time dependent because the amount of heat-producing isotopes in the mantle is steadily decreasing by radioactive decay and because the basal heat flux originating in the cooling of the core can vary with time. This mode of transient mixed heating presents its own challenges to the study of mantle convection, but such difficulties are not always appreciated in the recent literature. The purpose of this tutorial is to clarify the issue of heating mode by explaining relevant concepts in a coherent manner, including the internal heating ratio, the Urey ratio, secular cooling, and the connection between the thermal budget of the Earth and the geochemical models of the Earth. The importance of such basic concepts will be explained with some illustrative examples in the context of the thermal evolution of the Earth, and a summary of common pitfalls will be provided, with a possible strategy for how to avoid them.

  17. Dissociation of MgSiO3 in the cores of gas giants and terrestrial exoplanets.

    Science.gov (United States)

    Umemoto, Koichiro; Wentzcovitch, Renata M; Allen, Philip B

    2006-02-17

    CaIrO3-type MgSiO3 is the planet-forming silicate stable at pressures and temperatures beyond those of Earth's core-mantle boundary. First-principles quasiharmonic free-energy computations show that this mineral should dissociate into CsCl-type MgO cotunnite-type SiO2 at pressures and temperatures expected to occur in the cores of the gas giants + and in terrestrial exoplanets. At approximately 10 megabars and approximately 10,000 kelvin, cotunnite-type SiO2 should have thermally activated electron carriers and thus electrical conductivity close to metallic values. Electrons will give a large contribution to thermal conductivity, and electronic damping will suppress radiative heat transport.

  18. Effects of post-perovskite phase transition properties on the stability and structure of primordial reservoirs in the lower mantle of the Earth

    Science.gov (United States)

    Tackley, P.; Li, Y.; Deschamps, F.; Manatschal, G.

    2015-12-01

    Two key features of the lowermost Earth's mantle are the presence of the large low shear-wave velocity provinces (LLSVPs), which may be reservoirs of primordial, chemically distinct material, and the phase change from perovskite (pv) to post-perovskite (ppv), which may occur at lowermost mantle conditions. However, the influence of this phase change on the shape, dynamics, and stability of chemically distinct reservoirs are not well constrained. Here we performed numerical experiments of thermo-chemical convection in 2-D spherical annulus geometry to investigate the effects on thermo-chemical structure in the lower mantle of three parameters affecting the pPv phase change: the core-mantle (CMB) temperature, the viscosity ratio between pv and pPv, and the Clapeyron slope of the pPv phase transition. Our results indicate that increasing CMB temperature increases the wavelength of the primordial reservoirs by preventing the phase transition from pv to pPv to occur. Furthermore, a high CMB temperature promotes the development of plumes outside the reservoirs of primordial material. High CMB temperature and large Clapeyron slope both favor the formation of pPv patches and of a double-crossing of the phase boundary, thus preventing the formation of continuous layer of pPv above the CMB. Combined with a low CMB temperature and/or a low Clapeyron slope of the pPv phase transition, a full layer of weak pPv above CMB strongly enhances the mixing efficiency of primordial material with ambient regular mantle material, which may not allow the generation of large reservoirs. Based on our experiments, we conclude that the models of convection best describing the Earth's mantle dynamics include a large pPv Clapeyron slope (typically in the range of 13-16 MPa/K), and a moderate CMB temperature (around 3750 K). We also find that the phase change from pv to pPv may occur within the large reservoirs in the form of small discontinuous patches at the base when using critical values of

  19. Thermal convection in a spherical shell with melting/freezing at either or both of its boundaries

    CERN Document Server

    Deguen, Renaud

    2013-01-01

    In a number of geophysical or planetological settings (Earth's inner core, a silicate mantle crystallizing from a magma ocean, or an ice shell surrounding a deep water ocean) a convecting crystalline layer is in contact with a layer of its melt. Allowing for melting/freezing at one or both of the boundaries of the solid layer is likely to affect the pattern of convection in the layer. We study here the onset of thermal convection in a viscous spherical shell with dynamically induced melting/freezing at either or both of its boundaries. It is shown that the behavior of each interface depends on the value of a dimensional number P, which is the ratio of a melting/freezing timescale over a viscous relaxation timescale. A small value of P corresponds to permeable boundary conditions, while a large value of P corresponds to impermeable boundary conditions. The linear stability analysis predicts a significant effect of semi-permeable boundaries when the number P characterizing either of the boundary is small enough...

  20. Electrical resistivity and thermal conductivity of liquid Fe alloys at high P and T, and heat flux in Earth's core.

    Science.gov (United States)

    de Koker, Nico; Steinle-Neumann, Gerd; Vlcek, Vojtech

    2012-03-13

    Earth's magnetic field is sustained by magnetohydrodynamic convection within the metallic liquid core. In a thermally advecting core, the fraction of heat available to drive the geodynamo is reduced by heat conducted along the core geotherm, which depends sensitively on the thermal conductivity of liquid iron and its alloys with candidate light elements. The thermal conductivity for Earth's core is very poorly constrained, with current estimates based on a set of scaling relations that were not previously tested at high pressures. We perform first-principles electronic structure computations to determine the thermal conductivity and electrical resistivity for Fe, Fe-Si, and Fe-O liquid alloys. Computed resistivity agrees very well with existing shock compression measurements and shows strong dependence on light element concentration and type. Thermal conductivity at pressure and temperature conditions characteristic of Earth's core is higher than previous extrapolations. Conductive heat flux near the core-mantle boundary is comparable to estimates of the total heat flux from the core but decreases with depth, so that thermally driven flow would be constrained to greater depths in the absence of an inner core.

  1. Subducted slabs and the geoid: Constraints on mantle rheology and flow

    Science.gov (United States)

    Hager, B. H.

    1983-01-01

    The total geoid anomaly which is the result of a given density contrast in a convecting viscous earth is affected by the mass anomalies associated with the flow induced deformation of the upper surface and internal compositional boundaries, as well as by the density contrast itself is discussed. If the internal density contrasts can be estimated, the depth and variation of viscosity with depth of the convecting system can be constrained. The observed long wavelength geoid is highly correlated with that predicted by a density model for seismically active subducted slabs. The amplitude of the correlation is explained if the density contrasts associated with subduction extend into the lower mantle or if subducted slabs exceeding 350 km in thickness are piled up over horizontal distances of thousands of km at the base of the upper mantle. Mantle wide convection in a mantle that has a viscosity increasing with depth provides the explanation of the long-wavelength geoid anomalies over subduction zones.

  2. Mantle contamination and the Izu-Bonin-Mariana (IBM) 'high-tide mark': evidence for mantle extrusion caused by Tethyan closure

    Science.gov (United States)

    Flower, M. F. J.; Russo, R. M.; Tamaki, K.; Hoang, N.

    2001-04-01

    Western Pacific basins are characterized by three remarkable attributes: (1) complex kinematic histories linked to global-scale plate interactions; (2) DUPAL-like contaminated mantle; and (3) rapid post-Mesozoic rollback of the confining arc-trench systems. The coincidence of slab steepening, extreme arc curvature, and vigorous basin opening associated with the Mariana convergent margin suggests that rollback continues in response to an east-directed mantle 'wind'. Against a backdrop of conflicting kinematic and genetic interpretations we explore the notion that eastward asthenospheric flow driven by diachronous Tethyan closure caused stretching of eastern Eurasia and concomitant opening of western Pacific basins. Marking the eastern boundary of the latter, the Izu-Bonin-Mariana forearc may be regarded as a litho-tectonic 'high-tide mark' comprising igneous and metamorphic products from successive episodes (since ca. 45 Ma.) of arc sundering and backarc basin opening. The forearc also forms an isotopic boundary separating contaminated western Pacific mantle from the N-MORB Pacific Ocean reservoir. While the isotopic composition of western Pacific mantle resembles that feeding Indian Ocean hotspot and spreading systems, its spatial-temporal variation and the presence of subduction barriers to the south appear to preclude northward flow of Indian Ocean mantle and require an endogenous origin for sub-Eurasian contaminated mantle. It is concluded that the extrusion of Tethyan asthenosphere, contaminated by sub-Asian cratonic lithosphere, was a major cause of western Pacific arc rollback and basin opening. The model is consistent with paleomagnetic and geologic evidence supporting independent kinematic histories for constituent parts of the Philippine Sea and Sunda plates although interpretation of these is speculative. Compounded by effects of the Australia-Indonesia collision, late-Tethyan mantle extrusion appears to have produced the largest DUPAL domain in the

  3. Imaging the Moon's Core with Seismology

    Science.gov (United States)

    Weber, Renee C.; Lin, Pei-Ying Patty; Garnero, Ed J.; Williams, Quetin C.; Lognonne, Philippe

    2011-01-01

    Constraining the structure of the lunar core is necessary to improve our understanding of the present-day thermal structure of the interior and the history of a lunar dynamo, as well as the origin and thermal and compositional evolution of the Moon. We analyze Apollo deep moonquake seismograms using terrestrial array processing methods to search for the presence of reflected and converted energy from the lunar core. Although moonquake fault parameters are not constrained, we first explore a suite of theoretical focal spheres to verify that fault planes exist that can produce favorable core reflection amplitudes relative to direct up-going energy at the Apollo stations. Beginning with stacks of event seismograms from the known distribution of deep moonquake clusters, we apply a polarization filter to account for the effects of seismic scattering that (a) partitions energy away from expected components of ground motion, and (b) obscures all but the main P- and S-wave arrivals. The filtered traces are then shifted to the predicted arrival time of a core phase (e.g. PcP) and stacked to enhance subtle arrivals associated with the Moon s core. This combination of filtering and array processing is well suited for detecting deep lunar seismic reflections, since we do not expect scattered wave energy from near surface (or deeper) structure recorded at varying epicentral distances and stations from varying moonquakes at varying depths to stack coherently. Our results indicate the presence of a solid inner and fluid outer core, overlain by a partial-melt-containing boundary layer (Table 1). These layers are consistently observed among stacks from four classes of reflections: P-to-P, S-to-P, P-to-S, and S-to-S, and are consistent with current indirect geophysical estimates of core and deep mantle properties, including mass, moment of inertia, lunar laser ranging, and electromagnetic induction. Future refinements are expected following the successful launch of the GRAIL lunar

  4. The initiation, temporal evolution and dynamics of deep mantle heterogeneities

    Science.gov (United States)

    Bull-Aller, Abigail; Torsvik, Trond; Domeier, Mathew; Doubrovine, Pavel

    2013-04-01

    80% of all kimberlites erupted in the past 542 Myr lay, at the time of their eruption, above the edges of the African and Pacific LLSVPs. Such a finding requires both LLSVPs to be stationary in their present-day positions for at least the past 500 Ma, and thus be insensitive, to first-order, to the formation and subsequent break-up of the Pangean supercontinent. In this work, we investigate the temporal evolution and possible long-term persistence of LLSVPs by integrating plate tectonics into numerical models of mantle dynamics. We improve upon previous studies by employing a new palaeomagnetically-derived global plate motion data set to impose surface velocity boundary conditions for a time period which encompasses the creation and subsequent break-up of the Pangean supercontinent. We aim to understand the role that Earth's plate motion history plays on the development of LLSVPs within Earth's mantle. Specifically, we investigate the effect of plate history on the degree-2 structure of the mantle and explore the possibility that both LLSVPs existed prior to the Pangean supercontinent.

  5. Mass Redistribution in the Core and Time-varying Gravity at the Earth's Surface

    Science.gov (United States)

    Kuang, Wei-Jia; Chao, Benjamin F.; Fang, Ming

    2003-01-01

    The Earth's liquid outer core is in convection, as suggested by the existence of the geomagnetic field in much of the Earth's history. One consequence of the convection is the redistribution of mass resulting from relative motion among fluid parcels with slightly different densities. This time dependent mass redistribution inside the core produces a small perturbation on the gravity field of the Earth. With our numerical dynamo solutions, we find that the mass redistribution (and the resultant gravity field) symmetric about the equator is much stronger than that anti-symmetric about the equator. In particular, J(sub 2) component is the strongest. In addition, the gravity field variation increases with the Rayleigh number that measures the driving force for the geodynamo in the core. With reasonable scaling from the current dynamo solutions, we could expect that at the surface of the Earth, the J(sub 2) variation from the core is on the order of l0(exp -16)/year relative to the mean (i.e. spherically symmetric) gravity field of the Earth. The possible shielding effect due to core-mantle boundary pressure variation loading is likely much smaller and is therefore negligible. Our results suggest that time-varying gravity field perturbation due to core mass redistribution may be measured with modem space geodetic observations, which will result a new means of detecting dynamical processes in the Earth's deep interior.

  6. Mass Redistribution in the Core and Time-varying Gravity at the Earth's Surface

    Science.gov (United States)

    Kuang, Wei-Jia; Chao, Benjamin F.; Fang, Ming

    2003-01-01

    The Earth's liquid outer core is in convection, as suggested by the existence of the geomagnetic field in much of the Earth's history. One consequence of the convection is the redistribution of mass resulting from relative motion among fluid parcels with slightly different densities. This time dependent mass redistribution inside the core produces a small perturbation on the gravity field of the Earth. With our numerical dynamo solutions, we find that the mass redistribution (and the resultant gravity field) symmetric about the equator is much stronger than that anti-symmetric about the equator. In particular, J(sub 2) component is the strongest. In addition, the gravity field variation increases with the Rayleigh number that measures the driving force for the geodynamo in the core. With reasonable scaling from the current dynamo solutions, we could expect that at the surface of the Earth, the J(sub 2) variation from the core is on the order of l0(exp -16)/year relative to the mean (i.e. spherically symmetric) gravity field of the Earth. The possible shielding effect due to core-mantle boundary pressure variation loading is likely much smaller and is therefore negligible. Our results suggest that time-varying gravity field perturbation due to core mass redistribution may be measured with modem space geodetic observations, which will result a new means of detecting dynamical processes in the Earth's deep interior.

  7. Equation of State of Fe3S and Limits on the Sulfur Content of Earth's Core

    Science.gov (United States)

    Campbell, A.; Mattillion, A.; Bausch, H.; Tecklenburg, S.; Fischer, R. A.; Chidester, B.; Prakapenka, V.

    2016-12-01

    Sulfur is a common component of protoplanetary cores, as represented by iron meteorites, and it is likely to be a significant alloying component with iron in Earth's core as well, along with silicon, oxygen, and perhaps other light elements. Cosmochemical limits on the sulfur content of Earth's core, based on the relative volatilities of sulfur and other elements, are weakened by the observation that this approach fails to accurately predict the sulfur content in iron meteorite parent bodies. To better understand the geophysical consequences of sulfur addition to Earth's core, we report equation of state measurements of Fe3S to pressures and temperatures exceeding 140 GPa and 2000 K, using synchrotron X-ray diffraction in a laser heated diamond anvil cell. New room temperature measurements are also reported, improved by the use of a neon pressure medium. With this P-V-T equation of state for Fe3S, along with an assumed 2% density change upon melting and a 4000 K core-mantle boundary temperature, the PREM density in the outer core can be matched with 14 wt% sulfur, which should be considered an upper bound because of the likely additional presence of other light elements.

  8. Boundary Crossings and Violations in Clinical Settings

    Directory of Open Access Journals (Sweden)

    V K Aravind

    2012-01-01

    Full Text Available Principles of beneficence, autonomy, and nonmaleficence, compassion along with fiduciary partnership are the core concepts in the doctor-patient relationship in therapeutic settings. There are varieties of reasons for boundary problems. Physicians ignorance, exploitative character, emotional vulnerability moral weakness and similar factors may pave the way for boundary issues resulting in nonsexual or sexual boundary crossings and violations.

  9. Boundary crossings and violations in clinical settings.

    Science.gov (United States)

    Aravind, V K; Krishnaram, V D; Thasneem, Z

    2012-01-01

    Principles of beneficence, autonomy, and nonmaleficence, compassion along with fiduciary partnership are the core concepts in the doctor-patient relationship in therapeutic settings. There are varieties of reasons for boundary problems. Physicians ignorance, exploitative character, emotional vulnerability moral weakness and similar factors may pave the way for boundary issues resulting in nonsexual or sexual boundary crossings and violations.

  10. Magma redox and structural controls on iron isotope variations in Earth's mantle and crust

    Science.gov (United States)

    Dauphas, N.; Roskosz, M.; Alp, E. E.; Neuville, D. R.; Hu, M. Y.; Sio, C. K.; Tissot, F. L. H.; Zhao, J.; Tissandier, L.; Médard, E.; Cordier, C.

    2014-07-01

    The heavy iron isotopic composition of Earth's crust relative to chondrites has been explained by vaporization during the Moon-forming impact, equilibrium partitioning between metal and silicate at core-mantle-boundary conditions, or partial melting and magma differentiation. The latter view is supported by the observed difference in the iron isotopic compositions of MORBS and peridotites. However, the precise controls on iron isotope variations in igneous rocks remain unknown. Here, we show that equilibrium iron isotope fractionation is mainly controlled by redox (Fe3+/Fetot ratio) and structural (e.g., polymerization) conditions in magmas. We measured, for the first time, the mean force constants of iron bonds in silicate glasses by synchrotron Nuclear Resonant Inelastic X-ray Scattering (NRIXS, also known as Nuclear Resonance Vibrational Spectroscopy - NRVS, or Nuclear Inelastic Scattering - NIS). The same samples were studied by conventional Mössbauer and X-ray Absorption Near Edge Structure (XANES) spectroscopy. The NRIXS results reveal a +0.2 to +0.4‰ equilibrium fractionation on 56Fe/54Fe ratio between Fe2+ and Fe3+ end-members in basalt, andesite, and dacite glasses at magmatic temperatures. These first measurements can already explain ∼1/3 of the iron isotopic shift measured in MORBs relative to their source. Further work will be required to investigate how pressure, temperature, and structural differences between melts and glasses affect equilibrium fractionation factors. In addition, large fractionation is also found between rhyolitic glass and commonly occurring oxide and silicate minerals. This fractionation reflects mainly changes in the coordination environment of Fe2+ in rhyolites relative to less silicic magmas and mantle minerals, as also seen by XANES. We provide a new calibration of XANES features vs. Fe3+/Fetot ratio determinations by Mössbauer to estimate Fe3+/Fetot ratio in situ in glasses of basaltic, andesitic, dacitic, and rhyolitic

  11. Successful and Failing plumes in a Heterogeneous Mantle: the Icelandic Case

    Science.gov (United States)

    Kumagai, I.; Davaille, A.; Kurita, K.; Stutzmann, E.

    2007-12-01

    Although Iceland is always cited as an exemple of hot spot volcanism produced by a deep mantle plume, an increasing number of observations cannot be explained by the classical plume model of a mushroom-shaped plume out of a sustained localized heat source. Volcanic episodes with moderate temperature predate the major episode of mafic magma emplacement (~60Ma) containing hot picrite magma with strong rare gas anomalies. Present-day Iceland shows moderate temperatures, a strong rare gas anomaly, and an apparent disconnection between slow seismic anomalies in the upper and lower mantle. Noteworthy, the same mixture of geochemical ingredients are found in Icelandic lavas during its 80 Myr of activity. We present a new experimental study of the more realistic case of thermochemical convective instabilities developping out of a heterogeneous bottom hot thermal boundary layer. Depending on the buoyancy ratio B, two end-member regimes are observed. For large B, a thermal plume develops above the denser layer and only a small amount of denser fluid is entrained in the plume. For small B, the dense layer can be sufficently heated to become buoyant and rise: the thermo-chemical plume is therefore mainly constituted of material from the chemically denser layer. The fate of the heterogeneous material in the plume then depends on time since the instability cools as it ascends. As a result, the core of the plume head, which consists of initially hotter but chemically heavier material, can cool enough to become denser than the ambient fluid before reaching the surface of the tank: the heterogeneous material then sinks back and a new thermal plume with a lower temperature anomaly is generated from the top edge of the heavier collapsing blob. In this "failing-plume" mode, the thermo-chemical plume fails to deliver most of the chemical heterogeneity to the surface. Hence, the thermal and compositional structure of a thermo-chemical plume changes with time and is quite irregular. In

  12. Molybdenum isotope fractionation in the mantle

    Science.gov (United States)

    Liang, Yu-Hsuan; Halliday, Alex N.; Siebert, Chris; Fitton, J. Godfrey; Burton, Kevin W.; Wang, Kuo-Lung; Harvey, Jason

    2017-02-01

    concentrations of all the ultramafic xenoliths of 40-400 ppb, similar to or, significantly higher than, current estimates for the BSE (39 ppb). On this basis a revised best estimate of the Mo content in the BSE based on these concentrations would be in the range 113-180 ppb, significantly higher than previously assumed. These values are similar to the levels of depletion in the other refractory moderately siderophile elements W, Ni and Co. A simpler explanation may be that the subcontinental lithospheric mantle has been selectively enriched in Mo leading to the higher concentrations observed. Cryptic melt metasomatism would be difficult to reconcile with the high Mo/Ce of the most LREE depleted xenoliths. Ancient Mo-enriched subducted components would be expected to have heavy δ98/95Mo, which is not observed. The Mo isotope composition of the BSE, cannot be reliably resolved from that of chondrites at this time despite experimental evidence for metal-silicate fractionation. An identical isotopic composition might result from core-mantle differentiation under very high temperatures such as were associated with the Moon-forming Giant Impact, or from the BSE inventory reflecting addition of moderately siderophile elements from an oxidised Moon-forming impactor (O'Neill, 1991). However, the latter would be inconsistent with the non-chondritic radiogenic W isotopic composition of the BSE. Based on mantle fertility arguments, Mo in the BSE could even be lighter (lower 98/95Mo) than that in chondrites, which might be explained by loss of S rich liquids from the BSE during core formation (Wade et al., 2012). Such a late removal model is no longer required to explain the Mo concentration of the BSE if its abundance is in fact much higher, and similar to the values for ultramafic xenoliths.

  13. Mantle temperature as a control on the time scale of thermal evolution of extensional basins

    DEFF Research Database (Denmark)

    Petersen, Kenni Dinesen; Armitage, J.J.; Nielsen, S.B.

    2015-01-01

    Abstract Extension of the lithosphere, the thermo-mechanical boundary layer above the convecting mantle, is followed by cooling and subsidence. The timescale of oceanic basin subsidence is ∼100 Myr whereas basins of the continental interior often subside continuously for more than 200 Myr after...

  14. Upper Mantle Discontinuity Structure Beneath the Western Atlantic Ocean and Eastern North America from SS Precursors

    Science.gov (United States)

    Schmerr, N. C.; Beghein, C.; Kostic, D.; Baldridge, A. M.; West, J. D.; Nittler, L. R.; Bull, A. L.; Montesi, L.; Byrne, P. K.; Hummer, D. R.; Plescia, J. B.; Elkins-Tanton, L. T.; Lekic, V.; Schmidt, B. E.; Elkins, L. J.; Cooper, C. M.; ten Kate, I. L.; Van Hinsbergen, D. J. J.; Parai, R.; Glass, J. B.; Ni, J.; Fuji, N.; McCubbin, F. M.; Michalski, J. R.; Zhao, C.; Arevalo, R. D., Jr.; Koelemeijer, P.; Courtier, A. M.; Dalton, H.; Waszek, L.; Bahamonde, J.; Schmerr, B.; Gilpin, N.; Rosenshein, E.; Mach, K.; Ostrach, L. R.; Caracas, R.; Craddock, R. A.; Moore-Driskell, M. M.; Du Frane, W. L.; Kellogg, L. H.

    2015-12-01

    Seismic discontinuities within the mantle arise from a wide range of mechanisms, including changes in mineralogy, major element composition, melt content, volatile abundance, anisotropy, or a combination of the above. In particular, the depth and sharpness of upper mantle discontinuities at 410 and 660 km depth are attributed to solid-state phase changes sensitive to both mantle temperature and composition, where regions of thermal heterogeneity produce topography and chemical heterogeneity changes the impedance contrast across the discontinuity. Seismic mapping of this topography and sharpness thus provides constraint on the thermal and compositional state of the mantle. The EarthScope USArray is providing unprecedented access to a wide variety of new regions previously undersampled by the SS precursors. This includes the boundary between the oceanic plate in the western Atlantic Ocean and continental margin of eastern North America. Here we use a seismic array approach to image the depth, sharpness, and topography of the upper mantle discontinuities, as well as other possible upper mantle reflectors beneath this region. This array approach utilizes seismic waves that reflect off the underside of a mantle discontinuity and arrive several hundred seconds prior to the SS seismic phase as precursory energy. In this study, we collected high-quality broadband data SS precursors data from shallow focus (ocean lithosphere to underlying continental lithosphere, as while deeper reflectors are associated with the subduction of the ancient Farallon slab. A comparison of the depth of upper mantle discontinuities to changes in seismic velocity and anisotropy will further quantify the relationship to mantle flow, compositional layering, and phases changes.

  15. Hot Spots and Mantle Plumes: A Window Into the Deep Earth and a Lesson on How Science Really Works

    Science.gov (United States)

    Caplan-Auerbach, J.

    2010-12-01

    Despite years of discussion, debate and controversy over the causes of ocean island volcanism, most students simply learn that such features form from fixed plumes of hot material rising from the core mantle boundary. Although we know that the Hawaiian plume exhibited substantial southward motion, most introductory geology textbooks still report that hot spots are fixed and that the Hawaiian-Emperor bend reflects a change in plate motion. That mantle plumes are the focus of significant controversy within the scientific community is rarely, if ever, discussed, and alternative models for the formation of intraplate volcanoes are ignored. Students may thus complete their studies without learning about the dynamic debate focused on the existence and formation of mantle plumes. This issue represents an opportunity for students to see how science really works, how new models are constructed, and what distinguishes a hypothesis from a theory. The culminating project in Western Washington University’s Introduction to Geophysics class, a course required for the BS degree in geology, focuses on the hot spot and mantle plume debate. For the first nine weeks of the quarter students learn about general topics in geophysics including plate tectonics, magnetism, seismology, gravity and heat flow. At the end of the course, students break into small research groups with the goal of investigating how geophysics may be used to address three questions: (1) Do ocean island volcanoes form from mantle plumes? (2) Are “hot spots” actually hot? (3) Are hot spots stationary? Each group examines how these questions may be addressed using a specific geophysical tool. In addition to the five topics described above, a sixth group investigates the question of “if not hot spots/mantle plumes, how do ocean island volcanoes form?” Students read the current literature on the topic and present their results to their classmates. Presentations focus on topics such as the use of seismic

  16. Uppermost mantle Pn Velocity of the Arabian Plate, a Preliminary study

    Science.gov (United States)

    Al-Lazki, A. I.; Al-Damegh, K. S.; Al-Enizi, A.; Elhusain, I.; Al-Mahrooqi, I.

    2005-12-01

    The Arabian plate represents a unique tectonic setup. The uniqueness of this plate is its boundaries that constitute the three known types of plate boundaries. The Red Sea and the Gulf of Aden represent the south and southwest plate boundary with Africa plate. Farther north the Dead Sea Fault system represents the remainder of the northwestern boundary with Africa plate. Continent-continent collision along the Bitlis-Zagros Suture zones represents the northern and northeastern boundary with Eurasia plate. Farther south the convergent plate boundary is manifested by the Makran Subduction Zone. Finally, the Owen and Murray Transform Faults represent the southeast boundary of Arabia with India plate. The broad objective of this study is to map uppermost mantle Pn velocity and anisotropy within the Arabian plate and around its boundaries. Zones that are along the north and the northeast boundaries of Arabia plate historically and in recent years has been effected by devastating earthquakes, a recent example is the Bam earthquake on December, 2003. In this region, accurate earthquake location is essential to delineate seismically active zones, where, without proper velocity models for the region, located earthquake may have large location error. In this preliminary study we present uppermost mantle Pn velocity tomography results of the north and northeastern regions of Arabia plate. We used in this study Pn phase data from the bulletins of Oman Seismic Network, Saudi Seismic Network, Kuwait Seismic Network, International Seismological Center and the National Earthquake Information Center,USA.

  17. Structures in the Deep Mantle: Implications for the Onset of Plate Tectonics and the Viscosity Structure

    Science.gov (United States)

    Stein, Claudia; Hansen, Ulrich

    2016-04-01

    Recently deep structures have been studied intensively. The observed large anomalies with reduced seismic velocities (LLSVPs) beneath Africa and the Pacific are obtained in numerical models as an initial dense layer at the core-mantle boundary (CMB) is pushed up to piles by the convective flow (e.g., McNamara et al., EPSL 229, 1-9, 2010). Adding a dense CMB layer to a model featuring active plate tectonics, Trim et al. (EPSL 405, 1-14, 2014) find that surface mobility is strongly hindered by the dense material and can even vanish completely for a CMB layer that has a too high density or too large a volume. In a further study we employed a fully rheological model in which oceanic plates form self-consistently. We observe that an initial dense CMB layer strongly affects the formation of plates and therefore the onset time of plate tectonics. In a systematic 2D parameter study of thermochemical convection we discuss the resulting viscosity structure and time of plate initiation.

  18. Phase Equilibrium Experiments on Potential Lunar Core Compositions: Extension of Current Knowledge to Multi-Component (Fe-Ni-Si-S-C) Systems

    Science.gov (United States)

    Righter, K.; Pando, K.; Danielson, L.

    2014-01-01

    Numerous geophysical and geochemical studies have suggested the existence of a small metallic lunar core, but the composition of that core is not known. Knowledge of the composition can have a large impact on the thermal evolution of the core, its possible early dynamo creation, and its overall size and fraction of solid and liquid. Thermal models predict that the current temperature at the core-mantle boundary of the Moon is near 1650 K. Re-evaluation of Apollo seismic data has highlighted the need for new data in a broader range of bulk core compositions in the PT range of the lunar core. Geochemical measurements have suggested a more volatile-rich Moon than previously thought. And GRAIL mission data may allow much better constraints on the physical nature of the lunar core. All of these factors have led us to determine new phase equilibria experimental studies in the Fe-Ni-S-C-Si system in the relevant PT range of the lunar core that will help constrain the composition of Moon's core.

  19. Terrestrial magma ocean and core segregation in the earth

    Science.gov (United States)

    Ohtani, Eiji; Yurimoto, Naoyoshi

    1992-01-01

    According to the recent theories of formation of the earth, the outer layer of the proto-earth was molten and the terrestrial magma ocean was formed when its radius exceeded 3000 km. Core formation should have started in this magma ocean stage, since segregation of metallic iron occurs effectively by melting of the proto-earth. Therefore, interactions between magma, mantle minerals, and metallic iron in the magma ocean stage controlled the geochemistry of the mantle and core. We have studied the partitioning behaviors of elements into the silicate melt, high pressure minerals, and metallic iron under the deep upper mantle and lower mantle conditions. We employed the multi-anvil apparatus for preparing the equilibrating samples in the ranges from 16 to 27 GPa and 1700-2400 C. Both the electron probe microanalyzer (EPMA) and the Secondary Ion Mass spectrometer (SIMS) were used for analyzing the run products. We obtained the partition coefficients of various trace elements between majorite, Mg-perovskite, and liquid, and magnesiowustite, Mg-perovskite, and metallic iron. The examples of the partition coefficients of some key elements are summarized in figures, together with the previous data. We may be able to assess the origin of the mantle abundances of the elements such as transition metals by using the partitioning data obtained above. The mantle abundances of some transition metals expected by the core-mantle equilibrium under the lower mantle conditions cannot explain the observed abundance of some elements such as Mn and Ge in the mantle. Estimations of the densities of the ultrabasic magma Mg-perovskite at high pressure suggest existence of a density crossover in the deep lower mantle; flotation of Mg-perovskite occurs in the deep magma ocean under the lower mantle conditions. The observed depletion of some transition metals such as V, Cr, Mn, Fe, Co, and Ni in the mantle may be explained by the two stage process, the core-mantle equilibrium under the lower

  20. Early Stage of Origin of Earth (interval after Emergence of Sun, Formation of Liquid Core, Formation of Solid Core)

    Science.gov (United States)

    Pechernikova, G. V.; Sergeev, V. N.

    2017-05-01

    Gravitational collapse of interstellar molecular cloud fragment has led to the formation of the Sun and its surrounding protoplanetary disk, consisting of 5 × 10^5 dust and gas. The collapse continued (1 years. Age of solar system (about 4.57×10^9 years) determine by age calcium-aluminum inclusions (CAI) which are present at samples of some meteorites (chondrites). Subsidence of dust to the central plane of a protoplanetary disk has led to formation of a dust subdisk which as a result of gravitational instability has broken up to condensations. In the process of collisional evolution they turned into dense planetesimals from which the planets formed. The accounting of a role of large bodies in evolution of a protoplanetary swarm in the field of terrestrial planets has allowed to define times of formation of the massive bodies permitting their early differentiation at the expense of short-lived isotopes heating and impacts to the melting temperature of the depths. The total time of Earth's growth is estimated about 10^8 years. Hf geochronometer showed that the core of the Earth has existed for Using W about 3×10^7 Hf geohronometer years since the formation of the CAI. Thus data W point to the formation of the Earth's core during its accretion. The paleomagnetic data indicate the existence of Earth's magnetic field past 3.5×10^9 years. But the age of the solid core, estimated by heat flow at the core-mantle boundary is 1.7×10^9 (0.5 years). Measurements of the thermal conductivity of liquid iron under the conditions that exist in the Earth's core, indicate the absence of the need for a solid core of existence to support the work geodynamo, although electrical resistivity measurements yield the opposite result.

  1. The temporal evolution of a subducting plate in the lower mantle

    Science.gov (United States)

    Loiselet, C.; Grujic, D.; Braun, J.; Fullsack, P.; Thieulot, C.; Yamato, P.

    2009-04-01

    It is now widely accepted that some subducting slabs may cross the lower/upper mantle boundary to ground below the 660 km discontinuity. Indeed, geophysical data underline long and narrow traces of fast materials, associated with subducting slabs, from the upper mantle transition zone to mid-mantle depths that are visible beneath North and South America and southern Asia (Li et al, 2008). Furthermore, seismic tomography data (Van der Hilst et al., 1997; Karason and van der Hilst, 2000, 2001) show a large variety of slab geometries and of mantle flow patterns around subducting plate boundaries (e.g. the slab geometry in the lower mantle in the Tonga subduction zone). However, seismic tomography does not elucidate the temporal evolution of the slab behaviour and geometry during its descent through the upper and lower mantle. In this work, we therefore propose to study the deformation of a thin plate (slab) falling in a viscous fluid (mantle) by means of both analogue and numerical modelling. The combination of both analogue and numerical experiments provides important insights into the shape and attitude evolution of subducting slabs. Models bring information into the controls exerted by the rheology of the slab and the mantle and other physical parameters such as the density contrast between the slab and the surrounding mantle, on the rate at which this deformation takes place. We show that in function of a viscosity ratios between the plate and the surrounding fluid, the plate will acquire a characteristic shape. For the isoviscous case, the plate shape tends toward a bubble with long tails: a "jellyfish" form. The time necessary for the plate to acquire this shape is a function of the viscosity and density contrast between the slab and the mantle. To complete our approach, we have developed a semi-analytical model based on the solution of the Hadamar-Rybinski equations for the problem of a dense, yet isoviscous and thus deforming sphere. This model helps to better

  2. Tracking the Tristan-Gough Mantle Plume Using Discrete Chains of Intraplate Volcanic Centers Buried in the Walvis Ridge

    Science.gov (United States)

    O'Connor, John; Jokat, Wilfried; Wijbrans, Jan

    2016-04-01

    Explanations for hotspot trails range from deep mantle plumes rising from the core-mantle boundary (CMB) to shallow plate cracking. Such mechanisms cannot explain uniquely the scattered hotspot trails distributed across a 2,000-km-wide swell in the sea floor of the southeast Atlantic Ocean. While these hotspot trails formed synchronously, in a pattern consistent with movement of the African Plate over plumes rising from the edge of the African LLSVP, their distribution is controlled by the interplay between plumes and the motion and structure of the African Plate (O'Connor et al. 2012). A significant challenge is to establish how the vigor and flow of hotspot material to the mid-ocean ridge constructed the Walvis Ridge. 40Ar/39Ar stratigraphy for three sites across the central Walvis Ridge sampled by Ocean Drilling (DSDP Leg 74) (Rohde et al., 2013; O'Connor & Jokat 2015a) indicates an apparent inverse relation between the volume flux of hotspot volcanism and the distance between the mid-ocean ridge and the Tristan-Gough hotspot. Moreover, since ˜93 Ma the geometry and motion of the mid-ocean ridge determined where hotspot material was channeled to the plate surface to build the Walvis Ridge. Interplay between hotspot flow, and the changing geometry of the mid-ocean ridge as it migrated relative to the Tristan-Gough hotspot, might explain much of the age and morphology of the Walvis Ridge. Thus, tracking the location of the Tristan-Gough plume might not be practicable if most of the complex morphology of the massive Walvis Ridge is related to the proximity of the South Atlantic mid-ocean ridge. But 40Ar/39Ar basement ages for the Tristan-Gough hotspot track (Rohde et al., 2013; O'Connor & Jokat 2015b), together with information about morphology and crustal structure from new swath maps and seismic profiles, suggest that separated age-progressive intraplate segments track the location of the Tristan-Gough mantle plume. The apparent continuity of the inferred age

  3. How stratified is mantle convection?

    Science.gov (United States)

    Puster, Peter; Jordan, Thomas H.

    1997-04-01

    We quantify the flow stratification in the Earth's mid-mantle (600-1500 km) in terms of a stratification index for the vertical mass flux, Sƒ (z) = 1 - ƒ(z) / ƒref (z), in which the reference value ƒref(z) approximates the local flux at depth z expected for unstratified convection (Sƒ=0). Although this flux stratification index cannot be directly constrained by observations, we show from a series of two-dimensional convection simulations that its value can be related to a thermal stratification index ST(Z) defined in terms of the radial correlation length of the temperature-perturbation field δT(z, Ω). ST is a good proxy for Sƒ at low stratifications (SƒUniformitarian Principle. The bound obtained here from global tomography is consistent with local seismological evidence for slab flux into the lower mantle; however, the total material flux has to be significantly greater (by a factor of 2-3) than that due to slabs alone. A stratification index, Sƒ≲0.2, is sufficient to exclude many stratified convection models still under active consideration, including most forms of chemical layering between the upper and lower mantle, as well as the more extreme versions of avalanching convection governed by a strong endothermic phase change.

  4. Isotopic evidence for internal oxidation of the Earth's mantle during accretion

    Science.gov (United States)

    Williams, Helen M.; Wood, Bernard J.; Wade, Jon; Frost, Daniel J.; Tuff, James

    2012-03-01

    The Earth's mantle is currently oxidised and out of chemical equilibrium with the core. The reasons for this and for the relatively oxidised state of Earth's mantle relative to the mantles of other terrestrial planets are unclear. It has been proposed that the oxidised nature and high ferric iron (Fe3 +) content of Earth's mantle was produced internally by disproportionation of ferrous iron (Fe2 +) into Fe3 + and metallic iron by perovskite crystallisation during accretion. Here we show that there is substantial Fe isotope fractionation between experimentally equilibrated metal and Fe3 +-bearing perovskite (≥ 0.45‰/amu), which can account for the heavy Fe isotope compositions of terrestrial basalts relative to equivalent samples derived from Mars and Vesta as the latter bodies are too small to stabilise significant perovskite. Mass balance calculations indicate that all of the mantle's Fe3 + could readily have been generated from a single disproportionation event, consistent with dissolution of perovskite in the lower mantle during a process such as the Moon-forming giant impact. The similar Fe isotope compositions of primitive terrestrial and low-titanium lunar basalts is consistent with models of equilibration between the mantles of the Earth and Moon in the aftermath of the giant impact and suggests that the heavy Fe isotope composition of the Earth's mantle was established prior to, or during the giant impact. The oxidation state and ferric iron content of the Earth's mantle was therefore plausibly set by the end of accretion, and may be decoupled from later volatile additions and the rise of oxygen in the Earth's atmosphere at 2.45 Ga.

  5. Mantle wedge serpentinization effects on slab dips

    Directory of Open Access Journals (Sweden)

    Eh Tan

    2017-01-01

    Full Text Available The mechanical coupling between a subducting slab and the overlying mantle wedge is an important factor in controlling the subduction dip angle and the flow in mantel wedge. This paper investigates the role of the amount of mantle serpentinization on the subduction zone evolution. With numerical thermos-mechanical models with elasto-visco-plastic rheology, we vary the thickness and depth extent of mantle serpentinization in the mantle wedge to control the degree of coupling between the slab and mantle wedge. A thin serpentinized mantle layer is required for stable subduction. For models with stable subduction, we find that the slab dip is affected by the down-dip extent and the mantle serpentinization thickness. A critical down-dip extent exists in mantle serpentinization, determined by the thickness of the overriding lithosphere. If the down-dip extent does not exceed the critical depth, the slab is partially coupled to the overriding lithosphere and has a constant dip angle regardless of the mantle serpentinization thickness. However, if the down-dip extent exceeds the critical depth, the slab and the base of the overriding lithosphere would be separated and decoupled by a thick layer of serpentinized peridotite. This allows further slab bending and results in steeper slab dip. Increasing mantle serpentinization thickness will also result in larger slab dip. We also find that with weak mantle wedge, there is no material flowing from the asthenosphere into the serpentinized mantle wedge. All of these results indicate that serpentinization is an important ingredient when studying the subduction dynamics in the mantle wedge.

  6. Lunisolar tidal and tidal load elastic stress tensor components within the Earth's mantle and their influence on earthquake occurrences

    Science.gov (United States)

    Varga, Peter; Grafarend, Erik

    2016-04-01

    The relationship of earthquakes with the tidal phenomenon since long is a subject of scientific debates and it cannot be regarded as clarified even today. For the purpose of theoretical investigation of this problem a set of second order spheroidal Love-Shida numbers (h(r), k(r), l(r)) and their radial derivatives were determined for the case of a symmetric, non-rotating, elastic, isotropic (SNREI) Earth with a liquid core. By these means, the stress tensor components from the surface to the core-mantle boundary (CMB) were calculated for the case of zonal, tesseral and sectorial tides. Since the tidal potential and its derivatives are coordinate dependent and the zonal, tesseral and sectorial tides have different distributions on and within the Earth, the lunisolar stress cannot influence the break-out of every seismological event in the same degree. A correlation between earthquake energy release and the lunisolar effect can exist in some cases where the seismic area is well determined and has either one seismic source or severe similar ones. Particularly in volcanic areas, where the seismic activity is connected to the volcano's activity, or in the case of some aftershock swarms, significant correlation was found by different authors.

  7. Viscosity of the earth's core.

    Science.gov (United States)

    Gans, R. F.

    1972-01-01

    Calculation of the viscosity of the core at the boundary of the inner and outer core. It is assumed that this boundary is a melting transition and the viscosity limits of the Andrade (1934,1952) hypothesis (3.7 to 18.5 cp) are adopted. The corresponding kinematic viscosities are such that the precessional system explored by Malkus (1968) would be unstable. Whether it would be sufficiently unstable to overcome a severely subadiabatic temperature gradient cannot be determined.

  8. Highly siderophile elements were stripped from Earth's mantle by iron sulfide segregation

    CERN Document Server

    Rubie, David C; Jacobson, Seth A; Morbidelli, Alessandro; Palme, Herbert; Vogel, Antje K; Frost, Daniel J

    2016-01-01

    Highly siderophile elements (HSEs) are strongly depleted in the bulk silicate Earth (BSE) but are present in near-chondritic relative abundances. The conventional explanation is that the HSEs were stripped from the mantle by the segregation of metal during core formation but were added back in near-chondritic proportions by late accretion, after core formation had ceased. Here we show that metal-silicate equilibration and segregation during Earth's core formation actually increased HSE mantle concentrations because HSE partition coefficients are relatively low at the high pressures of core formation within Earth. The pervasive exsolution and segregation of iron sulfide liquid from silicate liquid (the "Hadean matte") stripped magma oceans of HSEs during cooling and crystallization, before late accretion, and resulted in slightly suprachondritic palladium/iridium and ruthenium/iridium ratios.

  9. Highly siderophile elements were stripped from Earth’s mantle by iron sulfide segregation

    Science.gov (United States)

    Rubie, David C.; Laurenz, Vera; Jacobson, Seth A.; Morbidelli, Alessandro; Palme, Herbert; Vogel, Antje K.; Frost, Daniel J.

    2016-09-01

    Highly siderophile elements (HSEs) are strongly depleted in the bulk silicate Earth (BSE) but are present in near-chondritic relative abundances. The conventional explanation is that the HSEs were stripped from the mantle by the segregation of metal during core formation but were added back in near-chondritic proportions by late accretion, after core formation had ceased. Here we show that metal-silicate equilibration and segregation during Earth’s core formation actually increased HSE mantle concentrations because HSE partition coefficients are relatively low at the high pressures of core formation within Earth. The pervasive exsolution and segregation of iron sulfide liquid from silicate liquid (the “Hadean matte”) stripped magma oceans of HSEs during cooling and crystallization, before late accretion, and resulted in slightly suprachondritic palladium/iridium and ruthenium/iridium ratios.

  10. Westward migration of oceanic ridges and related asymmetric upper mantle differentiation

    Science.gov (United States)

    Chalot-Prat, Françoise; Doglioni, Carlo; Falloon, Trevor

    2017-01-01

    Combining geophysical, petrological and structural data on oceanic mantle lithosphere, underlying asthenosphere and oceanic basalts, an alternative oceanic plate spreading model is proposed in the framework of the westward migration of oceanic spreading ridges relative to the underlying asthenosphere. This model suggests that evolution of both the composition and internal structure of oceanic plates and underlying upper mantle strongly depends at all scales on plate kinematics. We show that the asymmetric features of lithospheric plates and underlying upper asthenosphere on both sides of oceanic spreading ridges, as shown by geophysical data (seismic velocities, density, thickness, and plate geometry), reflect somewhat different mantle compositions, themselves related to various mantle differentiation processes (incipient to high partial melting degree, percolation/reaction and refertilization) at different depths (down to 300 km) below and laterally to the ridge axis. The fundamental difference between western and eastern plates is linked to the westward ridge migration inducing continuing mantle refertilization of the western plate by percolation-reaction with ascending melts, whereas the eastern plate preserves a barely refertilized harzburgitic residue. Plate thickness on both sides of the ridge is controlled both by cooling of the asthenospheric residue and by the instability of pargasitic amphibole producing a sharp depression in the mantle solidus as it changes from vapour-undersaturated to vapour-saturated conditions, its intersection with the geotherm at 90 km, and incipient melt production right underneath the lithosphere-asthenosphere boundary (LAB). Thus the intersection of the geotherm with the vapour-saturated lherzolite solidus explains the existence of a low-velocity zone (LVZ). As oceanic lithosphere is moving westward relative to asthenospheric mantle, this partially molten upper asthenosphere facilitates the decoupling between lower asthenosphere

  11. Seismic evidence for a chemically distinct thermochemical reservoir in Earth's deep mantle beneath Hawaii

    Science.gov (United States)

    Zhao, Chunpeng; Garnero, Edward J.; McNamara, Allen K.; Schmerr, Nicholas; Carlson, Richard W.

    2015-09-01

    Nearly antipodal continent-sized zones of reduced seismic shear wave velocities exist at the base of Earth's mantle, one beneath the Pacific Ocean, the other beneath the South Atlantic Ocean and Africa. Geophysicists have attributed the low velocity zones to elevated temperatures associated with large-scale mantle convection processes, specifically, hot mantle upwelling in response to cooler subduction-related downwelling currents. Hypotheses have included superplumes, isochemical heterogeneity, and stable as well as metastable basal thermochemical piles. Here we analyze waveform broadening and travel times of S waves from 11 deep focus earthquakes in the southwest Pacific recorded in North America, resulting in 8500 seismograms studied that sample the deep mantle beneath the Pacific. Waveform broadening is referenced to a mean S-wave shape constructed for each event, to define a relative "misfit". Large misfits are consistent with multipathing that can broaden wave pulses. Misfits of deep mantle sampling S-waves infer that the structure in the northeast part of the low velocity province beneath the Pacific has a sharp side as well as a sloping sharp top to the feature. This sharp boundary morphology is consistent with geodynamic predictions for a stable thermochemical reservoir. The peak of the imaged pile is below Hawaii, supporting the hypothesis of a whole mantle plume beneath the hotspot.

  12. Upper mantle convection beneath northwest China and its adjacent region driven by density anomaly

    Institute of Scientific and Technical Information of China (English)

    XU Ping; FU Rong-shan; HUANG Jian-ping; ZHAXian-jie; DAI Zhi-yang

    2006-01-01

    We assume that the density anomalies, which are transformed from seismic tomography data, are corresponding to temperature distribution in a convective mantle. We take density anomalies as the driving force for mantle convec tion and solve the basic equation with given boundary conditions in a wave-number domain by using the FFT arithmetic. Using the physical model of upper mantle convection and the seismic tomography data supplied by XU et al, we calculated upper mantle convection beneath northwestern China and adjacent region. The flow patterns in the upper mantle show that there are upward and divergent flows in the basin regions, such as Tarim, Qaidam,Junggar and Kazakhstan, where the lithosphere is thin. There are downward and convergent flows in the mountain regions,such as Tianshan, Kunlun and Qilian, where the lithosphere is thick. In addition, because of the divergent flow under the Tarim Basin the upper mantle material in this region is driven southward to the north part of Tibetan Plateau and northward to Tianshan Mountain. Maybe, it is one of the reasons for the recent uplift of the Tianshan Mountain.

  13. Dipping fossil fabrics of continental mantle lithosphere as tectonic heritage of oceanic paleosubductions

    Science.gov (United States)

    Babuska, Vladislav; Plomerova, Jaroslava; Vecsey, Ludek; Munzarova, Helena

    2016-04-01

    Subduction and orogenesis require a strong mantle layer (Burov, Tectonophys. 2010) and our findings confirm the leading role of the mantle lithosphere. We have examined seismic anisotropy of Archean, Proterozoic and Phanerozoic provinces of Europe by means of shear-wave splitting and P-wave travel-time deviations of teleseismic waves observed at dense arrays of seismic stations (e.g., Vecsey et al., Tectonophys. 2007). Lateral variations of seismic-velocity anisotropy delimit domains of the mantle lithosphere, each of them having its own consistent fabric. The domains, modeled in 3D by olivine aggregates with dipping lineation a, or foliation (a,c), represent microplates or their fragments that preserved their pre-assembly fossil fabrics. Evaluating seismic anisotropy in 3D, as well as mapping boundaries of the domains helps to decipher processes of the lithosphere formation. Systematically dipping mantle fabrics and other seismological findings seem to support a model of continental lithosphere built from systems of paleosubductions of plates of ancient oceanic lithosphere (Babuska and Plomerova, AGU Geoph. Monograph 1989), or from stacking of the plates (Helmstaedt and Schulze, Geol. Soc. Spec. Publ. 1989). Seismic anisotropy in the oceanic mantle lithosphere, explained mainly by the olivine A- or D-type fabric (Karato et al., Annu. Rev. Earth Planet. Sci. 2008), was discovered a half century ago (Hess, Nature 1964). Field observations and laboratory experiments indicate the oceanic olivine fabric might be preserved in the subducting lithosphere to a depth of at least 200-300 km. We thus interpret the dipping anisotropic fabrics in domains of the European mantle lithosphere as systems of "frozen" paleosubductions (Babuska and Plomerova, PEPI 2006) and the lithosphere base as a boundary between the fossil anisotropy in the lithospheric mantle and an underlying seismic anisotropy related to present-day flow in the asthenosphere (Plomerova and Babuska, Lithos 2010).

  14. Fossilized Dipping Fabrics in Continental Mantle Lithosphere as Possible Remnants of Stacked Oceanic Paleosubductions

    Science.gov (United States)

    Babuska, V.; Plomerova, J.; Vecsey, L.; Munzarova, H.

    2015-12-01

    We have examined seismic anisotropy within the mantle lithosphere of Archean, Proterozoic and Phanerozoic provinces of Europe by means of shear-wave splitting and P-wave travel-time deviations of teleseismic waves observed at dense arrays of seismic stations (e.g., Vecsey et al., Tectonophys. 2007). Lateral variations of seismic-wave anisotropy delimit domains of the mantle lithosphere, each of them having a consistent fabric. The domains, modeled in 3D by olivine aggregates with dipping lineation a, or foliation (a,c), represent microplates or their fragments that preserved their pre-assembly fossil fabrics in the mantle lithosphere. Evaluating seismic anisotropy in 3D, as well as mapping boundaries of the domains helps to decipher processes of the lithosphere formation. Systematically dipping mantle fabrics and other seismological findings seem to support a model of continental lithosphere built from systems of paleosubductions of plates of ancient oceanic lithosphere (Babuska and Plomerova, AGU Geoph. Monograph 1989), or by stacking of the plates (Helmstaedt and Schulze, Geol. Soc. Spec. Publ. 1989). Seismic anisotropy in the oceanic mantle lithosphere, explained mainly by the olivine A- or D-type fabric (Karato et al., Annu. Rev. Earth Planet. Sci. 2008), was discovered a half century ago (Hess, Nature 1964). Field observations and laboratory experiments indicate the oceanic olivine fabric might be preserved in the subducting lithosphere to a depth of at least 200-300 km. We thus interpret the dipping anisotropic fabrics in domains of the European mantle lithosphere as systems of "frozen" paleosubductions (Babuska and Plomerova, PEPI 2006), and the lithosphere base as a boundary between a fossil anisotropy in the lithospheric mantle and an underlying seismic anisotropy related to present-day flow in the asthenosphere (Plomerova and Babuska, Lithos 2010).

  15. Decoupled crust-mantle accommodation of Africa-Eurasia convergence in the NW Moroccan margin

    Science.gov (United States)

    JiméNez-Munt, I.; Fernã Ndez, M.; VergéS, J.; Garcia-Castellanos, D.; Fullea, J.; PéRez-Gussinyé, M.; Afonso, J. C.

    2011-08-01

    The extent of the area accommodating convergence between the African and Iberian plates, how this convergence is partitioned between crust and mantle, and the role of the plate boundary in accommodating deformation are not well-understood subjects. We calculate the structure of the lithosphere derived from its density distribution along a profile running from the Tagus Abyssal Plain to the Sahara Platform and crossing the Gorringe Bank, the NW Moroccan margin, and the Atlas Mountains. The model is based on the integration of gravity, geoid, elevation, and heat flow data and on the crustal structure across the NW Moroccan margin derived from reflection and wide-angle seismic data. The resulting mantle density anomalies suggest important variations of the lithosphere-asthenosphere boundary (LAB) topography, indicating prominent lithospheric mantle thickening beneath the margin (LAB > 200 km depth) followed by thinning beneath the Atlas Mountains (LAB ˜90 km depth). At crustal levels the Iberia-Africa convergence is sparsely accommodated in a ˜950 km wide area and localized in the Atlas and Gorringe regions, with an inferred shortening of ˜50 km. In contrast, mantle thickening accommodates a 400 km wide region, thus advocating for a decoupled crustal-mantle mechanical response. A combination of mantle underthrusting due to oblique convergence, together with a viscous dripping fed by lateral mantle dragging, can explain the imaged lithospheric structure. The model is consistent with crustal shortening estimates and with the accommodation of part of the Iberia-Africa convergence farther NW of the Gorringe Bank and/or off the strike of the profile.

  16. Adult educators' core competences

    DEFF Research Database (Denmark)

    Wahlgren, Bjarne

    2016-01-01

    environment as well as the kind of adult education concerned (e.g. basic education, work-related education etc.). However, it seems that it is possible to identify certain competence requirements which transcend national, cultural and functional boundaries. This research note summarises these common or “core...

  17. Adult educators' core competences

    DEFF Research Database (Denmark)

    Wahlgren, Bjarne

    2016-01-01

    environment as well as the kind of adult education concerned (e.g. basic education, work-related education etc.). However, it seems that it is possible to identify certain competence requirements which transcend national, cultural and functional boundaries. This research note summarises these common or “core...

  18. Radioactivity released from burning gas lantern mantles.

    Science.gov (United States)

    Luetzelschwab, J W; Googins, S W

    1984-04-01

    Gas lantern mantles contain thorium to produce incandescence when lantern fuel is burned on the mantle. Although only thorium is initially present on the mantle, the thorium daughters build up, some over a period of weeks and some over a period of years, and significant quantities of these daughters are present when the mantle is used. Some of these daughters are released when the lantern fuel is burned on the mantle. The amounts of radioactivity released during burning is studied by measuring the gamma radiation emitted by the daughters. Results of this study show that some of the radium (224Ra and 228Ra) and more than half the 212Pb and 212Bi is released during the first hour of a burn. The actual amounts release depend on the age of the mantle.

  19. Light matter in the core of the Earth: its identity, quantity and temperature using tricritical phenomena

    CERN Document Server

    Aitta, A

    2008-01-01

    Light elements in the iron-rich core of the Earth are important indicators for the evolution of our planet. Their amount and distribution, and the temperature in the core, are essential for understanding how the core and the mantle interact and for modelling the geodynamo which generates the planetary magnetic field. However, there is a longstanding controversy surrounding the identity and quantity of the light elements. Here, the theory of tricritical phenomena is employed as a precise theoretical framework to study solidification at the high pressures and temperatures where both experimental and numerical methods are complicated to implement and have large uncertainties in their results. Combining the theory with the most reliable iron melting data and the Preliminary Reference Earth Model (PREM) seismic data, one obtains the solidification temperature at the inner core boundary (ICB) for both pure iron and for the alloy of iron and light elements in the actual core melt. One also finds a value of about 2.5...

  20. Dynamic Responses of the Earth's Outer Core to Assimilation of Observed Geomagnetic Secular Variation

    Science.gov (United States)

    Kuang, Weijia; Tangborn, Andrew

    2014-01-01

    Assimilation of surface geomagnetic observations and geodynamo models has advanced very quickly in recent years. However, compared to advanced data assimilation systems in meteorology, geomagnetic data assimilation (GDAS) is still in an early stage. Among many challenges ranging from data to models is the disparity between the short observation records and the long time scales of the core dynamics. To better utilize available observational information, we have made an effort in this study to directly assimilate the Gauss coefficients of both the core field and its secular variation (SV) obtained via global geomagnetic field modeling, aiming at understanding the dynamical responses of the core fluid to these additional observational constraints. Our studies show that the SV assimilation helps significantly to shorten the dynamo model spin-up process. The flow beneath the core-mantle boundary (CMB) responds significantly to the observed field and its SV. The strongest responses occur in the relatively small scale flow (of the degrees L is approx. 30 in spherical harmonic expansions). This part of the flow includes the axisymmetric toroidal flow (of order m = 0) and non-axisymmetric poloidal flow with m (is) greater than 5. These responses can be used to better understand the core flow and, in particular, to improve accuracies of predicting geomagnetic variability in future.

  1. Disclinations provide the missing mechanism for deforming olivine-rich rocks in the mantle.

    Science.gov (United States)

    Cordier, Patrick; Demouchy, Sylvie; Beausir, Benoît; Taupin, Vincent; Barou, Fabrice; Fressengeas, Claude

    2014-03-06

    Mantle flow involves large strains of polymineral aggregates. The strongly anisotropic plastic response of each individual grain in the aggregate results from the interactions between neighbouring grains and the continuity of material displacement across the grain boundaries. Orthorhombic olivine, which is the dominant mineral phase of the Earth's upper mantle, does not exhibit enough slip systems to accommodate a general deformation state by intracrystalline slip without inducing damage. Here we show that a more general description of the deformation process that includes the motion of rotational defects referred to as disclinations can solve the olivine deformation paradox. We use high-resolution electron backscattering diffraction (EBSD) maps of deformed olivine aggregates to resolve the disclinations. The disclinations are found to decorate grain boundaries in olivine samples deformed experimentally and in nature. We present a disclination-based model of a high-angle tilt boundary in olivine, which demonstrates that an applied shear induces grain-boundary migration through disclination motion. This new approach clarifies grain-boundary-mediated plasticity in polycrystalline aggregates. By providing the missing mechanism for describing plastic flow in olivine, this work will permit multiscale modelling of the rheology of the upper mantle, from the atomic scale to the scale of the flow.

  2. U-Pb isotopic geochemistry of the post-collisional mafic-ultramafic rocks from the Dabie Mountains--Crust-mantle interaction and LOMU component

    Institute of Scientific and Technical Information of China (English)

    黄方; 李曙光; 周红英; 李惠民

    2003-01-01

    The U-Pb isotope geochemical study of the pyroxenite-gabbro intrusion in the Dabie Mountains shows that the post-collisional mafic-ultramafic rocks of the Dabie Mountains are characterized by relative high Pb contents, low U contents and low U/Pb ratios. These characters may be results of interaction between lithosphere or depleted asthenospheric mantle (DMM) and lower crust, but have nothing to do with mantle plume and subducted continental crust. It was first observed that some samples with lower 206Pb/204Pb and higher 207Pb/204Pb ratios show typical characters of the LOMU component. The Pb, Sr, and Nd isotopic tracing shows that three components are needed in the source of the Zhujiapu pyroxenite-gabbro intrusion. They could be old enriched sub-continental lithospheric mantle (LOMU component), lower crust and depleted asthenospheric mantle. The crust-mantle interaction process producing primitive magma of post-collisional mafic-ultramafic rocks in the Dabie Mountains could be described by a lithospheric delamination and magma underplating model. After continent-continent collision, delamination of the thickened lithosphere induced the upwelling of depleted asthenospheric mantle, which caused partial melting of asthenospheric mantle and residual sub-continental lithospheric mantle. The basaltic magma produced in this process underplated in the boundary between the crust and mantle and interacted with lower crust resulting in the geochemical characters of both enriched lithospheric mantle and lower crust.

  3. High-pressure, temperature elasticity of Fe- and Al-bearing MgSiO3: implications for the Earth's lower mantle

    CERN Document Server

    Zhang, Shuai; Liu, Tao; Stackhouse, Stephen; Militzer, Burkhard

    2015-01-01

    Fe and Al are two of the most important rock-forming elements other than Mg, Si, and O. Their presence in the lower mantle's most abundant minerals, MgSiO_3 bridgmanite, MgSiO_3 post-perovskite and MgO periclase, alters their elastic properties. However, knowledge on the thermoelasticity of Fe- and Al-bearing MgSiO_3 bridgmanite, and post-perovskite is scarce. In this study, we perform ab initio molecular dynamics to calculate the elastic and seismic properties of pure, Fe^{3+}- and Fe^{2+}-, and Al^{3+}-bearing MgSiO_3 perovskite and post-perovskite, over a wide range of pressures, temperatures, and Fe/Al compositions. Our results show that a mineral assemblage resembling pyrolite fits a 1D seismological model well, down to, at least, a few hundred kilometers above the core-mantle boundary, i.e. the top of the D'' region. In D'', a similar composition is still an excellent fit to the average velocities and fairly approximate to the density. We also implement polycrystal plasticity with a geodynamic model to ...

  4. Carbon Solubility in Silicon-Iron-Bearing Metals during Core Formation on Mercury

    Science.gov (United States)

    Vander Kaaden, Kathleen E.; McCubbin, Francis M.; Ross, D. Kent; Rapp, Jennifer F.; Danielson, Lisa R.; Keller, Lindsay P.; Righter, Kevin

    2016-01-01

    Recent results obtained from the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft showed the surface of Mercury has high S abundances (approximately 4 wt%) and low Iron(II) Oxide abundances (less than 2 wt%). Based on these extreme values, the oxygen fugacity of Mercury's surface materials was estimated to be approximately 3 to 7 log(sub 10) units below the IW buffer (Delta IW-3 to Delta IW-7). This highly reducing nature of the planet has resulted in a large core and relatively thin mantle, extending to only approximately 420 km depth (corresponding to a core-mantle boundary pressure of approximately 4-7 GPa) within the planet. Furthermore, MESSENGER results have suggested the presence of carbon on the surface of the planet. Previous experimental results from have also suggested the possibility of a primary floatation crust on Mercury composed of graphite, produced after a global magma ocean event. With these exotic conditions of this compositional end-member planet, it begs the question, what is the core composition of Mercury? Although no definitive conclusion has been reached, previous studies have made advances towards answering this question. Riner et al. and Chen et al. looked at iron sulfide systems and implemented various crystallization and layered core scenarios to try and determine the composition and structure of Mercury's core. Malavergne et al. examined core crystallization scenarios in the presence of sulfur and silicon. Hauck et al. used the most recent geophysical constraints from the MESSENGER spacecraft to model the internal structure of Mercury, including the core, in a iron-sulfur-silicon system. More recently, Chabot et al. conducted a series of metal-silicate partitioning experiments in a iron-sulfur-silicon system. These results showed the core of Mercury has the potential to contain more than 15 wt% silicon. However, with the newest results from MESSENGER's low altitude campaign, carbon is another

  5. Constraints on Mantle Plume Melting Conditions in the Martian Mantle Based on Improved Melting Phase Relationships of Olivine-Phyric Shergottite Yamato 980459

    Science.gov (United States)

    Kiefer, Walter S.; Rapp, Jennifer F.; Usui, Tomohiro; Draper, David S.; Filiberto, Justin

    2016-01-01

    Martian meteorite Yamato 980459 (hereafter Y98) is an olivine-phyric shergottite that has been interpreted as closely approximating a martian mantle melt [1-4], making it an important constraint on adiabatic decompression melting models. It has long been recognized that low pressure melting of the Y98 composition occurs at extremely high temperatures relative to martian basalts (1430 degC at 1 bar), which caused great difficulties in a previous attempt to explain Y98 magma generation via a mantle plume model [2]. However, previous studies of the phase diagram were limited to pressures of 2 GPa and less [2, 5], whereas decompression melting in the present-day martian mantle occurs at pressures of 3-7 GPa, with the shallow boundary of the melt production zone occurring just below the base of the thermal lithosphere [6]. Recent experimental work has now extended our knowledge of the Y98 melting phase relationships to 8 GPa. In light of this improved petrological knowledge, we are therefore reassessing the constraints that Y98 imposes on melting conditions in martian mantle plumes. Two recently discovered olivine- phyric shergottites, Northwest Africa (NWA) 5789 and NWA 6234, may also be primary melts from the martian mantle [7, 8]. However, these latter meteorites have not been the subject of detailed experimental petrology studies, so we focus here on Y98.

  6. Emerging boundaries

    DEFF Research Database (Denmark)

    Løvschal, Mette

    2014-01-01

    This article proposes a processual ontology for the emergence of man-made, linear boundaries across northwestern Europe, particularly in the first millennium BC. Over a significant period of time, these boundaries became new ways of organizing the landscape and settlements—a phenomenon that has...... of this phenomenon emerged along equivalent trajectories. At the same time, variation in the regional incorporation of these linear phenomena points toward situation-specific applications and independent development....

  7. Boundary Spanning

    DEFF Research Database (Denmark)

    Zølner, Mette

    The paper explores how locals span boundaries between corporate and local levels. The aim is to better comprehend potentialities and challenges when MNCs draws on locals’ culture specific knowledge. The study is based on an in-depth, interpretive case study of boundary spanning by local actors in...... approach with pattern matching is a way to shed light on the tacit local knowledge that organizational actors cannot articulate and that an exclusively inductive research is not likely to unveil....

  8. Mercurian impact ejecta: Meterorites and mantle

    CERN Document Server

    Gladman, B

    2008-01-01

    We have examined the fate of impact ejecta liberated from the surface of Mercury due to impacts by comets or asteroids, in order to study (1) meteorite transfer to Earth, and (2) re-accumulation of an expelled mantle in giant-impact scenarios seeking to explain Mercury's large core. In the context of meteorite transfer, we note that Mercury's impact ejecta leave the planet's surface much faster (on average) than other planet's in the Solar System because it is the only planet where impact speeds routinely range from 5-20 times the planet's escape speed. Thus, a large fraction of mercurian ejecta may reach heliocentric orbit with speeds sufficiently high for Earth-crossing orbits to exist immediately after impact, resulting in larger fractions of the ejecta reaching Earth as meteorites. We calculate the delivery rate to Earth on a time scale of 30 Myr and show that several percent of the high-speed ejecta reach Earth (a factor of -3 less than typical launches from Mars); this is one to two orders of magnitude ...

  9. The geobiological nitrogen cycle: From microbes to the mantle.

    Science.gov (United States)

    Zerkle, A L; Mikhail, S

    2017-05-01

    Nitrogen forms an integral part of the main building blocks of life, including DNA, RNA, and proteins. N2 is the dominant gas in Earth's atmosphere, and nitrogen is stored in all of Earth's geological reservoirs, including the crust, the mantle, and the core. As such, nitrogen geochemistry is fundamental to the evolution of planet Earth and the life it supports. Despite the importance of nitrogen in the Earth system, large gaps remain in our knowledge of how the surface and deep nitrogen cycles have evolved over geologic time. Here, we discuss the current understanding (or lack thereof) for how the unique interaction of biological innovation, geodynamics, and mantle petrology has acted to regulate Earth's nitrogen cycle over geologic timescales. In particular, we explore how temporal variations in the external (biosphere and atmosphere) and internal (crust and mantle) nitrogen cycles could have regulated atmospheric pN2 . We consider three potential scenarios for the evolution of the geobiological nitrogen cycle over Earth's history: two in which atmospheric pN2 has changed unidirectionally (increased or decreased) over geologic time and one in which pN2 could have taken a dramatic deflection following the Great Oxidation Event. It is impossible to discriminate between these scenarios with the currently available models and datasets. However, we are optimistic that this problem can be solved, following a sustained, open-minded, and multidisciplinary effort between surface and deep Earth communities. © 2017 The Authors Geobiology Published by John Wiley & Sons Ltd.

  10. Thermal Stratification in Vertical Mantle Tanks

    DEFF Research Database (Denmark)

    Knudsen, Søren; Furbo, Simon

    2001-01-01

    It is well known that it is important to have a high degree of thermal stratification in the hot water storage tank to achieve a high thermal performance of SDHW systems. This study is concentrated on thermal stratification in vertical mantle tanks. Experiments based on typical operation conditions...... are carried out to investigate how the thermal stratification is affected by different placements of the mantle inlet. The heat transfer between the solar collector fluid in the mantle and the domestic water in the inner tank is analysed by CFD-simulations. Furthermore, the flow pattern in the vertical mantle...... tank is investigated....

  11. Diamond growth in mantle fluids

    Science.gov (United States)

    Bureau, Hélène; Frost, Daniel J.; Bolfan-Casanova, Nathalie; Leroy, Clémence; Esteve, Imène; Cordier, Patrick

    2016-11-01

    In the upper mantle, diamonds can potentially grow from various forms of media (solid, gas, fluid) with a range of compositions (e.g. graphite, C-O-H fluids, silicate or carbonate melts). Inclusions trapped in diamonds are one of the few diagnostic tools that can constrain diamond growth conditions in the Earth's mantle. In this study, inclusion-bearing diamonds have been synthesized to understand the growth conditions of natural diamonds in the upper mantle. Diamonds containing syngenetic inclusions were synthesized in multi-anvil presses employing starting mixtures of carbonates, and silicate compositions in the presence of pure water and saline fluids (H2O-NaCl). Experiments were performed at conditions compatible with the Earth's geotherm (7 GPa, 1300-1400 °C). Results show that within the timescale of the experiments (6 to 30 h) diamond growth occurs if water and carbonates are present in the fluid phase. Water promotes faster diamond growth (up to 14 mm/year at 1400 °C, 7 GPa, 10 g/l NaCl), which is favorable to the inclusion trapping process. At 7 GPa, temperature and fluid composition are the main factors controlling diamond growth. In these experiments, diamonds grew in the presence of two fluids: an aqueous fluid and a hydrous silicate melt. The carbon source for diamond growth must be carbonate (CO32) dissolved in the melt or carbon dioxide species in the aqueous fluid (CO2aq). The presence of NaCl affects the growth kinetics but is not a prerequisite for inclusion-bearing diamond formation. The presence of small discrete or isolated volumes of water-rich fluids is necessary to grow inclusion-bearing peridotitic, eclogitic, fibrous, cloudy and coated diamonds, and may also be involved in the growth of ultradeep, ultrahigh-pressure metamorphic diamonds.

  12. Sub Moho boundary beneath island arc, Japan

    Science.gov (United States)

    Iidaka, T.; Igarashi, T.; Lee, C.; Iwasaki, T.; Niu, F.

    2008-12-01

    Moho is a seismic boundary discovered by Mohorovicic in 1909. It is generally considered as the boundary between Earth"fs crust and mantle, although the origin of the Moho and the definition of the crust-mantle boundary are still debated. Regardless whether it represents a phase or chemical boundary, it has been investigated world wide by seismologists since its discovery. Reflection/refraction data acquired from active sources were the main sources of the investigation. Recently, receiver function analysis provided an emerging tool for mapping this boundary below a seismic station. Since reflection/refraction data sample P- wave structure while receiver-function data are basically sensitive to S-wave velocity, a comparison of the two can provide better constraints on the composition of the lowermost crust and the uppermost mantle. In this study, we used receiver function data to determine subsurface boundaries. Receiver functions are calculated from teleseismic records of a borehole seismic network in Japan, the Hi-net, which covers the entire Japan with a 20-km station spacing. We used the multi-taper deconvolution method to generate individual receiver functions and a common-conversion-point gathering method for stacking the receiver functions. Results along several profiles where seismic refraction surveys have been conducted in the past were selected for comparison. We found remarkable difference between southwestern and central/northeastern Japan. In southwestern Japan both receiver function and refraction data yield a consistent and distinct Moho at around 35 km. In central and northeastern Japan, however, receiver function images reveal two P-to-S conversion events at approximately 30 km and 40 km, respectively. The shallow 30-km deep boundary is consistent with the refraction Moho. The deep boundary (sub-Moho) is about 10 km deeper than the refraction Moho boundary. The uppermost mantle seismic structure at central and northeastern Japan was known to be

  13. Mantle plumes and continental tectonics.

    Science.gov (United States)

    Hill, R I; Campbell, I H; Davies, G F; Griffiths, R W

    1992-04-10

    Mantle plumes and plate tectonics, the result of two distinct modes of convection within the Earth, operate largely independently. Although plumes are secondary in terms of heat transport, they have probably played an important role in continental geology. A new plume starts with a large spherical head that can cause uplift and flood basalt volcanism, and may be responsible for regional-scale metamorphism or crustal melting and varying amounts of crustal extension. Plume heads are followed by narrow tails that give rise to the familiar hot-spot tracks. The cumulative effect of processes associated with tail volcanism may also significantly affect continental crust.

  14. Existence of torsional surface waves in an earth’s crustal layer lying over a sandy mantle

    Indian Academy of Sciences (India)

    Sumit Kumar Vishwakarma; Shishir Gupta

    2013-10-01

    This paper aims to study the dispersion of torsional surface waves in a crustal layer being sandwiched between a rigid boundary plane and a sandy mantle. In the mantle, rigidity and initial stress vary linearly while density remains constant. Dispersion relation has been deduced in a closed form by means of variable separable method in the form of Whittaker function. The velocity equation for isotropic layer over a homogeneous half-space has been obtained which coincides with the standard result of Love wave under the effect of rigid boundary.

  15. The Large-scale Component of Mantle Convection

    Science.gov (United States)

    Cserepes, L.

    Circulation in the Earth's mantle occurs on multiple spatial scales: this review dis- cusses the character of its large-scale or global components. Direct and strong evi- dence concerning the global flow comes, first of all, from the pattern of plate motion. Further indirect observational data which can be transformed into flow velocities by the equation of motion are the internal density heterogeneities revealed by seismic to- mography, and the geoid can also be used as an observational constraint. Due to their limited spatial resolution, global tomographic data automatically filter out the small- scale features and are therefore relevant to the global flow pattern. Flow solutions obtained from tomographic models, using the plate motion as boundary condition, re- veal that subduction is the downwelling of the global mantle circulation and that the deep-rooted upwellings are concentrated in 2-3 superplumes. Spectral analysis of the tomographic heterogeneities shows that the power of global flow appears dominantly in the lowest spherical harmonic orders 2-5. Theoretical convection calculations con- tribute substantially to the understanding of global flow. If basal heating of the mantle is significant, numerical models can reproduce the basic 2 to 5 cell pattern of con- vection even without the inclusion of surface plates. If plates are superimposed on the solution with their present arrangement and motion, the dominance of these low spherical harmonic orders is more pronounced. The cells are not necessarily closed, rather they show chaotic time-dependence, but they are normally bordered by long downwelling features, and they have usually a single superplume in the cell interior. Swarms of small plumes can develop in the large cells, especially when convection is partially layered due to an internal boundary such as the 670 km discontinuity (source of small plumes). These small plumes are usually tilted by the background large-scale flow which shows that they are

  16. Abnormal lithium isotope composition from the ancient lithospheric mantle beneath the North China Craton.

    Science.gov (United States)

    Tang, Yan-Jie; Zhang, Hong-Fu; Deloule, Etienne; Su, Ben-Xun; Ying, Ji-Feng; Santosh, M; Xiao, Yan

    2014-03-04

    Lithium elemental and isotopic compositions of olivines in peridotite xenoliths from Hebi in the North China Craton provide direct evidence for the highly variable δ(7)Li in Archean lithospheric mantle. The δ(7)Li in the cores of olivines from the Hebi high-Mg# peridotites (Fo > 91) show extreme variation from -27 to +21, in marked deviation from the δ(7)Li range of fresh MORB (+1.6 to +5.6) although the Li abundances of the olivines are within the range of normal mantle (1-2 ppm). The Li abundances and δ(7)Li characteristics of the Hebi olivines could not have been produced by recent diffusive-driven isotopic fractionation of Li and therefore the δ(7)Li in the cores of these olivines record the isotopic signature of the subcontinental lithospheric mantle. Our data demonstrate that abnormal δ(7)Li may be preserved in the ancient lithospheric mantle as observed in our study from the central North China Craton, which suggest that the subcontinental lithospheric mantle has experienced modification of fluid/melt derived from recycled oceanic crust.

  17. Controlling thermal chaos in the mantle by positive feedback from radiative thermal conductivity

    Directory of Open Access Journals (Sweden)

    F. Dubuffet

    2002-01-01

    Full Text Available The thermal conductivity of mantle materials has two components, the lattice component klat from phonons and the radiative component krad due to photons. These two contributions of variable thermal conductivity have a nonlinear dependence in the temperature, thus endowing the temperature equation in mantle convection with a strongly nonlinear character. The temperature derivatives of these two mechanisms have different signs, with ∂klat /∂T negative and dkrad /dT positive. This offers the possibility for the radiative conductivity to control the chaotic boundary layer instabilities developed in the deep mantle. We have parameterized the weight factor between krad and klat with a dimensionless parameter f , where f = 1 corresponds to the reference conductivity model. We have carried out two-dimensional, time-dependent calculations for variable thermal conductivity but constant viscosity in an aspect-ratio 6 box for surface Rayleigh numbers between 106 and 5 × 106. The averaged Péclet numbers of these flows lie between 200 and 2000. Along the boundary in f separating the chaotic and steady-state solutions, the number decreases and the Nusselt number increases with internal heating, illustrating the feedback between internal heating and radiative thermal conductivity. For purely basal heating situation, the time-dependent chaotic flows become stabilized for values of f of between 1.5 and 2. The bottom thermal boundary layer thickens and the surface heat flow increases with larger amounts of radiative conductivity. For magnitudes of internal heating characteristic of a chondritic mantle, much larger values of f , exceeding 10, are required to quench the bottom boundary layer instabilities. By isolating the individual conductive mechanisms, we have ascertained that the lattice conductivity is partly responsible for inducing boundary layer instabilities, while the radiative conductivity and purely depth-dependent conductivity exert a stabilizing

  18. Petrology of a Neoproterozoic Alaskan-type complex from the Eastern Desert of Egypt: Implications for mantle heterogeneity

    Science.gov (United States)

    Khedr, Mohamed Zaki; Arai, Shoji

    2016-10-01

    This paper details petrological and geochemical studies of an ultramafic-mafic intrusion in the Southern Eastern Desert of Egypt. The Dahanib complex shows a concentric zonation, from dunites at the core, through chromitites, clinopyroxene-rich dunites, wehrlites, harzburgites, gabbronorites and layered gabbros, to hornblende gabbros/diorites at the rim, similar to other Alaskan-type complexes. These lithologies typically feature cumulate textures and layering. Their pyroxenes (Mg#s, 0.54-0.94) evidence Fe, Mn and Na enrichment, but Al, Cr, Mg and Ti are depleted with differentiation. Their chromian spinels have a wide range of Cr# (0.31-0.61), along with high Ti and Fe, as a result of their origin through crystal accumulation and reaction with interstitial liquids. The clinopyroxenes (Cpxs) in peridotites and gabbroic rocks, which are high in REE concentration (2-100 times chondrite), are depleted in LREE relative to HREE and are similar to Cpx crystallized from asthenospheric melts. The mineral inclusions in spinel, the chemistry of Cpx in peridotites (rich in Al, Cr, Na, Ti and ΣREE = 13.7), and the melts in equilibrium with Cpx suggest that the Neoproterozoic lithosphere were partially refertilized by trace asthenospheric melts. The early magmas were possibly enriched by Mg, Cr, Ni, Ti, V and Sr, while the evolved types were rich in Fe, Mn, Na, Li, Zr, Co and REE via crystal accumulation and the interaction with interstitial liquids. The Neoproterozoic sub-arc mantle in Egypt is chemically heterogeneous and generally low in Nb, Ta, Zr and K, due to the low solubility of HFSE in slab-derived fluids and no other external addition of these elements. The large variations in lithology and chemistry, as well as the occurrence of scattered chromitite clots in the Dahanib peridotites, are related to a continuous supply of primitive magmas and/or the reaction between interstitial liquids and early cumulus crystals during multistage fractional crystallization. The

  19. Core formation in silicate bodies

    Science.gov (United States)

    Nimmo, F.; O'Brien, D. P.; Kleine, T.

    2008-12-01

    Differentiation of a body into a metallic core and silicate mantle occurs most efficiently if temperatures are high enough to allow at least the metal to melt [1], and is enhanced if matrix deformation occurs [2]. Elevated temperatures may occur due to either decay of short-lived radio-isotopes, or gravitational energy release during accretion [3]. For bodies smaller than the Moon, core formation happens primarily due to radioactive decay. The Hf-W isotopic system may be used to date core formation; cores in some iron meteorites and the eucrite parent body (probably Vesta) formed within 1 My and 1-4~My of solar system formation, respectively [4]. These formation times are early enough to ensure widespread melting and differentiation by 26Al decay. Incorporation of Fe60 into the core, together with rapid early mantle solidification and cooling, may have driven early dynamo activity on some bodies [5]. Iron meteorites are typically depleted in sulphur relative to chondrites, for unknown reasons [6]. This depletion contrasts with the apparently higher sulphur contents of cores in larger planetary bodies, such as Mars [7], and also has a significant effect on the timing of core solidification. For bodies of Moon-size and larger, gravitational energy released during accretion is probably the primary cause of core formation [3]. The final stages of accretion involve large, stochastic collisions [8] between objects which are already differentiated. During each collision, the metallic cores of the colliding objects merge on timescales of a few hours [9]. Each collision will reset the Hf-W isotopic signature of both mantle and core, depending on the degree to which the impactor core re-equilibrates with the mantle of the target [10]. The re-equilibration efficiency depends mainly on the degree to which the impactor emulsifies [11], which is very uncertain. Results from N-body simulations [8,12] suggest that significant degrees of re- equilibration are required [4,10]. Re

  20. Temperature of Earth's core constrained from melting of Fe and Fe0.9Ni0.1 at high pressures

    Science.gov (United States)

    Zhang, Dongzhou; Jackson, Jennifer M.; Zhao, Jiyong; Sturhahn, Wolfgang; Alp, E. Ercan; Hu, Michael Y.; Toellner, Thomas S.; Murphy, Caitlin A.; Prakapenka, Vitali B.

    2016-08-01

    The melting points of fcc- and hcp-structured Fe0.9Ni0.1 and Fe are measured up to 125 GPa using laser heated diamond anvil cells, synchrotron Mössbauer spectroscopy, and a recently developed fast temperature readout spectrometer. The onset of melting is detected by a characteristic drop in the time-integrated synchrotron Mössbauer signal which is sensitive to atomic motion. The thermal pressure experienced by the samples is constrained by X-ray diffraction measurements under high pressures and temperatures. The obtained best-fit melting curves of fcc-structured Fe and Fe0.9Ni0.1 fall within the wide region bounded by previous studies. We are able to derive the γ-ɛ-l triple point of Fe and the quasi triple point of Fe0.9Ni0.1 to be 110 ± 5GPa, 3345 ± 120K and 116 ± 5GPa, 3260 ± 120K, respectively. The measured melting temperatures of Fe at similar pressure are slightly higher than those of Fe0.9Ni0.1 while their one sigma uncertainties overlap. Using previously measured phonon density of states of hcp-Fe, we calculate melting curves of hcp-structured Fe and Fe0.9Ni0.1 using our (quasi) triple points as anchors. The extrapolated Fe0.9Ni0.1 melting curve provides an estimate for the upper bound of Earth's inner core-outer core boundary temperature of 5500 ± 200K. The temperature within the liquid outer core is then approximated with an adiabatic model, which constrains the upper bound of the temperature at the core side of the core-mantle boundary to be 4000 ± 200K. We discuss a potential melting point depression caused by light elements and the implications of the presented core-mantle boundary temperature bounds on phase relations in the lowermost part of the mantle.

  1. Abundances of Ag and Cu in mantle peridotites and the implications for the behavior of chalcophile elements in the mantle

    Science.gov (United States)

    Wang, Zaicong; Becker, Harry

    2015-07-01

    Silver abundances in mantle peridotites and the behavior of Ag during high temperature mantle processes have received little attention and, as a consequence, the abundance of Ag in the bulk silicate Earth (BSE) has been poorly constrained. In order to better understand the processes that fractionate Ag and other chalcophile elements in the mantle, abundances of Ag and Cu in mantle peridotites from different geological settings (n = 68) have been obtained by isotope dilution ICP-MS methods. In peridotite tectonites and in a few suites of peridotite xenoliths which display evidence for variable extents of melt depletion and refertilization by silicate melts, Ag and Cu abundances show positive correlations with moderately incompatible elements such as S, Se, Te and Au. The mean Cu/Ag in fertile peridotites (3500 ± 1200, 1s, n = 38) is indistinguishable from the mean Cu/Ag of mid ocean ridge basalts (MORB, 3600 ± 400, 1s, n = 338) and MORB sulfide droplets. The constant mean Cu/Ag ratios indicate similar behavior of Ag and Cu during partial melting of the mantle, refertilization and magmatic fractionation, and thus should be representative of the Earth's upper mantle. The systematic fractionation of Cu, Ag, Au, S, Se and Te in peridotites and basalts is consistent with sulfide melt-silicate melt partitioning with apparent partition coefficients of platinum group elements (PGE) > Au ⩾ Te > Cu ≈ Ag > Se ⩾ S. Because of the effects of secondary processes, the abundances of chalcophile elements, notably S, Se, but also Cu and the PGE in many peridotite xenoliths are variable and lower than in peridotite massifs. Refertilization of peridotite may change abundances of chalcophile and lithophile elements in peridotite massifs, however, this seems to mostly occur in a systematic way. Correlations with lithophile and chalcophile elements and the overlapping mean Cu/Ag ratios of peridotites and ocean ridge basalts are used to constrain abundances of Ag and Cu in the BSE

  2. A case for mantle plumes

    Institute of Scientific and Technical Information of China (English)

    Geoffrey F. Davies

    2005-01-01

    The existence of at least several plumes in the Earth's mantle can be inferred with few assumptions from well-established observations. As well, thermal