WorldWideScience

Sample records for core integrated structures

  1. Structural integrity of graphite core support structures of HTTR

    International Nuclear Information System (INIS)

    Inagaki, Yoshiyuki; Iyoku, Tatsuo; Toyota, Junji; Sato, Sadao; Shiozawa, Shusaku

    1990-02-01

    The graphite core support structures (GCSSs) of the HTTR (High Temperature Engineering Test Reactor) are an arrangement of graphite blocks and posts that support the core and provide a lower plenum and a hot-leg path for the primary coolant. The GCSSs are designed not to be replaced by new items during plant life time (about twenty years). To maintain structural integrity of the GCSSs, conservative design has been made sufficiently on the basis of structural tests. The present study confirmed that reactor safety was still maintained even if failure and destruction of the GCSSs is supposed to occur. The GCSSs are fabricated under strict quality control and the observation and surveillance programs are planed to examine the structual integrity of the GCSSs during an operation. This paper describes the concept of design and quality control and summarizes structural tests, observation and surveillance programs. (author)

  2. Improved Fabrication of Ceramic Matrix Composite/Foam Core Integrated Structures

    Science.gov (United States)

    Hurwitz, Frances I.

    2009-01-01

    The use of hybridized carbon/silicon carbide (C/SiC) fabric to reinforce ceramic matrix composite face sheets and the integration of such face sheets with a foam core creates a sandwich structure capable of withstanding high-heatflux environments (150 W/cm2) in which the core provides a temperature drop of 1,000 C between the surface and the back face without cracking or delamination of the structure. The composite face sheet exhibits a bilinear response, which results from the SiC matrix not being cracked on fabrication. In addition, the structure exhibits damage tolerance under impact with projectiles, showing no penetration to the back face sheet. These attributes make the composite ideal for leading edge structures and control surfaces in aerospace vehicles, as well as for acreage thermal protection systems and in high-temperature, lightweight stiffened structures. By tailoring the coefficient of thermal expansion (CTE) of a carbon fiber containing ceramic matrix composite (CMC) face sheet to match that of a ceramic foam core, the face sheet and the core can be integrally fabricated without any delamination. Carbon and SiC are woven together in the reinforcing fabric. Integral densification of the CMC and the foam core is accomplished with chemical vapor deposition, eliminating the need for bond-line adhesive. This means there is no need to separately fabricate the core and the face sheet, or to bond the two elements together, risking edge delamination during use. Fibers of two or more types are woven together on a loom. The carbon and ceramic fibers are pulled into the same pick location during the weaving process. Tow spacing may be varied to accommodate the increased volume of the combined fiber tows while maintaining a target fiber volume fraction in the composite. Foam pore size, strut thickness, and ratio of face sheet to core thickness can be used to tailor thermal and mechanical properties. The anticipated CTE for the hybridized composite is managed by

  3. Structural Integrity Evaluation of the KALIMER-600 Reactor Core Support Structure

    International Nuclear Information System (INIS)

    Park, Chang Gyu; Kim, Jong Bum; Lee, Jae Han

    2005-01-01

    KALIMER-600(Korea Advanced LIquid MEtal Reactor, 600MWe) is a pool type sodium-cooled liquid metal reactor. Since the normal operating temperature of KALIMER-600 is 545 .deg. C, the reactor structures in the hot pool region are designed and evaluated according to the elevated temperature design rules such as the ASME Boiler and Pressure Vessel Code Section III, Subsection NH. Since the core support structure of KALIMER-600 is in the cold pool region under 400 .deg. C, a high temperature inelastic behavior is not expected. Thus the stress and fatigue limits are the main concerns to assure the structural design integrity following the ASME Subsection NG. In this paper, the evaluations of the stress and fatigue damage for the core support structure of KALIMER-600 are carrried out in the case of a normal operation condition using the rules of ASME Subsection NG. To obtain the stress values, a heat transfer analysis and a stress analysis under a combined loading condition are performed. From the stress distribution results, the critical sections are selected and the stress and fatigue limits are evaluated for the selected regions

  4. Heysham II/Torness AGR core integrity

    International Nuclear Information System (INIS)

    Birch, A.L.; Hampson, J.D.

    1985-01-01

    The design and construction process for the Heysham II/Torness AGR core structures is presented. The design intent utilizing all past experience in designing and building AGR core structures is described. The major aspects of the design criteria and the design conditions are outlined to demonstrate how the integrity of the Heysham II/Torness core is assured. Since no recognized codes of practice for graphite core design exist, the National Nuclear Corporation (NNC) have conceived design criteria utilizing reserve factors based on their design experience. Target reserve factors are defined for particular loading conditions including the ultimate 'safe-shutdown earthquake'. The substantial programme of computer analysis and RandD work to substantiate the design, including seismic qualification, is described. In keeping with their responsibility for the detailed core structure design and the fuel path geometry (guide tube system), NNC attach great importance to design/manufacture/construction liaison, which is demonstrated in the quality assurance section. (author)

  5. Toward a Comprehensive Framework for Evaluating the Core Integration Features of Enterprise Integration Middleware Technologies

    Directory of Open Access Journals (Sweden)

    Hossein Moradi

    2013-01-01

    Full Text Available To achieve greater automation of their business processes, organizations face the challenge of integrating disparate systems. In attempting to overcome this problem, organizations are turning to different kinds of enterprise integration. Implementing enterprise integration is a complex task involving both technological and business challenges and requires appropriate middleware technologies. Different enterprise integration solutions provide various functions and features which lead to the complexity of their evaluation process. To overcome this complexity, appropriate tools for evaluating the core integration features of enterprise integration solutions is required. This paper proposes a new comprehensive framework for evaluating the core integration features of both intra-enterprise and inter-enterprise Integration's enabling technologies, which simplify the process of evaluating the requirements met by enterprise integration middleware technologies.The proposed framework for evaluating the core integration features of enterprise integration middleware technologies was enhanced using the structural and conceptual aspects of previous frameworks. It offers a new schema for which various enterprise integration middleware technologies are categorized in different classifications and are evaluated based on their supporting level for the core integration features' criteria. These criteria include the functional and supporting features. The proposed framework, which is a revised version of our previous framework in this area, has developed the scope, structure and content of the mentioned framework.

  6. R and D on thermal hydraulics of core and core-bottom structure

    International Nuclear Information System (INIS)

    Inagaki, Yoshiyuki; Hino, Ryutaro; Kunitomi, Kazuhiko; Takase, Kazuyuki; Ioka, Ikuo; Maruyama, So

    2004-01-01

    Thermal hydraulic tests on the core and core-bottom structure of the high-temperature engineering test reactor (HTTR) were carried out with the helium engineering demonstration loop (HENDEL) under simulated reactor operating conditions. The HENDEL was composed of helium gas circulation loops, mother sections (M 1 and M 2 ) and adaptor section (A), and two test sections, i.e. the fuel stack test section (T 1 ) and in-core structure test section (T 2 ). In the T 1 test section simulating a fuel stack of the core, thermal and hydraulic performances of helium gas flowing through a fuel block were investigated for thermal design of the HTTR core. In the T 2 test section simulating the core-bottom structure, demonstration tests were performed to verify the structural integrity of graphite and metal components, seal performance against helium gas leakage among the graphite permanent blocks and thermal mixing performance of helium gas. The above test results in the T 1 and T 2 test sections were applied to the detailed design and licensing works of the HTTR and the HENDEL-loop was dismantled in 1999

  7. Evaluation of aseismic integrity in HTTR core-bottom structure. Pt. 1. Aseismic test for core-bottom structure

    International Nuclear Information System (INIS)

    Iyoku, T.; Futakawa, M.; Ishihara, M.

    1994-01-01

    The aseismic tests were carried out using (1)/(5)-scale and (1)/(3)-scale models of the core-bottom structure of the HTTR to quantitatively evaluate the response of acceleration, strain, impact load etc. The following conclusions are obtained. (i) The frequency response of the keyway strain is correlative with that of the impact acceleration on the hot plenum block. (ii) It was confirmed through (1)/(5)-scale and (1)/(3)-scale model tests that the applied similarity law is valid to evaluate the seismic response characteristics of the core-bottom structure. (ii) The stress of graphite components estimated from the scale model test using S 2 -earthquake excitation was sufficiently lower than the allowable stress used as the design criterion. ((orig.))

  8. The INTEGRAL Core Observing Programme

    DEFF Research Database (Denmark)

    Winkler, C.; Gehrels, N.; Lund, Niels

    1999-01-01

    The Core Programme of the INTEGRAL mission is defined as the portion of the scientific programme covering the guaranteed time observations for the INTEGRAL Science Working Team. This paper describes the current status of the Core Programme preparations and summarizes the key elements...... of the observing programme....

  9. Automated Integration of Dedicated Hardwired IP Cores in Heterogeneous MPSoCs Designed with ESPAM

    Directory of Open Access Journals (Sweden)

    Ed Deprettere

    2008-06-01

    Full Text Available This paper presents a methodology and techniques for automated integration of dedicated hardwired (HW IP cores into heterogeneous multiprocessor systems. We propose an IP core integration approach based on an HW module generation that consists of a wrapper around a predefined IP core. This approach has been implemented in a tool called ESPAM for automated multiprocessor system design, programming, and implementation. In order to keep high performance of the integrated IP cores, the structure of the IP core wrapper is devised in a way that adequately represents and efficiently implements the main characteristics of the formal model of computation, namely, Kahn process networks, we use as an underlying programming model in ESPAM. We present details about the structure of the HW module, the supported types of IP cores, and the minimum interfaces these IP cores have to provide in order to allow automated integration in heterogeneous multiprocessor systems generated by ESPAM. The ESPAM design flow, the multiprocessor platforms we consider, and the underlying programming (KPN model are introduced as well. Furthermore, we present the efficiency of our approach by applying our methodology and ESPAM tool to automatically generate, implement, and program heterogeneous multiprocessor systems that integrate dedicated IP cores and execute real-life applications.

  10. An affected core drives network integration deficits of the structural connectome in 22q11.2 deletion syndrome

    Directory of Open Access Journals (Sweden)

    František Váša

    2016-01-01

    Full Text Available Chromosome 22q11.2 deletion syndrome (22q11DS is a genetic disease known to lead to cerebral structural alterations, which we study using the framework of the macroscopic white-matter connectome. We create weighted connectomes of 44 patients with 22q11DS and 44 healthy controls using diffusion tensor magnetic resonance imaging, and perform a weighted graph theoretical analysis. After confirming global network integration deficits in 22q11DS (previously identified using binary connectomes, we identify the spatial distribution of regions responsible for global deficits. Next, we further characterize the dysconnectivity of the deficient regions in terms of sub-network properties, and investigate their relevance with respect to clinical profiles. We define the subset of regions with decreased nodal integration (evaluated using the closeness centrality measure as the affected core (A-core of the 22q11DS structural connectome. A-core regions are broadly bilaterally symmetric and consist of numerous network hubs — chiefly parietal and frontal cortical, as well as subcortical regions. Using a simulated lesion approach, we demonstrate that these core regions and their connections are particularly important to efficient network communication. Moreover, these regions are generally densely connected, but less so in 22q11DS. These specific disturbances are associated to a rerouting of shortest network paths that circumvent the A-core in 22q11DS, “de-centralizing” the network. Finally, the efficiency and mean connectivity strength of an orbito-frontal/cingulate circuit, included in the affected regions, correlate negatively with the extent of negative symptoms in 22q11DS patients, revealing the clinical relevance of present findings. The identified A-core overlaps numerous regions previously identified as affected in 22q11DS as well as in schizophrenia, which approximately 30–40% of 22q11DS patients develop.

  11. Construction of In-core Structure Test Section in HENDEL, (1)

    International Nuclear Information System (INIS)

    Kunitomi, Kazuhiko; Inagaki, Yoshiyuki; Ioka, Ikuo; Kondoh, Yasuo; Nekoya, Shinichi; Miyamoto, Yoshiaki; Akisada, Toshihiro; Yamaguchi, Shigeru.

    1988-01-01

    An In-core Structure Test Section (T 2 ) in Helium Engineering Demonstration Loop (HENDEL) simulates a part of the core bottom structure with the same scale as that of a high temperature engineering test reactor (HTTR) designed in Japan Atomic Energy Research Institute. The design and construction of T 2 test section were started in March 1983, and completed in June 1986. The main objectives of the T 2 test section are to verify thermal-hydraulic performance and integrity of the core bottom structure. The report describes the general outline of T 2 test section, and experience gained from construction and preliminary test with regard to the simulated core bottom structure. (author)

  12. Reactor core materials research and integrated material database establishment

    International Nuclear Information System (INIS)

    Ryu, Woo Seog; Jang, J. S.; Kim, D. W.

    2002-03-01

    Mainly two research areas were covered in this project. One is to establish the integrated database of nuclear materials, and the other is to study the behavior of reactor core materials, which are usually under the most severe condition in the operating plants. During the stage I of the project (for three years since 1999) in- and out of reactor properties of stainless steel, the major structural material for the core structures of PWR (Pressurized Water Reactor), were evaluated and specification of nuclear grade material was established. And the damaged core components from domestic power plants, e.g. orifice of CVCS, support pin of CRGT, etc. were investigated and the causes were revealed. To acquire more resistant materials to the nuclear environments, development of the alternative alloys was also conducted. For the integrated DB establishment, a task force team was set up including director of nuclear materials technology team, and projector leaders and relevant members from each project. The DB is now opened in public through the Internet

  13. The development of ex-core neutron flux monitoring system for integral reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. K.; Kwon, H. J.; Park, H. Y.; Koo, I. S

    2004-12-01

    Due to the arrangement of major components within the reactor vessel, the integral reactor has relatively long distance between the core support barrel and the reactor vessel when compared with the currently operating plants. So, a neutron flux leakage at the ex-vessel represents a relatively low flux level which may generate some difficulties in obtaining a wide range of neutron flux information including the source range one. This fact may have an impact upon the design and fabrication of an ex-core neutron flux detector. Therefore, it is required to study neutron flux detectors that are suitable for the installation location and characteristics of an integral reactor. The physical constraints of an integral reactor should be considered when one designs and develops the ex-core neutron flux monitoring detectors and their systems. As a possible installation location of the integral reactor ex-core neutron flux detector assembly, two candidate locations are considered, that is, one is between the core support barrel and the reactor vessel and the other is within the Internal Shielding Tank(IST). And, for these locations, some factors such as the environmental requirements and geometrical restrictions are investigated In the case of considering the inside of the IST as a ex-core neutron flux detector installation position, an electrical insulation problem and a low neutron flux measurement problem arose and when considering the inside of the reactor vessel, a detector's sensitivity variation problem, an electrical insulation problem, a detector's insertion and withdrawal problem, and a high neutron flux measurement problem were encountered. Through a survey of the detector installation of the currently operating plants and detector manufacturer's products, the proposed structure and specifications of an ex-core neutron flux detector are suggested. And, the joint ownership strategy for a proposed detector model is also depicted. At the end, by studying

  14. The development of ex-core neutron flux monitoring system for integral reactor

    International Nuclear Information System (INIS)

    Lee, J. K.; Kwon, H. J.; Park, H. Y.; Koo, I. S.

    2004-12-01

    Due to the arrangement of major components within the reactor vessel, the integral reactor has relatively long distance between the core support barrel and the reactor vessel when compared with the currently operating plants. So, a neutron flux leakage at the ex-vessel represents a relatively low flux level which may generate some difficulties in obtaining a wide range of neutron flux information including the source range one. This fact may have an impact upon the design and fabrication of an ex-core neutron flux detector. Therefore, it is required to study neutron flux detectors that are suitable for the installation location and characteristics of an integral reactor. The physical constraints of an integral reactor should be considered when one designs and develops the ex-core neutron flux monitoring detectors and their systems. As a possible installation location of the integral reactor ex-core neutron flux detector assembly, two candidate locations are considered, that is, one is between the core support barrel and the reactor vessel and the other is within the Internal Shielding Tank(IST). And, for these locations, some factors such as the environmental requirements and geometrical restrictions are investigated In the case of considering the inside of the IST as a ex-core neutron flux detector installation position, an electrical insulation problem and a low neutron flux measurement problem arose and when considering the inside of the reactor vessel, a detector's sensitivity variation problem, an electrical insulation problem, a detector's insertion and withdrawal problem, and a high neutron flux measurement problem were encountered. Through a survey of the detector installation of the currently operating plants and detector manufacturer's products, the proposed structure and specifications of an ex-core neutron flux detector are suggested. And, the joint ownership strategy for a proposed detector model is also depicted. At the end, by studying the ex-core

  15. Microprocessor-based integrated LMFBR core surveillance. Pt. 2

    International Nuclear Information System (INIS)

    Elies, V.

    1985-12-01

    This report is the result of the KfK part of a joint study of KfK and INTERATOM. The aim of this study is to explore the advantages of microprocessors and microelectronics for a more sophisticated core surveillance, which is based on the integration of separate surveillance techniques. After a description of the experimental results gained with the different surveillance techniques so far, it is shown which kinds of correlation can be done using the evaluation results obtained from the single surveillance systems. The main part of this report contains the systems analysis of a microcomputer-based system integrating different surveillance methods. After an analysis of the hardware requirements a hardware structure for the integrated system is proposed. The software structure is then described for the subsystem performing the different surveillance algorithms as well as for the system which does the correlation thus deriving additional information from the single results. (orig.) [de

  16. Reactor core structure

    International Nuclear Information System (INIS)

    Higashinakagawa, Emiko; Sato, Kanemitsu.

    1992-01-01

    Taking notice on the fact that Fe based alloys and Ni based alloys are corrosion resistant in a special atmosphere of a nuclear reactor, Fe or Ni based alloys are applied to reactor core structural components such as fuel cladding tubes, fuel channels, spacers, etc. On the other hand, the neutron absorption cross section of zirconium is 0.18 barn while that of iron is 2.52 barn and that of nickel is 4.6 barn, which amounts to 14 to 25 times compared with that of zirconium. Accordingly, if the reactor core structural components are constituted by the Fe or Ni based alloys, neutron economy is lowered. Since it is desirable that neutrons contribute to uranium fission with least absorption to the reactor core structural components, the reactor core structural components are constituted with the Fe or Ni based alloys of good corrosion resistance only at a portion in contact with reactor water, that is, at a surface portion, while the main body is constituted with zircalloy in the present invention. Accordingly, corrosion resistnace can be kept while keeping small neutron absorption cross section. (T.M.)

  17. An explication of the Graphite Structural Design Code of core components for the High Temperature Engineering Test Reactor

    International Nuclear Information System (INIS)

    Iyoku, Tatsuo; Ishihara, Masahiro; Toyota, Junji; Shiozawa, Shusaku

    1991-05-01

    The integrity evaluation of the core graphite components for the High Temperature Engineering Test Reactor (HTTR) will be carried out based upon the Graphite Structural Design Code for core components. In the application of this design code, it is necessary to make clear the basic concept to evaluate the integrity of core components of HTTR. Therefore, considering the detailed design of core graphite structures such as fuel graphite blocks, etc. of HTTR, this report explicates the design code in detail about the concepts of stress and fatigue limits, integrity evaluation method of oxidized graphite components and thermal irradiation stress analysis method etc. (author)

  18. Design of the core support and restraint structures for FFTF and CRBRP

    International Nuclear Information System (INIS)

    Sutton, H.G.; Rylatt, J.A.

    1977-12-01

    This paper presents and compares the design and fabrication of the FFTF and CRBRP reactor structures which support and restrain the reactor core assemblies. The fabrication of the core support structure (CSS) for the FFTF reactor was completed October 1972 and this paper discusses how the fabrication problems encountered with the FFTF were avoided in the subsequent design of the CRBR CSS. The radial core restraint structure of the FFTF was designed and fabricated such that an active system could replace the present passive system which is segmented and relies on the CSS core barrel for total structure integrity to maintain core geometry. The CRBR core restraint structure is designed for passive restraint only, and this paper discusses how the combined strengths of the restraint structure former rings and the CSS core barrel are utilized to maintain core geometry. Whereas the CSS for the FFTF interfaces directly with the reactor core assemblies, the CRBR CSS does not. A comparison is made on how intermediate structures in CRBR (inlet modules) provide the necessary design interfaces for supporting and providing flow distribution to the reactor core assemblies. A discussion is given on how the CRBR CSS satisfied the design requirements of the Equipment Specification, including thermal transient, dynamic and seismic loadings, and results of flow distribution testing that supported the CRBR design effort. The approach taken to simplify fabrication of the CRBR components, and a novel 20 inch deep narrow gap weld joint in the CSS are described

  19. Thermal interaction of core melt debris with the TMI-2 baffle, core-former, and lower head structures

    International Nuclear Information System (INIS)

    Cronenberg, A.W.; Tolman, E.L.

    1987-09-01

    Recent inspection of the TMI-2 core-former baffle walls (vertical), former plates (horizontal), and lower plenum has been conducted to assess potential damage to these structures. Video observations show evidence of localized melt failure of the baffle walls, whereas fiberoptics data indicate the presence of resolidified debris on the former plates. Lower plenum inspection also confirms the presence of 20 tons or more of core debris in the lower plenum. These data indicate massive core melt relocation and the potential for melt attack on vessel structural components. This report presents analyses aimed at developing an understanding of melt relocation behavior and damage progression to TMI-2 vessel components. Thermal analysis indicates melt-through of the baffle plates, but maintenance of structural integrity of the former plates and lower head. Differences in the damage of these structures is attributed largely to differences in contact time with melt debris and pressure of water. 29 refs., 17 figs., 9 tabs

  20. Microprocessor-based integrated LMFBR core surveillance

    International Nuclear Information System (INIS)

    Gmeiner, L.

    1984-06-01

    This report results from a joint study of KfK and INTERATOM. The aim of this study is to explore the advantages of microprocessors and microelectronics for a more sophisticated core surveillance, which is based on the integration of separate surveillance techniques. Due to new developments in microelectronics and related software an approach to LMFBR core surveillance can be conceived that combines a number of measurements into a more intelligent decision-making data processing system. The following techniques are considered to contribute essentially to an integrated core surveillance system: - subassembly state and thermal hydraulics performance monitoring, - temperature noise analysis, - acoustic core surveillance, - failure characterization and failure prediction based on DND- and cover gas signals, and - flux tilting techniques. Starting from a description of these techniques it is shown that by combination and correlation of these individual techniques a higher degree of cost-effectiveness, reliability and accuracy can be achieved. (orig./GL) [de

  1. Development and Integration of Professional Core Values Among Practicing Clinicians.

    Science.gov (United States)

    McGinnis, Patricia Quinn; Guenther, Lee Ann; Wainwright, Susan F

    2016-09-01

    The physical therapy profession has adopted professional core values, which define expected values for its members, and developed a self-assessment tool with sample behaviors for each of the 7 core values. However, evidence related to the integration of these core values into practice is limited. The aims of this study were: (1) to gain insight into physical therapists' development of professional core values and (2) to gain insight into participants' integration of professional core values into clinical practice. A qualitative design permitted in-depth exploration of the development and integration of the American Physical Therapy Association's professional core values into physical therapist practice. Twenty practicing physical therapists were purposefully selected to explore the role of varied professional, postprofessional, and continuing education experiences related to exposure to professional values. The Core Values Self-Assessment and résumé sort served as prompts for reflection via semistructured interviews. Three themes were identified: (1) personal values were the foundation for developing professional values, which were further shaped by academic and clinical experiences, (2) core values were integrated into practice independent of practice setting and varied career paths, and (3) participants described the following professional core values as well integrated into their practice: integrity, compassion/caring, and accountability. Social responsibility was an area consistently identified as not being integrated into their practice. The Core Values Self-Assessment tool is a consensus-based document developed through a Delphi process. Future studies to establish reliability and construct validity of the tool may be warranted. Gaining an in-depth understanding of how practicing clinicians incorporate professional core values into clinical practice may shed light on the relationship between core values mastery and its impact on patient care. Findings may

  2. Structural Integrity Evaluation for the IVTM Gripper in PGSFR

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S. H.; Koo, G. H. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The materials of the gripper used for the analysis are the 316SS in the gripper body parts and the Inconel 718 alloy in the gripper finger parts, respectively. For six sections of the IVTM gripper, the structural integrity according to ASME-NB design rule is checked for the dead weight and refueling load because it is under the low temperature during the refueling operation. As a result of the evaluation, it is reviewed the IVTM gripper design has the structural adequacy. IVTM (In-Vessel Transfer Machine) is the instrument for transferring the core assembly inside the reactor vessel. The IVTM use the gripper finger for the connection and disconnection with the core assembly, which is designed to be possible for the rotation and vertical movement of the gripper. We can see that the IVTM gripper is supported by the gripper guide structure. In the gripper movement, the gripper is lowered to pick up the core assembly with its fingers closed. On contact with the end of the core assembly, the gripper fingers are opened, and then connected with the core assembly. The gripper is then raised with the core assembly. This is the gripper mechanism to handle the core assembly. The purpose of this study is to analyze the gripper stresses and displacements for the design loads applied to the gripper, and also to evaluate the structural integrity of the gripper design for 60 year lifetime.

  3. The electronic structure of core states under extreme compressions

    International Nuclear Information System (INIS)

    Straub, G.K.

    1992-01-01

    At normal density and for modest compressions, the electronic structure of a metal can be accurately described by treating the conduction electrons and their interactions with the usual methods of band theory. The core electrons remain essentially the same as for an isolated free atom and do not participate in the bonding forces responsible for creating a condensed phase. As the density increases, the core electrons begin to ''see'' one another as the overlap of the tails of wave functions can no longer be neglected. The electronic structure of the core electrons is responsible for an effective repulsive interaction that eventually becomes free-electron-like at very high compressions. The electronic structure of the interacting core electrons may be treated in a simple manner using the Atomic Surface Method (ASM). The ASM is a first-principles treatment of the electronic structure involving a rigorous integration of the Schroedinger equation within the atomic-sphere approximation. Solid phase wave functions are constructed from isolated atom wave functions and the band width W l and the center of gravity of the band C l are obtained from simple formulas. The ASM can also utilize analytic forms of the atomic wave functions and thus provide direct functional dependence of various aspects of the electronic structure. Of particular use in understanding the behavior of the core electrons, the ASM provides the ability to analytically determine the density dependence of the band widths and positions. The process whereby core states interact with one another is best viewed as the formation of narrow electron bands formed from atomic states. As the core-core overlap increases, the bands increase in width and mean energy. In Sec.3 this picture is further developed and from the ASM one obtains the analytic dependence on density of the relative motion of the different bands. Also in Sec. 3 is a discussion of the transition to free electron bands

  4. Structural failure analysis of reactor vessels due to molten core debris

    International Nuclear Information System (INIS)

    Pfeiffer, P.A.

    1993-01-01

    Maintaining structural integrity of the reactor vessel during a postulated core melt accident is an important safety consideration in the design of the vessel. This paper addresses the failure predictions of the vessel due to thermal and pressure loadings from the molten core debris depositing on the lower head of the vessel. Different loading combinations were considered based on a wet or dry cavity and pressurization of the vessel based on operating pressure or atmospheric (pipe break). The analyses considered both short term (minutes) and long term (days) failure modes. Short term failure modes include creep at elevated temperatures and plastic instabilities of the structure. Long term failure modes are caused by creep rupture that lead to plastic instability of the structure. The analyses predict the reactor vessel will remain intact after the core melt has deposited on the lower vessel head

  5. The assessment of the integrity of AGR core during an earthquake

    International Nuclear Information System (INIS)

    Smith, C.R.

    1987-01-01

    The seismic response of the core has been calculated using an idealisation having several hundred thousand degrees of freedom. The individual graphite bricks are idealised as rigid masses, whilst contact spring elements are used to represent the load transmissions or impacts that can take place between the bricks. The necessary input information for the contact spring elements (i.e. stiffness, damping and friction), has been obtained from test work. Whilst the dynamic response of the core itself is non-linear, the supporting steel structures are linearly elastic. Consequently, the dynamic characteristics of the supporting structures are evaluated with the non-linear core structure uncoupled, and are then used with the non-linear core model in a step-by-step explicit time history analysis. The paper discusses the analytical model and presents results from some of the predictions of core dynamic response to earthquakes. The development of criteria for graphite impacts, based on the J integral, is described. Impact tests on a range of brick slices have been used to give data on brick or key cracking under repeated impacts. Dynamic analysis of plane stress finite element models of these test geometries has been carried out in order to establish a qualified analysis method which can be used to extrapolate the test data to impact damage in the core. This analysis method is applied to finite element models of the core bricks in which the loadings due to operating conditions, environmental and ageing effects are included. In the presence of any existing state of stress at any time during the operating life, the damage due to repeated impacts defined by the time-history seismic response of the core may then be estimated through a cumulative damage procedure. (author)

  6. Development of in-service inspection system for core support graphite structures in the high temperature engineering test reactor (HTTR)

    Energy Technology Data Exchange (ETDEWEB)

    Sumita, Junya; Hanawa, Satoshi; Kikuchi, Takayuki; Ishihara, Masahiro [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment

    2003-03-01

    Visual inspection of core support graphite structures using TV camera as in-service inspection and measurement of material characteristics using surveillance test specimens are planned in the High Temperature Engineering Test Reactor (HTTR) to confirm structural integrity of the core support graphite structures. For the visual inspection, in-service inspection system developed from September 1996 to June 1998, and pre-service inspection using the system was carried out. As the result of the pre-service inspection, it was validated that high quality of visual inspection with TV camera can be carried out, and also structural integrity of the core support graphite structures at the initial stage of the HTTR operation was confirmed. (author)

  7. Sound Transmission Loss Through a Corrugated-Core Sandwich Panel with Integrated Acoustic Resonators

    Science.gov (United States)

    Schiller, Noah H.; Allen, Albert R.; Zalewski, Bart F; Beck, Benjamin S.

    2014-01-01

    The goal of this study is to better understand the effect of structurally integrated resonators on the transmission loss of a sandwich panel. The sandwich panel has facesheets over a corrugated core, which creates long aligned chambers that run parallel to the facesheets. When ports are introduced through the facesheet, the long chambers within the core can be used as low-frequency acoustic resonators. By integrating the resonators within the structure they contribute to the static load bearing capability of the panel while also attenuating noise. An analytical model of a panel with embedded resonators is derived and compared with numerical simulations. Predictions show that acoustic resonators can significantly improve the transmission loss of the sandwich panel around the natural frequency of the resonators. In one configuration with 0.813 m long internal chambers, the diffuse field transmission loss is improved by more than 22 dB around 104 Hz. The benefit is achieved with no added mass or volume relative to the baseline structure. The embedded resonators are effective because they radiate sound out-of-phase with the structure. This results in destructive interference, which leads to less transmitted sound power.

  8. Simulation Based Optimization of Complex Monolithic Composite Structures Using Cellular Core Technology

    Science.gov (United States)

    Hickmott, Curtis W.

    Cellular core tooling is a new technology which has the capability to manufacture complex integrated monolithic composite structures. This novel tooling method utilizes thermoplastic cellular cores as inner tooling. The semi-rigid nature of the cellular cores makes them convenient for lay-up, and under autoclave temperature and pressure they soften and expand providing uniform compaction on all surfaces including internal features such as ribs and spar tubes. This process has the capability of developing fully optimized aerospace structures by reducing or eliminating assembly using fasteners or bonded joints. The technology is studied in the context of evaluating its capabilities, advantages, and limitations in developing high quality structures. The complex nature of these parts has led to development of a model using the Finite Element Analysis (FEA) software Abaqus and the plug-in COMPRO Common Component Architecture (CCA) provided by Convergent Manufacturing Technologies. This model utilizes a "virtual autoclave" technique to simulate temperature profiles, resin flow paths, and ultimately deformation from residual stress. A model has been developed simulating the temperature profile during curing of composite parts made with the cellular core technology. While modeling of composites has been performed in the past, this project will look to take this existing knowledge and apply it to this new manufacturing method capable of building more complex parts and develop a model designed specifically for building large, complex components with a high degree of accuracy. The model development has been carried out in conjunction with experimental validation. A double box beam structure was chosen for analysis to determine the effects of the technology on internal ribs and joints. Double box beams were manufactured and sectioned into T-joints for characterization. Mechanical behavior of T-joints was performed using the T-joint pull-off test and compared to traditional

  9. Liquid Core ARROW Waveguides: A Promising Photonic Structure for Integrated Optofluidic Microsensors

    Directory of Open Access Journals (Sweden)

    Genni Testa

    2016-03-01

    Full Text Available In this paper, we introduce a liquid core antiresonant reflecting optical waveguide (ARROW as a novel optofluidic device that can be used to create innovative and highly functional microsensors. Liquid core ARROWs, with their dual ability to guide the light and the fluids in the same microchannel, have shown great potential as an optofluidic tool for quantitative spectroscopic analysis. ARROWs feature a planar architecture and, hence, are particularly attractive for chip scale integrated system. Step by step, several improvements have been made in recent years towards the implementation of these waveguides in a complete on-chip system for highly-sensitive detection down to the single molecule level. We review applications of liquid ARROWs for fluids sensing and discuss recent results and trends in the developments and applications of liquid ARROW in biomedical and biochemical research. The results outlined show that the strong light matter interaction occurring in the optofluidic channel of an ARROW and the versatility offered by the fabrication methods makes these waveguides a very promising building block for optofluidic sensor development.

  10. Development of visual inspection technology for HTTR core support graphite structure

    International Nuclear Information System (INIS)

    Maruyama, So; Iyoku, Tatsuo; Inagaki, Yoshiyuki; Shiozawa, Shusaku; Masuma, Yoshitaka; Miki, Toshiya.

    1996-01-01

    The Japan Atomic Energy Research Institute is now constructing the High Temperature Engineering Test Reactor (HTTR), which employs a visual inspection of core support graphite structure, as an inservice inspection (ISI). In this inspection, TV camera will be used to investigate the alignment and integrity of the structure. Therefore, the ISI system, a combination of radiation tolerant TV camera and graphic processing system, is developed and examined its detectability and viewing angles using a simulated hot plenum of HTTR, which has artificial defects. As a result of a series of tests, it was confirmed that this system satisfied the requirements and was quite applicable for the ISI system of HTTR core support graphite structure. In addition, further improvement of the system, like a remote control procedure, will be investigated. (author)

  11. Integrating IMS LD and IMS QTIv2 using CopperCore Service Integration

    NARCIS (Netherlands)

    Vogten, Hubert

    2006-01-01

    Vogten, H. (2006). Integrating IMS LD and IMS QTIv2 using CopperCore Service Integration. Presentation at International Workshop in Learning Networks for Lifelong Competence Development. March, 30-31, 2006. Sofia, Bulgaria: TENCompetence Conference. Retrieved June 30th, 2006, from

  12. Implicit Unstructured Computational Aerodynamics on Many-Integrated Core Architecture

    KAUST Repository

    Al Farhan, Mohammed A.

    2014-05-04

    This research aims to understand the performance of PETSc-FUN3D, a fully nonlinear implicit unstructured grid incompressible or compressible Euler code with origins at NASA and the U.S. DOE, on many-integrated core architecture and how a hybridprogramming paradigm (MPI+OpenMP) can exploit Intel Xeon Phi hardware with upwards of 60 cores per node and 4 threads per core. For the current contribution, we focus on strong scaling with many-integrated core hardware. In most implicit PDE-based codes, while the linear algebraic kernel is limited by the bottleneck of memory bandwidth, the flux kernel arising in control volume discretization of the conservation law residuals and the preconditioner for the Jacobian exploits the Phi hardware well.

  13. Development of Structural Core Components for Breeder Reactors

    International Nuclear Information System (INIS)

    Saibaba, N.

    2013-01-01

    Core structural materials: • The desire is to have only fuel in the core, structural material form 25% of the total core: – To support and to retain the fuel in position; – Provide necessary ducts to make coolant flow through & transfer/remove heat. • For 500 MWe FBR with Oxide fuel (Peak Linear Power 450 W/cm), total fuel pins required in the core are of the order 39277 pins (both inner & outer core Fuel SA); • Considering 217 pins/Fuel SA there are 181 Fuel SA wrapper tubes • These structural materials see hostile core with max temperature and neutron flux

  14. Integrated development environment for multi-core systems

    Directory of Open Access Journals (Sweden)

    Krunić Momčilo V.

    2014-01-01

    Full Text Available Development of the software application that provides comfortable working environment of embedded software applications was always a difficult task to achieve. To reach this goal it was necessary to integrate all specific tools designed for that purpose. This paper describes Integrated Development Environment (IDE that was developed to meet all specific needs of a software development for the family of multi-core target platforms designed for a digital signal processing in Cirrus Logic Company. Eclipse platform and RCP (Rich Client Platform was used as a basis, because it provides an extensible plug-in system for customizing the development environment. CLIDE (Cirrus Logic Integrated Development Environment represent the epilog of that effort, reliable IDE used for development of embedded applications. Validation of the solution is accomplished thru 2641 J Unit tests that validate most of the CLIDE's functionalities. Developed IDE (CLIDE significantly increases a quality of a software development for multi-core systems and reduces time-to-market, thereby justifying development costs.

  15. Dislocation core structures in Si-doped GaN

    International Nuclear Information System (INIS)

    Rhode, S. L.; Fu, W. Y.; Sahonta, S.-L.; Kappers, M. J.; Humphreys, C. J.; Horton, M. K.; Pennycook, T. J.; Dusane, R. O.; Moram, M. A.

    2015-01-01

    Aberration-corrected scanning transmission electron microscopy was used to investigate the core structures of threading dislocations in plan-view geometry of GaN films with a range of Si-doping levels and dislocation densities ranging between (5 ± 1) × 10 8  and (10 ± 1) × 10 9  cm −2 . All a-type (edge) dislocation core structures in all samples formed 5/7-atom ring core structures, whereas all (a + c)-type (mixed) dislocations formed either double 5/6-atom, dissociated 7/4/8/4/9-atom, or dissociated 7/4/8/4/8/4/9-atom core structures. This shows that Si-doping does not affect threading dislocation core structures in GaN. However, electron beam damage at 300 keV produces 4-atom ring structures for (a + c)-type cores in Si-doped GaN

  16. Dislocation core structures in Si-doped GaN

    Energy Technology Data Exchange (ETDEWEB)

    Rhode, S. L., E-mail: srhode@imperial.ac.uk; Fu, W. Y.; Sahonta, S.-L.; Kappers, M. J.; Humphreys, C. J. [Department of Materials Science and Metallurgy, University of Cambridge, Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); Horton, M. K. [Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom); Pennycook, T. J. [SuperSTEM, STFC Daresbury Laboratories, Warrington WA4 4AD (United Kingdom); Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Dusane, R. O. [Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai 400076 (India); Moram, M. A. [Department of Materials Science and Metallurgy, University of Cambridge, Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom)

    2015-12-14

    Aberration-corrected scanning transmission electron microscopy was used to investigate the core structures of threading dislocations in plan-view geometry of GaN films with a range of Si-doping levels and dislocation densities ranging between (5 ± 1) × 10{sup 8} and (10 ± 1) × 10{sup 9} cm{sup −2}. All a-type (edge) dislocation core structures in all samples formed 5/7-atom ring core structures, whereas all (a + c)-type (mixed) dislocations formed either double 5/6-atom, dissociated 7/4/8/4/9-atom, or dissociated 7/4/8/4/8/4/9-atom core structures. This shows that Si-doping does not affect threading dislocation core structures in GaN. However, electron beam damage at 300 keV produces 4-atom ring structures for (a + c)-type cores in Si-doped GaN.

  17. Investigation on structural integrity of graphite component during high temperature 950degC continuous operation of HTTR

    International Nuclear Information System (INIS)

    Sumita, Junya; Shimazaki, Yosuke; Shibata, Taiju

    2014-01-01

    Graphite material is used for internal structures in high temperature gas-cooled reactor. The core components and graphite core support structures are so designed as to maintain the structural integrity to keep core cooling capability. To confirm that the core components and graphite core support structures satisfy the design requirements, the temperatures of the reactor internals are measured during the reactor operation. Surveillance test of graphite specimens and in-service inspection using TV camera are planned in conjunction with the refueling. This paper describes the evaluation results of the integrity of the core components and graphite core support structures during the high temperature 950degC continuous operation, a high temperature continuous operation with reactor outlet temperature of 950degC for 50 days, in high temperature engineering test reactor. The design requirements of the core components and graphite core support structures were satisfied during the high temperature 950degC continuous operation. The dimensional change of graphite which directly influences the temperature of coolant was estimated considering the temperature profiles of fuel block. The magnitude of irradiation-induced dimensional change considering temperature profiles was about 1.2 times larger than that under constant irradiation temperature of 1000degC. In addition, the programs of surveillance test and ISI using TV camera were introduced. (author)

  18. Development of core design and analyses technology for integral reactor

    Energy Technology Data Exchange (ETDEWEB)

    Zee, Sung Quun; Lee, C. C.; Song, J. S. and others

    1999-03-01

    Integral reactors are developed for the applications such as sea water desalination, heat energy for various industries, and power sources for large container ships. In order to enhance the inherent and passive safety features, low power density concept is chosen for the integral reactor SMART. Moreover, ultra-longer cycle and boron-free operation concepts are reviewed for better plant economy and simple design of reactor system. Especially, boron-free operation concept brings about large difference in core configurations and reactivity controls from those of the existing large size commercial nuclear power plants and also causes many differences in the safety aspects. The ultimate objectives of this study include detailed core design of a integral reactor, development of the core design system and technology, and finally acquisition of the system design certificate. The goal of the first stage is the conceptual core design, that is, to establish the design bases and requirements suitable for the boron-free concept, to develop a core loading pattern, to analyze the nuclear, thermal and hydraulic characteristics of the core and to perform the core shielding design. Interface data for safety and performance analyses including fuel design data are produced for the relevant design analysis groups. Nuclear, thermal and hydraulic, shielding design and analysis code systems necessary for the core conceptual design are established through modification of the existing design tools and newly developed methodology and code modules. Core safety and performance can be improved by the technology development such as boron-free core optimization, advaned core monitoring and operational aid system. Feasiblity study on the improvement of the core protection and monitoring system will also contribute toward core safety and performance. Both the conceptual core design study and the related technology will provide concrete basis for the next design phase. This study will also

  19. Development of core design and analyses technology for integral reactor

    International Nuclear Information System (INIS)

    Zee, Sung Quun; Lee, C. C.; Song, J. S. and others

    1999-03-01

    Integral reactors are developed for the applications such as sea water desalination, heat energy for various industries, and power sources for large container ships. In order to enhance the inherent and passive safety features, low power density concept is chosen for the integral reactor SMART. Moreover, ultra-longer cycle and boron-free operation concepts are reviewed for better plant economy and simple design of reactor system. Especially, boron-free operation concept brings about large difference in core configurations and reactivity controls from those of the existing large size commercial nuclear power plants and also causes many differences in the safety aspects. The ultimate objectives of this study include detailed core design of a integral reactor, development of the core design system and technology, and finally acquisition of the system design certificate. The goal of the first stage is the conceptual core design, that is, to establish the design bases and requirements suitable for the boron-free concept, to develop a core loading pattern, to analyze the nuclear, thermal and hydraulic characteristics of the core and to perform the core shielding design. Interface data for safety and performance analyses including fuel design data are produced for the relevant design analysis groups. Nuclear, thermal and hydraulic, shielding design and analysis code systems necessary for the core conceptual design are established through modification of the existing design tools and newly developed methodology and code modules. Core safety and performance can be improved by the technology development such as boron-free core optimization, advaned core monitoring and operational aid system. Feasiblity study on the improvement of the core protection and monitoring system will also contribute toward core safety and performance. Both the conceptual core design study and the related technology will provide concrete basis for the next design phase. This study will also

  20. Core Flight System (CFS) Integrated Development Environment

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of this project is to create an Integrated Development Environment (IDE) for the Core Flight System (CFS) software to reduce the time it takes to...

  1. Nanocrystalline Aluminum Truss Cores for Lightweight Sandwich Structures

    Science.gov (United States)

    Schaedler, Tobias A.; Chan, Lisa J.; Clough, Eric C.; Stilke, Morgan A.; Hundley, Jacob M.; Masur, Lawrence J.

    2017-12-01

    Substitution of conventional honeycomb composite sandwich structures with lighter alternatives has the potential to reduce the mass of future vehicles. Here we demonstrate nanocrystalline aluminum-manganese truss cores that achieve 2-4 times higher strength than aluminum alloy 5056 honeycombs of the same density. The scalable fabrication approach starts with additive manufacturing of polymer templates, followed by electrodeposition of nanocrystalline Al-Mn alloy, removal of the polymer, and facesheet integration. This facilitates curved and net-shaped sandwich structures, as well as co-curing of the facesheets, which eliminates the need for extra adhesive. The nanocrystalline Al-Mn alloy thin-film material exhibits high strength and ductility and can be converted into a three-dimensional hollow truss structure with this approach. Ultra-lightweight sandwich structures are of interest for a range of applications in aerospace, such as fairings, wings, and flaps, as well as for the automotive and sports industries.

  2. Structural evaluation for the core sampling trucks, RMCS operations, 200 Area

    International Nuclear Information System (INIS)

    Islam, M.A.

    1996-01-01

    This report evaluates the structural adequacy and the integrity of the existing core sampling trucks to withstand impact should the trucks drop off the ramp, either onto the soft ground or onto a non-yielding surface due to operational error, wind, or earthquake. The report also addresses if the allowable tank dome load will be exceeded by the addition of the impact load

  3. Basic data for surveillance test on core support graphite structures for the high temperature engineering test reactor (HTTR)

    International Nuclear Information System (INIS)

    Sumita, Junya; Shibata, Taiju; Kikuchi, Takayuki; Iyoku, Tatsuo; Fujimoto, Nozomu; Ishihara, Masahiro; Sawa, Kazuhiro

    2007-02-01

    Both of the visual inspection by a TV camera and the measurement of material properties by surveillance test on core support graphite structures are planned for the High Temperature Engineering Test Reactor (HTTR) to confirm their structural integrity and characteristics. The surveillance test is aimed to investigate the change of material properties by aging effects such as fast neutron irradiation and oxidation. The obtained data will be used not only for evaluating the structural integrity of the core support graphite structures of the HTTR but also for design of advanced Very High Temperature Reactor (VHTR) discussed at generation IV international forum. This report describes the initial material properties of surveillance specimens before installation and installed position of surveillance specimens in the HTTR. (author)

  4. Low-Velocity Impact Behavior of Sandwich Structures with Additively Manufactured Polymer Lattice Cores

    Science.gov (United States)

    Turner, Andrew J.; Al Rifaie, Mohammed; Mian, Ahsan; Srinivasan, Raghavan

    2018-05-01

    Sandwich panel structures are widely used in aerospace, marine, and automotive applications because of their high flexural stiffness, strength-to-weight ratio, good vibration damping, and low through-thickness thermal conductivity. These structures consist of solid face sheets and low-density cellular core structures, which are traditionally based upon honeycomb folded-sheet topologies. The recent advances in additive manufacturing (AM) or 3D printing process allow lattice core configurations to be designed with improved mechanical properties. In this work, the sandwich core is comprised of lattice truss structures (LTS). Two different LTS designs are 3D-printed using acrylonitrile butadiene styrene (ABS) and are tested under low-velocity impact loads. The absorption energy and the failure mechanisms of lattice cells under such loads are investigated. The differences in energy-absorption capabilities are captured by integrating the load-displacement curve found from the impact response. It is observed that selective placement of vertical support struts in the unit-cell results in an increase in the absorption energy of the sandwich panels.

  5. Low-Velocity Impact Behavior of Sandwich Structures with Additively Manufactured Polymer Lattice Cores

    Science.gov (United States)

    Turner, Andrew J.; Al Rifaie, Mohammed; Mian, Ahsan; Srinivasan, Raghavan

    2018-04-01

    Sandwich panel structures are widely used in aerospace, marine, and automotive applications because of their high flexural stiffness, strength-to-weight ratio, good vibration damping, and low through-thickness thermal conductivity. These structures consist of solid face sheets and low-density cellular core structures, which are traditionally based upon honeycomb folded-sheet topologies. The recent advances in additive manufacturing (AM) or 3D printing process allow lattice core configurations to be designed with improved mechanical properties. In this work, the sandwich core is comprised of lattice truss structures (LTS). Two different LTS designs are 3D-printed using acrylonitrile butadiene styrene (ABS) and are tested under low-velocity impact loads. The absorption energy and the failure mechanisms of lattice cells under such loads are investigated. The differences in energy-absorption capabilities are captured by integrating the load-displacement curve found from the impact response. It is observed that selective placement of vertical support struts in the unit-cell results in an increase in the absorption energy of the sandwich panels.

  6. Development of the integrated core on-line monitoring and protection aid surveillance system

    International Nuclear Information System (INIS)

    Cho, Byung Oh; In, Wang Kee; Song, Jae Seung; Zee, Sung Quun

    1998-01-01

    The integrated Core On-line Monitoring and Protection Aid Surveillance System (COMPASS) is developed for the purpose of supporting the reactor operation, based on the three-dimensional nodal design code, MASTER. The heart of COMPASS is an adaptive nodal core simulator for the on-line calculation of three-dimensional assembly and pin power distributions which are used for the evaluation of the thermal margins and for the guide in operation. In this paper, the overall structures and the solution methods of COMPASS are described. The uncertainty of COMPASS for SMART core was also evaluated by comparing that of MASTER. The results showed that COMPASS uncertainty in power shape prediction is identical to that of the design code system, MASTER. The application of COMPASS to the analysis of peaking factor for SMART core resulted with about 4% gain in peaking factor margin when compared to COLSS

  7. Exploring the Role of Agriculture Teachers in Core Academic Integration

    Science.gov (United States)

    McKim, Aaron J.; Sorenson, Tyson J.; Velez, Jonathan J.

    2016-01-01

    Core academic skills are essential for success in our society. However, an abundance of research has identified a large proportion of secondary school students are under performing in core academic areas such as literacy and math. Researchers have suggested integrating core academic content throughout all secondary coursework as a potential…

  8. Licensing aspects of structural integrity

    International Nuclear Information System (INIS)

    Turner, M.J.; Hemsworth, B.; Boydon, F.M.D.; Harrop, L.P.; Waters, R.

    1992-01-01

    Examples are given of the wide variety of structural integrity assessments of nuclear plant carried out by the United Kingdom Nuclear Installations Inspectorate (NII) and the consequent need for a flexible approach within the framework provided by the Safety Assessment Principles. The paper describes the use of the Special Case Procedure and draws the distinction between the assessment of incredibility of failure of components and components whose failures are considered within the design basis. Assessment examples provided are the Sizewell B reactor pressure vessel, Magnox reactor pressure vessels, the Prototype Fast Reactor core support structure, Advanced Gas-cooled Reactor steam plant, Thermal Oxide Reprocessing Plant (THORP) vessels, and Steam Generating Heavy Water Reactor pressure tubes. (author)

  9. CopperCore Service Integration, Integrating IMS Learning Design and IMS Question and Test Interoperability

    NARCIS (Netherlands)

    Vogten, Hubert; Martens, Harrie; Nadolski, Rob; Tattersall, Colin; Van Rosmalen, Peter; Koper, Rob

    2006-01-01

    Vogten, H., Martens, H., Nadolski, R., Tattersall, C., Rosmalen, van, P., Koper, R., (2006). CopperCore Service Integration, Integrating IMS Learning Design and IMS Question and Test Interoperability. Proceedings of the 6th IEEE International Conference on Advanced Learning Technologies (pp.

  10. Integral manifolding structure for fuel cell core having parallel gas flow

    Science.gov (United States)

    Herceg, Joseph E.

    1984-01-01

    Disclosed herein are manifolding means for directing the fuel and oxidant gases to parallel flow passageways in a fuel cell core. Each core passageway is defined by electrolyte and interconnect walls. Each electrolyte and interconnect wall consists respectively of anode and cathode materials layered on the opposite sides of electrolyte material, or on the opposite sides of interconnect material. A core wall projects beyond the open ends of the defined core passageways and is disposed approximately midway between and parallel to the adjacent overlaying and underlying interconnect walls to define manifold chambers therebetween on opposite sides of the wall. Each electrolyte wall defining the flow passageways is shaped to blend into and be connected to this wall in order to redirect the corresponding fuel and oxidant passageways to the respective manifold chambers either above or below this intermediate wall. Inlet and outlet connections are made to these separate manifold chambers respectively, for carrying the fuel and oxidant gases to the core, and for carrying their reaction products away from the core.

  11. The Expanded FindCore Method for Identification of a Core Atom Set for Assessment of Protein Structure Prediction

    Science.gov (United States)

    Snyder, David A.; Grullon, Jennifer; Huang, Yuanpeng J.; Tejero, Roberto; Montelione, Gaetano T.

    2014-01-01

    Maximizing the scientific impact of NMR-based structure determination requires robust and statistically sound methods for assessing the precision of NMR-derived structures. In particular, a method to define a core atom set for calculating superimpositions and validating structure predictions is critical to the use of NMR-derived structures as targets in the CASP competition. FindCore (D.A. Snyder and G.T. Montelione PROTEINS 2005;59:673–686) is a superimposition independent method for identifying a core atom set, and partitioning that set into domains. However, as FindCore optimizes superimposition by sensitively excluding not-well-defined atoms, the FindCore core may not comprise all atoms suitable for use in certain applications of NMR structures, including the CASP assessment process. Adapting the FindCore approach to assess predicted models against experimental NMR structures in CASP10 required modification of the FindCore method. This paper describes conventions and a standard protocol to calculate an “Expanded FindCore” atom set suitable for validation and application in biological and biophysical contexts. A key application of the Expanded FindCore method is to identify a core set of atoms in the experimental NMR structure for which it makes sense to validate predicted protein structure models. We demonstrate the application of this Expanded FindCore method in characterizing well-defined regions of 18 NMR-derived CASP10 target structures. The Expanded FindCore protocol defines “expanded core atom sets” that match an expert’s intuition of which parts of the structure are sufficiently well-defined to use in assessing CASP model predictions. We also illustrate the impact of this analysis on the CASP GDT assessment scores. PMID:24327305

  12. Development of core design and analyses technology for integral reactor

    International Nuclear Information System (INIS)

    Zee, Sung Quun; Lee, C. C.; Kim, K. Y.

    2002-03-01

    In general, small and medium-sized integral reactors adopt new technology such as passive and inherent safety concepts to minimize the necessity of power source and operator actions, and to provide the automatic measures to cope with any accidents. Specifically, such reactors are often designed with a lower core power density and with soluble boron free concept for system simplification. Those reactors require ultra long cycle operation for higher economical efficiency. This cycle length requirement is one of the important factors in the design of burnable absorbers as well as assurance of shutdown margin. Hence, both computer code system and design methodology based on the today's design technology for the current commercial reactor cores require intensive improvement for the small and medium-sized soluble boron free reactors. New database is also required for the development of this type of reactor core. Under these technical requirements, conceptual design of small integral reactor SMART has been performed since July 1997, and recently completed under the long term nuclear R and D program. Thus, the final objectives of this work is design and development of an integral reactor core and development of necessary indigenous design technology. To reach the goal of the 2nd stage R and D program for basic design of SMART, design bases and requirements adequate for ultra long cycle and soluble boron free concept are established. These bases and requirements are satisfied by the core loading pattern. Based on the core loading pattern, nuclear, and thermal and hydraulic characteristics are analyzed. Also included are fuel performance analysis and development of a core protection and monitoring system that is adequate for the soluble boron free core of an integral reactor. Core shielding design analysis is accomplished, too. Moreover, full scope interface data are produced for reactor safety and performance analyses and other design activities. Nuclear, thermal and

  13. MIMI: multimodality, multiresource, information integration environment for biomedical core facilities.

    Science.gov (United States)

    Szymanski, Jacek; Wilson, David L; Zhang, Guo-Qiang

    2009-10-01

    The rapid expansion of biomedical research has brought substantial scientific and administrative data management challenges to modern core facilities. Scientifically, a core facility must be able to manage experimental workflow and the corresponding set of large and complex scientific data. It must also disseminate experimental data to relevant researchers in a secure and expedient manner that facilitates collaboration and provides support for data interpretation and analysis. Administratively, a core facility must be able to manage the scheduling of its equipment and to maintain a flexible and effective billing system to track material, resource, and personnel costs and charge for services to sustain its operation. It must also have the ability to regularly monitor the usage and performance of its equipment and to provide summary statistics on resources spent on different categories of research. To address these informatics challenges, we introduce a comprehensive system called MIMI (multimodality, multiresource, information integration environment) that integrates the administrative and scientific support of a core facility into a single web-based environment. We report the design, development, and deployment experience of a baseline MIMI system at an imaging core facility and discuss the general applicability of such a system in other types of core facilities. These initial results suggest that MIMI will be a unique, cost-effective approach to addressing the informatics infrastructure needs of core facilities and similar research laboratories.

  14. Controlling interface characteristics by adjusting core-shell structure

    International Nuclear Information System (INIS)

    Chang, H.Y.; Cheng, S.Y.; Sheu, C.I.

    2004-01-01

    Most grain boundary layer ceramics comprise semiconductive/conductive grains and insulated grain boundaries. Such a structure can be theoretically regarded as a shell (grain boundary layer) surrounds a core (conductive or semiconductive grain). The core-shell structure of titanium (Ti)-strontium titanate (ST) is composed of three zones - ST, non-stoichiometric strontium-titanium oxide and Ti, in order from shell to core. It was successfully prepared using a hydrothermal method. The Ti-ST core-shell structure was sintered in a reducing atmosphere and then annealed in air to achieve the metal-insulator-metal structure (MIM structure). The resulting MIM structure, annealed in air, changes with the oxygen stoichiometry of the ST shell (insulator layer) at various temperatures, which is thus used to tune its electrical characteristics. The characteristics exhibit nonlinear behavior. Accordingly, the thickness of the insulator layer can be adjusted in various annealing atmospheres and at various temperatures to develop various interfacial devices, such as varistors, capacitors and thermistors, without the use of complex donor/acceptor doping technology

  15. Process to make core-shell structured nanoparticles

    Science.gov (United States)

    Luhrs, Claudia; Phillips, Jonathan; Richard, Monique N

    2014-01-07

    Disclosed is a process for making a composite material that contains core-shell structured nanoparticles. The process includes providing a precursor in the form of a powder a liquid and/or a vapor of a liquid that contains a core material and a shell material, and suspending the precursor in an aerosol gas to produce an aerosol containing the precursor. In addition, the process includes providing a plasma that has a hot zone and passing the aerosol through the hot zone of the plasma. As the aerosol passes through the hot zone of the plasma, at least part of the core material and at least part of the shell material in the aerosol is vaporized. Vapor that contains the core material and the shell material that has been vaporized is removed from the hot zone of the plasma and allowed to condense into core-shell structured nanoparticles.

  16. Integrating IMS Learning Design and IMS Question and Test Interoperability using CopperCore Service Integration

    NARCIS (Netherlands)

    Vogten, Hubert; Martens, Harrie; Nadolski, Rob; Tattersall, Colin; Van Rosmalen, Peter; Koper, Rob

    2006-01-01

    Please, cite this publication as: Vogten, H., Martens, H., Nadolski, R., Tattersall, C., van Rosmalen, P., & Koper, R. (2006). Integrating IMS Learning Design and IMS Question and Test Interoperability using CopperCore Service Integration. Proceedings of International Workshop in Learning Networks

  17. Fluid structure interaction studies on acoustic load response of light water nuclear reactor core internals under blowdown condition

    International Nuclear Information System (INIS)

    Moses Lemuel Raj, G.; Singh, R.K.; Kushwaha, H.S.; Venkat Raj, V.

    1998-12-01

    Acoustic load evaluation within two phase medium and the related fluid-structure interaction analysis in case of Loss of Coolant Accidents (LOCA) for light water reactor systems is an important inter-disciplinary area. The present work highlights the development of a three-dimensional finite element code FLUSHEL to analyse LOCA induced depressurization problems for Pressurised Water Reactor (PWR) core barrel and Boiling Water Reactor (BWR) core shroud. With good comparison obtained between prediction made by the present code and the experimental results of HDR-PWR test problem, coupled fluid-structure interaction analysis of core shroud of Tarapur Atomic Power Station (TAPS) is presented for recirculation line break. It is shown that the acoustic load induced stresses in the core shroud are small and downcomer acoustic cavity modes are decoupled with the shell multi-lobe modes. Thus the structural integrity of TAPS core shroud for recirculation line break induced acoustic load is demonstrated. (author)

  18. Application of Integral Ex-Core and Differential In-Core Neutron Measurements for Adjustment of Fuel Burn-Up Distributions in VVER-1000

    Science.gov (United States)

    Borodkin, Pavel G.; Borodkin, Gennady I.; Khrennikov, Nikolay N.

    2010-10-01

    The paper deals with calculational and semi-analytical evaluations of VVER-1000 reactor core neutron source distributions and their influence on measurements and calculations of the integral through-vessel neutron leakage. Time-integrated neutron source distributions used for DORT calculations were prepared by two different approaches based on a) calculated fuel burn-up (standard routine procedure) and b) in-core measurements by means of SPD & TC (new approach). Taking into account that fuel burn-up distributions in operating VVER may be evaluated now by analytical methods (calculations) only it is needed to develop new approaches for testing and correction of calculational evaluations. Results presented in this paper allow to consider a reverse task of alternative estimation of fuel burn-up distributions. The approach proposed is based on adjustment (fitting) of time-integrated neutron source distributions, and hence fuel burn-up patterns in some part of reactor core, on the base of ex-core neutron leakage measurement, neutron-physical calculation and in-core SPD & TC measurement data.

  19. Core mechanics and configuration behavior of advanced LMFBR core restraint concepts

    International Nuclear Information System (INIS)

    Fox, J.N.; Wei, B.C.

    1978-02-01

    Core restraint systems in LMFBRs maintain control of core mechanics and configuration behavior. Core restraint design is complex due to the close spacing between adjacent components, flux and temperature gradients, and irradiation-induced material property effects. Since the core assemblies interact with each other and transmit loads directly to the core restraint structural members, the core assemblies themselves are an integral part of the core restraint system. This paper presents an assessment of several advanced core restraint system and core assembly concepts relative to the expected performance of currently accepted designs. A recommended order for the development of the advanced concepts is also presented

  20. Integrity of Safety-Related Fast Reactor Structures

    International Nuclear Information System (INIS)

    Rose, R.T.; Tomkins, B.

    1981-01-01

    The LMFBR contains several structural items whose integrity must be safeguarded during the life of the plant. These items include the main core support structures (strongback, diagrid) and the primary tank to which these structures are attached. In order to demonstrate an acceptable level of structural integrity, the chosen design philosophy must be supported by both analytical and experimental evidence. This paper describes the current approaches in the UK to these requirements. Section 2 describes the materials mechanical properties tests performed to date on both fracture toughness and fatigue crack growth in Type 316 austenitic stainless steel plate and weldments. This data illustrates the problems in identifying the relevant materials fracture parameters for use in assessments. Section 3 shows the test programmes in hand to extend the materials programmes to tests on structural features (mainly welded wide plate tests) which incorporate the complexity of weldments in a structural context. This includes experimental evidence on the effects of local weld residual stresses on structural failure. Various routes are open for the integrity assessment of FR structures. These are discussed in Section 4 but in effect they reduce to a fracture mechanics approach using some technique to cope with elastic-plastic fracture. The main problems at present relate to our ability in analysis to cope with residual stresses and the post-initiation region of the fracture resistance curve. Also, there is the problem of initial defect sizing by current NDE techniques. Current conservative analytical assessments give acceptable defect sizes of order a few millimetres in irradiated weldments. Finally, Section 5 discusses the options open in design to cope with safety related structures under normal and abnormal loading conditions. It is clear that several options exist in design to satisfy the demand for high integrity

  1. Structural integrity and management of aging in internal components of BWR reactors

    International Nuclear Information System (INIS)

    Arganis J, C.R.

    2004-01-01

    Presently work the bases to apply structural integrity and the handling of the aging of internal components of the pressure vessel of boiling water reactors of water are revised and is carried out an example of structural integrity in the horizontal welding H4 of the encircling one of the core of a reactor, taking data reported in the literature. It is also revised what is required to carry out the handling program or conduct of the aging (AMP). (Author)

  2. Integration of Biosafety into Core Facility Management

    Science.gov (United States)

    Fontes, Benjamin

    2013-01-01

    This presentation will discuss the implementation of biosafety policies for small, medium and large core laboratories with primary shared objectives of ensuring the control of biohazards to protect core facility operators and assure conformity with applicable state and federal policies, standards and guidelines. Of paramount importance is the educational process to inform core laboratories of biosafety principles and policies and to illustrate the technology and process pathways of the core laboratory for biosafety professionals. Elevating awareness of biohazards and the biosafety regulatory landscape among core facility operators is essential for the establishment of a framework for both project and material risk assessment. The goal of the biohazard risk assessment process is to identify the biohazard risk management parameters to conduct the procedure safely and in compliance with applicable regulations. An evaluation of the containment, protective equipment and work practices for the procedure for the level of risk identified is facilitated by the establishment of a core facility registration form for work with biohazards and other biological materials with potential risk. The final step in the biocontainment process is the assumption of Principal Investigator role with full responsibility for the structure of the site-specific biosafety program plan by core facility leadership. The presentation will provide example biohazard protocol reviews and accompanying containment measures for core laboratories at Yale University.

  3. The Faculty of Language Integrates the Two Core Systems of Number.

    Science.gov (United States)

    Hiraiwa, Ken

    2017-01-01

    Only humans possess the faculty of language that allows an infinite array of hierarchically structured expressions (Hauser et al., 2002; Berwick and Chomsky, 2015). Similarly, humans have a capacity for infinite natural numbers, while all other species seem to lack such a capacity (Gelman and Gallistel, 1978; Dehaene, 1997). Thus, the origin of this numerical capacity and its relation to language have been of much interdisciplinary interest in developmental and behavioral psychology, cognitive neuroscience, and linguistics (Dehaene, 1997; Hauser et al., 2002; Pica et al., 2004). Hauser et al. (2002) and Chomsky (2008) hypothesize that a recursive generative operation that is central to the computational system of language (called Merge ) can give rise to the successor function in a set-theoretic fashion, from which capacities for discretely infinite natural numbers may be derived. However, a careful look at two domains in language, grammatical number and numerals, reveals no trace of the successor function. Following behavioral and neuropsychological evidence that there are two core systems of number cognition innately available, a core system of representation of large, approximate numerical magnitudes and a core system of precise representation of distinct small numbers (Feigenson et al., 2004), I argue that grammatical number reflects the core system of precise representation of distinct small numbers alone. In contrast, numeral systems arise from integrating the pre-existing two core systems of number and the human language faculty. To the extent that my arguments are correct, linguistic representations of number, grammatical number, and numerals do not incorporate anything like the successor function.

  4. Dislocation core structures in (0001) InGaN

    International Nuclear Information System (INIS)

    Rhode, S. L.; Sahonta, S.-L.; Kappers, M. J.; McAleese, C.; Humphreys, C. J.; Horton, M. K.; Haigh, S. J.; Pennycook, T. J.; Dusane, R. O.; Moram, M. A.

    2016-01-01

    Threading dislocation core structures in c-plane GaN and In x Ga 1−x N (0.057 ≤ x ≤ 0.20) films were investigated by aberration-corrected scanning transmission electron microscopy. a-type dislocations are unaffected by alloying with indium and have a 5/7-atom ring core structure in both GaN and In x Ga 1−x N. In contrast, the dissociation lengths of (a + c)-type dislocations are reduced, and new 7/4/9-atom ring and 7/4/8/5-atom ring core structures were observed for the dissociated (a + c)-type dislocations in In x Ga 1−x N, which is associated with the segregation of indium near (a + c)-type and c-type dislocation cores in In x Ga 1−x N, consistent with predictions from atomistic Monte Carlo simulations.

  5. Flexural Behavior of Aluminum Honeycomb Core Sandwich Structure

    Science.gov (United States)

    Matta, Vidyasagar; Kumar, J. Suresh; Venkataraviteja, Duddu; Reddy, Guggulla Bharath Kumar

    2017-05-01

    This project is concerned with the fabrication and flexural testing of aluminium honey comb sandwich structure which is a special case of composite materials that is fabricated by attaching two thin but stiff skins to a light weight but thick core. The core material is normally low density material but its high thickness provide the sandwich composite with high bonding stiffness. Honeycomb core are classified into two types based on the materials and structures. Hexagonal shape has a unique properties i.e has more bonding strength and less formation time based on the cell size and sheet thickness. Sandwich structure exhibit different properties such as high load bearing capacity at low weight and has excellent thermal insulation. By considering the above properties it has tendency to minimize the structural problem. So honey comb sandwich structure is choosed. The core structure has a different applications such as aircraft, ship interiors, construction industries. As there is no proper research on strength characteristics of sandwich structure. So, we use light weight material to desire the strength. There are different parameters involved in this structure i.e cell size, sheet thickness and core height. In this project we considered 3 level of comparison among the 3 different parameters cell size of 4, 6 and 8 mm, sheet thickness of 0.3, 0.5 and 0.7 mm, and core height of 20,25 and 30 mm. In order to reduce the number of experiment we use taguchi design of experiment, and we select the L8 orthogonal array is the best array for this type of situation, which clearly identifies the parameters by independent of material weight to support this we add the minitab software, to identify the main effective plots and regression equation which involves the individual response and corresponding parameters. Aluminium material is used for the fabrication of Honeycomb sandwich structure among the various grades of aluminium we consider the AL6061 which is light weight material

  6. Application of the Intervention Mapping Framework to Develop an Integrated Twenty-first Century Core Curriculum-Part Two: Translation of MPH Core Competencies into an Integrated Theory-Based Core Curriculum.

    Science.gov (United States)

    Corvin, Jaime A; DeBate, Rita; Wolfe-Quintero, Kate; Petersen, Donna J

    2017-01-01

    In the twenty-first century, the dynamics of health and health care are changing, necessitating a commitment to revising traditional public health curricula to better meet present day challenges. This article describes how the College of Public Health at the University of South Florida utilized the Intervention Mapping framework to translate revised core competencies into an integrated, theory-driven core curriculum to meet the training needs of the twenty-first century public health scholar and practitioner. This process resulted in the development of four sequenced courses: History and Systems of Public Health and Population Assessment I delivered in the first semester and Population Assessment II and Translation to Practice delivered in the second semester. While the transformation process, moving from traditional public health core content to an integrated and innovative curriculum, is a challenging and daunting task, Intervention Mapping provides the ideal framework for guiding this process. Intervention mapping walks the curriculum developers from the broad goals and objectives to the finite details of a lesson plan. Throughout this process, critical lessons were learned, including the importance of being open to new ideologies and frameworks and the critical need to involve key-stakeholders in every step of the decision-making process to ensure the sustainability of the resulting integrated and theory-based curriculum. Ultimately, as a stronger curriculum emerged, the developers and instructors themselves were changed, fostering a stronger public health workforce from within.

  7. Insert Design and Manufacturing for Foam-Core Composite Sandwich Structures

    Science.gov (United States)

    Lares, Alan

    previous insert designs. A casting process for manufacturing the v.3 inserts was developed. The developed casting process, when producing more than 13 inserts, becomes more economical than machining. An exploratory study was conducted looking at the effects of dynamic loading on the v.3 insert performance. The results of this study highlighted areas for improving dynamic testing of foam-core sandwich structure inserts. Correlations were developed relating design variables such as face-sheet thickness and insert diameter to a failure load for different load cases. This was done through simulations using Computer Aided Engineering (CAE) software, and experimental testing. The resulting correlations were integrated into a computer program which outputs the required insert dimensions given a set of design parameters, and load values.

  8. Density-based and transport-based core-periphery structures in networks.

    Science.gov (United States)

    Lee, Sang Hoon; Cucuringu, Mihai; Porter, Mason A

    2014-03-01

    Networks often possess mesoscale structures, and studying them can yield insights into both structure and function. It is most common to study community structure, but numerous other types of mesoscale structures also exist. In this paper, we examine core-periphery structures based on both density and transport. In such structures, core network components are well-connected both among themselves and to peripheral components, which are not well-connected to anything. We examine core-periphery structures in a wide range of examples of transportation, social, and financial networks-including road networks in large urban areas, a rabbit warren, a dolphin social network, a European interbank network, and a migration network between counties in the United States. We illustrate that a recently developed transport-based notion of node coreness is very useful for characterizing transportation networks. We also generalize this notion to examine core versus peripheral edges, and we show that the resulting diagnostic is also useful for transportation networks. To examine the properties of transportation networks further, we develop a family of generative models of roadlike networks. We illustrate the effect of the dimensionality of the embedding space on transportation networks, and we demonstrate that the correlations between different measures of coreness can be very different for different types of networks.

  9. A review of MAAP4 code structure and core T/H model

    International Nuclear Information System (INIS)

    Song, Yong Mann; Park, Soo Yong

    1998-03-01

    The modular accident analysis program (MAAP) version 4 is a computer code that can simulate the response of LWR plants during severe accident sequences and includes models for all of the important phenomena which might occur during accident sequences. In this report, MAAP4 code structure and core thermal hydraulic (T/H) model which models the T/H behavior of the reactor core and the response of core components during all accident phases involving degraded cores are specifically reviewed and then reorganized. This reorganization is performed via getting the related models together under each topic whose contents and order are same with other two reports for MELCOR and SCDAP/RELAP5 to be simultaneously published. Major purpose of the report is to provide information about the characteristics of MAAP4 core T/H models for an integrated severe accident computer code development being performed under the one of on-going mid/long-term nuclear developing project. The basic characteristics of the new integrated severe accident code includes: 1) Flexible simulation capability of primary side, secondary side, and the containment under severe accident conditions, 2) Detailed plant simulation, 3) Convenient user-interfaces, 4) Highly modularization for easy maintenance/improvement, and 5) State-of-the-art model selection. In conclusion, MAAP4 code has appeared to be superior for 3) and 4) items but to be somewhat inferior for 1) and 2) items. For item 5), more efforts should be made in the future to compare separated models in detail with not only other codes but also recent world-wide work. (author). 17 refs., 1 tab., 12 figs

  10. Design and development of small and medium integral reactor core

    International Nuclear Information System (INIS)

    Zee, Sung Quun; Chang, M. H.; Lee, C. C.; Song, J. S.; Cho, B. O.; Kim, K. Y.; Kim, S. J.; Park, S. Y.; Lee, K. B.; Lee, C. H.; Chun, T. H.; Oh, D. S.; In, W. K.; Kim, H. K.; Lee, C. B.; Kang, H. S.; Song, K. N.

    1997-07-01

    Recently, the role of small and medium size integral reactors is remarkable in the heat applications rather than the electrical generations. Such a range of possible applications requires extensive used of inherent safety features and passive safety systems. It also requires ultra-longer cycle operations for better plant economy. Innovative and evolutionary designs such as boron-free operations and related reactor control methods that are necessary for simple reactor system design are demanded for the small and medium reactor (SMR) design, which are harder for engineers to implement in the current large size nuclear power plants. The goals of this study are to establish preliminary design criteria, to perform the preliminary conceptual design and to develop core specific technology for the core design and analysis for System-integrated Modular Advanced ReacTor (SMART) of 330 MWt power. Based on the design criteria of the commercial PWR's, preliminary design criteria will be set up. Preliminary core design concept is going to be developed for the ultra-longer cycle and boron-free operation and core analysis code system is constructed for SMART. (author). 100 refs., 40 tabs., 92 figs

  11. Dislocation core structures in (0001) InGaN

    Energy Technology Data Exchange (ETDEWEB)

    Rhode, S. L.; Sahonta, S.-L.; Kappers, M. J.; McAleese, C.; Humphreys, C. J. [Department of Materials Science and Metallurgy, University of Cambridge, Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); Horton, M. K. [Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom); Haigh, S. J. [School of Materials, University of Manchester, Manchester M13 9PL (United Kingdom); SuperSTEM, STFC Daresbury Laboratories, Warrington WA4 4AD (United Kingdom); Pennycook, T. J. [SuperSTEM, STFC Daresbury Laboratories, Warrington WA4 4AD (United Kingdom); Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Dusane, R. O. [Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai 400076 (India); Moram, M. A. [Department of Materials Science and Metallurgy, University of Cambridge, Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom)

    2016-03-14

    Threading dislocation core structures in c-plane GaN and In{sub x}Ga{sub 1−x}N (0.057 ≤ x ≤ 0.20) films were investigated by aberration-corrected scanning transmission electron microscopy. a-type dislocations are unaffected by alloying with indium and have a 5/7-atom ring core structure in both GaN and In{sub x}Ga{sub 1−x}N. In contrast, the dissociation lengths of (a + c)-type dislocations are reduced, and new 7/4/9-atom ring and 7/4/8/5-atom ring core structures were observed for the dissociated (a + c)-type dislocations in In{sub x}Ga{sub 1−x}N, which is associated with the segregation of indium near (a + c)-type and c-type dislocation cores in In{sub x}Ga{sub 1−x}N, consistent with predictions from atomistic Monte Carlo simulations.

  12. DABIE: a data banking system of integral experiments for reactor core characteristics computer codes

    International Nuclear Information System (INIS)

    Matsumoto, Kiyoshi; Naito, Yoshitaka; Ohkubo, Shuji; Aoyanagi, Hideo.

    1987-05-01

    A data banking system of integral experiments for reactor core characteristics computer codes, DABIE, has been developed to lighten the burden on searching so many documents to obtain experiment data required for verification of reactor core characteristics computer code. This data banking system, DABIE, has capabilities of systematic classification, registration and easy retrieval of experiment data. DABIE consists of data bank and supporting programs. Supporting programs are data registration program, data reference program and maintenance program. The system is designed so that user can easily register information of experiment systems including figures as well as geometry data and measured data or obtain those data through TSS terminal interactively. This manual describes the system structure, how-to-use and sample uses of this code system. (author)

  13. Integrated core-edge-divertor modeling studies

    International Nuclear Information System (INIS)

    Stacey, W.M.

    2001-01-01

    An integrated calculation model for simulating the interaction of physics phenomena taking place in the plasma core, in the plasma edge and in the SOL and divertor of tokamaks has been developed and applied to study such interactions. The model synthesises a combination of numerical calculations (1) the power and particle balances for the core plasma, using empirical confinement scaling laws and taking into account radiation losses (2), the particle, momentum and power balances in the SOL and divertor, taking into account the effects of radiation and recycling neutrals, (3) the transport of feeling and recycling neutrals, explicitly representing divertor and pumping geometry, and (4) edge pedestal gradient scale lengths and widths, evaluation of theoretical predictions (5) confinement degradation due to thermal instabilities in the edge pedestals, (6) detachment and divertor MARFE onset, (7) core MARFE onsets leading to a H-L transition, and (8) radiative collapse leading to a disruption and evaluation of empirical fits (9) power thresholds for the L-H and H-L transitions and (10) the width of the edge pedestals. The various components of the calculation model are coupled and must be iterated to a self-consistent convergence. The model was developed over several years for the purpose of interpreting various edge phenomena observed in DIII-D experiments and thereby, to some extent, has been benchmarked against experiment. Because the model treats the interactions of various phenomena in the core, edge and divertor, yet is computationally efficient, it lends itself to the investigation of the effects of different choices of various edge plasma operating conditions on overall divertor and core plasma performance. Studies of the effect of feeling location and rate, divertor geometry, plasma shape, pumping and over 'edge parameters' on core plasma properties (line average density, confinement, density limit, etc.) have been performed for DIII-D model problems. A

  14. An integrated expert system for optimum in core fuel management

    International Nuclear Information System (INIS)

    Abd Elmoatty, Mona S.; Nagy, M.S.; Aly, Mohamed N.; Shaat, M.K.

    2011-01-01

    Highlights: → An integrated expert system constructed for optimum in core fuel management. → Brief discussion of the ESOIFM Package modules, inputs and outputs. → Package was applied on the DALAT Nuclear Research Reactor (0.5 MW). → The Package verification showed good agreement. - Abstract: An integrated expert system called Efficient and Safe Optimum In-core Fuel Management (ESOIFM Package) has been constructed to achieve an optimum in core fuel management and automate the process of data analysis. The Package combines the constructed mathematical models with the adopted artificial intelligence techniques. The paper gives a brief discussion of the ESOIFM Package modules, inputs and outputs. The Package was applied on the DALAT Nuclear Research Reactor (0.5 MW). Moreover, the data of DNRR have been used as a case study for testing and evaluation of ESOIFM Package. This paper shows the comparison between the ESOIFM Package burn-up results, the DNRR experimental burn-up data, and other DNRR Codes burn-up results. The results showed good agreement.

  15. Compressive failure modes and parameter optimization of the trabecular structure of biomimetic fully integrated honeycomb plates.

    Science.gov (United States)

    Chen, Jinxiang; Tuo, Wanyong; Zhang, Xiaoming; He, Chenglin; Xie, Juan; Liu, Chang

    2016-12-01

    To develop lightweight biomimetic composite structures, the compressive failure and mechanical properties of fully integrated honeycomb plates were investigated experimentally and through the finite element method. The results indicated that: fracturing of the fully integrated honeycomb plates primarily occurred in the core layer, including the sealing edge structure. The morphological failures can be classified into two types, namely dislocations and compactions, and were caused primarily by the stress concentrations at the interfaces between the core layer and the upper and lower laminations and secondarily by the disordered short-fiber distribution in the material; although the fully integrated honeycomb plates manufactured in this experiment were imperfect, their mass-specific compressive strength was superior to that of similar biomimetic samples. Therefore, the proposed bio-inspired structure possesses good overall mechanical properties, and a range of parameters, such as the diameter of the transition arc, was defined for enhancing the design of fully integrated honeycomb plates and improving their compressive mechanical properties. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Effect of varying geometrical parameters of trapezoidal corrugated-core sandwich structure

    Directory of Open Access Journals (Sweden)

    Zaid N.Z.M.

    2017-01-01

    Full Text Available Sandwich structure is an attractive alternative that increasingly used in the transportation and aerospace industry. Corrugated-core with trapezoidal shape allows enhancing the damage resistance to the sandwich structure, but on the other hand, it changes the structural response of the sandwich structure. The aim of this paper is to study the effect of varying geometrical parameters of trapezoidal corrugated-core sandwich structure under compression loading. The corrugated-core specimen was fabricated using press technique, following the shape of trapezoidal shape. Two different materials were used in the study, glass fibre reinforced plastic (GFRP and carbon fibre reinforced plastic (CFRP. The result shows that the mechanical properties of the core in compression loading are sensitive to the variation of a number of unit cells and the core thickness.

  17. Structural Control of InP/ZnS Core/Shell Quantum Dots Enables High-quality White LEDs.

    Science.gov (United States)

    Ganesh Kumar, Baskaran; Sadeghi, Sadra; Melikov, Rustamzhon; Mohammadi Aria, Mohammed; Bahmani Jalali, Houman; Ow-Yang, Cleva; Nizamoglu, Sedat

    2018-05-30

    Herein, we demonstrate that the structural and optical control of InP-based quantum dots can lead to high-performance LEDs. Zinc sulphide (ZnS) shells passivate the InP quantum dot core and increase the quantum yield in green-emitting quantum dots by 13-fold and red-emitting quantum dots by 8-fold. The optimised quantum dots are integrated in the liquid-state to eliminate aggregation induced emission quenching and we fabricated white LEDs with warm, neutral, and cool white appearance by the down-conversion mechanism. The quantum dot-functionalized white LEDs achieve luminous efficiency up to 14.7 lm/W and colour-rendering index up to 80. The structural and optical control of InP/ZnS core/shell quantum dots enable 23-fold enhancement in luminous efficiency of white LEDs compared to ones containing only QDs of InP core. © 2018 IOP Publishing Ltd.

  18. Modified ferrite core-shell nanoparticles magneto-structural characterization

    Science.gov (United States)

    Klekotka, Urszula; Piotrowska, Beata; Satuła, Dariusz; Kalska-Szostko, Beata

    2018-06-01

    In this study, ferrite nanoparticles with core-shell structures and different chemical compositions of both the core and shell were prepared with success. Proposed nanoparticles have in the first and second series magnetite core, and the shell is composed of a mixture of ferrites with Fe3+, Fe2+ and M ions (where M = Co2+, Mn2+ or Ni2+) with a general composition of M0.5Fe2.5O4. In the third series, the composition is inverted, the core is composed of a mixture of ferrites and as a shell magnetite is placed. Morphology and structural characterization of nanoparticles were done using Transmission Electron Microscopy (TEM), X-ray diffraction (XRD), and Infrared spectroscopy (IR). While room temperature magnetic properties were measured using Mössbauer spectroscopy (MS). It is seen from Mössbauer measurements that Co always increases hyperfine magnetic field on Fe atoms at RT, while Ni and Mn have opposite influences in comparison to pure Fe ferrite, regardless of the nanoparticles structure.

  19. Structural assessment of TAPS core shroud under accident loads

    International Nuclear Information System (INIS)

    Bhasin, Vivek; Kushwaha, H.S.; Mahajan, S.C.; Kakodkar, A.

    1996-09-01

    Over the last few years, the Core Shroud of Boiling Water Reactors (BWRs) operating in foreign countries, have developed cracks at weld locations. As a first step for assessment of structural safety of Tarapur Atomic Power Station (TAPS) core shroud, its detailed stress analysis was done for postulated accident loads. This report is concerned with structural assessment of core shroud, of BWR at TAPS, subjected to loads resulting from main steam line break (MSLB), recirculation line break (RLB) and safe shut down earthquake. The stress analysis was done for core shroud in healthy condition and without any crack since, visual examination conducted till now, do not indicate presence of any flaw. Dynamic structural analysis for MSLB and RLB events was done using dynamic load factor (DLF) method. The complete core shroud and its associated components were modelled and analysed using 3D plate/shell elements. Since, the components of core shroud are submerged in water, hence, hydrodynamic added mass was also considered for evaluation of natural frequencies. It was concluded that from structural point of view, adequate safety margin is available under all the accident loads. Nonlinear analysis was done to evaluate buckling/collapse load. The collapse/buckling load have sufficient margin against the allowable limits. The displacements are low hence, the insertion of control rod may not be affected. (author)

  20. Distributed and multi-core computation of 2-loop integrals

    International Nuclear Information System (INIS)

    De Doncker, E; Yuasa, F

    2014-01-01

    For an automatic computation of Feynman loop integrals in the physical region we rely on an extrapolation technique where the integrals of the sequence are obtained with iterated/repeated adaptive methods from the QUADPACK 1D quadrature package. The integration rule evaluations in the outer level, corresponding to independent inner integral approximations, are assigned to threads dynamically via the OpenMP runtime in the parallel implementation. Furthermore, multi-level (nested) parallelism enables an efficient utilization of hyperthreading or larger numbers of cores. For a class of loop integrals in the unphysical region, which do not suffer from singularities in the interior of the integration domain, we find that the distributed adaptive integration methods in the multivariate PARINT package are highly efficient and accurate. We apply these techniques without resorting to integral transformations and report on the capabilities of the algorithms and the parallel performance for a test set including various types of two-loop integrals

  1. Integrated liquid-core optical fibers for ultra-efficient nonlinear liquid photonics.

    Science.gov (United States)

    Kieu, K; Schneebeli, L; Norwood, R A; Peyghambarian, N

    2012-03-26

    We have developed a novel integrated platform for liquid photonics based on liquid core optical fiber (LCOF). The platform is created by fusion splicing liquid core optical fiber to standard single-mode optical fiber making it fully integrated and practical - a major challenge that has greatly hindered progress in liquid-photonic applications. As an example, we report here the realization of ultralow threshold Raman generation using an integrated CS₂ filled LCOF pumped with sub-nanosecond pulses at 532 nm and 1064 nm. The measured energy threshold for the Stokes generation is 1nJ, about three orders of magnitude lower than previously reported values in the literature for hydrogen gas, a popular Raman medium. The integrated LCOF platform opens up new possibilities for ultralow power nonlinear optics such as efficient white light generation for displays, mid-IR generation, slow light generation, parametric amplification, all-optical switching and wavelength conversion using liquids that have orders of magnitude larger optical nonlinearities compared with silica glass.

  2. Density functional theory studies of screw dislocation core structures in bcc metals

    DEFF Research Database (Denmark)

    Frederiksen, Søren Lund; Jacobsen, Karsten Wedel

    2003-01-01

    The core structures of (I 11) screw dislocations in bee metals are studied using density functional theory in the local-density approximation. For Mo and Fe, direct calculations of the core structures show the cores to be symmetric with respect to 180degrees rotations around an axis perpendicular...... to symmetric core structures for all the studied metals....

  3. Unstructured Computational Aerodynamics on Many Integrated Core Architecture

    KAUST Repository

    Al Farhan, Mohammed A.

    2016-06-08

    Shared memory parallelization of the flux kernel of PETSc-FUN3D, an unstructured tetrahedral mesh Euler flow code previously studied for distributed memory and multi-core shared memory, is evaluated on up to 61 cores per node and up to 4 threads per core. We explore several thread-level optimizations to improve flux kernel performance on the state-of-the-art many integrated core (MIC) Intel processor Xeon Phi “Knights Corner,” with a focus on strong thread scaling. While the linear algebraic kernel is bottlenecked by memory bandwidth for even modest numbers of cores sharing a common memory, the flux kernel, which arises in the control volume discretization of the conservation law residuals and in the formation of the preconditioner for the Jacobian by finite-differencing the conservation law residuals, is compute-intensive and is known to exploit effectively contemporary multi-core hardware. We extend study of the performance of the flux kernel to the Xeon Phi in three thread affinity modes, namely scatter, compact, and balanced, in both offload and native mode, with and without various code optimizations to improve alignment and reduce cache coherency penalties. Relative to baseline “out-of-the-box” optimized compilation, code restructuring optimizations provide about 3.8x speedup using the offload mode and about 5x speedup using the native mode. Even with these gains for the flux kernel, with respect to execution time the MIC simply achieves par with optimized compilation on a contemporary multi-core Intel CPU, the 16-core Sandy Bridge E5 2670. Nevertheless, the optimizations employed to reduce the data motion and cache coherency protocol penalties of the MIC are expected to be of value for CFD and many other unstructured applications as many-core architecture evolves. We explore large-scale distributed-shared memory performance on the Cray XC40 supercomputer, to demonstrate that optimizations employed on Phi hybridize to this context, where each of

  4. Unstructured Computational Aerodynamics on Many Integrated Core Architecture

    KAUST Repository

    Al Farhan, Mohammed A.; Kaushik, Dinesh K.; Keyes, David E.

    2016-01-01

    Shared memory parallelization of the flux kernel of PETSc-FUN3D, an unstructured tetrahedral mesh Euler flow code previously studied for distributed memory and multi-core shared memory, is evaluated on up to 61 cores per node and up to 4 threads per core. We explore several thread-level optimizations to improve flux kernel performance on the state-of-the-art many integrated core (MIC) Intel processor Xeon Phi “Knights Corner,” with a focus on strong thread scaling. While the linear algebraic kernel is bottlenecked by memory bandwidth for even modest numbers of cores sharing a common memory, the flux kernel, which arises in the control volume discretization of the conservation law residuals and in the formation of the preconditioner for the Jacobian by finite-differencing the conservation law residuals, is compute-intensive and is known to exploit effectively contemporary multi-core hardware. We extend study of the performance of the flux kernel to the Xeon Phi in three thread affinity modes, namely scatter, compact, and balanced, in both offload and native mode, with and without various code optimizations to improve alignment and reduce cache coherency penalties. Relative to baseline “out-of-the-box” optimized compilation, code restructuring optimizations provide about 3.8x speedup using the offload mode and about 5x speedup using the native mode. Even with these gains for the flux kernel, with respect to execution time the MIC simply achieves par with optimized compilation on a contemporary multi-core Intel CPU, the 16-core Sandy Bridge E5 2670. Nevertheless, the optimizations employed to reduce the data motion and cache coherency protocol penalties of the MIC are expected to be of value for CFD and many other unstructured applications as many-core architecture evolves. We explore large-scale distributed-shared memory performance on the Cray XC40 supercomputer, to demonstrate that optimizations employed on Phi hybridize to this context, where each of

  5. Core support structure for nuclear power plants

    International Nuclear Information System (INIS)

    Steinkamp, E.; Tautz, J.; Ries, H.

    1979-01-01

    A core support structure for nuclear power plants includes a grid of mutually crossing bridges and a support ring surrounding the grid and connected to ends of the outer bridges of the grid, the grid being formed of profile rod crosses having legs of given length, respective legs of pairs of adjacent crosses abutting one another endwise to form together a side of the smallest mesh opening of the grid, and weld means for securing the profile rod crosses to one another at the mutually abutting ends of the legs thereof; and method of producing the foregoing core support structure

  6. The equivalent thermal conductivity of lattice core sandwich structure: A predictive model

    International Nuclear Information System (INIS)

    Cheng, Xiangmeng; Wei, Kai; He, Rujie; Pei, Yongmao; Fang, Daining

    2016-01-01

    Highlights: • A predictive model of the equivalent thermal conductivity was established. • Both the heat conduction and radiation were considered. • The predictive results were in good agreement with experiment and FEM. • Some methods for improving the thermal protection performance were proposed. - Abstract: The equivalent thermal conductivity of lattice core sandwich structure was predicted using a novel model. The predictive results were in good agreement with experimental and Finite Element Method results. The thermal conductivity of the lattice core sandwich structure was attributed to both core conduction and radiation. The core conduction caused thermal conductivity only relied on the relative density of the structure. And the radiation caused thermal conductivity increased linearly with the thickness of the core. It was found that the equivalent thermal conductivity of the lattice core sandwich structure showed a highly dependent relationship on temperature. At low temperatures, the structure exhibited a nearly thermal insulated behavior. With the temperature increasing, the thermal conductivity of the structure increased owing to radiation. Therefore, some attempts, such as reducing the emissivity of the core or designing multilayered structure, are believe to be of benefit for improving the thermal protection performance of the structure at high temperatures.

  7. The Execution and Evaluation of an Integrated Business Common Core Curriculum.

    Science.gov (United States)

    Pharr, Steven W.; Morris, John S.; Stover, Dana; Byers, C. Randall; Reyes, Mario G.

    1998-01-01

    Describes the rationale, process, and organization of an integrated, cross-disciplinary undergraduate program known as the Integrated Business Common Core (IBC) at the University of Idaho. Indicates that IBC's goal is to provide students with an understanding of key business issues, with emphasis on processes. (2 tables and 11 references) (JDI)

  8. Integrated fiber Michelson interferometer based on poled hollow twin-core fiber.

    Science.gov (United States)

    Liu, Zhihai; Bo, Fusen; Wang, Lei; Tian, Fengjun; Yuan, Libo

    2011-07-01

    We propose an integrated fiber Michelson interferometer based on a poled hollow twin-core fiber. The Michelson interferometer can be used as an electro-optic modulator by thermal poling one core of the twin-core fiber and introducing second-order nonlinearity in the fiber. The proposed fiber Michelson interferometer is experimentally demonstrated under driving voltages at the frequency range of 149 to 1000 Hz. The half-wave voltage of the poled fiber is 135 V, and the effective second-order nonlinear coefficient χ² is 1.23 pm/V.

  9. Integrating Substrateless Electrospinning with Textile Technology for Creating Biodegradable Three-Dimensional Structures.

    Science.gov (United States)

    Joseph, John; Nair, Shantikumar V; Menon, Deepthy

    2015-08-12

    The present study describes a unique way of integrating substrateless electrospinning process with textile technology. We developed a new collector design that provided a pressure-driven, localized cotton-wool structure in free space from which continuous high strength yarns were drawn. An advantage of this integration was that the textile could be drug/dye loaded and be developed into a core-sheath architecture with greater functionality. This method could produce potential nanotextiles for various biomedical applications.

  10. Finding the core : Network structure in interbank markets

    NARCIS (Netherlands)

    in 't Veld, Daan; van Lelyveld, Iman

    2014-01-01

    This paper investigates the network structure of interbank markets. Using a dataset of interbank exposures in the Netherlands, we corroborate the recent hypothesis that the core periphery model is a 'stylised fact' of interbank markets. We find a core of highly connected banks intermediating between

  11. Ana3 is a conserved protein required for the structural integrity of centrioles and basal bodies.

    Science.gov (United States)

    Stevens, Naomi R; Dobbelaere, Jeroen; Wainman, Alan; Gergely, Fanni; Raff, Jordan W

    2009-11-02

    Recent studies have identified a conserved "core" of proteins that are required for centriole duplication. A small number of additional proteins have recently been identified as potential duplication factors, but it is unclear whether any of these proteins are components of the core duplication machinery. In this study, we investigate the function of one of these proteins, Drosophila melanogaster Ana3. We show that Ana3 is present in centrioles and basal bodies, but its behavior is distinct from that of the core duplication proteins. Most importantly, we find that Ana3 is required for the structural integrity of both centrioles and basal bodies and for centriole cohesion, but it is not essential for centriole duplication. We show that Ana3 has a mammalian homologue, Rotatin, that also localizes to centrioles and basal bodies and appears to be essential for cilia function. Thus, Ana3 defines a conserved family of centriolar proteins and plays an important part in ensuring the structural integrity of centrioles and basal bodies.

  12. Principles and core functions of integrated child health information systems.

    Science.gov (United States)

    Hinman, Alan R; Atkinson, Delton; Diehn, Tonya Norvell; Eichwald, John; Heberer, Jennifer; Hoyle, Therese; King, Pam; Kossack, Robert E; Williams, Donna C; Zimmerman, Amy

    2004-11-01

    Infants undergo a series of preventive and therapeutic health interventions and activities. Typically, each activity includes collection and submission of data to a dedicated information system. Subsequently, health care providers, families, and health programs must query each information system to determine the child's status in a given area. Efforts are underway to integrate information in these separate information systems. This requires specifying the core functions that integrated information systems must perform.

  13. Identifying Core Mobile Learning Faculty Competencies Based Integrated Approach: A Delphi Study

    Science.gov (United States)

    Elbarbary, Rafik Said

    2015-01-01

    This study is based on the integrated approach as a concept framework to identify, categorize, and rank a key component of mobile learning core competencies for Egyptian faculty members in higher education. The field investigation framework used four rounds Delphi technique to determine the importance rate of each component of core competencies…

  14. Disentangling bipartite and core-periphery structure in financial networks

    International Nuclear Information System (INIS)

    Barucca, Paolo; Lillo, Fabrizio

    2016-01-01

    A growing number of systems are represented as networks whose architecture conveys significant information and determines many of their properties. Examples of network architecture include modular, bipartite, and core-periphery structures. However inferring the network structure is a non trivial task and can depend sometimes on the chosen null model. Here we propose a method for classifying network structures and ranking its nodes in a statistically well-grounded fashion. The method is based on the use of Belief Propagation for learning through Entropy Maximization on both the Stochastic Block Model (SBM) and the degree-corrected Stochastic Block Model (dcSBM). As a specific application we show how the combined use of the two ensembles—SBM and dcSBM—allows to disentangle the bipartite and the core-periphery structure in the case of the e-MID interbank network. Specifically we find that, taking into account the degree, this interbank network is better described by a bipartite structure, while using the SBM the core-periphery structure emerges only when data are aggregated for more than a week.

  15. Toward an integrated ice core chronology using relative and orbital tie-points

    Science.gov (United States)

    Bazin, L.; Landais, A.; Lemieux-Dudon, B.; Toyé Mahamadou Kele, H.; Blunier, T.; Capron, E.; Chappellaz, J.; Fischer, H.; Leuenberger, M.; Lipenkov, V.; Loutre, M.-F.; Martinerie, P.; Parrenin, F.; Prié, F.; Raynaud, D.; Veres, D.; Wolff, E.

    2012-04-01

    Precise ice cores chronologies are essential to better understand the mechanisms linking climate change to orbital and greenhouse gases concentration forcing. A tool for ice core dating (DATICE [developed by Lemieux-Dudon et al., 2010] permits to generate a common time-scale integrating relative and absolute dating constraints on different ice cores, using an inverse method. Nevertheless, this method has only been applied for a 4-ice cores scenario and for the 0-50 kyr time period. Here, we present the bases for an extension of this work back to 800 ka using (1) a compilation of published and new relative and orbital tie-points obtained from measurements of air trapped in ice cores and (2) an adaptation of the DATICE inputs to 5 ice cores for the last 800 ka. We first present new measurements of δ18Oatm and δO2/N2 on the Talos Dome and EPICA Dome C (EDC) ice cores with a particular focus on Marine Isotopic Stages (MIS) 5, and 11. Then, we show two tie-points compilations. The first one is based on new and published CH4 and δ18Oatm measurements on 5 ice cores (NorthGRIP, EPICA Dronning Maud Land, EDC, Talos Dome and Vostok) in order to produce a table of relative gas tie-points over the last 400 ka. The second one is based on new and published records of δO2/N2, δ18Oatm and air content to provide a table of orbital tie-points over the last 800 ka. Finally, we integrate the different dating constraints presented above in the DATICE tool adapted to 5 ice cores to cover the last 800 ka and show how these constraints compare with the established gas chronologies of each ice core.

  16. Review of the SCDAP/RELAP5/MOD3.1 code structure and core T/H model before core damage

    International Nuclear Information System (INIS)

    Kim, See Darl; Kim, Dong Ha

    1998-04-01

    The SCDAP/RELAP5 code has been developed for best estimate transient simulation of light water reactor coolant systems during a severe accident. The code is being developed at the INEL under the primary sponsorship of the Office of Nuclear Regulatory Research of the U.S. NRC. As The current time, the SCDAP/RELAP5/MOD3.1 code is the result of merging the RELAP5/MOD3 and SCDAP models. The code models the coupled behavior of the reactor coolant system, core, fission product released during a severe accident transient as well as large and small break loss of coolant accidents, operational transients such as anticipated transient without SCRAM, loss of offsite power, loss of feedwater, and loss of flow. Major purpose of the report is to provide information about the characteristics of SCDAP/RELAP5/MOD3.1 core T/H models for an integrated severe accident computer code being developed under the mid/long-term project. This report analyzes the overall code structure which consists of the input processor, transient controller, and plot file handler. The basic governing equations to simulate the thermohydraulics of the primary system are also described. As the focus is currently concentrated in the core, core nodalization parameters of the intact geometry and the phenomenological subroutines for the damaged core are summarized for the future usage. In addition, the numerical approach for the heat conduction model is investigated along with heat convection model. These studies could provide a foundation for input preparation and model improvement. (author). 6 refs., 3 tabs., 4 figs

  17. LIGHT-WEIGHT LOAD-BEARING STRUCTURES REINFORCED BY CORE ELEMENTS MADE OF SEGMENTS AND A METHOD OF CASTING SUCH STRUCTURES

    DEFF Research Database (Denmark)

    2009-01-01

    The invention relates to a light-weight load-bearing structure, reinforced by core elements (2) of a strong material constituting one or more compression or tension zones in the structure to be cast, which core (2) is surrounded by or adjacent to a material of less strength compared to the core (2......), where the core (2) is constructed from segments (1) of core elements (2) assembled by means of one or more prestressing elements (4). The invention further relates to a method of casting of light-weight load-bearing structures, reinforced by core elements (2) of a strong material constituting one...... or more compression or tension zones in the structure to be cast, which core (2) is surrounded by or adjacent to a material of less strength compared to the core (2), where the core (2) is constructed from segments (1) of core elements (2) assembled and hold together by means of one or more prestressing...

  18. STYCA, a computer program in the dynamic structural analysis of a PWR core

    International Nuclear Information System (INIS)

    Silva Macedo, L.V. da; Breyne Salvagni, R. de

    1992-01-01

    A procedure for the dynamic structural analysis of a PWR core is presented, impacts between fuel assemblies may occur because of the existence of gaps between them. Thus, the problem is non-linear and an spectral analysis is avoided. A time-history response analysis is necessary. The Modal Superposition Method with the Duhamel integral was used in order to solve the problem. An algorithm of solution and also results obtained with the STYCA computer program, developed on the basis of what was proposed here, are presented. (author)

  19. Structural integrity evaluation of PWR nuclear reactor pressure vessels

    International Nuclear Information System (INIS)

    Cruz, Julio R.B.; Mattar Neto, Miguel

    1999-01-01

    The reactor pressure vessel (RPV) is the most important structural component of a PWR nuclear power plant. It contains the reactor core and is the main component of the primary system pressure boundary, the system responsible for removing the heat generated by the nuclear reactions. It is considered not replaceable and, therefore, its lifetime is a key element to define the plant life as a whole. Three critical issues related to the reliability of the RPV structural integrity come out by reason of the radiation damage imposed to the vessel material during operation. These issues concern the definition of pressure versus temperature limits for reactor heatup and cooldown, pressurized thermal shock evaluation and assessment of reactor vessels with low upper shelf Charpy impact energy levels. This work aims to present the major aspects related to these topics. The requirements for preventing fracture of the RPV are reviewed as well as the available technology for assessing the safety margins. For each mentioned problem, the several steps for structural integrity evaluation are described and the analysis methods are discussed. (author)

  20. The Structural Integrity Centre

    International Nuclear Information System (INIS)

    Tomkins, B.

    1987-01-01

    The paper concerns the development and work of the Structural Integrity Centre (SIC) at Risley Nuclear Laboratories, United Kingdom. The centre was set up to provide authoritative advice to plant designers and operators on the integrity and life assessment of structures and components across the reactor projects in the United Kingdom. A description is given of the structure and role of the SIC, as well as the Structural Integrity Assessment work. The assessment methods are described for thermally loaded structures and welded structures. Finally, defect significance assessment and environmental effects are outlined. (U.K.)

  1. Integrated core-SOL simulations of L-mode plasma in ITER and Indian demo

    International Nuclear Information System (INIS)

    Wisitsorasak, Apiwat; Onjun, Thawatchai; Kanjanaput, Wittawat

    2015-01-01

    Core-SOL simulations are carried out using 1.5D BALDUR integrated predictive modeling code to investigate tokamak plasma in ITER and Indian DEMO reactors operating in low confinement mode (L-Mode). In each simulation, the plasma current, temperature, and density profiles in both core and SOL region are evolved self-consistency. The SOL is simulated by integrating the fluid equations, including sources, along the field lines. The solutions in SOL subsequently provide as the boundary conditions of core plasma region on low-confinement mode. The core plasma transport model is described using a combination of anomalous transport by Multi-Mode-Model version 2001 (MMM2001) and neoclassical transport calculated by NCLASS module together with the toroidal velocity based on the torque due to Neoclassical Toroidal Viscosity (NTV). In addition, a sensitivity analysis is explored by varying plasma parameters, such as plasma density and auxiliary heating power. Furthermore, the ignition tests are conducted to observed plasma response in each design after shutting down an auxiliary heating. (author)

  2. Application of Intel Many Integrated Core (MIC) accelerators to the Pleim-Xiu land surface scheme

    Science.gov (United States)

    Huang, Melin; Huang, Bormin; Huang, Allen H.

    2015-10-01

    The land-surface model (LSM) is one physics process in the weather research and forecast (WRF) model. The LSM includes atmospheric information from the surface layer scheme, radiative forcing from the radiation scheme, and precipitation forcing from the microphysics and convective schemes, together with internal information on the land's state variables and land-surface properties. The LSM is to provide heat and moisture fluxes over land points and sea-ice points. The Pleim-Xiu (PX) scheme is one LSM. The PX LSM features three pathways for moisture fluxes: evapotranspiration, soil evaporation, and evaporation from wet canopies. To accelerate the computation process of this scheme, we employ Intel Xeon Phi Many Integrated Core (MIC) Architecture as it is a multiprocessor computer structure with merits of efficient parallelization and vectorization essentials. Our results show that the MIC-based optimization of this scheme running on Xeon Phi coprocessor 7120P improves the performance by 2.3x and 11.7x as compared to the original code respectively running on one CPU socket (eight cores) and on one CPU core with Intel Xeon E5-2670.

  3. Tuned Chamber Core Panel Acoustic Test Results

    Science.gov (United States)

    Schiller, Noah H.; Allen, Albert R.

    2016-01-01

    This report documents acoustic testing of tuned chamber core panels, which can be used to supplement the low-frequency performance of conventional acoustic treatment. The tuned chamber core concept incorporates low-frequency noise control directly within the primary structure and is applicable to sandwich constructions with a directional core, including corrugated-, truss-, and fluted-core designs. These types of sandwich structures have long, hollow channels (or chambers) in the core. By adding small holes through one of the facesheets, the hollow chambers can be utilized as an array of low-frequency acoustic resonators. These resonators can then be used to attenuate low-frequency noise (below 400 Hz) inside a vehicle compartment without increasing the weight or size of the structure. The results of this test program demonstrate that the tuned chamber core concept is effective when used in isolation or combined with acoustic foam treatments. Specifically, an array of acoustic resonators integrated within the core of the panels was shown to improve both the low-frequency absorption and transmission loss of the structure in targeted one-third octave bands.

  4. High-resolution probing of inner core structure with seismic interferometry

    KAUST Repository

    Huang, Hsin-Hua

    2015-12-23

    © 2015. American Geophysical Union. All Rights Reserved. Increasing complexity of Earth\\'s inner core has been revealed in recent decades as the global distribution of seismic stations has improved. The uneven distribution of earthquakes, however, still causes a biased geographical sampling of the inner core. Recent developments in seismic interferometry, which allow for the retrieval of core-sensitive body waves propagating between two receivers, can significantly improve ray path coverage of the inner core. In this study, we apply such earthquake coda interferometry to 1846 USArray stations deployed across the U.S. from 2004 through 2013. Clear inner core phases PKIKP2 and PKIIKP2 are observed across the entire array. Spatial analysis of the differential travel time residuals between the two phases reveals significant short-wavelength variation and implies the existence of strong structural variability in the deep Earth. A linear N-S trending anomaly across the middle of the U.S. may reflect an asymmetric quasi-hemispherical structure deep within the inner core with boundaries of 99°W and 88°E.

  5. The structure of protostellar dense cores: a millimeter continuum study

    International Nuclear Information System (INIS)

    Motte, Frederique

    1998-01-01

    A comprehensive theoretical scenario explains low-mass star formation and describes the gravitational collapse of an isolated 'ideal' dense core. The major aim of this thesis is to check the standard model predictions on the structure of protostellar dense cores (or envelopes). The earliest stages of star formation remain poorly known because the protostars are still deeply embedded in massive, opaque circumstellar cocoons. On the one hand, sensitive bolometer arrays very recently allow us to measure the millimeter continuum emission arising from dense cores. Such observations are a powerful tool to constrain the density structure of proto-stellar dense cores (on large length scale). In particular, we studied the structure of isolated proto-stellar envelopes in Taurus and protostars in the ρ Ophiuchi cluster. In order to accurately derive their envelope density power law, we simulated the observation of several envelope models. Then we show that most of the Taurus protostars present a density structure consistent with the standard model predictions. In contrast, dense cores in ρ Ophiuchi main cloud are highly fragmented and protostellar envelope have finite size. Moreover fragmentation appears to be essential in determining the final stellar mass of ρ Oph forming stars. In clusters, fragmentation may thus be at the origin of the stellar initial mass function (IMF). On the other hand, our interferometric millimeter continuum observations are tracing (with higher angular resolution) the inner part of protostellar envelopes. Our study show that disks during protostellar stages are not yet massive and thus do not perturb the analysis of envelope density structure. (author) [fr

  6. Integrated smart structures wingbox

    Science.gov (United States)

    Simon, Solomon H.

    1993-09-01

    One objective of smart structures development is to demonstrate the ability of a mechanical component to monitor its own structural integrity and health. Achievement of this objective requires the integration of different technologies, i.e.: (1) structures, (2) sensors, and (3) artificial intelligence. We coordinated a team of experts from these three fields. These experts used reliable knowledge towards the forefront of their technologies and combined the appropriate features into an integrated hardware/software smart structures wingbox (SSW) test article. A 1/4 in. hole was drilled into the SSW test article. Although the smart structure had never seen damage of this type, it correctly recognized and located the damage. Based on a knowledge-based simulation, quantification and assessment were also carried out. We have demonstrated that the SSW integrated hardware & software test article can perform six related functions: (1) identification of a defect; (2) location of the defect; (3) quantification of the amount of damage; (4) assessment of performance degradation; (5) continued monitoring in spite of damage; and (6) continuous recording of integrity data. We present the successful results of the integrated test article in this paper, along with plans for future development and deployment of the technology.

  7. Methanol oxidation reaction on core-shell structured Ruthenium-Palladium nanoparticles: Relationship between structure and electrochemical behavior

    Science.gov (United States)

    Kübler, Markus; Jurzinsky, Tilman; Ziegenbalg, Dirk; Cremers, Carsten

    2018-01-01

    In this work the relationship between structural composition and electrochemical characteristics of Palladium(Pd)-Ruthenium(Ru) nanoparticles during alkaline methanol oxidation reaction is investigated. The comparative study of a standard alloyed and a precisely Ru-core-Pd-shell structured catalyst allows for a distinct investigation of the electronic effect and the bifunctional mechanism. Core-shell catalysts benefit from a strong electronic effect and an efficient Pd utilization. It is found that core-shell nanoparticles are highly active towards methanol oxidation reaction for potentials ≥0.6 V, whereas alloyed catalysts show higher current outputs in the lower potential range. However, differential electrochemical mass spectrometry (DEMS) experiments reveal that the methanol oxidation reaction on core-shell structured catalysts proceeds via the incomplete oxidation pathway yielding formaldehyde, formic acid or methyl formate. Contrary, the alloyed catalyst benefits from the Ru atoms at its surface. Those are found to be responsible for high methanol oxidation activity at lower potentials as well as for complete oxidation of CH3OH to CO2 via the bifunctional mechanism. Based on these findings a new Ru-core-Pd-shell-Ru-terrace catalyst was synthesized, which combines the advantages of the core-shell structure and the alloy. This novel catalyst shows high methanol electrooxidation activity as well as excellent selectivity for the complete oxidation pathway.

  8. User interface design and system integration aspects of core monitoring systems

    International Nuclear Information System (INIS)

    Berg, O.; Bodal, T.; Hornaes, A.; Porsmyr, J.

    2000-01-01

    The present paper describes our experience with the SCORPIO core monitoring system using generic building blocks for the MMI and system integration. In this context the different layers of the software system are discussed starting with the communication system, interfacing of various modules (e.g. physics codes), administration of several modules and generation of graphical user interfaces for different categories of end-users. A method by which re-use of software components can make the system development and maintenance more efficient is described. Examples are given from different system installation projects. The methodology adopted is considered particularly important in the future, as it is anticipated that core monitoring systems will be expanded with new functions (e.g. information from technical specifications, procedures, noise analysis, etc). Further, efficient coupling of off-line tools for core physics calculations and on-line modules in core monitoring can pave the way for cost savings. (authors)

  9. Core-Shell Structured Electro- and Magneto-Responsive Materials: Fabrication and Characteristics

    Directory of Open Access Journals (Sweden)

    Hyoung Jin Choi

    2014-11-01

    Full Text Available Core-shell structured electrorheological (ER and magnetorheological (MR particles have attracted increasing interest owing to their outstanding field-responsive properties, including morphology, chemical and dispersion stability, and rheological characteristics of shear stress and yield stress. This study covers recent progress in the preparation of core-shell structured materials as well as their critical characteristics and advantages. Broad emphasises from the synthetic strategy of various core-shell particles to their feature behaviours in the magnetic and electric fields have been elaborated.

  10. Study on structural integrity in box structures

    International Nuclear Information System (INIS)

    Asano, Masayuki; Ueta, Masahiro; Kanaoka, Tadashi; Ikeuchi, Toshiaki; Kodama, Tetsuhiro.

    1991-01-01

    This study was carried out to give an experimental foundation to the structural integrity of a box structure. Crack growth tests were performed on the reduced scale models, simulating typical portions of the box structure, in air at room temperature. The results show that the amount of crack growth is too small to injure the structural integrity of the models for the postulated loading cycle, and make clear the effective structure against crack growth. (author)

  11. Core/Shell Structured Magnetic Nanoparticles for Biological Applications

    International Nuclear Information System (INIS)

    Park, Jeong Chan; Jung, Myung Hwan

    2013-01-01

    Magnetic nanoparticles have been widely used for biomedical applications, such as magnetic resonance imaging (MRI), hyperthermia, drug delivery and cell signaling. The surface modification of the nanomaterials is required for biomedical use to give physiogical stability, surface reactivity and targeting properties. Among many approaches for the surface modification with materials, such as polymers, organic ligands and metals, one of the most attractive ways is using metals. The fabrication of metal-based, monolayer-coated magnetic nanoparticles has been intensively studied. However, the synthesis of metal-capped magnetic nanoparticles with monodispersities and controllable sizes is still challenged. Recently, gold-capped magnetic nanoparticles have been reported to increase stability and to provide biocompatibility. Magnetic nanoparticle with gold coating is an attractive system, which can be stabilized in biological conditions and readily functionalized in biological conditions and readily functionalized through well-established surface modification (Au-S) chemistry. The Au coating offers plasmonic properties to magnetic nanoparticles. This makes the magnetic/Au core/shell combinations interesting for magnetic and optical applications. Herein, the synthesis and characterization of gold capped-magnetic core structured nanomaterials with different gold sources, such as gold acetate and chloroauric acid have been reported. The core/shell nanoparticles were transferred from organic to aqueous solutions for biomedical applications. Magnetic core/shell structured nanoparticles have been prepared and transferred from organic phase to aqueous solutions. The resulting Au-coated magnetic core nanoparticles might be an attractive system for biomedical applications, which are needed both magnetic resonance imaging and optical imaging

  12. Structural Integrity Evaluation of an New In-Chimney Bracket Structures for HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Jeong Soo; Cho, Yeong Garp; Lee, Jung Hee; Jung, Hoan Sung; Seo, Choon Gyo; Shin, Jin Won

    2007-12-15

    In HANARO are there provided three hexagonal irradiation holes (CT, IR1 and IR2) in the central region of the core while four circular irradiation holes (OR3 {approx} OR6) in the outer core. There exist two types of irradiation facilities: uninstrumented or instrumented. The uninstrumented irradiation facility is little influenced by the coolant flow. But the dynamic behavior by the flow-induced vibration (FIV) and seismic loads is expected to largely occur in case of the instrumented test facility due to the long guide tube to protect the instrumentation cables. To suppress this dynamic behavior of the facility, the in-chimney bracket was designed. As a supplementary supporting structure for irradiation facility, this bracket will hold guide tubes whose holding position of the instrumented facility in CT or IR is the middle part of the instrumented facility between the hole spider and the robot arm already provided in the reactor pool liner. On the while, the bracket will grip the upper part of the guide tube when it is applied to hold the instrumented facility loaded in OR sites. Therefore it is believed that the irradiation test can be successfully conducted since this bracket can reduce the FIV and dynamic response to seismic load as well. In new in-chimney bracket, IR1 is reserved for IPS(In-Pile Section) so only CT/IR2 guide tubes are supported by CT/IR clamp units and the shape of In-chimney bracket is redesigned. For evaluating the structural integrity on the new in-chimney bracket and related reactor structures, ANSYS finite element analysis model is developed and the dynamic characteristics are analyzed. The seismic response analyses of new in-chimney bracket and related reactor structures of HANARO under the design earthquake response spectrum loads of OBE(0.1g) and SSE(0.2g) are performed. The response shows that the stress values for main points on the reactor structures and the new in-chimney bracket for seismic loads are within the ASME Code limits

  13. Dynamic structural analysis for assemblies of fuel elements in the core of a PWR

    International Nuclear Information System (INIS)

    Silva Macedo, L.V. da.

    1991-01-01

    It is presented a procedure for the dynamic structural analysis of a PWR core. Impacts between fuel assemblies may occur because of the existence of gaps between them. Thus, the problem is non-linear and an spectral analysis is avoided. It is necessary a time-history response analysis. The Modal Superposition Method with the Duhamel integral was used in order to solve the problem. It is presented an algorithm of solution and also results obtained with the STYCA computer program, developed in the basis of what was proposed here. (author)

  14. Case for integral core-disruptive accident analysis

    International Nuclear Information System (INIS)

    Luck, L.B.; Bell, C.R.

    1985-01-01

    Integral analysis is an approach used at the Los Alamos National Laboratory to cope with the broad multiplicity of accident paths and complex phenomena that characterize the transition phase of core-disruptive accident progression in a liquid-metal-cooled fast breeder reactor. The approach is based on the combination of a reference calculation, which is intended to represent a band of similar accident paths, and associated system- and separate-effect studies, which are designed to determine the effect of uncertainties. Results are interpreted in the context of a probabilistic framework. The approach was applied successfully in two studies; illustrations from the Clinch River Breeder Reactor licensing assessment are included

  15. Further HTGR core support structure reliability studies. Interim report No. 1

    International Nuclear Information System (INIS)

    Platus, D.L.

    1976-01-01

    Results of a continuing effort to investigate high temperature gas cooled reactor (HTGR) core support structure reliability are described. Graphite material and core support structure component physical, mechanical and strength properties required for the reliability analysis are identified. Also described are experimental and associated analytical techniques for determining the required properties, a procedure for determining number of tests required, properties that might be monitored by special surveillance of the core support structure to improve reliability predictions, and recommendations for further studies. Emphasis in the study is directed towards developing a basic understanding of graphite failure and strength degradation mechanisms; and validating analytical methods for predicting strength and strength degradation from basic material properties

  16. Current status of restoration work for obstacle and upper core structure in reactor vessel of experimental fast reactor 'JOYO'. 2. Replacement of upper core structure

    International Nuclear Information System (INIS)

    Ushiki, Hiroshi; Ito, Hiromichi; Okuda, Eiji; Suzuki, Nobuhiro; Sasaki, Jun; Oota, Katsu; Kawahara, Hirotaka; Takamatsu, Misao; Nagai, Akinori; Okawa, Toshikatsu

    2015-01-01

    In the experimental fast reactor Joyo, it was confirmed that the top of the irradiation test sub-assembly of MARICO-2 (material testing rig with temperature control) had bent onto the in-vessel storage rack as an obstacle and had damaged the upper core structure (UCS) in 2007. As a part of the restoration work, UCS replacement was begun at March 24, 2014 and was completed at December 17. In-vessel repair (including observation) for sodium-cooled fast reactors (SFRs) is distinct from that for light water reactors and necessitates independent development. Application of developed in-vessel repair techniques to operation and maintenance of SFRs enhanced their safety and integrity. There is little UCS replacement experience in the world and this experience and insights, which were accumulated in the replacement work of in-vessel large structure (UCS) used for more than 30 years, are expected to improve the in-vessel repair techniques in SFRs. (author)

  17. Analysis of forces on core structures during a loss-of-coolant accident. Final report

    International Nuclear Information System (INIS)

    Griggs, D.P.; Vilim, R.B.; Wang, C.H.; Meyer, J.E.

    1980-08-01

    There are several design requirements related to the emergency core cooling which would follow a hypothetical loss-of-coolant accident (LOCA). One of these requirements is that the core must retain a coolable geometry throughout the accident. A possible cause of core damage leading to an uncoolable geometry is the action of forces on the core and associated support structures during the very early (blowdown) stage of the LOCA. An equally unsatisfactory design result would occur if calculated deformations and failures were so extensive that the geometry used for calculating the next stages of the LOCA (refill and reflood) could not be known reasonably well. Subsidiary questions involve damage preventing the operation of control assemblies and loss of integrity of other needed safety systems. A reliable method of calculating these forces is therefore an important part of LOCA analysis. These concerns provided the motivation for the study. The general objective of the study was to review the state-of-the-art in LOCA force determination. Specific objectives were: (1) determine state-of-the-art by reviewing current (and projected near future) techniques for LOCA force determination, and (2) consider each of the major assumptions involved in force determination and make a qualitative assessment of their validity

  18. From childhood adversity to problem behaviors: Role of psychological and structural social integration.

    Science.gov (United States)

    Chao, Lo-Hsin; Tsai, Meng-Che; Liang, Ya-Lun; Strong, Carol; Lin, Chung-Ying

    2018-01-01

    Childhood adversity (CA) is associated with problem behaviors in adolescence, but the mediators, that is, those factors that help build resilience and prevent some children who experience CA from engaging in problem behaviors, await more exploration, including social integration. The aim of this study was to identify the association between CA and adolescent problem behaviors, and to further examine the mediating role of social integration distinctly as psychological and structural integration. Data used were from the Taiwan Education Panel Survey, a core panel of 4,261 students (age 13) surveyed in 2001 and followed for three more waves until age 18. For psychological integration, an average score was calculated to represent adolescents' feelings about their school. Structural integration was constructed using several items about adolescents' school and extracurricular activities. We used structural equation modeling with the diagonally weighted least squares method to examine the effect of CA on the primary outcome: adolescent problem behaviors via social integration. The hypothesized structural equation model specifying the path from CA to adolescent problem behavior had good fit. Respondents with one CA were indirectly linked to problem behaviors via psychological but not structural integration (e.g. the level of participation in school and non-school activities). On mediation analysis, psychological integration significantly mediated the paths from one CA to all six problem behaviors (all P integration; two or more CA were not associated with significant paths to problem behaviors. The contribution of social integration is crucial to an adolescent's development from CA to problem behaviors. To form supportive social relationships to achieve better health, we suggest that those adolescents who have been exposed to CA should be helped to join more teams and take part in more activities, thereby increasing their opportunities for social interaction, and improving

  19. Integrative structure modeling with the Integrative Modeling Platform.

    Science.gov (United States)

    Webb, Benjamin; Viswanath, Shruthi; Bonomi, Massimiliano; Pellarin, Riccardo; Greenberg, Charles H; Saltzberg, Daniel; Sali, Andrej

    2018-01-01

    Building models of a biological system that are consistent with the myriad data available is one of the key challenges in biology. Modeling the structure and dynamics of macromolecular assemblies, for example, can give insights into how biological systems work, evolved, might be controlled, and even designed. Integrative structure modeling casts the building of structural models as a computational optimization problem, for which information about the assembly is encoded into a scoring function that evaluates candidate models. Here, we describe our open source software suite for integrative structure modeling, Integrative Modeling Platform (https://integrativemodeling.org), and demonstrate its use. © 2017 The Protein Society.

  20. Dynamic response of cylindrical ACS support structures to core energy release

    International Nuclear Information System (INIS)

    Kennedy, J.M.; Belytschko, T.B.

    1985-01-01

    The code SAFE/RAS is applied to the analysis of a new design concept for the above-core structures when subjected to the loads of a core disruptive accident. The analysis involves the determination of the postbuckling response of a thin cylinder loaded both axially and vertically. The effects of variation of cylinder thickness and fluid-structure interaction are investigated

  1. Structure and optical properties of cored wurtzite (Zn,Mg)O heteroepitaxial nanowires

    International Nuclear Information System (INIS)

    Heo, Y.W.; Abernathy, C.; Pruessner, K.; Sigmund, W.; Norton, D.P.; Overberg, M.; Ren, F.; Chisholm, M.F.

    2004-01-01

    The synthesis, structure, and optical properties of one-dimensional heteroepitaxial cored (Zn,Mg)O semiconductor nanowires grown by a catalyst-driven molecular beam epitaxy technique are discussed. The structures form spontaneously in a Zn, Mg and O 2 /O 3 flux, consisting of a single crystal, Zn-rich Zn 1-x Mg x O(x 1-y Mg y O(y>>0.02) sheath. High resolution Z-contrast scanning transmission electron microscopy shows core diameters as small as 4 nm. The cored structure forms spontaneously under constant flux due to a bimodal growth mechanism in which the core forms via bulk like vapor-liquid-solid growth, while the outer sheath grows as a heteroepitaxial layer. Temperature-dependent photoluminescence shows a slight blueshift in the near band edge peak, which is attributed to a few percent Mg doping in the nanoscale ZnO core. The catalyst-driven molecular beam epitaxy technique provides for site-specific nanorod growth on arbitrary substrates

  2. Structural organization of the quiescent core region in a turbulent channel flow

    International Nuclear Information System (INIS)

    Yang, Jongmin; Hwang, Jinyul; Sung, Hyung Jin

    2016-01-01

    Highlights: • The structural organization of the quiescent core region in a turbulent channel flow is explored. • The quiescent core region is the uniform momentum zone located at the center of the channel. • The boundary of the quiescent core region can be identified from the probability density function of the streamwise modal velocity. • The prograde and retrograde vortices form a counter-rotating vortex pair at the boundary of the core region. - Abstract: The structural organization of the quiescent core region in a turbulent channel flow was explored using direct numerical simulation data at Re_τ = 930. The quiescent core region is the uniform momentum zone located at the center of the channel, and contains the highest momentum with a low level of turbulence. The boundary of the quiescent core region can be identified from the probability density function of the streamwise modal velocity. The streamwise velocity changes abruptly near the boundary of the core region. The abrupt jump leads the increase of the velocity gradient, which is similar to the vorticity thickness of the laminar superlayer at the turbulent/non-turbulent interface. The strong shear induced from the abrupt change is originated from the vortical structure lying on the boundary of the core region. The spanwise population densities of the prograde and retrograde vortices have a local maximum near the boundary of the core region. The prograde vortex dominantly contributes to the total mean shear near the core boundary and the contribution to the total mean shear rapidly decreases within the core region. The prograde and retrograde vortices form a counter-rotating vortex pair at the boundary of the core region associated with the nibbling mechanism. The boundary of the core region contains large-scale concave and convex features. The concave (convex) core interface is organized by the negative-u (positive-u) regions which induce the ejections (sweeps) around the core boundary.

  3. The French initiative for scientific cores virtual curating : a user-oriented integrated approach

    Science.gov (United States)

    Pignol, Cécile; Godinho, Elodie; Galabertier, Bruno; Caillo, Arnaud; Bernardet, Karim; Augustin, Laurent; Crouzet, Christian; Billy, Isabelle; Teste, Gregory; Moreno, Eva; Tosello, Vanessa; Crosta, Xavier; Chappellaz, Jérome; Calzas, Michel; Rousseau, Denis-Didier; Arnaud, Fabien

    2016-04-01

    Managing scientific data is probably one the most challenging issue in modern science. The question is made even more sensitive with the need of preserving and managing high value fragile geological sam-ples: cores. Large international scientific programs, such as IODP or ICDP are leading an intense effort to solve this problem and propose detailed high standard work- and dataflows thorough core handling and curating. However most results derived from rather small-scale research programs in which data and sample management is generally managed only locally - when it is … The national excellence equipment program (Equipex) CLIMCOR aims at developing French facilities for coring and drilling investigations. It concerns indiscriminately ice, marine and continental samples. As part of this initiative, we initiated a reflexion about core curating and associated coring-data management. The aim of the project is to conserve all metadata from fieldwork in an integrated cyber-environment which will evolve toward laboratory-acquired data storage in a near future. In that aim, our demarche was conducted through an close relationship with field operators as well laboratory core curators in order to propose user-oriented solutions. The national core curating initiative currently proposes a single web portal in which all scientifics teams can store their field data. For legacy samples, this will requires the establishment of a dedicated core lists with associated metadata. For forthcoming samples, we propose a mobile application, under Android environment to capture technical and scientific metadata on the field. This application is linked with a unique coring tools library and is adapted to most coring devices (gravity, drilling, percussion, etc...) including multiple sections and holes coring operations. Those field data can be uploaded automatically to the national portal, but also referenced through international standards or persistent identifiers (IGSN, ORCID and INSPIRE

  4. Experimental study of the mechanical behaviour of pin reinforced foam core sandwich materials under shear load

    International Nuclear Information System (INIS)

    Dimassi, M A; Brauner, C; Herrmann, A S

    2016-01-01

    Sandwich structures with a lightweight closed cell hard foam core have the potential to be used in primary structures of commercial aircrafts. Compared to honeycomb core sandwich, the closed cell foam core sandwich overcomes the issue of moisture take up and makes the manufacturing of low priced and highly integrated structures possible. However, lightweight foam core sandwich materials are prone to failure by localised external loads like low velocity impacts. Invisible cracks could grow in the foam core and threaten the integrity of the structure. In order to enhance the out-of-plane properties of foam core sandwich structures and to improve the damage tolerance (DT) dry fibre bundles are inserted in the foam core. The pins are infused with resin and co-cured with the dry fabric face sheets in an out-of-autoclave process. This study presents the results obtained from shear tests following DIN 53294-standard, on flat sandwich panels. All panels were manufactured with pin-reinforcement manufactured with the Tied Foam Core Technology (TFC) developed by Airbus. The effects of pin material (CFRP and GFRP) and pin volume fraction on the shear properties of the sandwich structure and the crack propagation were investigated and compared to a not pinned reference. It has been concluded that the pin volume fraction has a remarkable effect on the shear properties and damage tolerance of the observed structure. Increasing the pin volume fraction makes the effect of crack redirection more obvious and conserves the integrity of the structure after crack occurrence. (paper)

  5. Acceleration of Blender Cycles Path-Tracing Engine Using Intel Many Integrated Core Architecture

    OpenAIRE

    Jaroš , Milan; Říha , Lubomír; Strakoš , Petr; Karásek , Tomáš; Vašatová , Alena; Jarošová , Marta; Kozubek , Tomáš

    2015-01-01

    Part 2: Algorithms; International audience; This paper describes the acceleration of the most computationally intensive kernels of the Blender rendering engine, Blender Cycles, using Intel Many Integrated Core architecture (MIC). The proposed parallelization, which uses OpenMP technology, also improves the performance of the rendering engine when running on multi-core CPUs and multi-socket servers. Although the GPU acceleration is already implemented in Cycles, its functionality is limited. O...

  6. Structures of glide-set 90 deg. partial dislocation cores in diamond cubic semiconductors

    International Nuclear Information System (INIS)

    Beckman, S.P.; Chrzan, D.C.

    2003-01-01

    Two core reconstructions of the 90 deg. partial dislocations in diamond cubic semiconductors, the so-called single- and double-period structures, are often found to be nearly degenerate in energy. This near degeneracy suggests the possibility that both core reconstructions may be present simultaneously along the same dislocation core, with the domain sizes of the competing reconstructions dependent on temperature and the local stress state. To explore this dependence, a simple statistical mechanics-based model of the dislocation core reconstructions is developed and analyzed. Predictions for the temperature-dependent structure of the dislocation core are presented

  7. Molten core material holding device in a nuclear reactor

    International Nuclear Information System (INIS)

    Nakamura, Hisashi; Tanaka, Nobuo; Takahashi, Katsuro.

    1985-01-01

    Purpose: To improve the function of cooling to hold molten core materials in a molten core material holding device. Constitution: Plenum structures are formed into a pan-like configuration, in which liners made of metal having high melting point and relatively high heat conductivity such as tantalum, tungsten, rhenium or alloys thereof are integrally appended to hold and directly cool the molten reactor core materials. Further, a plurality of heat pipes, passing through the plenum structures, facing the cooling portion thereof to the coolants at the outer side and immersing the heating portion into the molten core materials fallen to deposit in the inner liners are disposed radially. Furthermore, heat pipes embodded in the plenum structure are disposed in the same manner below the liners. Thus, the plenum structures and the molten reactor core materials can be cooled at a high efficiency. (Seki, T.)

  8. Cavity structural integrity evaluation of steam explosion using LS-DYNA

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dae-Young; Park, Chang-Hwan [FNC Technology Co. Ltd., Yongin (Korea, Republic of); Kim, Kap-sun [KHNP Central Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    For investigating the mechanical response of the newly-designed NPP against an steam explosion, the cavity structural integrity evaluation was performed, in which the mechanical load resulted from a steam explosion in the reactor cavity was calculated. In the evaluation, two kinds of approach were considered, one of which is a deterministic manner and the other is a probabilistic one. In this report, the procedure and the results of the deterministic analysis are presented When entering the severe accident, the core is relocated to the lower head. In this case, an Ex-Vessel Steam Explosion(EVSE) can occur. It can threaten the structural integrity of the cavity due to the load applied to the walls or slabs of the cavity. The large amount of the energy transmitted from interaction between the molten corium and the water causes a dynamic loading onto the concrete walls resulting not only to affect the survivability of the various equipment but also to threaten the integrity of the containment. In this report, the response of the cavity wall structure is analyzed using the nonlinear finite element analysis (FEA) code. The resulting stress and strain of the structure were evaluated by the criteria in NEI07-13. Until now, deterministic analysis was performed via finite element analysis for the dynamic load generated by the steam explosion to investigate the effect on the cavity structure. A deterministic method was used in this study using the specific values of material properties and clearly defined steam explosion pressure curve. The results showed that the rebar and the liner are kept intact even at the high pressure pulse given by the steam explosion. The liner integrity is more critical to judge the preservation of the lean-tightness. In the meantime, there were found cracks in concrete media.

  9. New approach to the design of core support structures for large LMFBR plants

    International Nuclear Information System (INIS)

    Burelbach, J.P.; Kann, W.J.; Pan, Y.C.; Saiveau, J.G.; Seidensticker, R.W.

    1984-01-01

    The paper describes an innovative design concept for a LMFBR Core Support Structure. A hanging Core Support Structure is described and analyzed. The design offers inherent safety features, constructibility advantages, and potential cost reductions

  10. Developing and implementing core competencies for integrative medicine fellowships.

    Science.gov (United States)

    Ring, Melinda; Brodsky, Marc; Low Dog, Tieraona; Sierpina, Victor; Bailey, Michelle; Locke, Amy; Kogan, Mikhail; Rindfleisch, James A; Saper, Robert

    2014-03-01

    The Consortium of Academic Health Centers for Integrative Medicine defines integrative medicine as "the practice of medicine that reaffirms the importance of the relationship between practitioner and patient, focuses on the whole person, is informed by evidence, and makes use of all appropriate therapeutic approaches, health care professionals, and disciplines to achieve optimal health and healing." Over the past three decades, the U.S. public increasingly has sought integrative medicine approaches. In an effort to train medical professionals to adequately counsel patients on the safe and appropriate use of these approaches, medical schools and residencies have developed curricula on integrative medicine for their trainees. In addition, integrative medicine clinical fellowships for postresidency physicians have emerged to provide training for practitioners interested in gaining greater expertise in this emerging field. Currently, 13 clinical fellowships in integrative medicine exist in the United States, and they are predominantly connected to academic medical centers or teaching affiliate hospitals. In 2010, the Consortium of Academic Health Centers for Integrative Medicine, represented by 56 member academic health care institutions with a shared commitment to advance the principles and practices of integrative medicine, convened a two-year task force to draft integrative medicine fellowship core competencies. These competencies would guide fellowship curriculum development and ensure that graduates possessed a common body of knowledge, skills, and attitudes. In this article, the authors discuss the competencies and the task force's process to develop them, as well as associated teaching and assessment methods, faculty development, potential barriers, and future directions.

  11. Full Core Multiphysics Simulation with Offline Mesh Deformation

    Energy Technology Data Exchange (ETDEWEB)

    Merzari, E. [Argonne National Lab. (ANL), Argonne, IL (United States); Shemon, E. R. [Argonne National Lab. (ANL), Argonne, IL (United States); Yu, Y. [Argonne National Lab. (ANL), Argonne, IL (United States); Thomas, J. W. [Argonne National Lab. (ANL), Argonne, IL (United States); Obabko, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Jain, Rajeev [Argonne National Lab. (ANL), Argonne, IL (United States); Mahadevan, Vijay [Argonne National Lab. (ANL), Argonne, IL (United States); Solberg, Jerome [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ferencz, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Whitesides, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-12-21

    In this report, building on previous reports issued in FY13 we describe our continued efforts to integrate thermal/hydraulics, neutronics, and structural mechanics modeling codes to perform coupled analysis of a representative fast sodium-cooled reactor core. The focus of the present report is a full core simulation with off-line mesh deformation.

  12. Core Values | NREL

    Science.gov (United States)

    Core Values Core Values NREL's core values are rooted in a safe and supportive work environment guide our everyday actions and efforts: Safe and supportive work environment Respect for the rights physical and social environment Integrity Maintain the highest standard of ethics, honesty, and integrity

  13. An approach to development of structural design criteria for highly irradiated core components

    International Nuclear Information System (INIS)

    Nelson, D.V.

    1980-01-01

    The advent of the fast breeder reactor presents novel challenges in structural design and materials engineering. For instance, the core components of these reactors experience high energy neutron irradiation at elevated temperature, which causes significant time-dependent changes in material behaviour, such as a progressive loss of ductility. New structural design criteria are needed to extend elevated temperature design-by-analysis to account for these changes. Alloys best able to cope with the demands of the core operating environment are being explored and their structural behaviour characterized. The purpose of this paper is to illustrate an approach used in the development of core component structural design criteria. To do this, several design rules, plus brief rationale, from draft RDT Standards F9-7, -8 and -9 will be presented. These recently completed standards ('Structural Design Guidelines for Breeder Reactor Core Components') were prepared for the U.S. Department of Energy and represent a consensus among most organizations participating in the U.S. breeder program. (author)

  14. Diagnostic Technology Development for Core Internal Structure in CANDU reactor

    International Nuclear Information System (INIS)

    Jung, Hyun Kyu; Cheong, Y. M.; Lee, Y. S. and others

    2005-04-01

    Degradation of critical components of nuclear power plants has become important as the operating years of plants increase. The necessity of degradation study including measurement and monitoring technology has increased continuously. Because the fuel channels and the neighboring sensing tubes and control rods are particularly one of the critical components in CANDU nuclear plant, they are treated as a major research target in order to counteract the possible problems and establish the counterplan for the CANDU reactor safety improvement. To ensure the core structure integrity in CANDU nuclear plant, the following 2 research tasks were performed: Development of NDE technologies for the gap measurement between the fuel channels and LIN tubes. Development of vibration monitoring technology of the fuel channels and sensing tubes. The technologies developed in this study could contribute to the nuclear safety and estimation of the remaining life of operating CANDU nuclear power plants

  15. Recent enhancements of the INSIGHT integrated in-core fuel management tool

    International Nuclear Information System (INIS)

    Akio, Yamamoto

    2001-01-01

    Recent enhancements of the INSIGHT system are described in this paper. The INSIGHT system is an integrated in-core fuel management tool for pressurized water reactors (PWRs) runs on UNIX workstations. The INSIGHT system provides various capabilities which contribute to reduce fuel cycle cost and workload of in-core fuel management tasks, i.e. core follow calculations, interactive loading pattern design, automated multicycle analysis and interface between detailed core calculation codes. To minimize engineers' workload, most of input data for analysis modules are automatically generated by the INSIGHT system through specification of calculation conditions in the graphic user interface. Recent enhancements of the INSIGHT system are mainly focused to improve efficiency of loading pattern optimization and flexibility of multicycle analyses. To increase optimization efficiency, a parallel calculation capability, various optimization theories, extension of heuristic rules, screening by neural networks and so on were incorporated in the loading pattern optimization module. The multicycle analyses module was rewritten to increase flexibility such as cycle dependent specification of loading pattern search methods and so on. The INSIGHT system is currently used by Japanese utilities not only for regular in-core fuel management tasks but also for strategic fuel management studies to reduce fuel cycle cost

  16. Preparation of porous carbon particle with shell/core structure

    Directory of Open Access Journals (Sweden)

    2007-05-01

    Full Text Available Porous carbon particles with a shell/core structure have been prepared successfully by controlled precipitation of the polymer from droplets of oil-in-water emulsion, followed by curing and carbonization. The droplets of the oil phase are composed of phenolic resin (PFR, a good solvent (ethyl acetate and porogen (Poly(methyl methacrylate, PMMA. The microstructure was characterized in detail by scanning electron microscopy (SEM, transmission electron microscopy (TEM, nitrogen adsorption, and thermo gravimetric analysis (TGA. The obtained carbon particles have a capsular structure with a microporous carbon shell and a mesoporous carbon core. The BET surface area and porous volume are calculated to be 499 m2g-1 and 0.56 cm3g-1, respectively. The effects of the amount of porogen (PMMA, co-solvent (acetone and surfactant on the resultant structure were studied in detail.

  17. Structural characterization of core-bradavidin in complex with biotin

    Science.gov (United States)

    Agrawal, Nitin; Määttä, Juha A. E.; Kulomaa, Markku S.; Hytönen, Vesa P.; Johnson, Mark S.; Airenne, Tomi T.

    2017-01-01

    Bradavidin is a tetrameric biotin-binding protein similar to chicken avidin and bacterial streptavidin, and was originally cloned from the nitrogen-fixing bacteria Bradyrhizobium diazoefficiens. We have previously reported the crystal structure of the full-length, wild-type (wt) bradavidin with 138 amino acids, where the C-terminal residues Gly129-Lys138 (“Brad-tag”) act as an intrinsic ligand (i.e. Gly129-Lys138 bind into the biotin-binding site of an adjacent subunit within the same tetramer) and has potential as an affinity tag for biotechnological purposes. Here, the X-ray structure of core-bradavidin lacking the C-terminal residues Gly114-Lys138, and hence missing the Brad-tag, was crystallized in complex with biotin at 1.60 Å resolution [PDB:4BBO]. We also report a homology model of rhodavidin, an avidin-like protein from Rhodopseudomonas palustris, and of an avidin-like protein from Bradyrhizobium sp. Ai1a-2, both of which have the Brad-tag sequence at their C-terminus. Moreover, core-bradavidin V1, an engineered variant of the original core-bradavidin, was also expressed at high levels in E. coli, as well as a double mutant (Cys39Ala and Cys69Ala) of core-bradavidin (CC mutant). Our data help us to further engineer the core-bradavidin–Brad-tag pair for biotechnological assays and chemical biology applications, and provide deeper insight into the biotin-binding mode of bradavidin. PMID:28426764

  18. Structural characterization of core-bradavidin in complex with biotin.

    Directory of Open Access Journals (Sweden)

    Nitin Agrawal

    Full Text Available Bradavidin is a tetrameric biotin-binding protein similar to chicken avidin and bacterial streptavidin, and was originally cloned from the nitrogen-fixing bacteria Bradyrhizobium diazoefficiens. We have previously reported the crystal structure of the full-length, wild-type (wt bradavidin with 138 amino acids, where the C-terminal residues Gly129-Lys138 ("Brad-tag" act as an intrinsic ligand (i.e. Gly129-Lys138 bind into the biotin-binding site of an adjacent subunit within the same tetramer and has potential as an affinity tag for biotechnological purposes. Here, the X-ray structure of core-bradavidin lacking the C-terminal residues Gly114-Lys138, and hence missing the Brad-tag, was crystallized in complex with biotin at 1.60 Å resolution [PDB:4BBO]. We also report a homology model of rhodavidin, an avidin-like protein from Rhodopseudomonas palustris, and of an avidin-like protein from Bradyrhizobium sp. Ai1a-2, both of which have the Brad-tag sequence at their C-terminus. Moreover, core-bradavidin V1, an engineered variant of the original core-bradavidin, was also expressed at high levels in E. coli, as well as a double mutant (Cys39Ala and Cys69Ala of core-bradavidin (CC mutant. Our data help us to further engineer the core-bradavidin-Brad-tag pair for biotechnological assays and chemical biology applications, and provide deeper insight into the biotin-binding mode of bradavidin.

  19. Sub-structure formation in starless cores

    Science.gov (United States)

    Toci, C.; Galli, D.; Verdini, A.; Del Zanna, L.; Landi, S.

    2018-02-01

    Motivated by recent observational searches of sub-structure in starless molecular cloud cores, we investigate the evolution of density perturbations on scales smaller than the Jeans length embedded in contracting isothermal clouds, adopting the same formalism developed for the expanding Universe and the solar wind. We find that initially small amplitude, Jeans-stable perturbations (propagating as sound waves in the absence of a magnetic field) are amplified adiabatically during the contraction, approximately conserving the wave action density, until they either become non-linear and steepen into shocks at a time tnl, or become gravitationally unstable when the Jeans length decreases below the scale of the perturbations at a time tgr. We evaluate analytically the time tnl at which the perturbations enter the non-linear stage using a Burgers' equation approach, and we verify numerically that this time marks the beginning of the phase of rapid dissipation of the kinetic energy of the perturbations. We then show that for typical values of the rms Mach number in molecular cloud cores, tnl is smaller than tgr, and therefore density perturbations likely dissipate before becoming gravitational unstable. Solenoidal modes grow at a faster rate than compressible modes, and may eventually promote fragmentation through the formation of vortical structures.

  20. Graphites and composites irradiations for gas cooled reactor core structures

    International Nuclear Information System (INIS)

    Van der Laan, J.G.; Vreeling, J.A.; Buckthorpe, D.E.; Reed, J.

    2008-01-01

    Full text of publication follows. Material investigations are undertaken as part of the European Commission 6. Framework Programme for helium-cooled fission reactors under development like HTR, VHTR, GCFR. The work comprises a range of activities, from (pre-)qualification to screening of newly designed materials. The High Flux Reactor at Petten is the main test bed for the irradiation test programmes of the HTRM/M1, RAPHAEL and ExtreMat Integrated Projects. These projects are supported by the European Commission 5. and 6. Framework Programmes. To a large extent they form the European contribution to the Generation-IV International Forum. NRG is also performing a Materials Test Reactor project to support British Energy in preparing extended operation of their Advanced Gas-cooled Reactors (AGR). Irradiations of commercial and developmental graphite grades for HTR core structures are undertaken in the range of 650 to 950 deg C, with a view to get data on physical and mechanical properties that enable engineering design. Various C- and SiC-based composite materials are considered for support structures or specific components like control rods. Irradiation test matrices are chosen to cover commercial materials, and to provide insight on the behaviour of various fibre and matrix types, and the effects of architecture and manufacturing process. The programme is connected with modelling activities to support data trending, and improve understanding of the material behaviour and micro-structural evolution. The irradiation programme involves products from a large variety of industrial and research partners, and there is strong interaction with other high technology areas with extreme environments like space, electronics and fusion. The project on AGR core structures graphite focuses on the effects of high dose neutron irradiation and simultaneous radiolytic oxidation in a range of 350 to 450 deg C. It is aimed to provide data on graphite properties into the parameter space

  1. Real-Time Power-Efficient Integration of Multi-Sensor Occupancy Grid on Many-Core

    OpenAIRE

    Rakotovao , Tiana; Mottin , Julien; Puschini , Diego; Laugier , Christian

    2015-01-01

    International audience; Safe Autonomous Vehicles (AVs) will emerge when comprehensive perception systems will be successfully integrated into vehicles. Advanced perception algorithms, estimating the position and speed of every obstacle in the environment by using data fusion from multiple sensors, were developed for AV prototypes. Computational requirements of such application prevent their integration into AVs on current low-power embedded hardware. However, recent emerging many-core archite...

  2. Structural integrity evaluations of CANDU pressure tubes

    International Nuclear Information System (INIS)

    Radu, Vasile

    2003-01-01

    The core of a CANDU-6 pressurized heavy water reactor consists of some hundred horizontal pressure tubes that are manufactured from a Zr-2.5%Nb alloy and which contain the fuel bundles. These tubes are susceptible to a damaging phenomenon known as Delayed Hydride Cracking (DHC). The Zr-2.5%Nb alloy is susceptible to DHC phenomenon when there is diffusion of hydrogen atoms to a service-induced flaws, followed by the hydride platelets formation on the certain crystallographic planes in the matrix material. Finally, the development of hydride regions at the flaw-tip will happened. These hydride regions are able to fracture under stress-temperature conditions (DHC initiation) and the cracks can extend and grow by DHC mechanism. Some studies have been focused on the potential to initiate DHC at the blunt flaws in a CANDU reactor pressure tube and a methodology for structural integrity evaluation was developed. The methodology based on the Failure Assessment Diagrams (FAD's) consists in an integrated graphical plot, where the fracture failure and plastic collapse are simultaneously evaluated by means of two non-dimensional variables (K r and L r ). These two variables represent the ratio of the applied value of either stress or stress intensity factor and the resistance parameter of corresponding magnitude (yield stress or fracture toughness, respectively). Once the plotting plane is determined by the variables K r and L r , the procedure defines a critical failure line that establishes the safe area. The paper will demonstrate the possibility to perform structural integrity evaluations by means of Failure Assessment Diagrams for flaws occurring in CANDU pressure tubes. (author)

  3. Hurricane Inner-Core Structure as Revealed by GPS Dropwindsondes

    National Research Council Canada - National Science Library

    Leejoice, Robert

    2000-01-01

    New high-resolution information of the vertical thermodynamic and kinematic structure of the hurricane inner-core is now available from aircraft released Global Positioning System (GPS) dropwindsondes...

  4. The Socially Stable Core in Structured Transferable Utility Games

    NARCIS (Netherlands)

    Herings, P.J.J.; van der Laan, G.; Talman, A.J.J.

    2004-01-01

    We consider cooperative games with transferable utility (TU-games), in which we allow for a social structure on the set of players, for instance a hierarchical ordering or a dominance relation.The social structure is utilized to refine the core of the game, being the set of payoffs to the players

  5. Synthesis and luminescent properties of CaCO3:Eu3+@SiO2 phosphors with core-shell structure

    Science.gov (United States)

    Liu, Min; Kang, Ming; Chen, Kexu; Mou, Yongren; Sun, Rong

    2018-03-01

    Integrating the processes of preparation of CaCO3:Eu3+ and its surface-coating, core-shell structured CaCO3:Eu3+@SiO2 phosphors with red emission were synthesized by the carbonation method and surface precipitation procedure using sodium silicate as silica source. The phase structure, thermal stability, morphology and luminescent property of the as-synthesized samples were characterized by X-ray diffraction, Fourier transform infrared spectrum, thermal analysis, field-emission scanning electron microscopy, transmission electron microscope and photoluminescence spectra. The experimental results show that Eu3+ ions as the luminescence center are divided into two types: one is at the surface of the CaCO3 and the other inhabits the site of Ca2+. For CaCO3:Eu3+@SiO2 phosphors, the SiO2 layers are continuously coated on the surface of CaCO3:Eu3+ and show a typical core-shell structure. After coated with SiO2 layer, the luminous intensity and the compatibility with the rubber matrix increase greatly. Additionally, the luminous intensity increases with the increasing of Eu3+ ions concentration in CaCO3 core and concentration quenching occurs when Eu3+ ions concentration exceeds 7.0 mol%, while it is 5.0 mol% for CaCO3:Eu3+ phosphors. Therefore, preparation of CaCO3:Eu3+@SiO2 phosphors can not only simplify the experimental process through integrating the preparation of CaCO3:Eu3+ and SiO2 layer, but also effectively increase the luminous intensities of CaCO3:Eu3+ phosphors. The as-obtained phosphors may have potential applications in the fields of optical materials and functional polymer composite materials, such as plastics and rubbers.

  6. [caCORE: core architecture of bioinformation on cancer research in America].

    Science.gov (United States)

    Gao, Qin; Zhang, Yan-lei; Xie, Zhi-yun; Zhang, Qi-peng; Hu, Zhang-zhi

    2006-04-18

    A critical factor in the advancement of biomedical research is the ease with which data can be integrated, redistributed and analyzed both within and across domains. This paper summarizes the Biomedical Information Core Infrastructure built by National Cancer Institute Center for Bioinformatics in America (NCICB). The main product from the Core Infrastructure is caCORE--cancer Common Ontologic Reference Environment, which is the infrastructure backbone supporting data management and application development at NCICB. The paper explains the structure and function of caCORE: (1) Enterprise Vocabulary Services (EVS). They provide controlled vocabulary, dictionary and thesaurus services, and EVS produces the NCI Thesaurus and the NCI Metathesaurus; (2) The Cancer Data Standards Repository (caDSR). It provides a metadata registry for common data elements. (3) Cancer Bioinformatics Infrastructure Objects (caBIO). They provide Java, Simple Object Access Protocol and HTTP-XML application programming interfaces. The vision for caCORE is to provide a common data management framework that will support the consistency, clarity, and comparability of biomedical research data and information. In addition to providing facilities for data management and redistribution, caCORE helps solve problems of data integration. All NCICB-developed caCORE components are distributed under open-source licenses that support unrestricted usage by both non-profit and commercial entities, and caCORE has laid the foundation for a number of scientific and clinical applications. Based on it, the paper expounds caCORE-base applications simply in several NCI projects, of which one is CMAP (Cancer Molecular Analysis Project), and the other is caBIG (Cancer Biomedical Informatics Grid). In the end, the paper also gives good prospects of caCORE, and while caCORE was born out of the needs of the cancer research community, it is intended to serve as a general resource. Cancer research has historically

  7. Core Promoter Structure in the Oomycete Phytophthora infestans

    Science.gov (United States)

    McLeod, Adele; Smart, Christine D.; Fry, William E.

    2004-01-01

    We have investigated the core promoter structure of the oomycete Phytophthora infestans. The transcriptional start sites (TSS) of three previously characterized P. infestans genes, Piexo1, Piexo3, and Piendo1, were determined by primer extension analyses. The TSS regions were homologous to a previously identified 16-nucleotide (nt) core sequence that overlaps the TSS in most oomycete genes. The core promoter regions of Piexo1 and Piendo1 were investigated by using a transient protoplast expression assay and the reporter gene β-glucuronidase. Mutational analyses of the promoters of Piexo1 and Piendo1 showed that there is a putative core promoter element encompassing the TSS (−2 to + 5) that has high sequence and functional homology to a known core promoter element present in other eukaryotes, the initiator element (Inr). Downstream and flanking the Inr is a highly conserved oomycete promoter region (+7 to + 15), hereafter referred to as FPR (flanking promoter region), which is also important for promoter function. The importance of the 19-nt core promoter region (Inr and FPR) in Piexo1 and Piendo1 was further investigated through electrophoretic mobility shift assays (EMSA). The EMSA studies showed that (i) both core promoters were able to specifically bind a protein or protein complex in a P. infestans whole-cell protein extract and (ii) the same mutations that reduced binding of the EMSA complex also reduced β-glucuronidase (GUS) levels in transient expression assays. The consistency of results obtained using two different assays (GUS transient assays [in vivo] and EMSA studies [in vitro]) supports a convergence of inference about the relative importance of specific nucleotides within the 19-nt core promoter region. PMID:14871940

  8. Dynamico-FE: A Structure-Preserving Hydrostatic Dynamical Core

    Science.gov (United States)

    Eldred, Christopher; Dubos, Thomas; Kritsikis, Evaggelos

    2017-04-01

    It is well known that the inviscid, adiabatic equations of atmospheric motion constitute a non-canonical Hamiltonian system, and therefore posses many important conserved quantities such as as mass, potential vorticity and total energy. In addition, there are also key mimetic properties (such as curl grad = 0) of the underlying continuous vector calculus. Ideally, a dynamical core should have similar properties. A general approach to deriving such structure-preserving numerical schemes has been developed under the frameworks of Hamiltonian methods and mimetic discretizations, and over the past decade, there has been a great deal of work on the development of atmospheric dynamical cores using these techniques. An important example is Dynamico, which conserves mass, potential vorticity and total energy; and possesses additional mimetic properties such as a curl-free pressure gradient. Unfortunately, the underlying finite-difference discretization scheme used in Dynamico has been shown to be inconsistent on general grids. To resolve these accuracy issues, a scheme based on mimetic Galerkin discretizations has been developed that achieves higher-order accuracy while retaining the structure-preserving properties of the existing discretization. This presentation will discuss the new dynamical core, termed Dynamico-FE, and show results from a standard set of test cases on both the plane and the sphere.

  9. Study on integrity evaluation of structures associated with nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    The 3.11 Tohoku District -off the Pacific Ocean Earthquake and tsunami made us observations of tsunami height in large exceedance of the design, and besides it gave the most damages to several nuclear power plants facing the Pacific Ocean at source area of the earthquake. Particularly, at Fukushima-Daiichi Nuclear Power Plant, the great tsunami caused the simultaneous failure on several plant's equipment and components, which escalated into the core damage. Considering these background, the objective of this research is to enhance fundamental technology relative to integrity evaluation of SSC's (System, Structure, components) targeting external events such as earthquakes and tsunamis. Specifically, it is performed to develop structure evaluation methods against tsunami, to develop seismic isolation system, and to enhance non-liner analysis methods for building and so on. In viewpoint of the other external events except earthquake and tsunami, it was performed to develop impact analysis methods on building and outdoor structure against swept things caused by tornadoes. After that on the basis of these developments, it is performed to draw up guidelines such as the base isolation structure review guide, and the structure design and risk evaluation guide against tsunami, which are to be used in cross-check analysis targeting integrity evaluation of nuclear power plant's structures against external events such as earthquakes and tsunamis. (author)

  10. Study on integrity evaluation of structures associated with nuclear power plants

    International Nuclear Information System (INIS)

    2013-01-01

    The 3.11 Tohoku District -off the Pacific Ocean Earthquake and tsunami made us observations of tsunami height in large exceedance of the design, and besides it gave the most damages to several nuclear power plants facing the Pacific Ocean at source area of the earthquake. Particularly, at Fukushima-Daiichi Nuclear Power Plant, the great tsunami caused the simultaneous failure on several plant's equipment and components, which escalated into the core damage. Considering these background, the objective of this research is to enhance fundamental technology relative to integrity evaluation of SSC's (System, Structure, components) targeting external events such as earthquakes and tsunamis. Specifically, it is performed to develop structure evaluation methods against tsunami, to develop seismic isolation system, and to enhance non-liner analysis methods for building and so on. In viewpoint of the other external events except earthquake and tsunami, it was performed to develop impact analysis methods on building and outdoor structure against swept things caused by tornadoes. After that on the basis of these developments, it is performed to draw up guidelines such as the base isolation structure review guide, and the structure design and risk evaluation guide against tsunami, which are to be used in cross-check analysis targeting integrity evaluation of nuclear power plant's structures against external events such as earthquakes and tsunamis. (author)

  11. A critical experimental study of integral physics parameters in simulated LMFBR meltdown cores

    International Nuclear Information System (INIS)

    Bhattacharyya, S.K.; Wade, D.C.; Bucher, R.G.; Smith, D.M.; McKnight, R.D.; Lesage, L.G.

    1978-01-01

    Integral physics parameters of several representative, idealized meltdown LMFBR configurations were measured in mockup critical assemblies on the ZPR-9 reactor at Argonne National Laboratory. The experiments were designed to provide data for the validation of analytical methods used in the neutronics part of LMFBR accident analysis. Large core distortions were introduced in these experiments (involving 18.5% core volume) and the reactivity worths of configuration changes were determined. The neutronics parameters measured in the various configurations showed large changes upon core distortion. Both diffusion theory and transport theory methods were shown to mispredict the experimental configuration eigenvalues. In addition, diffusion theory methods were shown to result in a non-conservative misprediction of the experimental configuration change worths. (author)

  12. 200 Gbit/s 16QAM WDM transmission over a fully integrated cladding pumped 7-Core MCF System

    DEFF Research Database (Denmark)

    Castro, C.; Jain, S.; Jung, Y.

    2017-01-01

    A complete, realistic integrated system is investigated, consisting of directly spliced 7-core MCF, cladding-pumped 7-core amplifiers, isolators, and couplers. The system is demonstrated in a 16QAM C-band WDM scenario over 720 km....

  13. Structural Integrity Assessment of VVER-1000 RPV under Accidental Cool down Transients

    International Nuclear Information System (INIS)

    Shrivastav, V.; Sen, R.N.; Yadav, R.S.

    2012-01-01

    Corrosion, Fatigue and Irradiation embrittlement are the major degradation mechanisms responsible for ageing of RPV (and its internals) of a Pressurized Water Reactor. While corrosion and fatigue can generate cracks, irradiation damage can lead to brittle fracture initiating from these cracks. Ageing in nuclear power plants needs to be managed so as to ensure that design functions remain available throughout the life of the plant. From safety perspective, this implies that ageing degradation of systems, structures and components important to safety remain within acceptable limits. Reactor Pressure Vessel has been identified as the highest priority key component in plant life management for Pressurized Water Reactors. Therefore special attention is required to ensure its structural integrity during its lifetime. In this paper, structural integrity assessment for typical VVER-1000 RPV is carried out under severe accidental cool down transients using the Finite Element Method. Three different accidental scenarios are postulated and safety of the vessel is conservatively assessed under these transients using the Linear Elastic Fracture Mechanics approach. Transient thermo mechanical stress analysis of the core belt region of the RPV is carried out in presence of postulated cracks and stress intensity factors are calculated and compared with the material fracture toughness to assess the structural integrity of the vessel. The paper also include some parametric analyses to justify the methodology. (author)

  14. TMI-2 core examination

    International Nuclear Information System (INIS)

    Hobbins, R.R.; MacDonald, P.E.; Owen, D.E.

    1983-01-01

    The examination of the damaged core at the Three Mile Island Unit 2 (TMI-2) reactor is structured to address the following safety issues: fission product release, transport, and deposition; core coolability; containment integrity; and recriticality during severe accidents; as well as zircaloy cladding ballooning and oxidation during so-called design basis accidents. The numbers of TMI-2 components or samples to be examined, the priority of each examination, the safety issue addressed by each examination, the principal examination techniques to be employed, and the data to be obtained and the principal uses of the data are discussed in this paper

  15. Structural and magnetic properties of core-shell iron-iron oxide nanoparticles

    DEFF Research Database (Denmark)

    Kuhn, Luise Theil; Bojesen, A.; Timmermann, L.

    2002-01-01

    We present studies of the structural and magnetic properties of core-shell iron-iron oxide nanoparticles. alpha-Fe nanoparticles were fabricated by sputtering and subsequently covered with a protective nanocrystalline oxide shell consisting of either maghaemite (gamma-Fe2O3) or partially oxidized...... magnetite (Fe3O4). We observed that the nanoparticles were stable against further oxidation, and Mossbauer spectroscopy at high applied magnetic fields and low temperatures revealed a stable form of partly oxidized magnetite. The nanocrystalline structure of the oxide shell results in strong canting...... of the spin structure in the oxide shell, which thereby modifies the magnetic properties of the core-shell nanoparticles....

  16. Experience with Intel's Many Integrated Core Architecture in ATLAS Software

    CERN Document Server

    Fleischmann, S; The ATLAS collaboration; Lavrijsen, W; Neumann, M; Vitillo, R

    2014-01-01

    Intel recently released the first commercial boards of its Many Integrated Core (MIC) Architecture. MIC is Intel's solution for the domain of throughput computing, currently dominated by general purpose programming on graphics processors (GPGPU). MIC allows the use of the more familiar x86 programming model and supports standard technologies such as OpenMP, MPI, and Intel's Threading Building Blocks. This should make it possible to develop for both throughput and latency devices using a single code base.\

  17. Experience with Intel's Many Integrated Core Architecture in ATLAS Software

    CERN Document Server

    Fleischmann, S; The ATLAS collaboration; Lavrijsen, W; Neumann, M; Vitillo, R

    2013-01-01

    Intel recently released the first commercial boards of its Many Integrated Core (MIC) Architecture. MIC is Intel's solution for the domain of throughput computing, currently dominated by general purpose programming on graphics processors (GPGPU). MIC allows the use of the more familiar x86 programming model and supports standard technologies such as OpenMP, MPI, and Intel's Threading Building Blocks. This should make it possible to develop for both throughput and latency devices using a single code base.\

  18. Effect of Ni Core Structure on the Electrocatalytic Activity of Pt-Ni/C in Methanol Oxidation

    Directory of Open Access Journals (Sweden)

    Vladimir Linkov

    2013-07-01

    Full Text Available Methanol oxidation catalysts comprising an outer Pt-shell with an inner Ni-core supported on carbon, (Pt-Ni/C, were prepared with either crystalline or amorphous Ni core structures. Structural comparisons of the two forms of catalyst were made using transmission electron microscopy (TEM, X-ray diffraction (XRD and X-ray photoelectron spectroscopy (XPS, and methanol oxidation activity compared using CV and chronoamperometry (CA. While both the amorphous Ni core and crystalline Ni core structures were covered by similar Pt shell thickness and structure, the Pt-Ni(amorphous/C catalyst had higher methanol oxidation activity. The amorphous Ni core thus offers improved Pt usage efficiency in direct methanol fuel cells.

  19. 15 x 200 Gbit/s 16-QAM SDM transmission over an integrated 7-core cladding-pumped repeatered multicore link in a recirculating loop

    DEFF Research Database (Denmark)

    Castro, Carlos; Jain, Saurabh; Man, Erik De

    2017-01-01

    We investigate a complete realistic integrated multicore system consisting of directly spliced components: homogeneous trench-assisted 7-core fiber with a length of 60 km, cladding-pumped 7-core amplifiers, integrated 7-core isolators, and fiberized fan-in/fan-out couplers. We analyze the perform...

  20. Determination of Core-Shell Structures in Pd-Hg Nanoparticles by STEM-EDX

    DEFF Research Database (Denmark)

    Deiana, Davide; Verdaguer Casadevall, Arnau; Malacrida, Paolo

    2015-01-01

    The structural and elemental configuration of a high-performing Pd-Hg electrocatalyst for oxygen reduction to hydrogen peroxide has been studied by means of high-resolution scanning transmission electron microscopy. Pd-Hg nanoparticles are shown to have a crystalline core-shell structure, with a Pd...... core and a Pd-Hg ordered alloy shell. The ordered shell is responsible for the high oxygen reduction selectivity to H2O2....

  1. A scaleable integrated sensing and control system for NDE, monitoring, and control of medium to very large composite smart structures

    Science.gov (United States)

    Jones, Jerry; Rhoades, Valerie; Arner, Radford; Clem, Timothy; Cuneo, Adam

    2007-04-01

    NDE measurements, monitoring, and control of smart and adaptive composite structures requires that the central knowledge system have an awareness of the entire structure. Achieving this goal necessitates the implementation of an integrated network of significant numbers of sensors. Additionally, in order to temporally coordinate the data from specially distributed sensors, the data must be time relevant. Early adoption precludes development of sensor technology specifically for this application, instead it will depend on the ability to utilize legacy systems. Partially supported by the U.S. Department of Commerce, National Institute of Standards and Technology, Advanced Technology Development Program (NIST-ATP), a scalable integrated system has been developed to implement monitoring of structural integrity and the control of adaptive/intelligent structures. The project, called SHIELD (Structural Health Identification and Electronic Life Determination), was jointly undertaken by: Caterpillar, N.A. Tech., Motorola, and Microstrain. SHIELD is capable of operation with composite structures, metallic structures, or hybrid structures. SHIELD consists of a real-time processing core on a Motorola MPC5200 using a C language based real-time operating system (RTOS). The RTOS kernel was customized to include a virtual backplane which makes the system completely scalable. This architecture provides for multiple processes to be operating simultaneously. They may be embedded as multiple threads on the core hardware or as separate independent processors connected to the core using a software driver called a NAT-Network Integrator (NATNI). NATNI's can be created for any communications application. In it's current embodiment, NATNI's have been created for CAN bus, TCP/IP (Ethernet) - both wired and 802.11 b and g, and serial communications using RS485 and RS232. Since SHIELD uses standard C language, it is easy to port any monitoring or control algorithm, thus providing for legacy

  2. Elastic stability of cylindrical shells with soft elastic cores: Biomimicking natural tubular structures

    Science.gov (United States)

    Karam, Gebran Nizar

    1994-01-01

    Thin walled cylindrical shell structures are widespread in nature: examples include plant stems, porcupine quills, and hedgehog spines. All have an outer shell of almost fully dense material supported by a low density, cellular core. In nature, all are loaded in combination of axial compression and bending: failure is typically by buckling. Natural structures are often optimized. Here we have analyzed the elastic buckling of a thin cylindrical shell supported by an elastic core to show that this structural configuration achieves significant weight saving over a hollow cylinder. The results of the analysis are compared with data from an extensive experimental program on uniaxial compression and four point bending tests on silicone rubber shells with and without compliant foam cores. The analysis describes the results of the mechanical tests well. Characterization of the microstructures of several natural tubular structures with foamlike cores (plant stems, quills, and spines) revealed them to be close to the optimal configurations predicted by the analytical model. Biomimicking of natural cylindrical shell structures and evolutionary design processes may offer the potential to increase the mechanical efficiency of engineering cylindrical shells.

  3. Integrated Structural Design Education

    DEFF Research Database (Denmark)

    Bjerregaard Jensen, Lotte; Almegaard, Henrik

    2011-01-01

    to EU legislation. And a successful engineering student must be prepared to work in the open-ended, multidisciplinary environment necessary to produce structures which comply with EIA demands. This paper describes an innovative course developed at the Technical University of Denmark which integrates...... landscaping and structural design. The integrated courses create a setting for learning about the design of large-scale structures and involve geometry, statics, computer simulation, graphical design and landscape architecture. Together, they educate engineers who can take part in the early design phases...... of a project, function well in design teams, and comply with EU EIA demands....

  4. Structural hierarchy of autism spectrum disorder symptoms: an integrative framework.

    Science.gov (United States)

    Kim, Hyunsik; Keifer, Cara M; Rodriguez-Seijas, Craig; Eaton, Nicholas R; Lerner, Matthew D; Gadow, Kenneth D

    2018-01-01

    In an attempt to resolve questions regarding the symptom classification of autism spectrum disorder (ASD), previous research generally aimed to demonstrate superiority of one model over another. Rather than adjudicating which model may be optimal, we propose an alternative approach that integrates competing models using Goldberg's bass-ackwards method, providing a comprehensive understanding of the underlying symptom structure of ASD. The study sample comprised 3,825 individuals, consecutive referrals to a university hospital developmental disabilities specialty clinic or a child psychiatry outpatient clinic. This study analyzed DSM-IV-referenced ASD symptom statements from parent and teacher versions of the Child and Adolescent Symptom Inventory-4R. A series of exploratory structural equation models was conducted in order to produce interpretable latent factors that account for multivariate covariance. Results indicated that ASD symptoms were structured into an interpretable hierarchy across multiple informants. This hierarchy includes five levels; key features of ASD bifurcate into different constructs with increasing specificity. This is the first study to examine an underlying structural hierarchy of ASD symptomatology using the bass-ackwards method. This hierarchy demonstrates how core features of ASD relate at differing levels of resolution, providing a model for conceptualizing ASD heterogeneity and a structure for integrating divergent theories of cognitive processes and behavioral features that define the disorder. These findings suggest that a more coherent and complete understanding of the structure of ASD symptoms may be reflected in a metastructure rather than at one level of resolution. © 2017 Association for Child and Adolescent Mental Health.

  5. On the core-halo structure of NGC 604

    CERN Document Server

    Melnick, Yu M

    1980-01-01

    A detailed study is presented of the core-halo structure of the largest H II region in M 33, NGC 604, using newly obtained multi- aperture H/sub beta / photometry and Fabry-Perot interferometry, in conjunction with published radio continuum observations. Based on a comparison between the radio continuum and H/sub beta / luminosities of NGC 604, a dust density of rho /sub d/=6 10/sup -25/ g cm/sup -3/ is derived for the nebular core, in good agreement with published far- infrared results. By contrast, the halo of NGC 604 appears to contain virtually no dust. It is also shown that the turbulent component of the H/sub alpha /-line profile width of the halo of NGC 604 is significantly lower than that of the nebular core. This result is found to be inconsistent with models in which the highly supersonic velocities implied by the observed emission line profile widths in both nebular components are interpreted in terms of expansion motions. (14 refs).

  6. Structural characterization of Mumps virus fusion protein core

    International Nuclear Information System (INIS)

    Liu Yueyong; Xu Yanhui; Lou Zhiyong; Zhu Jieqing; Hu Xuebo; Gao, George F.; Qiu Bingsheng; Rao Zihe; Tien, Po

    2006-01-01

    The fusion proteins of enveloped viruses mediating the fusion between the viral and cellular membranes comprise two discontinuous heptad repeat (HR) domains located at the ectodomain of the enveloped glycoproteins. The crystal structure of the fusion protein core of Mumps virus (MuV) was determined at 2.2 A resolution. The complex is a six-helix bundle in which three HR1 peptides form a central highly hydrophobic coiled-coil and three HR2 peptides pack against the hydrophobic grooves on the surface of central coiled-coil in an oblique antiparallel manner. Fusion core of MuV, like those of simian virus 5 and human respiratory syncytium virus, forms typical 3-4-4-4-3 spacing. The similar charecterization in HR1 regions, as well as the existence of O-X-O motif in extended regions of HR2 helix, suggests a basic rule for the formation of the fusion core of viral fusion proteins

  7. Ag@ZnO core-shell nanoparticles study by first principle: The structural, magnetic and optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Hai-Xia [Department of Physics, University of Science and Technology Beijing, Beijing 100083 (China); Wang, Xiao-Xu [Department of Physics, University of Science and Technology Beijing, Beijing 100083 (China); Beijing Computing Center, Beijing 100094 (China); Hu, Yao-Wen [Department of Physics, Tsinghua University, Beijing 100084 (China); Song, Hong-Quan; Huo, Jin-Rong; Li, Lu [Department of Physics, University of Science and Technology Beijing, Beijing 100083 (China); Qian, Ping, E-mail: ustbqianp@163.com [Department of Physics, University of Science and Technology Beijing, Beijing 100083 (China); Song, Yu-Jun [Department of Physics, University of Science and Technology Beijing, Beijing 100083 (China)

    2016-12-15

    Ag@ZnO core-shell nanoparticles of around 72 atoms have been investigated by the density functional theory, revealing proving for the first time that the core-shell structure exhibits a shrinkage phenomenon from outer shell in agreement with the other studies in literatures. Our calculations predict that the Ag@ZnO core-shell structure is a ferromagnetic spin polarized state, and the magnetism mainly stems from the spin splitting of 2p electrons of O atoms. In addition, the total and partial DOS of Ag@ZnO indicate that the nanostructure is a half-metallic nanoparticle and has the characters of the p-type semiconductor. Furthermore, the optical properties calculations show that the absorption edge of Ag@ZnO have a red shift and good photocatalysis compare to that of the bulk ZnO. These results of the Ag@ZnO core-shell structure obtain a well agreement with the experimental measurement. - Graphical abstract: Geometric structure of (a) Ag@ZnO core-shell nanostructure; (b) the core of Ag; (c) the shell of ZnO The core-shell nanoparticle Ag@ZnO contains Ag inner core of radius of 4 Å and ZnO outer shell with thickness of 2 Å. Ag@ZnO core-shell nanoparticles of around 72 atoms have been proved for the first time that the core-shell structure exhibit a shrinkage phenomenon from outer shell. Our calculations predict that the Ag@ZnO core-shell structure is a half-metallic nanoparticle and has the characters of the p-type semiconductor. The absorption edge of Ag@ZnO have a red shift and get good photo-catalysis compare to that of the bulk ZnO.

  8. Design and analysis of EI core structured transverse flux linear reluctance actuator

    OpenAIRE

    FENERCİOĞLU, AHMET; AVŞAR, YUSUF

    2015-01-01

    In this study, an EI core linear actuator is proposed for horizontal movement systems. It is a transverse flux linear switched reluctance motor designed with an EI core structure geometrically. The actuator is configured into three phases and at a 6/4 pole ratio, and it has a stationary active stator along with a sliding passive translator. The stator consists of E cores and the translator consists of I cores. The actuator has a yokeless design because the stator and translator have no back i...

  9. Chesapeake Bay Impact Structure Deep Drilling Project Completes Coring

    Directory of Open Access Journals (Sweden)

    the Scientific Staff of the Chesapeake Bay Impact Structure Deep Drilling Project

    2006-09-01

    Full Text Available The Chesapeake Bay Impact Structure Deep Drilling Project (CBIS Project completed its coring operations during September–December 2005 and April–May 2006. Cores were collected continuously to a total depth of 1766 m. The recovered section consists of 1322 m of impactites beneath 444 m of post-impact continental shelf sediments.The CBIS Project is a joint venture of the International Continental Scientifi c Drilling Program (ICDP and the U.S. Geological Survey (USGS. Project activities began with a planning workshop in September 2003 attended by sixtythree scientists from ten countries. Field operations began with site preparation in July 2005, and coring began in September 2005. Drilling, Observation and Sampling of theEarth’s Continental Crust (DOSECC was the general contractor for the drilling operations throughout 2005.

  10. Organic-Inorganic Hydrophobic Nanocomposite Film with a Core-Shell Structure

    Directory of Open Access Journals (Sweden)

    Peng Liu

    2016-12-01

    Full Text Available A method to prepare novel organic-inorganic hydrophobic nanocomposite films was proposed by a site-specific polymerization process. The inorganic part, the core of the nanocomposite, is a ternary SiO2–Al2O3–TiO2 nanoparticles, which is grafted with methacryloxy propyl trimethoxyl silane (KH570, and wrapped by fluoride and siloxane polymers. The synthesized samples are characterized by transmission electron microscopy (TEM, Fourier transform infrared (FTIR spectrscopy, X-ray diffractometry (XRD, contact angle meter (CA, and scanning electron microscope (SEM. The results indicate that the novel organic-inorganic hydrophobic nanocomposite with a core-shell structure was synthesized successfully. XRD analysis reveals the nanocomposite film has an amorphous structure, and FTIR analysis indicates the nanoparticles react with a silane coupling agent (methacryloxy propyl trimethoxyl silane KH570. Interestingly, the morphology of the nanoparticle film is influenced by the composition of the core. Further, comparing with the film synthesized by silica nanoparticles, the film formed from SiO2–Al2O3–TiO2 nanoparticles has higher hydrophobic performance, i.e., the contact angle is greater than 101.7°. In addition, the TEM analysis reveals that the crystal structure of the particles can be changed at high temperatures.

  11. Core Competencies in Integrative Pain Care for Entry-Level Primary Care Physicians.

    Science.gov (United States)

    Tick, Heather; Chauvin, Sheila W; Brown, Michael; Haramati, Aviad

    2015-11-01

    The objective was to develop a set of core competencies for graduating primary care physicians in integrative pain care (IPC), using the Accreditation Council for Graduate Medical Education (ACGME) domains. These competencies build on previous work in competencies for integrative medicine, interprofessional education, and pain medicine and are proposed for inclusion in residency training. A task force was formed to include representation from various professionals who are involved in education, research, and the practice of IPC and who represent broad areas of expertise. The task force convened during a 1.5-day face-to-face meeting, followed by a series of surveys and other vetting processes involving diverse interprofessional groups, which led to the consensus of a final set of competencies. The proposed competencies focus on interprofessional knowledge, skills, and attitudes (KSAs) and are in line with recommendations by the Institute of Medicine, military medicine, and professional pain societies advocating the need for coordination and integration of services for effective pain care with reduced risk and cost and improved outcomes. These ACGME domain compatible competencies for physicians reflect the contributions of several disciplines that will need to be included in evolving interprofessional settings and underscore the need for collaborative care. These core competencies can guide the incorporation of KSAs within curricula. The learning experiences should enable medical educators and graduating primary care physicians to focus more on integrative approaches, interprofessional team-based, patient-centered care that use evidence-based, traditional and complementary disciplines and therapeutics to provide safe and effective treatments for people in pain. Wiley Periodicals, Inc.

  12. Research on the integration of teaching content of core courses in Agro-ecological environmental specialties of higher vocational colleges

    Science.gov (United States)

    Chen, Juan; Ma, Guosheng

    2018-02-01

    Curriculum is the means to cultivate higher vocational talents. On the basis of analyzing the core curriculum problems of curriculum reform and Agro-ecological environmental specialties in higher vocational colleges, this paper puts forward the optimization and integration measures of 6 core courses, including “Eco-environment Repair Technology”, “Agro-environmental Management Plan”, “Environmental Engineering Design”, “Environmental Pest Management Technology”, “Agro-chemical Pollution Control Technology”, “Agro-environmental Testing and Analysis”. It integrates the vocational qualification certificate education and professional induction certificate training items, and enhances the adaptability, skills and professionalism of professional core curriculum.

  13. Connecting traces of galaxy evolution: the missing core mass-morphological fine structure relation

    Science.gov (United States)

    Bonfini, P.; Bitsakis, T.; Zezas, A.; Duc, P.-A.; Iodice, E.; González-Martín, O.; Bruzual, G.; González Sanoja, A. J.

    2018-01-01

    Deep exposure imaging of early-type galaxies (ETGs) are revealing the second-order complexity of these objects, which have been long considered uniform, dispersion-supported spheroidals. `Fine structure' features (e.g. ripples, plumes, tidal tails, rings) as well as depleted stellar cores (i.e. central light deficits) characterize a number of massive ETG galaxies, and can be interpreted as the result of galaxy-galaxy interactions. We discuss how the time-scale for the evolution of cores and fine structures are comparable, and hence it is expected that they develop in parallel after the major interaction event which shaped the ETG. Using archival data, we compare the `depleted stellar mass' (i.e. the mass missing from the depleted stellar core) against the prominence of the fine structure features, and observe that they correlate inversely. This result confirms our expectation that, while the supermassive black hole (SMBH) binary (constituted by the SMBHs of the merger progenitors) excavates the core via three-body interactions, the gravitational potential of the newborn galaxy relaxes, and the fine structures fade below detection levels. We expect the inverse correlation to hold at least within the first Gyr from the merger which created the SMBH binary; after then, the fine structure evolves independently.

  14. SRS Tank Structural Integrity Program

    International Nuclear Information System (INIS)

    Maryak, Matthew

    2010-01-01

    The mission of the Structural Integrity Program is to ensure continued safe management and operation of the waste tanks for whatever period of time these tanks are required. Matthew Maryak provides an overview of the Structural Integrity Program to open Session 5 (Waste Storage and Tank Inspection) of the 2010 EM Waste Processing Technical Exchange.

  15. Structure and stability of warm cores in neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Ibanez Cabanell, J M [Departamento de Mecanica y Astronomia, Facultad de Matematicas, Burjasot-Valencia (Spain)

    1981-12-01

    Relativistic equations of structure are solved using Lamb's equations of state for warm neutron degenerate matter. The stability of isothermal cores in neutron stars is discussed and also the possible compatibility of the results obtained with experimental evidence is shown.

  16. Construction of the HTTR in-core components

    International Nuclear Information System (INIS)

    Maruyama, S.; Saikusa, A.; Shiozawa, S.; Tsuji, N.; Jinza, K.; Miki, T.

    1996-01-01

    The reactor internals of HTTR consist of graphite and metallic core support structures and shielding blocks and are designed to support core elements and to shield neutron fluence. They also have functions to restrict by-pass flow for ensuring the core cooling performance and to maintain the temperature of metallic core support structures within their design limits. The detailed design of the HTTR core support structure was approved by the government through safety review, 1990-1991. Machining of all graphite components, which consist of about 150 large blocks, was finished in September 1994 successfully. Machining and fabricating of the metallic components were also finished in September. Prior to their installation in the reactor pressure vessel (RPV), the assembly test of actual reactor internals was performed at the works to confirm above mentioned functions. The assembly test was conducted by examining fabricating precision of each component and alignment of piled-up structures, measuring circumferential coolant velocity profile in the passage between the RPV and reactor internals as well as under the core support plates with respect to structural integrity, and measuring by-pass flow rate through gaps between graphite components which may degrade core performance. The another purpose of the assembly test was to confirm the installation procedure of those components. All components were assembled at the works according to the planned procedure, and the tests were executed while assembling. As a result of the tests, measured level difference and gap width between reactor internals were negligible from core thermal and hydraulic performance point of view. Coolant flows uniformly in circumferential direction at any axial level in the RPV. By-pass flow rate was found to be suppressed sufficiently and far less than the design limit. (J.P.N.)

  17. Structure and stability of nickel/nickel oxide core-shell nanoparticles

    International Nuclear Information System (INIS)

    D'Addato, S; Grillo, V; Valeri, S; Frabboni, S; Altieri, S; Tondi, R

    2011-01-01

    The results of a combined x-ray photoelectron spectroscopy (XPS) and high resolution transmission electron microscopy (HR-TEM) study of Ni nanoparticles (NP), before and after oxidation, are presented. An experimental set-up was realized for the preparation and study of pre-formed NP films, concentrating the attention on Ni NP in the diameter range between 4 and 8 nm. The XPS data were taken in situ from NPs after different stages of oxidation, including controlled dosing of O 2 gas in the experimental system and exposure to the atmosphere. The Ni 2p structure is a combination of spectra from metallic Ni in the NP core and from the oxide shell. The signal from the NP core was observed even for samples after exposure to air. From the comparison of HR-TEM experimental images with theoretical simulations, it was found that the Ni NP core has a regular multitwinned icosahedral structure, composed of single-crystal tetrahedra with (111) faces. The NiO phase is clearly observed forming islands on the NP surface.

  18. Structure and stability of nickel/nickel oxide core-shell nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    D' Addato, S; Grillo, V; Valeri, S; Frabboni, S [CNR-Istituto Nanoscienze, Centro S3, Via G Campi 213/a, I-41125 Modena (Italy); Altieri, S; Tondi, R, E-mail: sergio.daddato@unimore.it [Dipartimento di Fisica, Universita di Modena e Reggio Emilia, via G Campi 213/a, I-41125 Modena (Italy)

    2011-05-04

    The results of a combined x-ray photoelectron spectroscopy (XPS) and high resolution transmission electron microscopy (HR-TEM) study of Ni nanoparticles (NP), before and after oxidation, are presented. An experimental set-up was realized for the preparation and study of pre-formed NP films, concentrating the attention on Ni NP in the diameter range between 4 and 8 nm. The XPS data were taken in situ from NPs after different stages of oxidation, including controlled dosing of O{sub 2} gas in the experimental system and exposure to the atmosphere. The Ni 2p structure is a combination of spectra from metallic Ni in the NP core and from the oxide shell. The signal from the NP core was observed even for samples after exposure to air. From the comparison of HR-TEM experimental images with theoretical simulations, it was found that the Ni NP core has a regular multitwinned icosahedral structure, composed of single-crystal tetrahedra with (111) faces. The NiO phase is clearly observed forming islands on the NP surface.

  19. Structural models of the different trimers present in the core of phycobilisomes from Gracilaria chilensis based on crystal structures and sequences.

    Directory of Open Access Journals (Sweden)

    Jorge Dagnino-Leone

    Full Text Available Phycobilisomes (PBS are accessory light harvesting protein complexes that directionally transfer energy towards photosystems. Phycobilisomes are organized in a central core and rods radiating from it. Components of phycobilisomes in Gracilaria chilensis (Gch are Phycobiliproteins (PBPs, Phycoerythrin (PE, and Phycocyanin (PC in the rods, while Allophycocyanin (APC is found in the core, and linker proteins (L. The function of such complexes depends on the structure of each component and their interaction. The core of PBS from cyanobacteria is mainly composed by cylinders of trimers of α and β subunits forming heterodimers of Allophycocyanin, and other components of the core including subunits αII and β18. As for the linkers, Linker core (LC and Linker core membrane (LCM are essential for the final emission towards photoreaction centers. Since we have previously focused our studies on the rods of the PBS, in the present article we investigated the components of the core in the phycobilisome from the eukaryotic algae, Gracilaria chilensis and their organization into trimers. Transmission electron microscopy provided the information for a three cylinders core, while the three dimensional structure of Allophycocyanin purified from Gch was determined by X-ray diffraction method and the biological unit was determined as a trimer by size exclusion chromatography. The protein sequences of all the components of the core were obtained by sequencing the corresponding genes and their expression confirmed by transcriptomic analysis. These subunits have seldom been reported in red algae, but not in Gracilaria chilensis. The subunits not present in the crystallographic structure were modeled to build the different composition of trimers. This article proposes structural models for the different types of trimers present in the core of phycobilisomes of Gch as a first step towards the final model for energy transfer in this system.

  20. On the structural integrity evaluation about aged components

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    About one third of the nuclear power plants in Japan have been operated more than 30 years and flaws due to age-related degradation mechanisms have been detected in some components such as piping systems or core shrouds these years. Moreover, several severe earthquakes such as the Tohoku District - off the Pacific Ocean Earthquake or the Niigata-ken Chuetsu-oki Earthquake have struck some nuclear power plants in Japan recent years. Therefore, the structural integrity evaluation about nuclear installations and components considering seismic loads and aging mechanisms has become more and more important. In this study, several evaluation methods were proposed to assess the crack growth rate under the seismic loading conditions, to assess the failure conditions or the realistic failure capacities of the aged piping systems considering seismic or general loading conditions. Furthermore, analysis codes were developed considering aging mechanisms to carry out the integrity evaluation, or the failure probability evaluation which is useful in the seismic PSA evaluation. All of these assessment methods and analysis codes are being used and will be used more and more in the cross-check analyses or the safety reviews about nuclear installations and components. (author)

  1. Surface and Core Electronic Structure of Oxidized Silicon Nanocrystals

    Directory of Open Access Journals (Sweden)

    Noor A. Nama

    2010-01-01

    Full Text Available Ab initio restricted Hartree-Fock method within the framework of large unit cell formalism is used to simulate silicon nanocrystals between 216 and 1000 atoms (1.6–2.65 nm in diameter that include Bravais and primitive cell multiples. The investigated properties include core and oxidized surface properties. Results revealed that electronic properties converge to some limit as the size of the nanocrystal increases. Increasing the size of the core of a nanocrystal resulted in an increase of the energy gap, valence band width, and cohesive energy. The lattice constant of the core and oxidized surface parts shows a decreasing trend as the nanocrystal increases in a size that converges to 5.28 Ǻ in a good agreement with the experiment. Surface and core convergence to the same lattice constant reflects good adherence of oxide layer at the surface. The core density of states shows highly degenerate states that split at the oxygenated (001-(1×1 surface due to symmetry breaking. The nanocrystal surface shows smaller gap and higher valence and conduction bands when compared to the core part, due to oxygen surface atoms and reduced structural symmetry. The smaller surface energy gap shows that energy gap of the nanocrystal is controlled by the surface part. Unlike the core part, the surface part shows a descending energy gap that proves its obedience to quantum confinement effects. Nanocrystal geometry proved to have some influence on all electronic properties including the energy gap.

  2. Integration of Biosafety into Core Facility Management

    OpenAIRE

    Fontes, Benjamin

    2013-01-01

    This presentation will discuss the implementation of biosafety policies for small, medium and large core laboratories with primary shared objectives of ensuring the control of biohazards to protect core facility operators and assure conformity with applicable state and federal policies, standards and guidelines. Of paramount importance is the educational process to inform core laboratories of biosafety principles and policies and to illustrate the technology and process pathways of the core l...

  3. Summary of Structural Concept Development and High Temperature Structural Integrity Evaluation Technology for a Gen-IV SFR

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Han; Joo, Young Sang; Lee, Hyeong Yeon (and others)

    2008-04-15

    The economic improvement is a hot issue as one of Gen IV nuclear plant goals. It requires many researches and development works to meet the goal by securing the same level of plant safety. One of the key research items is the increase of the plant capacity with the minimum number of components and loops. Through the successful conceptual design experience for the KALIMER-600, the structural design study for a 1200MWe large capacity of sodium-cooled fast reactor has been performed to achieve the above plant size effects. The component number and reactor structural sizing were determined based on the core and fluid system design information. Several researches were performed to reduce the construction cost of NSSS in structural point of view, for example, a simplified component arrangement, concept proposals of integrated components, a high temperature LBB application technology, and an innovative in-service inspection (ISI) tool, and a computer program development of the ASME-NH design procedure of the class 1 structure and component under high temperature over 500 .deg. C. The IHTS piping arrangement was also proposed to minimize the length through the properly locating the SG and pump by 126m. Further studies of these concepts are required to confirm on the fabricability and the structural integrity for the operating and design loads. The proposed concepts will be optimized to a unified conceptual design through several trade-off studies.

  4. TMI-2 core boring machine

    International Nuclear Information System (INIS)

    Croft, K.M.; Helbert, H.J.; Laney, W.M.

    1986-01-01

    An important and essential aspect of the TMI-2 defueling effort is to determine what occurred in the core region during the accident. Remote cameras and probes only portray a portion of the overall picture. What lies beneath the rubble bed and solidified sublayer is, as yet, unknown. This paper discusses the TMI-2 Core Boring Machine, which has been developed to drill into the damaged core of the TMI-2 reactor and extract stratified samples of the core. This machine, its unique support structure, positioning and leveling systems, and specially designed drill bits, combine to provide a unique mechanical system. In addition, the machine is controlled by a microprocessor; which actually controls the drilling operation, allowing relatively inexperienced operators to drill the core samples. A data acquisition system is data integral with the controlling system and collects data relative to system conditions and monitored parameters during drilling. Data obtained during the actual drilling operations are collected in a data base which will be used for actual mapping of the core region, identifying materials and stratification levels that are present

  5. Technical Meeting on Liquid Metal Reactor Concepts: Core Design and Structural Materials. Presentations

    International Nuclear Information System (INIS)

    2013-01-01

    The objective of the Technical Meeting is to present and discuss innovative liquid metal fast reactor (LMFR) core designs with special focus on the choice, development, testing and qualification of advanced reactor core structural materials

  6. Engineering review of the core support structure of the Gas Cooled Fast Breeder Reactor

    International Nuclear Information System (INIS)

    1978-09-01

    The review of the core support structure of the gas cooled fast breeder reactor (GCFR) covered such areas as the design criteria, the design and analysis of the concepts, the development plan, and the projected manufacturing costs. Recommendations are provided to establish a basis for future work on the GCFR core support structure

  7. Regulatory Experience on Structural Integrity Issues of The Oldest Reactor Pressure Vessel in Korea

    International Nuclear Information System (INIS)

    Lee, Sang-Min; Cho, Doo-Ho; Kim, Jin-Su; Kim, Yong-Beum; Chung, Hae-Dong; Kim, Se-Chang; Choi, Jae-Boong

    2015-01-01

    A reactor pressure vessel plays a crucial role of retaining reactor coolant and core assemblies. The RPV integrity should be evaluated in consideration with the design transient condition and the material deterioration of RPV belt-line region. Especially, the pressurized thermal shock has been considered as one of the most important issues regarding the RPV integrity since Rancho Seco nuclear power plant accident in 1978. In this paper, the structural integrity evaluation of the oldest RPV in Korea was performed by using finite element analysis. PTS conditions like small break loss of coolant accident and Turkey Point steam line break were applied as loading conditions. Neutron fluence data equivalent to 40 years was used to determine the fracture toughness of RPV material. The 3-dimensional finite element model including a circumferential surface flaw was considered for fracture mechanics analysis. The RPV integrity was evaluated according to Japan Electric Association Code. (authors)

  8. On-line core monitoring with CORE MASTER / PRESTO

    International Nuclear Information System (INIS)

    Lindahl, S.O.; Borresen, S.; Ovrum, S.

    1986-01-01

    Advanced calculational tools are instrumental in improving reactor plant capacity factors and fuel utilization. The computer code package CORE MASTER is an integrated system designed to achieve this objective. The system covers all main activities in the area of in-core fuel management for boiling water reactors; design, operation support, and on-line core monitoring. CORE MASTER operates on a common data base, which defines the reactor and documents the operating history of the core and of all fuel bundles ever used

  9. Technical Meeting on Liquid Metal Reactor Concepts: Core Design and Structural Materials. Working Material

    International Nuclear Information System (INIS)

    2013-01-01

    The objective of the TM on “Liquid metal reactor concept: core design and structural materials” was to present and discuss innovative liquid metal fast reactor (LMFR) core designs with special focus on the choice, development, testing and qualification of advanced reactor core structural materials. Main results arising from national and international R&D programmes and projects in the field were reviewed, and new activities to be carried out under the IAEA aegis were identified on the basis of the analysis of current research and technology gaps

  10. Coercivity enhancement in Ce-Fe-B based magnets by core-shell grain structuring

    Directory of Open Access Journals (Sweden)

    M. Ito

    2016-05-01

    Full Text Available Ce-based R2Fe14B (R= rare-earth nano-structured permanent magnets consisting of (Ce,Nd2Fe14B core-shell grains separated by a non-magnetic grain boundary phase, in which the relative amount of Nd to Ce is higher in the shell of the magnetic grain than in its core, were fabricated by Nd-Cu infiltration into (Ce,Nd2Fe14B hot-deformed magnets. The coercivity values of infiltrated core-shell structured magnets are superior to those of as-hot-deformed magnets with the same overall Nd content. This is attributed to the higher value of magnetocrystalline anisotropy of the shell phase in the core-shell structured infiltrated magnets compared to the homogeneous R2Fe14B grains of the as-hot-deformed magnets, and to magnetic isolation of R2Fe14B grains by the infiltrated grain boundary phase. First order reversal curve (FORC diagrams suggest that the higher anisotropy shell suppresses initial magnetization reversal at the edges and corners of the R2Fe14B grains.

  11. Anisotropic structure of the Inner Core and its uncertainty from transdimensional body-wave tomography

    Science.gov (United States)

    Burdick, S.; Waszek, L.; Lekic, V.

    2017-12-01

    Studies of body waves and normal modes have revealed strong quasi-hemispheric variations in seismic velocity, anisotropy and attenuation in the inner core. A rigorous mapping of the hemispheric boundaries and smaller scale heterogeneity within the hemispheres is crucial for distinguishing between hypotheses about inner core formation and evolution. However, the relatively sparse and heterogeneous distribution of paths piercing the inner core creates difficulties in constraining the boundaries and sub-hemispheric variations with body wave tomography. Damped tomographic inversions tend to smooth out strong structural gradients and risk carrying the imprint of sparse path coverage, while under-parametrized models can miss pertinent small-scale variations. For these reasons, we apply a probabilistic and transdimensional (THB) tomography method on core-sensitive differential P-wave traveltimes. The THB approach is well-suited to the problem of inner core tomography since 1) it remains parsimonious by allowing the parametrization to be determined the requirements of the data and 2) it preserves sharp boundaries in seismic properties, allowing it to capture both short-wavelength structure and the strong hemispheric dichotomy. Furthermore, the approach yields estimates of uncertainty in isotropic and anisotropic velocity, hemispheric boundary geometry, anisotropy axis and the tradeoffs between these properties. We quantify the effects of mantle heterogeneity with inner core structure and place constraints on inner core dynamics and minerology.

  12. Redefining the modular organization of the core Mediator complex.

    Science.gov (United States)

    Wang, Xuejuan; Sun, Qianqian; Ding, Zhenrui; Ji, Jinhua; Wang, Jianye; Kong, Xiao; Yang, Jianghong; Cai, Gang

    2014-07-01

    The Mediator complex plays an essential role in the regulation of eukaryotic transcription. The Saccharomyces cerevisiae core Mediator comprises 21 subunits, which are organized into Head, Middle and Tail modules. Previously, the Head module was assigned to a distinct dense domain at the base, and the Middle and Tail modules were identified to form a tight structure above the Head module, which apparently contradicted findings from many biochemical and functional studies. Here, we compared the structures of the core Mediator and its subcomplexes, especially the first 3D structure of the Head + Middle modules, which permitted an unambiguous assignment of the three modules. Furthermore, nanogold labeling pinpointing four Mediator subunits from different modules conclusively validated the modular assignment, in which the Head and Middle modules fold back on one another and form the upper portion of the core Mediator, while the Tail module forms a distinct dense domain at the base. The new modular model of the core Mediator has reconciled the previous inconsistencies between the structurally and functionally defined Mediator modules. Collectively, these analyses completely redefine the modular organization of the core Mediator, which allow us to integrate the structural and functional information into a coherent mechanism for the Mediator's modularity and regulation in transcription initiation.

  13. Supermodes in Coupled Multi-Core Waveguide Structures

    Science.gov (United States)

    2016-04-01

    this section, we begin the study of higher-order supermodes from the simplest two-core structure by demon - strating how angle-dependent coupling...Communication Conf., Los Angeles , CA, USA, 2011, Paper PDPB10. 4401212 IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 22, NO. 2, MARCH/APRIL...microstructured fiber,” presented at the IEEE Optical Fiber Com- munication Conf., Los Angeles , CA, USA, 2012, Paper PDP5C.2. [12] S. G. Leon-Saval, A

  14. Core design optimization by integration of a fast 3-D nodal code in a heuristic search procedure

    Energy Technology Data Exchange (ETDEWEB)

    Geemert, R. van; Leege, P.F.A. de; Hoogenboom, J.E.; Quist, A.J. [Delft University of Technology, NL-2629 JB Delft (Netherlands)

    1998-07-01

    An automated design tool is being developed for the Hoger Onderwijs Reactor (HOR) in Delft, the Netherlands, which is a 2 MWth swimming-pool type research reactor. As a black box evaluator, the 3-D nodal code SILWER, which up to now has been used only for evaluation of predetermined core designs, is integrated in the core optimization procedure. SILWER is a part of PSl's ELCOS package and features optional additional thermal-hydraulic, control rods and xenon poisoning calculations. This allows for fast and accurate evaluation of different core designs during the optimization search. Special attention is paid to handling the in- and output files for SILWER such that no adjustment of the code itself is required for its integration in the optimization programme. The optimization objective, the safety and operation constraints, as well as the optimization procedure, are discussed. (author)

  15. Core design optimization by integration of a fast 3-D nodal code in a heuristic search procedure

    International Nuclear Information System (INIS)

    Geemert, R. van; Leege, P.F.A. de; Hoogenboom, J.E.; Quist, A.J.

    1998-01-01

    An automated design tool is being developed for the Hoger Onderwijs Reactor (HOR) in Delft, the Netherlands, which is a 2 MWth swimming-pool type research reactor. As a black box evaluator, the 3-D nodal code SILWER, which up to now has been used only for evaluation of predetermined core designs, is integrated in the core optimization procedure. SILWER is a part of PSl's ELCOS package and features optional additional thermal-hydraulic, control rods and xenon poisoning calculations. This allows for fast and accurate evaluation of different core designs during the optimization search. Special attention is paid to handling the in- and output files for SILWER such that no adjustment of the code itself is required for its integration in the optimization programme. The optimization objective, the safety and operation constraints, as well as the optimization procedure, are discussed. (author)

  16. Reverse Flow Engine Core Having a Ducted Fan with Integrated Secondary Flow Blades

    Science.gov (United States)

    Kisska, Michael K. (Inventor); Princen, Norman H. (Inventor); Kuehn, Mark S. (Inventor); Cosentino, Gary B. (Inventor)

    2014-01-01

    Secondary air flow is provided for a ducted fan having a reverse flow turbine engine core driving a fan blisk. The fan blisk incorporates a set of thrust fan blades extending from an outer hub and a set of integral secondary flow blades extending intermediate an inner hub and the outer hub. A nacelle provides an outer flow duct for the thrust fan blades and a secondary flow duct carries flow from the integral secondary flow blades as cooling air for components of the reverse flow turbine engine.

  17. The formation of a core-periphery structure in heterogeneous financial networks

    NARCIS (Netherlands)

    van der Leij, M.; in 't Veld, D.; Hommes, C.

    2016-01-01

    Recent empirical evidence suggests that financial networks exhibit a core-periphery network structure. This paper aims at giving an explanation for the emergence of such a structure using network formation theory. We propose a simple model of the overnight interbank lending market, in which banks

  18. Fabrication of sub-micrometric metallic hollow-core structures by laser interference lithography

    International Nuclear Information System (INIS)

    Pérez, Noemí; Tavera, Txaber; Rodríguez, Ainara; Ellman, Miguel; Ayerdi, Isabel; Olaizola, Santiago M.

    2012-01-01

    Highlights: ► Arrays of hollow-core sub-micrometric structures are fabricated. ► Laser interference lithography is used for the pattering of the resist sacrificial layer. ► The removal of the sacrificial layer gives rise to metallic channels with a maximum crosssectional area of 0.1 μm 2 . ► These structures can be used in nanofluidics. - Abstract: This work presents the fabrication of hollow-core metallic structures with a complete laser interference lithography (LIL) process. A negative photoresist is used as sacrificial layer. It is exposed to the pattern resulting from the interference of two laser beams, which produces a structure of photoresist lines with a period of 600 nm. After development of the resist, platinum is deposited on the samples by DC sputtering and the resist is removed with acetone. The resulting metallic structures consist in a continuous platinum film that replicates the photoresist relief with a hollow core. The cross section of the channels is up to 0.1 μm 2 . The fabricated samples are characterized by FESEM and FIB. This last tool helps to provide a clear picture of the shape and size of the channels. Conveniently dimensioned, this array of metallic submicrometric channels can be used in microfluidic or IC cooling applications.

  19. Space Launch System, Core Stage, Structural Test Design and Implementation

    Science.gov (United States)

    Shaughnessy, Ray

    2017-01-01

    As part of the National Aeronautics and Space Administration's (NASA) Space Launch System (SLS) Program, engineers at NASA's Marshall Space Flight Center (MSFC) in Huntsville, Alabama are working to design, develop and implement the SLS Core Stage structural testing. The SLS will have the capability to return humans to the Moon and beyond and its first launch is scheduled for December of 2017. The SLS Core Stage consist of five major elements; Forward Skirt, Liquid Oxygen (LOX) tank, Intertank (IT), Liquid Hydrogen (LH2) tank and the Engine Section (ES). Structural Test Articles (STA) for each of these elements are being designed and produced by Boeing at Michoud Assembly Facility located in New Orleans, La. The structural test for the Core Stage STAs (LH2, LOX, IT and ES) are to be conducted by the MSFC Test Laboratory. Additionally, the MSFC Test Laboratory manages the Structural Test Equipment (STE) design and development to support the STAs. It was decided early (April 2012) in the project life that the LH2 and LOX tank STAs would require new test stands and the Engine Section and Intertank would be tested in existing facilities. This decision impacted schedules immediately because the new facilities would require Construction of Facilities (C of F) funds that require congressional approval and long lead times. The Engine Section and Intertank structural test are to be conducted in existing facilities which will limit lead times required to support the first launch of SLS. With a SLS launch date of December, 2017 Boeing had a need date for testing to be complete by September of 2017 to support flight certification requirements. The test facilities were required to be ready by October of 2016 to support test article delivery. The race was on to get the stands ready before Test Article delivery and meet the test complete date of September 2017. This paper documents the past and current design and development phases and the supporting processes, tools, and

  20. Performance Characterization of Multi-threaded Graph Processing Applications on Intel Many-Integrated-Core Architecture

    OpenAIRE

    Liu, Xu; Chen, Langshi; Firoz, Jesun S.; Qiu, Judy; Jiang, Lei

    2017-01-01

    Intel Xeon Phi many-integrated-core (MIC) architectures usher in a new era of terascale integration. Among emerging killer applications, parallel graph processing has been a critical technique to analyze connected data. In this paper, we empirically evaluate various computing platforms including an Intel Xeon E5 CPU, a Nvidia Geforce GTX1070 GPU and an Xeon Phi 7210 processor codenamed Knights Landing (KNL) in the domain of parallel graph processing. We show that the KNL gains encouraging per...

  1. Structural Characterization of Core Region in Erwinia amylovora Lipopolysaccharide

    Directory of Open Access Journals (Sweden)

    Angela Casillo

    2017-03-01

    Full Text Available Erwinia amylovora (E. amylovora is the first bacterial plant pathogen described and demonstrated to cause fire blight, a devastating plant disease affecting a wide range of species including a wide variety of Rosaceae. In this study, we reported the lipopolysaccharide (LPS core structure from E. amylovora strain CFBP1430, the first one for an E. amylovora highly pathogenic strain. The chemical characterization was performed on the mutants waaL (lacking only the O-antigen LPS with a complete LPS-core, wabH and wabG (outer-LPS core mutants. The LPSs were isolated from dry cells and analyzed by means of chemical and spectroscopic methods. In particular, they were subjected to a mild acid hydrolysis and/or a hydrazinolysis and investigated in detail by one and two dimensional Nuclear Magnetic Resonance (NMR spectroscopy and ElectroSpray Ionization Fourier Transform-Ion Cyclotron Resonance (ESI FT-ICR mass spectrometry.

  2. A novel durable double-conductive core-shell structure applying to the synthesis of silicon anode for lithium ion batteries

    Science.gov (United States)

    Xing, Yan; Shen, Tong; Guo, Ting; Wang, Xiuli; Xia, Xinhui; Gu, Changdong; Tu, Jiangping

    2018-04-01

    Si/C composites are currently the most commercially viable next-generation lithium-ion battery anode materials due to their high specific capacity. However, there are still many obstacles need to be overcome such as short cycle life and poor conductivity. In this work, we design and successfully synthesis an excellent durable double-conductive core-shell structure p-Si-Ag/C composites. Interestingly, this well-designed structure offers remarkable conductivity (both internal and external) due to the introduction of silver particles and carbon layer. The carbon layer acts as a protective layer to maintain the integrity of the structure as well as avoids the direct contact of silicon with electrolyte. As a result, the durable double-conductive core-shell structure p-Si-Ag/C composites exhibit outstanding cycling stability of roughly 1000 mAh g-1 after 200 cycles at a current density of 0.2 A g-1 and retain 765 mAh g-1 even at a high current density of 2 A g-1, indicating a great improvement in electrochemical performance compared with traditional silicon electrode. Our research results provide a novel pathway for production of high-performance Si-based anodes to extending the cycle life and specific capacity of commercial lithium ion batteries.

  3. Separated core turbofan engine; Core bunrigata turbofan engine

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Y; Endo, M; Matsuda, Y; Sugiyama, N; Sugahara, N; Yamamoto, K [National Aerospace Laboratory, Tokyo (Japan)

    1996-04-01

    This report outlines the separated core turbofan engine. This engine is featured by parallel separated arrangement of a fan and core engine which are integrated into one unit in the conventional turbofan engine. In general, cruising efficiency improvement and noise reduction are achieved by low fan pressure ratio and low exhaust speed due to high bypass ratio, however, it causes various problems such as large fan and nacelle weight due to large air flow rate of a fan, and shift of an operating point affected by flight speed. The parallel separated arrangement is thus adopted. The stable operation of a fan and core engine is easily retained by independently operating air inlet unaffected by fan. The large degree of freedom of combustion control is also obtained by independent combustor. Fast response, simple structure and optimum aerodynamic design are easily achieved. This arrangement is also featured by flexibility of development and easy maintenance, and by various merits superior to conventional turbofan engines. It has no technological problems difficult to be overcome, and is also suitable for high-speed VTOL transport aircraft. 4 refs., 5 figs.

  4. Supplemental materials for the ICDP-USGS Eyreville A, B, and C core holes, Chesapeake Bay impact structure: Core-box photographs, coring-run tables, and depth-conversion files

    Science.gov (United States)

    Durand, C.T.; Edwards, L.E.; Malinconico, M.L.; Powars, D.S.

    2009-01-01

    During 2005-2006, the International Continental Scientific Drilling Program and the U.S. Geological Survey drilled three continuous core holes into the Chesapeake Bay impact structure to a total depth of 1766.3 m. A collection of supplemental materials that presents a record of the core recovery and measurement data for the Eyreville cores is available on CD-ROM at the end of this volume and in the GSA Data Repository. The supplemental materials on the CD-ROM include digital photographs of each core box from the three core holes, tables of the three coring-run logs, as recorded on site, and a set of depth-conversion programs. In this chapter, the contents, purposes, and basic applications of the supplemental materials are briefly described. With this information, users can quickly decide if the materials will apply to their specific research needs. ?? 2009 The Geological Society of America.

  5. Direct Observation of Dislocation Core Structures in CdTe/GaAs(001).

    Science.gov (United States)

    McGibbon, A J; Pennycook, S J; Angelo, J E

    1995-07-28

    A strategy is presented for determining sublattice polarity at defects in compound semiconductors. Core structures of 60-degree and Lomer dislocations in the CdTe/GaAs(001) system have been obtained by the application of maximum-entropy analysis to Z-contrast images (Z is atomic number) obtained in a 300-kilovolt scanning transmission electron microscope. Sixty-degree dislocations were observed to be of the glide type, whereas in the case of Lomer dislocations, both a symmetric (Hornstra-like) core and an unexpected asymmetric structure made up of a fourfold ring were seen.

  6. Molecular dynamics study of dislocation cores in copper: structure and diffusion at high temperatures

    International Nuclear Information System (INIS)

    Huang, Jin

    1989-01-01

    The variation of the core structure of an easy glide dislocation with temperature and its influence on the stacking fault energy (γ) have been investigated for the first time by molecular-dynamics simulation in copper. The calculations have been performed at various temperatures, using an ab-initio pseudo-potential. Our results show that the core of the Shockley partials, into which the perfect edge dislocation dissociates, becomes increasingly extended as temperature increases. However their separation remains constant. The calculated energy values of the infinite extension stacking fault and the ribbon fault between the partials are quite different, but the evolution of the core structure does not affect the temperature dependence of the latter. We have found that a high disorder appears in the core region when temperature increases due to important anharmonicity effects of the atomic vibrations. The core structure remains solid-like for T m (T m : melting point of bulk) in spite of the high disorder. Above T m , the liquid nucleus germinates in the core region, and then propagates into the bulk. In addition we studied the mobility of vacancies and interstitials trapped on the partials. Although fast diffusion is thought to occur exclusively in a pipe surrounding the dislocation core, in the present study a quasi two-dimensional diffusion is observed for both defects not only in the cores but also in the stacking fault ribbon. On the opposite of current assumptions, the activation energy for diffusion is found to be identical for both defects, which may therefore comparably contribute to mass transport along the dislocations. (author) [fr

  7. Effect of Fuel Structure Materials on Radiation Source Term in Reactor Core Meltdown

    International Nuclear Information System (INIS)

    Jeong, Hae Sun; Ha, Kwang Soon

    2014-01-01

    The fission product (Radiation Source) releases from the reactor core into the containment is obligatorily evaluated to guarantee the safety of Nuclear Power Plant (NPP) under the hypothetical accident involving a core meltdown. The initial core inventory is used as a starting point of all radiological consequences and effects on the subsequent results of accident assessment. Hence, a proper evaluation for the inventory can be regarded as one of the most important part over the entire procedure of accident analysis. The inventory of fission products is typically evaluated on the basis of the uranium material (e.g., UO2 and USi2) loaded in nuclear fuel assembly, except for the structure materials such as the end fittings, grids, and some kinds of springs. However, the structure materials are continually activated by the neutrons generated from the nuclear fission, and some nuclides of them (e.g., 14 C and 60 Co) can significantly influence on accident assessment. During the severe core accident, the structure components can be also melted with the melting points of temperature relatively lower than uranium material. A series of the calculation were performed by using ORIGEN-S module in SCALE 6.1 package code system. The total activity in each part of structure materials was specifically analyzed from these calculations. The fission product inventory is generally evaluated based on the uranium materials of fuel only, even though the structure components of the assembly are continually activated by the neutrons generated from the nuclear fission. In this study, the activation calculation of the fuel structure materials was performed for the initial source term assessment in the accident of reactor core meltdown. As a result, the lower end fitting and the upper plenum greatly contribute to the total activity except for the cladding material. The nuclides of 56 Mn, '5 1 Cr, 55 Fe, 58 Co, 54 Mn, and 60 Co are analyzed to mainly effect on the activity. This result

  8. Integrated materials–structural models

    DEFF Research Database (Denmark)

    Stang, Henrik; Geiker, Mette Rica

    2008-01-01

    , repair works and strengthening methods for structures. A very significant part of the infrastructure consists of reinforced concrete structures. Even though reinforced concrete structures typically are very competitive, certain concrete structures suffer from various types of degradation. A framework...... should define a framework in which materials research results eventually should fit in and on the other side the materials research should define needs and capabilities in structural modelling. Integrated materials-structural models of a general nature are almost non-existent in the field of cement based...

  9. Core seismic methods verification report

    International Nuclear Information System (INIS)

    Olsen, B.E.; Shatoff, H.D.; Rakowski, J.E.; Rickard, N.D.; Thompson, R.W.; Tow, D.; Lee, T.H.

    1979-12-01

    This report presents the description and validation of the analytical methods for calculation of the seismic loads on an HTGR core and the core support structures. Analytical modeling, integration schemes, parameter assignment, parameter sensitivity, and correlation with test data are key topics which have been covered in detail. Much of the text concerns the description and the results of a series of scale model tests performed to obtain data for code correlation. A discussion of scaling laws, model properties, seismic excitation, instrumentation, and data reduction methods is also presented, including a section on the identification and calculation of statistical errors in the test data

  10. Aboriginal and Torres Strait Islander public health: online and integrated into core Master of Public Health subjects

    Directory of Open Access Journals (Sweden)

    Lynnell Angus

    2016-04-01

    Full Text Available The Master of Public Health (MPH is an internationally recognised post-graduate qualification for building the public health workforce. In Australia, MPH graduate attributes include six Indigenous public health (IPH competencies. The University of Melbourne MPH program includes five core subjects and ten specialisation streams, of which one is Indigenous health. Unless students complete this specialisation or electives in Indigenous health, it is possible for students to graduate without attaining the IPH competencies. To address this issue in a crowded and competitive curriculum an innovative approach to integrating the IPH competencies in core MPH subjects was developed. Five online modules that corresponded with the learning outcomes of the core public health subjects were developed, implemented and evaluated in 2015. This brief report outlines the conceptualisation, development, and description of the curriculum content; it also provides preliminary student evaluation and staff feedback on the integration project.

  11. Integrated core-log interpretation of Wenchuan earthquake Fault Scientific Drilling project borehole 4 (WFSD-4)

    Science.gov (United States)

    Konaté, Ahmed Amara; Pan, Heping; Ma, Huolin; Qin, Zhen; Traoré, Alhouseiny

    2017-08-01

    Understanding slip behavior of active fault is a fundamental problem in earthquake investigations. Well logs and cores data provide direct information of physical properties of the fault zones at depth. The geological exploration of the Wenchuan earthquake Scientific Fault drilling project (WFSD) targeted the Yingxiu-Beichuan fault and the Guanxian Anxian fault, respectively. Five boreholes (WFSD-1, WFSD-2, WFSD-3P WFSD-3 and WFSD-4) were drilled and logged with geophysical tools developed for the use in petroleum industry. WFSD-1, WFSD-2 and WFSD-3 in situ logging data have been reported and investigated by geoscientists. Here we present for the first time, the integrated core-log studies in the Northern segment of Yingxiu-Beichuan fault (WFSD-4) thereby characterizing the physical properties of the lithologies(original rocks), fault rocks and the presumed slip zone associated with the Wenchuan earthquake. We also present results from the comparison of WFSD-4 to those obtained from WFSD-1, WFSD-3 and other drilling hole in active faults. This study show that integrated core-log study would help in understanding the slip behavior of active fault.

  12. In Vitro-Assembled Alphavirus Core-Like Particles Maintain a Structure Similar to That of Nucleocapsid Cores in Mature Virus

    OpenAIRE

    Mukhopadhyay, Suchetana; Chipman, Paul R.; Hong, Eunmee M.; Kuhn, Richard J.; Rossmann, Michael G.

    2002-01-01

    In vitro-assembled core-like particles produced from alphavirus capsid protein and nucleic acid were studied by cryoelectron microscopy. These particles were found to have a diameter of 420 Å with 240 copies of the capsid protein arranged in a T=4 icosahedral surface lattice, similar to the nucleocapsid core in mature virions. However, when the particles were subjected to gentle purification procedures, they were damaged, preventing generation of reliable structural information. Similarly, pu...

  13. A lock circuit for a multi-core processor

    DEFF Research Database (Denmark)

    2015-01-01

    An integrated circuit comprising a multiple processor cores and a lock circuit that comprises a queue register with respective bits set or reset via respective, connections dedicated to respective processor cores, whereby the queue register identifies those among the multiple processor cores...... that are enqueued in the queue register. Furthermore, the integrated circuit comprises a current register and a selector circuit configured to select a processor core and identify that processor core by a value in the current register. A selected processor core is a prioritized processor core among the cores...... configured with an integrated circuit; and a silicon die configured with an integrated circuit....

  14. Utilization of local area network technology and decentralized structure for nuclear reactor core temperature monitoring

    International Nuclear Information System (INIS)

    Casella, M.; Peirano, F.

    1986-01-01

    The present system concerns Superphenix type reactors. It is a new version of system for monitoring the reactor core temperatures. It has been designed to minimize the cost and the wiring complexity because of the large number of channels (800). For this, equipments are arranged on the roof slab of the reactor with a single link to the control room; from which the name Integrated Treatment of Core Temperatures: TITC 1500 and the natural choice of a distributed system. This system monitors permanently the thermal state of the core a Superphenix type reactor. This monitoring system aims at detecting anomalies of core temperature rise, releasing automatic shutdown (safety), and providing to the monitoring systems not concerned safety the information concerning the core [fr

  15. Fabrication of sub-micrometric metallic hollow-core structures by laser interference lithography

    Energy Technology Data Exchange (ETDEWEB)

    Perez, Noemi; Tavera, Txaber [CEIT and Tecnun (University of Navarra) Manuel de Lardizabal 15, 20018 San Sebastian (Spain); Rodriguez, Ainara [CIC Microgune, Paseo Mikeletegi 48, 20009 San Sebastian (Spain); Ellman, Miguel; Ayerdi, Isabel; Olaizola, Santiago M. [CEIT and Tecnun (University of Navarra) Manuel de Lardizabal 15, 20018 San Sebastian (Spain)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Arrays of hollow-core sub-micrometric structures are fabricated. Black-Right-Pointing-Pointer Laser interference lithography is used for the pattering of the resist sacrificial layer. Black-Right-Pointing-Pointer The removal of the sacrificial layer gives rise to metallic channels with a maximum crosssectional area of 0.1 {mu}m{sup 2}. Black-Right-Pointing-Pointer These structures can be used in nanofluidics. - Abstract: This work presents the fabrication of hollow-core metallic structures with a complete laser interference lithography (LIL) process. A negative photoresist is used as sacrificial layer. It is exposed to the pattern resulting from the interference of two laser beams, which produces a structure of photoresist lines with a period of 600 nm. After development of the resist, platinum is deposited on the samples by DC sputtering and the resist is removed with acetone. The resulting metallic structures consist in a continuous platinum film that replicates the photoresist relief with a hollow core. The cross section of the channels is up to 0.1 {mu}m{sup 2}. The fabricated samples are characterized by FESEM and FIB. This last tool helps to provide a clear picture of the shape and size of the channels. Conveniently dimensioned, this array of metallic submicrometric channels can be used in microfluidic or IC cooling applications.

  16. Development of an RF accelerating structure loaded with multi-ring magnetic cores

    International Nuclear Information System (INIS)

    Morita, Yuichi; Kageyama, Tatsuya; Kato, Ichiro; Yamashita, Satoru

    2012-01-01

    In order to upgrade the J-PARC rings (RCS and MR) for more beam powers, the existing accelerating structures for both rings need to be improved for better performance especially in the long-term reliability. As a solution for this purpose, we have proposed a new accelerating structure loaded with multi-ring core modules. Each core module consists of three ring FINEMET cores with different radial sizes concentrically arranged and sandwiched between two glass epoxy plates with flow channels grooved on the surfaces. The Fe-based FINEMET cores are to be cooled with the turbulent flow of Fluorinert (chemically inert perfluorinated liquid). Therefore, the cores need neither impregnation nor coating with epoxy resin for anti corrosion. A half-gap cavity loaded with three core modules, which is a minimum configuration for the performance test, is under fabrication. Additionally, a high efficient solid state RF amplifier is under development. Thirty two amplifier modules, each of which is a push-pull class-D amplifier driven by power MOSFET hybrids, are combined to deliver RF power up to 60 kW (peak power with a duty factor of 50%) at frequencies 1.7 ± 0.2MHz. The amplitude of the RF output can be modulated by changing the voltage across the drain and source of the power MOSFET in proportion to the wave envelope. This paper reports the recent status of our R and D activities. (author)

  17. The European structural integrity research programme

    International Nuclear Information System (INIS)

    Townley, C.H.A.; Acker, D.; Laue, H.

    1990-01-01

    A thermal hydraulics evaluation of the European Fast Reactor (EFR) design followed by structural analysis is presented in this article to assess the structural integrity research programme to date. Improved design methods are being achieved as a result of the structural integrity programme for the EFR. Excellent collaboration between the nationally based research organizations and the design and construction companies has been important in achieving these improvements. (UK)

  18. Role of wall-attached structures in the interface of the quiescent core region in turbulent pipe flow

    Science.gov (United States)

    Yang, Jongmin; Hwang, Jinyul; Sung, Hyung Jin

    2017-11-01

    The effects of low- and high-speed structures on the interface of the quiescent core region are explored using direct numerical simulation data of turbulent pipe flow. The quiescent core region is a uniform momentum zone located at the center of the pipe flow, which contains the highest streamwise momentum with a low level of turbulence. The interface of the quiescent core region can be identified from the probability density function of the streamwise modal velocity. In the vicinity of the interface of the quiescent core region, the streamwise velocity changes abruptly. The abrupt jump in velocity causes an increase of the velocity gradient. The interface of the quiescent core region is similar to the laminar superlayer in turbulent/non-turbulent interface. The interface of the quiescent core region contains the low- and high-speed structures. They can be classified into wall-attached and detached structures depending on the distance between the structures and the wall. The influence of the detached structures accounted for most of the number of detected structures is negligible due to its small volume. Conversely, the wall-attached structures adjacent to the interface have a huge influence on the statistical amount of the interface, such as entrainment characteristics. This work was supported by the Creative Research Initiatives (No. 2017-013369) program of the National Research Foundation of Korea (MSIP).

  19. Structural integrity and management of aging in internal components of BWR reactors; Integridad estructural y manejo del envejecimiento en componentes internos de reactores BWR

    Energy Technology Data Exchange (ETDEWEB)

    Arganis J, C.R. [Instituto Nacional de Investigaciones Nucleares, Km 36.5 Carretera Mexico, Toluca Salazar Edo. de Mexico (Mexico)]. E-mail: craj@nuclear.inin.mx

    2004-07-01

    Presently work the bases to apply structural integrity and the handling of the aging of internal components of the pressure vessel of boiling water reactors of water are revised and is carried out an example of structural integrity in the horizontal welding H4 of the encircling one of the core of a reactor, taking data reported in the literature. It is also revised what is required to carry out the handling program or conduct of the aging (AMP). (Author)

  20. Understanding susceptibility of in-core components to irradiation-assisted stress corrosion cracking

    International Nuclear Information System (INIS)

    Chung, H.M.; Ruther, W.E.; Sanecki, J.E.; Kassner, T.F.

    1991-03-01

    As nuclear plants age and accumulated fluences of core structural components increase, susceptibility of the components to irradiation-assisted stress corrosion cracking (IASCC) is also expected to increase. Irradiation-induced sensitization, commonly associated with an IASCC failure, was investigated in this study to provide a better understanding of long-term structural integrity of safety-significant in-core components. Irradiation-induced sensitization of high- and commercial-purity Type 304 stainless steels irradiated in BWRs was analyzed. 7 refs., 8 figs

  1. European networks in structural integrity

    International Nuclear Information System (INIS)

    Crutzen, S.; Davies, M.; Hemsworth, B.; Hurst, R.; Kussmaul, K.

    1994-01-01

    Several institutions and electrical utilities in Europe, including the Joint Research Centre (JRC) have the capability to deal problems posed by the operation and ageing of structural components and with their structural integrity assessment. These institutions and the JRC have developed cooperative programmes now organised in networks. They include utilities, engineering companies, R and D laboratories and Regulatory Bodies. Networks are organised and managed like the successful PISC programme: The Institute for Advanced Materials of JRC plays the role of Operating Agent and Manager of these networks: ENIQ, AMES, NESC, each of them dealing with a specific aspect of fitness for purpose of materials in structural components. There exist strong links between the networks and EC Working Groups on Structural Integrity Codes and Standards. (orig.)

  2. ROLE OF NEUTRALS IN CORE FUELING AND PEDESTAL STRUCTURE IN H-MODE DIII-D DISCHARGES

    International Nuclear Information System (INIS)

    WOLF, NS; PETRIE, TW; PORTER, GD; ROGNLIEN, TD; GROEBNER, RJ; MAKOWSKI, MA

    2002-01-01

    OAK A271 ROLE OF NEUTRALS IN CORE FUELING AND PEDESTAL STRUCTURE IN H-MODE DIII-D DISCHARGES. The 2-D fluid code UEDGE was used to analyze DIII-D experiments to determine the role of neutrals in core fueling, core impurities, and also the H-mode pedestal structure. The authors compared the effects of divertor closure on the fueling rate and impurity density of high-triangularity, H-mode plasmas. UEDGE simulations indicate that the decrease in both deuterium core fueling (∼ 15%-20%) and core carbon density (∼ 15%-30%) with the closed divertor compared to the open divertor configuration is due to greater divertor screening of neutrals. They also compared UEDGE results with a simple analytic model of the H-mode pedestal structure. The model predicts both the width and gradient of the transport barrier in n e as a function of the pedestal density. The more sophisticated UEDGE simulations of H-mode discharges corroborate the simple analytic model, which is consistent with the hypothesis that fueling processes play a role in H-mode transport barrier formation

  3. Structure and genome organization of AFV2, a novel archaeal lipothrixvirus with unusual terminal and core structures

    DEFF Research Database (Denmark)

    Häring, Monika; Vestergaard, Gisle Alberg; Brügger, Kim

    2005-01-01

    A novel filamentous virus, AFV2, from the hyperthermophilic archaeal genus Acidianus shows structural similarity to lipothrixviruses but differs from them in its unusual terminal and core structures. The double-stranded DNA genome contains 31,787 bp and carries eight open reading frames homologous...

  4. CoreFlow: A computational platform for integration, analysis and modeling of complex biological data

    DEFF Research Database (Denmark)

    Pasculescu, Adrian; Schoof, Erwin; Creixell, Pau

    2014-01-01

    between data generation, analysis and manuscript writing. CoreFlow is being released to the scientific community as an open-sourced software package complete with proteomics-specific examples, which include corrections for incomplete isotopic labeling of peptides (SILAC) or arginine-to-proline conversion......A major challenge in mass spectrometry and other large-scale applications is how to handle, integrate, and model the data that is produced. Given the speed at which technology advances and the need to keep pace with biological experiments, we designed a computational platform, CoreFlow, which...... provides programmers with a framework to manage data in real-time. It allows users to upload data into a relational database (MySQL), and to create custom scripts in high-level languages such as R, Python, or Perl for processing, correcting and modeling this data. CoreFlow organizes these scripts...

  5. Processes of Integration and Fragmentation of Economic Space: The Structure of Settlement Systems

    Directory of Open Access Journals (Sweden)

    Alexander Pavlovich Goryunov

    2017-12-01

    Full Text Available This work presents a study of processes of integration and fragmentation caused by the polarization of economic space. Under integration in economic space the authors understand the formation of new and transformation of existing settlement systems, while fragmentation is the dissolution of settlement systems and their transformation into loosely connected settlement networks. The study focuses on the structure of settlement systems. Authors propose a new method for studying the structure of settlement systems, which combines the use of factor analysis, multidimensional scaling, and cluster analysis. The proposed method utilizes the maximum of available information about the social-economic status of settlements to reveal regularities in their spatial organization. The authors test the proposed method on 35 large cities of the Central and Volga federal districts of Russia, which comprise the spatial surroundings of Moscow. The authors find four groups of cities forming the core of the settlement system centered around Moscow, a group of four cities forming a buffer zone around that system, as well as four cities in the studied sample which do not participate in the settlement system

  6. Nonlinear seismic analysis of a graphite reactor core

    International Nuclear Information System (INIS)

    Laframboise, W.L.; Desmond, T.P.

    1988-01-01

    Design and construction of the Department of Energy's N-Reactor located in Richland, Washington was begun in the late 1950s and completed in the early 1960s. Since then, the reactor core's structural integrity has been under review and is considered by some to be a possible safety concern. The reactor core is moderated by graphite. The safety concern stems from the degradation of the graphite due to the effects of long-term irradiation. To assess the safety of the reactor core when subjected to seismic loads, a dynamic time-history structural analysis was performed. The graphite core consists of 89 layers of numerous graphite blocks which are assembled in a 'lincoln-log' lattice. This assembly permits venting of steam in the event of a pressure tube rupture. However, such a design gives rise to a highly nonlinear structure when subjected to earthquake loads. The structural model accounted for the nonlinear interlayer sliding and for the closure and opening of gaps between the graphite blocks. The model was subjected to simulated earthquake loading, and the time-varying response of selected elements critical to safety were monitored. The analytically predicted responses (displacements and strains) were compared to allowable responses to assess margins of safety. (orig.)

  7. Structure and electronic properties of mixed (a + c) dislocation cores in GaN

    Energy Technology Data Exchange (ETDEWEB)

    Horton, M. K., E-mail: m.horton11@imperial.ac.uk [Department Materials, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom); Rhode, S. L. [Department Materials Science and Metallurgy, University of Cambridge, Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); Moram, M. A. [Department Materials, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom); Department Materials Science and Metallurgy, University of Cambridge, Charles Babbage Road, Cambridge CB3 0FS (United Kingdom)

    2014-08-14

    Classical atomistic models and atomic-resolution scanning transmission electron microscopy studies of GaN films reveal that mixed (a + c)-type dislocations have multiple different core structures, including a dissociated structure consisting of a planar fault on one of the (12{sup ¯}10) planes terminated by two different partial dislocations. Density functional theory calculations show that all cores introduce localized states into the band gap, which affects device performance.

  8. Structure and electronic properties of mixed (a + c) dislocation cores in GaN

    International Nuclear Information System (INIS)

    Horton, M. K.; Rhode, S. L.; Moram, M. A.

    2014-01-01

    Classical atomistic models and atomic-resolution scanning transmission electron microscopy studies of GaN films reveal that mixed (a + c)-type dislocations have multiple different core structures, including a dissociated structure consisting of a planar fault on one of the (12 ¯ 10) planes terminated by two different partial dislocations. Density functional theory calculations show that all cores introduce localized states into the band gap, which affects device performance

  9. Compact Reversed-Field Pinch Reactors (CRFPR): fusion-power-core integration study

    International Nuclear Information System (INIS)

    Copenhaver, C.; Krakowski, R.A.; Schnurr, N.M.

    1985-08-01

    Using detailed two-dimensional neutronics studies based on the results of a previous framework study (LA-10200-MS), the fusion-power-core (FPC) integration, maintenance, and radio-activity/afterheat control are examined for the Compact Reversed-Field Pinch Reactor (CRFPR). While maintaining as a base case the nominal 20-MW/m 2 neutron first-wall loading design, CRFPR(20), the cost and technology impact of lower-wall-loading designs are also examined. The additional detail developed as part of this follow-on study also allows the cost estimates to be refined. The cost impact of multiplexing lower-wall-loading FPCs into a approx. 1000-MWe(net) plant is also examined. The CRFPR(20) design remains based on a PbLi-cooled FPC with pressurized-water used as a coolant for first-wall, pumped-limiter, and structural-shield systems. Single-piece FPC maintenance of this steady-state power plant is envisaged and evaluated on the basis of a preliminary layout of the reactor building. This follow-on study also develops the groundwork for assessing the feasibility and impact of impurity/ash control by magnetic divertors as an alternative to previously considered pumped-limiter systems. Lastly, directions for future, more-detailed power-plant designs based on the Reversed-Field Pinch are suggested

  10. In-core Instrument Subcritical Verification (INCISV) - Core Design Verification Method - 358

    International Nuclear Information System (INIS)

    Prible, M.C.; Heibel, M.D.; Conner, S.L.; Sebastiani, P.J.; Kistler, D.P.

    2010-01-01

    According to the standard on reload startup physics testing, ANSI/ANS 19.6.1, a plant must verify that the constructed core behaves sufficiently close to the designed core to confirm that the various safety analyses bound the actual behavior of the plant. A large portion of this verification must occur before the reactor operates at power. The INCISV Core Design Verification Method uses the unique characteristics of a Westinghouse Electric Company fixed in-core self powered detector design to perform core design verification after a core reload before power operation. A Vanadium self powered detector that spans the length of the active fuel region is capable of confirming the required core characteristics prior to power ascension; reactivity balance, shutdown margin, temperature coefficient and power distribution. Using a detector element that spans the length of the active fuel region inside the core provides a signal of total integrated flux. Measuring the integrated flux distributions and changes at various rodded conditions and plant temperatures, and comparing them to predicted flux levels, validates all core necessary core design characteristics. INCISV eliminates the dependence on various corrections and assumptions between the ex-core detectors and the core for traditional physics testing programs. This program also eliminates the need for special rod maneuvers which are infrequently performed by plant operators during typical core design verification testing and allows for safer startup activities. (authors)

  11. Model reduction in integrated controls-structures design

    Science.gov (United States)

    Maghami, Peiman G.

    1993-01-01

    It is the objective of this paper to present a model reduction technique developed for the integrated controls-structures design of flexible structures. Integrated controls-structures design problems are typically posed as nonlinear mathematical programming problems, where the design variables consist of both structural and control parameters. In the solution process, both structural and control design variables are constantly changing; therefore, the dynamic characteristics of the structure are also changing. This presents a problem in obtaining a reduced-order model for active control design and analysis which will be valid for all design points within the design space. In other words, the frequency and number of the significant modes of the structure (modes that should be included) may vary considerably throughout the design process. This is also true as the locations and/or masses of the sensors and actuators change. Moreover, since the number of design evaluations in the integrated design process could easily run into thousands, any feasible order-reduction method should not require model reduction analysis at every design iteration. In this paper a novel and efficient technique for model reduction in the integrated controls-structures design process, which addresses these issues, is presented.

  12. Risk Informed Structural Systems Integrity Management

    DEFF Research Database (Denmark)

    Nielsen, Michael Havbro Faber

    2017-01-01

    The present paper is predominantly a conceptual contribution with an appraisal of major developments in risk informed structural integrity management for offshore installations together with a discussion of their merits and the challenges which still lie ahead. Starting point is taken in a selected...... overview of research and development contributions which have formed the basis for Risk Based Inspection Planning (RBI) as we know it today. Thereafter an outline of the methodical basis for risk informed structural systems integrity management, i.e. the Bayesian decision analysis is provided in summary....... The main focus is here directed on RBI for offshore facilities subject to fatigue damages. New ideas and methodical frameworks in the area of robustness and resilience modeling of structural systems are then introduced, and it is outlined how these may adequately be utilized to enhance Structural Integrity...

  13. Ioniclike energy structure of neutral core-excited states in free Kr clusters

    International Nuclear Information System (INIS)

    Peredkov, S.; Sorensen, S.L.; Kivimaeki, A.; Schulz, J.; Maartensson, N.; Oehrwall, G.; Lundwall, M.; Rander, T.; Lindblad, A.; Bergersen, H.; Svensson, S.; Bjoerneholm, O.; Tchaplyguine, M.

    2005-01-01

    The development of electronic states in krypton clusters is investigated by high-resolution core-level electron spectroscopy. The energy ordering of bulk versus surface 3d -1 np(n>5) core-excited states in neutral clusters is demonstrated to be reversed to the 3d -1 5p level situation. The cluster 3d -1 6p,7p states are proven to be at a lower energy than the corresponding atomic levels. These findings reveal the ioniclike energy structure of the neutral cluster core-excited levels. The phenomenon is explained by a spatial spread of the excited orbitals over the cluster lattice

  14. Subdomain Precise Integration Method for Periodic Structures

    Directory of Open Access Journals (Sweden)

    F. Wu

    2014-01-01

    Full Text Available A subdomain precise integration method is developed for the dynamical responses of periodic structures comprising many identical structural cells. The proposed method is based on the precise integration method, the subdomain scheme, and the repeatability of the periodic structures. In the proposed method, each structural cell is seen as a super element that is solved using the precise integration method, considering the repeatability of the structural cells. The computational efforts and the memory size of the proposed method are reduced, while high computational accuracy is achieved. Therefore, the proposed method is particularly suitable to solve the dynamical responses of periodic structures. Two numerical examples are presented to demonstrate the accuracy and efficiency of the proposed method through comparison with the Newmark and Runge-Kutta methods.

  15. Electromagnetic scattering of large structures in layered earths using integral equations

    Science.gov (United States)

    Xiong, Zonghou; Tripp, Alan C.

    1995-07-01

    An electromagnetic scattering algorithm for large conductivity structures in stratified media has been developed and is based on the method of system iteration and spatial symmetry reduction using volume electric integral equations. The method of system iteration divides a structure into many substructures and solves the resulting matrix equation using a block iterative method. The block submatrices usually need to be stored on disk in order to save computer core memory. However, this requires a large disk for large structures. If the body is discretized into equal-size cells it is possible to use the spatial symmetry relations of the Green's functions to regenerate the scattering impedance matrix in each iteration, thus avoiding expensive disk storage. Numerical tests show that the system iteration converges much faster than the conventional point-wise Gauss-Seidel iterative method. The numbers of cells do not significantly affect the rate of convergency. Thus the algorithm effectively reduces the solution of the scattering problem to an order of O(N2), instead of O(N3) as with direct solvers.

  16. Integrable structures in quantum field theory

    International Nuclear Information System (INIS)

    Negro, Stefano

    2016-01-01

    This review was born as notes for a lecture given at the Young Researchers Integrability School (YRIS) school on integrability in Durham, in the summer of 2015. It deals with a beautiful method, developed in the mid-nineties by Bazhanov, Lukyanov and Zamolodchikov and, as such, called BLZ. This method can be interpreted as a field theory version of the quantum inverse scattering, also known as the algebraic Bethe ansatz. Starting with the case of conformal field theories (CFTs) we show how to build the field theory analogues of commuting transfer T matrices and Baxter Q -operators of integrable lattice models. These objects contain the complete information of the integrable structure of the theory, viz. the integrals of motion, and can be used, as we will show, to derive the thermodynamic Bethe ansatz and nonlinear integral equations. This same method can be easily extended to the description of integrable structures of certain particular massive deformations of CFTs; these, in turn, can be described as quantum group reductions of the quantum sine-Gordon model and it is an easy step to include this last theory in the framework of BLZ approach. Finally we show an interesting and surprising connection of the BLZ structures with classical objects emerging from the study of classical integrable models via the inverse scattering transform method. This connection goes under the name of ODE/IM correspondence and we will present it for the specific case of quantum sine-Gordon model only. (topical review)

  17. CoreFlow: a computational platform for integration, analysis and modeling of complex biological data.

    Science.gov (United States)

    Pasculescu, Adrian; Schoof, Erwin M; Creixell, Pau; Zheng, Yong; Olhovsky, Marina; Tian, Ruijun; So, Jonathan; Vanderlaan, Rachel D; Pawson, Tony; Linding, Rune; Colwill, Karen

    2014-04-04

    A major challenge in mass spectrometry and other large-scale applications is how to handle, integrate, and model the data that is produced. Given the speed at which technology advances and the need to keep pace with biological experiments, we designed a computational platform, CoreFlow, which provides programmers with a framework to manage data in real-time. It allows users to upload data into a relational database (MySQL), and to create custom scripts in high-level languages such as R, Python, or Perl for processing, correcting and modeling this data. CoreFlow organizes these scripts into project-specific pipelines, tracks interdependencies between related tasks, and enables the generation of summary reports as well as publication-quality images. As a result, the gap between experimental and computational components of a typical large-scale biology project is reduced, decreasing the time between data generation, analysis and manuscript writing. CoreFlow is being released to the scientific community as an open-sourced software package complete with proteomics-specific examples, which include corrections for incomplete isotopic labeling of peptides (SILAC) or arginine-to-proline conversion, and modeling of multiple/selected reaction monitoring (MRM/SRM) results. CoreFlow was purposely designed as an environment for programmers to rapidly perform data analysis. These analyses are assembled into project-specific workflows that are readily shared with biologists to guide the next stages of experimentation. Its simple yet powerful interface provides a structure where scripts can be written and tested virtually simultaneously to shorten the life cycle of code development for a particular task. The scripts are exposed at every step so that a user can quickly see the relationships between the data, the assumptions that have been made, and the manipulations that have been performed. Since the scripts use commonly available programming languages, they can easily be

  18. Device for protecting deformations of reactor cores

    International Nuclear Information System (INIS)

    Kato, Yasuyoshi; Urushihara, Hiroshi.

    1975-01-01

    Object: To provide a fluid pressure cylinder, which is operated according to change in temperature of coolant for a reactor to restrain or release a core, to simply and effectively protect deformation of the core. Structure: A closed fluid pressure cylinder interiorly filled with suitable fluid is disposed in peripherally equally spaced relation in an annular space between a core barrel of a reactor and a reactor vessel. A piston is mounted in fluid-tight fashion in a plurality of piston openings made in the cylinder, the piston being slidably moved according to expansion and contraction of the fluid filled in the cylinder. The piston has a movable frame mounted at the foremost end thereof, the movable frame being moved integral with the piston, and the surface opposite the mount thereof biasing the outermost peripheral surface of the core. (Kamimura, M.)

  19. Integrally rigidized acoustic interior spacecraft panel

    Science.gov (United States)

    1976-01-01

    A sandwich panel concept is described which utilizes a monolithic I-beam design as the core. The core and skins are integrally bonded with thermosetting resin into a homogeneous structure. In addition to possessing a high strength to weight ratio, the panel resists combustion, delamination, aging due to fatigue, localized stresses, and exhibits good acoustic properties. Since the panel concept has definite potential as a high flame retardant and low smoke emission panel with excellent structural integrity, aerospace materials were used to optimize the construction for highly demanding space shuttle applications. The specific materials of construction were chosen for low flammability and off-gassing properties as well as for strength, light weight, and sound dampening.

  20. Electrical Conductivity of Ni-YSZ Anode for SOFCs According to the Ni Powder Size Variations in Core-shell Structure

    International Nuclear Information System (INIS)

    Kang, Young Jin; Jung, Sung-Hun; An, Yong-Tae; Choi, Byung-Hyun; Ji, Mi-Jung

    2015-01-01

    Ni-YSZ (Y_2O_3-stabilized ZrO_2) core-shell structures were prepared by a high-speed mixing method, starting from Ni particles of three different average sizes of 0.2, 0.4, and 1.8 μm. The Ni-YSZ core-shell structures prepared using Ni particles of size 0.2, 0.4, and 1.8 μm exhibited dense core, porous core, and random-morphology core, respectively. Subsequently, nano structured cermet anodes were fabricated using the prepared Ni-YSZ core-shell powders. During the formation of cermet, the heat treatment of Ni-YSZ core-shell powder results in the eruption of Ni core out of the YSZ shell layers, thereby facilitating the formation of nano structured Ni-YSZ cermet. Systematic studies indicated that the morphology and electrical conductivity of the prepared Ni-YSZ core-shell powders and the cermet anode varied, depending on the initial particle size of the Ni particles. Of the different samples prepared in this study, the Ni-YSZ cermet prepared using Ni particles of size 0.4 μm showed the highest electrical conductivity at 750 ℃.

  1. Electrical Conductivity of Ni-YSZ Anode for SOFCs According to the Ni Powder Size Variations in Core-shell Structure

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Young Jin; Jung, Sung-Hun; An, Yong-Tae; Choi, Byung-Hyun; Ji, Mi-Jung [Korea Institute of Ceramic Engineering and Technology (KICET), Seoul (Korea, Republic of)

    2015-04-15

    Ni-YSZ (Y{sub 2}O{sub 3}-stabilized ZrO{sub 2}) core-shell structures were prepared by a high-speed mixing method, starting from Ni particles of three different average sizes of 0.2, 0.4, and 1.8 μm. The Ni-YSZ core-shell structures prepared using Ni particles of size 0.2, 0.4, and 1.8 μm exhibited dense core, porous core, and random-morphology core, respectively. Subsequently, nano structured cermet anodes were fabricated using the prepared Ni-YSZ core-shell powders. During the formation of cermet, the heat treatment of Ni-YSZ core-shell powder results in the eruption of Ni core out of the YSZ shell layers, thereby facilitating the formation of nano structured Ni-YSZ cermet. Systematic studies indicated that the morphology and electrical conductivity of the prepared Ni-YSZ core-shell powders and the cermet anode varied, depending on the initial particle size of the Ni particles. Of the different samples prepared in this study, the Ni-YSZ cermet prepared using Ni particles of size 0.4 μm showed the highest electrical conductivity at 750 ℃.

  2. Overlap of electron core states for very high compressions

    International Nuclear Information System (INIS)

    Straub, G.

    1985-01-01

    At normal density and for modest compressions, the electronic structure of a metal can be accurately described by treating the conduction electrons and their interactions with the usual methods of band theory. The core electrons remain essentially the same as for an isolated free atom and do not participate in the bonding forces responsible for creating a condensed phase. As the density increases, the core electrons begin to ''see'' one another as the overlap of the tails of wave functions can no longer be neglected. The electronic structure of the core electrons is responsible for an effective repulsive interaction that eventually becomes free-electron-like at very high compressions. The electronic structure of the interacting core electrons may be treated in a simple manner using the Atomic Surface Method (ASM). The ASM is a first-principles treatment of the electronic structure involving a rigorous integration of the Schroedinger equation within the atomic-sphere approximation. Solid phase wave functions are constructed from isolated atom wave functions and the band width W/sub l/ and the center of gravity of the band C/sub l/ are obtained from simple formulas. The ASM can also utilize analytic forms of the atomic wave functions and thus provide direct functional dependence of various aspects of the electronic structure. Of particular use in understanding the behavior of the core electrons, the ASM provides the analytic density dependence of the band widths and positions. 8 refs., 2 figs., 1 tab

  3. Core/shell structured ZnO/SiO2 nanoparticles: Preparation, characterization and photocatalytic property

    International Nuclear Information System (INIS)

    Zhai Jing; Tao Xia; Pu Yuan; Zeng Xiaofei; Chen Jianfeng

    2010-01-01

    ZnO nanoparticles were prepared by a simple chemical synthesis route. Subsequently, SiO 2 layers were successfully coated onto the surface of ZnO nanoparticles to modify the photocatalytic activity in acidic or alkaline solutions. The obtained particles were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive spectrometry (EDS) and zeta potential. It was found that ultrafine core/shell structured ZnO/SiO 2 nanoparticles were successfully obtained. The photocatalytic performance of ZnO/SiO 2 core/shell structured nanoparticles in Rhodamine B aqueous solution at varied pH value were also investigated. Compared with uncoated ZnO nanoparticles, core/shell structured ZnO/SiO 2 nanoparticles with thinner SiO 2 shell possess improved stability and relatively better photocatalytic activity in acidic or alkaline solutions, which would broaden its potential application in pollutant treatment.

  4. Subharmonic excitation in an HTGR core

    International Nuclear Information System (INIS)

    Bezler, P.; Curreri, J.R.

    1977-01-01

    The occurrence of subharmonic resonance in a series of blocks with clearance between blocks and with springs on the outer most ends is the subject of this paper. This represents an HTGR core response to an earthquake input. An analytical model of the cross section of this type of core is a series of blocks arranged horizontally between outer walls. Each block represents many graphite hexagonal core elements acting in unison as a single mass. The blocks are of unequal size to model the true mass distribution through the core. Core element elasticity and damping characteristics are modeled with linear spring and viscous damping units affixed to each block. The walls and base represent the core barell or core element containment structure. For forced response calculations, these boundaries are given prescribed motions. The clearance between each block could be the same or different with the total clearance duplicating that of the entire core. Spring packs installed between the first and last block and the boundaries model the boundary elasticity. The system non-linearity is due to the severe discontinuity in the interblock elastic forces when adjacent blocks collide. A computer program using a numerical integration scheme was developed to solve for the response of the system to arbitrary inputs

  5. Structural strength of core graphite bars

    International Nuclear Information System (INIS)

    Kikuchi, K.; Futakawa, M.

    1987-01-01

    A HTR core consists of fuel, hot plenum, reflector and thermal barrier blocks. Each graphite block is supported by three thin cylindrical graphite bars called support post. Static and dynamic core loads are transmitted by the support posts to the thermal barrier blocks and a support plate. These posts are in contact with the blocks through hemispherical post seats to absorb the relative displacement caused by seismic force and the difference of thermal expansion of materials at the time of the start-up and shutdown of a reactor. The mixed fracture criterion of principal stress and modified Mohr-Coulomb's theory as well as the fracture criterion of principal stress based on elastic stress analysis was discussed in connection with the application to HTR graphite components. The buckling fracture of a support post was taken in consideration as one of the fracture modes. The effect that the length/diameter ratio of a post, small rotation and the curvature of post ends and seats exerted on the fracture strength was studied by using IG-110 graphite. Contacting stress analysis was carried out by using the structural analysis code 'COSMOS-7'. The experimental method, the analysis of buckling strength and the results are reported. The fracture of a support post is caused by the mixed mode of bending deformation, split fracture and shearing fracture. (Kako, I.)

  6. A commitment to values. A system integrates core values with leadership development.

    Science.gov (United States)

    Maxfield, M M

    1991-01-01

    The Values in Leadership program, a new leadership development program created by the Sisters of Charity Health Care Systems (SCHCS), is designed to empower effective leaders to live out personal values compatible with those of the organization. The program, designed for middle and senior managers, comprises seven educational modules- Living Our Values; Valuing Individual Differences; Leader as Servant; Leader as Visionary; Leader as Catalyst; Leader as Mentor; Formative Leadership; and Leader as Mentor; Motivational Coaching. Throughout the sessions, participants discuss the four roles of an effective leader-servant, visionary, catalyst, and mentor-which are grounded in SCHCS core values. Participants are also challenged to identify specific actions that can be integrated into their leadership styles. These actions, drawn from SCHCS leadership practices and core values, are reinforced when participants return to their jobs and write plans to incorporate these practices into their daily work.

  7. Mutational analyses of the core domain of Avian Leukemia and Sarcoma Viruses integrase: critical residues for concerted integration and multimerization

    International Nuclear Information System (INIS)

    Moreau, Karen; Faure, Claudine; Violot, Sebastien; Gouet, Patrice; Verdier, Gerard; Ronfort, Corinne

    2004-01-01

    During replicative cycle of retroviruses, the reverse-transcribed viral DNA is integrated into the cell DNA by the viral integrase (IN) enzyme. The central core domain of IN contains the catalytic site of the enzyme and is involved in binding viral ends and cell DNA as well as dimerization. We previously performed single amino acid substitutions in the core domain of an Avian Leukemia and Sarcoma Virus (ALSV) IN [Arch. Virol. 147 (2002) 1761]. Here, we modeled the resulting IN mutants and analyzed the ability of these mutants to mediate concerted DNA integration in an in vitro assay, and to form dimers by protein-protein cross-linking and size exclusion chromatography. The N197C mutation resulted in the inability of the mutant to perform concerted integration that was concomitant with a loss of IN dimerization. Surprisingly, mutations Q102G and A106V at the dimer interface resulted in mutants with higher efficiencies than the wild-type IN in performing two-ended concerted integration of viral DNA ends. The G139D and A195V mutants had a trend to perform one-ended DNA integration of viral ends instead of two-ended integration. More drastically, the I88L and L135G mutants preferentially mediated nonconcerted DNA integration although the proteins form dimers. Therefore, these mutations may alter the formation of IN complexes of higher molecular size than a dimer that would be required for concerted integration. This study points to the important role of core domain residues in the concerted integration of viral DNA ends as well as in the oligomerization of the enzyme

  8. A novel approach to preparing magnetic protein microspheres with core-shell structure

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Wei, E-mail: climentjw@126.co [National Special Superfine Powder Engineering Research Center, Nanjing University of Science and Technology, Nanjing 210094 (China); Sun Zhendong; Li Fengsheng [National Special Superfine Powder Engineering Research Center, Nanjing University of Science and Technology, Nanjing 210094 (China); Chen Kai; Liu Tianyu; Liu Jialing [Department of Physics, Nanjing University of Science and Technology, Nanjing 210094 (China); Zhou Tianle [Department of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Guo Rui [Department of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China)

    2011-03-15

    Magnetic protein microspheres with core-shell structure were prepared through a novel approach based on the sonochemical method and the emulsion solvent evaporation method. The microspheres are composed of the oleic acid and undecylenic acid modified Fe{sub 3}O{sub 4} cores and coated with globular bovine serum albumin (BSA). Under an optimized condition, up to 57.8 wt% of approximately 10 nm superparamagnetic Fe{sub 3}O{sub 4} nanoparticles could be uniformly encapsulated into the BSA microspheres with the diameter of approximately 160 nm and the high saturation magnetization of 38.5 emu/g, besides of the abundant functional groups. The possible formation mechanism of magnetic microspheres was discussed in detail. - Research Highlights: Magnetic protein microspheres with core-shell structure were prepared through a novel approach based on the sonochemical method and the emulsion solvent evaporation method. The microspheres are composed of the oleic acid and undecylenic acid modified Fe{sub 3}O{sub 4} cores and coated with globular bovine serum albumin (BSA). 57.8 wt% of approximately 10 nm superparamagnetic Fe{sub 3}O{sub 4} nanoparticles could be uniformly encapsulated into the BSA microspheres with the diameter of approximately 160 nm and the high saturation magnetization of 38.5 emu/g, besides the abundant functional groups.

  9. A novel approach to preparing magnetic protein microspheres with core-shell structure

    International Nuclear Information System (INIS)

    Jiang Wei; Sun Zhendong; Li Fengsheng; Chen Kai; Liu Tianyu; Liu Jialing; Zhou Tianle; Guo Rui

    2011-01-01

    Magnetic protein microspheres with core-shell structure were prepared through a novel approach based on the sonochemical method and the emulsion solvent evaporation method. The microspheres are composed of the oleic acid and undecylenic acid modified Fe 3 O 4 cores and coated with globular bovine serum albumin (BSA). Under an optimized condition, up to 57.8 wt% of approximately 10 nm superparamagnetic Fe 3 O 4 nanoparticles could be uniformly encapsulated into the BSA microspheres with the diameter of approximately 160 nm and the high saturation magnetization of 38.5 emu/g, besides of the abundant functional groups. The possible formation mechanism of magnetic microspheres was discussed in detail. - Research Highlights: → Magnetic protein microspheres with core-shell structure were prepared through a novel approach based on the sonochemical method and the emulsion solvent evaporation method.→ The microspheres are composed of the oleic acid and undecylenic acid modified Fe 3 O 4 cores and coated with globular bovine serum albumin (BSA).→ 57.8 wt% of approximately 10 nm superparamagnetic Fe 3 O 4 nanoparticles could be uniformly encapsulated into the BSA microspheres with the diameter of approximately 160 nm and the high saturation magnetization of 38.5 emu/g, besides the abundant functional groups.

  10. Test Structures For Bumpy Integrated Circuits

    Science.gov (United States)

    Buehler, Martin G.; Sayah, Hoshyar R.

    1989-01-01

    Cross-bridge resistors added to comb and serpentine patterns. Improved combination of test structures built into integrated circuit used to evaluate design rules, fabrication processes, and quality of interconnections. Consist of meshing serpentines and combs, and cross bridge. Structures used to make electrical measurements revealing defects in design or fabrication. Combination of test structures includes three comb arrays, two serpentine arrays, and cross bridge. Made of aluminum or polycrystalline silicon, depending on material in integrated-circuit layers evaluated. Aluminum combs and serpentine arrays deposited over steps made by polycrystalline silicon and diffusion layers, while polycrystalline silicon versions of these structures used to cross over steps made by thick oxide layer.

  11. Hypervelocity Impact Performance of Open Cell Foam Core Sandwich Panel Structures

    Science.gov (United States)

    Ryan, S.; Ordonez, E.; Christiansen, E. L.; Lear, D. M.

    2010-01-01

    Open cell metallic foam core sandwich panel structures are of interest for application in spacecraft micrometeoroid and orbital debris shields due to their novel form and advantageous structural and thermal performance. Repeated shocking as a result of secondary impacts upon individual foam ligaments during the penetration process acts to raise the thermal state of impacting projectiles ; resulting in fragmentation, melting, and vaporization at lower velocities than with traditional shielding configurations (e.g. Whipple shield). In order to characterize the protective capability of these structures, an extensive experimental campaign was performed by the Johnson Space Center Hypervelocity Impact Technology Facility, the results of which are reported in this paper. Although not capable of competing against the protection levels achievable with leading heavy shields in use on modern high-risk vehicles (i.e. International Space Station modules), metallic foam core sandwich panels are shown to provide a substantial improvement over comparable structural panels and traditional low weight shielding alternatives such as honeycomb sandwich panels and metallic Whipple shields. A ballistic limit equation, generalized in terms of panel geometry, is derived and presented in a form suitable for application in risk assessment codes.

  12. The structural second virial coefficient: a spherical-core pair-potential for sulphur hexafluoride

    International Nuclear Information System (INIS)

    Mohamad Deraman; Powles, J.G.; Dore, J.C.

    1984-01-01

    Neutron diffraction data for sulphur hexafluoride gas is reanalysed following the same procedure described in our previous paper but using a spherical-core potential which was not considered in that report. The new spherical-core potential, with parameters epsilon/Ksub(B)K = 405, delta/A = 5.042 and α/A = 0.9225, gives a satisfactory fit to both the virial and structural data. There are now three model potentials, a site-site, a LJ 28-7, and this spherical core which all fit the data very well, indeed the core potential reported here fits rather better than the others. The anisotropic site-site potential is still to be preferred on physical grounds but the new core-potential will be useful where an isotopic potential suffices since it is much simpler to use. (author)

  13. An integral condition for core-collapse supernova explosions

    International Nuclear Information System (INIS)

    Murphy, Jeremiah W.; Dolence, Joshua C.

    2017-01-01

    Here, we derive an integral condition for core-collapse supernova (CCSN) explosions and use it to construct a new diagnostic of explodability. The fundamental challenge in CCSN theory is to explain how a stalled accretion shock revives to explode a star. In this manuscript, we assume that the shock revival is initiated by the delayed-neutrino mechanism and derive an integral condition for spherically symmetric shock expansion, v_s > 0. One of the most useful one-dimensional explosion conditions is the neutrino luminosity and mass-accretion rate (L_ν-- M-dot ) critical curve. Below this curve, steady-state stalled solutions exist, but above this curve, there are no stalled solutions. Burrows & Goshy suggested that the solutions above this curve are dynamic and explosive. In this manuscript, we take one step closer to proving this supposition; we show that all steady solutions above this curve have v_s > 0. Assuming that these steady v_s > 0 solutions correspond to explosion, we present a new dimensionless integral condition for explosion, Ψ > 0. Ψ roughly describes the balance between pressure and gravity, and we show that this parameter is equivalent to the τ condition used to infer the L_ν-- M-dot critical curve. The illuminating difference is that there is a direct relationship between Ψ and v_s. Below the critical curve, Ψ may be negative, positive, and zero, which corresponds to receding, expanding, and stalled-shock solutions. At the critical curve, the minimum Ψ solution is zero; above the critical curve, Ψ_m_i_n > 0, and all steady solutions have v_s > 0. Using one-dimensional simulations, we confirm our primary assumptions and verify that Ψ_m_i_n > 0 is a reliable and accurate explosion diagnostic.

  14. The Analysis of Surrounding Structure Effect on the Core Degradation Progress with COMPASS Code

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Jun Ho; Son, Dong Gun; Kim, Jong Tae; Park, Rae Jun; Kim, Dong Ha [KAERI, Daejeon (Korea, Republic of)

    2015-05-15

    In line with the importance of severe accident analysis after Fukushima accident, the development of integrated severe accident code has been launched by the collaboration of three institutes in Korea. KAERI is responsible to develop modules related to the in-vessel phenomena, while other institutes are to the containment and severe accident mitigation facility, respectively. In the first phase, the individual severe accident module has been developed and the construction of integrated analysis code is planned to perform in the second phase. The basic strategy is to extend the design basis analysis codes of SPACE and CAP, which are being validated in Korea for the severe accident analysis. In the first phase, KAERI has targeted to develop the framework of severe accident code, COMPASS (COre Meltdown Progression Accident Simulation Software), covering the severe accident progression in a vessel from a core heat-up to a vessel failure as a stand-alone fashion. In order to analyze the effect of surrounding structure, the melt progression has been compared between the central zone and the most outer zone under the condition of constant radial power peaking factor. Figure 2 and 3 shows the fuel element temperature and the clad mass at the central zone, respectively. Due to the axial power peaking factor, the axial node No.3 has the highest temperature, while the top and bottom nodes have the lowest temperature. When the clad temperature reaches to the Zr melting temperature (2129.15K), the Zr starts to melt. The axial node No.2 reaches to the fuel melting temperature about 5000 sec and the molten fuel relocates to the node No.1, which results to the blockage of flow area in node No.1. The blocked flow area becomes to open about 6100 sec due to the molten ZrO{sub 2} mass relocation to core support plate. Figure 4 and 5 shows the fuel element temperature and the clad mass at the most outer zone, respectively. It is shown that the fuel temperature increase more slowly

  15. Earth's inner core: Innermost inner core or hemispherical variations?

    NARCIS (Netherlands)

    Lythgoe, K. H.; Deuss, A.|info:eu-repo/dai/nl/412396610; Rudge, J. F.; Neufeld, J. A.

    2014-01-01

    The structure of Earth's deep inner core has important implications for core evolution, since it is thought to be related to the early stages of core formation. Previous studies have suggested that there exists an innermost inner core with distinct anisotropy relative to the rest of the inner core.

  16. Cryo-EM Structure of the TOM Core Complex from Neurospora crassa.

    Science.gov (United States)

    Bausewein, Thomas; Mills, Deryck J; Langer, Julian D; Nitschke, Beate; Nussberger, Stephan; Kühlbrandt, Werner

    2017-08-10

    The TOM complex is the main entry gate for protein precursors from the cytosol into mitochondria. We have determined the structure of the TOM core complex by cryoelectron microscopy (cryo-EM). The complex is a 148 kDa symmetrical dimer of ten membrane protein subunits that create a shallow funnel on the cytoplasmic membrane surface. In the core of the dimer, the β-barrels of the Tom40 pore form two identical preprotein conduits. Each Tom40 pore is surrounded by the transmembrane segments of the α-helical subunits Tom5, Tom6, and Tom7. Tom22, the central preprotein receptor, connects the two Tom40 pores at the dimer interface. Our structure offers detailed insights into the molecular architecture of the mitochondrial preprotein import machinery. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Optimizing Performance of Combustion Chemistry Solvers on Intel's Many Integrated Core (MIC) Architectures

    Energy Technology Data Exchange (ETDEWEB)

    Sitaraman, Hariswaran [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Grout, Ray W [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-06-09

    This work investigates novel algorithm designs and optimization techniques for restructuring chemistry integrators in zero and multidimensional combustion solvers, which can then be effectively used on the emerging generation of Intel's Many Integrated Core/Xeon Phi processors. These processors offer increased computing performance via large number of lightweight cores at relatively lower clock speeds compared to traditional processors (e.g. Intel Sandybridge/Ivybridge) used in current supercomputers. This style of processor can be productively used for chemistry integrators that form a costly part of computational combustion codes, in spite of their relatively lower clock speeds. Performance commensurate with traditional processors is achieved here through the combination of careful memory layout, exposing multiple levels of fine grain parallelism and through extensive use of vendor supported libraries (Cilk Plus and Math Kernel Libraries). Important optimization techniques for efficient memory usage and vectorization have been identified and quantified. These optimizations resulted in a factor of ~ 3 speed-up using Intel 2013 compiler and ~ 1.5 using Intel 2017 compiler for large chemical mechanisms compared to the unoptimized version on the Intel Xeon Phi. The strategies, especially with respect to memory usage and vectorization, should also be beneficial for general purpose computational fluid dynamics codes.

  18. Assessment of core structural materials and surveillance programme of research reactors. Report of the consultants meeting. Working material

    International Nuclear Information System (INIS)

    2009-01-01

    A series of presentations on the assessment of core structural components and materials at their facilities were given by the experts. The different issues related to degradation mechanisms were discussed. The outputs include a more thorough understanding of the specific challenges related to Research Reactors (RRs) as well as proposals for activities which could assist RR organizations in their efforts to address the issues involved. The experts recommend that research reactor operators consider implementation of surveillance programs for materials of core structural components, as part of ageing management program (TECDOC-792 and DS-412). It is recognised by experts that adequate archived structural material data is not available for many RRs. Access to this data and extension of existing material databases could help many operating organisations extend the operation of their RRs. The experts agreed that an IAEA Technical Meeting (TM) on Assessment of Core Structural Materials should be organised in December 2009 (IAEA HQ Vienna). The proposed objectives of the TM are: (i) exchange of detailed technical information on the assessment and ageing management of core structural materials, (ii) identification of materials of interest for further investigation, (iii) proposal for a new IAEA CRP on Assessment of Core Structural Materials, and (iv) identification of RRs prepared to participate in proposed CRP. Based on the response to a questionnaire prepared for the 2008 meeting of the Technical Working Group for Research Reactors, the number of engineering capital projects related to core structural components is proportionally lower than those related to,for example, I and C or electrical power systems. This implies that many operating research reactors will be operating longer using their original core structural components and justifies the assessment and evaluation programmes and activities proposed in this report. (author)

  19. Integrating 3D CAD data for manufacturing and fabrication the core model of reactor TRIGA PUSPATI

    International Nuclear Information System (INIS)

    Abu Bakar Harun

    2005-01-01

    This paper describe the intrigue integration of digital 3 Dimensional Computer Aided Design (3D CAD) data manipulation for the Core Model fabrication of REAKTOR TRIGA PUSPATI and ready for mass manufacturing. 3 Dimensional CAD data from Computer Aided Design program will be used as an interpreter in the fabrication of this project. The Core Model of REAKTOR TRIGA PUSPATI will be fabricated with the aid of 3D CAD drawings and digital files. The components will be segregated and divided into 2 categories namely Conventional d Rapid Fabrication. (Author)

  20. Controllable synthesis and characterization of novel copper-carbon core-shell structured nanoparticles

    International Nuclear Information System (INIS)

    Zhai, Jing; Tao, Xia; Pu, Yuan; Zeng, Xiao-Fei; Chen, Jian-Feng

    2011-01-01

    Highlights: → We reported a facile, green and cheap hydrothermal method to obtain novel copper-carbon core-shell nanoparticles. → The as-formed particles with controllable size and morphology are antioxidant. → The particles with organic-group-loaded surfaces and protective shells are expected to be applied in fields of medicine, electronics, sensors and lubricant. -- Abstract: A facile hydrothermal method was developed for preparing copper-carbon core-shell structured particles through a reaction at 160 o C in which glucose, copper sulfate pentahydrate and cetyltrimethylammonium bromide were used as starting materials. The original copper-carbon core-shell structured particles obtained were sized of 100-250 nm. The thickness of carbonaceous shells was controlled ranging from 25 to 100 nm by adjusting the hydrothermal duration time and the concentrations of glucose in the process. Products were characterized with transmission electron microscopy, X-ray diffraction, energy dispersive spectroscopy, Fourier transform infrared spectroscopy. Since no toxic materials were involved in the preparation, particles with stable carbonaceous framework and reactive surface also showed promising applications in medicine, electronics, sensors, lubricant, etc.

  1. Controllable synthesis and characterization of novel copper-carbon core-shell structured nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Jing [Sin-China Nano Technology Center, Key Lab for Nanomaterials, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029 (China); Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, No. 15 Beisanhuan Dong Lu, Beijing 100029 (China); Tao, Xia; Pu, Yuan; Zeng, Xiao-Fei [Sin-China Nano Technology Center, Key Lab for Nanomaterials, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029 (China); Chen, Jian-Feng, E-mail: chenjf@mail.buct.edu.cn [Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, No. 15 Beisanhuan Dong Lu, Beijing 100029 (China)

    2011-06-15

    Highlights: {yields} We reported a facile, green and cheap hydrothermal method to obtain novel copper-carbon core-shell nanoparticles. {yields} The as-formed particles with controllable size and morphology are antioxidant. {yields} The particles with organic-group-loaded surfaces and protective shells are expected to be applied in fields of medicine, electronics, sensors and lubricant. -- Abstract: A facile hydrothermal method was developed for preparing copper-carbon core-shell structured particles through a reaction at 160 {sup o}C in which glucose, copper sulfate pentahydrate and cetyltrimethylammonium bromide were used as starting materials. The original copper-carbon core-shell structured particles obtained were sized of 100-250 nm. The thickness of carbonaceous shells was controlled ranging from 25 to 100 nm by adjusting the hydrothermal duration time and the concentrations of glucose in the process. Products were characterized with transmission electron microscopy, X-ray diffraction, energy dispersive spectroscopy, Fourier transform infrared spectroscopy. Since no toxic materials were involved in the preparation, particles with stable carbonaceous framework and reactive surface also showed promising applications in medicine, electronics, sensors, lubricant, etc.

  2. The Structure and Dark Halo Core Properties of Dwarf Spheroidal Galaxies

    Science.gov (United States)

    Burkert, A.

    2015-08-01

    The structure and dark matter halo core properties of dwarf spheroidal galaxies (dSphs) are investigated. A double-isothermal (DIS) model of an isothermal, non-self-gravitating stellar system embedded in an isothermal dark halo core provides an excellent fit to the various observed stellar surface density distributions. The stellar core scale length a* is sensitive to the central dark matter density ρ0,d. The maximum stellar radius traces the dark halo core radius {r}c,d. The concentration c* of the stellar system, determined by a King profile fit, depends on the ratio of the stellar-to-dark-matter velocity dispersion {σ }*/{σ }d. Simple empirical relationships are derived that allow us to calculate the dark halo core parameters ρ0,d, {r}c,d, and σd given the observable stellar quantities σ*, a*, and c*. The DIS model is applied to the Milky Way’s dSphs. All dSphs closely follow the same universal dark halo scaling relations {ρ }0,d× {r}c,d={75}-45+85 M⊙ pc-2 that characterize the cores of more massive galaxies over a large range in masses. The dark halo core mass is a strong function of core radius, {M}c,d˜ {r}c,d2. Inside a fixed radius of ˜400 pc the total dark matter mass is, however, roughly constant with {M}d=2.6+/- 1.4× {10}7 M⊙, although outliers are expected. The dark halo core densities of the Galaxy’s dSphs are very high, with {ρ }0,d ≈ 0.2 M⊙ pc-3. dSphs should therefore be tidally undisturbed. Evidence for tidal effects might then provide a serious challenge for the CDM scenario.

  3. Identifying protein complex by integrating characteristic of core-attachment into dynamic PPI network.

    Directory of Open Access Journals (Sweden)

    Xianjun Shen

    Full Text Available How to identify protein complex is an important and challenging task in proteomics. It would make great contribution to our knowledge of molecular mechanism in cell life activities. However, the inherent organization and dynamic characteristic of cell system have rarely been incorporated into the existing algorithms for detecting protein complexes because of the limitation of protein-protein interaction (PPI data produced by high throughput techniques. The availability of time course gene expression profile enables us to uncover the dynamics of molecular networks and improve the detection of protein complexes. In order to achieve this goal, this paper proposes a novel algorithm DCA (Dynamic Core-Attachment. It detects protein-complex core comprising of continually expressed and highly connected proteins in dynamic PPI network, and then the protein complex is formed by including the attachments with high adhesion into the core. The integration of core-attachment feature into the dynamic PPI network is responsible for the superiority of our algorithm. DCA has been applied on two different yeast dynamic PPI networks and the experimental results show that it performs significantly better than the state-of-the-art techniques in terms of prediction accuracy, hF-measure and statistical significance in biology. In addition, the identified complexes with strong biological significance provide potential candidate complexes for biologists to validate.

  4. UNVEILING THE DETAILED DENSITY AND VELOCITY STRUCTURES OF THE PROTOSTELLAR CORE B335

    Energy Technology Data Exchange (ETDEWEB)

    Kurono, Yasutaka; Saito, Masao; Kamazaki, Takeshi; Morita, Koh-Ichiro; Kawabe, Ryohei, E-mail: yasutaka.kurono@nao.ac.jp [Chile Observatory, National Astronomical Observatory of Japan, Osawa 2-21-1, Mitaka, Tokyo 181-8588 (Japan)

    2013-03-10

    We present an observational study of the protostellar core B335 harboring a low-mass Class 0 source. The observations of the H{sup 13}CO{sup +}(J = 1-0) line emission were carried out using the Nobeyama 45 m telescope and Nobeyama Millimeter Array. Our combined image of the interferometer and single-dish data depicts detailed structures of the dense envelope within the core. We found that the core has a radial density profile of n(r){proportional_to}r {sup -p} and a reliable difference in the power-law indices between the outer and inner regions of the core: p Almost-Equal-To 2 for r {approx}> 4000 AU and p Almost-Equal-To 1.5 for r {approx}< 4000 AU. The dense core shows a slight overall velocity gradient of {approx}1.0 km s{sup -1} over the scale of 20, 000 AU across the outflow axis. We believe that this velocity gradient represents a solid-body-like rotation of the core. The dense envelope has a quite symmetrical velocity structure with a remarkable line broadening toward the core center, which is especially prominent in the position-velocity diagram across the outflow axis. The model calculations of position-velocity diagrams do a good job of reproducing observational results using the collapse model of an isothermal sphere in which the core has an inner free-fall region and an outer region conserving the conditions at the formation stage of a central stellar object. We derived a central stellar mass of {approx}0.1 M{sub Sun }, and suggest a small inward velocity, v{sub r{>=}r{sub i{sub n{sub f}}}}{approx}0 km s{sup -1} in the outer core at {approx}> 4000 AU. We concluded that our data can be well explained by gravitational collapse with a quasi-static initial condition, such as Shu's model, or by the isothermal collapse of a marginally critical Bonnor-Ebert sphere.

  5. Structural integration of separation and reaction systems: I. Integration of stage-wise processes

    Directory of Open Access Journals (Sweden)

    Mitrović Milan

    2002-01-01

    Full Text Available The structural integration of separation processes, using multifunctional equipment, has been studied on four stage-wise liquid-liquid separations extraction, absorption, distillation, adsorption and on some combinations of these processes. It was shown for stage - wise processes that the ultimate aim of equipment integration is 3-way integration (by components by steps and by stages and that membrane multiphase contactors present concerning the equipment optimal solutions in many cases. First, by using partially integrated equipment and, later by developing fully integrated systems it was experimentally confirmed that structural 3-way integration produces much higher degrees of component separations and component enrichments in compact and safe equipment.

  6. Fluid-structure coupled dynamic response of PWR core barrel during LOCA

    International Nuclear Information System (INIS)

    Lu, M.W.; Zhang, Y.G.; Shi, F.

    1991-01-01

    This paper is engaged in the Fluid-Structure Interaction LOCA analysis of the core barrel of PWR. The analysis is performed by a multipurpose computer code SANES. The FSI inside the pressure vessel is treated by a FEM code including some structural and acoustic elements. The transient in the primary loop is solved by a two-phase flow code. Both codes are coupled one another. Some interesting conclusions are drawn. (author)

  7. Integration of ANFIS, NN and GA to determine core porosity and permeability from conventional well log data

    Science.gov (United States)

    Ja'fari, Ahmad; Hamidzadeh Moghadam, Rasoul

    2012-10-01

    Routine core analysis provides useful information for petrophysical study of the hydrocarbon reservoirs. Effective porosity and fluid conductivity (permeability) could be obtained from core analysis in laboratory. Coring hydrocarbon bearing intervals and analysis of obtained cores in laboratory is expensive and time consuming. In this study an improved method to make a quantitative correlation between porosity and permeability obtained from core and conventional well log data by integration of different artificial intelligent systems is proposed. The proposed method combines the results of adaptive neuro-fuzzy inference system (ANFIS) and neural network (NN) algorithms for overall estimation of core data from conventional well log data. These methods multiply the output of each algorithm with a weight factor. Simple averaging and weighted averaging were used for determining the weight factors. In the weighted averaging method the genetic algorithm (GA) is used to determine the weight factors. The overall algorithm was applied in one of SW Iran’s oil fields with two cored wells. One-third of all data were used as the test dataset and the rest of them were used for training the networks. Results show that the output of the GA averaging method provided the best mean square error and also the best correlation coefficient with real core data.

  8. Integration of ANFIS, NN and GA to determine core porosity and permeability from conventional well log data

    International Nuclear Information System (INIS)

    Ja’fari, Ahmad; Moghadam, Rasoul Hamidzadeh

    2012-01-01

    Routine core analysis provides useful information for petrophysical study of the hydrocarbon reservoirs. Effective porosity and fluid conductivity (permeability) could be obtained from core analysis in laboratory. Coring hydrocarbon bearing intervals and analysis of obtained cores in laboratory is expensive and time consuming. In this study an improved method to make a quantitative correlation between porosity and permeability obtained from core and conventional well log data by integration of different artificial intelligent systems is proposed. The proposed method combines the results of adaptive neuro-fuzzy inference system (ANFIS) and neural network (NN) algorithms for overall estimation of core data from conventional well log data. These methods multiply the output of each algorithm with a weight factor. Simple averaging and weighted averaging were used for determining the weight factors. In the weighted averaging method the genetic algorithm (GA) is used to determine the weight factors. The overall algorithm was applied in one of SW Iran’s oil fields with two cored wells. One-third of all data were used as the test dataset and the rest of them were used for training the networks. Results show that the output of the GA averaging method provided the best mean square error and also the best correlation coefficient with real core data. (paper)

  9. Multi-functional integration of pore P25@C@MoS{sub 2} core-double shell nanostructures as robust ternary anodes with enhanced lithium storage properties

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Biao [School of Materials Science and Engineering and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350 (China); Zhao, Naiqin [School of Materials Science and Engineering and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350 (China); Collaborative Innovation Centre of Chemical Science and Engineering, Tianjin 300072 (China); Wei, Chaopeng; Zhou, Jingwen; He, Fang; Shi, Chunsheng; He, Chunnian [School of Materials Science and Engineering and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350 (China); Liu, Enzuo, E-mail: ezliu@tju.edu.cn [School of Materials Science and Engineering and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350 (China); Collaborative Innovation Centre of Chemical Science and Engineering, Tianjin 300072 (China)

    2017-04-15

    Highlights: • P25@carbon supported MoS{sub 2} composite was prepared by a one-step process. • The distribution and interaction of C, MoS{sub 2} and TiO{sub 2} are systematically examined. • The enjoyable features of the three components are complementarily integrated. • The smart ternary electrode exhibits excellent cycling stability and rate capability. - Abstract: Ternary anodes have attracted more and more attention due to the characteristic advantages resulting from the effect integration of three different materials on the lithium storage mechanism with functional interfaces interaction. However, clarifying the distribution and interaction of carbon, MoS{sub 2} and TiO{sub 2} in the MoS{sub 2}/C/TiO{sub 2} composite, which is helpful for the understanding of the formation and lithium storage mechanism of the ternary anodes, is a well-known challenge. Herein, a novel pore core-double shell nanostructure of P25@carbon network supported few-layer MoS{sub 2} nanosheet (P25@C@FL-MoS{sub 2}) is successfully synthesized by a one-pot hydrothermal approach. The distribution and interaction of the carbon, MoS{sub 2} and TiO{sub 2} in the obtained P25@C@FL-MoS{sub 2} hybrid are systematically characterized by transmission electron microscopy, Raman spectra and X-ray photoelectron spectroscopy analysis et al. It is found that the carbon serves as binder, which supports few-layer MoS{sub 2} shell and coats the P25 core via Ti−O−C bonds at the same time. Such multi-functional integration with smart structure and strong interfacial contact generates favorable structure stability and interfacial pseudocapacity-like storage mechanism. As a consequence, superior cycling and rate capacity of the muti-functional integration ternary P25@C@FL-MoS{sub 2} anode are achieved.

  10. Integrated circuit structure

    International Nuclear Information System (INIS)

    1981-01-01

    The invention describes the fabrication of integrated circuit structures, such as read-only memory components of field-effect transistors, which may be fabricated and then maintained in inventory, and later selectively modified in accordance with a desired pattern. It is claimed that MOS depletion-mode devices in accordance with the invention can be fabricated at lower cost and at higher yields. (U.K.)

  11. Nonlinear seismic analysis of a reactor structure with impact between core components

    International Nuclear Information System (INIS)

    Hill, R.G.

    1975-01-01

    The seismic analysis of the FFTF-PIOTA (Fast Flux Test Facility-Postirradiation Open Test Assembly), subjected to a horizontal DBE (Design Base Earthquake) is presented. The PIOTA is the first in a set of open test assemblies to be designed for the FFTF. Employing the direct method of transient analysis, the governing differential equations describing the motion of the system are set up directly and are implicitly integrated numerically in time. A simple lumped-mass beam model of the FFTF which includes small clearances between core components is used as a ''driver'' for a fine mesh model of the PIOTA. The nonlinear forces due to the impact of the core components and their effect on the PIOTA are computed. 6 references

  12. Structural Integrity in Measures of Self Concept.

    Science.gov (United States)

    Stenner, A. Jackson; Katzenmeyer, W.G.

    Structural integrity of a measure is defined in terms of its replicability, constancy, invariance, and stability. Work completed in the development and validation of the Self Observation Scales (SOS) Primary Level (Stenner and Katzenmeyer, 1973) serves to illustrate one method of establishing structural integrity. The name of each scale of the SOS…

  13. Addressable-Matrix Integrated-Circuit Test Structure

    Science.gov (United States)

    Sayah, Hoshyar R.; Buehler, Martin G.

    1991-01-01

    Method of quality control based on use of row- and column-addressable test structure speeds collection of data on widths of resistor lines and coverage of steps in integrated circuits. By use of straightforward mathematical model, line widths and step coverages deduced from measurements of electrical resistances in each of various combinations of lines, steps, and bridges addressable in test structure. Intended for use in evaluating processes and equipment used in manufacture of application-specific integrated circuits.

  14. Integrated seismic design of structure and control systems

    CERN Document Server

    Castaldo, Paolo

    2014-01-01

    The structural optimization procedure presented in this book makes it possible to achieve seismic protection through integrated structural/control system design. In particular, it is explained how slender structural systems with a high seismic performance can be achieved through inclusion of viscous and viscoelastic dampers as an integral part of the system. Readers are provided with essential introductory information on passive structural control and passive energy dissipation systems. Dynamic analyses of both single and multiple degree of freedom systems are performed in order to verify the achievement of pre-assigned performance targets, and it is explained how the optimal integrated design methodology, also relevant to retrofitting of existing buildings, should be applied. The book illustrates how structural control research is opening up new possibilities in structural forms and configurations without compromising structural performance.

  15. Investigating the Theoretical Structure of the DAS-II Core Battery at School Age Using Bayesian Structural Equation Modeling

    Science.gov (United States)

    Dombrowski, Stefan C.; Golay, Philippe; McGill, Ryan J.; Canivez, Gary L.

    2018-01-01

    Bayesian structural equation modeling (BSEM) was used to investigate the latent structure of the Differential Ability Scales-Second Edition core battery using the standardization sample normative data for ages 7-17. Results revealed plausibility of a three-factor model, consistent with publisher theory, expressed as either a higher-order (HO) or a…

  16. Use of stainless steel as structural materials in reactor cores

    International Nuclear Information System (INIS)

    Teodoro, C.A.

    1990-01-01

    Austenitic stainless steels are used as structural materials in reactor cores, due to their good mechanical properties at working temperatures and high generalized corrosion resistance in aqueous medium. The objective of this paper is to compare several 300 series austenitic stainless steels related to mechanical properties, localized corrosion resistance (SCC and intergranular) and content of delta ferrite. (author)

  17. Plated lamination structures for integrated magnetic devices

    Science.gov (United States)

    Webb, Bucknell C.

    2014-06-17

    Semiconductor integrated magnetic devices such as inductors, transformers, etc., having laminated magnetic-insulator stack structures are provided, wherein the laminated magnetic-insulator stack structures are formed using electroplating techniques. For example, an integrated laminated magnetic device includes a multilayer stack structure having alternating magnetic and insulating layers formed on a substrate, wherein each magnetic layer in the multilayer stack structure is separated from another magnetic layer in the multilayer stack structure by an insulating layer, and a local shorting structure to electrically connect each magnetic layer in the multilayer stack structure to an underlying magnetic layer in the multilayer stack structure to facilitate electroplating of the magnetic layers using an underlying conductive layer (magnetic or seed layer) in the stack as an electrical cathode/anode for each electroplated magnetic layer in the stack structure.

  18. Integrated analysis of core debris interactions and their effects on containment integrity using the CONTAIN computer code

    International Nuclear Information System (INIS)

    Carroll, D.E.; Bergeron, K.D.; Williams, D.C.; Tills, J.L.; Valdez, G.D.

    1987-01-01

    The CONTAIN computer code includes a versatile system of phenomenological models for analyzing the physical, chemical and radiological conditions inside the containment building during severe reactor accidents. Important contributors to these conditions are the interactions which may occur between released corium and cavity concrete. The phenomena associated with interactions between ejected corium debris and the containment atmosphere (Direct Containment Heating or DCH) also pose a potential threat to containment integrity. In this paper, we describe recent enhancements of the CONTAIN code which allow an integrated analysis of these effects in the presence of other mitigating or aggravating physical processes. In particular, the recent inclusion of the CORCON and VANESA models is described and a calculation example presented. With this capability CONTAIN can model core-concrete interactions occurring simultaneously in multiple compartments and can couple the aerosols thereby generated to the mechanistic description of all atmospheric aerosol components. Also discussed are some recent results of modeling the phenomena involved in Direct Containment Heating. (orig.)

  19. Anisotropic nanolaminated CoNiFe cores integrated into microinductors for high-frequency dc–dc power conversion

    International Nuclear Information System (INIS)

    Kim, Jooncheol; Kim, Minsoo; Herrault, Florian; Kim, Jung-Kwun; Allen, Mark G

    2015-01-01

    This paper presents a rectangular, anisotropic nanolaminated CoNiFe core that possesses a magnetically hard axis in the long geometric axis direction. Previously, we have developed nanolaminated cores comprising tens to hundreds of layers of 300–1000 nm thick metallic alloys (i.e. Ni 80 Fe 20 or Co 44 Ni 37 Fe 19 ) based on sequential electrodeposition, demonstrating suppressed eddy-current losses at MHz frequencies. In this work, magnetic anisotropy was induced to the nanolaminated CoNiFe cores by applying an external magnetic field (50–100 mT) during CoNiFe film electrodeposition. The fabricated cores comprised tens to hundreds of layers of 500–1000 nm thick CoNiFe laminations that have the hard-axis magnetic property. Packaged in a 22-turn solenoid test inductor, the anisotropic core showed 10% increased effective permeability and 25% reduced core power losses at MHz operation frequency, compared to an isotropic core of the identical geometry. Operating the anisotropic nanolaminated CoNiFe core in a step-down dc–dc converter (15 V input to 5 V output) demonstrated 81% converter efficiency at a switching frequency of 1.1 MHz and output power of 6.5 W. A solenoid microinductor with microfabricated windings integrated with the anisotropic nanolaminated CoNiFe core was fabricated, demonstrating a constant inductance of 600 nH up to 10 MHz and peak quality factor exceeding 20 at 4 MHz. The performance of the microinductor with the anisotropic nanolaminated CoNiFe core is compared with other previously reported microinductors. (fast track communication)

  20. A simple approach to the construction of the core structure present in ...

    Indian Academy of Sciences (India)

    A simple approach to the construction of the core structure present in bielschowskysin and ... spongeHippospongia lachneelicited considerable interest amongst the organic ..... ogy, Government of India for financial support through. J. C. Bose ...

  1. Synthesis and properties MFe2O4 (M = Fe, Co) nanoparticles and core-shell structures

    Science.gov (United States)

    Yelenich, O. V.; Solopan, S. O.; Greneche, J. M.; Belous, A. G.

    2015-08-01

    Individual Fe3-xO4 and CoFe2O4 nanoparticles, as well as Fe3-xO4/CoFe2O4 core/shell structures were synthesized by the method of co-precipitation from diethylene glycol solutions. Core/shell structure were synthesized with CoFe2O4-shell thickness of 1.0, 2.5 and 3.5 nm. X-ray diffraction patterns of individual nanoparticles and core/shell are similar and indicate that all synthesized samples have a cubic spinel structure. Compares Mössbauer studies of CoFe2O4, Fe3-xO4 nanoparticles indicate superparamagnetic properties at 300 K. It was shown that individual magnetite nanoparticles are transformed into maghemite through oxidation during the synthesis procedure, wherein the smallest nanoparticles are completely oxidized while a magnetite core does occur in the case of the largest nanoparticles. The Mössbauer spectra of core/shell nanoparticles with increasing CoFe2O4-shell thickness show a gradual decrease in the relative intensity of the quadrupole doublet and significant decrease of the mean isomer shift value at both RT and 77 K indicating a decrease of the superparamagnetic relaxation phenomena. Specific loss power for the prepared ferrofluids was experimentally calculated and it was determined that under influence of ac-magnetic field magnetic fluid based on individual CoFe2O4 and Fe3-xO4 particles are characterized by very low heating temperature, when magnetic fluids based on core/shell nanoparticles demonstrate higher heating effect.

  2. Optimizing the updated Goddard shortwave radiation Weather Research and Forecasting (WRF) scheme for Intel Many Integrated Core (MIC) architecture

    Science.gov (United States)

    Mielikainen, Jarno; Huang, Bormin; Huang, Allen H.-L.

    2015-05-01

    Intel Many Integrated Core (MIC) ushers in a new era of supercomputing speed, performance, and compatibility. It allows the developers to run code at trillions of calculations per second using the familiar programming model. In this paper, we present our results of optimizing the updated Goddard shortwave radiation Weather Research and Forecasting (WRF) scheme on Intel Many Integrated Core Architecture (MIC) hardware. The Intel Xeon Phi coprocessor is the first product based on Intel MIC architecture, and it consists of up to 61 cores connected by a high performance on-die bidirectional interconnect. The co-processor supports all important Intel development tools. Thus, the development environment is familiar one to a vast number of CPU developers. Although, getting a maximum performance out of Xeon Phi will require using some novel optimization techniques. Those optimization techniques are discusses in this paper. The results show that the optimizations improved performance of the original code on Xeon Phi 7120P by a factor of 1.3x.

  3. The Benchmarking of Integrated Business Structures

    Directory of Open Access Journals (Sweden)

    Nifatova Olena M.

    2017-12-01

    Full Text Available The aim of the article is to study the role of the benchmarking in the process of integration of business structures in the aspect of knowledge sharing. The results of studying the essential content of the concept “integrated business structure” and its semantic analysis made it possible to form our own understanding of this category with an emphasis on the need to consider it in the plane of three projections — legal, economic and organizational one. The economic projection of the essential content of integration associations of business units is supported by the organizational projection, which is expressed through such essential aspects as existence of a single center that makes key decisions; understanding integration as knowledge sharing; using the benchmarking as exchange of experience on key business processes. Understanding the process of integration of business units in the aspect of knowledge sharing involves obtaining certain information benefits. Using the benchmarking as exchange of experience on key business processes in integrated business structures will help improve the basic production processes, increase the efficiency of activity of both the individual business unit and the IBS as a whole.

  4. On the core structure and mobility of the {010} and {011-bar } dislocations in B2 structure YAg and YCu

    International Nuclear Information System (INIS)

    Xiao-Zhi, Wu; Shao-Feng, Wang; Rui-Ping, Liu

    2009-01-01

    Dislocations are thought to be the principal mechanism of high ductility of the novel B2 structure intermetallic compounds YAg and YCu. In this paper, the edge dislocation core structures of two primary slip systems {010} and {011-bar 1} for YAg and YCu are presented theoretically within the lattice theory of dislocation. The governing dislocation equation is a nonlinear integro-differential equation and the variational method is applied to solve the equation. Peierls stresses for {010} and {011-bar 1} slip systems are calculated taking into consideration the contribution of the elastic strain energy. The core width and Peierls stress of a typical transition-metal aluminide NiAl is also reported for the purpose of verification and comparison. The Peierls stress of NiAl obtained here is in agreement with numerical results, which verifies the correctness of the results obtained for YAg and YCu. Peierls stresses of the {011-bar 1} slip system are smaller than those of {010} for the same intermetallic compounds originating from the smaller unstable stacking fault energy. The obvious high unstable stacking fault energy of NiAl results in a larger Peierls stress than those of YAg and YCu although they have the same B2 structure. The results show that the core structure and Peierls stress depend monotonically on the unstable stacking fault energy. (condensed matter: structure, thermal and mechanical properties)

  5. A simple approach to the construction of the core structure present

    Indian Academy of Sciences (India)

    A convenient route for the synthesis of oxacyclobutapentalene, the tricyclic bridged core structure present in bioactive marine diterpene bielschowskysin and the polyketide hippolachnin A, is reported. The key steps involve ring closing metathesis of a triene derived from D-mannitol to produce selectively the dihydrofuran ...

  6. Integrated stratigraphy and paleoenvironmental reconstruction for the Late Cretaceous Danish chalk based on the Stevns-2 core

    DEFF Research Database (Denmark)

    Boussaha, Myriam; Thibault, Nicolas Rudolph; Stemmerik, Lars

    An integrated stratigraphy of the Stevns-2 core located in eastern Denmark is hereby presented based on calcareous nannofossil biostratigraphy and carbon isotope stratigraphy. Carbon and oxygen isotope have been performed on 419 bulk samples. Calcareous nannofossil biostratigraphy has been applied...

  7. The impact of core-shell nanotube structures on fracture in ceramic nanocomposites

    International Nuclear Information System (INIS)

    Liang, Xin; Yang, Yingchao; Lou, Jun; Sheldon, Brian W.

    2017-01-01

    Multi-wall carbon nanotubes (MWCNTs) can be used to create ceramic nanocomposites with improved fracture toughness. In the present work, atomic layer deposition (ALD) was employed to deposit thin oxide layers on MWCNTs. These core-shell structures were then used to create nanocomposites by using a polymer derived ceramic (PDC) to produce the matrix. Variations in both the initial MWCNT structure and the oxide layers led to substantial differences in fiber-pullout behavior. Single tube pullout tests also showed that the oxide coatings led to stronger bonding with the ceramic matrix. With high defect density MWCNTs, this led to shorter pull-out lengths which is consistent with the conventional understanding of fracture in ceramic matrix composites. However, with low defect density MWCNTs longer pullout lengths were observed with the oxide layers. To interpret the different trends that were observed, we believe that the ALD coatings should not be viewed simply as a means of altering the interfacial properties. Instead, the coated MWCNTs should be viewed as more complex core-shell fibers where both interface and internal properties can be controlled with the ALD layers. - Graphical abstract: Fracture properties of core-shell nanotubes reinforced ceramic nanocomposites.

  8. Beacon-Colss core monitoring system application and benefits

    International Nuclear Information System (INIS)

    Boyd, W.A.; Yoon, T.Y.

    2005-01-01

    Westinghouse and KNFC are creating an upgraded core monitoring system by merging the BEACON system (best estimate analyzer for core operation-nuclear) and COLSS (core operating limit supervisory system) into an integrated product. Although both BEACON and COLSS are core monitoring systems that have been in operation at many plants for a number of years, they each have some features and capabilities that are not in the other. Therefore it has been decided to incorporate portions of COLSS into the beacon system to create an optional level to support core monitoring applications on selected combustion engineering (C-E) designed plants. This optional level in the beacon system will be called BEACON-COLSS and will allow the beacon system to monitor the LCO's and Tech Spec limits at CE plants that currently use COLSS. This paper will present the structure of the new core monitoring system and the benefits it achieves for current COLSS plants, i.e., CE plants in the US and KSNP (Korean standard nuclear power plant). (authors)

  9. Study on in-vessel ISI for JOYO. Ultrasound propagation characteristic in the core support plate

    International Nuclear Information System (INIS)

    Ariyoshi, Masahiko; Ara, Kuniaki; Hirabayashi, Masaru

    2005-03-01

    The report describes the feasibility study on the in-vessel inspection technique to be applied for the experimental fast reactor JOYO. The object of this examination is to confirm the integration of reactor structure under sodium environment by an immediate means. The core support plate which is an important structure supports the weight of the core assembly is selected to an object of the inspection. In the examination until last year, the core support plate inspection equipment concept which combined ultrasound sensor with manipulator was constructed. In this concept, the ultrasound sensor is accessed to a low-pressure plenum sidewall and integrity of the core support plate weld is inspected. In this study, the ultrasound propagation behavior was examined to confirm the range where the core support plate by this concept was able to be inspected. The outline result is shown follows. (1) Only the transverse wave can be generated in the structure material by reflecting the incidence longitudinal wave from the sensor in the wedge. The use of this transverse wave is effective in the core support plate inspection. (2) Because the attenuation of the ultrasound wave depends on the distance, the sensor is made to approach from the fuel rack in the reactor vessel about two places in the upper part of the core support plate weld far from low-pressure plenum. (3) It is necessary to evaluate the permeability of the ultrasound wave by the mock-up examination in consideration of a peculiar attenuation of the structural material, the reflectivity from defect, etc. (4) In the core support plate inspection of phenix reactor, a weld about 4m away from the sensor position is inspected by using the Lamb wave. In this inspection, because it was generated to echo according to the geometrical shape of the structure material, the evaluation method by the analysis to identify the echo from the defect was constructed, and it was verified by the mock-up examination. It is preferable that

  10. Termination of light-water reactor core-melt accidents with a chemical core catcher: the core-melt source reduction system (COMSORS)

    International Nuclear Information System (INIS)

    Forsberg, C.W.; Parker, G.W.; Rudolph, J.C.; Osborne-Lee, I.W.; Kenton, M.A.

    1996-09-01

    The Core-Melt Source Reduction System (COMSORS) is a new approach to terminate light-water reactor core melt accidents and ensure containment integrity. A special dissolution glass is placed under the reactor vessel. If core debris is released onto the glass, the glass melts and the debris dissolves into the molten glass, thus creating a homogeneous molten glass. The molten glass, with dissolved core debris, spreads into a wide pool, distributing the heat for removal by radiation to the reactor cavity above or by transfer to water on top of the molten glass. Expected equilibrium glass temperatures are approximately 600 degrees C. The creation of a low-temperature, homogeneous molten glass with known geometry permits cooling of the glass without threatening containment integrity. This report describes the technology, initial experiments to measure key glass properties, and modeling of COMSORS operations

  11. Hierarchical core-shell NiCo2O4@NiMoO4 nanowires grown on carbon cloth as integrated electrode for high-performance supercapacitors

    Science.gov (United States)

    Huang, Liang; Zhang, Wei; Xiang, Jinwei; Xu, Henghui; Li, Guolong; Huang, Yunhui

    2016-08-01

    Hierarchical core-shell NiCo2O4@NiMoO4 nanowires were grown on carbon cloth (CC@NiCo2O4@NiMoO4) by a two-step hydrothermal route to fabricate a flexible binder-free electrode. The prepared CC@NiCo2O4@NiMoO4 integrated electrode was directly used as an electrode for faradaic supercapacitor. It shows a high areal capacitance of 2.917 F cm-2 at 2 mA cm-2 and excellent cycling stability with 90.6% retention over 2000 cycles at a high current density of 20 mA cm-2. The superior specific capacitance, rate and cycling performance can be ascribed to the fast transferring path for electrons and ions, synergic effect and the stability of the hierarchical core-shell structure.

  12. How Does Amino Acid Ligand Modulate Au Core Structure and Characteristics in Peptide Coated Au Nanocluster?

    Science.gov (United States)

    Li, Nan; Li, Xu; Zhao, Hongkang; Zhao, Lina

    2018-03-01

    The atomic structures and the corresponding physicochemical properties of peptide coated Au nanoclusters determine their distinctive biological targeting applications. To learn the modulation of amino acid ligand on the atomic structure and electronic characteristics of coated Au core is the fundamental knowledge for peptide coated Au nanocluster design and construction. Based on our recent coated Au nanocluster configuration study (Nanoscale, 2016, 8, 11454), we built the typically simplified Au13(Cys-Au-Cys) system to more clearly learn the basic modulation information of amino acid ligand on Au core by the density functional theory (DFT) calculations. There are two isomers as ligand adjacent bonding (Iso1) and diagonal bonding (Iso2) to Au13 cores. The geometry optimizations indicate the adjacent bonding Iso1 is more stable than Iso2. More important, the Au13 core of Iso1 distorts much more significantly than that of Iso2 by Cys-Au-Cys bonding through the root-mean-square deviation (RMSD) analysis, which modulate their electronic characteristics in different ways. In addition, the frontier molecular orbital results of Au13(Cys-Au-Cys) isomers confirm that the Au cores mainly determine the blue shifts of Au13(Cys-Au-Cys) systems versus the original Au13 core in their UV-visible absorption spectrum studies. The configuration of Au13 core performs deformation under Cys-Au-Cys ligand modulation to reach new stability with distinct atomic structure and electronic properties, which could be the theory basis for peptide coated AuNCs design and construction.

  13. Fragmentation of massive dense cores down to ≲ 1000 AU: Relation between fragmentation and density structure

    International Nuclear Information System (INIS)

    Palau, Aina; Girart, Josep M.; Estalella, Robert; Fuente, Asunción; Fontani, Francesco; Sánchez-Monge, Álvaro; Commerçon, Benoit; Hennebelle, Patrick; Busquet, Gemma; Bontemps, Sylvain; Zapata, Luis A.; Zhang, Qizhou; Di Francesco, James

    2014-01-01

    In order to shed light on the main physical processes controlling fragmentation of massive dense cores, we present a uniform study of the density structure of 19 massive dense cores, selected to be at similar evolutionary stages, for which their relative fragmentation level was assessed in a previous work. We inferred the density structure of the 19 cores through a simultaneous fit of the radial intensity profiles at 450 and 850 μm (or 1.2 mm in two cases) and the spectral energy distribution, assuming spherical symmetry and that the density and temperature of the cores decrease with radius following power-laws. Even though the estimated fragmentation level is strictly speaking a lower limit, its relative value is significant and several trends could be explored with our data. We find a weak (inverse) trend of fragmentation level and density power-law index, with steeper density profiles tending to show lower fragmentation, and vice versa. In addition, we find a trend of fragmentation increasing with density within a given radius, which arises from a combination of flat density profile and high central density and is consistent with Jeans fragmentation. We considered the effects of rotational-to-gravitational energy ratio, non-thermal velocity dispersion, and turbulence mode on the density structure of the cores, and found that compressive turbulence seems to yield higher central densities. Finally, a possible explanation for the origin of cores with concentrated density profiles, which are the cores showing no fragmentation, could be related with a strong magnetic field, consistent with the outcome of radiation magnetohydrodynamic simulations.

  14. Fragmentation of massive dense cores down to ≲ 1000 AU: Relation between fragmentation and density structure

    Energy Technology Data Exchange (ETDEWEB)

    Palau, Aina; Girart, Josep M. [Institut de Ciències de l' Espai (CSIC-IEEC), Campus UAB-Facultat de Ciències, Torre C5-parell 2, E-08193 Bellaterra, Catalunya (Spain); Estalella, Robert [Departament d' Astronomia i Meteorologia (IEEC-UB), Institut de Ciències del Cosmos, Universitat de Barcelona, Martí i Franquès, 1, E-08028 Barcelona (Spain); Fuente, Asunción [Observatorio Astronómico Nacional, P.O. Box 112, E-28803 Alcalá de Henares, Madrid (Spain); Fontani, Francesco; Sánchez-Monge, Álvaro [Osservatorio Astrofisico di Arcetri, INAF, Lago E. Fermi 5, I-50125 Firenze (Italy); Commerçon, Benoit; Hennebelle, Patrick [Laboratoire de Radioastronomie, UMR CNRS 8112, École Normale Supérieure et Observatoire de Paris, 24 rue Lhomond, F-75231 Paris Cedex 05 (France); Busquet, Gemma [INAF-Istituto di Astrofisica e Planetologia Spaziali, Area di Recerca di Tor Vergata, Via Fosso Cavaliere 100, I-00133 Roma (Italy); Bontemps, Sylvain [Université de Bordeaux, LAB, UMR 5804, F-33270 Floirac (France); Zapata, Luis A. [Centro de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, P.O. Box 3-72, 58090 Morelia, Michoacán (Mexico); Zhang, Qizhou [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Di Francesco, James, E-mail: palau@ieec.uab.es [Department of Physics and Astronomy, University of Victoria, P.O. Box 355, STN CSC, Victoria, BC, V8W 3P6 (Canada)

    2014-04-10

    In order to shed light on the main physical processes controlling fragmentation of massive dense cores, we present a uniform study of the density structure of 19 massive dense cores, selected to be at similar evolutionary stages, for which their relative fragmentation level was assessed in a previous work. We inferred the density structure of the 19 cores through a simultaneous fit of the radial intensity profiles at 450 and 850 μm (or 1.2 mm in two cases) and the spectral energy distribution, assuming spherical symmetry and that the density and temperature of the cores decrease with radius following power-laws. Even though the estimated fragmentation level is strictly speaking a lower limit, its relative value is significant and several trends could be explored with our data. We find a weak (inverse) trend of fragmentation level and density power-law index, with steeper density profiles tending to show lower fragmentation, and vice versa. In addition, we find a trend of fragmentation increasing with density within a given radius, which arises from a combination of flat density profile and high central density and is consistent with Jeans fragmentation. We considered the effects of rotational-to-gravitational energy ratio, non-thermal velocity dispersion, and turbulence mode on the density structure of the cores, and found that compressive turbulence seems to yield higher central densities. Finally, a possible explanation for the origin of cores with concentrated density profiles, which are the cores showing no fragmentation, could be related with a strong magnetic field, consistent with the outcome of radiation magnetohydrodynamic simulations.

  15. Standard Test Method for Water Absorption of Core Materials for Structural Sandwich Constructions

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2001-01-01

    1.1 This test method covers the determination of the relative amount of water absorption by various types of structural core materials when immersed or in a high relative humidity environment. This test method is intended to apply to only structural core materials; honeycomb, foam, and balsa wood. 1.2 The values stated in SI units are to be regarded as the standard. The inch-pound units given may be approximate. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  16. Structural integrity evaluation of FTL in-pool piping

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. Y

    1998-05-01

    HANARO fuel test loop will be equipped in HANARO to obtain the development betterment of advanced fuel and materials through the irradiation test. The object of this study is to evaluate the structural integrity of FTL in-pool piping by investigating a dynamic analysis of the loop containing a postulated rupture section. The method to perform the dynamic analysis and structural integrity evaluation caused by the pipe whip in water environment can be a reference for a similar structural integrity evaluation. (author). 7 refs., 39 tabs., 34 figs.

  17. A case study of full integration of the arts into core subject area instruction in one East Texas secondary school

    Science.gov (United States)

    Leysath, Maggie

    This exploratory phenomenological case study investigated the influence the full integration of the arts into core subject instruction has on classroom environment, student academic achievement, and student engagement as perceived by administrators, teachers, and students in one East Texas secondary school. Participant interviews were analyzed using Creswell's (2012) six-step method for analyzing phenomenological studies. The researcher implemented three learning activities in which ceramics learning objectives were fully integrated with chemistry learning objectives. The first activity combined clay properties and pottery wheel throwing with significant numbers. The second activity combined glaze formulation with moles. The third combined stoichiometry with the increased glaze formula for students to glaze the bowls they made. Findings suggest the full integration of art in core subject area instruction has numerous positive effects. Participants reported improved academic achievement for all students including reluctant learners. Students, teachers, and the administrator reported greater participation in the art integrated activities. Participants perceived a need for further training for teachers and administrators for greater success.

  18. Development of Lightweight, Compact, Structurally-Integrated Acoustic Liners for Broadband Low-Frequency Noise Mitigation

    Science.gov (United States)

    Chambers, Andrew T.

    Airborne noise with a low dominant frequency content (scope of conventional acoustic noise mitigation techniques using liners, foams or claddings owing to mass and volume considerations. Its low evanescence contributes significantly to environmental noise pollution, and unwanted structural vibrations causing diminished efficiency, comfort, payload integrity and mission capabilities. An alternative approach using liner configurations with realistic mass and volume constraints having innovative 'folded' core geometries is investigated to ascertain its low-frequency noise absorption characteristics. In contrast to mass-driven approaches, the folded core approach relies on tailoring interactions between acoustic resonances to tune the liner's impedance to suit the dominant low-frequency content of the source. This allows to keep non-structural mass-addition to a minimum, while retaining an overall thickness comparable to conventional liners for these low-frequency liner designs. The relative acoustic performance of various candidate folded core designs is evaluated by means of a new composite metric termed the Low-Frequency Performance (LFP) factor, which is educed from the absorption coefficient spectrum obtained using Zwikker-Kosten Transmission Line (ZKTL) theory-based numerical studies. An LFP-based software tool is developed to determine optimal 3D cavity packing for a prescribed liner volume and target frequency range. ZKTL-based parametric studies on core dimensions and face sheet porosity are utilized for detailed design of test articles. Experimental verification of absorption coefficient spectra conducted using 3D printed test articles in a normal incidence acoustic impedance tube yield good correlation with simulations. More than 100 Hz of continuous bandwidth with an absorption coefficient greater than 0.6 is shown to be possible in the 300 to 400 Hz range with a 38.1-mm (1.5-inch) thick liner. Further, the influence of face sheet type, Mach number, and

  19. Structural Color Palettes of Core-Shell Photonic Ink Capsules Containing Cholesteric Liquid Crystals.

    Science.gov (United States)

    Lee, Sang Seok; Seo, Hyeon Jin; Kim, Yun Ho; Kim, Shin-Hyun

    2017-06-01

    Photonic microcapsules with onion-like topology are microfluidically designed to have cholesteric liquid crystals with opposite handedness in their core and shell. The microcapsules exhibit structural colors caused by dual photonic bandgaps, resulting in a rich variety of color on the optical palette. Moreover, the microcapsules can switch the colors from either core or shell depending on the selection of light-handedness. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Facile Synthesis of Yolk/Core-Shell Structured TS-1@Mesosilica Composites for Enhanced Hydroxylation of Phenol

    KAUST Repository

    Zou, Houbing

    2015-12-14

    © 2015 by the authors. In the current work, we developed a facile synthesis of yolk/core-shell structured TS-1@mesosilica composites and studied their catalytic performances in the hydroxylation of phenol with H2O2 as the oxidant. The core-shell TS-1@mesosilica composites were prepared via a uniform coating process, while the yolk-shell TS-1@mesosilica composite was prepared using a resorcinol-formaldehyde resin (RF) middle-layer as the sacrificial template. The obtained materials were characterized by X-ray diffraction (XRD), N2 sorption, Fourier transform infrared spectoscopy (FT-IR) UV-Visible spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The characterization results showed that these samples possessed highly uniform yolk/core-shell structures, high surface area (560–700 m2 g−1) and hierarchical pore structures from oriented mesochannels to zeolite micropores. Importantly, owing to their unique structural properties, these composites exhibited enhanced activity, and also selectivity in the phenol hydroxylation reaction.

  1. Core Design Concept and Core Structural Material Development for a Prototype SFR

    International Nuclear Information System (INIS)

    Chang, Jinwook

    2013-01-01

    Core design Concept: – Initial core is Uranium metal fueled core, then it will evolve into TRU core; – Tight pressure drop constraint lowers power density; – Trade-off studies with relaxed pressure drop constraint (~0.4MPa) are on-going; – Major feature will be finalized this year. • KAERI is developing advanced cladding for high burnup fuel in Ptototype SFR: – Advanced cladding materials are now developing, which shows superior high temperature mechanical property to the conventional material; – Processing technologies related to tube making process are now developed to enhance high temperature mechanical propertyl – Preliminary HT9 cladding tube was manufactured and out-of pile mechanical properties were evaluated. Advanced cladding tube is now being developed and being prepared for irradiation test

  2. Dual-core Itanium Processor

    CERN Multimedia

    2006-01-01

    Intel’s first dual-core Itanium processor, code-named "Montecito" is a major release of Intel's Itanium 2 Processor Family, which implements the Intel Itanium architecture on a dual-core processor with two cores per die (integrated circuit). Itanium 2 is much more powerful than its predecessor. It has lower power consumption and thermal dissipation.

  3. Seismic velocity and attenuation structures at the top 400 km of the inner core

    Science.gov (United States)

    Yu, W.; Wen, L.; Niu, F.

    2002-12-01

    Recent seismic studies reveal an ``east-west" hemispherical difference in seismic velocity and attenuation in the top of the inner core [Niu and Wen, 2001, Wen and Niu, 2002]. The PKiKP-PKIKP observations they used only allowed them to constrain the seismic structure in the top 80 km of the inner core. The question now arises as such to what depth this hemispherical difference persists. To answer this question, we combine the PKiKP-PKIKP dataset and the PKPbc-PKIKP observations at the distance range of 147o-160o to study seismic velocity and attenuation structures in the top 400 km of the inner core along the ``equatorial paths" (the paths whose ray angles > 35o from the polar direction). We select PKPbc-PKIKP waveforms from recordings in the Global Seismic Network (GSN) and several dense regional seismic arrays. We choose recordings for events from 1990 to 2000 with simple source time functions, so only those of intermediate and deep earthquakes are used. The observed PKPbc-PKIKP differential travel times and PKIKP/PKPbc amplitude ratios exhibit an ``east-west" hemispherical difference. The PKPbc-PKIKP travel time residuals are about 0.7 second larger for those sampling the ``eastern" hemisphere than those sampling the ``western" hemisphere. The PKIKP/PKPbc amplitude ratios are generally smaller for those sampling the ``eastern" hemisphere. We construct two seismic velocity and attenuation models, with one for each ``hemisphere", by iteratively modeling the observed PKiKP-PKIKP waveforms, the PKPbc-PKIKP differential travel times and the PKIKP/PKPbc amplitude ratios. For the ``eastern" hemisphere, the observations indicate that the E1 velocity gradient and Q structure, inferred from the PKiKP-PKIKP observations sampling the top 80 km of the inner core, extend at least to 230 km inside the inner core. A change of velocity gradient and Q value is required in the deeper portion of the inner core. For the ``western" hemisphere, on the other hand, W2 velocity gradient

  4. THE ESSENCE OF STRATEGY DEVELOPMENT COMPANY IN THE INTEGRATED STRUCTURE

    Directory of Open Access Journals (Sweden)

    A. I. Khorev

    2014-01-01

    Full Text Available Summary. In the beginning of the article is defined a rational sequence of the consideration of the nature of the strategy of a company development, included into an integrated structure. Further the article describes the following items separately: "a strategy", "a development of a company", and "an integrational structure", applying them to companies included to the integrated structure; separating them from a strategy of development of an autonomous company. The article defines functions which such strategy must define, taking into consideration the nature of the strategy of the company development, included into an integrated structure. Next, the article defines six steps which describe a sequence of development of the strategy of the company development, included into an integrated structure. The analysis which is defined in the article allows determining a complete definition of essence of the strategy of the company development, included into an integrated structure. The article also defines a place of the strategy of development into the hierarchical structure of the strategies. The strategy of the company development, included into an integrated structure (as well as the strategy of development of an autonomous company -- is a competition strategy, and it separates "strategy of leadership for costs", “differentiation strategy”, and “strategy of focusing for costs”. Also authors are analyzed the strategy of the cost optimization. According to the complex definition of the strategy, and the strategy's place inside the hierarchical structure, the article defines functions which corporate, competitive, and functional strategies execute during the management of companies inside an integrational structure. The article presents characteristics of applied strategic decisions at different levels of all three types of strategies. The article's researches allow companies included to the integrated structure define their place inside the

  5. Orientation of aromatic residues in amyloid cores: Structural insights into prion fiber diversity

    KAUST Repository

    Reymer, Anna

    2014-11-17

    Structural conversion of one given protein sequence into different amyloid states, resulting in distinct phenotypes, is one of the most intriguing phenomena of protein biology. Despite great efforts the structural origin of prion diversity remains elusive, mainly because amyloids are insoluble yet noncrystalline and therefore not easily amenable to traditional structural-biology methods. We investigate two different phenotypic prion strains, weak and strong, of yeast translation termination factor Sup35 with respect to angular orientation of tyrosines using polarized light spectroscopy. By applying a combination of alignment methods the degree of fiber orientation can be assessed, which allows a relatively accurate determination of the aromatic ring angles. Surprisingly, the strains show identical average orientations of the tyrosines, which are evenly spread through the amyloid core. Small variations between the two strains are related to the local environment of a fraction of tyrosines outside the core, potentially reflecting differences in fibril packing.

  6. GrowYourIC: A Step Toward a Coherent Model of the Earth's Inner Core Seismic Structure

    Science.gov (United States)

    Lasbleis, Marine; Waszek, Lauren; Day, Elizabeth A.

    2017-11-01

    A complex inner core structure has been well established from seismic studies, showing radial and lateral heterogeneities at various length scales. Yet no geodynamic model is able to explain all the features observed. One of the main limits for this is the lack of tools to compare seismic observations and numerical models successfully. We use here a new Python tool called GrowYourIC to compare models of inner core structure. We calculate properties of geodynamic models of the inner core along seismic raypaths, for random or user-specified data sets. We test kinematic models which simulate fast lateral translation, superrotation, and differential growth. We explore first the influence on a real inner core data set, which has a sparse coverage of the inner core boundary. Such a data set is however able to successfully constrain the hemispherical boundaries due to a good sampling of latitudes. Combining translation and rotation could explain some of the features of the boundaries separating the inner core hemispheres. The depth shift of the boundaries, observed by some authors, seems unlikely to be modeled by a fast translation but could be produced by slow translation associated with superrotation.

  7. TiN/VN composites with core/shell structure for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Shanmu; Chen, Xiao [Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101 (China); Gu, Lin [WPI Advanced Institute for Materials Research, Tohoku University, Sendai 9808577 (Japan); Zhou, Xinhong [Qingdao University of Science and Technology, Qingdao 266101 (China); Wang, Haibo; Liu, Zhihong; Han, Pengxian; Yao, Jianhua; Wang, Li [Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101 (China); Cui, Guanglei, E-mail: cuigl@qibebt.ac.cn [Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101 (China); Chen, Liquan [Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101 (China); Institute of Physics, Chinese Academy of Sciences, Beijing 100080 (China)

    2011-06-15

    Research highlights: {yields} Vanadium and titanium nitride nanocomposite with core-shell structure was prepared. {yields} TiN/VN composites with different V:Ti molar ratios were obtained. {yields} TiN/VN composites can provide promising electronic conductivity and favorable capacity storage. -- Abstract: TiN/VN core-shell composites are prepared by a two-step strategy involving coating of commercial TiN nanoparticles with V{sub 2}O{sub 5}.nH{sub 2}O sols followed by ammonia reduction. The highest specific capacitance of 170 F g{sup -1} is obtained when scanned at 2 mV s{sup -1} and a promising rate capacity performance is maintained at higher voltage sweep rates. These results indicate that these composites with good electronic conductivity can deliver a favorable capacity performance.

  8. Core structure of screw dislocations in Fe from first-principles

    International Nuclear Information System (INIS)

    Ventelon, L.

    2008-11-01

    The various methods appropriate for the simulation of dislocations within first-principles calculations have been set up, improved and compared between them. They have been applied to study screw dislocations in body-centered cubic iron using the SIESTA code. A non-degenerate core structure is obtained; its detailed analysis reveals a dilatation effect. Taking it into account in an anisotropic elasticity model, allows explaining the cell-size dependence of the energetics, obtained within the dipole approach. The Peierls potential obtained in ab initio suggests that the metastable core configuration at halfway position in the Peierls barrier, predicted by empirical potential, does not exist. We show how to construct tri-periodic cells optimized to study kinked dislocations. Using empirical potential, we demonstrate the feasibility of ab initio calculations of Peierls stress and kink formation. (author)

  9. A fracture mechanics method of evaluating structural integrity of a reactor vessel due to thermal shock effects following LOCA condition

    International Nuclear Information System (INIS)

    Ramani, D.T.

    1977-01-01

    The importance of knowledge of structural integrity of a reactor vessel due to thermal shock effects, is related to safety and operational requirements in assessing the adequacy and flawless functioing of the nuclear power systems. Followig a loss-of-coolant accident (LOCA) condition the integrity of the reactor vessel due to a sudden thermal shock induced by actuation of emergency core cooling system (ECCS), must be maintained to ensure safe and orderly shutdown of the reactor and its components. The paper encompasses criteria underlaying a fracture mechanics method of analysis to evaluate structural integrity of a typical 950 MWe PWR vessel as a result of very drastic changes in thermal and mechanical stress levels in the reactor vessel wall. The main object of this investigation therefore consists in assessing the capability of a PWR vessel to withstand the most critical thermal shock without inpairing its ability to conserve vital coolant owing to probable crack propagation. (Auth.)

  10. Participatory action inquiry using baccalaureate nursing students: The inclusion of integrative health care modalities in nursing core curriculum.

    Science.gov (United States)

    Chan, Roxane Raffin; Schaffrath, Michelle

    2017-01-01

    Nurses, nursing educators and students support the inclusion of integrative health care (IHC) into nursing core curriculum as a way to create nurses who deliver nursing care to the full extent of their scope of practice and advance evidenced based IHC. Because of the holistic nature of IHC modalities, research to investigate appropriate teaching strategies and potential efficacy of learning IHC in the baccalaureate core curriculum requires a holistic approach. Therefore a phenomenological exploration using participatory action inquiry was conducted at a large Midwestern university. Eighteen first year nursing students were selected as co-researchers. Their experiences in learning and delivering three 15 min IHC interventions (foot reflexology, lavender aromatherapy and mindful breathing) in an acute care setting were captured using reflexive journaling and participation in structured and organic communicative spaces. Of the patients approached, 67% accepted to receive one or more IHC modalities (147/219). Using van Manen's model for holistic data reduction three themes emerged: The experience of presence, competency and unexpected results. Learning IHC modalities is best supported by a self-reflective process that is constructed and modeled by a nurse faculty member with experience in delivering IHC modalities. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Crosstalk Analysis of 32-Core Dense Space Division Multiplexed System for Higher Order Modulation Formats Using an Integrated Cladding-Pumped Amplifier

    DEFF Research Database (Denmark)

    Castro, C.; Jain, S.; Jung, Y.

    2017-01-01

    We analyse the crosstalk performance of a fully integrated inline amplified 32-core link for 100G QPSK, 150G 8QAM, 200G 16-QAM, and 250G 32QAM in a recirculating loop. Transmission distances over 1000 km are confirmed for 8-QAM and QPSK channels.......We analyse the crosstalk performance of a fully integrated inline amplified 32-core link for 100G QPSK, 150G 8QAM, 200G 16-QAM, and 250G 32QAM in a recirculating loop. Transmission distances over 1000 km are confirmed for 8-QAM and QPSK channels....

  12. Deciphering Equatorial Pacific Deep Sea Sediment Transport Regimes by Core-Log-Seismic Integration

    Science.gov (United States)

    Ortiz, E.; Tominaga, M.; Marcantonio, F.

    2017-12-01

    Investigating deep-sea sediment transportation and deposition regimes is a key to accurately understand implications from geological information recorded by pelagic sediments, e.g. climate signals. However, except for physical oceanographic particle trap experiments, geochemical analyses of in situsediments, and theoretical modeling of the relation between the bottom currents and sediment particle flux, it has remained a challenging task to document the movement of deep sea sediments, that takes place over time. We utilized high-resolution, multichannel reflection seismic data from the eastern equatorial Pacific region with drilling and logging results from two Integrated Ocean Drilling Program (IODP) sites, the Pacific Equatorial Age Transect (PEAT) 7 (Site U1337) and 8 (Site U1338), to characterize sediment transportation regimes on 18-24 Ma oceanic crust. Site U1337, constructed by a series of distinct abyssal hills and abyssal basins; Site U1338, located 570 km SE from Site U1337 site and constructed by a series of ridges, seamounts, and abyssal hills. These sites are of particular interest due to their proximity to the equatorial productivity zone, areas with high sedimentation rates and preservation of carbonate-bearing sediment that provide invaluable insights on equatorial Pacific ecosystems and carbon cycle. We integrate downhole geophysical logging data as well as geochemistry and physical properties measurements on recovered cores from IODP Sites U1337 and U1338 to comprehensively examine the mobility of deep-sea sediments and sediment diagenesis over times in a quasi-3D manner. We also examine 1100 km of high resolution underway seismic surveys from site survey lines in between PEAT 7 and 8 in order to investigate changes in sediment transportation between both sites. Integrating detailed seismic interpretations, high resolution core data, and 230Th flux measurements we aim to create a detailed chronological sedimentation and sediment diagenesis history

  13. IDEAL STRUCTURE OF UNIFORM ROE ALGEBRAS OVER SIMPLE CORES

    Institute of Scientific and Technical Information of China (English)

    CHEN XIAOMAN; WANG QIN

    2004-01-01

    This paper characterizes ideal structure of the uniform Roe algebra B* (X) over sinple cores X. A necessary and sufficient condition for a principal ideal of B*(X) to be spatial is given and an example of non-spatial ideal of B* (X) is constructed. By establishing an one-one correspondence between the ideals of B* (X) and the ω-filters on X, the maximal ideals of B* (X) are completely described by the corona of the Stone-Cech compactification of X.

  14. Integrated CFD investigation of heat transfer enhancement using multi-tray core catcher in SFR

    International Nuclear Information System (INIS)

    Rakhi; Sharma, Anil Kumar; Velusamy, K.

    2017-01-01

    successive plates. Detailed analysis of isotherms and velocity field in the multiple collection trays with openings reveals improved natural circulation in and around the collection trays in the lower plenum. A three tray core catcher device with multiple openings can accommodate the decay heat of whole core meltdown, without exceeding the safe temperature limits of structural material. Special attention has been paid to the space constraint in the lower plenum while incorporating the three tray core catcher device.

  15. An in-fiber integrated optofluidic device based on an optical fiber with an inner core.

    Science.gov (United States)

    Yang, Xinghua; Yuan, Tingting; Teng, Pingping; Kong, Depeng; Liu, Chunlan; Li, Entao; Zhao, Enming; Tong, Chengguo; Yuan, Libo

    2014-06-21

    A new kind of optofluidic in-fiber integrated device based on a specially designed hollow optical fiber with an inner core is designed. The inlets and outlets are built by etching the surface of the optical fiber without damaging the inner core. A reaction region between the end of the fiber and a solid point obtained after melting is constructed. By injecting samples into the fiber, the liquids can form steady microflows and react in the region. Simultaneously, the emission from the chemiluminescence reaction can be detected from the remote end of the optical fiber through evanescent field coupling. The concentration of ascorbic acid (AA or vitamin C, Vc) is determined by the emission intensity of the reaction of Vc, H2O2, luminol, and K3Fe(CN)6 in the optical fiber. A linear sensing range of 0.1-3.0 mmol L(-1) for Vc is obtained. The emission intensity can be determined within 2 s at a total flow rate of 150 μL min(-1). Significantly, this work presents information for the in-fiber integrated optofluidic devices without spatial optical coupling.

  16. BWR core melt progression phenomena: Experimental analyses

    International Nuclear Information System (INIS)

    Ott, L.J.

    1992-01-01

    In the BWR Core Melt in Progression Phenomena Program, experimental results concerning severe fuel damage and core melt progression in BWR core geometry are used to evaluate existing models of the governing phenomena. These include control blade eutectic liquefaction and the subsequent relocation and attack on the channel box structure; oxidation heating and hydrogen generation; Zircaloy melting and relocation; and the continuing oxidation of zirconium with metallic blockage formation. Integral data have been obtained from the BWR DF-4 experiment in the ACRR and from BWR tests in the German CORA exreactor fuel-damage test facility. Additional integral data will be obtained from new CORA BWR test, the full-length FLHT-6 BWR test in the NRU test reactor, and the new program of exreactor experiments at Sandia National Laboratories (SNL) on metallic melt relocation and blockage formation. an essential part of this activity is interpretation and use of the results of the BWR tests. The Oak Ridge National Laboratory (ORNL) has developed experiment-specific models for analysis of the BWR experiments; to date, these models have permitted far more precise analyses of the conditions in these experiments than has previously been available. These analyses have provided a basis for more accurate interpretation of the phenomena that the experiments are intended to investigate. The results of posttest analyses of BWR experiments are discussed and significant findings from these analyses are explained. The ORNL control blade/canister models with materials interaction, relocation and blockage models are currently being implemented in SCDAP/RELAP5 as an optional structural component

  17. CREATING EFFECTIVE MODELS OF VERTICAL INTEGRATED STRUCTURES IN UKRAINE

    Directory of Open Access Journals (Sweden)

    D. V. Koliesnikov

    2011-01-01

    Full Text Available The results of scientific research aimed at development of methodology-theoretical mechanisms of building the effective models of vertically-integrated structures are presented. A presence of vertically-integrated structures on natural-monopolistic markets at private and governmental sectors of economy and priority directions of integration are given.

  18. Cationic niosomes an effective gene carrier composed of novel spermine-derivative cationic lipids: effect of central core structures.

    Science.gov (United States)

    Opanasopit, Praneet; Leksantikul, Lalita; Niyomtham, Nattisa; Rojanarata, Theerasak; Ngawhirunpat, Tanasait; Yingyongnarongkul, Boon-Ek

    2017-05-01

    Cationic niosomes formulated from Span 20, cholesterol (Chol) and novel spermine-based cationic lipids of multiple central core structures (di(oxyethyl)amino, di(oxyethyl)amino carboxy, 3-amino-1,2-dioxypropyl and 2-amino-1,3-dioxypropyl) were successfully prepared for improving transfection efficiency in vitro. The niosomes composed of spermine cationic lipid with central core structure of di(oxyethyl)amino revealed the highest gene transfection efficiency. To investigate the factors affecting gene transfection and cell viability including differences in the central core structures of cationic lipids, the composition of vesicles, molar ratio of cationic lipids in formulations and the weight ratio of niosomes to DNA. Cationic niosomes composed of nonionic surfactants (Span20), cholesterol and spermine-based cationic lipids of multiple central core structures were formulated. Gene transfection and cell viability were evaluated on a human cervical carcinoma cell line (HeLa cells) using pDNA encoding green fluorescent protein (pEGFP-C2). The morphology, size and charge were also characterized. High transfection efficiency was obtained from cationic niosomes composed of Span20:Chol:cationic lipid at the molar ratio of 2.5:2.5:0.5 mM. Cationic lipids with di(oxyethyl)amino as a central core structure exhibited highest transfection efficiency. In addition, there was also no serum effect on transfection efficiency. These novel cationic niosomes may constitute a good alternative carrier for gene transfection.

  19. A seismic analysis of Korean standard PWR fuels under transition core conditions

    International Nuclear Information System (INIS)

    Kim, Hyeong Koo; Park, Nam Kyu; Jang, Young Ki; Kim, Jae Ik; Kim, Kyu Tae

    2005-01-01

    The PLUS7 fuel is developed to achieve higher thermal performance, burnup and more safety margin than the conventional fuel used in the Korean Standard Nuclear Plants (KSNPs) and to sustain structural integrity under increased seismic requirement in Korea. In this study, a series of seismic analysis have been performed in order to evaluate the structural integrity of fuel assemblies associated with seismic loads in the KSNPs under transition core conditions replacing the Guardian fuel, which is a resident fuel in the KSNP reactors, with the PLUS7 fuel. For the analysis, transition core seismic models have been developed, based on the possible fuel loading patterns. And the maximum impact forces on the spacer grid and various stresses acting on the fuel components have been evaluated and compared with the through-grid strength of spacer grids and the stress criteria specified in the ASME code for each fuel component, respectively. Then three noticeable parameters regarding as important parameters governing fuel assembly dynamic behavior are evaluated to clarify their effects on the fuel impact and stress response. As a result of the study, it has been confirmed that both the PLUS7 and the Guardian fuel sustain their structural integrity under the transition core condition. And when the damping ratio is constant, increasing the natural frequency of fuel assembly results in a decrease in impact force. The fuel assembly flexural stiffness has an effect increasing the stress of fuel assembly, but not the impact force. And the spacer grid stiffness is directly related with the impact force response. (author)

  20. Heysham II/Torness power stations: Seismic qualification of core structures and boilers

    International Nuclear Information System (INIS)

    Shepherd, D.J.

    1990-01-01

    For the advanced gas cooled reactors at Heysham II and Torness the seismic qualification of the core and support structures and boilers posed special problems. In each case the response was highly non-linear due to impacting. Within the core itself there are many thousands of degrees of freedom each dominated by impacting during the seismic event and these impact forces are transmitted to the support structure. The boilers, although supported and located in the design case by linear systems, have their motion during the seismic event controlled by seismic restraints and other components which introduce substantial impacting during seismic excitation. For both these important components a substantial programme of testing was carried out to validate an analysis approach. This testing and correlation with analysis is described in detail for both components. In the case of the core the qualification was based upon a non-linear code AGRCORE which was specifically developed to handle the large number of impact degrees of freedom for this component. The implementation of this code is also described together with a brief summary of results. The boiler analysis was ultimately carried out using conventional finite difference codes and the implementation of these together with a summary of results is also presented. (author). 13 figs, 1 tab

  1. Bringing the Pieces Together – Placing Core Facilities at the Core of Universities and Institutions: Lessons from Mergers, Acquisitions and Consolidations

    Science.gov (United States)

    Mundoma, Claudius

    2013-01-01

    As organizations expand and grow, the core facilities have become more dispersed disconnected. This is happening at a time when collaborations within the organization is a driver to increased productivity. Stakeholders are looking at the best way to bring the pieces together. It is inevitable that core facilities at universities and research institutes have to be integrated in order to streamline services and facilitate ease of collaboration. The path to integration often goes through consolidation, merging and shedding of redundant services. Managing this process requires a delicate coordination of two critical factors: the human (lab managers) factor and the physical assets factor. Traditionally more emphasis has been placed on reorganizing the physical assets without paying enough attention to the professionals who have been managing the assets for years, if not decades. The presentation focuses on how a systems approach can be used to effect a smooth core facility integration process. Managing the human element requires strengthening existing channels of communication and if necessary, creating new ones throughout the organization to break cultural and structural barriers. Managing the physical assets requires a complete asset audit and this requires direct input from the administration as well as the facility managers. Organizations can harness the power of IT to create asset visibility. Successfully managing the physical assets and the human assets increases productivity and efficiency within the organization.

  2. Design of a boiling water reactor core based on an integrated blanket-seed thorium-uranium concept

    International Nuclear Information System (INIS)

    Nunez-Carrera, Alejandro; Francois, Juan Luis; Martin-del-Campo, Cecilia; Espinosa-Paredes, Gilberto

    2005-01-01

    This paper is concerned with the design of a boiling water reactor (BWR) equilibrium core using thorium as a nuclear material in an integrated blanket-seed (BS) assembly. The integrated BS concept comes from the fact that the blanket and the seed rods are located in the same assembly, and are burned out in a once-through cycle. The idea behind the lattice design is to use the thorium conversion capability in a BWR spectrum, taking advantage of the 233 U build-up. A core design was developed to achieve an equilibrium cycle of 365 effective full power days in a standard BWR with a reload of 104 fuel assemblies designed with an average 235 U enrichment of 7.5 w/o in the seed sub-lattice. The main operating parameters, like power, linear heat generation rate and void distributions were obtained as well as the shutdown margin. It was observed that the analyzed parameters behave like those obtained in a standard BWR. The shutdown margin design criterion was fulfilled by addition of a burnable poison region in the fuel assembly

  3. Evaluation of aseismic integrity in the HTTR core-bottom structure. V. On the static and dynamic behavior of graphite HTTR key-keyway structures

    International Nuclear Information System (INIS)

    Futakawa, M.; Iyoku, T.

    1996-01-01

    For pt.IV see ibid., vol.154, p.83-95, 1995. The graphite components in high temperature gas-cooled reactors are connected to each other through a key-keyway structure that has gaps between the key and the keyway to accommodate thermal expansion. Because a dynamic load concentrates on the key-keyway structure during earthquakes, it is considered to be a crucial element for assessing the integrity of the graphite components. A combination of experiments and analyses was employed to investigate the dynamic behavior of the key-keyway structure, i.e. the equivalent stiffness associated with vibrational characteristics of the graphite components and the stress distribution under dynamic loading. The experiments were performed using a graphite scale model and a dynamic photo-elastic method. The analysis was carried out using the finite element method (FEM) code ABAQUS, taking account of the contact behavior between the key and the keyway. The following conclusions were derived. (1) The equivalent stiffness of the key-keyway structure shows nonlinearity, owing to the contact deformation. (2) The equivalent stiffness evaluated by the FEM analysis, taking account of the non-linear contact deformation, is applicable for predicting the vibrational characteristics of the key-keyway structure. (3) The stress concentration under dynamic loading is lower than or nearly equal to that under static loading. The maximum stress concentration of the seismic load can be sufficiently evaluated under static loading conditions. (orig.)

  4. Optimizing the Betts-Miller-Janjic cumulus parameterization with Intel Many Integrated Core (MIC) architecture

    Science.gov (United States)

    Huang, Melin; Huang, Bormin; Huang, Allen H.-L.

    2015-10-01

    The schemes of cumulus parameterization are responsible for the sub-grid-scale effects of convective and/or shallow clouds, and intended to represent vertical fluxes due to unresolved updrafts and downdrafts and compensating motion outside the clouds. Some schemes additionally provide cloud and precipitation field tendencies in the convective column, and momentum tendencies due to convective transport of momentum. The schemes all provide the convective component of surface rainfall. Betts-Miller-Janjic (BMJ) is one scheme to fulfill such purposes in the weather research and forecast (WRF) model. National Centers for Environmental Prediction (NCEP) has tried to optimize the BMJ scheme for operational application. As there are no interactions among horizontal grid points, this scheme is very suitable for parallel computation. With the advantage of Intel Xeon Phi Many Integrated Core (MIC) architecture, efficient parallelization and vectorization essentials, it allows us to optimize the BMJ scheme. If compared to the original code respectively running on one CPU socket (eight cores) and on one CPU core with Intel Xeon E5-2670, the MIC-based optimization of this scheme running on Xeon Phi coprocessor 7120P improves the performance by 2.4x and 17.0x, respectively.

  5. Full-length RNA structure prediction of the HIV-1 genome reveals a conserved core domain

    DEFF Research Database (Denmark)

    Sükösd, Zsuzsanna; Andersen, Ebbe Sloth; Seemann, Ernst Stefan

    2015-01-01

    of the HIV-1 genome is highly variable in most regions, with a limited number of stable and conserved RNA secondary structures. Most interesting, a set of long distance interactions form a core organizing structure (COS) that organize the genome into three major structural domains. Despite overlapping...

  6. Integrated network for structural integrity monitoring of critical components in nuclear facilities, RIMIS

    International Nuclear Information System (INIS)

    Roth, Maria; Constantinescu, Dan Mihai; Brad, Sebastian; Ducu, Catalin; Malinovschi, Viorel

    2008-01-01

    The round table aims to join specialists working in the research area of the Romanian R and D Institutes and Universities involved in structural integrity assessment of materials, especially those working in the nuclear field, together with the representatives of the end user, the Cernavoda NPP. This scientific event will offer the opportunity to disseminate the theoretical, experimental and modelling activities, carried out to date, in the framework of the National Program 'Research of Excellence', Module I 2006-2008, managed by the National Authority for Scientific Research. Entitled 'Integrated Network for Structural Integrity Monitoring of Critical Components in Nuclear Facilities, RIMIS, the project has two main objectives: 1. - to elaborate a procedure applicable to the structural integrity assessment of critical components used in Romanian nuclear facilities (CANDU type Reactor, Hydrogen Isotopes Separation installations); 2. - to integrate the national networking into a similar one of European level, and to enhance the scientific significance of Romanian R and D organisations as well as to increase the contribution in solving major issues of the nuclear field. The topics of the round table will be focused on: 1. Development of a Structural Integrity Assessment Methodology applicable to the nuclear facilities components; 2. Experimental investigation methods and procedures; 3. Numeric simulation of nuclear components behaviour; 4. Further activities to finalize the assessment procedure. Also participations and contributions to sustain the activity in the European Network NULIFE, FP6 will be discussed. (authors)

  7. Integrated magnetics design for HF-link power converters

    Energy Technology Data Exchange (ETDEWEB)

    Ljusev, P.; Andersen, Michael A.E.

    2005-07-01

    This paper deals with the design of integrated magnetics for HF-link converters, where the two integrated magnetic components on the same core do not necessarily belong to the same voltage loop. Depending on the specific HF-link converter topology, the proposed integrated magnetics can either alleviate the derivation of independent auxiliary supply voltages from the main transformer or integrate other magnetic structures, thus saving board space and cutting costs. (au)

  8. Integrated corporate structure life cycle management modeling and organization

    OpenAIRE

    Naumenko, M.; Morozova, L.

    2011-01-01

    Integrated business structure presented as complementary pool of its participants skills. The methodical approach to integrated business structure life cycle modeling proposed. Recommendations of enterprises life cycles stages correlate are submitted.

  9. Structural integrity analyses: can we manage the advances?

    International Nuclear Information System (INIS)

    Sauve, R.

    2006-01-01

    Engineering has been one of a number of disciplines in which significant advances in analysis procedures has taken place in the last two decades. In particular, advances in computer technology and engineering software have revolutionized the assessment of component structural integrity for a wide range of applications. A significant development in computational mechanics directly related to computer technology that has had a profound impact on the field of structural integrity is the finite element method. The finite element method has re-defined and expanded the role of structural integrity assessments by providing comprehensive modelling capabilities to engineers involved in design and failure analyses. As computer processing speeds and capacity have increased, so has the role of computer modelling in assessments of component structural integrity. With new product development cycles shrinking, the role of initial testing is being reduced in favour of computer modelling and simulation to assess component life and durability. For ageing structures, the evaluation of remaining life and the impact of degraded structural integrity becomes tractable with the modern advances in computational methods. The areas of structural integrity that have derived great benefit from the advances in numerical techniques include stress analysis, fracture mechanics, dynamics, heat transfer, structural reliability, probabilistic methods and continuum mechanics in general. One of the salient features of the current methods is the ability to handle large complex steady state or transient dynamic problems that exhibit highly non-linear behaviour. With the ever-increasing usage of these advanced methods, the question is posed: Can we manage the advances? Better still are we managing the advances? As with all technological advances that enter mainstream use, comes the need for education, training and certification in the application of these methods, improved quality assurance procedures and

  10. Structural and magnetic properties of multi-core nanoparticles analysed using a generalised numerical inversion method

    Science.gov (United States)

    Bender, P.; Bogart, L. K.; Posth, O.; Szczerba, W.; Rogers, S. E.; Castro, A.; Nilsson, L.; Zeng, L. J.; Sugunan, A.; Sommertune, J.; Fornara, A.; González-Alonso, D.; Barquín, L. Fernández; Johansson, C.

    2017-01-01

    The structural and magnetic properties of magnetic multi-core particles were determined by numerical inversion of small angle scattering and isothermal magnetisation data. The investigated particles consist of iron oxide nanoparticle cores (9 nm) embedded in poly(styrene) spheres (160 nm). A thorough physical characterisation of the particles included transmission electron microscopy, X-ray diffraction and asymmetrical flow field-flow fractionation. Their structure was ultimately disclosed by an indirect Fourier transform of static light scattering, small angle X-ray scattering and small angle neutron scattering data of the colloidal dispersion. The extracted pair distance distribution functions clearly indicated that the cores were mostly accumulated in the outer surface layers of the poly(styrene) spheres. To investigate the magnetic properties, the isothermal magnetisation curves of the multi-core particles (immobilised and dispersed in water) were analysed. The study stands out by applying the same numerical approach to extract the apparent moment distributions of the particles as for the indirect Fourier transform. It could be shown that the main peak of the apparent moment distributions correlated to the expected intrinsic moment distribution of the cores. Additional peaks were observed which signaled deviations of the isothermal magnetisation behavior from the non-interacting case, indicating weak dipolar interactions. PMID:28397851

  11. Mode division multiplexing over 19-cell hollow-core photonic bandgap fibre by employing integrated mode multiplexer

    NARCIS (Netherlands)

    Chen, H.; Uden, van R.G.H.; Okonkwo, C.M.; Jung, Y.; Wheeler, N.V.; Fokoua, E.N.; Baddela, N.; Petrovich, M.N.; Poletti, F.; Richardson, D.J.; Raz, O.; Waardt, de H.; Koonen, A.M.J.

    2014-01-01

    A photonic integrated mode coupler based on silicon-on-insulator is employed for mode division multiplexing (MDM) over a 193 m 19-cell hollow-core photonic bandgap fibre (HC-PBGF) with a -3 dB bandwidth >120 nm. Robust MDM transmissions using LP01 and LP11 modes, and two degenerate LP11 modes (LP11a

  12. Side core lifter

    Energy Technology Data Exchange (ETDEWEB)

    Edelman, Ya A

    1982-01-01

    A side core lifter is proposed which contains a housing with guide slits and a removable core lifter with side projections on the support section connected to the core receiver. In order to preserve the structure of the rock in the core sample by means of guaranteeing rectilinear movement of the core lifter in the rock, the support and core receiver sections are hinged. The device is equipped with a spring for angular shift in the core-reception part.

  13. Development of seismic analysis model for HTGR core on commercial FEM code

    International Nuclear Information System (INIS)

    Tsuji, Nobumasa; Ohashi, Kazutaka

    2015-01-01

    The aftermath of the Great East Japan Earthquake prods to revise the design basis earthquake intensity severely. In aseismic design of block-type HTGR, the securement of structural integrity of core blocks and other structures which are made of graphite become more important. For the aseismic design of block-type HTGR, it is necessary to predict the motion of core blocks which are collided with adjacent blocks. Some seismic analysis codes have been developed in 1970s, but these codes are special purpose-built codes and have poor collaboration with other structural analysis code. We develop the vertical 2 dimensional analytical model on multi-purpose commercial FEM code, which take into account the multiple impacts and friction between block interfaces and rocking motion on contact with dowel pins of the HTGR core by using contact elements. This model is verified by comparison with the experimental results of 12 column vertical slice vibration test. (author)

  14. Analysis of core-periphery organization in protein contact networks reveals groups of structurally and functionally critical residues.

    Science.gov (United States)

    Isaac, Arnold Emerson; Sinha, Sitabhra

    2015-10-01

    The representation of proteins as networks of interacting amino acids, referred to as protein contact networks (PCN), and their subsequent analyses using graph theoretic tools, can provide novel insights into the key functional roles of specific groups of residues. We have characterized the networks corresponding to the native states of 66 proteins (belonging to different families) in terms of their core-periphery organization. The resulting hierarchical classification of the amino acid constituents of a protein arranges the residues into successive layers - having higher core order - with increasing connection density, ranging from a sparsely linked periphery to a densely intra-connected core (distinct from the earlier concept of protein core defined in terms of the three-dimensional geometry of the native state, which has least solvent accessibility). Our results show that residues in the inner cores are more conserved than those at the periphery. Underlining the functional importance of the network core, we see that the receptor sites for known ligand molecules of most proteins occur in the innermost core. Furthermore, the association of residues with structural pockets and cavities in binding or active sites increases with the core order. From mutation sensitivity analysis, we show that the probability of deleterious or intolerant mutations also increases with the core order. We also show that stabilization centre residues are in the innermost cores, suggesting that the network core is critically important in maintaining the structural stability of the protein. A publicly available Web resource for performing core-periphery analysis of any protein whose native state is known has been made available by us at http://www.imsc.res.in/ ~sitabhra/proteinKcore/index.html.

  15. CanOpen on RASTA: The Integration of the CanOpen IP Core in the Avionics Testbed

    Science.gov (United States)

    Furano, Gianluca; Guettache, Farid; Magistrati, Giorgio; Tiotto, Gabriele; Ortega, Carlos Urbina; Valverde, Alberto

    2013-08-01

    This paper presents the work done within the ESA Estec Data Systems Division, targeting the integration of the CanOpen IP Core with the existing Reference Architecture Test-bed for Avionics (RASTA). RASTA is the reference testbed system of the ESA Avionics Lab, designed to integrate the main elements of a typical Data Handling system. It aims at simulating a scenario where a Mission Control Center communicates with on-board computers and systems through a TM/TC link, thus providing the data management through qualified processors and interfaces such as Leon2 core processors, CAN bus controllers, MIL-STD-1553 and SpaceWire. This activity aims at the extension of the RASTA with two boards equipped with HurriCANe controller, acting as CANOpen slaves. CANOpen software modules have been ported on the RASTA system I/O boards equipped with Gaisler GR-CAN controller and acts as master communicating with the CCIPC boards. CanOpen serves as upper application layer for based on CAN defined within the CAN-in-Automation standard and can be regarded as the definitive standard for the implementation of CAN-based systems solutions. The development and integration of CCIPC performed by SITAEL S.p.A., is the first application that aims to bring the CANOpen standard for space applications. The definition of CANOpen within the European Cooperation for Space Standardization (ECSS) is under development.

  16. Current and historical drivers of landscape genetic structure differ in core and peripheral salamander populations.

    Directory of Open Access Journals (Sweden)

    Rachael Y Dudaniec

    Full Text Available With predicted decreases in genetic diversity and greater genetic differentiation at range peripheries relative to their cores, it can be difficult to distinguish between the roles of current disturbance versus historic processes in shaping contemporary genetic patterns. To address this problem, we test for differences in historic demography and landscape genetic structure of coastal giant salamanders (Dicamptodon tenebrosus in two core regions (Washington State, United States versus the species' northern peripheral region (British Columbia, Canada where the species is listed as threatened. Coalescent-based demographic simulations were consistent with a pattern of post-glacial range expansion, with both ancestral and current estimates of effective population size being much larger within the core region relative to the periphery. However, contrary to predictions of recent human-induced population decline in the less genetically diverse peripheral region, there was no genetic signature of population size change. Effects of current demographic processes on genetic structure were evident using a resistance-based landscape genetics approach. Among core populations, genetic structure was best explained by length of the growing season and isolation by resistance (i.e. a 'flat' landscape, but at the periphery, topography (slope and elevation had the greatest influence on genetic structure. Although reduced genetic variation at the range periphery of D. tenebrosus appears to be largely the result of biogeographical history rather than recent impacts, our analyses suggest that inherent landscape features act to alter dispersal pathways uniquely in different parts of the species' geographic range, with implications for habitat management.

  17. Structural integrity assessment of HANARO pool cover

    International Nuclear Information System (INIS)

    Ryu, Jeong Soo

    2001-11-01

    This report is for the seismic analysis and the structural integrity evaluation of HANARO Pool Cover in accordances with the requirement of the Technical Specification for Seismic Analysis of HANARO Pool Cover. For performing the seismic analysis and evaluating the structural integrity for HANARO Pool Cover, the finite element analysis model using ANSYS 5.7 was developed and the dynamic characteristics were analyzed. The seismic response spectrum analyses of HANARO Pool Cover under the design floor response spectrum loads of OBE and SSE were performed. The analysis results show that the stress values in HANARO Pool Cover for the seismic loads are within the ASME Code limits. It is also confirmed that the fatigue usage factor is less than 1.0. Therefore any damage on structural integrity is not expected when an HANARO Pool Cover is installed in the upper part of the reactor pool

  18. Fe-based nanocrystalline powder cores with ultra-low core loss

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiangyue, E-mail: wangxiangyue1986@163.com [China Iron and Steel Research Institute Group, Beijing 100081 (China); Center of Advanced Technology and Materials Co., Ltd., Beijing 100081 (China); Lu, Zhichao; Lu, Caowei; Li, Deren [China Iron and Steel Research Institute Group, Beijing 100081 (China); Center of Advanced Technology and Materials Co., Ltd., Beijing 100081 (China)

    2013-12-15

    Melt-spun amorphous Fe{sub 73.5}Cu{sub 1}Nb{sub 3}Si{sub 15.5}B{sub 7} alloy strip was crushed to make flake-shaped fine powders. The passivated powders by phosphoric acid were mixed with organic and inorganic binder, followed by cold compaction to form toroid-shaped bonded powder-metallurgical magnets. The powder cores were heat-treated to crystallize the amorphous structure and to control the nano-grain structure. Well-coated phosphate-oxide insulation layer on the powder surface decreased the the core loss with the insulation of each powder. FeCuNbSiB nanocrystalline alloy powder core prepared from the powder having phosphate-oxide layer exhibits a stable permeability up to high frequency range over 2 MHz. Especially, the core loss could be reduced remarkably. At the other hand, the softened inorganic binder in the annealing process could effectively improve the intensity of powder cores. - Highlights: • Fe-based nanocrystalline powder cores were prepared with low core loss. • Well-coated phosphate-oxide insulation layer on the powder surface decreased the core loss. • Fe-based nanocrystalline powder cores exhibited a stable permeability up to high frequency range over 2 MHz. • The softened inorganic binder in the annealing process could effectively improve the intensity of powder cores.

  19. The effects of isolated and integrated 'core stability' training on athletic performance measures: a systematic review.

    Science.gov (United States)

    Reed, Casey A; Ford, Kevin R; Myer, Gregory D; Hewett, Timothy E

    2012-08-01

    Core stability training, operationally defined as training focused to improve trunk and hip control, is an integral part of athletic development, yet little is known about its direct relation to athletic performance. This systematic review focuses on identification of the association between core stability and sports-related performance measures. A secondary objective was to identify difficulties encountered when trying to train core stability with the goal of improving athletic performance. A systematic search was employed to capture all articles related to athletic performance and core stability training that were identified using the electronic databases MEDLINE, CINAHL and SPORTDiscus™ (1982-June 2011). A systematic approach was used to evaluate 179 articles identified for initial review. Studies that performed an intervention targeted toward the core and measured an outcome related to athletic or sport performances were included, while studies with a participant population aged 65 years or older were excluded. Twenty-four in total met the inclusionary criteria for review. Studies were evaluated using the Physical Therapy Evidence Database (PEDro) scale. The 24 articles were separated into three groups, general performance (n = 8), lower extremity (n = 10) and upper extremity (n = 6), for ease of discussion. In the majority of studies, core stability training was utilized in conjunction with more comprehensive exercise programmes. As such, many studies saw improvements in skills of general strengths such as maximum squat load and vertical leap. Surprisingly, not all studies reported measurable increases in specific core strength and stability measures following training. Additionally, investigations that targeted the core as the primary goal for improved outcome of training had mixed results. Core stability is rarely the sole component of an athletic development programme, making it difficult to directly isolate its affect on athletic performance

  20. Structural integrity aspects of reactor safety

    Indian Academy of Sciences (India)

    A large experimental programme supported the structural integrity demonstration. ... Categories in which the structures, systems and components (SSC) are .... One of the ways in which the decision to live with the defect can be aided is the .... The Advanced Heavy Water Reactor (AHWR) (figure 18) being designed by BARC ...

  1. Strengthening, modification and repair techniques’ prioritization for structural integrity control of ageing offshore structures

    International Nuclear Information System (INIS)

    Samarakoon, Samindi M.K.; Ratnayake, R.M. Chandima

    2015-01-01

    Structural integrity control is vital for existing ageing as well as newly built offshore and onshore structures. Structural integrity control becomes highly sensitive to interventions under a potential loss of structural integrity when it comes to offshore oil and gas production and process facilities. This is mainly due to the inherent constraints present in carrying out engineering work in the offshore atmosphere. It has been further exacerbated by the ageing offshore structures and the necessity of carrying out life extension toward the end of their design service lives. Local and international regulations demand the implementation of appropriate strengthening, modification and repair plans when significant changes in the structural integrity are revealed. In this context, strengthening, modification and repair techniques such as welding, member removal/reduction of loading, mechanical clamping and grouted repairs play a vital role. This manuscript presents an approach for prioritizing the strengthening, modification and repair techniques using a multi-criteria analysis approach. An analytic hierarchy process has been selected for the analysis via an illustrative case. It also provides a comprehensive overview of currently existing; strengthening, modification and repair techniques and their comparative pros and cons. - Highlights: • Structural integrity control (SIC) of ageing and intact offshore structures. • Strengthening, modification and/or repair (SMR) techniques have been explained. • Application of multi-criteria analysis conserving SI has been illustrated. • SMR techniques prioritization and sensitivity analysis has been performed

  2. Beacon: A three-dimensional structural analysis code for bowing history of fast breeder reactor cores

    International Nuclear Information System (INIS)

    Miki, K.

    1979-01-01

    The core elements of an LMFBR are bowed due to radial gradients of both temperature and neutron flux in the core. Since all hexagonal elements are multiply supported by adjacent elements or the restraint system, restraint forces and bending stresses are induced. In turn, these forces and stresses are relaxed by irradiation enhanced creep of the material. The analysis of the core bowing behavior requires a three-dimensional consideration of the mechanical interactions among the core elements, because the core consists of different kinds of elements and of fuel assemblies with various burnup histories. A new computational code BEACON has been developed for analyzing the bowing behavior of an LMFBR's core in three dimensions. To evaluate mechanical interactions among core elements, the code uses the analytical method of the earlier SHADOW code. BEACON analyzes the mechanical interactions in three directions, which form angles of 60 0 with one another. BEACON is applied to the 60 0 sector of a typical LMFBR's core for analyzing the bowing history during one equilibrium cycle. 120 core elements are treated, assuming the boundary condition of rotational symmetry. The application confirms that the code can be an effective tool for parametric studies as well as for detailed structural analysis of LMFBR's core. (orig.)

  3. Consensus conference on core radiological parameters to describe lumbar stenosis - an initiative for structured reporting

    Energy Technology Data Exchange (ETDEWEB)

    Andreisek, Gustav; Winklhofer, Sebastian F.X. [University Hospital Zurich, Department of Radiology, Zurich (Switzerland); Deyo, Richard A. [Oregon Health and Science University, Portland, OR (United States); Jarvik, Jeffrey G. [University of Washington, Seattle, WA (United States); Porchet, Francois [Schulthess Klinik, Zuerich (Switzerland); Steurer, Johann [University Hospital Zurich, Horten Center for patient oriented research and knowledge transfer, Zurich (Switzerland); Collaboration: On behalf of the LSOS working group

    2014-12-15

    To define radiological criteria and parameters as a minimum standard in a structured radiological report for patients with lumbar spinal stenosis (LSS) and to identify criteria and parameters for research purposes. All available radiological criteria and parameters for LSS were identified using systematic literature reviews and a Delphi survey. We invited to the consensus meeting, and provided data, to 15 internationally renowned experts from different countries. During the meeting, these experts reached consensus in a structured and systematic discussion about a core list of radiological criteria and parameters for standard reporting. We identified a total of 27 radiological criteria and parameters for LSS. During the meeting, the experts identified five of these as core items for a structured report. For central stenosis, these were ''compromise of the central zone'' and ''relation between fluid and cauda equina''. For lateral stenosis, the group agreed that ''nerve root compression in the lateral recess'' was a core item. For foraminal stenosis, we included ''nerve root impingement'' and ''compromise of the foraminal zone''. As a minimum standard, five radiological criteria should be used in a structured radiological report in LSS. Other parameters are well suited for research. (orig.)

  4. Structural Integrity Assessment for SSDM Hydraulic Cylinder of JRTR

    International Nuclear Information System (INIS)

    Kim, Sanghaun; Lee, Jin Haeng; Cho, Yeonggarp; Yoo, Yeonsik

    2014-01-01

    In HANARO, there are four Control Rod Drive Mechanisms (CRDMs) with an individual step motor and four Shutoff (SO) Units with an individual hydraulic system located at the top of reactor pool. The absorber rods in SO units are poised at the top of the core by the hydraulic force during normal operation. The rods of SO units drop by gravity as the first reactor showdown mechanism when a trip is commended by the reactor protection system (RPS). The CRDMs act as the first reactor shutdown mechanism and reactor regulating as well. The top-mounted SSDM driven by the hydraulic system for the JRTR is under design in KAERI. The SSDM provides an alternate and independent means of reactor shutdown. The second shutdown rods (SSRs) of the SSDM are poised at the top of the core by the hydraulic system during the normal operation and drop by gravity for the reactor trip. Based on the proven technology of the design, operation and maintenance for HANARO, the SSDM for the JRTR has been optimized by the design improvement from the experience and test. This paper aims for the structural integrity assessment for SSDM hydraulic cylinder which is designed on the basis of the SO unit of HANARO but optimized with the new core environment (i. e., geometrical, physical, etc.) of JRTR. A stress analysis of the hydraulic cylinder for the SSDM used in JRTR has been performed through the conservative approach with the uncertainties in the system design step. The crank's pinch load with no slip between the bearing (stiffener) plate of hydraulic cylinder and base plate of mount bracket during SSE has been calculated by considering the design and seismic load combination. The stress by the load combination satisfies the Class 3 criteria given Table NG-3325 of Section III of the ASME Code. The maximum stresses are at the clamp contact region in the cylinder

  5. Exploring the impact of socio-technical core-periphery structures in open source software development

    NARCIS (Netherlands)

    Amrit, Chintan Amrit; van Hillegersberg, Jos

    2010-01-01

    In this paper we apply the social network concept of core-periphery structure to the socio-technical structure of a software development team. We propose a socio-technical pattern that can be used to locate emerging coordination problems in Open Source projects. With the help of our tool and method

  6. Overview of Hanford Single Shell Tank (SST) Structural Integrity

    Energy Technology Data Exchange (ETDEWEB)

    Rast, Richard S.; Washenfelder, Dennis J.; Johnson, Jeremy M.

    2013-11-14

    To improve the understanding of the single-shell tanks (SSTs) integrity, Washington River Protection Solutions, LLC (WRPS), the USDOE Hanford Site tank contractor, developed an enhanced Single-Shell Tank Integrity Project (SSTIP) in 2009. An expert panel on SST integrity, consisting of various subject matters experts in industry and academia, was created to provide recommendations supporting the development of the project. This panel developed 33 recommendations in four main areas of interest: structural integrity, liner degradation, leak integrity and prevention, and mitigation of contamination migration, Seventeen of these recommendations were used to develop the basis for the M-45-10-1 Change Package for the Hanford Federal Agreement and Compliance Order, which is also known as the Tri-Party Agreement. The structural integrity of the tanks is a key element in completing the cleanup mission at the Hanford Site. There are eight primary recommendations related to the structural integrity of Hanford Single-Shell Tanks. Six recommendations are being implemented through current and planned activities. The structural integrity of the Hanford is being evaluated through analysis, monitoring, inspection, materials testing, and construction document review. Structural evaluation in the form of analysis is performed using modern finite element models generated in ANSYS. The analyses consider in-situ, thermal, operating loads and natural phenomena such as earthquakes. Structural analysis of 108 of 149 Hanford Single-Shell Tanks has concluded that the tanks are structurally sound and meet current industry standards. Analysis of the remaining Hanford Single-Shell Tanks is scheduled for FY2014. Hanford Single-Shell Tanks are monitored through a dome deflection program. The program looks for deflections of the tank dome greater than 1/4 inch. No such deflections have been recorded. The tanks are also subjected to visual inspection. Digital cameras record the interior surface of

  7. Overview of Hanford Single Shell Tank (SST) Structural Integrity

    International Nuclear Information System (INIS)

    Rast, Richard S.; Washenfelder, Dennis J.; Johnson, Jeremy M.

    2013-01-01

    To improve the understanding of the single-shell tanks (SSTs) integrity, Washington River Protection Solutions, LLC (WRPS), the USDOE Hanford Site tank contractor, developed an enhanced Single-Shell Tank Integrity Project (SSTIP) in 2009. An expert panel on SST integrity, consisting of various subject matters experts in industry and academia, was created to provide recommendations supporting the development of the project. This panel developed 33 recommendations in four main areas of interest: structural integrity, liner degradation, leak integrity and prevention, and mitigation of contamination migration, Seventeen of these recommendations were used to develop the basis for the M-45-10-1 Change Package for the Hanford Federal Agreement and Compliance Order, which is also known as the Tri-Party Agreement. The structural integrity of the tanks is a key element in completing the cleanup mission at the Hanford Site. There are eight primary recommendations related to the structural integrity of Hanford Single-Shell Tanks. Six recommendations are being implemented through current and planned activities. The structural integrity of the Hanford is being evaluated through analysis, monitoring, inspection, materials testing, and construction document review. Structural evaluation in the form of analysis is performed using modern finite element models generated in ANSYS. The analyses consider in-situ, thermal, operating loads and natural phenomena such as earthquakes. Structural analysis of 108 of 149 Hanford Single-Shell Tanks has concluded that the tanks are structurally sound and meet current industry standards. Analysis of the remaining Hanford Single-Shell Tanks is scheduled for FY2014. Hanford Single-Shell Tanks are monitored through a dome deflection program. The program looks for deflections of the tank dome greater than 1/4 inch. No such deflections have been recorded. The tanks are also subjected to visual inspection. Digital cameras record the interior surface of

  8. Focused library with a core structure extracted from natural products and modified: application to phosphatase inhibitors and several biochemical findings.

    Science.gov (United States)

    Hirai, Go; Sodeoka, Mikiko

    2015-05-19

    Synthesis of a focused library is an important strategy to create novel modulators of specific classes of proteins. Compounds in a focused library are composed of a common core structure and different diversity structures. In this Account, we describe our design and synthesis of libraries focused on selective inhibitors of protein phosphatases (PPases). We considered that core structures having structural and electronic features similar to those of PPase substrates, phosphate esters, would be a reasonable choice. Therefore, we extracted core structures from natural products already identified as PPase inhibitors. Since many PPases share similar active-site structures, such phosphate-mimicking core structures should interact with many enzymes in the same family, and therefore the choice of diversity structures is pivotal both to increase the binding affinity and to achieve specificity for individual enzymes. Here we present case studies of application of focused libraries to obtain PPase inhibitors, covering the overall process from selection of core structures to identification and evaluation of candidates in the focused libraries. To synthesize a library focused on protein serine-threonine phosphatases (PPs), we chose norcantharidin as a core structure, because norcantharidin dicarboxylate shows a broad inhibition profile toward several PPs. From the resulting focused library, we identified a highly selective PP2B inhibitor, NCA-01. On the other hand, to find inhibitors of dual-specificity protein phosphatases (DSPs), we chose 3-acyltetronic acid extracted from natural product RK-682 as a core structure, because its structure resembles the transition state in the dephosphorylation reaction of DSPs. However, a highly selective inhibitor was not found in the resulting focused library. Furthermore, an inherent drawback of compounds having the highly acidic 3-acyltetronic acid as a core structure is very weak potency in cellulo, probably due to poor cell membrane

  9. Structure of the protein core of the glypican Dally-like and localization of a region important for hedgehog signaling

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min-Sung; Saunders, Adam M.; Hamaoka, Brent Y.; Beachy, Philip A.; Leahy, Daniel J. (Stanford-MED); (JHU)

    2011-09-20

    Glypicans are heparan sulfate proteoglycans that modulate the signaling of multiple growth factors active during animal development, and loss of glypican function is associated with widespread developmental abnormalities. Glypicans consist of a conserved, approximately 45-kDa N-terminal protein core region followed by a stalk region that is tethered to the cell membrane by a glycosyl-phosphatidylinositol anchor. The stalk regions are predicted to be random coil but contain a variable number of attachment sites for heparan sulfate chains. Both the N-terminal protein core and the heparan sulfate attachments are important for glypican function. We report here the 2.4-{angstrom} crystal structure of the N-terminal protein core region of the Drosophila glypican Dally-like (Dlp). This structure reveals an elongated, {alpha}-helical fold for glypican core regions that does not appear homologous to any known structure. The Dlp core protein is required for normal responsiveness to Hedgehog (Hh) signals, and we identify a localized region on the Dlp surface important for mediating its function in Hh signaling. Purified Dlp protein core does not, however, interact appreciably with either Hh or an Hh:Ihog complex.

  10. A novel approach to preparing magnetic protein microspheres with core-shell structure

    Science.gov (United States)

    Jiang, Wei; Sun, Zhendong; Li, Fengsheng; Chen, Kai; Liu, Tianyu; Liu, Jialing; Zhou, Tianle; Guo, Rui

    2011-03-01

    Magnetic protein microspheres with core-shell structure were prepared through a novel approach based on the sonochemical method and the emulsion solvent evaporation method. The microspheres are composed of the oleic acid and undecylenic acid modified Fe 3O 4 cores and coated with globular bovine serum albumin (BSA). Under an optimized condition, up to 57.8 wt% of approximately 10 nm superparamagnetic Fe 3O 4 nanoparticles could be uniformly encapsulated into the BSA microspheres with the diameter of approximately 160 nm and the high saturation magnetization of 38.5 emu/g, besides of the abundant functional groups. The possible formation mechanism of magnetic microspheres was discussed in detail.

  11. GENERIC Integrators: Structure Preserving Time Integration for Thermodynamic Systems

    Science.gov (United States)

    Öttinger, Hans Christian

    2018-04-01

    Thermodynamically admissible evolution equations for non-equilibrium systems are known to possess a distinct mathematical structure. Within the GENERIC (general equation for the non-equilibrium reversible-irreversible coupling) framework of non-equilibrium thermodynamics, which is based on continuous time evolution, we investigate the possibility of preserving all the structural elements in time-discretized equations. Our approach, which follows Moser's [1] construction of symplectic integrators for Hamiltonian systems, is illustrated for the damped harmonic oscillator. Alternative approaches are sketched.

  12. Hydrogen production with fully integrated fuel cycle gas and vapour core reactors

    International Nuclear Information System (INIS)

    Anghaie, S.; Smith, B.

    2004-01-01

    This paper presents results of a conceptual design study involving gas and vapour core reactors (G/VCR) with a combined scheme to generate hydrogen and power. The hydrogen production schemes include high temperature electrolysis as well as two dominant thermochemical hydrogen production processes. Thermochemical hydrogen production processes considered in this study included the calcium-bromine process and the sulphur-iodine processes. G/VCR systems are externally reflected and moderated nuclear energy systems fuelled by stable uranium compounds in gaseous or vapour phase that are usually operated at temperatures above 1500 K. A gas core reactor with a condensable fuel such as uranium tetrafluoride (UF 4 ) or a mixture of UF 4 and other metallic fluorides (BeF 2 , LiF, KF, etc.) is commonly known as a vapour core reactor (VCR). The single most relevant and unique feature of gas/vapour core reactors is that the functions of fuel and coolant are combined into one. The reactor outlet temperature is not constrained by solid fuel-cladding temperature limits. The maximum fuel/working fluid temperature in G/VCR is only constrained by the reactor vessel material limits, which is far less restrictive than the fuel clad. Therefore, G/VCRs can potentially provide the highest reactor and cycle temperature among all existing or proposed fission reactor designs. Gas and vapour fuel reactors feature very low fuel inventory and fully integrated fuel cycle that provide for exceptional sustainability and safety characteristics. With respect to fuel utilisation, there is no fuel burn-up limit for gas core reactors due to continuous recycling of the fuel. Owing to the flexibility in nuclear design characteristics of cavity reactors, a wide range of conversion ratio from completely burner to breeder is achievable. The continuous recycling of fuel in G/VCR systems allow for complete burning of actinides without removing and reprocessing of the fuel. The only waste products at the back

  13. WNP-2 core model upgrade

    International Nuclear Information System (INIS)

    Golightly, C.E.; Ravindranath, T.K.; Belblidia, L.A.; O'Farrell, D.; Andersen, P.S.

    2006-01-01

    The paper describes the core model upgrade of the WNP-2 training simulator and the reasons for the upgrade. The core model as well as the interface with the rest of the simulator are briefly described . The paper also describes the procedure that will be used by WNP-2 to update the simulator core data after future core reloads. Results from the fully integrated simulator are presented. (author)

  14. Dynamic response of a multielement HTGR core

    International Nuclear Information System (INIS)

    Reich, M.; Bezler, P.; Koplik, B.; Curreri, J.; Goradia, H.; Lasker, L.

    1977-01-01

    One of the primary factors in determining the structural integrity and consequently the safety of a High Temperature Gas-Cooled Reactor (HTGR) is the dynamic response of the core when subjected to a seismic excitation. The HTGR core under consideration consists of several thousands of hexagonal elements arranged in vertical stacks containing about eight elements per stack. There are clearance gaps between adjacent elements, which can change substantially due to radiation effects produced during their active lifetime. Surrounding the outer periphery of the core are reflector blocks and restraining spring-pack arrangements which bear against the reactor vessel structure (PCRV). Earthquake input motions to this type of core arrangement will result in multiple impacts between adjacent elements as well as between the reflector blocks and the restraining spring packs. The highly complex nonlinear response associated with the multiple collisions across the clearance gaps and with the spring packs is the subject matter of this paper. Of particular importance is the ability to analyze a complex nonlinear system with gaps by employing a model with a reduced number of masses. This is necessary in order to obtain solutions in a time-frame and at a cost which is not too expensive. In addition the effect of variations in total clearance as well as the initial distribution of clearances between adjacent elements is of primary concern. Both of these aspects of the problem are treated in the present analysis. Finally, by constraining the motion of the reflector blocks, a more realistic description of the dynamic response of the multi-element HTGR core is obtained

  15. Apparatus for measurement of tree core density

    International Nuclear Information System (INIS)

    Blincow, D.W.

    1975-01-01

    Apparatus is described for direct measurement of the density of a core sample from a tree. A radiation source and detector with a receptacle for the core therebetween, an integrator unit for the detector output, and an indicating meter driven by the integrator unit are described

  16. An analysis of reactor structural response to fuel sodium interaction in a hypothetical core disruptive accident

    International Nuclear Information System (INIS)

    Suzuki, K.; Tashiro, M.; Sasanuma, K.; Nagashima, K.

    1976-01-01

    This study shows the effect of constraints around FSI zone on FSI phenomena and deformations of reactor structures. SUGAR-PISCES code system has been developed to evaluate the phenomena of FSI and the response of reactor structure. SUGAR calculates the phenomena of FSI. PISCES, developed by Physics International Company in U.S.A., calculates the dynamic response of reactor structure in two-dimensional, time-dependent finite-difference Lagrangian model. The results show that the peak pressure and energy by FSI and the deformation of reactor structures are about twice in case of FSI zone surrounding by blanket than by coolant. The FSI phenomena highly depend on the reactor structure and the realistic configuration around core must be considered for analyzing hypothetical core disruptive accident. This work was supported by a grant from Power Reactor and Nuclear Fuel Development Corporation. (auth.)

  17. Development of Mechanical Structure Design Technology for LMR

    International Nuclear Information System (INIS)

    Lee, Jae Han; Joo, Young Sang; Lee, Hyeong Yeon

    2007-03-01

    Structural integrity and design simplifications were secured on reactor core support system, upper internal structure and core catcher of KALIMER-600. The evaluation on the suitability of high temperature and seismic design of reactor structures, and the structural integrity evaluation on reactor components and high temperature pipings are performed. The interfaces between the components and ISI accessibility are checked. Lightening of reactor building by 7%, the seismic design for 0.3g seismic loads and improvement of reactor structural design concept for KALIMER-600 have been carried out. Remote inspection technique using ultrasonic wave guide sensor was acquired as a visualization method for reactor internals under opaque sodium environments. The basic guideline on high temperature structure assessment as an assessment procedure on high temperature inelastic behaviour has been completed. In high temperature creep-fatigue test, totally 500 cycles (totally 700 hold time) were carried on cylindrical test and IHTS co-axial pipe test models. The behaviors of creep-fatigue damage and creep-fatigue crack behaviour were investigated, and the DB on the structural test were established. The seismic response tests on 19-sub assembly validation test model in air and in water were carried out, and its multi-purpose characteristics and reliability on the SAC-CORE3.0 code developed for core seismic response analysis were validated

  18. Experimental investigation of flow dynamics in the SNR-upper-core structure

    International Nuclear Information System (INIS)

    Meyer, L.

    1985-03-01

    This report describes the results of a simulant-material experimental investigation of flow dynamics in the upper-core (UCS) during a HCDA of a LMFBR. The experiments were designed to verify some of the thermal-hydraulic models in SIMMER-II. Four different liquids were used to simulate the flashing U0 2 ; and numerous parameter variations were made regarding initial pressure, temperature, and configurations of the test apparatus. The experiments showed the large effect of the heat transfer in the UCS and the relatively small effect of friction. The reduction in final kinetic energy by the presence of the UCS is shown as a function of the initial pressure and the temperature difference between core and UCS. Calculations with SIMMER-II for the wide range of experiments produced results for the kinetic energy within a factor of 2 of the experimental results without changing the crucial input parameters. The minimum droplet size during the flashing process and the structure-side heat transfer coefficient were determined to be the crucial and most sensitive parameters. This reflects deficiencies in modeling of both the flashing process and the transient heat conduction in the structure. (orig./HP) [de

  19. Fluid structure interaction in LMFBR cores modelling by an homogenization method

    International Nuclear Information System (INIS)

    Brochard, D.

    1988-01-01

    The upper plenum of the internals of PWR, the steam generator bundle, the nuclear reactor core, may be schematically represented by a beam bundle immersed in a fluid. The dynamical study of such a system needs to take into account fluid structure interaction. A refined model at the scale of the tubes can be used but leads to a very difficult problem to solve even on the largest computers. The homogenization method allows to have an approximation of the fluid structure interaction for the global behaviour of the bundle. It consists of replacing the heterogeneous physical medium (tubes and fluid) by an equivalent homogeneous medium whose characteristics are determined from the resolution of a set of problems on the elementary cell. The aim of this paper is to present the main steps of the determination of this equivalent medium in the case of small displacements (acoustic behaviour of the fluid). Then an application to LMFBR core geometry has been realised, which shows the lowering effect on eigenfrequencies due to the fluid. Some comparisons with test results will be presented. 6 refs, 7 figs, 2 tabs

  20. Development of integrated damage detection system for international America's Cup class yacht structures using a fiber optic distributed sensor

    Science.gov (United States)

    Akiyoshi, Shimada; Naruse, Hiroshi; Uzawa, Kyoshi; Murayama, Hideaki; Kageyama, Kazuro

    2000-06-01

    We constructed a new health monitoring system to detect damage using a fiber optic distributed sensor, namely a Brillouin optical time domain reflectometer (BOTDR), and installed it in International America's Cup Class (IACC) yachts, the Japanese entry in America's Cup 2000. IACC yachts are designed to be as fast as possible, so it is essential that they are lightweight and encounter minimum water resistance. Advanced composite sandwich structures, made with carbon fiber reinforced plastic (CFRP) skins and a honeycomb core, are used to achieve the lightweight structure. Yacht structure designs push the strength of the materials to their limit and so it is important to detect highly stressed or damaged regions that might cause a catastrophic fracture. The BOTDR measures changes in the Brillouin frequency shift caused by distributed strain along one optical fiber. We undertook two experiments: a pulling test and a four point bending test on a composite beam. The former showed that no slippage occurred between the optical fiber glass and its coating. The latter confirmed that a debonding between the skin and the core of 300 mm length could be found with the BOTDR. Next we examined the effectiveness with which this system can assess the structural integrity of IACC yachts. The results show that our system has the potential for use as a damage detection system for smart structures.

  1. Hepatitis C Virus E2 Envelope Glycoprotein Core Structure

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Leopold; Giang, Erick; Nieusma, Travis; Kadam, Rameshwar U.; Cogburn, Kristin E.; Hua, Yuanzi; Dai, Xiaoping; Stanfield, Robyn L.; Burton, Dennis R.; Ward, Andrew B.; Wilson, Ian A.; Law, Mansun

    2014-08-26

    Hepatitis C virus (HCV), a Hepacivirus, is a major cause of viral hepatitis, liver cirrhosis, and hepatocellular carcinoma. HCV envelope glycoproteins E1 and E2 mediate fusion and entry into host cells and are the primary targets of the humoral immune response. The crystal structure of the E2 core bound to broadly neutralizing antibody AR3C at 2.65 angstroms reveals a compact architecture composed of a central immunoglobulin-fold β sandwich flanked by two additional protein layers. The CD81 receptor binding site was identified by electron microscopy and site-directed mutagenesis and overlaps with the AR3C epitope. The x-ray and electron microscopy E2 structures differ markedly from predictions of an extended, three-domain, class II fusion protein fold and therefore provide valuable information for HCV drug and vaccine design.

  2. Numerical study on coolant flow distribution at the core inlet for an integral pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Lin; Peng, Min Jun; Xia, Genglei; Lv, Xing; Li, Ren [Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University, Harbin (China)

    2017-02-15

    When an integral pressurized water reactor is operated under low power conditions, once-through steam generator group operation strategy is applied. However, group operation strategy will cause nonuniform coolant flow distribution at the core inlet and lower plenum. To help coolant flow mix more uniformly, a flow mixing chamber (FMC) has been designed. In this paper, computational fluid dynamics methods have been used to investigate the coolant distribution by the effect of FMC. Velocity and temperature characteristics under different low power conditions and optimized FMC configuration have been analyzed. The results illustrate that the FMC can help improve the nonuniform coolant temperature distribution at the core inlet effectively; at the same time, the FMC will induce more resistance in the downcomer and lower plenum.

  3. Clinical data integration model. Core interoperability ontology for research using primary care data.

    Science.gov (United States)

    Ethier, J-F; Curcin, V; Barton, A; McGilchrist, M M; Bastiaens, H; Andreasson, A; Rossiter, J; Zhao, L; Arvanitis, T N; Taweel, A; Delaney, B C; Burgun, A

    2015-01-01

    This article is part of the Focus Theme of METHODS of Information in Medicine on "Managing Interoperability and Complexity in Health Systems". Primary care data is the single richest source of routine health care data. However its use, both in research and clinical work, often requires data from multiple clinical sites, clinical trials databases and registries. Data integration and interoperability are therefore of utmost importance. TRANSFoRm's general approach relies on a unified interoperability framework, described in a previous paper. We developed a core ontology for an interoperability framework based on data mediation. This article presents how such an ontology, the Clinical Data Integration Model (CDIM), can be designed to support, in conjunction with appropriate terminologies, biomedical data federation within TRANSFoRm, an EU FP7 project that aims to develop the digital infrastructure for a learning healthcare system in European Primary Care. TRANSFoRm utilizes a unified structural / terminological interoperability framework, based on the local-as-view mediation paradigm. Such an approach mandates the global information model to describe the domain of interest independently of the data sources to be explored. Following a requirement analysis process, no ontology focusing on primary care research was identified and, thus we designed a realist ontology based on Basic Formal Ontology to support our framework in collaboration with various terminologies used in primary care. The resulting ontology has 549 classes and 82 object properties and is used to support data integration for TRANSFoRm's use cases. Concepts identified by researchers were successfully expressed in queries using CDIM and pertinent terminologies. As an example, we illustrate how, in TRANSFoRm, the Query Formulation Workbench can capture eligibility criteria in a computable representation, which is based on CDIM. A unified mediation approach to semantic interoperability provides a

  4. Rift Valley fever phlebovirus NSs protein core domain structure suggests molecular basis for nuclear filaments.

    Science.gov (United States)

    Barski, Michal; Brennan, Benjamin; Miller, Ona K; Potter, Jane A; Vijayakrishnan, Swetha; Bhella, David; Naismith, James H; Elliott, Richard M; Schwarz-Linek, Ulrich

    2017-09-15

    Rift Valley fever phlebovirus (RVFV) is a clinically and economically important pathogen increasingly likely to cause widespread epidemics. RVFV virulence depends on the interferon antagonist non-structural protein (NSs), which remains poorly characterized. We identified a stable core domain of RVFV NSs (residues 83-248), and solved its crystal structure, a novel all-helical fold organized into highly ordered fibrils. A hallmark of RVFV pathology is NSs filament formation in infected cell nuclei. Recombinant virus encoding the NSs core domain induced intranuclear filaments, suggesting it contains all essential determinants for nuclear translocation and filament formation. Mutations of key crystal fibril interface residues in viruses encoding full-length NSs completely abrogated intranuclear filament formation in infected cells. We propose the fibrillar arrangement of the NSs core domain in crystals reveals the molecular basis of assembly of this key virulence factor in cell nuclei. Our findings have important implications for fundamental understanding of RVFV virulence.

  5. Comparative study on neutron data in integral experiments of MYRRHA mockup critical cores in the VENUS-F reactor

    Directory of Open Access Journals (Sweden)

    Krása Antonín

    2017-01-01

    Full Text Available VENUS-F is a fast, zero-power reactor with 30% wt. metallic uranium fuel and solid lead as coolant simulator. It serves as a mockup of the MYRRHA reactor core. This paper describes integral experiments performed in two critical VENUS-F core configurations (with and without graphite reflector. Discrepancies between experiments and Monte Carlo calculations (MCNP5 of keff, fission rate spatial distribution and reactivity effects (lead void and fuel Doppler depending on a nuclear data library used (JENDL-4.0, ENDF-B-VII.1, JEFF-3.1.2, 3.2, 3.3T2 are presented.

  6. Comparative study on neutron data in integral experiments of MYRRHA mockup critical cores in the VENUS-F reactor

    Science.gov (United States)

    Krása, Antonín; Kochetkov, Anatoly; Baeten, Peter; Vittiglio, Guido; Wagemans, Jan; Bécares, Vicente

    2017-09-01

    VENUS-F is a fast, zero-power reactor with 30% wt. metallic uranium fuel and solid lead as coolant simulator. It serves as a mockup of the MYRRHA reactor core. This paper describes integral experiments performed in two critical VENUS-F core configurations (with and without graphite reflector). Discrepancies between experiments and Monte Carlo calculations (MCNP5) of keff, fission rate spatial distribution and reactivity effects (lead void and fuel Doppler) depending on a nuclear data library used (JENDL-4.0, ENDF-B-VII.1, JEFF-3.1.2, 3.2, 3.3T2) are presented.

  7. INSIGHT: an integrated scoping analysis tool for in-core fuel management of PWR

    International Nuclear Information System (INIS)

    Yamamoto, Akio; Noda, Hidefumi; Ito, Nobuaki; Maruyama, Taiji.

    1997-01-01

    An integrated software tool for scoping analysis of in-core fuel management, INSIGHT, has been developed to automate the scoping analysis and to improve the fuel cycle cost using advanced optimization techniques. INSIGHT is an interactive software tool executed on UNIX based workstations that is equipped with an X-window system. INSIGHT incorporates the GALLOP loading pattern (LP) optimization module that utilizes hybrid genetic algorithms, the PATMAKER interactive LP design module, the MCA multicycle analysis module, an integrated database, and other utilities. Two benchmark problems were analyzed to confirm the key capabilities of INSIGHT: LP optimization and multicycle analysis. The first was the single cycle LP optimization problem that included various constraints. The second one was the multicycle LP optimization problem that includes the assembly burnup limitation at rod cluster control (RCC) positions. The results for these problems showed the feasibility of INSIGHT for the practical scoping analysis, whose work almost consists of LP generation and multicycle analysis. (author)

  8. Nonlinear structural analysis using integrated force method

    Indian Academy of Sciences (India)

    A new formulation termed the Integrated Force Method (IFM) was proposed by Patnaik ... nated ``Structure (nY m)'' where (nY m) are the force and displacement degrees of ..... Patnaik S N, Yadagiri S 1976 Frequency analysis of structures.

  9. Impact on breeding rate of different Molten Salt reactor core structures

    International Nuclear Information System (INIS)

    Wang Haiwei; Mei Longwei; Cai Xiangzhou; Chen Jingen; Guo Wei; Jiang Dazhen

    2013-01-01

    Background: Molten Salt Reactor (MSR) has several advantages over the other Generation IV reactor. Referred to the French CNRS research and compared to the fast reactor, super epithermal neutron spectrum reactor type is slightly lower and beading rate reaches 1.002. Purpose: The aim is to explore the best conversion zone layout scheme in the super epithermal neutron spectrum reactor. This study can make nuclear fuel as one way to solve the energy problems of mankind in future. Methods: Firstly, SCALE program is used for molten salt reactor graphite channel, molten salt core structure, control rods, graphite reflector and layer cladding structure. And the SMART modules are used to record the important actinides isotopes and their related reaction values of each reaction channel. Secondly, the thorium-uranium conversion rate is calculated. Finally, the better molten salt reactor core optimum layout scheme is studied comparing with various beading rates. Results: Breading zone layout scheme has an important influence on the breading rate of MSR. Central graphite channels in the core can get higher neutron flux irradiation. And more 233 Th can convert to 233 Pa, which then undergoes beta decay to become 233 U. The graphite in the breading zone gets much lower neutron flux irradiation, so the life span of this graphite can be much longer than that of others. Because neutron flux irradiation in the uranium molten salt graphite has nearly 10 times higher than the graphite in the breading zone, it has great impact on the thorium-uranium conversion rates. For the super epithermal neutron spectrum molten salt reactors, double salt design cannot get higher thorium-uranium conversion rates. The single molten salt can get the same thorium-uranium conversion rate, meanwhile it can greatly extend the life of graphite in the core. Conclusions: From the analysis of calculation results, Blanket breeding area in different locations in the core can change the breeding rates of thorium

  10. Electronic structure and intersubband magnetoabsorption spectra of CdSe/CdS core-shell nanowires

    Science.gov (United States)

    Xiong, Wen

    2016-10-01

    The electronic structures of CdSe/CdS core-shell nanowires are calculated based on the effective-mass theory, and it is found that the hole states in CdSe/CdS core-shell nanowires are strongly mixed, which are very different from the hole states in CdSe or CdS nanowires. In addition, we find the three highest hole states at the Γ point are almost localized in the CdSe core and the energies of the hole states in CdSe/CdS core-shell nanowires can be enhanced greatly when the core radius Rc increases and the total radius R is fixed. The degenerate hole states are split by the magnetic field, and the split energies will increase when |Jh | increases from 1/2 to 7/2, while they are almost not influenced by the change of the core radius Rc. The absorption spectra of CdSe/CdS core-shell nanowires at the Γ point are also studied in the magnetic field when the temperature T is considered, and we find there are only two peaks will arise if the core radius Rc and the temperature T increase. The intensity of each optical absorption can be considerably enhanced by increasing the core radius Rc when the temperature T is fixed, it is due to the increase of their optical transition matrix element. Meanwhile, the intensity of each optical absorption can be decreased when the temperature T increases and the core radius Rc is fixed, and this is because the Fermi-Dirac distribution function of the corresponding hole states will increase as the increase of the temperature T.

  11. Structural Integrity Evaluation of Containment Vessel under Severe Accident for PGSFR

    International Nuclear Information System (INIS)

    Lee, Seong-Hyeon; Koo, Gyeong-Hoi; Kim, Sung-Kyun

    2016-01-01

    This paper provides structural integrity evaluation results of CV of the PGSFR(Prototype Gen-IV Sodium Fast Reactor) under severe accident through transient analysis. The evaluation was carried out according to ASME B and PV Code Sec. III-Subsection NH rule. Structural integrity of CV was evaluated through transient analysis of structure in case of severe accident. Stress evaluation results for selected evaluation sections satisfy design criteria of ASME B and PV Code Sec. III Subsection NH. The transient load condition of normal operation will considered in the future work. The purpose of RVCS is to maintain the integrity of concrete structure during normal power operation. Therefore RVCS should be designed to keep the temperature of concrete surface under design limit and to minimize heat loss through CV(Containment Vessel). And in case of severe accident, the integrity of reactor structure and concrete structure should be maintained. Therefore RVCS should be designed to satisfy ASME Level D service limits. When RVCS works with breakdown of DHRS after severe accident, the temperature change of inner and outer surface of CV over time can affect structural integrity of CV. To verify the structural integrity, it is necessary to perform transient analysis of CV structure under changing temperature over time

  12. Shock absorber in combination with a nuclear reactor core structure

    International Nuclear Information System (INIS)

    Housman, J.J.

    1976-01-01

    This invention relates to the provision of shock absorbers for use in blind control rod passages of a nuclear reactor core structure which are not subject to degradation. The shock absorber elements are made of a porous brittle carbonaceous material, a porous brittle ceramic material, or a porous brittle refractory oxide and have a void volume of between 30% and 70% of the total volume of the element for energy absorption by fracturing due to impact loading by a control rod. (UK)

  13. Effect of annealing temperature on the stress and structural properties of Ge core fibre

    Science.gov (United States)

    Zhao, Ziwen; Cheng, Xueli; Xue, Fei; He, Ting; Wang, Tingyun

    2017-09-01

    Effect of annealing temperature on the stress and structural properties of a Ge core fibre via the molten core drawing (MCD) method is investigated using Raman spectroscopy, Scanning electronic microscopy (SEM), and X-ray diffraction. The experimental results showed that the Raman peak position of the Ge fibre shifted from 297.6 cm-1 to 300.5 cm-1, and the FWHM value decreased from 4.53 cm-1 to 4.31 cm-1, when the annealing is carried out at 700 °C, 800 °C, and 900 °C, respectively. For the Ge core annealed at 900 °C, an apparent crystal grain can be seen in the SEM image, and the diffraction peaks of the (3 3 1) plane are generated in the X-ray diffraction spectra. These results show that optimising the annealing temperature allows the release of the residual stress in the Ge core. When the Ge core fibre is annealed at 900 °C, it exhibits the lowest residual stress and the highest crystal quality, and the quality improvement relative to that of the sample annealed at 800 °C is significant. Hence, annealing at around 900 °C can greatly improve the quality of a Ge core fibre. Further performance improvement of the Ge core fibre by annealing techniques can be anticipated.

  14. MMM: A toolbox for integrative structure modeling.

    Science.gov (United States)

    Jeschke, Gunnar

    2018-01-01

    Structural characterization of proteins and their complexes may require integration of restraints from various experimental techniques. MMM (Multiscale Modeling of Macromolecules) is a Matlab-based open-source modeling toolbox for this purpose with a particular emphasis on distance distribution restraints obtained from electron paramagnetic resonance experiments on spin-labelled proteins and nucleic acids and their combination with atomistic structures of domains or whole protomers, small-angle scattering data, secondary structure information, homology information, and elastic network models. MMM does not only integrate various types of restraints, but also various existing modeling tools by providing a common graphical user interface to them. The types of restraints that can support such modeling and the available model types are illustrated by recent application examples. © 2017 The Protein Society.

  15. Integrated structure/control design - Present methodology and future opportunities

    Science.gov (United States)

    Weisshaar, T. A.; Newsom, J. R.; Zeiler, T. A.; Gilbert, M. G.

    1986-01-01

    Attention is given to current methodology applied to the integration of the optimal design process for structures and controls. Multilevel linear decomposition techniques proved to be most effective in organizing the computational efforts necessary for ISCD (integrated structures and control design) tasks. With the development of large orbiting space structures and actively controlled, high performance aircraft, there will be more situations in which this concept can be applied.

  16. Preparation of core-shell structured CaCO3 microspheres as rapid and recyclable adsorbent for anionic dyes

    Science.gov (United States)

    Zhao, Mengen; Chen, Zhenhua; Lv, Xinyan; Zhou, Kang; Zhang, Jie; Tian, Xiaohan; Ren, Xiuli; Mei, Xifan

    2017-09-01

    Core-shell structured CaCO3 microspheres (MSs) were prepared by a facile, one-pot method at room temperature. The adsorbent dosage and adsorption time of the obtained CaCO3 MSs were investigated. The results suggest that these CaCO3 MSs can rapidly and efficiently remove 99-100% of anionic dyes within the first 2 min. The obtained CaCO3 MSs have a high Brunauer-Emmett-Teller surface area (211.77 m2 g-1). In addition, the maximum adsorption capacity of the obtained CaCO3 MSs towards Congo red was 99.6 mg g-1. We also found that the core-shell structured CaCO3 MSs have a high recycling capability for removing dyes from water. Our results demonstrate that the prepared core-shell structured CaCO3 MSs can be used as an ideal, rapid, efficient and recyclable adsorbent to remove dyes from aqueous solution.

  17. Building a Tower of Babel? Integrating Core Motivations and Features of Social Structure into the Political Psychology of Political Action

    NARCIS (Netherlands)

    van Zomeren, Martijn

    The political psychology of political action provides the potential for building bridges between scholars from different fields. The main aim of this article is to set some baby steps toward building two conceptual bridges by bringing together a core motivation approach to political action with core

  18. Integration of fluidic jet actuators in composite structures

    Science.gov (United States)

    Schueller, Martin; Lipowski, Mathias; Schirmer, Eckart; Walther, Marco; Otto, Thomas; Geßner, Thomas; Kroll, Lothar

    2015-04-01

    Fluidic Actuated Flow Control (FAFC) has been introduced as a technology that influences the boundary layer by actively blowing air through slots or holes in the aircraft skin or wind turbine rotor blade. Modern wing structures are or will be manufactured using composite materials. In these state of the art systems, AFC actuators are integrated in a hybrid approach. The new idea is to directly integrate the active fluidic elements (such as SJAs and PJAs) and their components in the structure of the airfoil. Consequently, the integration of such fluidic devices must fit the manufacturing process and the material properties of the composite structure. The challenge is to integrate temperature-sensitive active elements and to realize fluidic cavities at the same time. The transducer elements will be provided for the manufacturing steps using roll-to-roll processes. The fluidic parts of the actuators will be manufactured using the MuCell® process that provides on the one hand the defined reproduction of the fluidic structures and, on the other hand, a high light weight index. Based on the first design concept, a demonstrator was developed in order to proof the design approach. The output velocity on the exit was measured using a hot-wire anemometer.

  19. Assessment of integrity of structures containing cracks

    International Nuclear Information System (INIS)

    Townley, C.H.A.

    1976-01-01

    The object of the investigations is to provide a method of assessing the safety and integrity of structures containing cracklike defects. Estimated load at which the cracked structure will fail is compared with the highest load likely to be applied in service

  20. Mastery of Content Representation (CoRes) Related TPACK High School Biology Teacher

    Science.gov (United States)

    Nasution, W. R.; Sriyati, S.; Riandi, R.; Safitri, M.

    2017-09-01

    The purpose of this study was to determine the mastery of Content Representation (CoRes) teachers related to the integration of technology and pedagogy in teaching Biology (TPACK). This research uses a descriptive method. The data were taken using instruments CoRes as the primary data and semi-structured interviews as supporting data. The subjects were biology teacher in class X MIA from four schools in Bandung. Teachers raised CoRes was analyzed using a scoring rubric CoRes with coding 1-3 then categorized into a group of upper, middle, or lower. The results showed that the two teachers in the lower category. This results means that the control of teachers in defining the essential concept in the CoRes has not been detailed and specific. Meanwhile, two other teachers were in the middle category. This means that the ability of teachers to determine the essential concepts in the CoRes are still inadequate so that still needs to be improved.

  1. Gap state related blue light emitting boron-carbon core shell structures

    International Nuclear Information System (INIS)

    Singh, Paviter; Kaur, Manpreet; Singh, Bikramjeet; Kaur, Gurpreet; Singh, Kulwinder; Kumar, Akshay; Kumar, Manjeet; Bala, Rajni; Thakur, Anup

    2016-01-01

    Boron-carbon core shell structures have been synthesized by solvo-thermal synthesis route. The synthesized material is highly pure. X-ray diffraction analysis confirms the reduction of reactants in to boron and carbon. Scanning Electron Microscopy (SEM) analysis showed that the shell is uniform with average thickness of 340 nm. Photo luminescence studies showed that the material is blue light emitting with CIE color coordinates: x=0.16085, y=0.07554.

  2. West-Life, Tools for Integrative Structural Biology

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    Structural biology is part of molecular biology focusing on determining structure of macromolecules inside living cells and cell membranes. As macromolecules determines most of the functions of cells the structural knowledge is very useful for further research in metabolism, physiology to application in pharmacology etc. As macromolecules are too small to be observed directly by light microscope, there are other methods used to determine the structure including nuclear magnetic resonance (NMR), X-Ray crystalography, cryo electron microscopy and others. Each method has it's advantages and disadvantages in the terms of availability, sample preparation, resolution. West-Life project has ambition to facilitate integrative approach using multiple techniques mentioned above. As there are already lot of software tools to process data produced by the techniques above, the challenge is to integrate them together in a way they can be used by experts in one technique but not experts in other techniques. One product ...

  3. Fluid-structure interaction analysis of a deck structure during a HCDA

    International Nuclear Information System (INIS)

    Kulak, R.F.

    1979-01-01

    Presented is an assessment of the structural integrity of the deck structure of a pool-type LMFBR during a Hypothetical Core Disruptive Accident (HCDA). During this accident the sodium above the core is propelled upward until it impacts against the deck structure. This hydrodynamic loading could produce (1) significant structural damage and (2) sodium leak paths. A finite-element model is used to study the deck dynamics during slug impact. By using the symmetry of the system, a sector model which accounts for the salient features of the system is developed. The main radial I-beam, component support I-beam and bottom annular plate are modeled using triangular plate elements. The concrete fill is modeled using hexahedral continuum elements. Using the above finite-element model the dynamics of the deck during a HCDA are investigated

  4. Structural improvement of unliganded simian immunodeficiency virus gp120 core by normal-mode-based X-ray crystallographic refinement

    International Nuclear Information System (INIS)

    Chen, Xiaorui; Lu, Mingyang; Poon, Billy K.; Wang, Qinghua; Ma, Jianpeng

    2009-01-01

    The structural model of the unliganded and fully glycosylated simian immunodeficiency virus gp120 core determined to 4.0 Å resolution was substantially improved using a recently developed normal-mode-based anisotropic B-factor refinement method. The envelope protein gp120/gp41 of simian and human immunodeficiency viruses plays a critical role in viral entry into host cells. However, the extraordinarily high structural flexibility and heavy glycosylation of the protein have presented enormous difficulties in the pursuit of high-resolution structural investigation of some of its conformational states. An unliganded and fully glycosylated gp120 core structure was recently determined to 4.0 Å resolution. The rather low data-to-parameter ratio limited refinement efforts in the original structure determination. In this work, refinement of this gp120 core structure was carried out using a normal-mode-based refinement method that has been shown in previous studies to be effective in improving models of a supramolecular complex at 3.42 Å resolution and of a membrane protein at 3.2 Å resolution. By using only the first four nonzero lowest-frequency normal modes to construct the anisotropic thermal parameters, combined with manual adjustments and standard positional refinement using REFMAC5, the structural model of the gp120 core was significantly improved in many aspects, including substantial decreases in R factors, better fitting of several flexible regions in electron-density maps, the addition of five new sugar rings at four glycan chains and an excellent correlation of the B-factor distribution with known structural flexibility. These results further underscore the effectiveness of this normal-mode-based method in improving models of protein and nonprotein components in low-resolution X-ray structures

  5. Synthesis and in vitro transfection efficiency of spermine-based cationic lipids with different central core structures and lipophilic tails.

    Science.gov (United States)

    Niyomtham, Nattisa; Apiratikul, Nuttapon; Suksen, Kanoknetr; Opanasopit, Praneet; Yingyongnarongkul, Boon-Ek

    2015-02-01

    Twelve spermine-based cationic lipids with four different central core structures (di(oxyethyl)amino, di(oxyethyl)amino carboxy, 3-amino-1,2-dioxypropyl and 2-amino-1,3-dioxypropyl) and three hydrophobic tails (lauric acid, myristic acid and palmitic acid) were synthesized. The liposomes containing lipids and DOPE showed moderate to good in vitro DNA delivery into HeLa cells. GFP expression experiments revealed that liposomes composed of lipids with 3-amino-1,2-dioxypropyl as a central core structure exhibited highest transfection efficiency under serum-free condition. Whereas, lipid with 2-amino-1,3-dioxypropyl core structure showed highest transfection under 10% serum condition. Moreover, the liposomes and lipoplexes composted of these cationic lipids exhibited low cytotoxicity. Copyright © 2015. Published by Elsevier Ltd.

  6. Romanian network for structural integrity assessment of nuclear components

    International Nuclear Information System (INIS)

    Roth, Maria; Constantinescu, Dan Mihai; Brad, Sebastian; Ducu, Catalin

    2008-01-01

    Full text: Based of the Romanian option to develop and operate nuclear facilities, using as model the networks created at European level and taking into account the international importance of the structural integrity assessments for lifetime extension of the nuclear components, a national Project started since 2005 in the framework of the National Program 'Research of Excellence', Modulus I 2006-2008, managed by the Ministry of Education and Research. Entitled 'Integrated Network for Structural Integrity Monitoring of Critical Components in Nuclear Facilities', with the acronym RIMIS, the Project had two main objectives: - to elaborate a procedure applicable to the structural integrity assessment of the critical components used in Romanian nuclear facilities; - to integrate the national networking in a similar one, at European level, to enhance the scientific significance of Romanian R and D organizations as well as to increase the contribution to solving one of the major issue of the nuclear field. The paper aimed to present the activities performed in the Romanian institutes, involved in the Project, the final results obtained as part of the R and D activities, including experimental, theoretical and modeling ones regarding structural integrity assessment of nuclear components employed in CANDU type reactors. Also the activity carried out in the framework of the NULIFE network, created at European level of the FP6 Program and sustained by the RIMIS network will be described. (authors)

  7. European ERANOS formulaire for fast reactor core analysis

    International Nuclear Information System (INIS)

    Rimpault, Gerald

    2003-01-01

    ERANOS code scheme was developed within the European collaboration on fast reactors. It contains all the functions required to calculate a complete set of core, shielding and fuel cycle parameters for LMFR cores. Nuclear data are taken from recent evaluations (JEF2.2) and adjusted on integral experiments (ERALIB1). Calculational scheme uses the ECCO cell code to generate cross section data. Whole core calculations are carried out using the spatial modules BISTRO (Sn) and TGVNARIANT (nodal method). Validation is based on integral and power reactor experiments. Integral experiments are also used for adjustment of nuclear data

  8. Stylized whole-core benchmark of the Integral Inherently Safe Light Water Reactor (I2S-LWR) concept

    International Nuclear Information System (INIS)

    Hon, Ryan; Kooreman, Gabriel; Rahnema, Farzad; Petrovic, Bojan

    2017-01-01

    Highlights: • A stylized benchmark specification of the I2S-LWR core. • A library of cross sections were generated in both 8 and 47 groups. • Monte Carlo solutions generated for the 8 group library using MCNP5. • Cross sections and pin fission densities provided in journal’s repository. - Abstract: The Integral, Inherently Safe Light Water Reactor (I 2 S-LWR) is a pressurized water reactor (PWR) concept under development by a multi-institutional team led by Georgia Tech. The core is similar in size to small 2-loop PWRs while having the power level of current large reactors (∼1000 MWe) but using uranium silicide fuel and advanced stainless steel cladding. A stylized benchmark specification of the I 2 S-LWR core has been developed in order to test whole-core neutronics codes and methods. For simplification the core was split into 57 distinct material regions for cross section generation. Cross sections were generated using the lattice physics code HELIOS version 1.10 in both 8 and 47 groups. Monte Carlo solutions, including eigenvalue and pin fission densities, were generated for the 8 group library using MCNP5. Due to space limitations in this paper, the full cross section library and normalized pin fission density results are provided in the journal’s electronic repository.

  9. In-situ synthetize multi-walled carbon nanotubes@MnO2 nanoflake core-shell structured materials for supercapacitors

    Science.gov (United States)

    Zheng, Huajun; Wang, Jiaoxia; Jia, Yi; Ma, Chun'an

    2012-10-01

    A new type of core-shell structured material consisting of multi-walled carbon nanotubes (MWCNTs) and manganese dioxide (MnO2) nanoflake is synthesized using an in-situ co-precipitation method. By scanning electron microscopy and transition electron microscope, it is confirmed that the core-shell nanostructure is formed by the uniform incorporation of birnessite-type MnO2 nanoflake growth round the surface of the activated-MWCNTs. That core-shell structured material electrode presents excellent electrochemical capacitance properties with the specific capacitance reaching 380 F g-1 at the current density of 5 A g-1 in 0.5 M Na2SO4 electrolyte. In addition, the electrode also exhibits good performance (the power density: 11.28 kW kg-1 at 5 A g-1) and long-term cycling stability (retaining 82.7% of its initial capacitance after 3500 cycles at 5 A g-1). It mainly attributes to MWCNTs not only providing considerable specific surface area for high mass loading of MnO2 nanoflakes to ensure effective utilization of MnO2 nanoflake, but also offering an electron pathway to improve electrical conductivity of the electrode materials. It is clearly indicated that such core-shell structured materials including MWCNTs and MnO2 nanoflake may find important applications for supercapacitors.

  10. Hierarchical core-shell structure of ZnO nanorod@NiO/MoO₂ composite nanosheet arrays for high-performance supercapacitors.

    Science.gov (United States)

    Hou, Sucheng; Zhang, Guanhua; Zeng, Wei; Zhu, Jian; Gong, Feilong; Li, Feng; Duan, Huigao

    2014-08-27

    A hierarchical core-shell structure of ZnO nanorod@NiO/MoO2 composite nanosheet arrays on nickel foam substrate for high-performance supercapacitors was constructed by a two-step solution-based method involving two hydrothermal processes followed by a calcination treatment. Compared to one composed of pure NiO/MoO2 composite nanosheets, the hierarchical core-shell structure electrode displays better pseudocapacitive behaviors in 2 M KOH, including high areal specific capacitance values of 1.18 F cm(-2) at 5 mA cm(-2) and 0.6 F cm(-2) at 30 mA cm(-2) as well as relatively good rate capability at high current densities. Furthermore, it also shows remarkable cycle stability, remaining at 91.7% of the initial value even after 4000 cycles at a current density of 10 mA cm(-2). The enhanced pseudocapacitive behaviors are mainly due to the unique hierarchical core-shell structure and the synergistic effect of combining ZnO nanorod arrays and NiO/MoO2 composite nanosheets. This novel hierarchical core-shell structure shows promise for use in next-generation supercapacitors.

  11. Core-Shell Structuring of Pure Metallic Aerogels towards Highly Efficient Platinum Utilization for the Oxygen Reduction Reaction.

    Science.gov (United States)

    Cai, Bin; Hübner, René; Sasaki, Kotaro; Zhang, Yuanzhe; Su, Dong; Ziegler, Christoph; Vukmirovic, Miomir B; Rellinghaus, Bernd; Adzic, Radoslav R; Eychmüller, Alexander

    2018-03-05

    The development of core-shell structures remains a fundamental challenge for pure metallic aerogels. Here we report the synthesis of Pd x Au-Pt core-shell aerogels composed of an ultrathin Pt shell and a composition-tunable Pd x Au alloy core. The universality of this strategy ensures the extension of core compositions to Pd transition-metal alloys. The core-shell aerogels exhibited largely improved Pt utilization efficiencies for the oxygen reduction reaction and their activities show a volcano-type relationship as a function of the lattice parameter of the core substrate. The maximum mass and specific activities are 5.25 A mg Pt -1 and 2.53 mA cm -2 , which are 18.7 and 4.1 times higher than those of Pt/C, respectively, demonstrating the superiority of the core-shell metallic aerogels. The proposed core-based activity descriptor provides a new possible strategy for the design of future core-shell electrocatalysts. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Engineered inorganic core/shell nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Mélinon, Patrice, E-mail: patrice.melinon@univ-lyon1.fr [Institut Lumière matière Université Claude Bernard Lyon 1 et CNRS et OMNT, Domaine Scientifique de la Doua, Bâtiment Léon Brillouin, 43 Boulevard du 11 Novembre 1918, F 69622 Villeurbanne (France); Begin-Colin, Sylvie [IPCMS et OMNT, 23 rue du Loess BP 43, 67034 STRASBOURG Cedex 2 (France); Duvail, Jean Luc [IMN UMR 6502 et OMNT Campus Sciences : 2 rue de la Houssinire, BP32229, 44322 Nantes Cedex3 (France); Gauffre, Fabienne [SPM et OMNT : Institut des sciences chimiques de Rennes - UMR 6226, 263 Avenue du General Leclerc, CS 74205, 35042 RENNES Cedex (France); Boime, Nathalie Herlin [IRAMIS-NIMBE, Laboratoire Francis Perrin (CEA CNRS URA 2453) et OMNT, Bat 522, CEA Saclay, 91191 Gif sur Yvette Cedex (France); Ledoux, Gilles [Institut Lumière Matière Université Claude Bernard Lyon 1 et CNRS et OMNT, Domaine Scientifique de la Doua, Bâtiment Alfred Kastler 43 Boulevard du 11 Novembre 1918 F 69622 Villeurbanne (France); Plain, Jérôme [Universit de technologie de Troyes LNIO-ICD, CNRS et OMNT 12 rue Marie Curie - CS 42060 - 10004 Troyes cedex (France); Reiss, Peter [CEA Grenoble, INAC-SPrAM, UMR 5819 CEA-CNRS-UJF et OMNT, Grenoble cedex 9 (France); Silly, Fabien [CEA, IRAMIS, SPEC, TITANS, CNRS 2464 et OMNT, F-91191 Gif sur Yvette (France); Warot-Fonrose, Bénédicte [CEMES-CNRS, Université de Toulouse et OMNT, 29 rue Jeanne Marvig F 31055 Toulouse (France)

    2014-10-20

    It has been for a long time recognized that nanoparticles are of great scientific interest as they are effectively a bridge between bulk materials and atomic structures. At first, size effects occurring in single elements have been studied. More recently, progress in chemical and physical synthesis routes permitted the preparation of more complex structures. Such structures take advantages of new adjustable parameters including stoichiometry, chemical ordering, shape and segregation opening new fields with tailored materials for biology, mechanics, optics magnetism, chemistry catalysis, solar cells and microelectronics. Among them, core/shell structures are a particular class of nanoparticles made with an inorganic core and one or several inorganic shell layer(s). In earlier work, the shell was merely used as a protective coating for the core. More recently, it has been shown that it is possible to tune the physical properties in a larger range than that of each material taken separately. The goal of the present review is to discuss the basic properties of the different types of core/shell nanoparticles including a large variety of heterostructures. We restrict ourselves on all inorganic (on inorganic/inorganic) core/shell structures. In the light of recent developments, the applications of inorganic core/shell particles are found in many fields including biology, chemistry, physics and engineering. In addition to a representative overview of the properties, general concepts based on solid state physics are considered for material selection and for identifying criteria linking the core/shell structure and its resulting properties. Chemical and physical routes for the synthesis and specific methods for the study of core/shell nanoparticle are briefly discussed.

  13. A core competency-based objective structured clinical examination (OSCE) can predict future resident performance.

    Science.gov (United States)

    Wallenstein, Joshua; Heron, Sheryl; Santen, Sally; Shayne, Philip; Ander, Douglas

    2010-10-01

    This study evaluated the ability of an objective structured clinical examination (OSCE) administered in the first month of residency to predict future resident performance in the Accreditation Council for Graduate Medical Education (ACGME) core competencies. Eighteen Postgraduate Year 1 (PGY-1) residents completed a five-station OSCE in the first month of postgraduate training. Performance was graded in each of the ACGME core competencies. At the end of 18 months of training, faculty evaluations of resident performance in the emergency department (ED) were used to calculate a cumulative clinical evaluation score for each core competency. The correlations between OSCE scores and clinical evaluation scores at 18 months were assessed on an overall level and in each core competency. There was a statistically significant correlation between overall OSCE scores and overall clinical evaluation scores (R = 0.48, p competencies of patient care (R = 0.49, p competencies. An early-residency OSCE has the ability to predict future postgraduate performance on a global level and in specific core competencies. Used appropriately, such information can be a valuable tool for program directors in monitoring residents' progress and providing more tailored guidance. © 2010 by the Society for Academic Emergency Medicine.

  14. Overview Of Hanford Single Shell Tank (SST) Structural Integrity - 12123

    International Nuclear Information System (INIS)

    Rast, R.S.; Rinker, M.W.; Washenfelder, D.J.; Johnson, J.B.

    2012-01-01

    To improve the understanding of the single-shell tanks (SSTs) integrity, Washington River Protection Solutions, LLC (WRPS), the USDOE Hanford Site tank contractor, developed an enhanced Single-Shell Tank Integrity Project in 2009. An expert panel on SST integrity, consisting of various subject matters experts in industry and academia, was created to provide recommendations supporting the development of the project. This panel developed 33 recommendations in four main areas of interest: structural integrity, liner degradation, leak integrity and prevention, and mitigation of contamination migration. Seventeen of these recommendations were used to develop the basis for the M-45-10-1 Change Package for the Hanford Federal Agreement and Compliance Order, which is also known as the Tri-Party Agreement. The structural integrity of the tanks is a key element in completing the cleanup mission at the Hanford Site. There are eight primary recommendations related to the structural integrity of Hanford SSTs. Six recommendations are being implemented through current and planned activities. The structural integrity of the Hanford SSTs is being evaluated through analysis, monitoring, inspection, materials testing, and construction document review. Structural evaluation in the form of analysis is performed using modern finite element models generated in ANSYS(reg s ign) The analyses consider in-situ, thermal, operating loads and natural phenomena such as earthquakes. Structural analysis of 108 of 149 Hanford SSTs has concluded that the tanks are structurally sound and meet current industry standards. Analyses of the remaining Hanford SSTs are scheduled for FY2013. Hanford SSTs are monitored through a dome deflection program. The program looks for deflections of the tank dome greater than 1/4 inch. No such deflections have been recorded. The tanks are also subjected to visual inspection. Digital cameras record the interior surface of the concrete tank domes, looking for cracks and

  15. OVERVIEW OF HANFORD SINGLE SHELL TANK (SST) STRUCTURAL INTEGRITY - 12123

    Energy Technology Data Exchange (ETDEWEB)

    RAST RS; RINKER MW; WASHENFELDER DJ; JOHNSON JB

    2012-01-25

    To improve the understanding of the single-shell tanks (SSTs) integrity, Washington River Protection Solutions, LLC (WRPS), the USDOE Hanford Site tank contractor, developed an enhanced Single-Shell Tank Integrity Project in 2009. An expert panel on SST integrity, consisting of various subject matters experts in industry and academia, was created to provide recommendations supporting the development of the project. This panel developed 33 recommendations in four main areas of interest: structural integrity, liner degradation, leak integrity and prevention, and mitigation of contamination migration. Seventeen of these recommendations were used to develop the basis for the M-45-10-1 Change Package for the Hanford Federal Agreement and Compliance Order, which is also known as the Tri-Party Agreement. The structural integrity of the tanks is a key element in completing the cleanup mission at the Hanford Site. There are eight primary recommendations related to the structural integrity of Hanford SSTs. Six recommendations are being implemented through current and planned activities. The structural integrity of the Hanford SSTs is being evaluated through analysis, monitoring, inspection, materials testing, and construction document review. Structural evaluation in the form of analysis is performed using modern finite element models generated in ANSYS{reg_sign} The analyses consider in-situ, thermal, operating loads and natural phenomena such as earthquakes. Structural analysis of 108 of 149 Hanford SSTs has concluded that the tanks are structurally sound and meet current industry standards. Analyses of the remaining Hanford SSTs are scheduled for FY2013. Hanford SSTs are monitored through a dome deflection program. The program looks for deflections of the tank dome greater than 1/4 inch. No such deflections have been recorded. The tanks are also subjected to visual inspection. Digital cameras record the interior surface of the concrete tank domes, looking for cracks and

  16. Structural, evolutionary and genetic analysis of the histidine biosynthetic "core" in the genus Burkholderia.

    Science.gov (United States)

    Papaleo, Maria Cristiana; Russo, Edda; Fondi, Marco; Emiliani, Giovanni; Frandi, Antonio; Brilli, Matteo; Pastorelli, Roberta; Fani, Renato

    2009-12-01

    In this work a detailed analysis of the structure, the expression and the organization of his genes belonging to the core of histidine biosynthesis (hisBHAF) in 40 newly determined and 13 available sequences of Burkholderia strains was carried out. Data obtained revealed a strong conservation of the structure and organization of these genes through the entire genus. The phylogenetic analysis showed the monophyletic origin of this gene cluster and indicated that it did not undergo horizontal gene transfer events. The analysis of the intergenic regions, based on the substitution rate, entropy plot and bendability suggested the existence of a putative transcription promoter upstream of hisB, that was supported by the genetic analysis that showed that this cluster was able to complement Escherichia colihisA, hisB, and hisF mutations. Moreover, a preliminary transcriptional analysis and the analysis of microarray data revealed that the expression of the his core was constitutive. These findings are in agreement with the fact that the entire Burkholderiahis operon is heterogeneous, in that it contains "alien" genes apparently not involved in histidine biosynthesis. Besides, they also support the idea that the proteobacterial his operon was piece-wisely assembled, i.e. through accretion of smaller units containing only some of the genes (eventually together with their own promoters) involved in this biosynthetic route. The correlation existing between the structure, organization and regulation of his "core" genes and the function(s) they perform in cellular metabolism is discussed.

  17. Identification of Protein Complexes Using Weighted PageRank-Nibble Algorithm and Core-Attachment Structure.

    Science.gov (United States)

    Peng, Wei; Wang, Jianxin; Zhao, Bihai; Wang, Lusheng

    2015-01-01

    Protein complexes play a significant role in understanding the underlying mechanism of most cellular functions. Recently, many researchers have explored computational methods to identify protein complexes from protein-protein interaction (PPI) networks. One group of researchers focus on detecting local dense subgraphs which correspond to protein complexes by considering local neighbors. The drawback of this kind of approach is that the global information of the networks is ignored. Some methods such as Markov Clustering algorithm (MCL), PageRank-Nibble are proposed to find protein complexes based on random walk technique which can exploit the global structure of networks. However, these methods ignore the inherent core-attachment structure of protein complexes and treat adjacent node equally. In this paper, we design a weighted PageRank-Nibble algorithm which assigns each adjacent node with different probability, and propose a novel method named WPNCA to detect protein complex from PPI networks by using weighted PageRank-Nibble algorithm and core-attachment structure. Firstly, WPNCA partitions the PPI networks into multiple dense clusters by using weighted PageRank-Nibble algorithm. Then the cores of these clusters are detected and the rest of proteins in the clusters will be selected as attachments to form the final predicted protein complexes. The experiments on yeast data show that WPNCA outperforms the existing methods in terms of both accuracy and p-value. The software for WPNCA is available at "http://netlab.csu.edu.cn/bioinfomatics/weipeng/WPNCA/download.html".

  18. Control of core structure in MgB{sub 2} wire through tailoring boron powder

    Energy Technology Data Exchange (ETDEWEB)

    Maeda, Minoru, E-mail: maeda.minoru70@nihon-u.ac.jp [Department of Physics, College of Science and Technology, Nihon University, 1-8-14 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8308 (Japan); Uchiyama, Daisuke [Department of Physics, College of Science and Technology, Nihon University, 1-8-14 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8308 (Japan); Hossain, Md Shahriar Al; Ma, Zongqing [Institute for Superconducting and Electronic Materials, University of Wollongong, North Wollongong, New South Wales 2500 (Australia); Shahabuddin, Mohammed [Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia); Kim, Jung Ho, E-mail: jhk@uow.edu.au [Institute for Superconducting and Electronic Materials, University of Wollongong, North Wollongong, New South Wales 2500 (Australia)

    2015-07-05

    Highlights: • The typical void structure in the wire is obtained by using large-sized B powder. • In contrast, void alignment can be achieved by using fine B powder. • The sintering at lower temperatures improves the critical current density in fields. - Abstract: A common fabrication process for MgB{sub 2} wire, namely, the in situ powder-in-tube process, forms numerous voids within the wire core, and void formation cannot be completely avoided. The orientation is, however, known to be aligned more or less along the current-flow direction when ductile coarse magnesium powder is used as a precursor, and further tailoring approaches could open up the way to improving the transport critical current density. Herein, we have used boron powders with different particle sizes, in combination with the coarse magnesium powder, and evaluated their size effects on the phase composition, microstructure, and transport properties. A mixture of the coarse magnesium powder with large-sized boron powder in the wire core, after cold working and sintering, forms a granular morphology. In contrast, an aligned core appears during the reduction process for wire which is prepared by using fine boron powder. The sintering process, especially at a low temperature, where magnesium evaporation hardly occurs, yields an aligned structure, mainly consisting of MgB{sub 2} phase, along the wire direction. These findings demonstrate that the initial size of the starting materials is critical for the tailored structure.

  19. Assessment of capability for modeling the core degradation in 2D geometry with ASTEC V2 integral code for VVER type of reactor

    International Nuclear Information System (INIS)

    Dimov, D.

    2011-01-01

    The ASTEC code is progressively becoming the reference European severe accident integral code through in particular the intensification of research activities carried out since 2004. The purpose of this analysis is to assess ASTEC code modelling of main phenomena arising during hypothetical severe accidents and particularly in-vessel degradation in 2D geometry. The investigation covers both early and late phase of degradation of reactor core as well as determination of corium which will enter the reactor cavity. The initial event is station back-out. In order to receive severe accident condition, failure of all active component of emergency core cooling system is apply. The analysis is focus on ICARE module of ASTEC code and particularly on so call MAGMA model. The aim of study is to determine the capability of the integral code to simulate core degradation and to determine the corium composition entering the reactor cavity. (author)

  20. The influence of anisotropy on the core structure of Shockley partial dislocations within FCC materials

    Science.gov (United States)

    Szajewski, B. A.; Hunter, A.; Luscher, D. J.; Beyerlein, I. J.

    2018-01-01

    Both theoretical and numerical models of dislocations often necessitate the assumption of elastic isotropy to retain analytical tractability in addition to reducing computational load. As dislocation based models evolve towards physically realistic material descriptions, the assumption of elastic isotropy becomes increasingly worthy of examination. We present an analytical dislocation model for calculating the full dissociated core structure of dislocations within anisotropic face centered cubic (FCC) crystals as a function of the degree of material elastic anisotropy, two misfit energy densities on the γ-surface ({γ }{{isf}}, {γ }{{usf}}) and the remaining elastic constants. Our solution is independent of any additional features of the γ-surface. Towards this pursuit, we first demonstrate that the dependence of the anisotropic elasticity tensor on the orientation of the dislocation line within the FCC crystalline lattice is small and may be reasonably neglected for typical materials. With this approximation, explicit analytic solutions for the anisotropic elasticity tensor {B} for both nominally edge and screw dislocations within an FCC crystalline lattice are devised, and employed towards defining a set of effective isotropic elastic constants which reproduce fully anisotropic results, however do not retain the bulk modulus. Conversely, Hill averaged elastic constants which both retain the bulk modulus and reasonably approximate the dislocation core structure are employed within subsequent numerical calculations. We examine a wide range of materials within this study, and the features of each partial dislocation core are sufficiently localized that application of discrete linear elasticity accurately describes the separation of each partial dislocation core. In addition, the local features (the partial dislocation core distribution) are well described by a Peierls-Nabarro dislocation model. We develop a model for the displacement profile which depends upon

  1. Photonic Structure-Integrated Two-Dimensional Material Optoelectronics

    Directory of Open Access Journals (Sweden)

    Tianjiao Wang

    2016-12-01

    Full Text Available The rapid development and unique properties of two-dimensional (2D materials, such as graphene, phosphorene and transition metal dichalcogenides enable them to become intriguing candidates for future optoelectronic applications. To maximize the potential of 2D material-based optoelectronics, various photonic structures are integrated to form photonic structure/2D material hybrid systems so that the device performance can be manipulated in controllable ways. Here, we first introduce the photocurrent-generation mechanisms of 2D material-based optoelectronics and their performance. We then offer an overview and evaluation of the state-of-the-art of hybrid systems, where 2D material optoelectronics are integrated with photonic structures, especially plasmonic nanostructures, photonic waveguides and crystals. By combining with those photonic structures, the performance of 2D material optoelectronics can be further enhanced, and on the other side, a high-performance modulator can be achieved by electrostatically tuning 2D materials. Finally, 2D material-based photodetector can also become an efficient probe to learn the light-matter interactions of photonic structures. Those hybrid systems combine the advantages of 2D materials and photonic structures, providing further capacity for high-performance optoelectronics.

  2. Investigation on cored-eutectic structure in Ni60/WC composite coatings fabricated by wide-band laser cladding

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Qunshuang, E-mail: maqunshuang@126.com; Li, Yajiang, E-mail: yajli@sdu.edu.cn; Wang, Juan, E-mail: jwang@sdu.edu.cn; Liu, Kun, E-mail: liu_kun@163.com

    2015-10-05

    Highlights: • Perfect composite coatings were fabricated using wide-band laser cladding. • Special cored-eutectic structure was synthesized in Ni60/WC composite coatings. • Cored-eutectic consists of hard carbide compounds and fine lamellar eutectic of M{sub 23}C{sub 6} carbides and γ-Ni(Fe). • Wear resistance of coating layer was significantly improved due to precipitation of M{sub 23}C{sub 6} carbides. - Abstract: Ni60 composite coatings reinforced with WC particles were fabricated on the surface of Q550 steel using LDF4000-100 fiber laser device. The wide-band laser and circular beam laser used in laser cladding were obtained by optical lens. Microstructure, elemental distribution, phase constitution and wear properties of different composite coatings were investigated. The results showed that WC particles were partly dissolved under the effect of wide-band fiber laser irradiation. A special cored-eutectic structure was synthesized due to dissolution of WC particles. According to EDS and XRD results, the inside cores were confirmed as carbides of M{sub 23}C{sub 6} enriched in Cr, W and Fe. These complex carbides were primarily separated out in the molten metal when solidification started. Eutectic structure composed of M{sub 23}C{sub 6} carbides and γ-Ni(Fe) grew around carbides when cooling. Element content of Cr and W is lower at the bottom of cladding layer. In consequence, the eutectic structure formed in this region did not have inside carbides. The coatings made by circular laser beam were composed of dendritic matrix and interdendritic eutectic carbides, lacking of block carbides. Compared to coatings made by circular laser spot, the cored-eutectic structure formed in wide-band coatings had advantages of well-distribution and tight binding with matrix. The uniform power density and energy distribution and the weak liquid convection in molten pool lead to the unique microstructure evolution in composite coatings made by wide-band laser

  3. Integrative Treatment of Personality Disorder. Part I: Psychotherapy.

    Science.gov (United States)

    Jovanovic, Mirjana Divac; Svrakic, Dragan

    2017-03-01

    In this paper, we outline the concept of integrative therapy of borderline personality, also referred to as fragmented personality, which we consider to be the core psychopathology underlying all clinical subtypes of personality disorder. Hence, the terms borderline personality, borderline disorder, fragmented personality, and personality disorder are used interchangeably, as synonyms. Our integrative approach combines pharmacotherapy and psychotherapy, each specifically tailored to accomplish a positive feedback modulation of their respective effects. We argue that pharmacotherapy and psychotherapy of personality disorder complement each other. Pharmacological control of disruptive affects clears the stage, in some cases builds the stage, for the psychotherapeutic process to take place. In turn, psychotherapy promotes integration of personality fragments into more cohesive structures of self and identity, ultimately establishing self-regulation of mood and anxiety. We introduce our original method of psychotherapy, called reconstructive interpersonal therapy (RIT). The RIT integrates humanistic-existential and psychodynamic paradigms, and is thereby designed to accomplish a deep reconstruction of core psychopathology within the setting of high structure. We review and comment the current literature on the strategies, goals, therapy process, priorities, and phases of psychotherapy of borderline disorders, and describe in detail the fundamental principles of RIT.

  4. Structural integrity monitoring of critical components in nuclear facilities

    International Nuclear Information System (INIS)

    Roth, Maria; Constantinescu, Dan Mihai; Brad, Sebastian; Ducu, Catalin; Malinovschi, Viorel

    2007-01-01

    Full text: The paper presents the results obtained as part of the Project 'Integrated Network for Structural Integrity Monitoring of Critical Components in Nuclear Facilities', RIMIS, a research work underway within the framework of the Ministry of Education and Research Programme 'Research of Excellence'. The main objective of the Project is to constitute a network integrating the national R and D institutes with preoccupations in the structural integrity assessment of critical components in the nuclear facilities operating in Romania, in order to elaborate a specific procedure for this field. The degradation mechanisms of the structural materials used in the CANDU type reactors, operated by Unit 1 and Unit 2 at Cernavoda (pressure tubes, fuel elements sheaths, steam generator tubing) and in the nuclear facilities relating to reactors of this type as, for instance, the Hydrogen Isotopes Separation facility, will be investigated. The development of a flexible procedure will offer the opportunity to extend the applications to other structural materials used in the nuclear field and in the non-nuclear fields as well, in cooperation with other institutes involved in the developed network. The expected results of the project will allow the integration of the network developed at national level in the structures of similar networks operating within the EU, the enhancement of the scientific importance of Romanian R and D organizations as well as the increase of our country's contribution in solving the major issues of the nuclear field. (authors)

  5. Efficient approach for simulating response of multi-body structure in reactor core subjected to seismic loading

    International Nuclear Information System (INIS)

    Zhang Hongkun; Cen Song; Wang Haitao; Cheng Huanyu

    2012-01-01

    An efficient 3D approach is proposed for simulating the complicated responses of the multi-body structure in reactor core under seismic loading. By utilizing the rigid-body and connector functions of the software Abaqus, the multi-body structure of the reactor core is simplified as a mass-point system interlinked by spring-dashpot connectors. And reasonable schemes are used for determining various connector coefficients. Furthermore, a scripting program is also complied for the 3D parametric modeling. Numerical examples show that, the proposed method can not only produce the results which satisfy the engineering requirements, but also improve the computational efficiency more than 100 times. (authors)

  6. Support structure for reactor core constituent element

    International Nuclear Information System (INIS)

    Aida, Yasuhiko.

    1993-01-01

    A connection pipe having an entrance nozzle inserted therein as a reactor core constituent element is protruded above the upper surface of a reactor core support plate. A through hole is disposed to the protruding portion of the connection pipe. The through hole and a through hole disposed to the reactor core support plate are connected by a communication pipe. A shear rod is disposed in a horizontal portion at the inside of the communication pipe and is supported by a spring horizontally movably. Further, a groove is disposed at a position of the entrance nozzle opposing to the shear rod. The shear rod is urged out of the communication pipe by the pressure of the high pressure plenum and the top end portion of the shear rod is inserted to the groove of the entrance nozzle during operation. Accordingly, the shear rod is positioned in a state where it is extended from the through hole of the communication pipe to the groove of the entrance nozzle. This can mechanically constrain the rising of the reactor core constituent elements by the shear rod upon occurrence of earthquakes. (I.N.)

  7. Development of core design/analysis technology for integral reactor; verification of SMART nuclear design by Monte Carlo method

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang Hyo; Hong, In Seob; Han, Beom Seok; Jeong, Jong Seong [Seoul National University, Seoul (Korea)

    2002-03-01

    The objective of this project is to verify neutronics characteristics of the SMART core design as to compare computational results of the MCNAP code with those of the MASTER code. To achieve this goal, we will analyze neutronics characteristics of the SMART core using the MCNAP code and compare these results with results of the MASTER code. We improved parallel computing module and developed error analysis module of the MCNAP code. We analyzed mechanism of the error propagation through depletion computation and developed a calculation module for quantifying these errors. We performed depletion analysis for fuel pins and assemblies of the SMART core. We modeled a 3-D structure of the SMART core and considered a variation of material compositions by control rods operation and performed depletion analysis for the SMART core. We computed control-rod worths of assemblies and a reactor core for operation of individual control-rod groups. We computed core reactivity coefficients-MTC, FTC and compared these results with computational results of the MASTER code. To verify error analysis module of the MCNAP code, we analyzed error propagation through depletion of the SMART B-type assembly. 18 refs., 102 figs., 36 tabs. (Author)

  8. Synthesis, characterization and nitrite ion sensing performance of reclaimable composite samples through a core-shell structure

    Science.gov (United States)

    Cui, Xiao; Yuqing, Zhao; Cui, Jiantao; Zheng, Qian; Bo, Wang

    2018-02-01

    The following paper reported and discussed a nitrite ion optical sensing platform based on a core-shell structure, using superamagnetic nanoparticles as the core, a silica molecular sieve MCM-41 as the shell and two rhodamine derivatives as probe, respectively. This superamagnetic core made this sensing platform reclaimable after finishing nitrite ion sensing procedure. This sensing platform was carefully characterized by means of electron microscopy images, porous structure analysis, magnetic response, IR spectra and thermal stability analysis. Detailed analysis suggested that the emission of these composite samples was quenchable by nitrite ion, showing emission turn off effect. A static sensing mechanism based on an additive reaction between chemosensors and nitrite ion was proposed. These composite samples followed Demas quenching equation against different nitrite ion concentrations. Limit of detection value was obtained as low as 0.4 μM. It was found that, after being quenched by nitrite ion, these composite samples could be reclaimed and recovered by sulphamic acid, confirming their recyclability.

  9. Comprehensive Assessment of Integration Activity of Business Structures in Russian Regions

    Directory of Open Access Journals (Sweden)

    Mariya Gennad’evna Karelina

    2016-11-01

    Full Text Available In the context of economic sanctions and growing international isolation, the research into regional differences in integration development acquires special relevance for Russia; this fact determines the need for a comprehensive assessment of integration activity of business structures in Russian regions. The diversity of approaches to the study of problems and prospects of economic integration and the current debate about the role of integration processes in the development of regional economies determined a comprehensive approach to the concepts of “integration” and “integration activity” in order to create objective prerequisites for analyzing integration activity of business structures in the regions of Russia. The information base of the research is the data of Russian information and analytical agencies. The tools used in the research include methods for analyzing structural changes, methods for analyzing economic differentiation and concentration, nonparametric statistics methods, and econometric analysis methods. The first part of the paper shows that socio-economic development in constituent entities of Russia is closely connected with the operation of integrated business structures located on their territory. Having studied the structure and dynamics of integration activity, we reveal the growing heterogeneity of integration activity of business structures in Russian regions. The hypothesis about significant divergence of mergers and acquisitions for corporate structures in Russian regions was confirmed by high values of the Gini coefficient, the Herfindahl index and the decile differentiation coefficient. The second part of the paper contains a comparative analysis and proposes an econometric approach to the measurement of integration activity of business structures in subjects of the Russian Federation on the basis of integral synthetic categories. The approach we propose focuses on the development of a system of indicators

  10. First Canadian workshop on engineering structural integrity : CWESI. Proceedings

    International Nuclear Information System (INIS)

    2002-01-01

    The First Canadian Workshop on Engineering Structural Integrity (CWESI) was held on October 16 and 17, 2002, in Toronto, Canada. The purpose of the Workshop was to review strategies for ESI in a number of key industries, and to attempt to plot a course for co-operation in ESI activities and implementation of ESI initiatives in Canadian industry, together with support for appropriate educational, research and development activities. The Workshop consisted of presentations by speakers from a number of industries. Presentations focused on in-service experience under service conditions related to the Canadian environment. This Workshop was attended by practising structural integrity engineers, managers with the responsibility for delivery of safe and reliable operation, and researchers in the structural integrity area

  11. Study of the Results in the Acquisition of Core Competencies in Schools That Integrate Primary Education and Music

    Science.gov (United States)

    Andreu Duran, Maria; Godall Castell, Pere; Amador Guillem, Miquel; Castro Morera, Maria

    2017-01-01

    The goal of this research was to carry out an exploratory study on how music education integrated into primary schooling (children from 6 to 12 years old) can help in acquiring the core competencies characteristic of this stage. The study was conducted by developing a validated instrument, pilot-tested for reliability, to assess the eight core…

  12. Rapid Synthesis and Formation Mechanism of Core-Shell-Structured La-Doped SrTiO3 with a Nb-Doped Shell

    Directory of Open Access Journals (Sweden)

    Nam-Hee Park

    2015-07-01

    Full Text Available To provide a convenient and practical synthesis process for metal ion doping on the surface of nanoparticles in an assembled nanostructure, core-shell-structured La-doped SrTiO3 nanocubes with a Nb-doped surface layer were synthesized via a rapid synthesis combining a rapid sol-precipitation and hydrothermal process. The La-doped SrTiO3 nanocubes were formed at room temperature by a rapid dissolution of NaOH pellets during the rapid sol-precipitation process, and the Nb-doped surface (shell along with Nb-rich edges formed on the core nanocubes via the hydrothermal process. The formation mechanism of the core-shell-structured nanocubes and their shape evolution as a function of the Nb doping level were investigated. The synthesized core-shell-structured nanocubes could be arranged face-to-face on a SiO2/Si substrate by a slow evaporation process, and this nanostructured 10 μm thick thin film showed a smooth surface.

  13. Understanding twinning nucleation and dislocation core structure through interscale hybrid method

    DEFF Research Database (Denmark)

    Xu, Ben; Zhang, Xiaodan

    2014-01-01

    The variety of emerging simulation methods and improved computational power advance the understanding in nanometals as a good compensation of the experiments. In this paper, the first principle methods are discussed, especially as a useful combination of the classical molecular dynamics, to overc......, to overcome the disadvantages of the latter method. Two examples are given as: the nucleation of the {10-12} deformation twinning in magnesium, and the screw dislocation core structure with/without hydrogen in tungsten....

  14. Nano-sized LiFePO4/C composite with core-shell structure as cathode material for lithium ion battery

    International Nuclear Information System (INIS)

    Liu, Yang; Zhang, Min; Li, Ying; Hu, Yemin; Zhu, Mingyuan; Jin, Hongming; Li, Wenxian

    2015-01-01

    Graphical abstract: Nano-sized LiFePO4/C composite with core-shell structure was fabricated via a well-designed approach as cathode material forlithium ion battery. The nano-sized LiFePO4/C composite with whole carbon shell coating layer showed an excellent electrical performance. - Abstract: Nano-sized composite with LiFePO 4 -core and carbon-shell was synthesized via a facile route followed by heat treatment at 650 °C. X-ray diffraction (XRD) shows that the core is well crystallized LiFePO 4 . The electron microscopy (SEM and TEM) observations show that the core-shell structured LiFePO 4 /C composite coating with whole carbon shell layer of ∼2.8 nm, possesses a specific surface area of 51 m 2 g −1 . As cathode material for lithium ion battery, the core-shell LiFePO 4 /C composite exhibits high initial capacity of 161 mAh g −1 at 0.1 C, excellent high-rate discharge capacity of 135 mAh g −1 at 5 C and perfect cycling retention of 99.6% at 100 th cycle. All these promising results should be contributed to the core-shell nanostructure which prevents collapse of the particle structure in the long-term charge and discharge cycles, as well as the large surface area of the nano-sized LiFePO 4 /C composite which enhances the electronic conductivity and shortens the distance of lithium ion diffusion

  15. An expert system for integrated structural analysis and design optimization for aerospace structures

    Science.gov (United States)

    1992-04-01

    The results of a research study on the development of an expert system for integrated structural analysis and design optimization is presented. An Object Representation Language (ORL) was developed first in conjunction with a rule-based system. This ORL/AI shell was then used to develop expert systems to provide assistance with a variety of structural analysis and design optimization tasks, in conjunction with procedural modules for finite element structural analysis and design optimization. The main goal of the research study was to provide expertise, judgment, and reasoning capabilities in the aerospace structural design process. This will allow engineers performing structural analysis and design, even without extensive experience in the field, to develop error-free, efficient and reliable structural designs very rapidly and cost-effectively. This would not only improve the productivity of design engineers and analysts, but also significantly reduce time to completion of structural design. An extensive literature survey in the field of structural analysis, design optimization, artificial intelligence, and database management systems and their application to the structural design process was first performed. A feasibility study was then performed, and the architecture and the conceptual design for the integrated 'intelligent' structural analysis and design optimization software was then developed. An Object Representation Language (ORL), in conjunction with a rule-based system, was then developed using C++. Such an approach would improve the expressiveness for knowledge representation (especially for structural analysis and design applications), provide ability to build very large and practical expert systems, and provide an efficient way for storing knowledge. Functional specifications for the expert systems were then developed. The ORL/AI shell was then used to develop a variety of modules of expert systems for a variety of modeling, finite element analysis, and

  16. RNA is an integral component of chromatin that contributes to its structural organization.

    Directory of Open Access Journals (Sweden)

    Antonio Rodríguez-Campos

    Full Text Available Chromatin structure is influenced by multiples factors, such as pH, temperature, nature and concentration of counterions, post-translational modifications of histones and binding of structural non-histone proteins. RNA is also known to contribute to the regulation of chromatin structure as chromatin-induced gene silencing was shown to depend on the RNAi machinery in S. pombe, plants and Drosophila. Moreover, both in Drosophila and mammals, dosage compensation requires the contribution of specific non-coding RNAs. However, whether RNA itself plays a direct structural role in chromatin is not known. Here, we report results that indicate a general structural role for RNA in eukaryotic chromatin. RNA is found associated to purified chromatin prepared from chicken liver, or cultured Drosophila S2 cells, and treatment with RNase A alters the structural properties of chromatin. Our results indicate that chromatin-associated RNAs, which account for 2%-5% of total chromatin-associated nucleic acids, are polyA(- and show a size similar to that of the DNA contained in the corresponding chromatin fragments. Chromatin-associated RNA(s are not likely to correspond to nascent transcripts as they are also found bound to chromatin when cells are treated with alpha-amanitin. After treatment with RNase A, chromatin fragments of molecular weight >3.000 bp of DNA showed reduced sedimentation through sucrose gradients and increased sensitivity to micrococcal nuclease digestion. This structural transition, which is observed both at euchromatic and heterochromatic regions, proceeds without loss of histone H1 or any significant change in core-histone composition and integrity.

  17. Electromechanical modeling of a honeycomb core integrated vibration energy converter with increased specific power for energy harvesting applications

    Science.gov (United States)

    Chandrasekharan, Nataraj

    Innovation in integrated circuit technology along with improved manufacturing processes has resulted in considerable reduction in power consumption of electromechanical devices. Majority of these devices are currently powered by batteries. However, the issues posed by batteries, including the need for frequent battery recharge/replacement has resulted in a compelling need for alternate energy to achieve self-sufficient device operation or to supplement battery power. Vibration based energy harvesting methods through piezoelectric transduction provides with a promising potential towards replacing or supplementing battery power source. However, current piezoelectric energy harvesters generate low specific power (power-to-weight ratio) when compared to batteries that the harvesters seek to replace or supplement. In this study, the potential of integrating lightweight cellular honeycomb structures with existing piezoelectric device configurations (bimorph) to achieve higher specific power is investigated. It is shown in this study that at low excitation frequency ranges, replacing the solid continuous substrate of a conventional piezoelectric bimorph with honeycomb structures of the same material results in a significant increase in power-to-weight ratio of the piezoelectric harvester. In order to maximize the electrical response of vibration based power harvesters, the natural frequency of these harvesters is designed to match the input driving frequency. The commonly used technique of adding a tip mass is employed to lower the natural frequency (to match driving frequency) of both, solid and honeycomb substrate bimorphs. At higher excitation frequency, the natural frequency of the traditional solid substrate bimorph can only be altered (to match driving frequency) through a change in global geometric design parameters, typically achieved by increasing the thickness of the harvester. As a result, the size of the harvester is increased and can be disadvantageous

  18. Integrated Multidisciplinary Constrained Optimization of Offshore Support Structures

    International Nuclear Information System (INIS)

    Haghi, Rad; Molenaar, David P; Ashuri, Turaj; Van der Valk, Paul L C

    2014-01-01

    In the current offshore wind turbine support structure design method, the tower and foundation, which form the support structure are designed separately by the turbine and foundation designer. This method yields a suboptimal design and it results in a heavy, overdesigned and expensive support structure. This paper presents an integrated multidisciplinary approach to design the tower and foundation simultaneously. Aerodynamics, hydrodynamics, structure and soil mechanics are the modeled disciplines to capture the full dynamic behavior of the foundation and tower under different environmental conditions. The objective function to be minimized is the mass of the support structure. The model includes various design constraints: local and global buckling, modal frequencies, and fatigue damage along different stations of the structure. To show the usefulness of the method, an existing SWT-3.6-107 offshore wind turbine where its tower and foundation are designed separately is used as a case study. The result of the integrated multidisciplinary design optimization shows 12.1% reduction in the mass of the support structure, while satisfying all the design constraints

  19. THE DEPENDENCE OF PRESTELLAR CORE MASS DISTRIBUTIONS ON THE STRUCTURE OF THE PARENTAL CLOUD

    International Nuclear Information System (INIS)

    Parravano, Antonio; Sánchez, Néstor; Alfaro, Emilio J.

    2012-01-01

    The mass distribution of prestellar cores is obtained for clouds with arbitrary internal mass distributions using a selection criterion based on the thermal and turbulent Jeans mass and applied hierarchically from small to large scales. We have checked this methodology by comparing our results for a log-normal density probability distribution function with the theoretical core mass function (CMF) derived by Hennebelle and Chabrier, namely a power law at large scales and a log-normal cutoff at low scales, but our method can be applied to any mass distributions representing a star-forming cloud. This methodology enables us to connect the parental cloud structure with the mass distribution of the cores and their spatial distribution, providing an efficient tool for investigating the physical properties of the molecular clouds that give rise to the prestellar core distributions observed. Simulated fractional Brownian motion (fBm) clouds with the Hurst exponent close to the value H = 1/3 give the best agreement with the theoretical CMF derived by Hennebelle and Chabrier and Chabrier's system initial mass function. Likewise, the spatial distribution of the cores derived from our methodology shows a surface density of companions compatible with those observed in Trapezium and Ophiucus star-forming regions. This method also allows us to analyze the properties of the mass distribution of cores for different realizations. We found that the variations in the number of cores formed in different realizations of fBm clouds (with the same Hurst exponent) are much larger than the expected root N statistical fluctuations, increasing with H.

  20. Fracture Characterization of PVC Foam Core Sandwich Specimen Using the DCB-UBM Test Method

    DEFF Research Database (Denmark)

    Saseendran, Vishnu; Berggreen, Christian; Carlsson, Leif A.

    coupled with experimental validation is paramount to determine the fracture resistance of the face/core interface. In this paper, the test-rig exploiting the double cantilever beam with uneven bending moments (DCB-UBM) concept is used to determine the fracture toughness of PVC foam core sandwich......Face/core debond failure in sandwich composites is a critical failure mode. Lack of cohesion between face and core will lead to loss of structural integrity. The estimation of interface fracture toughness especially at the face/core interface is extremely challenging, provided the dissimilarity...... composites. The DCB-UBM test enables fracture testing over a large range of mode-mixities as expressed by a phase angle (ψ) which is a measure of the amount of shear loading at the crack tip. A desired phase angle may be achieved by changing the moment-ratio (MR = Md/Ms)....

  1. More Than Filaments and Cores: Statistical Study of Structure Formation and Dynamics in Nearby Molecular Clouds

    Science.gov (United States)

    Chen, How-Huan; Goodman, Alyssa

    2018-01-01

    In the past decade, multiple attempts at understanding the connection between filaments and star forming cores have been made using observations across the entire epectrum. However, the filaments and the cores are usually treated as predefined--and well-defined--entities, instead of structures that often come at different sizes, shapes, with substantially different dynamics, and inter-connected at different scales. In my dissertation, I present an array of studies using different statistical methods, including the dendrogram and the probability distribution function (PDF), of structures at different size scales within nearby molecular clouds. These structures are identified using observations of different density tracers, and where possible, in the multi-dimensional parameter space of key dynamic properties--the LSR velocity, the velocity dispersion, and the column density. The goal is to give an overview of structure formation in nearby star-forming clouds, as well as of the dynamics in these structures. I find that the overall statistical properties of a larger structure is often the summation/superposition of sub-structures within, and that there could be significant variations due to local physical processes. I also find that the star formation process within molecular clouds could in fact take place in a non-monolithic manner, connecting potentially merging and/or transient structures, at different scales.

  2. Electronic structure of molecules using relativistic effective core potentials

    International Nuclear Information System (INIS)

    Hay, P.J.

    1981-01-01

    Starting with one-component Cowan-Griffin relativistic Hartree-Fock orbitals, which successfully incorporate the mass-velocity and Darwin terms present in more complicated wavefunctions such as Dirac-Hartree-Fock, one can derive relativistic effective core potentials (RECP's) to carry out molecular calculations. These potentials implicitly include the dominant relativistic terms for molecules while allowing one to use the traditional quantum chemical techniques for studying the electronic structure of molecules. The effects of spin-orbit coupling can then be included using orbitals from such calculations using an effective 1-electron, 1-center spin-orbit operator. Applications to molecular systems involving heavy atoms, show good agreement with available spectroscopic data on molecular geometries and excitation energies

  3. Mesoporous coaxial titanium nitride-vanadium nitride fibers of core-shell structures for high-performance supercapacitors.

    Science.gov (United States)

    Zhou, Xinhong; Shang, Chaoqun; Gu, Lin; Dong, Shanmu; Chen, Xiao; Han, Pengxian; Li, Lanfeng; Yao, Jianhua; Liu, Zhihong; Xu, Hongxia; Zhu, Yuwei; Cui, Guanglei

    2011-08-01

    In this study, titanium nitride-vanadium nitride fibers of core-shell structures were prepared by the coaxial electrospinning, and subsequently annealed in the ammonia for supercapacitor applications. These core-shell (TiN-VN) fibers incorporated mesoporous structure into high electronic conducting transition nitride hybrids, which combined higher specific capacitance of VN and better rate capability of TiN. These hybrids exhibited higher specific capacitance (2 mV s(-1), 247.5 F g(-1)) and better rate capability (50 mV s(-1), 160.8 F g(-1)), which promise a good candidate for high-performance supercapacitors. It was also revealed by electrochemical impedance spectroscopy (EIS) and X-ray photoelectron spectroscopy (XPS) characterization that the minor capacitance fade originated from the surface oxidation of VN and TiN.

  4. Controllable dielectric and electrical performance of polymer composites with novel core/shell-structured conductive particles through biomimetic method

    International Nuclear Information System (INIS)

    Yang, Dan; Tian, Ming; Wang, Wencai; Li, Dongdong; Li, Runyuan; Liu, Haoliang; Zhang, Liqun

    2013-01-01

    Highlights: ► Conductive core/shell-structured particles were synthesized by biomimetic method. ► These particles with silica/poly(dopamine)/silver core and poly(dopamine) shell. ► Dielectric composites were prepared with resulted particles and silicone elastomer. ► The dielectric properties of the composites can be controlled by shell thickness. ► This biomimetic method is simple, nontoxic, efficient and easy to control. - Abstract: Novel silica/poly(dopamine)/silver (from inner to outer) (denoted as SiO 2 /PDA/Ag) conductive micro-particles were first synthesized by biomimetic poly(dopamine) coating. These micro-particles were then coated with a poly(dopamine) layer to form core/shell-structured particles, with silica/poly(dopamine)/silver core and poly(dopamine) shell (denoted as SiO 2 /PDA/Ag/PDA). This multilayer core/shell micro-particles were confirmed by scanning electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, and transmission electron microscope. Polymer composites were then prepared by mechanical blending of poly(dimethyl siloxane) and the core/shell-structured particles. It was found that the silver layer and the poly(dopamine) shell had good adhesion with substrate and they kept intact even under violent shearing stress during mechanical mixing. The effect of the thickness of outermost poly(dopamine) shell as well as the loading amount of this filler on the dielectric and electrical properties of the composites was further studied. The results showed that the dielectric constant, dielectric loss, and conductivity of the composites decreased with increasing shell thickness (10–53 nm) at the same loading level. And the maximal dielectric constant of composites was achieved in the composites filled with SiO 2 /PDA/Ag/PDA (with 10–15 nm PDA shell) particles, which was much larger than that of the composite filled with SiO 2 /PDA/Ag particles without insulative PDA shell. At the same time, the composites can change

  5. Core Didactic Thematics and Methodology in Business Spanish: Developing Leadership with Integrity as a Priority for Language for the Professions and Specific Purposes

    Science.gov (United States)

    Doyle, Michael S.

    2017-01-01

    Business Spanish typically teaches the vocabulary, content, and context of the functional areas of business, and how to conduct business in a cultural setting. But it should do more than just that. Leadership with integrity should be primed and personalized as a signature and integrative core value that frameworks any ensuing learning of the…

  6. Control structure selection for energy integrated distillation column

    DEFF Research Database (Denmark)

    Hansen, J.E.; Jørgensen, Sten Bay

    1998-01-01

    This paper treats a case study on control structure selection for an almost binary distillation column. The column is energy integrated with a heat pump in order to transfer heat from the condenser to the reboiler. This integrated plant configuration renders the possible control structures somewhat...... different from what is usual for binary distillation columns. Further the heat pump enables disturbances to propagate faster through the system. The plant has six possible actuators of which three must be used to stabilize the system. Hereby three actuators are left for product purity control. An MILP...

  7. Broadband absorption and enhanced photothermal conversion property of octopod-like Ag@Ag2S core@shell structures with gradually varying shell thickness.

    Science.gov (United States)

    Jiang, Qian; Zeng, Wenxia; Zhang, Canying; Meng, Zhaoguo; Wu, Jiawei; Zhu, Qunzhi; Wu, Daxiong; Zhu, Haitao

    2017-12-19

    Photothermal conversion materials have promising applications in many fields and therefore they have attracted tremendous attention. However, the multi-functionalization of a single nanostructure to meet the requirements of multiple photothermal applications is still a challenge. The difficulty is that most nanostructures have specific absoprtion band and are not flexible to different demands. In the current work, we reported the synthesis and multi-band photothermal conversion of Ag@Ag 2 S core@shell structures with gradually varying shell thickness. We synthesized the core@shell structures through the sulfidation of Ag nanocubes by taking the advantage of their spatially different reactivity. The resulting core@shell structures show an octopod-like mopgorlogy with a Ag 2 S bulge sitting at each corner of the Ag nanocubes. The thickness of the Ag 2 S shell gradually increases from the central surface towards the corners of the structure. The synthesized core@shell structures show a broad band absorption spectrum from 300 to 1100 nm. Enhanced photothermal conversion effect is observed under the illuminations of 635, 808, and 1064 nm lasers. The results indicate that the octopod-like Ag@Ag 2 S core@shell structures have characteristics of multi-band photothermal conversion. The current work might provide a guidance for the design and synthesis of multifunctional photothermal conversion materials.

  8. Overview of core designs and requirements/criteria for core restraint systems

    International Nuclear Information System (INIS)

    Sutherland, W.H.

    1984-09-01

    The requirements and lifetime criteria for the design of a Liquid Metal Fast Breeder Reactor (LMFBR) Core Restraint System are presented. A discussion of the three types of core restraint systems used in LMFBR core design is given. Details of the core restraint system selected for FFTF are presented and the reasons for this selection given. Structural analysis procedures being used to manage the FFTF assembly irradiations are discussed. Efforts that are ongoing to validate the calculational methods and lifetime criteria are presented

  9. Preliminary Guideline for the High Temperature Structure Integrity Assessment Procedure Part II. High Temperature Structural Integrity Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Han; Kim, J. B.; Lee, H. Y.; Park, C. G.; Joo, Y. S.; Koo, G. H.; Kim, S. H

    2007-02-15

    A high temperature structural integrity assessment belongs to the Part II of a whole preliminary guideline for the high temperature structure. The main contents of this guideline are the evaluation procedures of the creep-fatigue crack initiation and growth in high temperature condition, the high temperature LBB evaluation procedure, and the inelastic evaluations of the welded joints in SFR structures. The methodologies for the proper inelastic analysis of an SFR structures in high temperatures are explained and the guidelines of inelastic analysis options using ANSYS and ABAQUS are suggested. In addition, user guidelines for the developed NONSTA code are included. This guidelines need to be continuously revised to improve the applicability to the design and analysis of the SFR structures.

  10. Substantiating the Conceptual Model of Branding of the Integrated Business Structures

    Directory of Open Access Journals (Sweden)

    Nifatova Olena M.

    2017-11-01

    Full Text Available The article is aimed at researching the theoretical foundations of the concept of branding and forming a conceptual model of branding of the integrated business structures. The concept of branding of IBS is systematized and synthesized by three directions: overview of theories of management of integrated business structures, based on the principle of economic integration; overview of the brand management models based on the principle of brand-oriented management; overview of management approaches, the essence of which is synthesized in the aspect of application to the management of brands of the integrated business structures. Special attention is paid to the factors influencing the efficiency of the process of integration of business structures. Further development of modelling the process of integration branding in the IBS system is of great importance, as the brands of two unifying companies usually have their own identities, unique features within the terms of formation of the brand’s style and philosophy. In such a fundamental issue it is necessary to define the strategy of brand integration, i.e. whether it will be a single brand, a joint brand, a flexible brand or a completely new one.

  11. PWR degraded core analysis

    International Nuclear Information System (INIS)

    Gittus, J.H.

    1982-04-01

    A review is presented of the various phenomena involved in degraded core accidents and the ensuing transport of fission products from the fuel to the primary circuit and the containment. The dominant accident sequences found in the PWR risk studies published to date are briefly described. Then chapters deal with the following topics: the condition and behaviour of water reactor fuel during normal operation and at the commencement of degraded core accidents; the generation of hydrogen from the Zircaloy-steam and the steel-steam reactions; the way in which the core deforms and finally melts following loss of coolant; debris relocation analysis; containment integrity; fission product behaviour during a degraded core accident. (U.K.)

  12. Evaluation of time integration methods for transient response analysis of nonlinear structures

    International Nuclear Information System (INIS)

    Park, K.C.

    1975-01-01

    Recent developments in the evaluation of direct time integration methods for the transient response analysis of nonlinear structures are presented. These developments, which are based on local stability considerations of an integrator, show that the interaction between temporal step size and nonlinearities of structural systems has a pronounced effect on both accuracy and stability of a given time integration method. The resulting evaluation technique is applied to a model nonlinear problem, in order to: 1) demonstrate that it eliminates the present costly process of evaluating time integrator for nonlinear structural systems via extensive numerical experiments; 2) identify the desirable characteristics of time integration methods for nonlinear structural problems; 3) develop improved stiffly-stable methods for application to nonlinear structures. Extension of the methodology for examination of the interaction between a time integrator and the approximate treatment of nonlinearities (such as due to pseudo-force or incremental solution procedures) is also discussed. (Auth.)

  13. Earthquake-proof support structures for the recycling pump in FBR type reactors

    International Nuclear Information System (INIS)

    Nakagawa, Masaki; Shigeta, Masayuki.

    1984-01-01

    Purpose: To improve the earthquake proofness of the recycling pump for use in FBR type reactors upon earthquake by reducing the vibration response of the pump. Constitution: The outer casing of a recycle pump suspended into liquid sodium is extended to the portion that penetrates a reactor core support structures. Support structures surrounding the outer side of the recycling pump are disposed with a gap not restraining the free thermal deformations of the recycling pump to the inside of the partition wall structures and the portion of the recycling pump penetrating the reator core support structures, to integrate the support structures with the reactor core support structures. Accordingly, there are no interferences between the recycling pump and the support structures with respect to the thermal deformations that change gradually with time. Upon vibrating under the rapidly changing external forces of earthquakes, however, the pressure resulted to the liquid in the gap due to the vibrations of the recycling pump is transmitted with no escape to the support structures, the recycling pump and the support structures integrally resist the vibrations thereby enabling to reduce the vibrations in the recycling pumps. (Horiuchi, T.)

  14. Design structure for in-system redundant array repair in integrated circuits

    Science.gov (United States)

    Bright, Arthur A.; Crumley, Paul G.; Dombrowa, Marc; Douskey, Steven M.; Haring, Rudolf A.; Oakland, Steven F.; Quellette, Michael R.; Strissel, Scott A.

    2008-11-25

    A design structure for repairing an integrated circuit during operation of the integrated circuit. The integrated circuit comprising of a multitude of memory arrays and a fuse box holding control data for controlling redundancy logic of the arrays. The design structure provides the integrated circuit with a control data selector for passing the control data from the fuse box to the memory arrays; providing a source of alternate control data, external of the integrated circuit; and connecting the source of alternate control data to the control data selector. The design structure further passes the alternate control data from the source thereof, through the control data selector and to the memory arrays to control the redundancy logic of the memory arrays.

  15. Low-Temperature Crystal Structures of the Hard Core Square Shoulder Model

    Directory of Open Access Journals (Sweden)

    Alexander Gabriëlse

    2017-11-01

    Full Text Available In many cases, the stability of complex structures in colloidal systems is enhanced by a competition between different length scales. Inspired by recent experiments on nanoparticles coated with polymers, we use Monte Carlo simulations to explore the types of crystal structures that can form in a simple hard-core square shoulder model that explicitly incorporates two favored distances between the particles. To this end, we combine Monte Carlo-based crystal structure finding algorithms with free energies obtained using a mean-field cell theory approach, and draw phase diagrams for two different values of the square shoulder width as a function of the density and temperature. Moreover, we map out the zero-temperature phase diagram for a broad range of shoulder widths. Our results show the stability of a rich variety of crystal phases, such as body-centered orthogonal (BCO lattices not previously considered for the square shoulder model.

  16. Formation of integrated structural units using the systematic and integrated method when implementing high-rise construction projects

    Science.gov (United States)

    Abramov, Ivan

    2018-03-01

    Development of design documentation for a future construction project gives rise to a number of issues with the main one being selection of manpower for structural units of the project's overall implementation system. Well planned and competently staffed integrated structural construction units will help achieve a high level of reliability and labor productivity and avoid negative (extraordinary) situations during the construction period eventually ensuring improved project performance. Research priorities include the development of theoretical recommendations for enhancing reliability of a structural unit staffed as an integrated construction crew. The author focuses on identification of destabilizing factors affecting formation of an integrated construction crew; assessment of these destabilizing factors; based on the developed mathematical model, highlighting the impact of these factors on the integration criterion with subsequent identification of an efficiency and reliability criterion for the structural unit in general. The purpose of this article is to develop theoretical recommendations and scientific and methodological provisions of an organizational and technological nature in order to identify a reliability criterion for a structural unit based on manpower integration and productivity criteria. With this purpose in mind, complex scientific tasks have been defined requiring special research, development of corresponding provisions and recommendations based on the system analysis findings presented herein.

  17. Nuclear reactor core flow baffling

    International Nuclear Information System (INIS)

    Berringer, R.T.

    1979-01-01

    A flow baffling arrangement is disclosed for the core of a nuclear reactor. A plurality of core formers are aligned with the grids of the core fuel assemblies such that the high pressure drop areas in the core are at the same elevations as the high pressure drop areas about the core periphery. The arrangement minimizes core bypass flow, maintains cooling of the structure surrounding the core, and allows the utilization of alternative beneficial components such as neutron reflectors positioned near the core

  18. GREEN CORE HOUSE

    Directory of Open Access Journals (Sweden)

    NECULAI Oana

    2017-05-01

    Full Text Available The Green Core House is a construction concept with low environmental impact, having as main central element a greenhouse. The greenhouse has the innovative role to use the biomass energy provided by plants to save energy. Although it is the central piece, the greenhouse is not the most innovative part of the Green Core House, but the whole building ensemble because it integrates many other sustainable systems as "waste purification systems", "transparent photovoltaic panels" or "double skin façades".

  19. Shell model in-water frequencies of the core barrel

    International Nuclear Information System (INIS)

    Takeuchi, K.; De Santo, D.F.

    1980-01-01

    Natural frequencies of a 1/24th-scale core barrel/vessel model in air and in water are measured by determining frequency responses to applied forces. The measured data are analyzed by the use of the one-dimensional fluid-structure computer code, MULTIFLEX, developed to calculate the hydraulic force. The fluid-structure interaction in the downcomer annulus is computed with a one-dimensional network model formed to be equivalent to two-dimensional fluid-structure interaction. The structural model incorporated in MULTIFLEX is substantially simpler than that necessary for structural analyses. Proposed for computation of structural dynamics is the projector method than can deal with the beam mode by modal analysis and the other shell modes by a direct integration method. Computed in-air and in-water frequencies agree fairly well with the experimental data, verifying the above MULTIFLEX technique

  20. Experiments on graphite block gaps connected with leak flow in bottom-core structure of experimental very high-temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Kikuchi, Kenji; Futakawa, Masatoshi; Takizuka, Takakazu; Kaburaki, Hideo; Sanokawa, Konomo

    1984-01-01

    In order to minimize the leak flow rate of an experimental VHTR (a multi-purpose very high-temperature gas-cooled reactor), the graphite blocks are tightened to reduce the gap distance between blocks by core restrainers surrounded outside of the fixed reflectors of the bottom-core structure and seal elements are placed in the gaps. By using a 1/2.75-scale model of the bottom-core structure, the experiments on the following items have been carried out: a relationship between core restraint force and block gap, a relationship between core restraint force and inclined angle of the model, leak flow characteristics of seal elements etc. The conclusions derived from the experiments are as follows: (1) Core restraint force is significantly effective for decreasing the gap distance between hot plenum blocks, but ineffective for the gap between hot plenum block and fixed reflector. (2) Graphite seal element reduces the leak flow rate from the top surface of hot plenum block into plenum region to one-third. (author)

  1. Core/shell particles containing liquid cores : morphology prediction, synthesis and characterization

    NARCIS (Netherlands)

    Zyl, van A.J.P.; Sanderson, R.D.; Wet-Roos, de D.; Klumperman, B.

    2003-01-01

    The ability to synthesize core/shell particles with distinct geometries is becoming increasingly important due to their potential applications. In this study structured particles with liquid cores and polymeric shells were synthesized by an in situ miniemulsion polymerization reaction. The resulting

  2. Development of Technology for Structural Integrity Evaluation

    International Nuclear Information System (INIS)

    Choun, Young Sun; Choi, I. K.; Kim, M. K. and others

    2005-03-01

    The purpose of this study is a development of seismic safety and structural integrity evaluation method of the structure in the Nuclear Power plant (NPP). The purpose of 1st sub-Topic is the development and improvement of the seismic safety evaluation methodology for the Nuclear Power Plant structures and safety related equipment. The purpose of 2nd sub-topic is the increasing of structure and equipment seismic capacity through the reducing of seismic force. The purpose of 3rd sub-topic is the development of 3-D nonlinear finite element analysis program for prestressed concrete containment building. The last purpose if the evaluation of the failure mechanism of containment structure and structure capacity and the assessment of integrity of containment through the of leakage test. As a result of this research, there are many research results were produced. The scenario earthquake developing method was developed and the effect of the structures and equipment was analyzed. The effectiveness of isolation system was determined and optimum isolation systems for each equipment were selected. The NUCAS-3D program for the 3 dimensional numerical analysis of containment building using the embedded tendon element and rebar element was developed. The tension behavior of containment building was examined and the leakage rate of the concrete crack was determined. The results of this research can be successfully used for many fields of integrity of NPP site. It can be used for development of design earthquake for the seismic design and safety evaluation and establishment of seismic safety evaluation program and seismic capacity improvement program for existing NPP. In case of seismic isolation part, it can be used for the application to the selection of optimum isolation devices for equipment isolation and to the effective evaluation of each seismic isolation devices. In containment analysis part, it can be used for ultimate pressure capacity evaluation of prestressed concrete

  3. Integrative structural modeling with small angle X-ray scattering profiles

    Directory of Open Access Journals (Sweden)

    Schneidman-Duhovny Dina

    2012-07-01

    Full Text Available Abstract Recent technological advances enabled high-throughput collection of Small Angle X-ray Scattering (SAXS profiles of biological macromolecules. Thus, computational methods for integrating SAXS profiles into structural modeling are needed more than ever. Here, we review specifically the use of SAXS profiles for the structural modeling of proteins, nucleic acids, and their complexes. First, the approaches for computing theoretical SAXS profiles from structures are presented. Second, computational methods for predicting protein structures, dynamics of proteins in solution, and assembly structures are covered. Third, we discuss the use of SAXS profiles in integrative structure modeling approaches that depend simultaneously on several data types.

  4. Overview of core designs and requirements/criteria for core restraint systems

    International Nuclear Information System (INIS)

    Sutherland, W.H.

    1984-01-01

    The requirements and lifetime criteria for the design of a Liquid Metal Fast Breeder Reactor (LMFBR) Core Restraint System is presented. A discussion of the three types of core restraint systems used in LMFBR core design is given. Details of the core restraint system selected for FFTF are presented and the reasons for this selection given. Structural analysis procedures being used to manage the FFTF assembly irradiations are discussed. Efforts that are ongoing to validate the calculational methods and lifetime criteria are presented. (author)

  5. Advanced core-analyses for subsurface characterization

    Science.gov (United States)

    Pini, R.

    2017-12-01

    The heterogeneity of geological formations varies over a wide range of length scales and represents a major challenge for predicting the movement of fluids in the subsurface. Although they are inherently limited in the accessible length-scale, laboratory measurements on reservoir core samples still represent the only way to make direct observations on key transport properties. Yet, properties derived on these samples are of limited use and should be regarded as sample-specific (or `pseudos'), if the presence of sub-core scale heterogeneities is not accounted for in data processing and interpretation. The advent of imaging technology has significantly reshaped the landscape of so-called Special Core Analysis (SCAL) by providing unprecedented insight on rock structure and processes down to the scale of a single pore throat (i.e. the scale at which all reservoir processes operate). Accordingly, improved laboratory workflows are needed that make use of such wealth of information by e.g., referring to the internal structure of the sample and in-situ observations, to obtain accurate parameterisation of both rock- and flow-properties that can be used to populate numerical models. We report here on the development of such workflow for the study of solute mixing and dispersion during single- and multi-phase flows in heterogeneous porous systems through a unique combination of two complementary imaging techniques, namely X-ray Computed Tomography (CT) and Positron Emission Tomography (PET). The experimental protocol is applied to both synthetic and natural porous media, and it integrates (i) macroscopic observations (tracer effluent curves), (ii) sub-core scale parameterisation of rock heterogeneities (e.g., porosity, permeability and capillary pressure), and direct 3D observation of (iii) fluid saturation distribution and (iv) the dynamic spreading of the solute plumes. Suitable mathematical models are applied to reproduce experimental observations, including both 1D and 3D

  6. Tribological properties of coating films for core structure of HTGR

    International Nuclear Information System (INIS)

    Ozawa, Kenji; Kikuchi, Akiyoshi; Kawakami, Haruo

    1985-01-01

    The tribological properties of the various coating films used for the in-core structures of a high temperature gas-cooled experimental reactor were examined. When the explosion sprayed films of chrome carbide were applied for preventing galling in core restraining mechanism, the hardness of substrate materials exerted influence on the strength of the coating films. Also the effect of the surface roughness of the plasma sprayed films of zirconia on the sliding characteristics of the zirconia films and PGX graphite used for support plates was clarified. The coefficient of friction and the dependence of the amount of wear on surface pressure of these materials were examined. These results have been effectively utilized for the design of the test bodies of HENDEL-T2. In helium atmosphere, oxide film is hard to be formed on metal surface, especially on the contact surface of metals exposed to high temperature, there is the possibility to cause adhesion due to mutual diffusion and galling in sliding. As the means to prevent those, ceramic coating has been attempted. Sliding test, high pressure joining test, thermal cycle test and corrosion test in helium were carried out to evaluate the properties. (Koko, I.)

  7. Catalyst-free fabrication of novel ZnO/CuO core-Shell nanowires heterojunction: Controlled growth, structural and optoelectronic properties

    Science.gov (United States)

    Khan, Muhammad Arif; Wahab, Yussof; Muhammad, Rosnita; Tahir, Muhammad; Sakrani, Samsudi

    2018-03-01

    Development of controlled growth and vertically aligned ZnO/CuO core-shell heterojunction nanowires (NWs) with large area by a catalyst free vapor deposition and oxidation approach has been investigated. Structural characterization reveals successful fabrication of a core ZnO nanowire having single crystalline hexagonal wurtzite structure along [002] direction and CuO nanostructure shell with thickness (8-10 nm) having polycrystalline monoclinic structure. The optical property analysis suggests that the reflectance spectrum of ZnO/CuO heterostructure nanowires is decreased by 18% in the visible range, which correspondingly shows high absorption in this region as compared to pristine ZnO nanowires. The current-voltage (I-V) characteristics of core-shell heterojunction nanowires measured by conductive atomic force microscopy (C-AFM) shows excellent rectifying behavior, which indicates the characteristics of a good p-n junction. The high-resolution transmission electron microscopy (HRTEM) has confirmed the sharp junction interface between the core-shell heterojunction nanowire arrays. The valence band offset and conduction band offset at ZnO/CuO heterointerfaces are measured to be 2.4 ± 0.05 and 0.23 ± 0.005 eV respectively, using X-ray photoelectron spectroscopy (XPS) and a type-II band alignment structure is found. The results of this study contribute to the development of new advanced device heterostructures for solar energy conversion and optoelectronics applications.

  8. Reinventing the Platform Core Through Acquisition

    DEFF Research Database (Denmark)

    Toppenberg, Gustav; Henningsson, Stefan; Eaton, Ben

    2016-01-01

    the acquisition and integration of companies presenting innovative technologies of relevance to the platform core. Using a revelatory case study of Cisco Systems, we develop the explanatory notion of ‘coring acquisition’. In this type of acquisition value is created through the acquisition of companies...

  9. Simplifying the ELA Common Core; Demystifying Curriculum

    Science.gov (United States)

    Schmoker, Mike; Jago, Carol

    2013-01-01

    The English Language Arts (ELA) Common Core State Standards ([CCSS], 2010) could have a transformational effect on American education. Though the process seems daunting, one can begin immediately integrating the essence of the ELA Common Core in every subject area. This article shows how one could implement the Common Core and create coherent,…

  10. Effects of lower plenum flow structure on core inlet flow of ABWR

    International Nuclear Information System (INIS)

    Watanabe, Shun; Abe, Yutaka; Kaneko, Akiko; Watanabe, Fumitoshi; Tezuka, Kenichi

    2010-01-01

    The evaluation of coolant flow structure at a lower plenum of an advanced boiling water reactor (ABWR) in which there are many structures is very important in order to improve generating power. Although the simulation results by CFD (Computational Fluid Dynamics) codes can predict such complicated flow in the lower plenum, it is required to establish the database of flow structure in lower plenum of ABWR experimentally for the benchmark of the CFD codes. In the model of the lower plenum, we measured velocity profiles with LDV and PIV. And differential pressure of constructed model is measured with differential pressure instrument. It was identified that the velocity and differential pressure profiles also showed the tendency to be flat in the core inlet. Moreover, vortexes were observed around side entry orifice by PIV measurement. (author)

  11. Method of magnetic susceptibility mapping of drilled cores. Experimental measurements for geologic structures determination

    International Nuclear Information System (INIS)

    Delrive, C.

    1993-01-01

    The evaluation of the safety of a deep geologic repository for dangerous materials requires the knowledge of the interstitial system of the surrounding host rock. A method is proposed for the determination of geologic structures (in particular fractures) from the magnetic susceptibility mapping of drilled cores. The feasibility of the method has been demonstrated using a SQUID magneto-gradient meter. A measurement tool using a new magnetic susceptibility captor and a testing bench have been developed. This tool allows the measurement of rocks with a magnetic susceptibility greater than 10 -5 SI units and can generate magnetic susceptibility maps with 4 x 4 mm 2 pixels. A magnetic visibility criterion has been defined which allows to foresee if a structure is visible or not. According to the measurements done, it is shown that any centimeter-scale structure with a sufficient magnetic contrast (20%) with respect to the matrix is visible. Therefore, the dip and the orientation of such structure can be determined with a 3 degree and a 5 degree precision, respectively. The position of the structure along the core axis is known with a 4 mm precision. On the other hand, about half of the magnetic contrasts observed do not correspond to the visual analyses and can be explained by very small variations of the mineralogic composition. This last point offers some interesting ways for future research using magnetic susceptibility mapping. (J.S.). 31 refs., 90 figs., 18 tabs., 2 photos., 6 appends

  12. The integrable structure of nonrational conformal field theory

    Energy Technology Data Exchange (ETDEWEB)

    Bytsko, A. [Steklov Mathematics Institute, St. Petersburg (Russian Federation); Teschner, J. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2009-02-15

    Using the example of Liouville theory, we show how the separation into left- and rightmoving degrees of freedom of a nonrational conformal field theory can be made explicit in terms of its integrable structure. The key observation is that there exist separate Baxter Q-operators for left- and right-moving degrees of freedom. Combining a study of the analytic properties of the Q-operators with Sklyanin's Separation of Variables Method leads to a complete characterization of the spectrum. Taking the continuum limit allows us in particular to rederive the Liouville reflection amplitude using only the integrable structure. (orig.)

  13. [New theory of holistic integrative physiology and medicine. III: New insight of neurohumoral mechanism and pattern of control and regulation for core axe of respiration, circulation and metabolism].

    Science.gov (United States)

    Sun, Xing-guo

    2015-07-01

    Systemic mechanism of neurohumoral control and regulation for human is limited. We used the new theory of holistic integrative physiology and medicine to approach the mechanism and pattern of neurohumoral control and regulation for life. As the core of human life, there are two core axes of functions. The first one is the common goal of respiration and circulation to transport oxygen and carbon dioxide for cells, and the second one is the goal of gastrointestinal tract and circulation to transport energy material and metabolic product for cells. These two core axes maintain the metabolism. The neurohumoral regulation is holistically integrated and unified for all functions in human body. We simplified explain the mechanism of neurohumoral control and regulation life (respiration and circulation) as the example pattern of sound system. Based upon integrated regulation of life, we described the neurohumoral pattern to control respiration and circulation.

  14. Integrating structural health and condition monitoring

    DEFF Research Database (Denmark)

    May, Allan; Thöns, Sebastian; McMillan, David

    2015-01-01

    window’ allowing for the possible detection of faults up to 6 months in advance. The SHM system model uses a reduction in the probability of failure factor to account for lower modelling uncertainties. A case study is produced that shows a reduction in operating costs and also a reduction in risk......There is a large financial incentive to minimise operations and maintenance (O&M) costs for offshore wind power by optimising the maintenance plan. The integration of condition monitoring (CM) and structural health monitoring (SHM) may help realise this. There is limited work on the integration...

  15. Design of energy efficient optical networks with software enabled integrated control plane

    DEFF Research Database (Denmark)

    Wang, Jiayuan; Yan, Ying; Dittmann, Lars

    2015-01-01

    energy consumption by proposing a new integrated control plane structure utilising Software Defined Networking technologies. The integrated control plane increases the efficiencies of exchanging control information across different network domains, while introducing new possibilities to the routing...... methods and the control over quality of service (QoS). The structure is defined as an overlay generalised multi-protocol label switching (GMPLS) control model. With the defined structure, the integrated control plane is able to gather information from different domains (i.e. optical core network......'s) routing behaviours. With the flexibility of the routing structure, results show that the energy efficiency of the network can be improved without compromising the QoS for delay/blocking sensitive services....

  16. Design study on metal fuel FBR cores

    International Nuclear Information System (INIS)

    Yokoo, T.; Tanaka, Y.; Ogata, T.

    1991-01-01

    A design approach for metal fuel FBR core to maintain fuel integrity during transient events by limiting eutectic/liquid phase formation is proposed based on the current status of metallic fuel development. Its impact as the limitation on the core outlet temperature is assessed through its application to two of CRIEPI's core concepts, high linear power 1000 MWe homogeneous design and medium linear power 300 MWe radially heterogeneous design. SESAME/SALT code is used in this study to analyze steady state and transient fuel behavior. SE2-FA code is developed based on SUPERENERGY-2 and used to analyze core thermal-hydraulics with uncertainties. As the result, the core outlet temperatures of both designs are found to be limited to ≤500degC if it is required to prevent eutectic/liquid phase formation during operational transients in order to guarantee the fuel integrity. Additional assessment is made assuming an advanced limiting condition that allows small liquid phase formation based on the liquid phase penetration rate derived from existing experimental results. The result indicates possibility of raising core outlet temperature to ∼ 530degC. Also, it is found that core design technology improvements such as hot spot factors reduction can contribute to the core outlet temperature extension by 10 ∼ 20degC. (author)

  17. The core structures of transformation dislocations at TiAl/Ti3Al interfaces

    International Nuclear Information System (INIS)

    Penisson, J.M.; Loubradou, M.; Derder, C.; Bonnet, R.

    1993-01-01

    A Ti-40%Al alloy is investigated using High Resolution Electron Microscopy. The alloy structure consists mainly of alternate lamellae of γ(TiAl, L1 0 structure) and α 2 (Ti 3 Al, DO 19 structure) phases. These lamellae are parallel to each other and the interfaces between them are flat and parallel to the densest planes of the crystals. It is found that, among the variety of interfacial dislocations relieving the misfit, some have cores involving four (111) planes in height. The elastic displacement fields around these interfacial ledges, compared with the experimental atomic positions determined from HREM images, are in agreement with Burgers vector contents 1/6 left angle 112 right angle . (orig.)

  18. Growth of InAs/InP core-shell nanowires with various pure crystal structures.

    Science.gov (United States)

    Gorji Ghalamestani, Sepideh; Heurlin, Magnus; Wernersson, Lars-Erik; Lehmann, Sebastian; Dick, Kimberly A

    2012-07-20

    We have studied the epitaxial growth of an InP shell on various pure InAs core nanowire crystal structures by metal-organic vapor phase epitaxy. The InP shell is grown on wurtzite (WZ), zinc-blende (ZB), and {111}- and {110}-type faceted ZB twin-plane superlattice (TSL) structures by tuning the InP shell growth parameters and controlling the shell thickness. The growth results, particularly on the WZ nanowires, show that homogeneous InP shell growth is promoted at relatively high temperatures (∼500 °C), but that the InAs nanowires decompose under the applied conditions. In order to protect the InAs core nanowires from decomposition, a short protective InP segment is first grown axially at lower temperatures (420-460 °C), before commencing the radial growth at a higher temperature. Further studies revealed that the InP radial growth rate is significantly higher on the ZB and TSL nanowires compared to WZ counterparts, and shows a strong anisotropy in polar directions. As a result, thin shells were obtained during low temperature InP growth on ZB structures, while a higher temperature was used to obtain uniform thick shells. In addition, a schematic growth model is suggested to explain the basic processes occurring during the shell growth on the TSL crystal structures.

  19. Simulant-material experimental investigation of flow dynamics in the CRBR Upper-Core Structure

    International Nuclear Information System (INIS)

    Wilhelm, D.; Starkovich, V.S.; Chapyak, E.J.

    1982-09-01

    The results of a simulant-material experimental investigation of flow dynamics in the Clinch River Breeder Reactor (CRBR) Upper Core Structure are described. The methodology used to design the experimental apparatus and select test conditions is detailed. Numerous comparisons between experimental data and SIMMER-II Code calculations are presented with both advantages and limitations of the SIMMER modeling features identified

  20. "Hot cores" in proteins: Comparative analysis of the apolar contact area in structures from hyper/thermophilic and mesophilic organisms

    Directory of Open Access Journals (Sweden)

    Bossa Francesco

    2008-02-01

    Full Text Available Abstract Background A wide variety of stabilizing factors have been invoked so far to elucidate the structural basis of protein thermostability. These include, amongst the others, a higher number of ion-pairs interactions and hydrogen bonds, together with a better packing of hydrophobic residues. It has been frequently observed that packing of hydrophobic side chains is improved in hyperthermophilic proteins, when compared to their mesophilic counterparts. In this work, protein crystal structures from hyper/thermophilic organisms and their mesophilic homologs have been compared, in order to quantify the difference of apolar contact area and to assess the role played by the hydrophobic contacts in the stabilization of the protein core, at high temperatures. Results The construction of two datasets was carried out so as to satisfy several restrictive criteria, such as minimum redundancy, resolution and R-value thresholds and lack of any structural defect in the collected structures. This approach allowed to quantify with relatively high precision the apolar contact area between interacting residues, reducing the uncertainty due to the position of atoms in the crystal structures, the redundancy of data and the size of the dataset. To identify the common core regions of these proteins, the study was focused on segments that conserve a similar main chain conformation in the structures analyzed, excluding the intervening regions whose structure differs markedly. The results indicated that hyperthermophilic proteins underwent a significant increase of the hydrophobic contact area contributed by those residues composing the alpha-helices of the structurally conserved regions. Conclusion This study indicates the decreased flexibility of alpha-helices in proteins core as a major factor contributing to the enhanced termostability of a number of hyperthermophilic proteins. This effect, in turn, may be due to an increased number of buried methyl groups in

  1. Smart Construction of Integrated CNTs/Li4Ti5O12 Core/Shell Arrays with Superior High-Rate Performance for Application in Lithium-Ion Batteries.

    Science.gov (United States)

    Yao, Zhujun; Xia, Xinhui; Zhou, Cheng-Ao; Zhong, Yu; Wang, Yadong; Deng, Shengjue; Wang, Weiqi; Wang, Xiuli; Tu, Jiangping

    2018-03-01

    Exploring advanced high-rate anodes is of great importance for the development of next-generation high-power lithium-ion batteries (LIBs). Here, novel carbon nanotubes (CNTs)/Li 4 Ti 5 O 12 (LTO) core/shell arrays on carbon cloth (CC) as integrated high-quality anode are constructed via a facile combined chemical vapor deposition-atomic layer deposition (ALD) method. ALD-synthesized LTO is strongly anchored on the CNTs' skeleton forming core/shell structures with diameters of 70-80 nm the combined advantages including highly conductive network, large surface area, and strong adhesion are obtained in the CC-LTO@CNTs core/shell arrays. The electrochemical performance of the CC-CNTs/LTO electrode is completely studied as the anode of LIBs and it shows noticeable high-rate capability (a capacity of 169 mA h g -1 at 1 C and 112 mA h g -1 at 20 C), as well as a stable cycle life with a capacity retention of 86% after 5000 cycles at 10 C, which is much better than the CC-LTO counterpart. Meanwhile, excellent cycling stability is also demonstrated for the full cell with LiFePO 4 cathode and CC-CNTs/LTO anode (87% capacity retention after 1500 cycles at 10 C). These positive features suggest their promising application in high-power energy storage areas.

  2. Smart Construction of Integrated CNTs/Li4Ti5O12 Core/Shell Arrays with Superior High‐Rate Performance for Application in Lithium‐Ion Batteries

    Science.gov (United States)

    Yao, Zhujun; Zhou, Cheng‐ao; Zhong, Yu; Wang, Yadong; Deng, Shengjue; Wang, Weiqi; Wang, Xiuli

    2018-01-01

    Abstract Exploring advanced high‐rate anodes is of great importance for the development of next‐generation high‐power lithium‐ion batteries (LIBs). Here, novel carbon nanotubes (CNTs)/Li4Ti5O12 (LTO) core/shell arrays on carbon cloth (CC) as integrated high‐quality anode are constructed via a facile combined chemical vapor deposition–atomic layer deposition (ALD) method. ALD‐synthesized LTO is strongly anchored on the CNTs' skeleton forming core/shell structures with diameters of 70–80 nm the combined advantages including highly conductive network, large surface area, and strong adhesion are obtained in the CC‐LTO@CNTs core/shell arrays. The electrochemical performance of the CC‐CNTs/LTO electrode is completely studied as the anode of LIBs and it shows noticeable high‐rate capability (a capacity of 169 mA h g−1 at 1 C and 112 mA h g−1 at 20 C), as well as a stable cycle life with a capacity retention of 86% after 5000 cycles at 10 C, which is much better than the CC‐LTO counterpart. Meanwhile, excellent cycling stability is also demonstrated for the full cell with LiFePO4 cathode and CC‐CNTs/LTO anode (87% capacity retention after 1500 cycles at 10 C). These positive features suggest their promising application in high‐power energy storage areas. PMID:29593977

  3. Role of core support material in veneer failure of brittle layer structures.

    Science.gov (United States)

    Hermann, Ilja; Bhowmick, Sanjit; Lawn, Brian R

    2007-07-01

    A study is made of veneer failure by cracking in all-ceramic crown-like layer structures. Model trilayers consisting of a 1 mm thick external glass layer (veneer) joined to a 0.5 mm thick inner stiff and hard ceramic support layer (core) by epoxy bonding or by fusion are fabricated for testing. The resulting bilayers are then glued to a thick compliant polycarbonate slab to simulate a dentin base. The specimens are subjected to cyclic contact (occlusal) loading with spherical indenters in an aqueous environment. Video cameras are used to record the fracture evolution in the transparent glass layer in situ during testing. The dominant failure mode is cone cracking in the glass veneer by traditional outer (Hertzian) cone cracks at higher contact loads and by inner (hydraulically pumped) cone cracks at lower loads. Failure is deemed to occur when one of these cracks reaches the veneer/core interface. The advantages and disadvantages of the alumina and zirconia core materials are discussed in terms of mechanical properties-strength and toughness, as well as stiffness. Consideration is also given to the roles of interface strength and residual thermal expansion mismatch stresses in relation to the different joining methods. Copyright 2006 Wiley Periodicals, Inc.

  4. Mars Internal Structure: Seismic Predictions for Core Phase Arrivals in Anticipation of the InSight Mission

    Science.gov (United States)

    Weber, R. C.; Banerdt, W. B.; Lognonne, P. H.; Hempel, S.; Panning, M. P.; Schmerr, N. C.; Garcia, R.; Shiro, B.; Gudkova, T.

    2016-12-01

    We present a methodology to constrain the seismic structure of the Martian core in preparation for the return of data from the InSight mission. Expected amplitudes for marsquakes assuming a medium seismicity model support the likely observation of core reflections of P and S energy for events with magnitude greater than MW 4.5. For the mission duration, we would expect to record on the order of 10 events of at least this magnitude. Our method predicts the ray density of core reflected (PcP, ScS) and transmitted (PKP, SKS) phases for various core sizes with core-mantle boundary depths between 1650 and 2100 km. Ray density is defined as the fraction of rays in a small source-receiver interval normalized by the total number of rays over a great circle slice through the planet. The ray density of a given phase is scaled by predicted amplitudes calculated considering attenuation, geometric spreading and reflection/transmission coefficients at discontinuities along the ray path. Maximum PcP/ScS amplitudes are expected at epicentral distances of 40-100 degrees. Thus, if present, strong seismicity in the Hellas and Tharsis region may facilitate core detection. For events with MW above 4.5, ScS and SKS signals are expected to lie above the lander noise, but PcP and PKP signals may barely be visible. The resolution of these phases can be improved by applying stacking techniques to account for expected background noise, scattering, and interfering seismic phases. These techniques were successfully applied to Apollo seismograms to infer the radial structure of the lunar core. Even if source depth and location have large uncertainties during a single-station mission to Mars, different phases can be distinguished by their slownesses. Prior to the summation of the traces of individual events, signals are aligned to a reference phase, e.g. the PcP onset assuming various core radii. A maximum in signal coherency corresponds to the best fitting core radius. In the case of lunar

  5. Development of Probabilistic Structural Analysis Integrated with Manufacturing Processes

    Science.gov (United States)

    Pai, Shantaram S.; Nagpal, Vinod K.

    2007-01-01

    An effort has been initiated to integrate manufacturing process simulations with probabilistic structural analyses in order to capture the important impacts of manufacturing uncertainties on component stress levels and life. Two physics-based manufacturing process models (one for powdered metal forging and the other for annular deformation resistance welding) have been linked to the NESSUS structural analysis code. This paper describes the methodology developed to perform this integration including several examples. Although this effort is still underway, particularly for full integration of a probabilistic analysis, the progress to date has been encouraging and a software interface that implements the methodology has been developed. The purpose of this paper is to report this preliminary development.

  6. An integrated algorithm for hypersonic fluid-thermal-structural numerical simulation

    Science.gov (United States)

    Li, Jia-Wei; Wang, Jiang-Feng

    2018-05-01

    In this paper, a fluid-structural-thermal integrated method is presented based on finite volume method. A unified integral equations system is developed as the control equations for physical process of aero-heating and structural heat transfer. The whole physical field is discretized by using an up-wind finite volume method. To demonstrate its capability, the numerical simulation of Mach 6.47 flow over stainless steel cylinder shows a good agreement with measured values, and this method dynamically simulates the objective physical processes. Thus, the integrated algorithm proves to be efficient and reliable.

  7. Challenges Regarding IP Core Functional Reliability

    Science.gov (United States)

    Berg, Melanie D.; LaBel, Kenneth A.

    2017-01-01

    For many years, intellectual property (IP) cores have been incorporated into field programmable gate array (FPGA) and application specific integrated circuit (ASIC) design flows. However, the usage of large complex IP cores were limited within products that required a high level of reliability. This is no longer the case. IP core insertion has become mainstream including their use in highly reliable products. Due to limited visibility and control, challenges exist when using IP cores and subsequently compromise product reliability. We discuss challenges and suggest potential solutions to critical application IP insertion.

  8. Nucleoporins as components of the nuclear pore complex core structure and Tpr as the architectural element of the nuclear basket.

    Science.gov (United States)

    Krull, Sandra; Thyberg, Johan; Björkroth, Birgitta; Rackwitz, Hans-Richard; Cordes, Volker C

    2004-09-01

    The vertebrate nuclear pore complex (NPC) is a macromolecular assembly of protein subcomplexes forming a structure of eightfold radial symmetry. The NPC core consists of globular subunits sandwiched between two coaxial ring-like structures of which the ring facing the nuclear interior is capped by a fibrous structure called the nuclear basket. By postembedding immunoelectron microscopy, we have mapped the positions of several human NPC proteins relative to the NPC core and its associated basket, including Nup93, Nup96, Nup98, Nup107, Nup153, Nup205, and the coiled coil-dominated 267-kDa protein Tpr. To further assess their contributions to NPC and basket architecture, the genes encoding Nup93, Nup96, Nup107, and Nup205 were posttranscriptionally silenced by RNA interference (RNAi) in HeLa cells, complementing recent RNAi experiments on Nup153 and Tpr. We show that Nup96 and Nup107 are core elements of the NPC proper that are essential for NPC assembly and docking of Nup153 and Tpr to the NPC. Nup93 and Nup205 are other NPC core elements that are important for long-term maintenance of NPCs but initially dispensable for the anchoring of Nup153 and Tpr. Immunogold-labeling for Nup98 also results in preferential labeling of NPC core regions, whereas Nup153 is shown to bind via its amino-terminal domain to the nuclear coaxial ring linking the NPC core structures and Tpr. The position of Tpr in turn is shown to coincide with that of the nuclear basket, with different Tpr protein domains corresponding to distinct basket segments. We propose a model in which Tpr constitutes the central architectural element that forms the scaffold of the nuclear basket.

  9. Influence of core size on the upconversion luminescence properties of spherical Gd2O3:Yb3+/Er3+@SiO2 particles with core-shell structures

    International Nuclear Information System (INIS)

    Zheng, Kezhi; Liu, Zhenyu; Liu, Ye; Song, Weiye; Qin, Weiping

    2013-01-01

    Spherical SiO 2 particles with different sizes (30, 80, 120, and 180 nm) have been coated with Gd 2 O 3 :Yb 3+ /Er 3+ layers by a heterogeneous precipitation method, leading to the formation of core-shell structural Gd 2 O 3 :Yb 3+ /Er 3+ @SiO 2 particles. The samples were characterized by using X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, upconversion (UC) emission spectra, and fluorescent dynamical analysis. The obtained core-shell particles have perfect spherical shape with narrow size distribution. Under the excitation of 980 nm diode laser, the core-shell samples showed size-dependent upconversion luminescence (UCL) properties. The inner SiO 2 cores in core-shell samples were proved to have limited effect on the total UCL intensities of Er 3+ ions. The UCL intensities of core-shell particles were demonstrated much higher than the values obtained in pure Gd 2 O 3 :Yb 3+ /Er 3+ with the same phosphor volume. The dependence of the specific area of a UCL shell on the size of its inner SiO 2 particle was calculated and analyzed for the first time. It was confirmed that the surface effect came from the outer surfaces of emitting shells is dominant in influencing the UCL property in the core-shell samples. Three-photon UC processes for the green emissions were observed in the samples with small sizes of SiO 2 cores. The results of dynamical analysis illustrated that more nonradiative relaxation occurred in the core-shell samples with smaller SiO 2 core sizes

  10. Path Integration Applied to Structural Systems with Uncertain Properties

    DEFF Research Database (Denmark)

    Nielsen, Søren R.K.; Köylüoglu, H. Ugur

    Path integration (cell-to-cell mapping) method is applied to evaluate the joint probability density function (jpdf) of the response of the structural systems, with uncertain properties, subject to white noise excitation. A general methodology to deal with uncertainties is outlined and applied...... to the friction controlled slip of a structure on a foundation where the friction coefficient is modelled as a random variable. Exact results derived using the total probability theorem are compared to the ones obtained via path integration....

  11. Structural health monitoring of compression connectors for overhead transmission lines

    Science.gov (United States)

    Wang, Hong; Wang, Jy-An John; Swindeman, Joseph P.; Ren, Fei; Chan, John

    2017-04-01

    Two-stage aluminum conductor steel-reinforced (ACSR) compression connectors are extensively used in US overhead transmission lines. The connectors are made by crimping a steel sleeve onto a steel core and an aluminum sleeve over electrical conducting aluminum strands. The connectors are designed to operate at temperatures up to 125°C, but their performance is increasingly degrading because of overloading of lines. Currently, electric utilities conduct routine line inspections using thermal and electrical measurements, but these methods do not provide information about the structural integrity of connectors. In this work, structural health monitoring (SHM) of compression connectors was studied using electromechanical impedance (EMI) analysis. Lead zirconate titanate (PZT)-5A was identified as a smart material for SHM. A flexible high-temperature bonding layer was used to address challenges in PZT integration due to a significant difference in the coefficients of thermal expansion of PZT and the aluminum substrate. The steel joint on the steel core was investigated because it is responsible for the ultimate tensile strength of the connector. Tensile testing was used to induce structural damage to the joint, or steel core pullout, and thermal cycling introduced additional structural perturbations. EMI measurements were conducted between the tests. The root mean square deviation (RMSD) of EMI was identified as a damage index. The use of steel joints has been shown to enable SHM under simulated conditions. The EMI signature is sensitive to variations in structural conditions. RMSD can be correlated to the structural health of a connector and has potential for use in the SHM and structural integrity evaluation.

  12. Characterization of the fusion core in zebrafish endogenous retroviral envelope protein

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Jian [State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072 (China); State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071 (China); Zhang, Huaidong [CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071 (China); Gong, Rui, E-mail: gongr@wh.iov.cn [CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071 (China); Xiao, Gengfu, E-mail: xiaogf@wh.iov.cn [State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072 (China); State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071 (China)

    2015-05-08

    Zebrafish endogenous retrovirus (ZFERV) is the unique endogenous retrovirus in zebrafish, as yet, containing intact open reading frames of its envelope protein gene in zebrafish genome. Similarly, several envelope proteins of endogenous retroviruses in human and other mammalian animal genomes (such as syncytin-1 and 2 in human, syncytin-A and B in mouse) were identified and shown to be functional in induction of cell–cell fusion involved in placental development. ZFERV envelope protein (Env) gene appears to be also functional in vivo because it is expressible. After sequence alignment, we found ZFERV Env shares similar structural profiles with syncytin and other type I viral envelopes, especially in the regions of N- and C-terminal heptad repeats (NHR and CHR) which were crucial for membrane fusion. We expressed the regions of N + C protein in the ZFERV Env (residues 459–567, including predicted NHR and CHR) to characterize the fusion core structure. We found N + C protein could form a stable coiled-coil trimer that consists of three helical NHR regions forming a central trimeric core, and three helical CHR regions packing into the grooves on the surface of the central core. The structural characterization of the fusion core revealed the possible mechanism of fusion mediated by ZFERV Env. These results gave comprehensive explanation of how the ancient virus infects the zebrafish and integrates into the genome million years ago, and showed a rational clue for discovery of physiological significance (e.g., medicate cell–cell fusion). - Highlights: • ZFERV Env shares similar structural profiles with syncytin and other type I viral envelopes. • The fusion core of ZFERV Env forms stable coiled-coil trimer including three NHRs and three CHRs. • The structural mechanism of viral entry mediated by ZFERV Env is disclosed. • The results are helpful for further discovery of physiological function of ZFERV Env in zebrafish.

  13. ELT-scale Adaptive Optics real-time control with thes Intel Xeon Phi Many Integrated Core Architecture

    Science.gov (United States)

    Jenkins, David R.; Basden, Alastair; Myers, Richard M.

    2018-05-01

    We propose a solution to the increased computational demands of Extremely Large Telescope (ELT) scale adaptive optics (AO) real-time control with the Intel Xeon Phi Knights Landing (KNL) Many Integrated Core (MIC) Architecture. The computational demands of an AO real-time controller (RTC) scale with the fourth power of telescope diameter and so the next generation ELTs require orders of magnitude more processing power for the RTC pipeline than existing systems. The Xeon Phi contains a large number (≥64) of low power x86 CPU cores and high bandwidth memory integrated into a single socketed server CPU package. The increased parallelism and memory bandwidth are crucial to providing the performance for reconstructing wavefronts with the required precision for ELT scale AO. Here, we demonstrate that the Xeon Phi KNL is capable of performing ELT scale single conjugate AO real-time control computation at over 1.0kHz with less than 20μs RMS jitter. We have also shown that with a wavefront sensor camera attached the KNL can process the real-time control loop at up to 966Hz, the maximum frame-rate of the camera, with jitter remaining below 20μs RMS. Future studies will involve exploring the use of a cluster of Xeon Phis for the real-time control of the MCAO and MOAO regimes of AO. We find that the Xeon Phi is highly suitable for ELT AO real time control.

  14. Cause and countermeasure for heat up of HTTR core support plate at power rise tests

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, Nozomu; Takada, Eiji; Nakagawa, Shigeaki; Tachibana, Yukio; Kawasaki, Kozo; Saikusa, Akio; Kojima, Takao; Iyoku, Tatuo [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment

    2002-01-01

    HTTR has carried out many kinds of tests as power rise tests in which reactor power rises step by step after attained the first criticality. In the tests, temperature of a core support plate reached higher than expected at each power level, the temperature was expected to be higher than the maximum working temperature at 100% power level. Therefore, tests under the high temperature test operation mode, in which the core flow rate was different, were carried out to predict the temperature at 100% power precisely, and investigate the cause of the temperature rise. From the investigation, it was clear that the cause was gap flow in the core support structure. Furthermore, it was estimated that the temperature of the core support plate rose locally due to change in gap width between the core support plate and a seal plate due to change in core pressure drop. The maximum working temperature of the core support plate was revised. The integrity of core support plate under the revised maximum working temperature condition was confirmed by stress analyses. (author)

  15. The application of mechanical desktop in the design of the reactor core structure of China advanced research reactor

    International Nuclear Information System (INIS)

    Lang Ruifeng

    2002-01-01

    The three-dimensional parameterization design method is introduced to the design of reactor core structure for China advanced research reactor. Based on the modeling and dimension variable driving of the main parts as well as the modification of dimension variable, the preliminary design and modification of reactor core is carried out with high design efficiency and quality as well as short periods

  16. Single photon core ionization with core excitation: a new spectroscopic tool

    International Nuclear Information System (INIS)

    Penent, F; Carniato, S; Lablanquie, P; Selles, P; Palaudoux, J; Andric, L; Žitnik, M; Bučar, K; Shigemasa, E; Nakano, M; Ito, K; Hikosaka, Y

    2015-01-01

    The simultaneous core ionization and core excitation process (or K -2 V process) induced by absorption of a single photon provides the basis of a new spectroscopy that offers both advantages of X-ray Photoelectron Spectroscopy (XPS) and near-edge x-ray absorption fine structures (NEXAFS) spectroscopy (paper)

  17. Parameter studies to determine sensitivity of slug impact loads to properties of core surrounding structures

    International Nuclear Information System (INIS)

    Gvildys, J.

    1985-01-01

    A sensitivity study of the HCDA slug impact response of fast reactor primary containment to properties of core surrounding structures was performed. Parameters such as the strength of the radial shield material, mass, void, and compressibility properties of the gas plenum material, mass of core material, and mass and compressibility properties of the coolant were used as variables to determine the magnitude of the slug impact loads. The response of the reactor primary containment and the partition of energy were also given. A study was also performed using water as coolant to study the difference in slug impact loads

  18. Core disruptive accident analysis in prototype fast breeder reactor

    International Nuclear Information System (INIS)

    Chellapandi, P.; Velusamy, K.; Kannan, S.E.; Singh, Om Pal; Chetal, S.C.; Bhoje, S.B.

    2002-01-01

    Liquid metal cooled fast breeder reactors, in particular, pool type have many inherent and engineered safety features and hence a core disruptive accident (CDA) involving melt down of the whole core is a very low probable event ( -6 /ry). The important mechanical consequences such as straining of the main vessel including top shield, structural integrity of safety grade decay heat exchangers (DHX) and intermediate heat exchangers (IHX) sodium release to reactor containment building (RCB) through the penetrations in the top shield, sodium fire and consequent temperature and pressure rise in RCB are theoretically analysed using computer codes. Through the analyses with these codes, it is demonstrated that an energetic CDA capability to the maximum 100 MJ mechanical energy in PFBR can be well contained in the primary containment. The sodium release to RCB is 350 kg and pressure rise in RCB is ∼10 kPa. In order to raise the confidence on the theoretical predictions, very systematic experimental program has been carried out. Totally 67 tests were conducted. This experimental study indicated that the primary containment is integral. The main vessel can withstand the energy release of ∼1200 MJ. The structural integrity of IHX and DHX is assured up to 200 MJ. The transient force transmitted to reactor vault is negligible. The average water leak measured under simulated tests for 122 MJ work potential is about 1.8 kg and the maximum leak is 2.41 kg. Extrapolation of the measured maximum leak based on simulation principles yields ∼ 233 kg of sodium leak in the reactor. Based on the above-mentioned theoretical and experimental investigations, the design pressure of 20 kPa is used for PFBR

  19. Seismic research on graphite reactor core

    International Nuclear Information System (INIS)

    Lai Shigang; Sun Libin; Zhang Zhengming

    2013-01-01

    Background: Reactors with graphite core structure include production reactor, water-cooled graphite reactor, gas-cooled reactor, high-temperature gas-cooled reactor and so on. Multi-body graphite core structure has nonlinear response under seismic excitation, which is different from the response of general civil structure, metal connection structure or bolted structure. Purpose: In order to provide references for the designing and construction of HTR-PM. This paper reviews the history of reactor seismic research evaluation from certain countries, and summarizes the research methods and research results. Methods: By comparing the methods adopted in different gas-cooled reactor cores, inspiration for our own HTR seismic research was achieved. Results and Conclusions: In this paper, the research ideas of graphite core seismic during the process of designing, constructing and operating HTR-10 are expounded. Also the project progress of HTR-PM and the research on side reflection with the theory of similarity is introduced. (authors)

  20. FORMATION OF ORGANIZATIONAL AND ECONOMIC INTEGRATED STRUCTURES IN THE ALUMINUM INDUSTRY

    Directory of Open Access Journals (Sweden)

    S. B. Kazbekova

    2013-01-01

    Full Text Available The paper reveals the theoretical foundations of economic efficiency of production and integrated structures formation. Their advantages are demonstrated by the example of the formation of vertically integrated structures in the aluminium industry in the framework created by smelting aluminium cluster inKazakhstan. Also examines the valuable experience gained in the organization of such structures in theRussian Federationin recent years

  1. Towards an integrated petrophysical tool for multiphase flow properties of core samples

    Energy Technology Data Exchange (ETDEWEB)

    Lenormand, R. [Institut Francais du Petrole, Rueil Malmaison (France)

    1997-08-01

    This paper describes the first use of an Integrated Petrophysical Tool (IPT) on reservoir rock samples. The IPT simultaneously measures the following petrophysical properties: (1) Complete capillary pressure cycle: primary drainage, spontaneous and forced imbibitions, secondary drainage (the cycle leads to the wettability of the core by using the USBM index); End-points and parts of the relative permeability curves; Formation factor and resistivity index. The IPT is based on the steady-state injection of one fluid through the sample placed in a Hassler cell. The experiment leading to the whole Pc cycle on two reservoir sandstones consists of about 30 steps at various oil or water flow rates. It takes about four weeks and is operated at room conditions. Relative permeabilities are in line with standard steady-state measurements. Capillary pressures are in accordance with standard centrifuge measurements. There is no comparison for the resistivity index, but the results are in agreement with literature data. However, the accurate determination of saturation remains the main difficulty and some improvements are proposed. In conclusion, the Integrated Petrophysical Tool is as accurate as standard methods and has the advantage of providing the various parameters on the same sample and during a single experiment. The FIT is easy to use and can be automated. In addition, it can be operated in reservoir conditions.

  2. Core@shell@shell structured carbon-based magnetic ternary nanohybrids: Synthesis and their enhanced microwave absorption properties

    Science.gov (United States)

    Yang, Erqi; Qi, Xiaosi; Xie, Ren; Bai, Zhongchen; Jiang, Yang; Qin, Shuijie; Zhong, Wei; Du, Youwei

    2018-05-01

    High encapsulation efficiency of core@shell@shell structured carbon-based magnetic ternary nanohybrids have been synthesized in high yield by chemical vapor deposition of acetylene directly over octahedral-shaped Fe2O3 nanoparticles. By controlling the pyrolysis temperature, Fe3O4@Fe3C@carbon nanotubes (CNTs) and Fe@Fe3C@CNTs ternary nanohybrids could be selectively produced. The optimal RL values for the as-prepared ternary nanohybrids could reach up to ca. -46.7, -52.7 and -29.5 dB, respectively. The excellent microwave absorption properties of the obtaiend ternary nanohybrids were proved to ascribe to the quarter-wavelength matching model. Moreover, the as-prepared Fe@Fe3C@CNTs ternary nanohybrids displayed remarkably enhanced EM wave absorption capabilities compared to Fe3O4@Fe3C@CNTs due to their excellent dielectric loss abilities, good complementarities between the dielectric loss and the magnetic loss, and high attenuation constant. Generally, this strategy can be extended to explore other categories of core@shell or core@shell@shell structured carbon-based nanohybrids, which is very beneficial to accelerate the advancements of high performance MAMs.

  3. The Fuzziness of Giant Planets’ Cores

    Energy Technology Data Exchange (ETDEWEB)

    Helled, Ravit [Institute for Computational Science, University of Zurich, Zurich (Switzerland); Stevenson, David [Division of Geological and Planetary Sciences, Caltech, Pasadena, CA (United States)

    2017-05-01

    Giant planets are thought to have cores in their deep interiors, and the division into a heavy-element core and hydrogen–helium envelope is applied in both formation and structure models. We show that the primordial internal structure depends on the planetary growth rate, in particular, the ratio of heavy elements accretion to gas accretion. For a wide range of likely conditions, this ratio is in one-to-one correspondence with the resulting post-accretion profile of heavy elements within the planet. This flux ratio depends sensitively on the assumed solid-surface density in the surrounding nebula. We suggest that giant planets’ cores might not be distinct from the envelope and includes some hydrogen and helium, and the deep interior can have a gradual heavy-element structure. Accordingly, Jupiter’s core may not be well defined. Accurate measurements of Jupiter’s gravitational field by Juno could put constraints on Jupiter’s core mass. However, as we suggest here, the definition of Jupiter’s core is complex, and the core’s physical properties (mass, density) depend on the actual definition of the core and on the planet’s growth history.

  4. The Fuzziness of Giant Planets’ Cores

    International Nuclear Information System (INIS)

    Helled, Ravit; Stevenson, David

    2017-01-01

    Giant planets are thought to have cores in their deep interiors, and the division into a heavy-element core and hydrogen–helium envelope is applied in both formation and structure models. We show that the primordial internal structure depends on the planetary growth rate, in particular, the ratio of heavy elements accretion to gas accretion. For a wide range of likely conditions, this ratio is in one-to-one correspondence with the resulting post-accretion profile of heavy elements within the planet. This flux ratio depends sensitively on the assumed solid-surface density in the surrounding nebula. We suggest that giant planets’ cores might not be distinct from the envelope and includes some hydrogen and helium, and the deep interior can have a gradual heavy-element structure. Accordingly, Jupiter’s core may not be well defined. Accurate measurements of Jupiter’s gravitational field by Juno could put constraints on Jupiter’s core mass. However, as we suggest here, the definition of Jupiter’s core is complex, and the core’s physical properties (mass, density) depend on the actual definition of the core and on the planet’s growth history.

  5. Demonstration tests for HTGR fuel elements and core components with test sections in HENDEL

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, Yoshiaki; Hino, Ryutaro; Inagaki, Yoshiyuki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    1995-03-01

    In the fuel stack test section (T{sub 1}) of the Helium Engineering Demonstration Loop (HENDEL), thermal and hydraulic performances of helium gas flows through a fuel rod channel and a fuel stack have been investigated for the High-Temperature Engineering Test Reactor (HTTR) core thermal design. The test data showed that the turbulent characteristics appearing in the Reynolds number above 2000: no typical behavior in the transition zone, and friction factors and heat transfer coefficients in the fuel channel were found to be higher than those in a smooth annular channel. Heat transfer behavior of gas flow in a fuel element channel with blockage and cross-flow through a gap between upper and lower fuel elements stacked was revealed using the mock-up models. On the other hand, demonstration tests have been performed to verify thermal and hydraulic characteristics and structural integrity related to the core bottom structure using a full-scale test facility named as the in-core structure test section (T{sub 2}). The sealing performance test revealed that the leakage of low-temperature helium gas through gaps between the permanent reflector blocks to the core was very low level compared with the HTTR design value and no change of the leakage flow rate were observed after a long term operation. The heat transfer tests including thermal transient at shutdown of gas circulators verified good insulating performance of core insulation structures in the core bottom structure and the hot gas duct; the temperature of the metal portion of these structure was below the design value. Examination of the thermal mixing characteristics indicated that the mixing of the hot helium gas started at a hot plenum and finished completely at downstream of the outlet hot gas duct. The present results obtained from these demonstration tests have been practically applied to the detailed design works and licensing procedures of the HTTR. (J.P.N.) 92 refs.

  6. The quality management system in leading organization of the integrated structure

    Directory of Open Access Journals (Sweden)

    Kunitsyn A. M.

    2018-02-01

    Full Text Available the article has analyzed the problem of integrated structure management. The author has noted that the implementation of recommendations outlined in the article will allow building and improving the quality management system in leading organization of integrated structure on a regular basis that meets the requirements.

  7. Radiative Properties of Carriers in Cdse-Cds Core-Shell Heterostructured Nanocrystals of Various Geometries

    Science.gov (United States)

    Zhou, S.; Dong, L.; Popov, S.; Friberg, A. T.

    2013-07-01

    We report a model on core-shell heterostructured nanocrystals with CdSe as the core and CdS as the shell. The model is based on one-band Schrödinger equation. Three different geometries, nanodot, nanorod, and nanobone, are implemented. The carrier localization regimes with these structures are simulated, compared, and analyzed. Based on the electron and hole wave functions, the carrier overlap integral that has a great impact on stimulated emission is further investigated numerically by a novel approach. Furthermore, the relation between the nanocrystal size and electron-hole recombination energy is also examined.

  8. Structure-preserving integrators in nonlinear structural dynamics and flexible multibody dynamics

    CERN Document Server

    2016-01-01

    This book focuses on structure-preserving numerical methods for flexible multibody dynamics, including nonlinear elastodynamics and geometrically exact models for beams and shells. It also deals with the newly emerging class of variational integrators as well as Lie-group integrators. It discusses two alternative approaches to the discretization in space of nonlinear beams and shells. Firstly, geometrically exact formulations, which are typically used in the finite element community and, secondly, the absolute nodal coordinate formulation, which is popular in the multibody dynamics community. Concerning the discretization in time, the energy-momentum method and its energy-decaying variants are discussed. It also addresses a number of issues that have arisen in the wake of the structure-preserving discretization in space. Among them are the parameterization of finite rotations, the incorporation of algebraic constraints and the computer implementation of the various numerical methods. The practical application...

  9. Latest SCC Issues of core shroud and recirculation piping in Japanese BWRs

    International Nuclear Information System (INIS)

    Okamura, Yuichi; Sakashita, Akihiro; Fukuda, Toshihiko; Yamashita, Hironobu; Futami, Tsuneo

    2003-01-01

    This paper reports that a high incidence of stress corrosion cracking (SCC) cracks have been found in the core Shroud and PLR piping of several Japanese BWR plants. The results of investigations show the cracks to be of SCC type in 316L stainless steel and with different characteristics from the type in 304 stainless steel. The cracks on the shroud surface were mainly verified near the shroud ring weld line and core region weld line, and the crack shape could be classified into two types: one type was circumferential cracking in the shroud ring, and the other was isolated occurrences of radial cracking in the core region. The structural integrity of those shrouds with cracks was evaluated under a conservative assumption and confirmed to be adequate. A relatively large error was identified in measuring the crack depth in the PLR piping. (author)

  10. Integrated Structural Biology for α-Helical Membrane Protein Structure Determination.

    Science.gov (United States)

    Xia, Yan; Fischer, Axel W; Teixeira, Pedro; Weiner, Brian; Meiler, Jens

    2018-04-03

    While great progress has been made, only 10% of the nearly 1,000 integral, α-helical, multi-span membrane protein families are represented by at least one experimentally determined structure in the PDB. Previously, we developed the algorithm BCL::MP-Fold, which samples the large conformational space of membrane proteins de novo by assembling predicted secondary structure elements guided by knowledge-based potentials. Here, we present a case study of rhodopsin fold determination by integrating sparse and/or low-resolution restraints from multiple experimental techniques including electron microscopy, electron paramagnetic resonance spectroscopy, and nuclear magnetic resonance spectroscopy. Simultaneous incorporation of orthogonal experimental restraints not only significantly improved the sampling accuracy but also allowed identification of the correct fold, which is demonstrated by a protein size-normalized transmembrane root-mean-square deviation as low as 1.2 Å. The protocol developed in this case study can be used for the determination of unknown membrane protein folds when limited experimental restraints are available. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Multiple network interface core apparatus and method

    Science.gov (United States)

    Underwood, Keith D [Albuquerque, NM; Hemmert, Karl Scott [Albuquerque, NM

    2011-04-26

    A network interface controller and network interface control method comprising providing a single integrated circuit as a network interface controller and employing a plurality of network interface cores on the single integrated circuit.

  12. Structure-function relationships during segregated and integrated network states of human brain functional connectivity.

    Science.gov (United States)

    Fukushima, Makoto; Betzel, Richard F; He, Ye; van den Heuvel, Martijn P; Zuo, Xi-Nian; Sporns, Olaf

    2018-04-01

    Structural white matter connections are thought to facilitate integration of neural information across functionally segregated systems. Recent studies have demonstrated that changes in the balance between segregation and integration in brain networks can be tracked by time-resolved functional connectivity derived from resting-state functional magnetic resonance imaging (rs-fMRI) data and that fluctuations between segregated and integrated network states are related to human behavior. However, how these network states relate to structural connectivity is largely unknown. To obtain a better understanding of structural substrates for these network states, we investigated how the relationship between structural connectivity, derived from diffusion tractography, and functional connectivity, as measured by rs-fMRI, changes with fluctuations between segregated and integrated states in the human brain. We found that the similarity of edge weights between structural and functional connectivity was greater in the integrated state, especially at edges connecting the default mode and the dorsal attention networks. We also demonstrated that the similarity of network partitions, evaluated between structural and functional connectivity, increased and the density of direct structural connections within modules in functional networks was elevated during the integrated state. These results suggest that, when functional connectivity exhibited an integrated network topology, structural connectivity and functional connectivity were more closely linked to each other and direct structural connections mediated a larger proportion of neural communication within functional modules. Our findings point out the possibility of significant contributions of structural connections to integrative neural processes underlying human behavior.

  13. The integrated disease surveillance and response system in northern Ghana: challenges to the core and support functions

    OpenAIRE

    Adokiya, Martin Nyaaba; Awoonor-Williams, John K.; Beiersmann, Claudia; Müller, Olaf

    2015-01-01

    Background: The integrated disease surveillance and response (IDSR) strategy was adopted in Ghana over a decade ago, yet gaps still remain in its proper functioning. The objective of this study was to assess the core and support functions of the IDSR system at the periphery level of the health system in northern Ghana. Methods: A qualitative study has been conducted among 18 key informants in two districts of Upper East Region. The respondents were from 9 health facilities considered repres...

  14. Thermal hydraulic parametric investigation of decay heat removal from degraded core of a sodium cooled fast Breeder reactor

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Lokesh [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Kumar Sharma, Anil, E-mail: aksharma@igcar.gov.in [Reactor Design Group, Indira Gandhi Centre for Atomic Research, HBNI, Kalpakkam (India); Velusamy, K. [Reactor Design Group, Indira Gandhi Centre for Atomic Research, HBNI, Kalpakkam (India)

    2017-03-15

    Highlights: • Decay heat removal from degraded core of a typical SFR is highlighted. • Influence of number of DHXs in operation on PAHR is analyzed. • Investigations on structural integrity of the inner vessel and core catcher. • Feasibility study for retention of a part of debris in upper pool of SFR. - Abstract: Ensuring post accident decay heat removal with high degree of reliability following a Core Disruptive Accident (CDA) is very important in the design of sodium cooled fast reactors (SFR). In the recent past, a lot of research has been done towards the design of an in-vessel core catcher below the grid plate to prevent the core debris reaching the main vessel in a pool type SFR. However, during an energetic CDA, the entire core debris is unlikely to reach the core catcher. A significant part of the debris is likely to settle in core periphery between radial shielding subassemblies and the inner vessel. Failure of inner vessel due to the decay heat can lead to core debris reaching the main vessel and threatening its integrity. On the other hand, retention of a part of debris in core periphery can reduce the load on main core catcher. Towards achieving an optimum design of SFR and safety evaluation, it is essential to quantify the amount of heat generating core debris that can be retained safely within the primary vessel. This has been performed by a mathematical simulation comprising solution of 2-D transient form of the governing equations of turbulent sodium flow and heat transfer with Boussinesq approximations. The conjugate conduction-convection model adopted for this purpose is validated against in-house experimental data. Transient evolutions of natural convection in the pools and structural temperatures in critical components have been predicted. It is found that 50% of the core debris can be safely accommodated in the gap between radial shielding subassemblies and inner vessel without exceeding structural temperature limit. It is also

  15. Integrating spatial and numerical structure in mathematical patterning

    Science.gov (United States)

    Ni’mah, K.; Purwanto; Irawan, E. B.; Hidayanto, E.

    2018-03-01

    This paper reports a study monitoring the integrating spatial and numerical structure in mathematical patterning skills of 30 students grade 7th of junior high school. The purpose of this research is to clarify the processes by which learners construct new knowledge in mathematical patterning. Findings indicate that: (1) students are unable to organize the structure of spatial and numerical, (2) students were only able to organize the spatial structure, but the numerical structure is still incorrect, (3) students were only able to organize numerical structure, but its spatial structure is still incorrect, (4) students were able to organize both of the spatial and numerical structure.

  16. Integrating Morbidity and Mortality Core Competencies and Quality Improvement in Otolaryngology.

    Science.gov (United States)

    Laury, Adrienne M; Bowe, Sarah N; Lospinoso, Joshua

    2017-02-01

    To date, an otolaryngology-specific morbidity and mortality (M&M) conference has never been reported or evaluated. To propose a novel otolaryngology-specific M&M format and to assess its success using a validated assessment tool. Preintervention and postintervention cohort study spanning 14 months (September 2014 to November 2015), with 32 faculty, residents, and medical students attending the department of otolaryngology M&M conference, conducted at the the San Antonio Uniformed Services Health Education Consortium. A novel quality assurance conference was implemented in the department of otolaryngology at the San Antonio Uniformed Services Health Education Consortium. This conference incorporates patient safety reports, otolaryngology-specific quality metrics, and individual case presentations. The revised format integrates the Accreditation Council for Graduate Medical Education (ACGME) core competencies and Quality Improvement and Patient Safety (QI/PS) system. This format was evaluated by faculty, residents, and medical students every other month for 14 months to assess changes in attitudes regarding the M&M conference as well as changes in presentation quality. Overall, 13 faculty, 12 residents, and 7 medical students completed 232 evaluations. Summary statistics of both resident and faculty attitudes about the success of the M&M format seem to improve over the 14 months between the prequestionnaires and postquestionnaires. General attitudes for both residents and faculty significantly improved from the pretest to posttest (odds ratio, 0.32 per month; 95% CI, 0.29-0.35). In the pretest period, "established presentation format" was considered the most necessary improvement, whereas in the posttest period this changed to "incorporate more QI." For resident presentations evaluated using the situation, background, assessment, and review/recommendations (SBAR) tool, all evaluations, from all participants, improved over time. The M&M conference is an essential

  17. Delineating the structure of normal and abnormal personality: an integrative hierarchical approach.

    Science.gov (United States)

    Markon, Kristian E; Krueger, Robert F; Watson, David

    2005-01-01

    Increasing evidence indicates that normal and abnormal personality can be treated within a single structural framework. However, identification of a single integrated structure of normal and abnormal personality has remained elusive. Here, a constructive replication approach was used to delineate an integrative hierarchical account of the structure of normal and abnormal personality. This hierarchical structure, which integrates many Big Trait models proposed in the literature, replicated across a meta-analysis as well as an empirical study, and across samples of participants as well as measures. The proposed structure resembles previously suggested accounts of personality hierarchy and provides insight into the nature of personality hierarchy more generally. Potential directions for future research on personality and psychopathology are discussed.

  18. Delineating the Structure of Normal and Abnormal Personality: An Integrative Hierarchical Approach

    Science.gov (United States)

    Markon, Kristian E.; Krueger, Robert F.; Watson, David

    2008-01-01

    Increasing evidence indicates that normal and abnormal personality can be treated within a single structural framework. However, identification of a single integrated structure of normal and abnormal personality has remained elusive. Here, a constructive replication approach was used to delineate an integrative hierarchical account of the structure of normal and abnormal personality. This hierarchical structure, which integrates many Big Trait models proposed in the literature, replicated across a meta-analysis as well as an empirical study, and across samples of participants as well as measures. The proposed structure resembles previously suggested accounts of personality hierarchy and provides insight into the nature of personality hierarchy more generally. Potential directions for future research on personality and psychopathology are discussed. PMID:15631580

  19. Core Thermal-Hydraulic Conceptual Design for the Advanced SFR Design Concepts

    International Nuclear Information System (INIS)

    Cho, Chung Ho; Chang, Jin Wook; Yoo, Jae Woon; Song, Hoon; Choi, Sun Rock; Park, Won Seok; Kim, Sang Ji

    2010-01-01

    The Korea Atomic Energy Research Institute (KAERI) has developed the advanced SFR design concepts from 2007 to 2009 under the National longterm Nuclear R and D Program. Two types of core designs, 1,200 MWe breakeven and 600 MWe TRU burner core have been proposed and evaluated whether they meet the design requirements for the Gen IV technology goals of sustainability, safety and reliability, economics, proliferation resistance, and physical protection. In generally, the core thermal hydraulic design is performed during the conceptual design phase to efficiently extract the core thermal power by distributing the appropriate sodium coolant flow according to the power of each assembly because the conventional SFR core is composed of hundreds of ducted assemblies with hundreds of fuel rods. In carrying out the thermal and hydraulic design, special attention has to be paid to several performance parameters in order to assure proper performance and safety of fuel and core; the coolant boiling, fuel melting, structural integrity of the components, fuel-cladding eutectic melting, etc. The overall conceptual design procedure for core thermal and hydraulic conceptual design, i.e., flow grouping and peak pin temperature calculations, pressure drop calculations, steady-state and detailed sub-channel analysis is shown Figure 1. In the conceptual design phase, results of core thermal-hydraulic design for advanced design concepts, the core flow grouping, peak pin cladding mid-wall temperature, and pressure drop calculations, are summarized in this study

  20. Magnetic nuclear core restraint and control

    International Nuclear Information System (INIS)

    Cooper, M.H.

    1979-01-01

    A lateral restraint and control system for a nuclear reactor core adaptable to provide an inherent decrease of core reactivity in response to abnormally high reactor coolant fluid temperatures. An electromagnet is associated with structure for radially compressing the core during normal reactor conditions. A portion of the structures forming a magnetic circuit are composed of ferromagnetic material having a curie temperature corresponding to a selected coolant fluid temperature. Upon a selected signal, or inherently upon a preselected rise in coolant temperature, the magnetic force is decreased a given amount sufficient to relieve the compression force so as to allow core radial expansion. The expanded core configuration provides a decreased reactivity, tending to shut down the nuclear reaction