WorldWideScience

Sample records for core loading pattern

  1. Development of a VVER-1000 core loading pattern optimization program based on perturbation theory

    International Nuclear Information System (INIS)

    Hosseini, Mohammad; Vosoughi, Naser

    2012-01-01

    Highlights: ► We use perturbation theory to find an optimum fuel loading pattern in a VVER-1000. ► We provide a software for in-core fuel management optimization. ► We consider two objectives for our method (perturbation theory). ► We show that perturbation theory method is very fast and accurate for optimization. - Abstract: In-core nuclear fuel management is one of the most important concerns in the design of nuclear reactors. Two main goals in core fuel loading pattern design optimization are maximizing the core effective multiplication factor in order to extract the maximum energy, and keeping the local power peaking factor lower than a predetermined value to maintain the fuel integrity. Because of the numerous possible patterns of fuel assemblies in the reactor core, finding the best configuration is so important and challenging. Different techniques for optimization of fuel loading pattern in the reactor core have been introduced by now. In this study, a software is programmed in C language to find an order of the fuel loading pattern of a VVER-1000 reactor core using the perturbation theory. Our optimization method is based on minimizing the radial power peaking factor. The optimization process launches by considering an initial loading pattern and the specifications of the fuel assemblies which are given as the input of the software. The results on a typical VVER-1000 reactor reveal that the method could reach to a pattern with an allowed radial power peaking factor and increases the cycle length 1.1 days, as well.

  2. Automatic optimization of core loading patterns to maximize cycle energy production within operational constraints

    International Nuclear Information System (INIS)

    Hobson, G.H.; Turinsky, P.J.

    1986-01-01

    Computational capability has been developed to automatically determine the core loading pattern which minimizes fuel cycle costs for a pressurized water reactor. Equating fuel cycle cost minimization with core reactivity maximization, the objective is to determine the loading pattern which maximizes core reactivity at end-of-cycle while satisfying the power peaking constraint throughout the cycle and region average discharge burnup limit. The method utilizes a two-dimensional, coarse mesh, finite difference scheme to evaluate core reactivity and fluxes for an initial reference loading pattern as a function of cycle burnup. First order perturbation theory is applied to determine the effects of assembly shuffling on reactivity, power distribution, and end-of-cycle burnup

  3. Machine learning of the reactor core loading pattern critical parameters

    International Nuclear Information System (INIS)

    Trontl, K.; Pevec, D.; Smuc, T.

    2007-01-01

    The usual approach to loading pattern optimization involves high degree of engineering judgment, a set of heuristic rules, an optimization algorithm and a computer code used for evaluating proposed loading patterns. The speed of the optimization process is highly dependent on the computer code used for the evaluation. In this paper we investigate the applicability of a machine learning model which could be used for fast loading pattern evaluation. We employed a recently introduced machine learning technique, Support Vector Regression (SVR), which has a strong theoretical background in statistical learning theory. Superior empirical performance of the method has been reported on difficult regression problems in different fields of science and technology. SVR is a data driven, kernel based, nonlinear modelling paradigm, in which model parameters are automatically determined by solving a quadratic optimization problem. The main objective of the work reported in this paper was to evaluate the possibility of applying SVR method for reactor core loading pattern modelling. The starting set of experimental data for training and testing of the machine learning algorithm was obtained using a two-dimensional diffusion theory reactor physics computer code. We illustrate the performance of the solution and discuss its applicability, i.e., complexity, speed and accuracy, with a projection to a more realistic scenario involving machine learning from the results of more accurate and time consuming three-dimensional core modelling code. (author)

  4. Machine Learning of the Reactor Core Loading Pattern Critical Parameters

    Directory of Open Access Journals (Sweden)

    Krešimir Trontl

    2008-01-01

    Full Text Available The usual approach to loading pattern optimization involves high degree of engineering judgment, a set of heuristic rules, an optimization algorithm, and a computer code used for evaluating proposed loading patterns. The speed of the optimization process is highly dependent on the computer code used for the evaluation. In this paper, we investigate the applicability of a machine learning model which could be used for fast loading pattern evaluation. We employ a recently introduced machine learning technique, support vector regression (SVR, which is a data driven, kernel based, nonlinear modeling paradigm, in which model parameters are automatically determined by solving a quadratic optimization problem. The main objective of the work reported in this paper was to evaluate the possibility of applying SVR method for reactor core loading pattern modeling. We illustrate the performance of the solution and discuss its applicability, that is, complexity, speed, and accuracy.

  5. Machine Learning of the Reactor Core Loading Pattern Critical Parameters

    International Nuclear Information System (INIS)

    Trontl, K.; Pevec, D.; Smuc, T.

    2008-01-01

    The usual approach to loading pattern optimization involves high degree of engineering judgment, a set of heuristic rules, an optimization algorithm, and a computer code used for evaluating proposed loading patterns. The speed of the optimization process is highly dependent on the computer code used for the evaluation. In this paper, we investigate the applicability of a machine learning model which could be used for fast loading pattern evaluation. We employ a recently introduced machine learning technique, support vector regression (SVR), which is a data driven, kernel based, nonlinear modeling paradigm, in which model parameters are automatically determined by solving a quadratic optimization problem. The main objective of the work reported in this paper was to evaluate the possibility of applying SVR method for reactor core loading pattern modeling. We illustrate the performance of the solution and discuss its applicability, that is, complexity, speed, and accuracy

  6. Characteristic statistic algorithm (CSA) for in-core loading pattern optimization

    International Nuclear Information System (INIS)

    Liu Zhihong; Hu Yongming; Shi Gong

    2007-01-01

    To solve the problem of PWR in-core loading pattern optimization, a more suitable global optimization algorithm, i.e., Characteristic statistic algorithm (CSA), is used. The searching process of this algorithm and how to apply it to this problem are presented. Loading pattern optimization code SCYCLE is developed. Two different problems on real PWR models are calculated and the results are compared with other algorithms. It is shown that SCYCLE has high efficiency and good global performance on this problem. (authors)

  7. MTR core loading pattern optimization using burnup dependent group constants

    Directory of Open Access Journals (Sweden)

    Iqbal Masood

    2008-01-01

    Full Text Available A diffusion theory based MTR fuel management methodology has been developed for finding superior core loading patterns at any stage for MTR systems, keeping track of burnup of individual fuel assemblies throughout their history. It is based on using burnup dependent group constants obtained by the WIMS-D/4 computer code for standard fuel elements and control fuel elements. This methodology has been implemented in a computer program named BFMTR, which carries out detailed five group diffusion theory calculations using the CITATION code as a subroutine. The core-wide spatial flux and power profiles thus obtained are used for calculating the peak-to-average power and flux-ratios along with the available excess reactivity of the system. The fuel manager can use the BFMTR code for loading pattern optimization for maximizing the excess reactivity, keeping the peak-to-average power as well as flux-ratio within constraints. The results obtained by the BFMTR code have been found to be in good agreement with the corresponding experimental values for the equilibrium core of the Pakistan Research Reactor-1.

  8. Westinghouse loading pattern search methodology for complex core designs

    International Nuclear Information System (INIS)

    Chao, Y.A.; Alsop, B.H.; Johansen, B.J.; Morita, T.

    1991-01-01

    Pressurized water reactor core designs have become more complex and must meet a plethora of design constraints. Trends have been toward longer cycles with increased discharge burnup, increased burnable absorber (BA) number, mixed BA types, reduced radial leakage, axially blanketed fuel, and multiple-batch feed fuel regions. Obtaining economical reload core loading patterns (LPs) that meet design criteria is a difficult task to do manually. Automated LP search tools are needed. An LP search tool cannot possibly perform an exhaustive search because of the sheer size of the combinatorial problem. On the other hand, evolving complexity of the design features and constraints often invalidates expert rules based on past design experiences. Westinghouse has developed a sophisticated loading pattern search methodology. This methodology is embodied in the LPOP code, which Westinghouse nuclear designers use extensively. The LPOP code generates a variety of LPs meeting design constraints and performs a two-cycle economic evaluation of the generated LPs. The designer selects the most appropriate patterns for fine tuning and evaluation by the design codes. This paper describes the major features of the LPOP methodology that are relevant to fulfilling the aforementioned requirements. Data and examples are also provided to demonstrate the performance of LPOP in meeting the complex design needs

  9. On Input Vector Representation for the SVR model of Reactor Core Loading Pattern Critical Parameters

    International Nuclear Information System (INIS)

    Trontl, K.; Pevec, D.; Smuc, T.

    2008-01-01

    Determination and optimization of reactor core loading pattern is an important factor in nuclear power plant operation. The goal is to minimize the amount of enriched uranium (fresh fuel) and burnable absorbers placed in the core, while maintaining nuclear power plant operational and safety characteristics. The usual approach to loading pattern optimization involves high degree of engineering judgment, a set of heuristic rules, an optimization algorithm and a computer code used for evaluating proposed loading patterns. The speed of the optimization process is highly dependent on the computer code used for the evaluation. Recently, we proposed a new method for fast loading pattern evaluation based on general robust regression model relying on the state of the art research in the field of machine learning. We employed Support Vector Regression (SVR) technique. SVR is a supervised learning method in which model parameters are automatically determined by solving a quadratic optimization problem. The preliminary tests revealed a good potential of the SVR method application for fast and accurate reactor core loading pattern evaluation. However, some aspects of model development are still unresolved. The main objective of the work reported in this paper was to conduct additional tests and analyses required for full clarification of the SVR applicability for loading pattern evaluation. We focused our attention on the parameters defining input vector, primarily its structure and complexity, and parameters defining kernel functions. All the tests were conducted on the NPP Krsko reactor core, using MCRAC code for the calculation of reactor core loading pattern critical parameters. The tested input vector structures did not influence the accuracy of the models suggesting that the initially tested input vector, consisted of the number of IFBAs and the k-inf at the beginning of the cycle, is adequate. The influence of kernel function specific parameters (σ for RBF kernel

  10. Genetic algorithm for the optimization of the loading pattern for reactor core fuel management

    International Nuclear Information System (INIS)

    Zhou Sheng; Hu Yongming; zheng Wenxiang

    2000-01-01

    The paper discusses the application of a genetic algorithm to the optimization of the loading pattern for in-core fuel management with the NP characteristics. The algorithm develops a matrix model for the fuel assembly loading pattern. The burnable poisons matrix was assigned randomly considering the distributed nature of the poisons. A method based on the traveling salesman problem was used to solve the problem. A integrated code for in-core fuel management was formed by combining this code with a reactor physics code

  11. Automatic determination of pressurized water reactor core loading patterns that maximize beginning-of-cycle reactivity within power-peaking and burnup constraints

    International Nuclear Information System (INIS)

    Hobson, G.H.; Turinsky, P.J.

    1986-01-01

    Computational capability has been developed to automatically determine a good estimate of the core loading pattern, which minimizes fuel cycle costs for a pressurized water reactor (PWR). Equating fuel cycle cost minimization with core reactivity maximization, the objective is to determine the loading pattern that maximizes core reactivity while satisfying power peaking, discharge burnup, and other constraints. The method utilizes a two-dimensional, coarse-mesh, finite difference scheme to evaluate core reactivity and fluxes for an initial reference loading pattern. First-order perturbation theory is applied to determine the effects of assembly shuffling on reactivity, power distribution, end-of-cycle burnup. Monte Carlo integer programming is then used to determine a near-optimal loading pattern within a range of loading patterns near the reference pattern. The process then repeats with the new loading pattern as the reference loading pattern and terminates when no better loading pattern can be determined. The process was applied with both reactivity maximization and radial power-peaking minimization as objectives. Results on a typical large PWR indicate that the cost of obtaining an 8% improvement in radial power-peaking margin is ≅2% in fuel cycle costs, for the reload core loaded without burnable poisons that was studied

  12. Automatic determination of pressurized water reactor core loading patterns which maximize end-of-cycle reactivity within power peaking and burnup constraints

    International Nuclear Information System (INIS)

    Hobson, G.H.

    1985-01-01

    An automated procedure for determining the optimal core loading pattern for a pressurized water reactor which maximizes end-of-cycle k/sub eff/ while satisfying constraints on power peaking and discharge burnup has been developed. The optimization algorithm combines a two energy group, two-dimensional coarse-mesh finite difference diffusion theory neutronics model to simulate core conditions, a perturbation theory approach to determine reactivity, flux, power and burnup changes as a function of assembly shuffling, and Monte Carlo integer programming to select the optimal loading pattern solution. The core examined was a typical Cycle 2 reload with no burnable poisons. Results indicate that the core loading pattern that maximizes end-of-cycle k/sub eff/ results in a 5.4% decrease in fuel cycle costs compared with the core loading pattern that minimizes the maximum relative radial power peak

  13. SEDRIO/INCORE, an automatic optimal loading pattern search system for PWR NPP reload core using an expert system

    International Nuclear Information System (INIS)

    Xian Chunyu; Zhang Zongyao

    2003-01-01

    The expert knowledge library for Daya Bay and Qinshan phase II NPP has been established based on expert knowledge, and the reload core loading pattern heuristic search is performed. The in-core fuel management code system INCORE that has been used in engineering design is employed for neutron calculation, and loading pattern is evaluated by using of cycle length and core radial power peaking factor. The developed system SEDRIO/INCORE has been applied in cycle 4 for unit 2 of Daya Bay NPP and cycle 4 for Phase II in Qinshan NPP. The application demonstrated that the loading patterns obtained by SEDRIO/INCORE system are much better than reference ones from the view of the radial power peak and the cycle length

  14. Optimization of fuel core loading pattern design in a VVER nuclear power reactors using Particle Swarm Optimization (PSO)

    International Nuclear Information System (INIS)

    Babazadeh, Davood; Boroushaki, Mehrdad; Lucas, Caro

    2009-01-01

    The two main goals in core fuel loading pattern design optimization are maximizing the core effective multiplication factor (K eff ) in order to extract the maximum energy, and keeping the local power peaking factor (P q ) lower than a predetermined value to maintain fuel integrity. In this research, a new strategy based on Particle Swarm Optimization (PSO) algorithm has been developed to optimize the fuel core loading pattern in a typical VVER. The PSO algorithm presents a simple social model by inspiration from bird collective behavior in finding food. A modified version of PSO algorithm for discrete variables has been developed and implemented successfully for the multi-objective optimization of fuel loading pattern design with constraints of keeping P q lower than a predetermined value and maximizing K eff . This strategy has been accomplished using WIMSD and CITATION calculation codes. Simulation results show that this algorithm can help in the acquisition of a new pattern without contravention of the constraints.

  15. Generalized perturbation theory error control within PWR core-loading pattern optimization

    International Nuclear Information System (INIS)

    Imbriani, J.S.; Turinsky, P.J.; Kropaczek, D.J.

    1995-01-01

    The fuel management optimization code FORMOSA-P has been developed to determine the family of near-optimum loading patterns for PWR reactors. The code couples the optimization technique of simulated annealing (SA) with a generalized perturbation theory (GPT) model for evaluating core physics characteristics. To ensure the accuracy of the GPT predictions, as well as to maximize the efficient of the SA search, a GPT error control method has been developed

  16. The PWR loading pattern optimization in X-IMAGE

    International Nuclear Information System (INIS)

    Stevens, J.G.; Smith, K.S.; Rempe, K.R.; Downar, T.J.

    1993-01-01

    The design of reactor core loading patterns is difficult due to the staggering number of patterns. The integer nature and nonlinear neutronic response of core design preclude simple prescriptions for generation of the feasible patterns, much less optimization among feasible candidates. Fortunately, recent developments in optimization, graphical user interfaces (GUIs), and the speed and low cost of engineering workstations combine to make loading pattern automation possible. The optimization module SIMAN has been added to X-IMAGE to automatically generate high-quality core loadings

  17. An automated optimization of core fuel loading pattern for pressurized water reactors

    International Nuclear Information System (INIS)

    Chen Renji

    1988-11-01

    An optimum method was adopted to search for an optimum fuel loading pattern in pressurized water reactors. A radial power peak factor was chosen as the objective function of the optimum loading. The direct search method with shuffling rules is used to find optimum solution. The search for an optimum loading pattern with the smallest radial power peak by exchanging fuel assemblies was made. The search process is divided into two steps. In the first step fresh fuels or high reactivity fuels are arranged which are placed in core interior to have a reasonable fuel loading pattern. To further reduce the radial power peak factor, the second step will be necessary to rearrange the exposed lower reactivity fuel around the assemblies which has the radial power peak. In optimum process 1.5 group coarse mesh diffusion theory or two group nodal Green function diffusion theory is utilized to calculate the two dimensional power distribution after each shuffle. Also, above two methods are combinatively utilized to calculate the state quantity. It is not only true to save CPU time, but also can obtian exact results. Besides above function, the code MSOFEL is used to search critical boron concentration and to predict burn-up. The code has been written with FORTRAN-4. The optimum loading pattern was chosen for OCONEE and QINSHAN nuclear power plants as reference examples. The validity and feasibility of MSOFEL was demonstrated

  18. Research on loading pattern optimization for VVER reactor

    International Nuclear Information System (INIS)

    Tran Viet Phu; Nguyen Thi Mai Huong; Nguyen Huu Tiep; Ta Duy Long; Tran Vinh Thanh; Tran Hoai Nam

    2017-01-01

    A study on fuel loading pattern optimization of a VVER reactor was performed. In this study, a core physics simulator was developed based on a multi-group diffusion theory for the use in the problem of fuel loading optimization of VVER reactors. The core simulator could handle the triangular meshes of the core and the computational speed is fast. Verification of the core simulator was confirmed against a benchmark problem of a VVER-1000 reactor. Several optimization methods such as DS, SA, TS and a combination of them were investigated and implemented in coupling with the core simulator. Calculations was performed for optimizing the fuel loading pattern of the core using these methods based on a benchmark core model in comparison with the reference core. Comparison among these methods have shown that a combination of SA+TS is the most effective for the problem of fuel loading pattern optimization. Advanced methods are being researched continuously. (author)

  19. Stochastic optimization of loading pattern for PWR

    International Nuclear Information System (INIS)

    Smuc, T.; Pevec, D.

    1994-01-01

    The application of stochastic optimization methods in solving in-core fuel management problems is restrained by the need for a large number of proposed solutions loading patterns, if a high quality final solution is wanted. Proposed loading patterns have to be evaluated by core neutronics simulator, which can impose unrealistic computer time requirements. A new loading pattern optimization code Monte Carlo Loading Pattern Search has been developed by coupling the simulated annealing optimization algorithm with a fast one-and-a-half dimensional core depletion simulator. The structure of the optimization method provides more efficient performance and allows the user to empty precious experience in the search process, thus reducing the search space size. Hereinafter, we discuss the characteristics of the method and illustrate them on the results obtained by solving the PWR reload problem. (authors). 7 refs., 1 tab., 1 fig

  20. Optimized core loading sequence for Ukraine WWER-1000 reactors

    International Nuclear Information System (INIS)

    Dye, M.; Shah, H.

    2015-01-01

    Fuel Assemblies (WFAs) experienced mechanical damage of the grids during loading at both South Ukraine 2 (SU2) and South Ukraine 3 (SU3). The grids were damaged due to high lateral loads exceeding their strength limit. The high lateral loads were caused by a combination of distortion and stiffness of the mixed core fuel assemblies and significant fuel assembly-to-fuel assembly interaction combined with the core loading sequence being used. To prevent damage of the WFA grids during core loading, Westinghouse has developed a loading sequence technique and loading aides (smooth sided dummies and top nozzle loading guides) designed to minimize fuel assembly-to-fuel assembly interaction while maximizing the potential for successful loading (i.e., no fuel assembly damage and minimized loading time). The loading sequence technique accounts for cycle-specific core loading patterns and is based on previous Westinghouse WWER core loading experience and fundamental principles. The loading aids are developed to “open-up” the target core location or to provide guidance into a target core location. The Westinghouse optimized core loading sequence and smooth sided dummies were utilized during the successful loading of SU3 Cycle 25 mixed core in March 2015, with no instances of fuel assembly damage and yet still provided considerable time savings relative to the 2012 and 2013 SU3 reload campaigns. (authors)

  1. An Interval Bound Algorithm of optimizing reactor core loading pattern by using reactivity interval schema

    International Nuclear Information System (INIS)

    Gong Zhaohu; Wang Kan; Yao Dong

    2011-01-01

    Highlights: → We present a new Loading Pattern Optimization method - Interval Bound Algorithm (IBA). → IBA directly uses the reactivity of fuel assemblies and burnable poison. → IBA can optimize fuel assembly orientation in a coupled way. → Numerical experiment shows that IBA outperforms genetic algorithm and engineers. → We devise DDWF technique to deal with multiple objectives and constraints. - Abstract: In order to optimize the core loading pattern in Nuclear Power Plants, the paper presents a new optimization method - Interval Bound Algorithm (IBA). Similar to the typical population based algorithms, e.g. genetic algorithm, IBA maintains a population of solutions and evolves them during the optimization process. IBA acquires the solution by statistical learning and sampling the control variable intervals of the population in each iteration. The control variables are the transforms of the reactivity of fuel assemblies or the worth of burnable poisons, which are the crucial heuristic information for loading pattern optimization problems. IBA can deal with the relationship between the dependent variables by defining the control variables. Based on the IBA algorithm, a parallel Loading Pattern Optimization code, named IBALPO, has been developed. To deal with multiple objectives and constraints, the Dynamic Discontinuous Weight Factors (DDWF) for the fitness function have been used in IBALPO. Finally, the code system has been used to solve a realistic reloading problem and a better pattern has been obtained compared with the ones searched by engineers and genetic algorithm, thus the performance of the code is proved.

  2. Loading pattern optimization by multi-objective simulated annealing with screening technique

    International Nuclear Information System (INIS)

    Tong, K. P.; Hyun, C. L.; Hyung, K. J.; Chang, H. K.

    2006-01-01

    This paper presents a new multi-objective function which is made up of the main objective term as well as penalty terms related to the constraints. All the terms are represented in the same functional form and the coefficient of each term is normalized so that each term has equal weighting in the subsequent simulated annealing optimization calculations. The screening technique introduced in the previous work is also adopted in order to save computer time in 3-D neutronics evaluation of trial loading patterns. For numerical test of the new multi-objective function in the loading pattern optimization, the optimum loading patterns for the initial and the cycle 7 reload PWR core of Yonggwang Unit 4 are calculated by the simulated annealing algorithm with screening technique. A total of 10 optimum loading patterns are obtained for the initial core through 10 independent simulated annealing optimization runs. For the cycle 7 reload core one optimum loading pattern has been obtained from a single simulated annealing optimization run. More SA optimization runs will be conducted to optimum loading patterns for the cycle 7 reload core and results will be presented in the further work. (authors)

  3. Optimization of refueling loading pattern of uranium zirconium hydride research reactor

    International Nuclear Information System (INIS)

    Chen Wei; Xie Zhongsheng; Chen Da

    1999-01-01

    The orthogonal design method is used in the optimization of in-core fuel management. A code package of in-core fuel management in hexagonal geometry HEX-ORTH is developed. The loading pattern after the end of 3 cycle of Xi'an Pulsed Reactor is optimized using the HEX-ORTH. The optimistic loading pattern of the core are obtained as the objective function is Max(k eff BOC )

  4. Application of the robust design concept for fuel loading pattern

    International Nuclear Information System (INIS)

    Endo, Tomohiro; Ohori, Kazuma; Yamamoto, Akio

    2011-01-01

    Application of the robust design concept for fuel loading pattern design is proposed as a new approach to improve the prediction accuracy of core characteristics. The robust design is a design concept that establishes a resistant (robust) system for perturbations or noises, by properly setting design variables. In order to apply the concept of robust design to fuel loading pattern design, we focus on a theoretical approach based on the higher order perturbation method. This approach indicates that the eigenvalue separation is one of the effective indices to measure the robustness of a designed fuel loading pattern. In order to verify the effectiveness of the eigenvalue separation as an index of robustness, numerical analysis is carried out for typical 3-loop PWR cores, and we evaluated the correlation between the eigenvalue separation and the variation of relative assembly power due to the perturbation of the cross section. The numerical results show that the variation of relative power decreases as the eigenvalue separation increases; thus, it is confirmed that the eigenvalue separation is an effective index of robustness. Based on the eigenvalue separation of a fuel loading pattern, we discuss design guidelines of a fuel loading pattern to improve the robustness. For example, if each fuel assembly has independent uncertainty on its cross section, the robustness of the core can be enhanced by increasing the relative power at the center of the core. The proposed guidelines will be useful to design a loading pattern that has robustness for uncertainties due to cross section, calculation method, and so on. (author)

  5. Automatic determination of BWR fuel loading patterns based on K.E. technique with core physics simulation

    International Nuclear Information System (INIS)

    Ikehara, T.; Tsuiki, M.; Takeshita, T.

    1990-01-01

    On the basis oof a computerized search method, a prototype for a fuel loading pattern expert system has been developed to support designers in core design for BWRs. The method was implemented by coupling rules and core physics simulators into an inference engine to establish an automated generate-and-test cycle. A search control mechanism, which prunes paths to be searched and selects appropriate rules through the interaction with the user, was also introduced to accomplish an effective search. The constraints in BWR core design are: (1) cycle length more than L, (2) core shutdown margin more than S, and (3) thermal margin more than T. Here L, S, and T are the specified minimum values. In this system, individual rules contain the manipulation to improve the core shutdown margin explicitly. Other items were taken into account only implicitly. Several applications to the test cases were carried out. It was found that the results were comparable with those obtained by human expert engineers. Broad applicability of the present method in the BWR core design domain was proved

  6. Continuous firefly algorithm applied to PWR core pattern enhancement

    International Nuclear Information System (INIS)

    Poursalehi, N.; Zolfaghari, A.; Minuchehr, A.; Moghaddam, H.K.

    2013-01-01

    Highlights: ► Numerical results indicate the reliability of CFA for the nuclear reactor LPO. ► The major advantages of CFA are its light computational cost and fast convergence. ► Our experiments demonstrate the ability of CFA to obtain the near optimal loading pattern. -- Abstract: In this research, the new meta-heuristic optimization strategy, firefly algorithm, is developed for the nuclear reactor loading pattern optimization problem. Two main goals in reactor core fuel management optimization are maximizing the core multiplication factor (K eff ) in order to extract the maximum cycle energy and minimizing the power peaking factor due to safety constraints. In this work, we define a multi-objective fitness function according to above goals for the core fuel arrangement enhancement. In order to evaluate and demonstrate the ability of continuous firefly algorithm (CFA) to find the near optimal loading pattern, we developed CFA nodal expansion code (CFANEC) for the fuel management operation. This code consists of two main modules including CFA optimization program and a developed core analysis code implementing nodal expansion method to calculate with coarse meshes by dimensions of fuel assemblies. At first, CFA is applied for the Foxholes test case with continuous variables in order to validate CFA and then for KWU PWR using a decoding strategy for discrete variables. Results indicate the efficiency and relatively fast convergence of CFA in obtaining near optimal loading pattern with respect to considered fitness function. At last, our experience with the CFA confirms that the CFA is easy to implement and reliable

  7. Continuous firefly algorithm applied to PWR core pattern enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Poursalehi, N., E-mail: npsalehi@yahoo.com [Engineering Department, Shahid Beheshti University, G.C., P.O. Box 1983963113, Tehran (Iran, Islamic Republic of); Zolfaghari, A.; Minuchehr, A.; Moghaddam, H.K. [Engineering Department, Shahid Beheshti University, G.C., P.O. Box 1983963113, Tehran (Iran, Islamic Republic of)

    2013-05-15

    Highlights: ► Numerical results indicate the reliability of CFA for the nuclear reactor LPO. ► The major advantages of CFA are its light computational cost and fast convergence. ► Our experiments demonstrate the ability of CFA to obtain the near optimal loading pattern. -- Abstract: In this research, the new meta-heuristic optimization strategy, firefly algorithm, is developed for the nuclear reactor loading pattern optimization problem. Two main goals in reactor core fuel management optimization are maximizing the core multiplication factor (K{sub eff}) in order to extract the maximum cycle energy and minimizing the power peaking factor due to safety constraints. In this work, we define a multi-objective fitness function according to above goals for the core fuel arrangement enhancement. In order to evaluate and demonstrate the ability of continuous firefly algorithm (CFA) to find the near optimal loading pattern, we developed CFA nodal expansion code (CFANEC) for the fuel management operation. This code consists of two main modules including CFA optimization program and a developed core analysis code implementing nodal expansion method to calculate with coarse meshes by dimensions of fuel assemblies. At first, CFA is applied for the Foxholes test case with continuous variables in order to validate CFA and then for KWU PWR using a decoding strategy for discrete variables. Results indicate the efficiency and relatively fast convergence of CFA in obtaining near optimal loading pattern with respect to considered fitness function. At last, our experience with the CFA confirms that the CFA is easy to implement and reliable.

  8. WWER core pattern enhancement using adaptive improved harmony search

    International Nuclear Information System (INIS)

    Nazari, T.; Aghaie, M.; Zolfaghari, A.; Minuchehr, A.; Norouzi, A.

    2013-01-01

    Highlights: ► The classical and improved harmony search algorithms are introduced. ► The advantage of IHS is demonstrated in Shekel's Foxholes. ► The CHS and IHS are compared with other Heuristic algorithms. ► The adaptive improved harmony search is applied for two cases. ► Two cases of WWER core are optimized in BOC FA pattern. - Abstract: The efficient operation and fuel management of PWRs are of utmost importance. Core performance analysis constitutes an essential phase in core fuel management optimization. Finding an optimum core arrangement for loading of fuel assemblies, FAs, in a nuclear core is a complex problem. In this paper, application of classical harmony search (HS) and adaptive improved harmony search (IHS) in loading pattern (LP) design, for pressurized water reactors, is described. In this analysis, finding the best core pattern, which attains maximum multiplication factor, k eff , by considering maximum allowable power picking factors (PPF) is the main objective. Therefore a HS based, LP optimization code is prepared and CITATION code which is a neutronic calculation code, applied to obtain effective multiplication factor, neutron fluxes and power density in desired cores. Using adaptive improved harmony search and neutronic code, generated LP optimization code, could be applicable for PWRs core with many numbers of FAs. In this work, at first step, HS and IHS efficiencies are compared with some other heuristic algorithms in Shekel's Foxholes problem and capability of the adaptive improved harmony search is demonstrated. Results show, efficient application of IHS. At second step, two WWER cases are studied and then IHS proffered improved core patterns with regard to mentioned objective functions.

  9. WWER core pattern enhancement using adaptive improved harmony search

    Energy Technology Data Exchange (ETDEWEB)

    Nazari, T. [Nuclear Engineering Department, Shahid Beheshti University, G.C., P.O. Box 1983963113, Tehran (Iran, Islamic Republic of); Aghaie, M., E-mail: M_Aghaie@sbu.ac.ir [Nuclear Engineering Department, Shahid Beheshti University, G.C., P.O. Box 1983963113, Tehran (Iran, Islamic Republic of); Zolfaghari, A.; Minuchehr, A.; Norouzi, A. [Nuclear Engineering Department, Shahid Beheshti University, G.C., P.O. Box 1983963113, Tehran (Iran, Islamic Republic of)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer The classical and improved harmony search algorithms are introduced. Black-Right-Pointing-Pointer The advantage of IHS is demonstrated in Shekel's Foxholes. Black-Right-Pointing-Pointer The CHS and IHS are compared with other Heuristic algorithms. Black-Right-Pointing-Pointer The adaptive improved harmony search is applied for two cases. Black-Right-Pointing-Pointer Two cases of WWER core are optimized in BOC FA pattern. - Abstract: The efficient operation and fuel management of PWRs are of utmost importance. Core performance analysis constitutes an essential phase in core fuel management optimization. Finding an optimum core arrangement for loading of fuel assemblies, FAs, in a nuclear core is a complex problem. In this paper, application of classical harmony search (HS) and adaptive improved harmony search (IHS) in loading pattern (LP) design, for pressurized water reactors, is described. In this analysis, finding the best core pattern, which attains maximum multiplication factor, k{sub eff}, by considering maximum allowable power picking factors (PPF) is the main objective. Therefore a HS based, LP optimization code is prepared and CITATION code which is a neutronic calculation code, applied to obtain effective multiplication factor, neutron fluxes and power density in desired cores. Using adaptive improved harmony search and neutronic code, generated LP optimization code, could be applicable for PWRs core with many numbers of FAs. In this work, at first step, HS and IHS efficiencies are compared with some other heuristic algorithms in Shekel's Foxholes problem and capability of the adaptive improved harmony search is demonstrated. Results show, efficient application of IHS. At second step, two WWER cases are studied and then IHS proffered improved core patterns with regard to mentioned objective functions.

  10. Optimal fuel loading pattern design using artificial intelligence techniques

    International Nuclear Information System (INIS)

    Kim, Han Gon; Chang, Soon Heung; Lee, Byung Ho

    1993-01-01

    The Optimal Fuel Shuffling System (OFSS) is developed for optimal design of PWR fuel loading pattern. OFSS is a hybrid system that a rule based system, a fuzzy logic, and an artificial neural network are connected each other. The rule based system classifies loading patterns into two classes using several heuristic rules and a fuzzy rule. A fuzzy rule is introduced to achieve more effective and fast searching. Its membership function is automatically updated in accordance with the prediction results. The artificial neural network predicts core parameters for the patterns generated from the rule based system. The back-propagation network is used for fast prediction of core parameters. The artificial neural network and the fuzzy logic can be used as the tool for improvement of existing algorithm's capabilities. OFSS was demonstrated and validated for cycle 1 of Kori unit 1 PWR. (Author)

  11. Loading method of core constituting elements

    International Nuclear Information System (INIS)

    Kasai, Shigeo

    1976-01-01

    Purpose: To provide a remote-controlled replacing method for core constituting elements in a liquid-metal cooling fast breeder, wherein particularly, the core constituting elements are prevented from being loaded on the core position other than as designated. Constitution: The method comprises a first step which determines a position of a suitable neutron shielding body in order to measure a reference level of complete insertion of the core constituting elements, a second step which inserts a gripper for a fuel exchanger, a third step which decides stroke dimensions of the complete insertion, and a fourth step which discriminates the core constituting elements to begin handling of fuel rods. The method further comprises a fifth step which determines a loading position of fuel rod, and a sixth step which inserts and loads fuel rods into the core. The method still further comprises a seventh step which compares and judges the dimension of loading stroke and the dimension of complete inserting stroke so that when coincided, loading is completed, and when not coincided, loading is not completed and then the cycle of the fourth step is repeated. (Kawakami, Y.)

  12. Fuel assemblies mechanical behaviour improvements based on design changes and loading patterns computational analyses

    International Nuclear Information System (INIS)

    Marin, J.; Aullo, M.; Gutierrez, E.

    2001-01-01

    In the past few years, incomplete RCCA insertion events (IRI) have been taking place at some nuclear plants. Large guide thimble distortion caused by high compressive loads together with the irradiation induced material creep and growth, is considered as the primary cause of those events. This disturbing phenomenon is worsened when some fuel assemblies are deformed to the extent that they push the neighbouring fuel assemblies and the distortion is transmitted along the core. In order to better understand this mechanism, ENUSA has developed a methodology based on finite element core simulation to enable assessments on the propensity of a given core loading pattern to propagate the distortion along the core. At the same time, the core loading pattern could be decided interacting with nuclear design to obtain the optimum response under both, nuclear and mechanical point of views, with the objective of progressively attenuating the core distortion. (author)

  13. Application of a genetic algorithm to core reload pattern optimization

    International Nuclear Information System (INIS)

    Tanker, E.; Tanker, A.Z.

    1994-01-01

    A genetic algorithm is applied to reload pattern optimization of a PWR core. Evaluating all different distributions of a given batch load separately is found slow and ineffective. Allowing patterns from different distributions to combine reproduce, an optimized pattern better than that obtained from from linear programming is found, albeit in a longer time. (authors). 5 refs., 2 tabs

  14. Multicycle Optimization of Advanced Gas-Cooled Reactor Loading Patterns Using Genetic Algorithms

    International Nuclear Information System (INIS)

    Ziver, A. Kemal; Carter, Jonathan N.; Pain, Christopher C.; Oliveira, Cassiano R.E. de; Goddard, Antony J. H.; Overton, Richard S.

    2003-01-01

    A genetic algorithm (GA)-based optimizer (GAOPT) has been developed for in-core fuel management of advanced gas-cooled reactors (AGRs) at HINKLEY B and HARTLEPOOL, which employ on-load and off-load refueling, respectively. The optimizer has been linked to the reactor analysis code PANTHER for the automated evaluation of loading patterns in a two-dimensional geometry, which is collapsed from the three-dimensional reactor model. GAOPT uses a directed stochastic (Monte Carlo) algorithm to generate initial population members, within predetermined constraints, for use in GAs, which apply the standard genetic operators: selection by tournament, crossover, and mutation. The GAOPT is able to generate and optimize loading patterns for successive reactor cycles (multicycle) within acceptable CPU times even on single-processor systems. The algorithm allows radial shuffling of fuel assemblies in a multicycle refueling optimization, which is constructed to aid long-term core management planning decisions. This paper presents the application of the GA-based optimization to two AGR stations, which apply different in-core management operational rules. Results obtained from the testing of GAOPT are discussed

  15. Comparison of optimization of loading patterns on the basis of SA and PMA algorithms

    International Nuclear Information System (INIS)

    Beliczai, Botond

    2007-01-01

    Optimization of loading patterns is a very important task from economical point of view in a nuclear power plant. The optimization algorithms used for this purpose can be categorized basically into two categories: deterministic ones and stochastic ones. In the Paks nuclear power plant a deterministic optimization procedure is used to optimize the loading pattern at BOC, so that the core would have maximal reactivity reserve. To the group of stochastic optimization procedures belong mainly simulated annealing (SA) procedures and genetic algorithms (GA). There are new procedures as well, which try to combine the advantages of SAs and GAs. One of them is called population mutation annealing algorithm (PMA). In the Paks NPP we would like to introduce fuel assemblies including burnable poison (Gd) in the near future. In order to be able to find the optimal loading pattern (or near-optimal loading patterns) in that case, we have to optimize our core not only for objective functions defined at BOC, but at EOC as well. For this purpose I used stochastic algorithms (SA and PMA) to investigate loading pattern optimization results for different objective functions at BOC. (author)

  16. Study on ant colony optimization for fuel loading pattern problem

    International Nuclear Information System (INIS)

    Kishi, Hironori; Kitada, Takanori

    2013-01-01

    Modified ant colony optimization (ACO) was applied to the in-core fuel loading pattern (LP) optimization problem to minimize the power peaking factor (PPF) in the modeled 1/4 symmetry PWR core. Loading order was found to be important in ACO. Three different loading orders with and without the adjacent effect between fuel assemblies (FAs) were compared, and it was found that the loading order from the central core is preferable because many selections of FAs to be inserted are available in the core center region. LPs were determined from pheromone trail and heuristic information, which is a priori knowledge based on the feature of the problem. Three types of heuristic information were compared to obtain the desirable performance of searching LPs with low PPF. Moreover, mutation operation, such as the genetic algorithm (GA), was introduced into the ACO algorithm to avoid searching similar LPs because heuristic information used in ACO tends to localize the searching space in the LP problem. The performance of ACO with some improvement was compared with those of simulated annealing and GA. In conclusion, good performance can be achieved by setting proper heuristic information and mutation operation parameter in ACO. (author)

  17. A loading pattern optimization method for nuclear fuel management

    International Nuclear Information System (INIS)

    Argaud, J.P.

    1997-01-01

    Nuclear fuel reload of PWR core leads to the search of an optimal nuclear fuel assemblies distribution, namely of loading pattern. This large discrete optimization problem is here expressed as a cost function minimization. To deal with this problem, an approach based on gradient information is used to direct the search in the patterns discrete space. A method using an adjoint state formulation is then developed, and final results of complete patterns search tests by this method are presented. (author)

  18. Performance of Estimation of distribution algorithm for initial core loading optimization of AHWR-LEU

    International Nuclear Information System (INIS)

    Thakur, Amit; Singh, Baltej; Gupta, Anurag; Duggal, Vibhuti; Bhatt, Kislay; Krishnani, P.D.

    2016-01-01

    Highlights: • EDA has been applied to optimize initial core of AHWR-LEU. • Suitable value of weighing factor ‘α’ and population size in EDA was estimated. • The effect of varying initial distribution function on optimized solution was studied. • For comparison, Genetic algorithm was also applied. - Abstract: Population based evolutionary algorithms now form an integral part of fuel management in nuclear reactors and are frequently being used for fuel loading pattern optimization (LPO) problems. In this paper we have applied Estimation of distribution algorithm (EDA) to optimize initial core loading pattern (LP) of AHWR-LEU. In EDA, new solutions are generated by sampling the probability distribution model estimated from the selected best candidate solutions. The weighing factor ‘α’ decides the fraction of current best solution for updating the probability distribution function after each generation. A wider use of EDA warrants a comprehensive study on parameters like population size, weighing factor ‘α’ and initial probability distribution function. In the present study, we have done an extensive analysis on these parameters (population size, weighing factor ‘α’ and initial probability distribution function) in EDA. It is observed that choosing a very small value of ‘α’ may limit the search of optimized solutions in the near vicinity of initial probability distribution function and better loading patterns which are away from initial distribution function may not be considered with due weightage. It is also observed that increasing the population size improves the optimized loading pattern, however the algorithm still fails if the initial distribution function is not close to the expected optimized solution. We have tried to find out the suitable values for ‘α’ and population size to be considered for AHWR-LEU initial core loading pattern optimization problem. For sake of comparison and completeness, we have also addressed the

  19. Loading pattern optimization in hexagonal geometry using PANTHER

    International Nuclear Information System (INIS)

    Parks, G.T.; Knight, M.P.

    1996-01-01

    The extension of the loading pattern optimization capability of Nuclear Electric's reactor physics code PANTHER to hexagonal geometry cores is described. The variety of search methods available and the code's performance are illustrated by an example in which three search different methods are used in turn in order to find an optimal reload design for a sample hexagonal geometry problem. (author)

  20. Influence of fuel assembly loading pattern and fuel burnups upon leakage neutron flux spectra from light water reactor core (Joint research)

    International Nuclear Information System (INIS)

    Kojima, Kensuke; Okumura, Keisuke; Kosako, Kazuaki; Torii, Kazutaka

    2016-01-01

    At the decommissioning of light water reactors (LWRs), it is important to evaluate an amount of radioactivity in the ex-core structures such as a reactor containment vessel, radiation shieldings, and so on. It is thought that the leakage neutron spectra in these radioactivation regions, which strongly affect the induced radioactivity, would be changed by different reactor core configurations such as fuel assembly loading pattern and fuel burnups. This study was intended to evaluate these effects. For this purpose, firstly, partial neutron currents on the core surfaces were calculated for some core configurations. Then, the leakage neutron flux spectra in major radioactivation regions were calculated based on the provided currents. Finally, influence of the core configurations upon the neutron flux spectra was evaluated. As a result, it has been found that the influence is small on the spectrum shapes of neutron fluxes. However, it is necessary to pay attention to the facts that intensities of the leakage neutron fluxes are changed by the configurations and that intensities and spectrum shapes of the leakage neutron fluxes are changed depending on the angular direction around the core. (author)

  1. A feasibility study of low-order harmonics expansion applied to loading pattern search

    Energy Technology Data Exchange (ETDEWEB)

    Shaohong, Z.; Dong, L.; Tao, W. [Shanghai Jiao Tong Univ., 1954 Hua Shan Road, Shanghai, 200030 (China); Chao, Y. A. [Westinghouse Electric Company, P. O. Box 355, Pittsburgh, PA 15230-0355 (United States)

    2006-07-01

    Despite significant progress in core loading pattern search methods over years, there still remains the issue of large computing workload and the need for improving the speed of evaluating loading pattern candidates during the search process. This paper focuses on improving the computing speed for loading pattern evaluation, rather than the method of searching for the patterns. A low order harmonics expansion method for flux distribution representation is proposed for fast LP evaluation application. The novel feature of the method is the separation of the short range local perturbation effect from the long range global tilt effect. The latter effect can be captured by low order harmonics expansion. Demonstration examples are presented to show that even for extremely large perturbations induced by fuel shuffling the proposed method can accurately calculate the flux distribution for the LP with very minimal computation. (authors)

  2. Structural assessment of TAPS core shroud under accident loads

    International Nuclear Information System (INIS)

    Bhasin, Vivek; Kushwaha, H.S.; Mahajan, S.C.; Kakodkar, A.

    1996-09-01

    Over the last few years, the Core Shroud of Boiling Water Reactors (BWRs) operating in foreign countries, have developed cracks at weld locations. As a first step for assessment of structural safety of Tarapur Atomic Power Station (TAPS) core shroud, its detailed stress analysis was done for postulated accident loads. This report is concerned with structural assessment of core shroud, of BWR at TAPS, subjected to loads resulting from main steam line break (MSLB), recirculation line break (RLB) and safe shut down earthquake. The stress analysis was done for core shroud in healthy condition and without any crack since, visual examination conducted till now, do not indicate presence of any flaw. Dynamic structural analysis for MSLB and RLB events was done using dynamic load factor (DLF) method. The complete core shroud and its associated components were modelled and analysed using 3D plate/shell elements. Since, the components of core shroud are submerged in water, hence, hydrodynamic added mass was also considered for evaluation of natural frequencies. It was concluded that from structural point of view, adequate safety margin is available under all the accident loads. Nonlinear analysis was done to evaluate buckling/collapse load. The collapse/buckling load have sufficient margin against the allowable limits. The displacements are low hence, the insertion of control rod may not be affected. (author)

  3. Hybrid expert system implementation to determine core reload patterns

    International Nuclear Information System (INIS)

    Greek, K.J.; Robinson, A.H.

    1989-01-01

    Determining reactor reload fuel patterns is a computationally intensive problem solving process for which automation can be of significant benefit. Often much effort is expended in the search for an optimal loading. While any modern programming language could be used to automate solution, the specialized tools of artificial intelligence (AI) are the most efficient means of introducing the fuel management expert's knowledge into the search for an optimum reload pattern. Prior research in pressurized water reactor refueling strategies developed FORTRAN programs that automated an expert's basic knowledge to direct a search for an acceptable minimum peak power loading. The dissatisfaction with maintenance of compiled knowledge in FORTRAN programs has served as the motivation for the development of the SHUFFLE expert system. SHUFFLE is written in Smalltalk, an object-oriented programming language, and evaluates loadings as it generates them using a two-group, two-dimensional nodal power calculation compiled in a personal computer-based FORTRAN. This paper reviews the object-oriented representation developed to solve the core reload problem with an expert system tool and its operating prototype, SHUFFLE

  4. Fuel loading and control rod patterns optimization in a BWR using tabu search

    International Nuclear Information System (INIS)

    Castillo, Alejandro; Ortiz, Juan Jose; Montes, Jose Luis; Perusquia, Raul

    2007-01-01

    This paper presents the QuinalliBT system, a new approach to solve fuel loading and control rod patterns optimization problem in a coupled way. This system involves three different optimization stages; in the first one, a seed fuel loading using the Haling principle is designed. In the second stage, the corresponding control rod pattern for the previous fuel loading is obtained. Finally, in the last stage, a new fuel loading is created, starting from the previous fuel loading and using the corresponding set of optimized control rod patterns. For each stage, a different objective function is considered. In order to obtain the decision parameters used in those functions, the CM-PRESTO 3D steady-state reactor core simulator was used. Second and third stages are repeated until an appropriate fuel loading and its control rod pattern are obtained, or a stop criterion is achieved. In all stages, the tabu search optimization technique was used. The QuinalliBT system was tested and applied to a real BWR operation cycle. It was found that the value for k eff obtained by QuinalliBT was 0.0024 Δk/k greater than that of the reference cycle

  5. Development of a BWR loading pattern design system based on modified genetic algorithms and knowledge

    International Nuclear Information System (INIS)

    Martin-del-Campo, Cecilia; Francois, Juan Luis; Avendano, Linda; Gonzalez, Mario

    2004-01-01

    An optimization system based on Genetic Algorithms (GAs), in combination with expert knowledge coded in heuristics rules, was developed for the design of optimized boiling water reactor (BWR) fuel loading patterns. The system was coded in a computer program named Loading Pattern Optimization System based on Genetic Algorithms, in which the optimization code uses GAs to select candidate solutions, and the core simulator code CM-PRESTO to evaluate them. A multi-objective function was built to maximize the cycle energy length while satisfying power and reactivity constraints used as BWR design parameters. Heuristic rules were applied to satisfy standard fuel management recommendations as the Control Cell Core and Low Leakage loading strategies, and octant symmetry. To test the system performance, an optimized cycle was designed and compared against an actual operating cycle of Laguna Verde Nuclear Power Plant, Unit I

  6. Developing feasible loading patterns using perturbation theory methods

    International Nuclear Information System (INIS)

    White, J.R.; Avila, K.M.

    1990-01-01

    This work illustrates an approach to core reload design that combines the power of integer programming with the efficiency of generalized perturbation theory. The main use of the method is as a tool to help the design engineer identify feasible loading patterns with minimum time and effort. The technique is highly successful for the burnable poison (BP) loading problem, but the unpredictable behavior of the branch-and-bound algorithm degrades overall performance for large problems. Unfortunately, the combined fuel shuffling plus BP optimization problem falls into this latter classification. Overall, however, the method shows great promise for significantly reducing the manpower time required for the reload design process. And it may even give the further benefit of better designs and improved performance

  7. MA-core loaded untuned RF compression cavity for HIRFL-CSR

    International Nuclear Information System (INIS)

    Mei Lirong; Xu Zhe; Yuan Youjin; Jin Peng; Bian Zhibin; Zhao Hongwei; Xia Jiawen

    2012-01-01

    To meet the requirements of high energy density physics and plasma physics research at HIRFL-CSR the goal of achieving a higher accelerating gap voltage was proposed. Therefore, a magnetic alloy (MA)-core loaded radio frequency (RF) cavity that can provide a higher accelerating gap voltage compared to standard ferrite loaded cavities has been studied at IMP. In order to select the proper magnetic alloy material to load the RF compression cavity, measurements of four different kinds of sample MA-cores have been carried out. By testing the small cores, the core composition was selected to obtain the desired performance. According to the theoretical calculation and simulation, which show reasonable consistency for the MA-core loaded cavity, the desired performance can be achieved. Finally about 1000 kW power will be needed to meet the requirements of 50 kV accelerating gap voltage by calculation.

  8. Studies of fuel loading pattern optimization for a typical pressurized water reactor (PWR) using improved pivot particle swarm method

    International Nuclear Information System (INIS)

    Liu, Shichang; Cai, Jiejin

    2012-01-01

    Highlights: ► The mathematical model of loading pattern problems for PWR has been established. ► IPPSO was integrated with ‘donjon’ and ‘dragon’ into fuel arrangement optimizing code. ► The novel method showed highly efficiency for the LP problems. ► The core effective multiplication factor increases by about 10% in simulation cases. ► The power peaking factor decreases by about 0.6% in simulation cases. -- Abstract: An in-core fuel reload design tool using the improved pivot particle swarm method was developed for the loading pattern optimization problems in a typical PWR, such as Daya Bay Nuclear Power Plant. The discrete, multi-objective improved pivot particle swarm optimization, was integrated with the in-core physics calculation code ‘donjon’ based on finite element method, and assemblies’ group constant calculation code ‘dragon’, composing the optimization code for fuel arrangement. The codes of both ‘donjon’ and ‘dragon’ were programmed by Institute of Nuclear Engineering of Polytechnique Montréal, Canada. This optimization code was aiming to maximize the core effective multiplication factor (Keff), while keeping the local power peaking factor (Ppf) lower than a predetermined value to maintain fuel integrity. At last, the code was applied to the first cycle loading of Daya Bay Nuclear Power Plant. The result showed that, compared with the reference loading pattern design, the core effective multiplication factor increased by 9.6%, while the power peaking factor decreased by 0.6%, meeting the safety requirement.

  9. ROSA full-core and DNBR capabilities

    International Nuclear Information System (INIS)

    Gibcus, H.P.M.; Verhagen, F.C.M.; Wakker, P.H.

    2013-01-01

    The latest developments of the ROSA (Reloading Optimization by Simulated Annealing) code system with an emphasis on the first full-core version and the minimum DNBR (Departure from Nucleate Boiling Ratio) as a new optimization parameter are presented. Designing the core loading pattern of nuclear power plants is becoming a more and more complex task. This task becomes even more complicated if asymmetries in the core loading pattern arise, for instance due to damaged fuel assemblies. For over almost 2 decades ROSA, NRG's (Nuclear Research and consultancy Group) loading pattern optimization code system for PWRs, has proven to be a valuable tool to reactor operators in accomplishing this task. To improve the use of ROSA for designing asymmetric loading patterns, NRG has developed a full-core version of ROSA besides the original quarter-core version which requires rotational symmetry in the computational domain. The extension of ROSA with DNBR as an optimization parameter is part of ROSA's continuous development. (orig.)

  10. ROSA full-core and DNBR capabilities

    International Nuclear Information System (INIS)

    Gibcus, H.P.M.; Verhagen, F.C.M.; Wakker, P.H.

    2012-01-01

    This paper presents the latest developments of the ROSA (Reloading Optimization by Simulated Annealing) code system with an emphasis on the first full-core version and the minimum DNBR (Departure from Nucleate Boiling Ratio) as a new optimization parameter. Designing the core loading pattern of nuclear power plants is becoming a more and more complex task. This task becomes even more complicated if asymmetries in the core loading pattern arise, for instance due to damaged fuel assemblies. For over almost two decades ROSA, NRG's (Nuclear Research and consultancy Group) loading pattern optimization code system for PWRs, has proven to be a valuable tool to reactor operators in accomplishing this task. To improve the use of ROSA for designing asymmetric loading patterns, NRG has developed a full-core version of ROSA besides the original quarter-core version which requires rotational symmetry in the computational domain. The extension of ROSA with DNBR as an optimization parameter is part of ROSA's continuous development. (orig.)

  11. LMFBR core flowering response to an impulse load

    International Nuclear Information System (INIS)

    Brochard, D.; Petret, J.C.; Queval, J.C.; Gibert, R.J.

    1993-01-01

    Some incidental situations like MFCI (Meeting Fuel Coolant Incident) may induce a core flowering and lead to consider impulse loans applied to LMFBR core. These highly dynamic loads are very different considering their spatial repartition and their frequency content from the seismic loads which have been deeply studied. Recently, tests have been performed on the LMFBR core mock-up RAPSODIE in order to validate the calculation methods for centered impulse load. These tests consist in injecting water quickly in the mock-up through a specific device replacing the core central assembly. The influence of the injection pressure and the influence of the injection axial position have been investigate. During the tests, the top displacements of some assemblies have been measured. The aim of this paper is first to present the experimental device and the test results. Then a non linear numerical model is described; this model includes the impact between subassemblies and is based on an homogenization method allowing to take into account with accuracy the fluid structure interaction.The comparisons between calculation results an test results will finally be presented

  12. Reactor core and initially loaded reactor core of nuclear reactor

    International Nuclear Information System (INIS)

    Koyama, Jun-ichi; Aoyama, Motoo.

    1989-01-01

    In BWR type reactors, improvement for the reactor shutdown margin is an important characteristic condition togehter with power distribution flattening . However, in the reactor core at high burnup degree, the reactor shutdown margin is different depending on the radial position of the reactor core. That is , the reactor shutdown margin is smaller in the outer peripheral region than in the central region of the reactor core. In view of the above, the reactor core is divided radially into a central region and as outer region. The amount of fissionable material of first fuel assemblies newly loaded in the outer region is made less than the amount of the fissionable material of second fuel assemblies newly loaded in the central region, to thereby improve the reactor shutdown margin in the outer region. Further, the ratio between the amount of the fissionable material in the upper region and that of the fissionable material in the lower portion of the first fuel assemblies is made smaller than the ratio between the amount of the fissionable material in the upper region and that of the fissionable material in the lower region of the second fuel assemblies, to thereby obtain a sufficient thermal margin in the central region. (K.M.)

  13. Web-based Core Design System Development

    International Nuclear Information System (INIS)

    Moon, So Young; Kim, Hyung Jin; Yang, Sung Tae; Hong, Sun Kwan

    2011-01-01

    The selection of a loading pattern is one of core design processes in the operation of a nuclear power plant. A potential new loading pattern is identified by selecting fuels that to not exceed the major limiting factors of the design and that satisfy the core design conditions for employing fuel data from the existing loading pattern of the current operating cycle. The selection of a loading pattern is also related to the cycle plan of an operating nuclear power plant and must meet safety and economic requirements. In selecting an appropriate loading pattern, all aspects, such as input creation, code runs and result processes are processed as text forms manually by a designer, all of which may be subject to human error, such as syntax or running errors. Time-consuming results analysis and decision-making processes are the most significant inefficiencies to avoid. A web-based nuclear plant core design system was developed here to remedy the shortcomings of an existing core design system. The proposed system adopts the general methodology of OPR1000 (Korea Standard Nuclear Power Plants) and Westinghouse-type plants. Additionally, it offers a GUI (Graphic User Interface)-based core design environment with a user-friendly interface for operators. It reduces human errors related to design model creation, computation, final reload core model selection, final output confirmation, and result data validation and verification. Most significantly, it reduces the core design time by more than 75% compared to its predecessor

  14. Core/corona modeling of diode-imploded annular loads

    Science.gov (United States)

    Terry, R. E.; Guillory, J. U.

    1980-11-01

    The effects of a tenuous exterior plasma corona with anomalous resistivity on the compression and heating of a hollow, collisional aluminum z-pinch plasma are predicted by a one-dimensional code. As the interior ("core") plasma is imploded by its axial current, the energy exchange between core and corona determines the current partition. Under the conditions of rapid core heating and compression, the increase in coronal current provides a trade-off between radial acceleration and compression, which reduces the implosion forces and softens the pitch. Combined with a heuristic account of energy and momentum transport in the strongly coupled core plasma and an approximate radiative loss calculation including Al line, recombination and Bremsstrahlung emission, the current model can provide a reasonably accurate description of imploding annular plasma loads that remain azimuthally symmetric. The implications for optimization of generator load coupling are examined.

  15. A theoty of fast search for feul loading pattern in lWRs

    International Nuclear Information System (INIS)

    Suo Changan

    1990-01-01

    In order to fast search for fuel loading pattern without trial and error, a theory for predicting in-core reactivity distribution, according to power necessity and available assemblies, has been developed on basis of the fast computing nodal method and two group diffusion theory. In that, the fast group flux distribution can be predicted from power necessity and the approximation of fast group constants to be independent of nodes. Then, the thermal group fluxes are expressed by both known powers and predicted fast fluxes. After replacing thermal flux, the thermal diffusion equations turn into some equations that have only unknown group constants. The unknown constants are expressed approximately by making use of some expansions of infinite multiplication factors of available assemblies. In such a way, the non-linear reactivity equations are developed and then solved, where node reactivities are the only unknown physical quantities, Finally, the loading pattern is obtained by setting some of available assemblies at each node location where corresponds to a closest reactivity of between laid assembly and node. A computer code LOADMP based on the theory has been made. The theory has been tested numerically on IAEA benchmark problem, and gives an accurate prediction of reactivity distribution and loading pattern. The CPU-time for making a loading pattern search is saved very much, about one second on the CYPER-825/170 machine

  16. Validation of the Nuclear Design Method for MOX Fuel Loaded LWR Cores

    International Nuclear Information System (INIS)

    Saji, E.; Inoue, Y.; Mori, M.; Ushio, T.

    2001-01-01

    The actual batch loading of mixed-oxide (MOX) fuel in light water reactors (LWRs) is now ready to start in Japan. One of the efforts that have been devoted to realizing this batch loading has been validation of the nuclear design methods calculating the MOX-fuel-loaded LWR core characteristics. This paper summarizes the validation work for the applicability of the CASMO-4/SIMULATE-3 in-core fuel management code system to MOX-fuel-loaded LWR cores. This code system is widely used by a number of electric power companies for the core management of their commercial LWRs. The validation work was performed for both boiling water reactor (BWR) and pressurized water reactor (PWR) applications. Each validation consists of two parts: analyses of critical experiments and core tracking calculations of operating plants. For the critical experiments, we have chosen a series of experiments known as the VENUS International Program (VIP), which was performed at the SCK/CEN MOL laboratory in Belgium. VIP consists of both BWR and PWR fuel assembly configurations. As for the core tracking calculations, the operating data of MOX-fuel-loaded BWR and PWR cores in Europe have been utilized

  17. SMART core preliminary nuclear design-II

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong Chan; Ji, Seong Kyun; Chang, Moon Hee

    1997-06-01

    Three loading patterns for 330 MWth SMART core are constructed for 25, 33 and 29 CRDMs, and one loading pattern for larger 69-FA core with 45 CRDMs is also constructed for comparison purpose. In this study, the core consists of 57 reduced height Korean Optimized Fuel Assemblies (KOFAs) developed by KAERI. The enrichment of fuel is 4.95 w/o. As a main burnable poison, 35% B-10 enriched B{sub 4}C-Al{sub 2}O{sub 3} shim is used. To control stuck rod worth, some gadolinia bearing fuel rods are used. The U-235 enrichment of the gadolinia bearing fuel rods is 1.8 w/o as used in KOFA. All patterns return cycle length of about 3 years. Three loading patterns except 25-CRDM pattern satisfy cold shutdown condition of keff {<=} 0.99 without soluble boron. These three patterns also satisfy the refueling condition of keff {<=} 0.95. In addition to the construction of loading pattern, an editing module of MASTER PPI files for rod power history generation is developed and rod power histories are generated for 29-CRDM loading pattern. Preliminary Fq design limit is suggested as 3.71 based on KOFA design experience. (author). 9 tabs., 45 figs., 16 refs.

  18. Application of Computational Intelligence Methods to In-Core Fuel Management

    International Nuclear Information System (INIS)

    Erdogan, A.

    2001-01-01

    In this study, a computer program package has been developed which supports the in-core fuel management activities for pressurized water reactors, generates and recommends an optimum loading pattern to ensure safe and efficient reactor operation. A search for an optimum fuel loading pattern must be conducted in the space of several core parameters such as power distribution, which is an excessively time consuming computational process. Global core calculation codes take a relatively long time to do the task. The time interval necessary for the iterative process was reduced by using an artificial neural network estimator for the calculations. In this way, it was possible to analyze more loading patterns in the same time interval and the probability of finding a desired optimum was increased. As a case study, the core of the Almaraz Nuclear Plant of Spain, a pressurized water reactor, was modeled for the core calculation code system. The 2-group cross sections for the fuel assembly types were calculated and stored for later usage with the diffusion code. 2000 loading patterns were generated by placing fuel assemblies to random positions in the core, and for each pattern the power distribution and effective multiplication factor (k e ff) were calculated with the diffusion code. At the next stage, 500 of the loading patterns were introduced to the neural network as input data for the training process. The remaining 1500 patterns were used to validate the neural network implementation. It was shown that the neural network estimates the power distribution and the K effective within acceptable error limits. To complete the system, a loading pattern generator was developed. This module consists of a set of rules and an algorithm that places the fuel assemblies to core positions. The neural network estimated the power distribution and k e ff for the loading patterns that were generated by this module. The patterns that have a maximum power fraction lower than, and a minimum

  19. Two-phase flow pattern and heat transfer during core uncovery

    International Nuclear Information System (INIS)

    Osakabe, Masahiro; Koizumi, Yasuo; Tasaka, Kanji

    1987-01-01

    The low and high power core uncovery patterns were observed in the high-pressure quasi-steady core uncovery experiments in a 25-rod bundle. The boundary between the two patterns was obtained in the experiments. The difference of two patterns was considered to be due to the slug-annular transition below the dryout points. The Osakabe's slug-annular transition model was the good boundary between the two patterns. The small break loss-of-coolant accident (LOCA) experiments were conducted by using the integral experimental facility with the 1,168-rod core. The transient core uncovery pattern was expected as the low power core uncovery pattern based on the quasisteady experiments mentioned above. The transient core uncovery patterns were classified into the boiloff and hydraulic core uncovery. In the boiloff core uncovery, the dryout points were controlled with the mixture level like the quasi-steady state. In the hydraulic core uncovery, the dryout points were not controlled with the mixture level alone, and the multi-dimensional dryout process in the core and the relatively high heat transfer above the dryout points were observed. It was considered that a part of water was remained above the dryout points due to the rapid depression of core liquid level. (author)

  20. Code systems for effective and precise calculation of the basic neutron characteristics, core loading optimization, analysis and estimation of the operation regimes of WWER type reactors

    International Nuclear Information System (INIS)

    Apostolov, T.; Ivanov, K.; Prodanova, R.; Manolova, M.; Petrova, T.; Alekova, G.

    1993-01-01

    Two directions for investigations are suggested: 1) Analysis and evaluation of the real loading patterns and operational regimes for Kozloduy NPP WWER-440 and WWER-1000 in the frame of the recent safety criteria and nuclear power plant operating limits. 2) Development of modern code system for WWER type reactor core analysis with advanced features: new design and materials for fuel and control rods, increasing the fuel enrichment, using the integral and discrete burnable absorbers etc. The fuel technology design evolution maximizes the fuel utilization efficiency, improves operation performance and enhances safety margins. By the joint efforts of specialists from INRNE, Sofia (BG) and KAB, Berlin (GE), the codes NESSEL-IV-EC, PYTHIA and DERAB have been developed and verified. In the frame of the PHARE programme the joint project ASPERCA has been proposed intended for reactor physics calculations with PHYBER-WWER code for safety enhancement and operation reliability improvement. In-core fuel management benchmarks for 4 cycles of unit 2 (WWER-440) and 2 cycles of unit 5 (WWER-1000) have been performed. The coordination of burnable absorber design implementation, low leakage loadings usage, reloading enrichment increase and steel content reduction in the core have made the reactor core analysis more demanding and the definition of loading patterns - more difficult. This complexity requires routine use of three-dimensional fast accurate core model with extended and updated cross section libraries. To meet the needs of WWER advanced loading patterns and in-core fuel management improvements the HEXANES code systems is being developed and qualified. Some test calculations have been carried out by the HEXANES code system investigating the influence of Gd in the fuel on the main reactor physics parameters. For reevaluation of the core safety-related design limits forming the basis of licensing procedure, the code DYN3D/M2 is used. 16 refs., 3 figs. (author)

  1. Fast core prediction simulator for load follow control

    International Nuclear Information System (INIS)

    Yim, Man Sung; Lee, Sang Hoon; Lee, Un Chul

    1990-01-01

    An operator-assisting system for the reactor core control under power changing operating condition was developed. The system is consisted of core simulator routine and Xenon and Iodine initial condition generation routine. The initial condition generation routine, without exactly knowing the core status, is capable of providing accurate number densities and axial offset conditions of Xenon and Iodine after several hours of predictor- corrector calculations using the plant instrumentation signals of power level and power axial offset. The core simulator routine, even with the two node core model, gives equivalently accurate results as the one-dimensional model for the core behaviour simulation under power changing condition and can provide proper control strategies for load follow operation. The core simulator can also be used by the operator to develop remedial actions to restore the distorted power distribution by using its prediction capability

  2. Analysis of fuel management pattern of research reactor core of the MTR type design

    International Nuclear Information System (INIS)

    Lily Suparlina; Tukiran Surbakti

    2014-01-01

    Research reactor core design needs neutronics parameter calculation use computer codes. Research reactor MTR type is very interested because can be used as research and also a radioisotope production. The research reactor in Indonesia right now is already 25 years old. Therefore, it is needed to design a new research reactor as a compact core. Recent research reactor core is not enough to meet criteria acceptance in the UCD which already determined namely thermal neutron flux in the core is 1.0x10 15 n/cm 2 s. so that it is necessary to be redesign the alternative core design. The new research reactor design is a MTR type with 5x5 configuration core, uses U9Mo-Al fuel, 70 cm of high and uses two certainly fuel management pattern. The aim of this research is to achieve neutron flux in the core to meet the criteria acceptance in the UCD. Calculation is done by using WIMSD-B, Batan-FUEL and Batan-3DIFF codes. The neutronic parameters to be achieved by this calculation are the power level of 50 MW thermal and core cycle of 20 days. The neutronics parameter calculation is done for new U-9Mo-Al fuel with variation of densities.The result of calculation showed that the fresh core with 5x5 configuration, 360 gram, 390 gram and 450 gram of fuel loadings have meet safety margin and acceptance criteria in the UCD at the thermal neutron flux is more then 1.0 x 10 15 n/cm 2 s. But for equilibrium core is only the 450 gram of loading meet the acceptance criteria. (author)

  3. Study on the reactivity behavior partially loaded reactor cores using SIMULATE-3

    International Nuclear Information System (INIS)

    Holzer, Robert; Zeitz, Andreas; Grimminger, Werner; Lubczyk, Tobias

    2009-01-01

    The reactor core design for the NPP Gundremmingen unit B and C is performed since several years using the validated 3D reactor core calculation program SIMULATE-3. The authors describe a special application of the program to study the reactivity for different partial core loadings. Based on the comparison with results of the program CASMO-4 the program SIMULATE-3 was validated for the calculation of partially loaded reactor cores. For the planned reactor operation in NPP Gundremmingen using new MOX fuel elements the reactivity behavior was studied with respect to the KTA-Code requirements.

  4. Application of neural network and pattern recognition software to the automated analysis of continuous nuclear monitoring of on-load reactors

    Energy Technology Data Exchange (ETDEWEB)

    Howell, J.A.; Eccleston, G.W.; Halbig, J.K.; Klosterbuer, S.F. [Los Alamos National Lab., NM (United States); Larson, T.W. [California Polytechnic State Univ., San Luis Obispo, CA (US)

    1993-08-01

    Automated analysis using pattern recognition and neural network software can help interpret data, call attention to potential anomalies, and improve safeguards effectiveness. Automated software analysis, based on pattern recognition and neural networks, was applied to data collected from a radiation core discharge monitor system located adjacent to an on-load reactor core. Unattended radiation sensors continuously collect data to monitor on-line refueling operations in the reactor. The huge volume of data collected from a number of radiation channels makes it difficult for a safeguards inspector to review it all, check for consistency among the measurement channels, and find anomalies. Pattern recognition and neural network software can analyze large volumes of data from continuous, unattended measurements, thereby improving and automating the detection of anomalies. The authors developed a prototype pattern recognition program that determines the reactor power level and identifies the times when fuel bundles are pushed through the core during on-line refueling. Neural network models were also developed to predict fuel bundle burnup to calculate the region on the on-load reactor face from which fuel bundles were discharged based on the radiation signals. In the preliminary data set, which was limited and consisted of four distinct burnup regions, the neural network model correctly predicted the burnup region with an accuracy of 92%.

  5. Automatic boiling water reactor loading pattern design using ant colony optimization algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Wang, C.-D. [Department of Engineering and System Science, National Tsing Hua University, 101, Section 2 Kuang Fu Road, Hsinchu 30013, Taiwan (China); Nuclear Engineering Division, Institute of Nuclear Energy Research, No. 1000, Wenhua Rd., Jiaan Village, Longtan Township, Taoyuan County 32546, Taiwan (China)], E-mail: jdwang@iner.gov.tw; Lin Chaung [Department of Engineering and System Science, National Tsing Hua University, 101, Section 2 Kuang Fu Road, Hsinchu 30013, Taiwan (China)

    2009-08-15

    An automatic boiling water reactor (BWR) loading pattern (LP) design methodology was developed using the rank-based ant system (RAS), which is a variant of the ant colony optimization (ACO) algorithm. To reduce design complexity, only the fuel assemblies (FAs) of one eight-core positions were determined using the RAS algorithm, and then the corresponding FAs were loaded into the other parts of the core. Heuristic information was adopted to exclude the selection of the inappropriate FAs which will reduce search space, and thus, the computation time. When the LP was determined, Haling cycle length, beginning of cycle (BOC) shutdown margin (SDM), and Haling end of cycle (EOC) maximum fraction of limit for critical power ratio (MFLCPR) were calculated using SIMULATE-3 code, which were used to evaluate the LP for updating pheromone of RAS. The developed design methodology was demonstrated using FAs of a reference cycle of the BWR6 nuclear power plant. The results show that, the designed LP can be obtained within reasonable computation time, and has a longer cycle length than that of the original design.

  6. Optimization programs for reactor core fuel loading exhibiting reduced neutron leakage

    International Nuclear Information System (INIS)

    Darilek, P.

    1991-01-01

    The program MAXIM was developed for the optimization of the fuel loading of WWER-440 reactors. It enables the reactor core reactivity to be maximized by modifying the arrangement of the fuel assemblies. The procedure is divided into three steps. The first step includes the passage from the three-dimensional model of the reactor core to the two-dimensional model. In the second step, the solution to the problem is sought assuming that the multiplying properties, or the reactivity in the zones of the core, vary continuously. In the third step, parameters of actual fuel assemblies are inserted in the ''continuous'' solution obtained. Combined with the program PROPAL for a detailed refinement of the loading, the program MAXIM forms a basis for the development of programs for the optimization of fuel loading with burnable poisons. (Z.M.). 16 refs

  7. In-core nuclear fuel management optimization of VVER1000 using perturbation theory

    International Nuclear Information System (INIS)

    Hosseini, Mohammad; Vosoughi, Naser

    2011-01-01

    In-core nuclear fuel management is one of the most important concerns in the design of nuclear reactors. The two main goals in core fuel loading pattern design optimization are maximizing the core effective multiplication factor in order to extract the maximum energy, and keeping the local power peaking factor lower than a predetermined value to maintain fuel integrity. Because of the numerous possible patterns of the fuel assemblies in the reactor core, finding the best configuration is so important and complex. Different methods for optimization of fuel loading pattern in the core have been introduced so far. In this study, a software is programmed in C ⧣ language to find an order of the fuel loading pattern of the VVER-1000 reactor core using the perturbation theory. Our optimization method is based on minimizing the radial power peaking factor. The optimization process lunches by considering the initial loading pattern and the specifications of the fuel assemblies which are given as the input of the software. It shall be noticed that the designed algorithm is performed by just shuffling the fuel assemblies. The obtained results by employing the mentioned method on a typical reactor reveal that this method has a high precision in achieving a pattern with an allowable radial power peaking factor. (author)

  8. A study on the optimal fuel loading pattern design in pressurized water reactor using the artificial neural network and the fuzzy rule based system

    International Nuclear Information System (INIS)

    Kim, Han Gon; Chang, Soon Heung; Lee, Byung

    2004-01-01

    The Optimal Fuel Shuffling System (OFSS) is developed for optimal design of PWR fuel loading pattern. In this paper, an optimal loading pattern is defined that the local power peaking factor is lower than predetermined value during one cycle and the effective multiplication factor is maximized in order to extract maximum energy. OFSS is a hybrid system that a rule based system, a fuzzy logic, and an artificial neural network are connected each other. The rule based system classifies loading patterns into two classes using several heuristic rules and a fuzzy rule. A fuzzy rule is introduced to achieve more effective and fast searching. Its membership function is automatically updated in accordance with the prediction results. The artificial neural network predicts core parameters for the patterns generated from the rule based system. The back-propagation network is used for fast prediction of core parameters. The artificial neural network and the fuzzy logic can be used as the tool for improvement of existing algorithm's capabilities. OFSS was demonstrated and validated for cycle 1 of Kori unit 1 PWR. (author)

  9. A study on the optimal fuel loading pattern design in pressurized water reactor using the artificial neural network and the fuzzy rule based system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Han Gon; Chang, Soon Heung; Lee, Byung [Department of Nuclear Engineering, Korea Advanced Institute of Science and Technology, Yusong-gu, Taejon (Korea, Republic of)

    2004-07-01

    The Optimal Fuel Shuffling System (OFSS) is developed for optimal design of PWR fuel loading pattern. In this paper, an optimal loading pattern is defined that the local power peaking factor is lower than predetermined value during one cycle and the effective multiplication factor is maximized in order to extract maximum energy. OFSS is a hybrid system that a rule based system, a fuzzy logic, and an artificial neural network are connected each other. The rule based system classifies loading patterns into two classes using several heuristic rules and a fuzzy rule. A fuzzy rule is introduced to achieve more effective and fast searching. Its membership function is automatically updated in accordance with the prediction results. The artificial neural network predicts core parameters for the patterns generated from the rule based system. The back-propagation network is used for fast prediction of core parameters. The artificial neural network and the fuzzy logic can be used as the tool for improvement of existing algorithm's capabilities. OFSS was demonstrated and validated for cycle 1 of Kori unit 1 PWR. (author)

  10. Shock loading of reactor vessel following hypothetical core disruptive accident

    International Nuclear Information System (INIS)

    Srinivas, G.; Doshi, J.B.

    1990-01-01

    Hypothetical Core Disruptive Accident (HCDA) has been historically considered as the maximum credible accident in Fast Breeder Reactor systems. Environmental consequences of such an accident depends to a great extent on the ability of the reactor vessel to maintain integrity during the shock loading following an HCDA. In the present paper, a computational model of the reactor core and the surrounding coolant with a free surface is numerical technique. The equations for conservation of mass, momentum and energy along with an equation of state are considered in two dimensional cylindrical geometry. The reactor core at the end of HCDA is taken as a bubble of hot, vaporized fuel at high temperature and pressure, formed at the center of the reactor vessel and expanding against the surrounding liquid sodium coolant. The free surface of sodium at the top of the vessel and the movement of the core bubble-liquid coolant interface are tracked by Marker and Cell (MAC) procedure. The results are obtained for the transient pressure at the vessel wall and also for the loading on the roof plug by the impact of the slug of liquid sodium. The computer code developed is validated against a benchmark experiment chosen to be ISPRA experiment reported in literature. The computer code is next applied to predict the loading on the Indian Prototype Fast Breeder Reactor (PFBR) being developed at Kalpakkam

  11. PWR loading pattern optimization using Harmony Search algorithm

    International Nuclear Information System (INIS)

    Poursalehi, N.; Zolfaghari, A.; Minuchehr, A.

    2013-01-01

    Highlights: ► Numerical results reveal that the HS method is reliable. ► The great advantage of HS is significant gain in computational cost. ► On the average, the final band width of search fitness values is narrow. ► Our experiments show that the search approaches the optimal value fast. - Abstract: In this paper a core reloading technique using Harmony Search, HS, is presented in the context of finding an optimal configuration of fuel assemblies, FA, in pressurized water reactors. To implement and evaluate the proposed technique a Harmony Search along Nodal Expansion Code for 2-D geometry, HSNEC2D, is developed to obtain nearly optimal arrangement of fuel assemblies in PWR cores. This code consists of two sections including Harmony Search algorithm and Nodal Expansion modules using fourth degree flux expansion which solves two dimensional-multi group diffusion equations with one node per fuel assembly. Two optimization test problems are investigated to demonstrate the HS algorithm capability in converging to near optimal loading pattern in the fuel management field and other subjects. Results, convergence rate and reliability of the method are quite promising and show the HS algorithm performs very well and is comparable to other competitive algorithms such as Genetic Algorithm and Particle Swarm Intelligence. Furthermore, implementation of nodal expansion technique along HS causes considerable reduction of computational time to process and analysis optimization in the core fuel management problems

  12. EPR: High load variation performances with the 'Tmode' core control

    International Nuclear Information System (INIS)

    Grossetete, A.

    2008-01-01

    The load variation performances on a PWR are directly linked to the core control design. This design is mainly characterized by the definition of the control rod banks and the way to both perform the banks movements and to modify the core boron concentration by injection of boric acid or water. The following paper presents the principles of the T mode, the new fully automatic core control mode for the EPR which provides high performance in terms of maneuverability and optimizes the effluents. First, the paper describes the division of the control rods into two control banks (Pbank for temperature and Hbank for power distribution). Then typical movements of these banks during power changes are shown. Then, the principle of the 3 control loops (Tave, AO, Pmax), used to obtain these desired control rod movements, is given. Finally, a load following transient simulation is presented. (authors)

  13. EPR: high load variation performances with the 'TMODE' core control

    International Nuclear Information System (INIS)

    Pairot, Frederic

    2008-01-01

    The load variation performances on a PWR are directly linked to the core control design. This design is mainly characterized by the definition of the control rod banks and the way to both perform the banks movements and to modify the core boron concentration by injection of boric acid or water. The following paper presents the principles of the T mode, the new fully automatic core control mode for the EPR which provides high performance in terms of maneuverability and optimizes the effluents. First, the paper describes the division of the control rods into two control banks (Pbank for temperature and Hbank for power distribution). Then typical movements of these banks during power changes are shown. Then, the principle of the 3 control loops (Tave, AO, Pmax), used to obtain these desired control rod movements, is given. Finally, a load following transient simulation is presented. (author)

  14. Core-Sheath Paraffin-Wax-Loaded Nanofibers by Electrospinning for Heat Storage.

    Science.gov (United States)

    Lu, Yuan; Xiao, Xiudi; Zhan, Yongjun; Huan, Changmeng; Qi, Shuai; Cheng, Haoliang; Xu, Gang

    2018-04-18

    Paraffin wax (PW) is widely used for smart thermoregulation materials due to its good thermal performance. However, the leakage and low thermal conductivity of PW hinder its application in the heat storage field. Accordingly, developing effective methods to address these issues is of great importance. In this study, we explored a facile approach to obtain PW-loaded core-sheath structured flexible nanofibers films via coaxial electrospinning technique. The PW as the core layer was successfully encapsulated by the sheath-layer poly(methyl methacrylate). The diameter of the fiber core increased from 395 to 848 nm as the core solution speed rate increased from 0.1 to 0.5 mL/h. In addition, it can be seen that higher core solution speed rate could lead to higher PW encapsulation efficiency according to the transmission electron microscopy results. The core-sheath nanofiber films, moreover, possessed the highest latent heat of 58.25 J/g and solidifying enthalpy of -56.49 J/g. In addition, we found that after 200 thermal cycles, there was little change in latent heat, which demonstrated that it is beneficial for the PW-loaded core-sheath structure to overcome the leakage issue and enhance thermal stability properties for the thermoregulation film.

  15. Economic optimization of PWR cores with ROSA

    International Nuclear Information System (INIS)

    Verhagen, F.C.M.; Wakker, P.H.

    2005-01-01

    The core-loading pattern is decisive for fuel cycle economics, fuel safety parameters and economic planning for future cycles. ROSA, NRG's loading pattern optimization code system for PWRs, has proven for over a decade to be a valuable tool to reactor operators for improving their fuel management economics. ROSA uses simulated annealing as loading pattern optimization technique, in combination with an extremely fast 3-D neutronics code for loading pattern calculations. The code is continuously extended with new optimization parameters and rules. This paper outlines recent developments of the ROSA code system and discusses results of PWR specific applications of ROSA. Core designs with a large variety of challenging constraints have been realized with ROSA. As a typical example, for the 193 assembly, Vantage 5H/RFA-2 fueled TVA's Watts Bar unit 1, a cycle 4 core with 76 feed assemblies was designed. This was followed by a high-energy cycle 5 with only 77 feed assemblies and approximately 535 days of natural cycle length. Subsequently, an economical core using 72 bundles was designed for cycle 6. This resulted in considerable savings in the cost of feed assemblies for reloads. The typical accuracy of ROSA compared to results of license codes in within ±0.02 for normalized assembly powers, ±0.03 for maximum enthalpy rise hot channel factor (F ΔH ), and ±3 days for natural cycle length. (author)

  16. Fracture Behaviours in Compression-loaded Triangular Corrugated Core Sandwich Panels

    Directory of Open Access Journals (Sweden)

    Zaid N.Z.M.

    2016-01-01

    Full Text Available The failure modes occurring in sandwich panels based on the corrugations of aluminium alloy, carbon fibre-reinforced plastic (CFRP and glass fibre-reinforced plastic (GFRP are analysed in this work. The fracture behaviour of these sandwich panels under compressive stresses is determined through a series of uniform lateral compression performed on samples with different cell wall thicknesses. Compression test on the corrugated-core sandwich panels were conducted using an Instron series 4505 testing machine. The post-failure examinations of the corrugated-core in different cell wall thickness were conducted using optical microscope. Load-displacement graphs of aluminium alloy, GFRP and CFRP specimens were plotted to show progressive damage development with five unit cells. Four modes of failure were described in the results: buckling, hinges, delamination and debonding. Each of these failure modes may dominate under different cell wall thickness or loading condition, and they may act in combination. The results indicate that thicker composites corrugated-core panels tend can recover more stress and retain more stiffness. This analysis provides a valuable insight into the mechanical behaviour of corrugated-core sandwich panels for use in lightweight engineering applications.

  17. Four years Re-Use of low burned fuel assemblies from units 1 and 2 in core loadings of units 3 and 4 WWER-440 at Kozloduy NPP

    International Nuclear Information System (INIS)

    Stoyanova, I.; Antov, A.; Spasova, V.

    2006-01-01

    At the end of 2002 units 1 and 2 of Kozloduy NPP were shutdown before their design life time which left a large number of assemblies yet with a significant energy resources. A decision to load these assemblies into the cores of Units 3 and 4 during the next 4 cycles has been taken. In 2003, 43 assemblies from Unit 1 cycle 23 rd and 55 assemblies from Unit 2 cycle 24 th are loaded in the cores of units 3 and 4 respectively. In 2004, new 49 assemblies from Unit 1 cycle 23rd and new 55 assemblies from Unit 2 cycle 24th are loaded in the cores of units 3 and 4 respectively. In 2005, the next new 25 assemblies from Unit 1 cycle 23 rd and 66 assemblies from Unit 2 cycle 24th are loaded in the cores of units 3 and 4 respectively. In 2006, the next new 54 assemblies from Unit 1 cycle 23 rd and 52 assemblies from Unit 2 cycle 24 th + 2 assemblies from Unit 3 cycle 19th are loaded in the cores of Units 3 and 4 respectively. The SPPSHB computer code system is used for development and safety assessment of the fuel loading patterns of Units 3 and 4 at Kozloduy NPP with low burned assemblies from units 1 and 2 (Authors)

  18. Recent enhancements of the INSIGHT integrated in-core fuel management tool

    International Nuclear Information System (INIS)

    Akio, Yamamoto

    2001-01-01

    Recent enhancements of the INSIGHT system are described in this paper. The INSIGHT system is an integrated in-core fuel management tool for pressurized water reactors (PWRs) runs on UNIX workstations. The INSIGHT system provides various capabilities which contribute to reduce fuel cycle cost and workload of in-core fuel management tasks, i.e. core follow calculations, interactive loading pattern design, automated multicycle analysis and interface between detailed core calculation codes. To minimize engineers' workload, most of input data for analysis modules are automatically generated by the INSIGHT system through specification of calculation conditions in the graphic user interface. Recent enhancements of the INSIGHT system are mainly focused to improve efficiency of loading pattern optimization and flexibility of multicycle analyses. To increase optimization efficiency, a parallel calculation capability, various optimization theories, extension of heuristic rules, screening by neural networks and so on were incorporated in the loading pattern optimization module. The multicycle analyses module was rewritten to increase flexibility such as cycle dependent specification of loading pattern search methods and so on. The INSIGHT system is currently used by Japanese utilities not only for regular in-core fuel management tasks but also for strategic fuel management studies to reduce fuel cycle cost

  19. Simultaneous loading patterns optimization for two successive cycles of pressurized water reactors

    International Nuclear Information System (INIS)

    Yamamoto, Akio; Sugimura, Erina; Kitamura, Yasunori; Yamane, Yoshihiro

    2004-01-01

    In this paper, simultaneous optimization is carried out for successive two cycles of pressurized water reactors. At first, a simplified problem of the simultaneous optimization was studied by assuming the batch-wise power sharing as independent variable, i.e., batch-wise power sharing was optimized without considering corresponding loading patterns. The optimization of the batch-wise power sharing was carried out for the conventional single cycle, the equilibrium cycle and the two successive (tandem) cycles. The analysis indicated that the tandem cycle optimization well reproduce that of the equilibrium cycle optimization, which is considered as a typical case of the true multicycle optimization. Next, simultaneous optimization of loading patterns for tandem cycles is carried out using the simulated annealing method. Since the design space of the tandem cycles optimization is much larger than that of the conventional single cycle optimization, the optimization condition (i.e., number of calculated patterns) are established through sensitivity study. The optimization results are compared with those obtained by the successive single cycle optimizations and it is clarified that the successive single cycle optimization well reproduces the optimization results obtained by the simultaneous optimization if objective functions are appropriately chosen. The above result will be encouraging for the current in-core optimization method since single cycle optimization is utilized due to limitation of computation time. (author)

  20. Core losses of an inverter-fed permanent magnet synchronous motor with an amorphous stator core under no-load

    Directory of Open Access Journals (Sweden)

    Nicolas Denis

    2016-05-01

    Full Text Available In this paper, an interior permanent magnet synchronous motor (IPMSM with a stator core made of amorphous magnetic material (AMM is presented. The IPMSM is driven by a voltage source three-phase inverter with classical pulse width modulation (PWM control. The core losses under no-load condition are measured by experiment and compared to an equivalent IPMSM with a stator core made of NO steel. Under these conditions, the core losses are influenced by the stator, rotor and magnet shapes but also by the PWM carrier signal that implies a high frequency harmonic in the magnetic flux density. It is demonstrated that the AMM can reduce the core losses by about 56 %.

  1. Automated nuclear fuel rod pattern loading system

    International Nuclear Information System (INIS)

    Lambert, D.V.; Nyland, T.W.; Byers, J.W.; Haley, D.E. Jr.; Cioffi, J.V.

    1990-01-01

    This patent describes an apparatus for loading fuel rods in a desired pattern. It comprises: a carousel having a plurality of movable gondolas for stocking thereon fuel rods of known enrichments; an elongated magazine defining a matrix of elongated slots being open at their forward ends for receiving fuel rods; a workstation defining a fuel rod feed path; and a holder and indexing mechanism for movably supporting the magazine and being actuatable for moving the magazine along X-Y axes to successively align one at a time selected ones of the slots with the feed path for loading in the magazine the successive fuel rods in a desired enrichment pattern

  2. Development of a core management tool for MYRRHA

    International Nuclear Information System (INIS)

    Jalůvka, David; Van den Eynde, Gert; Vandewalle, Stefan

    2013-01-01

    Highlights: • An in-core fuel management tool is being developed for the flexible irradiation machine MYRRHA. • Specific issues of the MYRRHA in-core fuel management are briefly discussed. • The tool addresses the loading pattern optimization problem. • Illustrative in-core fuel management optimization problems are solved using the tool. - Abstract: MYRRHA is an advanced multi-purpose irradiation facility under development at SCK• CEN in Mol, Belgium. In order to ensure an economical and safe operation of the reactor, an in-core fuel management tool is being developed within the project to address the loading pattern optimization problem. In the paper, the current version of the tool – its architecture and design, unique features, and the field of its application, are presented. In the second part of the paper, the tool’s capabilities are demonstrated on simple MYRRHA in-core fuel management optimization problems

  3. NaF-loaded core-shell PAN-PMMA nanofibers as reinforcements for Bis-GMA/TEGDMA restorative resins.

    Science.gov (United States)

    Cheng, Liyuan; Zhou, Xuegang; Zhong, Hong; Deng, Xuliang; Cai, Qing; Yang, Xiaoping

    2014-01-01

    A kind of core-shell nanofibers containing sodium fluoride (NaF) was produced and used as reinforcing materials for dimethacrylate-based dental restorative resins in this study. The core-shell nanofibers were prepared by coaxial-electrospinning with polyacrylonitrile (PAN) and poly(methyl methacrylate) (PMMA) solutions as core and shell fluids, respectively. The produced PAN-PMMA nanofibers varied in fiber diameter and the thickness of PMMA shell depending on electrospinning parameters. NaF-loaded nanofibers were obtained by incorporating NaF nanocrystals into the core fluid at two loadings (0.8 or 1.0wt.%). Embedment of NaF nanocrystals into the PAN core did not damage the core-shell structure. The addition of PAN-PMMA nanofibers into Bis-GMA/TEGDMA clearly showed the reinforcement due to the good interfacial adhesion between fibers and resin. The flexural strength (Fs) and flexural modulus (Ey) of the composites decreased slightly as the thickness of PMMA shell increasing. Sustained fluoride releases with minor initial burst release were achieved from NaF-loaded core-shell nanofibers and the corresponding composites, which was quite different from the case of embedding NaF nanocrystals into the dental resin directly. The study demonstrated that NaF-loaded PAN-PMMA core-shell nanofibers were not only able to improve the mechanical properties of restorative resin, but also able to provide sustained fluoride release to help in preventing secondary caries. © 2013.

  4. A new optimization method based on cellular automata for VVER-1000 nuclear reactor loading pattern

    International Nuclear Information System (INIS)

    Fadaei, Amir Hosein; Setayeshi, Saeed

    2009-01-01

    This paper presents a new and innovative optimization technique, which uses cellular automata for solving multi-objective optimization problems. Due to its ability in simulating the local information while taking neighboring effects into account, the cellular automata technique is a powerful tool for optimization. The fuel-loading pattern in nuclear reactor cores is a major optimization problem. Due to the immensity of the search space in fuel management optimization problems, finding the optimum solution requires a huge amount of calculations in the classical method. The cellular automata models, based on local information, can reduce the computations significantly. In this study, reducing the power peaking factor, while increasing the initial excess reactivity inside the reactor core of VVER-1000, which are two apparently contradictory objectives, are considered as the objective functions. The result is an optimum configuration, which is in agreement with the pattern proposed by the designer. In order to gain confidence in the reliability of this method, the aforementioned problem was also solved using neural network and simulated annealing, and the results and procedures were compared.

  5. Harmonic Differential Quadrature Analysis of Soft-Core Sandwich Panels under Locally Distributed Loads

    Directory of Open Access Journals (Sweden)

    Xinwei Wang

    2016-11-01

    Full Text Available Sandwich structures are widely used in practice and thus various engineering theories adopting simplifying assumptions are available. However, most engineering theories of beams, plates and shells cannot recover all stresses accurately through their constitutive equations. Therefore, the soft-core is directly modeled by two-dimensional (2D elasticity theory without any pre-assumption on the displacement field. The top and bottom faces act like the elastic supports on the top and bottom edges of the core. The differential equations of the 2D core are then solved by the harmonic differential quadrature method (HDQM. To circumvent the difficulties in dealing with the locally distributed load by point discrete methods such as the HDQM, a general and rigorous way is proposed to treat the locally distributed load. Detailed formulations are provided. The static behavior of sandwich panels under different locally distributed loads is investigated. For verification, results are compared with data obtained by ABAQUS with very fine meshes. A high degree of accuracy on both displacement and stress has been observed.

  6. A core-halo pattern of entropy creation in gravitational collapse

    Science.gov (United States)

    Wren, Andrew J.

    2018-03-01

    This paper presents a kinetic theory model of gravitational collapse due to a small perturbation. Solving the relevant equations yields a pattern of entropy destruction in a spherical core around the perturbation, and entropy creation in a surrounding halo. This indicates collisional "de-relaxation" in the core, and collisional relaxation in the halo. Core-halo patterns are ubiquitous in the astrophysics of gravitational collapse, and are found here without any of the prior assumptions of such a pattern usually made in analytical models. Motivated by this analysis, the paper outlines a possible scheme for identifying structure formation in a set of observations or a simulation. This scheme involves a choice of coarse-graining scale appropriate to the structure under consideration, and might aid exploration of hierarchical structure formation, supplementing the usual density-based methods for highlighting astrophysical and cosmological structure at various scales.

  7. Effect of loading pattern on longitudinal bowing in flexible roll forming

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Hyun; Woo, Young Yun; Hwang, Tae Woo; Han, Sang Wook; Moon, Young Hoon [School of Mechanical Engineering, Engineering Research Center for Net Shape and Die Manufacturing, Pusan National University,Busan (Korea, Republic of)

    2016-12-15

    The flexible roll forming process can be used to fabricate products with a variable cross-section profile in the longitudinal direction. Transversal nonuniformity of the longitudinal strain is one of the fundamental characteristics of blank deformation in flexible roll forming. Longitudinal bowing is a shape defect caused by transversal nonuniformity of the longitudinal strain. In this study, loading patterns in flexible roll forming are investigated in order to reduce the longitudinal bowing in a roll-formed blank. To analyze the effects of loading patterns on longitudinal bowing, two different forming schedules are implemented. In schedule 1, loading patterns with different bending angle increments are designed under fixed initial and final bending angles. In schedule 2, loading patterns with different initial bending angles under the fixed final bending angle are designed. Our results show that the bowing heights are significantly affected by the loading patterns. The bowing susceptibilities vary with blank shape such as trapezoid, convex, and concave shapes. In addition to the peak longitudinal strain at the respective roll stands, the cumulative longitudinal strain from the initial to final stands is shown to be a reliable index in predicting the tendency of longitudinal bowing.

  8. Application of Classification Methods for Forecasting Mid-Term Power Load Patterns

    Science.gov (United States)

    Piao, Minghao; Lee, Heon Gyu; Park, Jin Hyoung; Ryu, Keun Ho

    Currently an automated methodology based on data mining techniques is presented for the prediction of customer load patterns in long duration load profiles. The proposed approach in this paper consists of three stages: (i) data preprocessing: noise or outlier is removed and the continuous attribute-valued features are transformed to discrete values, (ii) cluster analysis: k-means clustering is used to create load pattern classes and the representative load profiles for each class and (iii) classification: we evaluated several supervised learning methods in order to select a suitable prediction method. According to the proposed methodology, power load measured from AMR (automatic meter reading) system, as well as customer indexes, were used as inputs for clustering. The output of clustering was the classification of representative load profiles (or classes). In order to evaluate the result of forecasting load patterns, the several classification methods were applied on a set of high voltage customers of the Korea power system and derived class labels from clustering and other features are used as input to produce classifiers. Lastly, the result of our experiments was presented.

  9. Development of an RF accelerating structure loaded with multi-ring magnetic cores

    International Nuclear Information System (INIS)

    Morita, Yuichi; Kageyama, Tatsuya; Kato, Ichiro; Yamashita, Satoru

    2012-01-01

    In order to upgrade the J-PARC rings (RCS and MR) for more beam powers, the existing accelerating structures for both rings need to be improved for better performance especially in the long-term reliability. As a solution for this purpose, we have proposed a new accelerating structure loaded with multi-ring core modules. Each core module consists of three ring FINEMET cores with different radial sizes concentrically arranged and sandwiched between two glass epoxy plates with flow channels grooved on the surfaces. The Fe-based FINEMET cores are to be cooled with the turbulent flow of Fluorinert (chemically inert perfluorinated liquid). Therefore, the cores need neither impregnation nor coating with epoxy resin for anti corrosion. A half-gap cavity loaded with three core modules, which is a minimum configuration for the performance test, is under fabrication. Additionally, a high efficient solid state RF amplifier is under development. Thirty two amplifier modules, each of which is a push-pull class-D amplifier driven by power MOSFET hybrids, are combined to deliver RF power up to 60 kW (peak power with a duty factor of 50%) at frequencies 1.7 ± 0.2MHz. The amplitude of the RF output can be modulated by changing the voltage across the drain and source of the power MOSFET in proportion to the wave envelope. This paper reports the recent status of our R and D activities. (author)

  10. Analysis of ex-core detector response measured during nuclear ship Mutsu land-loaded core critical experiment

    International Nuclear Information System (INIS)

    Itagaki, M.; Abe, J.I.; Kuribayashi, K.

    1987-01-01

    There are some cases where the ex-core neutron detector response is dependent not only on the fission source distribution in a core but also on neutron absorption in the borated water reflector. For example, an unexpectedly large response variation was measured during the nuclear ship Mutsu land-loaded core critical experiment. This large response variation is caused largely by the boron concentration change associated with the change in control rod positioning during the experiment. The conventional Crump-Lee response calculation method has been modified to take into account this boron effect. The correction factor in regard to this effect has been estimated using the one-dimensional transport code ANISN. The detector response variations obtained by means of this new calculation procedure agree well with the measured values recorded during the experiment

  11. Application of the distributed genetic algorithm for loading pattern optimization problems

    International Nuclear Information System (INIS)

    Hashimoto, Hiroshi; Yamamoto, Akio

    2000-01-01

    The distributed genetic algorithm (DGA) is applied for loading pattern optimization problems of the pressurized water reactors (PWR). Due to stiff nature of the loading pattern optimizations (e.g. multi-modality and non-linearity), stochastic methods like the simulated annealing or the genetic algorithm (GA) are widely applied for these problems. A basic concept of DGA is based on that of GA. However, DGA equally distributes candidates of solutions (i.e. loading patterns) to several independent 'islands' and evolves them in each island. Migrations of some candidates are performed among islands with a certain period. Since candidates of solutions independently evolve in each island with accepting different genes of migrants from other islands, premature convergence in the traditional GA can be prevented. Because many candidate loading patterns should be evaluated in one generation of GA or DGA, the parallelization in these calculations works efficiently. Parallel efficiency was measured using our optimization code and good load balance was attained even in a heterogeneous cluster environment due to dynamic distribution of the calculation load. The optimization code is based on the client/server architecture with the TCP/IP native socket and a client (optimization module) and calculation server modules communicate the objects of loading patterns each other. Throughout the sensitivity study on optimization parameters of DGA, a suitable set of the parameters for a test problem was identified. Finally, optimization capability of DGA and the traditional GA was compared in the test problem and DGA provided better optimization results than the traditional GA. (author)

  12. The Analysis of the Effect of Coolant Channel Width on Fuel Loading of the RSG-GAS Core

    International Nuclear Information System (INIS)

    Surbakti; Tukiran

    2004-01-01

    The RGS-GAS using uranium silicide fuel, plate type and 250 g U of loading is planned to increase the fuel loading to 300 g U even to 400 g U. The silicide fuel has advantages when increase the fuel loading in the same volume. Because of that case, it is necessary to analyze the effect of coolant channel width on fuel loading of the RSG-GAS core. Analyzing the effect the work which done is to generate cell and core calculation using WIMSD/4 and Batan-2DIFF codes. The WIMSD/4 code is used to generate cross section of core material and Batan-2DIFF is used to calculate the effective multiplication factor. The model that used in this calculation there are three kind of fuel loading namely, 250 g U, 300 g U and 400 g U. The coolant channel width is simulated from 1.75 mm to 2.55 mm. From that fuel loadings, it is analyzed which coolant channel width gave the best effective multiplication factor. From result of analysis showed that the best effective multiplication factor is on the coolant channel width of 2.55 mm for third of fuel loadings. (author)

  13. Dithranol-loaded lipid-core nanocapsules improve the photostability and reduce the in vitro irritation potential of this drug

    Energy Technology Data Exchange (ETDEWEB)

    Savian, Ana L. [Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Av. Roraima, 1000, Santa Maria, RS 97105-900 (Brazil); Rodrigues, Daiane [Curso de Farmácia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Av. Roraima, 1000, Santa Maria, RS 97105-900 (Brazil); Weber, Julia; Ribeiro, Roseane F. [Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Av. Roraima, 1000, Santa Maria, RS 97105-900 (Brazil); Motta, Mariana H. [Curso de Farmácia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Av. Roraima, 1000, Santa Maria, RS 97105-900 (Brazil); Schaffazick, Scheila R.; Adams, Andréa I.H. [Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Av. Roraima, 1000, Santa Maria, RS 97105-900 (Brazil); Andrade, Diego F. de; Beck, Ruy C.R. [Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, Porto Alegre, RS 90610-000 (Brazil); and others

    2015-01-01

    Dithranol is a very effective drug for the topical treatment of psoriasis. However, it has some adverse effects such as irritation and stain in the skin that make its application and patient adherence to treatment difficult. The aims of this work were to prepare and characterize dithranol-loaded nanocapsules as well as to evaluate the photostability and the irritation potential of these nanocarriers. Lipid-core nanocapsules containing dithranol (0.5 mg/mL) were prepared by interfacial deposition of preformed polymer. EDTA (0.05%) or ascorbic acid (0.02%) was used as antioxidants. After preparation, dithranol-loaded lipid-core nanocapsules showed satisfactory characteristics: drug content close to the theoretical concentration, encapsulation efficiency of about 100%, nanometric mean size (230–250 nm), polydispersity index below 0.25, negative zeta potential, and pH values from 4.3 to 5.6. In the photodegradation study against UVA light, we observed a higher stability of the dithranol-loaded lipid-core nanocapsules comparing to the solution containing the free drug (half-life times around 4 and 1 h for the dithranol-loaded lipid-core nanocapsules and free drug solution containing EDTA, respectively; half-life times around 17 and 7 h for the dithranol-loaded lipid-core nanocapsules and free drug solution containing ascorbic acid, respectively). Irritation test by HET-CAM method was conducted to evaluate the safety of the formulations. From the results it was found that the nanoencapsulation of the drug decreased its toxicity compared to the effects observed for the free drug. - Highlights: • Strategy to prepare lipid-core nanocapsules containing dithranol • Evaluation of the nanoencapsulation effect on the photostability and irritation • Evaluation of the in vitro release of dithranol-loaded lipid-core nanocapsules.

  14. Loading pattern optimization with maximum utilization of discharging fuel employing adaptively constrained discontinuous penalty function

    International Nuclear Information System (INIS)

    Park, T. K.; Joo, H. G.; Kim, C. H.

    2010-01-01

    In order to find the most economical loading pattern (LP) considering multi-cycle fuel loading, multi-objective fuel LP optimization problems are examined by employing an adaptively constrained discontinuous penalty function (ACDPF) method. This is an improved method to simplify the complicated acceptance logic of the original DPF method in that the stochastic effects caused by the different random number sequence can be reduced. The effectiveness of the multi-objective simulated annealing (SA) algorithm employing ACDPF is examined for the reload core LP of Cycle 4 of Yonggwang Nuclear Unit 4. Several optimization runs are performed with different numbers of objectives consisting of cycle length and average burnup of fuels to be discharged or reloaded. The candidate LPs obtained from the multi-objective optimization runs turn out to be better than the reference LP in the aspects of cycle length and utilization of given fuels. It is note that the proposed ACDPF based MOSA algorithm can be a practical method to obtain an economical LP considering multi-cycle fuel loading. (authors)

  15. Preliminary analysis of a large 1600 MWe PWR core loaded with 30% MOX fuel

    International Nuclear Information System (INIS)

    Polidoro, Franco; Corsetti, Edoardo; Vimercati, Giuliano

    2011-01-01

    The paper presents a full-core 3-D analysis of the performances of a large 1600 MWe PWR core, loaded with 30% MOX fuel, in accordance with the European Utility Requirements (EUR). These requirements state that the European next generation power plants have to be designed capable to use MOX (UO 2 - PuO 2 ) fuel assemblies up to 50% of the core, together with UO 2 fuel assemblies. The use of MOX assemblies has a significant impact on key physic parameters and on safety. A lot of studies have been carried out in the past to explore the feasibility of plutonium recycling strategies by loading LWR reactors with MOX fuel. Many of these works were based on lattice codes, in order to perform detailed analyses of the neutronic characteristics of MOX assemblies. With the aim to take into account their interaction with surrounding UO 2 fuel elements, and the global effects on the core at operational conditions, an integrated approach making use of a 3-D core simulation is required. In this light, the present study adopts the state-of-art numerical models CASMO-5 and SIMULATE-3 to analyze the behavior of the core fueled with 30% MOX and to compare it with that of a large PWR reference core, fueled with UO 2 . (author)

  16. Joint contact loading in forefoot and rearfoot strike patterns during running.

    Science.gov (United States)

    Rooney, Brandon D; Derrick, Timothy R

    2013-09-03

    Research concerning forefoot strike pattern (FFS) versus rearfoot strike pattern (RFS) running has focused on the ground reaction force even though internal joint contact forces are a more direct measure of the loads responsible for injury. The main purpose of this study was to determine the internal loading of the joints for each strike pattern. A secondary purpose was to determine if converted FFS and RFS runners can adequately represent habitual runners with regards to the internal joint loading. Using inverse dynamics to calculate the net joint moments and reaction forces and optimization techniques to estimate muscle forces, we determined the axial compressive loading at the ankle, knee, and hip. Subjects consisted of 15 habitual FFS and 15 habitual RFS competitive runners. Each subject ran at a preferred running velocity with their habitual strike pattern and then converted to the opposite strike pattern. Plantar flexor muscle forces and net ankle joint moments were greater in the FFS running compared to the RFS running during the first half of the stance phase. The average contact forces during this period increased by 41.7% at the ankle and 14.4% at the knee joint during FFS running. Peak ankle joint contact force was 1.5 body weights greater during FFS running (pstrike pattern. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Fluid structure interaction studies on acoustic load response of light water nuclear reactor core internals under blowdown condition

    International Nuclear Information System (INIS)

    Moses Lemuel Raj, G.; Singh, R.K.; Kushwaha, H.S.; Venkat Raj, V.

    1998-12-01

    Acoustic load evaluation within two phase medium and the related fluid-structure interaction analysis in case of Loss of Coolant Accidents (LOCA) for light water reactor systems is an important inter-disciplinary area. The present work highlights the development of a three-dimensional finite element code FLUSHEL to analyse LOCA induced depressurization problems for Pressurised Water Reactor (PWR) core barrel and Boiling Water Reactor (BWR) core shroud. With good comparison obtained between prediction made by the present code and the experimental results of HDR-PWR test problem, coupled fluid-structure interaction analysis of core shroud of Tarapur Atomic Power Station (TAPS) is presented for recirculation line break. It is shown that the acoustic load induced stresses in the core shroud are small and downcomer acoustic cavity modes are decoupled with the shell multi-lobe modes. Thus the structural integrity of TAPS core shroud for recirculation line break induced acoustic load is demonstrated. (author)

  18. Automated nuclear fuel rod pattern loading system

    International Nuclear Information System (INIS)

    Lambert, D.V.; Nylund, T.W.; Byers, J.W.; Haley, D.E. Jr.; Cioffi, J.V.

    1991-01-01

    This patent describes a method for loading fuel rods in a desired pattern. It comprises providing a supply of fuel rods of known enrichments; providing a magazine defining a matrix of elongated slots open at their forward ends for receiving fuel rods; defining a fuel rod feed path; receiving successively one at a time along the feed path fuel rods selected from the supply thereof; verifying successively one at a time along the feed path the identity of the selected fuel rods, the verifying including blocking passage of each selected fuel rod along the feed path until the identity of each selected fuel rod is confirmed as correct; feeding to the magazine successively one at a time along the feed path the selective and verified fuel rods; and supporting and moving the magazine along X-Y axes to successively align one at a time selected ones of the slots with the feed path for loading in the magazine the successive fuel rods in a desired enrichment pattern

  19. Analysis and Testing of Load Characteristics for Rotary-Percussive Drilling of Lunar Rock Simulant with a Lunar Regolith Coring Bit

    Directory of Open Access Journals (Sweden)

    Peng Li

    2017-01-01

    Full Text Available Based on an optimized lunar regolith coring bit (LRCB configuration, the load characteristics of rotary-percussive drilling of lunar rock simulant in a laboratory environment are analyzed to determine the effects of the drilling parameters (the rotational velocity, the penetration rate, and the percussion frequency on the drilling load. The process of rotary drilling into lunar rock using an LRCB is modeled as an interaction between an elemental blade and the rock. The rock’s fracture mechanism during different stages of the percussive mechanism is analyzed to create a load forecasting model for the cutting and percussive fracturing of rock using an elemental blade. Finally, a model of the load on the LRCB is obtained from the analytic equation for the bit’s cutting blade distribution; experimental verification of the rotary-impact load characteristics for lunar rock simulant with different parameters is performed. The results show that the penetrations per revolution (PPR are the primary parameter influencing the drilling load. When the PPR are fixed, increasing the percussion frequency reduces the drilling load on the rock. Additionally, the variation pattern of the drilling load of the bit is in agreement with that predicted by the theoretical model. This provides a research basis for subsequent optimization of the drilling procedure and online recognition of the drilling process.

  20. Non-linear Dynamic Analysis of Steel Hollow I-core Sandwich Panel under Air Blast Loading

    Directory of Open Access Journals (Sweden)

    Asghar Vatani Oskouei

    2015-12-01

    Full Text Available In this paper, the non-linear dynamic response of novel steel sandwich panel with hollow I-core subjected to blast loading was studied. Special emphasis is placed on the evaluation of midpoint displacements and energy dissipation of the models. Several parameters such as boundary conditions, strain rate, mesh dependency and asymmetrical loading are considered in this study. The material and geometric non-linearities are also considered in the numerical simulation. The results obtained are compared with available experimental data to verify the developed FE model. Modeling techniques are described in detail. According to the results, sandwich panels with hollow I-core allowed more plastic deformation and energy dissipation and less midpoint displacement than conventional I-core sandwich panels and also equivalent solid plate with the same weight and material.

  1. Performance evaluation of Genetic Algorithms on loading pattern optimization of PWRs

    International Nuclear Information System (INIS)

    Tombakoglu, M.; Bekar, K.B.; Erdemli, A.O.

    2001-01-01

    Genetic Algorithm (GA) based systems are used for search and optimization problems. There are several applications of GAs in literature successfully applied for loading pattern optimization problems. In this study, we have selected loading pattern optimization problem of Pressurised Water Reactor (PWR). The main objective of this work is to evaluate the performance of Genetic Algorithm operators such as regional crossover, crossover and mutation, and selection and construction of initial population and its size for PWR loading pattern optimization problems. The performance of GA with antithetic variates is compared to traditional GA. Antithetic variates are used to generate the initial population and its use with GA operators are also discussed. Finally, the results of multi-cycle optimization problems are discussed for objective function taking into account cycle burn-up and discharge burn-up.(author)

  2. Hyaluronic acid/poly(lactic-co-glycolic acid) core/shell fiber meshes loaded with epigallocatechin-3-O-gallate as skin tissue engineering scaffolds.

    Science.gov (United States)

    Lee, Eun Ji; Lee, Jong Ho; Jin, Linhua; Jin, Oh Seong; Shin, Yong Cheol; Sang, Jin Oh; Lee, Jaebeom; Hyon, Suong-Hyu; Han, Dong-Wook

    2014-11-01

    In this study, hyaluronic acid (HA)/poly(lactic-co-glycolic acid, PLGA) core/shell fiber meshes loaded with epigallocatechin-3-O-gallate (EGCG) (HA/PLGA-E) for application to tissue engineering scaffolds for skin regeneration were prepared via coaxial electrospinning. Physicochemical properties of HA/PLGA-E core/shell fiber meshes were characterized by SEM, Raman spectroscopy, contact angle, EGCG release profiling and in vitro degradation. Biomechanical properties of HA/PLGA-E meshes were also investigated by a tensile strength test. SEM images showed that HA/PLGA-E fiber meshes had a three-dimensional interconnected pore structure with an average fiber diameter of about 1270 nm. Raman spectra revealed that EGCG was uniformly dispersed in the PLGA shell of meshes. HA/PLGA-E meshes showed sustained EGCG release patterns by controlled diffusion and PLGA degradation over 4 weeks. EGCG loading did not adversely affect the tensile strength and elastic modulus of HA/PLGA meshes, while increased their hydrophilicity and surface energy. Attachment of human dermal fibroblasts on HA/PLGA-E meshes was appreciably increased and their proliferation was steadily retained during the culture period. These results suggest that HA/PLGA-E core/shell fiber meshes can be potentially used as scaffolds supporting skin regeneration.

  3. Parameter studies to determine sensitivity of slug impact loads to properties of core surrounding structures

    International Nuclear Information System (INIS)

    Gvildys, J.

    1985-01-01

    A sensitivity study of the HCDA slug impact response of fast reactor primary containment to properties of core surrounding structures was performed. Parameters such as the strength of the radial shield material, mass, void, and compressibility properties of the gas plenum material, mass of core material, and mass and compressibility properties of the coolant were used as variables to determine the magnitude of the slug impact loads. The response of the reactor primary containment and the partition of energy were also given. A study was also performed using water as coolant to study the difference in slug impact loads

  4. Differential harmony search algorithm to optimize PWRs loading pattern

    Energy Technology Data Exchange (ETDEWEB)

    Poursalehi, N., E-mail: npsalehi@yahoo.com [Engineering Department, Shahid Beheshti University, G.C, P.O.Box: 1983963113, Tehran (Iran, Islamic Republic of); Zolfaghari, A.; Minuchehr, A. [Engineering Department, Shahid Beheshti University, G.C, P.O.Box: 1983963113, Tehran (Iran, Islamic Republic of)

    2013-04-15

    Highlights: ► Exploit of DHS algorithm in LP optimization reveals its flexibility, robustness and reliability. ► Upshot of our experiments with DHS shows that the search approach to optimal LP is quickly. ► On the average, the final band width of DHS fitness values is narrow relative to HS and GHS. -- Abstract: The objective of this work is to develop a core loading optimization technique using differential harmony search algorithm in the context of obtaining an optimal configuration of fuel assemblies in pressurized water reactors. To implement and evaluate the proposed technique, differential harmony search nodal expansion package for 2-D geometry, DHSNEP-2D, is developed. The package includes two modules; in the first modules differential harmony search (DHS) is implemented and nodal expansion code which solves two dimensional-multi group neutron diffusion equations using fourth degree flux expansion with one node per a fuel assembly is in the second module. For evaluation of DHS algorithm, classical harmony search (HS) and global-best harmony search (GHS) algorithms are also included in DHSNEP-2D in order to compare the outcome of techniques together. For this purpose, two PWR test cases have been investigated to demonstrate the DHS algorithm capability in obtaining near optimal loading pattern. Results show that the convergence rate of DHS and execution times are quite promising and also is reliable for the fuel management operation. Moreover, numerical results show the good performance of DHS relative to other competitive algorithms such as genetic algorithm (GA), classical harmony search (HS) and global-best harmony search (GHS) algorithms.

  5. Differential harmony search algorithm to optimize PWRs loading pattern

    International Nuclear Information System (INIS)

    Poursalehi, N.; Zolfaghari, A.; Minuchehr, A.

    2013-01-01

    Highlights: ► Exploit of DHS algorithm in LP optimization reveals its flexibility, robustness and reliability. ► Upshot of our experiments with DHS shows that the search approach to optimal LP is quickly. ► On the average, the final band width of DHS fitness values is narrow relative to HS and GHS. -- Abstract: The objective of this work is to develop a core loading optimization technique using differential harmony search algorithm in the context of obtaining an optimal configuration of fuel assemblies in pressurized water reactors. To implement and evaluate the proposed technique, differential harmony search nodal expansion package for 2-D geometry, DHSNEP-2D, is developed. The package includes two modules; in the first modules differential harmony search (DHS) is implemented and nodal expansion code which solves two dimensional-multi group neutron diffusion equations using fourth degree flux expansion with one node per a fuel assembly is in the second module. For evaluation of DHS algorithm, classical harmony search (HS) and global-best harmony search (GHS) algorithms are also included in DHSNEP-2D in order to compare the outcome of techniques together. For this purpose, two PWR test cases have been investigated to demonstrate the DHS algorithm capability in obtaining near optimal loading pattern. Results show that the convergence rate of DHS and execution times are quite promising and also is reliable for the fuel management operation. Moreover, numerical results show the good performance of DHS relative to other competitive algorithms such as genetic algorithm (GA), classical harmony search (HS) and global-best harmony search (GHS) algorithms

  6. LIGHT-WEIGHT LOAD-BEARING STRUCTURES REINFORCED BY CORE ELEMENTS MADE OF SEGMENTS AND A METHOD OF CASTING SUCH STRUCTURES

    DEFF Research Database (Denmark)

    2009-01-01

    The invention relates to a light-weight load-bearing structure, reinforced by core elements (2) of a strong material constituting one or more compression or tension zones in the structure to be cast, which core (2) is surrounded by or adjacent to a material of less strength compared to the core (2......), where the core (2) is constructed from segments (1) of core elements (2) assembled by means of one or more prestressing elements (4). The invention further relates to a method of casting of light-weight load-bearing structures, reinforced by core elements (2) of a strong material constituting one...... or more compression or tension zones in the structure to be cast, which core (2) is surrounded by or adjacent to a material of less strength compared to the core (2), where the core (2) is constructed from segments (1) of core elements (2) assembled and hold together by means of one or more prestressing...

  7. Safeguarding subcriticality during loading and shuffling operations in the higher density of the RSG-GAS's silicide core

    International Nuclear Information System (INIS)

    Sembiring, T.M.; Kuntoro, I.

    2003-01-01

    The core conversion program of the RSG-GAS reactor is to convert the all-oxide to all-silicide core. The silicide equilibrium core with fuel meat density of 3.55 gU cm -3 is an optimal core for RSG-GAS reactor and it can significantly increase the operation cycle length from 25 to 32 full power days. Nevertheless, the subcriticality of the shutdown core and the shutdown margin are lower than of the oxide core. Therefore, the deviation of subcriticality condition in the higher silicide core caused by the fuel loading and shuffling error should be reanalysed. The objective of this work is to analyse the sufficiency of the subcriticality condition of the shutdown core to face the worst condition caused by an error during loading and shuffling operations. The calculations were carried out using the 2-dimensional multigroup neutron diffusion code of Batan-FUEL. In the fuel handling error, the calculated results showed that the subcriticality condition of the shutdown higher density silicide equilibrium core of RSG-GAS can be maintained. Therefore, all fuel management steps are fixed in the present reactor operation manual can be applied in the higher silicide equilibrium core of RSG-GAS reactor. (author)

  8. Loading pattern optimization using ant colony algorithm

    International Nuclear Information System (INIS)

    Hoareau, Fabrice

    2008-01-01

    Electricite de France (EDF) operates 58 nuclear power plants (NPP), of the Pressurized Water Reactor type. The loading pattern optimization of these NPP is currently done by EDF expert engineers. Within this framework, EDF R and D has developed automatic optimization tools that assist the experts. LOOP is an industrial tool, developed by EDF R and D and based on a simulated annealing algorithm. In order to improve the results of such automatic tools, new optimization methods have to be tested. Ant Colony Optimization (ACO) algorithms are recent methods that have given very good results on combinatorial optimization problems. In order to evaluate the performance of such methods on loading pattern optimization, direct comparisons between LOOP and a mock-up based on the Max-Min Ant System algorithm (a particular variant of ACO algorithms) were made on realistic test-cases. It is shown that the results obtained by the ACO mock-up are very similar to those of LOOP. Future research will consist in improving these encouraging results by using parallelization and by hybridizing the ACO algorithm with local search procedures. (author)

  9. Dynamical prediction and pattern mapping in short-term load forecasting

    Energy Technology Data Exchange (ETDEWEB)

    Aguirre, Luis Antonio; Rodrigues, Daniela D.; Lima, Silvio T. [Departamento de Engenharia Eletronica, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, 31270-901 Belo Horizonte, MG (Brazil); Martinez, Carlos Barreira [Departamento de Engenharia Hidraulica e Recursos Hidricos, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, 31270-901 Belo Horizonte, MG (Brazil)

    2008-01-15

    This work will not put forward yet another scheme for short-term load forecasting but rather will provide evidences that may improve our understanding about fundamental issues which underlay load forecasting problems. In particular, load forecasting will be decomposed into two main problems, namely dynamical prediction and pattern mapping. It is argued that whereas the latter is essentially static and becomes nonlinear when weekly features in the data are taken into account, the former might not be deterministic at all. In such cases there is no determinism (serial correlations) in the data apart from the average cycle and the best a model can do is to perform pattern mapping. Moreover, when there is determinism in addition to the average cycle, the underlying dynamics are sometimes linear, in which case there is no need to resort to nonlinear models to perform dynamical prediction. Such conclusions were confirmed using real load data and surrogate data analysis. In a sense, the paper details and organizes some general beliefs found in the literature on load forecasting. This sheds some light on real model-building and forecasting problems and helps understand some apparently conflicting results reported in the literature. (author)

  10. Higher order generalized perturbation theory for boiling water reactor in-core fuel management optimization

    International Nuclear Information System (INIS)

    Moore, B.R.; Turinsky, P.J.

    1998-01-01

    Boiling water reactor (BWR) loading pattern assessment requires solving the two-group, nodal form of the neutron diffusion equation and drift-flux form of the fluid equations simultaneously because these equation sets are strongly coupled via nonlinear feedback. To reduce the computational burden associated with the calculation of the core attributes (that is, core eigenvalue and thermal margins) of a perturbed BWR loading pattern, the analytical and numerical aspects of a higher order generalized perturbation theory (GPT) method, which correctly addresses the strong nonlinear feedbacks of two-phase flow, have been established. Inclusion of Jacobian information in the definition of the generalized flux adjoints provides for a rapidly convergent iterative method for solution of the power distribution and eigenvalue of a loading pattern perturbed from a reference state. Results show that the computational speedup of GPT compared with conventional forward solution methods demanding consistent accuracy is highly dependent on the number of spatial nodes utilized by the core simulator, varying from superior to inferior performance as the number of nodes increases

  11. Effects of Radial Reflector Composition on Core Reactivity and Peak Power

    International Nuclear Information System (INIS)

    Park, Sang Yoon; Lee, Kyung Hoon; Song, Jae Seung

    2007-10-01

    The effects of radial SA-240 alloy shroud on core reactivity and peak power are evaluated. The existence of radial SA-240 alloy shroud makes reflector water volume decrease, so the thermal absorption cross section of radial reflector is lower than without SA-240 alloy shroud case. Finally, the cycle length is increased from 788 EFPD to 845 EFPD and the peak power is decreased from 1.66 to 1.49. In the case of without SA-240 alloy shroud, a new core loading pattern search has been performed. For the guarantee of the same equivalent cycle length of with SA-240 alloy shroud case, the enrichment of U-235 should be increased from 4.22 w/o to 4.68 w/o. The nuclear key safety parameters of new core loading pattern have been calculated and recorded for the future

  12. Effects of Radial Reflector Composition on Core Reactivity and Peak Power

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang Yoon; Lee, Kyung Hoon; Song, Jae Seung

    2007-10-15

    The effects of radial SA-240 alloy shroud on core reactivity and peak power are evaluated. The existence of radial SA-240 alloy shroud makes reflector water volume decrease, so the thermal absorption cross section of radial reflector is lower than without SA-240 alloy shroud case. Finally, the cycle length is increased from 788 EFPD to 845 EFPD and the peak power is decreased from 1.66 to 1.49. In the case of without SA-240 alloy shroud, a new core loading pattern search has been performed. For the guarantee of the same equivalent cycle length of with SA-240 alloy shroud case, the enrichment of U-235 should be increased from 4.22 w/o to 4.68 w/o. The nuclear key safety parameters of new core loading pattern have been calculated and recorded for the future.

  13. Genetic algorithms in loading pattern optimization

    International Nuclear Information System (INIS)

    Yilmazbayhan, A.; Tombakoglu, M.; Bekar, K. B.; Erdemli, A. Oe

    2001-01-01

    Genetic Algorithm (GA) based systems are used for the loading pattern optimization. The use of Genetic Algorithm operators such as regional crossover, crossover and mutation, and selection of initial population size for PWRs are discussed. Antithetic variates are used to generate the initial population. The performance of GA with antithetic variates is compared to traditional GA. The results of multi-cycle optimization are discussed for objective function taking into account cycle burn-up and discharge burn-up

  14. Characteristics of first loaded IG-110 graphite in HTTR core

    International Nuclear Information System (INIS)

    Sumita, Junya; Shibata, Taiju; Iyoku, Tatsuo; Sawa, Kazuhiro; Hanawa, Satoshi; Ishihara, Masahiro

    2006-10-01

    IG-110 graphite is a fine-grained isotropic and nuclear-grade graphite with excellent resistivity on both irradiation and corrosion and with high strength. The IG-110 graphite is used for the graphite components of High Temperature Engineering Test Reactor (HTTR) such as fuel and control rod guide blocks and support posts. In order to design and fabricate the graphite components in the HTTR, the Japan Atomic Energy Research Institute (the Japan Atomic Energy Agency at present) had established the graphite structural design code and design data on the basis of former research results. After the design code establishment, the IG-110 graphite components were fabricated and loaded in the HTTR core. This report summarized the characteristics of the first loaded IG-110 graphite as basic data for surveillance test, measuring material characteristics changed by neutron irradiation and oxidation. By comparing the design data, it was shown that the first loaded IG-110 graphite had excellent strength properties and enough safety margins to the stress limits in the design code. (author)

  15. Improvement of daily load-following operation for boiling water reactors

    International Nuclear Information System (INIS)

    Kiguchi, Takashi; Kurihara, Kunitoshi; Sakurai, Mikio; Joge, Toshio; Asami, Kazuo.

    1980-01-01

    Recently, with the increase of the proportion of nuclear power generation to the total amount of power generation of electric power systems, the needs of daily load-following operation of nuclear power stations have heightened, accordingly the study on the method of daily load-following operation has been carried out for BWRs. In this study, by the combined use of the flow rate control of core coolnat being operated easily and the operation of control rods, the BWR system with the daily load-following performance of 100% power output in daytime and 50% power output at night was the target of development. For the purpose, the change of core characteristics during load-following was grasped analytically, and the range of load change was investigated. At the same time, as the first stage of developing operation control and monitoring system, the reactor output-adjusting device which makes generator output automatically follow the target load change pattern by the flow rate control of core coolnat, and the equipment for monitoring core performance on line were developed. The analysis of the method of daily load-following operation in present-day BWRs, the study on the improvement of load-following operation performance, the reactor output-adjusting device are described. (Kako, I.)

  16. Partial thorium loading in the initial core of Kakrapar atomic power reactor

    International Nuclear Information System (INIS)

    Balakrishnan, M.R.

    1993-01-01

    The first unit of Kakrapar nuclear power station has gone critical with some thorium oxide fuel bundles loaded in its core. The thorium helps to flatten the power by reducing neutron flux in the centre of the reactor. However, the placing of the thorium had to be planned with care, because if the neutron flux at a point where a safety rod is located is depressed, the reactivity worth of the safety rod gets reduced. Using a dynamic programing approach, the Reactor Engineering Division of Bhabha Atomic Research Centre worked out a satisfactory configuration for loading the thorium bundles

  17. Bulk coolant cavitation in LMFBR containment loading following a whole-core explosion

    International Nuclear Information System (INIS)

    Jones, A.V.

    1977-01-01

    An LMFBR core undergoing an explosion transmits energy to the containment in a series of pressure waves and the containment loading is determined by their cumulative effect. These pressure waves are modified by their interaction with the coolant through which they propagate. It is necessary to model both the induction of bulk cavitation by tension waves and the interaction of pressure waves with cavitated liquid in realistic containment loading calculations. This paper sets out the progress which has been achieved in such modelling and first indications for the effect of bulk coolant cavitation in LMFBR containment loading. Conclusions may be briefly summarised: 1) Bulk cavitation must be included in realistic containment loading calculations. 2) Phenomenological models of cavitated liquid without memory are inappropriate. The best approach is to model bubble dynamics directly, including at least momentum conservation and surface tension. 3) The containment loading resulting from a given explosion is sensitive to the state of preparation of the coolant. The number density of nucleation sites should therfore accompany the results of model tests. (Auth.)

  18. Proposal of a benchmark for core burnup calculations for a VVER-1000 reactor core

    International Nuclear Information System (INIS)

    Loetsch, T.; Khalimonchuk, V.; Kuchin, A.

    2009-01-01

    In the framework of a project supported by the German BMU the code DYN3D should be further validated and verified. During the work a lack of a benchmark on core burnup calculations for VVER-1000 reactors was noticed. Such a benchmark is useful for validating and verifying the whole package of codes and data libraries for reactor physics calculations including fuel assembly modelling, fuel assembly data preparation, few group data parametrisation and reactor core modelling. The benchmark proposed specifies the core loading patterns of burnup cycles for a VVER-1000 reactor core as well as a set of operational data such as load follow, boron concentration in the coolant, cycle length, measured reactivity coefficients and power density distributions. The reactor core characteristics chosen for comparison and the first results obtained during the work with the reactor physics code DYN3D are presented. This work presents the continuation of efforts of the projects mentioned to estimate the accuracy of calculated characteristics of VVER-1000 reactor cores. In addition, the codes used for reactor physics calculations of safety related reactor core characteristics should be validated and verified for the cases in which they are to be used. This is significant for safety related evaluations and assessments carried out in the framework of licensing and supervision procedures in the field of reactor physics. (authors)

  19. Fuel loading method to exchangeable reactor core of BWR type reactor and its core

    International Nuclear Information System (INIS)

    Koguchi, Kazushige.

    1995-01-01

    In a fuel loading method for an exchangeable reactor core of a BWR type reactor, at least two kinds of fresh fuel assemblies having different reactivities between axial upper and lower portions are preliminarily prepared, and upon taking out fuel assemblies of advanced combustion and loading the fresh fuel assemblies dispersingly, they are disposed so as to attain a predetermined axial power distribution in the reactor. At least two kinds of fresh fuel assemblies have a content of burnable poisons different between the axial upper portion and lower portions. In addition, reactivity characteristics are made different at a region higher than the central boundary and a region lower than the central boundary which is set within a range of about 6/24 to 16/24 from the lower portion of the fuel effective length. There can be attained axial power distribution as desired such as easy optimization of the axial power distribution, high flexibility, and flexible flattening of the power distribution, and it requires no special change in view of the design and has a good economical property. (N.H.)

  20. Mechanical and thermo-mechanical response of a lead-core bearing device subjected to different loading conditions

    Directory of Open Access Journals (Sweden)

    Zhelyazov Todor

    2018-01-01

    Full Text Available The contribution is focused on the numerical modelling, simulation and analysis of a lead-core bearing device for passive seismic isolation. An accurate finite element model of a lead-core bearing device is presented. The model is designed to analyse both mechanical and thermo-mechanical responses of the seismic isolator to different loading conditions. Specifically, the mechanical behaviour in a typical identification test is simulated. The response of the lead-core bearing device to circular sinusoidal paths is analysed. The obtained shear displacement – shear force relationship is compared to experimental data found in literature sources. The hypothesis that heating of the lead-core during cyclic loading affects the degrading phenomena in the bearing device is taken into account. Constitutive laws are defined for each material: lead, rubber and steel. Both predefined constitutive laws (in the used general–purpose finite element code and semi-analytical procedures aimed at a more accurate modelling of the constitutive relations are tested. The results obtained by finite element analysis are to be further used to calibrate a macroscopic model of the lead-core bearing device seen as a single-degree-of-freedom mechanical system.

  1. The Effect of Core Stability Training on Functional Movement Patterns in Collegiate Athletes.

    Science.gov (United States)

    Bagherian, Sajad; Ghasempoor, Khodayar; Rahnama, Nader; Wikstrom, Erik A

    2018-02-06

    Pre-participation examinations are the standard approach for assessing poor movement quality that would increase musculoskeletal injury risk. However, little is known about how core stability influences functional movement patterns. The primary purpose of this study was to determine the effect of an 8-week core stability program on functional movement patterns in collegiate athletes. The secondary purpose was to determine if the core stability training program would be more effective in those with worse movement quality (i.e. ≤14 baseline FMS score). Quasi-experimental design. Athletic Training Facility. One-hundred collegiate athletes. Functional movement patterns included the Functional Movement Screen (FMS), Lateral step down (LSD) and Y balance test (YBT) and were assessed before and after the 8-week program. Participants were placed into 1 of the 2 groups: intervention and control. The intervention group was required to complete a core stability training program that met 3 times per week for 8-week. Significant group x time interactions demonstrated improvements in FMS, LSD and YBT scores in the experimental group relative to the control group (pcore stability training program enhances functional movement patterns and dynamic postural control in collegiate athletes. The benefits are more pronounced in collegiate athletes with poor movement quality.

  2. One-pot synthesis and characterization of rhodamine derivative-loaded magnetic core-shell nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Jin, E-mail: jzhang@eng.uwo.ca; Li Jiaxin [University of Western Ontario, Department of Chemical and Biochemical Engineering (Canada); Razavi, Fereidoon S. [Brock University, Department of Physics (Canada); Mumin, Abdul Md. [University of Western Ontario, Department of Chemical and Biochemical Engineering (Canada)

    2011-05-15

    A new method to produce elaborate nanostructure with magnetic and fluorescent properties in one entity is reported in this article. Magnetite (Fe{sub 3}O{sub 4}) coated with fluorescent silica (SiO{sub 2}) shell was produced through the one-pot reaction, in which one reactor was utilized to realize the synthesis of superparamagnetic core of Fe{sub 3}O{sub 4}, the formation of SiO{sub 2} coating through the condensation and polymerization of tetraethylorthosilicate (TEOS), and the encapsulation of tetramethyl rhodamine isothiocyanate-dextran (TRITC-dextran) within silica shell. Transmission electron microscopy (TEM), energy dispersive X-ray (EDX) analysis, and X-ray diffraction (XRD) were carried out to investigate the core-shell structure. The magnetic core of the core-shell nanoparticles is 60 {+-} 10 nm in diameter. The thickness of the fluorescent SiO{sub 2} shell is estimated at 15 {+-} 5 nm. In addition, the fluorescent signal of the SiO{sub 2} shell has been detected by the laser confocal scanning microscopy (LCSM) with emission wavelength ({lambda}{sub em}) at 566 nm. In addition, the magnetic properties of TRITC-dextran loaded silica-coating iron oxide nanoparticles (Fe{sub 3}O{sub 4}-SiO{sub 2} NPs) were studied. The hysteresis loop of the core-shell NPs measured at room temperature shows that the saturation magnetization (M{sub s}) is not reached even at the field of 70 kOe (7T). Meanwhile, the very low coercivity (H{sub c}) and remanent magnetization (M{sub r}) are 0.375 kOe and 6.6 emu/g, respectively, at room temperature. It indicates that the core-shell particles have the superparamagnetic properties. The measured blocking temperature (T{sub B}) of the TRITC-dextran loaded Fe{sub 3}O{sub 4}-SiO{sub 2} NPs is about 122.5 K. It is expected that the multifunctional core-shell nanoparticles can be used in bio-imaging.

  3. In-core fuel management: New challenges

    International Nuclear Information System (INIS)

    Kolmayer, A.; Vallee, A.; Mondot, J.

    1992-01-01

    Experience accumulated by pressurized water reactor (PWR) utilities allows them to improve their strategies in the use of eventual margins to core design limits. They are used for nuclear steam supply system (NSSS) power upgrading, to improve operating margins, or to adapt fuel management to specific objectives. As a result, in-core fuel management strategies have become very diverse: UO 2 or mixed-oxide loading, out-in or in-out fuel loading patterns, extended or annual cycle lengths with margins on design limits such as moderator temperature coefficients, boron concentrations, or peaking factors. Perspectives also appear concerning use of existing plutonium stocks or actinide incineration. Burnable poisons are most often needed to satisfactorily achieve these goals. Among them, gadolinia are now largely used, owing to their excellent performance. More than 24 Framatome first cores and reloads, representing more than 3000 gadolinia-bearing rods, have been irradiated since 1983

  4. Heuristic rules embedded genetic algorithm to solve VVER loading pattern optimization problem

    International Nuclear Information System (INIS)

    Fatih, Alim; Kostandi, Ivanov

    2006-01-01

    Full text: Loading Pattern (LP) optimization is one of the most important aspects of the operation of nuclear reactors. A genetic algorithm (GA) code GARCO (Genetic Algorithm Reactor Optimization Code) has been developed with embedded heuristic techniques to perform optimization calculations for in-core fuel management tasks. GARCO is a practical tool that includes a unique methodology applicable for all types of Pressurized Water Reactor (PWR) cores having different geometries with an unlimited number of FA types in the inventory. GARCO was developed by modifying the classical representation of the genotype. Both the genotype representation and the basic algorithm have been modified to incorporate the in-core fuel management heuristics rules so as to obtain the best results in a shorter time. GARCO has three modes. Mode 1 optimizes the locations of the fuel assemblies (FAs) in the nuclear reactor core, Mode 2 optimizes the placement of the burnable poisons (BPs) in a selected LP, and Mode 3 optimizes simultaneously both the LP and the BP placement in the core. This study describes the basic algorithm for Mode 1. The GARCO code is applied to the VVER-1000 reactor hexagonal geometry core in this study. The M oby-Dick i s used as reactor physics code to deplete FAs in the core. It was developed to analyze the VVER reactors by SKODA Inc. To use these rules for creating the initial population with GA operators, the worth definition application is developed. Each FA has a worth value for each location. This worth is between 0 and 1. If worth of any FA for a location is larger than 0.5, this FA in this location is a good choice. When creating the initial population of LPs, a subroutine provides a percent of individuals, which have genes with higher than the 0.5 worth. The percentage of the population to be created without using worth definition is defined in the GARCO input. And also age concept has been developed to accelerate the GA calculation process in reaching the

  5. Using a multi-state recurrent neural network to optimize loading patterns in BWRs

    International Nuclear Information System (INIS)

    Ortiz, Juan Jose; Requena, Ignacio

    2004-01-01

    A Multi-State Recurrent Neural Network is used to optimize Loading Patterns (LP) in BWRs. We have proposed an energy function that depends on fuel assembly positions and their nuclear cross sections to carry out optimisation. Multi-State Recurrent Neural Networks creates LPs that satisfy the Radial Power Peaking Factor and maximize the effective multiplication factor at the Beginning of the Cycle, and also satisfy the Minimum Critical Power Ratio and Maximum Linear Heat Generation Rate at the End of the Cycle, thereby maximizing the effective multiplication factor. In order to evaluate the LPs, we have used a trained back-propagation neural network to predict the parameter values, instead of using a reactor core simulator, which saved considerable computation time in the search process. We applied this method to find optimal LPs for five cycles of Laguna Verde Nuclear Power Plant (LVNPP) in Mexico

  6. Advanced and flexible genetic algorithms for BWR fuel loading pattern optimization

    International Nuclear Information System (INIS)

    Martin-del-Campo, Cecilia; Palomera-Perez, Miguel-Angel; Francois, Juan-Luis

    2009-01-01

    This work proposes advances in the implementation of a flexible genetic algorithm (GA) for fuel loading pattern optimization for Boiling Water Reactors (BWRs). In order to avoid specific implementations of genetic operators and to obtain a more flexible treatment, a binary representation of the solution was implemented; this representation had to take into account that a little change in the genotype must correspond to a little change in the phenotype. An identifier number is assigned to each assembly by means of a Gray Code of 7 bits and the solution (the loading pattern) is represented by a binary chain of 777 bits of length. Another important contribution is the use of a Fitness Function which includes a Heuristic Function and an Objective Function. The Heuristic Function which is defined to give flexibility on the application of a set of positioning rules based on knowledge, and the Objective Function that contains all the parameters which qualify the neutronic and thermal hydraulic performances of each loading pattern. Experimental results illustrating the effectiveness and flexibility of this optimization algorithm are presented and discussed.

  7. Conceptual study of axial offset fluctuations upon stepwise power changes in a thorium–plutonium core to improve load-following conditions

    International Nuclear Information System (INIS)

    Lau, Cheuk Wah; Dykin, Victor; Nylén, Henrik; Björk, Klara Insulander; Sandberg, Urban

    2014-01-01

    Highlights: • Thorium–plutonium mixed oxide to improve nuclear reactors load-following capability. • SIMULATE-3 was the main calculation tool. • The Ringhals-3 PWR unit in Sweden was used as a reference. • Lower xenon poisoning and shorter reactor dead time. - Abstract: The increased share of renewable energy, such as wind and solar power, will increase the demand for load-following power sources, and nuclear reactors could be one option. However, during rapid load-following events, traditional UOX cores could be restricted by the volatile oscillation of the power distribution. Therefore, a conceptual study on stability properties of Th-MOX PWR concerning axial offset power excursion during load-following events are investigated and discussed. The study is performed in SIMULATE-3 for a realistic PWR core (Ringhals-3) at the end of cycle, where the largest amplitude of the axial offset oscillations is expected. It is shown that the Th-MOX core possesses much better stability characteristics and shorter reactor dead time compared with a traditional UOX core, and the main reasons are the lower sensitivity to perturbations in the neutron spectrum, lower xenon poisoning and lower thermal neutron flux

  8. Investigation on the improvement of genetic algorithm for PWR loading pattern search and its benchmark verification

    International Nuclear Information System (INIS)

    Li Qianqian; Jiang Xiaofeng; Zhang Shaohong

    2009-01-01

    In this study, the age technique, the concepts of relativeness degree and worth function are exploited to improve the performance of genetic algorithm (GA) for PWR loading pattern search. Among them, the age technique endows the algorithm be capable of learning from previous search 'experience' and guides it to do a better search in the vicinity ora local optimal; the introduction of the relativeness degree checks the relativeness of two loading patterns before performing crossover between them, which can significantly reduce the possibility of prematurity of the algorithm; while the application of the worth function makes the algorithm be capable of generating new loading patterns based on the statistics of common features of evaluated good loading patterns. Numerical verification against a loading pattern search benchmark problem ora two-loop reactor demonstrates that the adoption of these techniques is able to significantly enhance the efficiency of the genetic algorithm while improves the quality of the final solution as well. (authors)

  9. Hydrodynamic loading and viscous damping of patterned perforations on microfabricated resonant structures

    DEFF Research Database (Denmark)

    Park, Kidong; Shim, Jeong; Solovyeva, Vita

    2012-01-01

    We examined the hydrodynamic loading of vertically resonating microfabricated plates immersed in liquids with different viscosities. The planar structures were patterned with focused ion beam, perforating various shapes with identical area but varying perimeters. The hydrodynamic loading of various...

  10. Adaptation of adhesive post and cores to dentin after in vitro occlusal loading: evaluation of post material influence.

    Science.gov (United States)

    Dietschi, Dider; Ardu, Stefano; Rossier-Gerber, Anne; Krejci, Ivo

    2006-12-01

    Fatigue resistance of post and cores is critical to the long term behavior of restored nonvital teeth. The purpose of this in vitro trial was to evaluate the influence of the post material's physical properties on the adaptation of adhesive post and core restorations after cyclic mechanical loading. Composite post and cores were made on endodontically treated deciduous bovine teeth using 3 anisotropic posts (made of carbon, quartz, or quartz-and-carbon fibers) and 3 isotropic posts (zirconium, stainless steel, titanium). Specimens were submitted to 3 successive loading phases--250,000 cycles at 50 N, 250,000 at 75 N, and 500,000 at 100 N--at a rate of 1.5 Hz. Restoration adaptation was evaluated under SEM, before and during loading (margins) and after test completion (margins and internal interfaces). Six additional samples were fabricated for the characterization of interface micromorphology using confocal microscopy. Mechanical loading increased the proportion of marginal gaps in all groups; carbon fiber posts presented the lowest final gap proportion (7.11%) compared to other stiffer metal-ceramic or softer fiber posts (11.0% to 19.1%). For internal adaptation, proportions of debonding between dentin and core or cement varied from 21.69% (carbon post) to 47.37% (stainless steel post). Debonding at the post-cement interface occurred only with isotropic materials. Confocal microscopy observation revealed that gaps were generally associated with an incomplete hybrid layer and reduced resin tags. Regardless of their rigidity, metal and ceramic isotropic posts proved less effective than fiber posts at stabilizing the post and core structure in the absence of the ferrule effect, due to the development of more interfacial defects with either composite or dentin.

  11. Synthesis, Characterization and Drug Loading of Multiresponsive p[NIPAm-co-PEGMA] (core/p[NIPAm-co-AAc] (Shell Nanogels with Monodisperse Size Distributions

    Directory of Open Access Journals (Sweden)

    Rajesh Raju

    2018-03-01

    Full Text Available We report the synthesis and properties of temperature- and pH-responsive p([NIPAm-co-PEGMA] (core/[NIPAm-co-AAc] (shell nanogels with narrow size distributions, tunable sizes and increased drug loading efficiencies. The core-shell nanogels were synthesized using an optimized two-stage seeded polymerization methodology. The core-shell nanogels show a narrow size distribution and controllable physico-chemical properties. The hydrodynamic sizes, charge distributions, temperature-induced volume phase transition behaviors, pH-responsive behaviors and drug loading capabilities of the core-shell nanogels were investigated using transmission electron microscopy, zeta potential measurements, dynamic light scattering and UV-Vis spectroscopy. The size of the core-shell nanogels was controlled by polymerizing NIPAm with crosslinker poly(ethylene glycol dimethacrylate (PEGDMA of different molecular weights (Mn-200, 400, 550 and 750 g/mol during the core synthesis. It was found that the swelling/deswelling kinetics of the nanogels was sharp and reversible; with its volume phase transition temperature in the range of 40–42 °C. Furthermore, the nanogels loaded with l-3,4-dihydroxyphenylalanine (L-DOPA, using a modified breathing-in mechanism, showed high loading and encapsulation efficiencies, providing potential possibilities of such nanogels for biomedical applications.

  12. Evaluation of reactivity and Xe behavior during daily load following operation

    International Nuclear Information System (INIS)

    Sakamoto, Yasunori; Araki, Tsuneyasu; Yamamoto, Fumiaki

    1992-01-01

    A boiling water reactor (BWR) has an excellent load following capability provided by a core flow control, which is used for changing a reactor power level and for compensating the subsequent Xe concentration change. The core characteristics during load following operations are investigated in detail, using our reactor core simulator. Comparisons of changes of the Doppler reactivity, the void reactivity and the Xe reactivity during transients are performed. Also the features of Xe transient during load following operations are shown. It has been shown that the core flow change required to compensate the Xe reactivity change produces much greater change of the void reactivity than that required for power level changes, and that the resulting local power change in the lower part of the core is greater than that in the upper part, because the Xe concentration change in the lower part is hardly compensated by the core flow control. Also the effects of power level changes, cycle patterns, and initial concentration of Xe and I on the Xe transient behavior have been investigated. (author)

  13. Mixed PWR core loadings with inert matrix Pu-fuel assemblies

    International Nuclear Information System (INIS)

    Stanculescu, A.; Kasemeyer, U.; Paratte, J.-M.; Chawla, R.

    1999-01-01

    The most efficient way to enhance plutonium consumption in light water reactors is to eliminate the production of plutonium all together. This requirement leads to fuel concepts in which the uranium is replaced by an inert matrix. At PSI, studies have focused on employing ZrO 2 as inert matrix. Adding a burnable poison to such a fuel proves to be necessary. As a result of scoping studies, Er 2 O 3 was identified as the most suitable burnable poison material. The results of whole-core three-dimensional neutronics analyses indicated, for a present-day 1000 MW e pressurised water reactor, the feasibility of an asymptotic equilibrium four-batch cycle fuelled solely with the proposed PuO 2 -Er 2 O 3 -ZrO 2 inert matrix fuel (IMF). The present paper presents the results of more recent investigations related to 'real-life' situations, which call for transition configurations in which mixed IMF and UO 2 assembly loadings must be considered. To determine the influence of the introduction of IMF assemblies on the characteristics of a UO 2 -fuelled core, three-dimensional full-core calculations have been performed for a present-day 1000 MW e PWR containing up to 12 optimised IMF assemblies. (author)

  14. A High-Order Theory for the Analysis of Circular Cylindrical Composite Sandwich Shells with Transversely Compliant Core Subjected to External Loads

    DEFF Research Database (Denmark)

    Rahmani, Omid; Khalili, S.M.R.; Thomsen, Ole Thybo

    2012-01-01

    A new model based on the high order sandwich panel theory is proposed to study the effect of external loads on the free vibration of circular cylindrical composite sandwich shells with transversely compliant core, including also the calculation of the buckling loads. In the present model......, which is based on a 3D elasticity solution for the core material, can be used as a benchmark in future studies of the free vibration and buckling of circular cylindrical composite sandwich shells with a transversely compliant core....

  15. Hollow-Core FRP–Concrete–Steel Bridge Columns under Torsional Loading

    Directory of Open Access Journals (Sweden)

    Sujith Anumolu

    2017-11-01

    Full Text Available This paper presents the behavior of hollow-core fiber-reinforced polymer–concrete–steel (HC-FCS columns under cyclic torsional loading combined with constant axial load. The HC-FCS consists of an outer fiber-reinforced polymer (FRP tube and an inner steel tube, with a concrete shell sandwiched between the two tubes. The FRP tube was stopped at the surface of the footing, and provided confinement to the concrete shell from the outer direction. The steel tube was embedded into the footing to a length of 1.8 times the diameter of the steel tube. The longitudinal and transversal reinforcements of the column were provided by the steel tube only. A large-scale HC-FCS column with a diameter of 24 in. (610 mm and applied load height of 96 in. (2438 mm with an aspect ratio of four was investigated during this study. The study revealed that the torsional behavior of the HC-FCS column mainly depended on the stiffness of the steel tube and the interactions among the column components (concrete shell, steel tube, and FRP tube. A brief comparison of torsional behavior was made between the conventional reinforced concrete columns and the HC-FCS column. The comparison illustrated that both column types showed high initial stiffness under torsional loading. However, the HC-FCS column maintained the torsion strength until a high twist angle, while the conventional reinforced concrete column did not.

  16. A proposed heuristic methodology for searching reloading pattern

    International Nuclear Information System (INIS)

    Choi, K. Y.; Yoon, Y. K.

    1993-01-01

    A new heuristic method for loading pattern search has been developed to overcome shortcomings of the algorithmic approach. To reduce the size of vast solution space, general shuffling rules, a regionwise shuffling method, and a pattern grouping method were introduced. The entropy theory was applied to classify possible loading patterns into groups with similarity between them. The pattern search program was implemented with use of the PROLOG language. A two-group nodal code MEDIUM-2D was used for analysis of power distribution in the core. The above mentioned methodology has been tested to show effectiveness in reducing of solution space down to a few hundred pattern groups. Burnable poison rods were then arranged in each pattern group in accordance with burnable poison distribution rules, which led to further reduction of the solution space to several scores of acceptable pattern groups. The method of maximizing cycle length (MCL) and minimizing power-peaking factor (MPF) were applied to search for specific useful loading patterns from the acceptable pattern groups. Thus, several specific loading patterns that have low power-peaking factor and large cycle length were successfully searched from the selected pattern groups. (Author)

  17. Optimization of Boiling Water Reactor Loading Pattern Using Two-Stage Genetic Algorithm

    International Nuclear Information System (INIS)

    Kobayashi, Yoko; Aiyoshi, Eitaro

    2002-01-01

    A new two-stage optimization method based on genetic algorithms (GAs) using an if-then heuristic rule was developed to generate optimized boiling water reactor (BWR) loading patterns (LPs). In the first stage, the LP is optimized using an improved GA operator. In the second stage, an exposure-dependent control rod pattern (CRP) is sought using GA with an if-then heuristic rule. The procedure of the improved GA is based on deterministic operators that consist of crossover, mutation, and selection. The handling of the encoding technique and constraint conditions by that GA reflects the peculiar characteristics of the BWR. In addition, strategies such as elitism and self-reproduction are effectively used in order to improve the search speed. The LP evaluations were performed with a three-dimensional diffusion code that coupled neutronic and thermal-hydraulic models. Strong axial heterogeneities and constraints dependent on three dimensions have always necessitated the use of three-dimensional core simulators for BWRs, so that optimization of computational efficiency is required. The proposed algorithm is demonstrated by successfully generating LPs for an actual BWR plant in two phases. One phase is only LP optimization applying the Haling technique. The other phase is an LP optimization that considers the CRP during reactor operation. In test calculations, candidates that shuffled fresh and burned fuel assemblies within a reasonable computation time were obtained

  18. The Response of Clamped Shallow Sandwich Arches with Metallic Foam Cores to Projectile Impact Loading

    Directory of Open Access Journals (Sweden)

    Yanping Fan

    Full Text Available Abstract The dynamic response and energy absorption capabilities of clamped shallow sandwich arches with aluminum foam core were numerically investigated by impacting the arches at mid-span with metallic foam projectiles. The typical deformation modes, deflection response, and core compression of sandwich arches obtained from the tests were used to validate the computation model. The resistance to impact loading was quantified by the permanent transverse deflection at mid-span of the arches as a function of projectile momentum. The sandwich arches have a higher shock resistance than the monolithic arches of equal mass, and shock resistance could be significantly enhanced by optimizing geometrical configurations. Meanwhile, decreasing the face-sheet thickness and curvature radius could enhance the energy absorption capability of the sandwich arches. Finite element calculations indicated that the ratio of loading time to structural response time ranged from 0.1 to 0.4. The projectile momentum, which was solely used to quantify the structural response of sandwich arches, was insufficient. These findings could provide guidance in conducting further theoretical studies and producing the optimal design of metallic sandwich structures subjected to impact loading.

  19. A non-algorithmic approach to the In-core-fuel management problem of a PWR core

    International Nuclear Information System (INIS)

    Kimhy, Y.

    1992-03-01

    The primary objective of a commercial nuclear power plant operation is to produce electricity a low cost while satisfying safety constraints imposed on the operating conditions. Design of a fuel reload cycle for the current generation nuclear power plant represents a multistage process with a series of design decisions taken at various time points. Of these stages, reload core design is an important stage, due to its impact on safety and economic plant performance parameters. Overall. performance of the plant during the power production cycle depends on chosen fresh fuel parameters, as well as specific fuel configuration of the reactor core. The motivation to computerize generation and optimization of fuel reload configurations follows from some reasons: first, reload is performed periodically and requires manipulation of a large amount of data. second, in recent years, more complicated fuel loading patterns were developed and implemented following changes in fuel design and/or operational requirements, such as, longer cycles, advanced burnable poison designs, low leakage loading patterns and reduction of irradiation-induced damage of the pressure vessel. An algorithmic approach to the problem was generally adopted. The nature of the reload design process is a 'heuristic' search performed manually by a fuel manager. The knowledge used by the fuel manager is mostly accumulated experience in reactor physics and core calculations. These features of the problem and the inherent disadvantage of the algorithmic method are the main reasons to explore a non-algorithmic approach for solving the reload configuration problem. Several features of the 'solutions space' ( a collection of acceptable final configurations ) are emphasized in this work: 1) the space contain numerous number of entities (> 25) that are distributed un homogeneously, 2) the lack of a monotonic objective function decrease the probability to find an isolated optimum configuration by depth first search or

  20. Effects of hydrophobic drug-polyesteric core interactions on drug loading and release properties of poly(ethylene glycol)-polyester-poly(ethylene glycol) triblock core-shell nanoparticles

    International Nuclear Information System (INIS)

    Khoee, Sepideh; Hassanzadeh, Salman; Goliaie, Bahram

    2007-01-01

    BAB amphiphilic triblock copolymers consisting of poly(ethylene glycol) (B) (PEG) as the hydrophilic segment and different polyesters (A) as the hydrophobic block were prepared by a polycondensation reaction as efficient model core-shell nanoparticles to assay the effect of interactions between the hydrophobic drug and the polyesteric core in terms of drug loading content and release profile. PEG-poly(hexylene adipate)-PEG (PEG-PHA-PEG) and PEG-poly(butylene adipate)-PEG (PEG-PBA-PEG) to PEG-poly(ethylene adipate)-PEG (PEG-PEA-PEG) core-shell type nanoparticles entrapping quercetin (an anticarcinogenic, allergy inhibitor and antibacterial agent), were prepared by a nanoprecipitation method and characterized by dynamic light scattering (DLS), transmission electron microscopy (TEM) and x-ray diffraction (XRD) techniques. It was found that the obtained nanoparticles showed a smooth surface and spherical shape with controllable sizes in the range of 64-74 nm, while drug loading varied from 7.24% to 19% depending on the copolymer composition and the preparation conditions. The in vitro release behaviour exhibited a sustained release and was affected by the polymer-drug interactions. UV studies revealed the presence of hydrogen bonding as the main existing interaction between quercetin and polyesters in the nanosphere cores

  1. Development of UCMS for Analysis of Designed and Measured Core Power Distribution

    International Nuclear Information System (INIS)

    Moon, Sang Rae; Hong, Sun Kwan; Yang, Sung Tae

    2009-01-01

    In this study, reactor core loading patterns were determined by calculating and verifying the factors affecting peak power and important core safety variables were reconciled with their design criteria using a newly designed unified core management system. Core loading patterns are designed for quadrant cores under the assumption that the power distribution of the reactor core is the same among symmetric fuel assemblies within the core. Actual core power distributions measured during core operation may differ slightly from their designed data. Reactor engineers monitor these differences between the designed and measured data by performing a surveillance procedure every month according to the technical specification requirements. It is difficult to monitor overall power distribution behavior throughout the assemblies using the current procedure because it requires the reactor engineer to compare the designed data with only the maximum value of the power peaking factor and the relative power density. It is necessary to enhance this procedure to check the primary variables such as core power distribution, because long cycle operation, high burnup, power up-rate, and improved fuel can change the environment in the core. To achieve this goal, a web-based Unified Core Management System (UCMS) was developed. To build the UCMS, a database system was established using reactor design data such as that in the Nuclear Design Report (NDR) and automated core analysis codes for all light water reactor power plants. The UCMS is designed to help reactor engineers to monitor important core variables and core safety margins by comparing the measured core power distribution with designed data for each fuel assembly during the cycle operation in nuclear power plants

  2. Fuel management study on quarter core refueling for Ling Ao NPP

    International Nuclear Information System (INIS)

    Zhang Hong; Li Jinggang

    2012-01-01

    The fuel management study on quarter core refueling is introduced for Ling Ao NPP. Starting from the selection of the objective of fuel management for quarter core refueling, the code and method used and the analysis carried out are explained in details to reach the final loading pattern chosen. The start-up physics test results are listed to demonstrate the realized quarter core fuel management. In the end, the advantage and disadvantage after turning to quarter core refueling has been given for the power plant from the fuel management point of view. (authors)

  3. Reflector modelization in neutronic and optimization methods applied to fuel loading pattern; Modelisation du reflecteur en neutronique et methodes d`optimisation appliquees aux plans de rechargement

    Energy Technology Data Exchange (ETDEWEB)

    Argaud, J P

    1995-12-01

    I Physical description of P.W.R nuclear core can be handled by multigroup neutronic diffusion model. We are interested in two problems, using the same approach for the optimization aspect. To deal with some differences between calculations and measurements, the question of their reduction is then introduced. A reflector parameters identification from core measurements is then purposed, the reflector being at the present time the less known part of core diffusion model. This approach conducts to study the reflector model, in particular by an analysis of its transport origin. It leads finally to a new model of reflector described by boundary operators using an integral formulation on the core/reflector interface. That is on this new model that a parameter identification formulation of calculations-measurements differences reduction is given, using an adjoint state formulation to minimize errors by a gradient method. Furthermore, nuclear fuel reload of P.W.R core needs an optimal distribution of fuel assemblies, namely a loading pattern. This combinatorial optimization problem is then expressed as a cost function minimization, the cost function describing the power spatial distribution. Various methods (linear programming, simulated annealing,...), used to solve this problem, are detailed, given in particular a practical search example. A new approach is then proposed, using the gradient of the cost function to direct the search in the patterns discrete space. Final results of complete patterns search trials are presented, and compared to those obtained by other methods. In particular the results are obtained very quickly. (author). 81 refs., 55 figs., 5 appends.

  4. Methotrexate diethyl ester-loaded lipid-core nanocapsules in aqueous solution increased antineoplastic effects in resistant breast cancer cell line.

    Science.gov (United States)

    Yurgel, Virginia C; Oliveira, Catiuscia P; Begnini, Karine R; Schultze, Eduarda; Thurow, Helena S; Leon, Priscila M M; Dellagostin, Odir A; Campos, Vinicius F; Beck, Ruy C R; Guterres, Silvia S; Collares, Tiago; Pohlmann, Adriana R; Seixas, Fabiana K

    2014-01-01

    Breast cancer is the most frequent cancer affecting women. Methotrexate (MTX) is an antimetabolic drug that remains important in the treatment of breast cancer. Its efficacy is compromised by resistance in cancer cells that occurs through a variety of mechanisms. This study evaluated apoptotic cell death and cell cycle arrest induced by an MTX derivative (MTX diethyl ester [MTX(OEt)2]) and MTX(OEt)2-loaded lipid-core nanocapsules in two MTX-resistant breast adenocarcinoma cell lines, MCF-7 and MDA-MB-231. The formulations prepared presented adequate granulometric profile. The treatment responses were evaluated through flow cytometry. Relying on the mechanism of resistance, we observed different responses between cell lines. For MCF-7 cells, MTX(OEt)2 solution and MTX(OEt)2-loaded lipid-core nanocapsules presented significantly higher apoptotic rates than untreated cells and cells incubated with unloaded lipid-core nanocapsules. For MDA-MB-231 cells, MTX(OEt)2-loaded lipid-core nanocapsules were significantly more efficient in inducing apoptosis than the solution of the free drug. S-phase cell cycle arrest was induced only by MTX(OEt)2 solution. The drug nanoencapsulation improved apoptosis induction for the cell line that presents MTX resistance by lack of transport receptors.

  5. Environment-based pin-power reconstruction method for homogeneous core calculations

    International Nuclear Information System (INIS)

    Leroyer, H.; Brosselard, C.; Girardi, E.

    2012-01-01

    Core calculation schemes are usually based on a classical two-step approach associated with assembly and core calculations. During the first step, infinite lattice assemblies calculations relying on a fundamental mode approach are used to generate cross-sections libraries for PWRs core calculations. This fundamental mode hypothesis may be questioned when dealing with loading patterns involving several types of assemblies (UOX, MOX), burnable poisons, control rods and burn-up gradients. This paper proposes a calculation method able to take into account the heterogeneous environment of the assemblies when using homogeneous core calculations and an appropriate pin-power reconstruction. This methodology is applied to MOX assemblies, computed within an environment of UOX assemblies. The new environment-based pin-power reconstruction is then used on various clusters of 3x3 assemblies showing burn-up gradients and UOX/MOX interfaces, and compared to reference calculations performed with APOLLO-2. The results show that UOX/MOX interfaces are much better calculated with the environment-based calculation scheme when compared to the usual pin-power reconstruction method. The power peak is always better located and calculated with the environment-based pin-power reconstruction method on every cluster configuration studied. This study shows that taking into account the environment in transport calculations can significantly improve the pin-power reconstruction so far as it is consistent with the core loading pattern. (authors)

  6. Lumbopelvic muscle activation patterns in three stances under graded loading conditions: Proposing a tensegrity model for load transfer through the sacroiliac joints.

    Science.gov (United States)

    Pardehshenas, Hamed; Maroufi, Nader; Sanjari, Mohammad Ali; Parnianpour, Mohamad; Levin, Stephen M

    2014-10-01

    According to the conventional arch model of the pelvis, stability of the sacroiliac joints may require a predominance of form and force closure mechanisms: the greater the vertical shear force at the sacroiliac joints, the greater the reliance on self-bracing by horizontally or obliquely oriented muscles (such as the internal oblique). But what happens to the arch model when a person stands on one leg? In such cases, the pelvis no longer has imposts, leaving both the arch, and the arch model theory, without support. Do lumbopelvic muscle activation patterns in one-legged stances under load suggest compatibility with a different model? This study compares lumbopelvic muscle activation patterns in two-legged and one-legged stances in response to four levels of graded trunk loading in order to further our understanding the stabilization of the sacroiliac joints. Thirty male subjects experienced four levels of trunk loading (0%, 5%, 10% and 15% of body weight) by holding a bucket at one side, at three conditions: 1) two-legged standing with the bucket in the dominant hand, 2) ipsilateral loading: one-legged standing with the bucket in the dominant hand while using the same-side leg, and 3) contralateral loading: one-legged standing using the same leg used in condition 2, but with the bucket in the non-dominant hand. During these tasks, EMG signals from eight lumbopelvic muscles were collected. ANOVA with repeated design was performed on normalized EMG's to test the main effect of load and condition, and interaction effects of load by condition. Latissimus dorsi and erector spinae muscles showed an antagonistic pattern of activity toward the direction of load which may suggest these muscles as lateral trunk stabilizers. Internal oblique muscles showed a co-activation pattern with increasing task demand, which may function to increase lumbopelvic stability (P sacroiliac joint dysfunctions must be taken into consideration. Our hypothetical model may initiate thinking and

  7. Optimizing electrical load pattern in Kuwait using grid connected photovoltaic systems

    International Nuclear Information System (INIS)

    Al-Hasan, A.Y.; Ghoneim, A.A.; Abdullah, A.H.

    2004-01-01

    Grid connected photovoltaic systems is one of the most promising applications of photovoltaic systems. These systems are employed in applications where utility service is already available. In this case, there is no need for battery storage because grid power may be used to supplement photovoltaic systems (PV) when the load exceeds available PV generation. The load receives electricity from both the photovoltaic array and the utility grid. In this system, the load is the total electrical energy consumption. The main objective of the present work is to optimize the electrical load pattern in Kuwait using grid connected PV systems. In this situation, the electric load demand can be satisfied from both the photovoltaic array and the utility grid. The performance of grid connected photovoltaic systems in the Kuwait climate has been evaluated. It was found that the peak load matches the maximum incident solar radiation in Kuwait, which would emphasize the role of using the PV station to minimize the electrical load demand. In addition, a significant reduction in peak load can be achieved with grid connected PV systems

  8. A study on the optimal fuel loading pattern design in pressurized water reactors using the artificial neural network and the fuzzy rule based system

    International Nuclear Information System (INIS)

    Kim, Han Gon

    1993-02-01

    In pressurized water reactors, the fuel reloading problem has significant meaning in terms of both safety and economic aspects. Therefore the general problem of incore fuel management for a PWR consists of determining the fuel reloading policy for each cycle that minimize unit energy cost under the constraints imposed on various core parameters, e.g., a local power peaking factor and an assembly burnup. This is equivalent that a cycle length is maximized for a given energy cost under the various constraints. Existing optimization methods do not ensure the global optimum solution because of the essential limitation of their searching algorithms. They only find near optimal solutions. To solve this limitation, a hybrid artificial neural network system is developed for the optimal fuel loading pattern design using a fuzzy rule based system and an artificial neural networks. This system finds the patterns that P max is lower than the predetermined value and K eff is larger than the reference value. The back-propagation networks are developed to predict PWR core parameters. Reference PWR is an 121-assembly typical PWR. The local power peaking factor and the effective multiplication factor at BOC condition are predicted. To obtain target values of these two parameters, the QCC code are used. Using this code, 1000 training patterns are obtained, randomly. Two networks are constructed, one for P max and another for K eff Both of two networks have 21 input layer neurons, 18 output layer neurons, and 120 and 393 hidden layer neurons, respectively. A new learning algorithm is proposed. This is called the advanced adaptive learning algorithm. The weight change step size of this algorithm is optimally varied inversely proportional to the average difference between an actual output value and an ideal target value. This algorithm greatly enhances the convergence speed of a BPN. In case of P max prediction, 98% of the untrained patterns are predicted within 6% error, and in case

  9. Application of metaheuristics to Loading Pattern Optimization problems based on the IAEA-3D and BIBLIS-2D data

    International Nuclear Information System (INIS)

    Meneses, Anderson Alvarenga de Moura; Araujo, Lenilson Moreira; Nast, Fernando Nogueira; Da Silva, Patrick Vasconcelos; Schirru, Roberto

    2018-01-01

    Highlights: •Metaheuristics were applied to Loading Pattern Optimization problems and compared. •The problems are based on data of the benchmarks IAEA and BIBLIS. •The metaheuristics compared were PSO, Cross-Entropy, PBIL and Artificial Bee Colony. •Angra 1 NPP data were also used for further comparison of the algorithms. -- Abstract: The Loading Pattern Optimization (LPO) of a Nuclear Power Plant (NPP), or in-core fuel management optimization, is a real-world and prominent problem in Nuclear Engineering with the goal of finding an optimal (or near-optimal) Loading Pattern (LP), in terms of energy production, within adequate safety margins. Most of the reactor models used in the LPO problem are particular cases, such as research or power reactors with technical data that cannot be made available for several reasons, which makes the reproducibility of tests unattainable. In the present article we report the results of LPO of problems based upon reactor physics benchmarks. Since such data are well-known and widely available in the literature, it is possible to reproduce tests for comparison of techniques. We performed the LPO with the data of the benchmarks IAEA-3D and BIBLIS-2D. The Reactor Physics code RECNOD, which was used in previous works for the optimization of Angra 1 NPP in Brazil, was also used for further comparison. Four Optimization Metaheuristics (OMHs) were applied to those problems: Particle Swarm Optimization (PSO), Cross-Entropy algorithm (CE), Artificial Bee Colony (ABC) and Population-Based Incremental Learning (PBIL). For IAEA-3D, the best algorithm was the ABC. For BIBLIS-2D, PBIL was the best OMH. For Angra 1 / RECNOD optimization problem, PBIL, ABC and CE were the best OMHs.

  10. Reactively loaded arrays based on overlapping sub-arrays with flat-top radiation pattern

    NARCIS (Netherlands)

    Maximidis, R. T.; Smolders, A. B.; Toso, G.; Caratelli, D.

    2017-01-01

    The design of reactively-loaded antenna arrays featuring a pulse-shaped radiation pattern for limited scan-angle applications is presented. The use of the reactive loading allows reducing the complexity of the feeding structure, eliminating the need for complex overlapping beam-forming networks and

  11. Comparison of DVH parameters and loading patterns of standard loading, manual and inverse optimization for intracavitary brachytherapy on a subset of tandem/ovoid cases

    International Nuclear Information System (INIS)

    Jamema, Swamidas V.; Kirisits, Christian; Mahantshetty, Umesh; Trnkova, Petra; Deshpande, Deepak D.; Shrivastava, Shyam K.; Poetter, Richard

    2010-01-01

    Purpose: Comparison of inverse planning with the standard clinical plan and with the manually optimized plan based on dose-volume parameters and loading patterns. Materials and methods: Twenty-eight patients who underwent MRI based HDR brachytherapy for cervix cancer were selected for this study. Three plans were calculated for each patient: (1) standard loading, (2) manual optimized, and (3) inverse optimized. Dosimetric outcomes from these plans were compared based on dose-volume parameters. The ratio of Total Reference Air Kerma of ovoid to tandem (TRAK O/T ) was used to compare the loading patterns. Results: The volume of HR CTV ranged from 9-68 cc with a mean of 41(±16.2)cc. Mean V100 for standard, manual optimized and inverse plans was found to be not significant (p = 0.35, 0.38, 0.4). Dose to bladder (7.8 ± 1.6 Gy) and sigmoid (5.6 ± 1.4 Gy) was high for standard plans; Manual optimization reduced the dose to bladder (7.1 ± 1.7 Gy p = 0.006) and sigmoid (4.5 ± 1.0 Gy p = 0.005) without compromising the HR CTV coverage. The inverse plan resulted in a significant reduction to bladder dose (6.5 ± 1.4 Gy, p = 0.002). TRAK was found to be 0.49(±0.02), 0.44(±0.04) and 0.40(±0.04)cGy m -2 for the standard loading, manual optimized and inverse plans, respectively. It was observed that TRAK O/T was 0.82(±0.05), 1.7(±1.04) and 1.41(±0.93) for standard loading, manual optimized and inverse plans, respectively, while this ratio was 1 for the traditional loading pattern. Conclusions: Inverse planning offers good sparing of critical structures without compromising the target coverage. The average loading pattern of the whole patient cohort deviates from the standard Fletcher loading pattern.

  12. Comparison of DVH parameters and loading patterns of standard loading, manual and inverse optimization for intracavitary brachytherapy on a subset of tandem/ovoid cases.

    Science.gov (United States)

    Jamema, Swamidas V; Kirisits, Christian; Mahantshetty, Umesh; Trnkova, Petra; Deshpande, Deepak D; Shrivastava, Shyam K; Pötter, Richard

    2010-12-01

    Comparison of inverse planning with the standard clinical plan and with the manually optimized plan based on dose-volume parameters and loading patterns. Twenty-eight patients who underwent MRI based HDR brachytherapy for cervix cancer were selected for this study. Three plans were calculated for each patient: (1) standard loading, (2) manual optimized, and (3) inverse optimized. Dosimetric outcomes from these plans were compared based on dose-volume parameters. The ratio of Total Reference Air Kerma of ovoid to tandem (TRAK(O/T)) was used to compare the loading patterns. The volume of HR CTV ranged from 9-68 cc with a mean of 41(±16.2) cc. Mean V100 for standard, manual optimized and inverse plans was found to be not significant (p=0.35, 0.38, 0.4). Dose to bladder (7.8±1.6 Gy) and sigmoid (5.6±1.4 Gy) was high for standard plans; Manual optimization reduced the dose to bladder (7.1±1.7 Gy p=0.006) and sigmoid (4.5±1.0 Gy p=0.005) without compromising the HR CTV coverage. The inverse plan resulted in a significant reduction to bladder dose (6.5±1.4 Gy, p=0.002). TRAK was found to be 0.49(±0.02), 0.44(±0.04) and 0.40(±0.04) cGy m(-2) for the standard loading, manual optimized and inverse plans, respectively. It was observed that TRAK(O/T) was 0.82(±0.05), 1.7(±1.04) and 1.41(±0.93) for standard loading, manual optimized and inverse plans, respectively, while this ratio was 1 for the traditional loading pattern. Inverse planning offers good sparing of critical structures without compromising the target coverage. The average loading pattern of the whole patient cohort deviates from the standard Fletcher loading pattern. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  13. The Effect of Rehearsal Rate and Memory Load on Verbal Working Memory

    OpenAIRE

    Fegen, David; Buchsbaum, Bradley R.; D’Esposito, Mark

    2014-01-01

    While many neuroimaging studies have investigated verbal working memory (WM) by manipulating memory load, the subvocal rehearsal rate at these various memory loads has generally been left uncontrolled. Therefore, the goal of this study was to investigate how mnemonic load and the rate of subvocal rehearsal modulate patterns of activity in the core neural circuits underlying verbal working memory. Using fMRI in healthy subjects, we orthogonally manipulated subvocal rehearsal rate and memory lo...

  14. Fast three-dimensional core optimization based on modified one-group model

    Energy Technology Data Exchange (ETDEWEB)

    Freire, Fernando S. [ELETROBRAS Termonuclear S.A. - ELETRONUCLEAR, Rio de Janeiro, RJ (Brazil). Dept. GCN-T], e-mail: freire@eletronuclear.gov.br; Martinez, Aquilino S.; Silva, Fernando C. da [Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear], e-mail: aquilino@con.ufrj.br, e-mail: fernando@con.ufrj.br

    2009-07-01

    The optimization of any nuclear reactor core is an extremely complex process that consumes a large amount of computer time. Fortunately, the nuclear designer can rely on a variety of methodologies able to approximate the analysis of each available core loading pattern. Two-dimensional codes are usually used to analyze the loading scheme. However, when particular axial effects are present in the core, two-dimensional analysis cannot produce good results and three-dimensional analysis can be required at all time. Basically, in this paper are presented the major advantages that can be found when one use the modified one-group diffusion theory coupled with a buckling correction model in optimization process. The results of the proposed model are very accurate when compared to benchmark results obtained from detailed calculations using three-dimensional nodal codes (author)

  15. Fast three-dimensional core optimization based on modified one-group model

    International Nuclear Information System (INIS)

    Freire, Fernando S.; Martinez, Aquilino S.; Silva, Fernando C. da

    2009-01-01

    The optimization of any nuclear reactor core is an extremely complex process that consumes a large amount of computer time. Fortunately, the nuclear designer can rely on a variety of methodologies able to approximate the analysis of each available core loading pattern. Two-dimensional codes are usually used to analyze the loading scheme. However, when particular axial effects are present in the core, two-dimensional analysis cannot produce good results and three-dimensional analysis can be required at all time. Basically, in this paper are presented the major advantages that can be found when one use the modified one-group diffusion theory coupled with a buckling correction model in optimization process. The results of the proposed model are very accurate when compared to benchmark results obtained from detailed calculations using three-dimensional nodal codes (author)

  16. An intelligent nuclear reactor core controller for load following operations, using recurrent neural networks and fuzzy systems

    International Nuclear Information System (INIS)

    Boroushaki, M.; Ghofrani, M.B.; Lucas, C.; Yazdanpanah, M.J.

    2003-01-01

    In the last decade, the intelligent control community has paid great attention to the topic of intelligent control systems for nuclear plants (core, steam generator...). Papers mostly used approximate and simple mathematical SISO (single-input-single-output) model of nuclear plants for testing and/or tuning of the control systems. They also tried to generalize theses models to a real MIMO (multi-input-multi-output) plant, while nuclear plants are typically of complex nonlinear and multivariable nature with high interactions between their state variables and therefore, many of these proposed intelligent control systems are not appropriate for real cases. In this paper, we designed an on-line intelligent core controller for load following operations, based on a heuristic control algorithm, using a valid and updatable recurrent neural network (RNN). We have used an accurate 3-dimensional core calculation code to represent the real plant and to train the RNN. The results of simulation show that this intelligent controller can control the reactor core during load following operations, using optimum control rod groups manoeuvre and variable overlapping strategy. This methodology represents a simple and reliable procedure for controlling other complex nonlinear MIMO plants, and may improve the responses, comparing to other control systems

  17. Development of silane grafted ZnO core shell nanoparticles loaded diglycidyl epoxy nanocomposites film for antimicrobial applications.

    Science.gov (United States)

    Suresh, S; Saravanan, P; Jayamoorthy, K; Ananda Kumar, S; Karthikeyan, S

    2016-07-01

    In this article a series of epoxy nanocomposites film were developed using amine functionalized (ZnO-APTES) core shell nanoparticles as the dispersed phase and a commercially available epoxy resin as the matrix phase. The functional group of the samples was characterized using FT-IR spectra. The most prominent peaks of epoxy resin were found in bare epoxy and in all the functionalized ZnO dispersed epoxy nanocomposites (ZnO-APTES-DGEBA). The XRD analysis of all the samples exhibits considerable shift in 2θ, intensity and d-spacing values but the best and optimum concentration is found to be 3% ZnO-APTES core shell nanoparticles loaded epoxy nanocomposites supported by FT-IR results. From TGA measurements, 100wt% residue is obtained in bare ZnO nanoparticles whereas in ZnO core shell nanoparticles grafted DGEBA residue percentages are 37, 41, 45, 46 and 52% for 0, 1, 3, 5 and 7% ZnO-APTES-DGEBA respectively, which is confirmed with ICP-OES analysis. From antimicrobial activity test, it was notable that antimicrobial activity of 7% ZnO-APTES core shell nanoparticles loaded epoxy nanocomposite film has best inhibition zone effect against all pathogens under study. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Establishment of computer aided technology for operation, maintenance, and core management

    International Nuclear Information System (INIS)

    Iguchi, Masaki; Isomura, Kazutoshi; Okawa, Tsuyoshi; Sakurai, Naoto

    2003-01-01

    In Fugen, the accumulated know-how of skilled operators, maintenance engineers, and core management engineers have been systematized by using the latest computer technology. These computerized systems have enhanced the technology of operating, maintenance and core management. This report describes the development of a reactor feed water control system with fuzzy logic, a refueling support system, and an automatic refueling planning system. Since operation of reactor feedwater control at low power requires a delicate operational technique and the knowledge and experience of operators, the application of a fuzzy algorithm was deemed effective in Fugen. Its good performance comparable to that of experienced operators can be realized. The fuel-handling operation takes proposed plans, fuel management and efficient operation by skilled operators. AI technology was applied to fuel-handling support system using past operation results and experience of skilled operators. This system is as capable of fuel-handling as skilled operators. Planning an adequate fuel loading pattern is time-consuming even for expert core management engineers. The Automatic Refueling Planning System (ARPS) was developed using Genetic Algorithms (GA) and a Simulated Annealing (SA). It has been verified that long-term fuel loading patterns of the Fugen NPS evaluated by ARPS are equivalent to that of an expert core management engineer. (author)

  19. Demand response driven load pattern elasticity analysis for smart households

    NARCIS (Netherlands)

    Paterakis, N.G.; Catalao, J.P.S.; Tascikaraoglu, A.; Bakirtzis, A.G.; Erdinc, O.

    2015-01-01

    The recent interest in smart grid vision enables several smart applications in different parts of the power grid structure, where specific importance should be given to the demand side. As a result, changes in load patterns due to demand response (DR) activities at end-user premises, such as smart

  20. The sustained-release behavior and in vitro and in vivo transfection of pEGFP-loaded core-shell-structured chitosan-based composite particles

    Science.gov (United States)

    Wang, Yun; Lin, Fu-xing; Zhao, Yu; Wang, Mo-zhen; Ge, Xue-wu; Gong, Zheng-xing; Bao, Dan-dan; Gu, Yu-fang

    2014-01-01

    Novel submicron core-shell-structured chitosan-based composite particles encapsulated with enhanced green fluorescent protein plasmids (pEGFP) were prepared by complex coacervation method. The core was pEGFP-loaded thiolated N-alkylated chitosan (TACS) and the shell was pH- and temperature-responsive hydroxybutyl chitosan (HBC). pEGFP-loaded TACS-HBC composite particles were spherical, and had a mean diameter of approximately 120 nm, as measured by transmission electron microscopy and particle size analyzer. pEGFP showed sustained release in vitro for >15 days. Furthermore, in vitro transfection in human embryonic kidney 293T and human cervix epithelial cells, and in vivo transfection in mice skeletal muscle of loaded pEGFP, were investigated. Results showed that the expression of loaded pEGFP, both in vitro and in vivo, was slow but could be sustained over a long period. pEGFP expression in mice skeletal muscle was sustained for >60 days. This work indicates that these submicron core-shell-structured chitosan-based composite particles could potentially be used as a gene vector for in vivo controlled gene transfection. PMID:25364253

  1. The influence of gender-specific loading patterns of the stop-jump task on anterior cruciate ligament strain.

    Science.gov (United States)

    Weinhold, Paul S; Stewart, Jason-Dennis N; Liu, Hsin-Yi; Lin, Cheng-Feng; Garrett, William E; Yu, Bing

    2007-08-01

    Studies have shown that women are at higher risk of sustaining noncontact anterior cruciate ligament (ACL) injuries in specific sports. Recent gait studies of athletic tasks have documented that gender differences in knee movement, muscle activation, and external loading patterns exist. The objective of this study was to determine in a knee cadaver model if application of female-specific loading and movement patterns characterised in vivo for a stop-jump task cause higher ACL strains than male patterns. Gender-specific loading patterns of the landing phase of the vertical stop-jump task were applied to seven cadaver knees using published kinetic/kinematic results for recreational athletes. Loads applied consecutively included: tibial compression, quadriceps, hamstrings, external posterior tibial shear, and tibial torque. Knee flexion was fixed based on the kinematic data. Strain of the ACL was monitored by means of a differential variable reluctance transducer installed on the anterior-medial bundle of the ACL. The ACL strain was significantly increased (P<0.05) for the female loading pattern relative to the male loading pattern after the posterior tibial shear force was applied, and showed a similar trend (P=0.1) to be increased after the final tibial torque was applied. This study suggests that female motor control strategies used during the stop-jump task may place higher strains on the ACL than male strategies, thus putting females at greater risk of ACL injury. We believe these results suggest the potential effectiveness of using training programs to modify motor control strategies and thus modify the risk of injury.

  2. The effect of rehearsal rate and memory load on verbal working memory.

    Science.gov (United States)

    Fegen, David; Buchsbaum, Bradley R; D'Esposito, Mark

    2015-01-15

    While many neuroimaging studies have investigated verbal working memory (WM) by manipulating memory load, the subvocal rehearsal rate at these various memory loads has generally been left uncontrolled. Therefore, the goal of this study was to investigate how mnemonic load and the rate of subvocal rehearsal modulate patterns of activity in the core neural circuits underlying verbal working memory. Using fMRI in healthy subjects, we orthogonally manipulated subvocal rehearsal rate and memory load in a verbal WM task with long 45-s delay periods. We found that middle frontal gyrus (MFG) and superior parietal lobule (SPL) exhibited memory load effects primarily early in the delay period and did not exhibit rehearsal rate effects. In contrast, we found that inferior frontal gyrus (IFG), premotor cortex (PM) and Sylvian-parietal-temporal region (area Spt) exhibited approximately linear memory load and rehearsal rate effects, with rehearsal rate effects lasting through the entire delay period. These results indicate that IFG, PM and area Spt comprise the core articulatory rehearsal areas involved in verbal WM, while MFG and SPL are recruited in a general supervisory role once a memory load threshold in the core rehearsal network has been exceeded. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Fatigue behaviour of core-spun yarns containing filament by means of cyclic dynamic loading

    Science.gov (United States)

    Esin, S.; Osman, B.

    2017-10-01

    The behaviour of yarns under dynamic loading is important that leads to understand the growth characteristics which is exposed to repetitive loadings during usage of fabric made from these yarns. Fabric growth is undesirable property that originated from low resilience characteristics of fabric. In this study, the effects of the filament fineness and yarn linear density on fatigue behaviour of rigid-core spun yarns were determined. Cotton covered yarns containing different filament fineness of polyester (PET) draw textured yarns (DTY) (100d/36f, 100d/96f, 100d/144f, 100d/192f and 100d/333f) and yarn linear densities (37 tex, 30 tex, 25 tex and 21 tex) were manufactured by using a modified ring spinning system at the same spinning parameters. Repetitive loads were applied for 25 cycles at levels between 0.1 and 3 N. Dynamic modulus and dynamic strain of yarn samples were analyzed statistically. Results showed that filament fineness and yarn linear density have significance effect on dynamic modulus and dynamic strain after cyclic loading.

  4. AC-600 reactor reloading pattern optimization by using genetic algorithms

    International Nuclear Information System (INIS)

    Wu Hongchun; Xie Zhongsheng; Yao Dong; Li Dongsheng; Zhang Zongyao

    2000-01-01

    The use of genetic algorithms to optimize reloading pattern of the nuclear power plant reactor is proposed. And a new encoding and translating method is given. Optimization results of minimizing core power peak and maximizing cycle length for both low-leakage and out-in loading pattern of AC-600 reactor are obtained

  5. Ultrasound-guided diagnostic breast biopsy methodology: retrospective comparison of the 8-gauge vacuum-assisted biopsy approach versus the spring-loaded 14-gauge core biopsy approach

    Science.gov (United States)

    2011-01-01

    Background Ultrasound-guided diagnostic breast biopsy technology represents the current standard of care for the evaluation of indeterminate and suspicious lesions seen on diagnostic breast ultrasound. Yet, there remains much debate as to which particular method of ultrasound-guided diagnostic breast biopsy provides the most accurate and optimal diagnostic information. The aim of the current study was to compare and contrast the 8-gauge vacuum-assisted biopsy approach and the spring-loaded 14-gauge core biopsy approach. Methods A retrospective analysis was done of all ultrasound-guided diagnostic breast biopsy procedures performed by either the 8-gauge vacuum-assisted biopsy approach or the spring-loaded 14-gauge core biopsy approach by a single surgeon from July 2001 through June 2009. Results Among 1443 ultrasound-guided diagnostic breast biopsy procedures performed, 724 (50.2%) were by the 8-gauge vacuum-assisted biopsy technique and 719 (49.8%) were by the spring-loaded 14-gauge core biopsy technique. The total number of false negative cases (i.e., benign findings instead of invasive breast carcinoma) was significantly greater (P = 0.008) in the spring-loaded 14-gauge core biopsy group (8/681, 1.2%) as compared to in the 8-gauge vacuum-assisted biopsy group (0/652, 0%), with an overall false negative rate of 2.1% (8/386) for the spring-loaded 14-gauge core biopsy group as compared to 0% (0/148) for the 8-gauge vacuum-assisted biopsy group. Significantly more (P guided diagnostic breast biopsy procedure. Significantly more (P guided diagnostic breast biopsy procedure. Conclusions In appropriately selected cases, the 8-gauge vacuum-assisted biopsy approach appears to be advantageous to the spring-loaded 14-gauge core biopsy approach for providing the most accurate and optimal diagnostic information. PMID:21835024

  6. Neutronic design of the RSG-GAS compact core without CIP

    International Nuclear Information System (INIS)

    Susilo, Jati; Kuntoro, Iman

    2002-01-01

    Improvement of the efficiency of reactor operation can be chivvied by some ways, such as, the uranium density of the fuel, loading pattern and configuration of core elements. The paper deals with determination of optimal configuration of the compact core with out CIP. Calculations were carried out by means of SRAC-PIJ module for cross section generation and SRAC-ASMBURN for core calculations. The optimal compact core obtained, showed that no-CIP compact core increase highest reactivity value about 0,84 % Δk/k and longest time operation about 1,19 time in the safety criteria that is power peaking factor less then 1,4 and margin control element worth less then volume in the first design that -2,2% Δk/k

  7. Neutronic design of the RSG-GAS compact core without CIP

    International Nuclear Information System (INIS)

    Jati-Susilo; Iman-Kuntoro

    2003-01-01

    Improvement of the efficiency of reactor operation can be achieved by some ways, such as, the uranium density of the fuel, loading pattern and configuration of core elements. The paper deals with determination of optimal configuration of the compact core with out CIP. Calculations were carried out by means of SRAC-PIJ module for cross section generation and SRAC-ASMBURN for core calculations. The optimal compact core obtained, showed that no-CIP compact core increase highest reactivity value about 1.06 % Δk/k and longest time operation about 1.19 time in the safety criteria that is power peaking factor less then 1.4 and margin control element worth less then value in the first design that -2.2% Δk/k

  8. A More Realistic Lateral Load Pattern for Design of Reinforced Concrete Buildings with Moment Frames and Shear Walls

    International Nuclear Information System (INIS)

    Hosseini, Mahmood; Khosahmadi, Arash

    2008-01-01

    In this research it has been tried to find a more realistic distribution pattern for the seismic load in reinforced concrete (R/C) buildings, having moment frames with shear walls as their lateral resisting system, by using Nonlinear Time History Analyses (NLTHA). Having shear wall as lateral load bearing system decreases the effect of infill walls in the seismic behavior of the building, and therefore the case of buildings with shear walls has been considered for this study as the first stage of the studies on lateral load patterns for R/C buildings. For this purpose, by assuming three different numbers of bays in each direction and also three different numbers of stories for the buildings, several R/C buildings, have been studied. At first, the buildings have been designed by the Iranian National Code for R/C Buildings. Then they have been analyzed by a NLTHA software using the accelerograms of some well-known earthquakes. The used accelerograms have been also scaled to various levels of peak ground acceleration (PGA) such as 0.35 g, 0.50 g, and 0.70 g, to find out the effect of PGA in the seismic response. Numerical results have shown that firstly the values of natural period of the building and their shear force values, calculated by the code, are not appropriate in all cases. Secondly, it has been found out that the real lateral load pattern is quite different with the one suggested by the seismic code. Based on the NLTHA results a new lateral load pattern has been suggested for this kind of buildings, in the form of some story-dependent modification factors applied to the existing code formula. The effects of building's natural period, as well as its number of stories, are taken into account explicitly in the proposed new load pattern. The proposed load pattern has been employed to redesign the buildings and again by NLTHA the real lateral load distribution in each case has been obtained which has shown very good agreement with the proposed pattern

  9. Effect of ski mountaineering track on foot sole loading pattern.

    Science.gov (United States)

    Haselbacher, Matthias; Mader, Katharina; Werner, Maximiliane; Nogler, Michael

    2014-09-01

    Ski mountaineering is becoming a popular sport. The ascending techniques (tracks) can be divided into 3 different groups: flat field, direct ascent, and traversing. This study examines the relationship between different mechanical loads on the foot and the 4 different mountaineering ascending techniques. All subjects used the same pair of ski boots and the same skis while performing the 4 different ascending techniques. An in-shoe dynamic pressure measuring system was used to measure the mechanical load on the foot soles of each ski mountaineer. The foot sole was divided into 6 anatomic sections to measure the different loads in each section. Thirteen men with an average age of 29 years were enrolled in the study. The results showed small, not significant differences in the mechanical foot load in the flat field or in the direct ascent. The average mechanical foot load was highest on the valley side foot while traversing (179 kPa to 117 kPa). The higher load forces were in the medial ball of the foot and the longitudinal aspect of the foot side closer to the hill. The higher impact placed on the valley side foot and the concentration of force placed on the medial ball of the valley side foot suggested the influence of the track on the load pattern of the foot sole. This higher impact may result in upward forces that affect the force distribution in the ankle and knee joints. Copyright © 2014. Published by Elsevier Inc.

  10. Three years re-use of low burned fuel assemblies from units 1 and 2 in core loading of units 3 and 4 WWER-440 at Kozloduy NPP

    International Nuclear Information System (INIS)

    Stoyanova, I.; Antov, A.; Spasova, V.

    2006-01-01

    At the end of 2002 Units 1 and 2 of Kozloduy NPP were shutdown before the end of their designed lifetime. This left a large number of assemblies yet with a significant energy resource. In 2003, 43 assemblies from Unit 1 and 55 assemblies from Unit 2 are loaded in the cores of Units 3 and 4 respectively. In 2004, new 49 assemblies from Unit 1 and new 55 assemblies from Unit 2 are loaded in the cores of Units 3 and 4 respectively. In 2005, the next new 25 assemblies from Unit 1 and 66 assemblies from Unit 2 are loaded in the cores of Units 3 and 4 respectively. The realized core loadings of Units 3 and 4 are illustrated. The large number of low burned assemblies after the shut down of Units 1 and 2 and their utilization during 4 consecutive cycles in the cores of Units 3 and 4 both do not permit to obtain in the last 3 cycles the typical mean burn up 35-36 MWd/kg U of 3.6% discharged assemblies

  11. Loading pattern calculated by inverse optimization vs traditional dosimetry systems of intracavitary brachytherapy of cervical cancer: a dosimetric study

    International Nuclear Information System (INIS)

    Jamema, S.V.; Deshpande, D.D.; Kirisits, C.; Trnkova, P.; Poetter, R.; Mahantshetty, U.; Shrivastava, S.K.; Dinshaw, K.A.

    2008-01-01

    In the recent past, inverse planning algorithms were introduced for intracavitary brachytherapy planning (ICBT) for cervical cancer. The loading pattern of these algorithms in comparison with traditional systems may not be similar. The purpose of this study was to objectively compare the loading patterns of traditional systems with the inverse optimization. Based on the outcome of the comparison, an attempt was made to obtain a loading pattern that takes into account the experience made with the inverse optimization

  12. Time-dependent fracture probability of bilayer, lithium-disilicate-based glass-ceramic molar crowns as a function of core/veneer thickness ratio and load orientation

    Science.gov (United States)

    Anusavice, Kenneth J.; Jadaan, Osama M.; Esquivel–Upshaw, Josephine

    2013-01-01

    Recent reports on bilayer ceramic crown prostheses suggest that fractures of the veneering ceramic represent the most common reason for prosthesis failure. Objective The aims of this study were to test the hypotheses that: (1) an increase in core ceramic/veneer ceramic thickness ratio for a crown thickness of 1.6 mm reduces the time-dependent fracture probability (Pf) of bilayer crowns with a lithium-disilicate-based glass-ceramic core, and (2) oblique loading, within the central fossa, increases Pf for 1.6-mm-thick crowns compared with vertical loading. Materials and methods Time-dependent fracture probabilities were calculated for 1.6-mm-thick, veneered lithium-disilicate-based glass-ceramic molar crowns as a function of core/veneer thickness ratio and load orientation in the central fossa area. Time-dependent fracture probability analyses were computed by CARES/Life software and finite element analysis, using dynamic fatigue strength data for monolithic discs of a lithium-disilicate glass-ceramic core (Empress 2), and ceramic veneer (Empress 2 Veneer Ceramic). Results Predicted fracture probabilities (Pf) for centrally-loaded 1,6-mm-thick bilayer crowns over periods of 1, 5, and 10 years are 1.2%, 2.7%, and 3.5%, respectively, for a core/veneer thickness ratio of 1.0 (0.8 mm/0.8 mm), and 2.5%, 5.1%, and 7.0%, respectively, for a core/veneer thickness ratio of 0.33 (0.4 mm/1.2 mm). Conclusion CARES/Life results support the proposed crown design and load orientation hypotheses. Significance The application of dynamic fatigue data, finite element stress analysis, and CARES/Life analysis represent an optimal approach to optimize fixed dental prosthesis designs produced from dental ceramics and to predict time-dependent fracture probabilities of ceramic-based fixed dental prostheses that can minimize the risk for clinical failures. PMID:24060349

  13. Time-dependent fracture probability of bilayer, lithium-disilicate-based, glass-ceramic, molar crowns as a function of core/veneer thickness ratio and load orientation.

    Science.gov (United States)

    Anusavice, Kenneth J; Jadaan, Osama M; Esquivel-Upshaw, Josephine F

    2013-11-01

    Recent reports on bilayer ceramic crown prostheses suggest that fractures of the veneering ceramic represent the most common reason for prosthesis failure. The aims of this study were to test the hypotheses that: (1) an increase in core ceramic/veneer ceramic thickness ratio for a crown thickness of 1.6mm reduces the time-dependent fracture probability (Pf) of bilayer crowns with a lithium-disilicate-based glass-ceramic core, and (2) oblique loading, within the central fossa, increases Pf for 1.6-mm-thick crowns compared with vertical loading. Time-dependent fracture probabilities were calculated for 1.6-mm-thick, veneered lithium-disilicate-based glass-ceramic molar crowns as a function of core/veneer thickness ratio and load orientation in the central fossa area. Time-dependent fracture probability analyses were computed by CARES/Life software and finite element analysis, using dynamic fatigue strength data for monolithic discs of a lithium-disilicate glass-ceramic core (Empress 2), and ceramic veneer (Empress 2 Veneer Ceramic). Predicted fracture probabilities (Pf) for centrally loaded 1.6-mm-thick bilayer crowns over periods of 1, 5, and 10 years are 1.2%, 2.7%, and 3.5%, respectively, for a core/veneer thickness ratio of 1.0 (0.8mm/0.8mm), and 2.5%, 5.1%, and 7.0%, respectively, for a core/veneer thickness ratio of 0.33 (0.4mm/1.2mm). CARES/Life results support the proposed crown design and load orientation hypotheses. The application of dynamic fatigue data, finite element stress analysis, and CARES/Life analysis represent an optimal approach to optimize fixed dental prosthesis designs produced from dental ceramics and to predict time-dependent fracture probabilities of ceramic-based fixed dental prostheses that can minimize the risk for clinical failures. Copyright © 2013 Academy of Dental Materials. All rights reserved.

  14. Reverse depletion method for PWR core reload design

    International Nuclear Information System (INIS)

    Downar, T.J.; Kim, Y.J.

    1985-01-01

    Low-leakage fuel management is currently practiced in over half of all pressurized water reactor (PWR) cores. Prospects for even greater use of in-board fresh fuel loading are good as utilities seek to reduce core vessel fluence, mitigate pressurized thermal shock concerns, and extend vessel lifetime. Consequently, large numbers of burnable poison (BP) pins are being used to control the power peaking at the in-board fresh fuel positions. This has presented an additional complexity to the core reload design problem. In addition to determining the best location of each assembly in the core, the designer must concurrently determine the distribution of BP pins in the fresh fuel. A procedure was developed that utilizes the well-known Haling depletion to achieve an end-of-cycle (EOC) core state where the assembly pattern is configured in the absence of all control poison. This effectively separates the assembly assignment and BP distribution problems. Once an acceptable pattern at EOC is configured, the burnable and soluble poison required to control the power and core excess reactivity are solved for as unknown variables while depleting the cycle in reverse from the EOC exposure distribution to the beginning of cycle. The methods developed were implemented in an approved light water reactor licensing code to ensure the validity of the results obtained and provide for the maximum utility to PWR core reload design

  15. On the optimization of thorium bundle distribution in the initial core loading for a PHWR

    International Nuclear Information System (INIS)

    Mishra, S.; Ray, S.; Kumar, A.N.; Modak, R.S.; Ganesan, S.

    2009-01-01

    If the initial core of Indian 220 MWe PHWR is loaded with all fresh Natural Uranium fuel, only about 70% Full Power can be drawn in the initial operation due to large power peaking. It is possible to load few tens of Th bundles at selected locations to get nearly full power without violating any safety limits. Finding the best possible locations is, however, a fairly complex and massive combinatorial optimization problem. Here, optimum solutions are obtained by a latest evolutionary algorithm called EDA implemented on the EKA built at Computational Research Laboratories (CRL) in Pune. The effect of varying the number of Th bundles on results is discussed. (author)

  16. Analysis of syntactic foam – GFRP sandwich composites for flexural loads

    Science.gov (United States)

    Paul, Daniel; Velmurugan, R.; Jayaganthan, R.; Gupta, N. K.; Manzhirov, A. V.

    2018-04-01

    The use of glass microballoon (GMB) — epoxy syntactic foams as a sandwich core material is studied. The skins and foam core are fabricated and joined instantaneously unlike the procedures followed in the previous studies. Each successive layer of the sandwich is fabricated when the previous layer is in a semi-gelled state. These sandwich samples are characterized for their properties under flexural loading. The failure modes and mechanical properties are carefully investigated. The change in fabrication technique results in a significant increase in the load bearing pattern of the sandwich. In earlier studies, debonding was found to occur prematurely since the bonding between the skins and core is the weakest plane. Using the current technique, core cracking occurs first, followed by skin fiber breaking and debonding happens at the end. This ensures that the load carrying phase of the structure is extended considerably. The sandwich is also analytically studied using Reddy’s higher order shear deformation theory. A higher order theory is selected as the sandwich can no longer be considered as a thin beam and thus shear effects also need to be considered in addition to bending effects.

  17. Feasibility Study for Cobalt Bundle Loading to CANDU Reactor Core

    International Nuclear Information System (INIS)

    Park, Donghwan; Kim, Youngae; Kim, Sungmin

    2016-01-01

    CANDU units are generally used to produce cobalt-60 at Bruce and Point Lepreau in Canada and Embalse in Argentina. China has started production of cobalt-60 using its CANDU 6 Qinshan Phase III nuclear power plant in 2009. For cobalt-60 production, the reactor’s full complement of stainless steel adjusters is replaced with neutronically equivalent cobalt-59 adjusters, which are essentially invisible to reactor operation. With its very high neutron flux and optimized fuel burn-up, the CANDU has a very high cobalt-60 production rate in a relatively short time. This makes CANDU an excellent vehicle for bulk cobalt-60 production. Several studies have been performed to produce cobalt-60 using adjuster rod at Wolsong nuclear power plant. This study proposed new concept for producing cobalt-60 and performed the feasibility study. Bundle typed cobalt loading concept is proposed and evaluated the feasibility to fuel management without physics and system design change. The requirement to load cobalt bundle to the core was considered and several channels are nominated. The production of cobalt-60 source is very depend on the flux level and burnup directly. But the neutron absorption characteristic of cobalt bundle is too high, so optimizing design study is needed in the future

  18. Feasibility Study for Cobalt Bundle Loading to CANDU Reactor Core

    Energy Technology Data Exchange (ETDEWEB)

    Park, Donghwan; Kim, Youngae; Kim, Sungmin [KHNP Central Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    CANDU units are generally used to produce cobalt-60 at Bruce and Point Lepreau in Canada and Embalse in Argentina. China has started production of cobalt-60 using its CANDU 6 Qinshan Phase III nuclear power plant in 2009. For cobalt-60 production, the reactor’s full complement of stainless steel adjusters is replaced with neutronically equivalent cobalt-59 adjusters, which are essentially invisible to reactor operation. With its very high neutron flux and optimized fuel burn-up, the CANDU has a very high cobalt-60 production rate in a relatively short time. This makes CANDU an excellent vehicle for bulk cobalt-60 production. Several studies have been performed to produce cobalt-60 using adjuster rod at Wolsong nuclear power plant. This study proposed new concept for producing cobalt-60 and performed the feasibility study. Bundle typed cobalt loading concept is proposed and evaluated the feasibility to fuel management without physics and system design change. The requirement to load cobalt bundle to the core was considered and several channels are nominated. The production of cobalt-60 source is very depend on the flux level and burnup directly. But the neutron absorption characteristic of cobalt bundle is too high, so optimizing design study is needed in the future.

  19. Optimization of burnable poison disposition for in-core fuel assemblies

    International Nuclear Information System (INIS)

    Zhong Wenfa; Luo Rong; Zhou Quan

    1997-09-01

    The optimization of the burnable poison disposition in the initial core loading of the 200 MW nuclear heating reactor (NHR-200), is studied. The mass fraction of the burnable poison is used as the control variable with the objective to minimize the power peaking factor. The flexible tolerance method is used to solve the nonlinear programming optimal problem. The optimization method can be used in reactor physics design, and get a new pattern of initial core which is of reference value. (2 refs., 8 figs., 1 tab.)

  20. Radial power distribution shaping within a PWR fuel assembly utilizing asymmetrically loaded gadolinia-bearing fuel pins

    International Nuclear Information System (INIS)

    Stone, I.Z.

    1992-01-01

    As in-core fuel management designs evolve to meet the demands of increasing energy output, more innovative methods are developed to maintain power peaking within acceptable thermal margin limits. In-core fuel management staff must utilize various loading pattern strategies such as cross-core movement of fuel assemblies, multibatch enrichment schemes, and burnable absorbers as the primary means of controlling the radial power distribution. The utilization of fresh asymmetrically loaded gadolinia-bearing assemblies as a fuel management tool provides an additional means of controlling the radial power distribution. At Siemens Nuclear Power Corporation (SNP), fresh fuel assemblies fabricated with asymmetrically loaded gadolinia-bearing fuel rods have been used successfully for several cycles of reactor operation. Asymmetric assemblies are neutronically modeled using the same tools and models that SNP uses to model symmetrically loaded gadolinia-bearing fuel assemblies. The CASMO-2E code is used to produce the homogenized macroscopic assembly cross sections for the nodal core simulator. Optimum fuel pin locations within the asymmetrical assembly are determined using the pin-by-pin PDQ7 assembly core model for each new assembly design. The optimum pin location is determined by the rod loading that minimizes the peak-to-average pin power

  1. Preparations to load, transport, receive, and store the damaged TMI-2 [Three Mile Island] reactor core

    International Nuclear Information System (INIS)

    Reno, H.W.; Schmitt, R.C.; Quinn, G.J.; Ayers, A.L. Jr.; Lilburn, B.J. Jr.; Uhl, D.L.

    1986-03-01

    The March 1979 incident at the Three Mile Island Nuclear Power Station (TMI) which damaged the core of the Unit 2 reactor resulted in numerous scientific and technical challenges. Some of those challenges involve removing, packaging, and transporting the core debris to the Idaho National Engineering Laboratory (INEL) for storage, examination, and preparation for final disposal. This paper highlights preparations for transporting the core debris from TMI to INEL and receiving and storing that material at INEL. Issues discussed include interfacing of equipment and facilities at TMI, loading operations, transportation activities using a newly designed cask, receiving and storing operations at INEL, and criticality control during storage. Key to the transportation effort was designing, testing, fabricating, and licensing two rail casks which individually provide double containment of the damaged fuel. 27 figs

  2. Experimental Investigation of Crack Extension Patterns in Hydraulic Fracturing with Shale, Sandstone and Granite Cores

    Directory of Open Access Journals (Sweden)

    Jianming He

    2016-12-01

    Full Text Available Hydraulic fracturing is an important method of reservoir stimulation in the exploitation of geothermal resources, and conventional and unconventional oil and gas resources. In this article, hydraulic fracturing experiments with shale, sandstone cores (from southern Sichuan Basin, and granite cores (from Inner Mongolia were conducted to investigate the different hydraulic fracture extension patterns in these three reservoir rocks. The different reactions between reservoir lithology and pump pressure can be reflected by the pump pressure monitoring curves of hydraulic fracture experiments. An X-ray computer tomography (CT scanner was employed to obtain the spatial distribution of hydraulic fractures in fractured shale, sandstone, and granite cores. From the microscopic and macroscopic observation of hydraulic fractures, different extension patterns of the hydraulic fracture can be analyzed. In fractured sandstone, symmetrical hydraulic fracture morphology could be formed, while some micro cracks were also induced near the injection hole. Although the macroscopic cracks in fractured granite cores are barely observed by naked eye, the results of X-ray CT scanning obviously show the morphology of hydraulic fractures. It is indicated that the typical bedding planes well developed in shale formation play an important role in the propagation of hydraulic fractures in shale cores. The results also demonstrated that heterogeneity influenced the pathway of the hydraulic fracture in granite cores.

  3. Changes in speckle patterns induced by load application onto an optical fiber and its possible application for sensing purpose

    Science.gov (United States)

    Hasegawa, Makoto; Okumura, Jyun-ya; Hyuga, Akio

    2015-08-01

    Speckle patterns to be observed in an output light spot from an optical fiber are known to be changed due to external disturbances applied onto the optical fiber. In order to investigate possibilities of utilizing such changes in speckle patterns for sensing application, a certain load was applied onto a jacket-covered communication-grade multi-mode glass optical fiber through which laser beams emitted from a laser diode were propagating, and observed changes in speckle patterns in the output light spot from the optical fiber were investigated both as image data via a CCD camera and as an output voltage from a photovoltaic panel irradiated with the output light spot. The load was applied via a load application mechanism in which several ridges were provided onto opposite flat plates and a certain number of weights were placed there so that corrugated bending of the optical fiber was intentionally induced via load application due to the ridges. The obtained results showed that the number of speckles in the observed pattern in the output light spot as well as the output voltage from the photovoltaic panel irradiated with the output light spot showed decreases upon load application with relatively satisfactory repeatability. When the load was reduced, i.e., the weights were removed, the number of speckles then showed recovery. These results indicate there is a certain possibility of utilizing changes in speckle patterns for sensing of load application onto the optical fiber.

  4. LIGHT-WEIGHT LOAD-BEARING STRUCTURE

    DEFF Research Database (Denmark)

    2009-01-01

    The invention relates to a light-weight load-bearing structure (1) with optimized compression zone (2), where along one or more compression zones (2) in the structure (1) to be cast a core (3) of strong concrete is provided, which core (3) is surrounded by concrete of less strength (4) compared...... to the core (3) of strong concrete. The invention also relates to a method of casting of light-weight load-bearing structures (1) with optimized compression zone (2) where one or more channels, grooves, ducts, pipes and/or hoses (5) formed in the load-bearing structure (1) serves as moulds for moulding one...... or more cores (3) of strong concrete in the light-weight load-bearing structure (1)....

  5. Fast reactor core concepts to improve transmutation efficiency

    International Nuclear Information System (INIS)

    Fujimura, Koji; Kawashima, Katsuyuki; Itooka, Satoshi

    2015-01-01

    Fast Reactor (FR) core concepts to improve transmutation efficiency were conducted. A heterogeneous MA loaded core was designed based on the 1000MWe-ABR breakeven core. The heterogeneous MA loaded core with Zr-H loaded moderated targets had a better transmutation performance than the MA homogeneous loaded core. The annular pellet rod design was proposed as one of the possible design options for the MA target. It was shown that using annular pellet MA rods mitigates the self-shielding effect in the moderated target so as to enhance the transmutation rate

  6. Calculation analysis of TRIGA MARK II reactor core composed of two types of fuel elements

    International Nuclear Information System (INIS)

    Ravnik, M.

    1988-11-01

    The most important properties of mixed cores are treated for TRIGA MARK II reactor, composed of standard (20% enriched, 8.5w% U content) and FLIP (70% enriched, 8.5w% U content) fuel elements. Large difference in enrichment and presence of burnable poison in FLIP fuel have strong influence on the main core characteristics, such as: fuel temperature coefficient, power defect, Xe and Sm worth, power and flux distributions, etc. They are significantly different for both types of fuel. Optimal loading of mixed cores therefore strongly depends on the loading pattern of both types of fuel elements. Results of systematic calculational analysis of mixed cores are presented. Calculations on the level of fuel element are performed with WIMSD-4 computer code with extended cross-section library. Core calculations are performed with TRIGAP two-group 1-D diffusion code. Results are compared to measurements and physical explanation is provided. Special concern is devoted to realistic mixed cores, for which optimal in-core fuel management is derived. Refs, figs and tabs

  7. T-Pattern Analysis and Cognitive Load Manipulation to Detect Low-Stake Lies: An Exploratory Study.

    Science.gov (United States)

    Diana, Barbara; Zurloni, Valentino; Elia, Massimiliano; Cavalera, Cesare; Realdon, Olivia; Jonsson, Gudberg K; Anguera, M Teresa

    2018-01-01

    Deception has evolved to become a fundamental aspect of human interaction. Despite the prolonged efforts in many disciplines, there has been no definite finding of a univocally "deceptive" signal. This work proposes an approach to deception detection combining cognitive load manipulation and T-pattern methodology with the objective of: (a) testing the efficacy of dual task-procedure in enhancing differences between truth tellers and liars in a low-stakes situation; (b) exploring the efficacy of T-pattern methodology in discriminating truthful reports from deceitful ones in a low-stakes situation; (c) setting the experimental design and procedure for following research. We manipulated cognitive load to enhance differences between truth tellers and liars, because of the low-stakes lies involved in our experiment. We conducted an experimental study with a convenience sample of 40 students. We carried out a first analysis on the behaviors' frequencies coded through the observation software, using SPSS (22). The aim was to describe shape and characteristics of behavior's distributions and explore differences between groups. Datasets were then analyzed with Theme 6.0 software which detects repeated patterns (T-patterns) of coded events (non-verbal behaviors) that regularly or irregularly occur within a period of observation. A descriptive analysis on T-pattern frequencies was carried out to explore differences between groups. An in-depth analysis on more complex patterns was performed to get qualitative information on the behavior structure expressed by the participants. Results show that the dual-task procedure enhances differences observed between liars and truth tellers with T-pattern methodology; moreover, T-pattern detection reveals a higher variety and complexity of behavior in truth tellers than in liars. These findings support the combination of cognitive load manipulation and T-pattern methodology for deception detection in low-stakes situations, suggesting the

  8. T-Pattern Analysis and Cognitive Load Manipulation to Detect Low-Stake Lies: An Exploratory Study

    Directory of Open Access Journals (Sweden)

    Barbara Diana

    2018-03-01

    Full Text Available Deception has evolved to become a fundamental aspect of human interaction. Despite the prolonged efforts in many disciplines, there has been no definite finding of a univocally “deceptive” signal. This work proposes an approach to deception detection combining cognitive load manipulation and T-pattern methodology with the objective of: (a testing the efficacy of dual task-procedure in enhancing differences between truth tellers and liars in a low-stakes situation; (b exploring the efficacy of T-pattern methodology in discriminating truthful reports from deceitful ones in a low-stakes situation; (c setting the experimental design and procedure for following research. We manipulated cognitive load to enhance differences between truth tellers and liars, because of the low-stakes lies involved in our experiment. We conducted an experimental study with a convenience sample of 40 students. We carried out a first analysis on the behaviors’ frequencies coded through the observation software, using SPSS (22. The aim was to describe shape and characteristics of behavior’s distributions and explore differences between groups. Datasets were then analyzed with Theme 6.0 software which detects repeated patterns (T-patterns of coded events (non-verbal behaviors that regularly or irregularly occur within a period of observation. A descriptive analysis on T-pattern frequencies was carried out to explore differences between groups. An in-depth analysis on more complex patterns was performed to get qualitative information on the behavior structure expressed by the participants. Results show that the dual-task procedure enhances differences observed between liars and truth tellers with T-pattern methodology; moreover, T-pattern detection reveals a higher variety and complexity of behavior in truth tellers than in liars. These findings support the combination of cognitive load manipulation and T-pattern methodology for deception detection in low

  9. New code for VVER-440 loading pattern design

    International Nuclear Information System (INIS)

    Bajgl, J.; Lehmann, M.

    1999-01-01

    This paper describes the main attributes of a new computer program OPTIMAL used for loading pattern design in Dukovany NPP (4 reactors VVER-440). We have been developed this program in Nuclear Research Institute Rez since 1994 on the base of special contract between Dukovany NPP and Nuclear Research Institute Rez. General information about the optimisation methodology is given in the first part. The organisation of the optimisation process is described in part 2. Construction of the optimisation functional is shown in part 3. Procedures used during one-cycle optimisation are described in part 4. (Authors)

  10. Feasibility of fully ceramic microencapsulated (FCM) replacement fuel assembly for OPR-1000 core fully loaded with FCM fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Lee, W.J.; Lee, K.H.; Kwon, H.; Chun, J.H.; Kim, Y.M. [Korea Atomic Energy Research Inst., Daejeon (Korea, Republic of); Venneri, F. [Ultra Safe Nuclear Corp., Los Alamos, NM (United States)

    2014-07-01

    The feasibility of replacing conventional UO{sub 2} fuel assemblies (FAs) of light water reactors with accident-tolerant fully ceramic microencapsulated (FCM) FAs has been explored referencing OPR-1000, 1000MW{sub e} PWR. An optimum FCM FA design, 16x16 FCM FA with Silicon Carbide-coated Zircaloy cladding, was selected based on core-level scoping analysis for five FCM FA design candidates screened from FA-level study. For the selected FCM FA design, detailed core following analysis from initial to equilibrium cores, initially fully loaded with the FCM FAs, was carried out to quantify core physics parameters. Using these parameters, the core thermal-hydraulics and coated fuel particle performance of the FCM core was assessed, and the safety margin and accident-tolerance of the FCM core was evaluated for limiting design- and beyond design-basis-accidents. From the study, it has been demonstrated that the FCM fuel is a viable option in replacing the OPR-1000 core with enhanced safety and accident tolerance while maintaining the core neutronics, thermal-hydraulics and mechanical compatibility. (author)

  11. Efficient approach for simulating response of multi-body structure in reactor core subjected to seismic loading

    International Nuclear Information System (INIS)

    Zhang Hongkun; Cen Song; Wang Haitao; Cheng Huanyu

    2012-01-01

    An efficient 3D approach is proposed for simulating the complicated responses of the multi-body structure in reactor core under seismic loading. By utilizing the rigid-body and connector functions of the software Abaqus, the multi-body structure of the reactor core is simplified as a mass-point system interlinked by spring-dashpot connectors. And reasonable schemes are used for determining various connector coefficients. Furthermore, a scripting program is also complied for the 3D parametric modeling. Numerical examples show that, the proposed method can not only produce the results which satisfy the engineering requirements, but also improve the computational efficiency more than 100 times. (authors)

  12. Qinshan NPP in-core fuel management improvement

    International Nuclear Information System (INIS)

    Kong Deping; Liao Zejun; Wu Xifeng; Wei Wenbin; Wang Yongming; Li Hua

    2006-01-01

    In the 10-year operation of Qinshan Nuclear Power Plant, the initial designed reloading strategy has been improved step by step based on the operation experiences and the advanced domestic and international fuel management methods. Higher burnup has been achieved and more economic operation gained through the loading pattern improvement and the fuel enrichment increased. The article introduces the in-core fuel management strategy improvement of Qinshan Nuclear Power Plant in its 10-year operation. (authors)

  13. Monte Carlo analysis of Musashi TRIGA mark II reactor core

    International Nuclear Information System (INIS)

    Matsumoto, Tetsuo

    1999-01-01

    The analysis of the TRIGA-II core at the Musashi Institute of Technology Research Reactor (Musashi reactor, 100 kW) was performed by the three-dimensional continuous-energy Monte Carlo code (MCNP4A). Effective multiplication factors (k eff ) for the several fuel-loading patterns including the initial core criticality experiment, the fuel element and control rod reactivity worth as well as the neutron flux measurements were used in the validation process of the physical model and neutron cross section data from the ENDF/B-V evaluation. The calculated k eff overestimated the experimental data by about 1.0%Δk/k for both the initial core and the several fuel-loading arrangements. The calculated reactivity worths of control rod and fuel element agree well the measured ones within the uncertainties. The comparison of neutron flux distribution was consistent with the experimental ones which were measured by activation methods at the sample irradiation tubes. All in all, the agreement between the MCNP predictions and the experimentally determined values is good, which indicated that the Monte Carlo model is enough to simulate the Musashi TRIGA-II reactor core. (author)

  14. Quantification of cost of margin associated with in-core nuclear fuel management for a PWR

    International Nuclear Information System (INIS)

    Kropaczek, D.J.; Turinsky, P.J.

    1989-01-01

    The problem of in-core nuclear fuel management optimization is discussed. The problem is to determine the location of core material, such as the fuel and burnable poisons, so as to minimize (maximize) a stated objective within engineering constraints. Typical objectives include maximization of cycle energy production or discharged fuel exposure, and minimization of power peaking factor or reactor vessel fluence. Constraints include discharge burnup limits and one or more of the possible objectives if not selected as the objective. The optimization problem can be characterized as a large combinatorial problem with nonlinear objective function and constraints, which are likely to be active. The authors have elected to employ the integer Monte Carlo programming method to address this optimization problem because of the just-noted problem characteristics. To evaluate the core physics characteristics as a function of fuel loading pattern, second-order accurate perturbation theory is employed with successive application to improve estimates of the optimum loading pattern. No constraints on fuel movement other than requiring quarter-core symmetry were imposed. In this paper the authors employed this methodology to address a related problem. The problem being addressed can be stated as What is the cost associated with margin? Specifically, they wish to assign some financial value in terms of increased levelized fuel cycle cost associated with an increase in core margin of some type, such as power peaking factor

  15. Monitoring an electric cable core

    International Nuclear Information System (INIS)

    Bhattacharya, S.; Marris, A.

    1984-01-01

    A method of, and apparatus for, continuously monitoring an advancing core having a continuous covering comprises directing X-ray radiation laterally towards the advancing covered core; continuously forming an X-ray image pattern of the advancing covered core and translating the image pattern into a visible image pattern; continuously transforming the visible pattern into a digital bit pattern; and processing the digital bit pattern using a microprocessor with interfacing electronics to provide an image profile of the advancing covered core and/or to provide analogue and/or digital signals indicative of the overall diameter and eccentricity of the covered core and of the thickness of the covering. (author)

  16. Experimental study of the mechanical behaviour of pin reinforced foam core sandwich materials under shear load

    International Nuclear Information System (INIS)

    Dimassi, M A; Brauner, C; Herrmann, A S

    2016-01-01

    Sandwich structures with a lightweight closed cell hard foam core have the potential to be used in primary structures of commercial aircrafts. Compared to honeycomb core sandwich, the closed cell foam core sandwich overcomes the issue of moisture take up and makes the manufacturing of low priced and highly integrated structures possible. However, lightweight foam core sandwich materials are prone to failure by localised external loads like low velocity impacts. Invisible cracks could grow in the foam core and threaten the integrity of the structure. In order to enhance the out-of-plane properties of foam core sandwich structures and to improve the damage tolerance (DT) dry fibre bundles are inserted in the foam core. The pins are infused with resin and co-cured with the dry fabric face sheets in an out-of-autoclave process. This study presents the results obtained from shear tests following DIN 53294-standard, on flat sandwich panels. All panels were manufactured with pin-reinforcement manufactured with the Tied Foam Core Technology (TFC) developed by Airbus. The effects of pin material (CFRP and GFRP) and pin volume fraction on the shear properties of the sandwich structure and the crack propagation were investigated and compared to a not pinned reference. It has been concluded that the pin volume fraction has a remarkable effect on the shear properties and damage tolerance of the observed structure. Increasing the pin volume fraction makes the effect of crack redirection more obvious and conserves the integrity of the structure after crack occurrence. (paper)

  17. Internal core tightener

    International Nuclear Information System (INIS)

    Brynsvold, G.V.; Snyder, H.J. Jr.

    1976-01-01

    An internal core tightener is disclosed which is a linear actuated (vertical actuation motion) expanding device utilizing a minimum of moving parts to perform the lateral tightening function. The key features are: (1) large contact areas to transmit loads during reactor operation; (2) actuation cam surfaces loaded only during clamping and unclamping operation; (3) separation of the parts and internal operation involved in the holding function from those involved in the actuation function; and (4) preloaded pads with compliant travel at each face of the hexagonal assembly at the two clamping planes to accommodate thermal expansion and irradiation induced swelling. The latter feature enables use of a ''fixed'' outer core boundary, and thus eliminates the uncertainty in gross core dimensions, and potential for rapid core reactivity changes as a result of core dimensional change. 5 claims, 12 drawing figures

  18. Paclitaxel loaded folic acid targeted nanoparticles of mixed lipid-shell and polymer-core: in vitro and in vivo evaluation.

    Science.gov (United States)

    Zhao, Peiqi; Wang, Hanjie; Yu, Man; Liao, Zhenyu; Wang, Xianhuo; Zhang, Fei; Ji, Wei; Wu, Bing; Han, Jinghua; Zhang, Haichang; Wang, Huaqing; Chang, Jin; Niu, Ruifang

    2012-06-01

    A functional drug carrier comprised of folic acid modified lipid-shell and polymer-core nanoparticles (FLPNPs) including poly(D,L-lactide-co-glycolide) (PLGA) core, PEGylated octadecyl-quaternized lysine modified chitosan (PEG-OQLCS) as lipid-shell, folic acid as targeting ligand and cholesterol was prepared and evaluated for targeted delivery of paclitaxel (PTX). Confocal microscopy analysis confirmed the coating of the lipid-shell on the polymer-core. Physicochemical characterizations of FLPNPs, such as particle size, zeta potential, morphology, encapsulation efficiency, and in vitro PTX release, were also evaluated. The internalization efficiency and targeting ability of FLPNPs were demonstrated by flow cytometry and confocal microscopy. PTX loaded FLPNPs showed a significantly higher cytotoxicity than the commercial PTX formulation (Taxol®). The intravenous administration of PTX encapsulated FLPNPs led to tumor regression and improvement of animal survival in a murine model, compared with that observed with Taxol® and biodistribution study showed that PTX concentration in tumor for PTX encapsulated FLPNPs was higher than other PTX formulations. Our data indicate that PTX loaded FLPNPs are a promising nano-sized drug formulation for cancer therapy. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Analysis of Random-Loading HTR-PROTEUS Cores with Continuous Energy Monte Carlo Code Based on A Statistical Geometry Model

    International Nuclear Information System (INIS)

    Murata, Isao; Miyamaru, Hiroyuki

    2008-01-01

    Spherical elements have remarkable features in various applications in the nuclear engineering field. In 1990's, by the project of HTR-PROTEUS at PSI various pebble bed reactor experiments were conducted including cores with a lot of spherical fuel elements loaded randomly. In this study, criticality experiments of the random-loading HTR-PROTEUS cores were analyzed by MCNP-BALL, which could deal with a random arrangement of spherical fuel elements exactly with a statistical geometry model. As a result of analysis, the calculated effective multiplication factors were in fairly good agreement with the measurements within about 0.5%Δk/k. In comparison with other numerical analysis, our effective multiplication factors were between the experimental values and the VSOP calculations. To investigate the discrepancy of the effective multiplication factors between the experiments and calculations, sensitivity analyses were performed. As the result, the sensitivity of impurity boron concentration was fairly large. The reason of the present slight overestimation was not made clear at present. However, the presently existing difference was thought to be related to the impurity boron concentration, not to the modelling of the reactor and the used nuclear data. From the present study, it was confirmed that MCNP-BALL would have an advantage to conventional transport codes by comparing with their numerical results and the experimental values. As for the criticality experiment of PROTEUS, we would conclude that the two cores of Core 4.2 and 4.3 could be regarded as an equivalent experiment of a reference critical core, which was packed in the packing fraction of RLP. (authors)

  20. Analysis of Random-Loading HTR-PROTEUS Cores with Continuous Energy Monte Carlo Code Based on A Statistical Geometry Model

    Energy Technology Data Exchange (ETDEWEB)

    Murata, Isao; Miyamaru, Hiroyuki [Division of Electrical, Electronic and Information Engineering, Osaka University, Yamada-oka 2-1, Suita, Osaka, 565-0871 (Japan)

    2008-07-01

    Spherical elements have remarkable features in various applications in the nuclear engineering field. In 1990's, by the project of HTR-PROTEUS at PSI various pebble bed reactor experiments were conducted including cores with a lot of spherical fuel elements loaded randomly. In this study, criticality experiments of the random-loading HTR-PROTEUS cores were analyzed by MCNP-BALL, which could deal with a random arrangement of spherical fuel elements exactly with a statistical geometry model. As a result of analysis, the calculated effective multiplication factors were in fairly good agreement with the measurements within about 0.5%DELTAk/k. In comparison with other numerical analysis, our effective multiplication factors were between the experimental values and the VSOP calculations. To investigate the discrepancy of the effective multiplication factors between the experiments and calculations, sensitivity analyses were performed. As the result, the sensitivity of impurity boron concentration was fairly large. The reason of the present slight overestimation was not made clear at present. However, the presently existing difference was thought to be related to the impurity boron concentration, not to the modelling of the reactor and the used nuclear data. From the present study, it was confirmed that MCNP-BALL would have an advantage to conventional transport codes by comparing with their numerical results and the experimental values. As for the criticality experiment of PROTEUS, we would conclude that the two cores of Core 4.2 and 4.3 could be regarded as an equivalent experiment of a reference critical core, which was packed in the packing fraction of RLP. (authors)

  1. A fast-running core prediction model based on neural networks for load-following operations in a soluble boron-free reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Jin-wook [Korea Atomic Energy Research Institute, P.O. Box 105, Yusong, Daejon 305-600 (Korea, Republic of)], E-mail: Jinwook@kaeri.re.kr; Seong, Seung-Hwan [Korea Atomic Energy Research Institute, P.O. Box 105, Yusong, Daejon 305-600 (Korea, Republic of)], E-mail: shseong@kaeri.re.kr; Lee, Un-Chul [Department of Nuclear Engineering, Seoul National University, Shinlim-Dong, Gwanak-Gu, Seoul 151-742 (Korea, Republic of)

    2007-09-15

    A fast prediction model for load-following operations in a soluble boron-free reactor has been proposed, which can predict the core status when three or more control rod groups are moved at a time. This prediction model consists of two multilayer feedforward neural network models to retrieve the axial offset and the reactivity, and compensation models to compensate for the reactivity and axial offset arising from the xenon transient. The neural network training data were generated by taking various overlaps among the control rod groups into consideration for training the neural network models, and the accuracy of the constructed neural network models was verified. Validation results of predicting load following operations for a soluble boron-free reactor show that this model has a good capability to predict the positions of the control rods for sustaining the criticality of a core during load-following operations to ensure that the tolerable axial offset band is not exceeded and it can provide enough corresponding time for the operators to take the necessary actions to prevent a deviation from the tolerable operating band.

  2. A fast-running core prediction model based on neural networks for load-following operations in a soluble boron-free reactor

    International Nuclear Information System (INIS)

    Jang, Jin-wook; Seong, Seung-Hwan; Lee, Un-Chul

    2007-01-01

    A fast prediction model for load-following operations in a soluble boron-free reactor has been proposed, which can predict the core status when three or more control rod groups are moved at a time. This prediction model consists of two multilayer feedforward neural network models to retrieve the axial offset and the reactivity, and compensation models to compensate for the reactivity and axial offset arising from the xenon transient. The neural network training data were generated by taking various overlaps among the control rod groups into consideration for training the neural network models, and the accuracy of the constructed neural network models was verified. Validation results of predicting load following operations for a soluble boron-free reactor show that this model has a good capability to predict the positions of the control rods for sustaining the criticality of a core during load-following operations to ensure that the tolerable axial offset band is not exceeded and it can provide enough corresponding time for the operators to take the necessary actions to prevent a deviation from the tolerable operating band

  3. Pu recycling in a full Th-MOX PWR core. Part I: Steady state analysis

    International Nuclear Information System (INIS)

    Fridman, E.; Kliem, S.

    2011-01-01

    Research highlights: → Detailed 3D 100% Th-MOX PWR core design is developed. → Pu incineration increased by a factor of 2 as compared to a full MOX PWR core. → The core controllability under steady state conditions is demonstrated. - Abstract: Current practice of Pu recycling in existing Light Water Reactors (LWRs) in the form of U-Pu mixed oxide fuel (MOX) is not efficient due to continuous Pu production from U-238. The use of Th-Pu mixed oxide (TOX) fuel will considerably improve Pu consumption rates because virtually no new Pu is generated from thorium. In this study, the feasibility of Pu recycling in a typical pressurized water reactor (PWR) fully loaded with TOX fuel is investigated. Detailed 3-dimensional 100% TOX and 100% MOX PWR core designs are developed. The full MOX core is considered for comparison purposes. The design stages included determination of Pu loading required to achieve 18-month fuel cycle assuming three-batch fuel management scheme, selection of poison materials, development of the core loading pattern, optimization of burnable poison loadings, evaluation of critical boron concentration requirements, estimation of reactivity coefficients, core kinetic parameters, and shutdown margin. The performance of the MOX and TOX cores under steady-state condition and during selected reactivity initiated accidents (RIAs) is compared with that of the actual uranium oxide (UOX) PWR core. Part I of this paper describes the full TOX and MOX PWR core designs and reports the results of steady state analysis. The TOX core requires a slightly higher initial Pu loading than the MOX core to achieve the target fuel cycle length. However, the TOX core exhibits superior Pu incineration capabilities. The significantly degraded worth of control materials in Pu cores is partially addressed by the use of enriched soluble boron and B 4 C as a control rod absorbing material. Wet annular burnable absorber (WABA) rods are used to flatten radial power distribution

  4. Impact of Thresholds and Load Patterns when Executing HPC Applications with Cloud Elasticity

    Directory of Open Access Journals (Sweden)

    Vinicius Facco Rodrigues

    2016-04-01

    Full Text Available Elasticity is one of the most known capabilities related to cloud computing, being largely deployed reactively using thresholds. In this way, maximum and minimum limits are used to drive resource allocation and deallocation actions, leading to the following problem statements: How can cloud users set the threshold values to enable elasticity in their cloud applications? And what is the impact of the application’s load pattern in the elasticity? This article tries to answer these questions for iterative high performance computing applications, showing the impact of both thresholds and load patterns on application performance and resource consumption. To accomplish this, we developed a reactive and PaaS-based elasticity model called AutoElastic and employed it over a private cloud to execute a numerical integration application. Here, we are presenting an analysis of best practices and possible optimizations regarding the elasticity and HPC pair. Considering the results, we observed that the maximum threshold influences the application time more than the minimum one. We concluded that threshold values close to 100% of CPU load are directly related to a weaker reactivity, postponing resource reconfiguration when its activation in advance could be pertinent for reducing the application runtime.

  5. Pattern fuel assembly loading system

    International Nuclear Information System (INIS)

    Ahmed, H.J.; Gerkey, K.S.; Miller, T.W.; Wylie, M.E.

    1986-01-01

    This patent describes an interactive system for facilitating preloading of fuel rods into magazines, which comprises: an operator work station adapted for positioning between a supply of fuel rods of predetermined types, and the magazine defining grid locations for a predetermined fuel assembly; display means associated with the work station; scanner means associated with the work station and adapted for reading predetermined information accompanying the fuel rods; a rectangular frame adapted for attachment to one end of the fuel assembly loading magazine; prompter/detector means associated with the frame for detecting insertion of a fuel rod into the magazine; and processing means responsive to the scanner means and the sensing means for prompting the operator via the display means to pre-load the fuel rods into desired grid locations in the magazine. An apparatus is described for facilitating pre-loading of fuel rods in predetermined grid locations of a fuel assembly loading magazine, comprising: a rectangular frame adapted for attachment to one end of the fuel assembly loading magazine; and means associated with the frame for detecting insertion of fuel rods into the magazine

  6. Improving the calculated core stability by the core nuclear design optimization

    International Nuclear Information System (INIS)

    Partanen, P.

    1995-01-01

    Three different equilibrium core loadings for TVO II reactor have been generated in order to improve the core stability properties at uprated power level. The reactor thermal power is assumed to be uprated from 2160 MW th to 2500 MW th , which moves the operating point after a rapid pump rundown where the core stability has been calculated from 1340 MW th and 3200 kg/s to 1675 MW th and 4000 kg/s. The core has been refuelled with ABB Atom Svea-100 -fuel, which has 3,64% w/o U-235 average enrichment in the highly enriched zone. PHOENIX lattice code has been used to provide the homogenized nuclear constants. POLCA4 static core simulator has been used for core loadings and cycle simulations and RAMONA-3B program for simulating the dynamic response to the disturbance for which the stability behaviour has been evaluated. The core decay ratio has been successfully reduced from 0,83 to 0,55 mainly by reducing the power peaking factors. (orig.) (7 figs., 1 tab.)

  7. Genetic algorithms and artificial neural networks for loading pattern optimisation of advanced gas-cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Ziver, A.K. E-mail: a.k.ziver@imperial.ac.uk; Pain, C.C; Carter, J.N.; Oliveira, C.R.E. de; Goddard, A.J.H.; Overton, R.S

    2004-03-01

    A non-generational genetic algorithm (GA) has been developed for fuel management optimisation of Advanced Gas-Cooled Reactors, which are operated by British Energy and produce around 20% of the UK's electricity requirements. An evolutionary search is coded using the genetic operators; namely selection by tournament, two-point crossover, mutation and random assessment of population for multi-cycle loading pattern (LP) optimisation. A detailed description of the chromosomes in the genetic algorithm coded is presented. Artificial Neural Networks (ANNs) have been constructed and trained to accelerate the GA-based search during the optimisation process. The whole package, called GAOPT, is linked to the reactor analysis code PANTHER, which performs fresh fuel loading, burn-up and power shaping calculations for each reactor cycle by imposing station-specific safety and operational constraints. GAOPT has been verified by performing a number of tests, which are applied to the Hinkley Point B and Hartlepool reactors. The test results giving loading pattern (LP) scenarios obtained from single and multi-cycle optimisation calculations applied to realistic reactor states of the Hartlepool and Hinkley Point B reactors are discussed. The results have shown that the GA/ANN algorithms developed can help the fuel engineer to optimise loading patterns in an efficient and more profitable way than currently available for multi-cycle refuelling of AGRs. Research leading to parallel GAs applied to LP optimisation are outlined, which can be adapted to present day LWR fuel management problems.

  8. Antibiotic-loaded, silver core-embedded mesoporous silica nanovehicles as a synergistic antibacterial agent for the treatment of drug-resistant infections.

    Science.gov (United States)

    Wang, Yao; Ding, Xiali; Chen, Yuan; Guo, Mingquan; Zhang, Yan; Guo, Xiaokui; Gu, Hongchen

    2016-09-01

    Drug-resistant bacterial infections have become one of the most serious risks in public health as they make the conventional antibiotics less efficient. There is an urgent need for developing new generations of antibacterial agents in this field. In this work, a nanoplatform of LEVO-loaded and silver core-embedded mesoporous silica nanovehicles (Ag@MSNs@LEVO) is demonstrated as a synergistic antibacterial agent for the treatment of drug-resistant infections both in vitro and in vivo. The combination of the inner Ag core and the loaded antibiotic drug in mesopores endows the single-particle nanoplatform with a synergistic effect on killing the drug-resistant bacteria. The nanoplatform of Ag@MSNs@LEVO exhibits superior antibacterial activity to LEVO-loaded MSNs (MSNs@LEVO) and silver core-embedded MSNs (Ag@MSNs) in vitro. In the in vivo acute peritonitis model, the infected drug-resistant Escherichia coli GN102 in peritoneal cavity of the mice is reduced by nearly three orders of magnitude and the aberrant pathological feature of spleen and peritoneum disappears after treatment with Ag@MSNs@LEVO. Importantly, this nanopaltform renders no obvious toxic side effect to the mice during the tested time. There is no doubt that this study strongly indicates a promising potential of Ag@MSNs@LEVO as a synergistic and safety therapy tool for the clinical drug-resistant infections. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. The loadings and strength of nuclear power plant structures in core damage accidents

    International Nuclear Information System (INIS)

    Varpasuo, P.

    1994-01-01

    The reactor cavity of VVER-91 NPP is a thick-walled, cylindrical reinforced concrete structure. In case of molten core-water reaction during the severe reactor accident the load carrying capacity of the cavity structure is of interest against the short impulse type loading caused by the steam explosion phenomenon. The assumed size of the impulse was 20 kPa-s and the duration was 10 ms. This investigation was divided in several phases. First, the elastic response of the cavity was determined using the ABAQUS code. Next, the static response of the cavity was evaluated using elasto-plastic properties of reinforcement and concrete and also taking into account the cracking of the concrete. This analysis was done with the aid of ABAQUS/STANDARD and ANSYS codes and the obtained results agreed reasonably with each other. In order to obtain a qualitative picture of the behaviour of the structure under the impulse load a simplified single degree of freedorn model was developed. The hoop reinforcement of the cavity was taken as an elasto-plastic spring and the wall concrete acted as a mass. Using this model the suitable amount of hoop reinforcement was determined. In next phase, the dynamic analysis of the structure was attempted using elasto-plastic material properties and concrete cracking. (13 refs., 57 figs.)

  10. Optimization of core reload design for low leakage fuel management in pressurized water reactors

    International Nuclear Information System (INIS)

    Kim, Y.J.

    1986-01-01

    A new method was developed to optimize pressurized water reactor core reload design for low leakage fuel management, a strategy recently adopted by most utilities to extend cycle length and mitigate pressurized thermal shock concerns. The method consists of a two-stage optimization process which provides the maximum cycle length for a given fresh fuel loading subject to power peaking constraints. In the first stage, a best fuel arrangement is determined at the end of cycle in the absence of burnable poisons. A direct search method is employed in conjunction with a constant power, Haling depletion. In the second stage, the core control poison requirements are determined using a linear programming technique. The solution provides the fresh fuel burnable poison loading required to meet core power peaking constraints. An accurate method of explicitly modeling burnable absorbers was developed for this purpose. The design method developed here was implemented in a currently recognized fuel licensing code, SIMULATE, that was adapted to the CYBER-205 computer. This methodology was applied to core reload design of cycles 9 and 10 for the Commonwealth Edison Zion, Unit-1 Reactor. The results showed that the optimum loading pattern for cycle 9 yielded almost a 9% increase in the cycle length while reducing core vessel fluence by 30% compared with the reference design used by Commonwealth Edison

  11. Huitzoctli: A system to design Control Rod Pattern for BWR's using a hybrid method

    International Nuclear Information System (INIS)

    Castillo, Alejandro; Ortiz-Servin, Juan Jose; Perusquia, Raul; Morales, Luis B.

    2011-01-01

    Highlights: → The system was developed to design Control Rod Patterns for Boiling Water Reactors. → The critical reactor core and the thermal limits were fulfilled in all tested cases. → The Fuel Loading Pattern remains without changes during the iterative process. → The system uses the heuristics techniques: Scatter Search and Tabu Search. → The effective multiplication factor k eff at the EOC was improved in all tested cases. - Abstract: Huitzoctli system was developed to design Control Rod Patterns for Boiling Water Reactors (BWR). The main idea is to obtain a Control Rod Pattern under the following considerations: (a) the critical reactor core state is satisfied, (b) the axial power distribution must be adjusted to a target axial power distribution proposal, and (c) the maximum Fraction of Critical Power Ratio (MFLCPR), the maximum Fraction of Linear Power Density (FLPD) and the maximum Fraction of Average Planar Power Density (MPGR) must be fulfilled. Those parameters were obtained using the 3D CM-PRESTO code. In order to decrease the problem complexity, Control Cell Core load strategy was implemented; in the same way, intermediate axial positions and core eighth symmetry were took into account. In this work, the cycle length was divided in 12 burnup steps. The Fuel Loading Pattern is an input data and it remains without changes during the iterative process. The Huitzoctli system was developed to use the combinatorial heuristics techniques Scatter Search and Tabu Search. The first one was used as a global search method and the second one as a local search method. The Control Rod Patterns obtained with the Huitzoctli system were compared to other Control Rod Patterns designs obtained with other optimization techniques, under the same operating conditions. The results show a good performance of the system. In all cases the thermal limits were satisfied, and the axial power distribution was adjusted to the target axial power distribution almost

  12. Universal resilience patterns in cascading load model: More capacity is not always better

    Science.gov (United States)

    Wang, Jianwei; Wang, Xue; Cai, Lin; Ni, Chengzhang; Xie, Wei; Xu, Bo

    We study the problem of universal resilience patterns in complex networks against cascading failures. We revise the classical betweenness method and overcome its limitation of quantifying the load in cascading model. Considering that the generated load by all nodes should be equal to the transported one by all edges in the whole network, we propose a new method to quantify the load on an edge and construct a simple cascading model. By attacking the edge with the highest load, we show that, if the flow between two nodes is transported along the shortest paths between them, then the resilience of some networks against cascading failures inversely decreases with the enhancement of the capacity of every edge, i.e. the more capacity is not always better. We also observe the abnormal fluctuation of the additional load that exceeds the capacity of each edge. By a simple graph, we analyze the propagation of cascading failures step by step, and give a reasonable explanation of the abnormal fluctuation of cascading dynamics.

  13. Vortex rope patterns at different load of hydro turbine model

    Directory of Open Access Journals (Sweden)

    Skripkin Sergey

    2017-01-01

    Full Text Available Operation of hydraulic turbines beyond optimal conditions leads to formation of precessing vortex core in a draft tube that generates powerful pressure pulsations in a hydraulic system. In case of resonance it leads to stability decreasing of hydraulic unit and electrical grid on the whole. In present work, such regimes are explored in a conical part of simplified turbine model. Studies are performed at constant flowrate Q = 70 m3/h and varying the runner rotational speed to explore different loads of the hydroturbine unit. The experiments involve pressure measurements, high speed-visualization and velocity measurements by means of laser Doppler anemometer technique. Interesting finding is related with abrupt increasing precession frequency at low swirl parameter of flow near optimal regime.

  14. Two-dimensional core calculation research for fuel management optimization based on CPACT code

    International Nuclear Information System (INIS)

    Chen Xiaosong; Peng Lianghui; Gang Zhi

    2013-01-01

    Fuel management optimization process requires rapid assessment for the core layout program, and the commonly used methods include two-dimensional diffusion nodal method, perturbation method, neural network method and etc. A two-dimensional loading patterns evaluation code was developed based on the three-dimensional LWR diffusion calculation program CPACT. Axial buckling introduced to simulate the axial leakage was searched in sub-burnup sections to correct the two-dimensional core diffusion calculation results. Meanwhile, in order to get better accuracy, the weight equivalent volume method of the control rod assembly cross-section was improved. (authors)

  15. Using an ontology pattern stack to engineer a core ontology of Accounting Information Systems

    NARCIS (Netherlands)

    Blums, Ivar; Weigand, Hans

    Although the field of Accounting Information Systems (AIS) has a long tradition, there is still a lack of a widely adopted conceptualization. In this paper, The UFO ontology patterns are regarded for application by analogy and extension in the engineering of a core ontology for AIS. The new IASB

  16. The Effect of mechanical resistive loading on optimal respiratory signals and breathing patterns under added dead space and CO2 breathing

    Directory of Open Access Journals (Sweden)

    Lin Shyan-Lung

    2016-01-01

    Full Text Available Current study aims to investigate how the respiratory resistive loading affects the behaviour of the optimal chemical-mechanical respiratory control model, the respiratory signals and breathing pattern are optimized under external dead space loading and CO2 breathing. The respiratory control was modelled to include a neuro-muscular drive as the control output to derive the waveshapes of instantaneous airflow, lung volume profiles, and breathing pattern, including total/alveolar ventilation, breathing frequency, tidal volume, inspiratory/expiratory duration, duty cycle, and arterial CO2 pressure. The simulations were performed under various respiratory resistive loads, including no load, inspiratory resistive load, expiratory resistive load, and continuous resistive load. The dead space measurement was described with Gray’s derivation, and simulation results were studied and compared with experimental findings.

  17. Core-shell nanocarriers with high paclitaxel loading for passive and active targeting

    Science.gov (United States)

    Jin, Zhu; Lv, Yaqi; Cao, Hui; Yao, Jing; Zhou, Jianping; He, Wei; Yin, Lifang

    2016-06-01

    Rapid blood clearance and premature burst release are inherent drawbacks of conventional nanoparticles, resulting in poor tumor selectivity. iRGD peptide is widely recognized as an efficient cell membrane penetration peptide homing to αVβ3 integrins. Herein, core-shell nanocapsules (NCs) and iRGD-modified NCs (iRGD-NCs) with high drug payload for paclitaxel (PTX) were prepared to enhance the antitumor activities of chemotherapy agents with poor water solubility. Improved in vitro and in vivo tumor targeting and penetration were observed with NCs and iRGD-NCs; the latter exhibited better antitumor activity because iRGD enhanced the accumulation and penetration of NCs in tumors. The NCs were cytocompatible, histocompatible, and non-toxic to other healthy tissues. The endocytosis of NCs was mediated by lipid rafts in an energy-dependent manner, leading to better cytotoxicity of PTX against cancer cells. In contrast with commercial product, PTX-loaded NCs (PTX-NCs) increased area under concentration-time curve (AUC) by about 4-fold, prolonged mean resident time (MRT) by more than 8-fold and reduced the elimination rate constant by greater than 68-fold. In conclusion, the present nanocarriers with high drug-loading capacity represent an efficient tumor-targeting drug delivery system with promising potential for cancer therapy.

  18. Core mechanics and configuration behavior of advanced LMFBR core restraint concepts

    International Nuclear Information System (INIS)

    Fox, J.N.; Wei, B.C.

    1978-02-01

    Core restraint systems in LMFBRs maintain control of core mechanics and configuration behavior. Core restraint design is complex due to the close spacing between adjacent components, flux and temperature gradients, and irradiation-induced material property effects. Since the core assemblies interact with each other and transmit loads directly to the core restraint structural members, the core assemblies themselves are an integral part of the core restraint system. This paper presents an assessment of several advanced core restraint system and core assembly concepts relative to the expected performance of currently accepted designs. A recommended order for the development of the advanced concepts is also presented

  19. Variability of electricity load patterns and its effect on demand response: A critical peak pricing experiment on Korean commercial and industrial customers

    International Nuclear Information System (INIS)

    Jang, Dongsik; Eom, Jiyong; Jae Park, Min; Jeung Rho, Jae

    2016-01-01

    To the extent that demand response represents an intentional electricity usage adjustment to price changes or incentive payments, consumers who exhibit more-variable load patterns on normal days may be capable of altering their loads more significantly in response to dynamic pricing plans. This study investigates the variation in the pre-enrollment load patterns of Korean commercial and industrial electricity customers and their impact on event-day loads during a critical peak pricing experiment in the winter of 2013. Contrary to conventional approaches to profiling electricity loads, this study proposes a new clustering technique based on variability indices that collectively represent the potential demand–response resource that these customers would supply. Our analysis reveals that variability in pre-enrollment load patterns does indeed have great predictive power for estimating their impact on demand–response loads. Customers in relatively low-variability clusters provided limited or no response, whereas customers in relatively high-variability clusters consistently presented large load impacts, accounting for most of the program-level peak reductions. This study suggests that dynamic pricing programs themselves may not offer adequate motivation for meaningful adjustments in load patterns, particularly for customers in low-variability clusters. - Highlights: • A method of clustering customers by variability indices is developed. • Customers in high-variability clusters provide substantial peak reductions. • Low-variability clusters exhibit limited reductions. • For low-variability customers, alternative policy instruments is well advised. • A model of discerning customer's demand response potential is suggested.

  20. Quantum behaved Particle Swarm Optimization with Differential Mutation operator applied to WWER-1000 in-core fuel management optimization

    International Nuclear Information System (INIS)

    Jamalipour, Mostafa; Sayareh, Reza; Gharib, Morteza; Khoshahval, Farrokh; Karimi, Mahmood Reza

    2013-01-01

    Highlights: ► A new method called QPSO-DM is applied to BNPP in-core fuel management optimization. ► It is found that QPSO-DM performs better than PSO and QPSO. ► This method provides a permissible arrangement for optimum loading pattern. - Abstract: This paper presents a new method using Quantum Particle Swarm Optimization with Differential Mutation operator (QPSO-DM) for optimizing WWER-1000 core fuel management. Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) have shown good performance on in-core fuel management optimization (ICFMO). The objective of this paper is to show that QPSO-DM performs very well and is comparable to PSO and Quantum Particle Swarm Optimization (QPSO). Most of the strategies for ICFMO are based on maximizing multiplication factor (k eff ) to increase cycle length and minimizing power peaking factor (P q ) in order to improve fuel integrity. PSO, QPSO and QPSO-DM have been implemented to fulfill these requirements for the first operating cycle of WWER-1000 Bushehr Nuclear Power Plant (BNPP). The results show that QPSO-DM performs better than the others. A program has been written in MATLAB to map PSO, QPSO and QPSO-DM for loading pattern optimization. WIMS and CITATION have been used to simulate reactor core for neutronic calculations

  1. Application of simulated lidar scanning patterns to constrained Gaussian turbulence fields for load validation

    DEFF Research Database (Denmark)

    Dimitrov, Nikolay Krasimirov; Natarajan, Anand

    2017-01-01

    We demonstrate a method for incorporating wind velocity measurements from multiple-point scanning lidars into threedimensional wind turbulence time series serving as input to wind turbine load simulations. Simulated lidar scanning patterns are implemented by imposing constraints on randomly gener...

  2. Reactor core with rod-shaped fuel cells

    International Nuclear Information System (INIS)

    Dworak, A.

    1977-01-01

    The aim is an optimization of load distribution in the core so that the load decreases in the direction of coolant flow (with gas cooling from above downwards) but so that it remains constant in horizontal layers to the edge of the core. The former produces optimum cooling, because the coolant has to take up decreasing heat output in the direction of flow. The latter simplifies refueling, because replacement of a whole layer having the same burn-up takes place. The upper two layers with the highest output and the shortest dwell time are replaced every 300 days, for example, the third layer is replaced after double this time and 5 more layers after four times this dwell time. After the simultaneous replacement of all layers, the reactor is in the same state as at commissioning. The fuel cells consist of hexagonal graphite blocks about 1.65 metres in height and 0.75 wide, for example. Each block contains about 100 through cooling channels and about 200 fuel channels closed on both sides. A large number of columns each consisting of 8 blocks is arranged in a tight honeycomb pattern and forms the core. Within each of the 8 horizontal layers of blocks, each fuel cell contains the same fuel mixture with predetermined dwell time. The fuel mixture is suited to the dwell time planned for each layer. The various fuel cells are kept at the same output by burnable neutron poisons in special channels provided for this purpose in the fuel cell and/or by absorber rods, or a planned load distribution is maintained. (HP) [de

  3. Present status of reactor physics in the United States and Japan-III. 1. Recent Activities of Loading Pattern Optimization Research in Japan

    International Nuclear Information System (INIS)

    Yamamoto, Akio

    2001-01-01

    Because of recent enhancements of optimization algorithms and great improvements in computer hardware, loading pattern (LP) optimization methods are being used as practical design tools both in the pressurized water reactor (PWR) and boiling water reactor (BWR) industries. LP optimization methods are mainly used for the following in-core fuel management activities in Japan: 1. minimization of fuel cycle costs; 2. evaluation of various in-core fuel management scenarios; 3. estimation of the number of feed assemblies needed during several successive cycles for fuel ordering; 4. evaluation of fuel bids. Although engineers can perform these analyses, the major motivations to utilize LP optimization methods are the reduction of manpower and the establishment of engineer-independent LP quality. These are important in today's in-core fuel management tasks. In the following sections, activities related to LP optimization research in Japan are briefly described. The major activity of PWR LP optimization research in Japan is development of the INSIGHT system. The INSIGHT system is an integrated scoping analysis tool for PWRs developed by Nuclear Fuel Industries (NFI). The INSIGHT system is a graphical user interface (GUI)-based interactive design tool that includes LP optimization, automated multicycle analysis, an interactive LP design, core follow, an integrated database, and some auxiliary functions. The INSIGHT system was mainly written in the C++ language and consists of ∼400 000 lines of source code. The GALLOP code is the LP optimization module of the INSIGHT system. An automated multicycle analysis is performed by the MCA code in INSIGHT. The MCA code performs a fuel and burnable poison (BP) inventory search by automatically invoking the GALLOP code, which makes LPs. The MCA code can deal with various constraints that have appeared in practical in-core fuel management, e.g., limitations of fuel/BP stock, forced fuel loading/discharge, limitations of core safety

  4. Investigation of cutaneous penetration properties of stearic acid loaded to dendritic core-multi-shell (CMS) nanocarriers.

    Science.gov (United States)

    Lohan, S B; Icken, N; Teutloff, C; Saeidpour, S; Bittl, R; Lademann, J; Fleige, E; Haag, R; Haag, S F; Meinke, M C

    2016-03-30

    Dendritic core-multi shell (CMS) particles are polymer based systems consisting of a dendritic polar polyglycerol polymer core surrounded by a two-layer shell of nonpolar C18 alkyl chains and hydrophilic polyethylene glycol. Belonging to nanotransport systems (NTS) they allow the transport and storage of molecules with different chemical characters. Their amphipihilic character CMS-NTS permits good solubility in aqueous and organic solutions. We showed by multifrequency electron paramagnetic resonance (EPR) spectroscopy that spin-labeled 5-doxyl stearic acid (5DSA) can be loaded into the CMS-NTS. Furthermore, the release of 5DSA from the carrier into the stratum corneum of porcine skin was monitored ex vivo by EPR spectroscopy. Additionally, the penetration of the CMS-NTS into the skin was analyzed by fluorescence microscopy using indocarbocyanine (ICC) covalently bound to the nanocarrier. Thereby, no transport into the viable skin was observed, whereas the CMS-NTS had penetrated into the hair follicles down to a depth of 340 μm ± 82 μm. Thus, it could be shown that the combined application of fluorescence microscopy and multi-frequency EPR spectroscopy can be an efficient tool for investigating the loading of spin labeled drugs to nanocarrier systems, drug release and penetration into the skin as well as the localization of the NTS in the skin. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. The sustained-release behavior and in vitro and in vivo transfection of pEGFP-loaded core-shell-structured chitosan-based composite particles

    Directory of Open Access Journals (Sweden)

    Wang Y

    2014-10-01

    Full Text Available Yun Wang,1 Fu-xing Lin,2 Yu Zhao,1 Mo-zhen Wang,2 Xue-wu Ge,2 Zheng-xing Gong,1 Dan-dan Bao,1 Yu-fang Gu1 1Department of Plastic Surgery, First Affiliated Hospital of Anhui Medical University, 2CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, People’s Republic of China Abstract: Novel submicron core-shell-structured chitosan-based composite particles ­encapsulated with enhanced green fluorescent protein plasmids (pEGFP were prepared by complex coacervation method. The core was pEGFP-loaded thiolated N-alkylated chitosan (TACS and the shell was pH- and temperature-responsive hydroxybutyl chitosan (HBC. pEGFP-loaded TACS-HBC composite particles were spherical, and had a mean diameter of approximately 120 nm, as measured by transmission electron microscopy and particle size analyzer. pEGFP showed sustained release in vitro for >15 days. Furthermore, in vitro transfection in human embryonic kidney 293T and human cervix epithelial cells, and in vivo transfection in mice skeletal muscle of loaded pEGFP, were investigated. Results showed that the expression of loaded pEGFP, both in vitro and in vivo, was slow but could be sustained over a long period. pEGFP expression in mice skeletal muscle was sustained for >60 days. This work indicates that these submicron core-shell-structured chitosan-based composite particles could potentially be used as a gene vector for in vivo controlled gene transfection. Keywords: gene therapy, gene transfection, hydroxybutyl chitosan, thiolated N-alkylated chitosan, pEGFP, complex coacervation

  6. A pattern recognition methodology for evaluation of load profiles and typical days of large electricity customers

    International Nuclear Information System (INIS)

    Tsekouras, G.J.; Kotoulas, P.B.; Tsirekis, C.D.; Dialynas, E.N.; Hatziargyriou, N.D.

    2008-01-01

    This paper describes a pattern recognition methodology for the classification of the daily chronological load curves of each large electricity customer, in order to estimate his typical days and his respective representative daily load profiles. It is based on pattern recognition methods, such as k-means, self-organized maps (SOM), fuzzy k-means and hierarchical clustering, which are theoretically described and properly adapted. The parameters of each clustering method are properly selected by an optimization process, which is separately applied for each one of six adequacy measures. The results can be used for the short-term and mid-term load forecasting of each consumer, for the choice of the proper tariffs and the feasibility studies of demand side management programs. This methodology is analytically applied for one medium voltage industrial customer and synoptically for a set of medium voltage customers of the Greek power system. The results of the clustering methods are presented and discussed. (author)

  7. Plantar loading changes with alterations in foot strike patterns during a single session in habitual rear foot strike female runners.

    Science.gov (United States)

    Kernozek, Thomas W; Vannatta, Charles N; Gheidi, Naghmeh; Kraus, Sydnie; Aminaka, Naoko

    2016-03-01

    Characterize plantar loading parameters when habitually rear foot strike (RFS) runners change their pattern to a non-rear foot strike (NRFS). Experimental. University biomechanics laboratory. Twenty three healthy female runners (Age: 22.17 ± 1.64 yrs; Height: 168.91 ± 5.46 cm; Mass: 64.29 ± 7.11 kg). Plantar loading was measured using an in-sole pressure sensor while running down a 20-m runway restricted to a range of 3.52-3.89 m/s under two conditions, using the runner's typical RFS, and an adapted NRFS pattern. Repeated measures multivariate analysis of variance was performed to detect differences in loading between these two conditions. Force and pressure variables were greater in the forefoot and phalanx in NRFS and greater in the heel and mid foot in RFS pattern, but the total force imposed upon the whole foot and contact time remained similar between conditions. Total peak pressure was higher and contact area was lower during NRFS running. The primary finding of this investigation is that there are distinctly different plantar loads when changing from a RFS to NRFS during running. So, during a transition from RFS to a NRFS pattern; a period of acclimation should be considered to allow for adaptations to these novel loads incurred on plantar regions of the foot. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Loading Patterns of the Posterior Cruciate Ligament in the Healthy Knee: A Systematic Review

    Science.gov (United States)

    List, Renate; Oberhofer, Katja; Fucentese, Sandro F.; Snedeker, Jess G.; Taylor, William R.

    2016-01-01

    Background The posterior cruciate ligament (PCL) is the strongest ligament of the knee, serving as one of the major passive stabilizers of the tibio-femoral joint. However, despite a number of experimental and modelling approaches to understand the kinematics and kinetics of the ligament, the normal loading conditions of the PCL and its functional bundles are still controversially discussed. Objectives This study aimed to generate science-based evidence for understanding the functional loading of the PCL, including the anterolateral and posteromedial bundles, in the healthy knee joint through systematic review and statistical analysis of the literature. Data sources MEDLINE, EMBASE and CENTRAL Eligibility criteria for selecting studies Databases were searched for articles containing any numerical strain or force data on the healthy PCL and its functional bundles. Studied activities were as follows: passive flexion, flexion under 100N and 134N posterior tibial load, walking, stair ascent and descent, body-weight squatting and forward lunge. Method Statistical analysis was performed on the reported load data, which was weighted according to the number of knees tested to extract average strain and force trends of the PCL and identify deviations from the norms. Results From the 3577 articles retrieved by the initial electronic search, only 66 met all inclusion criteria. The results obtained by aggregating data reported in the eligible studies indicate that the loading patterns of the PCL vary with activity type, knee flexion angle, but importantly also the technique used for assessment. Moreover, different fibres of the PCL exhibit different strain patterns during knee flexion, with higher strain magnitudes reported in the anterolateral bundle. While during passive flexion the posteromedial bundle is either lax or very slightly elongated, it experiences higher strain levels during forward lunge and has a synergetic relationship with the anterolateral bundle. The strain

  9. Loading Patterns of the Posterior Cruciate Ligament in the Healthy Knee: A Systematic Review.

    Directory of Open Access Journals (Sweden)

    S H Hosseini Nasab

    Full Text Available The posterior cruciate ligament (PCL is the strongest ligament of the knee, serving as one of the major passive stabilizers of the tibio-femoral joint. However, despite a number of experimental and modelling approaches to understand the kinematics and kinetics of the ligament, the normal loading conditions of the PCL and its functional bundles are still controversially discussed.This study aimed to generate science-based evidence for understanding the functional loading of the PCL, including the anterolateral and posteromedial bundles, in the healthy knee joint through systematic review and statistical analysis of the literature.MEDLINE, EMBASE and CENTRAL.Databases were searched for articles containing any numerical strain or force data on the healthy PCL and its functional bundles. Studied activities were as follows: passive flexion, flexion under 100N and 134N posterior tibial load, walking, stair ascent and descent, body-weight squatting and forward lunge.Statistical analysis was performed on the reported load data, which was weighted according to the number of knees tested to extract average strain and force trends of the PCL and identify deviations from the norms.From the 3577 articles retrieved by the initial electronic search, only 66 met all inclusion criteria. The results obtained by aggregating data reported in the eligible studies indicate that the loading patterns of the PCL vary with activity type, knee flexion angle, but importantly also the technique used for assessment. Moreover, different fibres of the PCL exhibit different strain patterns during knee flexion, with higher strain magnitudes reported in the anterolateral bundle. While during passive flexion the posteromedial bundle is either lax or very slightly elongated, it experiences higher strain levels during forward lunge and has a synergetic relationship with the anterolateral bundle. The strain patterns obtained for virtual fibres that connect the origin and insertion of

  10. AP1000 core design with 50% MOX loading

    International Nuclear Information System (INIS)

    Fetterman, Robert J.

    2009-01-01

    The European uility requirements (EUR) document states that the next generation European passive plant (EPP) reactor core design shall be optimized for UO 2 fuel assemblies, with provisions made to allow for up to 50% mixed-oxide (MOX) fuel assemblies. The use of MOX in the core design will have significant impacts on key physics parameters and safety analysis assumptions. Furthermore, the MOX fuel rod design must also consider fuel performance criterion important to maintaining the integrity of the fuel rod over its intended lifetime. The purpose of this paper is to demonstrate that the AP1000 is capable of complying with the EUR requirement for MOX utilization without significant changes to the design of the plant. The analyses documented within will compare a 100% UO 2 core design and a mixed MOX/UO 2 core design, discussing relevant results related to reactivity management, power margin and fuel rod performance

  11. AP1000 core design with 50% MOX loading

    International Nuclear Information System (INIS)

    Fetterman, Robert J.

    2008-01-01

    The European Utility Requirements (EUR) document states that the next generation European Passive Plant (EPP) reactor core design shall be optimized for UO 2 fuel assemblies, with provisions made to allow for up to 50% mixed-oxide (MOX) fuel assemblies. The use of MOX in the core design will have significant impacts on key physics parameters and safety analysis assumptions. Furthermore, the MOX fuel rod design must also consider fuel performance criterion important to maintaining the integrity of the fuel rod over its intended lifetime. The purpose of this paper is to demonstrate that the AP1000 is capable of complying with the EUR requirement for MOX utilization without significant changes to the design of the plant. The analyses documented within will compare a 100% UO 2 core and a mixed MOX / UO 2 core design, discussing relevant results related to reactivity management, power margin and fuel rod performance. (authors)

  12. Seismic core shroud

    International Nuclear Information System (INIS)

    Puri, A.; Mullooly, J.F.

    1981-01-01

    A core shroud is provided, comprising: a coolant boundary, following the shape of the core boundary, for channeling the coolant through the fuel assemblies; a cylindrical band positioned inside the core barrel and surrounding the coolant boundary; and support members extending from the coolant boundary to the band, for transferring load from the coolant boundary to the band. The shroud may be assembled in parts using automated welding techniques, and it may be adjusted to fit the reactor core easily

  13. Automatic loading pattern optimization tool for Loviisa VVER-440 reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kuopanportti, Jaakko [Fortum Power and Heat, Fortum (Finland). Nuclear Competence Center

    2013-09-15

    An automatic loading pattern optimization tool called ALPOT has been developed for Loviisa VVER-440 reactors. The ALPOT code utilizes combination of three different optimization methods. The first method is the imitation of the equilibrium pattern that is the optimized pattern in case the cycle length and the operation conditions are constant and the same shuffling pattern is repeated from cycle to cycle. In practice, the algorithm imitates assemblies' operation year distribution of the equilibrium pattern stochastically. The function of the imitation algorithm is to provide initial patterns quickly for the next optimization phase, which is performed either with the stochastic guided binary search algorithm or the deterministic burnup kernel method depending on the choice of the user. The former is a modified version of the standard binary search. The standard version goes through all possible swaps of the assemblies and chooses the best swap at each iteration round. The guided version chooses one assembly, tries to swap it with every other possible assembly and performs the best swap at each iteration round. The search is guided so that the algorithm chooses the assemblies at or near the most restrictive fuel assembly first. The kernel method creates burnup kernel functions to estimate burnup variations that are required to achieve desired changes in the power distribution of the reactor. The idea of the kernel method is first determine the optimal burnup distribution that minimizes the maximum relative assembly power using the created kernel functions and a common solver routine. Then, the burnups of the available fuel assemblies are matched with the obtained burnup distribution. (orig.)

  14. Automatic loading pattern optimization tool for Loviisa VVER-440 reactors

    International Nuclear Information System (INIS)

    Kuopanportti, Jaakko

    2013-01-01

    An automatic loading pattern optimization tool called ALPOT has been developed for Loviisa VVER-440 reactors. The ALPOT code utilizes combination of three different optimization methods. The first method is the imitation of the equilibrium pattern that is the optimized pattern in case the cycle length and the operation conditions are constant and the same shuffling pattern is repeated from cycle to cycle. In practice, the algorithm imitates assemblies' operation year distribution of the equilibrium pattern stochastically. The function of the imitation algorithm is to provide initial patterns quickly for the next optimization phase, which is performed either with the stochastic guided binary search algorithm or the deterministic burnup kernel method depending on the choice of the user. The former is a modified version of the standard binary search. The standard version goes through all possible swaps of the assemblies and chooses the best swap at each iteration round. The guided version chooses one assembly, tries to swap it with every other possible assembly and performs the best swap at each iteration round. The search is guided so that the algorithm chooses the assemblies at or near the most restrictive fuel assembly first. The kernel method creates burnup kernel functions to estimate burnup variations that are required to achieve desired changes in the power distribution of the reactor. The idea of the kernel method is first determine the optimal burnup distribution that minimizes the maximum relative assembly power using the created kernel functions and a common solver routine. Then, the burnups of the available fuel assemblies are matched with the obtained burnup distribution. (orig.)

  15. Impact of ballistic body armour and load carriage on walking patterns and perceived comfort.

    Science.gov (United States)

    Park, Huiju; Branson, Donna; Petrova, Adriana; Peksoz, Semra; Jacobson, Bert; Warren, Aric; Goad, Carla; Kamenidis, Panagiotis

    2013-01-01

    This study investigated the impact of weight magnitude and distribution of body armour and carrying loads on military personnel's walking patterns and comfort perceptions. Spatio-temporal parameters of walking, plantar pressure and contact area were measured while seven healthy male right-handed military students wore seven different garments of varying weight (0.06, 9, 18 and 27 kg) and load distribution (balanced and unbalanced, on the front and back torso). Higher weight increased the foot contact time with the floor. In particular, weight placement on the non-dominant side of the front torso resulted in the greatest stance phase and double support. Increased plantar pressure and contact area observed during heavier loads entail increased impact forces, which can cause overuse injuries and foot blisters. Participants reported increasingly disagreeable pressure and strain in the shoulder, neck and lower back during heavier weight conditions and unnatural walking while wearing unbalanced weight distributed loads. This study shows the potentially synergistic impact of wearing body armour vest with differential loads on body movement and comfort perception. This study found that soldiers should balance loads, avoiding load placement on the non-dominant side front torso, thus minimising mobility restriction and potential injury risk. Implications for armour vest design modifications can also be found in the results.

  16. A latency analysis for M2M and OG-like traffic patterns in different HSPA core network configurations

    Directory of Open Access Journals (Sweden)

    M. V. Popović

    2014-11-01

    Full Text Available In this paper we present an analysis intended to reveal possible impacts of core network features on latency for modelled M2M and Online Gaming traffic. Simulations were performed in a live 3G/HSPA network. Test traffic simulating multiplayer real-time games and M2M applications was generated on 10 mobile phones in parallel, sending data to a remote server. APNs with different combinations of hardware and features (proxy server, different GGSNs and firewalls, usage of Service Awareness feature were chosen. The traffic was recorded on the Gn interface in the mobile core. The goal of experiments was to evaluate any eventually significant variation of average recorded RTTs in the core part of mobile network that would clearly indicate either the impact of used APN on delay for a specific traffic pattern, or selectivity of the APN towards different traffic patterns.

  17. MOX - equilibrium core design and trial irradiation in KAPS - 1

    International Nuclear Information System (INIS)

    Pradhan, A.S.; Ray, Sherly; Kumar, A.N.; Parikh, M.V.

    2006-01-01

    Option of usage of MOX fuel bundles in the equilibrium core of Indian 220 MWe PHWRs on a regular basis has been studied. The design of the MOX bundle considered is MOX -7 with inner 7 elements with uranium and plutonium oxide MOX fuel and outer 12 elements with natural uranium fuel. The composition of the plutonium isotopes corresponds to that at about 6500 MWD/TeU burnup. Burnup optimization has been done such that operation at design rated power is possible while achieving the maximum average discharge burnup. Operation with the optimized burnup pattern will result in substantial saving of natural uranium bundles. To obtain feedback on the performance of MOX bundles prior to its large scale use about 50 MOX-7 bundles have been loaded in KAPS - 1 equilibrium core. Locations have been selected such that reactor should be operating at rated power without violating any constraints on channel bundle powers and also meeting the safety requirements. Burnup of interest also should be achieved in minimum period of time. The fissile plutonium content in the 50 MOX fuel bundles loaded is about 75.6 wt % . About 38 bundles out of the 50 bundles loaded have been already discharged and remaining bundles are still in the core. The maximum discharge burnup of the MOX bundles is about 12000 MWD/TeU. The performance of the MOX bundles were excellent and as per prediction. No MOX bundle is reported to be failed. (author)

  18. AP1000 core design with 50% MOX loading

    Energy Technology Data Exchange (ETDEWEB)

    Fetterman, Robert J. [Westinghouse Electric Company, LLC, Pittsburgh, PA (United States)

    2008-07-01

    The European Utility Requirements (EUR) document states that the next generation European Passive Plant (EPP) reactor core design shall be optimized for UO{sub 2} fuel assemblies, with provisions made to allow for up to 50% mixed-oxide (MOX) fuel assemblies. The use of MOX in the core design will have significant impacts on key physics parameters and safety analysis assumptions. Furthermore, the MOX fuel rod design must also consider fuel performance criterion important to maintaining the integrity of the fuel rod over its intended lifetime. The purpose of this paper is to demonstrate that the AP1000 is capable of complying with the EUR requirement for MOX utilization without significant changes to the design of the plant. The analyses documented within will compare a 100% UO{sub 2} core and a mixed MOX / UO{sub 2} core design, discussing relevant results related to reactivity management, power margin and fuel rod performance. (authors)

  19. AP1000 core design with 50% MOX loading

    Energy Technology Data Exchange (ETDEWEB)

    Fetterman, Robert J. [Westinghouse Electric Company, LLC, Pittsburgh, PA (United States)], E-mail: fetterrj@westinghouse.com

    2009-04-15

    The European uility requirements (EUR) document states that the next generation European passive plant (EPP) reactor core design shall be optimized for UO{sub 2} fuel assemblies, with provisions made to allow for up to 50% mixed-oxide (MOX) fuel assemblies. The use of MOX in the core design will have significant impacts on key physics parameters and safety analysis assumptions. Furthermore, the MOX fuel rod design must also consider fuel performance criterion important to maintaining the integrity of the fuel rod over its intended lifetime. The purpose of this paper is to demonstrate that the AP1000 is capable of complying with the EUR requirement for MOX utilization without significant changes to the design of the plant. The analyses documented within will compare a 100% UO{sub 2} core design and a mixed MOX/UO{sub 2} core design, discussing relevant results related to reactivity management, power margin and fuel rod performance.

  20. Load Disaggregation via Pattern Recognition: A Feasibility Study of a Novel Method in Residential Building

    Directory of Open Access Journals (Sweden)

    Younghoon Kwak

    2018-04-01

    Full Text Available In response to the need to improve energy-saving processes in older buildings, especially residential ones, this paper describes the potential of a novel method of disaggregating loads in light of the load patterns of household appliances determined in residential buildings. Experiments were designed to be applicable to general residential buildings and four types of commonly used appliances were selected to verify the method. The method assumes that loads are disaggregated and measured by a single primary meter. Following the metering of household appliances and an analysis of the usage patterns of each type, values of electric current were entered into a Hidden Markov Model (HMM to formulate predictions. Thereafter, the HMM repeatedly performed to output the predicted data close to the measured data, while errors between predicted and the measured data were evaluated to determine whether they met tolerance. When the method was examined for 4 days, matching rates in accordance with the load disaggregation outcomes of the household appliances (i.e., laptop, refrigerator, TV, and microwave were 0.994, 0.992, 0.982, and 0.988, respectively. The proposed method can provide insights into how and where within such buildings energy is consumed. As a result, effective and systematic energy saving measures can be derived even in buildings in which monitoring sensors and measurement equipment are not installed.

  1. Core design of super LWR with double tube water rods

    International Nuclear Information System (INIS)

    Wu, Jianhui; Oka, Yoshiaki

    2014-01-01

    Highlights: • Supercritical light water cooled and moderated reactor with double tube water rods is developed. • Double-row fuel rod assembly and out-in fuel loading pattern are applied. • Separation plates in peripheral assemblies increase average outlet temperature. • Neutronic and thermal design criteria are satisfied during the cycle. - Abstract: Double tube water rods are employed in core design of super LWR to simplify the upper core structure and refueling procedure. The light water moderator flows up in the inner tube from the bottom of the core, then, changes the flow direction at the top of the core into the outer tube and flows out at the bottom of the core. It eliminates the moderator guide/distribution tubes into the single tube water rods from the top dome of the reactor pressure vessel of the previous super LWR design. Two rows of fuel rods are filled between the water rods in the fuel assembly. Out-in refueling pattern is adopted to flatten radial power distribution. The peripheral fuel assemblies of the core are divided into four flow zones by separation plates for increasing the average core outlet temperature. Three enrichment zones are used for axial power flattening. The equilibrium core is analyzed based on neutronic/thermal-hydraulic coupled model. The results show that, by applying the separation plates in peripheral fuel assemblies and low gadolinia enrichment, the maximum cladding surface temperature (MCST) is limited to 653 °C with the average outlet temperature of 500 °C. The inherent safety is satisfied by the negative void reactivity effects and sufficient shutdown margin

  2. A knowledge based method for nuclear plant loading pattern determination

    International Nuclear Information System (INIS)

    Dauboin, P.

    1990-01-01

    This paper deals with the design of a knowledge based system for solving an industrial problem which occurs in nuclear fuel management. The problem lies in determining satisfactory loading patterns for nuclear plants. Its primary feature consists in the huge search space involved. Conventional resolution processes are formally defined and analyzed: there is no general algorithm which guarantees to always provide a reasonable solution in each situation. We propose a new approach to solve this constrained search problem using domain-specific knowledge and general constraint-based heuristics. During a preprocessing step, a problem dependent search algorithm is designed. This procedure is then automatically implemented in FORTRAN. The generated routines have proved to be very efficient finding solutions which could not have been provided using logic programming. A prototype expert system has already been applied to actual reload pattern searches. While combining efficiency and flexibility, this knowledge based system enables human experts to rapidly match new constraints and requirements

  3. Development of core design and analyses technology for integral reactor

    International Nuclear Information System (INIS)

    Zee, Sung Quun; Lee, C. C.; Kim, K. Y.

    2002-03-01

    In general, small and medium-sized integral reactors adopt new technology such as passive and inherent safety concepts to minimize the necessity of power source and operator actions, and to provide the automatic measures to cope with any accidents. Specifically, such reactors are often designed with a lower core power density and with soluble boron free concept for system simplification. Those reactors require ultra long cycle operation for higher economical efficiency. This cycle length requirement is one of the important factors in the design of burnable absorbers as well as assurance of shutdown margin. Hence, both computer code system and design methodology based on the today's design technology for the current commercial reactor cores require intensive improvement for the small and medium-sized soluble boron free reactors. New database is also required for the development of this type of reactor core. Under these technical requirements, conceptual design of small integral reactor SMART has been performed since July 1997, and recently completed under the long term nuclear R and D program. Thus, the final objectives of this work is design and development of an integral reactor core and development of necessary indigenous design technology. To reach the goal of the 2nd stage R and D program for basic design of SMART, design bases and requirements adequate for ultra long cycle and soluble boron free concept are established. These bases and requirements are satisfied by the core loading pattern. Based on the core loading pattern, nuclear, and thermal and hydraulic characteristics are analyzed. Also included are fuel performance analysis and development of a core protection and monitoring system that is adequate for the soluble boron free core of an integral reactor. Core shielding design analysis is accomplished, too. Moreover, full scope interface data are produced for reactor safety and performance analyses and other design activities. Nuclear, thermal and

  4. Foam patterns

    Science.gov (United States)

    Chaudhry, Anil R; Dzugan, Robert; Harrington, Richard M; Neece, Faurice D; Singh, Nipendra P; Westendorf, Travis

    2013-11-26

    A method of creating a foam pattern comprises mixing a polyol component and an isocyanate component to form a liquid mixture. The method further comprises placing a temporary core having a shape corresponding to a desired internal feature in a cavity of a mold and inserting the mixture into the cavity of the mold so that the mixture surrounds a portion of the temporary core. The method optionally further comprises using supporting pins made of foam to support the core in the mold cavity, with such pins becoming integral part of the pattern material simplifying subsequent processing. The method further comprises waiting for a predetermined time sufficient for a reaction from the mixture to form a foam pattern structure corresponding to the cavity of the mold, wherein the foam pattern structure encloses a portion of the temporary core and removing the temporary core from the pattern independent of chemical leaching.

  5. Full MOX core design in ABWR

    International Nuclear Information System (INIS)

    Ihara, Toshiteru; Mochida, Takaaki; Izutsu, Sadayuki; Fujimaki, Shingo

    2003-01-01

    Electric Power Development Co., Ltd. (EPDC) has been investigating an ABWR plant for construction at Oma-machi in Aomori Prefecture. The reactor, termed FULL MOX-ABWR will have its reactor core eventually loaded entirely with mixed-oxide (MOX) fuel. Extended use of MOX fuel in the plant is expected to play important roles in the country's nuclear fuel recycling policy. MOX fuel bundles will initially be loaded only to less than one-third of the reactor, but will be increased to cover its entire core eventually. The number of MOX fuel bundles in the core thus varies anywhere from 0 to 264 for the initial cycle and, 0 to 872 for equilibrium cycles. The safety design of the FULL MOX-ABWR briefly stated next considers any probable MOX loading combinations out of such MOX bundle usage scheme, starting from full UO 2 to full MOX cores. (author)

  6. HTR core physics analysis at NRG

    International Nuclear Information System (INIS)

    Kuijper, J.C.; Haas, J.B.M. de; Oppe, J.

    2002-01-01

    Since a number of years NRG is developing the HTR reactor physics code system PANTHERMIX. In PANTHERMIX the 3-D steady-state and transient core physics code PANTHER has been interfaced with the HTR thermal hydraulics code THERMIX to enable core follow and transient analyses on both pebble bed and block type HTR systems. Recently the capabilities of PANTHERMIX have been extended with the possibility to simulate the flow of pebbles through the core cavity and the (re)loading of pebbles on top of the core.The PANTHERMIX code system is being applied for the benchmark exercises for the Chinese HTR-10 and Japanese HTTR first criticality, calculating the critical loading, control rod worth and the isothermal temperature coefficients at zero power conditions. Also core physics calculations have been performed on an early version the South African PBMR design. The reactor physics properties of the reactor at equilibrium core loading have been studied as well as a selected run-in scenario, starting form fresh fuel. The recently developed reload option of PANTHERMIX was used extensively in these analyses. The examples shown demonstrate the capabilities of PANTHERMIX for performing steady-state and transient HTR core physics analyses. However, additional validation, especially for transient analyses, remains desirable. (author)

  7. Heuristic rules embedded genetic algorithm for in-core fuel management optimization

    Science.gov (United States)

    Alim, Fatih

    The objective of this study was to develop a unique methodology and a practical tool for designing loading pattern (LP) and burnable poison (BP) pattern for a given Pressurized Water Reactor (PWR) core. Because of the large number of possible combinations for the fuel assembly (FA) loading in the core, the design of the core configuration is a complex optimization problem. It requires finding an optimal FA arrangement and BP placement in order to achieve maximum cycle length while satisfying the safety constraints. Genetic Algorithms (GA) have been already used to solve this problem for LP optimization for both PWR and Boiling Water Reactor (BWR). The GA, which is a stochastic method works with a group of solutions and uses random variables to make decisions. Based on the theories of evaluation, the GA involves natural selection and reproduction of the individuals in the population for the next generation. The GA works by creating an initial population, evaluating it, and then improving the population by using the evaluation operators. To solve this optimization problem, a LP optimization package, GARCO (Genetic Algorithm Reactor Code Optimization) code is developed in the framework of this thesis. This code is applicable for all types of PWR cores having different geometries and structures with an unlimited number of FA types in the inventory. To reach this goal, an innovative GA is developed by modifying the classical representation of the genotype. To obtain the best result in a shorter time, not only the representation is changed but also the algorithm is changed to use in-core fuel management heuristics rules. The improved GA code was tested to demonstrate and verify the advantages of the new enhancements. The developed methodology is explained in this thesis and preliminary results are shown for the VVER-1000 reactor hexagonal geometry core and the TMI-1 PWR. The improved GA code was tested to verify the advantages of new enhancements. The core physics code

  8. Unusual polarity-dependent patterns in a bent-core nematic liquid crystal under low-frequency ac field.

    Science.gov (United States)

    Xiang, Ying; Zhou, Meng-jie; Xu, Ming-Ya; Salamon, Péter; Éber, Nándor; Buka, Ágnes

    2015-04-01

    Electric-field-induced patterns of diverse morphology have been observed over a wide frequency range in a recently synthesized bent-core nematic (BCN) liquid crystal. At low frequencies (up to ∼25 Hz), the BCN exhibited unusual polarity-dependent patterns. When the amplitude of the ac field was enhanced, these two time-asymmetrical patterns turned into time-symmetrical prewavylike stripes. At ac frequencies in the middle-frequency range (∼50-3000 Hz), zigzag patterns were detected whose obliqueness varied with the frequency. Finally, if the frequency was increased above 3 kHz, the zigzag pattern was replaced by another, prewavylike pattern, whose threshold voltage depended on the frequency; however, the wave vector did not. For a more complete characterization, material parameters such as elastic constants, dielectric permittivities, and the anisotropy of the diamagnetic susceptibility were also determined.

  9. In-core fuel management activities in China

    International Nuclear Information System (INIS)

    Ruan Keqiang; Chen Renji; Hu Chuanwen

    1990-01-01

    The development of nuclear power in China has reached such a stage that PWR in-core fuel management becomes an urgent problem. At present the main effort is concentrated on solving the Qinshan nuclear power plant and Daya Bay nuclear power plant fuel management problems. For the Qinshan PWR (300 MWe) two packages of in-core fuel management code were developed, one with simplified nodal diffusion method and the other uses advanced Green's function nodal method. Both were used in the PWR core design. With the help of the two code packages first two cycles of the Qinshan PWR core burn-up were calculated. Besides, several research works are under way in the following areas: improvement of the nodal diffusion method and other coarse mesh method in terms of computing speed and accuracy; backward diffusion technique for fuel management application; optimization technique in the fuel loading pattern searching. As for the Daya Bay PWR plant (twin 900 MWe unit), the problem about using what kind of code package for in-core fuel management is still under discussion. In principle the above mentioned code packages are also applicable to it. Besides PWR, in-core fuel management research works are also under way for research reactors, for example, heavy water research reactor and high flux research reactor in some institutes in China. China also takes active participation in international in-core fuel management activities. (author). 19 refs

  10. FFTF initial fuel loading, preanalyses, and comparison with preliminary results

    International Nuclear Information System (INIS)

    Rothrock, R.B.; Daughtry, J.W.; Zimmerman, B.D.; Petrowicz, N.E.; Bennett, R.A.; Ombrellaro, P.A.

    1980-02-01

    Disadvantages of conventional loading from the center out were circumvented by loading one trisector at a time, and connecting the control rod drivelines in each sector after it was loaded so that the rods could be operated during the loading of subsequent trisectors. This sequence was interrupted once during the loading of the final sector, to achieve initial criticality at an approximately minimum critical loading and to measure absolute subcriticality by the rod drop technique. An in-core detector was preferable to the standard FTR ex-core detectors for monitoring the initial fuel loading. Consequently, special fission chambers were installed in an instrument thimble near the core center to monitor the initial fuel loading

  11. Multivariate exploration of non-intrusive load monitoring via spatiotemporal pattern network

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chao; Akintayo, Adedotun; Jiang, Zhanhong; Henze, Gregor P.; Sarkar, Soumik

    2018-02-01

    Non-intrusive load monitoring (NILM) of electrical demand for the purpose of identifying load components has thus far mostly been studied using univariate data, e.g., using only whole building electricity consumption time series to identify a certain type of end-use such as lighting load. However, using additional variables in the form of multivariate time series data may provide more information in terms of extracting distinguishable features in the context of energy disaggregation. In this work, a novel probabilistic graphical modeling approach, namely the spatiotemporal pattern network (STPN) is proposed for energy disaggregation using multivariate time-series data. The STPN framework is shown to be capable of handling diverse types of multivariate time-series to improve the energy disaggregation performance. The technique outperforms the state of the art factorial hidden Markov models (FHMM) and combinatorial optimization (CO) techniques in multiple real-life test cases. Furthermore, based on two homes' aggregate electric consumption data, a similarity metric is defined for the energy disaggregation of one home using a trained model based on the other home (i.e., out-of-sample case). The proposed similarity metric allows us to enhance scalability via learning supervised models for a few homes and deploying such models to many other similar but unmodeled homes with significantly high disaggregation accuracy.

  12. Feasibility Study of Core Design with a Monte Carlo Code for APR1400 Initial core

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jinsun; Chang, Do Ik; Seong, Kibong [KEPCO NF, Daejeon (Korea, Republic of)

    2014-10-15

    The Monte Carlo calculation becomes more popular and useful nowadays due to the rapid progress in computing power and parallel calculation techniques. There have been many attempts to analyze a commercial core by Monte Carlo transport code using the enhanced computer capability, recently. In this paper, Monte Carlo calculation of APR1400 initial core has been performed and the results are compared with the calculation results of conventional deterministic code to find out the feasibility of core design using Monte Carlo code. SERPENT, a 3D continuous-energy Monte Carlo reactor physics burnup calculation code is used for this purpose and the KARMA-ASTRA code system, which is used for a deterministic code of comparison. The preliminary investigation for the feasibility of commercial core design with Monte Carlo code was performed in this study. Simplified core geometry modeling was performed for the reactor core surroundings and reactor coolant model is based on two region model. The reactivity difference at HZP ARO condition between Monte Carlo code and the deterministic code is consistent with each other and the reactivity difference during the depletion could be reduced by adopting the realistic moderator temperature. The reactivity difference calculated at HFP, BOC, ARO equilibrium condition was 180 ±9 pcm, with axial moderator temperature of a deterministic code. The computing time will be a significant burden at this time for the application of Monte Carlo code to the commercial core design even with the application of parallel computing because numerous core simulations are required for actual loading pattern search. One of the remedy will be a combination of Monte Carlo code and the deterministic code to generate the physics data. The comparison of physics parameters with sophisticated moderator temperature modeling and depletion will be performed for a further study.

  13. Neutronic characteristics of FLWR in the transition phase changing from high conversion core to breeder core

    International Nuclear Information System (INIS)

    Akie, Hiroshi; Nakano, Yoshihiro; Okubo, Tsutomu

    2009-01-01

    Innovative Water Reactor for Flexible Fuel Cycle (FLWR) is a low moderation type boiling water reactor which can realize plutonium multiple recycling and breeding. For the introduction stage of FLWR, a high conversion (HC) type FLWR is proposed to keep technical continuity from current light water reactors. The HC core of FLWR has a less tight fuel lattice with lower coolant void fraction than the breeder (BR) type core. The HC type FLWR core is to be shifted to the BR core by only replacing the fuel assemblies of the same outer shape and size in the same reactor system. In the HC to BR transition phase of FLWR, there exist both types of fuel assemblies in the same core configuration. In the HC assembly, neutron spectrum is softer than in the BR assembly, and the axial fuel and blanket arrangement is different from the BR assembly. Due to these differences, there might appear a power peaking in the adjacent region between HC and BR assemblies. The power distribution in the HC + BR assemblies mixed core configuration is studied by performing assembly calculations and core calculations on a few assemblies local geometry and the whole core geometry. As a result, although a power peaking can be locally very large in the HC and BR assemblies adjacent regions, such local power peakings are shown to be effectively reduced by considering a rod-wise fuel enrichment distribution. In the whole core calculation, it seems possible to optimize the fuel assembly loading and shuffling pattern to avoid large power level mismatch between the assemblies. It is expected that FLWR can be shifted from HC type to BR type without major neutronic difficulties. (author)

  14. Critical experiments on enriched uranium graphite moderated cores

    International Nuclear Information System (INIS)

    Kaneko, Yoshihiko; Akino, Fujiyoshi; Kitadate, Kenji; Kurokawa, Ryosuke

    1978-07-01

    A variety of 20 % enriched uranium loaded and graphite-moderated cores consisting of the different lattice cells in a wide range of the carbon to uranium atomic ratio have been built at Semi-Homogeneous Critical Experimental Assembly (SHE) to perform the critical experiments systematically. In the present report, the experimental results for homogeneously or heterogeneously fuel loaded cores and for simulation core of the experimental reactor for a multi-purpose high temperature reactor are filed so as to be utilized for evaluating the accuracy of core design calculation for the experimental reactor. The filed experimental data are composed of critical masses of uranium, kinetic parameters, reactivity worths of the experimental control rods and power distributions in the cores with those rods. Theoretical analyses are made for the experimental data by adopting a simple ''homogenized cylindrical core model'' using the nuclear data of ENDF/B-III, which treats the neutron behaviour after smearing the lattice cell structure. It is made clear from a comparison between the measurement and the calculation that the group constants and fundamental methods of calculations, based on this theoretical model, are valid for the homogeneously fuel loaded cores, but not for both of the heterogeneously fuel loaded cores and the core for simulation of the experimental reactor. Then, it is pointed out that consideration to semi-homogeneous property of the lattice cells for reactor neutrons is essential for high temperature graphite-moderated reactors using dispersion fuel elements of graphite and uranium. (author)

  15. Wrist loading patterns during pommel horse exercises.

    Science.gov (United States)

    Markolf, K L; Shapiro, M S; Mandelbaum, B R; Teurlings, L

    1990-01-01

    Gymnastics is a sport which involves substantial periods of upper extremity support as well as frequent impacts to the wrist. Not surprisingly, wrist pain is a common finding in gymnasts. Of all events, the pommel horse is the most painful. In order to study the forces of wrist impact, a standard pommel horse was instrumented with a specially designed load cell to record the resultant force of the hand on the pommel during a series of basic skills performed by a group of seventeen elite male gymnasts. The highest mean peak forces were recorded during the front scissors and flair exercises (1.5 BW) with peaks of up to 2.0 BW for some gymnasts. The mean peak force for hip circles at the center or end of the horse was 1.1 BW. The mean overall loading rate (initial contact to first loading peak) ranged from 5.2 BWs-1 (hip circles) to 10.6 BW s-1 (flairs). However, many recordings displayed localized initial loading spikes which occurred during 'hard' landings on the pommel. When front scissors were performed in an aggressive manner, the initial loading spikes averaged 1.0 BW in magnitude (maximum 1.8 BW) with an average rise time of 8.2 ms; calculated localized loading rates averaged 129 BW s-1 (maximum 219 BW s-1). These loading parameters are comparable to those encountered at heel strike during running. These impact forces and loading rates are remarkably high for an upper extremity joint not normally exposed to weight-bearing loads, and may contribute to the pathogenesis of wrist injuries in gymnastics.

  16. Experimentation of a fixed in-core-based system for core limiting conditions of operation (LCO) monitoring

    International Nuclear Information System (INIS)

    Piguet, F.; Carrasco, M.; Mourlevat, J.L.; Rio, G.; Verneret, C.

    2006-01-01

    In order to comply with the needs of Utilities for improvements in the economic competitiveness of nuclear energy, one of the solutions proposed is to reduce the cost of the fuel cycle. To this aim, increasing the lifetime of cycles by introducing so-called 'low leakage' fuel loading patterns to the reactor is a rather promising solution. However, these loading patterns lead to an increase in the core hotspot factors and therefore to a reduction in the operating margins with respect to the core operating limits also called 'Limiting Conditions of Operations (LCO)'. For many years FRAMATOME-ANP has developed and proposed solutions aiming at increasing and therefore restoring these margins, namely: the improvement in design methods based on three-dimensional modelling of the core, on kinetic representation of transients and on neutron-thermohydraulic coupling or the improvement in the fuel with the introduction of intermediate grids. A complementary approach is to improve the core instrumentation associated with the system for monitoring the core operating margins to the LCO thresholds. The core operating limits monitoring function calls on real-time knowledge of the current power distribution in the core. If we take the French 1300 MWe units as an example, this knowledge is based on the measurement of the mean axial power distribution made by six sections neutron detectors, located outside the pressure vessel and equipped with a fast neutron filtering device. The results of this measurement are combined with pre-tabulated radial hotspot factors (Fxy), in order to calculate the total hotspot factor (FQ) of the core, the minimum Departure from Nucleate Boiling Ratio (DNBR) and, consequently, the margins with respect to the core operating limits. The limitations of a measurement made outside the vessel, and those of the 1D/2D modelling adopted, mean that these margins calculations have a high potential for improving the level of their accuracy. This is the reason why

  17. UV patterned nanoporous solid-liquid core waveguides

    DEFF Research Database (Denmark)

    Gopalakrishnan, Nimi; Sagar, Kaushal Shashikant; Christiansen, Mads Brøkner

    2010-01-01

    Nanoporous Solid-Liquid core waveguides were prepared by UV induced surface modification of hydrophobic nanoporous polymers. With this method, the index contrast (delta n = 0.20) is a result of selective water infiltration. The waveguide core is defined by UV light, rendering the exposed part...

  18. Reactor core performance estimating device

    International Nuclear Information System (INIS)

    Tanabe, Akira; Yamamoto, Toru; Shinpuku, Kimihiro; Chuzen, Takuji; Nishide, Fusayo.

    1995-01-01

    The present invention can autonomously simplify a neural net model thereby enabling to conveniently estimate various amounts which represents reactor core performances by a simple calculation in a short period of time. Namely, a reactor core performance estimation device comprises a nerve circuit net which divides the reactor core into a large number of spacial regions, and receives various physical amounts for each region as input signals for input nerve cells and outputs estimation values of each amount representing the reactor core performances as output signals of output nerve cells. In this case, the nerve circuit net (1) has a structure of extended multi-layered model having direct coupling from an upper stream layer to each of downstream layers, (2) has a forgetting constant q in a corrected equation for a joined load value ω using an inverse error propagation method, (3) learns various amounts representing reactor core performances determined using the physical models as teacher signals, (4) determines the joined load value ω decreased as '0' when it is to less than a predetermined value upon learning described above, and (5) eliminates elements of the nerve circuit net having all of the joined load value decreased to 0. As a result, the neural net model comprises an autonomously simplifying means. (I.S.)

  19. The effect of core configuration on temperature coefficient of reactivity in IRR-1

    Energy Technology Data Exchange (ETDEWEB)

    Bettan, M.; Silverman, I.; Shapira, M.; Nagler, A. [Soreq Nuclear Research Center, Yavne (Israel)

    1997-08-01

    Experiments designed to measure the effect of coolant moderator temperature on core reactivity in an HEU swimming pool type reactor were performed. The moderator temperature coefficient of reactivity ({alpha}{sub {omega}}) was obtained and found to be different in two core loadings. The measured {alpha}{sub {omega}} of one core loading was {minus}13 pcm/{degrees}C at the temperature range of 23-30{degrees}C. This value of {alpha}{sub {omega}} is comparable to the data published by the IAEA. The {alpha}{sub {omega}} measured in the second core loading was found to be {minus}8 pcm/{degrees}C at the same temperature range. Another phenomenon considered in this study is core behavior during reactivity insertion transient. The results were compared to a core simulation using the Dynamic Simulator for Nuclear Power Plants. It was found that in the second core loading factors other than the moderator temperature influence the core reactivity more than expected. These effects proved to be extremely dependent on core configuration and may in certain core loadings render the reactor`s reactivity coefficient undesirable.

  20. Web buckling behavior under in-plane compression and shear loads for web reinforced composite sandwich core

    Science.gov (United States)

    Toubia, Elias Anis

    Sandwich construction is one of the most functional forms of composite structures developed by the composite industry. Due to the increasing demand of web-reinforced core for composite sandwich construction, a research study is needed to investigate the web plate instability under shear, compression, and combined loading. If the web, which is an integral part of the three dimensional web core sandwich structure, happens to be slender with respect to one or two of its spatial dimensions, then buckling phenomena become an issue in that it must be quantified as part of a comprehensive strength model for a fiber reinforced core. In order to understand the thresholds of thickness, web weight, foam type, and whether buckling will occur before material yielding, a thorough investigation needs to be conducted, and buckling design equations need to be developed. Often in conducting a parametric study, a special purpose analysis is preferred over a general purpose analysis code, such as a finite element code, due to the cost and effort usually involved in generating a large number of results. A suitable methodology based on an energy method is presented to solve the stability of symmetrical and specially orthotropic laminated plates on an elastic foundation. Design buckling equations were developed for the web modeled as a laminated plate resting on elastic foundations. The proposed equations allow for parametric studies without limitation regarding foam stiffness, geometric dimensions, or mechanical properties. General behavioral trends of orthotropic and symmetrical anisotropic plates show pronounced contribution of the elastic foundation and fiber orientations on the buckling resistance of the plate. The effects of flexural anisotropy on the buckling behavior of long rectangular plates when subjected to pure shear loading are well represented in the model. The reliability of the buckling equations as a design tool is confirmed by comparison with experimental results

  1. Effect of core ceramic grinding on fracture behaviour of bilayered zirconia veneering ceramic systems under two loading schemes.

    Science.gov (United States)

    Jian, Yu-Tao; Tang, Tian-Yu; Swain, Michael V; Wang, Xiao-Dong; Zhao, Ke

    2016-12-01

    The aim of this in vitro study was to evaluate the effect of core ceramic grinding on the fracture behaviour of bilayered zirconia under two loading schemes. Interfacial surfaces of sandblasted zirconia disks (A) were ground with 80 (B), 120 (C) and 220 (D) grit diamond discs, respectively. Surface roughness and topographic analysis were performed using a confocal scanning laser microscope (CSLM) and a scanning electron microscopy (SEM). Relative monoclinic content was evaluated using X-ray diffraction analysis (XRD) then reevaluated after simulated veneer firing. Biaxial fracture strength (σ) and Weibull modulus (m) were calculated either with core in compression (subgroup Ac-Dc) or in tension (subgroup At-Dt). Facture surfaces were examined by SEM and energy dispersive X-ray spectroscopy (EDS). Maximum tensile stress at fracture was estimated by finite element analysis. Statistical data analysis was performed using Kruskal-Wallis and one-way ANOVA at a significance level of 0.05. As grit size of the diamond disc increased, zirconia surface roughness decreased (pgrinding. No difference in initial (p=0.519 for subgroups Ac-Dc) and final fracture strength (p=0.699 for subgroups Ac-Dc; p=0.328 for subgroups At-Dt) was found among the four groups for both loading schemes. While coarse grinding slightly increased final fracture strength reliability (m) for subgroups Ac-Dc. Two different modes of fracture were observed according to which material was on the bottom surface. Components of the liner porcelain remained on the zirconia surface after fracture for all groups. Technician grinding changed surface topography of zirconia ceramic material, but was not detrimental to the bilayered system strength after veneer application. Coarse grinding slightly improved the fracture strength reliability of the bilayered system tested with core in compression. It is recommended that veneering porcelain be applied directly after routine lab grinding of zirconia ceramic, and its

  2. Reactor core

    International Nuclear Information System (INIS)

    Matsuura, Tetsuaki; Nomura, Teiji; Tokunaga, Kensuke; Okuda, Shin-ichi

    1990-01-01

    Fuel assemblies in the portions where the gradient of fast neutron fluxes between two opposing faces of a channel box is great are kept loaded at the outermost peripheral position of the reactor core also in the second operation cycle in the order to prevent interference between a control rod and the channel box due to bending deformation of the channel box. Further, the fuel assemblies in the second row from the outer most periphery in the first operation cycle are also kept loaded at the second row in the second operation cycle. Since the gradient of the fast neutrons in the reactor core is especially great at the outer circumference of the reactor core, the channel box at the outer circumference is bent such that the surface facing to the center of the reactor core is convexed and the channel box in the second row is also bent to the identical direction, the insertion of the control rod is not interfered. Further, if the positions for the fuels at the outermost periphery and the fuels in the second row are not altered in the second operation cycle, the gaps are not reduced to prevent the interference between the control rod and the channel box. (N.H.)

  3. Physiologically Distributed Loading Patterns Drive the Formation of Zonally Organized Collagen Structures in Tissue-Engineered Meniscus.

    Science.gov (United States)

    Puetzer, Jennifer L; Bonassar, Lawrence J

    2016-07-01

    The meniscus is a dense fibrocartilage tissue that withstands the complex loads of the knee via a unique organization of collagen fibers. Attempts to condition engineered menisci with compression or tensile loading alone have failed to reproduce complex structure on the microscale or anatomic scale. Here we show that axial loading of anatomically shaped tissue-engineered meniscus constructs produced spatial distributions of local strain similar to those seen in the meniscus when the knee is loaded at full extension. Such loading drove formation of tissue with large organized collagen fibers, levels of mechanical anisotropy, and compressive moduli that match native tissue. Loading accelerated the development of native-sized and aligned circumferential and radial collagen fibers. These loading patterns contained both tensile and compressive components that enhanced the major biochemical and functional properties of the meniscus, with loading significantly improved glycosaminoglycan (GAG) accumulation 200-250%, collagen accumulation 40-55%, equilibrium modulus 1000-1800%, and tensile moduli 500-1200% (radial and circumferential). Furthermore, this study demonstrates local changes in mechanical environment drive heterogeneous tissue development and organization within individual constructs, highlighting the importance of recapitulating native loading environments. Loaded menisci developed cartilage-like tissue with rounded cells, a dense collagen matrix, and increased GAG accumulation in the more compressively loaded horns, and fibrous collagen-rich tissue in the more tensile loaded outer 2/3, similar to native menisci. Loaded constructs reached a level of organization not seen in any previous engineered menisci and demonstrate great promise as meniscal replacements.

  4. Transition from 12 months to 18 months cycles at Krsko in a core physics perspective

    International Nuclear Information System (INIS)

    Jensen-Tornehed, J.

    2004-01-01

    Krsko has historically been operating in 12 months cycles with an annual outage for refuelling and maintenance work. Krsko is now in a transition from 12 months to 18 months cycles. Cycle 19, June 2002 - May 2003, was the last 12 month cycle. Cycle 20, June 2003 - September 2004 is a 15 month transition cycle and cycle 21, September 2004 - April 2006 will be the first 18 month cycle. This paper will describe the effects of the transition in a core physics perspective. There are big differences in how to design an 18 month cycle in comparison with a 12 month cycle. The required number of feed assemblies increases, as well as the content of burnable absorbers in the fuel. The strategy of the loading pattern has to be changed with the increased number of fresh fuel assemblies. The most limiting margins can be different for different cycle lengths which also affect the fresh assembly design and loading pattern during the transition. During the core design for cycle 21 the Moderator Temperature Coefficient was the main issue, which caused the need for extra amount of burnable absorbers. (author)

  5. An Iterative Load Disaggregation Approach Based on Appliance Consumption Pattern

    Directory of Open Access Journals (Sweden)

    Huijuan Wang

    2018-04-01

    Full Text Available Non-intrusive load monitoring (NILM, monitoring single-appliance consumption level by decomposing the aggregated energy consumption, is a novel and economic technology that is beneficial to energy utilities and energy demand management strategies development. Hardware costs of high-frequency sampling and algorithm’s computational complexity hampered NILM large-scale application. However, low sampling data shows poor performance in event detection when multiple appliances are simultaneously turned on. In this paper, we contribute an iterative disaggregation approach that is based on appliance consumption pattern (ILDACP. Our approach combined Fuzzy C-means clustering algorithm, which provide an initial appliance operating status, and sub-sequence searching Dynamic Time Warping, which retrieves single energy consumption based on the typical power consumption pattern. Results show that the proposed approach is effective to accurately disaggregate power consumption, and is suitable for the situation where different appliances are simultaneously operated. Also, the approach has lower computational complexity than Hidden Markov Model method and it is easy to implement in the household without installing special equipment.

  6. A review of PFR core distortion experience

    International Nuclear Information System (INIS)

    Brook, A.J.

    1984-01-01

    Neutron induced voidage (NIV) swelling and irradiation creep, acting together or individually, produce deformation in core components exposed to a fast neutron flux and can lead to mechanical interaction between them. Today the nature of these processes is reasonably well understood, and reactor designers have two options in attempting to accomodate them: either by employing a flexible free standing design in which contact loadings are low but in which distortion may be high, or more commonly, by some type of restrained core in which inter-component loadings are high, but where distortion is relatively small. The aims of this paper are: a. to describe briefly the various operational limits of core and core component distortion and how they arise, for which a brief description of reactor construction is necessary; b. to outline how the problems of inter-component contact loadings are overcome for the interactive core; c. to describe some other potential problems which arise either from absolute swelling, or from differential swelling between components; of particular relevance here is the problem of contact loadings between absorber rods and their guide tubes; d. to comment on the degree of agreement with, and the feedback provided by, PIE findings; e. to show how the results of the work influence reactor operators and the reload program

  7. Methotrexate diethyl ester-loaded lipid-core nanocapsules in aqueous solution increased antineoplastic effects in resistant breast cancer cell line

    Directory of Open Access Journals (Sweden)

    Yurgel VC

    2014-03-01

    Full Text Available Virginia C Yurgel,1,* Catiuscia P Oliveira,2,* Karine R Begnini,1 Eduarda Schultze,1 Helena S Thurow,1 Priscila MM Leon,1 Odir A Dellagostin,1 Vinicius F Campos,1 Ruy CR Beck,2 Silvia S Guterres,2 Tiago Collares,1 Adriana R Pohlmann,2–4 Fabiana K Seixas11Programa de Pós-Graduação em Biotecnologia (PPGB, Grupo de Pesquisa em Oncologia Celular e Molecular, Laboratório de Genômica Funcional, Biotecnologia/Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil; 2Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; 3Departamento de Química Orgânica, Instituto de Química, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; 4Centro de Nanociência e Nanotecnologia, CNANO-UFRGS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil*These authors contributed equally to this workAbstract: Breast cancer is the most frequent cancer affecting women. Methotrexate (MTX is an antimetabolic drug that remains important in the treatment of breast cancer. Its efficacy is compromised by resistance in cancer cells that occurs through a variety of mechanisms. This study evaluated apoptotic cell death and cell cycle arrest induced by an MTX derivative (MTX diethyl ester [MTX(OEt2] and MTX(OEt2-loaded lipid-core nanocapsules in two MTX-resistant breast adenocarcinoma cell lines, MCF-7 and MDA-MB-231. The formulations prepared presented adequate granulometric profile. The treatment responses were evaluated through flow cytometry. Relying on the mechanism of resistance, we observed different responses between cell lines. For MCF-7 cells, MTX(OEt2 solution and MTX(OEt2-loaded lipid-core nanocapsules presented significantly higher apoptotic rates than untreated cells and cells incubated with unloaded lipid-core nanocapsules. For MDA-MB-231

  8. Two optimal control methods for PWR core control

    International Nuclear Information System (INIS)

    Karppinen, J.; Blomsnes, B.; Versluis, R.M.

    1976-01-01

    The Multistage Mathematical Programming (MMP) and State Variable Feedback (SVF) methods for PWR core control are presented in this paper. The MMP method is primarily intended for optimization of the core behaviour with respect to xenon induced power distribution effects in load cycle operation. The SVF method is most suited for xenon oscillation damping in situations where the core load is unpredictable or expected to stay constant. Results from simulation studies in which the two methods have been applied for control of simple PWR core models are presented. (orig./RW) [de

  9. A fixed incore based system for an on line core margin monitoring

    International Nuclear Information System (INIS)

    Mourlevat, J. L.; Carrasco, M.

    2002-01-01

    In order to comply with the needs of Utilities for improvements in the economic competitiveness of nuclear energy, one of the solutions proposed is to reduce the cost of the fuel cycle. To this aim, increasing the lifetime of cycles by introducing so-called low leakage fuel loading patterns to the reactor is a rather promising solution. However, these loading patterns lead to an increase in the core hostspot factors and therefore to a reduction in the core operating margins. For many years FRAMATOME-ANP has developed and proposed solutions aiming at increasing and therefore restoring these margins, namely; the improvement in design methods based on three-dimensional modelling of the core,on kinetic representation of transients and on neutron-thermohydraulic coupling, or the improvement in the fuel with the introduction of intermediate mixing girds. A third approach is to improve the core instrumentation associated with the system for monitoring the core operating limits: it is this approach that is described in this presentation. The core operating limits monitoring function calls on realtime knowledge of the power distribution. At present time, for most of the PWRs operated in the world, this knowledge is based on the measurement of the axial power distribution made by two-section neutron detectors located outside the pressure vessel. This kind of detectors is only able to provide the operators with a rustic picture of the axial power distribution through the axial dissymmetry index so called axial-offset. During normal core operation operators have to control the axial power distribution that means to keep the axial-offset value inside a pre-determined domain of which the width is a function of the mean power level. This pre-determined domain is calculated or checked during the nuclear design phase of the reload and due to th emethodology used to calculate it, a consderable potential for improving the core operating margin does ewxist. This the reason why

  10. Investigation of failure mechanisms for HTGR core supports

    International Nuclear Information System (INIS)

    Bennett, J.G.; Ju, F.D.; Anderson, C.A.

    1976-12-01

    The report is concerned with potential instabilities of High-Temperature Gas-Cooled Reactor Cores supported by graphite columns. Two failure mechanisms are investigated in detail: that of torsional buckling of the entire core-column assemblage and that of column failure alone. A torsional model of the core-column assemblage is described and static buckling loads are calculated. Dynamic instability of the model to seismic loadings is also investigated. Individual column failure is examined using nonlinear graphite behavior and safety factors for static loading situations are given and compared to values given by conventional design formulas. A model of a cracked graphite column is given and buckling loads are computed for columns using a combined column and fracture mechanics analysis. A finite element analysis of a cracked graphite column is presented

  11. Research reactor loading pattern optimization using estimation of distribution algorithms

    International Nuclear Information System (INIS)

    Jiang, S.; Ziver, K.; Carter, J. N.; Pain, C. C.; Eaton, M. D.; Goddard, A. J. H.; Franklin, S. J.; Phillips, H. J.

    2006-01-01

    A new evolutionary search based approach for solving the nuclear reactor loading pattern optimization problems is presented based on the Estimation of Distribution Algorithms. The optimization technique developed is then applied to the maximization of the effective multiplication factor (K eff ) of the Imperial College CONSORT research reactor (the last remaining civilian research reactor in the United Kingdom). A new elitism-guided searching strategy has been developed and applied to improve the local convergence together with some problem-dependent information based on the 'stand-alone K eff with fuel coupling calculations. A comparison study between the EDAs and a Genetic Algorithm with Heuristic Tie Breaking Crossover operator has shown that the new algorithm is efficient and robust. (authors)

  12. A diurnal resonance in the ocean tide and in the earth's load response due to the resonant free 'core nutation'

    Science.gov (United States)

    Wahr, J. M.; Sasao, T.

    1981-01-01

    The effects of the oceans, which are subject to a resonance due to a free rotational eigenmode of an elliptical, rotating earth with a fluid outer core having an eigenfrequency of (1 + 1/460) cycle/day, on the body tide and nutational response of the earth to the diurnal luni-tidal force are computed. The response of an elastic, rotating, elliptical, oceanless earth with a fluid outer core to a given load distribution on its surface is first considered, and the tidal sea level height for equilibrium and nonequilibrium oceans is examined. Computations of the effects of equilibrium and nonequilibrium oceans on the nutational and deformational responses of the earth are then presented which show small but significant perturbations to the retrograde 18.6-year and prograde six-month nutations, and more important effects on the earth body tide, which is also resonant at the free core notation eigenfrequency.

  13. Fuel assembly and reactor core

    International Nuclear Information System (INIS)

    Yuchi, Yoko; Aoyama, Motoo; Haikawa, Katsumasa; Yamanaka, Akihiro; Koyama, Jun-ichi.

    1996-01-01

    In a fuel assembly of a BWR type reactor, a region substantially containing burnable poison is divided into an upper region and a lower region having different average concentrations of burnable poison along a transverse cross section perpendicular to the axial direction. The ratio of burnable poison contents of both regions is determined to not more than 80%, and the average concentration of the burnable poison in the lower region is determined to not less than 9% by weight. An infinite multiplication factor at an initial stage of the burning of the fuel assembly is controlled effectively by the burnable poisons. Namely, the ratio of the axial power can be controlled by the distribution of the enrichment degree of uranium fuels and the distribution of the burnable poison concentration in the axial direction. Since the average enrichment degree of the reactor core has to be increased in order to provide an initially loaded reactor core at high burnup degree. Distortion of the power distribution in the axial direction of the reactor core to which fuel assemblies at high enrichment degree are loaded is flattened to improve thermal margin, to extend continuous operation period and increase a burnup degree upon take-out thereby improving fuel economy without worsening the reactor core characteristics of the initially loaded reactor core. (N.H.)

  14. Patterns of interactions at grade 5 classroom in learning the topic of statistics viewed from cognitive load theory

    Science.gov (United States)

    Setianingsih, R.

    2018-01-01

    The nature of interactions that occurs among teacher, students, learning sources, and learning environment creates different settings to enhance learning. Any setting created by a teacher is affected by 3 (three) types of cognitive load: intrinsic cognitive load, extraneous cognitive load, and germane cognitive load. This study is qualitative in nature, aims to analyse the patterns of interaction that are constituted in mathematics instructions by taking into account the cognitive load theory. The subjects of this study are 21 fifth-grade students who learn mathematics in small groups and whole-class interactive lessons. The data were collected through classroom observations which were videotaped, while field notes were also taken. The data analysis revealed that students engaged in productive interaction and inquiry while they were learning mathematics in small groups or in whole class setting, in which there was a different type of cognitive load that dominantly affecting the learning processes at each setting. During learning mathematics in whole class setting, the most frequently found interaction patterns were to discuss and compare solution based on self-developed models, followed by expressing opinions. This is consistent with the principles of mathematics learning, which gives students wide opportunities to construct mathematical knowledge through individual learning, learning in small groups as well as learning in whole class settings. It means that by participating in interactive learning, the students are habitually engaged in productive interactions and high level of mathematical thinking.

  15. A genetic algorithm solution for combinatorial problems - the nuclear core reload example

    Energy Technology Data Exchange (ETDEWEB)

    Schirru, R.; Silva, F.C. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia; Pereira, C.M.N.A. [Instituto de Engenharia Nuclear (IEN), Rio de Janeiro, RJ (Brazil); Chapot, J.L.C. [FURNAS, Rio de Janeiro, RJ (Brazil)

    1997-12-01

    This paper presents a solution to Traveling Salesman Problem based upon genetic algorithms (GA), using the classic crossover, but avoiding the feasibility problem in offspring individuals, allowing the natural evolution of the GA without introduction of heuristics in the genetic crossover operator. The genetic model presented, that we call the List Model (LM) is based on the encoding and decoding genotype in the way to always generate a phenotype that has a valid structure, over which will be applied the fitness, represented by the total distance. The main purpose of this work was to develop the basis for a new genetic model to be used in the reload of nuclear core of a PWR. In a generic way, this problem can be interpreted as a a search of the optimal combination of N different fuel elements in N nuclear core `holes`, where each combination or load pattern, determines the neutron flux shape and its associate peak factor. The goal is to find out the load pattern that minimizes the peak factor and consequently maximize the useful life of the nuclear fuel. The GA with the List Model was applied to the Angra-1 PWR reload problem and the results are remarkably better than the ones used in the last fuel cycle. (author). 12 refs., 3 figs., 2 tabs.

  16. Structure, Mechanics and Flow Properties of Fractured Shale: Core-Scale Experimentation and In-situ Imaging

    Science.gov (United States)

    Abdelmalek, B. F.; Karpyn, Z.; Liu, S.

    2014-12-01

    Over the last several years, hydrocarbon exploitation and development in North America has been heavily centered on shale gas plays. However, the physical attributes of shales and their manifestation on transport properties and storage capacity remain poorly understood. Therefore, more experimentally based data are needed to fill the gaps in understanding both transport and storage of fluids in shale. The proposed work includes installation and testing of an experimental system which is capable of monitoring the dynamic evolution of shale core permeability under variable loading conditions and in coordination with X-ray microCT imaging. The goal of this study is to better understand and quantify fluid flow patterns and associated transport dynamics of fractured shale samples. The independent variables considered in this study are: mechanical loading and pore pressure. The mechanical response of shale core is captured for different loading paths. To best replicate the in-situ production scenario, the pore pressure is progressively depleted to mimic pressure decline. During the course of experimentation, permeability is estimated using the pulse-decay method under tri-axial stress boundary conditions. Simultaneously, X-ray microCT imaging is used with a tracer gas that is allowed to flow through the sample as an illuminating agent. In the presence of an illuminating agent, either Xenon or Krypton, the X-ray CT scanner can image fractures, global pathways and diffusional fronts in the matrix, as well as sorption sites that reflect heterogeneities in the sample and localized deformation. Anticipated results from these experiments will help quantify permeability evolution as a function of different loading conditions and pore pressure depletion. Also, the X-ray images will help visualize the change of flow patterns and the intensity of sorption as a function of mechanical loading and pore pressure.

  17. Sensitivity Analysis of Core Neutronic Parameters in Electron Accelerator-driven Subcritical Advanced Liquid Metal Reactor

    Directory of Open Access Journals (Sweden)

    Marziye Ebrahimkhani

    2016-02-01

    Full Text Available Calculation of the core neutronic parameters is one of the key components in all nuclear reactors. In this research, the energy spectrum and spatial distribution of the neutron flux in a uranium target have been calculated. In addition, sensitivity of the core neutronic parameters in accelerator-driven subcritical advanced liquid metal reactors, such as electron beam energy (Ee and source multiplication coefficient (ks, has been investigated. A Monte Carlo code (MCNPX_2.6 has been used to calculate neutronic parameters such as effective multiplication coefficient (keff, net neutron multiplication (M, neutron yield (Yn/e, energy constant gain (G0, energy gain (G, importance of neutron source (φ∗, axial and radial distributions of neutron flux, and power peaking factor (Pmax/Pave in two axial and radial directions of the reactor core for four fuel loading patterns. According to the results, safety margin and accelerator current (Ie have been decreased in the highest case of ks, but G and φ∗ have increased by 88.9% and 21.6%, respectively. In addition, for LP1 loading pattern, with increasing Ee from 100 MeV up to 1 GeV, Yn/e and G improved by 91.09% and 10.21%, and Ie and Pacc decreased by 91.05% and 10.57%, respectively. The results indicate that placement of the Np–Pu assemblies on the periphery allows for a consistent keff because the Np–Pu assemblies experience less burn-up.

  18. Transformer sound level caused by core magnetostriction and winding stress displacement variation

    Directory of Open Access Journals (Sweden)

    Chang-Hung Hsu

    2017-05-01

    Full Text Available Magnetostriction caused by the exciting variation of the magnetic core and the current conducted by the winding wired to the core has a significant result impact on a power transformer. This paper presents the sound of a factory transformer before on-site delivery for no-load tests. This paper also discusses the winding characteristics from the transformer full-load tests. The simulation and the measurement for several transformers with capacities ranging from 15 to 60 MVA and high voltage 132kV to low voltage 33 kV are performed. This study compares the sound levels for transformers by no-load test (core/magnetostriction and full-load test (winding/displacement ε. The difference between the simulated and the measured sound levels is about 3dB. The results show that the sound level depends on several parameters, including winding displacement, capacity, mass of the core and windings. Comparative results of magnetic induction of cores and the electromagnetic force of windings for no-load and full-load conditions are examined.

  19. Research reactor loading pattern optimization using estimation of distribution algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, S. [Dept. of Earth Science and Engineering, Applied Modeling and Computation Group AMCG, Imperial College, London, SW7 2AZ (United Kingdom); Ziver, K. [Dept. of Earth Science and Engineering, Applied Modeling and Computation Group AMCG, Imperial College, London, SW7 2AZ (United Kingdom); AMCG Group, RM Consultants, Abingdon (United Kingdom); Carter, J. N.; Pain, C. C.; Eaton, M. D.; Goddard, A. J. H. [Dept. of Earth Science and Engineering, Applied Modeling and Computation Group AMCG, Imperial College, London, SW7 2AZ (United Kingdom); Franklin, S. J.; Phillips, H. J. [Imperial College, Reactor Centre, Silwood Park, Buckhurst Road, Ascot, Berkshire, SL5 7TE (United Kingdom)

    2006-07-01

    A new evolutionary search based approach for solving the nuclear reactor loading pattern optimization problems is presented based on the Estimation of Distribution Algorithms. The optimization technique developed is then applied to the maximization of the effective multiplication factor (K{sub eff}) of the Imperial College CONSORT research reactor (the last remaining civilian research reactor in the United Kingdom). A new elitism-guided searching strategy has been developed and applied to improve the local convergence together with some problem-dependent information based on the 'stand-alone K{sub eff} with fuel coupling calculations. A comparison study between the EDAs and a Genetic Algorithm with Heuristic Tie Breaking Crossover operator has shown that the new algorithm is efficient and robust. (authors)

  20. Fuel management for off-load annual refuelling of the D-HHT 600 MW(e) reference core

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, U

    1973-03-16

    The reference design for the Dragon-HHT reactor has been optimised for on-load continuous refuelling. The possiblity to operate the reactor on a discontinuous annual reloading schedule might prove of interest and/or necessity. In this paper the influence of an annual 4-batch fuel management scheme on the core physics and fuel cycle economics is investigated. The results of the present investigation give a good indication of the relative merits of the two fuel management schemes. Although a broader parameter survey and a more detailed scrutinising of special cases would be desirable, we feel that the main conclusions are correct and that the principle differences have been elicited.

  1. Feasibility study of the design of homogeneously mixed thorium-uranium oxide and all-uranium fueled reactor cores for civil nuclear marine propulsion - 15082

    International Nuclear Information System (INIS)

    Alam, S.B.; Lindley, B.A.; Parks, G.T.

    2015-01-01

    In this reactor physics study, we attempt to design a civil marine reactor core that can operate over a 10 effective-full-power-years life at 333 MWth using ThUO 2 and all-UO 2 fuel. We use WIMS to develop subassembly designs and PANTHER to examine whole-core arrangements, optimizing: subassembly and core geometry; fuel enrichment; burnable and moveable poison design; and whole-core loading patterns. We compare designs with a 14% fissile loading for ThUO 2 and all-UO 2 fuel in 13*13 assemblies with ZrB 2 integral fuel burnable absorber pins for reactivity control. Taking advantage of self-shielding effects, the ThUO 2 option shows greater promise in the final burnable poison design while maintaining low, stable reactivity with minimal burnup penalty. For the final poisoning design with ZrB 2 , ThUO 2 contributes 2.5% more initial reactivity suppression, although the all-UO 2 design exhibits lower reactivity swing. All the candidate materials show greater rod worth for the ThUO 2 design. For both fuels, B 4 C has the highest reactivity worth, providing 10% higher control rod worth for ThUO 2 fuel than all-UO 2 . Finally, optimized assemblies were loaded into a 3D reactor model in PANTHER. The PANTHER results show that after 10 years, the core is on the border of criticality, confirming the fissile loading is well-designed. (authors)

  2. Face/core interface fracture characterization of mixed mode bending sandwich specimens

    DEFF Research Database (Denmark)

    Quispitupa, Amilcar; Berggreen, Christian; Carlsson, L.A.

    2011-01-01

    and PVC H45, H100 and H250 foam core materials were evaluated. A methodology to perform precracking on fracture specimens in order to achieve a sharp and representative crack front is outlined. The mixed mode loading was controlled in the mixed mode bending (MMB) test rig by changing the loading......Debonding of the core from the face sheets is a critical failure mode in sandwich structures. This paper presents an experimental study on face/core debond fracture of foam core sandwich specimens under a wide range of mixed mode loading conditions. Sandwich beams with E‐glass fibre face sheets...... application point (lever arm distance). Finite element analysis was performed to determine the mode‐mixity at the crack tip. The results showed that the face/core interface fracture toughness increased with increased mode II loading. Post failure analysis of the fractured specimens revealed that the crack...

  3. Analysis of reactivity accidents of the RSG-GAS core with silicide fuel

    International Nuclear Information System (INIS)

    Tukiran

    2002-01-01

    The fuels of RSG-GAS reactor is changed from uranium oxide to uranium silicide. For time being, the fuel of RSG-GAS core are mixed up between oxide and silicide fuels with 250 gr of loading and 2.96 g U/cm 3 of density, respectively. While, silicide fuel with 300 gr of loading is still under research. The advantages of silicide fuels are can be used in high density, so that, it can be stayed longer in the core at higher burn-up, therefore, the length of cycle is longer. The silicide fuel in RSG-GAS core is used in step-wise by using mixed up core. Firstly, it is used silicide fuel with 250 gr of loading and then, silicide fuel with 300 gr of loading (3.55 g U/cm 3 of density). In every step-wise of fuel loading must be analysed its safety margin. In this occasion, it is analysed the reactivity accident of RSG-GAS core with 300 gr of silicide fuel loading. The calculation was done by using POKDYN code which available at P2TRR. The calculation was done by reactivity insertion at start up and power rangers. From all cases which were have been done, the results of analysis showed that there is no anomaly and safety margin break at RSG-GAS core with 300 gr silicide fuel loading

  4. Reactivity considerations for the on-line refuelling of a pebble bed modular reactor—Illustrating safety for the most reactive core fuel load

    International Nuclear Information System (INIS)

    Reitsma, Frederik

    2012-01-01

    In the multi-pass fuel management scheme employed for the pebble bed modular reactor the fuel pebbles are re-circulated until they reach the target burn-up. The rate at which fresh fuel is loaded and burned fuel is discharged is a result of the core neutronics cycle analysis but in practice (on the plant) this has to be controlled and managed by the fuel handling and storage system and use of the burnup measurement system. The excess reactivity is the additional reactivity available in the core during operating conditions that is the result of loading a fuel mixture in the core that is more reactive (less burned) than what is required to keep the reactor critical at full power operational conditions. The excess reactivity is balanced by the insertion of the control rods to keep the reactor critical. The excess reactivity allows flexibility in operations, for example to overcome the xenon build up when power is decreased as part of load follow. In order to limit reactivity excursions and to ensure safe shutdown the excess reactivity and thus the insertion depth of the control rods at normal operating conditions has to be managed. One way to do this is by operational procedures. The reactivity effect of long-term operation with the control rods inserted deeper than the design point is investigated and a control rod insertion limit is proposed that will not limit normal operations. The effects of other phenomena that can increase the power defect, such as higher-than-expected fuel temperatures, are also introduced. All of these cases are then evaluated by ensuring cold shutdown is still achievable and where appropriate by reactivity insertion accident analysis. These aspects are investigated on the PBMR 400 MW design.

  5. Development of lycopene-loaded lipid-core nanocapsules: physicochemical characterization and stability study

    International Nuclear Information System (INIS)

    Santos, Priscilla Pereira dos; Paese, Karina; Guterres, Silvia Stanisçuaski; Pohlmann, Adriana Raffin; Costa, Tania Hass; Jablonski, André; Flôres, Simone Hickmann; Rios, Alessandro de Oliveira

    2015-01-01

    The objective of this study was to develop lycopene-loaded lipid-core nanocapsules (Lyc-LNCs) by the interfacial deposition of preformed poly(ε-caprolactone) (PCL). Lyc extract (93.9 %) was obtained from tomatoes, and the organic phase was prepared with polymer (PCL), caprylic/capric triglycerides, sorbitan monostearate, and Lyc in a mixture of acetone and ethanol under magnetic stirring at 40 °C. The organic phase was injected into an aqueous phase containing polysorbate 80, and the suspension was concentrated under reduced pressure. The formulation with a Lyc concentration of 85 µg/mL was characterized in terms of size distribution, zeta potential, encapsulation efficiency, pH, viscosity, and color. The Lyc-LNC formulation presented stable values for the z-average (193 ± 4.7 nm) and zeta potential (−11.5 ± 0.40 mV). Despite the lower pH, Lyc content, and color change of the suspension, the nanocapsules showed satisfactory stability, presenting around 50 % Lyc content after 14 days of storage at room temperature (25 °C)

  6. Development of lycopene-loaded lipid-core nanocapsules: physicochemical characterization and stability study

    Science.gov (United States)

    dos Santos, Priscilla Pereira; Paese, Karina; Guterres, Silvia Stanisçuaski; Pohlmann, Adriana Raffin; Costa, Tania Hass; Jablonski, André; Flôres, Simone Hickmann; Rios, Alessandro de Oliveira

    2015-02-01

    The objective of this study was to develop lycopene-loaded lipid-core nanocapsules (Lyc-LNCs) by the interfacial deposition of preformed poly(ɛ-caprolactone) (PCL). Lyc extract (93.9 %) was obtained from tomatoes, and the organic phase was prepared with polymer (PCL), caprylic/capric triglycerides, sorbitan monostearate, and Lyc in a mixture of acetone and ethanol under magnetic stirring at 40 °C. The organic phase was injected into an aqueous phase containing polysorbate 80, and the suspension was concentrated under reduced pressure. The formulation with a Lyc concentration of 85 µg/mL was characterized in terms of size distribution, zeta potential, encapsulation efficiency, pH, viscosity, and color. The Lyc-LNC formulation presented stable values for the z-average (193 ± 4.7 nm) and zeta potential (-11.5 ± 0.40 mV). Despite the lower pH, Lyc content, and color change of the suspension, the nanocapsules showed satisfactory stability, presenting around 50 % Lyc content after 14 days of storage at room temperature (25 °C).

  7. Development of lycopene-loaded lipid-core nanocapsules: physicochemical characterization and stability study

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Priscilla Pereira dos [Universidade Federal do Rio Grande do Sul (UFRGS), Instituto de Ciência e Tecnologia de Alimentos (Brazil); Paese, Karina; Guterres, Silvia Stanisçuaski [Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia (Brazil); Pohlmann, Adriana Raffin [Universidade Federal do Rio Grande do Sul (UFRGS), Departamento de Química Orgânica, Instituto de Química (Brazil); Costa, Tania Hass [Universidade Federal do Rio Grande do Sul (UFRGS), Departamento de Química, Instituto de Química (Brazil); Jablonski, André [Universidade Federal do Rio Grande do Sul (UFRGS), Departamento de Engenharia de Minas (Brazil); Flôres, Simone Hickmann; Rios, Alessandro de Oliveira, E-mail: alessandro.rios@ufrgs.br [Universidade Federal do Rio Grande do Sul (UFRGS), Instituto de Ciência e Tecnologia de Alimentos (Brazil)

    2015-02-15

    The objective of this study was to develop lycopene-loaded lipid-core nanocapsules (Lyc-LNCs) by the interfacial deposition of preformed poly(ε-caprolactone) (PCL). Lyc extract (93.9 %) was obtained from tomatoes, and the organic phase was prepared with polymer (PCL), caprylic/capric triglycerides, sorbitan monostearate, and Lyc in a mixture of acetone and ethanol under magnetic stirring at 40 °C. The organic phase was injected into an aqueous phase containing polysorbate 80, and the suspension was concentrated under reduced pressure. The formulation with a Lyc concentration of 85 µg/mL was characterized in terms of size distribution, zeta potential, encapsulation efficiency, pH, viscosity, and color. The Lyc-LNC formulation presented stable values for the z-average (193 ± 4.7 nm) and zeta potential (−11.5 ± 0.40 mV). Despite the lower pH, Lyc content, and color change of the suspension, the nanocapsules showed satisfactory stability, presenting around 50 % Lyc content after 14 days of storage at room temperature (25 °C)

  8. Conceptual study of advanced PWR core design

    International Nuclear Information System (INIS)

    Kim, Young Jin; Chang, Moon Hee; Kim, Keung Ku; Joo, Hyung Kuk; Kim, Young Il; Noh, Jae Man; Hwang, Dae Hyun; Kim, Taek Kyum; Yoo, Yon Jong.

    1997-09-01

    The purpose of this project is for developing and verifying the core design concepts with enhanced safety and economy, and associated methodologies for core analyses. From the study of the sate-of-art of foreign advanced reactor cores, we developed core concepts such as soluble boron free, high convertible and enhanced safety core loaded semi-tight lattice hexagonal fuel assemblies. To analyze this hexagonal core, we have developed and verified some neutronic and T/H analysis methodologies. HELIOS code was adopted as the assembly code and HEXFEM code was developed for hexagonal core analysis. Based on experimental data in hexagonal lattices and the COBRA-IV-I code, we developed a thermal-hydraulic analysis code for hexagonal lattices. Using the core analysis code systems developed in this project, we designed a 600 MWe core and studied the feasibility of the core concepts. Two additional scopes were performed in this project : study on the operational strategies of soluble boron free core and conceptual design of large scale passive core. By using the axial BP zoning concept and suitable design of control rods, this project showed that it was possible to design a soluble boron free core in 600 MWe PWR. The results of large scale core design showed that passive concepts and daily load follow operation could be practiced. (author). 15 refs., 52 tabs., 101 figs

  9. Conceptual study of advanced PWR core design

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Jin; Chang, Moon Hee; Kim, Keung Ku; Joo, Hyung Kuk; Kim, Young Il; Noh, Jae Man; Hwang, Dae Hyun; Kim, Taek Kyum; Yoo, Yon Jong

    1997-09-01

    The purpose of this project is for developing and verifying the core design concepts with enhanced safety and economy, and associated methodologies for core analyses. From the study of the sate-of-art of foreign advanced reactor cores, we developed core concepts such as soluble boron free, high convertible and enhanced safety core loaded semi-tight lattice hexagonal fuel assemblies. To analyze this hexagonal core, we have developed and verified some neutronic and T/H analysis methodologies. HELIOS code was adopted as the assembly code and HEXFEM code was developed for hexagonal core analysis. Based on experimental data in hexagonal lattices and the COBRA-IV-I code, we developed a thermal-hydraulic analysis code for hexagonal lattices. Using the core analysis code systems developed in this project, we designed a 600 MWe core and studied the feasibility of the core concepts. Two additional scopes were performed in this project : study on the operational strategies of soluble boron free core and conceptual design of large scale passive core. By using the axial BP zoning concept and suitable design of control rods, this project showed that it was possible to design a soluble boron free core in 600 MWe PWR. The results of large scale core design showed that passive concepts and daily load follow operation could be practiced. (author). 15 refs., 52 tabs., 101 figs.

  10. Integral Full Core Multi-Physics PWR Benchmark with Measured Data

    Energy Technology Data Exchange (ETDEWEB)

    Forget, Benoit; Smith, Kord; Kumar, Shikhar; Rathbun, Miriam; Liang, Jingang

    2018-04-11

    In recent years, the importance of modeling and simulation has been highlighted extensively in the DOE research portfolio with concrete examples in nuclear engineering with the CASL and NEAMS programs. These research efforts and similar efforts worldwide aim at the development of high-fidelity multi-physics analysis tools for the simulation of current and next-generation nuclear power reactors. Like all analysis tools, verification and validation is essential to guarantee proper functioning of the software and methods employed. The current approach relies mainly on the validation of single physic phenomena (e.g. critical experiment, flow loops, etc.) and there is a lack of relevant multiphysics benchmark measurements that are necessary to validate high-fidelity methods being developed today. This work introduces a new multi-cycle full-core Pressurized Water Reactor (PWR) depletion benchmark based on two operational cycles of a commercial nuclear power plant that provides a detailed description of fuel assemblies, burnable absorbers, in-core fission detectors, core loading and re-loading patterns. This benchmark enables analysts to develop extremely detailed reactor core models that can be used for testing and validation of coupled neutron transport, thermal-hydraulics, and fuel isotopic depletion. The benchmark also provides measured reactor data for Hot Zero Power (HZP) physics tests, boron letdown curves, and three-dimensional in-core flux maps from 58 instrumented assemblies. The benchmark description is now available online and has been used by many groups. However, much work remains to be done on the quantification of uncertainties and modeling sensitivities. This work aims to address these deficiencies and make this benchmark a true non-proprietary international benchmark for the validation of high-fidelity tools. This report details the BEAVRS uncertainty quantification for the first two cycle of operations and serves as the final report of the project.

  11. Internal loading of an inhomogeneous compressible Earth with phase boundaries

    Science.gov (United States)

    Defraigne, P.; Dehant, V.; Wahr, J. M.

    1996-01-01

    The geoid and the boundary topography caused by mass loads inside the earth were estimated. It is shown that the estimates are affected by compressibility, by a radially varying density distribution, and by the presence of phase boundaries with density discontinuities. The geoid predicted in the chemical boundary case is 30 to 40 percent smaller than that predicted in the phase case. The effects of compressibility and radially varying density are likely to be small. The inner core-outer core topography for loading inside the mantle and for loading inside the inner core were computed.

  12. Fracture Characterization of Sandwich Face/Core Interfaces

    DEFF Research Database (Denmark)

    Manca, Marcello

    of load transfer between the faces and the core layer is lost, the debonds are considered as primary damage initiators. Under fatigue loading the debonds may evolve into cracks that cause a reduction in structural performance and consequent failure. At present most structural design is based on “life-time...... of sandwich structures is defects that are introduced in the manufacturing process. It is inevitable that areas of the face sheets will not fully adhere to the core resulting in defects known as “debonds”. Debonds can also be induced in-service due to e.g. localised impact loading or overloading. As the means...... such result it is important to devise new experimental and analytical techniques to establish the multi-mode fracture characteristics of sandwich plate structures and accordingly develop methods to inhibit defect propagation. This thesis deals with characterization of fracture between face and core...

  13. Performance testing of a mixed TRIGA core

    Energy Technology Data Exchange (ETDEWEB)

    Schumacher, R F; Godsey, T A; Feltz, D E; Randall, J D [Texas A and M University (United States)

    1974-07-01

    The major operational problem experienced by the Nuclear Science Center Reactor at Texas A and M University is full burnup. With two shift operation caused by the high utilization of the facility, the reactor is operated more than 100 megawatt days per year. The solution chosen for this problem was conversion to FLIP fuel. Since funds were not available to load an entire FLIP core, a mixed core comprised of approximately one third FLIP fuel located in the central region was designed. The design core was loaded and went critical on July 1, 1973. The results of the following measurements on the mixed core are presented: Determination of Rod worths; Measurement of Reactivity Effects; Determination of Flux values; Measurement of Fuel temperatures; Preliminary Fuel Burnup Rate; Pulsing Calibration. (author)

  14. ACVP-02: Plasma SIV/SHIV RNA Viral Load Measurements through the AIDS and Cancer Virus Program Quantitative Molecular Diagnostics Core | Frederick National Laboratory for Cancer Research

    Science.gov (United States)

    The SIV plasma viral load assay performed by the Quantitative Molecular Diagnostics Core (QMDC) utilizes reagents specifically designed to detect and accurately quantify the full range of SIV/SHIV viral variants and clones in common usage in the rese

  15. Parametric study of flow patterns behind the standing accretion shock wave for core-collapse supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Iwakami, Wakana; Nagakura, Hiroki [Yukawa Institute for Theoretical Physics, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502 (Japan); Yamada, Shoichi, E-mail: wakana@heap.phys.waseda.ac.jp [Advanced Research Institute for Science and Engineering, Waseda University, 3-4-1, Okubo, Shinjuku, Tokyo 169-8555 (Japan)

    2014-05-10

    In this study, we conduct three-dimensional hydrodynamic simulations systematically to investigate the flow patterns behind the accretion shock waves that are commonly formed in the post-bounce phase of core-collapse supernovae. Adding small perturbations to spherically symmetric, steady, shocked accretion flows, we compute the subsequent evolutions to find what flow pattern emerges as a consequence of hydrodynamical instabilities such as convection and standing accretion shock instability for different neutrino luminosities and mass accretion rates. Depending on these two controlling parameters, various flow patterns are indeed realized. We classify them into three basic patterns and two intermediate ones; the former includes sloshing motion (SL), spiral motion (SP), and multiple buoyant bubble formation (BB); the latter consists of spiral motion with buoyant-bubble formation (SPB) and spiral motion with pulsationally changing rotational velocities (SPP). Although the post-shock flow is highly chaotic, there is a clear trend in the pattern realization. The sloshing and spiral motions tend to be dominant for high accretion rates and low neutrino luminosities, and multiple buoyant bubbles prevail for low accretion rates and high neutrino luminosities. It is interesting that the dominant pattern is not always identical between the semi-nonlinear and nonlinear phases near the critical luminosity; the intermediate cases are realized in the latter case. Running several simulations with different random perturbations, we confirm that the realization of flow pattern is robust in most cases.

  16. Containment loading during severe core damage accidents

    International Nuclear Information System (INIS)

    Fermandjian, J.; Evrard, J.M.; Cenerino, C.; Berthion, Y.; Carvallo, G.

    1984-11-01

    The objective of the article is to study the influence of the state of the reactor cavity (dry or flooded) and of the corium coolability on the thermal-hydraulics in the containment in the case of an accident sequence involving core melting and subsequent containment basemat erosion, in a 900 MWe PWR unit. Calculations are performed by using the JERICHO thermal hydraulics code

  17. Effects of Surface Inclination on the Vertical Loading Rates and Landing Pattern during the First Attempt of Barefoot Running in Habitual Shod Runners

    Science.gov (United States)

    An, W.; Rainbow, M. J.; Cheung, R. T. H.

    2015-01-01

    Barefoot running has been proposed to reduce vertical loading rates, which is a risk factor of running injuries. Most of the previous studies evaluated runners on level surfaces. This study examined the effect of surface inclination on vertical loading rates and landing pattern during the first attempt of barefoot running among habitual shod runners. Twenty habitual shod runners were asked to run on treadmill at 8.0 km/h at three inclination angles (0°; +10°; −10°) with and without their usual running shoes. Vertical average rate (VALR) and instantaneous loading rate (VILR) were obtained by established methods. Landing pattern was decided using high-speed camera. VALR and VILR in shod condition were significantly higher (p running, but not in barefoot condition (p > 0.382). There was no difference (p > 0.413) in the landing pattern among all surface inclinations. Only one runner demonstrated complete transition to non-heel strike landing in all slope conditions. Reducing heel strike ratio in barefoot running did not ensure a decrease in loading rates (p > 0.15). Conversely, non-heel strike landing, regardless of footwear condition, would result in a softer landing (p < 0.011). PMID:26258133

  18. Effects of Surface Inclination on the Vertical Loading Rates and Landing Pattern during the First Attempt of Barefoot Running in Habitual Shod Runners

    Directory of Open Access Journals (Sweden)

    W. An

    2015-01-01

    Full Text Available Barefoot running has been proposed to reduce vertical loading rates, which is a risk factor of running injuries. Most of the previous studies evaluated runners on level surfaces. This study examined the effect of surface inclination on vertical loading rates and landing pattern during the first attempt of barefoot running among habitual shod runners. Twenty habitual shod runners were asked to run on treadmill at 8.0 km/h at three inclination angles (0°; +10°; −10° with and without their usual running shoes. Vertical average rate (VALR and instantaneous loading rate (VILR were obtained by established methods. Landing pattern was decided using high-speed camera. VALR and VILR in shod condition were significantly higher (p0.382. There was no difference (p>0.413 in the landing pattern among all surface inclinations. Only one runner demonstrated complete transition to non-heel strike landing in all slope conditions. Reducing heel strike ratio in barefoot running did not ensure a decrease in loading rates (p>0.15. Conversely, non-heel strike landing, regardless of footwear condition, would result in a softer landing (p<0.011.

  19. Effects of Surface Inclination on the Vertical Loading Rates and Landing Pattern during the First Attempt of Barefoot Running in Habitual Shod Runners.

    Science.gov (United States)

    An, W; Rainbow, M J; Cheung, R T H

    2015-01-01

    Barefoot running has been proposed to reduce vertical loading rates, which is a risk factor of running injuries. Most of the previous studies evaluated runners on level surfaces. This study examined the effect of surface inclination on vertical loading rates and landing pattern during the first attempt of barefoot running among habitual shod runners. Twenty habitual shod runners were asked to run on treadmill at 8.0 km/h at three inclination angles (0°; +10°; -10°) with and without their usual running shoes. Vertical average rate (VALR) and instantaneous loading rate (VILR) were obtained by established methods. Landing pattern was decided using high-speed camera. VALR and VILR in shod condition were significantly higher (p running, but not in barefoot condition (p > 0.382). There was no difference (p > 0.413) in the landing pattern among all surface inclinations. Only one runner demonstrated complete transition to non-heel strike landing in all slope conditions. Reducing heel strike ratio in barefoot running did not ensure a decrease in loading rates (p > 0.15). Conversely, non-heel strike landing, regardless of footwear condition, would result in a softer landing (p < 0.011).

  20. Core designs for the de-regulated market

    International Nuclear Information System (INIS)

    Almberger, J.; Bernro, R.; Pettersson, H.

    1999-01-01

    Complete text of publication follows: The electricity market deregulation in the Nordic countries encourages innovations and cost reductions for power production in the Vattenfall reactors. The competition on the electricity market is strong, electricity price reductions dramatic and uncertainties about the future power demand is large. In the fuel area this situation has given increased attention to traditional areas like flexibility in power production, improved core designs, need for margins (improved fuel designs), improved surveillance, decreased lead times. At Vattenfall new fuel designs are already being implemented following the last fuel purchase, for which flexibility and margins, were given high values in the evaluations with the multipurpose task of eliminating fuel related problems and meeting the future market situation. This strategy has given Vattenfall a flying start to meeting the demands of the de-regulated market. What has been added are broad studies undertaken to investigate the various route into the future with respect to finding the most effective strategies for fuel and core design and optimization. In the present paper the Vattenfall priorities for fuel designs and margins are presented in a schematic manner summarizing the results of the last fuel purchase and also presenting the current program for LFAs. Technical limitations, licensing and R and D aspects, with respect to improving the fuel utilization will be mentioned. The main focus in the paper is on the broad study carried out in the PWR core design area. Driven by the relatively low power demand various possibilities for higher production flexibility have been investigated specifically extended coast-down, coast-up and yearly load follow. Further to reduce the costs for fuel consumption improvements in core designs have been studied: improved low leakage loading patterns, low enriched end zones, improved Gd designs etc. Main results and conclusions of the core design studies will

  1. The effect of motion patterns on edge-loading of metal-on-metal hip resurfacing.

    Science.gov (United States)

    Mellon, S J; Kwon, Y-M; Glyn-Jones, S; Murray, D W; Gill, H S

    2011-12-01

    The occurrence of pseudotumours (soft tissue masses relating to the hip joint) following metal-on-metal hip resurfacing arthroplasty (MoMHRA) has been associated with high serum metal ion levels and consequently higher than normal bearing wear. We investigated the relationship between serum metal ion levels and contact stress on the acetabular component of MoMHRA patients for two functional activities; gait and stair descent. Four subjects with MoMHRA, who had their serum metal ion levels measured, underwent motion analysis followed by CT scanning. Their motion capture data was combined with published hip contact forces and finite element models representing 14% (peak force) and 60% (end of stance) of the gait cycle and 52% (peak force) of stair descent activity were created. The inclination angle of the acetabular component was increased by 10° in 1° intervals and the contact stresses were determined at each interval for each subject. When the inclination angle was altered in such a way as to cause the hip contact force to pass through the edge of the acetabular component edge-loading occurred. Edge-loading increased the contact stress by at least 50%; the maximum increase was 108%. Patients with low serum metal ion levels showed no increase in contact stress at peak force during gait or stair descent. Patients with high serum metal ion levels exhibited edge-loading with an increase to the inclination angle of their acetabular components. The increase in inclination angle that induced edge-loading for these subjects was less than the inter-subject variability in the angle of published hip contact forces. The results of this study suggest that high serum metal ion levels are the result of inclination angle influenced edge-loading but that edge-loading cannot be attributed to inclination angle alone and that an individual's activity patterns can reduce or even override the influence of a steep acetabular component and prevent edge-loading. Copyright © 2011 IPEM

  2. Material dimensionality effects on the nanoindentation behavior of Al/a-Si core-shell nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Fleming, Robert A. [Department of Mechanical Engineering, University of Arkansas, Fayetteville, AR 72701 (United States); Center for Advanced Surface Engineering, University of Arkansas, Fayetteville, AR 72701 (United States); Goss, Josue A. [Center for Advanced Surface Engineering, University of Arkansas, Fayetteville, AR 72701 (United States); Zou, Min, E-mail: mzou@uark.edu [Department of Mechanical Engineering, University of Arkansas, Fayetteville, AR 72701 (United States); Center for Advanced Surface Engineering, University of Arkansas, Fayetteville, AR 72701 (United States)

    2017-08-01

    Highlights: • Nanoindentation behavior of Al/a-Si core-shell nanostructures were studied. • 3D core confinement enables significant deformation recovery beyond elastic limit. • As the confinement is reduced, the deformation recovery is reduced or suppressed. • Atomistic simulations suggest core confinement affects dislocation dynamics. • 3D confinement has the highest percentage of dislocation removal after unloading. - Abstract: The nanoindentation behavior of hemispherical Al/a-Si core-shell nanostructures (CSNs), horizontally-aligned Al/a-Si core-shell nanorods (CSRs) with various lengths, and an Al/a-Si layered thin film has been studied to understand the effects of geometrical confinement of the Al core on the CSN deformation behavior. When loaded beyond the elastic limit, the CSNs have an unconventional load-displacement behavior with no residual displacement after unloading, resulting in no net shape change after indentation. This behavior is enabled by dislocation activities within the confined Al core, as indicated by discontinuous indentation signatures (load-drops and load-jumps) observed in the load-displacement data. When the geometrical confinement of the core is slightly reduced, as in the case of CSRs with the shortest rod length, the discontinuous indentation signatures and deformation resistance are heavily reduced. Further decreases in core confinement result in conventional nanoindentation behavior, regardless of geometry. Supporting molecular dynamics simulations show that dislocations nucleated in the core of a CSN are more effectively removed during unloading compared to CSRs, which supports the hypothesis that the unique deformation resistance of Al/a-Si CSNs are enabled by 3-dimensional confinement of the Al core.

  3. Material dimensionality effects on the nanoindentation behavior of Al/a-Si core-shell nanostructures

    International Nuclear Information System (INIS)

    Fleming, Robert A.; Goss, Josue A.; Zou, Min

    2017-01-01

    Highlights: • Nanoindentation behavior of Al/a-Si core-shell nanostructures were studied. • 3D core confinement enables significant deformation recovery beyond elastic limit. • As the confinement is reduced, the deformation recovery is reduced or suppressed. • Atomistic simulations suggest core confinement affects dislocation dynamics. • 3D confinement has the highest percentage of dislocation removal after unloading. - Abstract: The nanoindentation behavior of hemispherical Al/a-Si core-shell nanostructures (CSNs), horizontally-aligned Al/a-Si core-shell nanorods (CSRs) with various lengths, and an Al/a-Si layered thin film has been studied to understand the effects of geometrical confinement of the Al core on the CSN deformation behavior. When loaded beyond the elastic limit, the CSNs have an unconventional load-displacement behavior with no residual displacement after unloading, resulting in no net shape change after indentation. This behavior is enabled by dislocation activities within the confined Al core, as indicated by discontinuous indentation signatures (load-drops and load-jumps) observed in the load-displacement data. When the geometrical confinement of the core is slightly reduced, as in the case of CSRs with the shortest rod length, the discontinuous indentation signatures and deformation resistance are heavily reduced. Further decreases in core confinement result in conventional nanoindentation behavior, regardless of geometry. Supporting molecular dynamics simulations show that dislocations nucleated in the core of a CSN are more effectively removed during unloading compared to CSRs, which supports the hypothesis that the unique deformation resistance of Al/a-Si CSNs are enabled by 3-dimensional confinement of the Al core.

  4. Computer-Aided Test Flow in Core-Based Design

    NARCIS (Netherlands)

    Zivkovic, V.; Tangelder, R.J.W.T.; Kerkhoff, Hans G.

    2000-01-01

    This paper copes with the efficient test-pattern generation in a core-based design. A consistent Computer-Aided Test (CAT) flow is proposed based on the required core-test strategy. It generates a test-pattern set for the embedded cores with high fault coverage and low DfT area overhead. The CAT

  5. Fast Flux Test Facility core restraint system performance

    International Nuclear Information System (INIS)

    Hecht, S.L.; Trenchard, R.G.

    1990-02-01

    Characterizing Fast Flux Test Facility (FFTF) core restraint system performance has been ongoing since the first operating cycle. Characterization consists of prerun analysis for each core load, in-reactor and postirradiation measurements of subassembly withdrawal loads and deformations, and using measurement data to fine tune predictive models. Monitoring FFTF operations and performing trend analysis has made it possible to gain insight into core restraint system performance and head off refueling difficulties while maximizing component lifetimes. Additionally, valuable information for improved designs and operating methods has been obtained. Focus is on past operating experience, emphasizing performance improvements and avoidance of potential problems. 4 refs., 12 figs., 2 tabs

  6. Transient analysis of house load operation for LNPP

    International Nuclear Information System (INIS)

    Shi Junying; Zheng Bin

    2000-01-01

    The author analysis the transient of house load operation for Ling'ao Nuclear Power Plant by using the methods of dynamic simulation and closed loops of primary and secondary system. The transient of house load operation from 100% FP is the most severe that can occur on the unit in normal operation because it causes immediately shedding of 95% of turbine load and requires the unit to operate steadily at reduced power. The results show that the transient can be successful both at beginning of core life and manual house load operation. However, more attentions must be paid to automatic house load operation caused by grid fault at toward end of core life because the success of the transient could be threatened by the actuation of the protection of high flux and high flux rate

  7. Containment loadings due to hydrogen burning in LWR core meltdown accidents

    International Nuclear Information System (INIS)

    Cybulskis, P.

    1981-01-01

    The potential pressure loadings due to hydrogen burning under conditions representative of meltdown accident conditions are examined for a variety of PWR and BWR containment designs. For the PWR, the large dry, ice condenser, as well as subatmospheric containments are considered. For the BWR, MARK I, II, and III pressure suppression containments are evaluated. The key factors considered are: free volume, design pressure, extend to hydrogen generation, and the flammability of the atmosphere under a range of accident conditions. The potential for and the possible implications of hydrogen detonation are also considered. The results of these analyses show that the accumulation and rapid burning of the quantities of hydrogen that would be generated during core meltdown accidents will lead to pressures above design levels in all of the containments considered. As would be expected, containments characterized by small volumes and/or low design pressures are the most vulnerable to damage due to hydrogen burning. Large volume, high pressure designs may also be threatened but offer significantly more potential for accomodating hydrogen burns. The attainment of detonable hydrogen mixtures is made easier by smaller containment volumes. Detonable mixtures are also possible in the larger volume containments, but imply the accumulation of hydrogen for long periods of time without prior ignition. Hydrogen detonations, if they occur, would probably challenge the integrity of any of the containments considered. (orig.)

  8. Short term load forecasting of anomalous load using hybrid soft computing methods

    Science.gov (United States)

    Rasyid, S. A.; Abdullah, A. G.; Mulyadi, Y.

    2016-04-01

    Load forecast accuracy will have an impact on the generation cost is more economical. The use of electrical energy by consumers on holiday, show the tendency of the load patterns are not identical, it is different from the pattern of the load on a normal day. It is then defined as a anomalous load. In this paper, the method of hybrid ANN-Particle Swarm proposed to improve the accuracy of anomalous load forecasting that often occur on holidays. The proposed methodology has been used to forecast the half-hourly electricity demand for power systems in the Indonesia National Electricity Market in West Java region. Experiments were conducted by testing various of learning rate and learning data input. Performance of this methodology will be validated with real data from the national of electricity company. The result of observations show that the proposed formula is very effective to short-term load forecasting in the case of anomalous load. Hybrid ANN-Swarm Particle relatively simple and easy as a analysis tool by engineers.

  9. Dental responsibility loadings and the relative value of dental services.

    Science.gov (United States)

    Teusner, D N; Ju, X; Brennan, D S

    2017-09-01

    To estimate responsibility loadings for a comprehensive list of dental services, providing a standardized unit of clinical work effort. Dentists (n = 2500) randomly sampled from the Australian Dental Association membership (2011) were randomly assigned to one of 25 panels. Panels were surveyed by questionnaires eliciting responsibility loadings for eight common dental services (core items) and approximately 12 other items unique to that questionnaire. In total, loadings were elicited for 299 items listed in the Australian Dental Schedule 9th Edition. Data were weighted to reflect the age and sex distribution of the workforce. To assess reliability, regression models assessed differences in core item loadings by panel assignment. Estimated loadings were described by reporting the median and mean. Response rate was 37%. Panel composition did not vary by practitioner characteristics. Core item loadings did not vary by panel assignment. Oral surgery and endodontic service areas had the highest proportion (91%) of services with median loadings ≥1.5, followed by prosthodontics (78%), periodontics (76%), orthodontics (63%), restorative (62%) and diagnostic services (31%). Preventive services had median loadings ≤1.25. Dental responsibility loadings estimated by this study can be applied in the development of relative value scales. © 2017 Australian Dental Association.

  10. Fuel assembly for FBR type reactor and reactor core thereof

    International Nuclear Information System (INIS)

    Kobayashi, Kaoru.

    1998-01-01

    The present invention provides a fuel assembly to be loaded to a reactor core of a large sized FBR type reactor, in which a coolant density coefficient can be reduced without causing power peaking in the peripheral region of neutron moderators loaded in the reactor core. Namely, the fuel assembly for the FBR type reactor comprises a plurality of fission product-loaded fuel rods and a plurality of fertile material-loaded fuel rods and one or more rods loading neutron moderators. In this case, the plurality of fertile material-loaded fuel rods are disposed to the peripheral region of the neutron moderator-loaded rods. The plurality of fission product-loaded fuel rods are disposed surrounding the peripheral region of the plurality of fertile material-loaded fuel rods. The neutron moderator comprises zirconium hydride, yttrium hydride and calcium hydride. The fission products are mixed oxide fuels. The fertile material comprises depleted uranium or natural uranium. (I.S.)

  11. Feasibility study of SMART core with soluble boron

    International Nuclear Information System (INIS)

    Kim, Kang Seog; Lee, Chung Chan; Zee, Sung Quun

    2000-11-01

    The excess reactivity of SMART core without soluble boron is effectively controlled by 49 CEDM. We suggest another method to control the core excess reactivity using both the checkerboard type of 25 CEDM and soluble boron and perform a feasibility calculation. The soluble boron operation is categorized into the on-line and the off-line mechanisms. The former is to successively control the boron concentration according to the excess reactivity during operation and the latter is to add and change some soluble boron during refueling and repairing. Since the on-line soluble boron control system of SMART is conceptually identical to that of the commercial pressurized water reactor, we did not perform the analysis. Since the soluble boron in the complete off-line system increases the moderator temperature coefficient, the reactivity defect between hot and cold moderator temperature is decreased. However, the decrease of the reactivity is not big to satisfy the core reactivity limits. When using 25 CEDM, the possible mechanism is to control the excess reactivity by both control rod and on-line boron control mechanism between cold and hot zero power and by only control rod at hot full power. We selected the loading pattern satisfying the requirement in the view of nuclear design

  12. An automatic procedure for optimizing fuel loading in consideration of the effect of burnup nonuniformity in assembly

    International Nuclear Information System (INIS)

    Wang Guoli.

    1988-01-01

    The effect of burnup nonuniformity across the assembly on optimizing fuel loading in core is investigated. Some new rules which can be used for optimizing fuel loading in the core are proposed. New automatic procedure for optimizing fuel loading in the core is described

  13. Dynamic strength of rock with single planar joint under various loading rates at various angles of loads applied

    Directory of Open Access Journals (Sweden)

    Pei-Yun Shu

    2018-06-01

    Full Text Available Intact rock-like specimens and specimens that include a single, smooth planar joint at various angles are prepared for split Hopkinson pressure bar (SHPB testing. A buffer pad between the striker bar and the incident bar of an SHPB apparatus is used to absorb some of the shock energy. This can generate loading rates of 20.2–4627.3 GPa/s, enabling dynamic peak stresses/strengths and associated failure patterns of the specimens to be investigated. The effects of the loading rate and angle of load applied on the dynamic peak stresses/strengths of the specimens are examined. Relevant experimental results demonstrate that the failure pattern of each specimen can be classified as four types: Type A, integrated with or without tiny flake-off; Type B, slide failure; Type C, fracture failure; and Type D, crushing failure. The dynamic peak stresses/strengths of the specimens that have similar failure patterns increase linearly with the loading rate, yielding high correlations that are evident on semi-logarithmic plots. The slope of the failure envelope is the smallest for slide failure, followed by crushing failure, and that of fracture failure is the largest. The magnitude of the plot slope of the dynamic peak stress against the loading rate for the specimens that are still integrated after testing is between that of slide failure and crushing failure. The angle of application has a limited effect on the dynamic peak stresses/strengths of the specimens regardless of the failure pattern, but it affects the bounds of the loading rates that yield each failure pattern, and thus influences the dynamic responses of the single jointed specimen. Slide failure occurs at the lowest loading rate of any failure, but can only occur in single jointed specimen that allows sliding. Crushing failure is typically associated with the largest loading rate, and fracture failure may occur when the loading rate is between the boundaries for slide failure and crushing

  14. Toward full MOX core design

    International Nuclear Information System (INIS)

    Rouviere, G.; Guillet, J.L.; Bruna, G.B.; Pelet, J.

    1999-01-01

    This paper presents a selection of the main preliminary results of a study program sponsored by COGEMA and currently carried out by FRAMATOME. The objective of this study is to investigate the feasibility of full MOX core loading in a French 1300 MWe PWR, a recent and widespread standard nuclear power plant. The investigation includes core nuclear design, thermal hydraulic and systems aspects. (authors)

  15. Evaluation of core distortion in FBR

    International Nuclear Information System (INIS)

    Ikarimoto, I.; Tanaka, M.; Okubo, Y.

    1984-01-01

    The analyses of FBR's core distortion are mainly performed in order to evaluate the following items: 1) Change of reactivity; 2) Force at pads on core assemblies; 3) Withdrawal force at refueling; 4) Loading, refueling and residual deviations of wrapper tubes (core assemblies) at the top; 5) Bowing modes of guide tubes for control rods. The analysis of core distortion are performed by using computer program for two-dimensional row deformation analysis or three-dimensional core deformation if necessary, considering these evaluated items which become design conditions. This report shows the relationship between core deformation analysis and component design, a point of view of choosing an analysis program for design considering core characteristics, and computing examples of core deformation of prototype class reactor by the above code. (author)

  16. ZPR-6 assembly 7 high {sup 240}Pu core experiments : a fast reactor core with mixed (Pu,U)-oxide fuel and a centeral high{sup 240}Pu zone.

    Energy Technology Data Exchange (ETDEWEB)

    Lell, R. M.; Morman, J. A.; Schaefer, R.W.; McKnight, R.D.; Nuclear Engineering Division

    2009-02-23

    ZPR-6 Assembly 7 (ZPR-6/7) encompasses a series of experiments performed at the ZPR-6 facility at Argonne National Laboratory in 1970 and 1971 as part of the Demonstration Reactor Benchmark Program (Reference 1). Assembly 7 simulated a large sodium-cooled LMFBR with mixed oxide fuel, depleted uranium radial and axial blankets, and a core H/D near unity. ZPR-6/7 was designed to test fast reactor physics data and methods, so configurations in the Assembly 7 program were as simple as possible in terms of geometry and composition. ZPR-6/7 had a very uniform core assembled from small plates of depleted uranium, sodium, iron oxide, U{sub 3}O{sub 8} and Pu-U-Mo alloy loaded into stainless steel drawers. The steel drawers were placed in square stainless steel tubes in the two halves of a split table machine. ZPR-6/7 had a simple, symmetric core unit cell whose neutronic characteristics were dominated by plutonium and {sup 238}U. The core was surrounded by thick radial and axial regions of depleted uranium to simulate radial and axial blankets and to isolate the core from the surrounding room. The ZPR-6/7 program encompassed 139 separate core loadings which include the initial approach to critical and all subsequent core loading changes required to perform specific experiments and measurements. In this context a loading refers to a particular configuration of fueled drawers, radial blanket drawers and experimental equipment (if present) in the matrix of steel tubes. Two principal core configurations were established. The uniform core (Loadings 1-84) had a relatively uniform core composition. The high {sup 240}Pu core (Loadings 85-139) was a variant on the uniform core. The plutonium in the Pu-U-Mo fuel plates in the uniform core contains 11% {sup 240}Pu. In the high {sup 240}Pu core, all Pu-U-Mo plates in the inner core region (central 61 matrix locations per half of the split table machine) were replaced by Pu-U-Mo plates containing 27% {sup 240}Pu in the plutonium

  17. Automated load balancing in the ATLAS high-performance storage software

    CERN Document Server

    Le Goff, Fabrice; The ATLAS collaboration

    2017-01-01

    The ATLAS experiment collects proton-proton collision events delivered by the LHC accelerator at CERN. The ATLAS Trigger and Data Acquisition (TDAQ) system selects, transports and eventually records event data from the detector at several gigabytes per second. The data are recorded on transient storage before being delivered to permanent storage. The transient storage consists of high-performance direct-attached storage servers accounting for about 500 hard drives. The transient storage operates dedicated software in the form of a distributed multi-threaded application. The workload includes both CPU-demanding and IO-oriented tasks. This paper presents the original application threading model for this particular workload, discussing the load-sharing strategy among the available CPU cores. The limitations of this strategy were reached in 2016 due to changes in the trigger configuration involving a new data distribution pattern. We then describe a novel data-driven load-sharing strategy, designed to automatical...

  18. A core-shell albumin copolymer nanotransporter for high capacity loading and two-step release of doxorubicin with enhanced anti-leukemia activity.

    Science.gov (United States)

    Wu, Yuzhou; Ihme, Susann; Feuring-Buske, Michaela; Kuan, Seah Ling; Eisele, Klaus; Lamla, Markus; Wang, Yanran; Buske, Christian; Weil, Tanja

    2013-06-01

    The native transportation protein serum albumin represents an attractive nano-sized transporter for drug delivery applications due to its beneficial safety profile. Existing albumin-based drug delivery systems are often limited by their low drug loading capacity as well as noticeable drug leakage into the blood circulation. Therefore, a unique albumin-derived core-shell doxorubicin (DOX) delivery system based on the protein denaturing-backfolding strategy was developed. 28 DOX molecules were covalently conjugated to the albumin polypeptide backbone via an acid sensitive hydrazone linker. Polycationic and pegylated human serum albumin formed two non-toxic and enzymatically degradable protection shells around the encapsulated DOX molecules. This core-shell delivery system possesses notable advantages, including a high drug loading capacity critical for low administration doses, a two-step drug release mechanism based on pH and the presence of proteases, an attractive biocompatibility and narrow size distribution inherited from the albumin backbone, as well as fast cellular uptake and masking of epitopes due to a high degree of pegylation. The IC50 of these nanoscopic onion-type micelles was found in the low nanomolar range for Hela cells as well as leukemia cell lines. In vivo data indicate its attractive potential as anti-leukemia treatment suggesting its promising profile as nanomedicine drug delivery system. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Conversion of the core of the TRIGA Mark III reactor at the Mexican Nuclear Centre

    International Nuclear Information System (INIS)

    Moran Lopez, J.M.; Lucatero, M.A.; Reyes Andrade, B.; Rivero Gutierrez, T.; Sainz Mejia, E.

    1990-01-01

    It was decided to convert the core of the TRIGA MARK III reactor at the Mexican Nuclear Centre run by the National Nuclear Institute because of problems detected during the operation, such as a lack of excess reactivity for operation at nominal power over long periods and difficulties in the maintenance and calibration of the control panel. In order to compensate for the lack of excess reactivity the fuel elements taken to the highest burnup were replaced by fresh elements acquired for this purpose. The latter, however, had a different enrichment, and this necessitated a detailed analysis of the neutronic and thermohydraulic behaviour of the reactor with a view to determining a mixed core configuration which would meet safe operation requirements. In conducting the thermohydraulic analysis, a natural convection coolant flow model was developed to determine coolant velocity and pressure drop patterns within the core. The heat transfer equations were solved and it was found that the hottest fuel element did not attain critical heat flux conditions. In loading this core it was also necessary to analyse procedures and to consider the possible effects of reaching criticality with fuel elements having different enrichments. The loading procedure is described, as is the measurement system and the results obtained. In order to resolve the calibration and maintenance problems, a new, more advanced control panel was designed with conventional and nuclear detection systems and modern components

  20. Mechanical properties of chemically bonded sand core materials dipped in sol-gel coating impregnated with filter

    DEFF Research Database (Denmark)

    Nwaogu, Ugochukwu Chibuzoh; Tiedje, Niels Skat

    2012-01-01

    A novel sol-gel coating impregnated with filter dust was applied on chemically bonded sand core materials by dipping. After curing, the strengths of the core materials were measured under uniaxial loading using a new strength testing machine (STM). The STM presents the loading history as a force-...... of the chemically bonded sand core materials, a combination of flexural and compression tests is suggested for improving the casting quality. © 2012 W. S. Maney & Son Ltd.......A novel sol-gel coating impregnated with filter dust was applied on chemically bonded sand core materials by dipping. After curing, the strengths of the core materials were measured under uniaxial loading using a new strength testing machine (STM). The STM presents the loading history as a force...... the strengths were increased under compression. The mode of fracture of the chemically bonded sand core materials was observed to be intergranular through the binder. The stiffness of the chemically bonded sand core materials was determined. For better understanding of the mechanical properties...

  1. ANN Control Based on Patterns Recognition for a Robotic Hand under Different Load Conditions

    Directory of Open Access Journals (Sweden)

    Ihsan Abdulhussein Baqer ihsan.qadi@gmail.com

    2018-03-01

    Full Text Available In this paper, the Artificial Neural Network (ANN is trained on the patterns of the normal component to tangential component ratios at the time of slippage occurrence, so that it can be able to distinguish the slippage occurrence under different type of load (quasi-static and dynamic loads, and then generates a feedback signal used as an input signal to run the actuator. This process is executed without the need for any information about the characteristics of the grasped object, such as weight, surface texture, shape, coefficient of the friction and the type of the load exerted on the grasped object. For fulfillment this approach, a new fingertip design has been proposed in order to detect the slippage in multi-direction between the grasped object and the artificial fingertips. This design is composed of two under-actuated fingers with an actuation system which includes flexible parts (compressive springs. These springs operate as a compensator for the grasping force at the time of slippage occurrence in spite of the actuator is in stopped situation. The contact force component ratios can be calculated via a conventional sensor (Flexiforce sensor after processed the force data using Matlab/Simulink program through a specific mathematical model which is derived according to the mechanism of the artificial finger.

  2. Development of core design and analyses technology for integral reactor

    Energy Technology Data Exchange (ETDEWEB)

    Zee, Sung Quun; Lee, C. C.; Song, J. S. and others

    1999-03-01

    Integral reactors are developed for the applications such as sea water desalination, heat energy for various industries, and power sources for large container ships. In order to enhance the inherent and passive safety features, low power density concept is chosen for the integral reactor SMART. Moreover, ultra-longer cycle and boron-free operation concepts are reviewed for better plant economy and simple design of reactor system. Especially, boron-free operation concept brings about large difference in core configurations and reactivity controls from those of the existing large size commercial nuclear power plants and also causes many differences in the safety aspects. The ultimate objectives of this study include detailed core design of a integral reactor, development of the core design system and technology, and finally acquisition of the system design certificate. The goal of the first stage is the conceptual core design, that is, to establish the design bases and requirements suitable for the boron-free concept, to develop a core loading pattern, to analyze the nuclear, thermal and hydraulic characteristics of the core and to perform the core shielding design. Interface data for safety and performance analyses including fuel design data are produced for the relevant design analysis groups. Nuclear, thermal and hydraulic, shielding design and analysis code systems necessary for the core conceptual design are established through modification of the existing design tools and newly developed methodology and code modules. Core safety and performance can be improved by the technology development such as boron-free core optimization, advaned core monitoring and operational aid system. Feasiblity study on the improvement of the core protection and monitoring system will also contribute toward core safety and performance. Both the conceptual core design study and the related technology will provide concrete basis for the next design phase. This study will also

  3. Development of core design and analyses technology for integral reactor

    International Nuclear Information System (INIS)

    Zee, Sung Quun; Lee, C. C.; Song, J. S. and others

    1999-03-01

    Integral reactors are developed for the applications such as sea water desalination, heat energy for various industries, and power sources for large container ships. In order to enhance the inherent and passive safety features, low power density concept is chosen for the integral reactor SMART. Moreover, ultra-longer cycle and boron-free operation concepts are reviewed for better plant economy and simple design of reactor system. Especially, boron-free operation concept brings about large difference in core configurations and reactivity controls from those of the existing large size commercial nuclear power plants and also causes many differences in the safety aspects. The ultimate objectives of this study include detailed core design of a integral reactor, development of the core design system and technology, and finally acquisition of the system design certificate. The goal of the first stage is the conceptual core design, that is, to establish the design bases and requirements suitable for the boron-free concept, to develop a core loading pattern, to analyze the nuclear, thermal and hydraulic characteristics of the core and to perform the core shielding design. Interface data for safety and performance analyses including fuel design data are produced for the relevant design analysis groups. Nuclear, thermal and hydraulic, shielding design and analysis code systems necessary for the core conceptual design are established through modification of the existing design tools and newly developed methodology and code modules. Core safety and performance can be improved by the technology development such as boron-free core optimization, advaned core monitoring and operational aid system. Feasiblity study on the improvement of the core protection and monitoring system will also contribute toward core safety and performance. Both the conceptual core design study and the related technology will provide concrete basis for the next design phase. This study will also

  4. Rambling and trembling in response to body loading.

    Science.gov (United States)

    Tahayor, Behdad; Riley, Zachary A; Mahmoudian, Armaghan; Koceja, David M; Hong, Siang Lee

    2012-04-01

    Various studies have suggested that postural sway is controlled by at least two subsystems. Rambling-Trembling analysis is a widely accepted methodology to dissociate the signals generated by these two hypothetical subsystems. The core assumption of this method is based on the equilibrium point hypothesis which suggests that the central nervous system preserves upright standing by transiently shifting the center of pressure (COP) from one equilibrium point to another. The trajectory generated by this shifting is referred to as rambling and its difference from the original COP signal is referred to as trembling. In this study we showed that these two components of COP are differentially affected when standing with external loads. Using Detrended Fluctuation analysis, we compared the pattern of these two signals in different configurations of body loading. Our findings suggest that by applying an external load, the dynamics of the trembling component is altered independently of the area of postural sway and also independently of the rambling component. The dynamics of rambling changed only during the backloading condition in which the postural sway area also substantially increased. It can be suggested that during loaded standing, the trembling mechanism (which is suggested to be activated by peripheral mechanisms and reflexes) is altered without affecting the central influence on the shifts of the equilibrium point.

  5. New techniques for designing the initial and reload cores with constant long cycle lengths

    International Nuclear Information System (INIS)

    Shi, Jun; Levine, Samuel; Ivanov, Kostadin

    2017-01-01

    Highlights: • New techniques for designing the initial and reload cores with constant long cycle lengths are developed. • Core loading pattern (LP) calculations and comparisons have been made on two different designs. • Results show that significant savings in fuel costs can be accrued if a non-low leakage LP design strategy is enacted. - Abstract: Several utilities have increased the output power of their nuclear power plant to increase their income and profit. Thus, the utility increases the power density of the reactor, which has other consequences. One consequence is to increase the depletion of the fuel assemblies (FAs) and reduce the end-of-cycle (EOC) sum of fissionable nuclides in each FA, ∑_E_O_C. The power density and the ∑_E_O_C remaining in the FAs at EOC must be sufficiently large in many FAs when designing the loading pattern, LP, for the first and reload cycles to maintain constant cycle lengths at minimum fuel cost. Also of importance is the cycle length as well as several other factors. In fact, the most important result of this study is to understand that the ∑_E_O_Cs in the FAs must be such that in the next cycle they can sustain the energy during depletion to prevent too much power shifting to the fresh FAs and, thus, sending the maximum peak pin power, PPP_m_a_x, above its constraint. This paper presents new methods for designing the LPs for the initial and follow on cycles to minimize the fuel costs. Studsvik’s CMS code system provides a 1000 MWe LP design in their sample inputs, which is applied in this study. The first 3 cycles of this core are analyzed to minimize fuel costs, and all three cycles have the same cycle length of ∼650 days. Cycle 1 is designed to allow many used FAs to be loaded into cycles 2 and 3 to reduce their fuel costs. This could not be achieved if cycle 1 was a low leakage LP (Shi et al., 2015). Significant fuel cost savings are achieved when the new designs are applied to the higher leakage LP designs

  6. Different patterns of vein loading of exogenous [14C]sucrose in leaves of pisum sativum and coleus blumei

    International Nuclear Information System (INIS)

    Turgeon, R.; Wimmers, L.E.

    1988-01-01

    Vein loading of exogenous [ 14 C]sucrose was studied using short uptake and wash periods to distinguish between direct loading into veins and loading via mesophyll tissue. Mature leaf tissue of Pisum sativum L. cv Little Marvel, or Coleus blumei Benth. cv Candidum, was abraded and leaf discs were floated on [ 14 C]sucrose solution for 1 or 2 minutes. Discs were then washed for 1 to 30 min either at room temperature or in the cold and were frozen, lyophilized, and autoradiographed. In P. sativum, veins were clearly labeled after 1 minute uptake and 1 minute wash periods. Autoradiographic images did not change appreciably with longer times of uptake or wash. Vein loading was inhibited by p-chloromercuribenzenesulfonic acid. These results indicate that uptake of exogenous sucrose occurs directly into the veins in this species. When C. blumei leaf discs were floated on [ 14 C]sucrose for 2 minutes and washed in the cold, the mesophyll was labeled but little, if any, minor vein loading occurred. When discs were labeled for 2 minutes and washed at room temperature, label was transferred from the mesophyll to the veins within minutes. These results indicate that there may be different patterns of phloem loading of photosynthetically derived sucrose in these two species

  7. Changes in running pattern due to fatigue and cognitive load in orienteering.

    Science.gov (United States)

    Millet, Guillaume Y; Divert, Caroline; Banizette, Marion; Morin, Jean-Benoit

    2010-01-01

    The aim of this study was to examine the influence of fatigue on running biomechanics in normal running, in normal running with a cognitive task, and in running while map reading. Nineteen international and less experienced orienteers performed a fatiguing running exercise of duration and intensity similar to a classic distance orienteering race on an instrumented treadmill while performing mental arithmetic, an orienteering simulation, and control running at regular intervals. Two-way repeated-measures analysis of variance did not reveal any significant difference between mental arithmetic and control running for any of the kinematic and kinetic parameters analysed eight times over the fatiguing protocol. However, these parameters were systematically different between the orienteering simulation and the other two conditions (mental arithmetic and control running). The adaptations in orienteering simulation running were significantly more pronounced in the elite group when step frequency, peak vertical ground reaction force, vertical stiffness, and maximal downward displacement of the centre of mass during contact were considered. The effects of fatigue on running biomechanics depended on whether the orienteers read their map or ran normally. It is concluded that adding a cognitive load does not modify running patterns. Therefore, all changes in running pattern observed during the orienteering simulation, particularly in elite orienteers, are the result of adaptations to enable efficient map reading and/or potentially prevent injuries. Finally, running patterns are not affected to the same extent by fatigue when a map reading task is added.

  8. Exploratory Analysis of a GGSN’s PDP Context Signaling Load

    Directory of Open Access Journals (Sweden)

    Florian Metzger

    2014-01-01

    Full Text Available This paper takes an exploratory look on control plane signaling in a mobile cellular core network. In contrast to most contributions in this field, our focus does not lie on the wireless or user-oriented parts of the network, but on signaling in the core network. In an investigation of core network data we take a look at statistics related to GTP tunnels and their signaling. Based on the results thereof we propose a definition of load at the GGSN and create an initial load queuing model. We find signs of user devices putting burden on the core network through their behavior.

  9. Application of MSHIM core control strategy for westinghouse AP1000 nuclear power plant

    International Nuclear Information System (INIS)

    Onoue, Masaaki; Kawanishi, Tomohiro; Carlson, William R.; Morita, Toshio

    2003-01-01

    Westinghouse has developed a new core control strategy, in which two independently moving Rod Cluster Control Assembly (RCCA) groups are utilized for core control; one group for reactivity/temperature control, the other for axial power distribution (Axial Offset) control. This control procedure eliminates the need for Chemical Shim adjustments during power maneuvers, such as load follow, and is designated MSHIM (Mechanical Shim). This core control strategy is utilized in the AP1000. In the AP1000, it is possible to perform MSHIM load follow maneuvers for up to 95% of cycle life without changing the soluble boron concentration in the moderator. This core control strategy has been evaluated, via computer simulations, to provide appropriate margins to core and fuel design limits during normal operation maneuvers (including load follow operations) and also during anticipated Condition II accident transients. The primary benefits of MSHIM as a control strategy are as follows; Power change operation can be totally automated due to the elimination of boron concentration adjustments. Full load follow capability is achievable for up to more than 95% of cycle life. Load follow operations performed solely by mechanical devices results in a significant reduction in the boron system requirements and a significant reduction in daily effluent to be processed. (author)

  10. Sensitivity of reactivity feedback due to core bowing in a metallic-fueled core

    International Nuclear Information System (INIS)

    Nakagawa, Masatoshi; Kawashima, Masatoshi; Endo, Hiroshi; Nishimura, Tomohiro

    1991-01-01

    A sensitivity study has been carried out on negative reactivity feedback caused by core bowing to assess the potential effectiveness of FBR passive safety features in regard to withstanding an anticipated transient without scram (ATWS). In the present study, an analysis has been carried to obtain the best material and geometrical conditions concerning the core restraint system out for several power to flow rates (P/F), up to 2.0 for a 300 MWe metallic-fueled core. From this study, it was clarified that the pad stiffness at an above core loading pads (ACLP) needs to be large enough to ensure negative reactivity feedback against ATWS. It was also clarified that there is an upper limit for the clearances between ducts at ACLP. A new concept, in regard to increasing the absolute value for negative reactivity feedback due to core bowing at ATWS, is proposed and discussed. (author)

  11. Minor actinides incineration by loading moderated targets in fast reactor

    International Nuclear Information System (INIS)

    Wu Hongchun; Sato, Daisuke; Takeda, Toshikazu

    2000-01-01

    The effect of hydrogen concentration and loaded mass of minor actinides (MAs) in the target on the core performance and MAs transmutation rate was analyzed in this paper. An optimum core was proposed which has 96 MAs target assemblies of which MAs fuel pins per assembly is 38 with the composition ratio U/MA/Zr/H of 1/4/10/50. This optimized core offers good core performance and can transmute MAs very effectively, the transmutation rate was about 67% (939 kg) and the incinerate (transmute by fission) rate was about 35% (489 kg) through 3 years of reactor operation. It is about 2-3 times larger than current transmutation method that MAs are loaded homogeneously in the PWR and fast reactor core. (author)

  12. Design of a reactor core in the Oma Full MOX-ABWR

    International Nuclear Information System (INIS)

    Hama, Teruo

    1999-01-01

    The Electric Power Development Co., Ltd. has progressed a construction plan on an improved boiling-water reactor aiming at loading of MOX fuel in all reactor cores (full MOX-ABWR) at Oma-cho, Aomori prefecture, which is a last stage on application of approval on establishment at present. Here were described on outlines of reactor core in the full MOX-ABWR and its safety evaluation. For the full MOX-ABWR loading MOX fuel assembly into all reactor core, thermal and mechanical design analysis of fuel bars and core design analysis were conducted. As a result, it was confirmed that judgement standards in mixed core of MOX fuel and uranium fuel were also applicable as well as that in uranium fuel. (G.K.)

  13. Dynamic response of cylindrical ACS support structures to core energy release

    International Nuclear Information System (INIS)

    Kennedy, J.M.; Belytschko, T.B.

    1985-01-01

    The code SAFE/RAS is applied to the analysis of a new design concept for the above-core structures when subjected to the loads of a core disruptive accident. The analysis involves the determination of the postbuckling response of a thin cylinder loaded both axially and vertically. The effects of variation of cylinder thickness and fluid-structure interaction are investigated

  14. MCNP calculation of the critical H_3BO_3 concentrations for the first fuel loading into the reactor core of NPP MO-3-4 units

    International Nuclear Information System (INIS)

    Vrban, B.; Lueley, J.; Farkas, G.; Hascik, J.; Hinca, R.; Petriska, M.; Slugen, V.

    2012-01-01

    The purpose of the analysis was the determination of critical H_3BO_3 concentrations for the first fuel loading into the reactor core of MO34 units using 2"n"d generation fuel during the first start-up of new unit using calculation code MCNP 1.60. H_3BO_3 concentrations were computed for the given temperature of the primary circuit and position of the 6"t"h safety control rod group. Because of the very first start-up of these units, detailed analyses of active-core parameters are required by National Regulatory Authority and needed for safe operation of nuclear facility. (authors)

  15. Diagnose Test-Taker's Profile in Terms of Core Profile Patterns: Principal Component (PC) vs. Profile Analysis via MDS (PAMS) Approaches.

    Science.gov (United States)

    Kim, Se-Kang; Davison, Mark L.

    A study was conducted to examine how principal components analysis (PCA) and Profile Analysis via Multidimensional Scaling (PAMS) can be used to diagnose individuals observed score profiles in terms of core profile patterns identified by each method. The standardization sample from the Wechsler Intelligence Scale for Children, Third Edition…

  16. The PWR cores management

    International Nuclear Information System (INIS)

    Barral, J.C.; Rippert, D.; Johner, J.

    2000-01-01

    During the meeting of the 25 january 2000, organized by the SFEN, scientists and plant operators in the domain of the PWR debated on the PWR cores management. The five first papers propose general and economic information on the PWR and also the fast neutron reactors chains in the electric power market: statistics on the electric power industry, nuclear plant unit management, the ITER project and the future of the thermonuclear fusion, the treasurer's and chairman's reports. A second part offers more technical papers concerning the PWR cores management: performance and optimization, in service load planning, the cores management in the other countries, impacts on the research and development programs. (A.L.B.)

  17. Nonlinear seismic analysis of a graphite reactor core

    International Nuclear Information System (INIS)

    Laframboise, W.L.; Desmond, T.P.

    1988-01-01

    Design and construction of the Department of Energy's N-Reactor located in Richland, Washington was begun in the late 1950s and completed in the early 1960s. Since then, the reactor core's structural integrity has been under review and is considered by some to be a possible safety concern. The reactor core is moderated by graphite. The safety concern stems from the degradation of the graphite due to the effects of long-term irradiation. To assess the safety of the reactor core when subjected to seismic loads, a dynamic time-history structural analysis was performed. The graphite core consists of 89 layers of numerous graphite blocks which are assembled in a 'lincoln-log' lattice. This assembly permits venting of steam in the event of a pressure tube rupture. However, such a design gives rise to a highly nonlinear structure when subjected to earthquake loads. The structural model accounted for the nonlinear interlayer sliding and for the closure and opening of gaps between the graphite blocks. The model was subjected to simulated earthquake loading, and the time-varying response of selected elements critical to safety were monitored. The analytically predicted responses (displacements and strains) were compared to allowable responses to assess margins of safety. (orig.)

  18. Effects of Two Types of Melatonin-Loaded Nanocapsules with Distinct Supramolecular Structures: Polymeric (NC) and Lipid-Core Nanocapsules (LNC) on Bovine Embryo Culture Model.

    Science.gov (United States)

    Komninou, Eliza Rossi; Remião, Mariana Härter; Lucas, Caroline Gomes; Domingues, William Borges; Basso, Andrea Cristina; Jornada, Denise Soledade; Deschamps, João Carlos; Beck, Ruy Carlos Ruver; Pohlmann, Adriana Raffin; Bordignon, Vilceu; Seixas, Fabiana Kömmling; Campos, Vinicius Farias; Guterres, Silvia Stanisçuaski; Collares, Tiago

    2016-01-01

    Melatonin has been used as a supplement in culture medium to improve the efficiency of in vitro produced mammalian embryos. Through its ability to scavenge toxic oxygen derivatives and regulate cellular mRNA levels for antioxidant enzymes, this molecule has been shown to play a protective role against damage by free radicals, to which in vitro cultured embryos are exposed during early development. In vivo and in vitro studies have been performed showing that the use of nanocapsules as active substances carriers increases stability, bioavailability and biodistribution of drugs, such as melatonin, to the cells and tissues, improving their antioxidant properties. These properties can be modulated through the manipulation of formula composition, especially in relation to the supramolecular structures of the nanocapsule core and the surface area that greatly influences drug release mechanisms in biological environments. This study aimed to evaluate the effects of two types of melatonin-loaded nanocapsules with distinct supramolecular structures, polymeric (NC) and lipid-core (LNC) nanocapsules, on in vitro cultured bovine embryos. Embryonic development, apoptosis, reactive oxygen species (ROS) production, and mRNA levels of genes involved in cell apoptosis, ROS and cell pluripotency were evaluated after supplementation of culture medium with non-encapsulated melatonin (Mel), melatonin-loaded polymeric nanocapsules (Mel-NC) and melatonin-loaded lipid-core nanocapsules (Mel-LNC) at 10-6, 10-9, and 10-12 M drug concentrations. The highest hatching rate was observed in embryos treated with 10-9 M Mel-LNC. When compared to Mel and Mel-NC treatments at the same concentration (10-9 M), Mel-LNC increased embryo cell number, decreased cell apoptosis and ROS levels, down-regulated mRNA levels of BAX, CASP3, and SHC1 genes, and up-regulated mRNA levels of CAT and SOD2 genes. These findings indicate that nanoencapsulation with LNC increases the protective effects of melatonin

  19. Effects of Two Types of Melatonin-Loaded Nanocapsules with Distinct Supramolecular Structures: Polymeric (NC and Lipid-Core Nanocapsules (LNC on Bovine Embryo Culture Model.

    Directory of Open Access Journals (Sweden)

    Eliza Rossi Komninou

    Full Text Available Melatonin has been used as a supplement in culture medium to improve the efficiency of in vitro produced mammalian embryos. Through its ability to scavenge toxic oxygen derivatives and regulate cellular mRNA levels for antioxidant enzymes, this molecule has been shown to play a protective role against damage by free radicals, to which in vitro cultured embryos are exposed during early development. In vivo and in vitro studies have been performed showing that the use of nanocapsules as active substances carriers increases stability, bioavailability and biodistribution of drugs, such as melatonin, to the cells and tissues, improving their antioxidant properties. These properties can be modulated through the manipulation of formula composition, especially in relation to the supramolecular structures of the nanocapsule core and the surface area that greatly influences drug release mechanisms in biological environments. This study aimed to evaluate the effects of two types of melatonin-loaded nanocapsules with distinct supramolecular structures, polymeric (NC and lipid-core (LNC nanocapsules, on in vitro cultured bovine embryos. Embryonic development, apoptosis, reactive oxygen species (ROS production, and mRNA levels of genes involved in cell apoptosis, ROS and cell pluripotency were evaluated after supplementation of culture medium with non-encapsulated melatonin (Mel, melatonin-loaded polymeric nanocapsules (Mel-NC and melatonin-loaded lipid-core nanocapsules (Mel-LNC at 10-6, 10-9, and 10-12 M drug concentrations. The highest hatching rate was observed in embryos treated with 10-9 M Mel-LNC. When compared to Mel and Mel-NC treatments at the same concentration (10-9 M, Mel-LNC increased embryo cell number, decreased cell apoptosis and ROS levels, down-regulated mRNA levels of BAX, CASP3, and SHC1 genes, and up-regulated mRNA levels of CAT and SOD2 genes. These findings indicate that nanoencapsulation with LNC increases the protective effects of

  20. Motion of a cylinder adjacent to a free-surface: flow patterns and loading

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Q.; Lin, J.C. [Lehigh Univ., Bethlehem, PA (United States). Dept. of Mechanical Engineering and Mechanics; Unal, M.F.; Rockwell, D.

    2000-06-01

    The flow structure and loading due to combined translatory and sinusoidal motion of a cylinder adjacent to a free-surface are characterized using a cinema technique of high-image-density particle image velocimetry and simultaneous force measurements. The instantaneous patterns of vorticity and streamline topology are interpreted as a function of degree of submergence beneath the free-surface. The relative magnitudes of the peak vorticity and the circulation of vortices formed from the upper and lower surfaces of the cylinder, as well as vortex formation from the free-surface, are remarkably affected by the nominal submergence. The corresponding streamline topology, interpreted in terms of foci, saddle points, and multiple separation and reattachment points also exhibit substantial changes with submergence. All of these features affect the instantaneous loading of the cylinder. Calculation of instantaneous moments of vorticity and the incremental changes in these moments during the cylinder motion allow identification of those vortices that contribute most substantially to the instantaneous lift and drag. Furthermore, the calculated moments are in general accord with the time integrals of the measured lift and drag acting on the cylinder for sufficiently large submergence. (orig.)

  1. [New theory of holistic integrative physiology and medicine. III: New insight of neurohumoral mechanism and pattern of control and regulation for core axe of respiration, circulation and metabolism].

    Science.gov (United States)

    Sun, Xing-guo

    2015-07-01

    Systemic mechanism of neurohumoral control and regulation for human is limited. We used the new theory of holistic integrative physiology and medicine to approach the mechanism and pattern of neurohumoral control and regulation for life. As the core of human life, there are two core axes of functions. The first one is the common goal of respiration and circulation to transport oxygen and carbon dioxide for cells, and the second one is the goal of gastrointestinal tract and circulation to transport energy material and metabolic product for cells. These two core axes maintain the metabolism. The neurohumoral regulation is holistically integrated and unified for all functions in human body. We simplified explain the mechanism of neurohumoral control and regulation life (respiration and circulation) as the example pattern of sound system. Based upon integrated regulation of life, we described the neurohumoral pattern to control respiration and circulation.

  2. BNL program in support of LWR degraded-core accident analysis

    International Nuclear Information System (INIS)

    Ginsberg, T.; Greene, G.A.

    1982-01-01

    Two major sources of loading on dry watr reactor containments are steam generatin from core debris water thermal interactions and molten core-concrete interactions. Experiments are in progress at BNL in support of analytical model development related to aspects of the above containment loading mechanisms. The work supports development and evaluation of the CORCON (Muir, 1981) and MARCH (Wooton, 1980) computer codes. Progress in the two programs is described in this paper. 8 figures

  3. The Accident Analysis Due to Reactivity Insertion of RSG GAS 3.55 g U/cc Silicide Core

    International Nuclear Information System (INIS)

    Endiah Puji-Hastuti; Surbakti, Tukiran

    2004-01-01

    The fuels of RSG-GAS reactor was changed from uranium oxide with 250 g U of loading or 2.96 g U/cc of fuel loading to uranium silicide with the same loading. The silicide fuels can be used in higher density, staying longer in the reactor core and hence having a longer cycle length. The silicide fuel in RSG-GAS core was made up in step-wise by using mixed up core Firstly, it was used silicide fuel with 250 g U of loading and then, silicide fuel with 300 g U of loading (3.55 g U/cc of fuel loading). In every step-wise of fuel loading, it must be analyzed its safety margin. In this occasion, the reactivity accident of RSG-GAS core with 300 g U of silicide fuel loading is analyzed. The calculation was done using EUREKA-2/RR code available at P2TRR. The calculation was done by reactivity insertion at start up and power rangers. The worst case accident is transient due to control rod with drawl failure at start up by means of lowest initial power (0.1 W), either in power range. From all cases which have been done, the results of analysis showed that there is no anomaly and safety margin break at RSG-GAS core with 300 g U silicide fuel loading. (author)

  4. Vibrational characterization of hexagonal duct core assemblies under various support conditions

    International Nuclear Information System (INIS)

    Bartholf, L.W.; Julyk, L.J.; Ryan, J.A.

    1989-03-01

    Analysis of the dynamic response of advanced Liquid Metal Reactor (LMR) core internals to seismic excitation requires a significant number of simplifying assumptions and idealizations to economically meet the constraints of present-day computer limitations. Fluid coupling and nonlinearities associated with inter-assembly lateral support stiffness and clearances of a large cluster of core internal assemblies are some of the factors that complicate the analytical procedure (Moran, 1976). Well defined test data were needed to quantify these and other uncertainties associated with the use of analytical or numerical computer codes used in the seismic design and analysis of reactor cores. The purpose of the present experimental program was to supplement existing data, such as reported in (Sasaki and Muto, 1983), by developing vibrational characteristics of core assemblies over a range of parameters relative to LMR conceptual designs. The parameters selected for this program were variations in number and location of restraints, restraint-pad to duct-load-pad clearances, and input forcing frequency and g-level. Feature tests were conducted to characterize load pad stiffness and coefficient of restitution, and to calibrate load pads to measure inter-assembly across-flat impact loads. Simulated full-size LMR hexagonal duct core assemblies were used in vibration tests. A single assembly and a row of five assemblies were tested in air to establish modal characteristics and forced response behavior. 2 refs., 7 figs., 1 tab

  5. Transjugular Core Liver Biopsy with a 19-Gauge Spring-Loaded Cutting Needle

    International Nuclear Information System (INIS)

    Choh, Jeffery; Dolmatch, Bart; Safadi, Rami; Long, Phil; Geisinger, Michael; Lammert, Gary; Dempsey, James

    1998-01-01

    One hundred and five sequential transjugular core liver biopsies (TJLBx) were performed in 101 patients with coagulopathy and/or ascites using the 19-gauge Quick-Core Biopsy (QCB) needle. Two-hundred and seventy-three cores were obtained in 295 passes (92.5%). One-hundred and two of the 105 procedures (97.1%) led to a histopathologic diagnosis. One of the three nondiagnostic biopsies was done because of severe autolysis of the liver. There was one subcapsular hematoma, one hepatic arteriovenous fistula, and one liver capsular puncture. Two minor neck hematomas occurred. One death was reported (unrelated to the procedure). QCB needle TJLBx is an effective and relatively safe way to obtain core liver samples

  6. Process and equipment for monitoring flux distribution in a nuclear reactor outside the core

    International Nuclear Information System (INIS)

    Graham, K.F.; Gopal, R.

    1977-01-01

    This concerns the monitoring system for axial flux distribution during the whole load operating range lying outside the core of, for example, a PWR. Flux distribution cards can be produced continuously. The core is divided into at least three sections, which are formed by dividing it at right angles to the longitudinal axis, and the flux is measured outside the core using adjacent detectors. Their output signals are calibrated by amplifiers so that the load distribution in the associated sections is reproduced. A summation of the calibrated output signals and the formation of a mean load signal takes place in summing stages. For monitoring, this is compared with a value which corresponds to the maximum permissible load setting. Apart from this the position of the control rods in the core can be taken into account by multiplication of the mean load signals by suitable peak factors. The distribution of monitoring positions or the position of the detectors can be progressive or symmetrical along the axis. (DG) 891 HP [de

  7. Investigation of the use of thorium in LWRs for improving reactor core performance

    International Nuclear Information System (INIS)

    Lau, Cheuk Wah

    2012-01-01

    Thorium is a fertile material and most of the past research has focused on breeding thorium into fissile material to achieve a more sustainable use of nuclear power. However, the focus in this report is on using thorium to improve reactor core performance. The improvement of reactor core performance is achieved by increasing the thermal margins by homogeneously distributing thorium in the fuel pellets. A proposed uranium-thorium-based fuel assembly is simulated for the Swedish Ringhals-3 PWR core in a realistic demonstration. In order to fully grasp the benefits and drawbacks of the newly proposed uranium-thorium-based fuel, a reload safety evaluation has been performed. For a real core, the Swedish Radiation Safety Authority would require an identical evaluation method to ensure that safety criteria are met during the whole cycle. In this report, only a few key safety parameters, such as isothermal- and Doppler-temperature coefficients of reactivity, pin peak power, boron worth, shutdown margins, and core average beta-effective are presented. The calculations were performed by the two-dimensional transport code CASMO-4E, and the two group three dimensional nodal code SIMULATE-3K from Studsvik Scandpower. The results showed that the uranium-thorium-based fuel assembly improves the thermal margins, both in the pin peak power and the local power (Fq). The improved thermal margins would allow more flexible core loading patterns with less neutron leakage, and could be used in power uprated cores to offer better safety margins

  8. Investigation of the use of thorium in LWRs for improving reactor core performance

    Energy Technology Data Exchange (ETDEWEB)

    Lau, Cheuk Wah

    2012-07-01

    Thorium is a fertile material and most of the past research has focused on breeding thorium into fissile material to achieve a more sustainable use of nuclear power. However, the focus in this report is on using thorium to improve reactor core performance. The improvement of reactor core performance is achieved by increasing the thermal margins by homogeneously distributing thorium in the fuel pellets. A proposed uranium-thorium-based fuel assembly is simulated for the Swedish Ringhals-3 PWR core in a realistic demonstration. In order to fully grasp the benefits and drawbacks of the newly proposed uranium-thorium-based fuel, a reload safety evaluation has been performed. For a real core, the Swedish Radiation Safety Authority would require an identical evaluation method to ensure that safety criteria are met during the whole cycle. In this report, only a few key safety parameters, such as isothermal- and Doppler-temperature coefficients of reactivity, pin peak power, boron worth, shutdown margins, and core average beta-effective are presented. The calculations were performed by the two-dimensional transport code CASMO-4E, and the two group three dimensional nodal code SIMULATE-3K from Studsvik Scandpower. The results showed that the uranium-thorium-based fuel assembly improves the thermal margins, both in the pin peak power and the local power (Fq). The improved thermal margins would allow more flexible core loading patterns with less neutron leakage, and could be used in power uprated cores to offer better safety margins.

  9. Effect of varying geometrical parameters of trapezoidal corrugated-core sandwich structure

    Directory of Open Access Journals (Sweden)

    Zaid N.Z.M.

    2017-01-01

    Full Text Available Sandwich structure is an attractive alternative that increasingly used in the transportation and aerospace industry. Corrugated-core with trapezoidal shape allows enhancing the damage resistance to the sandwich structure, but on the other hand, it changes the structural response of the sandwich structure. The aim of this paper is to study the effect of varying geometrical parameters of trapezoidal corrugated-core sandwich structure under compression loading. The corrugated-core specimen was fabricated using press technique, following the shape of trapezoidal shape. Two different materials were used in the study, glass fibre reinforced plastic (GFRP and carbon fibre reinforced plastic (CFRP. The result shows that the mechanical properties of the core in compression loading are sensitive to the variation of a number of unit cells and the core thickness.

  10. Static analysis of material testing reactor cores:critical core calculations

    International Nuclear Information System (INIS)

    Nawaz, A. A.; Khan, R. F. H.; Ahmad, N.

    1999-01-01

    A methodology has been described to study the effect of number of fuel plates per fuel element on critical cores of Material Testing Reactors (MTR). When the number of fuel plates are varied in a fuel element by keeping the fuel loading per fuel element constant, the fuel density in the fuel plates varies. Due to this variation, the water channel width needs to be recalculated. For a given number of fuel plates, water channel width was determined by optimizing k i nfinity using a transport theory lattice code WIMS-D/4. The dimensions of fuel element and control fuel element were determined using this optimized water channel width. For the calculated dimensions, the critical cores were determined for the given number of fuel plates per fuel element by using three dimensional diffusion theory code CITATION. The optimization of water channel width gives rise to a channel width of 2.1 mm when the number of fuel plates is 23 with 290 g ''2''3''5U fuel loading which is the same as in the case of Pakistan Reactor-1 (PARR-1). Although the decrease in number of fuel element results in an increase in optimal water channel width but the thickness of standard fuel element (SFE) and control fuel element (CFE) decreases and it gives rise to compact critical and equilibrium cores. The criticality studies of PARR-1 are in good agreement with the predictions

  11. Combined Loadings and Cross-Dimensional Loadings Timeliness of Presentation of Financial Statements of Local Government

    Science.gov (United States)

    Muda, I.; Dharsuky, A.; Siregar, H. S.; Sadalia, I.

    2017-03-01

    This study examines the pattern of readiness dimensional accuracy of financial statements of local government in North Sumatra with a routine pattern of two (2) months after the fiscal year ends and patterns of at least 3 (three) months after the fiscal year ends. This type of research is explanatory survey with quantitative methods. The population and the sample used is of local government officials serving local government financial reports. Combined Analysis And Cross-Loadings Loadings are used with statistical tools WarpPLS. The results showed that there was a pattern that varies above dimensional accuracy of the financial statements of local government in North Sumatra.

  12. Whole core neutronics modeling of a TRIGA reactor using integral transport theory

    International Nuclear Information System (INIS)

    Schwinkendorf, K.N.; Toffer, H.

    1990-01-01

    An innovative analysis approach for performing whole core reactor physics calculations for TRIGA reactors has been employed recently at the Westinghouse Hanford Company. A deterministic transport theory model with sufficient geometric complexity to evaluate asymmetric loading patterns was used. Calculations of this complexity have been performed in the past using Monte Carlo simulation, such as the MCNP code. However, the Monte Carlo calculations are more difficult to prepare and require more computer time. On the Hanford Site CRAY XMP-18 computer, the new methods required less than one-third of the central processing unit time per calculation as compared to an MCNP calculation using 100,000 neutron histories

  13. A Case Study of German Language Core Journals for Characterizing Citation Patterns in the Social Sciences

    Directory of Open Access Journals (Sweden)

    Pei-Shan Chi

    2013-12-01

    Full Text Available Publication practices in the social sciences are characterized by the use of heterogeneous publication channels and a stronger national focus (Nederhof, 2006; Hicks & Wang, 2011. At the same time the use of bibliometric indicators in research evaluation promotes journal articles in international peer reviewed journals as the main style of publishing research results. The question emerges to which extent this changes publication practices in these disciplines. In our contribution we address this question and present results of a case study which investigates publication and referencing patterns of core German language journals in sociology and political science. Based on an explorative analysis of reference lists we describe patterns and changes of the parameters of the knowledge base of these journals. The analysis of the results in this study shows that with a total of 67% in the sociology and 76% in the political science the core German journals predominantly refer to non-journal publications. Besides, the share of non-source publications basically remains constant in the time period 2000-2009, and the share of references to source journals is the same in both disciplines. The difference between sociology and political science is: publications in the German language sociology journals have more references to monographs (46% than publications in the German language political science journals (38%, but these political science journals reference to other non-source publications (38% much more than sociology (21%.

  14. A study on Monte Carlo analysis of Pebble-type VHTR core for hydrogen production

    International Nuclear Information System (INIS)

    Kim, Hong Chul

    2005-02-01

    In order to pursue exact the core analysis for VHTR core which will be developed in future, a study on Monte Carol method was carried out. In Korea, pebble and prism type core are under investigation for VHTR core analysis. In this study, pebble-type core was investigated because it was known that it should not only maintain the nuclear fuel integrity but also have the advantage in economical efficiency and safety. The pebble-bed cores of HTR-PROTEUS critical facility in Swiss were selected for the benchmark model. After the detailed MCNP modeling of the whole facility, calculations of nuclear characteristics were performed. The two core configurations, Core 4.3 and Core 5 (reference state no. 3), among the 10 configurations of the HTR-PROTEUS cores were chosen to be analyzed in order to treat different fuel loading pattern and modeled. The former is a random packing core and the latter deterministic packing core. Based on the experimental data and the benchmark result of other research groups for the two different cores, some nuclear characteristics were calculated. Firstly, keff was calculated for these cores. The effect for TRIO homogeneity model was investigated. Control rod and shutdown rod worths also were calculated and the sensitivity analysis on cross-section library and reflector thickness was pursued. Lastly, neutron flux profiles were investigated in reflector regions. It is noted that Monte Carlo analysis of pebble-type VHTR core was firstly carried out in Korea. Also, this study should not only provide the basic data for pebble-type VHTR core analysis for hydrogen production but also be utilized as the verified data to validate a computer code for VHTR core analysis which will be developed in future

  15. A seismic analysis of Korean standard PWR fuels under transition core conditions

    International Nuclear Information System (INIS)

    Kim, Hyeong Koo; Park, Nam Kyu; Jang, Young Ki; Kim, Jae Ik; Kim, Kyu Tae

    2005-01-01

    The PLUS7 fuel is developed to achieve higher thermal performance, burnup and more safety margin than the conventional fuel used in the Korean Standard Nuclear Plants (KSNPs) and to sustain structural integrity under increased seismic requirement in Korea. In this study, a series of seismic analysis have been performed in order to evaluate the structural integrity of fuel assemblies associated with seismic loads in the KSNPs under transition core conditions replacing the Guardian fuel, which is a resident fuel in the KSNP reactors, with the PLUS7 fuel. For the analysis, transition core seismic models have been developed, based on the possible fuel loading patterns. And the maximum impact forces on the spacer grid and various stresses acting on the fuel components have been evaluated and compared with the through-grid strength of spacer grids and the stress criteria specified in the ASME code for each fuel component, respectively. Then three noticeable parameters regarding as important parameters governing fuel assembly dynamic behavior are evaluated to clarify their effects on the fuel impact and stress response. As a result of the study, it has been confirmed that both the PLUS7 and the Guardian fuel sustain their structural integrity under the transition core condition. And when the damping ratio is constant, increasing the natural frequency of fuel assembly results in a decrease in impact force. The fuel assembly flexural stiffness has an effect increasing the stress of fuel assembly, but not the impact force. And the spacer grid stiffness is directly related with the impact force response. (author)

  16. Development of an in-core fuel management tool for boiling water reactors

    International Nuclear Information System (INIS)

    Gilli, Luca; Wakker, Pieter H.; Elder, Brian R.

    2017-01-01

    The in-core fuel management of a nuclear reactor is a challenging task due to the virtually infinite number of loading patterns one could theoretically adopt. The ROSA (Reloading Optimization by Simulated Annealing) code is an optimization tool that has been successfully used in the last two decades to facilitate the core design of several Pressurized Water Reactors (PWRs). It is designed to perform a stochastic search for an optimal Loading Pattern (LP) using a simulated annealing algorithm. This corresponds to performing a depletion calculation for each one of the hundreds of thousands of unique LPs generated during the stochastic search. Therefore, speed is one of the most important requirements that the solvers used by the depletion tool must fulfill. ROSA's depletion analysis tool makes use of a particularly fast nodal method (known as the kernel method) for the evaluation of the power distribution associated with a particular LP. One of the strongest assumptions behind the kernel method is that the neutron migration length does not change considerably between the point where a neutron is generated and the point where the same neutron is absorbed. Although strong, this assumption is quite compatible with the neutronic characteristics of PWRs cores. In this paper we give an overview of the work done in order to develop a version of ROSA capable of performing the core design of Boiling Water Reactors (BWRs). We focus the discussion on the development of the depletion analysis tool by outlining the modifications of the kernel methods implemented in order to make the solver accurate for BWR cores. An improvement of the definition of the transport kernel is necessary to take the strong anisotropies characterizing the neutronic problem into account. These anisotropies arise due to the presence of strong changes in the moderator density and due to the presence of control blades. Furthermore, we are going to discuss how the boundary conditions are adopted by the

  17. ORIGEN2.1 Cycle Specific Calculation of Krsko Nuclear Power Plant Decay Heat and Core Inventory

    International Nuclear Information System (INIS)

    Vukovic, J.; Grgic, D.; Konjarek, D.

    2010-01-01

    This paper presents ORIGEN2.1 computer code calculation of Krsko Nuclear Power Plant core for Cycle 24. The isotopic inventory, core activity and decay heat are calculated in one run for the entire core using explicit depletion and decay of each fuel assembly. Separate pre-ori application which was developed is utilized to prepare corresponding ORIGEN2.1 inputs. This application uses information on core loading pattern to determine fuel assembly specific depletion history using 3D burnup which is obtained from related PARCS computer code calculation. That way both detailed single assembly calculations as well as whole core inventory calculations are possible. Because of the immense output of the ORIGEN2.1, another application called post-ori is used to retrieve and plot any calculated property on the basis of nuclide, element, summary isotope or group of elements for activation products, actinides and fission products segments. As one additional possibility, with the post-ori application it is able to calculate radiotoxicity from calculated ORIGEN2.1 inventory. The results which are obtained using the calculation model of ORIGEN2.1 computer code are successfully compared against corresponding ORIGEN-S computer code results.(author).

  18. The use of Electronic Speckle Pattern Interferometry (ESPI) to determine the displacements in thin adhesive layers under increasing loads (Posterpresentatie)

    NARCIS (Netherlands)

    Botter, H.; Wijen, H.L.M.; Berg, A. van den; Soetens, F.; Straalen, IJ.J. van; Vlot, A.

    2001-01-01

    Recent developments in hardware and software have allowed traditional speckle pattern. interferom.etry using photographic film to be replaced by digital video CCD cameras and sophisticated analysing software. Real-time in-situ displacement measurement of specimens under static or cyclic loads is now

  19. Radiation pattern of open ended waveguide in air core surrounded by annular plasma column

    International Nuclear Information System (INIS)

    Sharma, D.R.; Verma, J.S.

    1977-01-01

    Radiation pattern of open ended waveguide excited in circular symmetric mode (TM 01 ) in an air core having central conductor and surrounded by an annular plasma column is studied. The field distribution at the open end of the waveguide is considered to be equivalent to the vector sum of magnetic current rings of various radii, ranging from the outer radius of the inner conductor to the inner radius of the outer conductor of the waveguide at the open end. The radiation field is obtained as a vector sum of field components due to individual rings of current. Such a configuration gives rise to multiple narrow radiation beams away from the critical angle. (author)

  20. Assessing and Reducing Miscellaneous Electric Loads (MELs) in Lodging

    Energy Technology Data Exchange (ETDEWEB)

    Rauch, Emily M.

    2011-09-01

    Miscellaneous electric loads (MELs) are the loads outside of a building's core functions of heating, ventilating, air conditioning, lighting, and water heating. This report reviews methods to reduce MELs in lodging.

  1. Future residential loads profiles : scenario-based analysis of high penetration of heavy loads and distributed generation

    NARCIS (Netherlands)

    Asare-Bediako, B.; Kling, W.L.; Ribeiro, P.F.

    2014-01-01

    Electric load profiles are useful for accurate load forecasting, network planning and optimal generation capacity. They represent electricity demand patterns and are to a large extent predictable. However, new and heavier loads (heat pumps and electric vehicles), distributed generation, and home

  2. Improving the refueling cycle of a WWER-1000 using cuckoo search method and thermal-neutronic coupling of PARCS v2.7, COBRA-EN and WIMSD-5B codes

    Energy Technology Data Exchange (ETDEWEB)

    Yarizadeh-Beneh, M.; Mazaheri-Beni, H.; Poursalehi, N., E-mail: n_poursalehi@sbu.ac.ir

    2016-12-15

    Highlights: • The cuckoo search algorithm is applied to the loading pattern optimization of a nuclear reactor core. • Calculations during the cycle show a good agreement between results and reference for the original LP. • Results indicate the efficient performance of cuckoo search approach coupled with thermal-neutronic solvers. • Neutronic parameters of proposed core pattern are improved relative to original core pattern. - Abstract: The fuel loading pattern optimization is an important process in the refueling design of a nuclear reactor core. Also the analysis of reactor core performance during the operation cycle can be a significant step in the core loading pattern optimization (LPO). In this work, for the first time, a new method i.e. cuckoo search algorithm (CS) has been applied to the fuel loading pattern design of Bushehr WWER-1000 core. In this regard, two objectives have been chosen for finding the best configuration including the improvement of operation cycle length associated with flattening the radial power distribution of fuel assemblies. The core pattern optimization has been performed by coupling the CS algorithm to thermal-neutronic codes including PARCS v2.7, COBRA-EN and WIMSD-5B for earning desired parameters along the operation cycle. The calculations have been done for the beginning of cycle (BOC) to the end of cycle (EOC) states. According to numerical results, the longer operation cycle for the semi-optimized loading pattern has been achieved along with less power peaking factor (PPF) in comparison to the original core pattern of Bushehr WWER-1000. Gained results confirm the efficient and suitable performance of the developed program and also the introduced CS method in the LPO of a nuclear WWER type.

  3. Preliminary considerations on the startup phase for the ASTRID core

    International Nuclear Information System (INIS)

    Mignot, G.

    2015-01-01

    This paper presents preliminary considerations on the startup phase for the ASTRID core, as well as an overview of the different steps before reaching the optimised equilibrium core. The start-up phase is assumed to cover the period between loading the dummy core into the reactor (for commissioning tests) and achieving the optimised equilibrium core. Four main stages are considered: a first stage of start-up tests before fuel core loading, a second stage related to zero power and power ramp-up tests, a third stage corresponding to the transition from the first core to the equilibrium contractual core, and the last stage to reach the optimised performance for the equilibrium core. In the two last stages, a sub-assembly surveillance plan based on post-irradiation examinations is taken into account. As this work is in its preliminary stages, the first scenarios shown for the start-up phase must not be considered as the ASTRID reference scenarios. The scenarios strongly depend on the assumptions considered in the analysis, whereas those discussed in this paper aim at outlining the content and the duration of the starting phases for the ASTRID core, which will be useful in subsequently assessing the core sub-assembly fabrication needs. Assumptions for the start-up phase will be updated in accordance with progress on the ASTRID core design development and core qualification programme. (author)

  4. Design studies for the Mark-III core of experimental multi-purpose VHTR

    International Nuclear Information System (INIS)

    Yasuno, Takehiko; Miyamoto, Yoshiaki; Mitake, Susumu; Shindo, Ryuiti; Arai, Taketoshi

    1979-08-01

    The Mark-III core in the first conceptual design made in 1975 is a fundamental core for VHTR. Subsequently, further design studies were made fuel loading scheme and control rod withdrawal sequence for the core to increase its safety margin (shutdown margin, etc.) and operational margin (minimum Reynolds number, maximum fuel temperature, etc.). It was shown that the Mark-III should exhibit the performance expected of VHTR, unless changes are made in the preconditions for its nuclear, thermal-hydraulic design. Also, the needs as below were indicated: (1) reasonable core design criteria and guidelines, (2) fuel-loading-scheme requirements in fuel management, fuel misloading and reactor operation, (3) confirmation on precision of the core design method and its further refinement. (author)

  5. Core design experience of WWER-440 reactors when they working on increased power level

    International Nuclear Information System (INIS)

    Adeev, V.; Panov, A.; Melenchuk, I.

    2015-01-01

    The Kola NPP continues commercial operation of 2nd generation fuel (FA-2) and trial operation of 3rd generation fuel (FA-3), which has a number of design features providing the best operational characteristics. This report gives the results of VVER-440 core operation with FA-2 and FA-3 with enrichment increased up to 4.87%, and at the power level uprated to 107% of nominal power level. Brief analysis of obtained data is carried out. Peculiarities and techniques of developing loading patterns with new types of nuclear fuel for operation at the uprated power level are reviewed. (authors)

  6. The adequacy of methods used for the approval of high burnup core loading

    International Nuclear Information System (INIS)

    Sonnenburg, H.G.

    2002-01-01

    New fuel assembly designs and new core loading strategies are foreseen by most utilities, optimising the use of nuclear fuel in nuclear power plants. Increasing the burn-up to high values above 50 MWd/kg affects the fuel and cladding conditions, which could have safety relevant consequences. It is the task of the safety authorities to assess the impact of these changes with respect to compliance with safety regulations. Usually this assessment is based on code analyses which contain models developed at a time when the burn-up was significantly lower. Because the high burn-up is accompanied with the development of new phenomena like the rim effect on fuel pellets, the codes' models need to be revised for the representation of these new phenomena. The objective of this paper is to present a review of the knowledge base of the fuel phenomena under high-burn-up conditions as seen from safety aspects. The safety relevant fuel rod phenomena will be discussed. It will further provide an assessment of the limitations of the methodologies so far applied in the context of LOCA and RIA transients. The recently started research activities in Germany to improve the methodologies will be presented. (author)

  7. Concurrent assessments of lower limb loading patterns, mechanical muscle strength and functional performance in ACL-patients - A cross-sectional study

    DEFF Research Database (Denmark)

    Holsgaard-Larsen, Anders; Jensen, C; Mortensen, N H M

    2014-01-01

    Full recovery in muscle strength and functional performance may not be achieved after ACL-injury. Aim: The aim of this study is to investigate loading patterns during jumping, muscle function and functional performance in ACL-reconstructed patients and to investigate the origin of between...

  8. Design of full MOX core in ABWR

    International Nuclear Information System (INIS)

    Kinoshita, Y.; Hirose, T.; Sasagawa, M.; Sakuma, T

    1999-01-01

    A Full MOX-ABWR, loaded with mixed-oxide (MOX) fuels of up to 100% of the core, is planned. Increased MOX fuel utilization will result in greater savings of uranium. Studies on the fuel rod thermal-mechanical design, the core design and the safety evaluation have been made, and the results are summarized in this paper. To sum it all up, the safety of the Full MOX-ABWR has been confirmed through design evaluations adequately considering the MOX fuel and core characteristics. (author)

  9. A nuclear heuristic for application to metaheuristics in-core fuel management optimization

    Energy Technology Data Exchange (ETDEWEB)

    Meneses, Anderson Alvarenga de Moura, E-mail: ameneses@lmp.ufrj.b [COPPE/Federal University of Rio de Janeiro, RJ (Brazil). Nuclear Engineering Program; Dalle Molle Institute for Artificial Intelligence (IDSIA), Manno-Lugano, TI (Switzerland); Gambardella, Luca Maria, E-mail: luca@idsia.c [Dalle Molle Institute for Artificial Intelligence (IDSIA), Manno-Lugano, TI (Switzerland); Schirru, Roberto, E-mail: schirru@lmp.ufrj.b [COPPE/Federal University of Rio de Janeiro, RJ (Brazil). Nuclear Engineering Program

    2009-07-01

    The In-Core Fuel Management Optimization (ICFMO) is a well-known problem of nuclear engineering whose features are complexity, high number of feasible solutions, and a complex evaluation process with high computational cost, thus it is prohibitive to have a great number of evaluations during an optimization process. Heuristics are criteria or principles for deciding which among several alternative courses of action are more effective with respect to some goal. In this paper, we propose a new approach for the use of relational heuristics for the search in the ICFMO. The Heuristic is based on the reactivity of the fuel assemblies and their position into the reactor core. It was applied to random search, resulting in less computational effort concerning the number of evaluations of loading patterns during the search. The experiments demonstrate that it is possible to achieve results comparable to results in the literature, for future application to metaheuristics in the ICFMO. (author)

  10. A nuclear heuristic for application to metaheuristics in-core fuel management optimization

    International Nuclear Information System (INIS)

    Meneses, Anderson Alvarenga de Moura; Gambardella, Luca Maria; Schirru, Roberto

    2009-01-01

    The In-Core Fuel Management Optimization (ICFMO) is a well-known problem of nuclear engineering whose features are complexity, high number of feasible solutions, and a complex evaluation process with high computational cost, thus it is prohibitive to have a great number of evaluations during an optimization process. Heuristics are criteria or principles for deciding which among several alternative courses of action are more effective with respect to some goal. In this paper, we propose a new approach for the use of relational heuristics for the search in the ICFMO. The Heuristic is based on the reactivity of the fuel assemblies and their position into the reactor core. It was applied to random search, resulting in less computational effort concerning the number of evaluations of loading patterns during the search. The experiments demonstrate that it is possible to achieve results comparable to results in the literature, for future application to metaheuristics in the ICFMO. (author)

  11. Face/core mixed mode debond fracture toughness characterization using the modified TSD test method

    DEFF Research Database (Denmark)

    Berggreen, Christian; Quispitupa, Amilcar; Costache, Andrei

    2014-01-01

    The modified tilted sandwich debond (TSD) test method is used to examine face/core debond fracture toughness of sandwich specimens with glass/polyester face sheets and PVC H45 and H100 foam cores over a large range of mode-mixities. The modification was achieved by reinforcing the loaded face sheet....... The fracture process was inspected visually during and after testing. For specimens with H45 core the crack propagated in the core. For specimens with an H100 core, the crack propagated between the resin-rich layer and the face sheet. © The Author(s) 2013 Reprints and permissions: sagepub...... with a steel bar, and fracture testing of the test specimens was conducted over a range of tilt angles. The fracture toughness exhibited mode-mixity phase angle dependence, especially for mode II dominated loadings; although, the fracture toughness remained quite constant for mode I dominated crack loadings...

  12. The duck hepatitis B virus polymerase and core proteins accumulate in different patterns from their common mRNA

    International Nuclear Information System (INIS)

    Yao Ermei; Schaller, Heinz; Tavis, John E.

    2003-01-01

    Hepadnaviral reverse transcription occurs in capsids in which the core (C) protein surrounds the reverse transcriptase (P) and pregenomic RNA (pgRNA). We analyzed the accumulation patterns of duck hepatitis B virus P, C, and pgRNA in transfected LMH cells, infected primary duck hepatocytes (PDH), and infected duck liver. In all three systems, P accumulated over time in a different pattern compared with C, despite translation of both proteins from the pgRNA. Although the accumulation patterns of the proteins varied between the systems, in each case P became detectable at the same time or earlier than C and the ratio of P relative to C dropped with time. These accumulation patterns were consistent with the translation rates and half-lives of P and C. Comparing the translation rates of P and C with the pgRNA level over time revealed that translation of P and C was negatively regulated in LMH cells. These data provide a framework for comparing replication studies performed in LMH cells, PDHs and ducks

  13. Advantages of iron core in a tokamak

    International Nuclear Information System (INIS)

    Bettis, E.S.; Ballou, J.K.; Becraft, W.R.; Peng, Y.K.M.; Watts, H.L.

    1977-01-01

    A quantitative comparison of the iron core vs air core concepts was carried out on a preliminary basis by using a representative tokamak reactor design with the following self-consistent reference parameters. In the area of plasma engineering, poloidal field and MHD equilibrium considerations with an unsaturated iron core is discussed. The question of proper poloidal field coils to maintain D-shaped plasmas of relatively high anti β (7%) with a saturated iron core is also discussed. Estimates of the required iron core size, volt seconds, magnetic flux and its influence on force loading on the superconducting toroidal field coils are shown. Conceptual designs of the mechanical structure of an iron core device are presented. Favorable impacts on the OH power supply cost and complexity are indicated

  14. A Minimum Shuffle Core Design Strategy for ESBWR

    International Nuclear Information System (INIS)

    Karve, A.A.; Fawcett, R.M.

    2008-01-01

    The Economic Simplified Boiling Water Reactor (ESBWR) is GEH's next evolution of advanced BWR technology. There are 1132 fuel bundles in the core and the thermal power is 4500 MWt. Similar to conventional plants there is an outage after a specified period of operation, when the plant shuts down. During the outage a specified fraction of fuel bundles are discharged from the core, it is loaded with the same fraction of fresh fuel, and fuel is shuffled to obtain an optimum core design that meets the goals for a successful operation of the next cycle. The discharge, load, and the associated shuffles are time-consuming and expensive tasks that impact the overall outage schedule and costs. Therefore, there is an incentive to keep maneuvers to a minimum and to perform them more efficiently. The benefits for a large core, such as the ESBWR with 1132 fuel bundles, are escalated. This study focuses on a core reload design strategy to minimize the total number of shuffles during an outage. A traditional equilibrium cycle is used as a reference basis, which sets the reference number of shuffles. In the minimum shuffle core design however, a set of two equilibrium cycles (N and N+1, referred to as a 'bi- equilibrium' cycle) is envisioned where the fresh fuel of cycle N (that becomes the once-burnt fuel of cycle N+1) ideally does not move in the two cycles. The cost of fuel efficiency is determined for obtaining such a core loading by comparing it to the traditional equilibrium cycle. There are several additional degrees of freedom when designing a bi-equilibrium cycle that could be utilized, and the potential benefits of these flexibilities are assessed. In summary, the feasibility of a minimum shuffle fuel cycle and core design for an ESBWR is studied. The cost of fuel efficiency is assessed in comparison to the traditional design. (authors)

  15. A higher order depletion perturbation theory with application to in-core fuel management optimization

    International Nuclear Information System (INIS)

    Kropaczek, D.J.; Turinsky, P.J.

    1990-01-01

    Perturbation techniques utilized in reactor analysis have recently been applied in the solution of the in-core nuclear fuel management optimization problem. The use of such methods is motivated by the need to evaluate many times over, the core physics characteristics of loading pattern solutions obtained through an optimization process, which is typically iterative. Perturbation theory provides an efficient alternative to the prohibitively expensive, repetitive solutions of the system few-group neutron diffusion equations required in solving the fuel placement problem. A primary concern in the use of such methods is the control of perturbation errors arising during the fuel shuffling process. First-order accurate models inevitably resort to undue restriction of fuel movement during the optimization process to control these errors. Higher order perturbation theory models have the potential to overcome such limitations, which may result in the identification of local versus global optima. An accurate, computationally efficient reactor physics model based on higher order perturbation theory and geared toward the needs of large-scale in-core fuel management optimization is presented in this paper

  16. Research on Shock Responses of Three Types of Honeycomb Cores

    Science.gov (United States)

    Peng, Fei; Yang, Zhiguang; Jiang, Liangliang; Ren, Yanting

    2018-03-01

    The shock responses of three kinds of honeycomb cores have been investigated and analyzed based on explicit dynamics analysis. According to the real geometric configuration and the current main manufacturing methods of aluminum alloy honeycomb cores, the finite element models of honeycomb cores with three different cellular configurations (conventional hexagon honeycomb core, rectangle honeycomb core and auxetic honeycomb core with negative Poisson’s ratio) have been established through FEM parametric modeling method based on Python and Abaqus. In order to highlight the impact response characteristics of the above three honeycomb cores, a 5 mm thick panel with the same mass and material was taken as contrast. The analysis results showed that the peak values of longitudinal acceleration history curves of the three honeycomb cores were lower than those of the aluminum alloy panel in all three reference points under the loading of a longitudinal pulse pressure load with the peak value of 1 MPa and the pulse width of 1 μs. It could be concluded that due to the complex reflection and diffraction of stress wave induced by shock in honeycomb structures, the impact energy was redistributed which led to a decrease in the peak values of the longitudinal acceleration at the measuring points of honeycomb cores relative to the panel.

  17. Nanoengineering of methylene blue loaded silica encapsulated magnetite nanospheres and nanocapsules for photodynamic therapy

    Energy Technology Data Exchange (ETDEWEB)

    Andhariya, Nidhi [Bhavnagar University, Department of Physics (India); Chudasama, Bhupendra, E-mail: bnchudasama@gmail.com [Thapar University, School of Physics and Materials Science (India); Mehta, R. V. [Bhavnagar University, Department of Physics (India); Upadhyay, R. V. [Charotar University of Science and Technology, P.D. Patel Institute of Applied Sciences (India)

    2011-09-15

    Core-shell nanostructures have emerged as an important class of functional materials with potential applications in diverse fields, especially in health sciences. In this article, nanoengineering of novel magnetic colloidal dispersion containing surface modifiable silica with a core of single domain magnetite nanoparticles loaded with photosensitizer (PS) drug 'Methylene blue' (MB) has been described. Magnetite core is produced by the well-established chemical coprecipitation technique and silica shell is formed over it by the modified hydrolysis and condensation of TEOS (tetraethyl orthosilicate). Conditions for reaction kinetics have been established to tailor the core-shell structures in the form of nanospheres and nanocapsules. MB is loaded into the nanostructures by demethylation reaction. The major conclusion drawn from this study is that the synthesis route yields stable, non-aggregated MB loaded superparamagnetic magnetite-silica nanostructures with tailored morphology, tunable loading, and excellent magnetic properties.

  18. An expert system for PWR core operation management

    Energy Technology Data Exchange (ETDEWEB)

    Ida, Toshio; Masuda, Masahiro; Nishioka, Hiromasa

    1988-01-01

    Planning for restartup after planned or unplanned reactor shutdown and load-follow operations is an important task in the core operation management of pressurized water reactors (PWRs). These planning problems have been solved by planning experts using their expertise and the computational prediction of core behavior. Therefore, the quality of the plan and the time consumed in the planning depend heavily on the skillfulness of the planning experts. A knowledge engineering approach has been recently considered as a promising means to solve such complicated planning problems. Many knowledge-based systems have been developed so far, and some of them have already been applied because of their effectiveness. The expert system REPLEX has been developed to aid core management engineers in making a successful plan for the restartup or the load-follow operation of PWRs within a shorter time. It can maintain planning tasks at a high-quality level independent of the skillfulness of core management engineers and enhance the efficiency of management. REPLEX has an explanation function that helps user understanding of plans. It could be a useful took, therefore, for the training of core management engineers.

  19. An expert system for PWR core operation management

    International Nuclear Information System (INIS)

    Ida, Toshio; Masuda, Masahiro; Nishioka, Hiromasa.

    1988-01-01

    Planning for restartup after planned or unplanned reactor shutdown and load-follow operations is an important task in the core operation management of pressurized water reactors (PWRs). These planning problems have been solved by planning experts using their expertise and the computational prediction of core behavior. Therefore, the quality of the plan and the time consumed in the planning depend heavily on the skillfulness of the planning experts. A knowledge engineering approach has been recently considered as a promising means to solve such complicated planning problems. Many knowledge-based systems have been developed so far, and some of them have already been applied because of their effectiveness. The expert system REPLEX has been developed to aid core management engineers in making a successful plan for the restartup or the load-follow operation of PWRs within a shorter time. It can maintain planning tasks at a high-quality level independent of the skillfulness of core management engineers and enhance the efficiency of management. REPLEX has an explanation function that helps user understanding of plans. It could be a useful took, therefore, for the training of core management engineers

  20. Core-shell microparticles for protein sequestration and controlled release of a protein-laden core.

    Science.gov (United States)

    Rinker, Torri E; Philbrick, Brandon D; Temenoff, Johnna S

    2017-07-01

    Development of multifunctional biomaterials that sequester, isolate, and redeliver cell-secreted proteins at a specific timepoint may be required to achieve the level of temporal control needed to more fully regulate tissue regeneration and repair. In response, we fabricated core-shell heparin-poly(ethylene-glycol) (PEG) microparticles (MPs) with a degradable PEG-based shell that can temporally control delivery of protein-laden heparin MPs. Core-shell MPs were fabricated via a re-emulsification technique and the number of heparin MPs per PEG-based shell could be tuned by varying the mass of heparin MPs in the precursor PEG phase. When heparin MPs were loaded with bone morphogenetic protein-2 (BMP-2) and then encapsulated into core-shell MPs, degradable core-shell MPs initiated similar C2C12 cell alkaline phosphatase (ALP) activity as the soluble control, while non-degradable core-shell MPs initiated a significantly lower response (85+19% vs. 9.0+4.8% of the soluble control, respectively). Similarly, when degradable core-shell MPs were formed and then loaded with BMP-2, they induced a ∼7-fold higher C2C12 ALP activity than the soluble control. As C2C12 ALP activity was enhanced by BMP-2, these studies indicated that degradable core-shell MPs were able to deliver a bioactive, BMP-2-laden heparin MP core. Overall, these dynamic core-shell MPs have the potential to sequester, isolate, and then redeliver proteins attached to a heparin core to initiate a cell response, which could be of great benefit to tissue regeneration applications requiring tight temporal control over protein presentation. Tissue repair requires temporally controlled presentation of potent proteins. Recently, biomaterial-mediated binding (sequestration) of cell-secreted proteins has emerged as a strategy to harness the regenerative potential of naturally produced proteins, but this strategy currently only allows immediate amplification and re-delivery of these signals. The multifunctional, dynamic

  1. Load bearing capacities and elastic-plastic behavior of reactor vessel internals

    International Nuclear Information System (INIS)

    Watanabe, Keita; Nagase, Ryuichi

    2017-01-01

    Radial Support Keys (RSKs) are installed at the bottom of Reactor Vessel Internal (RVI) of Pressurized Water Reactor (PWR) and fit into Core Support Lugs of Reactor Pressure Vessel (RPV). This structure provides reactor core horizontal support and transmits the loads between RVI and RPV. RSK is one of the critical parts of RVI from the view point of earthquake-proof safety. In order to assure the structural integrity of Nuclear Reactor in case of massive earthquake, load bearing capacities of RSK are confirmed by static loading tests with reduced-scale mockups. In addition, collapse loads of actual components calculated by Limit Analyses are conservative enough compared to the load bearing capacities confirmed by the test. Thus, the methodology to calculate collapse load by Limit Analysis is applicable to evaluation of structural integrity for RSK. (author)

  2. Reactor core of FBR type reactor

    International Nuclear Information System (INIS)

    Hayashi, Hideyuki; Ichimiya, Masakazu.

    1994-01-01

    A reactor core is a homogeneous reactor core divided into two regions of an inner reactor core region at the center and an outer reactor core region surrounding the outside of the inner reactor core region. In this case, the inner reactor core region has a lower plutonium enrichment degree and less amount of neutron leakage in the radial direction, and the outer reactor core region has higher plutonium enrichment degree and greater amount of neutron leakage in the radial direction. Moderator materials containing hydrogen are added only to the inner reactor core fuels in the inner reactor core region. Pins loaded with the fuels with addition of the moderator materials are inserted at a ratio of from 3 to 10% of the total number of the fuel pins. The moderator materials containing hydrogen comprise zirconium hydride, titanium hydride, or calcium hydride. With such a constitution, fluctuation of the power distribution in the radial direction along with burning is suppressed. In addition, an absolute value of the Doppler coefficient can be increased, and a temperature coefficient of coolants can be reduced. (I.N.)

  3. Impact of Climate Variability and Landscape Patterns on Water Budget and Nutrient Loads in a Peri-urban Watershed: A Coupled Analysis Using Process-based Hydrological Model and Landscape Indices

    Science.gov (United States)

    Li, Chongwei; Zhang, Yajuan; Kharel, Gehendra; Zou, Chris B.

    2018-06-01

    Nutrient discharge into peri-urban streams and reservoirs constitutes a significant pressure on environmental management, but quantitative assessment of non-point source pollution under climate variability in fast changing peri-urban watersheds is challenging. Soil and Water Assessment Tool (SWAT) was used to simulate water budget and nutrient loads for landscape patterns representing a 30-year progression of urbanization in a peri-urban watershed near Tianjin metropolis, China. A suite of landscape pattern indices was related to nitrogen (N) and phosphorous (P) loads under dry and wet climate using CANOCO redundancy analysis. The calibrated SWAT model was adequate to simulate runoff and nutrient loads for this peri-urban watershed, with Nash-Sutcliffe coefficient (NSE) and coefficient of determination ( R 2) > 0.70 and percentage bias (PBIAS) between -7 and +18 for calibration and validation periods. With the progression of urbanization, forest remained the main "sink" landscape while cultivated and urban lands remained the main "source" landscapes with the role of orchard and grassland being uncertain and changing with time. Compared to 1984, the landscape use pattern in 2013 increased nutrient discharge by 10%. Nutrient loads modelled under wet climate were 3-4 times higher than that under dry climate for the same landscape pattern. Results indicate that climate change could impose a far greater impact on runoff and nutrient discharge in a peri-urban watershed than landscape pattern change.

  4. Impact of Climate Variability and Landscape Patterns on Water Budget and Nutrient Loads in a Peri-urban Watershed: A Coupled Analysis Using Process-based Hydrological Model and Landscape Indices.

    Science.gov (United States)

    Li, Chongwei; Zhang, Yajuan; Kharel, Gehendra; Zou, Chris B

    2018-06-01

    Nutrient discharge into peri-urban streams and reservoirs constitutes a significant pressure on environmental management, but quantitative assessment of non-point source pollution under climate variability in fast changing peri-urban watersheds is challenging. Soil and Water Assessment Tool (SWAT) was used to simulate water budget and nutrient loads for landscape patterns representing a 30-year progression of urbanization in a peri-urban watershed near Tianjin metropolis, China. A suite of landscape pattern indices was related to nitrogen (N) and phosphorous (P) loads under dry and wet climate using CANOCO redundancy analysis. The calibrated SWAT model was adequate to simulate runoff and nutrient loads for this peri-urban watershed, with Nash-Sutcliffe coefficient (NSE) and coefficient of determination (R 2 ) > 0.70 and percentage bias (PBIAS) between -7 and +18 for calibration and validation periods. With the progression of urbanization, forest remained the main "sink" landscape while cultivated and urban lands remained the main "source" landscapes with the role of orchard and grassland being uncertain and changing with time. Compared to 1984, the landscape use pattern in 2013 increased nutrient discharge by 10%. Nutrient loads modelled under wet climate were 3-4 times higher than that under dry climate for the same landscape pattern. Results indicate that climate change could impose a far greater impact on runoff and nutrient discharge in a peri-urban watershed than landscape pattern change.

  5. Computer-Aided Test Flow in Core-Based Design

    OpenAIRE

    Zivkovic, V.; Tangelder, R.J.W.T.; Kerkhoff, Hans G.

    2000-01-01

    This paper copes with the test-pattern generation and fault coverage determination in the core based design. The basic core-test strategy that one has to apply in the core-based design is stated in this work. A Computer-Aided Test (CAT) flow is proposed resulting in accurate fault coverage of embedded cores. The CAT now is applied to a few cores within the Philips Core Test Pilot IC project

  6. The max–min ant system and tabu search for pressurized water reactor loading pattern design

    International Nuclear Information System (INIS)

    Lin, Chaung; Chen, Ying-Hsiu

    2014-01-01

    Highlights: • An automatic loading pattern design tool for a pressurized water reactor is developed. • The design method consists of max–min ant system and tabu search. • The heuristic rules are developed to generate the candidates for tabu search. • The initial solution of tabu search is provided by max–min ant system. • The new algorithm shows very satisfactory results compared to the old one. - Abstract: An automatic loading pattern (LP) design tool for a pressurized water reactor is developed. The design procedure consists of two steps: first, a LP is generated using max–min ant system (MMAS) and then tabu search (TS) is adopted to search the satisfactory LP. The MMAS is previously developed and the TS process is newly-developed. The heuristic rules are implemented to generate the candidate LP in TS process. The heuristic rules are comprised of two kinds of action, i.e., a single swap in the location of two fuel assemblies and rotation of fuel assembly. Since developed TS process is a local search algorithm, it is efficient for the minor change of LP. It means that a proper initial LP should be provided by the first step, i.e., by MMAS. The design requirements such as hot channel factor, the hot zero power moderator temperature coefficient, and cycle length are formulated in the objective function. The results show that the developed tool can obtain the satisfactory LP and dramatically reduce the computation time compared with previous tool using ant system alone

  7. Stress analysis of fuel assemblies under seismic load

    International Nuclear Information System (INIS)

    Kiselev, A.; Krutko, E.; Kiselev, I.; Tutnov, A.

    2011-01-01

    One of the important parts of fuel assemblies (FA) safety validation is their strength estimation under the dynamic loads, such as the vibration effects caused by the work of reactor units and the seismic exposure of an earthquake, leading to extreme inertia loads on all elements of the NPP. Taking into account structural features of FA and a very large mass, the exposure of seismic loads can lead to significant deformation of fuel assemblies. It is necessary to assess the magnitude of the force interaction between the FA in case of an earthquake to estimate the strength and performance of fuel assemblies. It is also necessary to compute FA bending forms and maximum values for further RPS control rods inserting time estimation, and for disassembly possibility justification of the core and individual FA after the earthquake. The problem of WWER-1000 core dynamic behavior modeling with TVS-2M fuel assemblies under the seismic loads exposure using the finite element method is described. Each fuel assembly is represented by equivalent rod finite element model. The reactor core is simulated by 163 fuel assemblies in accordance with the reactor core construction. Stiffness characteristics of fuel assemblies are determined on the results of a series of static and dynamic TVS-2M FA field tests. The special algorithm was developed to consider the fuel rod slippage effect during deformation. The special contact elements are introduced into the model of the core to take into account the interaction of fuel assemblies with their neighbors and with core barrel. Solution of the dynamic equilibrium equations system of finite element model is implemented by direct integration using the explicit scheme. Parallel algorithms for numerical integration on multiprocessor computers with graphics processing unit is developed to improve the efficiency of calculations. Values of nodes displacement in finite element model of reactor core as a function of seismic excitation time are obtained

  8. A report on the first loading of ZENITH

    Energy Technology Data Exchange (ETDEWEB)

    Absalom, R M; Barclay, F R; Cameron, I R; Della Loggia, V E; Hage, W; Kinchin, G H; Sanders, J E; Tiren, L I; Wilson, D J [Industrial Power Reactors Division, Atomic Energy Establishment, Winfrith, Dorchester, Dorset (United Kingdom)

    1960-12-15

    The loading to criticality of the first core of the zero energy reactor ZENITH, and the results of the subsequent experimental programme are described. The composition of the reactor core corresponds to graphite: U235 and Th232: U235 atomic ratios of 3843 and 9.51 respectively. (author)

  9. A report on the first loading of ZENITH

    International Nuclear Information System (INIS)

    Absalom, R.M.; Barclay, F.R.; Cameron, I.R.; Della Loggia, V.E.; Hage, W.; Kinchin, G.H.; Sanders, J.E.; Tiren, L.I.; Wilson, D.J.

    1960-12-01

    The loading to criticality of the first core of the zero energy reactor ZENITH, and the results of the subsequent experimental programme are described. The composition of the reactor core corresponds to graphite: U235 and Th232: U235 atomic ratios of 3843 and 9.51 respectively. (author)

  10. Physical events that occur in the reactor core during load changes; Les effets physiques sur le coeur mis en jeu lors des variations de puissance

    Energy Technology Data Exchange (ETDEWEB)

    Paulin, Ph. [Electricite de France (EDF/DPN/UNIE/GECC), 93 - Saint-Denis (France); Golfier, H. [CEA Saclay (DEN-DANS/DM2S/SERMA/LPEC), 91 - Gif-sur-Yvette (France)

    2007-05-15

    The reactor core control aims at mastering 2 important parameters that are relevant for reactor availability and safety. First, the reactivity that sets the power output and secondly, the power map in order to handle hot spots. In PWR-type reactors, physical events such as moderator or fuel temperature changes, xenon concentration, that are important for both parameters, evolve during load changes but also during power plateaus and are dependent on burn-up. In this article temperature effect and xenon poisoning are analysed and their impact are assessed along an irradiation campaign through a core neutronic simulation and data from instrumentation. Xenon oscillations are particularly well illustrated. The counter-reactions of the means used for reactor controlling: soluble boron and control rods, are also analysed. (A.C.)

  11. A novel optimization method, Gravitational Search Algorithm (GSA), for PWR core optimization

    International Nuclear Information System (INIS)

    Mahmoudi, S.M.; Aghaie, M.; Bahonar, M.; Poursalehi, N.

    2016-01-01

    Highlights: • The Gravitational Search Algorithm (GSA) is introduced. • The advantage of GSA is verified in Shekel’s Foxholes. • Reload optimizing in WWER-1000 and WWER-440 cases are performed. • Maximizing K eff , minimizing PPFs and flattening power density is considered. - Abstract: In-core fuel management optimization (ICFMO) is one of the most challenging concepts of nuclear engineering. In recent decades several meta-heuristic algorithms or computational intelligence methods have been expanded to optimize reactor core loading pattern. This paper presents a new method of using Gravitational Search Algorithm (GSA) for in-core fuel management optimization. The GSA is constructed based on the law of gravity and the notion of mass interactions. It uses the theory of Newtonian physics and searcher agents are the collection of masses. In this work, at the first step, GSA method is compared with other meta-heuristic algorithms on Shekel’s Foxholes problem. In the second step for finding the best core, the GSA algorithm has been performed for three PWR test cases including WWER-1000 and WWER-440 reactors. In these cases, Multi objective optimizations with the following goals are considered, increment of multiplication factor (K eff ), decrement of power peaking factor (PPF) and power density flattening. It is notable that for neutronic calculation, PARCS (Purdue Advanced Reactor Core Simulator) code is used. The results demonstrate that GSA algorithm have promising performance and could be proposed for other optimization problems of nuclear engineering field.

  12. Reactor core design aiding system

    International Nuclear Information System (INIS)

    Kanazawa, Nobuhiro; Hamaguchi, Yukio; Nakao, Takashi; Kondo, Yasuhide

    1995-01-01

    A two-dimensional radial power distribution and an axial one-dimensional power distribution are determined based on a distribution of a three-dimensional infinite multiplication factor, to obtain estimated power distribution estimation values. The estimation values are synthesized to obtain estimated three-dimensional power distribution values. In addition, the distribution of a two-dimensional radial multiplication factor and the distribution of an one-dimensional axial multiplication factor are determined based on the three-dimensional power distribution, to obtain estimated values for the multiplication factor distribution. The estimated values are synthesized to form estimated values for the three-dimensional multiplication factor distribution. Further, estimated fuel loading pattern value is determined based on the three-dimensional power distribution or the two-dimensional radial power distribution. Since the processes for determining the estimated values comprise only additive and multiplying operations, processing time can be remarkably saved compared with calculation based on a detailed physical models. Since the estimation is performed on every fuel assemblies, a nervous circuit network not depending on the reactor core system can be constituted. (N.H.)

  13. Self-adaptive global best harmony search algorithm applied to reactor core fuel management optimization

    International Nuclear Information System (INIS)

    Poursalehi, N.; Zolfaghari, A.; Minuchehr, A.; Valavi, K.

    2013-01-01

    Highlights: • SGHS enhanced the convergence rate of LPO using some improvements in comparison to basic HS and GHS. • SGHS optimization algorithm obtained averagely better fitness relative to basic HS and GHS algorithms. • Upshot of the SGHS implementation in the LPO reveals its flexibility, efficiency and reliability. - Abstract: The aim of this work is to apply the new developed optimization algorithm, Self-adaptive Global best Harmony Search (SGHS), for PWRs fuel management optimization. SGHS algorithm has some modifications in comparison with basic Harmony Search (HS) and Global-best Harmony Search (GHS) algorithms such as dynamically change of parameters. For the demonstration of SGHS ability to find an optimal configuration of fuel assemblies, basic Harmony Search (HS) and Global-best Harmony Search (GHS) algorithms also have been developed and investigated. For this purpose, Self-adaptive Global best Harmony Search Nodal Expansion package (SGHSNE) has been developed implementing HS, GHS and SGHS optimization algorithms for the fuel management operation of nuclear reactor cores. This package uses developed average current nodal expansion code which solves the multi group diffusion equation by employment of first and second orders of Nodal Expansion Method (NEM) for two dimensional, hexagonal and rectangular geometries, respectively, by one node per a FA. Loading pattern optimization was performed using SGHSNE package for some test cases to present the SGHS algorithm capability in converging to near optimal loading pattern. Results indicate that the convergence rate and reliability of the SGHS method are quite promising and practically, SGHS improves the quality of loading pattern optimization results relative to HS and GHS algorithms. As a result, it has the potential to be used in the other nuclear engineering optimization problems

  14. Fire resistance of extruded hollow-core slabs

    DEFF Research Database (Denmark)

    Hertz, Kristian Dahl; Giuliani, Luisa; Sørensen, Lars Schiøtt

    2016-01-01

    Prefabricated extruded hollow-core slabs are preferred building components for floor structures in several countries. It is therefore important to be able to document the fire resistance of these slabs proving fulfilment of standard fire resistance requirements of 60- and 120 minutes found in most...... a standard fire test and from a thorough examination of the comprehensive test documentation available on fire exposed hollow-core slabs. Mechanisms for loss of load-bearing capacity are clarified, and evidence of the fire resistance is found. For the first time the mechanisms responsible for loss of load......-bearing capacity are identified and test results and calculation approach are for the first time Applied in accordance with each other for assessment of fire resistance of the structure....

  15. Locoregional deformation pattern of the patellar cartilage after different loading types. High-resolution 3D-MRI volumetry at 3 T in-vivo

    International Nuclear Information System (INIS)

    Horng, Annie; Raya, J.; Klinikum der Ludwig-Maximilians-Universitaet Muenchen, Grosshadern; Zscharn, M.

    2011-01-01

    Purpose: To analyze locoregional deformation patterns indicative of contact areas in patellar cartilage after different loading exercises. Materials and Methods: 7 healthy patellae were examined in-vivo before and immediately after standardized loading (kneeling, squatting or knee bends) and after 90 minutes of rest using a sagittal 3D-T1-w FLASH WE sequence (22 msec/ 9.8msec/ 15 / 0.3 x 0.3 x 1.5 mm 3 ) at 3 T. After cartilage segmentation and 3D reconstruction, voxel-based and global precision errors (PR) were calculated. The former were used to determine significant differences in local cartilage thickness. Voxel-based 2σ-thickness difference maps were calculated to visualize locoregional deformation patterns. Global changes in volume (Vol), mean thickness (mTh) and cartilage-bone-interface area (CBIA) were calculated. Results: The voxel-based PR depended on cartilage thickness (D) ranging from 0.12 - 0.35 mm. For D ≥ 1 mm the RF was 3 (2.4 %) for Vol, 0.06 mm (2.0 %) for mTh and 16 mm 2 (1.4 %) for CBIA. The focal cartilage deformation equaled 14 % of the local thickness reduction. The deformation areas were oval and located in the peripheral medial (more vertically oriented, all exercises) and caudo-lateral (more horizontally oriented, kneeling and knee bends) aspects of the patella and were least pronounced in knee bends. Significant changes for Vol/mTh ranged from 2.1 to 3.7 %. Conclusion: This MRI-based study is the first to identify in-vivo voxel-based patellar cartilage deformation patterns indicating contact and loading zones after kneeling and squatting. These zones are anatomically and functionally plausible and may represent areas where stress induced degeneration and subsequent OA can originate. The data may facilitate understanding of individual knee loading properties and help to improve and validate biomechanical models for the knee. (orig.)

  16. Nuclear fuel pellet loading machine

    International Nuclear Information System (INIS)

    Kee, R.W.; Denero, J.V.

    1975-01-01

    An apparatus for loading nuclear fuel pellets on trays for transfer in a system is described. A conveyor supplies pellets from a source to a loading station. When the pellets reach a predetermined position at the loading station, a manual or automatically operated arm pushes the pellets into slots on a tray and this process is repeated until pellet sensing switches detect that the tray is full. Thereupon, the tray is lowered onto a belt or other type conveyor and transferred to other apparatus in the system, such as a furnace for sintering, and in some cases, reduction of UO 2 . 2 to UO 2 . The pellets are retained on the tray and subsequently loaded directly into fuel rods to be used in the reactor core. (auth)

  17. Demonstration of Load-Follow Simulation with VERA-CS and Standalone BISON

    Energy Technology Data Exchange (ETDEWEB)

    Stimpson, Shane G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-01-24

    In this report, load-follow simulations using VERA-CS with one-way coupling to standalone BISON has been demonstrated including both a single rod with a full cycle of load-follow operations and a quarter-core model with a single month of load-follow.

  18. Nuclear reactor core stabilizing arrangement

    International Nuclear Information System (INIS)

    Jabsen, F.S.

    1976-01-01

    A nuclear reactor core stabilizing arrangement is described wherein a plurality of actuators, disposed in a pattern laterally surrounding a group of elongated fuel assemblies, press against respective contiguous fuel assemblies on the periphery of the group to reduce the clearance between adjacent fuel assemblies thereby forming a more compacted, vibration resistant core structure. 7 claims, 4 drawing figures

  19. Field testing of stiffened deep cement mixing piles under lateral cyclic loading

    Science.gov (United States)

    Raongjant, Werasak; Jing, Meng

    2013-06-01

    Construction of seaside and underground wall bracing often uses stiffened deep cement mixed columns (SDCM). This research investigates methods used to improve the level of bearing capacity of these SDCM when subjected to cyclic lateral loading via various types of stiffer cores. Eight piles, two deep cement mixed piles and six stiffened deep cement mixing piles with three different types of cores, H shape cross section prestressed concrete, steel pipe, and H-beam steel, were embedded though soft clay into medium-hard clay on site in Thailand. Cyclic horizontal loading was gradually applied until pile failure and the hysteresis loops of lateral load vs. lateral deformation were recorded. The lateral carrying capacities of the SDCM piles with an H-beam steel core increased by 3-4 times that of the DCM piles. This field research clearly shows that using H-beam steel as a stiffer core for SDCM piles is the best method to improve its lateral carrying capacity, ductility and energy dissipation capacity.

  20. Reconstructions of information in visual spatial working memory degrade with memory load.

    Science.gov (United States)

    Sprague, Thomas C; Ester, Edward F; Serences, John T

    2014-09-22

    Working memory (WM) enables the maintenance and manipulation of information relevant to behavioral goals. Variability in WM ability is strongly correlated with IQ [1], and WM function is impaired in many neurological and psychiatric disorders [2, 3], suggesting that this system is a core component of higher cognition. WM storage is thought to be mediated by patterns of activity in neural populations selective for specific properties (e.g., color, orientation, location, and motion direction) of memoranda [4-13]. Accordingly, many models propose that differences in the amplitude of these population responses should be related to differences in memory performance [14, 15]. Here, we used functional magnetic resonance imaging and an image reconstruction technique based on a spatial encoding model [16] to visualize and quantify population-level memory representations supported by multivoxel patterns of activation within regions of occipital, parietal and frontal cortex while participants precisely remembered the location(s) of zero, one, or two small stimuli. We successfully reconstructed images containing representations of the remembered-but not forgotten-locations within regions of occipital, parietal, and frontal cortex using delay-period activation patterns. Critically, the amplitude of representations of remembered locations and behavioral performance both decreased with increasing memory load. These results suggest that differences in visual WM performance between memory load conditions are mediated by changes in the fidelity of large-scale population response profiles distributed across multiple areas of human cortex. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Progress of full MOX core design in ABWR

    International Nuclear Information System (INIS)

    Izutsu, S.; Sasagawa, M.; Aoyama, M.; Maruyama, H.; Suzuki, T.

    2000-01-01

    Full MOX ABWR core design has been made, based on the MOX design concept of 8x8 bundle configuration with a large central water rod, 40 GWd/t maximum bundle exposure, and the compatibility with 9x9 high-burnup UO 2 bundles. Core performance on shutdown margin and thermal margin of the MOX-loaded core is similar to that of UO 2 cores for the range from full UO 2 core to full MOX core. Safety analyses based on its safety parameters and MOX property have shown its conformity to the design criteria in Japan. In order to confirm the applicability of the nuclear design method to full MOX cores, Tank-type Critical Assembly (TCA) experiment data have been analyzed on criticality, power distribution and β eff /l measurements. (author)

  2. Analysis of addition of the safety rods at RSG-GAS core

    International Nuclear Information System (INIS)

    S, Tukiran; S, Tagor Malem; K, Iman

    2002-01-01

    The silicide fuel loading of the RSG-GAS core is planned to increase from 250 gU to 300 gU. Increasing of fuel loading will prolong the operation cycle length from 25 days to 32,5 days, but ability of reactivity compensation by control rods system decreased because the reactivity shut-down margin is available only 1,03 %, expectation is 2.2 %. One of solutions is added two safety control rods in B-3 and G-10 positions the aim of installing two safety rods (BKP) in RSG-GAS core is to increase core safety margin. So before using the safety control rods in the RSG-GAS core, it is necessary to know its performance, one of the tests showing its performance is to measure the reactivity of the safety control rods. Measurement of safety control rods were done to know each reactivity worth of safety control rods at middle cycle so that the safety rod be used in the RSG-GAS core. Measurement done by using calibration control rods with couple compensation method which always using in the RSG-GAS core to measure the existing control rods. The results of measurement showed that two safety rods (BKP01 and BKP02) have reactivity worth of 93.5 cent and 87.5 cent, respectively. the total reactivity worth of safety control rods is 1.38%. So the two safety rods can be used to increase safety margin of the RSG-GAS core if the fuel is exchanged to 300 gU of loading

  3. Calculations of slurry pump jet impingement loads

    International Nuclear Information System (INIS)

    Wu, T.T.

    1996-01-01

    This paper presents a methodology to calculate the impingement load in the region of a submerged turbulent jet where a potential core exits and the jet is not fully developed. The profile of the jet flow velocities is represented by a piece-wise linear function which satisfies the conservation of momentum flux of the jet flow. The adequacy of the of the predicted jet expansion is further verified by considering the continuity of the jet flow from the region of potential core to the fully developed region. The jet impingement load can be calculated either as a direct impingement force or a drag force using the jet velocity field determined by the methodology presented

  4. Core design options for high conversion BWRs operating in Th–233U fuel cycle

    International Nuclear Information System (INIS)

    Shaposhnik, Y.; Shwageraus, E.; Elias, E.

    2013-01-01

    Highlights: • BWR core operating in a closed self-sustainable Th– 233 U fuel cycle. • Seed blanket optimization that includes assembly size array and axial dimensions. • Fully coupled MC with fuel depletion and thermo-hydraulic feedback modules. • Thermal-hydraulic analysis includes MCPR observation. -- Abstract: Several options of fuel assembly design are investigated for a BWR core operating in a closed self-sustainable Th– 233 U fuel cycle. The designs rely on an axially heterogeneous fuel assembly structure consisting of a single axial fissile zone “sandwiched” between two fertile blanket zones, in order to improve fertile to fissile conversion ratio. The main objective of the study was to identify the most promising assembly design parameters, dimensions of fissile and fertile zones, for achieving net breeding of 233 U. The design challenge, in this respect, is that the fuel breeding potential is at odds with axial power peaking and the core minimum critical power ratio (CPR), hence limiting the maximum achievable core power rating. Calculations were performed with the BGCore system, which consists of the MCNP code coupled with fuel depletion and thermo-hydraulic feedback modules. A single 3-dimensional fuel assembly having reflective radial boundaries was modeled applying simplified restrictions on the maximum centerline fuel temperature and the CPR. It was found that axially heterogeneous fuel assembly design with a single fissile zone can potentially achieve net breeding, while matching conventional BWR core power rating under certain restrictions to the core loading pattern design

  5. Reloading optimization of pressurized water reactor core with burnable absorber fuel

    International Nuclear Information System (INIS)

    Shi Xiuan; Liu Zhihong; Hu Yongming

    2008-01-01

    The reloading optimization problem of PWR with burnable absorber fuel is very difficult, and common optimization algorithms are inefficient and have bad global performance for it. Characteristic statistic algorithm (CSA) is very fit for the problem. In the past, the reloading optimization using CSA has shortcomings of separating the fuel assemblies' loading pattern (LP) optimization from burnable absorber's placement (BP) optimization. In this study, LP and BP were optimized simultaneously using CSA coupled with CYCLE2D, which is a core analysis code. The corresponding reloading coupling optimization software, CSALPBP, was developed. The 10th cycle reloading design of Daya Bay Nuclear Power Plant was optimized using CSALPBP. The results show that CSALPBP has high efficiency and excellent global performance. (authors)

  6. Robust feedback-linearization control for axial power distribution in pressurized water reactors during load-following operation

    OpenAIRE

    M. Zaidabadi nejad; G.R. Ansarifar

    2018-01-01

    Improved load-following capability is one of the most important technical tasks of a pressurized water reactor. Controlling the nuclear reactor core during load-following operation leads to some difficulties. These difficulties mainly arise from nuclear reactor core limitations in local power peaking: the core is subjected to sharp and large variation of local power density during transients. Axial offset (AO) is the parameter usually used to represent the core power peaking. One of the impor...

  7. Power-level regulation and simulation of nonlinear pressurized water reactor core with xenon oscillation using H-infinity loop shaping control

    Directory of Open Access Journals (Sweden)

    Li Gang

    2016-01-01

    Full Text Available This investigation is to solve the power-level control issue of a nonlinear pressurized water reactor core with xenon oscillations. A nonlinear pressurized water reactor core is modeled using the lumped parameter method, and a linear model of the core is then obtained through the small perturbation linearization way. The H∞loop shapingcontrolis utilized to design a robust controller of the linearized core model.The calculated H∞loop shaping controller is applied to the nonlinear core model. The nonlinear core model and the H∞ loop shaping controller build the nonlinear core power-level H∞loop shaping control system.Finally, the nonlinear core power-level H∞loop shaping control system is simulatedconsidering two typical load processes that are a step load maneuver and a ramp load maneuver, and simulation results show that the nonlinear control system is effective.

  8. Use of TRIGA flip fuel for improved in-core irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Whittemore, W L [General Atomic Co., San Diego, CA (United States)

    1974-07-01

    Use of standard TRIGA fuel (20% enriched uranium) in a reactor provides a suitable facility for in-core irradiations. However, large numbers of in-core samples irradiated for long periods (many months) can be handled more economically with a TRIGA loaded with FLIP fuel. As an example, ten or more in-core thermionic devices (each worth 50 to 80 cents with respect to a water-filled position) were irradiated in the Mark III TRIGA at General Atomic Company for 18 months with only a modest change in excess reactivity due to core burnup. A core loading of FLIP fuel has been added to the General Atomic Mark F reactor in order to provide numerous in-core irradiation sites for the production of radioisotopes. Since the worth of a 500-gram sample of a molybdenum compound (used for the production of {sup 99}Mo) is about 25 to 50 cents with respect to a water-filled position, use of a FLIP- TRIGA core will permit the irradiation of more than 5 kilograms of a molybdenum compound. A procedure is under development for the production of {sup 99}Mo with relatively high specific activity. Several techniques to concentrate {sup 99}Mo have been tested experimentally. The results will be reported. (author)

  9. PWR in-core nuclear fuel management optimization utilizing nodal (non-linear NEM) generalized perturbation theory

    International Nuclear Information System (INIS)

    Maldonado, G.I.; Turinsky, P.J.; Kropaczek, D.J.

    1993-01-01

    The computational capability of efficiently and accurately evaluate reactor core attributes (i.e., k eff and power distributions as a function of cycle burnup) utilizing a second-order accurate advanced nodal Generalized Perturbation Theory (GPT) model has been developed. The GPT model is derived from the forward non-linear iterative Nodal Expansion Method (NEM) strategy, thereby extending its inherent savings in memory storage and high computational efficiency to also encompass GPT via the preservation of the finite-difference matrix structure. The above development was easily implemented into the existing coarse-mesh finite-difference GPT-based in-core fuel management optimization code FORMOSA-P, thus combining the proven robustness of its adaptive Simulated Annealing (SA) multiple-objective optimization algorithm with a high-fidelity NEM GPT neutronics model to produce a powerful computational tool used to generate families of near-optimum loading patterns for PWRs. (orig.)

  10. Nuclear design characteristics of SMART

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chung Chan; Park, Sang Yoon; Lee, Ki Bog; Zee, Sung Quun; Chang, Moon Hee [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1999-12-31

    Nuclear design bases for System-Integrated Modular Advanced ReacTor(SMART) core are presented. Based on the proposed design bases, a SMART core loading pattern is constructed and its nuclear characteristics are studied. The proposed core loading pattern satisfies 3-year cycle length and soluble boron-free operation requirements at any time during the cycle. 10 refs., 2 figs., 1 tab. (Author)

  11. Nuclear design characteristics of SMART

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chung Chan; Park, Sang Yoon; Lee, Ki Bog; Zee, Sung Quun; Chang, Moon Hee [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    Nuclear design bases for System-Integrated Modular Advanced ReacTor(SMART) core are presented. Based on the proposed design bases, a SMART core loading pattern is constructed and its nuclear characteristics are studied. The proposed core loading pattern satisfies 3-year cycle length and soluble boron-free operation requirements at any time during the cycle. 10 refs., 2 figs., 1 tab. (Author)

  12. Dual Super-Systolic Core for Real-Time Reconstructive Algorithms of High-Resolution Radar/SAR Imaging Systems

    Science.gov (United States)

    Atoche, Alejandro Castillo; Castillo, Javier Vázquez

    2012-01-01

    A high-speed dual super-systolic core for reconstructive signal processing (SP) operations consists of a double parallel systolic array (SA) machine in which each processing element of the array is also conceptualized as another SA in a bit-level fashion. In this study, we addressed the design of a high-speed dual super-systolic array (SSA) core for the enhancement/reconstruction of remote sensing (RS) imaging of radar/synthetic aperture radar (SAR) sensor systems. The selected reconstructive SP algorithms are efficiently transformed in their parallel representation and then, they are mapped into an efficient high performance embedded computing (HPEC) architecture in reconfigurable Xilinx field programmable gate array (FPGA) platforms. As an implementation test case, the proposed approach was aggregated in a HW/SW co-design scheme in order to solve the nonlinear ill-posed inverse problem of nonparametric estimation of the power spatial spectrum pattern (SSP) from a remotely sensed scene. We show how such dual SSA core, drastically reduces the computational load of complex RS regularization techniques achieving the required real-time operational mode. PMID:22736964

  13. Finite element based stress analysis of BWR internals exposed to accident loads

    Energy Technology Data Exchange (ETDEWEB)

    Altstadt, E; Weiss, F P; Werner, M; Willschuetz, H G

    1998-10-01

    During a hypothetical accident the reactor pressure vessel internals of boiling water reactors can be exposed to considerable loads resulting from temperature gradients and pressure waves. Three dimensional FE models were developed for the core shroud, the upper and the lower core supporting structure, the steam separator pipes and the feed water distributor. The models of core shroud, upper core structure and lower core structure were coupled by means of the substructure technique. All FE models can be used for thermal and for structural mechanical analyses. As an example the FE analysis for the case of a station black-out scenario (loss of power supply for the main circulating pumps) with subsequent emergency core cooling is demonstrated. The transient temperature distributions within the core shroud and within the steam dryer pipes as well were calculated based on the fluid temperatures and the heat transfer coefficients provided by thermo-hydraulic codes. At the maximum temperature gradients in the core shroud, the mechanical stress distribution was computed in a static analysis with the actual temperature field being the load. (orig.)

  14. New Small LWR Core Designs using Particle Burnable Poisons for Low Boron Concentration

    International Nuclear Information System (INIS)

    Yoo, Ho Seong; Hwang, Dae Hee; Hong, Ser Gi

    2015-01-01

    The soluble boron has two major important roles in commercial PWR operations : 1) the control of the long-term reactivity to maintain criticality under normal operation, and 2) the shutdown of the reactor under accidents. However, the removal of the soluble boron gives several advantages in SMRs (Small Modular Reactor). These advantages resulted from the elimination of soluble boron include the significant simplification of nuclear power plant through the removal of pipes, pumps, and purification systems. Also, the use of soluble boron mitigates corrosion problems on the primary coolant loop. Furthermore, the soluble boron-free operation can remove an inadvertent boron dilution accident (BDA) which can lead to a significant insertion of positive reactivity. From the viewpoint of core physics, the removal of soluble boron or reduction of soluble boron concentration makes the moderator temperature coefficient (MTC) more negative. From the core design studies using new fuel assemblies, it is shown that the cores have very low critical soluble boron concentrations less than 500ppm, low peaking factors within the design targets, strong negative MTCs over cycles, and large enough shutdown margins both at BOC and EOC. However, the present cores have relatively low average discharge burnups of ∼ 30MWD/kg leading to low fuel economy because the cores use lots of non-fuel burnable poison rods to achieve very low critical boron concentrations. So, in the future, we will perform the trade-off study between the fuel discharge burnup and the boron concentrations by changing fuel assembly design and the core loading pattern

  15. New Small LWR Core Designs using Particle Burnable Poisons for Low Boron Concentration

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Ho Seong; Hwang, Dae Hee; Hong, Ser Gi [Kyung Hee University, Yongin (Korea, Republic of)

    2015-05-15

    The soluble boron has two major important roles in commercial PWR operations : 1) the control of the long-term reactivity to maintain criticality under normal operation, and 2) the shutdown of the reactor under accidents. However, the removal of the soluble boron gives several advantages in SMRs (Small Modular Reactor). These advantages resulted from the elimination of soluble boron include the significant simplification of nuclear power plant through the removal of pipes, pumps, and purification systems. Also, the use of soluble boron mitigates corrosion problems on the primary coolant loop. Furthermore, the soluble boron-free operation can remove an inadvertent boron dilution accident (BDA) which can lead to a significant insertion of positive reactivity. From the viewpoint of core physics, the removal of soluble boron or reduction of soluble boron concentration makes the moderator temperature coefficient (MTC) more negative. From the core design studies using new fuel assemblies, it is shown that the cores have very low critical soluble boron concentrations less than 500ppm, low peaking factors within the design targets, strong negative MTCs over cycles, and large enough shutdown margins both at BOC and EOC. However, the present cores have relatively low average discharge burnups of ∼ 30MWD/kg leading to low fuel economy because the cores use lots of non-fuel burnable poison rods to achieve very low critical boron concentrations. So, in the future, we will perform the trade-off study between the fuel discharge burnup and the boron concentrations by changing fuel assembly design and the core loading pattern.

  16. Theoretical prediction on corrugated sandwich panels under bending loads

    Science.gov (United States)

    Shu, Chengfu; Hou, Shujuan

    2018-05-01

    In this paper, an aluminum corrugated sandwich panel with triangular core under bending loads was investigated. Firstly, the equivalent material parameters of the triangular corrugated core layer, which could be considered as an orthotropic panel, were obtained by using Castigliano's theorem and equivalent homogeneous model. Secondly, contributions of the corrugated core layer and two face panels were both considered to compute the equivalent material parameters of the whole structure through the classical lamination theory, and these equivalent material parameters were compared with finite element analysis solutions. Then, based on the Mindlin orthotropic plate theory, this study obtain the closed-form solutions of the displacement for a corrugated sandwich panel under bending loads in specified boundary conditions, and parameters study and comparison by the finite element method were executed simultaneously.

  17. Computer-Aided Test Flow in Core-Based Design

    NARCIS (Netherlands)

    Zivkovic, V.; Tangelder, R.J.W.T.; Kerkhoff, Hans G.

    2000-01-01

    This paper copes with the test-pattern generation and fault coverage determination in the core based design. The basic core-test strategy that one has to apply in the core-based design is stated in this work. A Computer-Aided Test (CAT) flow is proposed resulting in accurate fault coverage of

  18. Weakly and strongly coupled Belousov-Zhabotinsky patterns

    Science.gov (United States)

    Weiss, Stephan; Deegan, Robert D.

    2017-02-01

    We investigate experimentally and numerically the synchronization of two-dimensional spiral wave patterns in the Belousov-Zhabotinsky reaction due to point-to-point coupling of two separate domains. Different synchronization modalities appear depending on the coupling strength and the initial patterns in each domain. The behavior as a function of the coupling strength falls into two qualitatively different regimes. The weakly coupled regime is characterized by inter-domain interactions that distorted but do not break wave fronts. Under weak coupling, spiral cores are pushed around by wave fronts in the other domain, resulting in an effective interaction between cores in opposite domains. In the case where each domain initially contains a single spiral, the cores form a bound pair and orbit each other at quantized distances. When the starting patterns consist of multiple randomly positioned spiral cores, the number of cores decreases with time until all that remains are a few cores that are synchronized with a partner in the other domain. The strongly coupled regime is characterized by interdomain interactions that break wave fronts. As a result, the wave patterns in both domains become identical.

  19. Fuel cycle and waste management. 2. Design of a BWR Core with Over-moderated MOX Fuel Assemblies

    International Nuclear Information System (INIS)

    Francois, J.L.; Del Campo, C. Martin

    2001-01-01

    The use of uranium-plutonium mixed-oxide (MOX) fuel in light water reactors is a current practice in several countries. Generally one-third of the reactor core is loaded with MOX fuel assemblies, and the other two-thirds is loaded with uranium assemblies. Nevertheless, the plutonium utilization could be more effective if the full core could be loaded with MOX fuel. In this work, the design of a boiling water reactor (BWR) core fully loaded with over-moderated MOX fuel designs was investigated. In previous work, the design of over-moderated BWR MOX fuel assemblies based on a 10 x 10 lattice was presented; these designs improve the neutron spectrum and the plutonium consumption rate, compared with standard MOX assemblies. To increase the moderator-to-fuel ratio (MFR), two approaches were followed. In the first approach, 8 or 12 fuel rods were replaced by water rods in the 10x10 assembly, which increased the MFR from 1.9 to 2.2 and 2.4, respectively. These designs are called MOX-8WR and MOX-12WR, respectively, in this paper. In the second approach, an 11 x 11 lattice with 24 water rods (11 x 11-24WR) was designed, which is a design with a number of active fuel rods (88) very close to the standard MOX assembly (91). The fuel rod diameter is smaller to preserve the assembly dimensions, and in this last case, the MFR is 2.4. The calculations were performed with the CM-PRESTO three-dimensional steady-state simulator. The nuclear data banks were generated with the HELIOS system, and they were processed by TABGEN to produce tables of nuclear cross sections depending on burnup, void, and exposure weighted void (void history), which are used by CM-PRESTO. One base reload pattern was designed for a BWR/5 rated at 1931 MW(thermal), to be used with the different over-moderated assembly designs. The reload pattern has 112 fresh fuel assemblies (FFAs) out of a total of 444 fuel assemblies and was simulated during 20 cycles with the Haling strategy, until an equilibrium cycle of

  20. Plutonium cores of zenith

    Energy Technology Data Exchange (ETDEWEB)

    Barclay, F R; Cameron, I R; Drageset, A; Freemantle, R G; Wilson, D J

    1965-03-15

    The report describes a series of experiments carried out with plutonium fuel in the heated zero power reactor ZENITH, with the aim of testing current theoretical methods, with particular reference to excess reactivity, temperature coefficients, differential spectrum and reaction rate distributions. Two cores of widely different fissile/moderator atom ratios were loaded in order to test the theory under significantly varied spectrum conditions.

  1. In-core fuel element temperature and flow measurment of HFETR

    International Nuclear Information System (INIS)

    Chen Daolong; Jiang Pei

    1988-02-01

    The HFETR in-core fuel element temperature-flow measurement facility and its measurement system are expounded. The applications of the instrumented fuel element to stationary and transient states measurements during the lift of power, the operation test of all lifetime at first load, and the deepening burn-up test at second load are described. The method of determination of the hot point temperature under the fin is discussed. The error analysis is made. The fuel element out-of-pile water deprivation test is described. The development of this measurement facility and succesful application have made important contribution to high power and deep burn-up safe operation at two load, in-core fuel element irradiation, and varied investigation of HFETR. After operation at two loads, the integrated power of this instrumented fuel element arrives at 90.88 MWd, its maximum point burn-up is about 64.9%, so that the economy of fuel use of HFETR is raised very much

  2. In-Core Fuel Management with Biased Multiobjective Function Optimization

    International Nuclear Information System (INIS)

    Shatilla, Youssef A.; Little, David C.; Penkrot, Jack A.; Holland, Richard Andrew

    2000-01-01

    The capability of biased multiobjective function optimization has been added to the Westinghouse Electric Company's (Westinghouse's) Advanced Loading Pattern Search code (ALPS). The search process, given a user-defined set of design constraints, proceeds to minimize a global parameter called the total value associated with constraints compliance (VACC), an importance-weighted measure of the deviation from limit and/or margin target. The search process takes into consideration two equally important user-defined factors while minimizing the VACC, namely, the relative importance of each constraint with respect to the others and the optimization of each constraint according to its own objective function. Hence, trading off margin-to-design limits from where it is abundantly available to where it is badly needed can now be accomplished. Two practical methods are provided to the user for input of constraints and associated objective functions. One consists of establishing design limits based on traditional core design parameters such as assembly/pin burnup, power, or reactivity. The second method allows the user to write a program, or script, to define a logic not possible through ordinary means. This method of script writing was made possible through the application resident compiler feature of the technical user language integration processor (tulip), developed at Westinghouse. For the optimization problems studied, ALPS not only produced candidate loading patterns (LPs) that met all of the conflicting design constraints, but in cases where the design appeared to be over constrained gave a wide range of LPs that came very close to meeting all the constraints based on the associated objective functions

  3. Supporting system for the core restraint of nuclear reactors

    International Nuclear Information System (INIS)

    Kaser, A.

    1973-01-01

    The core restraint of water cooled nuclear reactors which is needed to direct the flow of the coolant through the core can be manufactured only in a moderate wall thickness. Thus, the majority of the loads have to be transmitted to the core barrel which is more rigid. The patent refers to a system of circumferential and vertical support members most of which are free to move relatively to each other, thus reducing thermal stresses during operation. (P.K.)

  4. Failure analysis of bolted joints in foam-core sandwich composites

    DEFF Research Database (Denmark)

    Zabihpoor, M.; Moslemian, Ramin; Afshin, M.

    2008-01-01

    This study represents an effort to predict the bearing strength, failure modes, and failure load of bolted joints in foam-core sandwich composites. The studied joints have been used in a light full composite airplane. By using solid laminates, a new design for the joint zone is developed. These s......This study represents an effort to predict the bearing strength, failure modes, and failure load of bolted joints in foam-core sandwich composites. The studied joints have been used in a light full composite airplane. By using solid laminates, a new design for the joint zone is developed...

  5. Gait alterations can reduce the risk of edge loading.

    Science.gov (United States)

    Wesseling, Mariska; Meyer, Christophe; De Groote, Friedl; Corten, Kristoff; Simon, Jean-Pierre; Desloovere, Kaat; Jonkers, Ilse

    2016-06-01

    Following metal-on-metal hip arthroplasty, edge loading (i.e., loading near the edge of a prosthesis cup) can increase wear and lead to early revision. The position and coverage angle of the prosthesis cup influence the risk of edge loading. This study investigates the effect of altered gait patterns, more specific hip, and pelvis kinematics, on the orientation of hip contact force and the consequent risk of antero-superior edge loading using muscle driven simulations of gait. With a cup orientation of 25° anteversion and 50° inclination and a coverage angle of 168°, many gait patterns presented risk of edge loading. Specifically at terminal double support, 189 out of 405 gait patterns indicated a risk of edge loading. At this time instant, the high hip contact forces and the proximity of the hip contact force to the edge of the cup indicated the likelihood of the occurrence of edge loading. Although the cup position contributed most to edge loading, altering kinematics considerably influenced the risk of edge loading. Increased hip abduction, resulting in decreasing hip contact force magnitude, and decreased hip extension, resulting in decreased risk on edge loading, are gait strategies that could prevent edge loading. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1069-1076, 2016. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  6. Temperature coefficients of reactivity in the fourth loading of ZENITH

    Energy Technology Data Exchange (ETDEWEB)

    Caro Manso, R; Freemantle, R G; Rogers, J D [Graphite Reactor Physics Division, Atomic Energy Establishment, Winfrith, Dorchester, Dorset (United Kingdom)

    1962-10-15

    Measurements have been made of the temperature coefficients of reactivity associated with the core plus end reflectors and the side reflector of the fourth core loading of ZENITH, which had a carbon/U235 atomic ratio of 7788 and no other absorber. (author)

  7. Temperature coefficients of reactivity in the fourth loading of ZENITH

    International Nuclear Information System (INIS)

    Caro Manso, R.; Freemantle, R.G.; Rogers, J.D.

    1962-10-01

    Measurements have been made of the temperature coefficients of reactivity associated with the core plus end reflectors and the side reflector of the fourth core loading of ZENITH, which had a carbon/U235 atomic ratio of 7788 and no other absorber. (author)

  8. Multiobjective pressurized water reactor reload core design by nondominated genetic algorithm search

    International Nuclear Information System (INIS)

    Parks, G.T.

    1996-01-01

    The design of pressurized water reactor reload cores is not only a formidable optimization problem but also, in many instances, a multiobjective problem. A genetic algorithm (GA) designed to perform true multiobjective optimization on such problems is described. Genetic algorithms simulate natural evolution. They differ from most optimization techniques by searching from one group of solutions to another, rather than from one solution to another. New solutions are generated by breeding from existing solutions. By selecting better (in a multiobjective sense) solutions as parents more often, the population can be evolved to reveal the trade-off surface between the competing objectives. An example illustrating the effectiveness of this novel method is presented and analyzed. It is found that in solving a reload design problem the algorithm evaluates a similar number of loading patterns to other state-of-the-art methods, but in the process reveals much more information about the nature of the problem being solved. The actual computational cost incurred depends on the core simulator used; the GA itself is code independent

  9. Effects of Surface Inclination on the Vertical Loading Rates and Landing Pattern during the First Attempt of Barefoot Running in Habitual Shod Runners

    OpenAIRE

    An, W.; Rainbow, M. J.; Cheung, R. T. H.

    2015-01-01

    Barefoot running has been proposed to reduce vertical loading rates, which is a risk factor of running injuries. Most of the previous studies evaluated runners on level surfaces. This study examined the effect of surface inclination on vertical loading rates and landing pattern during the first attempt of barefoot running among habitual shod runners. Twenty habitual shod runners were asked to run on treadmill at 8.0?km/h at three inclination angles (0?; +10?; ?10?) with and without their usua...

  10. 3D core burnup studies in 500 MWe Indian prototype fast breeder reactor to attain enhanced core burnup

    International Nuclear Information System (INIS)

    Choudhry, Nakul; Riyas, A.; Devan, K.; Mohanakrishnan, P.

    2013-01-01

    Highlights: ► Enhanced burnup potential of existing prototype fast breeder reactor core is studied. ► By increasing the Pu enrichment, fuel burnup can be increased in existing PFBR core. ► Enhanced burnup increase economy and reduce load of fuel fabrication and reprocessing. ► Beginning of life reactivity is suppressed by increasing the number of diluents. ► Absorber rod worth requirements can be achieved by increasing 10 B enrichment. -- Abstract: Fast breeder reactors are capable of producing high fuel burnup because of higher internal breeding of fissile material and lesser parasitic capture of neutrons in the core. As these reactors need high fissile enrichment, high fuel burnup is desirable to be cost effective and to reduce the load on fuel reprocessing and fabrication plants. A pool type, liquid sodium cooled, mixed (Pu–U) oxide fueled 500 MWe prototype fast breeder reactor (PFBR), under construction at Kalpakkam is designed for a peak burnup of 100 GWd/t. This limitation on burnup is purely due to metallurgical properties of structural materials like clad and hexcan to withstand high neutron fluence, and not by the limitation on the excess reactivity available in the core. The 3D core burnup studies performed earlier for approach to equilibrium core of PFBR is continued to demonstrate the burnup potential of existing PFBR core. To increase the fuel burnup of PFBR, plutonium oxide enrichment is increased from 20.7%/27.7% to 22.1%/29.4% of core-1/core-2 which resulted in cycle length increase from 180 to 250 effective full power days (efpd), so that the peak fuel burnup increases from 100 to 134 GWd/t, keeping all the core parameters under allowed safety limits. Number of diluents subassemblies is increased from eight to twelve at beginning of life core to bring down the initial core excess reactivity. PFBR refueling is revised to accommodate twelve diluents. Increase of 10 B enrichment in control safety rods (CSRs) and diverse safety rods (DSRs

  11. Age-related worm load and worm fecundity patterns in human populations, as indicated by schistosome circulating antigens

    Directory of Open Access Journals (Sweden)

    Polman Katja

    1998-01-01

    Full Text Available Recently, our group determined the relationship between serum CAA levels and fecal egg counts in two foci with very intense Schistosoma mansoni transmission: Maniema (Zaire, an area endemic for S. mansoni since several decades, and Ndombo (Senegal, where transmission has only been established since a few years. The objective was to study and compare age-related worm load and worm fecundity patterns in these two different endemic settings. Here, we will summarize the most important findings and conclusions of this study.

  12. What is the correlation of in vivo wear and damage patterns with in vitro TDR motion response?

    Science.gov (United States)

    Kurtz, Steven M.; Patwardhan, Avinash; MacDonald, Daniel; Ciccarelli, Lauren; van Ooij, André; Lorenz, Mark; Zindrick, Michael; O’Leary, Patrick; Isaza, Jorge; Ross, Raymond

    2008-01-01

    Background Context Total disc replacements (TDRs) have been used to reduce pain and preserve motion. However, the comparison of polyethylene wear following long-term implantation to those tested using an in vitro model had not yet been investigated. Purpose The purpose of this study was to correlate wear and damage patterns in retrieved TDRs with motion patterns observed in a clinically validated in vitro lumbar spine model. We also sought to determine whether one-sided wear and motion patterns were associated with greater in vivo wear. Study Design This two-part study combined the evaluation of retrieved total disc replacements with a biomechanical study using human lumbar spines. Patient Sample 38 CHARITÉ lumbar artificial discs were retrieved from 32 patients (24 female, 75%) after 7.3 years average implantation (range: 1.8 to 16.1y). The components were implanted at L2/L3 (n=1), L3/L4 (n=2), L4/L5 (n=20), and L5/S1 (n=15). All the implants were removed due to intractable back pain and/or facet degeneration. In addition, they were removed due to subsidence (n=10), anterior migration (n=3), core dislocation (n=2), lateral subluxation (n=1), endplate loosening (n = 2), and osteolysis (n=1). In parallel, 7 new implants were evaluated at L4-L5 and 13 implants at L5-S1 in an in vitro lumbar spine model. Outcome Measures Retrieval analysis included evaluation of clinical data, dimensional measurements and assessment of the extent and severity of PE surface damage mechanisms. In vitro testing involved the observation of motion patterns during physiological loading. Methods For the retrievals, each side of the PE core was independently analyzed at the rim and dome for the presence of machining marks, wear, and fracture. 35 cores were further analyzed using MicroCT to determine whether the wear was one-sided, or symmetrically distributed. For the in vitro study the new implants were tested under physiologic loads (flexion-extension with a compressive follower preload

  13. Short-term load forecasting by a neuro-fuzzy based approach

    Energy Technology Data Exchange (ETDEWEB)

    Ruey-Hsun Liang; Ching-Chi Cheng [National Yunlin University of Science and Technology (China). Dept. of Electrical Engineering

    2002-02-01

    An approach based on an artificial neural network (ANN) combined with a fuzzy system is proposed for short-term load forecasting. This approach was developed in order to reach the desired short-term load forecasting in an efficient manner. Over the past few years, ANNs have attained the ability to manage a great deal of system complexity and are now being proposed as powerful computational tools. In order to select the appropriate load as the input for the desired forecasting, the Pearson analysis method is first applied to choose two historical record load patterns that are similar to the forecasted load pattern. These two load patterns and the required weather parameters are then fuzzified and input into a neural network for training or testing the network. The back-propagation (BP) neural network is applied to determine the preliminary forecasted load. In addition, the rule base for the fuzzy inference machine contains important linguistic membership function terms with knowledge in the form of fuzzy IF-THEN rules. This produces the load correction inference from the historical information and past forecasted load errors to obtain an inferred load error. Adding the inferred load error to the preliminary forecasted load, we can obtain the finial forecasted load. The effectiveness of the proposed approach to the short-term load-forecasting problem is demonstrated using practical data from the Taiwan Power Company (TPC). (Author)

  14. Designing an application for managing distribution transformer load

    Directory of Open Access Journals (Sweden)

    Olga Liliana Sánchez

    2006-09-01

    Full Text Available This paper presents a software application for distribution transformer load management and calculating the elec- tricity distribution network service quality index (i.e. EDS and EFS indexes. Transformer operation state, calculating core and coil losses and selecting distribution transformers based on technical-economic criteria using daily-load curves are the load management strategies presented here. The application consists of a programme allowing to data acquisition input, an Excel-based spread-sheet having the equations for calculating load management data and a user-interface presenting the load management application’s results. The application was validated by technical-economic evaluation of three distribution transformers when supplying demand.

  15. Load-sensitive impairment of working memory for biological motion in schizophrenia.

    Science.gov (United States)

    Lee, Hannah; Kim, Jejoong

    2017-01-01

    Impaired working memory (WM) is a core cognitive deficit in schizophrenia. Nevertheless, past studies have reported that patients may also benefit from increasing salience of memory stimuli. Such efficient encoding largely depends upon precise perception. Thus an investigation on the relationship between perceptual processing and WM would be worthwhile. Here, we used biological motion (BM), a socially relevant stimulus that schizophrenics have difficulty discriminating from similar meaningless motions, in a delayed-response task. Non-BM stimuli and static polygons were also used for comparison. In each trial, one of the three types of stimuli was presented followed by two probes, with a short delay in between. Participants were asked to indicate whether one of them was identical to the memory item or both were novel. The number of memory items was one or two. Healthy controls were more accurate in recognizing BM than non-BM regardless of memory loads. Patients with schizophrenia exhibited similar accuracy patterns to those of controls in the Load 1 condition only. These results suggest that information contained in BM could facilitate WM encoding in general, but the effect is vulnerable to the increase of cognitive load in schizophrenia, implying inefficient encoding driven by imprecise perception.

  16. Neutronic calculations of PARR-1 cores using LEU silicide fuel

    International Nuclear Information System (INIS)

    Arshad, M.; Bakhtyar, S.; Hayat, T.; Salahuddin, A.

    1991-08-01

    Detailed neutronic calculations have been carried out for different PARR-1 cores utilizing low enriched uranium (LEU) silicide fuel and operating at an upgraded power of 9 MW. The calculations include the search for critical loadings in open and stall ends of the pool, neutronic analysis of the first full equilibrium core and calculations cores. The burnup study of inventory have also been carried out. Further, the reactivity coefficients of the first full power operation core are evaluated for use in the accident analysis. 14 figs. (author)

  17. Heysham II/Torness AGR core integrity

    International Nuclear Information System (INIS)

    Birch, A.L.; Hampson, J.D.

    1985-01-01

    The design and construction process for the Heysham II/Torness AGR core structures is presented. The design intent utilizing all past experience in designing and building AGR core structures is described. The major aspects of the design criteria and the design conditions are outlined to demonstrate how the integrity of the Heysham II/Torness core is assured. Since no recognized codes of practice for graphite core design exist, the National Nuclear Corporation (NNC) have conceived design criteria utilizing reserve factors based on their design experience. Target reserve factors are defined for particular loading conditions including the ultimate 'safe-shutdown earthquake'. The substantial programme of computer analysis and RandD work to substantiate the design, including seismic qualification, is described. In keeping with their responsibility for the detailed core structure design and the fuel path geometry (guide tube system), NNC attach great importance to design/manufacture/construction liaison, which is demonstrated in the quality assurance section. (author)

  18. Generation of multigroup cross-sections from micro-group ones in code system SUHAM-U used for VVER-1000 reactor core calculations with MOX loading

    Energy Technology Data Exchange (ETDEWEB)

    Boyarinov, V.F.; Davidenko, V.D.; Polismakov, A.A.; Tsybulsky, V.F. [RRC Kurchatov Institute, Moscow (Russian Federation)

    2005-07-01

    At the present time, the new code system SUHAM-U for calculation of the neutron-physical processes in nuclear reactor core with triangular and square lattices based both on the modern micro-group (about 7000 groups) cross-sections library of code system UNK and on solving the multigroup (up to 89 groups) neutron transport equation by Surface Harmonics Method is elaborated. In this paper the procedure for generation of multigroup cross-sections from micro-group ones for calculation of VVER-1000 reactor core with MOX loading is described. The validation has consisted in computing VVER-1000 fuel assemblies with uranium and MOX fuel and has shown enough high accuracy under corresponding selection of the number and boundaries of the energy groups. This work has been fulfilled in the frame of ISTC project 'System Analyses of Nuclear Safety for VVER Reactors with MOX Fuels'.

  19. Effects of different loading patterns on the trabecular bone morphology of the proximal femur using adaptive bone remodeling.

    Science.gov (United States)

    Banijamali, S Mohammad Ali; Oftadeh, Ramin; Nazarian, Ara; Goebel, Ruben; Vaziri, Ashkan; Nayeb-Hashemi, Hamid

    2015-01-01

    In this study, the changes in the bone density of human femur model as a result of different loadings were investigated. The model initially consisted of a solid shell representing cortical bone encompassing a cubical network of interconnected rods representing trabecular bone. A computationally efficient program was developed that iteratively changed the structure of trabecular bone by keeping the local stress in the structure within a defined stress range. The stress was controlled by either enhancing existing beam elements or removing beams from the initial trabecular frame structure. Analyses were performed for two cases of homogenous isotropic and transversely isotropic beams.Trabecular bone structure was obtained for three load cases: walking, stair climbing and stumbling without falling. The results indicate that trabecular bone tissue material properties do not have a significant effect on the converged structure of trabecular bone. In addition, as the magnitude of the loads increase, the internal structure becomes denser in critical zones. Loading associated with the stumbling results in the highest density;whereas walking, considered as a routine daily activity, results in the least internal density in different regions. Furthermore, bone volume fraction at the critical regions of the converged structure is in good agreement with previously measured data obtained from combinations of dual X-ray absorptiometry (DXA) and computed tomography (CT). The results indicate that the converged bone architecture consisting of rods and plates are consistent with the natural bone morphology of the femur. The proposed model shows a promising means to understand the effects of different individual loading patterns on the bone density.

  20. Solid lipid nanoparticles loaded with insulin by sodium cholate-phosphatidylcholine-based mixed micelles: preparation and characterization.

    Science.gov (United States)

    Liu, Jie; Gong, Tao; Wang, Changguang; Zhong, Zhirong; Zhang, Zhirong

    2007-08-01

    Solid lipid nanoparticles (SLNs) loaded with insulin-mixed micelles (Ins-MMs) were prepared by a novel reverse micelle-double emulsion method, in which sodium cholate (SC) and soybean phosphatidylcholine (SPC) were employed to improve the liposolubility of insulin, and the mixture of stearic acid and palmitic acid were employed to prepare insulin loaded solid lipid nanoparticles (Ins-MM-SLNs). Some of the formulation parameters were optimized to obtain high quality nanoparticles. The particle size and zeta potential measured by photon correlation spectroscopy (PCS) were 114.7+/-4.68 nm and -51.36+/-2.04 mV, respectively. Nanospheres observed by transmission electron microscopy (TEM) and scanning electron microscopy (SEM) showed extremely spherical shape. The entrapment efficiency (EE%) and drug loading capacity (DL%) determined with high performance liquid chromatogram (HPLC) by modified ultracentrifuge method were 97.78+/-0.37% and 18.92+/-0.07%, respectively. Differential scanning calorimetry (DSC) of Ins-MM-SLNs indicated no tendency of recrystallisation. The core-shell drug loading pattern of the SLNs was confirmed by fluorescence spectra and polyacrylamide gel electrophoresis (PAGE) which also proved the integrity of insulin after being incorporated into lipid carrier. The drug release behavior was studied by in situ and externally sink method and the release pattern of drug was found to follow Weibull and Higuchi equations. Results of stability evaluation showed a relatively long-term stability after storage at 4 degrees C for 6 months. In conclusion, SLNs with small particle size, excellent physical stability, high entrapment efficiency, good loading capacity for protein drug can be produced by this novel reverse micelle-double emulsion method in present study.

  1. Loads on reactor pressure vessel internals induced by low-pressure waves

    International Nuclear Information System (INIS)

    Benkert, J.; Mika, C.; Stegemann, D.; Valero, M.

    1978-02-01

    Departing from the conservation theorems for mass and impulse the computer code DRUWE has been developed which allows to calculate loads on the core shell with simplifying assumptions for the first period just after the rupture has opened. It can be supposed that the whole rupture cross section is set free within 15 msec. The calculation progresses in a way that for a core shell the local, timely pressure- and load development, respectively, the total dynamic load as well as the moments acting on the fixing of the core shell, can be calculated. The required input data are merely geometric data on the concept of the pressure vessel and its components as well as the effective subcooling of the fluid. By means of some parameters the programm development can be controlled in a way that the results are available in form of listings or diagrams, respectively, as well as in form of card decks for following investigations, e.g. solidity calculations. (orig./RW) [de

  2. Improvement of SSR core design for ABWR-II

    International Nuclear Information System (INIS)

    Moriwaki, Masanao; Aoyama, Motoo; Okada, Hiroyuki; Kitamura, Hideya; Sakurada, Koichi; Tanabe, Akira

    2003-01-01

    In order to enhance the spectral shift effect in the ABWR-II reactor, a novel core design to bring out better performance of spectral shift rods (SSRs) is studied. The SSR is a new type of water rod, in which the water level develops naturally during operation and changes according to the coolant flow rate through the channel. By using the SSR, the average moderator density, which is directly related to core reactivity, can be controlled over a wide range by the core flow rate. In the new SSR core design, two types of SSR bundles, in which settings for the SSR water levels are different, are utilized and loaded according to flow distribution in the core. This two-region SSR core design allows wide variation in the average SSR water level, thus improving fuel economy. Enhancement of SSR function in the two-region SSR core increases the uranium saving factor by about 25%, from the 6% of the conventional uniform SSR core to about 8%. (author)

  3. Analysis of the minority actinides transmutation in a sodium fast reactor with uniform load pattern by the MCNPX-CINDER code

    International Nuclear Information System (INIS)

    Ochoa Valero, R.; Garcia-Herranz, N.; Aragones, J. M.

    2010-01-01

    The aim of this study is to evaluate the minority actinides transmutation in sodium fast reactors (SFR) assuming a uniform load pattern. It is determined the isotopic evolution of the actinides along burn, and the evolution of the reactivity and the reactivity coefficients. For that, it is used the MCNPX neutron transport code coupled with the inventory code CINDER90.

  4. Upper-bound fission product release assessment for large break LOCA in CANFLEX bundle reactor core

    International Nuclear Information System (INIS)

    Oh, Duk Ju; Lee, Kang Moon

    1996-07-01

    Quarter-core gap inventory assessment for CANDU-6 reactor core loaded with CANFLEX fuel bundles has been performed as one of the licensing safety analyses required for 24 natural uranium CANFLEX bundle irradiation in CANDU-6 reactor. The quarter-core gap inventory for the CANFLEX bundle core is 5 - 10 times lower than that for the standard bundle core, depending on the half-life of the isotope. The lower gap inventory of the CANFLEX bundle core is attributed to the lower linear power of the CANFLEX bundle compared with the standard bundle. However, the whole core total inventories for both the CANFLEX and standard bundle cores are nearly the same. The 6 - 8 times lower upper-bound fission product releases of the CANFLEX bundle core for large break LOCA than those of the standard bundle core imply that the loading of 24 natural uranium CANFLEX bundles would improve the predicted consequences of the postulated accident described in the Wolsung 2 safety report. 2 tabs., 6 figs., 3 refs. (Author)

  5. Optimalisation Of Oxide Burn-Up Enhanced For RSG-Gas Core

    International Nuclear Information System (INIS)

    Tukiran; Sembiring, Tagor Malem

    2000-01-01

    Strategy of fuel management of the RSG-Gas core has been changed from 6/1 to 5/1 pattern so the evaluation of fuel management is necessary to be done. The aim of evaluation is to look for the optimal fuel management so that the fuel can be stayed longer in the core and finally can save cost of operation. Using Batan-EQUIL-2D code did the evaluation of fuel management with 5/1 pattern. The result of evaluation is used to choose which one is more advantage without break the safety margin which is available in the Safety Analysis Report (SAR) firstly, the fuel management was calculated with core excess reactivity of 9,2% criteria. Secondly, fuel burn-up maximum of 56% criteria and the last, fuel burn-up maximum of 64% criteria. From the result of fuel management calculation of the RSG-Gas equilibrium core can be concluded that the optimal RSG-Gas equilibrium core with 5/1 pattern is if the fuel burn-up maximum 64% and the energy in a cycle of operation is 715 MWD. The fuel can be added one more step in the core without break any safety margin. It means that the RSG-Gas equilibrium core can save fuel and cost reduction

  6. Fuel and Core Design Options to Overcome the Heavy Metal Loading Limit and Improve Performance and Safety of Liquid Salt Cooled Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Petrovic, Bojan [Georgia Inst. of Technology, Atlanta, GA (United States); Maldonado, Ivan [Univ. of Tennessee, Knoxville, TN (United States)

    2016-04-14

    The research performed in this project addressed the issue of low heavy metal loading and the resulting reduced cycle length with increased refueling frequency, inherent to all FHR designs with solid, non-movable fuel based on TRISO particles. Studies performed here focused on AHTR type of reactor design with plate (“plank”) fuel. Proposal to FY12 NEUP entitled “Fuel and Core Design Options to Overcome the Heavy Metal Loading Limit and Improve Performance and Safety of Liquid Salt Cooled Reactors” was selected for award, and the 3-year project started in August 2012. A 4-month NCE was granted and the project completed on December 31, 2015. The project was performed by Georgia Tech (Prof. Bojan Petrovic, PI) and University of Tennessee (Prof. Ivan Maldonado, Co-PI), with a total funding of $758,000 over 3 years. In addition to two Co-PIs, the project directly engaged 6 graduate students (at doctoral or MS level) and 2 postdoctoral researchers. Additionally, through senior design projects and graduate advanced design projects, another 23 undergraduate and 12 graduate students were exposed to and trained in the salt reactor technology. We see this as one of the important indicators of the project’s success and effectiveness. In the process, 1 journal article was published (with 3 journal articles in preparation), together with 8 peer-reviewed full conference papers, 8 peer-reviewed extended abstracts, as well as 1 doctoral dissertation and 2 master theses. The work included both development of models and methodologies needed to adequately analyze this type of reactor, fuel, and its fuel cycle, as well as extensive analyses and optimization of the fuel and core design.

  7. Fuel and Core Design Options to Overcome the Heavy Metal Loading Limit and Improve Performance and Safety of Liquid Salt Cooled Reactors

    International Nuclear Information System (INIS)

    Petrovic, Bojan; Maldonado, Ivan

    2016-01-01

    The research performed in this project addressed the issue of low heavy metal loading and the resulting reduced cycle length with increased refueling frequency, inherent to all FHR designs with solid, non-movable fuel based on TRISO particles. Studies performed here focused on AHTR type of reactor design with plate ('plank') fuel. Proposal to FY12 NEUP entitled 'Fuel and Core Design Options to Overcome the Heavy Metal Loading Limit and Improve Performance and Safety of Liquid Salt Cooled Reactors' was selected for award, and the 3-year project started in August 2012. A 4-month NCE was granted and the project completed on December 31, 2015. The project was performed by Georgia Tech (Prof. Bojan Petrovic, PI) and University of Tennessee (Prof. Ivan Maldonado, Co-PI), with a total funding of $758,000 over 3 years. In addition to two Co-PIs, the project directly engaged 6 graduate students (at doctoral or MS level) and 2 postdoctoral researchers. Additionally, through senior design projects and graduate advanced design projects, another 23 undergraduate and 12 graduate students were exposed to and trained in the salt reactor technology. We see this as one of the important indicators of the project's success and effectiveness. In the process, 1 journal article was published (with 3 journal articles in preparation), together with 8 peer-reviewed full conference papers, 8 peer-reviewed extended abstracts, as well as 1 doctoral dissertation and 2 master theses. The work included both development of models and methodologies needed to adequately analyze this type of reactor, fuel, and its fuel cycle, as well as extensive analyses and optimization of the fuel and core design.

  8. Damage detection methodology under variable load conditions based on strain field pattern recognition using FBGs, nonlinear principal component analysis, and clustering techniques

    Science.gov (United States)

    Sierra-Pérez, Julián; Torres-Arredondo, M.-A.; Alvarez-Montoya, Joham

    2018-01-01

    Structural health monitoring consists of using sensors integrated within structures together with algorithms to perform load monitoring, damage detection, damage location, damage size and severity, and prognosis. One possibility is to use strain sensors to infer structural integrity by comparing patterns in the strain field between the pristine and damaged conditions. In previous works, the authors have demonstrated that it is possible to detect small defects based on strain field pattern recognition by using robust machine learning techniques. They have focused on methodologies based on principal component analysis (PCA) and on the development of several unfolding and standardization techniques, which allow dealing with multiple load conditions. However, before a real implementation of this approach in engineering structures, changes in the strain field due to conditions different from damage occurrence need to be isolated. Since load conditions may vary in most engineering structures and promote significant changes in the strain field, it is necessary to implement novel techniques for uncoupling such changes from those produced by damage occurrence. A damage detection methodology based on optimal baseline selection (OBS) by means of clustering techniques is presented. The methodology includes the use of hierarchical nonlinear PCA as a nonlinear modeling technique in conjunction with Q and nonlinear-T 2 damage indices. The methodology is experimentally validated using strain measurements obtained by 32 fiber Bragg grating sensors bonded to an aluminum beam under dynamic bending loads and simultaneously submitted to variations in its pitch angle. The results demonstrated the capability of the methodology for clustering data according to 13 different load conditions (pitch angles), performing the OBS and detecting six different damages induced in a cumulative way. The proposed methodology showed a true positive rate of 100% and a false positive rate of 1.28% for a

  9. Research on Operation and Control Strategy of 600MW PWR in Load Follow

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Bing Yang; Cao, Xin Rong [Harbin Engineering University, Harbin (China); Li, Han Chen [China Nuclear Power Engineering Co., Beijing (China)

    2014-08-15

    600MW Pressurized Water Reactor (PWR) is designed to operate in Constant Axial Offset Control (CAOC) strategy with base load originally. By calculations over a typical load follow scenario '12-3-6-3 {sup (}100-50-100%FP) via the CASMO-4E and SIMULATE-3 package, values of core operating parameter have been examined. With the progress of the nuclear power industry, advanced reactors are considered to have a good performance in load follow, economy and flexibility. Under the premise of fuel loading and structural dimensions unchanged, two independent control rod groups M and AO are used in 600MW pressurized water reactor to provide fine control of both the core reactivity and axial power distribution, which is named ' Improved G strategy .' The influences of different control rod distributions, composition materials, and overlap steps had in power changes have been examined in a comparative study to choose the optimal one.Then we simulate a range of load follow scenarios of the redesigned 600MW core without adjusting soluble boron concentration in the begin, middle and end of first cycle. This paper additionally demonstrated the moderator temperature coefficient and shutdown margin values of the reactor in Improved G strategy to compare with the thermal safety design criteria. It's demonstrated that adequate adjustment of control rod groups enable the core to perform load follow through Improved G strategy in 80% of cycle and save a large volume of liquid effluent particularly toward the end of cycle.

  10. Face/core debond fatigue crack growth characterization using the sandwich mixed mode bending specimen

    DEFF Research Database (Denmark)

    Manca, Marcello; Quispitupa, Amilcar; Berggreen, Christian

    2012-01-01

    Face/core fatigue crack growth in foam-cored sandwich composites is examined using the mixed mode bending (MMB) test method. The mixed mode loading at the debond crack tip is controlled by changing the load application point in the MMB test fixture. Sandwich specimens were manufactured using H45...... and H100 PVC foam cores and E-glass/polyester face sheets. All specimens were pre-cracked in order to define a sharp crack front. The static debond fracture toughness for each material configuration was measured at different mode-mixity phase angles. Fatigue tests were performed at 80% of the static...

  11. Loading pattern optimization of PWR reactors using Artificial Bee Colony

    International Nuclear Information System (INIS)

    Safarzadeh, O.; Zolfaghari, A.; Norouzi, A.; Minuchehr, H.

    2011-01-01

    Highlights: → ABC algorithm is comparable to the canonical GA algorithm and PSO. → The performance of ABC shows that the algorithm is quiet promising. → The final band width of search fitness values by ABC is narrow. → The ABC algorithm is relatively easy to implement. - Abstract: In this paper a core reloading technique using Artificial Bee Colony algorithm, ABC, is presented in the context of finding an optimal configuration of fuel assemblies. The proposed method can be used for in-core fuel management optimization problems in pressurized water reactors. To evaluate the proposed technique, the power flattening of a VVER-1000 core is considered as an objective function although other variables such as K eff , power peaking factor, burn up and cycle length can also be taken into account. The proposed optimization method is applied to a core design optimization problem previously solved with Genetic and Particle Swarm Intelligence Algorithm. The results, convergence rate and reliability of the new method are quite promising and show that the ABC algorithm performs very well and is comparable to the canonical Genetic Algorithm and Particle Swarm Intelligence, hence demonstrating its potential for other optimization applications in nuclear engineering field as, for instance, the cascade problems.

  12. Investigation of R-Factor for steel moment frame combined with cold-formed steel structures under different load patterns using pushover analysis

    Directory of Open Access Journals (Sweden)

    Siavash Sadeghi

    2017-08-01

    Full Text Available The use of Lightweight Steel Frames (LSF has grown considerably in recent years all over the world due to its unique advantages such as being cost-effective and light-weight, easy and quick installment. Another application is to use them in order to increase the number of new floors on the existing buildings. But since the behavior of the combined structure is not clear, there is no possibility of increasing new floors with Lightweight Steel Frames. Therefore, through selecting and modeling three buildings of three, five and seven floors with steel moment frames in SAP2000 software and adding one or two new floors using Lightweight Steel Frames (LSF and conducting a non-linear static analysis with three different lateral load pattern, we dealt with the seismic behavior and determined the behavior coefficient of each of the combined structures. The results indicated that the use of cold-formed structures in order to add story do not have a significant impact on R-factor. In addition, R-factor depends on the type of the side loading pattern.

  13. PWR core design, neutronics evaluation and fuel cycle analysis for thorium-uranium breeding recycle

    International Nuclear Information System (INIS)

    Bi, G.; Liu, C.; Si, S.

    2012-01-01

    This paper was focused on core design, neutronics evaluation and fuel cycle analysis for Thorium-Uranium Breeding Recycle in current PWRs, without any major change to the fuel lattice and the core internals, but substituting the UOX pellet with Thorium-based pellet. The fuel cycle analysis indicates that Thorium-Uranium Breeding Recycle is technically feasible in current PWRs. A 4-loop, 193-assembly PWR core utilizing 17 x 17 fuel assemblies (FAs) was taken as the model core. Two mixed cores were investigated respectively loaded with mixed reactor grade Plutonium-Thorium (PuThOX) FAs and mixed reactor grade 233 U-Thorium (U 3 ThOX) FAs on the basis of reference full Uranium oxide (UOX) equilibrium-cycle core. The UOX/PuThOX mixed core consists of 121 UOX FAs and 72 PuThOX FAs. The reactor grade 233 U extracted from burnt PuThOX fuel was used to fabrication of U 3 ThOX for starting Thorium-. Uranium breeding recycle. In UOX/U 3 ThOX mixed core, the well designed U 3 ThOX FAs with 1.94 w/o fissile uranium (mainly 233 U) were located on the periphery of core as a blanket region. U 3 ThOX FAs remained in-core for 6 cycles with the discharged burnup achieving 28 GWD/tHM. Compared with initially loading, the fissile material inventory in U 3 ThOX fuel has increased by 7% via 1-year cooling after discharge. 157 UOX fuel assemblies were located in the inner of UOX/U 3 ThOX mixed core refueling with 64 FAs at each cycle. The designed UOX/PuThOX and UOX/U 3 ThOX mixed core satisfied related nuclear design criteria. The full core performance analyses have shown that mixed core with PuThOX loading has similar impacts as MOX on several neutronic characteristic parameters, such as reduced differential boron worth, higher critical boron concentration, more negative moderator temperature coefficient, reduced control rod worth, reduced shutdown margin, etc.; while mixed core with U 3 ThOX loading on the periphery of core has no visible impacts on neutronic characteristics compared

  14. Wave loads on offshore wind turbines: Accurate tools and structural response

    DEFF Research Database (Denmark)

    Bredmose, Henrik

    2014-01-01

    Can the design models for offshore wind turbine wave loads be improved? And how will that change the overall load picture? Core questions of the Wave Loads project which was finalised in 2013 with two PhD theses, response calculations for jackets and monopiles, a detailed set of experiments and a3D...... coupled CFD wave solver...

  15. A methodology for Electric Power Load Forecasting

    Directory of Open Access Journals (Sweden)

    Eisa Almeshaiei

    2011-06-01

    Full Text Available Electricity demand forecasting is a central and integral process for planning periodical operations and facility expansion in the electricity sector. Demand pattern is almost very complex due to the deregulation of energy markets. Therefore, finding an appropriate forecasting model for a specific electricity network is not an easy task. Although many forecasting methods were developed, none can be generalized for all demand patterns. Therefore, this paper presents a pragmatic methodology that can be used as a guide to construct Electric Power Load Forecasting models. This methodology is mainly based on decomposition and segmentation of the load time series. Several statistical analyses are involved to study the load features and forecasting precision such as moving average and probability plots of load noise. Real daily load data from Kuwaiti electric network are used as a case study. Some results are reported to guide forecasting future needs of this network.

  16. HTR-proteus pebble bed experimental program core 4: random packing with a 1:1 moderator-to-fuel pebble ratio

    Energy Technology Data Exchange (ETDEWEB)

    Bess, John D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Montierth, Leland M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sterbentz, James W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Briggs, J. Blair [Idaho National Lab. (INL), Idaho Falls, ID (United States); Gougar, Hans D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Snoj, Luka [Jozef Stefan Inst. (IJS), Ljubljana (Slovenia); Lengar, Igor [Jozef Stefan Inst. (IJS), Ljubljana (Slovenia); Koberl, Oliver [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    2014-03-01

    In its deployment as a pebble bed reactor (PBR) critical facility from 1992 to 1996, the PROTEUS facility was designated as HTR-PROTEUS. This experimental program was performed as part of an International Atomic Energy Agency (IAEA) Coordinated Research Project (CRP) on the Validation of Safety Related Physics Calculations for Low Enriched HTGRs. Within this project, critical experiments were conducted for graphite moderated LEU systems to determine core reactivity, flux and power profiles, reaction-rate ratios, the worth of control rods, both in-core and reflector based, the worth of burnable poisons, kinetic parameters, and the effects of moisture ingress on these parameters. One benchmark experiment was evaluated in this report: Core 4. Core 4 represents the only configuration with random pebble packing in the HTR-PROTEUS series of experiments, and has a moderator-to-fuel pebble ratio of 1:1. Three random configurations were performed. The initial configuration, Core 4.1, was rejected because the method for pebble loading, separate delivery tubes for the moderator and fuel pebbles, may not have been completely random; this core loading was rejected by the experimenters. Cores 4.2 and 4.3 were loaded using a single delivery tube, eliminating the possibility for systematic ordering effects. The second and third cores differed slightly in the quantity of pebbles loaded (40 each of moderator and fuel pebbles), stacked height of the pebbles in the core cavity (0.02 m), withdrawn distance of the stainless steel control rods (20 mm), and withdrawn distance of the autorod (30 mm). The 34 coolant channels in the upper axial reflector and the 33 coolant channels in the lower axial reflector were open. Additionally, the axial graphite fillers used in all other HTR-PROTEUS configurations to create a 12-sided core cavity were not used in the randomly packed cores. Instead, graphite fillers were placed on the cavity floor, creating a funnel-like base, to discourage ordering

  17. HTR-PROTEUS PEBBLE BED EXPERIMENTAL PROGRAM CORE 4: RANDOM PACKING WITH A 1:1 MODERATOR-TO-FUEL PEBBLE RATIO

    Energy Technology Data Exchange (ETDEWEB)

    John D. Bess; Leland M. Montierth

    2013-03-01

    In its deployment as a pebble bed reactor (PBR) critical facility from 1992 to 1996, the PROTEUS facility was designated as HTR-PROTEUS. This experimental program was performed as part of an International Atomic Energy Agency (IAEA) Coordinated Research Project (CRP) on the Validation of Safety Related Physics Calculations for Low Enriched HTGRs. Within this project, critical experiments were conducted for graphite moderated LEU systems to determine core reactivity, flux and power profiles, reaction-rate ratios, the worth of control rods, both in-core and reflector based, the worth of burnable poisons, kinetic parameters, and the effects of moisture ingress on these parameters. One benchmark experiment was evaluated in this report: Core 4. Core 4 represents the only configuration with random pebble packing in the HTR-PROTEUS series of experiments, and has a moderator-to-fuel pebble ratio of 1:1. Three random configurations were performed. The initial configuration, Core 4.1, was rejected because the method for pebble loading, separate delivery tubes for the moderator and fuel pebbles, may not have been completely random; this core loading was rejected by the experimenters. Cores 4.2 and 4.3 were loaded using a single delivery tube, eliminating the possibility for systematic ordering effects. The second and third cores differed slightly in the quantity of pebbles loaded (40 each of moderator and fuel pebbles), stacked height of the pebbles in the core cavity (0.02 m), withdrawn distance of the stainless steel control rods (20 mm), and withdrawn distance of the autorod (30 mm). The 34 coolant channels in the upper axial reflector and the 33 coolant channels in the lower axial reflector were open. Additionally, the axial graphite fillers used in all other HTR-PROTEUS configurations to create a 12-sided core cavity were not used in the randomly packed cores. Instead, graphite fillers were placed on the cavity floor, creating a funnel-like base, to discourage ordering

  18. Localized Effects in the Nonlinear Behavior of Sandwich Panels with a Transversely Flexible Core

    DEFF Research Database (Denmark)

    Frostig, Y.; Thomsen, Ole Thybo

    2005-01-01

    This paper presents the results of an investigation of the role of localized effects within the geometrically nonlinear domain on structural sandwich panels with a "compliant" core. Special emphasis is focused on the nonlinear response near concentrated loads and stiffened core regions. The adopted...... nonlinear analysis approach incorporates the effects of the vertical flexibility of the core, and it is based on the approach of the High-order Sandwich Panel Theory (HSAPT). The results demonstrate that the effects of localized loads, when taken into the geometrically nonlinear domain, change the response...... of the panel from a strength problem controlled by stress constraints into a stability problem with unstable limit point behavior when force-controlled loads are applied. The stability problem emerge as the nonlinear response develops with the formation of a small number of buckling waves in the compressed...

  19. Flexural fatigue failures and lives of Eco-Core sandwich beams

    International Nuclear Information System (INIS)

    Hossain, Mohammad Mynul; Shivakumar, Kunigal

    2014-01-01

    Highlights: • Eco-Core sandwich beam is flexural fatigue tested to study its fatigue response. • The core showed three failure types: damage onset, progression and final failure. • These failures were found to be represented by 1%, 5% and 7% change in compliance. • The fatigue stress-life (S–N) relationship follows a power low, σ max /σ ct = A o N α . • The fatigue failure was by multiple vertical cracks followed by 45° shear failure. - Abstract: Eco-Core is a class of syntactic foam made from small volume of high char yield binder and large volume of a class of flyash for fire resistance application. Very little or no flexural fatigue data of this class of core material is reported in the open literature. This paper presents a flexural fatigue response of Eco-Core in a glass/vinyl ester composite face sheet sandwich beam. A four-point loaded flexural test specimen was designed and tested in static and fatigue loadings to cause tension failure in the core. The fatigue test was conducted at maximum cyclic stress (σ max ) ranged from 0.7σ ct to 0.9σ ct , where σ ct is the static flexural strength of the core. The sinusoidal loading frequency of 2 Hz with the stress ratio of 0.1 was used. Flexural fatigue failure modes of Eco-Core sandwich beam were classified: damage onset (single tension crack), damage progression (multiple tension cracks) and ultimate failure (a combination of tension and shear). These failures were characterized by 1%, 5% and 7% changes in compliance that corresponds to N 1% , N 5% and N 7% lives. The fatigue stress-life (S–N) relationship was found to follow the well-known power law equation, σ max /σ ct = A o N α . The constants A o and α were established for all three types of failures. The endurance limit was established based on 1 million cycles limit and it was found to be 0.65σ ct , 0.70σ ct and 0.71σ ct , respectively for the three modes of failure. Flexural fatigue and static failure modes of Eco-Core sandwich

  20. Patterned carbon nanotubes fabricated by the combination of microcontact printing and diblock copolymer micelles.

    Science.gov (United States)

    Xu, Peng; Ji, Xin; Qi, Junlei; Yang, Hongmin; Zheng, Weitao; Abetz, Volker; Jiang, Shimei; Shen, Jiacong

    2010-01-01

    A convenient approach to synthesize patterned carbon nanotubes (CNTs) of three morphologies on printed substrates by combination of microcontact printing (microCP) and a plasma-enhanced chemical vapor deposition (PECVD) process is presented. Micelles of polystyrene-block-poly-(2-vinylpyridine) (PS-b-P2VP) in toluene were used as nanoreactors to fabricate FeCl3 in the core domains, and the complex solution was used as an ink to print films with polydimethylsiloxane (PDMS) stamps, different morphologies (porous, dots and stripes patterns) of the FeCl3-loaded micellar films were left onto silicon substrates after printed. After removing the polymer by thermal decomposition, the left iron oxide cluster arrays on the substrate were used as catalysts for the growth of CNTs by the process of PECVD, where the CNTs uniformly distributed on the substrates according to the morphologies of patterned catalysts arrays.

  1. Analysis and Behaviour of Sandwich Panels with Profiled Metal Facings under Transverse Load

    Directory of Open Access Journals (Sweden)

    M. Budescu

    2004-01-01

    Full Text Available Sandwich panels with thin steel facings and polyurethane core combine the load-carrying capacity of metal facings and protection functions with core properties. The core separates the two facings and keeps them in a stable condition, transmits shear between external layers, provides most of the shear rigidity and occasionally makes of useful contribution to the bending stiffness of the sandwich construction as a whole [1]. An experimental program on sandwich panels has been organized to prove that the mechanical properties of core and interface satisfy the load-carrying requirements for structural sandwich panels. The analysis of sandwich panels with deep profiles facings for cladding elements, respectively the roof constructions, has been carried out according to the European design norms [1], [5].

  2. Pay for load demand - electricity pricing with load demand component

    International Nuclear Information System (INIS)

    Pyrko, Jurek; Sernhed, Kerstin; Abaravicius, Juozas

    2003-01-01

    This publication is part of a project called Direct and Indirect Load Control in Buildings. Peak load problems have attracted considerable attention in Sweden during last three winters, caused by a significant decrease in available reserve power, which is a consequence of political decisions and liberalisation of the electricity market. A possible way to lower peak loads, avoiding electricity shortages and reducing electricity costs both for users and utilities, is to make customers experience the price difference during peak load periods and, in this way, become more aware of their energy consumption pattern and load demand. As of January 1st 2001, one of the Swedish energy utilities - Sollentuna Energi - operating in the Stockholm area, introduced a new electricity tariff with differentiated grid fees based on a mean value of the peak load every month. This tariff was introduced for all residential customers in the service area. The objective of this study is to investigate the extent to which a Load Demand Component, included in electricity pricing, can influence energy use and load demand in residential buildings. What are the benefits and disadvantages for customers and utilities? This paper investigates the impact of the new tariff on the utility and different types of typical residential customers, making comparisons with previous tariff. Keywords Load demand, electricity pricing, tariff, residential customers, energy behaviour

  3. Pebble bed test reactor in peu-a-peu load

    International Nuclear Information System (INIS)

    Kranz, L.

    1988-03-01

    The presented work deals with a new type of load model for high temperature reactors with spherical fuels: the peu-a-peu load system. Using this load system the reactor core is only filled partially in the beginning of the power operation. But it has to be a critical base core. With proceeding burn-off the reactor is filled up with further fuel elements the way that it stays always just critically. When the reactor is filled up completely with fuel elements, the reactor operation has to be interrupted and the reactor has to be discharged. Afterwards a new cycle can start like the one just described. A reference reactor with 100 MW thermal power is investigated in this work in detail and should make clear the way of function of the load system and the base idea of 'simplicity and safety'. The improvement proposal to use again a part of the fuel elements of a cycle for the next cycle minimizes the higher specific uranium need of a peu-a-peu reactor decisively. (orig.) [de

  4. Core seismic methods verification report

    International Nuclear Information System (INIS)

    Olsen, B.E.; Shatoff, H.D.; Rakowski, J.E.; Rickard, N.D.; Thompson, R.W.; Tow, D.; Lee, T.H.

    1979-12-01

    This report presents the description and validation of the analytical methods for calculation of the seismic loads on an HTGR core and the core support structures. Analytical modeling, integration schemes, parameter assignment, parameter sensitivity, and correlation with test data are key topics which have been covered in detail. Much of the text concerns the description and the results of a series of scale model tests performed to obtain data for code correlation. A discussion of scaling laws, model properties, seismic excitation, instrumentation, and data reduction methods is also presented, including a section on the identification and calculation of statistical errors in the test data

  5. Steady- and transient-state analyses of fully ceramic microencapsulated fuel loaded reactor core via two-temperature homogenized thermal-conductivity model

    International Nuclear Information System (INIS)

    Lee, Yoonhee; Cho, Nam Zin

    2015-01-01

    Highlights: • Fully ceramic microencapsulated fuel-loaded core is analyzed via a two-temperature homogenized thermal-conductivity model. • The model is compared to harmonic- and volumetric-average thermal conductivity models. • The three thermal analysis models show ∼100 pcm differences in the k eff eigenvalue. • The three thermal analysis models show more than 70 K differences in the maximum temperature. • There occur more than 3 times differences in the maximum power for a control rod ejection accident. - Abstract: Fully ceramic microencapsulated (FCM) fuel, a type of accident-tolerant fuel (ATF), consists of TRISO particles randomly dispersed in a SiC matrix. In this study, for a thermal analysis of the FCM fuel with such a high heterogeneity, a two-temperature homogenized thermal-conductivity model was applied by the authors. This model provides separate temperatures for the fuel-kernels and the SiC matrix. It also provides more realistic temperature profiles than those of harmonic- and volumetric-average thermal conductivity models, which are used for thermal analysis of a fuel element in VHTRs having a composition similar to the FCM fuel, because such models are unable to provide the fuel-kernel and graphite matrix temperatures separately. In this study, coupled with a neutron diffusion model, a FCM fuel-loaded reactor core is analyzed via a two-temperature homogenized thermal-conductivity model at steady- and transient-states. The results are compared to those from harmonic- and volumetric-average thermal conductivity models, i.e., we compare k eff eigenvalues, power distributions, and temperature profiles in the hottest single-channel at steady-state. At transient-state, we compare total powers, reactivity, and maximum temperatures in the hottest single-channel obtained by the different thermal analysis models. The different thermal analysis models and the availability of fuel-kernel temperatures in the two-temperature homogenized thermal

  6. TMI-2 RCS activity and solids loading from aggressive defueling techniques

    International Nuclear Information System (INIS)

    Baston, V.F.; Hofstetter, K.J.

    1987-01-01

    One of the tasks performed in support of defueling operations has involved mechanical degradation of resolidified material (core crust layer) utilizing the core drilling equipment. Prior to actual drilling operations, an engineering estimate was made for the anticipated increase in radioactivity and particulate loading to the Three Mile Island Unit 2 (TMI-2) reactor coolant system (RCS). Predictions for RCS activity and particulate loading increases were important to evaluate the cleanup requirements for the defueling water cleanup system to minimize both the dose rates for defueling personnel and water turbidity

  7. The influence of the depth of k-core layers on the robustness of interdependent networks against cascading failures

    Science.gov (United States)

    Dong, Zhengcheng; Fang, Yanjun; Tian, Meng; Kong, Zhengmin

    The hierarchical structure, k-core, is common in various complex networks, and the actual network always has successive layers from 1-core layer (the peripheral layer) to km-core layer (the core layer). The nodes within the core layer have been proved to be the most influential spreaders, but there is few work about how the depth of k-core layers (the value of km) can affect the robustness against cascading failures, rather than the interdependent networks. First, following the preferential attachment, a novel method is proposed to generate the scale-free network with successive k-core layers (KCBA network), and the KCBA network is validated more realistic than the traditional BA network. Then, with KCBA interdependent networks, the effect of the depth of k-core layers is investigated. Considering the load-based model, the loss of capacity on nodes is adopted to quantify the robustness instead of the number of functional nodes in the end. We conduct two attacking strategies, i.e. the RO-attack (Randomly remove only one node) and the RF-attack (Randomly remove a fraction of nodes). Results show that the robustness of KCBA networks not only depends on the depth of k-core layers, but also is slightly influenced by the initial load. With RO-attack, the networks with less k-core layers are more robust when the initial load is small. With RF-attack, the robustness improves with small km, but the improvement is getting weaker with the increment of the initial load. In a word, the lower the depth is, the more robust the networks will be.

  8. GNPS 18-months fuel cycles core thermal hydraulic design

    International Nuclear Information System (INIS)

    Liu Changwen; Zhou Zhou

    2002-01-01

    GNPS begins to implement the 18-month fuel cycles from the initial annual reload at cycle 9, thus the initial core thermal hydraulic design is not valid any more. The new critical heat flux (CHF) correlation, FC, which is developed by Framatome, is used in the design, and the generalized statistical methodology (GSM) instead of the initial deterministic methodology is used to determine the DNBR design limit. As the AFA 2G and AFA 3G are mixed loaded in the transition cycle, it will result that the minimum DNBR in the mixed core is less than that of AFA 3G homogenous core, the envelop mixed core DNBR penalty is given. Consequently the core physical limit for mixed core and equilibrium cycles, and the new over temperature ΔT overpower ΔT are determined

  9. Fuel and Core Design Verification for Extended Power Up-rate in Ringhals Unit 3

    International Nuclear Information System (INIS)

    Gabrielsson, Petter; Stepniewski, Marek; Almberger, Jan

    2006-01-01

    Vattenfall's Westinghouse 3-loop PWR Ringhals 3 at the western coast of Sweden is scheduled for an extended power up-rate from 2783 to 3160 MWt in 2007, in the frame of the so called GREAT-project. The project will realize an up-rating initially planned and analysed back in 1995, but with a number of significant improvements outlined in this paper. For the licensing of the up-rated power level, a complete revision of the safety analyses, radiological analyses and systems verifications in FSAR is being performed by Westinghouse Electrics Belgium. The work is performed in close cooperation with Vattenfall in the areas of core calculations and input data. For more than a decade, Vattenfall has performed all core design and reload safety evaluations (RSE) for Ringhals, independent of fuel vendors and safety analysts. In GREAT all core parameters in the safety analysis checklist (SAC) used for the safety analyses are determined based upon a set of nine reference loading patterns designed by Vattenfall covering a wide range of fuel and core designs and extreme cycle-to-cycle variations. To facilitate the calculation of SAC parameters Westinghouse has provided a Reload Safety Evaluation Procedure report (RSEP) with detailed specifications for the calculation of all core parameters used in the analyses. The procedure has been automatized by Vattenfall in a set of scripts executing 3D core simulator calculations and extracting the key results. The same tools will be used in Vattenfall's future RSE for Ringhals 3. This approach is taken to obtain consistency between core designs and core calculations for the safety analyses and the cycle specific calculations, to minimize the risk for future violations of the safety analyses. (authors)

  10. Power distribution investigation in the transition phase of the low moderation type MOX fueled LWR from the high conversion core to the breeding core

    International Nuclear Information System (INIS)

    Akie, Hiroshi; Nakano, Yoshihiro; Okubo, Tsutomu

    2011-01-01

    The key concept of Innovative Water Reactor for Flexible Fuel Cycle (FLWR) is a core transition from a high conversion (HC) type to a plutonium breeding (BR) type in a same reactor system only by replacing fuel assemblies. Consequently in this transition phase, there are two types of assemblies in the same core. Due to the differences of the two assembly types, region-wise soft to hard neutron spectra appears and result in a large power peaking. Therefore, power distribution of FLWR in the HC to BR transition phase was studied by performing assembly and core calculations. For the whole core calculation, a new 14-group energy structure is developed to better represent the power distribution obtained with the fine 107-group structure than the 9-group structure in the previous evaluations. Calculations on few assemblies geometries show large local power peakings can be effectively reduced by considering plutonium enrichment distribution in an assembly. In the whole core calculation, there is a power level mismatch between HC and BR assemblies, but overall power distribution flattening is possible by optimizing fuel assemblies loading. Although the fuel loading should be decided also taking into account the void coefficient, transition from HC to BR type FLWR seems feasible without difficulty. (author)

  11. Accelerating the SCE-UA Global Optimization Method Based on Multi-Core CPU and Many-Core GPU

    Directory of Open Access Journals (Sweden)

    Guangyuan Kan

    2016-01-01

    Full Text Available The famous global optimization SCE-UA method, which has been widely used in the field of environmental model parameter calibration, is an effective and robust method. However, the SCE-UA method has a high computational load which prohibits the application of SCE-UA to high dimensional and complex problems. In recent years, the hardware of computer, such as multi-core CPUs and many-core GPUs, improves significantly. These much more powerful new hardware and their software ecosystems provide an opportunity to accelerate the SCE-UA method. In this paper, we proposed two parallel SCE-UA methods and implemented them on Intel multi-core CPU and NVIDIA many-core GPU by OpenMP and CUDA Fortran, respectively. The Griewank benchmark function was adopted in this paper to test and compare the performances of the serial and parallel SCE-UA methods. According to the results of the comparison, some useful advises were given to direct how to properly use the parallel SCE-UA methods.

  12. Dehydration of core/shell fruits

    OpenAIRE

    Liu, Y.; Yang, Xiaosong; Cao, Y.; Wang, Z.; Chen, B.; Zhang, Jian J.; Zhang, H.

    2015-01-01

    Dehydrated core/shell fruits, such as jujubes, raisins and plums, show very complex buckles and wrinkles on their exocarp. It is a challenging task to model such complicated patterns and their evolution in a virtual environment even for professional animators. This paper presents a unified physically-based approach to simulate the morphological transformation for the core/shell fruits in the dehydration process. A finite element method (FEM), which is based on the multiplicative decomposition...

  13. Alaska Village Electric Load Calculator

    Energy Technology Data Exchange (ETDEWEB)

    Devine, M.; Baring-Gould, E. I.

    2004-10-01

    As part of designing a village electric power system, the present and future electric loads must be defined, including both seasonal and daily usage patterns. However, in many cases, detailed electric load information is not readily available. NREL developed the Alaska Village Electric Load Calculator to help estimate the electricity requirements in a village given basic information about the types of facilities located within the community. The purpose of this report is to explain how the load calculator was developed and to provide instructions on its use so that organizations can then use this model to calculate expected electrical energy usage.

  14. Method of changing the control rod pattern in BWR type reactors

    International Nuclear Information System (INIS)

    Yoshida, Kenji.

    1984-01-01

    Purpose: To enable to change the control rod pattern in a short time with ease, as well as improve the availability factor of the reactor. Method: Control rods other than those being inserted into the reactor core are inserted into the reactor core to reduce the power by the reduction in the reactor core flow rate. Then, the control rod to be operated is operated partially for the change of the control rod pattern to restrict the linear heat rating of the fuels to less than 0.1 kW/ft per one hour to change the control pattern to the aimed control rod pattern. Then, the reactor core flow rate is increased after the pattern exchange for the control rod to increase the power. Since only the control rod operation is performed without adjusting the reactor core flow rate upon change of the control rod pattern, procedures can be made simply in a short time to thereby improve the availability factor of the reactor. (Moriyama, K.)

  15. Lateral temperature variations at the core-mantle boundary deduced from the magnetic field

    Science.gov (United States)

    Bloxham, Jeremy; Jackson, Andrew

    1990-01-01

    Recent studies of the secular variation of the earth's magnetic field over periods of a few centuries have suggested that the pattern of fluid motion near the surface of earth's outer core may be strongly influenced by lateral temperature variations in the lowermost mantle. This paper introduces a self-consistent method for finding the temperature variations near the core surface by assuming that the dynamical balance there is geostrophic and that lateral density variations there are thermal in origin. As expected, the lateral temperature variations are very small. Some agreement is found between this pattern and the pattern of topography of the core-mantle boundary, but this does not conclusively answer to what extent core surface motions are controlled by the mantle, rather than being determined by processes in the core.

  16. Fatigue Debond Growth in Sandwich Structures Loaded in Mixed Mode Bending (MMB)

    DEFF Research Database (Denmark)

    Quispitupa, Amilcar; Berggreen, Christian; Carlsson, Leif A.

    2008-01-01

    Static and cyclic debond growth in sandwich specimens loaded in mixed mode bending (MMB) is examined. The MMB sandwich specimens were manufactured using H100 PVC foam core and E-glass/polyester non-crimp quadro-axial [0/45/90/-45]s DBLT-850 face sheets. Static test were performed to determine...... the fracture toughness of the debonded sandwich specimens at different mixed mode loadings. The mixed mode ratio (mode I to mode II) was controlled by changing the lever arm distance of the MMB test rig. Compliance technique and visual inspection was employed to measure the crack length during fatigue. Fatigue...... tests were performed at 90% of the static fracture toughness at a loading ratio of R=0.1. Fatigue results revealed higher debond crack growth rates when the lever arm distance was increased. For some specimens, the crack propagated just below the face/core interface in the foam core and for others...

  17. Nuclear start-up, testing and core management of the Fast Test Reactor (FTR)

    International Nuclear Information System (INIS)

    Bennett, R.A.; Daughtry, J.W.; Harris, R.A.; Jones, D.H.; Nelson, J.V.; Rawlins, J.A.; Rothrock, R.B.; Sevenich, R.A.; Zimmerman, B.D.

    1980-01-01

    Plans for the nuclear start-up, low and high power physics testing, and core management of the Fast Test Reactor (FTR) are described. Owing to the arrangement of the fuel-handling system, which permits continuous instrument lead access to experiments during refuelling, it is most efficient to load the reactor in an asymmetric fashion, filling one-third core sectors at a time. The core neutron level will be monitored during this process using both in-core and ex-core detectors. A variety of physics tests are planned following the core loading. Because of the experimental purpose of the reactor, these tests will include a comprehensive characterization programme involving both active and passive neutron and gamma measurements. Following start-up tests, the FTR will be operated as a fast neutron irradiation facility, to test a wide variety of fast reactor core components and materials. Nuclear analyses will be made prior to each irradiation cycle to confirm that the planned arrangement of standard and experimental components satisfies all safety and operational constraints, and that all experiments are located so as to achieve their desired irradiation environment. (author)

  18. Data Rate Estimation for Wireless Core-to-Cache Communication in Multicore CPUs

    Directory of Open Access Journals (Sweden)

    M. Komar

    2015-01-01

    Full Text Available In this paper, a principal architecture of common purpose CPU and its main components are discussed, CPUs evolution is considered and drawbacks that prevent future CPU development are mentioned. Further, solutions proposed so far are addressed and a new CPU architecture is introduced. The proposed architecture is based on wireless cache access that enables a reliable interaction between cores in multicore CPUs using terahertz band, 0.1-10THz. The presented architecture addresses the scalability problem of existing processors and may potentially allow to scale them to tens of cores. As in-depth analysis of the applicability of the suggested architecture requires accurate prediction of traffic in current and next generations of processors, we consider a set of approaches for traffic estimation in modern CPUs discussing their benefits and drawbacks. The authors identify traffic measurements by using existing software tools as the most promising approach for traffic estimation, and they use Intel Performance Counter Monitor for this purpose. Three types of CPU loads are considered including two artificial tests and background system load. For each load type the amount of data transmitted through the L2-L3 interface is reported for various input parameters including the number of active cores and their dependences on the number of cores and operational frequency.

  19. Fluorescence in situ hybridization and qPCR to detect Merkel cell polyomavirus physical status and load in Merkel cell carcinomas.

    Science.gov (United States)

    Haugg, Anke M; Rennspiess, Dorit; zur Hausen, Axel; Speel, Ernst-Jan M; Cathomas, Gieri; Becker, Jürgen C; Schrama, David

    2014-12-15

    The Merkel cell polyomavirus (MCPyV) is detected in 80% of Merkel cell carcinomas (MCC). Clonal integration and tumor-specific mutations in the large T antigen are strong arguments that MCPyV is a human tumor virus. However, the relationship between viral presence and cancer induction remains discussed controversially. Since almost all studies on virus prevalence are based on PCR techniques, we performed MCPyV fluorescence in situ hybridization (FISH) on MCC to gain information about the quality of the viral presence on the single cell level. MCPyV-FISH was performed on tissue microarrays containing 62 formalin-fixed and paraffin-embedded tissue samples including all tumor grades of 42 patients. The hybridization patterns were correlated to the qPCR data determined on corresponding whole tissue sections. Indeed, MCPyV-FISH and qPCR data were highly correlated, i.e. 83% for FISH-positive and 93% for FISH-negative cores. Accordingly, the mean of the qPCR values of all MCPyV-positive cores differed significantly from the mean of the negative cores (p = 0.0076). Importantly, two hybridization patterns were definable in the MCPyV-FISH: a punctate pattern (85%) indicating viral integration, which correlated with a moderate viral abundance and a combination of the punctate with a diffuse pattern (15%), suggesting a possible coexistence of integrated and episomal virus which was associated with very high viral load and VP1 expression. Thus, MCPyV-FISH adds important information on the single cell level within the histomorphological context and could therefore be an important tool to further elucidate MCPyV related carcinogenesis. © 2014 UICC.

  20. Report on the meeting for examining replacing core

    International Nuclear Information System (INIS)

    1977-01-01

    At the time of examining the application for approval of reactor installation, it must be confirmed that the safety of the concerned reactor is secured with not only the initially loaded core but also the replacing core. Besides, it must be confirmed again that the various criteria concerning the safety are satisfied after the start of operation, because a part of the parameters of the replacing core is dependent on the operational history. On the above described viewpoints, the main parameters affecting the safety and the nuclear and thermal limits of replacing core were reviewed. Moreover, the contents of description concerning replacing core in the application form were examined. As the general matters concerning the safety of replacing core, the scram reactivity curves for BWRs and PWRs, the method of description in the application form concerning the fuel containing gadolinia, and the use of burnable poison in replacing core were examined. The meeting for examining replacing core was organized on September 20, 1976, at the Committee for Examining Reactor Safety, and this report was compiled as the results of 10 meetings. (Kako, I.)

  1. The AVRDC - The World Vegetable Center mungbean (Vigna radiata) core and mini core collections.

    Science.gov (United States)

    Schafleitner, Roland; Nair, Ramakrishnan Madhavan; Rathore, Abhishek; Wang, Yen-wei; Lin, Chen-yu; Chu, Shu-hui; Lin, Pin-yun; Chang, Jian-Cheng; Ebert, Andreas W

    2015-04-29

    Large ex situ germplasm collections generally harbor a wide range of crop diversity. AVRDC--The World Vegetable Center is holding in trust the world's second largest mungbean (Vigna radiata) germplasm collection with more than 6,700 accessions. Screening large collections for traits of interest is laborious and expensive. To enhance the access of breeders to the diversity of the crop, mungbean core and mini core collections have been established. The core collection of 1,481 entries has been built by random selection of 20% of the accessions after geographical stratification and subsequent cluster analysis of eight phenotypic descriptors in the whole collection. Summary statistics, especially the low differences of means, equal variance of the traits in both the whole and core collection and the visual inspection of quantile-quantile plots comparing the variation of phenotypic traits present in both collections indicated that the core collection well represented the pattern of diversity of the whole collection. The core collection was genotyped with 20 simple sequence repeat markers and a mini core set of 289 accessions was selected, which depicted the allele and genotype diversity of the core collection. The mungbean core and mini core collections plus their phenotypic and genotypic data are available for distribution to breeders. It is expected that these collections will enhance the access to biodiverse mungbean germplasm for breeding.

  2. Simple heuristics: A bridge between manual core design and automated optimization methods

    International Nuclear Information System (INIS)

    White, J.R.; Delmolino, P.M.

    1993-01-01

    The primary function of RESCUE is to serve as an aid in the analysis and identification of feasible loading patterns for LWR reload cores. The unique feature of RESCUE is that its physics model is based on some recent advances in generalized perturbation theory (GPT) methods. The high order GPT techniques offer the accuracy, computational efficiency, and flexibility needed for the implementation of a full range of capabilities within a set of compatible interactive (manual and semi-automated) and automated design tools. The basic design philosophy and current features within RESCUE are reviewed, and the new semi-automated capability is highlighted. The online advisor facility appears quite promising and it provides a natural bridge between the traditional trial-and-error manual process and the recent progress towards fully automated optimization sequences. (orig.)

  3. Influence of core sand properties on flow dynamics of core shooting process based on experiment and multiphase simulation

    Directory of Open Access Journals (Sweden)

    Chang-jiang Ni

    2017-03-01

    Full Text Available The influence of core sand properties on flow dynamics was investigated synchronously with various core sands, transparent core-box and high-speed camera. To confirm whether the core shooting process has significant turbulence, the flow pattern of sand particles in the shooting head and core box was reproduced with colored core sands. By incorporating the kinetic theory of granular flow (KTGF, kinetic-frictional constitutive correlation and turbulence model, a two-fluid model (TFM was established to study the flow dynamics of the core shooting process. Two-fluid model (TFM simulations were then performed and a areasonable agreement was achieved between the simulation and experimental results. Based on the experimental and simulation results, the effects of turbulence, sand density, sand diameter and binder ratio were analyzed in terms of filling process, sand volume fraction (αs and sand velocity (Vs.

  4. Insert Design and Manufacturing for Foam-Core Composite Sandwich Structures

    Science.gov (United States)

    Lares, Alan

    Sandwich structures have been used in the aerospace industry for many years. The high strength to weight ratios that are possible with sandwich constructions makes them desirable for airframe applications. While sandwich structures are effective at handling distributed loads such as aerodynamic forces, they are prone to damage from concentrated loads at joints or due to impact. This is due to the relatively thin face-sheets and soft core materials typically found in sandwich structures. Carleton University's Uninhabited Aerial Vehicle (UAV) Project Team has designed and manufactured a UAV (GeoSury II Prototype) which features an all composite sandwich structure fuselage structure. The purpose of the aircraft is to conduct geomagnetic surveys. The GeoSury II Prototype serves as the test bed for many areas of research in advancing UAV technologies. Those areas of research include: low cost composite materials manufacturing, geomagnetic data acquisition, obstacle detection, autonomous operations and magnetic signature control. In this thesis work a methodology for designing and manufacturing inserts for foam-core sandwich structures was developed. The results of this research work enables a designer wishing to design a foam-core sandwich airframe structure, a means of quickly manufacturing optimized inserts for the safe introduction of discrete loads into the airframe. The previous GeoSury II Prototype insert designs (v.1 & v.2) were performance tested to establish a benchmark with which to compare future insert designs. Several designs and materials were considered for the new v.3 inserts. A plug and sleeve design was selected, due to its ability to effectively transfer the required loads to the sandwich structure. The insert material was chosen to be epoxy, reinforced with chopped carbon fibre. This material was chosen for its combination of strength, low mass and also compatibility with the face-sheet material. The v.3 insert assembly is 60% lighter than the

  5. Structural failure analysis of reactor vessels due to molten core debris

    International Nuclear Information System (INIS)

    Pfeiffer, P.A.

    1993-01-01

    Maintaining structural integrity of the reactor vessel during a postulated core melt accident is an important safety consideration in the design of the vessel. This paper addresses the failure predictions of the vessel due to thermal and pressure loadings from the molten core debris depositing on the lower head of the vessel. Different loading combinations were considered based on a wet or dry cavity and pressurization of the vessel based on operating pressure or atmospheric (pipe break). The analyses considered both short term (minutes) and long term (days) failure modes. Short term failure modes include creep at elevated temperatures and plastic instabilities of the structure. Long term failure modes are caused by creep rupture that lead to plastic instability of the structure. The analyses predict the reactor vessel will remain intact after the core melt has deposited on the lower vessel head

  6. Application of load follow operation to equilibrium cycle of OPR1000

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyeongju; Choe, Jiwon; Lee, Deokjung [Interdisciplinary School of Green Energy, Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2012-10-15

    All nuclear power plants in Korea are operated at a base load, that is 100% rated power, and do not rely largely on power tracking control except for startup, shutdown, and some minor problem occurrences. However, if the electricity from nuclear power plants exceeds 50% of total electricity generation according to national energy plan, load follow operation is necessary to efficiently use the electrical energy. But it is very difficult to control the axial power distribution and reactor core reactivity at the same time as needed because of variations in nuclear system parameters. In 1990s, an advanced reactor control algorithm, Mode-K, was developed which uses regulation banks, boron control, and a heavy-worth bank (H-bank). The regulation banks and boron control are used for core reactivity control and the H-bank is used for the control of axial power shape. In this study, reactor core simulations with HELIOS/MASTER code system using Mode-K strategy are applied to the daily load follow operation in equilibrium cycle of OPR1000.

  7. Evaluation of Thin Kevlar-Epoxy Fabric Panels Subjected to Shear Loading

    Science.gov (United States)

    Baker, Donald J.

    1996-01-01

    The results of an analytical and experimental investigation of 4-ply Kevlar-49-epoxy panels loaded by in-plane shear are presented. Approximately one-half of the panels are thin-core sandwich panels and the other panels are solid-laminate panels. Selected panels were impacted with an aluminum sphere at a velocity of either 150 or 220 ft/sec. The strength of panels impacted at 150 ft/sec was not reduced when compared to the strength of the undamaged panels, but the strength of panels impacted at 220 ft/sec was reduced by 27 to 40 percent. Results are presented for panels that were cyclically loaded from a load less than the buckling load to a load in the postbuckling load range. The thin-core sandwich panels had a lower fatigue life than the solid panels. The residual strength of the solid and sandwich panels cycled more than one million cycles exceeded the baseline undamaged panel strengths. The effect of hysteresis in the response of the sandwich panels is not significant. Results of a nonlinear finite element analysis conducted for each panel design are presented.

  8. Biotribological evaluation of artificial disc arthroplasty devices: influence of loading and kinematic patterns during in vitro wear simulation

    Science.gov (United States)

    Yue, James J.; Garcia, Rolando; Basson, Janet; Schwiesau, Jens; Fritz, Bernhard; Blömer, Wilhelm

    2008-01-01

    Wear simulation is an essential pre-clinical method to predict the mid- and long-term clinical wear behavior of newly introduced devices for total disc arthroplasty. The main requirement of a suitable method for spinal wear simulation has to be the ability to distinguish between design concepts and allow for a direct comparison of predicate devices. The objective of our study was to investigate the influence of loading and kinematic patterns based on two different protocols for spinal wear simulation (ISO/FDIS 18192-1 (2006) and ASTM F2423-05). In vitro wear simulation was performed with six activ® L lumbar artificial disc devices (Aesculap Tuttlingen, Germany). The applied kinematic pattern of movement was multidirectional for ISO (elliptic track) and unidirectional with a curvilinear shape for ASTM. Testing was done for 10 million cycles in the ISO loading mode and afterwards with the same specimens for 5 million cycles according to the ASTM protocol with a customized six-station servohydraulic spinal wear simulator (EndoLab Thansau, Germany). Gravimetrical and geometrical wear assessment, a slide track analysis correlated to an optical surface characterization, and an estimation of particle size and morphology were performed. The gravimetric wear rate for the first 10 million cycles was ISOinitial = 2.7 ± 0.3 mg/million cycles. During the ASTM test period (10–15 million cycles) a gravimetric wear rate of 0.14 ± 0.06 mg/million cycles was estimated. The wear rates between the ISO and ASTM driven simulations differ substantially (approximately 20-fold) and statistical analysis demonstrates a significant difference (p < 0.001) between the test groups. The main explanation of divergency between ISO and ASTM driven wear simulations is the multidirectional pattern of movement described in the ISO document resulting in a cross-shear stress on the polyethylene material. Due to previous retrieval observations, it seems to be very unlikely that a lumbar

  9. Fuel pattern recognition device

    International Nuclear Information System (INIS)

    Sato, Tomomi.

    1995-01-01

    The device of the present invention monitors normal fuel exchange upon fuel exchanging operation carried out in a reactor of a nuclear power plant. Namely, a fuel exchanger is movably disposed to the upper portion of the reactor and exchanges fuels. An exclusive computer receives operation signals of the fuel exchanger during operation as inputs, and outputs reactor core fuel pattern information signals to a fuel arrangement diagnosis device. An underwater television camera outputs image signals of a fuel pattern in the reactor core to an image processing device. If there is any change in the image signals for the fuel pattern as a result of the fuel exchange operation of the fuel exchanger, the image processing device outputs the change as image signals to the fuel pattern diagnosis device. The fuel pattern diagnosis device compares the pattern information signals from the exclusive computer with the image signals from the image processing device, to diagnose the result of the fuel exchange operation performed by the fuel exchanger and inform the diagnosis by means of an image display. (I.S.)

  10. Pattern formation in plastic liquid films on elastomers by ratcheting.

    Science.gov (United States)

    Huang, Jiangshui; Yang, Jiawei; Jin, Lihua; Clarke, David R; Suo, Zhigang

    2016-04-20

    Plastic liquids, also known as Bingham liquids, retain their shape when loads are small, but flow when loads exceed a threshold. We discovered that plastic liquid films coated on elastomers develop wavy patterns under cyclic loads. As the number of cycles increases, the wavelength of the patterns remains unchanged, but the amplitude of the patterns increases and then saturates. Because the patterns develop progressively under cyclic loads, we call this phenomenon as "patterning by ratcheting". We observe the phenomenon in plastic liquids of several kinds, and studied the effects of thickness, the cyclic frequency of the stretch, and the range of the stretch. Finite element simulations show that the ratcheting phenomenon can occur in materials described by a commonly used model of elastic-plastic deformation.

  11. Minor actinide transmutation on PWR burnable poison rods

    International Nuclear Information System (INIS)

    Hu, Wenchao; Liu, Bin; Ouyang, Xiaoping; Tu, Jing; Liu, Fang; Huang, Liming; Fu, Juan; Meng, Haiyan

    2015-01-01

    Highlights: • Key issues associated with MA transmutation are the appropriate loading pattern. • Commercial PWRs are the only choice to transmute MAs in large scale currently. • Considerable amount of MA can be loaded to PWR without disturbing k eff markedly. • Loading MA to PWR burnable poison rods for transmutation is an optimal loading pattern. - Abstract: Minor actinides are the primary contributors to long term radiotoxicity in spent fuel. The majority of commercial reactors in operation in the world are PWRs, so to study the minor actinide transmutation characteristics in the PWRs and ultimately realize the successful minor actinide transmutation in PWRs are crucial problem in the area of the nuclear waste disposal. The key issues associated with the minor actinide transmutation are the appropriate loading patterns when introducing minor actinides to the PWR core. We study two different minor actinide transmutation materials loading patterns on the PWR burnable poison rods, one is to coat a thin layer of minor actinide in the water gap between the zircaloy cladding and the stainless steel which is filled with water, another one is that minor actinides substitute for burnable poison directly within burnable poison rods. Simulation calculation indicates that the two loading patterns can load approximately equivalent to 5–6 PWR annual minor actinide yields without disturbing the PWR k eff markedly. The PWR k eff can return criticality again by slightly reducing the boric acid concentration in the coolant of PWR or removing some burnable poison rods without coating the minor actinide transmutation materials from PWR core. In other words, loading minor actinide transmutation material to PWR does not consume extra neutron, minor actinide just consumes the neutrons which absorbed by the removed control poisons. Both minor actinide loading patterns are technically feasible; most importantly do not need to modify the configuration of the PWR core and

  12. Study on loading coefficient in steam explosion process of corn stalk.

    Science.gov (United States)

    Sui, Wenjie; Chen, Hongzhang

    2015-03-01

    The object of this work was to evaluate the effect of loading coefficient on steam explosion process and efficacy of corn stalk. Loading coefficient's relation with loading pattern and material property was first revealed, then its effect on transfer process and pretreatment efficacy of steam explosion was assessed by established models and enzymatic hydrolysis tests, respectively, in order to propose its optimization strategy for improving the process economy. Results showed that loading coefficient was mainly determined by loading pattern, moisture content and chip size. Both compact loading pattern and low moisture content improved the energy efficiency of steam explosion pretreatment and overall sugar yield of pretreated materials, indicating that they are desirable to improve the process economy. Pretreatment of small chip size showed opposite effects in pretreatment energy efficiency and enzymatic hydrolysis performance, thus its optimization should be balanced in investigated aspects according to further techno-economical evaluation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Laser-cooled atoms inside a hollow-core photonic-crystal fiber

    DEFF Research Database (Denmark)

    Bajcsy, Michal; Hofferberth, S.; Peyronel, Thibault

    2011-01-01

    We describe the loading of laser-cooled rubidium atoms into a single-mode hollow-core photonic-crystal fiber. Inside the fiber, the atoms are confined by a far-detuned optical trap and probed by a weak resonant beam. We describe different loading methods and compare their trade-offs in terms...... of implementation complexity and atom-loading efficiency. The most efficient procedure results in loading of ∼30,000 rubidium atoms, which creates a medium with an optical depth of ∼180 inside the fiber. Compared to our earlier study this represents a sixfold increase in the maximum achieved optical depth...

  14. Synthesis of parallel and antiparallel core-shell triangular nanoparticles

    Science.gov (United States)

    Bhattacharjee, Gourab; Satpati, Biswarup

    2018-04-01

    Core-shell triangular nanoparticles were synthesized by seed mediated growth. Using triangular gold (Au) nanoparticle as template, we have grown silver (Ag) shellto get core-shell nanoparticle. Here by changing the chemistry we have grown two types of core-shell structures where core and shell is having same symmetry and also having opposite symmetry. Both core and core-shell nanoparticles were characterized using transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDX) to know the crystal structure and composition of these synthesized core-shell nanoparticles. From diffraction pattern analysis and energy filtered TEM (EFTEM) we have confirmed the crystal facet in core is responsible for such two dimensional growth of core-shell nanostructures.

  15. Design of fuel loading for Bohunice V-1 Unit 2 reaktor for fuel cycle No.19

    International Nuclear Information System (INIS)

    Majercik, J.

    1998-01-01

    The report contains description of the design of fuel loading for the fuel cycle No. 19 in the V-1 Bohunice Unit 2 reactor. Input data and computer codes used for the development of the design are shown. The fuel loading is characterized by the assortment of the fuel loaded and by the scheme of re shuffling of assemblies in the core. An evaluation of basic neutronic core parameters as relates to the compliance with safety criteria is a part of the report as well

  16. Synthesis of Pt-Sn core-shell nanoparticles deposited on SBA-15 modified

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez-Contreras, L.; Alonso-Lemus, I. [Centro de Investigacion en Materiales Avanzados S.C., Laboratorio Nacional de Nanotecnologia (Mexico); Botte, G. G. [Ohio University, Center for Electrochemical Engineering Research, Department of Chemical and Biomolecular Engineering (United States); Verde-Gomez, Y., E-mail: ysmaelverde@yahoo.com [Instituto Tecnologico de Cancun (Mexico)

    2013-07-15

    A novel one-step synthesis method to prepare Pt-Sn bimetallic nanoparticles supported on mesoporous silica with high surface area (SBA-15, 700 m{sup 2}/g) and narrow pore size distribution (around 9.5 nm) was developed. Tin incorporation plays an important dual role, to create active sites into the silica walls that serve as particles anchors center, and to grow Pt-Sn core-shell nanoparticles. High-resolution transmission and scanning electron microscopy, and X-ray diffraction pattern confirm the formation of the Pt-Sn core-shell type nanoparticles ( Almost-Equal-To 1-10 nm). The metal loading was 2.2 and 2.3 wt% for Pt and Sn, respectively. Electron microscopy results show that the metal nanoparticles were deposited not only on the matrix, but also inside of it. Structural, textural, and morphological features of the SBA-15 were slightly affected after the nanoparticles deposition, maintaining its high surface area. The results obtained suggest that Pt-Sn on SBA-15 could be attractive material for several catalytic applications, due to the narrow particle size distribution achieved (from 1 to 10 nm) the high dispersion on the support, as well as the Pt-Sn alloy developed.Graphical Abstract.

  17. Temporal-spatial patterns of three types of pesticide loadings in a middle-high latitude agricultural watershed.

    Science.gov (United States)

    Ouyang, Wei; Cai, Guanqing; Tysklind, Mats; Yang, Wanyin; Hao, Fanghua; Liu, Hongbin

    2017-10-01

    Pesticide loadings to watersheds increase during agricultural development and may vary in accordance with different crop types and seasons. High pesticide loadings can potentially result in polluted stream water. The objective of this study was to determine the pesticide loadings and concentrations of three typical pesticides (atrazine, oxadiazon, and isoprothiolane) in river water from a middle-high latitude agricultural watershed in northern China. During this study, we evaluated the watershed pesticide loss patterns for two crop types over three decades. For this purpose, we integrated data from field investigations, laboratory experiments, and modeling simulations involving a distributed hydrological solute transport model (Soil and Water Assessment Tool, SWAT). SWAT was employed to compare the temporal-spatial fate and behaviors of atrazine, oxadiazon, and isoprothiolane from 1990 to 2014 in a watershed area amounting to 141.5 km 2 . The results showed that the three pesticides could be detected at different locations throughout the watershed, and isoprothiolane was detected at the maximum value of 1.082 μg/L in surface runoff of paddy land. The temporal trend for the yearly loading of atrazine decreased slightly over time, but the trends for oxadiazon and isoprothiolane increased markedly over an 18-year analysis period. In regard to the pesticide concentrations in water, atrazine was associated with the largest value of nearly 1.4 μg/L. July and August were the found to be prime periods for pesticide loss from paddy land, and the biggest monthly loss of atrazine from dryland appeared in June. Under similar usage conditions, isoprothiolane loading from paddy fields ranked as the largest one among the three types of pesticides and reached up to 17 g/ha. Limited monitoring data were useful for validating the model, which yielded valuable temporal-spatial data on the fate of pesticides in this watershed. With the expansion of paddy rice cultivation, risks

  18. Preliminary core design calculations for the ACPR Upgrade

    International Nuclear Information System (INIS)

    Pickard, P.S.

    1976-01-01

    The goal of the Annular Core Pulse Reactor (ACPR) Upgrade design studies is to define a core configuration that provides a significant increase in pulse fluence and fission energy deposition. The reactor modification should provide as flat an energy deposition profile for experiments as feasible. The fuels examined in this study were UO 2 -BeO (5-15 w/o UO 2 ), UC-ZrC-C (200-500 mg U/cc) and U-ZrH 1.5 . The basic core concept examined was a two region core, - a high heat capacity inner core region surrounded by an outer U-ZrH 1.5 region. Survey core calculations utilizing 1D transport calculations and cross sections libraries derived from the ORNL-AMPX code examined relative fuel loadings, fuel temperatures, reactivity requirements and pulse performance improvement. Reference designs for all candidate fuels were defined utilizing 2D transport and Monte Carlo calculations. The performance implications of alternative core designs were also examined for the UO 2 -BeO and UC-ZrC-C fuel candidates. (author)

  19. Method of determination of thermo-acoustic coolant instability boundaries in reactor core at NPPs with WWER

    International Nuclear Information System (INIS)

    Skalozubov, Volodymyr; Kolykhanov, Viktor; Kovryzhkin, Yuriy

    2007-01-01

    The regulatory body of Ukraine, the National Atomic Energy Company and the Scientific and Production Centre have led team-works concerned with previously unstudied factors or phenomena affecting reactor safety. As a result it is determined that the thermo-acoustic coolant instability conditions can appear in the core at definite operating WWER regimes. Considerable cyclic dynamic loads affect fuel claddings over thermo-acoustic pressure oscillations. These loads can result in inadmissible cassette design damage and containment damage. Taking into account calculation and experimental research authors submit a method of on-line assessment of WWER core state concerning thermo-acoustic coolant instability. According to this method, the thermo-acoustic coolant instability appearance conditions can be estimated using normal registered parameters (pressure, temperature, heat demand etc.). At operative modes, a WWER-1000 core is stable to tracheotomies oscillations, but reduction of coolant discharge through the core for some times can result in thermo-acoustic coolant instability. Thermo-acoustic instability appears at separate transitional modes concerned with reactor scram and unloading/loading at all power units. When thermo-acoustic instability begins in transitional modes, core elements are under influence of high-frequency coolant pressure pulsations for a long time (tens of hours)

  20. An interim report on the second loading of Zenith. Preliminary report

    Energy Technology Data Exchange (ETDEWEB)

    Absalom, R M; Barclay, F R; Cameron, I R; Collins, A G; Della Loggia, V E; Freemantle, R G; Hage, W; Kinchin, G H; Sanders, J E; Tiren, L I; Wilson, D J

    1961-02-15

    The loading to criticality of the second core of the high-temperature zero-energy reactor ZENITH and the results of the subsequent experimental programme are described. The composition of the reactor core corresponds to graphite: U235 and TH232 : U235 atomic ratios of 2107 and 4.75 respectively.