WorldWideScience

Sample records for core histone variant

  1. Identification and characterization of the genes encoding the core histones and histone variants of Neurospora crassa.

    OpenAIRE

    Hays, Shan M; Swanson, Johanna; Selker, Eric U

    2002-01-01

    We have identified and characterized the complete complement of genes encoding the core histones of Neurospora crassa. In addition to the previously identified pair of genes that encode histones H3 and H4 (hH3 and hH4-1), we identified a second histone H4 gene (hH4-2), a divergently transcribed pair of genes that encode H2A and H2B (hH2A and hH2B), a homolog of the F/Z family of H2A variants (hH2Az), a homolog of the H3 variant CSE4 from Saccharomyces cerevisiae (hH3v), and a highly diverged ...

  2. Histone variants and lipid metabolism

    NARCIS (Netherlands)

    Borghesan, Michela; Mazzoccoli, Gianluigi; Sheedfar, Fareeba; Oben, Jude; Pazienza, Valerio; Vinciguerra, Manlio

    2014-01-01

    Within nucleosomes, canonical histones package the genome, but they can be opportunely replaced with histone variants. The incorporation of histone variants into the nucleosome is a chief cellular strategy to regulate transcription and cellular metabolism. In pathological terms, cellular steatosis

  3. Characterization of Chlamydomonas reinhardtii Core Histones by Top-Down Mass Spectrometry Reveals Unique Algae-Specific Variants and Post-Translational Modifications.

    Science.gov (United States)

    Khan, Aliyya; Eikani, Carlo K; Khan, Hana; Iavarone, Anthony T; Pesavento, James J

    2018-01-05

    The unicellular microalga Chlamydomonas reinhardtii has played an instrumental role in the development of many new fields (bioproducts, biofuels, etc.) as well as the advancement of basic science (photosynthetic apparati, flagellar function, etc.). Chlamydomonas' versatility ultimately derives from the genes encoded in its genome and the way that the expression of these genes is regulated, which is largely influenced by a family of DNA binding proteins called histones. We characterize C. reinhardtii core histones, both variants and their post-translational modifications, by chromatographic separation, followed by top-down mass spectrometry (TDMS). Because TDMS has not been previously used to study Chlamydomonas proteins, we show rampant artifactual protein oxidation using established nuclei purification and histone extraction methods. After addressing oxidation, both histones H3 and H4 are found to each have a single polypeptide sequence that is minimally acetylated and methylated. Surprisingly, we uncover a novel monomethylation at lysine 79 on histone H4 present on all observed molecules. Histone H2B and H2A are found to have two and three variants, respectively, and both are minimally modified. This study provides an updated assessment of the core histone proteins in the green alga C. reinhardtii by top-down mass spectrometry and lays the foundation for further investigation of these essential proteins.

  4. Germline-specific H1 variants: the "sexy" linker histones.

    Science.gov (United States)

    Pérez-Montero, Salvador; Carbonell, Albert; Azorín, Fernando

    2016-03-01

    The eukaryotic genome is packed into chromatin, a nucleoprotein complex mainly formed by the interaction of DNA with the abundant basic histone proteins. The fundamental structural and functional subunit of chromatin is the nucleosome core particle, which is composed by 146 bp of DNA wrapped around an octameric protein complex formed by two copies of each core histone H2A, H2B, H3, and H4. In addition, although not an intrinsic component of the nucleosome core particle, linker histone H1 directly interacts with it in a monomeric form. Histone H1 binds nucleosomes near the exit/entry sites of linker DNA, determines nucleosome repeat length and stabilizes higher-order organization of nucleosomes into the ∼30 nm chromatin fiber. In comparison to core histones, histone H1 is less well conserved through evolution. Furthermore, histone H1 composition in metazoans is generally complex with most species containing multiple variants that play redundant as well as specific functions. In this regard, a characteristic feature is the presence of specific H1 variants that replace somatic H1s in the germline and during early embryogenesis. In this review, we summarize our current knowledge about their structural and functional properties.

  5. Post-Translational Modifications of H2A Histone Variants and Their Role in Cancer

    Directory of Open Access Journals (Sweden)

    David Corujo

    2018-02-01

    Full Text Available Histone variants are chromatin components that replace replication-coupled histones in a fraction of nucleosomes and confer particular characteristics to chromatin. H2A variants represent the most numerous and diverse group among histone protein families. In the nucleosomal structure, H2A-H2B dimers can be removed and exchanged more easily than the stable H3-H4 core. The unstructured N-terminal histone tails of all histones, but also the C-terminal tails of H2A histones protrude out of the compact structure of the nucleosome core. These accessible tails are the preferential target sites for a large number of post-translational modifications (PTMs. While some PTMs are shared between replication-coupled H2A and H2A variants, many modifications are limited to a specific histone variant. The present review focuses on the H2A variants H2A.Z, H2A.X, and macroH2A, and summarizes their functions in chromatin and how these are linked to cancer development and progression. H2A.Z primarily acts as an oncogene and macroH2A and H2A.X as tumour suppressors. We further focus on the regulation by PTMs, which helps to understand a degree of context dependency.

  6. Global turnover of histone post-translational modifications and variants in human cells

    Directory of Open Access Journals (Sweden)

    Zee Barry M

    2010-12-01

    Full Text Available Abstract Background Post-translational modifications (PTMs on the N-terminal tails of histones and histone variants regulate distinct transcriptional states and nuclear events. Whereas the functional effects of specific PTMs are the current subject of intense investigation, most studies characterize histone PTMs/variants in a non-temporal fashion and very few studies have reported kinetic information about these histone forms. Previous studies have used radiolabeling, fluorescence microscopy and chromatin immunoprecipitation to determine rates of histone turnover, and have found interesting correlations between increased turnover and increased gene expression. Therefore, histone turnover is an understudied yet potentially important parameter that may contribute to epigenetic regulation. Understanding turnover in the context of histone modifications and sequence variants could provide valuable additional insight into the function of histone replacement. Results In this study, we measured the metabolic rate of labeled isotope incorporation into the histone proteins of HeLa cells by combining stable isotope labeling of amino acids in cell culture (SILAC pulse experiments with quantitative mass spectrometry-based proteomics. In general, we found that most core histones have similar turnover rates, with the exception of the H2A variants, which exhibit a wider range of rates, potentially consistent with their epigenetic function. In addition, acetylated histones have a significantly faster turnover compared with general histone protein and methylated histones, although these rates vary considerably, depending on the site and overall degree of methylation. Histones containing transcriptionally active marks have been consistently found to have faster turnover rates than histones containing silent marks. Interestingly, the presence of both active and silent marks on the same peptide resulted in a slower turnover rate than either mark alone on that same

  7. Phylogenetic analysis of the core histone doublet and DNA topo II genes of Marseilleviridae: evidence of proto-eukaryotic provenance.

    Science.gov (United States)

    Erives, Albert J

    2017-11-28

    While the genomes of eukaryotes and Archaea both encode the histone-fold domain, only eukaryotes encode the core histone paralogs H2A, H2B, H3, and H4. With DNA, these core histones assemble into the nucleosomal octamer underlying eukaryotic chromatin. Importantly, core histones for H2A and H3 are maintained as neofunctionalized paralogs adapted for general bulk chromatin (canonical H2 and H3) or specialized chromatin (H2A.Z enriched at gene promoters and cenH3s enriched at centromeres). In this context, the identification of core histone-like "doublets" in the cytoplasmic replication factories of the Marseilleviridae (MV) is a novel finding with possible relevance to understanding the origin of eukaryotic chromatin. Here, we analyze and compare the core histone doublet genes from all known MV genomes as well as other MV genes relevant to the origin of the eukaryotic replisome. Using different phylogenetic approaches, we show that MV histone domains encode obligate H2B-H2A and H4-H3 dimers of possible proto-eukaryotic origin. MV core histone moieties form sister clades to each of the four eukaryotic clades of canonical and variant core histones. This suggests that MV core histone moieties diverged prior to eukaryotic neofunctionalizations associated with paired linear chromosomes and variant histone octamer assembly. We also show that MV genomes encode a proto-eukaryotic DNA topoisomerase II enzyme that forms a sister clade to eukaryotes. This is a relevant finding given that DNA topo II influences histone deposition and chromatin compaction and is the second most abundant nuclear protein after histones. The combined domain architecture and phylogenomic analyses presented here suggest that a primitive origin for MV histone genes is a more parsimonious explanation than horizontal gene transfers + gene fusions + sufficient divergence to eliminate relatedness to eukaryotic neofunctionalizations within the H2A and H3 clades without loss of relatedness to each of

  8. Histone H2A mobility is regulated by its tails and acetylation of core histone tails

    International Nuclear Information System (INIS)

    Higashi, Tsunehito; Matsunaga, Sachihiro; Isobe, Keisuke; Morimoto, Akihiro; Shimada, Tomoko; Kataoka, Shogo; Watanabe, Wataru; Uchiyama, Susumu; Itoh, Kazuyoshi; Fukui, Kiichi

    2007-01-01

    Histone tail domains play important roles in cellular processes, such as replication, transcription, and chromosome condensation. Histone H2A has one central and two tail domains, and their functions have mainly been studied from a biochemical perspective. In addition, analyses based on visualization have been employed for functional analysis of some chromatin proteins. In this study, we analyzed histone H2A mobility in vivo by two-photon FRAP, and elucidated that the histone H2A N- and C-terminal tails regulate its mobility. We found that histone H2A mobility was increased following treatment of host cells with a histone deacetylase inhibitor. Our results support a model in which core histone tails directly regulate transcription by interacting with nucleosome DNA via electrostatic interactions

  9. Cell cycle-regulated oscillator coordinates core histone gene transcription through histone acetylation.

    Science.gov (United States)

    Kurat, Christoph F; Lambert, Jean-Philippe; Petschnigg, Julia; Friesen, Helena; Pawson, Tony; Rosebrock, Adam; Gingras, Anne-Claude; Fillingham, Jeffrey; Andrews, Brenda

    2014-09-30

    DNA replication occurs during the synthetic (S) phase of the eukaryotic cell cycle and features a dramatic induction of histone gene expression for concomitant chromatin assembly. Ectopic production of core histones outside of S phase is toxic, underscoring the critical importance of regulatory pathways that ensure proper expression of histone genes. Several regulators of histone gene expression in the budding yeast Saccharomyces cerevisiae are known, yet the key oscillator responsible for restricting gene expression to S phase has remained elusive. Here, we show that suppressor of Ty (Spt)10, a putative histone acetyltransferase, and its binding partner Spt21 are key determinants of S-phase-specific histone gene expression. We show that Spt21 abundance is restricted to S phase in part by anaphase promoting complex Cdc20-homologue 1 (APC(Cdh1)) and that it is recruited to histone gene promoters in S phase by Spt10. There, Spt21-Spt10 enables the recruitment of a cascade of regulators, including histone chaperones and the histone-acetyltransferase general control nonderepressible (Gcn) 5, which we hypothesize lead to histone acetylation and consequent transcription activation.

  10. Cell cycle-regulated oscillator coordinates core histone gene transcription through histone acetylation

    Science.gov (United States)

    Kurat, Christoph F.; Lambert, Jean-Philippe; Petschnigg, Julia; Friesen, Helena; Pawson, Tony; Rosebrock, Adam; Gingras, Anne-Claude; Fillingham, Jeffrey; Andrews, Brenda

    2014-01-01

    DNA replication occurs during the synthetic (S) phase of the eukaryotic cell cycle and features a dramatic induction of histone gene expression for concomitant chromatin assembly. Ectopic production of core histones outside of S phase is toxic, underscoring the critical importance of regulatory pathways that ensure proper expression of histone genes. Several regulators of histone gene expression in the budding yeast Saccharomyces cerevisiae are known, yet the key oscillator responsible for restricting gene expression to S phase has remained elusive. Here, we show that suppressor of Ty (Spt)10, a putative histone acetyltransferase, and its binding partner Spt21 are key determinants of S-phase–specific histone gene expression. We show that Spt21 abundance is restricted to S phase in part by anaphase promoting complex Cdc20-homologue 1 (APCCdh1) and that it is recruited to histone gene promoters in S phase by Spt10. There, Spt21-Spt10 enables the recruitment of a cascade of regulators, including histone chaperones and the histone-acetyltransferase general control nonderepressible (Gcn) 5, which we hypothesize lead to histone acetylation and consequent transcription activation. PMID:25228766

  11. The histone H5 variant in Xenopus laevis

    NARCIS (Netherlands)

    Moorman, A. F.; de Boer, P. A.; Linders, M. T.; Charles, R.

    1984-01-01

    The presumptive histone H5 of Xenopus laevis has been characterized by SDS and acid-urea-Triton polyacrylamide gel electrophoresis and compared with chicken histone H5. Chicken H5 has a lower electrophoretic mobility compared to that of Xenopus H5 in both gel systems. It is shown, using a polyclonal

  12. Destabilization of the Outer and Inner Mitochondrial Membranes by Core and Linker Histones

    Science.gov (United States)

    Cascone, Annunziata; Bruelle, Celine; Lindholm, Dan; Bernardi, Paolo; Eriksson, Ove

    2012-01-01

    Background Extensive DNA damage leads to apoptosis. Histones play a central role in DNA damage sensing and may mediate signals of genotoxic damage to cytosolic effectors including mitochondria. Methodology/Principal Findings We have investigated the effects of histones on mitochondrial function and membrane integrity. We demonstrate that both linker histone H1 and core histones H2A, H2B, H3, and H4 bind strongly to isolated mitochondria. All histones caused a rapid and massive release of the pro-apoptotic intermembrane space proteins cytochrome c and Smac/Diablo, indicating that they permeabilize the outer mitochondrial membrane. In addition, linker histone H1, but not core histones, permeabilized the inner membrane with a collapse of the membrane potential, release of pyridine nucleotides, and mitochondrial fragmentation. Conclusions We conclude that histones destabilize the mitochondrial membranes, a mechanism that may convey genotoxic signals to mitochondria and promote apoptosis following DNA damage. PMID:22523586

  13. The histone variant macroH2A is an epigenetic regulator of key developmental genes

    DEFF Research Database (Denmark)

    Buschbeck, Marcus; Uribesalgo, Iris; Wibowo, Indra

    2009-01-01

    The histone variants macroH2A1 and macroH2A2 are associated with X chromosome inactivation in female mammals. However, the physiological function of macroH2A proteins on autosomes is poorly understood. Microarray-based analysis in human male pluripotent cells uncovered occupancy of both macroH2A ...

  14. Histone Variants and Composition in the Developing Brain: Should MeCP2 Care?

    Science.gov (United States)

    Zago, Valentina; Pinar-CabezaDeVaca, Cristina; Vincent, John B; Ausio, Juan

    2017-01-01

    Specific compositional chromatin features distinguish brain/neuronal chromatin from that of other tissues and are critical to this organ and cell type development and neuroplasticity. These features include a significant turnover of the major constitutive chromosomal proteins, including the (canonical) replication-dependent histones, the replication-independent replacement histone variants, as well as the chromatin associated transcriptional regulator MeCP2 (methyl CpG binding protein 2). Alterations of histones and MeCP2 have already been implicated in many brain disorders. Despite the relevance of histone variants to chromatin structure and function, only recently has some exciting literature started to re-emerge that directly relates them to neuron plasticity and cognition. However, the amount of information available on the functional role of these histones is still very limited. The purpose of this review is to focus attention to this important group of chromatin proteins, which, in the brain, possess overlapping structural and functional roles with the highly abundant presence of MeCP2. There is an imperative need to understand how all these proteins communicate with each other, and future research will hopefully provide us with answers.

  15. Dengue Virus Capsid Protein Binds Core Histones and Inhibits Nucleosome Formation in Human Liver Cells

    Science.gov (United States)

    Colpitts, Tonya M.; Barthel, Sebastian; Wang, Penghua; Fikrig, Erol

    2011-01-01

    Dengue virus (DENV) is a member of the Flaviviridae and a globally (re)emerging pathogen that causes serious human disease. There is no specific antiviral or vaccine for dengue virus infection. Flavivirus capsid (C) is a structural protein responsible for gathering the viral RNA into a nucleocapsid that forms the core of a mature virus particle. Flaviviral replication is known to occur in the cytoplasm yet a large portion of capsid protein localizes to the nucleus during infection. The reasons for the nuclear presences of capsid are not completely understood. Here, we expressed mature DENV C in a tandem affinity purification assay to identify potential binding partners in human liver cells. DENV C targeted the four core histones, H2A, H2B, H3 and H4. DENV C bound recombinant histones in solution and colocalized with histones in the nucleus and cytoplasm of liver cells during DENV infection. We show that DENV C acts as a histone mimic, forming heterodimers with core histones, binding DNA and disrupting nucleosome formation. We also demonstrate that DENV infection increases the amounts of core histones in livers cells, which may be a cellular response to C binding away the histone proteins. Infection with DENV additionally alters levels of H2A phosphorylation in a time-dependent manner. The interactions of C and histones add an interesting new role for the presence of C in the nucleus during DENV infection. PMID:21909430

  16. Acetylation-Mediated Proteasomal Degradation of Core Histones during DNA Repair and Spermatogenesis

    Science.gov (United States)

    Qian, Min-Xian; Pang, Ye; Liu, Cui Hua; Haratake, Kousuke; Du, Bo-Yu; Ji, Dan-Yang; Wang, Guang-Fei; Zhu, Qian-Qian; Song, Wei; Yu, Yadong; Zhang, Xiao-Xu; Huang, Hai-Tao; Miao, Shiying; Chen, Lian-Bin; Zhang, Zi-Hui; Liang, Ya-Nan; Liu, Shan; Cha, Hwangho; Yang, Dong; Zhai, Yonggong; Komatsu, Takuo; Tsuruta, Fuminori; Li, Haitao; Cao, Cheng; Li, Wei; Li, Guo-Hong; Cheng, Yifan; Chiba, Tomoki; Wang, Linfang; Goldberg, Alfred L.; Shen, Yan; Qiu, Xiao-Bo

    2013-01-01

    SUMMARY Histone acetylation plays critical roles in chromatin remodeling, DNA repair, and epigenetic regulation of gene expression, but the underlying mechanisms are unclear. Proteasomes usually catalyze ATP- and polyubiquitin-dependent proteolysis. Here we show that the proteasomes containing the activator PA200 catalyze the polyubiquitin-independent degradation of histones. Most proteasomes in mammalian testes (“spermatoproteasomes”) contain a spermatid/sperm-specific α-subunit α4s/PSMA8 and/or the catalytic β-subunits of immunoproteasomes in addition to PA200. Deletion of PA200 in mice abolishes acetylation-dependent degradation of somatic core histones during DNA double-strand breaks, and delays core histone disappearance in elongated spermatids. Purified PA200 greatly promotes ATP-independent proteasomal degradation of the acetylated core histones, but not polyubiquitinated proteins. Furthermore, acetylation on histones is required for their binding to the bromodomain-like regions in PA200 and its yeast ortholog, Blm10. Thus, PA200/Blm10 specifically targets the core histones for acetylation-mediated degradation by proteasomes, providing mechanisms by which acetylation regulates histone degradation, DNA repair, and spermatogenesis. PMID:23706739

  17. Analysis of Primary Structural Determinants That Distinguish the Centromere-Specific Function of Histone Variant Cse4p from Histone H3

    OpenAIRE

    Keith, Kevin C.; Baker, Richard E.; Chen, Yinhuai; Harris, Kendra; Stoler, Sam; Fitzgerald-Hayes, Molly

    1999-01-01

    Cse4p is a variant of histone H3 that has an essential role in chromosome segregation and centromere chromatin structure in budding yeast. Cse4p has a unique 135-amino-acid N terminus and a C-terminal histone-fold domain that is more than 60% identical to histone H3 and the mammalian centromere protein CENP-A. Cse4p and CENP-A have biochemical properties similar to H3 and probably replace H3 in centromere-specific nucleosomes in yeasts and mammals, respectively. In order to identify regions o...

  18. Core nucleosomes by digestion of reconstructed histone-DNA complexes

    Energy Technology Data Exchange (ETDEWEB)

    Bryan, P N; Wright, E B; Olins, D E

    1979-04-01

    Reconstructed complexes of the inner histones (H2A, H2B, H3, H4) and a variety of DNAs were digested with micrococcal nuclease to yield very homogeneous populations of core nucleosomes (..nu../sub 1/). Nucleosomes containing Micrococcus luteus DNA (72% G+C); chicken DNA (43% G+C), Clostridium perfringens DNA (29% G+C); or poly(dA-dT).poly(dA-dT) have been examined by circular dichroism, thermal denaturation, electron microscopy, and DNAse I digestion. Circular dichroism spectra of all particles show a typically suppressed ellipticity at 260 to 280 nm and a prominent ..cap alpha..-helix signal at 222 nm. All particles show biphasic melting except ..nu../sub 1/(dA-dT), which show three prominent melting transitions at ionic strength less than or equal to 1 mM. DNAse I digestion of ..nu../sub 1/ (dA-dT) produces a ladder of DNA fragments differing in length by one base residue. ..nu../sub 1/ (dA-dT) contain 146 base pairs of DNA and exhibit an average DNA helix pitch of 10.4 to 10.5 bases per turn. There appear to be two regions of different DNA pitch within ..nu../sub 1/ (dA-dT). It is suggested that the two regions of DNA pitch might correspond to the two regions of the melting profiles.

  19. Mass spectrometry analysis of the variants of histone H3 and H4 of soybean and their post-translational modifications

    Directory of Open Access Journals (Sweden)

    Lam Hon-Ming

    2009-07-01

    Full Text Available Abstract Background Histone modifications and histone variants are of importance in many biological processes. To understand the biological functions of the global dynamics of histone modifications and histone variants in higher plants, we elucidated the variants and post-translational modifications of histones in soybean, a legume plant with a much bigger genome than that of Arabidopsis thaliana. Results In soybean leaves, mono-, di- and tri-methylation at Lysine 4, Lysine 27 and Lysine 36, and acetylation at Lysine 14, 18 and 23 were detected in HISTONE H3. Lysine 27 was prone to being mono-methylated, while tri-methylation was predominant at Lysine 36. We also observed that Lysine 27 methylation and Lysine 36 methylation usually excluded each other in HISTONE H3. Although methylation at HISTONE H3 Lysine 79 was not reported in A. thaliana, mono- and di-methylated HISTONE H3 Lysine 79 were detected in soybean. Besides, acetylation at Lysine 8 and 12 of HISTONE H4 in soybean were identified. Using a combination of mass spectrometry and nano-liquid chromatography, two variants of HISTONE H3 were detected and their modifications were determined. They were different at positions of A31F41S87S90 (HISTONE variant H3.1 and T31Y41H87L90 (HISTONE variant H3.2, respectively. The methylation patterns in these two HISTONE H3 variants also exhibited differences. Lysine 4 and Lysine 36 methylation were only detected in HISTONE H3.2, suggesting that HISTONE variant H3.2 might be associated with actively transcribing genes. In addition, two variants of histone H4 (H4.1 and H4.2 were also detected, which were missing in other organisms. In the histone variant H4.1 and H4.2, the amino acid 60 was isoleucine and valine, respectively. Conclusion This work revealed several distinct variants of soybean histone and their modifications that were different from A. thaliana, thus providing important biological information toward further understanding of the histone

  20. TRF2 Protein Interacts with Core Histones to Stabilize Chromosome Ends*

    Science.gov (United States)

    Izumi, Takashi; Shimizu, Shigeomi

    2016-01-01

    Mammalian chromosome ends are protected by a specialized nucleoprotein complex called telomeres. Both shelterin, a telomere-specific multi-protein complex, and higher order telomeric chromatin structures combine to stabilize the chromosome ends. Here, we showed that TRF2, a component of shelterin, binds to core histones to protect chromosome ends from inappropriate DNA damage response and loss of telomeric DNA. The N-terminal Gly/Arg-rich domain (GAR domain) of TRF2 directly binds to the globular domain of core histones. The conserved arginine residues in the GAR domain of TRF2 are required for this interaction. A TRF2 mutant with these arginine residues substituted by alanine lost the ability to protect telomeres and induced rapid telomere shortening caused by the cleavage of a loop structure of the telomeric chromatin. These findings showed a previously unnoticed interaction between the shelterin complex and nucleosomal histones to stabilize the chromosome ends. PMID:27514743

  1. Critical electrolyte concentration of spermatozoal chromatin containing histone H1 variants

    Directory of Open Access Journals (Sweden)

    J.R.P. Falco

    1999-06-01

    Full Text Available The critical electrolyte concentrations (CEC of sperm chromatin from animal species known or suspected to contain histone H1 variants were compared by examining the affinity of their DNA-protein complexes for toluidine blue in the presence of Mg2+. Bullfrog, sea urchin, bee and bumblebee spermatozoa were studied. The CEC for Rana catesbeiana and two sea urchin species were similar to that of histone H5-containing chromatin from chicken erythrocytes, thus confirming the biochemical and structural similarities of these DNA-protein complexes. The CEC for bees and the bumblebee, Bombus atratus, showed no particular phylogenetic relationship. We concluded that the CEC of histone H1-containing sperm cell chromatin is a useful indicator of variability in DNA-protein complexes but is of little phylogenetic value.Valores de concentração crítica de eletrólitos (CEC da cromatina de espermatozóides de espécies conhecidas ou suspeitas de apresentarem variantes da histona H1 foram comparados entre si. O objetivo foi estabelecer semelhanças ou diferenças nos complexos DNA-proteína de espermatozóides dessas espécies em nível citoquímico. A afinidade por moléculas de azul de toluidina em condições de competição com íons Mg2+ foi investigada nos espermatozóides do sapo boi e de ouriços do mar, abelhas e mamangava. Uma íntima relação entre os valores de CEC de Rana catesbeiana e de duas espécies de ouriço do mar com os da cromatina de eritrócitos de frango, que contém a histona H5, foi vista estar de acordo com certas semelhanças bioquímicas e estruturais entre seus complexos DNA-proteína. Quanto aos dados para abelhas e para a mamangava Bombus atratus, não se pôde associar a variabilidade em valores de CEC com a posição das espécies na respectiva árvore filogenética. Conclui-se, portanto, que a CEC de cromatina de espermatozóides que contêm histona H1 é um indicador útil da influência de variantes de H1 na organiza

  2. The incorporation of the novel histone variant H2AL2 confers unusual structural and functional properties of the nucleosome

    Czech Academy of Sciences Publication Activity Database

    Syed, S.H.; Boulard, M.; Shukla, M.S.; Gautier, T.; Travers, A.; Bednár, Jan; Faivre-Moskalenko, C.; Dimitrov, S.; Angelov, D.

    2009-01-01

    Roč. 37, č. 14 (2009), s. 4684-4695 ISSN 0305-1048 Grant - others:GA MŠk(CZ) LC535; GA ČR(CZ) GA304/05/2168 Program:LC Institutional research plan: CEZ:AV0Z50110509 Keywords : nucleosome * histone * variant Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 7.479, year: 2009

  3. Testis-Specific Histone Variant H3t Gene Is Essential for Entry into Spermatogenesis

    Directory of Open Access Journals (Sweden)

    Jun Ueda

    2017-01-01

    Full Text Available Cellular differentiation is associated with dynamic chromatin remodeling in establishing a cell-type-specific epigenomic landscape. Here, we find that mouse testis-specific and replication-dependent histone H3 variant H3t is essential for very early stages of spermatogenesis. H3t gene deficiency leads to azoospermia because of the loss of haploid germ cells. When differentiating spermatogonia emerge in normal spermatogenesis, H3t appears and replaces the canonical H3 proteins. Structural and biochemical analyses reveal that H3t-containing nucleosomes are more flexible than the canonical nucleosomes. Thus, by incorporating H3t into the genome during spermatogonial differentiation, male germ cells are able to enter meiosis and beyond.

  4. Distribution of linker histone variants during plant cell differentiation in the developmental zones of the maize root, dedifferentiation in callus culture after auxin treatment

    Directory of Open Access Journals (Sweden)

    ANASTASIOS ALATZAS

    2008-01-01

    Full Text Available Although several linker histone variants have been studied in both animal and plant organisms, little is known about their distribution during processes that involve alterations in chromatin function, such as differentiation, dedifferentiation and hormone treatment. In this study, we identified linker histone variants by using specific anti-histone Hl antibodies. Each variant's ratio to total Hl in the three developmental zones of maize (Zea mays L. root and in callus cultures derived from them was estimated in order to define possible alterations either during plant cell differentiation or during their dedifferentiation. We also evaluated linker histone variants' ratios in the developmental zones of maize roots treated with auxin in order to examine the effects of exogenous applied auxin to linker histone variant distribution. Finally, immunohistochemical detection was used to identify the root tissues containing each variant and correlate them with the physiological status of the plant cells. According to the results presented in this study, linker histone variants' ratios are altered in the developmental zones of maize root, while they are similar to the meristematic zone in samples from callus cultures and to the differentiation zone in samples from roots treated with auxin. We propose that the alterations in linker histone variants' ratios are correlated with plant cell differentiation and dedifferentiation.

  5. Characterization of centromeric histone H3 (CENH3 variants in cultivated and wild carrots (Daucus sp..

    Directory of Open Access Journals (Sweden)

    Frank Dunemann

    Full Text Available In eukaryotes, centromeres are the assembly sites for the kinetochore, a multi-protein complex to which spindle microtubules are attached at mitosis and meiosis, thereby ensuring segregation of chromosomes during cell division. They are specified by incorporation of CENH3, a centromere specific histone H3 variant which replaces canonical histone H3 in the nucleosomes of functional centromeres. To lay a first foundation of a putative alternative haploidization strategy based on centromere-mediated genome elimination in cultivated carrots, in the presented research we aimed at the identification and cloning of functional CENH3 genes in Daucus carota and three distantly related wild species of genus Daucus varying in basic chromosome numbers. Based on mining the carrot transcriptome followed by a subsequent PCR-based cloning, homologous coding sequences for CENH3s of the four Daucus species were identified. The ORFs of the CENH3 variants were very similar, and an amino acid sequence length of 146 aa was found in three out of the four species. Comparison of Daucus CENH3 amino acid sequences with those of other plant CENH3s as well as their phylogenetic arrangement among other dicot CENH3s suggest that the identified genes are authentic CENH3 homologs. To verify the location of the CENH3 protein in the kinetochore regions of the Daucus chromosomes, a polyclonal antibody based on a peptide corresponding to the N-terminus of DcCENH3 was developed and used for anti-CENH3 immunostaining of mitotic root cells. The chromosomal location of CENH3 proteins in the centromere regions of the chromosomes could be confirmed. For genetic localization of the CENH3 gene in the carrot genome, a previously constructed linkage map for carrot was used for mapping a CENH3-specific simple sequence repeat (SSR marker, and the CENH3 locus was mapped on the carrot chromosome 9.

  6. Esperanto for histones: CENP-A, not CenH3, is the centromeric histone H3 variant.

    Science.gov (United States)

    Earnshaw, W C; Allshire, R C; Black, B E; Bloom, K; Brinkley, B R; Brown, W; Cheeseman, I M; Choo, K H A; Copenhaver, G P; Deluca, J G; Desai, A; Diekmann, S; Erhardt, S; Fitzgerald-Hayes, M; Foltz, D; Fukagawa, T; Gassmann, R; Gerlich, D W; Glover, D M; Gorbsky, G J; Harrison, S C; Heun, P; Hirota, T; Jansen, L E T; Karpen, G; Kops, G J P L; Lampson, M A; Lens, S M; Losada, A; Luger, K; Maiato, H; Maddox, P S; Margolis, R L; Masumoto, H; McAinsh, A D; Mellone, B G; Meraldi, P; Musacchio, A; Oegema, K; O'Neill, R J; Salmon, E D; Scott, K C; Straight, A F; Stukenberg, P T; Sullivan, B A; Sullivan, K F; Sunkel, C E; Swedlow, J R; Walczak, C E; Warburton, P E; Westermann, S; Willard, H F; Wordeman, L; Yanagida, M; Yen, T J; Yoda, K; Cleveland, D W

    2013-04-01

    The first centromeric protein identified in any species was CENP-A, a divergent member of the histone H3 family that was recognised by autoantibodies from patients with scleroderma-spectrum disease. It has recently been suggested to rename this protein CenH3. Here, we argue that the original name should be maintained both because it is the basis of a long established nomenclature for centromere proteins and because it avoids confusion due to the presence of canonical histone H3 at centromeres.

  7. Expression of P. falciparum var Genes Involves Exchange of the Histone Variant H2A.Z at the Promoter

    Science.gov (United States)

    Petter, Michaela; Lee, Chin Chin; Byrne, Timothy J.; Boysen, Katja E.; Volz, Jennifer; Ralph, Stuart A.; Cowman, Alan F.; Brown, Graham V.; Duffy, Michael F.

    2011-01-01

    Plasmodium falciparum employs antigenic variation to evade the human immune response by switching the expression of different variant surface antigens encoded by the var gene family. Epigenetic mechanisms including histone modifications and sub-nuclear compartmentalization contribute to transcriptional regulation in the malaria parasite, in particular to control antigenic variation. Another mechanism of epigenetic control is the exchange of canonical histones with alternative variants to generate functionally specialized chromatin domains. Here we demonstrate that the alternative histone PfH2A.Z is associated with the epigenetic regulation of var genes. In many eukaryotic organisms the histone variant H2A.Z mediates an open chromatin structure at promoters and facilitates diverse levels of regulation, including transcriptional activation. Throughout the asexual, intraerythrocytic lifecycle of P. falciparum we found that the P. falciparum ortholog of H2A.Z (PfH2A.Z) colocalizes with histone modifications that are characteristic of transcriptionally-permissive euchromatin, but not with markers of heterochromatin. Consistent with this finding, antibodies to PfH2A.Z co-precipitate the permissive modification H3K4me3. By chromatin-immunoprecipitation we show that PfH2A.Z is enriched in nucleosomes around the transcription start site (TSS) in both transcriptionally active and silent stage-specific genes. In var genes, however, PfH2A.Z is enriched at the TSS only during active transcription in ring stage parasites. Thus, in contrast to other genes, temporal var gene regulation involves histone variant exchange at promoter nucleosomes. Sir2 histone deacetylases are important for var gene silencing and their yeast ortholog antagonises H2A.Z function in subtelomeric yeast genes. In immature P. falciparum parasites lacking Sir2A or Sir2B high var transcription levels correlate with enrichment of PfH2A.Z at the TSS. As Sir2A knock out parasites mature the var genes are

  8. Core Histones H2B and H4 Are Mobilized during Infection with Herpes Simplex Virus 1 ▿

    Science.gov (United States)

    Conn, Kristen L.; Hendzel, Michael J.; Schang, Luis M.

    2011-01-01

    The infecting genomes of herpes simplex virus 1 (HSV-1) are assembled into unstable nucleosomes soon after nuclear entry. The source of the histones that bind to these genomes has yet to be addressed. However, infection inhibits histone synthesis. The histones that bind to HSV-1 genomes are therefore most likely those previously bound in cellular chromatin. In order for preexisting cellular histones to associate with HSV-1 genomes, however, they must first disassociate from cellular chromatin. Consistently, we have shown that linker histones are mobilized during HSV-1 infection. Chromatinization of HSV-1 genomes would also require the association of core histones. We therefore evaluated the mobility of the core histones H2B and H4 as measures of the mobilization of H2A-H2B dimers and the more stable H3-H4 core tetramer. H2B and H4 were mobilized during infection. Their mobilization increased the levels of H2B and H4 in the free pools and decreased the rate of H2B fast chromatin exchange. The histones in the free pools would then be available to bind to HSV-1 genomes. The mobilization of H2B occurred independently from HSV-1 protein expression or DNA replication although expression of HSV-1 immediate-early (IE) or early (E) proteins enhanced it. The mobilization of core histones H2B and H4 supports a model in which the histones that associate with HSV-1 genomes are those that were previously bound in cellular chromatin. Moreover, this mobilization is consistent with the assembly of H2A-H2B and H3-H4 dimers into unstable nucleosomes with HSV-1 genomes. PMID:21994445

  9. TRF2 Protein Interacts with Core Histones to Stabilize Chromosome Ends.

    Science.gov (United States)

    Konishi, Akimitsu; Izumi, Takashi; Shimizu, Shigeomi

    2016-09-23

    Mammalian chromosome ends are protected by a specialized nucleoprotein complex called telomeres. Both shelterin, a telomere-specific multi-protein complex, and higher order telomeric chromatin structures combine to stabilize the chromosome ends. Here, we showed that TRF2, a component of shelterin, binds to core histones to protect chromosome ends from inappropriate DNA damage response and loss of telomeric DNA. The N-terminal Gly/Arg-rich domain (GAR domain) of TRF2 directly binds to the globular domain of core histones. The conserved arginine residues in the GAR domain of TRF2 are required for this interaction. A TRF2 mutant with these arginine residues substituted by alanine lost the ability to protect telomeres and induced rapid telomere shortening caused by the cleavage of a loop structure of the telomeric chromatin. These findings showed a previously unnoticed interaction between the shelterin complex and nucleosomal histones to stabilize the chromosome ends. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. The H1 linker histones: multifunctional proteins beyond the nucleosomal core particle.

    Science.gov (United States)

    Hergeth, Sonja P; Schneider, Robert

    2015-11-01

    The linker histone H1 family members are a key component of chromatin and bind to the nucleosomal core particle around the DNA entry and exit sites. H1 can stabilize both nucleosome structure and higher-order chromatin architecture. In general, H1 molecules consist of a central globular domain with more flexible tail regions at both their N- and C-terminal ends. The existence of multiple H1 subtypes and a large variety of posttranslational modifications brings about a considerable degree of complexity and makes studying this protein family challenging. Here, we review recent progress in understanding the function of linker histones and their subtypes beyond their role as merely structural chromatin components. We summarize current findings on the role of H1 in heterochromatin formation, transcriptional regulation and embryogenesis with a focus on H1 subtypes and their specific modifications. © 2015 The Authors.

  11. Different reaction of core histones H2A and H2B to the red laser radiation

    Directory of Open Access Journals (Sweden)

    Brill G.E.

    2017-09-01

    Full Text Available Aim: to investigate the influence of red laser irradiation on the processes of self-assembly of core histones H2A and H2B. Material and Methods. Solutions of human histone proteins were used in the work. Self-assembly was studied by the method of wedge dehydration. Image facies analysis consisted in their qualitative characterization and calculation of quantitative indicators with subsequent statistical processing. Results. It was established that linearly polarized laser light of the red region of the spectrum (A=660 nm, 1 J/cm2 significantly modifies the process of self-assembly of core histone H2B, while the structure of the facies of H2A histone changing to a lesser extent. Conclusion. Red laser radiation influences on the on the processes of self-assembly of core histones H2A and H2B. There is a differential sensitivity of different classes of histones to laser action. Histone proteins used in the experiments are present in the form of aqueous salt solutions. Red light realizes the effect seems to be due to the formation of singlet oxygen by direct laser excitation of molecular oxygen.

  12. Cu2+-assisted two dimensional charge-mass double focusing gel electrophoresis and mass spectrometric analysis of histone variants.

    Science.gov (United States)

    Zhang, Wenyang; Tang, Xuemei; Ding, Mengjie; Zhong, Hongying

    2014-12-10

    Abundant isoforms and dynamic posttranslational modifications cause the separation and identification of histone variants to be experimentally challenging. To meet this need, we employ two-dimensional electrophoretic gel separation followed by mass spectrometric detection which takes advantage of the chelation of Cu(2+) with amino acid residues exposed on the surfaces of the histone proteins. Acid-extracted rat liver histones were first mixed with CuSO4 solution and then separated in one dimension with triton-acid-urea (TAU) gel electrophoresis and in a second dimension using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The separations result from both the changes in charge and mass upon Cu(2+) chelation. Identities of each separated gel bands were obtained by using matrix-assisted laser desorption-ionization mass spectrometry (MALDI-MS). It was found that the migration of H3 histone isoforms of rat liver is markedly affected by the use of Cu(2+) ions. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Accumulation of histone variant H3.3 with age is associated with profound changes in the histone methylation landscape

    DEFF Research Database (Denmark)

    Tvardovskiy, Andrey; Schwämmle, Veit; Kempf, Stefan J

    2017-01-01

    a causal relationship between H3 variant replacement and age-dependent changes in H3 methylation. Furthermore, the H3.3 level is drastically reduced in human hepatocarcinoma cells as compared to nontumoral hepatocytes, suggesting the potential utility of the H3.3 relative abundance as a biomarker...

  14. Histone Variant HTZ1 Shows Extensive Epistasis with, but Does Not Increase Robustness to, New Mutations

    Science.gov (United States)

    Richardson, Joshua B.; Uppendahl, Locke D.; Traficante, Maria K.; Levy, Sasha F.; Siegal, Mark L.

    2013-01-01

    Biological systems produce phenotypes that appear to be robust to perturbation by mutations and environmental variation. Prior studies identified genes that, when impaired, reveal previously cryptic genetic variation. This result is typically interpreted as evidence that the disrupted gene normally increases robustness to mutations, as such robustness would allow cryptic variants to accumulate. However, revelation of cryptic genetic variation is not necessarily evidence that a mutationally robust state has been made less robust. Demonstrating a difference in robustness requires comparing the ability of each state (with the gene perturbed or intact) to suppress the effects of new mutations. Previous studies used strains in which the existing genetic variation had been filtered by selection. Here, we use mutation accumulation (MA) lines that have experienced minimal selection, to test the ability of histone H2A.Z (HTZ1) to increase robustness to mutations in the yeast Saccharomyces cerevisiae. HTZ1, a regulator of chromatin structure and gene expression, represents a class of genes implicated in mutational robustness. It had previously been shown to increase robustness of yeast cell morphology to fluctuations in the external or internal microenvironment. We measured morphological variation within and among 79 MA lines with and without HTZ1. Analysis of within-line variation confirms that HTZ1 increases microenvironmental robustness. Analysis of between-line variation shows the morphological effects of eliminating HTZ1 to be highly dependent on the line, which implies that HTZ1 interacts with mutations that have accumulated in the lines. However, lines without HTZ1 are, as a group, not more phenotypically diverse than lines with HTZ1 present. The presence of HTZ1, therefore, does not confer greater robustness to mutations than its absence. Our results provide experimental evidence that revelation of cryptic genetic variation cannot be assumed to be caused by loss of

  15. Histone variant HTZ1 shows extensive epistasis with, but does not increase robustness to, new mutations.

    Directory of Open Access Journals (Sweden)

    Joshua B Richardson

    Full Text Available Biological systems produce phenotypes that appear to be robust to perturbation by mutations and environmental variation. Prior studies identified genes that, when impaired, reveal previously cryptic genetic variation. This result is typically interpreted as evidence that the disrupted gene normally increases robustness to mutations, as such robustness would allow cryptic variants to accumulate. However, revelation of cryptic genetic variation is not necessarily evidence that a mutationally robust state has been made less robust. Demonstrating a difference in robustness requires comparing the ability of each state (with the gene perturbed or intact to suppress the effects of new mutations. Previous studies used strains in which the existing genetic variation had been filtered by selection. Here, we use mutation accumulation (MA lines that have experienced minimal selection, to test the ability of histone H2A.Z (HTZ1 to increase robustness to mutations in the yeast Saccharomyces cerevisiae. HTZ1, a regulator of chromatin structure and gene expression, represents a class of genes implicated in mutational robustness. It had previously been shown to increase robustness of yeast cell morphology to fluctuations in the external or internal microenvironment. We measured morphological variation within and among 79 MA lines with and without HTZ1. Analysis of within-line variation confirms that HTZ1 increases microenvironmental robustness. Analysis of between-line variation shows the morphological effects of eliminating HTZ1 to be highly dependent on the line, which implies that HTZ1 interacts with mutations that have accumulated in the lines. However, lines without HTZ1 are, as a group, not more phenotypically diverse than lines with HTZ1 present. The presence of HTZ1, therefore, does not confer greater robustness to mutations than its absence. Our results provide experimental evidence that revelation of cryptic genetic variation cannot be assumed to be

  16. Different reaction of the core histones H2A and H2B to red laser irradiation

    Science.gov (United States)

    Brill, G. E.; Egorova, A. V.; Bugaeva, I. O.; Postnov, D. E.; Ushakova, O. V.

    2017-03-01

    Analysis of the influence of red laser irradiation on the processes of self-assembly of the core histones H2A and H2B was performed using a wedge dehydration method. Image-analysis of facies included their qualitative characteristics and calculation of quantitative parameters with subsequent statistical processing. It was established that linearly polarized red laser light (λ - 660 nm, 1 J/cm2) significantly modified the process of self-assembly of core histone H2B, whereas the structure of the facies of H2A histone changed to a lesser extent. Histones were used in the form of aqueous salt solutions. The effect of red light seems to result from the formation of singlet oxygen by direct laser excitation of molecular oxygen.

  17. Anticancer drug mithramycin interacts with core histones: An additional mode of action of the DNA groove binder

    Directory of Open Access Journals (Sweden)

    Amrita Banerjee

    2014-01-01

    Full Text Available Mithramycin (MTR is a clinically approved DNA-binding antitumor antibiotic currently in Phase 2 clinical trials at National Institutes of Health for treatment of osteosarcoma. In view of the resurgence in the studies of this generic antibiotic as a human medicine, we have examined the binding properties of MTR with the integral component of chromatin – histone proteins – as a part of our broad objective to classify DNA-binding molecules in terms of their ability to bind chromosomal DNA alone (single binding mode or both histones and chromosomal DNA (dual binding mode. The present report shows that besides DNA, MTR also binds to core histones present in chromatin and thus possesses the property of dual binding in the chromatin context. In contrast to the MTR–DNA interaction, association of MTR with histones does not require obligatory presence of bivalent metal ion like Mg2+. As a consequence of its ability to interact with core histones, MTR inhibits histone H3 acetylation at lysine 18, an important signature of active chromatin, in vitro and ex vivo. Reanalysis of microarray data of Ewing sarcoma cell lines shows that upon MTR treatment there is a significant down regulation of genes, possibly implicating a repression of H3K18Ac-enriched genes apart from DNA-binding transcription factors. Association of MTR with core histones and its ability to alter post-translational modification of histone H3 clearly indicates an additional mode of action of this anticancer drug that could be implicated in novel therapeutic strategies.

  18. Tapetum development in transgenic tobacco (Nicotiana tabacum L. plants with modlfied level of histone H1 variants

    Directory of Open Access Journals (Sweden)

    Joanna Ślusarczyk

    2011-01-01

    Full Text Available The phenomenon of male sterility has often been observed in investigations on the role of histone H1 in regulation of morphogenetic and cytological processes in transgenic tobacco plants. These changes were accumulated by disturbances in flower development, consisting in lengthening of the pistil style in relation to stamen heads. This prevented pollination and production of seeds. As similar abnormalities occurred also in the present investigations (depending on combination, the sterility% was 84.4 to 19.9, at only 8.1 in the control, the main problem of our investigations was an attempt to explain their reasons. It is commonly known that one of the conditions for formation of fertile pollen is the properly functioning tapetum. Here, we carried out observations of ultrastructure of anther tapetum control cells in respect of abnormalities which occurred during microsporogenesis of transgenic plants with inactivated expression of two major (A, B and two minor (C, D histone H1 variants. The investigations were carried out on the following groups of plants: (1 control group with a full set of histone variants (K, (2 with inactivated A and B variants (-AB; (3 with inactivated A, B, C and D variants (-ABCD, (4 with inactivated C and D variants (-CD. It was found that tapetal development was normal in all the investigated groups of plants, and the sequence of changes was similar as in the control. However, certain ultrastructural differences appeared when tapetum functioned as secretory tissue, and in the degeneration phase. In tapetal cell cytoplasm, with participation of rER, lipid bodies were formed, which, having penetrated to the cell surface and to locules, took part in formation of pollen grain sporoderm. Both in the control and in the remaining combination, excluding -ABCD, these bodies looked similar: they were grey, homogenous and surrounded by black jagged deposits. In -ABCD plants, these bodies were more translucent, slightly rarefied, and

  19. Flexible histone tails in a new mesoscopic oligonucleosome model.

    Science.gov (United States)

    Arya, Gaurav; Zhang, Qing; Schlick, Tamar

    2006-07-01

    We describe a new mesoscopic model of oligonucleosomes that incorporates flexible histone tails. The nucleosome cores are modeled using the discrete surface-charge optimization model, which treats the nucleosome as an electrostatic surface represented by hundreds of point charges; the linker DNAs are treated using a discrete elastic chain model; and the histone tails are modeled using a bead/chain hydrodynamic approach as chains of connected beads where each bead represents five protein residues. Appropriate charges and force fields are assigned to each histone chain so as to reproduce the electrostatic potential, structure, and dynamics of the corresponding atomistic histone tails at different salt conditions. The dynamics of resulting oligonucleosomes at different sizes and varying salt concentrations are simulated by Brownian dynamics with complete hydrodynamic interactions. The analyses demonstrate that the new mesoscopic model reproduces experimental results better than its predecessors, which modeled histone tails as rigid entities. In particular, our model with flexible histone tails: correctly accounts for salt-dependent conformational changes in the histone tails; yields the experimentally obtained values of histone-tail mediated core/core attraction energies; and considers the partial shielding of electrostatic repulsion between DNA linkers as a result of the spatial distribution of histone tails. These effects are crucial for regulating chromatin structure but are absent or improperly treated in models with rigid histone tails. The development of this model of oligonucleosomes thus opens new avenues for studying the role of histone tails and their variants in mediating gene expression through modulation of chromatin structure.

  20. The actin family member Arp6 and the histone variant H2A.Z are required for spatial positioning of chromatin in chicken cell nuclei

    Czech Academy of Sciences Publication Activity Database

    Maruyama, E.O.; Hori, T.; Tanabe, H.; Kitamura, H.; Matsuda, R.; Tone, S.; Hozák, Pavel; Habermann, F.A.; von Hase, J.; Cremer, C.; Fukagawa, T.; Harata, M.

    2012-01-01

    Roč. 125, č. 16 (2012), s. 3739-3744 ISSN 0021-9533 R&D Projects: GA MŠk LC545; GA MŠk LH12143 Institutional support: RVO:68378050 Keywords : actin-related protein * histone variant * nuclear organization Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.877, year: 2012

  1. Rapid divergence of histones in Hydrozoa (Cnidaria) and evolution of a novel histone involved in DNA damage response in hydra.

    Science.gov (United States)

    Reddy, Puli Chandramouli; Ubhe, Suyog; Sirwani, Neha; Lohokare, Rasika; Galande, Sanjeev

    2017-08-01

    Histones are fundamental components of chromatin in all eukaryotes. Hydra, an emerging model system belonging to the basal metazoan phylum Cnidaria, provides an ideal platform to understand the evolution of core histone components at the base of eumetazoan phyla. Hydra exhibits peculiar properties such as tremendous regenerative capacity, lack of organismal senescence and rarity of malignancy. In light of the role of histone modifications and histone variants in these processes it is important to understand the nature of histones themselves and their variants in hydra. Here, we report identification of the complete repertoire of histone-coding genes in the Hydra magnipapillata genome. Hydra histones were classified based on their copy numbers, gene structure and other characteristic features. Genomic organization of canonical histone genes revealed the presence of H2A-H2B and H3-H4 paired clusters in high frequency and also a cluster with all core histones along with H1. Phylogenetic analysis of identified members of H2A and H2B histones suggested rapid expansion of these groups in Hydrozoa resulting in the appearance of unique subtypes. Amino acid sequence level comparisons of H2A and H2B forms with bilaterian counterparts suggest the possibility of a highly mobile nature of nucleosomes in hydra. Absolute quantitation of transcripts confirmed the high copy number of histones and supported the canonical nature of H2A. Furthermore, functional characterization of H2A.X.1 and a unique variant H2A.X.2 in the gastric region suggest their role in the maintenance of genome integrity and differentiation processes. These findings provide insights into the evolution of histones and their variants in hydra. Copyright © 2017 Elsevier GmbH. All rights reserved.

  2. Expressed Centromere Specific Histone 3 (CENH3 Variants in Cultivated Triploid and Wild Diploid Bananas (Musa spp.

    Directory of Open Access Journals (Sweden)

    Kariuki S. Muiruri

    2017-06-01

    Full Text Available Centromeres are specified by a centromere specific histone 3 (CENH3 protein, which exists in a complex environment, interacting with conserved proteins and rapidly evolving satellite DNA sequences. The interactions may become more challenging if multiple CENH3 versions are introduced into the zygote as this can affect post-zygotic mitosis and ultimately sexual reproduction. Here, we characterize CENH3 variant transcripts expressed in cultivated triploid and wild diploid progenitor bananas. We describe both splice- and allelic-[Single Nucleotide Polymorphisms (SNP] variants and their effects on the predicted secondary structures of protein. Expressed CENH3 transcripts from six banana genotypes were characterized and clustered into three groups (MusaCENH-1A, MusaCENH-1B, and MusaCENH-2 based on similarity. The CENH3 groups differed with SNPs as well as presence of indels resulting from retained and/or skipped exons. The CENH3 transcripts from different banana genotypes were spliced in either 7/6, 5/4 or 6/5 exons/introns. The 7/6 and the 5/4 exon/intron structures were found in both diploids and triploids, however, 7/6 was most predominant. The 6/5 exon/introns structure was a result of failure of the 7/6 to splice correctly. The various transcripts obtained were predicted to encode highly variable N-terminal tails and a relatively conserved C-terminal histone fold domain (HFD. The SNPs were predicted in some cases to affect the secondary structure of protein by lengthening or shorting the affected domains. Sequencing of banana CENH3 transcripts predicts SNP variations that affect amino acid sequences and alternatively spliced transcripts. Most of these changes affect the N-terminal tail of CENH3.

  3. Effects of Florida Red Tides on histone variant expression and DNA methylation in the Eastern oyster Crassostrea virginica.

    Science.gov (United States)

    Gonzalez-Romero, Rodrigo; Suarez-Ulloa, Victoria; Rodriguez-Casariego, Javier; Garcia-Souto, Daniel; Diaz, Gabriel; Smith, Abraham; Pasantes, Juan Jose; Rand, Gary; Eirin-Lopez, Jose M

    2017-05-01

    Massive algal proliferations known as Harmful Algal Blooms (HABs) represent one of the most important threats to coastal areas. Among them, the so-called Florida Red Tides (FRTs, caused by blooms of the dinoflagellate Karenia brevis and associated brevetoxins) are particularly detrimental in the southeastern U.S., causing high mortality rates and annual losses in excess of $40 million. The ability of marine organisms to cope with environmental stressors (including those produced during HABs) is influenced by genetic and epigenetic mechanisms, the latter resulting in phenotypic changes caused by heritable modifications in gene expression, without involving changes in the genetic (DNA) sequence. Yet, studies examining cause-effect relationships between environmental stressors, specific epigenetic mechanisms and subsequent responses are still lacking. The present work contributes to increase this knowledge by investigating the effects of Florida Red Tides on two types of mechanisms participating in the epigenetic memory of Eastern oysters: histone variants and DNA methylation. For that purpose, a HAB simulation was conducted in laboratory conditions, exposing oysters to increasing concentrations of K. brevis. The obtained results revealed, for the first time, the existence of H2A.X, H2A.Z and macroH2A genes in this organism, encoding histone variants potentially involved in the maintenance of genome integrity during responses to the genotoxic effect of brevetoxins. Additionally, an increase in H2A.X phosphorylation (γH2A.X, a marker of DNA damage) and a decrease in global DNA methylation were observed as the HAB simulation progressed. Overall, the present work provides a basis to better understand how epigenetic mechanisms participate in responses to environmental stress in marine invertebrates, opening new avenues to incorporate environmental epigenetics approaches into management and conservation programs. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Effects of Florida Red Tides on histone variant expression and DNA methylation in the Eastern oyster Crassostrea virginica

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Romero, Rodrigo; Suarez-Ulloa, Victoria [Environmental Epigenetics Group, Department of Biological Sciences, Florida International University, North Miami, FL 33181 (United States); Rodriguez-Casariego, Javier [Environmental Epigenetics Group, Department of Biological Sciences, Florida International University, North Miami, FL 33181 (United States); Ecotoxicology and Risk Assessment Laboratory, Southeast Environmental Research Center, Florida International University, North Miami, FL 33181 (United States); Garcia-Souto, Daniel [Departamento de Bioquimica, Xenetica e Inmunoloxia, Universidade de Vigo, E-36310 Vigo (Spain); Diaz, Gabriel [Environmental Epigenetics Group, Department of Biological Sciences, Florida International University, North Miami, FL 33181 (United States); Smith, Abraham [Ecotoxicology and Risk Assessment Laboratory, Southeast Environmental Research Center, Florida International University, North Miami, FL 33181 (United States); Pasantes, Juan Jose [Departamento de Bioquimica, Xenetica e Inmunoloxia, Universidade de Vigo, E-36310 Vigo (Spain); Rand, Gary [Ecotoxicology and Risk Assessment Laboratory, Southeast Environmental Research Center, Florida International University, North Miami, FL 33181 (United States); Eirin-Lopez, Jose M., E-mail: jeirinlo@fiu.edu [Environmental Epigenetics Group, Department of Biological Sciences, Florida International University, North Miami, FL 33181 (United States)

    2017-05-15

    Massive algal proliferations known as Harmful Algal Blooms (HABs) represent one of the most important threats to coastal areas. Among them, the so-called Florida Red Tides (FRTs, caused by blooms of the dinoflagellate Karenia brevis and associated brevetoxins) are particularly detrimental in the southeastern U.S., causing high mortality rates and annual losses in excess of $40 million. The ability of marine organisms to cope with environmental stressors (including those produced during HABs) is influenced by genetic and epigenetic mechanisms, the latter resulting in phenotypic changes caused by heritable modifications in gene expression, without involving changes in the genetic (DNA) sequence. Yet, studies examining cause-effect relationships between environmental stressors, specific epigenetic mechanisms and subsequent responses are still lacking. The present work contributes to increase this knowledge by investigating the effects of Florida Red Tides on two types of mechanisms participating in the epigenetic memory of Eastern oysters: histone variants and DNA methylation. For that purpose, a HAB simulation was conducted in laboratory conditions, exposing oysters to increasing concentrations of K. brevis. The obtained results revealed, for the first time, the existence of H2A.X, H2A.Z and macroH2A genes in this organism, encoding histone variants potentially involved in the maintenance of genome integrity during responses to the genotoxic effect of brevetoxins. Additionally, an increase in H2A.X phosphorylation (γH2A.X, a marker of DNA damage) and a decrease in global DNA methylation were observed as the HAB simulation progressed. Overall, the present work provides a basis to better understand how epigenetic mechanisms participate in responses to environmental stress in marine invertebrates, opening new avenues to incorporate environmental epigenetics approaches into management and conservation programs.

  5. Effects of Florida Red Tides on histone variant expression and DNA methylation in the Eastern oyster Crassostrea virginica

    International Nuclear Information System (INIS)

    Gonzalez-Romero, Rodrigo; Suarez-Ulloa, Victoria; Rodriguez-Casariego, Javier; Garcia-Souto, Daniel; Diaz, Gabriel; Smith, Abraham; Pasantes, Juan Jose; Rand, Gary; Eirin-Lopez, Jose M.

    2017-01-01

    Massive algal proliferations known as Harmful Algal Blooms (HABs) represent one of the most important threats to coastal areas. Among them, the so-called Florida Red Tides (FRTs, caused by blooms of the dinoflagellate Karenia brevis and associated brevetoxins) are particularly detrimental in the southeastern U.S., causing high mortality rates and annual losses in excess of $40 million. The ability of marine organisms to cope with environmental stressors (including those produced during HABs) is influenced by genetic and epigenetic mechanisms, the latter resulting in phenotypic changes caused by heritable modifications in gene expression, without involving changes in the genetic (DNA) sequence. Yet, studies examining cause-effect relationships between environmental stressors, specific epigenetic mechanisms and subsequent responses are still lacking. The present work contributes to increase this knowledge by investigating the effects of Florida Red Tides on two types of mechanisms participating in the epigenetic memory of Eastern oysters: histone variants and DNA methylation. For that purpose, a HAB simulation was conducted in laboratory conditions, exposing oysters to increasing concentrations of K. brevis. The obtained results revealed, for the first time, the existence of H2A.X, H2A.Z and macroH2A genes in this organism, encoding histone variants potentially involved in the maintenance of genome integrity during responses to the genotoxic effect of brevetoxins. Additionally, an increase in H2A.X phosphorylation (γH2A.X, a marker of DNA damage) and a decrease in global DNA methylation were observed as the HAB simulation progressed. Overall, the present work provides a basis to better understand how epigenetic mechanisms participate in responses to environmental stress in marine invertebrates, opening new avenues to incorporate environmental epigenetics approaches into management and conservation programs.

  6. Biochemical reconstitution and phylogenetic comparison of human SET1 family core complexes involved in histone methylation.

    Science.gov (United States)

    Shinsky, Stephen A; Monteith, Kelsey E; Viggiano, Susan; Cosgrove, Michael S

    2015-03-06

    Mixed lineage leukemia protein-1 (MLL1) is a member of the SET1 family of histone H3 lysine 4 (H3K4) methyltransferases that are required for metazoan development. MLL1 is the best characterized human SET1 family member, which includes MLL1-4 and SETd1A/B. MLL1 assembles with WDR5, RBBP5, ASH2L, DPY-30 (WRAD) to form the MLL1 core complex, which is required for H3K4 dimethylation and transcriptional activation. Because all SET1 family proteins interact with WRAD in vivo, it is hypothesized they are regulated by similar mechanisms. However, recent evidence suggests differences among family members that may reflect unique regulatory inputs in the cell. Missing is an understanding of the intrinsic enzymatic activities of different SET1 family complexes under standard conditions. In this investigation, we reconstituted each human SET1 family core complex and compared subunit assembly and enzymatic activities. We found that in the absence of WRAD, all but one SET domain catalyzes at least weak H3K4 monomethylation. In the presence of WRAD, all SET1 family members showed stimulated monomethyltransferase activity but differed in their di- and trimethylation activities. We found that these differences are correlated with evolutionary lineage, suggesting these enzyme complexes have evolved to accomplish unique tasks within metazoan genomes. To understand the structural basis for these differences, we employed a "phylogenetic scanning mutagenesis" assay and identified a cluster of amino acid substitutions that confer a WRAD-dependent gain-of-function dimethylation activity on complexes assembled with the MLL3 or Drosophila trithorax proteins. These results form the basis for understanding how WRAD differentially regulates SET1 family complexes in vivo. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Requirement of a novel splicing variant of human histone deacetylase 6 for TGF-{beta}1-mediated gene activation

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Yan [Department of Medicine, Tulane School of Medicine, New Orleans, LA 70112 (United States); Nguyen, Hong T. [Graduate Program in Biomedical Sciences, Tulane School of Medicine, New Orleans, LA 70112 (United States); Lasky, Joseph A. [Department of Medicine, Tulane School of Medicine, New Orleans, LA 70112 (United States); Cao, Subing [Graduate Program in Biomedical Sciences, Tulane School of Medicine, New Orleans, LA 70112 (United States); Li, Cui [Department of Medicine, Tulane School of Medicine, New Orleans, LA 70112 (United States); Xiangya Hospital, Central South University, Hunan 41008 (China); Hu, Jiyao; Guo, Xinyue; Burow, Matthew E. [Department of Medicine, Tulane School of Medicine, New Orleans, LA 70112 (United States); Shan, Bin, E-mail: bshan@tulane.edu [Department of Medicine, Tulane School of Medicine, New Orleans, LA 70112 (United States)

    2010-02-19

    Histone deacetylase 6 (HDAC6) belongs to the family of class IIb HDACs and predominantly deacetylates non-histone proteins in the cytoplasm via the C-terminal deacetylase domain of its two tandem deacetylase domains. HDAC6 modulates fundamental cellular processes via deacetylation of {alpha}-tubulin, cortactin, molecular chaperones, and other peptides. Our previous study indicates that HDAC6 mediates TGF-{beta}1-induced epithelial-mesenchymal transition (EMT) in A549 cells. In the current study, we identify a novel splicing variant of human HDAC6, hHDAC6p114. The hHDAC6p114 mRNA arises from incomplete splicing and encodes a truncated isoform of the hHDAC6p114 protein of 114 kDa when compared to the major isoform hHDAC6p131. The hHDAC6p114 protein lacks the first 152 amino acids from N-terminus in the hHDAC6p131 protein, which harbors a nuclear export signal peptide and 76 amino acids of the N-terminal deacetylase domain. hHDAC6p114 is intact in its deacetylase activity against {alpha}-tubulin. The expression hHDAC6p114 is elevated in a MCF-7 derivative that exhibits an EMT-like phenotype. Moreover, hHDAC6p114 is required for TGF-{beta}1-activated gene expression associated with EMT in A549 cells. Taken together, our results implicate that expression and function of hHDAC6p114 is differentially regulated when compared to hHDAC6p131.

  8. Genome Editing a Mouse Locus Encoding a Variant Histone, H3.3B, to Report on its Expression in Live Animals

    Science.gov (United States)

    Wen, Duancheng; Noh, Kyung-Min; Goldberg, Aaron D.; Allis, C. David; Rosenwaks, Zev; Rafii, Shahin; Banaszynski, Laura A.

    2018-01-01

    Summary Chromatin remodeling via incorporation of histone variants plays a key role in the regulation of embryonic development. The histone variant H3.3 has been associated with a number of early events including formation of the paternal pronucleus upon fertilization. The small number of amino acid differences between H3.3 and its canonical counterparts (H3.1 and H3.2) has limited studies of the developmental significance of H3.3 deposition into chromatin due to difficulties in distinguishing the H3 isoforms. To this end, we used zinc-finger nuclease (ZFN) mediated gene editing to introduce a small C-terminal hemagglutinin (HA) tag to the endogenous H3.3B locus in mouse embryonic stem cells (ESCs), along with an internal ribosome entry site (IRES) and a separately translated fluorescent reporter of expression. This system will allow detection of expression driven by the reporter in cells, animals, and embryos, and will facilitate investigation of differential roles of paternal and maternal H3.3 protein during embryogenesis that would not be possible using variant-specific antibodies. Further, the ability to monitor endogenous H3.3 protein in various cell lineages will enhance our understanding of the dynamics of this histone variant over the course of development. genesis PMID:25262655

  9. Onset of grain filling is associated with a change in properties of linker histone variants in maize kernels

    DEFF Research Database (Denmark)

    Kalamajka, R.; Finnie, Christine; Grasser, K.D.

    2010-01-01

    ) initiation of storage synthesis. Six linker histone gene products were identified by MALDI-TOF mass spectrometry. A marked shift of around 4 pH units was observed for the linker histone spot pattern after 2D-gel electrophoresis when comparing the proteins of 11 and 16 dap kernels. The shift from acidic...

  10. Histone demethylase JMJD1A promotes alternative splicing of AR variant 7 (AR-V7) in prostate cancer cells.

    Science.gov (United States)

    Fan, Lingling; Zhang, Fengbo; Xu, Songhui; Cui, Xiaolu; Hussain, Arif; Fazli, Ladan; Gleave, Martin; Dong, Xuesen; Qi, Jianfei

    2018-05-15

    Formation of the androgen receptor splicing variant 7 (AR-V7) is one of the major mechanisms by which resistance of prostate cancer to androgen deprivation therapy occurs. The histone demethylase JMJD1A (Jumonji domain containing 1A) functions as a key coactivator for AR by epigenetic regulation of H3K9 methylation marks. Here, we describe a role for JMJD1A in AR-V7 expression. While JMJD1A knockdown had no effect on full-length AR (AR-FL), it reduced AR-V7 levels in prostate cancer cells. Reexpression of AR-V7 in the JMJD1A-knockdown cells elevated expression of select AR targets and partially rescued prostate cancer cell growth in vitro and in vivo. The AR-V7 protein level correlated positively with JMJD1A in a subset of human prostate cancer specimens. Mechanistically, we found that JMJD1A promoted alternative splicing of AR-V7 through heterogeneous nuclear ribonucleoprotein F (HNRNPF), a splicing factor known to regulate exon inclusion. Knockdown of JMJD1A or HNRNPF inhibited splicing of AR-V7, but not AR-FL, in a minigene reporter assay. JMJD1A was found to interact with and promote the recruitment of HNRNPF to a cryptic exon 3b on AR pre-mRNA for the generation of AR-V7. Taken together, the role of JMJD1A in AR-FL coactivation and AR-V7 alternative splicing highlights JMJD1A as a potentially promising target for prostate cancer therapy.

  11. Histone variant H3.3-mediated chromatin remodeling is essential for paternal genome activation in mouse preimplantation embryos.

    Science.gov (United States)

    Kong, Qingran; Banaszynski, Laura A; Geng, Fuqiang; Zhang, Xiaolei; Zhang, Jiaming; Zhang, Heng; O'Neill, Claire L; Yan, Peidong; Liu, Zhonghua; Shido, Koji; Palermo, Gianpiero D; Allis, C David; Rafii, Shahin; Rosenwaks, Zev; Wen, Duancheng

    2018-03-09

    Derepression of chromatin-mediated transcriptional repression of paternal and maternal genomes is considered the first major step that initiates zygotic gene expression after fertilization. The histone variant H3.3 is present in both male and female gametes and is thought to be important for remodeling the paternal and maternal genomes for activation during both fertilization and embryogenesis. However, the underlying mechanisms remain poorly understood. Using our H3.3B-HA-tagged mouse model, engineered to report H3.3 expression in live animals and to distinguish different sources of H3.3 protein in embryos, we show here that sperm-derived H3.3 (sH3.3) protein is removed from the sperm genome shortly after fertilization and extruded from the zygotes via the second polar bodies (PBII) during embryogenesis. We also found that the maternal H3.3 (mH3.3) protein is incorporated into the paternal genome as early as 2 h postfertilization and is detectable in the paternal genome until the morula stage. Knockdown of maternal H3.3 resulted in compromised embryonic development both of fertilized embryos and of androgenetic haploid embryos. Furthermore, we report that mH3.3 depletion in oocytes impairs both activation of the Oct4 pluripotency marker gene and global de novo transcription from the paternal genome important for early embryonic development. Our results suggest that H3.3-mediated paternal chromatin remodeling is essential for the development of preimplantation embryos and the activation of the paternal genome during embryogenesis. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Histone H1 heterogeneity in the midge, Chironomus thummi. Structural comparison of the H1 variants in an organism where their intrachromosomal localization is possible.

    Science.gov (United States)

    Hoyer-Fender, S; Grossbach, U

    1988-09-01

    1. Seven subfractions of histone H1 have been isolated and purified from larvae of Chironomus thummi (Diptera). They have been denominated I-1, II-1, II-2, II-3, III-1, III-2, and III-3, according to the order of migration in two steps of preparative electrophoresis. 2. The amino acid compositions are similar to those of other H1 histones. Subfractions I-1 and II-1 were found to contain one methionine and two tyrosine residues, II-2 contained two methionine and three tyrosine residues, and III-1 one methionine and three tyrosine residues. The other subfractions contained one or two methionine and two or three tyrosine residues. For subfractions I-1 and II-1 a chain length of about 252 amino acids was estimated. 3. Peptide pattern analyses after chemical cleavage at the methionine and tyrosine residues, and enzymatic cleavage with thrombin and chymotrypsin, respectively, showed that all subfractions have different individual primary structures. A comparison of peptide sizes and of the positions in the peptide patterns of epitopes recognized by monoclonal antibodies was made to check whether some of the subfractions could arise by proteolytic degradation of others. This possibility can be excluded for five of the subfractions and is very improbable for the two others. Treatment of C. thummi H1 with alkaline phosphatase did not change the pattern of subfractions, while the phosphorylated subfraction of histone H2A disappeared after this treatment. Most and very probably all subfractions are thus H1 sequence variants. 4. Inbred strains and individual larvae of C. thummi were found to comprise all seven variants. The H1 heterogeneity can therefore not be due to allelic polymorphism. Salivary gland nuclei were found to contain variant I-1 and at least some of the other variants. 5. H1 from Drosophila melanogaster and from calf thymus were used as reference molecules in all cleavage experiments and yielded the peptide patterns expected from the sequence. The comparison

  13. High mobility group protein number17 cross-links primarily to histone H2A in the reconstituted HMG 17 - nucleosome core particle complex

    International Nuclear Information System (INIS)

    Cook, G.R.; Yau, P.; Yasuda, H.; Traut, R.R.; Bradbury, E.M.

    1986-01-01

    The neighbor relationship of lamb thymus High Mobility Group (HMG) protein 17 to native HeLa nucleosome core particle histones in the reconstituted complex has been studied. 125 I-labeled HMG 17 was cross-linking to core histones using the protein-protein cross-linking reagent 2-iminothiolane. Specific cross-linked products were separated on a two-dimensional Triton-acid-urea/SDS gel system, located by autoradiography, excised and quantified. Disulfide bonds in the cross links were then cleaved and the protein constituents were identified by SDS gel electrophoresis. HMG 17 cross-linked primarily to histone H2A while lower levels of cross-linking occurred between HMG 17 and the other histones. In contrast, cross-linking between two HMG 17 molecules bound on the same nucleosome was relatively rare. It is concluded that the same nucleosome was relatively rare. It is concluded that H2A comprises part of the HMG 17 binding site but that HMG 17 is sufficiently elongated and mobile to permit cross-linking to the other histones and to a second HMG 17 molecule. These results are in agreement with the current model for the structure of the nucleosome and the proposed binding sites for HMG 17

  14. Saccharomyces cerevisiae Linker Histone Hho1p Functionally Interacts with Core Histone H4 and Negatively Regulates the Establishment of Transcriptionally Silent Chromatin*

    OpenAIRE

    Yu, Qun; Kuzmiak, Holly; Zou, Yanfei; Olsen, Lars; Defossez, Pierre-Antoine; Bi, Xin

    2009-01-01

    Saccharomyces cerevisiae linker histone Hho1p is not essential for cell viability, and very little is known about its function in vivo. We show that deletion of HHO1 (hho1Δ) suppresses the defect in transcriptional silencing caused by a mutation in the globular domain of histone H4. hho1Δ also suppresses the reduction in HML silencing by the deletion of SIR1 that is involved in the establishment of silent chromatin at HML. We further show that hho1Δ suppresses chan...

  15. Structural analysis of the core COMPASS family of histone H3K4 methylases from yeast to human.

    Science.gov (United States)

    Takahashi, Yoh-hei; Westfield, Gerwin H; Oleskie, Austin N; Trievel, Raymond C; Shilatifard, Ali; Skiniotis, Georgios

    2011-12-20

    Histone H3 lysine 4 (H3K4) methylation is catalyzed by the highly evolutionarily conserved multiprotein complex known as Set1/COMPASS or MLL/COMPASS-like complexes from yeast to human, respectively. Here we have reconstituted fully functional yeast Set1/COMPASS and human MLL/COMPASS-like complex in vitro and have identified the minimum subunit composition required for histone H3K4 methylation. These subunits include the methyltransferase C-terminal SET domain of Set1/MLL, Cps60/Ash2L, Cps50/RbBP5, Cps30/WDR5, and Cps25/Dpy30, which are all common components of the COMPASS family from yeast to human. Three-dimensional (3D) cryo-EM reconstructions of the core yeast complex, combined with immunolabeling and two-dimensional (2D) EM analysis of the individual subcomplexes reveal a Y-shaped architecture with Cps50 and Cps30 localizing on the top two adjacent lobes and Cps60-Cps25 forming the base at the bottom. EM analysis of the human complex reveals a striking similarity to its yeast counterpart, suggesting a common subunit organization. The SET domain of Set1 is located at the juncture of Cps50, Cps30, and the Cps60-Cps25 module, lining the walls of a central channel that may act as the platform for catalysis and regulative processing of various degrees of H3K4 methylation. This structural arrangement suggested that COMPASS family members function as exo-methylases, which we have confirmed by in vitro and in vivo studies.

  16. Histone HIST1H1C/H1.2 regulates autophagy in the development of diabetic retinopathy.

    Science.gov (United States)

    Wang, Wenjun; Wang, Qing; Wan, Danyang; Sun, Yue; Wang, Lin; Chen, Hong; Liu, Chengyu; Petersen, Robert B; Li, Jianshuang; Xue, Weili; Zheng, Ling; Huang, Kun

    2017-05-04

    Autophagy plays critical and complex roles in many human diseases, including diabetes and its complications. However, the role of autophagy in the development of diabetic retinopathy remains uncertain. Core histone modifications have been reported involved in the development of diabetic retinopathy, but little is known about the histone variants. Here, we observed increased autophagy and histone HIST1H1C/H1.2, an important variant of the linker histone H1, in the retinas of type 1 diabetic rodents. Overexpression of histone HIST1H1C upregulates SIRT1 and HDAC1 to maintain the deacetylation status of H4K16, leads to upregulation of ATG proteins, then promotes autophagy in cultured retinal cell line. Histone HIST1H1C overexpression also promotes inflammation and cell toxicity in vitro. Knockdown of histone HIST1H1C reduces both the basal and stresses (including high glucose)-induced autophagy, and inhibits high glucose induced inflammation and cell toxicity. Importantly, AAV-mediated histone HIST1H1C overexpression in the retinas leads to increased autophagy, inflammation, glial activation and neuron loss, similar to the pathological changes identified in the early stage of diabetic retinopathy. Furthermore, knockdown of histone Hist1h1c by siRNA in the retinas of diabetic mice significantly attenuated the diabetes-induced autophagy, inflammation, glial activation and neuron loss. These results indicate that histone HIST1H1C may offer a novel therapeutic target for preventing diabetic retinopathy.

  17. HiHiMap: single-cell quantitation of histones and histone posttranslational modifications across the cell cycle by high-throughput imaging.

    Science.gov (United States)

    Zane, Linda; Chapus, Fleur; Pegoraro, Gianluca; Misteli, Tom

    2017-08-15

    We describe Hi gh-throughput Hi stone Map ping (HiHiMap), a high-throughput imaging method to measure histones and histone posttranslational modifications (PTMs) in single cells. HiHiMap uses imaging-based quantification of DNA and cyclin A to stage individual cells in the cell cycle to determine the levels of histones or histone PTMs in each stage of the cell cycle. As proof of principle, we apply HiHiMap to measure the level of 21 core histones, histone variants, and PTMs in primary, immortalized, and transformed cells. We identify several histone modifications associated with oncogenic transformation. HiHiMap allows the rapid, high-throughput study of histones and histone PTMs across the cell cycle and the study of subpopulations of cells. © 2017 Zane et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  18. Identification of distinct SET/TAF-Ibeta domains required for core histone binding and quantitative characterisation of the interaction.

    Science.gov (United States)

    Karetsou, Zoe; Emmanouilidou, Anastasia; Sanidas, Ioannis; Liokatis, Stamatis; Nikolakaki, Eleni; Politou, Anastasia S; Papamarcaki, Thomais

    2009-04-09

    The assembly of nucleosomes to higher-order chromatin structures is finely tuned by the relative affinities of histones for chaperones and nucleosomal binding sites. The myeloid leukaemia protein SET/TAF-Ibeta belongs to the NAP1 family of histone chaperones and participates in several chromatin-based mechanisms, such as chromatin assembly, nucleosome reorganisation and transcriptional activation. To better understand the histone chaperone function of SET/TAF-Ibeta, we designed several SET/TAF-Ibeta truncations, examined their structural integrity by circular Dichroism and assessed qualitatively and quantitatively the histone binding properties of wild-type protein and mutant forms using GST-pull down experiments and fluorescence spectroscopy-based binding assays. Wild type SET/TAF-Ibeta binds to histones H2B and H3 with Kd values of 2.87 and 0.15 microM, respectively. The preferential binding of SET/TAF-Ibeta to histone H3 is mediated by its central region and the globular part of H3. On the contrary, the acidic C-terminal tail and the amino-terminal dimerisation domain of SET/TAF-Ibeta, as well as the H3 amino-terminal tail, are dispensable for this interaction. This type of analysis allowed us to assess the relative affinities of SET/TAF-Ibeta for different histones and identify the domains of the protein required for effective histone recognition. Our findings are consistent with recent structural studies of SET/TAF-Ibeta and can be valuable to understand the role of SET/TAF-Ibeta in chromatin function.

  19. Identification of distinct SET/TAF-Iβ domains required for core histone binding and quantitative characterisation of the interaction

    Science.gov (United States)

    Karetsou, Zoe; Emmanouilidou, Anastasia; Sanidas, Ioannis; Liokatis, Stamatis; Nikolakaki, Eleni; Politou, Anastasia S; Papamarcaki, Thomais

    2009-01-01

    Background The assembly of nucleosomes to higher-order chromatin structures is finely tuned by the relative affinities of histones for chaperones and nucleosomal binding sites. The myeloid leukaemia protein SET/TAF-Iβ belongs to the NAP1 family of histone chaperones and participates in several chromatin-based mechanisms, such as chromatin assembly, nucleosome reorganisation and transcriptional activation. To better understand the histone chaperone function of SET/TAF-Iβ, we designed several SET/TAF-Iβ truncations, examined their structural integrity by circular Dichroism and assessed qualitatively and quantitatively the histone binding properties of wild-type protein and mutant forms using GST-pull down experiments and fluorescence spectroscopy-based binding assays. Results Wild type SET/TAF-Iβ binds to histones H2B and H3 with Kd values of 2.87 and 0.15 μM, respectively. The preferential binding of SET/TAF-Iβ to histone H3 is mediated by its central region and the globular part of H3. On the contrary, the acidic C-terminal tail and the amino-terminal dimerisation domain of SET/TAF-Iβ, as well as the H3 amino-terminal tail, are dispensable for this interaction. Conclusion This type of analysis allowed us to assess the relative affinities of SET/TAF-Iβ for different histones and identify the domains of the protein required for effective histone recognition. Our findings are consistent with recent structural studies of SET/TAF-Iβ and can be valuable to understand the role of SET/TAF-Iβ in chromatin function. PMID:19358706

  20. A Ribbon-like Structure in the Ejective Organelle of the Green Microalga Pyramimonas parkeae (Prasinophyceae) Consists of Core Histones and Polymers Containing N-acetyl-glucosamine.

    Science.gov (United States)

    Yamagishi, Takahiro; Kurihara, Akira; Kawai, Hiroshi

    2015-11-01

    The green microalga, Pyramimonas parkeae (Prasinophyceae) has an ejective organelle containing a coiled ribbon structure resembling the ejectisome in Cryptophyta. This structure is discharged from the cell by a stimulus and extends to form a tube-like structure, but the molecular components of the structure have not been identified. Tricine-SDS-PAGE analysis indicated that the ribbon-like structure of P. parkeae contains some proteins and low molecular acidic polymers. Edman degradation, LC/MS/MS analyses and immunological studies demonstrated that their proteins are core histones (H3, H2A, H2B and H4). In addition, monosaccharide composition analysis of the ribbon-like structures and degradation by lysozyme strongly indicated that the ribbon-like structure consist of β (1-4) linked polymers containing N-acetyl-glucosamine. Purified polymers and recombinant histones formed glob-like or filamentous structures. Therefore we conclude that the ribbon-like structure of P. parkeae mainly consists of a complex of core histones (H3, H2A, H2B and H4) and polymers containing N-acetyl-glucosamine, and suggest to name the ejective organelle in P. parkeae the "histrosome" to distinguish it from the ejectisome in Cryptophyta. Copyright © 2015 Elsevier GmbH. All rights reserved.

  1. Rapid purification of recombinant histones.

    Science.gov (United States)

    Klinker, Henrike; Haas, Caroline; Harrer, Nadine; Becker, Peter B; Mueller-Planitz, Felix

    2014-01-01

    The development of methods to assemble nucleosomes from recombinant histones decades ago has transformed chromatin research. Nevertheless, nucleosome reconstitution remains time consuming to this day, not least because the four individual histones must be purified first. Here, we present a streamlined purification protocol of recombinant histones from bacteria. We termed this method "rapid histone purification" (RHP) as it circumvents isolation of inclusion bodies and thereby cuts out the most time-consuming step of traditional purification protocols. Instead of inclusion body isolation, whole cell extracts are prepared under strongly denaturing conditions that directly solubilize inclusion bodies. By ion exchange chromatography, the histones are purified from the extracts. The protocol has been successfully applied to all four canonical Drosophila and human histones. RHP histones and histones that were purified from isolated inclusion bodies had similar purities. The different purification strategies also did not impact the quality of octamers reconstituted from these histones. We expect that the RHP protocol can be readily applied to the purification of canonical histones from other species as well as the numerous histone variants.

  2. Comparative Assessment of Mediterranean Gorgonian-Associated Microbial Communities Reveals Conserved Core and Locally Variant Bacteria

    KAUST Repository

    van de Water, Jeroen A J M

    2016-10-10

    Gorgonians are key habitat-forming species of Mediterranean benthic communities, but their populations have suffered from mass mortality events linked to high summer seawater temperatures and microbial disease. However, our knowledge on the diversity, dynamics and function of gorgonian-associated microbial communities is limited. Here, we analysed the spatial variability of the microbiomes of five sympatric gorgonian species (Eunicella singularis, Eunicella cavolini, Eunicella verrucosa, Leptogorgia sarmentosa and Paramuricea clavata), collected from the Mediterranean Sea over a scale of ∼1100 km, using next-generation amplicon sequencing of the 16S rRNA gene. The microbiomes of all gorgonian species were generally dominated by members of the genus Endozoicomonas, which were at very low abundance in the surrounding seawater. Although the composition of the core microbiome (operational taxonomic units consistently present in a species) was found to be unique for each host species, significant overlap was observed. These spatially consistent associations between gorgonians and their core bacteria suggest intricate symbiotic relationships and regulation of the microbiome composition by the host. At the same time, local variations in microbiome composition were observed. Functional predictive profiling indicated that these differences could be attributed to seawater pollution. Taken together, our data indicate that gorgonian-associated microbiomes are composed of spatially conserved bacteria (core microbiome members) and locally variant members, and that local pollution may influence these local associations, potentially impacting gorgonian health.

  3. Histone variant H2A.Z antagonizes the positive effect of the transcriptional activator CPC1 to regulate catalase-3 expression under normal and oxidative stress conditions.

    Science.gov (United States)

    Dong, Qing; Wang, Yajun; Qi, Shaohua; Gai, Kexin; He, Qun; Wang, Ying

    2018-05-05

    In eukaryotes, deposition of the histone variant H2A.Z into nucleosomes through the chromatin remodeling complex, SWR1, is a crucial step in modulating gene transcription. Recently, H2A.Z has been shown to control the expression of responsive genes, but the underlying mechanism of how H2A.Z responds to physiological stimuli is not well understood. Here, we reveal that, in Neurospora crassa, H2A.Z is a negative regulator of catalase-3 gene, which is responsible for resistance to oxidative stress. H2A.Z represses cat-3 gene expression through direct incorporation at cat-3 locus in a SWR1 complex dependent pathway. Notably, loss of H2A.Z or SWR1 subunits leads to increased binding of a transcription factor, CPC1, at cat-3 locus. Additionally, introduction of plasmids containing gene encoding H2A.Z or SWR1 complex subunits into wild-type strains decreased CAT-3 expression, indicating that H2A.Z counteracts the positive effect of CPC1 to achieve low level cat-3 expression under non-inductive condition. Furthermore, upon oxidative stress, H2A.Z is rapidly evicted from cat-3 locus for the recruitment of CPC1, resulting in robust and full cat-3 gene expression in response to external stimuli. Collectively, this study strongly demonstrates that H2A.Z antagonizes the function of transcription factor to regulate responsive gene transcription under normal conditions and to poise for gene full activation under oxidative stress. Copyright © 2018. Published by Elsevier Inc.

  4. Structure and Functions of Linker Histones.

    Science.gov (United States)

    Lyubitelev, A V; Nikitin, D V; Shaytan, A K; Studitsky, V M; Kirpichnikov, M P

    2016-03-01

    Linker histones such as variants H1, H5, and other similar proteins play an important role in regulation of chromatin structure and dynamics. However, interactions of linker histones with DNA and proteins, as well as specific functions of their different variants, are poorly studied. This is because they acquire tertiary structure only when interacting with a nucleosome, and because of limitations of currently available methods. However, deeper investigation of linker histones and their interactions with other proteins will address a number of important questions - from structure of compacted chromatin to regulation of early embryogenesis. In this review, structures of histone H1 variants and its interaction with chromatin DNA are considered. A possible functional significance of different H1 variants, a role of these proteins in maintaining interphase chromatin structure, and interactions of linker histones with other cellular proteins are also discussed.

  5. MS_HistoneDB, a manually curated resource for proteomic analysis of human and mouse histones.

    Science.gov (United States)

    El Kennani, Sara; Adrait, Annie; Shaytan, Alexey K; Khochbin, Saadi; Bruley, Christophe; Panchenko, Anna R; Landsman, David; Pflieger, Delphine; Govin, Jérôme

    2017-01-01

    Histones and histone variants are essential components of the nuclear chromatin. While mass spectrometry has opened a large window to their characterization and functional studies, their identification from proteomic data remains challenging. Indeed, the current interpretation of mass spectrometry data relies on public databases which are either not exhaustive (Swiss-Prot) or contain many redundant entries (UniProtKB or NCBI). Currently, no protein database is ideally suited for the analysis of histones and the complex array of mammalian histone variants. We propose two proteomics-oriented manually curated databases for mouse and human histone variants. We manually curated >1700 gene, transcript and protein entries to produce a non-redundant list of 83 mouse and 85 human histones. These entries were annotated in accordance with the current nomenclature and unified with the "HistoneDB2.0 with Variants" database. This resource is provided in a format that can be directly read by programs used for mass spectrometry data interpretation. In addition, it was used to interpret mass spectrometry data acquired on histones extracted from mouse testis. Several histone variants, which had so far only been inferred by homology or detected at the RNA level, were detected by mass spectrometry, confirming the existence of their protein form. Mouse and human histone entries were collected from different databases and subsequently curated to produce a non-redundant protein-centric resource, MS_HistoneDB. It is dedicated to the proteomic study of histones in mouse and human and will hopefully facilitate the identification and functional study of histone variants.

  6. Implication of Posttranslational Histone Modifications in Nucleotide Excision Repair

    Directory of Open Access Journals (Sweden)

    Shisheng Li

    2012-09-01

    Full Text Available Histones are highly alkaline proteins that package and order the DNA into chromatin in eukaryotic cells. Nucleotide excision repair (NER is a conserved multistep reaction that removes a wide range of generally bulky and/or helix-distorting DNA lesions. Although the core biochemical mechanism of NER is relatively well known, how cells detect and repair lesions in diverse chromatin environments is still under intensive research. As with all DNA-related processes, the NER machinery must deal with the presence of organized chromatin and the physical obstacles it presents. A huge catalogue of posttranslational histone modifications has been documented. Although a comprehensive understanding of most of these modifications is still lacking, they are believed to be important regulatory elements for many biological processes, including DNA replication and repair, transcription and cell cycle control. Some of these modifications, including acetylation, methylation, phosphorylation and ubiquitination on the four core histones (H2A, H2B, H3 and H4 or the histone H2A variant H2AX, have been found to be implicated in different stages of the NER process. This review will summarize our recent understanding in this area.

  7. Histone displacement during nucleotide excision repair

    DEFF Research Database (Denmark)

    Dinant, C.; Bartek, J.; Bekker-Jensen, S.

    2012-01-01

    Nucleotide excision repair (NER) is an important DNA repair mechanism required for cellular resistance against UV light and toxic chemicals such as those found in tobacco smoke. In living cells, NER efficiently detects and removes DNA lesions within the large nuclear macromolecular complex called...... of histone variants and histone displacement (including nucleosome sliding). Here we review current knowledge, and speculate about current unknowns, regarding those chromatin remodeling activities that physically displace histones before, during and after NER....

  8. Mild performic acid oxidation enhances chromatographic and top down mass spectrometric analyses of histones.

    Science.gov (United States)

    Pesavento, James J; Garcia, Benjamin A; Streeky, James A; Kelleher, Neil L; Mizzen, Craig A

    2007-09-01

    Recent developments in top down mass spectrometry have enabled closely related histone variants and their modified forms to be identified and quantitated with unprecedented precision, facilitating efforts to better understand how histones contribute to the epigenetic regulation of gene transcription and other nuclear processes. It is therefore crucial that intact MS profiles accurately reflect the levels of variants and modified forms present in a given cell type or cell state for the full benefit of such efforts to be realized. Here we show that partial oxidation of Met and Cys residues in histone samples prepared by conventional methods, together with oxidation that can accrue during storage or during chip-based automated nanoflow electrospray ionization, confounds MS analysis by altering the intact MS profile as well as hindering posttranslational modification localization after MS/MS. We also describe an optimized performic acid oxidation procedure that circumvents these problems without catalyzing additional oxidations or altering the levels of posttranslational modifications common in histones. MS and MS/MS of HeLa cell core histones confirmed that Met and Cys were the only residues oxidized and that complete oxidation restored true intact abundance ratios and significantly enhanced MS/MS data quality. This allowed for the unequivocal detection, at the intact molecule level, of novel combinatorially modified forms of H4 that would have been missed otherwise. Oxidation also enhanced the separation of human core histones by reverse phase chromatography and decreased the levels of salt-adducted forms observed in ESI-FTMS. This method represents a simple and easily automated means for enhancing the accuracy and sensitivity of top down analyses of combinatorially modified forms of histones that may also be of benefit for top down or bottom up analyses of other proteins.

  9. DNA and factor VII-activating protease protect against the cytotoxicity of histones

    NARCIS (Netherlands)

    Marsman, Gerben; von Richthofen, Helen; Bulder, Ingrid; Lupu, Florea; Hazelzet, Jan; Luken, Brenda M.; Zeerleder, Sacha

    2017-01-01

    Circulating histones have been implicated as major mediators of inflammatory disease because of their strong cytotoxic effects. Histones form the protein core of nucleosomes; however, it is unclear whether histones and nucleosomes are equally cytotoxic. Several plasma proteins that neutralize

  10. Open and Closed: The Roles of Linker Histones in Plants and Animals

    OpenAIRE

    Over, Ryan S.; Michaels, Scott D.

    2014-01-01

    Linker histones play key roles alongside core histones in the regulation and maintenance of chromatin. Here, we illustrate our current understanding of the contributions of linker histones to the cell cycle, development, and chromatin structure in plants and animals.

  11. Citrullination regulates pluripotency and histone H1 binding to chromatin

    DEFF Research Database (Denmark)

    Christophorou, Maria A; Castelo-Branco, Gonçalo; Halley-Stott, Richard P

    2014-01-01

    citrullination of core histones has been linked to transcriptional regulation and the DNA damage response. PADI4 (also called PAD4 or PADV), the only PADI with a nuclear localization signal, was previously shown to act in myeloid cells where it mediates profound chromatin decondensation during the innate immune...... and activating their expression. Its inhibition lowers the percentage of pluripotent cells in the early mouse embryo and significantly reduces reprogramming efficiency. Using an unbiased proteomic approach we identify linker histone H1 variants, which are involved in the generation of compact chromatin, as novel...... PADI4 substrates. Citrullination of a single arginine residue within the DNA-binding site of H1 results in its displacement from chromatin and global chromatin decondensation. Together, these results uncover a role for citrullination in the regulation of pluripotency and provide new mechanistic...

  12. Simplified Method for Rapid Purification of Soluble Histones

    Directory of Open Access Journals (Sweden)

    Nives Ivić

    2016-06-01

    Full Text Available Functional and structural studies of histone-chaperone complexes, nucleosome modifications, their interactions with remodelers and regulatory proteins rely on obtaining recombinant histones from bacteria. In the present study, we show that co-expression of Xenopus laevis histone pairs leads to production of soluble H2AH2B heterodimer and (H3H42 heterotetramer. The soluble histone complexes are purified by simple chromatographic techniques. Obtained H2AH2B dimer and H3H4 tetramer are proficient in histone chaperone binding and histone octamer and nucleosome formation. Our optimized protocol enables rapid purification of multiple soluble histone variants with a remarkable high yield and simplifies histone octamer preparation. We expect that this simple approach will contribute to the histone chaperone and chromatin research. This work is licensed under a Creative Commons Attribution 4.0 International License.

  13. Characterization of mussel H2A.Z.2: a new H2A.Z variant preferentially expressed in germinal tissues from Mytilus.

    Science.gov (United States)

    Rivera-Casas, Ciro; González-Romero, Rodrigo; Vizoso-Vazquez, Ángel; Cheema, Manjinder S; Cerdán, M Esperanza; Méndez, Josefina; Ausió, Juan; Eirin-Lopez, Jose M

    2016-10-01

    Histones are the fundamental constituents of the eukaryotic chromatin, facilitating the physical organization of DNA in chromosomes and participating in the regulation of its metabolism. The H2A family displays the largest number of variants among core histones, including the renowned H2A.X, macroH2A, H2A.B (Bbd), and H2A.Z. This latter variant is especially interesting because of its regulatory role and its differentiation into 2 functionally divergent variants (H2A.Z.1 and H2A.Z.2), further specializing the structure and function of vertebrate chromatin. In the present work we describe, for the first time, the presence of a second H2A.Z variant (H2A.Z.2) in the genome of a non-vertebrate animal, the mussel Mytilus. The molecular and evolutionary characterization of mussel H2A.Z.1 and H2A.Z.2 histones is consistent with their functional specialization, supported on sequence divergence at promoter and coding regions as well as on varying gene expression patterns. More precisely, the expression of H2A.Z.2 transcripts in gonadal tissue and its potential upregulation in response to genotoxic stress might be mirroring the specialization of this variant in DNA repair. Overall, the findings presented in this work complement recent reports describing the widespread presence of other histone variants across eukaryotes, supporting an ancestral origin and conserved role for histone variants in chromatin.

  14. About a significance of the avian linker histone (H1) polymorphic ...

    Indian Academy of Sciences (India)

    60

    structural disorder may specify histone H1 interaction with both DNA and partnering proteins through ... from the studies conducted on mammalian model, including the human H1 variants. However ..... Thus, the disparate layout of histone H1.

  15. Comparative Assessment of Mediterranean Gorgonian-Associated Microbial Communities Reveals Conserved Core and Locally Variant Bacteria

    KAUST Repository

    van de Water, Jeroen A J M; Melkonian, Ré my; Voolstra, Christian R.; Junca, Howard; Beraud, Eric; Allemand, Denis; Ferrier-Pagè s, Christine

    2016-01-01

    overlap was observed. These spatially consistent associations between gorgonians and their core bacteria suggest intricate symbiotic relationships and regulation of the microbiome composition by the host. At the same time, local variations in microbiome

  16. A prawn core histone 4: derivation of N- and C-terminal peptides and their antimicrobial properties, molecular characterization and mRNA transcription.

    Science.gov (United States)

    Chaurasia, Mukesh Kumar; Palanisamy, Rajesh; Bhatt, Prasanth; Kumaresan, Venkatesh; Gnanam, Annie J; Pasupuleti, Mukesh; Kasi, Marimuthu; Harikrishnan, Ramaswamy; Arockiaraj, Jesu

    2015-01-01

    This study investigates the complete molecular characterization including bioinformatics characterization, gene expression, synthesis of N and C terminal peptides and their antimicrobial activity of the core histone 4 (H4) from freshwater giant prawn Macrobrachium rosenbergii (Mr). A cDNA encoding MrH4 was identified from the constructed cDNA library of M. rosenbergii during screening and the sequence was obtained using internal sequencing primers. The MrH4 coding region possesses a polypeptide of 103 amino acids with a calculated molecular weight of 11kDa and an isoelectric point of 11.5. The bioinformatics analysis showed that the MrH4 polypeptide contains a H4 signature at (15)GAKRH(19). Multiple sequence alignment of MrH4 showed that the N-terminal (21-42) and C-terminal (87-101) antimicrobial peptide regions and the pentapeptide or H4 signature (15-19) are highly conserved including in humans. The phylogenetic tree formed two separate clades of vertebrate and invertebrate H4, wherein MrH4 was located within the arthropod monophyletic clade of invertebrate H4 groups. Three-dimensional model of MrH4 was established using I-TASSER program and the model was validated using Ramachandran plot analysis. Schiffer-Edmundson helical wheel modeling was used to predict the helix propensity of N (21-42) and C (87-101) terminal derived Mr peptides. The highest gene expression was observed in gills and is induced by viral [white spot syndrome baculovirus (WSBV) and M. rosenbergii nodovirus (MrNV)] and bacterial (Aeromonas hydrophila and Vibrio harveyi) infections. The N and C terminal peptides were synthesized and their antimicrobial and hemolytic properties were examined. Both peptides showed activity against the tested Gram negative and Gram positive bacteria; however, the highest activity was noticed against Gram negative bacteria. Among the two peptides used in this study, C-terminal peptide yielded better results than the N-terminal peptide. Therefore, C terminal

  17. Interactions of acetylated histones with DNA as revealed by UV laser induced histone-DNA crosslinking

    International Nuclear Information System (INIS)

    Stefanovsky, V.Yu.; Dimitrov, S.I.; Angelov, D.; Pashev, I.G.

    1989-01-01

    The interaction of acetylated histones with DNA in chromatin has been studied by UV laser-induced crosslinking histones to DNA. After irradiation of the nuclei, the covalently linked protein-DNA complexes were isolated and the presence of histones in them demonstrated immunochemically. When chromatin from irradiated nuclei was treated with clostripain, which selectively cleaved the N-terminal tails of core histones, no one of them was found covalently linked to DNA, thus showing that crosslinking proceeded solely via the N-terminal regions. However, the crosslinking ability of the laser was preserved both upon physiological acetylation of histones, known to be restricted to the N-terminal tails, and with chemically acetylated chromatin. This finding is direct evidence that the postsynthetic histone acetylation does not release the N-terminal tails from interaction with DNA

  18. Histones of Chlamydomonas reinhardtii. Synthesis, acetylation, and methylation

    International Nuclear Information System (INIS)

    Waterborg, J.H.; Robertson, A.J.; Tatar, D.L.; Borza, C.M.; Davie, J.R.

    1995-01-01

    Histones of the green alga Chlamydomonas reinhardtii were prepared by a new method and fractionated by reversed-phase high-performance liquid chromatography. Acid-urea-Triton gel analysis and tritiated acetate labeling demonstrated high levels of steady-state acetylation for the single histone H3 protein, in contrast to low levels on histones H4 and H2B. Twenty percent of histone H3 is subject to dynamic acetylation with, on average, three acetylated lysine residues per protein molecule. Histone synthesis in light-dark-synchronized cultures was biphasic with pattern differences between two histone H1 variants, between two H2A variants, and between H2B and ubiquitinated H2B. Automated protein sequence analysis of histone H3 demonstrated a site-specific pattern of steady-state acetylation between 7 and 17% at five of the six amino-terminal lysines and of monomethylation between 5 and 81% at five of the eight amino-terminal lysines in a pattern that may limit dynamic acetylation. An algal histone H3 sequence was confirmed by protein sequencing with a since threonine as residue 28 instead of the serine(28)-alanine(29) sequence, present in all other known plant and animal H3 histones

  19. HAMLET interacts with histones and chromatin in tumor cell nuclei.

    Science.gov (United States)

    Düringer, Caroline; Hamiche, Ali; Gustafsson, Lotta; Kimura, Hiroshi; Svanborg, Catharina

    2003-10-24

    HAMLET is a folding variant of human alpha-lactalbumin in an active complex with oleic acid. HAMLET selectively enters tumor cells, accumulates in their nuclei and induces apoptosis-like cell death. This study examined the interactions of HAMLET with nuclear constituents and identified histones as targets. HAMLET was found to bind histone H3 strongly and to lesser extent histones H4 and H2B. The specificity of these interactions was confirmed using BIAcore technology and chromatin assembly assays. In vivo in tumor cells, HAMLET co-localized with histones and perturbed the chromatin structure; HAMLET was found associated with chromatin in an insoluble nuclear fraction resistant to salt extraction. In vitro, HAMLET bound strongly to histones and impaired their deposition on DNA. We conclude that HAMLET interacts with histones and chromatin in tumor cell nuclei and propose that this interaction locks the cells into the death pathway by irreversibly disrupting chromatin organization.

  20. Histone and Ribosomal RNA Repetitive Gene Clusters of the Boll Weevil are Linked in a Tandem Array

    Science.gov (United States)

    Histones are the major protein component of chromatin structure. The histone family is made up of a quintet of proteins, four core histones (H2A, H2B, H3 & H4) and the linker histones (H1). Spacers are found between the coding regions. Among insects this quintet of genes is usually clustered and ...

  1. Open and closed: the roles of linker histones in plants and animals.

    Science.gov (United States)

    Over, Ryan S; Michaels, Scott D

    2014-03-01

    Histones package DNA in all eukaryotes and play key roles in regulating gene expression. Approximately 150 base pairs of DNA wraps around an octamer of core histones to form the nucleosome, the basic unit of chromatin. Linker histones compact chromatin further by binding to and neutralizing the charge of the DNA between nucleosomes. It is well established that chromatin packing is regulated by a complex pattern of posttranslational modifications (PTMs) to core histones, but linker histone function is less well understood. In this review, we describe the current understanding of the many roles that linker histones play in cellular processes, including gene regulation, cell division, and development, while putting the linker histone in the context of other nuclear proteins. Although intriguing roles for plant linker histones are beginning to emerge, much of our current understanding comes from work in animal systems. Many unanswered questions remain and additional work is required to fully elucidate the complex processes mediated by linker histones in plants.

  2. Histone modifications influence mediator interactions with chromatin

    Science.gov (United States)

    Zhu, Xuefeng; Zhang, Yongqiang; Bjornsdottir, Gudrun; Liu, Zhongle; Quan, Amy; Costanzo, Michael; Dávila López, Marcela; Westholm, Jakub Orzechowski; Ronne, Hans; Boone, Charles; Gustafsson, Claes M.; Myers, Lawrence C.

    2011-01-01

    The Mediator complex transmits activation signals from DNA bound transcription factors to the core transcription machinery. Genome wide localization studies have demonstrated that Mediator occupancy not only correlates with high levels of transcription, but that the complex also is present at transcriptionally silenced locations. We provide evidence that Mediator localization is guided by an interaction with histone tails, and that this interaction is regulated by their post-translational modifications. A quantitative, high-density genetic interaction map revealed links between Mediator components and factors affecting chromatin structure, especially histone deacetylases. Peptide binding assays demonstrated that pure wild-type Mediator forms stable complexes with the tails of Histone H3 and H4. These binding assays also showed Mediator—histone H4 peptide interactions are specifically inhibited by acetylation of the histone H4 lysine 16, a residue critical in transcriptional silencing. Finally, these findings were validated by tiling array analysis that revealed a broad correlation between Mediator and nucleosome occupancy in vivo, but a negative correlation between Mediator and nucleosomes acetylated at histone H4 lysine 16. Our studies show that chromatin structure and the acetylation state of histones are intimately connected to Mediator localization. PMID:21742760

  3. Biochemical Analysis Reveals the Multifactorial Mechanism of Histone H3 Clipping by Chicken Liver Histone H3 Protease

    KAUST Repository

    Chauhan, Sakshi

    2016-09-02

    Proteolytic clipping of histone H3 has been identified in many organisms. Despite several studies, the mechanism of clipping, the substrate specificity, and the significance of this poorly understood epigenetic mechanism are not clear. We have previously reported histone H3 specific proteolytic clipping and a protein inhibitor in chicken liver. However, the sites of clipping are still not known very well. In this study, we attempt to identify clipping sites in histone H3 and to determine the mechanism of inhibition by stefin B protein, a cysteine protease inhibitor. By employing site-directed mutagenesis and in vitro biochemical assays, we have identified three distinct clipping sites in recombinant human histone H3 and its variants (H3.1, H3.3, and H3t). However, post-translationally modified histones isolated from chicken liver and Saccharomyces cerevisiae wild-type cells showed different clipping patterns. Clipping of histone H3 N-terminal tail at three sites occurs in a sequential manner. We have further observed that clipping sites are regulated by the structure of the N-terminal tail as well as the globular domain of histone H3. We also have identified the QVVAG region of stefin B protein to be very crucial for inhibition of the protease activity. Altogether, our comprehensive biochemical studies have revealed three distinct clipping sites in histone H3 and their regulation by the structure of histone H3, histone modifications marks, and stefin B.

  4. Two distinct modes for propagation of histone PTMs across the cell cycle

    DEFF Research Database (Denmark)

    Alabert, Constance; Barth, Teresa K; Reverón-Gómez, Nazaret

    2015-01-01

    Epigenetic states defined by chromatin can be maintained through mitotic cell division. However, it remains unknown how histone-based information is transmitted. Here we combine nascent chromatin capture (NCC) and triple-SILAC (stable isotope labeling with amino acids in cell culture) labeling...... to track histone modifications and histone variants during DNA replication and across the cell cycle. We show that post-translational modifications (PTMs) are transmitted with parental histones to newly replicated DNA. Di- and trimethylation marks are diluted twofold upon DNA replication, as a consequence...... of new histone deposition. Importantly, within one cell cycle, all PTMs are restored. In general, new histones are modified to mirror the parental histones. However, H3K9 trimethylation (H3K9me3) and H3K27me3 are propagated by continuous modification of parental and new histones because the establishment...

  5. Posttranslational Modifications of the Histone 3 Tail and Their Impact on the Activity of Histone Lysine Demethylases In Vitro

    DEFF Research Database (Denmark)

    Lohse, Brian; Helgstrand, Charlotte; Andersson, Jan Legaard

    2013-01-01

    mimicking histone H3. Various combinations with other PTMs were employed to study possible cross-talk effects by comparing enzyme kinetic characteristics. We compared the kinetics of histone tail substrates for truncated histone lysine demethylases KDM4A and KDM4C containing only the catalytic core (cc...... toward bis-trimethylated substrates could be observed. Furthermore, a significant difference in the catalytic activity between dimethylated and trimethylated substrates was found for full length demethylases in line with what has been reported previously for truncated demethylases. Histone peptide...

  6. Acid-Urea Gel Electrophoresis and Western Blotting of Histones.

    Science.gov (United States)

    Hazzalin, Catherine A; Mahadevan, Louis C

    2017-01-01

    Acid-urea gel electrophoresis offers significant advantages over SDS-PAGE for analysis of post-translational protein modifications, being capable of resolving proteins of similar size but varying in charge. Hence, it can be used to separate protein variants with small charge-altering differences in primary sequence, and is particularly useful in the analysis of histones whose charge variation arises from post-translational modification, such as phosphorylation or acetylation. On acid-urea gels, histones that carry multiple modifications, each with a characteristic charge, are resolved into distinct bands, the so-called "histone ladder." Thus, the extent and distribution of different modification states of histones can be visualized. Here, we describe the analysis of histone H3 by acid-urea gel electrophoresis and western blotting.

  7. Detection of NAM-A1 Natural Variants in Bread Wheat Reveals Differences in Haplotype Distribution between a Worldwide Core Collection and European Elite Germplasm

    Directory of Open Access Journals (Sweden)

    Fabien Cormier

    2015-04-01

    Full Text Available In wheat, remobilization of nitrogen absorbed before anthesis and regulation of monocarpic senescence is a major issue in breeding for nutrient use efficiency. We identified natural variants of NAM-A1, a gene having the same role as its well-characterized homoeolog NAM-B1, a NAC transcription factor associated with senescence kinetics and nutrient remobilization to the grain. Differences in haplotype frequencies between a worldwide core collection and a panel of European elite varieties were assessed and discussed. Moreover, hypotheses for the loss of function of the most common haplotype in elite European germplasm are discussed.

  8. Covalent binding of benzo(a)pyrene-diol-epoxide to histone H2A in rat liver nuclei: target site specificity

    International Nuclear Information System (INIS)

    Kurokawa, M.; MacLeod, M.C.

    1986-01-01

    The authors have recently found that 7r,8t-dihydroxy-9t,10t-oxy-7,8,9,10-tetrahydrobenzo(a)pyrene (BPDE-I), a strong carcinogen, binds selectively to histone H2A-2 variant in rat liver nuclei, using a high performance liquid chromatography (HPLC) system which can separate H4, H2B, 3 different fractions of H2A variants and 3 different H3 variants in an hour. Here the authors examined the binding site of BPDE-I to the H2A-2 variant. The H2A-2 variants were purified from the acid extracted core histones of rat liver nuclei treated with ( 3 H)-BPDE-I by the HPLC system with a semi-preparative Aquapore RP-300 column. HPLC analysis of cyanogen bromide treated-H2A-2, which has one methionine residue, showed that the binding site is located in C-terminal half of H2A-2. In addition, digestions with V8-protease, trypsin and different types of carboxypeptides suggested that there are some target amino acid residues for BPDE-I in the V8-proteolytic C-terminal octapeptide which contains 2 histadine and 3 lysine residues. Currently identification of the target amino acid is proceeding, using amino acid-BPDE adducts prepared in vitro

  9. The specification and global reprogramming of histone epigenetic marks during gamete formation and early embryo development in C. elegans.

    Directory of Open Access Journals (Sweden)

    Mark Samson

    2014-10-01

    Full Text Available In addition to the DNA contributed by sperm and oocytes, embryos receive parent-specific epigenetic information that can include histone variants, histone post-translational modifications (PTMs, and DNA methylation. However, a global view of how such marks are erased or retained during gamete formation and reprogrammed after fertilization is lacking. To focus on features conveyed by histones, we conducted a large-scale proteomic identification of histone variants and PTMs in sperm and mixed-stage embryo chromatin from C. elegans, a species that lacks conserved DNA methylation pathways. The fate of these histone marks was then tracked using immunostaining. Proteomic analysis found that sperm harbor ∼2.4 fold lower levels of histone PTMs than embryos and revealed differences in classes of PTMs between sperm and embryos. Sperm chromatin repackaging involves the incorporation of the sperm-specific histone H2A variant HTAS-1, a widespread erasure of histone acetylation, and the retention of histone methylation at sites that mark the transcriptional history of chromatin domains during spermatogenesis. After fertilization, we show HTAS-1 and 6 histone PTM marks distinguish sperm and oocyte chromatin in the new embryo and characterize distinct paternal and maternal histone remodeling events during the oocyte-to-embryo transition. These include the exchange of histone H2A that is marked by ubiquitination, retention of HTAS-1, removal of the H2A variant HTZ-1, and differential reprogramming of histone PTMs. This work identifies novel and conserved features of paternal chromatin that are specified during spermatogenesis and processed in the embryo. Furthermore, our results show that different species, even those with diverged DNA packaging and imprinting strategies, use conserved histone modification and removal mechanisms to reprogram epigenetic information.

  10. Radiation damage to histones

    International Nuclear Information System (INIS)

    Mee, L.K.; Adelstein, S.J.

    1985-01-01

    The damage to histones irradiated in isolation is being elaborated to aid the identification of the crosslinking sites in radiation-induced DNA-histone adducts. Histones are being examined by amino acid analysis to determine the destruction of residues and by polyacrylamide gel electrophoresis to delineate changes in conformation. For the slightly lysine-rich histone, H2A, a specific attack on selective residues has been established, the aromatic residues, tyrosine and phenylalanine, and the heterocyclic residue, histidine, being significantly destroyed. In addition, a significant increase in aspartic acid was found; this may represent a radiation product from scission of the ring in the histidine residues. The similarity of the effects on residues in nitrous oxide-saturated and nitrogen-saturated solutions suggests that OH . and e/sub aq//sup -/ are equally efficient and selective in their attack. On gel electrophoresis degradation of the histone H2A was found to be greatest for irradiations in nitrous oxide-saturated solutions, suggesting CH . is the most effective radical for producing changes in conformation; O/sub 2//sup -/ was essentially ineffective. Other histones are being examined for changes in amino acid composition, conformation, and for the formation of radiation products

  11. Prevalence of hepatitis B virus subgenotypes and basal core promoter, precore variants in patients with acute hepatitis B in central Vietnam.

    Science.gov (United States)

    Hayashi, Kazuhiko; Katano, Yoshiaki; Chuong, Tran Xuan; Takeda, Yasushi; Ishigami, Masatoshi; Itoh, Akihiro; Hirooka, Yoshiki; Nakano, Isao; Huy, Tran Van; Minh, Nguyen Ngoc; Diem, Tran thi Minh; An, Dong thi Hoai; Phiet, Pham Hoang; Goto, Hidemi

    2009-01-01

    Hepatitis B virus (HBV) has been classified into 8 genotypes that have different geographic distributions. The clinical outcomes of acute hepatitis are dependent on genotype. The aim of this study was to investigate the distribution of HBV subgenotypes and basal core promoter (BCP)/precore (PC) regions in acute hepatitis patients in Central Vietnam to clarify the distributions and the clinical and virological differences. 27 patients with acute hepatitis B were studied. HBV subgenotypes and BCP/PC variants were determined by direct sequencing of the preS, BCP/PC regions, respectively. HBV subgenotypes B4/Ba (n = 22) and C1/Cs (n = 5) were detected. Of the 27 patients, 3 developed fulminant hepatic failure, and all were infected with B4/Ba. Three patients had a BCP mutation, and 10 patients had a PC mutation in subgenotype B4/Ba. Three patients with C1/Cs had a BCP mutation. Two of 3 patients who progressed to fulminant hepatic failure had T1762, A1764, and A1896 simultaneously. None of the patients with acute, self-limited hepatitis carried these triple mutations. The prevalent HBV subgenotypes in patients with acute hepatitis B in Central Vietnam were B4/Ba and C1/Cs. BCP/PC variants have an association with the development of fulminant hepatic failure in subgenotype B4/Ba. Copyright 2009 S. Karger AG, Basel.

  12. Quantitative proteomic analysis of post-translational modifications of human histones

    DEFF Research Database (Denmark)

    Beck, Hans Christian; Nielsen, Eva C; Matthiesen, Rune

    2006-01-01

    , and H4 in a site-specific and dose-dependent manner. This unbiased analysis revealed that a relative increase in acetylated peptide from the histone variants H2A, H2B, and H4 was accompanied by a relative decrease of dimethylated Lys(57) from histone H2B. The dose-response results obtained...... by quantitative proteomics of histones from HDACi-treated cells were consistent with Western blot analysis of histone acetylation, cytotoxicity, and dose-dependent expression profiles of p21 and cyclin A2. This demonstrates that mass spectrometry-based quantitative proteomic analysis of post-translational...

  13. Trichostatin-A induces differential changes in histone protein dynamics and expression in HeLa cells

    International Nuclear Information System (INIS)

    Rao, Jyothsna; Bhattacharya, Dipanjan; Banerjee, Bidisha; Sarin, Apurva; Shivashankar, G.V.

    2007-01-01

    Trichostatin-A (TSA), a histone deacetylase (HDAC) inhibitor, results in enhanced acetylation of core histones thereby disrupting chromatin organization within living cells. We report on changes in chromatin organization and the resultant alteration in nuclear architecture following treatment with TSA using fluorescence imaging. TSA triggers an expected increase in the euchromatin fraction which is accompanied by a significant increase in nuclear volume and alterations in chromatin compaction mapped using fluorescence anisotropy imaging. We observe differential changes in the mobility of core and linker histones as measured by fluorescence recovery after photo-bleaching (FRAP) and fluorescence correlation spectroscopy (FCS) methods. Further TSA induces a differential increase in linker histone transcription and increased phosphorylation of linker histone proteins accompanying an expected increase in core histone acetylation patterns. Thus subtle feedback responses triggered by changes in chromatin configurations impinge selectively on linker histone mobility and its expression. These observations have implications for understanding the role of HDAC in the dynamic maintenance of chromatin organization

  14. Histone fractionation by high-performance liquid chromatography on cyanoalkylsilane (CN) reverse-phase columns

    International Nuclear Information System (INIS)

    Gurley, L.R.; Prentice, D.A.; Valdez, J.G.; Spall, W.D.

    1983-01-01

    Previous work described conditions for the rapid fractionation of histones by high-performance liquid chromatography (HPLC) using a reverse-phase μBondapak C 18 column. That procedure resolved the major classes of histones with one exception: the more hydrophobic H2A variant, (MHP)H2A, was not resolved from the H4 histone class. This report extends that work describing experiments using a μBondapak CN column which better resolves the classes of histones from each other including the resolution of (MHP)H2A from the H4. In addition, the less hydrophobic H2A variant, (LHP)H2A, is partially resolved from the (MHP)H2A, and the less hydrophobic H3 variant, (LHP)H3, is resolved from the more hydrophobic H3 variant, (MHP)H3. Lower trifluoroacetic acid (TFA) concentrations (0.1%) in the eluting water/acetonitrile solvent were used with the CN column than were used with the C 18 column which increased the sensitivity of histone detection by ultraviolet absorption at 206 nm. Greater than 95% of the total [ 3 H]lysine-labeled protein applied to the CN column was eluted from the column. Contaminating nonhistone proteins were found to chromatograph in the region of histone elution. These were greatly reduced by isolating nuclei prior to histone preparation. The fractionation of the histones appears to be based on the hydrophobic properties of the proteins. The histone fractions (identified by their electrophoretic mobilities) were eluted from the CN column in the following order: H1, H2B, (LHP)H2A, (MHP)H2A, H4, (LHP)H3, and (MHP)H3. Phosphorylated and acetylated histone species were not resolved from their unmodified parental species

  15. Cloning and characterization of the major histone H2A genes completes the cloning and sequencing of known histone genes of Tetrahymena thermophila.

    Science.gov (United States)

    Liu, X; Gorovsky, M A

    1996-01-01

    A truncated cDNA clone encoding Tetrahymena thermophila histone H2A2 was isolated using synthetic degenerate oligonucleotide probes derived from H2A protein sequences of Tetrahymena pyriformis. The cDNA clone was used as a homologous probe to isolate a truncated genomic clone encoding H2A1. The remaining regions of the genes for H2A1 (HTA1) and H2A2 (HTA2) were then isolated using inverse PCR on circularized genomic DNA fragments. These partial clones were assembled into intact HTA1 and HTA2 clones. Nucleotide sequences of the two genes were highly homologous within the coding region but not in the noncoding regions. Comparison of the deduced amino acid sequences with protein sequences of T. pyriformis H2As showed only two and three differences respectively, in a total of 137 amino acids for H2A1, and 132 amino acids for H2A2, indicating the two genes arose before the divergence of these two species. The HTA2 gene contains a TAA triplet within the coding region, encoding a glutamine residue. In contrast with the T. thermophila HHO and HTA3 genes, no introns were identified within the two genes. The 5'- and 3'-ends of the histone H2A mRNAs; were determined by RNase protection and by PCR mapping using RACE and RLM-RACE methods. Both genes encode polyadenylated mRNAs and are highly expressed in vegetatively growing cells but only weakly expressed in starved cultures. With the inclusion of these two genes, T. thermophila is the first organism whose entire complement of known core and linker histones, including replication-dependent and basal variants, has been cloned and sequenced. PMID:8760889

  16. Somatic mutations of the histone H3K27 demethylase, UTX, in human cancer

    Science.gov (United States)

    van Haaften, Gijs; Dalgliesh, Gillian L; Davies, Helen; Chen, Lina; Bignell, Graham; Greenman, Chris; Edkins, Sarah; Hardy, Claire; O’Meara, Sarah; Teague, Jon; Butler, Adam; Hinton, Jonathan; Latimer, Calli; Andrews, Jenny; Barthorpe, Syd; Beare, Dave; Buck, Gemma; Campbell, Peter J; Cole, Jennifer; Dunmore, Rebecca; Forbes, Simon; Jia, Mingming; Jones, David; Kok, Chai Yin; Leroy, Catherine; Lin, Meng-Lay; McBride, David J; Maddison, Mark; Maquire, Simon; McLay, Kirsten; Menzies, Andrew; Mironenko, Tatiana; Lee, Mulderrig; Mudie, Laura; Pleasance, Erin; Shepherd, Rebecca; Smith, Raffaella; Stebbings, Lucy; Stephens, Philip; Tang, Gurpreet; Tarpey, Patrick S; Turner, Rachel; Turrell, Kelly; Varian, Jennifer; West, Sofie; Widaa, Sara; Wray, Paul; Collins, V Peter; Ichimura, Koichi; Law, Simon; Wong, John; Yuen, Siu Tsan; Leung, Suet Yi; Tonon, Giovanni; DePinho, Ronald A; Tai, Yu-Tzu; Anderson, Kenneth C; Kahnoski, Richard J.; Massie, Aaron; Khoo, Sok Kean; Teh, Bin Tean; Stratton, Michael R; Futreal, P Andrew

    2010-01-01

    Somatically acquired epigenetic changes are present in many cancers. Epigenetic regulation is maintained via post-translational modifications of core histones. Here, we describe inactivating somatic mutations in the histone lysine demethylase, UTX, pointing to histone H3 lysine methylation deregulation in multiple tumour types. UTX reintroduction into cancer cells with inactivating UTX mutations resulted in slowing of proliferation and marked transcriptional changes. These data identify UTX as a new human cancer gene. PMID:19330029

  17. Histone deacetylase inhibitors promote the tumoricidal effect of HAMLET.

    Science.gov (United States)

    Brest, Patrick; Gustafsson, Mattias; Mossberg, Ann-Kristin; Gustafsson, Lotta; Duringer, Caroline; Hamiche, Ali; Svanborg, Catharina

    2007-12-01

    Histone deacetylase inhibitors (HDIs) and HAMLET (human alpha-lactalbumin made lethal to tumor cells) interact with histones, modify the structure of chromatin, and trigger tumor cell death. This study investigated how the combination of HDIs and HAMLET influences cell viability, histone acetylation, and DNA integrity. The pretreatment of tumor cells with HDIs was shown to enhance the lethal effect of HAMLET and the histone hyperacetylation response to HDIs increased even further after HAMLET treatment. HDIs and HAMLET were shown to target different histone domains as HAMLET bound tailless core histones, whereas HDIs modify the acetylation of the histone tail. DNA damage in response to HAMLET was increased by HDIs. The DNA repair response (p21WAFI expression) was induced by both agonists but abolished when the two agonists were combined. The results suggest that the synergy of HDIs and HAMLET is based on different but converging death pathways, both involving chromatin alterations. We speculate that HAMLET and HDIs might be combined to promote tumor cell death in vivo.

  18. Histone Acetylome-wide Association Study of Autism Spectrum Disorder.

    Science.gov (United States)

    Sun, Wenjie; Poschmann, Jeremie; Cruz-Herrera Del Rosario, Ricardo; Parikshak, Neelroop N; Hajan, Hajira Shreen; Kumar, Vibhor; Ramasamy, Ramalakshmi; Belgard, T Grant; Elanggovan, Bavani; Wong, Chloe Chung Yi; Mill, Jonathan; Geschwind, Daniel H; Prabhakar, Shyam

    2016-11-17

    The association of histone modification changes with autism spectrum disorder (ASD) has not been systematically examined. We conducted a histone acetylome-wide association study (HAWAS) by performing H3K27ac chromatin immunoprecipitation sequencing (ChIP-seq) on 257 postmortem samples from ASD and matched control brains. Despite etiological heterogeneity, ≥68% of syndromic and idiopathic ASD cases shared a common acetylome signature at >5,000 cis-regulatory elements in prefrontal and temporal cortex. Similarly, multiple genes associated with rare genetic mutations in ASD showed common "epimutations." Acetylome aberrations in ASD were not attributable to genetic differentiation at cis-SNPs and highlighted genes involved in synaptic transmission, ion transport, epilepsy, behavioral abnormality, chemokinesis, histone deacetylation, and immunity. By correlating histone acetylation with genotype, we discovered >2,000 histone acetylation quantitative trait loci (haQTLs) in human brain regions, including four candidate causal variants for psychiatric diseases. Due to the relative stability of histone modifications postmortem, we anticipate that the HAWAS approach will be applicable to multiple diseases. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Arginine-rich histones have strong antiviral activity for influenza A viruses.

    Science.gov (United States)

    Hoeksema, Marloes; Tripathi, Shweta; White, Mitchell; Qi, Li; Taubenberger, Jeffery; van Eijk, Martin; Haagsman, Henk; Hartshorn, Kevan L

    2015-10-01

    While histones are best known for DNA binding and transcription-regulating properties, they also have antimicrobial activity against a broad range of potentially pathogenic organisms. Histones are abundant in neutrophil extracellular traps, where they play an important role in NET-mediated antimicrobial killing. Here, we show anti-influenza activity of histones against both seasonal H3N2 and H1N1, but not pandemic H1N1. The arginine rich histones, H3 and H4, had greater neutralizing and viral aggregating activity than the lysine rich histones, H2A and H2B. Of all core histones, histone H4 is most potent in neutralizing IAV, and incubation with IAV with histone H4 results in a decrease in uptake and viral replication by epithelial cells when measured by qRT-PCR. The antiviral activity of histone H4 is mediated principally by direct effects on viral particles. Histone H4 binds to IAV as assessed by ELISA and co-sedimentation of H4 with IAV. H4 also induces aggregation, as assessed by confocal microscopy and light transmission assays. Despite strong antiviral activity against the seasonal IAV strains, H4 was inactive against pandemic H1N1. These findings indicate a possible role for histones in the innate immune response against IAV. © The Author(s) 2015.

  20. Histone methylations in heart development, congenital and adult heart diseases.

    Science.gov (United States)

    Zhang, Qing-Jun; Liu, Zhi-Ping

    2015-01-01

    Heart development comprises myocyte specification, differentiation and cardiac morphogenesis. These processes are regulated by a group of core cardiac transcription factors in a coordinated temporal and spatial manner. Histone methylation is an emerging epigenetic mechanism for regulating gene transcription. Interplay among cardiac transcription factors and histone lysine modifiers plays important role in heart development. Aberrant expression and mutation of the histone lysine modifiers during development and in adult life can cause either embryonic lethality or congenital heart diseases, and influences the response of adult hearts to pathological stresses. In this review, we describe current body of literature on the role of several common histone methylations and their modifying enzymes in heart development, congenital and adult heart diseases.

  1. DAXX envelops a histone H3.3-H4 dimer for H3.3-specific recognition

    Energy Technology Data Exchange (ETDEWEB)

    Elsässer, Simon J; Huang, Hongda; Lewis, Peter W; Chin, Jason W; Allis, C David; Patel, Dinshaw J [MSKCC; (Rockefeller); (MRC)

    2013-01-24

    Histone chaperones represent a structurally and functionally diverse family of histone-binding proteins that prevent promiscuous interactions of histones before their assembly into chromatin. DAXX is a metazoan histone chaperone specific to the evolutionarily conserved histone variant H3.3. Here we report the crystal structures of the DAXX histone-binding domain with a histone H3.3–H4 dimer, including mutants within DAXX and H3.3, together with in vitro and in vivo functional studies that elucidate the principles underlying H3.3 recognition specificity. Occupying 40% of the histone surface-accessible area, DAXX wraps around the H3.3–H4 dimer, with complex formation accompanied by structural transitions in the H3.3–H4 histone fold. DAXX uses an extended α-helical conformation to compete with major inter-histone, DNA and ASF1 interaction sites. Our structural studies identify recognition elements that read out H3.3-specific residues, and functional studies address the contributions of Gly90 in H3.3 and Glu225 in DAXX to chaperone-mediated H3.3 variant recognition specificity.

  2. Characterization of Complete Histone Tail Proteoforms Using Differential Ion Mobility Spectrometry

    DEFF Research Database (Denmark)

    Shliaha, Pavel V; Baird, Matthew A; Nielsen, Mogens M

    2017-01-01

    Histone proteins are subject to dynamic post-translational modifications (PTMs) that cooperatively modulate the chromatin structure and function. Nearly all functional PTMs are found on the N-terminal histone domains (tails) of ∼50 residues protruding from the nucleosome core. Using high...

  3. Eviction of linker histone H1 by NAP-family histone chaperones enhances activated transcription.

    Science.gov (United States)

    Zhang, Qian; Giebler, Holli A; Isaacson, Marisa K; Nyborg, Jennifer K

    2015-01-01

    In the Metazoan nucleus, core histones assemble the genomic DNA to form nucleosome arrays, which are further compacted into dense chromatin structures by the linker histone H1. The extraordinary density of chromatin creates an obstacle for accessing the genetic information. Regulation of chromatin dynamics is therefore critical to cellular homeostasis, and histone chaperones serve as prominent players in these processes. In the current study, we examined the role of specific histone chaperones in negotiating the inherently repressive chromatin structure during transcriptional activation. Using a model promoter, we demonstrate that the human nucleosome assembly protein family members hNap1 and SET/Taf1β stimulate transcription in vitro during pre-initiation complex formation, prior to elongation. This stimulatory effect is dependent upon the presence of activators, p300, and Acetyl-CoA. We show that transcription from our chromatin template is strongly repressed by H1, and that both histone chaperones enhance RNA synthesis by overcoming H1-induced repression. Importantly, both hNap1 and SET/Taf1β directly bind H1, and function to enhance transcription by evicting the linker histone from chromatin reconstituted with H1. In vivo studies demonstrate that SET/Taf1β, but not hNap1, strongly stimulates activated transcription from the chromosomally-integrated model promoter, consistent with the observation that SET/Taf1β is nuclear, whereas hNap1 is primarily cytoplasmic. Together, these observations indicate that SET/Taf1β may serve as a critical regulator of H1 dynamics and gene activation in vivo. These studies uncover a novel function for SET that mechanistically couples transcriptional derepression with H1 dynamics. Furthermore, they underscore the significance of chaperone-dependent H1 displacement as an essential early step in the transition of a promoter from a dense chromatin state into one that is permissive to transcription factor binding and robust

  4. Biophysical characterization of the association of histones with single-stranded DNA.

    Science.gov (United States)

    Wang, Ying; van Merwyk, Luis; Tönsing, Katja; Walhorn, Volker; Anselmetti, Dario; Fernàndez-Busquets, Xavier

    2017-11-01

    Despite the profound current knowledge of the architecture and dynamics of nucleosomes, little is known about the structures generated by the interaction of histones with single-stranded DNA (ssDNA), which is widely present during replication and transcription. Non-denaturing gel electrophoresis, transmission electron microscopy, atomic force microscopy, magnetic tweezers. Histones have a high affinity for ssDNA in 0.15M NaCl ionic strength, with an apparent binding constant similar to that calculated for their association with double-stranded DNA (dsDNA). The length of DNA (number of nucleotides in ssDNA or base pairs in dsDNA) associated with a fixed core histone mass is the same for both ssDNA and dsDNA. Although histone-ssDNA complexes show a high tendency to aggregate, nucleosome-like structures are formed at physiological salt concentrations. Core histones are able to protect ssDNA from digestion by micrococcal nuclease, and a shortening of ssDNA occurs upon its interaction with histones. The purified (+) strand of a cloned DNA fragment of nucleosomal origin has a higher affinity for histones than the purified complementary (-) strand. At physiological ionic strength histones have high affinity for ssDNA, possibly associating with it into nucleosome-like structures. In the cell nucleus histones may spontaneously interact with ssDNA to facilitate their participation in the replication and transcription of chromatin. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Regulation of Cellular Dynamics and Chromosomal Binding Site Preference of Linker Histones H1.0 and H1.X.

    Science.gov (United States)

    Okuwaki, Mitsuru; Abe, Mayumi; Hisaoka, Miharu; Nagata, Kyosuke

    2016-11-01

    Linker histones play important roles in the genomic organization of mammalian cells. Of the linker histone variants, H1.X shows the most dynamic behavior in the nucleus. Recent research has suggested that the linker histone variants H1.X and H1.0 have different chromosomal binding site preferences. However, it remains unclear how the dynamics and binding site preferences of linker histones are determined. Here, we biochemically demonstrated that the DNA/nucleosome and histone chaperone binding activities of H1.X are significantly lower than those of other linker histones. This explains why H1.X moves more rapidly than other linker histones in vivo Domain swapping between H1.0 and H1.X suggests that the globular domain (GD) and C-terminal domain (CTD) of H1.X independently contribute to the dynamic behavior of H1.X. Our results also suggest that the N-terminal domain (NTD), GD, and CTD cooperatively determine the preferential binding sites, and the contribution of each domain for this determination is different depending on the target genes. We also found that linker histones accumulate in the nucleoli when the nucleosome binding activities of the GDs are weak. Our results contribute to understanding the molecular mechanisms of dynamic behaviors, binding site selection, and localization of linker histones. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  6. Intracellular distribution of histone mRNAs in human fibroblasts studied by in situ hybridization

    International Nuclear Information System (INIS)

    Lawrence, J.B.; Singer, R.H.; Villnave, C.A.; Stein, J.L.; Stein, G.S.

    1988-01-01

    We have used in situ hybridization to study the intracellular distribution of mRNAs for cell cycle-dependent core and H1 histone proteins in human WI-38 fibroblasts. Because histones are abundant nuclear proteins and histone mRNA expression is tightly coupled to DNA synthesis, it was of interest to determine whether histone mRNAs are localized near the nucleus. Cells were hybridized with tritiated DNA probes specific for either histone H1, histone H4, actin, or poly(A)+ mRNA and were processed for autoradiography. In exponentially growing cultures, the fraction of histone mRNA-positive cells correlated well with the fraction of cells in S phase and was eliminated by hydroxyurea inhibition of DNA synthesis. Within individual cells the label for histone mRNA was widely distributed throughout the cytoplasm and did not appear to be more heavily concentrated near the nucleus. However, histone mRNA appeared to exhibit patchy, nonhomogeneous localization, and a quantitative evaluation confirmed that grain distributions were not as uniform as they were after hybridizations to poly(A)+ mRNA. Actin mRNA in WI-38 cells was also widely distributed throughout the cytoplasm but differed from histone mRNA in that label for actin mRNA was frequently most dense at the outermost region of narrow cell extensions. The localization of actin mRNA was less pronounced but qualitatively very similar to that previously described for chicken embryonic myoblasts and fibroblasts. We conclude that localization of histones in WI-38 cells is not facilitated by localization of histone protein synthesis near the nucleus and that there are subtle but discrete and potentially functional differences in the distributions of histone, actin, and poly(A)+ mRNAs

  7. Structural and Histone Binding Ability Characterizations of Human PWWP Domains

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Hong; Zeng, Hong; Lam, Robert; Tempel, Wolfram; Amaya, Maria F.; Xu, Chao; Dombrovski, Ludmila; Qiu, Wei; Wang, Yanming; Min, Jinrong (Toronto); (Penn)

    2013-09-25

    The PWWP domain was first identified as a structural motif of 100-130 amino acids in the WHSC1 protein and predicted to be a protein-protein interaction domain. It belongs to the Tudor domain 'Royal Family', which consists of Tudor, chromodomain, MBT and PWWP domains. While Tudor, chromodomain and MBT domains have long been known to bind methylated histones, PWWP was shown to exhibit histone binding ability only until recently. The PWWP domain has been shown to be a DNA binding domain, but sequence analysis and previous structural studies show that the PWWP domain exhibits significant similarity to other 'Royal Family' members, implying that the PWWP domain has the potential to bind histones. In order to further explore the function of the PWWP domain, we used the protein family approach to determine the crystal structures of the PWWP domains from seven different human proteins. Our fluorescence polarization binding studies show that PWWP domains have weak histone binding ability, which is also confirmed by our NMR titration experiments. Furthermore, we determined the crystal structures of the BRPF1 PWWP domain in complex with H3K36me3, and HDGF2 PWWP domain in complex with H3K79me3 and H4K20me3. PWWP proteins constitute a new family of methyl lysine histone binders. The PWWP domain consists of three motifs: a canonical {beta}-barrel core, an insertion motif between the second and third {beta}-strands and a C-terminal {alpha}-helix bundle. Both the canonical {beta}-barrel core and the insertion motif are directly involved in histone binding. The PWWP domain has been previously shown to be a DNA binding domain. Therefore, the PWWP domain exhibits dual functions: binding both DNA and methyllysine histones.

  8. Histone methyltransferases in cancer

    DEFF Research Database (Denmark)

    Albert, Mareike; Helin, Kristian

    2009-01-01

    Cancer is perceived as a heterogeneous group of diseases that is characterized by aberrant patterns of gene expression. In the last decade, an increasing amount of data has pointed to a key role for epigenetic alterations in human cancer. In this review, we focus on a subclass of epigenetic...... regulators, namely histone methyltransferases (HMTs). Several HMTs have been linked to different types of cancer; however, in most cases we only have limited knowledge regarding the molecular mechanisms by which the HMTs contribute to disease development. We summarize the current knowledge regarding some...

  9. Histone turnover within nonproliferating cells

    International Nuclear Information System (INIS)

    Commerford, S.L.; Carsten, A.L.; Cronkite, E.P.

    1982-01-01

    The turnover of DNA and histones in the livers and brains of mice has been determined. These mice had been exposed to constant levels of tritiated water from conception until they were 8 months old. At this point, exposure to tritium was discontinued, and the tritium remaining in DNA and histones was measured at various intervals afterward. The half-lives calculated for these components (with 95% confidence limits given in parentheses) were 117 (85 to 188) days for liver histone, 318 (241 to 466) days for liver DNA, 159 (129 to 208) days for brain histone and 593 (376 to 1406) days for brain DNA. The difference between histone and DNA turnover is statistically significant for both tissues and indicates that histone turnover within tissues cannot be solely accounted for by cell turnover within the tissue but also must include histone turnover within living cells. The half-life of histone within cells is estimated to be 117 (88 to 178) days in liver and 223 (187 to 277) days in brain

  10. Development of a new rapid HPLC method for the fractionation of histones

    International Nuclear Information System (INIS)

    Gurley, L.R.; Valdez, J.G.; Prentice, D.A.; Spall, W.D.

    1983-01-01

    To study histone functions, it is necessary to fractionate the histones into their five classes (H1, H2A, H2B, H3 and H4) and then to subfractionate these classes into variants having slightly different primary structures and into different phosphorylated and acetylated forms. With the advent of high-performance liquid chromatography (HPLC), it was hoped that laborious and time-consuming conventional methods could be replaced by a simple, rapid, high-resolving HPLC method for fractionating histones. However, problems of irreversible adsorption of the histones to HPLC column packings discouraged this development. Our laboratory has now determined that the strong adsorption of histones to HPLC columns results from two different forces: (1) polar interactions between the histones and the silanol groups of silica-based HPLC column packing, and (2) hydrophobic interactions between the histones and the bound organic phase of the column packings. By minimizing these forces, we have succeeded in developing an HPLC method suitable for histone studies

  11. Identification of histone modifications in biomedical text for supporting epigenomic research.

    Science.gov (United States)

    Kolárik, Corinna; Klinger, Roman; Hofmann-Apitius, Martin

    2009-01-30

    Posttranslational modifications of histones influence the structure of chromatine and in such a way take part in the regulation of gene expression. Certain histone modification patterns, distributed over the genome, are connected to cell as well as tissue differentiation and to the adaption of organisms to their environment. Abnormal changes instead influence the development of disease states like cancer. The regulation mechanisms for modifying histones and its functionalities are the subject of epigenomics investigation and are still not completely understood. Text provides a rich resource of knowledge on epigenomics and modifications of histones in particular. It contains information about experimental studies, the conditions used, and results. To our knowledge, no approach has been published so far for identifying histone modifications in text. We have developed an approach for identifying histone modifications in biomedical literature with Conditional Random Fields (CRF) and for resolving the recognized histone modification term variants by term standardization. For the term identification F1 measures of 0.84 by 10-fold cross-validation on the training corpus and 0.81 on an independent test corpus have been obtained. The standardization enabled the correct transformation of 96% of the terms from training and 98% from test the corpus. Due to the lack of terminologies exhaustively covering specific histone modification types, we developed a histone modification term hierarchy for use in a semantic text retrieval system. The developed approach highly improves the retrieval of articles describing histone modifications. Since text contains context information about performed studies and experiments, the identification of histone modifications is the basis for supporting literature-based knowledge discovery and hypothesis generation to accelerate epigenomic research.

  12. Novel E3 ubiquitin ligases that regulate histone protein levels in the budding yeast Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Rakesh Kumar Singh

    Full Text Available Core histone proteins are essential for packaging the genomic DNA into chromatin in all eukaryotes. Since multiple genes encode these histone proteins, there is potential for generating more histones than what is required for chromatin assembly. The positively charged histones have a very high affinity for negatively charged molecules such as DNA, and any excess of histone proteins results in deleterious effects on genomic stability and cell viability. Hence, histone levels are known to be tightly regulated via transcriptional, posttranscriptional and posttranslational mechanisms. We have previously elucidated the posttranslational regulation of histone protein levels by the ubiquitin-proteasome pathway involving the E2 ubiquitin conjugating enzymes Ubc4/5 and the HECT (Homologous to E6-AP C-Terminus domain containing E3 ligase Tom1 in the budding yeast. Here we report the identification of four additional E3 ligases containing the RING (Really Interesting New Gene finger domains that are involved in the ubiquitylation and subsequent degradation of excess histones in yeast. These E3 ligases are Pep5, Snt2 as well as two previously uncharacterized Open Reading Frames (ORFs YKR017C and YDR266C that we have named Hel1 and Hel2 (for Histone E3 Ligases respectively. Mutants lacking these E3 ligases are sensitive to histone overexpression as they fail to degrade excess histones and accumulate high levels of endogenous histones on histone chaperones. Co-immunoprecipitation assays showed that these E3 ligases interact with the major E2 enzyme Ubc4 that is involved in the degradation related ubiquitylation of histones. Using mutagenesis we further demonstrate that the RING domains of Hel1, Hel2 and Snt2 are required for histone regulation. Lastly, mutants corresponding to Hel1, Hel2 and Pep5 are sensitive to replication inhibitors. Overall, our results highlight the importance of posttranslational histone regulatory mechanisms that employ multiple E3

  13. High-resolution structure of the native histone octamer

    International Nuclear Information System (INIS)

    Wood, Christopher M.; Nicholson, James M.; Lambert, Stanley J.; Chantalat, Laurent; Reynolds, Colin D.; Baldwin, John P.

    2005-01-01

    The high-resolution (1.90 Å) model of the native histone octamer allows structural comparisons to be made with the nucleosome-core particle, along with an identification of a likely core-histone binding site. Crystals of native histone octamers (H2A–H2B)–(H4–H3)–(H3′–H4′)–(H2B′–H2A′) from chick erythrocytes in 2 M KCl, 1.35 M potassium phosphate pH 6.9 diffract X-rays to 1.90 Å resolution, yielding a structure with an R work value of 18.7% and an R free of 22.2%. The crystal space group is P6 5 , the asymmetric unit of which contains one complete octamer. This high-resolution model of the histone-core octamer allows further insight into intermolecular interactions, including water molecules, that dock the histone dimers to the tetramer in the nucleosome-core particle and have relevance to nucleosome remodelling. The three key areas analysed are the H2A′–H3–H4 molecular cluster (also H2A–H3′–H4′), the H4–H2B′ interaction (also H4′–H2B) and the H2A′–H4 β-sheet interaction (also H2A–H4′). The latter of these three regions is important to nucleosome remodelling by RNA polymerase II, as it is shown to be a likely core-histone binding site, and its disruption creates an instability in the nucleosome-core particle. A majority of the water molecules in the high-resolution octamer have positions that correlate to similar positions in the high-resolution nucleosome-core particle structure, suggesting that the high-resolution octamer model can be used for comparative studies with the high-resolution nucleosome-core particle

  14. Histone deacetylase inhibition as an alternative strategy against invasive aspergillosis

    Directory of Open Access Journals (Sweden)

    Frederic eLamoth

    2015-02-01

    Full Text Available Invasive aspergillosis (IA is a life-threatening infection due to Aspergillus fumigatus and other Aspergillus spp. Drugs targeting the fungal cell membrane (triazoles, amphotericin B or cell wall (echinocandins are currently the sole therapeutic options against IA. Their limited efficacy and the emergence of resistance warrant the identification of new antifungal targets. Histone deacetylases (HDACs are enzymes responsible of the deacetylation of lysine residues of core histones, thus controlling chromatin remodeling and transcriptional activation. HDACs also control the acetylation and activation status of multiple non-histone proteins, including the heat shock protein 90 (Hsp90, an essential molecular chaperone for fungal virulence and antifungal resistance. This review provides an overview of the different HDACs in Aspergillus spp. as well as their respective contribution to total HDAC activity, fungal growth, stress responses, and virulence. The potential of HDAC inhibitors, currently under development for cancer therapy, as novel alternative antifungal agents against IA is discussed.

  15. Identification of novel post-translational modifications in linker histones from chicken erythrocytes.

    Science.gov (United States)

    Sarg, Bettina; Lopez, Rita; Lindner, Herbert; Ponte, Inma; Suau, Pedro; Roque, Alicia

    2015-01-15

    Chicken erythrocyte nuclei were digested with micrococcal nuclease and fractionated by centrifugation in low-salt buffer into soluble and insoluble fractions. Post-translational modifications of the purified linker histones of both fractions were analyzed by LC-ESI-MS/MS. All six histone H1 subtypes (H1.01, H1.02, H1.03, H1.10, H1.1L and H1.1R) and histone H5 were identified. Mass spectrometry analysis enabled the identification of a wide range of PTMs, including N(α)-terminal acetylation, acetylation, formylation, phosphorylation and oxidation. A total of nine new modifications in chicken linker histones were mapped, most of them located in the N-terminal and globular domains. Relative quantification of the modified peptides showed that linker histone PTMs were differentially distributed among both chromatin fractions, suggesting their relevance in the regulation of chromatin structure. The analysis of our results combined with previously reported data for chicken and some mammalian species showed that most of the modified positions were conserved throughout evolution, highlighting their importance in specific linker histone functions and epigenetics. Post-translational modifications of linker histones could have a role in the regulation of gene expression through the modulation of chromatin higher-order structure and chromatin remodeling. Finding new PTMs in linker histones is the first step to elucidate their role in the histone code. In this manuscript we report nine new post-translational modifications of the linker histones from chicken erythrocytes, one in H5 and eight in the H1 subtypes. Chromatin fractionated by centrifugation in low-salt buffer resulted in two fractions with different contents and compositions of linker histones and enriched in specific core histone PTMs. Of particular interest is the fact that linker histone PTMs were differentially distributed in both chromatin fractions, suggesting specific functions. Future studies are needed to

  16. The histone codes for meiosis.

    Science.gov (United States)

    Wang, Lina; Xu, Zhiliang; Khawar, Muhammad Babar; Liu, Chao; Li, Wei

    2017-09-01

    Meiosis is a specialized process that produces haploid gametes from diploid cells by a single round of DNA replication followed by two successive cell divisions. It contains many special events, such as programmed DNA double-strand break (DSB) formation, homologous recombination, crossover formation and resolution. These events are associated with dynamically regulated chromosomal structures, the dynamic transcriptional regulation and chromatin remodeling are mainly modulated by histone modifications, termed 'histone codes'. The purpose of this review is to summarize the histone codes that are required for meiosis during spermatogenesis and oogenesis, involving meiosis resumption, meiotic asymmetric division and other cellular processes. We not only systematically review the functional roles of histone codes in meiosis but also discuss future trends and perspectives in this field. © 2017 Society for Reproduction and Fertility.

  17. Stage-specific histone modification profiles reveal global transitions in the Xenopus embryonic epigenome.

    Directory of Open Access Journals (Sweden)

    Tobias D Schneider

    Full Text Available Vertebrate embryos are derived from a transitory pool of pluripotent cells. By the process of embryonic induction, these precursor cells are assigned to specific fates and differentiation programs. Histone post-translational modifications are thought to play a key role in the establishment and maintenance of stable gene expression patterns underlying these processes. While on gene level histone modifications are known to change during differentiation, very little is known about the quantitative fluctuations in bulk histone modifications during development. To investigate this issue we analysed histones isolated from four different developmental stages of Xenopus laevis by mass spectrometry. In toto, we quantified 59 modification states on core histones H3 and H4 from blastula to tadpole stages. During this developmental period, we observed in general an increase in the unmodified states, and a shift from histone modifications associated with transcriptional activity to transcriptionally repressive histone marks. We also compared these naturally occurring patterns with the histone modifications of murine ES cells, detecting large differences in the methylation patterns of histone H3 lysines 27 and 36 between pluripotent ES cells and pluripotent cells from Xenopus blastulae. By combining all detected modification transitions we could cluster their patterns according to their embryonic origin, defining specific histone modification profiles (HMPs for each developmental stage. To our knowledge, this data set represents the first compendium of covalent histone modifications and their quantitative flux during normogenesis in a vertebrate model organism. The HMPs indicate a stepwise maturation of the embryonic epigenome, which may be causal to the progressing restriction of cellular potency during development.

  18. Cell cycle-dependent O-GlcNAc modification of tobacco histones and their interaction with the tobacco lectin.

    Science.gov (United States)

    Delporte, Annelies; De Zaeytijd, Jeroen; De Storme, Nico; Azmi, Abdelkrim; Geelen, Danny; Smagghe, Guy; Guisez, Yves; Van Damme, Els J M

    2014-10-01

    The Nicotiana tabacum agglutinin or Nictaba is a nucleocytoplasmic lectin that is expressed in tobacco after the plants have been exposed to jasmonate treatment or insect herbivory. Nictaba specifically recognizes GlcNAc residues. Recently, it was shown that Nictaba is interacting in vitro with the core histone proteins from calf thymus. Assuming that plant histones - similar to their animal counterparts - undergo O-GlcNAcylation, this interaction presumably occurs through binding of the lectin to the O-GlcNAc modification present on the histones. Hereupon, the question was raised whether this modification also occurs in plants and if it is cell cycle dependent. To this end, histones were purified from tobacco BY-2 suspension cells and the presence of O-GlcNAc modifications was checked. Concomitantly, O-GlcNAcylation of histone proteins was studied. Our data show that similar to animal histones plant histones are modified by O-GlcNAc in a cell cycle-dependent fashion. In addition, the interaction between Nictaba and tobacco histones was confirmed using lectin chromatography and far Western blot analysis. Collectively these findings suggest that Nictaba can act as a modulator of gene transcription through its interaction with core histones. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  19. The organization structure and regulatory elements of Chlamydomonas histone genes reveal features linking plant and animal genes.

    Science.gov (United States)

    Fabry, S; Müller, K; Lindauer, A; Park, P B; Cornelius, T; Schmitt, R

    1995-09-01

    The genome of the green alga Chlamydomonas reinhardtii contains approximately 15 gene clusters of the nucleosomal (or core) histone H2A, H2B, H3 and H4 genes and at least one histone H1 gene. Seven non-allelic histone gene loci were isolated from a genomic library, physically mapped, and the nucleotide sequences of three isotypes of each core histone gene species and one linked H1 gene determined. The core histone genes are organized in clusters of H2A-H2B and H3-H4 pairs, in which each gene pair shows outwardly divergent transcription from a short (< 300 bp) intercistronic region. These intercistronic regions contain typically conserved promoter elements, namely a TATA-box and the three motifs TGGCCAG-G(G/C)-CGAG, CGTTGACC and CGGTTG. Different from the genes of higher plants, but like those of animals and the related alga Volvox, the 3' untranslated regions contain no poly A signal, but a palindromic sequence (3' palindrome) essential for mRNA processing is present. One single H1 gene was found in close linkage to a H2A-H2B pair. The H1 upstream region contains the octameric promoter element GGTTGACC (also found upstream of the core histone genes) and two specific sequence motifs that are shared only with the Volvox H1 promoters. This suggests differential transcription of the H1 and the core histone genes. The H1 gene is interrupted by two introns. Unlike Volvox H3 genes, the three sequenced H3 isoforms are intron-free. Primer-directed PCR of genomic DNA demonstrated, however, that at least 8 of the about 15 H3 genes do contain one intron at a conserved position. In synchronized C. reinhardtii cells, H4 mRNA levels (representative of all core histone mRNAs) peak during cell division, suggesting strict replication-dependent gene control. The derived peptide sequences place C. reinhardtii core histones closer to plants than to animals, except that the H2A histones are more animal-like. The peptide sequence of histone H1 is closely related to the V. carteri VH1-II

  20. Histone phosphorylation during radiation-induced mitotic delay in synchronous plasmodia of Physarum polycephalum

    International Nuclear Information System (INIS)

    Brewer, E.N.; Oleinick, N.L.

    1980-01-01

    Using the nearly perfect synchrony of the mitotic stages in Physarum plasmodia, and making use of 32 P as a tracer, studies were made to define the time course of histone phosphorylation during the late G2 and prophase and the alterations in that time course accompanying radiation-induced mitotic delay. Histone H1 was phosphorylated throughout the last 2-3 hours of the mitotic cycle coincident with the early stages of chromosome condensation. H1 phosphorylation appeared to be reduced in irradiated plasmodia. It is postulated that a longer time period, i.e. the mitotic delay, may be required to obtain the same eventual level of H1-phosphate. In normal cultures, nucleosome core histones were phosphorylated late in G2 and prophase, the peak corresponding closely with the γ-transition point. In irradiated plasmodia, phosphorylation of the core histones had an extended time course similar to H1. (U.K.)

  1. Tandem affinity purification of histones, coupled to mass spectrometry, identifies associated proteins and new sites of post-translational modification in Saccharomyces cerevisiae.

    Science.gov (United States)

    Valero, M Luz; Sendra, Ramon; Pamblanco, Mercè

    2016-03-16

    Histones and their post-translational modifications contribute to regulating fundamental biological processes in all eukaryotic cells. We have applied a conventional tandem affinity purification strategy to histones H3 and H4 of the yeast Saccharomyces cerevisiae. Mass spectrometry analysis of the co-purified proteins revealed multiple associated proteins, including core histones, which indicates that tagged histones may be incorporated to the nucleosome particle. Among the many other co-isolated proteins there are histone chaperones, elements of chromatin remodeling, of nucleosome assembly/disassembly, and of histone modification complexes. The histone chaperone Rtt106p, two members of chromatin assembly FACT complex and Psh1p, an ubiquitin ligase, were the most abundant proteins obtained with both H3-TAP and H4-TAP, regardless of the cell extraction medium stringency. Our mass spectrometry analyses have also revealed numerous novel post-translational modifications, including 30 new chemical modifications in histones, mainly by ubiquitination. We have discovered not only new sites of ubiquitination but that, besides lysine, also serine and threonine residues are targets of ubiquitination on yeast histones. Our results show the standard tandem affinity purification procedure is suitable for application to yeast histones, in order to isolate and characterize histone-binding proteins and post-translational modifications, avoiding the bias caused by histone purification from a chromatin-enriched fraction. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Biochemical systems approaches for the analysis of histone modification readout.

    Science.gov (United States)

    Soldi, Monica; Bremang, Michael; Bonaldi, Tiziana

    2014-08-01

    Chromatin is the macromolecular nucleoprotein complex that governs the organization of genetic material in the nucleus of eukaryotic cells. In chromatin, DNA is packed with histone proteins into nucleosomes. Core histones are prototypes of hyper-modified proteins, being decorated by a large number of site-specific reversible and irreversible post-translational modifications (PTMs), which contribute to the maintenance and modulation of chromatin plasticity, gene activation, and a variety of other biological processes and disease states. The observations of the variety, frequency and co-occurrence of histone modifications in distinct patterns at specific genomic loci have led to the idea that hPTMs can create a molecular barcode, read by effector proteins that translate it into a specific transcriptional state, or process, on the underlying DNA. However, despite the fact that this histone-code hypothesis was proposed more than 10 years ago, the molecular details of its working mechanisms are only partially characterized. In particular, two questions deserve specific investigation: how the different modifications associate and synergize into patterns and how these PTM configurations are read and translated by multi-protein complexes into a specific functional outcome on the genome. Mass spectrometry (MS) has emerged as a versatile tool to investigate chromatin biology, useful for both identifying and validating hPTMs, and to dissect the molecular determinants of histone modification readout systems. We review here the MS techniques and the proteomics methods that have been developed to address these fundamental questions in epigenetics research, emphasizing approaches based on the proteomic dissection of distinct native chromatin regions, with a critical evaluation of their present challenges and future potential. This article is part of a Special Issue entitled: Molecular mechanisms of histone modification function. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Cellulase variants

    Science.gov (United States)

    Blazej, Robert; Toriello, Nicholas; Emrich, Charles; Cohen, Richard N.; Koppel, Nitzan

    2015-07-14

    This invention provides novel variant cellulolytic enzymes having improved activity and/or stability. In certain embodiments the variant cellulotyic enzymes comprise a glycoside hydrolase with or comprising a substitution at one or more positions corresponding to one or more of residues F64, A226, and/or E246 in Thermobifida fusca Cel9A enzyme. In certain embodiments the glycoside hydrolase is a variant of a family 9 glycoside hydrolase. In certain embodiments the glycoside hydrolase is a variant of a theme B family 9 glycoside hydrolase.

  4. Analysis of Myc-induced histone modifications on target chromatin.

    Directory of Open Access Journals (Sweden)

    Francesca Martinato

    Full Text Available The c-myc proto-oncogene is induced by mitogens and is a central regulator of cell growth and differentiation. The c-myc product, Myc, is a transcription factor that binds a multitude of genomic sites, estimated to be over 10-15% of all promoter regions. Target promoters generally pre-exist in an active or poised chromatin state that is further modified by Myc, contributing to fine transcriptional regulation (activation or repression of the afferent gene. Among other mechanisms, Myc recruits histone acetyl-transferases to target chromatin and locally promotes hyper-acetylation of multiple lysines on histones H3 and H4, although the identity and combination of the modified lysines is unknown. Whether Myc dynamically regulates other histone modifications (or marks at its binding sites also remains to be addressed. Here, we used quantitative chromatin immunoprecipitation (qChIP to profile a total of 24 lysine-acetylation and -methylation marks modulated by Myc at target promoters in a human B-cell line with a regulatable c-myc transgene. Myc binding promoted acetylation of multiple lysines, primarily of H3K9, H3K14, H3K18, H4K5 and H4K12, but significantly also of H4K8, H4K91 and H2AK5. Dimethylation of H3K79 was also selectively induced at target promoters. A majority of target promoters showed co-induction of multiple marks - in various combinations - correlating with recruitment of the two HATs tested (Tip60 and HBO1, incorporation of the histone variant H2A.Z and transcriptional activation. Based on this and previous findings, we surmise that Myc recruits the Tip60/p400 complex to achieve a coordinated histone acetylation/exchange reaction at activated promoters. Our data are also consistent with the additive and redundant role of multiple acetylation events in transcriptional activation.

  5. Preferential Phosphorylation on Old Histones during Early Mitosis in Human Cells*

    Science.gov (United States)

    Lin, Shu; Yuan, Zuo-Fei; Han, Yumiao; Marchione, Dylan M.; Garcia, Benjamin A.

    2016-01-01

    How histone post-translational modifications (PTMs) are inherited through the cell cycle remains poorly understood. Canonical histones are made in the S phase of the cell cycle. Combining mass spectrometry-based technologies and stable isotope labeling by amino acids in cell culture, we question the distribution of multiple histone PTMs on old versus new histones in synchronized human cells. We show that histone PTMs can be grouped into three categories according to their distributions. Most lysine mono-methylation and acetylation PTMs are either symmetrically distributed on old and new histones or are enriched on new histones. In contrast, most di- and tri-methylation PTMs are enriched on old histones, suggesting that the inheritance of different PTMs is regulated distinctly. Intriguingly, old and new histones are distinct in their phosphorylation status during early mitosis in the following three human cell types: HeLa, 293T, and human foreskin fibroblast cells. The mitotic hallmark H3S10ph is predominantly associated with old H3 at early mitosis and becomes symmetric with the progression of mitosis. This same distribution was observed with other mitotic phosphorylation marks, including H3T3/T6ph, H3.1/2S28ph, and H1.4S26ph but not S28/S31ph on the H3 variant H3.3. Although H3S10ph often associates with the neighboring Lys-9 di- or tri-methylations, they are not required for the asymmetric distribution of Ser-10 phosphorylation on the same H3 tail. Inhibition of the kinase Aurora B does not change the distribution despite significant reduction of H3S10ph levels. However, K9me2 abundance on the new H3 is significantly reduced after Aurora B inhibition, suggesting a cross-talk between H3S10ph and H3K9me2. PMID:27226594

  6. Histone modifications: Cycling with chromosomal replication

    DEFF Research Database (Denmark)

    Thon, Genevieve

    2008-01-01

    Histone modifications tend to be lost during chromosome duplication. Several recent studies suggest that the RNA interference pathway becomes active during the weakened transcriptional repression occurring at centromeres in S phase, resulting in the re-establishment of histone modifications...

  7. Histone Lysine Methylation and Neurodevelopmental Disorders

    Directory of Open Access Journals (Sweden)

    Jeong-Hoon Kim

    2017-06-01

    Full Text Available Methylation of several lysine residues of histones is a crucial mechanism for relatively long-term regulation of genomic activity. Recent molecular biological studies have demonstrated that the function of histone methylation is more diverse and complex than previously thought. Moreover, studies using newly available genomics techniques, such as exome sequencing, have identified an increasing number of histone lysine methylation-related genes as intellectual disability-associated genes, which highlights the importance of accurate control of histone methylation during neurogenesis. However, given the functional diversity and complexity of histone methylation within the cell, the study of the molecular basis of histone methylation-related neurodevelopmental disorders is currently still in its infancy. Here, we review the latest studies that revealed the pathological implications of alterations in histone methylation status in the context of various neurodevelopmental disorders and propose possible therapeutic application of epigenetic compounds regulating histone methylation status for the treatment of these diseases.

  8. Histone chaperone networks shaping chromatin function

    DEFF Research Database (Denmark)

    Hammond, Colin; Strømme, Caroline Bianchi; Huang, Hongda

    2017-01-01

    and fate, which affects all chromosomal processes, including gene expression, chromosome segregation and genome replication and repair. Here, we review the distinct structural and functional properties of the expanding network of histone chaperones. We emphasize how chaperones cooperate in the histone...... chaperone network and via co-chaperone complexes to match histone supply with demand, thereby promoting proper nucleosome assembly and maintaining epigenetic information by recycling modified histones evicted from chromatin....

  9. A unique binding mode enables MCM2 to chaperone histones H3-H4 at replication forks.

    Science.gov (United States)

    Huang, Hongda; Strømme, Caroline B; Saredi, Giulia; Hödl, Martina; Strandsby, Anne; González-Aguilera, Cristina; Chen, Shoudeng; Groth, Anja; Patel, Dinshaw J

    2015-08-01

    During DNA replication, chromatin is reassembled by recycling of modified old histones and deposition of new ones. How histone dynamics integrates with DNA replication to maintain genome and epigenome information remains unclear. Here, we reveal how human MCM2, part of the replicative helicase, chaperones histones H3-H4. Our first structure shows an H3-H4 tetramer bound by two MCM2 histone-binding domains (HBDs), which hijack interaction sites used by nucleosomal DNA. Our second structure reveals MCM2 and ASF1 cochaperoning an H3-H4 dimer. Mutational analyses show that the MCM2 HBD is required for MCM2-7 histone-chaperone function and normal cell proliferation. Further, we show that MCM2 can chaperone both new and old canonical histones H3-H4 as well as H3.3 and CENPA variants. The unique histone-binding mode of MCM2 thus endows the replicative helicase with ideal properties for recycling histones genome wide during DNA replication.

  10. CSR-1 RNAi pathway positively regulates histone expression in C. elegans.

    Science.gov (United States)

    Avgousti, Daphne C; Palani, Santhosh; Sherman, Yekaterina; Grishok, Alla

    2012-10-03

    Endogenous small interfering RNAs (endo-siRNAs) have been discovered in many organisms, including mammals. In C. elegans, depletion of germline-enriched endo-siRNAs found in complex with the CSR-1 Argonaute protein causes sterility and defects in chromosome segregation in early embryos. We discovered that knockdown of either csr-1, the RNA-dependent RNA polymerase (RdRP) ego-1, or the dicer-related helicase drh-3, leads to defects in histone mRNA processing, resulting in severe depletion of core histone proteins. The maturation of replication-dependent histone mRNAs, unlike that of other mRNAs, requires processing of their 3'UTRs through an endonucleolytic cleavage guided by the U7 snRNA, which is lacking in C. elegans. We found that CSR-1-bound antisense endo-siRNAs match histone mRNAs and mRNA precursors. Consistently, we demonstrate that CSR-1 directly binds to histone mRNA in an ego-1-dependent manner using biotinylated 2'-O-methyl RNA oligonucleotides. Moreover, we demonstrate that increasing the dosage of histone genes rescues the lethality associated with depletion of CSR-1 and EGO-1. These results support a positive and direct effect of RNAi on histone gene expression.

  11. [Proteolytic activity of IgG-antibodies of mice, immunized by calf thymus histones].

    Science.gov (United States)

    Kit, Iu Ia; Korniĭ, N; Kril', I Ĭ; Mahorivs'ka, I B; Tkachenko, V; Bilyĭ, R O; Stoĭka, R S

    2014-01-01

    The main goal of the study was to determine the ability of histones to induce production of the proteolytically active IgG-antibodies in BALB/c mice. In order to perform this study 8 mice were immunized with the fraction of total calf thymus histones. IgGs were isolated from the serum of the immunized and not immunized animals by means of precipitation with 33% ammonium sulfate, followed by affinity chromatography on protein G-Sepharose column. Histones, myelin basic protein (MBP), lysozyme, BSA, ovalbumin, macroglobulin, casein and cytochrome c served as substrates for determining the proteolytic activity. It was found that IgGs from the blood serum of immunized mice are capable of hydrolyzing histone H1, core histone and MBP. On the contrary, the proteolytic activity of IgGs from the blood serum of not immunized mice was not detected. The absence of proteolytical enzymes in the fraction of IgGs was proven by HPLC chromatography. High levels of proteolytic activity toward histones have been also detected in affinity purified IgGs from blood serum of patients with rheumatoid arthritis, but not in healthy donors. These data indicate that eukaryotic histones may induce production of protabzymes in mammals. The possible origin of these protabzymes and their potential biological role in mammalians is discussed.

  12. Biochemical profiling of histone binding selectivity of the yeast bromodomain family.

    Directory of Open Access Journals (Sweden)

    Qiang Zhang

    2010-01-01

    Full Text Available It has been shown that molecular interactions between site-specific chemical modifications such as acetylation and methylation on DNA-packing histones and conserved structural modules present in transcriptional proteins are closely associated with chromatin structural changes and gene activation. Unlike methyl-lysine that can interact with different protein modules including chromodomains, Tudor and MBT domains, as well as PHD fingers, acetyl-lysine (Kac is known thus far to be recognized only by bromodomains. While histone lysine acetylation plays a crucial role in regulation of chromatin-mediated gene transcription, a high degree of sequence variation of the acetyl-lysine binding site in the bromodomains has limited our understanding of histone binding selectivity of the bromodomain family. Here, we report a systematic family-wide analysis of 14 yeast bromodomains binding to 32 lysine-acetylated peptides derived from known major acetylation sites in four core histones that are conserved in eukaryotes.The histone binding selectivity of purified recombinant yeast bromodomains was assessed by using the native core histones in an overlay assay, as well as N-terminally biotinylated lysine-acetylated histone peptides spotted on streptavidin-coated nitrocellulose membrane in a dot blot assay. NMR binding analysis further validated the interactions between histones and selected bromodomain. Structural models of all yeast bromodomains were built using comparative modeling to provide insights into the molecular basis of their histone binding selectivity.Our study reveals that while not all members of the bromodomain family are privileged to interact with acetylated-lysine, identifiable sequence features from those that bind histone emerge. These include an asparagine residue at the C-terminus of the third helix in the 4-helix bundle, negatively charged residues around the ZA loop, and preponderance of aromatic amino acid residues in the binding pocket

  13. Genetic variants of methyl metabolizing enzymes and epigenetic regulators: Associations with promoter CpG island hypermethylation in colorectal cancer

    NARCIS (Netherlands)

    Vogel, S. de; Wouters, K.A.D.; Gottschalk, R.W.H.; Schooten, F.J. van; Goeij, A.F.P.M. de; Bruïne, A.P. de; Goldbohm, R.A.; Brandt, P.A. van den; Weijenberg, M.P.; Engeland, M. van

    2009-01-01

    Aberrant DNA methylation affects carcinogenesis of colorectal cancer. Folate metabolizing enzymes may influence the bioavailability of methyl groups, whereas DNA and histone methyltransferases are involved in epigenetic regulation of gene expression. We studied associations of genetic variants of

  14. UV laser-induced histone-DNA crosslinking proceeds via the N-terminal tails

    International Nuclear Information System (INIS)

    Stefanovski, V.; Dimitrov, S.; Angelov, D.; Keskinova, E.; Pashev, I.

    1990-01-01

    The covalent crosslinking of histones to DNA by UV laser irradiation is accomplished solely via the N-terminal part of the molecule. Irradiated isolated calfthymus nuclei are treated with clostripain. The crosslinked protein-DNA complexes are isolated and the presence of each core histone analyzed by dot-immunoassay using antibodies, specific to the central globular domain of the respective histone. The reaction is negative for all core histones i.e. the globular domain is absent. It means that this domain has not been crosslinked to DNA and, once cleaved by clostripain, it has been stripped from DNA during the centrigugation in CsCl. This peculiar property of the crosslinked procedure makes it particularly useful in addressing some yet unanswered questions concerning histone-DNA interactions, such as the interaction of the N-terminal tails with linker DNA, the effect of the transient postsynthetic histone acetylation on its interaction with DNA, etc. These questions are now under study. 1 fig., 6 refs

  15. Identification and Interrogation of Combinatorial Histone Modifications

    Directory of Open Access Journals (Sweden)

    Kelly R Karch

    2013-12-01

    Full Text Available Histone proteins are dynamically modified to mediate a variety of cellular processes including gene transcription, DNA damage repair, and apoptosis. Regulation of these processes occurs through the recruitment of non-histone proteins to chromatin by specific combinations of histone post-translational modifications (PTMs. Mass spectrometry has emerged as an essential tool to discover and quantify histone PTMs both within and between samples in an unbiased manner. Developments in mass spectrometry that allow for characterization of large histone peptides or intact protein has made it possible to determine which modifications occur simultaneously on a single histone polypeptide. A variety of techniques from biochemistry, biophysics, and chemical biology have been employed to determine the biological relevance of discovered combinatorial codes. This review first describes advancements in the field of mass spectrometry that have facilitated histone PTM analysis and then covers notable approaches to probe the biological relevance of these modifications in their nucleosomal context.

  16. Removal of histone tails from nucleosome dissects the physical mechanisms of salt-induced aggregation, linker histone H1-induced compaction, and 30-nm fiber formation of the nucleosome array

    International Nuclear Information System (INIS)

    Hizume, Kohji; Nakai, Tonau; Araki, Sumiko; Prieto, Eloise; Yoshikawa, Kenichi; Takeyasu, Kunio

    2009-01-01

    In order to reveal the roles of histone tails in the formation of higher-order chromatin structures, we employed atomic force microscopy (AFM), and an in vitro reconstitution system to examine the properties of reconstituted chromatin composed of tail-less histones and a long DNA (106-kb plasmid) template. The tail-less nucleosomes did not aggregate at high salt concentrations or with an excess amount of core histones, in contrast with the behavior of nucleosomal arrays composed of nucleosomes containing normal, N-terminal tails. Analysis of our nucleosome distributions reveals that the attractive interaction between tail-less nucleosomes is weakened. Addition of linker histone H1 into the tail-less nucleosomal array failed to promote the formation of 30 nm chromatin fibers that are usually formed in the normal nucleosomal array. These results demonstrate that the attractive interaction between nucleosomes via histone tails plays a critical role in the formation of the uniform 30-nm chromatin fiber.

  17. A C-terminal truncated hepatitis C virus core protein variant assembles in vitro into virus-like particles in the absence of structured nucleic acids

    International Nuclear Information System (INIS)

    Acosta-Rivero, Nelson; Rodriguez, Armando; Mussachio, Alexis; Poutu, Johana; Falcon, Viviana; Torres, Dinorah; Aguilar, Julio C.; Linares, Marbelis; Alonso, Mabel; Perez, Angel; Menendez, Ivon; Morales-Grillo, Juan; Marquez, Gabriel; Duenas-Carrera, Santiago

    2005-01-01

    Little is known about the assembly pathway or structure of the hepatitis C virus (HCV). In this work a truncated HCcAg variant covering the first 120 aa (HCcAg.120) with a 32 aa N-terminal fusion peptide (6x Histag-Xpress epitope) was purified as a monomer under strong denaturing conditions. In addition, minor HCcAg.120 peaks exhibiting little different molecular mass by SDS-PAGE which possibly represents alternative forms harboring the N-termini of HCcAg.120 were detected. Analysis using gel filtration chromatography showed that HCcAg.120 assembled into high molecular weight structures in vitro in the absence of structured nucleic acids. The negative-stain electron microscopy analysis revealed that these structures correspond with spherical VLPs of uniform morphology and size distribution. The diameters of these particles ranged from 20 to 43 nm with an average diameter of approximately 30 nm and were specifically immunolabelled with a mouse monoclonal antibody against the residues 5-35 of HCcAg. Results presented in this work showed that HCcAg.120 assembled in vitro into VLPs in the absence of structured nucleic acids with similar morphology and size distribution to those found in sera and hepatocytes from HCV-infected patients. Therefore, these VLPs would be important to elucidate the mechanisms behind the ability of HCcAg to assemble into a nucleocapsid structure

  18. Histone H4 hyperacetylation and rapid turnover of its acetyl groups in transcriptionally inactive rooster testis spermatids.

    Science.gov (United States)

    Oliva, R; Mezquita, C

    1982-01-01

    In order to study the relationship between acetylation of histones, chromatin structure and gene activity, the distribution and turnover of acetyl groups among nucleosomal core histones and the extent of histone H4 acetylation were examined in rooster testis cell nuclei at different stages of spermatogenesis. Histone H4 was the predominant acetylated histone in mature testes. Hyperacetylation of H4 and rapid turnover of its acetyl groups are not univocally correlated with transcriptional activity since they were detected in both genetically active testicular cells and genetically inactive elongated spermatids. During the transition from nucleohistone to nucleoprotamine in elongated spermatids the chromatin undergoes dramatic structural changes with exposition of binding sites on DNA (1). Hyperacetylation of H4 and rapid turnover of its acetyl groups could be correlated with the particular conformation of chromatin in elongated spermatids and might represent a necessary condition for binding of chromosomal proteins to DNA. Images PMID:7162988

  19. Role of H1 linker histones in mammalian development and stem cell differentiation.

    Science.gov (United States)

    Pan, Chenyi; Fan, Yuhong

    2016-03-01

    H1 linker histones are key chromatin architectural proteins facilitating the formation of higher order chromatin structures. The H1 family constitutes the most heterogeneous group of histone proteins, with eleven non-allelic H1 variants in mammals. H1 variants differ in their biochemical properties and exhibit significant sequence divergence from one another, yet most of them are highly conserved during evolution from mouse to human. H1 variants are differentially regulated during development and their cellular compositions undergo dramatic changes in embryogenesis, gametogenesis, tissue maturation and cellular differentiation. As a group, H1 histones are essential for mouse development and proper stem cell differentiation. Here we summarize our current knowledge on the expression and functions of H1 variants in mammalian development and stem cell differentiation. Their diversity, sequence conservation, complex expression and distinct functions suggest that H1s mediate chromatin reprogramming and contribute to the large variations and complexity of chromatin structure and gene expression in the mammalian genome. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. A unique binding mode enables MCM2 to chaperone histones H3-H4 at replication forks

    DEFF Research Database (Denmark)

    Huang, Hongda; Strømme, Caroline B; Saredi, Giulia

    2015-01-01

    During DNA replication, chromatin is reassembled by recycling of modified old histones and deposition of new ones. How histone dynamics integrates with DNA replication to maintain genome and epigenome information remains unclear. Here, we reveal how human MCM2, part of the replicative helicase......, chaperones histones H3-H4. Our first structure shows an H3-H4 tetramer bound by two MCM2 histone-binding domains (HBDs), which hijack interaction sites used by nucleosomal DNA. Our second structure reveals MCM2 and ASF1 cochaperoning an H3-H4 dimer. Mutational analyses show that the MCM2 HBD is required...... for MCM2-7 histone-chaperone function and normal cell proliferation. Further, we show that MCM2 can chaperone both new and old canonical histones H3-H4 as well as H3.3 and CENPA variants. The unique histone-binding mode of MCM2 thus endows the replicative helicase with ideal properties for recycling...

  1. Histone Acetylation in Fungal Pathogens of Plants

    Directory of Open Access Journals (Sweden)

    Junhyun Jeon

    2014-03-01

    Full Text Available Acetylation of histone lysine residues occurs in different organisms ranging from yeast to plants and mammals for the regulation of diverse cellular processes. With the identification of enzymes that create or reverse this modification, our understanding on histone acetylation has expanded at an amazing pace during the last two decades. In fungal pathogens of plants, however, the importance of such modification has only just begun to be appreciated in the recent years and there is a dearth of information on how histone acetylation is implicated in fungal pathogenesis. This review covers the current status of research related to histone acetylation in plant pathogenic fungi and considers relevant findings in the interaction between fungal pathogens and host plants. We first describe the families of histone acetyltransferases and deacetylases. Then we provide the cases where histone acetylation was investigated in the context of fungal pathogenesis. Finally, future directions and perspectives in epigenetics of fungal pathogenesis are discussed.

  2. Human borna disease virus infection impacts host proteome and histone lysine acetylation in human oligodendroglia cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xia [Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China); Department of Neurology, The Fifth People' s Hospital of Shanghai, School of Medicine, Fudan University, Shanghai, 200240 (China); Zhao, Libo [Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China); Department of Neurology, The Third People' s Hospital of Chongqing, 400014 (China); Yang, Yongtao [Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China); Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, 400016 (China); Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016 (China); Bode, Liv [Bornavirus Research Group affiliated to the Free University of Berlin, Berlin (Germany); Huang, Hua [Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China); Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, 400016 (China); Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016 (China); Liu, Chengyu [Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, 400016 (China); Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016 (China); Huang, Rongzhong [Department of Rehabilitative Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010 (China); Zhang, Liang [Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China); Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, 400016 (China); Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016 (China); and others

    2014-09-15

    Background: Borna disease virus (BDV) replicates in the nucleus and establishes persistent infections in mammalian hosts. A human BDV strain was used to address the first time, how BDV infection impacts the proteome and histone lysine acetylation (Kac) of human oligodendroglial (OL) cells, thus allowing a better understanding of infection-driven pathophysiology in vitro. Methods: Proteome and histone lysine acetylation were profiled through stable isotope labeling for cell culture (SILAC)-based quantitative proteomics. The quantifiable proteome was annotated using bioinformatics. Histone acetylation changes were validated by biochemistry assays. Results: Post BDV infection, 4383 quantifiable differential proteins were identified and functionally annotated to metabolism pathways, immune response, DNA replication, DNA repair, and transcriptional regulation. Sixteen of the thirty identified Kac sites in core histones presented altered acetylation levels post infection. Conclusions: BDV infection using a human strain impacted the whole proteome and histone lysine acetylation in OL cells. - Highlights: • A human strain of BDV (BDV Hu-H1) was used to infect human oligodendroglial cells (OL cells). • This study is the first to reveal the host proteomic and histone Kac profiles in BDV-infected OL cells. • BDV infection affected the expression of many transcription factors and several HATs and HDACs.

  3. Human borna disease virus infection impacts host proteome and histone lysine acetylation in human oligodendroglia cells

    International Nuclear Information System (INIS)

    Liu, Xia; Zhao, Libo; Yang, Yongtao; Bode, Liv; Huang, Hua; Liu, Chengyu; Huang, Rongzhong; Zhang, Liang

    2014-01-01

    Background: Borna disease virus (BDV) replicates in the nucleus and establishes persistent infections in mammalian hosts. A human BDV strain was used to address the first time, how BDV infection impacts the proteome and histone lysine acetylation (Kac) of human oligodendroglial (OL) cells, thus allowing a better understanding of infection-driven pathophysiology in vitro. Methods: Proteome and histone lysine acetylation were profiled through stable isotope labeling for cell culture (SILAC)-based quantitative proteomics. The quantifiable proteome was annotated using bioinformatics. Histone acetylation changes were validated by biochemistry assays. Results: Post BDV infection, 4383 quantifiable differential proteins were identified and functionally annotated to metabolism pathways, immune response, DNA replication, DNA repair, and transcriptional regulation. Sixteen of the thirty identified Kac sites in core histones presented altered acetylation levels post infection. Conclusions: BDV infection using a human strain impacted the whole proteome and histone lysine acetylation in OL cells. - Highlights: • A human strain of BDV (BDV Hu-H1) was used to infect human oligodendroglial cells (OL cells). • This study is the first to reveal the host proteomic and histone Kac profiles in BDV-infected OL cells. • BDV infection affected the expression of many transcription factors and several HATs and HDACs

  4. Functional Roles of Acetylated Histone Marks at Mouse Meiotic Recombination Hot Spots

    Science.gov (United States)

    Wu, Zhen; Fallahi, Mohammad; Ouizem, Souad; Liu, Qin; Li, Weimin; Costi, Roberta; Roush, William R.; Bois, Philippe R. J.

    2016-01-01

    ABSTRACT Meiotic recombination initiates following the formation of DNA double-strand breaks (DSBs) by the Spo11 endonuclease early in prophase I, at discrete regions in the genome coined “hot spots.” In mammals, meiotic DSB site selection is directed in part by sequence-specific binding of PRDM9, a polymorphic histone H3 (H3K4Me3) methyltransferase. However, other chromatin features needed for meiotic hot spot specification are largely unknown. Here we show that the recombinogenic cores of active hot spots in mice harbor several histone H3 and H4 acetylation and methylation marks that are typical of open, active chromatin. Further, deposition of these open chromatin-associated histone marks is dynamic and is manifest at spermatogonia and/or pre-leptotene-stage cells, which facilitates PRDM9 binding and access for Spo11 to direct the formation of DSBs, which are initiated at the leptotene stage. Importantly, manipulating histone acetylase and deacetylase activities established that histone acetylation marks are necessary for both hot spot activity and crossover resolution. We conclude that there are functional roles for histone acetylation marks at mammalian meiotic recombination hot spots. PMID:27821479

  5. Histone H3 is absent from organelle nucleoids in BY-2 cultured tobacco cells.

    Science.gov (United States)

    Takusagawa, Mari; Tamotsu, Satoshi; Sakai, Atsushi

    2013-07-01

    The core histone proteins (H2A, H2B, H3 and H4) are nuclear-localised proteins that play a central role in the formation of nucleosome structure. They have long been considered to be absent from extra-nuclear, DNA-containing organelles; that is plastids and mitochondria. Recently, however, the targeting of core histone H3 to mitochondria, and the presence of nucleosome-like structures in mitochondrial nucleoids, were proposed in cauliflower and tobacco respectively. Thus, we examined whether histone H3 was present in plant organelles and participated in the organisation of nucleoid structure, using highly purified organelles and organelle nucleoids isolated from BY-2 cultured tobacco cells. Immunofluorescence microscopic observations and Western blotting analyses demonstrated that histone H3 was absent from organelles and organelle nucleoids, consistent with the historical hypothesis. Thus, the organisation of organelle nucleoids, including putative nucleosome-like repetitive structures, should be constructed and maintained without participation of histone H3. © 2013 International Federation for Cell Biology.

  6. Analysis of Histones H3 and H4 Reveals Novel and Conserved Post-Translational Modifications in Sugarcane.

    Science.gov (United States)

    Moraes, Izabel; Yuan, Zuo-Fei; Liu, Shichong; Souza, Glaucia Mendes; Garcia, Benjamin A; Casas-Mollano, J Armando

    2015-01-01

    Histones are the main structural components of the nucleosome, hence targets of many regulatory proteins that mediate processes involving changes in chromatin. The functional outcome of many pathways is "written" in the histones in the form of post-translational modifications that determine the final gene expression readout. As a result, modifications, alone or in combination, are important determinants of chromatin states. Histone modifications are accomplished by the addition of different chemical groups such as methyl, acetyl and phosphate. Thus, identifying and characterizing these modifications and the proteins related to them is the initial step to understanding the mechanisms of gene regulation and in the future may even provide tools for breeding programs. Several studies over the past years have contributed to increase our knowledge of epigenetic gene regulation in model organisms like Arabidopsis, yet this field remains relatively unexplored in crops. In this study we identified and initially characterized histones H3 and H4 in the monocot crop sugarcane. We discovered a number of histone genes by searching the sugarcane ESTs database. The proteins encoded correspond to canonical histones, and their variants. We also purified bulk histones and used them to map post-translational modifications in the histones H3 and H4 using mass spectrometry. Several modifications conserved in other plants, and also novel modified residues, were identified. In particular, we report O-acetylation of serine, threonine and tyrosine, a recently identified modification conserved in several eukaryotes. Additionally, the sub-nuclear localization of some well-studied modifications (i.e., H3K4me3, H3K9me2, H3K27me3, H3K9ac, H3T3ph) is described and compared to other plant species. To our knowledge, this is the first report of histones H3 and H4 as well as their post-translational modifications in sugarcane, and will provide a starting point for the study of chromatin regulation in

  7. Holoprosencephaly Variant

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2003-01-01

    Full Text Available The clinical manifestations in 15 patients (6 boys and 9 girls with middle interhemispheric variant (MIH of holoprosencephaly (HPE were compared with classic subtypes (alobar, semilobar, and lobar of HPE in a multicenter study at Stanford University School of Medicine and Lucile Packard Children’s Hospital; Children’s Hospital of Philadelphia; University of California at San Francisco; Texas Scottish Rite Hospital, Dallas; and Kennedy Krieger Institute, Baltimore, MD.

  8. Extracellular histones induce erythrocyte fragility and anemia.

    Science.gov (United States)

    Kordbacheh, Farzaneh; O'Meara, Connor H; Coupland, Lucy A; Lelliott, Patrick M; Parish, Christopher R

    2017-12-28

    Extracellular histones have been shown to play an important pathogenic role in many diseases, primarily through their cytotoxicity toward nucleated cells and their ability to promote platelet activation with resultant thrombosis and thrombocytopenia. In contrast, little is known about the effect of extracellular histones on erythrocyte function. We demonstrate in this study that histones promote erythrocyte aggregation, sedimentation, and using a novel in vitro shear stress model, we show that histones induce erythrocyte fragility and lysis in a concentration-dependent manner. Furthermore, histones impair erythrocyte deformability based on reduced passage of erythrocytes through an artificial spleen. These in vitro results were mirrored in vivo with the injection of histones inducing anemia within minutes of administration, with a concomitant increase in splenic hemoglobin content. Thrombocytopenia and leukopenia were also observed. These findings suggest that histones binding to erythrocytes may contribute to the elevated erythrocyte sedimentation rates observed in inflammatory conditions. Furthermore, histone-induced increases in red blood cell lysis and splenic clearance may be a significant factor in the unexplained anemias seen in critically ill patients. © 2017 by The American Society of Hematology.

  9. Histone modifications and nuclear architecture: A review

    Czech Academy of Sciences Publication Activity Database

    Bártová, Eva; Kroupová, Jana; Harničarová, Andrea; Galiová-Šustáčková, Gabriela; Kozubek, Stanislav

    2008-01-01

    Roč. 56, č. 8 (2008), s. 711-721 ISSN 0722-186X R&D Projects: GA ČR(CZ) GA204/06/0978; GA MŠk(CZ) LC535 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : histones * histone modifications * nuclear architecture Subject RIV: BO - Biophysics

  10. The histone deacetylase inhibitor Trichostatin A modulates CD4+ T cell responses

    DEFF Research Database (Denmark)

    Moreira, José Manuel Alfonso; Scheipers, Peter; Sørensen, Poul

    2003-01-01

    though several genes modulated by HDAC inhibition have been identified, those genes clearly responsible for the biological effects of these drugs have remained elusive. We investigated the pharmacological effect of the HDACI and potential anti-cancer agent Trichostatin A (TSA) on primary T cells.......Histone deacetylase inhibitors (HDACIs) induce hyperacetylation of core histones modulating chromatin structure and affecting gene expression. These compounds are also able to induce growth arrest, cell differentiation, and apoptotic cell death of tumor cells in vitro as well as in vivo. Even...

  11. Histone and ribosomal RNA repetitive gene clusters of the boll weevil are linked in a tandem array.

    Science.gov (United States)

    Roehrdanz, R; Heilmann, L; Senechal, P; Sears, S; Evenson, P

    2010-08-01

    Histones are the major protein component of chromatin structure. The histone family is made up of a quintet of proteins, four core histones (H2A, H2B, H3 & H4) and the linker histones (H1). Spacers are found between the coding regions. Among insects this quintet of genes is usually clustered and the clusters are tandemly repeated. Ribosomal DNA contains a cluster of the rRNA sequences 18S, 5.8S and 28S. The rRNA genes are separated by the spacers ITS1, ITS2 and IGS. This cluster is also tandemly repeated. We found that the ribosomal RNA repeat unit of at least two species of Anthonomine weevils, Anthonomus grandis and Anthonomus texanus (Coleoptera: Curculionidae), is interspersed with a block containing the histone gene quintet. The histone genes are situated between the rRNA 18S and 28S genes in what is known as the intergenic spacer region (IGS). The complete reiterated Anthonomus grandis histone-ribosomal sequence is 16,248 bp.

  12. Chromatin condensation in terminally differentiating mouse erythroblasts does not involve special architectural proteins but depends on histone deacetylation

    Energy Technology Data Exchange (ETDEWEB)

    Popova, Evgenya Y.; Krauss, Sharon Wald; Short, Sarah A.; Lee, Gloria; Villalobos, Jonathan; Etzell, Joan; Koury, Mark J.; Ney, Paul A.; Chasis, Joel Anne; Grigoryev, Sergei A.

    2008-08-21

    Terminal erythroid differentiation in vertebrates is characterized by progressive heterochromatin formation, chromatin condensation and, in mammals, culminates in nuclear extrusion. To date, although mechanisms regulating avian erythroid chromatin condensation have been identified, little is known regarding this process during mammalian erythropoiesis. To elucidate the molecular basis for mammalian erythroblast chromatin condensation, we used Friend virus-infected murine spleen erythroblasts that undergo terminal differentiation in vitro. Chromatin isolated from early and late stage erythroblasts had similar levels of linker and core histones, only a slight difference in nucleosome repeats, and no significant accumulation of known developmentally-regulated architectural chromatin proteins. However, histone H3(K9) dimethylation markedly increased while histone H4(K12) acetylation dramatically decreased and became segregated from the histone methylation as chromatin condensed. One histone deacetylase, HDAC5, was significantly upregulated during the terminal stages of Friend virus-infected erythroblast differentiation. Treatment with histone deacetylase inhibitor, trichostatin A, blocked both chromatin condensation and nuclear extrusion. Based on our data, we propose a model for a unique mechanism in which extensive histone deacetylation at pericentromeric heterochromatin mediates heterochromatin condensation in vertebrate erythroblasts that would otherwise be mediated by developmentally-regulated architectural proteins in nucleated blood cells.

  13. Differential Expression of Histone H3.3 Genes and Their Role in Modulating Temperature Stress Response in Caenorhabditis elegans.

    Science.gov (United States)

    Delaney, Kamila; Mailler, Jonathan; Wenda, Joanna M; Gabus, Caroline; Steiner, Florian A

    2018-04-10

    Replication-independent variant histones replace canonical histones in nucleosomes and act as important regulators of chromatin function. H3.3 is a major variant of histone H3 that is remarkably conserved across all taxa and is distinguished from canonical H3 by just four key amino acids. Most genomes contain two or more genes expressing H3.3, and complete loss of the protein usually causes sterility or embryonic lethality. Here we investigated the developmental expression pattern of the five Caenorhabditis elegans H3.3 homologues and identified two previously uncharacterized homologues to be restricted to the germ line. We demonstrate an essential role for the conserved histone chaperone HIRA in the nucleosomal loading of all H3.3 variants. This requirement can be bypassed by mutation of the H3.3-specific residues to those found in H3. Analysis of H3.3 knockout mutants revealed a surprising absence of developmental phenotypes. While removal of all H3.3 homologues did not result in lethality, it led to reduced fertility and viability in response to high temperature stress. Our results thus show that H3.3 is non-essential in C. elegans , but is critical for ensuring adequate response to stress. Copyright © 2018, Genetics.

  14. Inhibition of mitotic-specific histone phophorylation by sodium arsenite

    Energy Technology Data Exchange (ETDEWEB)

    Cobo, J.M. [Universidad de Alcala de Henares, Madrid (Spain); Valdez, J.G.; Gurley, L.R. [Los Alamos National Lab., NM (United States)

    1994-10-01

    Synchronized cultures of Chinese hamster cells (line CHO) were used to measure the effects of 10{mu}M sodium arsenite on histone phosphorylation. This treatment caused cell proliferation to be temporarily arrested, after which the cells spontaneously resumed cell proliferation in a radiomimetric manner. Immediately following treatment, it was found that sodium arsenite affected only mitotic-specific HI and H3 phosphorylations. Neither interphase, nor mitotic, H2A and H4 phosphorylations were affected, nor was interphase HI Phosphorylation affected. The phosphorylation of HI was inhibited only in mitosis, reducing HI phosphorylation to 38.1% of control levels, which was the level of interphase HI phosphorylation. The phosphorylation of both H3 variants was inhibited in mitosis, the less hydrophobic H3 to 19% and the more hydrophobic H3 to 24% of control levels. These results suggest that sodium arsenite may inhibite cell proliferation by interfering with the cyclin B/p34{sup cdc2} histone kinase activity which is thought to play a key role in regulating the cell cycle. It has been proposed by our laboratory that HI and H3 phosphorylations play a role in restructuring interphase chromatin into metaphase chromosomes. Interference of this process by sodium arsenite may lead to structurally damaged chromosomes resulting in the increased cancer risks known to be produced by arsenic exposure from the environment.

  15. Preferential Phosphorylation on Old Histones during Early Mitosis in Human Cells.

    Science.gov (United States)

    Lin, Shu; Yuan, Zuo-Fei; Han, Yumiao; Marchione, Dylan M; Garcia, Benjamin A

    2016-07-15

    How histone post-translational modifications (PTMs) are inherited through the cell cycle remains poorly understood. Canonical histones are made in the S phase of the cell cycle. Combining mass spectrometry-based technologies and stable isotope labeling by amino acids in cell culture, we question the distribution of multiple histone PTMs on old versus new histones in synchronized human cells. We show that histone PTMs can be grouped into three categories according to their distributions. Most lysine mono-methylation and acetylation PTMs are either symmetrically distributed on old and new histones or are enriched on new histones. In contrast, most di- and tri-methylation PTMs are enriched on old histones, suggesting that the inheritance of different PTMs is regulated distinctly. Intriguingly, old and new histones are distinct in their phosphorylation status during early mitosis in the following three human cell types: HeLa, 293T, and human foreskin fibroblast cells. The mitotic hallmark H3S10ph is predominantly associated with old H3 at early mitosis and becomes symmetric with the progression of mitosis. This same distribution was observed with other mitotic phosphorylation marks, including H3T3/T6ph, H3.1/2S28ph, and H1.4S26ph but not S28/S31ph on the H3 variant H3.3. Although H3S10ph often associates with the neighboring Lys-9 di- or tri-methylations, they are not required for the asymmetric distribution of Ser-10 phosphorylation on the same H3 tail. Inhibition of the kinase Aurora B does not change the distribution despite significant reduction of H3S10ph levels. However, K9me2 abundance on the new H3 is significantly reduced after Aurora B inhibition, suggesting a cross-talk between H3S10ph and H3K9me2. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Histone deacetylases (HDACs and brain function

    Directory of Open Access Journals (Sweden)

    Claude-Henry Volmar

    2015-01-01

    Full Text Available Modulation of gene expression is a constant and necessary event for mammalian brain function. An important way of regulating gene expression is through the remodeling of chromatin, the complex of DNA, and histone proteins around which DNA wraps. The “histone code hypothesis” places histone post-translational modifications as a significant part of chromatin remodeling to regulate transcriptional activity. Acetylation of histones by histone acetyl transferases and deacetylation by histone deacetylases (HDACs at lysine residues are the most studied histone post-translational modifications in cognition and neuropsychiatric diseases. Here, we review the literature regarding the role of HDACs in brain function. Among the roles of HDACs in the brain, studies show that they participate in glial lineage development, learning and memory, neuropsychiatric diseases, and even rare neurologic diseases. Most HDACs can be targeted with small molecules. However, additional brain-penetrant specific inhibitors with high central nervous system exposure are needed to determine the cause-and-effect relationship between individual HDACs and brain-associated diseases.

  17. Antibodies to H2a and H2b histones from the sera of HIV-infected patients catalyze site-specific degradation of these histones.

    Science.gov (United States)

    Baranova, Svetlana V; Dmitrienok, Pavel S; Ivanisenko, Nikita V; Buneva, Valentina N; Nevinsky, Georgy A

    2017-06-01

    Histones and their post-translational modifications have key roles in chromatin remodeling and gene transcription. Besides intranuclear functions, histones act as damage-associated molecules when they are released into the extracellular space. Administration of histones to animals leads to systemic inflammatory and toxic responses. Autoantibodies with enzymatic activities (abzymes) are distinctive features of some autoimmune and viral diseases. Electrophoretically homogeneous IgGs containing no canonical enzymes were isolated from the sera of HIV-infected patients by chromatography on several affinity sorbents including anti-histone Sepharose. In contrast to canonical proteases (trypsin, chymotrypsin, proteinase K), IgGs from HIV-infected patients specifically hydrolyzed only histones but not many other tested globular proteins. Using MALDI mass spectrometry the sites of H2a and H2b histone cleavage by anti-histone IgGs were determined for the first time. One cluster of H2a hydrolysis contains two major (↕) and four moderate (↓) cleavage sites: 31-H↓R↓L↓L↓R↕K G↕N-38. One major and two moderate sites of cleavage were revealed in the second cluster: 14-A↕KSRS↓SRA↓G-22. The third cluster corresponding to the H2a C-terminal part contains only five minor (†) sites of cleavage: 82-H†LQLAIRNDEELN†KLLG†RV†T†I-102. It was shown that two major and four moderate sites of cleavage were present in the main cluster of H2b hydrolysis: 46-K↕QvhpD↓TgiS↓SkA↓M↕GiM↓N-63. Two moderate sites of cleavage correspond to a relatively short 6-mer cluster: 12-K↓GskK↓A-17. The third relatively long 9-mer cluster contains one major and two minor sites of H2b cleavage: 80-L↕AHYN†KRS†T-88. In the nucleosome core particle, most of the major and moderate cleavage sites are located at the H2a/H2b interaction interface. Minor cleavage sites of H2a are involved in binding with H3 in the nucleosome core. Two moderate cleavage sites of H2b and one

  18. Molecular mechanisms and potential functions of histone demethylases

    DEFF Research Database (Denmark)

    Kooistra, Susanne Marije; Helin, Kristian

    2012-01-01

    of two families of enzymes that can demethylate histones has changed this notion. The biochemical activities of these histone demethylases towards specific Lys residues on histones, and in some cases non-histone substrates, have highlighted their importance in developmental control, cell-fate decisions...

  19. Chromatin replication and histone dynamics

    DEFF Research Database (Denmark)

    Alabert, Constance; Jasencakova, Zuzana; Groth, Anja

    2017-01-01

    Inheritance of the DNA sequence and its proper organization into chromatin is fundamental for genome stability and function. Therefore, how specific chromatin structures are restored on newly synthesized DNA and transmitted through cell division remains a central question to understand cell fate...... choices and self-renewal. Propagation of genetic information and chromatin-based information in cycling cells entails genome-wide disruption and restoration of chromatin, coupled with faithful replication of DNA. In this chapter, we describe how cells duplicate the genome while maintaining its proper...... organization into chromatin. We reveal how specialized replication-coupled mechanisms rapidly assemble newly synthesized DNA into nucleosomes, while the complete restoration of chromatin organization including histone marks is a continuous process taking place throughout the cell cycle. Because failure...

  20. Histone modifications in response to DNA damage

    International Nuclear Information System (INIS)

    Altaf, Mohammed; Saksouk, Nehme; Cote, Jacques

    2007-01-01

    The packaging of the eukaryotic genome into highly condensed chromatin makes it inaccessible to the factors required for gene transcription, DNA replication, recombination and repair. Eukaryotes have developed intricate mechanisms to overcome this repressive barrier imposed by chromatin. Histone modifying enzymes and ATP-dependent chromatin remodeling complexes play key roles here as they regulate many nuclear processes by altering the chromatin structure. Significantly, these activities are integral to the process of DNA repair where histone modifications act as signals and landing platforms for various repair proteins. This review summarizes the recent developments in our understanding of histone modifications and their role in the maintenance of genome integrity

  1. Dynamics of Histone Tails within Chromatin

    Science.gov (United States)

    Bernier, Morgan; North, Justin; Page, Michael; Jaroniec, Christopher; Hammel, Christopher; Poirier, Michael

    2012-02-01

    Genetic information in humans is encoded within DNA molecules that is wrapped around histone octamer proteins and compacted into a highly conserved structural polymer, chromatin. The physical and material properties of chromatin appear to influence gene expression by altering the accessibility of proteins to the DNA. The tails of the histones are flexible domains that are thought to play a role in regulating DNA accessibility and compaction; however the molecular mechanisms for these phenomena are not understood. I will present CW-EPR studies on site directed spin labeled nucleosomes that probe the structure and dynamics of these histone tails within nucleosomes.

  2. Histone demethylases in development and disease

    DEFF Research Database (Denmark)

    Pedersen, Marianne Terndrup; Helin, Kristian

    2010-01-01

    Histone modifications serve as regulatory marks that are instrumental for the control of transcription and chromatin architecture. Strict regulation of gene expression patterns is crucial during development and differentiation, where diverse cell types evolve from common predecessors. Since...... the first histone lysine demethylase was discovered in 2004, a number of demethylases have been identified and implicated in the control of gene expression programmes and cell fate decisions. Histone demethylases are now emerging as important players in developmental processes and have been linked to human...

  3. CFP1 Regulates Histone H3K4 Trimethylation and Developmental Potential in Mouse Oocytes

    Directory of Open Access Journals (Sweden)

    Chao Yu

    2017-08-01

    Full Text Available Trimethylation of histone H3 at lysine-4 (H3K4me3 is associated with eukaryotic gene promoters and poises their transcriptional activation during development. To examine the in vivo function of H3K4me3 in the absence of DNA replication, we deleted CXXC finger protein 1 (CFP1, the DNA-binding subunit of the SETD1 histone H3K4 methyltransferase, in developing oocytes. We find that CFP1 is required for H3K4me3 accumulation and the deposition of histone variants onto chromatin during oocyte maturation. Decreased H3K4me3 in oocytes caused global downregulation of transcription activity. Oocytes lacking CFP1 failed to complete maturation and were unable to gain developmental competence after fertilization, due to defects in cytoplasmic lattice formation, meiotic division, and maternal-zygotic transition. Our study highlights the importance of H3K4me3 in continuous histone replacement for transcriptional regulation, chromatin remodeling, and normal developmental progression in a non-replicative system.

  4. Histone Lysine Methylation in Diabetic Nephropathy

    Directory of Open Access Journals (Sweden)

    Guang-dong Sun

    2014-01-01

    Full Text Available Diabetic nephropathy (DN belongs to debilitating microvascular complications of diabetes and is the leading cause of end-stage renal diseases worldwide. Furthermore, outcomes from the DCCT/EDIC study showed that DN often persists and progresses despite intensive glucose control in many diabetes patients, possibly as a result of prior episode of hyperglycemia, which is called “metabolic memory.” The underlying mechanisms responsible for the development and progression of DN remain poorly understood. Activation of multiple signaling pathways and key transcription factors can lead to aberrant expression of DN-related pathologic genes in target renal cells. Increasing evidence suggests that epigenetic mechanisms in chromatin such as DNA methylation, histone acetylation, and methylation can influence the pathophysiology of DN and metabolic memory. Exciting researches from cell culture and experimental animals have shown that key histone methylation patterns and the related histone methyltransferases and histone demethylases can play important roles in the regulation of inflammatory and profibrotic genes in renal cells under diabetic conditions. Because histone methylation is dynamic and potentially reversible, it can provide a window of opportunity for the development of much-needed novel therapeutic potential for DN in the future. In this minireview, we discuss recent advances in the field of histone methylation and its roles in the pathogenesis and progression of DN.

  5. Extracellular histones in tissue injury and inflammation.

    Science.gov (United States)

    Allam, Ramanjaneyulu; Kumar, Santhosh V R; Darisipudi, Murthy N; Anders, Hans-Joachim

    2014-05-01

    Neutrophil NETosis is an important element of host defense as it catapults chromatin out of the cell to trap bacteria, which then are killed, e.g., by the chromatin's histone component. Also, during sterile inflammation TNF-alpha and other mediators trigger NETosis, which elicits cytotoxic effects on host cells. The same mechanism should apply to other forms of regulated necrosis including pyroptosis, necroptosis, ferroptosis, and cyclophilin D-mediated regulated necrosis. Beyond these toxic effects, extracellular histones also trigger thrombus formation and innate immunity by activating Toll-like receptors and the NLRP3 inflammasome. Thereby, extracellular histones contribute to the microvascular complications of sepsis, major trauma, small vessel vasculitis as well as acute liver, kidney, brain, and lung injury. Finally, histones prevent the degradation of extracellular DNA, which promotes autoimmunization, anti-nuclear antibody formation, and autoimmunity in susceptible individuals. Here, we review the current evidence on the pathogenic role of extracellular histones in disease and discuss how to target extracellular histones to improve disease outcomes.

  6. Application of machine learning methods to histone methylation ChIP-Seq data reveals H4R3me2 globally represses gene expression

    Science.gov (United States)

    2010-01-01

    Background In the last decade, biochemical studies have revealed that epigenetic modifications including histone modifications, histone variants and DNA methylation form a complex network that regulate the state of chromatin and processes that depend on it including transcription and DNA replication. Currently, a large number of these epigenetic modifications are being mapped in a variety of cell lines at different stages of development using high throughput sequencing by members of the ENCODE consortium, the NIH Roadmap Epigenomics Program and the Human Epigenome Project. An extremely promising and underexplored area of research is the application of machine learning methods, which are designed to construct predictive network models, to these large-scale epigenomic data sets. Results Using a ChIP-Seq data set of 20 histone lysine and arginine methylations and histone variant H2A.Z in human CD4+ T-cells, we built predictive models of gene expression as a function of histone modification/variant levels using Multilinear (ML) Regression and Multivariate Adaptive Regression Splines (MARS). Along with extensive crosstalk among the 20 histone methylations, we found H4R3me2 was the most and second most globally repressive histone methylation among the 20 studied in the ML and MARS models, respectively. In support of our finding, a number of experimental studies show that PRMT5-catalyzed symmetric dimethylation of H4R3 is associated with repression of gene expression. This includes a recent study, which demonstrated that H4R3me2 is required for DNMT3A-mediated DNA methylation--a known global repressor of gene expression. Conclusion In stark contrast to univariate analysis of the relationship between H4R3me2 and gene expression levels, our study showed that the regulatory role of some modifications like H4R3me2 is masked by confounding variables, but can be elucidated by multivariate/systems-level approaches. PMID:20653935

  7. Replication stress interferes with histone recycling and predeposition marking of new histones

    DEFF Research Database (Denmark)

    Jasencakova, Zuzana; Scharf, Annette N D; Ask, Katrine

    2010-01-01

    To restore chromatin on new DNA during replication, recycling of histones evicted ahead of the fork is combined with new histone deposition. The Asf1 histone chaperone, which buffers excess histones under stress, is a key player in this process. Yet how histones handled by human Asf1 are modified...... remains unclear. Here we identify marks on histones H3-H4 bound to Asf1 and changes induced upon replication stress. In S phase, distinct cytosolic and nuclear Asf1b complexes show ubiquitous H4K5K12diAc and heterogeneous H3 marks, including K9me1, K14ac, K18ac, and K56ac. Upon acute replication arrest......, the predeposition mark H3K9me1 and modifications typical of chromatin accumulate in Asf1 complexes. In parallel, ssDNA is generated at replication sites, consistent with evicted histones being trapped with Asf1. During recovery, histones stored with Asf1 are rapidly used as replication resumes. This shows...

  8. A brief histone in time: understanding the combinatorial functions of histone PTMs in the nucleosome context.

    Science.gov (United States)

    Ng, Marlee K; Cheung, Peter

    2016-02-01

    It has been over 50 years since Allfrey et al. proposed that histone acetylation regulates RNA synthesis, and the study of histone modifications has progressed at an extraordinary pace for the past two decades. In this review, we provide a perspective on some key events and advances in our understanding of histone modifications. We also highlight reagents and tools from past to present that facilitated progress in this research field. Using histone H3 phosphorylation as an underlying thread, we review the rationale that led to the proposal of the histone code hypothesis, as well as examples that illustrate the concepts of combinatorial histone modifications and cross-talk pathways. We further highlight the importance of investigating these mechanisms in the context of nucleosomes rather than just at the histone level and present current and developing approaches for such studies. Overall, research on histone modifications has yielded great mechanistic insights into the regulation of genomic functions, and extending these studies using nucleosomes will further elucidate the complexity of these pathways in a more physiologically relevant context.

  9. Organ distribution of histones after intravenous infusion of FITC histones or after sepsis.

    Science.gov (United States)

    Fattahi, Fatemeh; Grailer, Jamison J; Jajou, Lawrence; Zetoune, Firas S; Andjelkovic, Anuska V; Ward, Peter A

    2015-03-01

    Histones appear in plasma during infectious or non-infectious sepsis and are associated with multiorgan injury. In the current studies, intravenous infusion of histones resulted in their localization in major organs. In vitro exposure of mouse macrophages to histones caused a buildup of histones on cell membranes followed by localization into cytosol and into the nucleus. After polymicrobial sepsis (cecal ligation and puncture), histones appeared in plasma as well as in a multiorgan pattern, peaking at 8 h followed by decline. In lungs, histones and neutrophils appeared together, with evidence for formation of neutrophil extracellular traps (NETs), which represent an innate immune response to trap and kill bacteria and other infectious agents. In liver, there was intense NET formation, featuring linear patterns containing histones and strands of DNA. When neutrophils were activated in vitro with C5a or phorbol myristate acetate, NET formation ensued. While formation of NETs represents entrapment and killing of infectious agents, the simultaneous release from neutrophils of histones often results in tissue/organ damage.

  10. Organ Distribution of Histones after Intravenous Infusion of FITC-Histones or after Sepsis

    Science.gov (United States)

    Fattahi, Fatemeh; Grailer, Jamison J.; Jajou, Lawrence; Zetoune, Firas S.; Andjelkovic, Anuska V.; Ward, Peter A.

    2015-01-01

    Histones appear in plasma during infectious or non-infectious sepsis and are associated with multiorgan injury. In the current studies, intravenous infusion of histones resulted in their localization in major organs. In vitro exposure of mouse macrophages to histones caused a buildup of histones on cell membranes followed by localization into cytosol and into the nucleus. After polymicrobial sepsis (cecal ligation and puncture, CLP), histones appeared in plasma as well as in a multiorgan pattern, peaking at 8 hr followed by decline. In lungs, histones and neutrophils appeared together, with evidence for formation of neutrophil extracellular traps (NETs), which represent an innate immune response to trap and kill bacteria and other infectious agents. In liver, there was intense NET formation, featuring linear patterns containing histones and strands of DNA. When neutrophils were activated in vitro with C5a or phorbol myristate acetate, NET formation ensued. While formation of NETs represents entrapment and killing of infectious agents, the simultaneous release from neutrophils of histones often results in tissue/organ damage. PMID:25680340

  11. The histones of the endosymbiont alga of Peridinium balticum (Dinophyceae).

    Science.gov (United States)

    Rizzo, P J; Morris, R L; Zweidler, A

    1988-01-01

    The histones of the endosymbiont nucleus of the binucleate dinoflagellate Peridinium balticum were characterized by amino acid analysis and peptide mapping, and compared to calf thymus histones. Using these and various other criteria we have identified two H1-like histones as well as the highly conserved histones H3 and H4. A 13,000 dalton component in sodium dodecyl sulphate (SDS) gels can be separated into two components in Triton-containing gels. We suggest that these histones (HPb1 and HPb2) correspond to the vertebrate histones H2A and H2B, respectively.

  12. Regulation of replication fork progression through histone supply and demand

    DEFF Research Database (Denmark)

    Groth, Anja; Corpet, Armelle; Cook, Adam J L

    2007-01-01

    DNA replication in eukaryotes requires nucleosome disruption ahead of the replication fork and reassembly behind. An unresolved issue concerns how histone dynamics are coordinated with fork progression to maintain chromosomal stability. Here, we characterize a complex in which the human histone c...... progression and histone supply and demand.......1 chaperone function, histone supply, and replicative unwinding of DNA in chromatin. We propose that Asf1, as a histone acceptor and donor, handles parental and new histones at the replication fork via an Asf1-(H3-H4)-MCM2-7 intermediate and thus provides a means to fine-tune replication fork...

  13. Small molecule inhibitors of histone deacetylases and acetyltransferases as potential therapeutics in oncology

    NARCIS (Netherlands)

    van den Bosch, Thea; Leus, Niek; Timmerman, Tirza; Dekker, Frank J

    2016-01-01

    Uncontrolled cell proliferation and resistance to apoptosis in cancer are, among others, regulated by post-translational modifications of histone proteins. The most investigated type of histone modification is lysine acetylation. Histone acetyltransferases (HATs), acetylate histone lysine residues,

  14. A histone map of human chromosome 20q13.12.

    Directory of Open Access Journals (Sweden)

    Pelin Akan

    Full Text Available We present a systematic search for regulatory elements in a 3.5 Mb region on human chromosome 20q13.12, a region associated with a number of medical conditions such as type II diabetes and obesity.We profiled six histone modifications alongside RNA polymerase II (PolII and CTCF in two cell lines, HeLa S3 and NTERA-2 clone D1 (NT2/D1, by chromatin immunoprecipitation using an in-house spotted DNA array, constructed with 1.8 kb overlapping plasmid clones. In both cells, more than 90% of transcription start sites (TSSs of expressed genes showed enrichments with PolII, di-methylated lysine 4 of histone H3 (H3K4me2, tri-methylated lysine 4 of histone H3 (H3K4me3 or acetylated H3 (H3Ac, whereas mono-methylated lysine 4 of histone H3 (H3K4me1 signals did not correlate with expression. No TSSs were enriched with tri-methylated lysine 27 of histone H3 (H3K27me3 in HeLa S3, while eight TSSs (4 expressed showed enrichments in NT2/D1. We have also located several CTCF binding sites that are potential insulator elements.In summary, we annotated a number of putative regulatory elements in 20q13.12 and went on to verify experimentally a subset of them using dual luciferase reporter assays. Correlating this data to sequence variation can aid identification of disease causing variants.

  15. Histones bundle F-actin filaments and affect actin structure.

    Directory of Open Access Journals (Sweden)

    Edna Blotnick

    Full Text Available Histones are small polycationic proteins complexed with DNA located in the cell nucleus. Upon apoptosis they are secreted from the cells and react with extracellular polyanionic compounds. Actin which is a polyanionic protein, is also secreted from necrotic cells and interacts with histones. We showed that both histone mixture (histone type III and the recombinant H2A histone bundles F-actin, increases the viscosity of the F-actin containing solution and polymerizes G-actin. The histone-actin bundles are relatively insensitive to increase of ionic strength, unlike other polycation, histatin, lysozyme, spermine and LL-37 induced F-actin bundles. The histone-actin bundles dissociate completely only in the presence of 300-400 mM NaCl. DNA, which competes with F-actin for histones, disassembles histone induced actin bundles. DNase1, which depolymerizes F- to G-actin, actively unbundles the H2A histone induced but slightly affects the histone mixture induced actin bundles. Cofilin decreases the amount of F-actin sedimented by low speed centrifugation, increases light scattering and viscosity of F-actin-histone mixture containing solutions and forms star like superstructures by copolymerizing G-actin with H2A histone. The results indicate that histones are tightly attached to F-actin by strong electrostatic and hydrophobic forces. Since both histones and F-actin are present in the sputum of patients with cystic fibrosis, therefore, the formation of the stable histone-actin bundles can contribute to the pathology of this disease by increasing the viscosity of the sputum. The actin-histone interaction in the nucleus might affect gene expression.

  16. Histones bundle F-actin filaments and affect actin structure.

    Science.gov (United States)

    Blotnick, Edna; Sol, Asaf; Muhlrad, Andras

    2017-01-01

    Histones are small polycationic proteins complexed with DNA located in the cell nucleus. Upon apoptosis they are secreted from the cells and react with extracellular polyanionic compounds. Actin which is a polyanionic protein, is also secreted from necrotic cells and interacts with histones. We showed that both histone mixture (histone type III) and the recombinant H2A histone bundles F-actin, increases the viscosity of the F-actin containing solution and polymerizes G-actin. The histone-actin bundles are relatively insensitive to increase of ionic strength, unlike other polycation, histatin, lysozyme, spermine and LL-37 induced F-actin bundles. The histone-actin bundles dissociate completely only in the presence of 300-400 mM NaCl. DNA, which competes with F-actin for histones, disassembles histone induced actin bundles. DNase1, which depolymerizes F- to G-actin, actively unbundles the H2A histone induced but slightly affects the histone mixture induced actin bundles. Cofilin decreases the amount of F-actin sedimented by low speed centrifugation, increases light scattering and viscosity of F-actin-histone mixture containing solutions and forms star like superstructures by copolymerizing G-actin with H2A histone. The results indicate that histones are tightly attached to F-actin by strong electrostatic and hydrophobic forces. Since both histones and F-actin are present in the sputum of patients with cystic fibrosis, therefore, the formation of the stable histone-actin bundles can contribute to the pathology of this disease by increasing the viscosity of the sputum. The actin-histone interaction in the nucleus might affect gene expression.

  17. Histones induce rapid and profound thrombocytopenia in mice

    Science.gov (United States)

    Bhandari, Ashish A.

    2011-01-01

    Histones are released from dying cells and contribute to antimicrobial defense during infection. However, extracellular histones are a double-edged sword because they also damage host tissue and may cause death. We studied the interactions of histones with platelets. Histones bound to platelets, induced calcium influx, and recruited plasma adhesion proteins such as fibrinogen to induce platelet aggregation. Hereby fibrinogen cross-linked histone-bearing platelets and triggered microaggregation. Fibrinogen interactions with αIIbβ3 integrins were not required for this process but were necessary for the formation of large platelet aggregates. Infused histones associated with platelets in vivo and caused a profound thrombocytopenia within minutes after administration. Mice lacking platelets or αIIbβ3 integrins were protected from histone-induced death but not from histone-induced tissue damage. Heparin, at high concentrations, prevented histone interactions with platelets and protected mice from histone-induced thrombocytopenia, tissue damage, and death. Heparin and histones are evolutionary maintained. Histones may combine microbicidal with prothrombotic properties to fight invading microbes and maintain hemostasis after injury. Heparin may provide an innate counter mechanism to neutralize histones and diminish collateral tissue damage. PMID:21700775

  18. Diversification of the Histone Acetyltransferase GCN5 through Alternative Splicing in Brachypodium distachyon

    Directory of Open Access Journals (Sweden)

    Alexandre Martel

    2017-12-01

    Full Text Available The epigenetic modulatory SAGA complex is involved in various developmental and stress responsive pathways in plants. Alternative transcripts of the SAGA complex's enzymatic subunit GCN5 have been identified in Brachypodium distachyon. These splice variants differ based on the presence and integrity of their conserved domain sequences: the histone acetyltransferase domain, responsible for catalytic activity, and the bromodomain, involved in acetyl-lysine binding and genomic loci targeting. GCN5 is the wild-type transcript, while alternative splice sites result in the following transcriptional variants: L-GCN5, which is missing the bromodomain and S-GCN5, which lacks the bromodomain as well as certain motifs of the histone acetyltransferase domain. Absolute mRNA quantification revealed that, across eight B. distachyon accessions, GCN5 was the dominant transcript isoform, accounting for up to 90% of the entire transcript pool, followed by L-GCN5 and S-GCN5. A cycloheximide treatment further revealed that the S-GCN5 splice variant was degraded through the nonsense-mediated decay pathway. All alternative BdGCN5 transcripts displayed similar transcript profiles, being induced during early exposure to heat and displaying higher levels of accumulation in the crown, compared to aerial tissues. All predicted protein isoforms localize to the nucleus, which lends weight to their purported epigenetic functions. S-GCN5 was incapable of forming an in vivo protein interaction with ADA2, the transcriptional adaptor that links the histone acetyltransferase subunit to the SAGA complex, while both GCN5 and L-GCN5 interacted with ADA2, which suggests that a complete histone acetyltransferase domain is required for BdGCN5-BdADA2 interaction in vivo. Thus, there has been a diversification in BdGCN5 through alternative splicing that has resulted in differences in conserved domain composition, transcript fate and in vivo protein interaction partners. Furthermore, our

  19. Histone H4 Lysine 20 methylation

    DEFF Research Database (Denmark)

    Jørgensen, Stine; Schotta, Gunnar; Sørensen, Claus Storgaard

    2013-01-01

    of histones have emerged as key regulators of genomic integrity. Intense research during the past few years has revealed histone H4 lysine 20 methylation (H4K20me) as critically important for the biological processes that ensure genome integrity, such as DNA damage repair, DNA replication and chromatin...... compaction. The distinct H4K20 methylation states are mediated by SET8/PR-Set7 that catalyses monomethylation of H4K20, whereas SUV4-20H1 and SUV4-20H2 enzymes mediate further H4K20 methylation to H4K20me2 and H4K20me3. Disruption of these H4K20-specific histone methyltransferases leads to genomic...

  20. Chemical and semisynthesis of modified histones.

    Science.gov (United States)

    Maity, Suman Kumar; Jbara, Muhammad; Brik, Ashraf

    2016-05-01

    Post-translational modifications (PTMs) of histones play critical roles in the epigenetic regulation of eukaryotic genome by directly altering the biophysical properties of chromatin or by recruiting effector proteins. The large number of PTMs and the inherent complexity in their population and signaling processes make it highly challenging to understand epigenetics-related processes. To address these challenges, accesses to homogeneously modified histones are obligatory. Over the last decade, synthetic protein chemists have been devising novel synthetic tools and applying state-of-the-art chemoselective ligation strategies to prepare precious materials useful in answering fundamental questions in this area. In this short review, we cover some of the recent breakthroughs in these directions in particular the synthesis and semi-synthesis of modified histones and their use to unravel the mysteries of epigenetics. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.

  1. Distribution pattern of histone H3 phosphorylation at serine 10 ...

    Indian Academy of Sciences (India)

    2013-08-06

    Aug 6, 2013 ... tant consequences for chromatin packing due to change in histone load ... Minas Gerais, Brazil), in B. brizantha (cultivar Marandu, ... (2005), who state that the ..... Mitotic microtubule development and histone H3 phosphoryla-.

  2. Histone Methylation and Epigenetic Silencing in Breast Cancer

    National Research Council Canada - National Science Library

    Simon, Jeffrey A; Lange, Carol A

    2008-01-01

    .... EZH2 is a histone methyltransferase which modifies lysine-27 of histone H3 an epigenetic mark which is generally linked to gene silencing and is implicated in tumor suppressor silencing during breast cancer progression...

  3. Nickel compounds induce histone ubiquitination by inhibiting histone deubiquitinating enzyme activity

    International Nuclear Information System (INIS)

    Ke Qingdong; Ellen, Thomas P.; Costa, Max

    2008-01-01

    Nickel (Ni) compounds are known carcinogens but underlying mechanisms are not clear. Epigenetic changes are likely to play an important role in nickel ion carcinogenesis. Previous studies have shown epigenetic effects of nickel ions, including the loss of histone acetylation and a pronounced increase in dimethylated H3K9 in nickel-exposed cells. In this study, we demonstrated that both water-soluble and insoluble nickel compounds induce histone ubiquitination (uH2A and uH2B) in a variety of cell lines. Investigations of the mechanism by which nickel increases histone ubiquitination in cells reveal that nickel does not affect cellular levels of the substrates of this modification, i.e., ubiquitin, histones, and other non-histone ubiquitinated proteins. In vitro ubiquitination and deubiquitination assays have been developed to further investigate possible effects of nickel on enzymes responsible for histone ubiquitination. Results from the in vitro assays demonstrate that the presence of nickel did not affect the levels of ubiquitinated histones in the ubiquitinating assay. Instead, the addition of nickel significantly prevents loss of uH2A and uH2B in the deubiquitinating assay, suggesting that nickel-induced histone ubiquitination is the result of inhibition of (a) putative deubiquitinating enzyme(s). Additional supporting evidence comes from the comparison of the response to nickel ions with a known deubiquitinating enzyme inhibitor, iodoacetamide (IAA). This study is the first to demonstrate such effects of nickel ions on histone ubiquitination. It also sheds light on the possible mechanisms involved in altering the steady state of this modification. The study provides further evidence that supports the notion that nickel ions alter epigenetic homeostasis in cells, which may lead to altered programs of gene expression and carcinogenesis

  4. Developing selective histone deacetylases (HDACs) inhibitors through ebselen and analogs.

    Science.gov (United States)

    Wang, Yuren; Wallach, Jason; Duane, Stephanie; Wang, Yuan; Wu, Jianghong; Wang, Jeffrey; Adejare, Adeboye; Ma, Haiching

    2017-01-01

    Histone deacetylases (HDACs) are key regulators of gene expression in cells and have been investigated as important therapeutic targets for cancer and other diseases. Different subtypes of HDACs appear to play disparate roles in the cells and are associated with specific diseases. Therefore, substantial effort has been made to develop subtype-selective HDAC inhibitors. In an effort to discover existing scaffolds with HDAC inhibitory activity, we screened a drug library approved by the US Food and Drug Administration and a National Institutes of Health Clinical Collection compound library in HDAC enzymatic assays. Ebselen, a clinical safe compound, was identified as a weak inhibitor of several HDACs, including HDAC1, HDAC3, HDAC4, HDAC5, HDAC6, HDAC7, HDAC8, and HDAC9 with half maximal inhibitory concentrations approximately single digit of µM. Two ebselen analogs, ebselen oxide and ebsulfur (a diselenide analog of ebselen), also inhibited these HDACs, however with improved potencies on HDAC8. Benzisothiazol, the core structure of ebsulfur, specifically inhibited HDAC6 at a single digit of µM but had no inhibition on other HDACs. Further efforts on structure-activity relationship based on the core structure of ebsulfur led to the discovery of a novel class of potent and selective HDAC6 inhibitors with RBC-2008 as the lead compound with single-digit nM potency. This class of histone deacetylase inhibitor features a novel pharmacophore with an ebsulfur scaffold selectively targeting HDAC6. Consistent with its inhibition on HDAC6, RBC-2008 significantly increased the acetylation levels of α-tubulin in PC-3 cells. Furthermore, treatment with these compounds led to cell death of multiple tumor cell lines in a dose-dependent manner. These results demonstrated that ebselen and ebsulfur analogs are inhibitors of HDACs, supporting further preclinical development of this class of compounds for potential therapeutic applications.

  5. Plant Responses to Abiotic Stress Regulated by Histone Deacetylases

    Directory of Open Access Journals (Sweden)

    Ming Luo

    2017-12-01

    Full Text Available In eukaryotic cells, histone acetylation and deacetylation play an important role in the regulation of gene expression. Histone acetylation levels are modulated by histone acetyltransferases and histone deacetylases (HDACs. Recent studies indicate that HDACs play essential roles in the regulation of gene expression in plant response to environmental stress. In this review, we discussed the recent advance regarding the plant HDACs and their functions in the regulation of abiotic stress responses. The role of HDACs in autophagy was also discussed.

  6. Histones as mediators of host defense, inflammation and thrombosis

    OpenAIRE

    Hoeksema, Marloes; van Eijk, Martin; Haagsman, Henk P; Hartshorn, Kevan L

    2016-01-01

    Histones are known for their ability to bind to and regulate expression of DNA. However, histones are also present in cytoplasm and extracellular fluids where they serve host defense functions and promote inflammatory responses. Histones are a major component of neutrophil extracellular traps that contribute to bacterial killing but also to inflammatory injury. Histones can act as antimicrobial peptides and directly kill bacteria, fungi, parasites and viruses, in vitro and in a variety of ani...

  7. Biological significance of lysine mono-, di- and trimethylation on histone and non-histone proteins

    International Nuclear Information System (INIS)

    Perez-Burgos, L.

    2006-01-01

    Histones are the proteins that compact DNA into the repeating unit of chromatin known as the nucleosome. The N-termini of histones are subject to a series of post-translational modifications, one of which is methylation. This modification is termed 'epigenetic' because it extends the information encoded in the genome. Lysines can be mono-, di- or tri-methylated at different positions on histones H1, H3 and H4. In order to study the biological role of histone lysine methylation, antibodies were generated against mono-, di- and trimethylated H3-K9 and H3-27. Indeed, different chromatin domains in the mouse nucleus are enriched in distinct forms of histone lysine methylation, such as pericentric heterochromatin and the inactive X chromosome. Interestingly, heterochromatin in Arabidopsis thaliana is enriched in the mono- and di-, but not the trimethylated form of H3-K9. Furthermore, there exists a hierarchy of epigenetic modifications in which H3-K9 trimethylation is found to be upstream of DNA methylation on mouse major satellites. Histone lysine methylation is also involved in gene regulation upon development. One example is the chicken 61538;-globin locus, a region of facultative chromatin that undergoes a loss of di- and trimethylated H3-K27 in mature red blood cells, concomitant with expression of the 61538;-globin genes. SET-domain proteins are enzymes that methylate histones, but some of them are also able to methylate non-histone substrates. In particular, p53 is methylated by Set9 on lysine 372, G9a and Glp-1 on lysine 373 and by Smyd2 on lysine 370. Smyd2 transcript levels are greatly increased upon irradiation and dimethylated p53-370 specifically binds to 53BP1, a protein involved in recognizing DNA double-stranded breaks upon ionizing radiation. These results argue for a novel role of p53-K370 methylation in the biology of DNA damage. In summary, lysine methylation is a post-translational modification that can occur both on histone and non-histone proteins

  8. Trichostatin A induced histone acetylation causes decondensation of interphase chromatin.

    NARCIS (Netherlands)

    T.A. Knoch (Tobias); M. Wachsmuth (Malte); M. Frank-Stöhr (Monika); M. Stöhr (Michael); C.P. Bacher (Christian); K. Rippe (Karsten)

    2004-01-01

    textabstractThe effect of trichostatin A (TSA)-induced histone acetylation on the interphase chromatin structure was visualized in vivo with a HeLa cell line stably expressing histone H2A, which was fused to enhanced yellow fluorescent protein. The globally increased histone acetylation caused a

  9. Biochemical studies on histones of the central nervous system. 2

    International Nuclear Information System (INIS)

    Schmitt, M.; Matthies, H.

    1979-01-01

    There are no qualitative differences in the electrophoretic patterns of histones from neurones and glia. A 25% increased acetylation rate is found in neutronal histones as compared to glial histones after incubation of chopped brain in a [ 14 C]-acetate containing medium. This result probably reflects different condensation states of the chromatins of both cell types, as demonstrated by electron microscopy. (author)

  10. Histones as mediators of host defense, inflammation and thrombosis

    NARCIS (Netherlands)

    Hoeksema, Marloes; Eijk, Martin van; Haagsman, Henk P; Hartshorn, Kevan L

    2016-01-01

    Histones are known for their ability to bind to and regulate expression of DNA. However, histones are also present in cytoplasm and extracellular fluids where they serve host defense functions and promote inflammatory responses. Histones are a major component of neutrophil extracellular traps that

  11. The histone chaperone ASF1 is essential for sexual development in the filamentous fungus Sordaria macrospora.

    Science.gov (United States)

    Gesing, Stefan; Schindler, Daniel; Fränzel, Benjamin; Wolters, Dirk; Nowrousian, Minou

    2012-05-01

    Ascomycetes develop four major types of fruiting bodies that share a common ancestor, and a set of common core genes most likely controls this process. One way to identify such genes is to search for conserved expression patterns. We analysed microarray data of Fusarium graminearum and Sordaria macrospora, identifying 78 genes with similar expression patterns during fruiting body development. One of these genes was asf1 (anti-silencing function 1), encoding a predicted histone chaperone. asf1 expression is also upregulated during development in the distantly related ascomycete Pyronema confluens. To test whether asf1 plays a role in fungal development, we generated an S. macrospora asf1 deletion mutant. The mutant is sterile and can be complemented to fertility by transformation with the wild-type asf1 and its P. confluens homologue. An ASF1-EGFP fusion protein localizes to the nucleus. By tandem-affinity purification/mass spectrometry as well as yeast two-hybrid analysis, we identified histones H3 and H4 as ASF1 interaction partners. Several developmental genes are dependent on asf1 for correct transcriptional expression. Deletion of the histone chaperone genes rtt106 and cac2 did not cause any developmental phenotypes. These data indicate that asf1 of S. macrospora encodes a conserved histone chaperone that is required for fruiting body development. © 2012 Blackwell Publishing Ltd.

  12. dKDM2 couples histone H2A ubiquitylation to histone H3 demethylation during Polycomb group silencing

    NARCIS (Netherlands)

    A. Lagarou (Anna); A.B. Mohd Sarip; Y.M. Moshkin (Yuri); G.E. Chalkley (Gillian); K. Bezstarosti (Karel); J.A.A. Demmers (Jeroen); C.P. Verrijzer (Peter)

    2008-01-01

    textabstractTranscription regulation involves enzyme-mediated changes in chromatin structure. Here, we describe a novel mode of histone crosstalk during gene silencing, in which histone H2A monoubiquitylation is coupled to the removal of histone H3 Lys 36 dimethylation (H3K36me2). This pathway was

  13. Overview of the Classical Histone Deacetylase Enzymes and Histone Deacetylase Inhibitors

    OpenAIRE

    Ververis, Katherine; Karagiannis, Tom C.

    2012-01-01

    The important role of histone deacetylase enzymes in regulating gene expression, cellular proliferation, and survival has made them attractive targets for the development of histone deacetylase inhibitors as anticancer drugs. Suberoylanilide hydroxamic acid (Vorinostat, Zolinza), a structural analogue of the prototypical Trichostatin A, was approved by the US Food and Drug Administration for the treatment of advanced cutaneous T-cell lymphoma in 2006. This was followed by approval of the cycl...

  14. Nitric Oxide Modulates Histone Acetylation at Stress Genes by Inhibition of Histone Deacetylases1[OPEN

    Science.gov (United States)

    Mengel, Alexander; Ageeva, Alexandra; Durner, Jörg

    2017-01-01

    Histone acetylation, which is an important mechanism to regulate gene expression, is controlled by the opposing action of histone acetyltransferases and histone deacetylases (HDACs). In animals, several HDACs are subjected to regulation by nitric oxide (NO); in plants, however, it is unknown whether NO affects histone acetylation. We found that treatment with the physiological NO donor S-nitrosoglutathione (GSNO) increased the abundance of several histone acetylation marks in Arabidopsis (Arabidopsis thaliana), which was strongly diminished in the presence of the NO scavenger 2-4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide. This increase was likely triggered by NO-dependent inhibition of HDAC activity, since GSNO and S-nitroso-N-acetyl-dl-penicillamine significantly and reversibly reduced total HDAC activity in vitro (in nuclear extracts) and in vivo (in protoplasts). Next, genome-wide H3K9/14ac profiles in Arabidopsis seedlings were generated by chromatin immunoprecipitation sequencing, and changes induced by GSNO, GSNO/2-4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide or trichostatin A (an HDAC inhibitor) were quantified, thereby identifying genes that display putative NO-regulated histone acetylation. Functional classification of these genes revealed that many of them are involved in the plant defense response and the abiotic stress response. Furthermore, salicylic acid, which is the major plant defense hormone against biotrophic pathogens, inhibited HDAC activity and increased histone acetylation by inducing endogenous NO production. These data suggest that NO affects histone acetylation by targeting and inhibiting HDAC complexes, resulting in the hyperacetylation of specific genes. This mechanism might operate in the plant stress response by facilitating the stress-induced transcription of genes. PMID:27980017

  15. Nitric Oxide Modulates Histone Acetylation at Stress Genes by Inhibition of Histone Deacetylases.

    Science.gov (United States)

    Mengel, Alexander; Ageeva, Alexandra; Georgii, Elisabeth; Bernhardt, Jörg; Wu, Keqiang; Durner, Jörg; Lindermayr, Christian

    2017-02-01

    Histone acetylation, which is an important mechanism to regulate gene expression, is controlled by the opposing action of histone acetyltransferases and histone deacetylases (HDACs). In animals, several HDACs are subjected to regulation by nitric oxide (NO); in plants, however, it is unknown whether NO affects histone acetylation. We found that treatment with the physiological NO donor S-nitrosoglutathione (GSNO) increased the abundance of several histone acetylation marks in Arabidopsis (Arabidopsis thaliana), which was strongly diminished in the presence of the NO scavenger 2-4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide. This increase was likely triggered by NO-dependent inhibition of HDAC activity, since GSNO and S-nitroso-N-acetyl-dl-penicillamine significantly and reversibly reduced total HDAC activity in vitro (in nuclear extracts) and in vivo (in protoplasts). Next, genome-wide H3K9/14ac profiles in Arabidopsis seedlings were generated by chromatin immunoprecipitation sequencing, and changes induced by GSNO, GSNO/2-4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide or trichostatin A (an HDAC inhibitor) were quantified, thereby identifying genes that display putative NO-regulated histone acetylation. Functional classification of these genes revealed that many of them are involved in the plant defense response and the abiotic stress response. Furthermore, salicylic acid, which is the major plant defense hormone against biotrophic pathogens, inhibited HDAC activity and increased histone acetylation by inducing endogenous NO production. These data suggest that NO affects histone acetylation by targeting and inhibiting HDAC complexes, resulting in the hyperacetylation of specific genes. This mechanism might operate in the plant stress response by facilitating the stress-induced transcription of genes. © 2017 American Society of Plant Biologists. All Rights Reserved.

  16. Histone deacetylases in memory and cognition.

    Science.gov (United States)

    Penney, Jay; Tsai, Li-Huei

    2014-12-09

    Over the past 30 years, lysine acetylation of histone and nonhistone proteins has become established as a key modulator of gene expression regulating numerous aspects of cell biology. Neuronal growth and plasticity are no exception; roles for lysine acetylation and deacetylation in brain function and dysfunction continue to be uncovered. Transcriptional programs coupling synaptic activity to changes in gene expression are critical to the plasticity mechanisms underlying higher brain functions. These transcriptional programs can be modulated by changes in histone acetylation, and in many cases, transcription factors and histone-modifying enzymes are recruited together to plasticity-associated genes. Lysine acetylation, catalyzed by lysine acetyltransferases (KATs), generally promotes cognitive performance, whereas the opposing process, catalyzed by histone lysine deacetylases (HDACs), appears to negatively regulate cognition in multiple brain regions. Consistently, mutation or deregulation of different KATs or HDACs contributes to neurological dysfunction and neurodegeneration. HDAC inhibitors have shown promise as a treatment to combat the cognitive decline associated with aging and neurodegenerative disease, as well as to ameliorate the symptoms of depression and posttraumatic stress disorder, among others. In this review, we discuss the evidence for the roles of HDACs in cognitive function as well as in neurological disorders and disease. In particular, we focus on HDAC2, which plays a central role in coupling lysine acetylation to synaptic plasticity and mediates many of the effects of HDAC inhibition in cognition and disease. Copyright © 2014, American Association for the Advancement of Science.

  17. The emerging functions of histone demethylases

    DEFF Research Database (Denmark)

    Agger, Karl; Christensen, Jesper; Cloos, Paul Ac

    2008-01-01

    characteristic features evolve from the same ancestor, despite identical genomic material. The characterization of several enzymes catalyzing histone lysine methylation have supported this concept by showing the requirement of these enzymes for normal development and their involvement in diseases such as cancer...

  18. Histone acetylation regulates the time of replication origin firing.

    Science.gov (United States)

    Vogelauer, Maria; Rubbi, Liudmilla; Lucas, Isabelle; Brewer, Bonita J; Grunstein, Michael

    2002-11-01

    The temporal firing of replication origins throughout S phase in yeast depends on unknown determinants within the adjacent chromosomal environment. We demonstrate here that the state of histone acetylation of surrounding chromatin is an important regulator of temporal firing. Deletion of RPD3 histone deacetylase causes earlier origin firing and concurrent binding of the replication factor Cdc45p to origins. In addition, increased acetylation of histones in the vicinity of the late origin ARS1412 by recruitment of the histone acetyltransferase Gcn5p causes ARS1412 alone to fire earlier. These data indicate that histone acetylation is a direct determinant of the timing of origin firing.

  19. Phosphorylation of rat thymus histones, its control and the effects thereon of γ-irradiation

    International Nuclear Information System (INIS)

    Fonagy, A.; Ord, M.G.; Stocken, L.A.

    1977-01-01

    The phosphate content of rat thymus histones was determined. As expected for a replicating tissue, histones 1 and 2B were more phosphorylated and had higher 32 P uptakes than did histones from resting liver nuclei; the other histones all showed 32 P uptake, but the phosphate content and uptake of histone 2A was about half that for liver histone 2A. When thymus nuclei were incubated in a slightly hypo-osmotic medium, non-histone proteins and phosphorylated histones were released into solution; this was enhanced if ATP was present in the medium. [γ- 32 P]ATP was incorporated into non-histone proteins, including Pl, and into the ADP-ribosylated form of histone 1; negligible 32 P was incorporated into the other, bound, histones. Histones 1 and 2B added to the incubation medium were extensively, and histones 2A and 4 slightly, phosphorylated. Histones released by increasing the ionic strength of the medium were phosphorylated. Added lysozyme and cytochrome c were neither bound nor phosphorylated, but added non-histone protein Pl was phosphorylated, causing other histones to be released from the nuclei, especially histones 2A and 3. The released histones were phosphorylated. γ-irradiation decreased 32 P uptake into the non-ADP-ribosylated histones 1 and 4; phosphorylation of histone 1 in vitro was unaffected. The importance of non-histone proteins, ATP availability and nuclear protein kinases to the control of histone phosphorylation in vivo is discussed. (author)

  20. Role of extracellular histones in the cardiomyopathy of sepsis.

    Science.gov (United States)

    Kalbitz, Miriam; Grailer, Jamison J; Fattahi, Fatemeh; Jajou, Lawrence; Herron, Todd J; Campbell, Katherine F; Zetoune, Firas S; Bosmann, Markus; Sarma, J Vidya; Huber-Lang, Markus; Gebhard, Florian; Loaiza, Randall; Valdivia, Hector H; Jalife, José; Russell, Mark W; Ward, Peter A

    2015-05-01

    The purpose of this study was to define the relationship in polymicrobial sepsis (in adult male C57BL/6 mice) between heart dysfunction and the appearance in plasma of extracellular histones. Procedures included induction of sepsis by cecal ligation and puncture and measurement of heart function using echocardiogram/Doppler parameters. We assessed the ability of histones to cause disequilibrium in the redox status and intracellular [Ca(2+)]i levels in cardiomyocytes (CMs) (from mice and rats). We also studied the ability of histones to disturb both functional and electrical responses of hearts perfused with histones. Main findings revealed that extracellular histones appearing in septic plasma required C5a receptors, polymorphonuclear leukocytes (PMNs), and the Nacht-, LRR-, and PYD-domains-containing protein 3 (NLRP3) inflammasome. In vitro exposure of CMs to histones caused loss of homeostasis of the redox system and in [Ca(2+)]i, as well as defects in mitochondrial function. Perfusion of hearts with histones caused electrical and functional dysfunction. Finally, in vivo neutralization of histones in septic mice markedly reduced the parameters of heart dysfunction. Histones caused dysfunction in hearts during polymicrobial sepsis. These events could be attenuated by histone neutralization, suggesting that histones may be targets in the setting of sepsis to reduce cardiac dysfunction. © FASEB.

  1. Modify the Histone to Win the Battle: Chromatin Dynamics in Plant–Pathogen Interactions

    KAUST Repository

    Ramirez Prado, Juan Sebastian

    2018-03-19

    Relying on an immune system comes with a high energetic cost for plants. Defense responses in these organisms are therefore highly regulated and fine-tuned, permitting them to respond pertinently to the attack of a microbial pathogen. In recent years, the importance of the physical modification of chromatin, a highly organized structure composed of genomic DNA and its interacting proteins, has become evident in the research field of plant-pathogen interactions. Several processes, including DNA methylation, changes in histone density and variants, and various histone modifications, have been described as regulators of various developmental and defense responses. Herein, we review the state of the art in the epigenomic aspects of plant immunity, focusing on chromatin modifications, chromatin modifiers, and their physiological consequences. In addition, we explore the exciting field of understanding how plant pathogens have adapted to manipulate the plant epigenomic regulation in order to weaken their immune system and thrive in their host, as well as how histone modifications in eukaryotic pathogens are involved in the regulation of their virulence.

  2. Modify the Histone to Win the Battle: Chromatin Dynamics in Plant–Pathogen Interactions

    KAUST Repository

    Ramirez Prado, Juan Sebastian; Piquerez, Sophie J. M.; Bendahmane, Abdelhafid; Hirt, Heribert; Raynaud, Cé cile; Benhamed, Moussa

    2018-01-01

    Relying on an immune system comes with a high energetic cost for plants. Defense responses in these organisms are therefore highly regulated and fine-tuned, permitting them to respond pertinently to the attack of a microbial pathogen. In recent years, the importance of the physical modification of chromatin, a highly organized structure composed of genomic DNA and its interacting proteins, has become evident in the research field of plant-pathogen interactions. Several processes, including DNA methylation, changes in histone density and variants, and various histone modifications, have been described as regulators of various developmental and defense responses. Herein, we review the state of the art in the epigenomic aspects of plant immunity, focusing on chromatin modifications, chromatin modifiers, and their physiological consequences. In addition, we explore the exciting field of understanding how plant pathogens have adapted to manipulate the plant epigenomic regulation in order to weaken their immune system and thrive in their host, as well as how histone modifications in eukaryotic pathogens are involved in the regulation of their virulence.

  3. Histones as mediators of host defense, inflammation and thrombosis.

    Science.gov (United States)

    Hoeksema, Marloes; van Eijk, Martin; Haagsman, Henk P; Hartshorn, Kevan L

    2016-01-01

    Histones are known for their ability to bind to and regulate expression of DNA. However, histones are also present in cytoplasm and extracellular fluids where they serve host defense functions and promote inflammatory responses. Histones are a major component of neutrophil extracellular traps that contribute to bacterial killing but also to inflammatory injury. Histones can act as antimicrobial peptides and directly kill bacteria, fungi, parasites and viruses, in vitro and in a variety of animal hosts. In addition, histones can trigger inflammatory responses in some cases acting through Toll-like receptors or inflammasome pathways. Extracellular histones mediate organ injury (lung, liver), sepsis physiology, thrombocytopenia and thrombin generation and some proteins can bind histones and reduce these potentially harmful effects.

  4. Behavioral variant of frontotemporal dementia mimicking Huntington's disease

    DEFF Research Database (Denmark)

    Nielsen, T Rune; Bruhn, Peter; Nielsen, Jørgen E

    2010-01-01

    Behavioral changes and cognitive decline are the core clinical manifestations in the behavioral variant of frontotemporal dementia (bv-FTD). The behavioral changes may include characteristic stereotypic movements. These movements, although without clear purpose, are not involuntary. Involuntary...

  5. Structural basis for inhibition of the histone chaperone activity of SET/TAF-Iβ by cytochrome c.

    Science.gov (United States)

    González-Arzola, Katiuska; Díaz-Moreno, Irene; Cano-González, Ana; Díaz-Quintana, Antonio; Velázquez-Campoy, Adrián; Moreno-Beltrán, Blas; López-Rivas, Abelardo; De la Rosa, Miguel A

    2015-08-11

    Chromatin is pivotal for regulation of the DNA damage process insofar as it influences access to DNA and serves as a DNA repair docking site. Recent works identify histone chaperones as key regulators of damaged chromatin's transcriptional activity. However, understanding how chaperones are modulated during DNA damage response is still challenging. This study reveals that the histone chaperone SET/TAF-Iβ interacts with cytochrome c following DNA damage. Specifically, cytochrome c is shown to be translocated into cell nuclei upon induction of DNA damage, but not upon stimulation of the death receptor or stress-induced pathways. Cytochrome c was found to competitively hinder binding of SET/TAF-Iβ to core histones, thereby locking its histone-binding domains and inhibiting its nucleosome assembly activity. In addition, we have used NMR spectroscopy, calorimetry, mutagenesis, and molecular docking to provide an insight into the structural features of the formation of the complex between cytochrome c and SET/TAF-Iβ. Overall, these findings establish a framework for understanding the molecular basis of cytochrome c-mediated blocking of SET/TAF-Iβ, which subsequently may facilitate the development of new drugs to silence the oncogenic effect of SET/TAF-Iβ's histone chaperone activity.

  6. Med5(Nut1) and Med17(Srb4) Are Direct Targets of Mediator Histone H4 Tail Interactions

    Science.gov (United States)

    Liu, Zhongle; Myers, Lawrence C.

    2012-01-01

    The Mediator complex transmits activation signals from DNA bound transcription factors to the core transcription machinery. In addition to its canonical role in transcriptional activation, recent studies have demonstrated that S. cerevisiae Mediator can interact directly with nucleosomes, and their histone tails. Mutations in Mediator subunits have shown that Mediator and certain chromatin structures mutually impact each other structurally and functionally in vivo. We have taken a UV photo cross-linking approach to further delineate the molecular basis of Mediator chromatin interactions and help determine whether the impact of certain Mediator mutants on chromatin is direct. Specifically, by using histone tail peptides substituted with an amino acid analog that is a UV activatible crosslinker, we have identified specific subunits within Mediator that participate in histone tail interactions. Using Mediator purified from mutant yeast strains we have evaluated the impact of these subunits on histone tail binding. This analysis has identified the Med5 subunit of Mediator as a target for histone tail interactions and suggests that the previously observed effect of med5 mutations on telomeric heterochromatin and silencing is direct. PMID:22693636

  7. Med5(Nut1 and Med17(Srb4 are direct targets of mediator histone H4 tail interactions.

    Directory of Open Access Journals (Sweden)

    Zhongle Liu

    Full Text Available The Mediator complex transmits activation signals from DNA bound transcription factors to the core transcription machinery. In addition to its canonical role in transcriptional activation, recent studies have demonstrated that S. cerevisiae Mediator can interact directly with nucleosomes, and their histone tails. Mutations in Mediator subunits have shown that Mediator and certain chromatin structures mutually impact each other structurally and functionally in vivo. We have taken a UV photo cross-linking approach to further delineate the molecular basis of Mediator chromatin interactions and help determine whether the impact of certain Mediator mutants on chromatin is direct. Specifically, by using histone tail peptides substituted with an amino acid analog that is a UV activatible crosslinker, we have identified specific subunits within Mediator that participate in histone tail interactions. Using Mediator purified from mutant yeast strains we have evaluated the impact of these subunits on histone tail binding. This analysis has identified the Med5 subunit of Mediator as a target for histone tail interactions and suggests that the previously observed effect of med5 mutations on telomeric heterochromatin and silencing is direct.

  8. Prediction of RNA Polymerase II recruitment, elongation and stalling from histone modification data

    DEFF Research Database (Denmark)

    Chen, Yun; Jørgensen, Mette; Kolde, Raivo

    2011-01-01

    of RNAPII stalling. CONCLUSIONS: In this study we introduce a general framework to accurately predict the level of RNAPII recruitment, elongation, stalling and mRNA expression from chromatin signals. The versatility of the method also makes it ideally suited to investigate other genomic data....... strategies are needed to progress from descriptive annotation of data to quantitative, predictive models. RESULTS: Here, we describe a computational framework which with high accuracy can predict the locations of core promoters, the amount of recruited RNAPII at the promoter, the amount of elongating RNAPII...... of these four marks are found to be necessary for recruitment of RNAPII but not sufficient for the elongation. We also show that the spatial distributions of histone marks are almost as predictive as the signal strength and that a set of histone marks immediately downstream of the TSS is highly predictive...

  9. The rapidly evolving centromere-specific histone has stringent functional requirements in Arabidopsis thaliana.

    Science.gov (United States)

    Ravi, Maruthachalam; Kwong, Pak N; Menorca, Ron M G; Valencia, Joel T; Ramahi, Joseph S; Stewart, Jodi L; Tran, Robert K; Sundaresan, Venkatesan; Comai, Luca; Chan, Simon W-L

    2010-10-01

    Centromeres control chromosome inheritance in eukaryotes, yet their DNA structure and primary sequence are hypervariable. Most animals and plants have megabases of tandem repeats at their centromeres, unlike yeast with unique centromere sequences. Centromere function requires the centromere-specific histone CENH3 (CENP-A in human), which replaces histone H3 in centromeric nucleosomes. CENH3 evolves rapidly, particularly in its N-terminal tail domain. A portion of the CENH3 histone-fold domain, the CENP-A targeting domain (CATD), has been previously shown to confer kinetochore localization and centromere function when swapped into human H3. Furthermore, CENP-A in human cells can be functionally replaced by CENH3 from distantly related organisms including Saccharomyces cerevisiae. We have used cenh3-1 (a null mutant in Arabidopsis thaliana) to replace endogenous CENH3 with GFP-tagged variants. A H3.3 tail domain-CENH3 histone-fold domain chimera rescued viability of cenh3-1, but CENH3's lacking a tail domain were nonfunctional. In contrast to human results, H3 containing the A. thaliana CATD cannot complement cenh3-1. GFP-CENH3 from the sister species A. arenosa functionally replaces A. thaliana CENH3. GFP-CENH3 from the close relative Brassica rapa was targeted to centromeres, but did not complement cenh3-1, indicating that kinetochore localization and centromere function can be uncoupled. We conclude that CENH3 function in A. thaliana, an organism with large tandem repeat centromeres, has stringent requirements for functional complementation in mitosis.

  10. The Role of Extracellular Histones in Influenza Virus Pathogenesis.

    Science.gov (United States)

    Ashar, Harshini K; Mueller, Nathan C; Rudd, Jennifer M; Snider, Timothy A; Achanta, Mallika; Prasanthi, Maram; Pulavendran, Sivasami; Thomas, Paul G; Ramachandran, Akhilesh; Malayer, Jerry R; Ritchey, Jerry W; Rajasekhar, Rachakatla; Chow, Vincent T K; Esmon, Charles T; Teluguakula, Narasaraju

    2018-01-01

    Although exaggerated host immune responses have been implicated in influenza-induced lung pathogenesis, the etiologic factors that contribute to these events are not completely understood. We previously demonstrated that neutrophil extracellular traps exacerbate pulmonary injury during influenza pneumonia. Histones are the major protein components of neutrophil extracellular traps and are known to have cytotoxic effects. Here, we examined the role of extracellular histones in lung pathogenesis during influenza. Mice infected with influenza virus displayed high accumulation of extracellular histones, with widespread pulmonary microvascular thrombosis. Occluded pulmonary blood vessels with vascular thrombi often exhibited endothelial necrosis surrounded by hemorrhagic effusions and pulmonary edema. Histones released during influenza induced cytotoxicity and showed strong binding to platelets within thrombi in infected mouse lungs. Nasal wash samples from influenza-infected patients also showed increased accumulation of extracellular histones, suggesting a possible clinical relevance of elevated histones in pulmonary injury. Although histones inhibited influenza growth in vitro, in vivo treatment with histones did not yield antiviral effects and instead exacerbated lung pathology. Blocking with antihistone antibodies caused a marked decrease in lung pathology in lethal influenza-challenged mice and improved protection when administered in combination with the antiviral agent oseltamivir. These findings support the pathogenic effects of extracellular histones in that pulmonary injury during influenza was exacerbated. Targeting histones provides a novel therapeutic approach to influenza pneumonia. Copyright © 2018 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  11. Histone H2AX in DNA repair

    International Nuclear Information System (INIS)

    Lewandowska, H.; Szumiel, I.

    2002-01-01

    The paper reviews the recent reports on the role of the phosphorylated histone H2AX (γ-H2AX). The modification of this histone is an important part of the cellular response to the induction of DNA double strand brakes (DSB) by ionising radiation and other DSB-generating factors. In irradiated cells the modification is carried out mainly by ATM (ataxia-telangiectasia mutated) kinase, the enzyme that starts the alarm signalling upon induction of DSB.γ-H2AX molecules are formed within 1-3 min after irradiation and form foci at the sites of DSB. This seems to be necessary for the recruitment of repair factors that are later present in foci of damaged nuclei. Modification of a constant percentage of H2AX molecules per DSB takes place, corresponding to chromatin domains of megabase of DNA. (author)

  12. Histone deacetylase inhibitors in multiple myeloma

    Directory of Open Access Journals (Sweden)

    Sarah Deleu

    2009-06-01

    Full Text Available Novel drugs such as bortezomib and high dose chemotherapy combined with stem cell transplantation improved the outcome of multiple myeloma patients in the past decade. However, multiple myeloma often remains incurable due to the development of drug resistance governed by the bone marrow micro-environment. Therefore targeting new pathways to overcome this resistance is needed. Histone deacetylase (HDAC inhibitors represent a new class of anti-myeloma agents. Inhibiting HDACs results in histone hyperacetylation and alterations in chromatine structure, which, in turn, cause growth arrest differentiation and/or apoptosis in several tumor cells. Here we summarize the molecular actions of HDACi as a single agent or in combination with other drugs in different in vitro and in vivo myeloma models and in (preclinical trials.

  13. Replicating chromatin: a tale of histones

    DEFF Research Database (Denmark)

    Groth, Anja

    2009-01-01

    Chromatin serves structural and functional roles crucial for genome stability and correct gene expression. This organization must be reproduced on daughter strands during replication to maintain proper overlay of epigenetic fabric onto genetic sequence. Nucleosomes constitute the structural...... framework of chromatin and carry information to specify higher-order organization and gene expression. When replication forks traverse the chromosomes, nucleosomes are transiently disrupted, allowing the replication machinery to gain access to DNA. Histone recycling, together with new deposition, ensures...

  14. Histone Deacetylase Inhibitors as Anticancer Drugs.

    Science.gov (United States)

    Eckschlager, Tomas; Plch, Johana; Stiborova, Marie; Hrabeta, Jan

    2017-07-01

    Carcinogenesis cannot be explained only by genetic alterations, but also involves epigenetic processes. Modification of histones by acetylation plays a key role in epigenetic regulation of gene expression and is controlled by the balance between histone deacetylases (HDAC) and histone acetyltransferases (HAT). HDAC inhibitors induce cancer cell cycle arrest, differentiation and cell death, reduce angiogenesis and modulate immune response. Mechanisms of anticancer effects of HDAC inhibitors are not uniform; they may be different and depend on the cancer type, HDAC inhibitors, doses, etc. HDAC inhibitors seem to be promising anti-cancer drugs particularly in the combination with other anti-cancer drugs and/or radiotherapy. HDAC inhibitors vorinostat, romidepsin and belinostat have been approved for some T-cell lymphoma and panobinostat for multiple myeloma. Other HDAC inhibitors are in clinical trials for the treatment of hematological and solid malignancies. The results of such studies are promising but further larger studies are needed. Because of the reversibility of epigenetic changes during cancer development, the potency of epigenetic therapies seems to be of great importance. Here, we summarize the data on different classes of HDAC inhibitors, mechanisms of their actions and discuss novel results of preclinical and clinical studies, including the combination with other therapeutic modalities.

  15. Histone Deacetylase Inhibitors as Anticancer Drugs

    Directory of Open Access Journals (Sweden)

    Tomas Eckschlager

    2017-07-01

    Full Text Available Carcinogenesis cannot be explained only by genetic alterations, but also involves epigenetic processes. Modification of histones by acetylation plays a key role in epigenetic regulation of gene expression and is controlled by the balance between histone deacetylases (HDAC and histone acetyltransferases (HAT. HDAC inhibitors induce cancer cell cycle arrest, differentiation and cell death, reduce angiogenesis and modulate immune response. Mechanisms of anticancer effects of HDAC inhibitors are not uniform; they may be different and depend on the cancer type, HDAC inhibitors, doses, etc. HDAC inhibitors seem to be promising anti-cancer drugs particularly in the combination with other anti-cancer drugs and/or radiotherapy. HDAC inhibitors vorinostat, romidepsin and belinostat have been approved for some T-cell lymphoma and panobinostat for multiple myeloma. Other HDAC inhibitors are in clinical trials for the treatment of hematological and solid malignancies. The results of such studies are promising but further larger studies are needed. Because of the reversibility of epigenetic changes during cancer development, the potency of epigenetic therapies seems to be of great importance. Here, we summarize the data on different classes of HDAC inhibitors, mechanisms of their actions and discuss novel results of preclinical and clinical studies, including the combination with other therapeutic modalities.

  16. CDKL5 variants

    Science.gov (United States)

    Kalscheuer, Vera M.; Hennig, Friederike; Leonard, Helen; Downs, Jenny; Clarke, Angus; Benke, Tim A.; Armstrong, Judith; Pineda, Mercedes; Bailey, Mark E.S.; Cobb, Stuart R.

    2017-01-01

    Objective: To provide new insights into the interpretation of genetic variants in a rare neurologic disorder, CDKL5 deficiency, in the contexts of population sequencing data and an updated characterization of the CDKL5 gene. Methods: We analyzed all known potentially pathogenic CDKL5 variants by combining data from large-scale population sequencing studies with CDKL5 variants from new and all available clinical cohorts and combined this with computational methods to predict pathogenicity. Results: The study has identified several variants that can be reclassified as benign or likely benign. With the addition of novel CDKL5 variants, we confirm that pathogenic missense variants cluster in the catalytic domain of CDKL5 and reclassify a purported missense variant as having a splicing consequence. We provide further evidence that missense variants in the final 3 exons are likely to be benign and not important to disease pathology. We also describe benign splicing and nonsense variants within these exons, suggesting that isoform hCDKL5_5 is likely to have little or no neurologic significance. We also use the available data to make a preliminary estimate of minimum incidence of CDKL5 deficiency. Conclusions: These findings have implications for genetic diagnosis, providing evidence for the reclassification of specific variants previously thought to result in CDKL5 deficiency. Together, these analyses support the view that the predominant brain isoform in humans (hCDKL5_1) is crucial for normal neurodevelopment and that the catalytic domain is the primary functional domain. PMID:29264392

  17. Developing selective histone deacetylases (HDACs inhibitors through ebselen and analogs

    Directory of Open Access Journals (Sweden)

    Wang Y

    2017-05-01

    Full Text Available Yuren Wang,1 Jason Wallach,2 Stephanie Duane,1 Yuan Wang,1 Jianghong Wu,1 Jeffrey Wang,1 Adeboye Adejare,2 Haiching Ma1 1Reaction Biology Corp., Malvern, 2Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, PA, USA Abstract: Histone deacetylases (HDACs are key regulators of gene expression in cells and have been investigated as important therapeutic targets for cancer and other diseases. Different subtypes of HDACs appear to play disparate roles in the cells and are associated with specific diseases. Therefore, substantial effort has been made to develop subtype-selective HDAC inhibitors. In an effort to discover existing scaffolds with HDAC inhibitory activity, we screened a drug library approved by the US Food and Drug Administration and a National Institutes of Health Clinical Collection compound library in HDAC enzymatic assays. Ebselen, a clinical safe compound, was identified as a weak inhibitor of several HDACs, including HDAC1, HDAC3, HDAC4, HDAC5, HDAC6, HDAC7, HDAC8, and HDAC9 with half maximal inhibitory concentrations approximately single digit of µM. Two ebselen analogs, ebselen oxide and ebsulfur (a diselenide analog of ebselen, also inhibited these HDACs, however with improved potencies on HDAC8. Benzisothiazol, the core structure of ebsulfur, specifically inhibited HDAC6 at a single digit of µM but had no inhibition on other HDACs. Further efforts on structure–activity relationship based on the core structure of ebsulfur led to the discovery of a novel class of potent and selective HDAC6 inhibitors with RBC-2008 as the lead compound with single-digit nM potency. This class of histone deacetylase inhibitor features a novel pharmacophore with an ebsulfur scaffold selectively targeting HDAC6. Consistent with its inhibition on HDAC6, RBC-2008 significantly increased the acetylation levels of α-tubulin in PC-3 cells. Furthermore, treatment with these compounds led to

  18. Targeting post-translational modifications of histones for cancer therapy.

    Science.gov (United States)

    Hsu, Y-C; Hsieh, Y-H; Liao, C-C; Chong, L-W; Lee, C-Y; Yu, Y-L; Chou, R-H

    2015-10-30

    Post-translational modifications (PTMs) on histones including acetylation, methylation, phosphorylation, citrullination, ubiquitination, ADP ribosylation, and sumoylation, play important roles in different biological events including chromatin dynamics, DNA replication, and transcriptional regulation. Aberrant histones PTMs leads to abnormal gene expression and uncontrolled cell proliferation, followed by development of cancers. Therefore, targeting the enzymes required for specific histone PTMs holds a lot of potential for cancer treatment. In this review article, we retrospect the latest studies in the regulations of acetylation, methylation, and phosphorylation of histones. We also summarize inhibitors/drugs that target these modifications for cancer treatment.

  19. The Effect of Histone Hyperacetylation on Viability of Basal-Like Breast Cancer Cells MDA-MB-231

    Directory of Open Access Journals (Sweden)

    Aliasghar Rahimian

    2017-06-01

    Full Text Available Background The Basal-Like breast cancer, is always known for lack of expression of estrogen receptor (ER, progesterone receptor (PR and as well, absence of epidermal growth factor receptor 2 (HER2 gene amplification. Improper expression pattern of ER, PR, and Her2, makes Basal-Like breast tumors resistant to the current hormonal and anti HER2 treatments. In recent decades, several studies have been conducted to investigate the regulatory role of chemical modifications of core histones in gene expression. Their results have shown that histone acetylation is involved in regulation of cell survival. Acetylation of core histones is regulated by the epigenetic-modifying enzymes named Histone Deacetylases (HDACs. As a new approach to control the viability of breast tumor cells resistant to the hormonal and anti-HER2 treatments, we have targeted the HDACs. Using Trichostatin A (TSA as a known HDACs inhibitor, we have tried to hyperacetylate the core histones of MDA-MB-231 cells as an in vitro model of Basal-Like breast tumors. Then we have investigated the effect of histone hyperacetylation on viability of MDA-MB-231 cells. Methods MDA-MB-231 cells were cultured in RPMI 1640 medium containing 10% fetal bovine serum (FBS and were incubated at 37°C, in a humidified incubator with 5% CO2 atmosphere. Then cells were treated with different concentrations of TSA including: 50, 100, 200, 400, 800 and 1000 nM or control (1% DMSO. After 24 and 48 hours, viability of cells was evaluated by MTT assay. Results After 24 and 48h exposure to different concentrations of TSA, MDA-MB-231 cells showed a maximum tolerable dose. At higher concentrations, TSA decreased the percentage of cell viability through a time-dose dependent manner. IC50 value for 48h treatment was 600 nM. Conclusions Our results indicate that HDACs inhibition and subsequently hyperacetylation of histones, leads to cytotoxic effects on breast tumor cells resistant to the current treatments. Following

  20. Subnucleosomes and their relationships to the arrangement of histone binding sites along nucleosome deoxyribonucleic acid

    International Nuclear Information System (INIS)

    Nelson, D.A.; Mencke, A.J.; Chambers, S.A.; Oosterhof, D.K.; Rill, R.L.

    1982-01-01

    Micrococcal nuclease cleaves within nucleosomes at sites spaced about 10.4 base pairs (bp) apart. Cleavages at sites equivalent to 30-35 bp from the ends of 146-bp cores cause spontaneous loss of an H2a-H2b pair associated with 30-40 bp length DNA. Cleavages at certain other sites do not affect the nucleosome integrity unless a solvent perturbant such as urea is added. Chromatin moderately digested with micrococcal nuclease, when fractionated by sedimentation or electrophoresis in the presence of 3 M urea, yielded four previously unobserved subnucleosomes with the following histone/DNA compositions: (H3) 2 (H4) 2 (H2a)(H2b)/95-115 bp; (H3)(H4)/70-80 bp DNA; (H2a)(H2b)/50-60 bp DNA; and (H1)/60-70 bp DNA. All but the latter subnucleosome were also obtained upon DNase I digestion of purified nucleosome cores labeled on the 5' ends with 32 P. Only subnucleosomes that retained H2a and H2b also retained labeled ends. These results show that H2a and H2b are paired on the terminal 30-40 bp of core DNA, as suggested from analyses of histone-DNA cross-link products by Mirzabekov and coworkers. Considerations of the orgins and compositions of subnucleosomes and of cross-linking data suggest an expanded model for the locations of histone binding sites along nucleosome core DNA. The principal features of this model are (i) strong electrostatic binding sites of H2a and H2b occur at positions approximately 20-30 bp from the core ends, (ii) strong electrostatic binding sites of H3 and H4 occur primarily on the central 40 bp of core DNA, (iii) strong nonelectrostatic, urea-sensitive binding sites of H3 and H4 occur at positions approximately 30-50 bp from the core ends, and (iv) urea-sensitive binding sites of H2a or H2b may occur on the terminal 10-20 bp of core DNA

  1. Genome-wide analysis of regions similar to promoters of histone genes

    KAUST Repository

    Chowdhary, Rajesh; Bajic, Vladimir B.; Dong, Difeng; Wong, Limsoon; Liu, Jun S

    2010-01-01

    of histone and histone-coregulated gene transcription initiation. While these hypotheses still remain to be verified, we believe that these form a useful resource for researchers to further explore regulation of human histone genes and human genome

  2. EPC1/TIP60-mediated histone acetylation facilitates spermiogenesis in mice

    DEFF Research Database (Denmark)

    Dong, Yixin; Isono, Kyo Ichi; Ohbo, Kazuyuki

    2017-01-01

    Global histone hyperacetylation is suggested to play a critical role for replacement of histones by transition proteins and protamines to compact the genome during spermiogenesis. However, the underlying mechanisms for hyperacetylation- mediated histone replacement remains poorly understood. Here...

  3. Meiosis-Specific Loading of the Centromere-Specific Histone CENH3 in Arabidopsis thaliana

    Science.gov (United States)

    Ravi, Maruthachalam; Shibata, Fukashi; Ramahi, Joseph S.; Nagaki, Kiyotaka; Chen, Changbin; Murata, Minoru; Chan, Simon W. L.

    2011-01-01

    Centromere behavior is specialized in meiosis I, so that sister chromatids of homologous chromosomes are pulled toward the same side of the spindle (through kinetochore mono-orientation) and chromosome number is reduced. Factors required for mono-orientation have been identified in yeast. However, comparatively little is known about how meiotic centromere behavior is specialized in animals and plants that typically have large tandem repeat centromeres. Kinetochores are nucleated by the centromere-specific histone CENH3. Unlike conventional histone H3s, CENH3 is rapidly evolving, particularly in its N-terminal tail domain. Here we describe chimeric variants of CENH3 with alterations in the N-terminal tail that are specifically defective in meiosis. Arabidopsis thaliana cenh3 mutants expressing a GFP-tagged chimeric protein containing the H3 N-terminal tail and the CENH3 C-terminus (termed GFP-tailswap) are sterile because of random meiotic chromosome segregation. These defects result from the specific depletion of GFP-tailswap protein from meiotic kinetochores, which contrasts with its normal localization in mitotic cells. Loss of the GFP-tailswap CENH3 variant in meiosis affects recruitment of the essential kinetochore protein MIS12. Our findings suggest that CENH3 loading dynamics might be regulated differently in mitosis and meiosis. As further support for our hypothesis, we show that GFP-tailswap protein is recruited back to centromeres in a subset of pollen grains in GFP-tailswap once they resume haploid mitosis. Meiotic recruitment of the GFP-tailswap CENH3 variant is not restored by removal of the meiosis-specific cohesin subunit REC8. Our results reveal the existence of a specialized loading pathway for CENH3 during meiosis that is likely to involve the hypervariable N-terminal tail. Meiosis-specific CENH3 dynamics may play a role in modulating meiotic centromere behavior. PMID:21695238

  4. Proteomics Core

    Data.gov (United States)

    Federal Laboratory Consortium — Proteomics Core is the central resource for mass spectrometry based proteomics within the NHLBI. The Core staff help collaborators design proteomics experiments in a...

  5. Antifungal properties of wheat histones (H1-H4) and purified wheat histone H1

    Science.gov (United States)

    Wheat (Triticum sp.) histones H1, H2, H3, and H4 were extracted. H1 was further purified. Their activities against fungi with varying degrees of wheat pathogenicity were determined. They included Aspergillus flavus, A. fumigatus, A. niger, F. oxysporum, F. verticillioides, F. solani, F. graminearu...

  6. Structural Basis of Histone Demethylase KDM6B Histone 3 Lysine 27 Specificity

    DEFF Research Database (Denmark)

    Jones, Sarah E; Olsen, Lars; Gajhede, Michael

    2018-01-01

    KDM subfamily 6 enzymes KDM6A and KDM6B specifically catalyze demethylation of di- and trimethylated lysine on histone 3 lysine 27 (H3K27me3/2) and play an important role in repression of developmental genes. Despite identical amino acid sequence in the immediate surroundings of H3K9me3/2 (ARKS...

  7. Variants of cellobiohydrolases

    Energy Technology Data Exchange (ETDEWEB)

    Bott, Richard R.; Foukaraki, Maria; Hommes, Ronaldus Wilhelmus; Kaper, Thijs; Kelemen, Bradley R.; Kralj, Slavko; Nikolaev, Igor; Sandgren, Mats; Van Lieshout, Johannes Franciscus Thomas; Van Stigt Thans, Sander

    2018-04-10

    Disclosed are a number of homologs and variants of Hypocrea jecorina Ce17A (formerly Trichoderma reesei cellobiohydrolase I or CBH1), nucleic acids encoding the same and methods for producing the same. The homologs and variant cellulases have the amino acid sequence of a glycosyl hydrolase of family 7A wherein one or more amino acid residues are substituted and/or deleted.

  8. Erasing the methyl mark: histone demethylases at the center of cellular differentiation and disease

    DEFF Research Database (Denmark)

    Cloos, Paul A C; Christensen, Jesper; Agger, Karl

    2008-01-01

    The enzymes catalyzing lysine and arginine methylation of histones are essential for maintaining transcriptional programs and determining cell fate and identity. Until recently, histone methylation was regarded irreversible. However, within the last few years, several families of histone...... demethylases erasing methyl marks associated with gene repression or activation have been identified, underscoring the plasticity and dynamic nature of histone methylation. Recent discoveries have revealed that histone demethylases take part in large multiprotein complexes synergizing with histone deacetylases......, histone methyltransferases, and nuclear receptors to control developmental and transcriptional programs. Here we review the emerging biochemical and biological functions of the histone demethylases and discuss their potential involvement in human diseases, including cancer....

  9. Chemical Probes of Histone Lysine Methyltransferases

    Science.gov (United States)

    2015-01-01

    Growing evidence suggests that histone methyltransferases (HMTs, also known as protein methyltransferases (PMTs)) play an important role in diverse biological processes and human diseases by regulating gene expression and the chromatin state. Therefore, HMTs have been increasingly recognized by the biomedical community as a class of potential therapeutic targets. High quality chemical probes of HMTs, as tools for deciphering their physiological functions and roles in human diseases and testing therapeutic hypotheses, are critical for advancing this promising field. In this review, we focus on the discovery, characterization, and biological applications of chemical probes for HMTs. PMID:25423077

  10. Specificity of interaction between carcinogenic polynuclear aromatic hydrocarbons and nuclear proteins: widespread occurrence of a restricted pattern of histone-binding in intact cells

    International Nuclear Information System (INIS)

    MacLeod, M.C.; Pelling, J.C.; Slaga, T.J.; Nikbakht-Noghrei, P.A.; Mansfield, B.K.; Selkirk, J.K.

    1982-01-01

    Metabolic activation of benzo(a)pyrene [B(a)P] produces a number of potentially reactive metabolites. The endproducts of one metabolic pathway, 7,8-dihydroxy-9,10-oxy-7,8,9,10-tetrahydro-B(a)P (BPDE) are responsible for essentially all DNA adduct formation in animal cells treated with B(a)P, and a particular stereoisomer, designated (+)-anti-BPDE is thought to be the ultimate carcinogenic derivative of B(a)P. In hamster embryo cell nuclei treated with (+)-anti-BPDE, two of the histones of the nucleosomal core, H3 and H2A, are covalently modified, while the remaining core histones, H4 and H2B, are essentially unmodified. All four purified core histones, however, serve as targets. 7,12-dimethylbenz(a)anthracene and 3-methylcholanthrene show the same pattern of histone binding in hamster embryo cells. Treatment of mouse embryo cells with [ 3 H]-BPDE results in covalent binding of the hydrocarbon to histones H3 and H2A among the many cellular targets, while histones H2B and H4 are not bound. Similar binding patterns are seen in mouse embryo cells, a permanent murine, fibroblastic cell line, and a human mammary epithelial cell line, T47D, treated with [ 3 H]B(a)P. Again, the histones are unevenly labeled, displaying the H3 and H2A pattern. Histone-binding in the human cells may also be mediated by BPDE. Similar BPDE binding patterns were observed in other murine and human cell lines and in primary cultures of murine epidermal epithelial cells. The restriction of histone H2B and H4 binding appears to be general when intact cultured cells are studied. This specificity was not observed in a mixed reconstituted system in which rat liver microsomes were used to activate B(a)P. This finding reinforces reservations concerning the use of microsomal systems to probe the interactions of carcinogens with macromolecules and the relationships of adduct formation with the processes of carcinogenesis

  11. Class IIa histone deacetylases are conserved regulators of circadian function.

    Science.gov (United States)

    Fogg, Paul C M; O'Neill, John S; Dobrzycki, Tomasz; Calvert, Shaun; Lord, Emma C; McIntosh, Rebecca L L; Elliott, Christopher J H; Sweeney, Sean T; Hastings, Michael H; Chawla, Sangeeta

    2014-12-05

    Class IIa histone deacetylases (HDACs) regulate the activity of many transcription factors to influence liver gluconeogenesis and the development of specialized cells, including muscle, neurons, and lymphocytes. Here, we describe a conserved role for class IIa HDACs in sustaining robust circadian behavioral rhythms in Drosophila and cellular rhythms in mammalian cells. In mouse fibroblasts, overexpression of HDAC5 severely disrupts transcriptional rhythms of core clock genes. HDAC5 overexpression decreases BMAL1 acetylation on Lys-537 and pharmacological inhibition of class IIa HDACs increases BMAL1 acetylation. Furthermore, we observe cyclical nucleocytoplasmic shuttling of HDAC5 in mouse fibroblasts that is characteristically circadian. Mutation of the Drosophila homolog HDAC4 impairs locomotor activity rhythms of flies and decreases period mRNA levels. RNAi-mediated knockdown of HDAC4 in Drosophila clock cells also dampens circadian function. Given that the localization of class IIa HDACs is signal-regulated and influenced by Ca(2+) and cAMP signals, our findings offer a mechanism by which extracellular stimuli that generate these signals can feed into the molecular clock machinery. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Co-regulation of histone-modifying enzymes in cancer.

    Directory of Open Access Journals (Sweden)

    Abul B M M K Islam

    Full Text Available Cancer is characterized by aberrant patterns of expression of multiple genes. These major shifts in gene expression are believed to be due to not only genetic but also epigenetic changes. The epigenetic changes are communicated through chemical modifications, including histone modifications. However, it is unclear whether the binding of histone-modifying proteins to genomic regions and the placing of histone modifications efficiently discriminates corresponding genes from the rest of the genes in the human genome. We performed gene expression analysis of histone demethylases (HDMs and histone methyltransferases (HMTs, their target genes and genes with relevant histone modifications in normal and tumor tissues. Surprisingly, this analysis revealed the existence of correlations in the expression levels of different HDMs and HMTs. The observed HDM/HMT gene expression signature was specific to particular normal and cancer cell types and highly correlated with target gene expression and the expression of genes with histone modifications. Notably, we observed that trimethylation at lysine 4 and lysine 27 separated preferentially expressed and underexpressed genes, which was strikingly different in cancer cells compared to normal cells. We conclude that changes in coordinated regulation of enzymes executing histone modifications may underlie global epigenetic changes occurring in cancer.

  13. Histone acetyltransferases : challenges in targeting bi-substrate enzymes

    NARCIS (Netherlands)

    Wapenaar, Hannah; Dekker, Frank J

    2016-01-01

    Histone acetyltransferases (HATs) are epigenetic enzymes that install acetyl groups onto lysine residues of cellular proteins such as histones, transcription factors, nuclear receptors, and enzymes. HATs have been shown to play a role in diseases ranging from cancer and inflammatory diseases to

  14. Chemical mechanisms of histone lysine and arginine modifications

    OpenAIRE

    Smith, Brian C.; Denu, John M.

    2008-01-01

    Histone lysine and arginine residues are subject to a wide array of post-translational modifications including methylation, citrullination, acetylation, ubiquitination, and sumoylation. The combinatorial action of these modifications regulates critical DNA processes including replication, repair, and transcription. In addition, enzymes that modify histone lysine and arginine residues have been correlated with a variety of human diseases including arthritis, cancer, heart disease, diabetes, an...

  15. Histone methylation and aging: Lessons learned from model systems

    Science.gov (United States)

    McCauley, Brenna S.; Dang, Weiwei

    2014-01-01

    Aging induces myriad cellular and, ultimately, physiological changes that cause a decline in an organism's functional capabilities. Although the aging process and pathways that regulate it have been extensively studied, only in the last decade have we begun to appreciate that dynamic histone methylation may contribute to this process. In this review, we discuss recent work implicating histone methylation in aging. Loss of certain histone methyltransferases and demethylases changes lifespan in invertebrates, and alterations in histone methylation in aged organisms regulate lifespan and aging phenotypes, including oxidative stress-induced hormesis in yeast, insulin signaling in Caenorhabiditis elegans and mammals, and the senescence-associated secretory phenotype in mammals. In all cases where histone methylation has been shown to impact aging and aging phenotypes, it does so by regulating transcription, suggesting that this is a major mechanism of its action in this context. Histone methylation additionally regulates or is regulated by other cellular pathways that contribute to or combat aging. Given the numerous processes that regulate aging and histone methylation, and are in turn regulated by them, the role of histone methylation in aging is almost certainly underappreciated. PMID:24859460

  16. Reconstitution of Nucleosomes with Differentially Isotope-labeled Sister Histones.

    Science.gov (United States)

    Liokatis, Stamatios

    2017-03-26

    Asymmetrically modified nucleosomes contain the two copies of a histone (sister histones) decorated with distinct sets of Post-translational Modifications (PTMs). They are newly identified species with unknown means of establishment and functional implications. Current analytical methods are inadequate to detect the copy-specific occurrence of PTMs on the nucleosomal sister histones. This protocol presents a biochemical method for the in vitro reconstitution of nucleosomes containing differentially isotope-labeled sister histones. The generated complex can be also asymmetrically modified, after including a premodified histone pool during refolding of histone subcomplexes. These asymmetric nucleosome preparations can be readily reacted with histone-modifying enzymes to study modification cross-talk mechanisms imposed by the asymmetrically pre-incorporated PTM using nuclear magnetic resonance (NMR) spectroscopy. Particularly, the modification reactions in real-time can be mapped independently on the two sister histones by performing different types of NMR correlation experiments, tailored for the respective isotope type. This methodology provides the means to study crosstalk mechanisms that contribute to the formation and propagation of asymmetric PTM patterns on nucleosomal complexes.

  17. Biotinylation is a natural, albeit rare, modification of human histones

    Science.gov (United States)

    Kuroishi, Toshinobu; Rios-Avila, Luisa; Pestinger, Valerie; Wijeratne, Subhashinee S. K.; Zempleni, Janos

    2011-01-01

    Previous studies suggest that histones H3 and H4 are posttranslationally modified by binding of the vitamin biotin, catalyzed by holocarboxylase synthetase (HCS). Albeit a rare epigenetic mark, biotinylated histones were repeatedly shown to be enriched in repeat regions and repressed loci, participating in the maintenance of genome stability and gene regulation. Recently, a team of investigators failed to detect biotinylated histones and proposed that biotinylation is not a natural modification of histones, but rather an assay artifact. Here, we describe the results of experiments, including the comparison of various analytical protocols, antibodies, cell lines, classes of histones, and radiotracers. These studies provide unambiguous evidence that biotinylation is a natural, albeit rare, histone modification. Less than 0.001% of human histones H3 and H4 are biotinylated, raising concerns that the abundance might too low to elicit biological effects in vivo. We integrated information from this study, previous studies, and ongoing research efforts to present a new working model in which biological effects are caused by a role of HCS in multiprotein complexes in chromatin. In this model, docking of HCS in chromatin causes the occasional binding of biotin to histones as a tracer for HCS binding sites. PMID:21930408

  18. Heparin defends against the toxicity of circulating histones in sepsis.

    Science.gov (United States)

    Wang, Feifei; Zhang, Naipu; Li, Biru; Liu, Lanbo; Ding, Lei; Wang, Ying; Zhu, Yimin; Mo, Xi; Cao, Qing

    2015-06-01

    Although circulating histones were demonstrated as major mediators of death in septic mice models, their roles in septic patients are not clarified. The present study sought to evaluate the clinical relevance of the circulating histone levels in septic children, and the antagonizing effects of heparin on circulating histones. Histone levels in the plasma of septic children were significantly higher than healthy controls, and positively correlated with disease severity. Histone treatment could activate NF-κB pathway of the endothelial cells and induce the secretion of large amount of cytokines that further amplify inflammation, subsequently leading to organ damage. Co-injection of low dose heparin with lethal dose histones could protect mouse from organ damage and death by antagonizing circulating histones, and similar effects were also observed in other septic models. Collectively, these findings indicated that circulating histones might serve as key factors in the pathogenesis of sepsis and their levels in plasma might be a marker for disease progression and prognosis. Furthermore, low dose heparin might be an effective therapy to hamper sepsis progression and reduce the mortality.

  19. Histone deacetylases and their roles in mineralized tissue regeneration

    Directory of Open Access Journals (Sweden)

    Nam Cong-Nhat Huynh

    2017-12-01

    Full Text Available Histone acetylation is an important epigenetic mechanism that controls expression of certain genes. It includes non-sequence-based changes of chromosomal regional structure that can alter the expression of genes. Acetylation of histones is controlled by the activity of two groups of enzymes: the histone acetyltransferases (HATs and histone deacetylases (HDACs. HDACs remove acetyl groups from the histone tail, which alters its charge and thus promotes compaction of DNA in the nucleosome. HDACs render the chromatin structure into a more compact form of heterochromatin, which makes the genes inaccessible for transcription. By altering the transcriptional activity of bone-associated genes, HDACs control both osteogenesis and osteoclastogenesis. This review presents an overview of the function of HDACs in the modulation of bone formation. Special attention is paid to the use of HDAC inhibitors in mineralized tissue regeneration from cells of dental origin.

  20. Immune activation by histones: plusses and minuses in inflammation.

    Science.gov (United States)

    Pisetsky, David S

    2013-12-01

    Histones are highly cationic proteins that are essential components of the cell nucleus, interacting with DNA to form the nucleosome and regulating transcription. Histones, however, can transit from the cell nucleus during cell death and, once in an extracellular location, can serve as danger signals and activate immune cells. An article in this issue of the European Journal of Immunology [Eur. J. Immunol. 2013. 43: 3336-3342] reports that histones can activate monocyte-derived DCs via the NRLP3 inflammasome to induce the production of IL-1β. As such, histones, which can also stimulate TLRs, may drive events in the immunopathogenesis of a wide range of acute and chronic diseases marked by sterile inflammation. While the mechanism of this stimulation is not known, the positive charge of histones may provide a structural element to promote interaction with cells and activation of downstream signaling systems. © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. The role of extracellular histones in haematological disorders.

    Science.gov (United States)

    Alhamdi, Yasir; Toh, Cheng-Hock

    2016-06-01

    Over the past decades, chromosomal alterations have been extensively investigated for their pathophysiological relevance in haematological malignancies. In particular, epigenetic modifications of intra-nuclear histones are now known as key regulators of healthy cell cycles that have also evolved into novel therapeutic targets for certain blood cancers. Thus, for most haematologists, histones are DNA-chained proteins that are buried deep within chromatin. However, the plot has deepened with recent revelations on the function of histones when unchained and released extracellularly upon cell death or from activated neutrophils as part of neutrophil extracellular traps (NETs). Extracellular histones and NETs are increasingly recognized for profound cytotoxicity and pro-coagulant effects. This article highlights the importance of recognizing this new paradigm of extracellular histones as a key player in host defence through its damage-associated molecular patterns, which could translate into novel diagnostic and therapeutic biomarkers in various haematological and critical disorders. © 2016 John Wiley & Sons Ltd.

  2. Effect of leucine-to-methionine substitutions on the diffraction quality of histone chaperone SET/TAF-Ibeta/INHAT crystals.

    Science.gov (United States)

    Senda, Miki; Muto, Shinsuke; Horikoshi, Masami; Senda, Toshiya

    2008-10-01

    One of the most frequent problems in crystallization is poor quality of the crystals. In order to overcome this obstacle several methods have been utilized, including amino-acid substitutions of the target protein. Here, an example is presented of crystal-quality improvement by leucine-to-methionine substitutions. A variant protein with three amino-acid substitutions enabled improvement of the crystal quality of the histone chaperone SET/TAF-Ibeta/INHAT when combined with optimization of the cryoconditions. This procedure improved the resolution of the SET/TAF-Ibeta/INHAT crystals from around 5.5 to 2.3 A without changing the crystallization conditions.

  3. Potential non-oncological applications of histone deacetylase inhibitors.

    Science.gov (United States)

    Ververis, Katherine; Karagiannis, Tom C

    2011-01-01

    Histone deacetylase inhibitors have emerged as a new class of anticancer therapeutic drugs. Their clinical utility in oncology stems from their intrinsic cytotoxic properties and combinatorial effects with other conventional cancer therapies. To date, the histone deacetylase inhibitors suberoylanilide hydroxamic acid (Vorinostat, Zolinza®) and depsipeptide (Romidepsin, Istodax®) have been approved by the US Food and Drug Administration for the treatment of refractory cutaneous T-cell lymphoma. Further, there are currently over 100 clinical trials involving the use of histone deacetylase inhibitors in a wide range of solid and hematological malignancies. The therapeutic potential of histone deacetylase inhibitors has also been investigated for numerous other diseases. For example, the cytotoxic properties of histone deacetylase inhibitors are currently being harnessed as a potential treatment for malaria, whereas the efficacy of these compounds for HIV relies on de-silencing latent virus. The anti-inflammatory properties of histone deacetylase inhibitors are the predominant mechanisms for other diseases, such as hepatitis, systemic lupus erythematosus and a wide range of neurodegenerative conditions. Additionally, histone deacetylase inhibitors have been shown to be efficacious in animal models of cardiac hypertrophy and asthma. Broad-spectrum histone deacetylase inhibitors are clinically available and have been used almost exclusively in preclinical systems to date. However, it is emerging that class- or isoform-specific compounds, which are becoming more readily available, may be more efficacious particularly for non-oncological applications. The aim of this review is to provide an overview of the effects and clinical potential of histone deacetylase inhibitors in various diseases. Apart from applications in oncology, the discussion is focused on the potential efficacy of histone deacetylase inhibitors for the treatment of neurodegenerative diseases, cardiac

  4. Yeast linker histone Hho1p is required for efficient RNA polymerase I processivity and transcriptional silencing at the ribosomal DNA

    OpenAIRE

    Levy, Anat; Eyal, Miri; Hershkovits, Gitit; Salmon-Divon, Mali; Klutstein, Michael; Katcoff, Don Jay

    2008-01-01

    Nucleosome core particles in eukaryotes are linked by a stretch of DNA that is usually associated with a linker histone. Here, we show in yeast, that the presence of yeast linker histone Hho1p represses expression of a pol II transcribed gene (MET15) embedded in the rDNA. In vivo deletions of Hho1p sequences showed that the second globular domain is sufficient for that repression, whereas the presence of the N terminus is required for its derepression. In contrast, a run-on assay confirmed by...

  5. Recombinant thrombomodulin protects mice against histone-induced lethal thromboembolism.

    Directory of Open Access Journals (Sweden)

    Mayumi Nakahara

    Full Text Available INTRODUCTION: Recent studies have shown that histones, the chief protein component of chromatin, are released into the extracellular space during sepsis, trauma, and ischemia-reperfusion injury, and act as major mediators of the death of an organism. This study was designed to elucidate the cellular and molecular basis of histone-induced lethality and to assess the protective effects of recombinant thrombomodulin (rTM. rTM has been approved for the treatment of disseminated intravascular coagulation (DIC in Japan, and is currently undergoing a phase III clinical trial in the United States. METHODS: Histone H3 levels in plasma of healthy volunteers and patients with sepsis and DIC were measured using enzyme-linked immunosorbent assay. Male C57BL/6 mice were injected intravenously with purified histones, and pathological examinations were performed. The protective effects of rTM against histone toxicity were analyzed both in vitro and in mice. RESULTS: Histone H3 was not detectable in plasma of healthy volunteers, but significant levels were observed in patients with sepsis and DIC. These levels were higher in non-survivors than in survivors. Extracellular histones triggered platelet aggregation, leading to thrombotic occlusion of pulmonary capillaries and subsequent right-sided heart failure in mice. These mice displayed symptoms of DIC, including thrombocytopenia, prolonged prothrombin time, decreased fibrinogen, fibrin deposition in capillaries, and bleeding. Platelet depletion protected mice from histone-induced death in the first 30 minutes, suggesting that vessel occlusion by platelet-rich thrombi might be responsible for death during the early phase. Furthermore, rTM bound to extracellular histones, suppressed histone-induced platelet aggregation, thrombotic occlusion of pulmonary capillaries, and dilatation of the right ventricle, and rescued mice from lethal thromboembolism. CONCLUSIONS: Extracellular histones cause massive

  6. Migraine Variants in Children

    Science.gov (United States)

    ... Headaches in Children FAQ Migraine Variants In Children Children Get Migraines Too! Learn More Migraine Information Find Help Doctors & Resources Get Connected Join the Conversation Follow Us on Social Media Company About News Resources Privacy Policy Contact Phone: ...

  7. Histone deacetylase inhibitors (HDACIs: multitargeted anticancer agents

    Directory of Open Access Journals (Sweden)

    Ververis K

    2013-02-01

    Full Text Available Katherine Ververis,1 Alison Hiong,1 Tom C Karagiannis,1,* Paul V Licciardi2,*1Epigenomic Medicine, Alfred Medical Research and Education Precinct, 2Allergy and Immune Disorders, Murdoch Childrens Research Institute, Melbourne, VIC, Australia*These authors contributed equally to this workAbstract: Histone deacetylase (HDAC inhibitors are an emerging class of therapeutics with potential as anticancer drugs. The rationale for developing HDAC inhibitors (and other chromatin-modifying agents as anticancer therapies arose from the understanding that in addition to genetic mutations, epigenetic changes such as dysregulation of HDAC enzymes can alter phenotype and gene expression, disturb homeostasis, and contribute to neoplastic growth. The family of HDAC inhibitors is large and diverse. It includes a range of naturally occurring and synthetic compounds that differ in terms of structure, function, and specificity. HDAC inhibitors have multiple cell type-specific effects in vitro and in vivo, such as growth arrest, cell differentiation, and apoptosis in malignant cells. HDAC inhibitors have the potential to be used as monotherapies or in combination with other anticancer therapies. Currently, there are two HDAC inhibitors that have received approval from the US FDA for the treatment of cutaneous T-cell lymphoma: vorinostat (suberoylanilide hydroxamic acid, Zolinza and depsipeptide (romidepsin, Istodax. More recently, depsipeptide has also gained FDA approval for the treatment of peripheral T-cell lymphoma. Many more clinical trials assessing the effects of various HDAC inhibitors on hematological and solid malignancies are currently being conducted. Despite the proven anticancer effects of particular HDAC inhibitors against certain cancers, many aspects of HDAC enzymes and HDAC inhibitors are still not fully understood. Increasing our understanding of the effects of HDAC inhibitors, their targets and mechanisms of action will be critical for the

  8. Mislocalization of the Drosophila centromere-specific histone CIDpromotes formation of functional ectopic kinetochores

    Energy Technology Data Exchange (ETDEWEB)

    Heun, Patrick; Erhardt, Sylvia; Blower, Michael D.; Weiss,Samara; Skora, Andrew D.; Karpen, Gary H.

    2006-01-30

    The centromere-specific histone variant CENP-A (CID in Drosophila) is a structural and functional foundation for kinetochore formation and chromosome segregation. Here, we show that overexpressed CID is mislocalized into normally non-centromeric regions in Drosophila tissue culture cells and animals. Analysis of mitoses in living and fixed cells reveals that mitotic delays, anaphase bridges, chromosome fragmentation, and cell and organismal lethality are all direct consequences of CID mislocalization. In addition, proteins that are normally restricted to endogenous kinetochores assemble at a subset of ectopic CID incorporation regions. The presence of microtubule motors and binding proteins, spindle attachments, and aberrant chromosome morphologies demonstrate that these ectopic kinetochores are functional. We conclude that CID mislocalization promotes formation of ectopic centromeres and multicentric chromosomes, which causes chromosome missegregation, aneuploidy, and growth defects. Thus, CENP-A mislocalization is one possible mechanism for genome instability during cancer progression, as well as centromere plasticity during evolution.

  9. Natural Diversity in Pentose Fermentation Is Explained by Variations in Histone Deacetylases

    Directory of Open Access Journals (Sweden)

    Zvi Tamari

    2016-01-01

    Full Text Available The extent to which carbon flux is directed toward fermentation versus respiration differs between cell types and environmental conditions. Understanding the basic cellular processes governing carbon flux is challenged by the complexity of the metabolic and regulatory networks. To reveal the genetic basis for natural diversity in channeling carbon flux, we applied quantitative trait loci analysis by phenotyping and genotyping hundreds of individual F2 segregants of budding yeast that differ in their capacity to ferment the pentose sugar xylulose. Causal alleles were mapped to the RXT3 and PHO23 genes, two components of the large Rpd3 histone deacetylation complex. We show that these allelic variants modulate the expression of SNF1/AMPK-dependent respiratory genes. Our results suggest that over close evolutionary distances, diversification of carbon flow is driven by changes in global regulators, rather than adaptation of specific metabolic nodes. Such regulators may improve the ability to direct metabolic fluxes for biotechnological applications.

  10. Histone Deacetylase Inhibitor Alleviates the Neurodegenerative Phenotypes and Histone Dysregulation in Presenilins-Deficient Mice

    Directory of Open Access Journals (Sweden)

    Ting Cao

    2018-05-01

    Full Text Available Histone acetylation has been shown to play a crucial role in memory formation, and histone deacetylase (HDAC inhibitor sodium butyrate (NaB has been demonstrated to improve memory performance and rescue the neurodegeneration of several Alzheimer’s Disease (AD mouse models. The forebrain presenilin-1 and presenilin-2 conditional double knockout (cDKO mice showed memory impairment, forebrain degeneration, tau hyperphosphorylation and inflammation that closely mimics AD-like phenotypes. In this article, we have investigated the effects of systemic administration of NaB on neurodegenerative phenotypes in cDKO mice. We found that chronic NaB treatment significantly restored contextual memory but did not alter cued memory in cDKO mice while such an effect was not permanent after treatment withdrawal. We further revealed that NaB treatment did not rescue reduced synaptic numbers and cortical shrinkage in cDKO mice, but significantly increased the neurogenesis in subgranular zone of dentate gyrus (DG. We also observed that tau hyperphosphorylation and inflammation related protein glial fibrillary acidic protein (GFAP level were decreased in cDKO mice by NaB. Furthermore, GO and pathway analysis for the RNA-Seq data demonstrated that NaB treatment induced enrichment of transcripts associated with inflammation/immune processes and cytokine-cytokine receptor interactions. RT-PCR confirmed that NaB treatment inhibited the expression of inflammation related genes such as S100a9 and Ccl4 found upregulated in the brain of cDKO mice. Surprisingly, the level of brain histone acetylation in cDKO mice was dramatically increased and was decreased by the administration of NaB, which may reflect dysregulation of histone acetylation underlying memory impairment in cDKO mice. These results shed some lights on the possible molecular mechanisms of HDAC inhibitor in alleviating the neurodegenerative phenotypes of cDKO mice and provide a promising target for treating AD.

  11. histoneHMM: Differential analysis of histone modifications with broad genomic footprints

    Czech Academy of Sciences Publication Activity Database

    Heinig, M.; Colomé-Tatché, M.; Taudt, A.; Rintisch, C.; Schafer, S.; Pravenec, Michal; Hubner, N.; Vingron, M.; Johannes, F.

    2015-01-01

    Roč. 16, Feb 22 (2015), s. 60 ISSN 1471-2105 R&D Projects: GA MŠk(CZ) 7E10067; GA ČR(CZ) GA13-04420S Institutional support: RVO:67985823 Keywords : ChIP - seq * histone modifications * Hidden Markov model * computational biology * differential analysis Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.435, year: 2015

  12. Dysregulation of Histone Acetyltransferases and Deacetylases in Cardiovascular Diseases

    Directory of Open Access Journals (Sweden)

    Yonggang Wang

    2014-01-01

    Full Text Available Cardiovascular disease (CVD remains a leading cause of mortality worldwide despite advances in its prevention and management. A comprehensive understanding of factors which contribute to CVD is required in order to develop more effective treatment options. Dysregulation of epigenetic posttranscriptional modifications of histones in chromatin is thought to be associated with the pathology of many disease models, including CVD. Histone acetyltransferases (HATs and deacetylases (HDACs are regulators of histone lysine acetylation. Recent studies have implicated a fundamental role of reversible protein acetylation in the regulation of CVDs such as hypertension, pulmonary hypertension, diabetic cardiomyopathy, coronary artery disease, arrhythmia, and heart failure. This reversible acetylation is governed by enzymes that HATs add or HDACs remove acetyl groups respectively. New evidence has revealed that histone acetylation regulators blunt cardiovascular and related disease states in certain cellular processes including myocyte hypertrophy, apoptosis, fibrosis, oxidative stress, and inflammation. The accumulating evidence of the detrimental role of histone acetylation in cardiac disease combined with the cardioprotective role of histone acetylation regulators suggests that the use of histone acetylation regulators may serve as a novel approach to treating the millions of patients afflicted by cardiac diseases worldwide.

  13. Aging and radiation induced alternations in liver histones

    International Nuclear Information System (INIS)

    Kozurkova, M.; Misurova, E.; Kropacova, K.

    1994-01-01

    Age-related changes in histones in the liver of normal rats and in rats irradiated with 5.7 Gy gamma rays were examined. Quantitative histone changes in growing and aging rats (from 1 to 28 months of age) were found to be mild only. As they paralleled the DNA changes, the histone /DNA ratio remained stable with age. In total extracted histones there was a decrease in the H1 proportion in older groups with preceding increase in the H1 grad proportion. Thirty minutes after irradiation the amount of histones was reduced with age, probably due to an impaired extractability of histones. As the quantitative DNA changes were milder, the histone?DNA ratio decreased in aging liver after irradiation. Similar patterns of changes in proportion of the H1 fraction and H1 grad sub-fraction were observed in irradiated and nonirradiated animals in the former with an earlier onset. Irradiation, therefore, accelerated spontaneous age-related alternations. (author)

  14. Novel chemokine-like activities of histones in tumor metastasis.

    Science.gov (United States)

    Chen, Ruochan; Xie, Yangchun; Zhong, Xiao; Fu, Yongmin; Huang, Yan; Zhen, Yixiang; Pan, Pinhua; Wang, Haichao; Bartlett, David L; Billiar, Timothy R; Lotze, Michael T; Zeh, Herbert J; Fan, Xue-Gong; Tang, Daolin; Kang, Rui

    2016-09-20

    Histones are intracellular nucleosomal components and extracellular damage-associated molecular pattern molecules that modulate chromatin remodeling, as well as the immune response. However, their extracellular roles in cell migration and invasion remain undefined. Here, we demonstrate that histones are novel regulators of tumor metastasis with chemokine-like activities. Indeed, exogenous histones promote both hepatocellular carcinoma (HCC) cell migration and invasion through toll-like receptor (TLR)4, but not TLR2 or the receptor for advanced glycosylation end product. TLR4-mediated activation of nuclear factor-κB (NF-κB) by extracellular signal-regulated kinase (ERK) is required for histone-induced chemokine (e.g., C-C motif ligand 9/10) production. Pharmacological and genetic inhibition of TLR4-ERK-NF-κB signaling impairs histone-induced chemokine production and HCC cell migration. Additionally, TLR4 depletion (by using TLR4-/- mice and TLR4-shRNA) or inhibition of histone release/activity (by administration of heparin and H3 neutralizing antibody) attenuates lung metastasis of HCC cells injected via the tail vein of mice. Thus, histones promote tumor metastasis of HCC cells through the TLR4-NF-κB pathway and represent novel targets for treating patients with HCC.

  15. Reorganization of Damaged Chromatin by the Exchange of Histone Variant H2A.Z-2

    Energy Technology Data Exchange (ETDEWEB)

    Nishibuchi, Ikuno [Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima (Japan); Department of Radiation Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima (Japan); Department of Radiation Oncology, Hiroshima Prefectural Hospital, Hiroshima (Japan); Suzuki, Hidekazu; Kinomura, Aiko; Sun, Jiying; Liu, Ning-Ang [Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima (Japan); Horikoshi, Yasunori [Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima (Japan); Research Center for Mathematics of Chromatin Live Dynamics, Hiroshima University, Hiroshima (Japan); Shima, Hiroki [Department of Biochemistry, Graduate School of Medical Sciences, Tohoku University, Sendai (Japan); Kusakabe, Masayuki; Harata, Masahiko [Laboratory of Molecular Biology, Graduate School of Agricultural Science, Tohoku University, Sendai (Japan); Fukagawa, Tatsuo [Department of Molecular Genetics, National Institute of Genetics and The Graduate University for Advanced Studies, Mishima (Japan); Ikura, Tsuyoshi [Laboratory of Chromatin Regulatory Network, Department of Mutagenesis, Radiation Biology Center, Kyoto University, Kyoto (Japan); Ishida, Takafumi [Department of Cardiovascular Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima (Japan); Nagata, Yasushi [Department of Radiation Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima (Japan); Tashiro, Satoshi, E-mail: ktashiro@hiroshima-u.ac.jp [Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima (Japan); Research Center for Mathematics of Chromatin Live Dynamics, Hiroshima University, Hiroshima (Japan)

    2014-07-15

    Purpose: The reorganization of damaged chromatin plays an important role in the regulation of the DNA damage response. A recent study revealed the presence of 2 vertebrate H2A.Z isoforms, H2A.Z-1 and H2A.Z-2. However, the roles of the vertebrate H2A.Z isoforms are still unclear. Thus, in this study we examined the roles of the vertebrate H2A.Z isoforms in chromatin reorganization after the induction of DNA double-strand breaks (DSBs). Methods and Materials: To examine the dynamics of H2A.Z isoforms at damaged sites, we constructed GM0637 cells stably expressing each of the green fluorescent protein (GFP)-labeled H2A.Z isoforms, and performed fluorescence recovery after photobleaching (FRAP) analysis and inverted FRAP analysis in combination with microirradiation. Immunofluorescence staining using an anti-RAD51 antibody was performed to study the kinetics of RAD51 foci formation after 2-Gy irradiation of wild-type (WT), H2A.Z-1- and H2A.Z-2-deficient DT40 cells. Colony-forming assays were also performed to compare the survival rates of WT, H2A.Z-1-, and H2A.Z-2-deficient DT40 cells with control, and H2A.Z-1- and H2A.Z-2-depleted U2OS cells after irradiation. Results: FRAP analysis revealed that H2A.Z-2 was incorporated into damaged chromatin just after the induction of DSBs, whereas H2A.Z-1 remained essentially unchanged. Inverted FRAP analysis showed that H2A.Z-2 was released from damaged chromatin. These findings indicated that H2A.Z-2 was exchanged at DSB sites immediately after the induction of DSBs. RAD51 focus formation after ionizing irradiation was disturbed in H2A.Z-2-deficient DT40 cells but not in H2A.Z-1-deficient cells. The survival rate of H2A.Z-2-deficient cells after irradiation was lower than those of WT and H2A.Z-1- DT40 cells. Similar to DT40 cells, H2A.Z-2-depleted U2OS cells were also radiation-sensitive compared to control and H2A.Z-1-depleted cells. Conclusions: We found that vertebrate H2A.Z-2 is involved in the regulation of the DNA damage response at a very early stage, via the damaged chromatin reorganization required for RAD51 focus formation.

  16. Histone Variant Regulates DNA Repair via Chromatin Condensation | Center for Cancer Research

    Science.gov (United States)

    Activating the appropriate DNA repair pathway is essential for maintaining the stability of the genome after a break in both strands of DNA. How a pathway is selected, however, is not well understood. Since these double strand breaks (DSBs) occur while DNA is packaged as chromatin, changes in its organization are necessary for repair to take place. Numerous alterations have

  17. Reorganization of Damaged Chromatin by the Exchange of Histone Variant H2A.Z-2

    International Nuclear Information System (INIS)

    Nishibuchi, Ikuno; Suzuki, Hidekazu; Kinomura, Aiko; Sun, Jiying; Liu, Ning-Ang; Horikoshi, Yasunori; Shima, Hiroki; Kusakabe, Masayuki; Harata, Masahiko; Fukagawa, Tatsuo; Ikura, Tsuyoshi; Ishida, Takafumi; Nagata, Yasushi; Tashiro, Satoshi

    2014-01-01

    Purpose: The reorganization of damaged chromatin plays an important role in the regulation of the DNA damage response. A recent study revealed the presence of 2 vertebrate H2A.Z isoforms, H2A.Z-1 and H2A.Z-2. However, the roles of the vertebrate H2A.Z isoforms are still unclear. Thus, in this study we examined the roles of the vertebrate H2A.Z isoforms in chromatin reorganization after the induction of DNA double-strand breaks (DSBs). Methods and Materials: To examine the dynamics of H2A.Z isoforms at damaged sites, we constructed GM0637 cells stably expressing each of the green fluorescent protein (GFP)-labeled H2A.Z isoforms, and performed fluorescence recovery after photobleaching (FRAP) analysis and inverted FRAP analysis in combination with microirradiation. Immunofluorescence staining using an anti-RAD51 antibody was performed to study the kinetics of RAD51 foci formation after 2-Gy irradiation of wild-type (WT), H2A.Z-1- and H2A.Z-2-deficient DT40 cells. Colony-forming assays were also performed to compare the survival rates of WT, H2A.Z-1-, and H2A.Z-2-deficient DT40 cells with control, and H2A.Z-1- and H2A.Z-2-depleted U2OS cells after irradiation. Results: FRAP analysis revealed that H2A.Z-2 was incorporated into damaged chromatin just after the induction of DSBs, whereas H2A.Z-1 remained essentially unchanged. Inverted FRAP analysis showed that H2A.Z-2 was released from damaged chromatin. These findings indicated that H2A.Z-2 was exchanged at DSB sites immediately after the induction of DSBs. RAD51 focus formation after ionizing irradiation was disturbed in H2A.Z-2-deficient DT40 cells but not in H2A.Z-1-deficient cells. The survival rate of H2A.Z-2-deficient cells after irradiation was lower than those of WT and H2A.Z-1- DT40 cells. Similar to DT40 cells, H2A.Z-2-depleted U2OS cells were also radiation-sensitive compared to control and H2A.Z-1-depleted cells. Conclusions: We found that vertebrate H2A.Z-2 is involved in the regulation of the DNA damage response at a very early stage, via the damaged chromatin reorganization required for RAD51 focus formation

  18. Circulating histones are mediators of trauma-associated lung injury.

    Science.gov (United States)

    Abrams, Simon T; Zhang, Nan; Manson, Joanna; Liu, Tingting; Dart, Caroline; Baluwa, Florence; Wang, Susan Siyu; Brohi, Karim; Kipar, Anja; Yu, Weiping; Wang, Guozheng; Toh, Cheng-Hock

    2013-01-15

    Acute lung injury is a common complication after severe trauma, which predisposes patients to multiple organ failure. This syndrome largely accounts for the late mortality that arises and despite many theories, the pathological mechanism is not fully understood. Discovery of histone-induced toxicity in mice presents a new dimension for elucidating the underlying pathophysiology. To investigate the pathological roles of circulating histones in trauma-induced lung injury. Circulating histone levels in patients with severe trauma were determined and correlated with respiratory failure and Sequential Organ Failure Assessment (SOFA) scores. Their cause-effect relationship was studied using cells and mouse models. In a cohort of 52 patients with severe nonthoracic blunt trauma, circulating histones surged immediately after trauma to levels that were toxic to cultured endothelial cells. The high levels were significantly associated with the incidence of acute lung injury and SOFA scores, as well as markers of endothelial damage and coagulation activation. In in vitro systems, histones damaged endothelial cells, stimulated cytokine release, and induced neutrophil extracellular trap formation and myeloperoxidase release. Cellular toxicity resulted from their direct membrane interaction and resultant calcium influx. In mouse models, cytokines and markers for endothelial damage and coagulation activation significantly increased immediately after trauma or histone infusion. Pathological examinations showed that lungs were the predominantly affected organ with edema, hemorrhage, microvascular thrombosis, and neutrophil congestion. An anti-histone antibody could reduce these changes and protect mice from histone-induced lethality. This study elucidates a new mechanism for acute lung injury after severe trauma and proposes that circulating histones are viable therapeutic targets for improving survival outcomes in patients.

  19. Circulating Histones Are Mediators of Trauma-associated Lung Injury

    Science.gov (United States)

    Abrams, Simon T.; Zhang, Nan; Manson, Joanna; Liu, Tingting; Dart, Caroline; Baluwa, Florence; Wang, Susan Siyu; Brohi, Karim; Kipar, Anja; Yu, Weiping

    2013-01-01

    Rationale: Acute lung injury is a common complication after severe trauma, which predisposes patients to multiple organ failure. This syndrome largely accounts for the late mortality that arises and despite many theories, the pathological mechanism is not fully understood. Discovery of histone-induced toxicity in mice presents a new dimension for elucidating the underlying pathophysiology. Objectives: To investigate the pathological roles of circulating histones in trauma-induced lung injury. Methods: Circulating histone levels in patients with severe trauma were determined and correlated with respiratory failure and Sequential Organ Failure Assessment (SOFA) scores. Their cause–effect relationship was studied using cells and mouse models. Measurements and Main Results: In a cohort of 52 patients with severe nonthoracic blunt trauma, circulating histones surged immediately after trauma to levels that were toxic to cultured endothelial cells. The high levels were significantly associated with the incidence of acute lung injury and SOFA scores, as well as markers of endothelial damage and coagulation activation. In in vitro systems, histones damaged endothelial cells, stimulated cytokine release, and induced neutrophil extracellular trap formation and myeloperoxidase release. Cellular toxicity resulted from their direct membrane interaction and resultant calcium influx. In mouse models, cytokines and markers for endothelial damage and coagulation activation significantly increased immediately after trauma or histone infusion. Pathological examinations showed that lungs were the predominantly affected organ with edema, hemorrhage, microvascular thrombosis, and neutrophil congestion. An anti-histone antibody could reduce these changes and protect mice from histone-induced lethality. Conclusions: This study elucidates a new mechanism for acute lung injury after severe trauma and proposes that circulating histones are viable therapeutic targets for improving survival

  20. N terminus of Swr1 binds to histone H2AZ and provides a platform for subunit assembly in the chromatin remodeling complex.

    Science.gov (United States)

    Wu, Wei-Hua; Wu, Chwen-Huey; Ladurner, Andreas; Mizuguchi, Gaku; Wei, Debbie; Xiao, Hua; Luk, Ed; Ranjan, Anand; Wu, Carl

    2009-03-06

    Variant histone H2AZ-containing nucleosomes are involved in the regulation of gene expression. In Saccharomyces cerevisiae, chromatin deposition of histone H2AZ is mediated by the fourteen-subunit SWR1 complex, which catalyzes ATP-dependent exchange of nucleosomal histone H2A for H2AZ. Previous work defined the role of seven SWR1 subunits (Swr1 ATPase, Swc2, Swc3, Arp6, Swc5, Yaf9, and Swc6) in maintaining complex integrity and H2AZ histone replacement activity. Here we examined the function of three additional SWR1 subunits, bromodomain containing Bdf1, actin-related protein Arp4 and Swc7, by analyzing affinity-purified mutant SWR1 complexes. We observed that depletion of Arp4 (arp4-td) substantially impaired the association of Bdf1, Yaf9, and Swc4. In contrast, loss of either Bdf1 or Swc7 had minimal effects on overall complex integrity. Furthermore, the basic H2AZ histone replacement activity of SWR1 in vitro required Arp4, but not Bdf1 or Swc7. Thus, three out of fourteen SWR1 subunits, Bdf1, Swc7, and previously noted Swc3, appear to have roles auxiliary to the basic histone replacement activity. The N-terminal region of the Swr1 ATPase subunit is necessary and sufficient to direct association of Bdf1 and Swc7, as well as Arp4, Act1, Yaf9 and Swc4. This same region contains an additional H2AZ-H2B specific binding site, distinct from the previously identified Swc2 subunit. These findings suggest that one SWR1 enzyme might be capable of binding two H2AZ-H2B dimers, and provide further insight on the hierarchy and interdependency of molecular interactions within the SWR1 complex.

  1. Syntheses and modulations in the chromatin contents of histones H1/sup o/ and H1 during G1 and S phases in Chinese hamsters cells

    International Nuclear Information System (INIS)

    D'Anna, J.A.; Gurley, L.R.; Tobey, R.A.

    1982-01-01

    Flow cytometry, conventional autoradiography, and autoradiography employing high concentrations of high specific activity [ 3 H]thymidine indicate that (1) treatment of Chinese hamster ovary (line CHO) cells with butyrate truly blocks cells in G 1 and (2) cells blocked in G 1 by isoleucine deprivation remain blocked in G 1 when they are released into complete medium containing butyrate. Measurements of H1/sup o/ content relative to core histones and H1/sup o/:H1 ratios indicate that H1/sup o/ is enhanced somewhat in G 1 cells arrested by isoleucine deprivation; however, (1) treatment with butyrate greatly increases the H1/sup o/ content in G 1 -blocked cells, and (2) the enhancement is very sensitive to butyrate concentration. Measurements of relative histone contents in the isolated chromatin of synchronized cultures also suggest that the acid-soluble content of histone H1 (relative to core histones) becomes greatly depleted in the isolated chromatin when synchronized cells are blocked in early S phase by sequential use of isoleucine deprivation and hydroxyurea blockade. We also have measured [ 3 H]lysine incorporation, various protein ratios, and relative rates of deposition of newly synthesized H1/sup o/, H1, and H4 onto chromatin during G 1 and S in the absence of butyrate. The results suggest a dynamic picture of chromatin organization in which (1) newly synthesized histone H1/sup o/ binds to chromatin during traverse of G 1 and S phases and (2) histone H1 dissociates from (or becomes loosely bound to) chromatin during prolonged early S-phase block with hydroxyurea

  2. Specific distribution of the Saccharomyces cerevisiae linker histone homolog HHO1p in the chromatin

    OpenAIRE

    Freidkin, Ilya; Katcoff, Don J.

    2001-01-01

    In virtually all eukaryotic organisms, linker DNA between nucleosomes is associated with a histone termed linker histone or histone H1. In Saccharomyces cerevisiae, HHO1 encodes a putative linker histone with very significant homology to histone H1. The encoded protein is expressed in the nucleus, but has not been shown to affect global chromatin structure, nor has its deletion shown any detectable phenotype. In vitro chromatin assembly experiments with recombinant HHO1p have shown that it is...

  3. Asymmetry in the burial of hydrophobic residues along the histone chains of Eukarya, Archaea and a transcription factor

    Directory of Open Access Journals (Sweden)

    Silverman B David

    2005-10-01

    Full Text Available Abstract Background The histone fold is a common structural motif of proteins involved in the chromatin packaging of DNA and in transcription regulation. This single chain fold is stabilized by either homo- or hetero-dimer formation in archaea and eukarya. X-ray structures at atomic resolution have shown the eukaryotic nucleosome core particle to consist of a central tetramer of two bound H3-H4 dimers flanked by two H2A-H2B dimers. The c-terminal region of the H3 histone fold involved in coupling the two eukaryotic dimers of the tetramer, through a four-fold helical bundle, had previously been shown to be a region of reduced burial of hydrophobic residues within the dimers, and thereby provide a rationale for the observed reduced stability of the H3-H4 dimer compared with that of the H2A-H2B dimer. Furthermore, comparison between eukaryal and archaeal histones had suggested that this asymmetry in the distribution of hydrophobic residues along the H3 histone chains could be due to selective evolution that enhanced the coupling between the eukaryotic dimers of the tetramer. Results and discussion The present work describes calculations utilizing the X-ray structures at atomic resolution of a hyperthermophile from Methanopyrus kandleri (HMk and a eukaryotic transcription factor from Drosophila melanogaster (DRm, that are structurally homologous to the eukaryotic (H3-H42 tetramer. The results for several other related structures are also described. Reduced burial of hydrophobic residues, at the homologous H3 c-terminal regions of these structures, is found to parallel the burial at the c-terminal regions of the H3 histones and is, thereby, expected to affect dimer stability and the processes involving histone structural rearrangement. Significantly different sequence homology between the two histones of the HMk doublet with other archaeal sequences is observed, and how this might have occurred during selection to enhance tetramer stability is

  4. Histones and their phosphorylation during germination of rice seeds

    International Nuclear Information System (INIS)

    Iqbal Ahmed, C.M.; Padayatti, J.D.

    1980-01-01

    Histones from nuclei of rice embryos were identified by their mobilities on 15% acid-urea polyacrylamide gel electrophoreogram, incorporation of ( 3 H)lysine and ( 14 C) arginine and lack of incorporation of ( 3 H)tryptophan. The ratio of histone to DNA in ungerminated embryos was 2.7 which decreased during germination reaching unity by 48 hr. There was preferential phosphorylation of lysine-rich histones, which paralleled the synthesis of DNA. In the presence of cytosine arabinoside and mitomycin-C, which inhibited the synthesis of DNA to the extend of 75-80% the phosphorylation of lysine-rich histone was reduced by 50-60% suggesting the dependence of phosphorylation on the ongoing synthesis of DNA. (auth.)

  5. Targeting Histone Abnormality in Triple Negative Breast Cancer

    Science.gov (United States)

    2015-08-01

    κB pathway in triple negative breast cancer . 8th International Nitric Oxide Conference & 6th International Nitrite/ Nitrate Conference, Cleveland, OH...1 AWARD NUMBER: W81XWH-14-1-0237 TITLE: Targeting Histone Abnormality in Triple-Negative Breast Cancer PRINCIPAL INVESTIGATOR: Yi...TITLE AND SUBTITLE 5a. CONTRACT NUMBER Targeting Histone Abnormality in Triple-Negative Breast Cancer 5b. GRANT NUMBER W81XWH-14-1-0237 5c

  6. Biochemical studies on histones of the central nervous system. 1

    International Nuclear Information System (INIS)

    Schmitt, M.; Matthies, H.

    1979-01-01

    Rat brain histones were acetylated in vivo by intraventricular injection of [ 14 C]-acetate. More than 90% of the label is the result of a true acetylation. Enzymatic proteolysis of the labelled histone fraction and subsequent chromatographic investigation of the digestion products showed about 60% of the recovered radioactive material to be epsilon-acetyl lysine, whereas 22% of the radioactivity was found in an unidentified spot. (author)

  7. Structural Mechanisms of Nucleosome Recognition by Linker Histones.

    Science.gov (United States)

    Zhou, Bing-Rui; Jiang, Jiansheng; Feng, Hanqiao; Ghirlando, Rodolfo; Xiao, T Sam; Bai, Yawen

    2015-08-20

    Linker histones bind to the nucleosome and regulate the structure of chromatin and gene expression. Despite more than three decades of effort, the structural basis of nucleosome recognition by linker histones remains elusive. Here, we report the crystal structure of the globular domain of chicken linker histone H5 in complex with the nucleosome at 3.5 Å resolution, which is validated using nuclear magnetic resonance spectroscopy. The globular domain sits on the dyad of the nucleosome and interacts with both DNA linkers. Our structure integrates results from mutation analyses and previous cross-linking and fluorescence recovery after photobleach experiments, and it helps resolve the long debate on structural mechanisms of nucleosome recognition by linker histones. The on-dyad binding mode of the H5 globular domain is different from the recently reported off-dyad binding mode of Drosophila linker histone H1. We demonstrate that linker histones with different binding modes could fold chromatin to form distinct higher-order structures. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Histone deacetylase inhibition abolishes stress-induced spatial memory impairment.

    Science.gov (United States)

    Vargas-López, Viviana; Lamprea, Marisol R; Múnera, Alejandro

    2016-10-01

    Acute stress induced before spatial training impairs memory consolidation. Although non-epigenetic underpinning of such effect has been described, the epigenetic mechanisms involved have not yet been studied. Since spatial training and intense stress have opposite effects on histone acetylation balance, it is conceivable that disruption of such balance may underlie acute stress-induced spatial memory consolidation impairment and that inhibiting histone deacetylases prevents such effect. Trichostatin-A (TSA, a histone deacetylase inhibitor) was used to test its effectiveness in preventing stress' deleterious effect on memory. Male Wistar rats were trained in a spatial task in the Barnes maze; 1-h movement restraint was applied to half of them before training. Immediately after training, stressed and non-stressed animals were randomly assigned to receive either TSA (1mg/kg) or vehicle intraperitoneal injection. Twenty-four hours after training, long-term spatial memory was tested; plasma and brain tissue were collected immediately after the memory test to evaluate corticosterone levels and histone H3 acetylation in several brain areas. Stressed animals receiving vehicle displayed memory impairment, increased plasma corticosterone levels and markedly reduced histone H3 acetylation in prelimbic cortex and hippocampus. Such effects did not occur in stressed animals treated with TSA. The aforementioned results support the hypothesis that acute stress induced-memory impairment is related to histone deacetylation. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Biochemical Analysis Reveals the Multifactorial Mechanism of Histone H3 Clipping by Chicken Liver Histone H3 Protease

    KAUST Repository

    Chauhan, Sakshi; Mandal, Papita; Tomar, Raghuvir S.

    2016-01-01

    Proteolytic clipping of histone H3 has been identified in many organisms. Despite several studies, the mechanism of clipping, the substrate specificity, and the significance of this poorly understood epigenetic mechanism are not clear. We have

  10. Neutron scattering studies of the H2a-H2b and (H3-H4)2 histone complexes

    International Nuclear Information System (INIS)

    Carlson, R.D.

    1984-01-01

    Neutron scattering experiments have shown that both the (H3-H4)2 and H2a-H2b histone complexes are quite asymmetric in solution. The (H3-H4)2 tetramer is an oblate or flattened structure, with a radius of gyration almost as large as that of the core octamer. If the tetramer is primarily globular, it must have an axial ratio of about 1:5. It is more likely, however, that this asymmetry results in part from N-terminal arms that extend outward approximately within the major plane of the particle. If this is the case, less asymmetric models for the globular part of the tetramer, including a dislocated disk of the type proposed by Klug et al. (23), can be made consistent with the scattering data. The H2a-H2b dimer, on the other hand, is an elongated structure. The low resolution data are in good agreement with those calculated for a cylindrical model 64 X 27 A, but other elongated models fit those data almost as well, including one that approximates free N-terminal arms at each end. Free arms are not necessary, but they must extend from the ends if they exist. A contrast matching experiment done with 50% deuterated H2b and undeuterated H2a in the reconstituted dimer showed that these two histones must each be rather elongated within the complex and are not just confined to one end. The amount of scattering contrast between the undeuterated and 50% deuterated histones was sufficient to suggest further experiments using complexes reconstituted from mixtures of undeuterated and partially deuterated histones which will help elucidate their arrangement within the histone complexes and within the octamer core of the nucleosome core particle

  11. Post-Training Intrahippocampal Inhibition of Class I Histone Deacetylases Enhances Long-Term Object-Location Memory

    Science.gov (United States)

    Hawk, Joshua D.; Florian, Cedrick; Abel, Ted

    2011-01-01

    Long-term memory formation involves covalent modification of the histone proteins that package DNA. Reducing histone acetylation by mutating histone acetyltransferases impairs long-term memory, and enhancing histone acetylation by inhibiting histone deacetylases (HDACs) improves long-term memory. Previous studies using HDAC inhibitors to enhance…

  12. PSG gene expression is up-regulated by lysine acetylation involving histone and nonhistone proteins.

    Directory of Open Access Journals (Sweden)

    Soledad A Camolotto

    Full Text Available BACKGROUND: Lysine acetylation is an important post-translational modification that plays a central role in eukaryotic transcriptional activation by modifying chromatin and transcription-related factors. Human pregnancy-specific glycoproteins (PSG are the major secreted placental proteins expressed by the syncytiotrophoblast at the end of pregnancy and represent early markers of cytotrophoblast differentiation. Low PSG levels are associated with complicated pregnancies, thus highlighting the importance of studying the mechanisms that control their expression. Despite several transcription factors having been implicated as key regulators of PSG gene family expression; the role of protein acetylation has not been explored. METHODOLOGY/PRINCIPAL FINDINGS: Here, we explored the role of acetylation on PSG gene expression in the human placental-derived JEG-3 cell line. Pharmacological inhibition of histone deacetylases (HDACs up-regulated PSG protein and mRNA expression levels, and augmented the amount of acetylated histone H3 associated with PSG 5'regulatory regions. Moreover, PSG5 promoter activation mediated by Sp1 and KLF6, via the core promoter element motif (CPE, -147/-140, was markedly enhanced in the presence of the HDAC inhibitor trichostatin A (TSA. This effect correlated with an increase in Sp1 acetylation and KLF6 nuclear localization as revealed by immunoprecipitation and subcellular fractionation assays. The co-activators PCAF, p300, and CBP enhanced Sp1-dependent PSG5 promoter activation through their histone acetylase (HAT function. Instead, p300 and CBP acetyltransferase domain was dispensable for sustaining co-activation of PSG5 promoter by KLF6. CONCLUSIONS/SIGNIFICANCE: Results are consistent with a regulatory role of lysine acetylation on PSG expression through a relaxed chromatin state and an increase in the transcriptional activity of Sp1 and KLF6 following an augmented Sp1 acetylation and KLF6 nuclear localization.

  13. Immunomodulatory effects of histone deacetylase inhibitors.

    Science.gov (United States)

    Licciardi, P V; Ververis, K; Tang, M L; El-Osta, A; Karagiannis, T C

    2013-05-01

    Histone deacetylase inhibitors (HDACi) have emerged as a new generation of anticancer therapeutics. The classical broad-spectrum HDACi typically alter the cell cycle distribution and induce cell death, apoptosis and differentiation in malignant and transformed cells. This provides the basis for the clinical potential of HDACi in cancer therapy. Currently two compounds, suberoylanilide hydroxamic acid (SAHA, Vorinostat, Zolinza™) and depsipeptide (Romidepsin, Istodax™) have been approved for by the US Food and Drug Administration for the treatment of refractory cutaneous T-cell lymphoma. Apart from clinical application in oncology, HDACi have also been investigated as potential therapeutics for various pathologies including those of the central nervous system (such as Huntington's disease and multiple sclerosis), cardiac conditions (particularly hypertrophy), arthritis and malaria. Further, evidence is accumulating for potent immunomodulatory effects of classical HDACi which is the focus of this review. We review the antiinflammatory effects of HDACi and in particular findings implicating regulation of the innate and adaptive immune systems by HDAC enzymes. The recent findings highlighting the immunomodulatory function of HDAC11 which relates to balancing immune activation versus tolerance are also discussed.

  14. Interpreting clinical assays for histone deacetylase inhibitors

    International Nuclear Information System (INIS)

    Martinet, Nadine; Bertrand, Philippe

    2011-01-01

    As opposed to genetics, dealing with gene expressions by direct DNA sequence modifications, the term epigenetics applies to all the external influences that target the chromatin structure of cells with impact on gene expression unrelated to the sequence coding of DNA itself. In normal cells, epigenetics modulates gene expression through all development steps. When “imprinted” early by the environment, epigenetic changes influence the organism at an early stage and can be transmitted to the progeny. Together with DNA sequence alterations, DNA aberrant cytosine methylation and microRNA deregulation, epigenetic modifications participate in the malignant transformation of cells. Their reversible nature has led to the emergence of the promising field of epigenetic therapy. The efforts made to inhibit in particular the epigenetic enzyme family called histone deacetylases (HDACs) are described. HDAC inhibitors (HDACi) have been proposed as a viable clinical therapeutic approach for the treatment of leukemia and solid tumors, but also to a lesser degree for noncancerous diseases. Three epigenetic drugs are already arriving at the patient’s bedside, and more than 100 clinical assays for HDACi are registered on the National Cancer Institute website. They explore the eventual additive benefits of combined therapies. In the context of the pleiotropic effects of HDAC isoforms, more specific HDACi and more informative screening tests are being developed for the benefit of the patients

  15. Histone H1 phosphorylation is associated with transcription by RNA polymerases I and II

    Science.gov (United States)

    Zheng, Yupeng; John, Sam; Pesavento, James J.; Schultz-Norton, Jennifer R.; Schiltz, R. Louis; Baek, Sonjoon; Nardulli, Ann M.; Hager, Gordon L.; Kelleher, Neil L.

    2010-01-01

    Histone H1 phosphorylation affects chromatin condensation and function, but little is known about how specific phosphorylations impact the function of H1 variants in higher eukaryotes. In this study, we show that specific sites in H1.2 and H1.4 of human cells are phosphorylated only during mitosis or during both mitosis and interphase. Antisera generated to individual H1.2/H1.4 interphase phosphorylations reveal that they are distributed throughout nuclei and enriched in nucleoli. Moreover, interphase phosphorylated H1.4 is enriched at active 45S preribosomal RNA gene promoters and is rapidly induced at steroid hormone response elements by hormone treatment. Our results imply that site-specific interphase H1 phosphorylation facilitates transcription by RNA polymerases I and II and has an unanticipated function in ribosome biogenesis and control of cell growth. Differences in the numbers, structure, and locations of interphase phosphorylation sites may contribute to the functional diversity of H1 variants. PMID:20439994

  16. Transformer core

    NARCIS (Netherlands)

    Mehendale, A.; Hagedoorn, Wouter; Lötters, Joost Conrad

    2008-01-01

    A transformer core includes a stack of a plurality of planar core plates of a magnetically permeable material, which plates each consist of a first and a second sub-part that together enclose at least one opening. The sub-parts can be fitted together via contact faces that are located on either side

  17. Transformer core

    NARCIS (Netherlands)

    Mehendale, A.; Hagedoorn, Wouter; Lötters, Joost Conrad

    2010-01-01

    A transformer core includes a stack of a plurality of planar core plates of a magnetically permeable material, which plates each consist of a first and a second sub-part that together enclose at least one opening. The sub-parts can be fitted together via contact faces that are located on either side

  18. Covalent Modifications of Histone H3K9 Promote Binding of CHD3

    Directory of Open Access Journals (Sweden)

    Adam H. Tencer

    2017-10-01

    Full Text Available Chromatin remodeling is required for genome function and is facilitated by ATP-dependent complexes, such as nucleosome remodeling and deacetylase (NuRD. Among its core components is the chromodomain helicase DNA binding protein 3 (CHD3 whose functional significance is not well established. Here, we show that CHD3 co-localizes with the other NuRD subunits, including HDAC1, near the H3K9ac-enriched promoters of the NuRD target genes. The tandem PHD fingers of CHD3 bind histone H3 tails and posttranslational modifications that increase hydrophobicity of H3K9—methylation or acetylation (H3K9me3 or H3K9ac—enhance this interaction. Binding of CHD3 PHDs promotes H3K9Cme3-nucleosome unwrapping in vitro and perturbs the pericentric heterochromatin structure in vivo. Methylation or acetylation of H3K9 uniquely alleviates the intra-nucleosomal interaction of histone H3 tails, increasing H3K9 accessibility. Collectively, our data suggest that the targeting of covalently modified H3K9 by CHD3 might be essential in diverse functions of NuRD.

  19. Sensitization to UV-induced apoptosis by the histone deacetylase inhibitor trichostatin A (TSA)

    International Nuclear Information System (INIS)

    Kim, Myoung Sook; Baek, Jin Hyen; Chakravarty, Devulapalli; Sidransky, David; Carrier, France

    2005-01-01

    UV-induced apoptosis is a protective mechanism that is primarily caused by DNA damage. Cyclobutane pyrimidine dimers (CPD) and 6-4 photoproducts are the main DNA adducts triggered by UV radiation. Because the formation of DNA lesions in the chromatin is modulated by the structure of the nucleosomes, we postulated that modification of chromatin compaction could affect the formation of the lesions and consequently apoptosis. To verify this possibility we treated human colon carcinoma RKO cells with the histone deacetylase inhibitor trichostatin A (TSA) prior to exposure to UV radiation. Our data show that pre-treatment with TSA increased UV killing efficiency by more than threefold. This effect correlated with increased formation of CPDs and consequently apoptosis. On the other hand, TSA treatment after UV exposure rather than before had no more effect than UV radiation alone. This suggests that a primed (opened) chromatin status is required to sensitize the cells. Moreover, TSA sensitization to UV-induced apoptosis is p53 dependent. p53 and acetylation of the core histones may thus contribute to UV-induced apoptosis by modulating the formation of DNA lesions on chromatin

  20. Interactions of nickel(II) with histones. Stability and solution structure of complexes with CH3CO-Cys-Ala-Ile-His-NH2, a putative metal binding sequence of histone H3.

    Science.gov (United States)

    Bal, W; Lukszo, J; Jezowska-Bojczuk, M; Kasprzak, K S

    1995-01-01

    Nickel(II) compounds are established human carcinogens, but the molecular mechanisms underlying their activity are only partially known. One mechanism may include mediation by nickel of promutagenic oxidative DNA damage that depends on Ni(II) binding to chromatin. To characterize such binding at the histone moiety of chromatin, we synthesized the peptide CH3CO-Cys-Ala-Ile-His-NH2 (L), a model of the evolutionarily conserved motif in histone H3 with expected affinity for transition metals, and evaluated its reactivity toward Ni(II). Combined spectroscopic (UV/vis, CD, NMR) and potentiometric measurements showed that, at physiological pH, mixtures of Ni(II) and L yielded unusual macrochelate complexes, NiL and NiL2, in which the metal cation was bound through Cys and His side chains in a square-planar arrangement. Above pH 9, a NiH-3L complex was formed, structurally analogous to typical square-planar nickel complexes. These complexes are expected to catalyze oxidation reactions, and therefore, coordination of Ni(II) by the L motif in core histone H3 may be a key event in oxidative DNA base damage observed in the process of Ni(II)-induced carcinogenesis.

  1. Core lifter

    Energy Technology Data Exchange (ETDEWEB)

    Pavlov, N G; Edel' man, Ya A

    1981-02-15

    A core lifter is suggested which contains a housing, core-clamping elements installed in the housing depressions in the form of semirings with projections on the outer surface restricting the rotation of the semirings in the housing depressions. In order to improve the strength and reliability of the core lifter, the semirings have a variable transverse section formed from the outside by the surface of the rotation body of the inner arc of the semiring aroung the rotation axis and from the inner a cylindrical surface which is concentric to the outer arc of the semiring. The core-clamping elements made in this manner have the possibility of freely rotating in the housing depressions under their own weight and from contact with the core sample. These semirings do not have weakened sections, have sufficient strength, are inserted into the limited ring section of the housing of the core lifter without reduction in its through opening and this improve the reliability of the core lifter in operation.

  2. Histone deacetylase inhibitors (HDACIs): multitargeted anticancer agents.

    Science.gov (United States)

    Ververis, Katherine; Hiong, Alison; Karagiannis, Tom C; Licciardi, Paul V

    2013-01-01

    Histone deacetylase (HDAC) inhibitors are an emerging class of therapeutics with potential as anticancer drugs. The rationale for developing HDAC inhibitors (and other chromatin-modifying agents) as anticancer therapies arose from the understanding that in addition to genetic mutations, epigenetic changes such as dysregulation of HDAC enzymes can alter phenotype and gene expression, disturb homeostasis, and contribute to neoplastic growth. The family of HDAC inhibitors is large and diverse. It includes a range of naturally occurring and synthetic compounds that differ in terms of structure, function, and specificity. HDAC inhibitors have multiple cell type-specific effects in vitro and in vivo, such as growth arrest, cell differentiation, and apoptosis in malignant cells. HDAC inhibitors have the potential to be used as monotherapies or in combination with other anticancer therapies. Currently, there are two HDAC inhibitors that have received approval from the US FDA for the treatment of cutaneous T-cell lymphoma: vorinostat (suberoylanilide hydroxamic acid, Zolinza) and depsipeptide (romidepsin, Istodax). More recently, depsipeptide has also gained FDA approval for the treatment of peripheral T-cell lymphoma. Many more clinical trials assessing the effects of various HDAC inhibitors on hematological and solid malignancies are currently being conducted. Despite the proven anticancer effects of particular HDAC inhibitors against certain cancers, many aspects of HDAC enzymes and HDAC inhibitors are still not fully understood. Increasing our understanding of the effects of HDAC inhibitors, their targets and mechanisms of action will be critical for the advancement of these drugs, especially to facilitate the rational design of HDAC inhibitors that are effective as antineoplastic agents. This review will discuss the use of HDAC inhibitors as multitargeted therapies for malignancy. Further, we outline the pharmacology and mechanisms of action of HDAC inhibitors while

  3. Extracellular DNA and histones: double-edged swords in immunothrombosis.

    Science.gov (United States)

    Gould, T J; Lysov, Z; Liaw, P C

    2015-06-01

    The existence of extracellular DNA in human plasma, also known as cell-free DNA (cfDNA), was first described in the 1940s. In recent years, there has been a resurgence of interest in the functional significance of cfDNA, particularly in the context of neutrophil extracellular traps (NETs). cfDNA and histones are key components of NETs that aid in the host response to infection and inflammation. However, cfDNA and histones may also exert harmful effects by triggering coagulation, inflammation, and cell death and by impairing fibrinolysis. In this article, we will review the pathologic nature of cfDNA and histones in macrovascular and microvascular thrombosis, including venous thromboembolism, cancer, sepsis, and trauma. We will also discuss the prognostic value of cfDNA and histones in these disease states. Understanding the molecular and cellular pathways regulated by cfDNA and histones may provide novel insights to prevent pathological thrombus formation and vascular occlusion. © 2015 International Society on Thrombosis and Haemostasis.

  4. The Histone Demethylase Jhdm1a Regulates Hepatic Gluconeogenesis

    Science.gov (United States)

    Zou, Tie; Yao, Annie Y.; Cooper, Marcus P.; Boyartchuk, Victor; Wang, Yong-Xu

    2012-01-01

    Hepatic gluconeogenesis is required for maintaining blood glucose homeostasis; yet, in diabetes mellitus, this process is unrestrained and is a major contributor to fasting hyperglycemia. To date, the impacts of chromatin modifying enzymes and chromatin landscape on gluconeogenesis are poorly understood. Through catalyzing the removal of methyl groups from specific lysine residues in the histone tail, histone demethylases modulate chromatin structure and, hence, gene expression. Here we perform an RNA interference screen against the known histone demethylases and identify a histone H3 lysine 36 (H3K36) demethylase, Jhdm1a, as a key negative regulator of gluconeogenic gene expression. In vivo, silencing of Jhdm1a promotes liver glucose synthesis, while its exogenous expression reduces blood glucose level. Importantly, the regulation of gluconeogenesis by Jhdm1a requires its demethylation activity. Mechanistically, we find that Jhdm1a regulates the expression of a major gluconeogenic regulator, C/EBPα. This is achieved, at least in part, by its USF1-dependent association with the C/EBPα promoter and its subsequent demethylation of dimethylated H3K36 on the C/EBPα locus. Our work provides compelling evidence that links histone demethylation to transcriptional regulation of gluconeogenesis and has important implications for the treatment of diabetes. PMID:22719268

  5. The histone demethylase Jhdm1a regulates hepatic gluconeogenesis.

    Directory of Open Access Journals (Sweden)

    Dongning Pan

    Full Text Available Hepatic gluconeogenesis is required for maintaining blood glucose homeostasis; yet, in diabetes mellitus, this process is unrestrained and is a major contributor to fasting hyperglycemia. To date, the impacts of chromatin modifying enzymes and chromatin landscape on gluconeogenesis are poorly understood. Through catalyzing the removal of methyl groups from specific lysine residues in the histone tail, histone demethylases modulate chromatin structure and, hence, gene expression. Here we perform an RNA interference screen against the known histone demethylases and identify a histone H3 lysine 36 (H3K36 demethylase, Jhdm1a, as a key negative regulator of gluconeogenic gene expression. In vivo, silencing of Jhdm1a promotes liver glucose synthesis, while its exogenous expression reduces blood glucose level. Importantly, the regulation of gluconeogenesis by Jhdm1a requires its demethylation activity. Mechanistically, we find that Jhdm1a regulates the expression of a major gluconeogenic regulator, C/EBPα. This is achieved, at least in part, by its USF1-dependent association with the C/EBPα promoter and its subsequent demethylation of dimethylated H3K36 on the C/EBPα locus. Our work provides compelling evidence that links histone demethylation to transcriptional regulation of gluconeogenesis and has important implications for the treatment of diabetes.

  6. Histones trigger sterile inflammation by activating the NLRP3 inflammasome.

    Science.gov (United States)

    Allam, Ramanjaneyulu; Darisipudi, Murthy Narayana; Tschopp, Jurg; Anders, Hans-Joachim

    2013-12-01

    Sterile cell death mediated inflammation is linked to several pathological disorders and involves danger recognition of intracellular molecules released by necrotic cells that activate different groups of innate pattern recognition receptors. Toll-like receptors directly interact with their extrinsic or intrinsic agonists and induce multiple proinflammatory mediators. In contrast, the NLRP3 inflammasome is rather thought to represent a downstream element integrating various indirect stimuli into proteolytic cleavage of interleukin (IL)-1β and IL-18. Here, we report that histones released from necrotic cells induce IL-1β secretion in an NLRP3-ASC-caspase-1-dependent manner. Genetic deletion of NLRP3 in mice significantly attenuated histone-induced IL-1β production and neutrophil recruitment. Furthermore, necrotic cells induced neutrophil recruitment, which was significantly reduced by histone-neutralizing antibodies or depleting extracellular histones via enzymatic degradation. These results identify cytosolic uptake of necrotic cell-derived histones as a triggering mechanism of sterile inflammation, which involves NLRP3 inflammasome activation and IL-1β secretion via oxidative stress. © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Selective Biological Responses of Phagocytes and Lungs to Purified Histones.

    Science.gov (United States)

    Fattahi, Fatemeh; Grailer, Jamison J; Lu, Hope; Dick, Rachel S; Parlett, Michella; Zetoune, Firas S; Nuñez, Gabriel; Ward, Peter A

    2017-01-01

    Histones invoke strong proinflammatory responses in many different organs and cells. We assessed biological responses to purified or recombinant histones, using human and murine phagocytes and mouse lungs. H1 had the strongest ability in vitro to induce cell swelling independent of requirements for toll-like receptors (TLRs) 2 or 4. These responses were also associated with lactate dehydrogenase release. H3 and H2B were the strongest inducers of [Ca2+]i elevations in phagocytes. Cytokine and chemokine release from mouse and human phagocytes was predominately a function of H2A and H2B. Double TLR2 and TLR4 knockout (KO) mice had dramatically reduced cytokine release induced in macrophages exposed to individual histones. In contrast, macrophages from single TLR-KO mice showed few inhibitory effects on cytokine production. Using the NLRP3 inflammasome protocol, release of mature IL-1β was predominantly a feature of H1. Acute lung injury following the airway delivery of histones suggested that H1, H2A, and H2B were linked to alveolar leak of albumin and the buildup of polymorphonuclear neutrophils as well as the release of chemokines and cytokines into bronchoalveolar fluids. These results demonstrate distinct biological roles for individual histones in the context of inflammation biology and the requirement of both TLR2 and TLR4. © 2017 S. Karger AG, Basel.

  8. Variants of glycoside hydrolases

    Science.gov (United States)

    Teter, Sarah [Davis, CA; Ward, Connie [Hamilton, MT; Cherry, Joel [Davis, CA; Jones, Aubrey [Davis, CA; Harris, Paul [Carnation, WA; Yi, Jung [Sacramento, CA

    2011-04-26

    The present invention relates to variants of a parent glycoside hydrolase, comprising a substitution at one or more positions corresponding to positions 21, 94, 157, 205, 206, 247, 337, 350, 373, 383, 438, 455, 467, and 486 of amino acids 1 to 513 of SEQ ID NO: 2, and optionally further comprising a substitution at one or more positions corresponding to positions 8, 22, 41, 49, 57, 113, 193, 196, 226, 227, 246, 251, 255, 259, 301, 356, 371, 411, and 462 of amino acids 1 to 513 of SEQ ID NO: 2 a substitution at one or more positions corresponding to positions 8, 22, 41, 49, 57, 113, 193, 196, 226, 227, 246, 251, 255, 259, 301, 356, 371, 411, and 462 of amino acids 1 to 513 of SEQ ID NO: 2, wherein the variants have glycoside hydrolase activity. The present invention also relates to nucleotide sequences encoding the variant glycoside hydrolases and to nucleic acid constructs, vectors, and host cells comprising the nucleotide sequences.

  9. Reactor core

    International Nuclear Information System (INIS)

    Azekura, Kazuo; Kurihara, Kunitoshi.

    1992-01-01

    In a BWR type reactor, a great number of pipes (spectral shift pipes) are disposed in the reactor core. Moderators having a small moderating cross section (heavy water) are circulated in the spectral shift pipes to suppress the excess reactivity while increasing the conversion ratio at an initial stage of the operation cycle. After the intermediate stage of the operation cycle in which the reactor core reactivity is lowered, reactivity is increased by circulating moderators having a great moderating cross section (light water) to extend the taken up burnup degree. Further, neutron absorbers such as boron are mixed to the moderator in the spectral shift pipe to control the concentration thereof. With such a constitution, control rods and driving mechanisms are no more necessary, to simplify the structure of the reactor core. This can increase the fuel conversion ratio and control great excess reactivity. Accordingly, a nuclear reactor core of high conversion and high burnup degree can be attained. (I.N.)

  10. Ice Cores

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Records of past temperature, precipitation, atmospheric trace gases, and other aspects of climate and environment derived from ice cores drilled on glaciers and ice...

  11. Histone H2AX is a critical factor for cellular protection against DNA alkylating agents.

    Science.gov (United States)

    Meador, J A; Zhao, M; Su, Y; Narayan, G; Geard, C R; Balajee, A S

    2008-09-25

    Histone H2A variant H2AX is a dose-dependent suppressor of oncogenic chromosome translocations. H2AX participates in DNA double-strand break repair, but its role in other DNA repair pathways is not known. In this study, role of H2AX in cellular response to alkylation DNA damage was investigated. Cellular sensitivity to two monofunctional alkylating agents (methyl methane sulfonate and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG)) was dependent on H2AX dosage, and H2AX null cells were more sensitive than heterozygous cells. In contrast to wild-type cells, H2AX-deficient cells displayed extensive apoptotic death due to a lack of cell-cycle arrest at G(2)/M phase. Lack of G(2)/M checkpoint in H2AX null cells correlated well with increased mitotic irregularities involving anaphase bridges and gross chromosomal instability. Observation of elevated poly(ADP) ribose polymerase 1 (PARP-1) cleavage suggests that MNNG-induced apoptosis occurs by PARP-1-dependent manner in H2AX-deficient cells. Consistent with this, increased activities of PARP and poly(ADP) ribose (PAR) polymer synthesis were detected in both H2AX heterozygous and null cells. Further, we demonstrate that the increased PAR synthesis and apoptotic death induced by MNNG in H2AX-deficient cells are due to impaired activation of mitogen-activated protein kinase pathway. Collectively, our novel study demonstrates that H2AX, similar to PARP-1, confers cellular protection against alkylation-induced DNA damage. Therefore, targeting either PARP-1 or histone H2AX may provide an effective way of maximizing the chemotherapeutic value of alkylating agents for cancer treatment.

  12. The Role of Histone Protein Modifications and Mutations in Histone Modifiers in Pediatric B-Cell Progenitor Acute Lymphoblastic Leukemia

    Science.gov (United States)

    Janczar, Szymon; Janczar, Karolina; Pastorczak, Agata; Harb, Hani; Paige, Adam J. W.; Zalewska-Szewczyk, Beata; Danilewicz, Marian; Mlynarski, Wojciech

    2017-01-01

    While cancer has been long recognized as a disease of the genome, the importance of epigenetic mechanisms in neoplasia was acknowledged more recently. The most active epigenetic marks are DNA methylation and histone protein modifications and they are involved in basic biological phenomena in every cell. Their role in tumorigenesis is stressed by recent unbiased large-scale studies providing evidence that several epigenetic modifiers are recurrently mutated or frequently dysregulated in multiple cancers. The interest in epigenetic marks is especially due to the fact that they are potentially reversible and thus druggable. In B-cell progenitor acute lymphoblastic leukemia (BCP-ALL) there is a relative paucity of reports on the role of histone protein modifications (acetylation, methylation, phosphorylation) as compared to acute myeloid leukemia, T-cell ALL, or other hematologic cancers, and in this setting chromatin modifications are relatively less well studied and reviewed than DNA methylation. In this paper, we discuss the biomarker associations and evidence for a driver role of dysregulated global and loci-specific histone marks, as well as mutations in epigenetic modifiers in BCP-ALL. Examples of chromatin modifiers recurrently mutated/disrupted in BCP-ALL and associated with disease outcomes include MLL1, CREBBP, NSD2, and SETD2. Altered histone marks and histone modifiers and readers may play a particular role in disease chemoresistance and relapse. We also suggest that epigenetic regulation of B-cell differentiation may have parallel roles in leukemogenesis. PMID:28054944

  13. Low Proteolytic Clipping of Histone H3 in Cervical Cancer

    Science.gov (United States)

    Sandoval-Basilio, Jorge; Serafín-Higuera, Nicolás; Reyes-Hernandez, Octavio D.; Serafín-Higuera, Idanya; Leija-Montoya, Gabriela; Blanco-Morales, Magali; Sierra-Martínez, Monica; Ramos-Mondragon, Roberto; García, Silvia; López-Hernández, Luz Berenice; Yocupicio-Monroy, Martha; Alcaraz-Estrada, Sofia L.

    2016-01-01

    Chromatin in cervical cancer (CC) undergoes chemical and structural changes that alter the expression pattern of genes. Recently, a potential mechanism, which regulates gene expression at transcriptional levels is the proteolytic clipping of histone H3. However, until now this process in CC has not been reported. Using HeLa cells as a model of CC and human samples from patients with CC, we identify that the H3 cleavage was lower in CC compared with control tissue. Additionally, the histone H3 clipping was performed by serine and aspartyl proteases in HeLa cells. These results suggest that histone H3 clipping operates as part of post-translational modification system in CC. PMID:27698925

  14. Histone deacetylase inhibition regulates inflammation and enhances Tregs after allogeneic hematopoietic cell transplantation in humans

    NARCIS (Netherlands)

    Choi, S.W.; Gatza, E.; Hou, G.; Sun, Y; Whitfield, J.; Song, Y.; Oravecz-Wilson, K.; Tawara, I.; Dinarello, C.A.; Reddy, P.

    2015-01-01

    We examined immunological responses in patients receiving histone deacetylase (HDAC) inhibition (vorinostat) for graft-versus-host disease prophylaxis after allogeneic hematopoietic cell transplant. Vorinostat treatment increased histone acetylation in peripheral blood mononuclear cells (PBMCs) from

  15. The emerging role of histone lysine demethylases in prostate cancer

    Directory of Open Access Journals (Sweden)

    Crea Francesco

    2012-08-01

    Full Text Available Abstract Early prostate cancer (PCa is generally treatable and associated with good prognosis. After a variable time, PCa evolves into a highly metastatic and treatment-refractory disease: castration-resistant PCa (CRPC. Currently, few prognostic factors are available to predict the emergence of CRPC, and no curative option is available. Epigenetic gene regulation has been shown to trigger PCa metastasis and androgen-independence. Most epigenetic studies have focused on DNA and histone methyltransferases. While DNA methylation leads to gene silencing, histone methylation can trigger gene activation or inactivation, depending on the target amino acid residues and the extent of methylation (me1, me2, or me3. Interestingly, some histone modifiers are essential for PCa tumor-initiating cell (TIC self-renewal. TICs are considered the seeds responsible for metastatic spreading and androgen-independence. Histone Lysine Demethylases (KDMs are a novel class of epigenetic enzymes which can remove both repressive and activating histone marks. KDMs are currently grouped into 7 major classes, each one targeting a specific methylation site. Since their discovery, KDM expression has been found to be deregulated in several neoplasms. In PCa, KDMs may act as either tumor suppressors or oncogenes, depending on their gene regulatory function. For example, KDM1A and KDM4C are essential for PCa androgen-dependent proliferation, while PHF8 is involved in PCa migration and invasion. Interestingly, the possibility of pharmacologically targeting KDMs has been demonstrated. In the present paper, we summarize the emerging role of KDMs in regulating the metastatic potential and androgen-dependence of PCa. In addition, we speculate on the possible interaction between KDMs and other epigenetic effectors relevant for PCa TICs. Finally, we explore the role of KDMs as novel prognostic factors and therapeutic targets. We believe that studies on histone demethylation may add a

  16. Post-Translational Modifications of Histones in Human Sperm.

    Science.gov (United States)

    Krejčí, Jana; Stixová, Lenka; Pagáčová, Eva; Legartová, Soňa; Kozubek, Stanislav; Lochmanová, Gabriela; Zdráhal, Zbyněk; Sehnalová, Petra; Dabravolski, Siarhei; Hejátko, Jan; Bártová, Eva

    2015-10-01

    We examined the levels and distribution of post-translationally modified histones and protamines in human sperm. Using western blot immunoassay, immunofluorescence, mass spectrometry (MS), and FLIM-FRET approaches, we analyzed the status of histone modifications and the protamine P2. Among individual samples, we observed variability in the levels of H3K9me1, H3K9me2, H3K27me3, H3K36me3, and H3K79me1, but the level of acetylated (ac) histones H4 was relatively stable in the sperm head fractions, as demonstrated by western blot analysis. Sperm heads with lower levels of P2 exhibited lower levels of H3K9ac, H3K9me1, H3K27me3, H3K36me3, and H3K79me1. A very strong correlation was observed between the levels of P2 and H3K9me2. FLIM-FRET analysis additionally revealed that acetylated histones H4 are not only parts of sperm chromatin but also appear in a non-integrated form. Intriguingly, H4ac and H3K27me3 were detected in sperm tail fractions via western blot analysis. An appearance of specific histone H3 and H4 acetylation and H3 methylation in sperm tail fractions was also confirmed by both LC-MS/MS and MALDI-TOF MS analysis. Taken together, these data indicate that particular post-translational modifications of histones are uniquely distributed in human sperm, and this distribution varies among individuals and among the sperm of a single individual. © 2015 Wiley Periodicals, Inc.

  17. Dissociation of histone and DNA synthesis in x-irradiated HeLa cells

    International Nuclear Information System (INIS)

    Bases, R.; Mendez, F.

    1971-01-01

    Although histone synthesis and DNA synthesis are normally very well coordinated in HeLa cells, their histone synthesis proved relatively resistant to inhibition by ionizing radiation. During the first 24 h after 1,000 R the rate of cellular DNA synthesis progressively fell to small fractions of control values while histone synthesis with much less relative reduction. Acrylamide gel electropherograms of the acid soluble nuclear histones synthesized by irradiated HeLa cells were qualitatively normal

  18. Inhibition of histone deacetylases sensitizes glioblastoma cells to lomustine

    DEFF Research Database (Denmark)

    Staberg, Mikkel; Michaelsen, Signe Regner; Rasmussen, Rikke Darling

    2017-01-01

    the sensitizing effect of the HDACi trichostatin A (TSA) to the alkylating agent lomustine (CCNU), which is used in the clinic for the treatment of GBM. METHODS: Twelve primary GBM cell cultures grown as neurospheres were used in this study, as well as one established GBM-derived cell line (U87 MG). Histone...... are problems that call for a prompt development of novel therapeutic strategies. While only displaying modest efficacies as mono-therapy in pre-clinical settings, histone deacetylase inhibitors (HDACi) have shown promising sensitizing effects to a number of cytotoxic agents. Here, we sought to investigate...

  19. Epigenetic control of skull morphogenesis by histone deacetylase 8

    Science.gov (United States)

    Haberland, Michael; Mokalled, Mayssa H.; Montgomery, Rusty L.; Olson, Eric N.

    2009-01-01

    Histone deacetylases (Hdacs) are transcriptional repressors with crucial roles in mammalian development. Here we provide evidence that Hdac8 specifically controls patterning of the skull by repressing a subset of transcription factors in cranial neural crest cells. Global deletion of Hdac8 in mice leads to perinatal lethality due to skull instability, and this is phenocopied by conditional deletion of Hdac8 in cranial neural crest cells. Hdac8 specifically represses the aberrant expression of homeobox transcription factors such as Otx2 and Lhx1. These findings reveal how the identity and patterning of vertebrate-specific portions of the skull are epigenetically controlled by a histone deacetylase. PMID:19605684

  20. Mechanisms of transcriptional repression by histone lysine methylation

    DEFF Research Database (Denmark)

    Hublitz, Philip; Albert, Mareike; Peters, Antoine H F M

    2009-01-01

    . In this report, we review the recent literature to deduce mechanisms underlying Polycomb and H3K9 methylation mediated repression, and describe the functional interplay with activating H3K4 methylation. We summarize recent data that indicate a close relationship between GC density of promoter sequences......, transcription factor binding and the antagonizing activities of distinct epigenetic regulators such as histone methyltransferases (HMTs) and histone demethylases (HDMs). Subsequently, we compare chromatin signatures associated with different types of transcriptional outcomes from stable repression to highly...

  1. Characterization of human papillomavirus type 16 pseudovirus containing histones.

    Science.gov (United States)

    Kim, Hyoung Jin; Kwag, Hye-Lim; Kim, Hong-Jin

    2016-08-27

    Pseudoviruses (PsVs) that encapsidate a reporter plasmid DNA have been used as surrogates for native human papillomavirus (HPV), whose continuous production is technically difficult. HPV PsVs have been designed to form capsids made up of the major capsid protein L1 and the minor capsid proteins L2. HPV PsVs have been produced in 293TT cells transfected with plasmid expressing L1 and L2 protein and plasmid containing the reporter gene. Several studies have suggested that naturally occurring HPV virions contain cellular histones, and histones have also been identified in mature HPV PsVs. However, the effect of the histones on the properties of the PsVs has not been investigated. Using heparin chromatography, we separated mature HPV type 16 PsVs into three fractions (I, II, and III) according to their heparin-binding affinities. The amounts of cellular histone and cellular nucleotides per PsV were found to increase in the order fraction I, II and III. It appeared that PsVs in fraction I contains just small amount of cellular histone in Western blot analysis. The proportions of the three fractions in PsV preparations were 83.4, 7.5, and 9.1 % for fraction I, II, and III PsVs, respectively. In the electron microscope PsVs in fraction I appeared to have a more condensed structure than those in fractions II and III. Under the electron microscope fraction II and III PsVs appeared to be covered by substantial amounts of cellular histone while there was no visible histone covering PsVs of fraction I. Also the levels of reporter gene expression in infections of fraction II and III PsVs to 293TT cells were significantly lower than those in infections of fraction I PsV, and fraction II and III particles had significantly reduced immunogenicity. Our findings suggest that the involvement of large amounts of cellular histones during PsV formation interferes with the structural integrity of the PsVs and affects their immunogenicity. The fraction I particle therefore has the most

  2. Effects of orally applied butyrate bolus on histone acetylation and cytochrome P450 enzyme activity in the liver of chicken – a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Mátis Gábor

    2013-01-01

    Full Text Available Abstract Background Butyrate is known as histone deacetylase inhibitor, inducing histone hyperacetylation in vitro and playing a predominant role in the epigenetic regulation of gene expression and cell function. We hypothesized that butyrate, endogenously produced by intestinal microbial fermentation or applied as a nutritional supplement, might cause similar in vivo modifications in the chromatin structure of the hepatocytes, influencing the expression of certain genes and therefore modifying the activity of hepatic microsomal drug-metabolizing cytochrome P450 (CYP enzymes. Methods An animal study was carried out in chicken as a model to investigate the molecular mechanisms of butyrate’s epigenetic actions in the liver. Broiler chicks in the early post-hatch period were treated once daily with orally administered bolus of butyrate following overnight starvation with two different doses (0.25 or 1.25 g/kg body weight per day for five days. After slaughtering, cell nucleus and microsomal fractions were separated by differential centrifugation from the livers. Histones were isolated from cell nuclei and acetylation of hepatic core histones was screened by western blotting. The activity of CYP2H and CYP3A37, enzymes involved in biotransformation in chicken, was detected by aminopyrine N-demethylation and aniline-hydroxylation assays from the microsomal suspensions. Results Orally added butyrate, applied in bolus, had a remarkable impact on nucleosome structure of hepatocytes: independently of the dose, butyrate caused hyperacetylation of histone H2A, but no changes were monitored in the acetylation state of H2B. Intensive hyperacetylation of H3 was induced by the higher administered dose, while the lower dose tended to increase acetylation ratio of H4. In spite of the observed modification in histone acetylation, no significant changes were observed in the hepatic microsomal CYP2H and CYP3A37 activity. Conclusion Orally added butyrate in bolus

  3. Accurate genotyping across variant classes and lengths using variant graphs

    DEFF Research Database (Denmark)

    Sibbesen, Jonas Andreas; Maretty, Lasse; Jensen, Jacob Malte

    2018-01-01

    of read k-mers to a graph representation of the reference and variants to efficiently perform unbiased, probabilistic genotyping across the variation spectrum. We demonstrate that BayesTyper generally provides superior variant sensitivity and genotyping accuracy relative to existing methods when used...... collecting a set of candidate variants across discovery methods, individuals and databases, and then realigning the reads to the variants and reference simultaneously. However, this realignment problem has proved computationally difficult. Here, we present a new method (BayesTyper) that uses exact alignment...... to integrate variants across discovery approaches and individuals. Finally, we demonstrate that including a ‘variation-prior’ database containing already known variants significantly improves sensitivity....

  4. Histone deacetylase 1, 2, 6 and acetylated histone H4 in B- and T-cell lymphomas

    DEFF Research Database (Denmark)

    Marquard, L.; Poulsen, C.B.; Gjerdrum, L.M.

    2009-01-01

    AIMS: Histone deacetylase (HDAC) inhibitors are novel therapeutics in the treatment of peripheral T-cell lymphoma, unspecified (PTCL) and diffuse large B-cell lymphoma (DLBCL), where, for unknown reasons, T-cell malignancies appear to be more sensitive than B-cell malignancies. The aim was to det......AIMS: Histone deacetylase (HDAC) inhibitors are novel therapeutics in the treatment of peripheral T-cell lymphoma, unspecified (PTCL) and diffuse large B-cell lymphoma (DLBCL), where, for unknown reasons, T-cell malignancies appear to be more sensitive than B-cell malignancies. The aim...... was to determine HDAC expression in DLBCL and PTCL which has not previously been investigated. METHODS AND RESULTS: The expression of HDAC1, HDAC2, HDAC6 and acetylated histone H4 was examined immunohistochemically in 31 DLBCL and 45 PTCL. All four markers showed high expression in both DLBCL and PTCL compared...

  5. Histone deacetylase inhibitors induced differentiation and accelerated mineralization of pulp-derived cells.

    LENUS (Irish Health Repository)

    Duncan, Henry F

    2012-03-01

    Histone deacetylase inhibitors (HDACis) alter the homeostatic balance between 2 groups of cellular enzymes, histone deacetylases (HDACs) and histone acetyltransferases (HATs), increasing transcription and influencing cell behavior. This study investigated the potential of 2 HDACis, valproic acid (VPA) and trichostatin A (TSA), to promote reparative processes in pulp cells as assayed by viability, cell cycle, and mineralization analyses.

  6. Further evidence for poly-ADP-ribosylated histones as DNA suppressors

    International Nuclear Information System (INIS)

    Yu, F.L.; Geronimo, I.H.; Bender, W.; Meginniss, K.E.

    1986-01-01

    For many years histones have been considered to be the gene suppressors in eukaryotic cells. Recently, the authors have found strong evidence indicating that poly-ADP-ribosylated histones, rather than histones, are the potent inhibitors of DNA-dependent RNA synthesis. They now report additional evidence for this concept: 1) using histone inhibitor isolated directly from nuclei, the authors are able to confirm their earlier findings that the inhibitor substances are sensitive to pronase, snake venom phosphodiesterase digestion and 0.1N KOH hydrolysis, and are resistant to DNase I and RNase A digestion, 2) the O.D. 260/O.D.280 ratio of the histone inhibitor is between pure protein and nuclei acid, suggesting the inhibitor substance is a nucleoprotein hybrid. This result directly supports the fact that the isolated histone inhibitor is radioactive poly (ADP-ribose) labeled, 3) commercial histones show big differences in inhibitor activity. The authors believe this reflects the variation in poly-ADP-ribosylation among commercial histones, and 4) 0.1N KOH hydrolysis eliminates the poly (ADP-ribose) radioactivity from the acceptor proteins as well as histone inhibitor activity. Yet, on gel, the inhibitor shows identical histone bands and stain intensity before and after hydrolysis, indicating the histones per se are qualitatively and quantitatively unaffected by alkaline treatment. This result strongly suggests that histones themselves are not capable of inhibiting DNA-dependent RNA synthesis

  7. Neutrophil Extracellular Trap-Related Extracellular Histones Cause Vascular Necrosis in Severe GN.

    Science.gov (United States)

    Kumar, Santhosh V R; Kulkarni, Onkar P; Mulay, Shrikant R; Darisipudi, Murthy N; Romoli, Simone; Thomasova, Dana; Scherbaum, Christina R; Hohenstein, Bernd; Hugo, Christian; Müller, Susanna; Liapis, Helen; Anders, Hans-Joachim

    2015-10-01

    Severe GN involves local neutrophil extracellular trap (NET) formation. We hypothesized a local cytotoxic effect of NET-related histone release in necrotizing GN. In vitro, histones from calf thymus or histones released by neutrophils undergoing NETosis killed glomerular endothelial cells, podocytes, and parietal epithelial cells in a dose-dependent manner. Histone-neutralizing agents such as antihistone IgG, activated protein C, or heparin prevented this effect. Histone toxicity on glomeruli ex vivo was Toll-like receptor 2/4 dependent, and lack of TLR2/4 attenuated histone-induced renal thrombotic microangiopathy and glomerular necrosis in mice. Anti-glomerular basement membrane GN involved NET formation and vascular necrosis, whereas blocking NET formation by peptidylarginine inhibition or preemptive anti-histone IgG injection significantly reduced all aspects of GN (i.e., vascular necrosis, podocyte loss, albuminuria, cytokine induction, recruitment or activation of glomerular leukocytes, and glomerular crescent formation). To evaluate histones as a therapeutic target, mice with established GN were treated with three different histone-neutralizing agents. Anti-histone IgG, recombinant activated protein C, and heparin were equally effective in abrogating severe GN, whereas combination therapy had no additive effects. Together, these results indicate that NET-related histone release during GN elicits cytotoxic and immunostimulatory effects. Furthermore, neutralizing extracellular histones is still therapeutic when initiated in established GN. Copyright © 2015 by the American Society of Nephrology.

  8. Histone H3 Lysine Methylation in Cognition and Intellectual Disability Disorders

    Science.gov (United States)

    Parkel, Sven; Lopez-Atalaya, Jose P.; Barco, Angel

    2013-01-01

    Recent research indicates that epigenetic mechanisms and, in particular, the post-translational modification (PTM) of histones may contribute to memory encoding and storage. Among the dozens of possible histone PTMs, the methylation/demethylation of lysines in the N-terminal tail of histone H3 exhibits particularly strong links with cognitive…

  9. Histone H3.3 promotes IgV gene diversification by?enhancing formation of AID?accessible single?stranded DNA

    OpenAIRE

    Romanello, Marina; Schiavone, Davide; Frey, Alexander; Sale, Julian E

    2016-01-01

    Abstract Immunoglobulin diversification is driven by activation?induced deaminase (AID), which converts cytidine to uracil within the Ig variable (IgV) regions. Central to the recruitment of AID to the IgV genes are factors that regulate the generation of single?stranded DNA (ssDNA), the enzymatic substrate of AID. Here, we report that chicken DT40 cells lacking variant histone H3.3 exhibit reduced IgV sequence diversification. We show that this results from impairment of the ability of AID t...

  10. Quantitative analysis of histone modifications: formaldehyde is a source of pathological n(6-formyllysine that is refractory to histone deacetylases.

    Directory of Open Access Journals (Sweden)

    Bahar Edrissi

    Full Text Available Aberrant protein modifications play an important role in the pathophysiology of many human diseases, in terms of both dysfunction of physiological modifications and the formation of pathological modifications by reaction of proteins with endogenous electrophiles. Recent studies have identified a chemical homolog of lysine acetylation, N(6-formyllysine, as an abundant modification of histone and chromatin proteins, one possible source of which is the reaction of lysine with 3'-formylphosphate residues from DNA oxidation. Using a new liquid chromatography-coupled to tandem mass spectrometry method to quantify all N(6-methyl-, -acetyl- and -formyl-lysine modifications, we now report that endogenous formaldehyde is a major source of N(6-formyllysine and that this adduct is widespread among cellular proteins in all compartments. N(6-formyllysine was evenly distributed among different classes of histone proteins from human TK6 cells at 1-4 modifications per 10(4 lysines, which contrasted strongly with lysine acetylation and mono-, di-, and tri-methylation levels of 1.5-380, 5-870, 0-1400, and 0-390 per 10(4 lysines, respectively. While isotope labeling studies revealed that lysine demethylation is not a source of N(6-formyllysine in histones, formaldehyde exposure was observed to cause a dose-dependent increase in N(6-formyllysine, with use of [(13C,(2H2]-formaldehyde revealing unchanged levels of adducts derived from endogenous sources. Inhibitors of class I and class II histone deacetylases did not affect the levels of N(6-formyllysine in TK6 cells, and the class III histone deacetylase, SIRT1, had minimal activity (<10% with a peptide substrate containing the formyl adduct. These data suggest that N(6-formyllysine is refractory to removal by histone deacetylases, which supports the idea that this abundant protein modification could interfere with normal regulation of gene expression if it arises at conserved sites of physiological protein secondary

  11. Toxic effects of extracellular histones and their neutralization by vitreous in retinal detachment.

    Science.gov (United States)

    Kawano, Hiroki; Ito, Takashi; Yamada, Shingo; Hashiguchi, Teruto; Maruyama, Ikuro; Hisatomi, Toshio; Nakamura, Makoto; Sakamoto, Taiji

    2014-05-01

    Histones are DNA-binding proteins and are involved in chromatin remodeling and regulation of gene expression. Histones can be released after tissue injuries, and the extracellular histones cause cellular damage and organ dysfunction. Regardless of their clinical significance, the role and relevance of histones in ocular diseases are unknown. We studied the role of histones in eyes with retinal detachment (RD). Vitreous samples were collected during vitrectomy, and the concentration of histone H3 was measured by enzyme-linked immunosorbent assay. The location of the histones and related molecules was examined in a rat RD model. The release of histones and their effects on rat retinal progenitor cells R28 and ARPE-19 were evaluated in vitro. In addition, the protective role of the vitreous body against histones was tested. The intravitreal concentration of histones was higher in eyes with RD (mean, 30.9 ± 9.8 ng/ml) than in control eyes (below the limit of detection, Phistone H3 was observed on the outer side of the detached retina and was associated with photoreceptor death. Histone H3 was released from cultured R28 by oxidative stress. Histones at a concentration 10 μg/ml induced the production of interleukin-8 in ARPE-19 cells (2.5-fold increase, PHistones were toxic to cells at concentrations of ≥ 20 μg/ml. Vitreous body or hyaluronan decreased toxicity of histones by inhibiting diffusion of histones. These results indicate that histones are released from retinas with RD and may modulate the subretinal microenvironment by functioning as damage-associated molecular pattern molecules, thereby inducing proinflammatory cytokines or cell toxicity. In addition, the important role of the vitreous body and hyaluronan in protecting the retina from these toxic effects is suggested.

  12. Variants of Moreau's sweeping process

    International Nuclear Information System (INIS)

    Siddiqi, A.H.; Manchanda, P.

    2001-07-01

    In this paper we prove the existence and uniqueness of two variants of Moreau's sweeping process -u'(t) is an element of Nc (t) (u(t)), where in one variant we replace u(t) by u'(t) in the right-hand side of the inclusion and in the second variant u'(t) and u(t) are respectively replaced by u''(t) and u'(t). (author)

  13. Reactor core

    International Nuclear Information System (INIS)

    Matsuura, Tetsuaki; Nomura, Teiji; Tokunaga, Kensuke; Okuda, Shin-ichi

    1990-01-01

    Fuel assemblies in the portions where the gradient of fast neutron fluxes between two opposing faces of a channel box is great are kept loaded at the outermost peripheral position of the reactor core also in the second operation cycle in the order to prevent interference between a control rod and the channel box due to bending deformation of the channel box. Further, the fuel assemblies in the second row from the outer most periphery in the first operation cycle are also kept loaded at the second row in the second operation cycle. Since the gradient of the fast neutrons in the reactor core is especially great at the outer circumference of the reactor core, the channel box at the outer circumference is bent such that the surface facing to the center of the reactor core is convexed and the channel box in the second row is also bent to the identical direction, the insertion of the control rod is not interfered. Further, if the positions for the fuels at the outermost periphery and the fuels in the second row are not altered in the second operation cycle, the gaps are not reduced to prevent the interference between the control rod and the channel box. (N.H.)

  14. Differential patterns of histone acetylation in inflammatory bowel diseases

    Directory of Open Access Journals (Sweden)

    Adcock Ian M

    2011-01-01

    Full Text Available Abstract Post-translational modifications of histones, particularly acetylation, are associated with the regulation of inflammatory gene expression. We used two animal models of inflammation of the bowel and biopsy samples from patients with Crohn's disease (CD to study the expression of acetylated histones (H 3 and 4 in inflamed mucosa. Acetylation of histone H4 was significantly elevated in the inflamed mucosa in the trinitrobenzene sulfonic acid model of colitis particularly on lysine residues (K 8 and 12 in contrast to non-inflamed tissue. In addition, acetylated H4 was localised to inflamed tissue and to Peyer's patches (PP in dextran sulfate sodium (DSS-treated rat models. Within the PP, H3 acetylation was detected in the mantle zone whereas H4 acetylation was seen in both the periphery and the germinal centre. Finally, acetylation of H4 was significantly upregulated in inflamed biopsies and PP from patients with CD. Enhanced acetylation of H4K5 and K16 was seen in the PP. These results demonstrate that histone acetylation is associated with inflammation and may provide a novel therapeutic target for mucosal inflammation.

  15. New histone supply regulates replication fork speed and PCNA unloading

    DEFF Research Database (Denmark)

    Mejlvang, Jakob; Feng, Yunpeng; Alabert, Constance

    2014-01-01

    Correct duplication of DNA sequence and its organization into chromatin is central to genome function and stability. However, it remains unclear how cells coordinate DNA synthesis with provision of new histones for chromatin assembly to ensure chromosomal stability. In this paper, we show that re...

  16. Hypothalamic leptin action is mediated by histone deacetylase 5

    DEFF Research Database (Denmark)

    Kabra, Dhiraj G; Pfuhlmann, Katrin; García-Cáceres, Cristina

    2016-01-01

    Hypothalamic leptin signalling has a key role in food intake and energy-balance control and is often impaired in obese individuals. Here we identify histone deacetylase 5 (HDAC5) as a regulator of leptin signalling and organismal energy balance. Global HDAC5 KO mice have increased food intake and...

  17. Cell shape regulates global histone acetylation in human mammaryepithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Le Beyec, Johanne; Xu, Ren; Lee, Sun-Young; Nelson, Celeste M.; Rizki, Aylin; Alcaraz, Jordi; Bissell, Mina J.

    2007-02-28

    Extracellular matrix (ECM) regulates cell morphology and gene expression in vivo; these relationships are maintained in three-dimensional (3D) cultures of mammary epithelial cells. In the presence of laminin-rich ECM (lrECM), mammary epithelial cells round up and undergo global histone deacetylation, a process critical for their functional differentiation. However, it remains unclear whether lrECM-dependent cell rounding and global histone deacetylation are indeed part of a common physical-biochemical pathway. Using 3D cultures as well as nonadhesive and micropatterned substrata, here we showed that the cell 'rounding' caused by lrECM was sufficient to induce deacetylation of histones H3 and H4 in the absence of biochemical cues. Microarray and confocal analysis demonstrated that this deacetylation in 3D culture is associated with a global increase in chromatin condensation and a reduction in gene expression. Whereas cells cultured on plastic substrata formed prominent stress fibers, cells grown in 3D lrECM or on micropatterns lacked these structures. Disruption of the actin cytoskeleton with cytochalasin D phenocopied the lrECM-induced cell rounding and histone deacetylation. These results reveal a novel link between ECM-controlled cell shape and chromatin structure, and suggest that this link is mediated by changes in the actin cytoskeleton.

  18. Post-Translational Modifications of Histones in Human Sperm

    Czech Academy of Sciences Publication Activity Database

    Krejčí, Jana; Stixová, Lenka; Legartová, Soňa; Kozubek, Stanislav; Lochmanová, G.; Zdráhal, Z.; Sehnalová, Petra; Dabravolski, S.; Hejatko, J.; Bártová, Eva

    2015-01-01

    Roč. 116, č. 10 (2015), s. 2195-2209 ISSN 0730-2312 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081707 Keywords : HUMAN SPERM * HISTONES * PROTAMINE P2 Subject RIV: BO - Biophysics Impact factor: 3.446, year: 2015

  19. Effect of histone deacetylase inhibitor, trichostatin A, on cartilage ...

    African Journals Online (AJOL)

    Purpose: To evaluate the effect of histone deacetylase (HDAC) inhibitor, trichostatin A (TCA), on cartilage regeneration in a rabbit perichondrial graft model. Methods: Perichondrial grafts (20 × 20 mm2) were derived from the ears of New Zealand rabbits and transplanted onto the paravertebral muscle of the face of each ...

  20. Sepsis and ARDS: The Dark Side of Histones

    Science.gov (United States)

    Xu, Zhiheng; Huang, Yongbo; Mao, Pu; Zhang, Jianrong; Li, Yimin

    2015-01-01

    Despite advances in management over the last several decades, sepsis and acute respiratory distress syndrome (ARDS) still remain major clinical challenges and the leading causes of death for patients in intensive care units (ICUs) due to insufficient understanding of the pathophysiological mechanisms of these diseases. However, recent studies have shown that histones, also known as chromatin-basic structure proteins, could be released into the extracellular space during severe stress and physical challenges to the body (e.g., sepsis and ARDS). Due to their cytotoxic and proinflammatory effects, extracellular histones can lead to excessive and overwhelming cell damage and death, thus contributing to the pathogenesis of both sepsis and ARDS. In addition, antihistone-based treatments (e.g., neutralizing antibodies, activated protein C, and heparin) have shown protective effects and have significantly improved the outcomes of mice suffering from sepsis and ARDS. Here, we review researches related to the pathological role of histone in context of sepsis and ARDS and evaluate the potential value of histones as biomarkers and therapeutic targets of these diseases. PMID:26609197

  1. Hairy cell leukemia-variant

    International Nuclear Information System (INIS)

    Quadri, Mohammad I.; Al-Sheikh, Iman H.

    2001-01-01

    Hairy cell leukaemia variant is a very rare chronic lymphoproliferative disorder and is closely related to hairy cell leukemia. We hereby describe a case of hairy cell leukaemia variant for the first time in Saudi Arabia. An elderly Saudi man presented with pallor, massive splenomegaly, and moderate hepatomegaly. Hemoglobin was 7.7 g/dl, Platelets were 134 x109/l and white blood count was 140x10 9/l with 97% being abnormal lymphoid cells with cytoplasmic projections. The morphology, cytochemistry, and immunophenotype of the lymphoid cells were classical of hairy cell leukaemia variant. The bone marrow was easily aspirated and findings were consistent with hairy cell leukaemia variant. (author)

  2. Effect of leucine-to-methionine substitutions on the diffraction quality of histone chaperone SET/TAF-Iβ/INHAT crystals

    International Nuclear Information System (INIS)

    Senda, Miki; Muto, Shinsuke; Horikoshi, Masami; Senda, Toshiya

    2008-01-01

    The combination of leucine-to-methionine substitutions and optimization of cryoconditions improved the resolution of histone chaperone SET/TAF-Iβ/INHAT crystals from around 5.5 to 2.3 Å without changing the crystallization conditions, allowing successful structure determination of SET/TAF-Iβ/INHAT by the multiwavelength anomalous diffraction method. One of the most frequent problems in crystallization is poor quality of the crystals. In order to overcome this obstacle several methods have been utilized, including amino-acid substitutions of the target protein. Here, an example is presented of crystal-quality improvement by leucine-to-methionine substitutions. A variant protein with three amino-acid substitutions enabled improvement of the crystal quality of the histone chaperone SET/TAF-Iβ/INHAT when combined with optimization of the cryoconditions. This procedure improved the resolution of the SET/TAF-Iβ/INHAT crystals from around 5.5 to 2.3 Å without changing the crystallization conditions

  3. Analysis of the histone protein tail and DNA in nucleosome using molecular dynamics simulation

    Science.gov (United States)

    Fujimori, R.; Komatsu, Y.; Fukuda, M.; Miyakawa, T.; Morikawa, R.; Takasu, M.

    2013-02-01

    We study the effect of the tails of H3 and H4 histones in the nucleosomes, where DNA and histones are packed in the form of chromatin. We perform molecular dynamics simulations of the complex of DNA and histones and calculate the mean square displacement and the gyration radius of the complex of DNA and histones for the cases with tails intact and the cases with tails missing. Our results show that the H3 tails are important for the motion of the histones. We also find that the motion of one tail is affected by other tails, although the tails are distanced apart, suggesting the correlated motion in biological systems.

  4. Synergistic efficacy in human ovarian cancer cells by histone deacetylase inhibitor TSA and proteasome inhibitor PS-341.

    Science.gov (United States)

    Fang, Yong; Hu, Yi; Wu, Peng; Wang, Beibei; Tian, Yuan; Xia, Xi; Zhang, Qinghua; Chen, Tong; Jiang, Xuefeng; Ma, Quanfu; Xu, Gang; Wang, Shixuan; Zhou, Jianfeng; Ma, Ding; Meng, Li

    2011-05-01

    Histone deacetylase inhibitors and proteasome inhibitor are all emerging as new classes of anticancer agents. We chose TSA and PS-341 to identify whether they have a synergistic efficacy on human ovarian cancer cells. After incubated with 500 nM TSA or/and 40 nM PS-341, we found that combined groups resulted in a striking increase of apoptosis and G2/M blocking rates, no matter in A2780, cisplatin-sensitive ovarian cancer cell line OV2008 or its resistant variant C13*. This demonstrated that TSA interacted synergistically with PS-341, which raised the possibility that combined the two drugs may represent a novel strategy in ovarian cancer.

  5. Product Variant Master as a Means to Handle Variant Design

    DEFF Research Database (Denmark)

    Hildre, Hans Petter; Mortensen, Niels Henrik; Andreasen, Mogens Myrup

    1996-01-01

    be implemented in the CAD system I-DEAS. A precondition for high degree of computer support is identification of a product variant master from which new variants can be derived. This class platform defines how a product build up fit certain production methods and rules governing determination of modules...

  6. The relationship between DNA synthesis and incorporation of (14C) lysine into different histone fractions in Ehrlich ascites tumour cells

    International Nuclear Information System (INIS)

    Malec, J.; Kornacka, L.; Wojnarowska, M.; Moscicka, M.

    1974-01-01

    The effect of inhibition of DNA synthesis by hydroxyurea on ( 14 C) lysine incorporation into the main four histone fractions in Ehrlich ascites tumor cells, was examined in vitro. The radioactivity of lysine-rich histones, especially of histone f1, was preferentially decreased. The smallest decrease was observed for histone f3. The incorporation into other cellular proteins was but slightly affected. (author)

  7. Heterogeneous cores for fast breeder reactor

    International Nuclear Information System (INIS)

    Schroeder, R.; Spenke, H.

    1980-01-01

    Firstly, the motivation for heterogeneous cores is discussed. This is followed by an outline of two reactor designs, both of which are variants of the combined ring and island core. These designs are presented by means of figures and detailed tables. Subsequently, a description of two international projects at fast critical zero energy facilities is given. Both of them support the nuclear design of heterogeneous cores. In addition to a survey of these projects, a typical experiment is discussed: the measurement of rate distributions. (orig.) [de

  8. Substrate- and Cofactor-independent Inhibition of Histone Demethylase KDM4C

    DEFF Research Database (Denmark)

    Leurs, Ulrike; Lohse, Brian; Rand, Kasper Dyrberg

    2014-01-01

    Inhibition of histone demethylases has within recent years advanced into a new strategy for treating cancer and other diseases. Targeting specific histone demethylases can be challenging as the active sites of KDM1A-B and KDM-4A-D histone demethylases, respectively, are highly conserved. Most...... inhibitors developed up-to-date target either the cofactor- or substrate-binding sites of these enzymes, resulting in a lack of selectivity and off-target effects. This study describes the discovery of the first peptide-based inhibitors of KDM4 histone demethylases that do not share the histone peptide...... sequence, or inhibit through substrate competition. Through screening of DNA-encoded peptide libraries against KDM1 and -4 histone demethylases by phage display, two cyclic peptides targeting the histone demethylase KDM4C were identified and developed as inhibitors by amino acid replacement, truncation...

  9. A histone H3K9M mutation traps histone methyltransferase Clr4 to prevent heterochromatin spreading

    Energy Technology Data Exchange (ETDEWEB)

    Shan, Chun-Min; Wang, Jiyong; Xu, Ke; Chen, Huijie; Yue, Jia-Xing; Andrews, Stuart; Moresco, James J.; Yates, John R.; Nagy, Peter L.; Tong, Liang; Jia, Songtao

    2016-09-20

    Histone lysine-to-methionine (K-to-M) mutations are associated with multiple cancers, and they function in a dominant fashion to block the methylation of corresponding lysines on wild type histones. However, their mechanisms of function are controversial. Here we show that in fission yeast, introducing the K9M mutation into one of the three histone H3 genes dominantly blocks H3K9 methylation on wild type H3 across the genome. In addition, H3K9M enhances the interaction of histone H3 tail with the H3K9 methyltransferase Clr4 in a SAM (S-adenosyl-methionine)-dependent manner, and Clr4 is trapped at nucleation sites to prevent its spreading and the formation of large heterochromatin domains. We further determined the crystal structure of an H3K9M peptide in complex with human H3K9 methyltransferase G9a and SAM, which reveales that the methionine side chain had enhanced van der Waals interactions with G9a. Therefore, our results provide a detailed mechanism by which H3K9M regulates H3K9 methylation.

  10. Histones induce phosphatidylserine exposure and a procoagulant phenotype in human red blood cells.

    Science.gov (United States)

    Semeraro, F; Ammollo, C T; Esmon, N L; Esmon, C T

    2014-10-01

    Extracellular histones exert part of their prothrombotic activity through the stimulation of blood cells. Besides platelets, histones can bind to red blood cells (RBCs), which are important contributors to thrombogenesis, but little is known about the functional consequences of this interaction. To evaluate the effect of histones on the procoagulant potential of human RBCs with particular regard to the expression of surface phosphatidylserine (PS). PS exposure on human RBCs treated with a natural mixture of histones or recombinant individual histones was evaluated with fluorescein isothiocyanate-annexin-V binding and measured with flow cytometry. Calcium influx in RBCs loaded with the calcium-sensitive fluorophore Fluo-4 AM was assessed with flow cytometry. The procoagulant potential of histone-treated RBCs was evaluated with a purified prothrombinase assay and a one-stage plasma recalcification clotting test. Natural histones induced PS exposure on RBCs in a dose-dependent manner, and neutralization or cleavage of histones by heparin or activated protein C, respectively, abolished PS externalization. H4 was mainly responsible for the stimulating activity of histones, whereas the other subtypes were almost ineffective. Similarly, natural histones and H4 induced influx of calcium into RBCs, whereas the other individual histones did not. Histone-induced exposure of PS on RBCs translated into increased prothrombinase complex-mediated prothrombin activation and accelerated fibrin formation in plasma. Histones induce RBCs to express a procoagulant phenotype through the externalization of PS. This finding provides new insights into the prothrombotic activity of extracellular histones. © 2014 International Society on Thrombosis and Haemostasis.

  11. Extracellular histone H1 is neurotoxic and drives a pro-inflammatory response in microglia [v1; ref status: indexed, http://f1000r.es/18z

    Directory of Open Access Journals (Sweden)

    Jonathan D Gilthorpe

    2013-07-01

    Full Text Available In neurodegenerative conditions and following brain trauma it is not understood why neurons die while astrocytes and microglia survive and adopt pro-inflammatory phenotypes. We show here that the damaged adult brain releases diffusible factors that can kill cortical neurons and we have identified histone H1 as a major extracellular candidate that causes neurotoxicity and activation of the innate immune system. Extracellular core histones H2A, H2B H3 and H4 were not neurotoxic. Innate immunity in the central nervous system is mediated through microglial cells and we show here for the first time that histone H1 promotes their survival, up-regulates MHC class II antigen expression and is a powerful microglial chemoattractant. We propose that when the central nervous system is degenerating, histone H1 drives a positive feedback loop that drives further degeneration and activation of immune defences which can themselves be damaging. We suggest that histone H1 acts as an antimicrobial peptide and kills neurons through mitochondrial damage and apoptosis.

  12. No need to be HAMLET or BAMLET to interact with histones: binding of monomeric alpha-lactalbumin to histones and basic poly-amino acids.

    Science.gov (United States)

    Permyakov, Serge E; Pershikova, Irina V; Khokhlova, Tatyana I; Uversky, Vladimir N; Permyakov, Eugene A

    2004-05-18

    The ability of a specific complex of human alpha-lactalbumin with oleic acid (HAMLET) to induce cell death with selectivity for tumor and undifferentiated cells was shown recently to be mediated by interaction of HAMLET with histone proteins irreversibly disrupting chromatin structure [Duringer, C., et al. (2003) J. Biol. Chem. 278, 42131-42135]. Here we show that monomeric alpha-lactalbumin (alpha-LA) in the absence of fatty acids is also able to bind efficiently to the primary target of HAMLET, histone HIII, regardless of Ca(2+) content. Thus, the modification of alpha-LA by oleic acid is not required for binding to histones. We suggest that interaction of negatively charged alpha-LA with the basic histone stabilizes apo-alpha-LA and destabilizes the Ca(2+)-bound protein due to compensation for excess negative charge of alpha-LA's Ca(2+)-binding loop by positively charged residues of the histone. Spectrofluorimetric curves of titration of alpha-LA by histone H3 were well approximated by a scheme of cooperative binding of four alpha-LA molecules per molecule of histone, with an equilibrium dissociation constant of 1.0 microM. Such a stoichiometry of binding implies that the binding process is not site-specific with respect to histone and likely is driven by just electrostatic interactions. Co-incubation of positively charged poly-amino acids (poly-Lys and poly-Arg) with alpha-LA resulted in effects which were similar to those caused by histone HIII, confirming the electrostatic nature of the alpha-LA-histone interaction. In all cases that were studied, the binding was accompanied by aggregation. The data indicate that alpha-lactalbumin can be used as a basis for the design of antitumor agents, acting through disorganization of chromatin structure due to interaction between alpha-LA and histone proteins.

  13. Regulation of human histone gene expression: transcriptional and posttranscriptional control in the coupling of histone messenger RNA stability with DNA replication

    International Nuclear Information System (INIS)

    Baumbach, L.L.; Stein, G.S.; Stein, J.L.

    1987-01-01

    The extent to which transcriptional and posttranscriptional regulation contributes to the coupling of histone gene expression and DNA replication was examined during the cell cycle in synchronized HeLa S3 cells. Rates of transcription were determined in vitro in isolated nuclei. A 3-5-fold increase in cell cycle dependent histone gene transcription was observed in early S phase, prior to the peak of DNA synthesis. This result is consistent with a previous determination of histone mRNA synthesis in intact cells. The transcription of these genes did not change appreciably after inhibition of DNA replication by hydroxyurea treatment, although Northern blot analysis indicated that cellular levels of histone mRNA decreased rapidly in the presence of the drug. Total cellular levels of histone mRNA closely parallel the rate of DNA synthesis as a function of cell cycle progression, reaching a maximal 20-fold increase as compared with non S phase levels. This DNA synthesis dependent accumulation of histone mRNA occurs predominantly in the cytoplasm and appears to be mediated primarily by control of histone mRNA stability. Changes in nuclear histone mRNA levels were less pronounced. These combined observations suggest that both transcriptional regulation and posttranscriptional regulation contribute toward control of the cell cycle dependent accumulation of histone mRNA during S phase, while the stability of histone mRNA throughout S phase and the selective turnover of histone mRNAs, either at the natural termination of S phase or following inhibition of DNA synthesis, are posttranscriptionally regulated

  14. The histone H3.3K36M mutation reprograms the epigenome of chondroblastomas

    Science.gov (United States)

    Fang, Dong; Gan, Haiyun; Lee, Jeong-Heon; Han, Jing; Wang, Zhiquan; Riester, Scott M.; Jin, Long; Chen, Jianji; Zhou, Hui; Wang, Jinglong; Zhang, Honglian; Yang, Na; Bradley, Elizabeth W.; Ho, Thai H.; Rubin, Brian P.; Bridge, Julia A.; Thibodeau, Stephen N; Ordog, Tamas; Chen, Yue; van Wijnen, Andre J.; Oliveira, Andre M.; Xu, Rui-Ming; Westendorf, Jennifer J.; Zhang, Zhiguo

    2016-01-01

    Over 90% of chondroblastomas contain a heterozygous mutation replacing lysine 36 with methionine (K36M) in the histone H3 variant H3.3. Here, we show that H3K36 methylation is reduced globally in chondroblastomas and in chondrocytes harboring the same genetic mutation due to inhibition of at least two H3K36 methyltransferases, MMSET and SETD2, by the H3.3K36M mutant proteins. Genes with altered expression as well as H3K36 di- and trimethylation in H3.3K36M cells are enriched in cancer pathways. In addition, H3.3K36M chondrocytes exhibit several hallmarks of cancer cells including increased ability to form colonies, resistance to apoptosis and defects in differentiation. Thus, H3.3K36M proteins reprogram H3K36 methylation landscape and contribute to tumorigenesis in part through altering the expression of cancer-associated genes. PMID:27229140

  15. The histone deacetylase inhibitor Trichostatin A modulates CD4+ T cell responses

    Directory of Open Access Journals (Sweden)

    Moreira José

    2003-11-01

    Full Text Available Abstract Background Histone deacetylase inhibitors (HDACIs induce hyperacetylation of core histones modulating chromatin structure and affecting gene expression. These compounds are also able to induce growth arrest, cell differentiation, and apoptotic cell death of tumor cells in vitro as well as in vivo. Even though several genes modulated by HDAC inhibition have been identified, those genes clearly responsible for the biological effects of these drugs have remained elusive. We investigated the pharmacological effect of the HDACI and potential anti-cancer agent Trichostatin A (TSA on primary T cells. Methods To ascertain the effect of TSA on resting and activated T cells we used a model system where an enriched cell population consisting of primary T-cells was stimulated in vitro with immobilized anti-CD3/anti-CD28 antibodies whilst exposed to pharmacological concentrations of Trichostatin A. Results We found that this drug causes a rapid decline in cytokine expression, accumulation of cells in the G1 phase of the cell cycle, and induces apoptotic cell death. The mitochondrial respiratory chain (MRC plays a critical role in the apoptotic response to TSA, as dissipation of mitochondrial membrane potential and reactive oxygen species (ROS scavengers block TSA-induced T-cell death. Treatment of T cells with TSA results in the altered expression of a subset of genes involved in T cell responses, as assessed by microarray gene expression profiling. We also observed up- as well as down-regulation of various costimulatory/adhesion molecules, such as CD28 and CD154, important for T-cell function. Conclusions Taken together, our findings indicate that HDAC inhibitors have an immunomodulatory potential that may contribute to the potency and specificity of these antineoplastic compounds and might be useful in the treatment of autoimmune disorders.

  16. Role of histone deacetylases(HDACs) in progression and reversal of liver fibrosis

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xing; Wu, Xiao-Qin; Xu, Tao; Li, Xiao-Feng; Yang, Yang; Li, Wan-Xia; Huang, Cheng; Meng, Xiao-Ming; Li, Jun, E-mail: lijun@ahmu.edu.cn

    2016-09-01

    Liver fibrosis refers to a reversible wound healing process response to chronic liver injuries. Activation of hepatic stellate cells (HSCs) is closely correlated with the development of liver fibrosis. Histone deacetylases(HDACs) determine the acetylation levels of core histones to modulate expression of genes. To demonstrate the link between HDACs and liver fibrosis, CCl4-induced mouse liver fibrosis model and its spontaneous reversal model were established. Results of the current study demonstrated that deregulation of liver HDACs may involved in the development of liver fibrosis. Among 11 HDACs tested in our study (Class I, II, and IV HDACs), expression of HDAC2 was maximally increased in CCl4-induced fibrotic livers but decreased after spontaneous recovery. Moreover, expression of HDAC2 was elevated in human liver fibrotic tissues. In this regard, the potential role of HDAC2 in liver fibrosis was further evaluated. Our results showed that administration of HSC-T6 cells with transforming growth factor-beta1 (TGF-β1) resulted in an increase of HDAC2 protein expression in dose- and time-dependent manners. Moreover, HDAC2 deficiency inhibited HSC-T6 cell proliferation and activation induced by TGF-β1. More importantly, the present study showed HDAC2 may regulate HSCs activation by suppressing expression of Smad7, which is a negative modulator in HSCs activation and liver fibrosis. Collectively, these observations revealed that HDAC2 may play a pivotal role in HSCs activation and liver fibrosis while deregulation of HDACs may serve as a novel mechanism underlying liver fibrosis. - Highlights: • This is the first report to systematically examine expressions of HDACs during liver fibrosis and fibrosis reversal. • Aberrant expression of HDAC2 contributes to the development of liver fibrosis. • Provided important foundation for further liver fibrosis conversion studies.

  17. Genome-wide analysis of regions similar to promoters of histone genes

    KAUST Repository

    Chowdhary, Rajesh

    2010-05-28

    Background: The purpose of this study is to: i) develop a computational model of promoters of human histone-encoding genes (shortly histone genes), an important class of genes that participate in various critical cellular processes, ii) use the model so developed to identify regions across the human genome that have similar structure as promoters of histone genes; such regions could represent potential genomic regulatory regions, e.g. promoters, of genes that may be coregulated with histone genes, and iii/ identify in this way genes that have high likelihood of being coregulated with the histone genes.Results: We successfully developed a histone promoter model using a comprehensive collection of histone genes. Based on leave-one-out cross-validation test, the model produced good prediction accuracy (94.1% sensitivity, 92.6% specificity, and 92.8% positive predictive value). We used this model to predict across the genome a number of genes that shared similar promoter structures with the histone gene promoters. We thus hypothesize that these predicted genes could be coregulated with histone genes. This hypothesis matches well with the available gene expression, gene ontology, and pathways data. Jointly with promoters of the above-mentioned genes, we found a large number of intergenic regions with similar structure as histone promoters.Conclusions: This study represents one of the most comprehensive computational analyses conducted thus far on a genome-wide scale of promoters of human histone genes. Our analysis suggests a number of other human genes that share a high similarity of promoter structure with the histone genes and thus are highly likely to be coregulated, and consequently coexpressed, with the histone genes. We also found that there are a large number of intergenic regions across the genome with their structures similar to promoters of histone genes. These regions may be promoters of yet unidentified genes, or may represent remote control regions that

  18. Growth-Phase-Specific Modulation of Cell Morphology and Gene Expression by an Archaeal Histone Protein.

    Science.gov (United States)

    Dulmage, Keely A; Todor, Horia; Schmid, Amy K

    2015-09-08

    In all three domains of life, organisms use nonspecific DNA-binding proteins to compact and organize the genome as well as to regulate transcription on a global scale. Histone is the primary eukaryotic nucleoprotein, and its evolutionary roots can be traced to the archaea. However, not all archaea use this protein as the primary DNA-packaging component, raising questions regarding the role of histones in archaeal chromatin function. Here, quantitative phenotyping, transcriptomic, and proteomic assays were performed on deletion and overexpression mutants of the sole histone protein of the hypersaline-adapted haloarchaeal model organism Halobacterium salinarum. This protein is highly conserved among all sequenced haloarchaeal species and maintains hallmark residues required for eukaryotic histone functions. Surprisingly, despite this conservation at the sequence level, unlike in other archaea or eukaryotes, H. salinarum histone is required to regulate cell shape but is not necessary for survival. Genome-wide expression changes in histone deletion strains were global, significant but subtle in terms of fold change, bidirectional, and growth phase dependent. Mass spectrometric proteomic identification of proteins from chromatin enrichments yielded levels of histone and putative nucleoid-associated proteins similar to those of transcription factors, consistent with an open and transcriptionally active genome. Taken together, these data suggest that histone in H. salinarum plays a minor role in DNA compaction but important roles in growth-phase-dependent gene expression and regulation of cell shape. Histone function in haloarchaea more closely resembles a regulator of gene expression than a chromatin-organizing protein like canonical eukaryotic histone. Histones comprise the major protein component of eukaryotic chromatin and are required for both genome packaging and global regulation of expression. The current paradigm maintains that archaea whose genes encode

  19. Core BPEL

    DEFF Research Database (Denmark)

    Hallwyl, Tim; Højsgaard, Espen

    The Web Services Business Process Execution Language (WS-BPEL) is a language for expressing business process behaviour based on web services. The language is intentionally not minimal but provides a rich set of constructs, allows omission of constructs by relying on defaults, and supports language......, does not allow omissions, and does not contain ignorable elements. We do so by identifying syntactic sugar, including default values, and ignorable elements in WS-BPEL. The analysis results in a translation from the full language to the core subset. Thus, we reduce the effort needed for working...

  20. Circulating Extracellular Histones Are Clinically Relevant Mediators of Multiple Organ Injury.

    Science.gov (United States)

    Kawai, Chihiro; Kotani, Hirokazu; Miyao, Masashi; Ishida, Tokiko; Jemail, Leila; Abiru, Hitoshi; Tamaki, Keiji

    2016-04-01

    Extracellular histones are a damage-associated molecular pattern (DAMP) involved in the pathogenesis of various diseases. The mechanisms of histone-mediated injury in certain organs have been extensively studied, but an understanding of the pathophysiological role of histone-mediated injury in multiple organ injury remains elusive. To elucidate this role, we systemically subjected C57BL/6 mice to various doses of histones and performed a chronological evaluation of the morphological and functional changes in the lungs, liver, and kidneys. Notably, histone administration ultimately led to death after a dose-dependent aggravation of multiple organ injury. In chronological studies, pulmonary and hepatic injuries occurred within 15 minutes, whereas renal injuries presented at a later phase, suggesting that susceptibility to extracellular histones varies among organs. Histones bound to pulmonary and hepatic endothelial cells immediately after administration, leading to endothelial damage, which could be ameliorated by pretreatment with heparin. Furthermore, release of another DAMP, high-mobility group protein box 1, followed the histone-induced tissue damage, and an antibody against the molecule ameliorated hepatic and renal failure in a late phase. These findings indicate that extracellular histones induce multiple organ injury in two progressive stages-direct injury to endothelial cells and the subsequent release of other DAMPs-and that combination therapies against extracellular histones and high-mobility group protein box 1 may be a promising strategy for treating multiple organ injury. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  1. Circulating histones for predicting prognosis after cardiac surgery: a prospective study.

    Science.gov (United States)

    Gao, Hongxiang; Zhang, Naipu; Lu, Fangfang; Yu, Xindi; Zhu, Limin; Mo, Xi; Wang, Wei

    2016-11-01

    The objective of this study was to assess the perioperative changes in circulating histones and their relationships with other biomarkers and clinical outcomes after cardiac surgery with cardiopulmonary bypass (CPB) in patients. Forty-eight patients with congenital cardiac diseases undergoing corrective procedure with CPB were prospectively enrolled in this study. Circulating histones, N-terminal pro-brain natriuretic peptide (NT-proBNP), procalcitonin (PCT) and C-reactive protein (CRP) were measured preoperatively (T0) and at 0 (T1), 24 (T2), 48 (T3) and 72 (T4) h postoperatively. The relationships between biomarkers and clinical outcomes were analysed. Circulating histones, NT-proBNP, PCT and CRP increased significantly postoperatively, with histones reaching the peak value earliest at T1. Circulating histone levels were higher in patients with adverse events. Receiver operating characteristic curve analysis showed that peak histone levels had a better predictive value for adverse events postoperatively. Peak histone levels correlated with the peak level of NT-proBNP (r = 0.563, P histones reached peak levels faster than NT-proBNP, PCT and CRP. Furthermore, peak histone levels correlated with biomarkers and postoperative clinical outcomes. Circulating histones may be used as a prognostic indicator for patients after cardiac surgery with CPB. ClinicalTrials.gov (ID: NCT02325765). © The Author 2016. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  2. Extracellular Histones Increase Tissue Factor Activity and Enhance Thrombin Generation by Human Blood Monocytes.

    Science.gov (United States)

    Gould, Travis J; Lysov, Zakhar; Swystun, Laura L; Dwivedi, Dhruva J; Zarychanski, Ryan; Fox-Robichaud, Alison E; Liaw, Patricia C

    2016-12-01

    Sepsis is characterized by systemic activation of inflammatory and coagulation pathways in response to infection. Recently, it was demonstrated that histones released into the circulation by dying/activated cells may contribute to sepsis pathology. Although the ability of extracellular histones to modulate the procoagulant activities of several cell types has been investigated, the influence of histones on the hemostatic functions of circulating monocytes is unknown. To address this, we investigated the ability of histones to modulate the procoagulant potential of THP-1 cells and peripheral blood monocytes, and examined the effects of plasmas obtained from septic patients to induce a procoagulant phenotype on monocytic cells. Tissue factor (TF) activity assays were performed on histone-treated THP-1 cells and blood monocytes. Exposure of monocytic cells to histones resulted in increases in TF activity, TF antigen, and phosphatidylserine exposure. Histones modulate the procoagulant activity via engagement of Toll-like receptors 2 and 4, and this effect was abrogated with inhibitory antibodies. Increased TF activity of histone-treated cells corresponded to enhanced thrombin generation in plasma determined by calibrated automated thrombography. Finally, TF activity was increased on monocytes exposed to plasma from septic patients, an effect that was attenuated in plasma from patients receiving unfractionated heparin (UFH). Our studies suggest that increased levels of extracellular histones found in sepsis contribute to dysregulated coagulation by increasing TF activity of monocytes. These procoagulant effects can be partially ameliorated in sepsis patients receiving UFH, thereby identifying extracellular histones as a potential therapeutic target for sepsis treatment.

  3. The Oncoprotein BRD4-NUT Generates Aberrant Histone Modification Patterns.

    Directory of Open Access Journals (Sweden)

    Barry M Zee

    Full Text Available Defects in chromatin proteins frequently manifest in diseases. A striking case of a chromatin-centric disease is NUT-midline carcinoma (NMC, which is characterized by expression of NUT as a fusion partner most frequently with BRD4. ChIP-sequencing studies from NMC patients revealed that BRD4-NUT (B4N covers large genomic regions and elevates transcription within these domains. To investigate how B4N modulates chromatin, we performed affinity purification of B4N when ectopically expressed in 293-TREx cells and quantified the associated histone posttranslational modifications (PTM using proteomics. We observed significant enrichment of acetylation particularly on H3 K18 and of combinatorial patterns such as H3 K27 acetylation paired with K36 methylation. We postulate that B4N complexes override the preexisting histone code with new PTM patterns that reflect aberrant transcription and that epigenetically modulate the nucleosome environment toward the NMC state.

  4. Histone lysine demethylases as targets for anticancer therapy

    DEFF Research Database (Denmark)

    Højfeldt, Jonas W; Agger, Karl; Helin, Kristian

    2013-01-01

    It has recently been demonstrated that the genes controlling the epigenetic programmes that are required for maintaining chromatin structure and cell identity include genes that drive human cancer. This observation has led to an increased awareness of chromatin-associated proteins as potentially...... interesting drug targets. The successful introduction of DNA methylation and histone deacetylase (HDAC) inhibitors for the treatment of specific subtypes of cancer has paved the way for the use of epigenetic therapy. Here, we highlight key biological findings demonstrating the roles of members of the histone...... lysine demethylase class of enzymes in the development of cancers, discuss the potential and challenges of therapeutically targeting them, and highlight emerging small-molecule inhibitors of these enzymes....

  5. An efficient immunodetection method for histone modifications in plants.

    Science.gov (United States)

    Nic-Can, Geovanny; Hernández-Castellano, Sara; Kú-González, Angela; Loyola-Vargas, Víctor M; De-la-Peña, Clelia

    2013-12-16

    Epigenetic mechanisms can be highly dynamic, but the cross-talk among them and with the genome is still poorly understood. Many of these mechanisms work at different places in the cell and at different times of organism development. Covalent histone modifications are one of the most complex and studied epigenetic mechanisms involved in cellular reprogramming and development in plants. Therefore, the knowledge of the spatial distribution of histone methylation in different tissues is important to understand their behavior on specific cells. Based on the importance of epigenetic marks for biology, we present a simplified, inexpensive and efficient protocol for in situ immunolocalization on different tissues such as flowers, buds, callus, somatic embryo and meristematic tissue from several plants of agronomical and biological importance. Here, we fully describe all the steps to perform the localization of histone modifications. Using this method, we were able to visualize the distribution of H3K4me3 and H3K9me2 without loss of histological integrity of tissues from several plants, including Agave tequilana, Capsicum chinense, Coffea canephora and Cedrela odorata, as well as Arabidopsis thaliana. There are many protocols to study chromatin modifications; however, most of them are expensive, difficult and require sophisticated equipment. Here, we provide an efficient protocol for in situ localization of histone methylation that dispenses with the use of expensive and sensitive enzymes. The present method can be used to investigate the cellular distribution and localization of a wide array of proteins, which could help to clarify the biological role that they play at specific times and places in different tissues of various plant species.

  6. Histone occurrence in chromatin from Peridinium balticum, a binucleate dinoflagellate.

    Science.gov (United States)

    Rizzo, P J; Cox, E R

    1977-12-23

    Peridinium balticum is one of two dinoflagellates known to have dissimilar nuclei together in the same cell. One nucleus (dinokaryotic) has permanently condensed chromosomes, while the other (eukaryotic) does not have morphologically distinct chromosomes. Acid extracts of chromatin prepared from a mixture of dinokaryotic and eukaryotic nuclei and purified eukaryotic nuclei give four bands that co-migrate with four of the five histones from calf thymus when analyzed in urea-containing polyacrylamide gels.

  7. Redundant Control of Adipogenesis by Histone Deacetylases 1 and 2*

    OpenAIRE

    Haberland, Michael; Carrer, Michele; Mokalled, Mayssa H.; Montgomery, Rusty L.; Olson, Eric N.

    2010-01-01

    Adipocyte differentiation is a well defined process that is under the control of transcriptional activators and repressors. We show that histone deacetylase (HDAC) inhibitors efficiently block adipocyte differentiation in vitro. This effect is specific to adipogenesis, as another mesenchymal differentiation process, osteoblastogenesis, is enhanced upon HDAC inhibition. Through the systematic genetic deletion of HDAC genes in cultured mesenchymal precursor cells, we show that deletion of HDAC1...

  8. Epigenetic control of skull morphogenesis by histone deacetylase 8

    OpenAIRE

    Haberland, Michael; Mokalled, Mayssa H.; Montgomery, Rusty L.; Olson, Eric N.

    2009-01-01

    Histone deacetylases (Hdacs) are transcriptional repressors with crucial roles in mammalian development. Here we provide evidence that Hdac8 specifically controls patterning of the skull by repressing a subset of transcription factors in cranial neural crest cells. Global deletion of Hdac8 in mice leads to perinatal lethality due to skull instability, and this is phenocopied by conditional deletion of Hdac8 in cranial neural crest cells. Hdac8 specifically represses the aberrant expression of...

  9. Insights into neuroepigenetics through human histone deacetylase PET imaging.

    Science.gov (United States)

    Wey, Hsiao-Ying; Gilbert, Tonya M; Zürcher, Nicole R; She, Angela; Bhanot, Anisha; Taillon, Brendan D; Schroeder, Fredrick A; Wang, Changing; Haggarty, Stephen J; Hooker, Jacob M

    2016-08-10

    Epigenetic dysfunction is implicated in many neurological and psychiatric diseases, including Alzheimer's disease and schizophrenia. Consequently, histone deacetylases (HDACs) are being aggressively pursued as therapeutic targets. However, a fundamental knowledge gap exists regarding the expression and distribution of HDACs in healthy individuals for comparison to disease states. Here, we report the first-in-human evaluation of neuroepigenetic regulation in vivo. Using positron emission tomography with [(11)C]Martinostat, an imaging probe selective for class I HDACs (isoforms 1, 2, and 3), we found that HDAC expression is higher in cortical gray matter than in white matter, with conserved regional distribution patterns within and between healthy individuals. Among gray matter regions, HDAC expression was lowest in the hippocampus and amygdala. Through biochemical profiling of postmortem human brain tissue, we confirmed that [(11)C]Martinostat selectively binds HDAC isoforms 1, 2, and 3, the HDAC subtypes most implicated in regulating neuroplasticity and cognitive function. In human stem cell-derived neural progenitor cells, pharmacologic-level doses of Martinostat induced changes in genes closely associated with synaptic plasticity, including BDNF (brain-derived neurotrophic factor) and SYP (synaptophysin), as well as genes implicated in neurodegeneration, including GRN (progranulin), at the transcript level, in concert with increased acetylation at both histone H3 lysine 9 and histone H4 lysine 12. This study quantifies HDAC expression in the living human brain and provides the foundation for gaining unprecedented in vivo epigenetic information in health and disease. Copyright © 2016, American Association for the Advancement of Science.

  10. Nuclear lactate dehydrogenase modulates histone modification in human hepatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Castonguay, Zachary; Auger, Christopher; Thomas, Sean C.; Chahma, M’hamed; Appanna, Vasu D., E-mail: vappanna@laurentian.ca

    2014-11-07

    Highlights: • Nuclear LDH is up-regulated under oxidative stress. • SIRT1 is co-immunoprecipitated bound to nuclear LDH. • Nuclear LDH is involved in histone deacetylation and epigenetics. - Abstract: It is becoming increasingly apparent that the nucleus harbors metabolic enzymes that affect genetic transforming events. Here, we describe a nuclear isoform of lactate dehydrogenase (nLDH) and its ability to orchestrate histone deacetylation by controlling the availability of nicotinamide adenine dinucleotide (NAD{sup +}), a key ingredient of the sirtuin-1 (SIRT1) deacetylase system. There was an increase in the expression of nLDH concomitant with the presence of hydrogen peroxide (H{sub 2}O{sub 2}) in the culture medium. Under oxidative stress, the NAD{sup +} generated by nLDH resulted in the enhanced deacetylation of histones compared to the control hepatocytes despite no discernable change in the levels of SIRT1. There appeared to be an intimate association between nLDH and SIRT1 as these two enzymes co-immunoprecipitated. The ability of nLDH to regulate epigenetic modifications by manipulating NAD{sup +} reveals an intricate link between metabolism and the processing of genetic information.

  11. Histone deacetylases and their inhibition in Candida species

    Directory of Open Access Journals (Sweden)

    Cecile Garnaud

    2016-08-01

    Full Text Available Fungi are generally benign members of the human mucosal flora or live as saprophytes in the environment. However, they can become pathogenic, leading to invasive and life threatening infections in vulnerable patients. These invasive fungal infections are regarded as a major public health problem on a similar scale to tuberculosis or malaria. Current treatment for these infections is based on only four available drug classes. This limited therapeutic arsenal and the emergence of drug-resistant strains are a matter of concern due to the growing number of patients to be treated, and new therapeutic strategies are urgently needed. Adaptation of fungi to drug pressure involves transcriptional regulation, in which chromatin dynamics and histone modifications play a major role. Histone deacetylases (HDACs remove acetyl groups from histones and actively participate in controlling stress responses. HDAC inhibition has been shown to limit fungal development, virulence, biofilm formation and dissemination in the infected host, while also improving the efficacy of existing antifungal drugs towards Candida spp. In this article, we review the functional roles of HDACs and the biological effects of HDAC inhibitors on Candida spp., highlighting the correlations between their pathogenic effects in vitro and in vivo. We focus on how HDAC inhibitors could be used to treat invasive candidiasis while also reviewing recent developments in their clinical evaluation.

  12. Tetrahydroisoquinolines as novel histone deacetylase inhibitors for treatment of cancer

    Directory of Open Access Journals (Sweden)

    Danqi Chen

    2016-01-01

    Full Text Available Histone acetylation is a critical process in the regulation of chromatin structure and gene expression. Histone deacetylases (HDACs remove the acetyl group, leading to chromatin condensation and transcriptional repression. HDAC inhibitors are considered a new class of anticancer agents and have been shown to alter gene transcription and exert antitumor effects. This paper describes our work on the structural determination and structure-activity relationship (SAR optimization of tetrahydroisoquinoline compounds as HDAC inhibitors. These compounds were tested for their ability to inhibit HDAC 1, 3, 6 and for their ability to inhibit the proliferation of a panel of cancer cell lines. Among these, compound 82 showed the greatest inhibitory activity toward HDAC 1, 3, 6 and strongly inhibited growth of the cancer cell lines, with results clearly superior to those of the reference compound, vorinostat (SAHA. Compound 82 increased the acetylation of histones H3, H4 and tubulin in a concentration-dependent manner, suggesting that it is a broad inhibitor of HDACs.

  13. Functional significance of rare neuroligin 1 variants found in autism.

    Directory of Open Access Journals (Sweden)

    Moe Nakanishi

    2017-08-01

    Full Text Available Genetic mutations contribute to the etiology of autism spectrum disorder (ASD, a common, heterogeneous neurodevelopmental disorder characterized by impairments in social interaction, communication, and repetitive and restricted patterns of behavior. Since neuroligin3 (NLGN3, a cell adhesion molecule at the neuronal synapse, was first identified as a risk gene for ASD, several additional variants in NLGN3 and NLGN4 were found in ASD patients. Moreover, synaptopathies are now known to cause several neuropsychiatric disorders including ASD. In humans, NLGNs consist of five family members, and neuroligin1 (NLGN1 is a major component forming a complex on excitatory glutamatergic synapses. However, the significance of NLGN1 in neuropsychiatric disorders remains unknown. Here, we systematically examine five missense variants of NLGN1 that were detected in ASD patients, and show molecular and cellular alterations caused by these variants. We show that a novel NLGN1 Pro89Leu (P89L missense variant found in two ASD siblings leads to changes in cellular localization, protein degradation, and to the impairment of spine formation. Furthermore, we generated the knock-in P89L mice, and we show that the P89L heterozygote mice display abnormal social behavior, a core feature of ASD. These results, for the first time, implicate rare variants in NLGN1 as functionally significant and support that the NLGN synaptic pathway is of importance in the etiology of neuropsychiatric disorders.

  14. Post-cardiac arrest level of free-plasma DNA and DNA-histone complexes

    DEFF Research Database (Denmark)

    Jeppesen, A N; Hvas, A-M; Grejs, A M

    2017-01-01

    Background Plasma DNA-histone complexes and total free-plasma DNA have the potential to quantify the ischaemia-reperfusion damages occurring after cardiac arrest. Furthermore, DNA-histone complexes may have the potential of being a target for future treatment. The aim was to examine if plasma DNA-histone...... after 22, 46 and 70 h. Samples for DNA-histone complexes were quantified by Cell Death Detection ELISAplus. The total free-plasma DNA analyses were quantified with qPCR by analysing the Beta-2 microglobulin gene. The control group comprised 40 healthy individuals. Results We found no difference...... in the level of DNA-histone complexes between the 22-h sample and healthy individuals (P = 0.10). In the 46-h sample, there was an increased level of DNA-histone complexes in non-survivors compared with survivors 30 days after the cardiac arrest (P

  15. Thermodynamical study of interaction of histone H1 chromosomal protein and mitoxantrone anticancer drug

    International Nuclear Information System (INIS)

    Jafargholizadeh, Naser; Zargar, Seyed Jalal; Safarian, Shahrokh; Habibi-Rezaei, Mehran

    2012-01-01

    Highlights: ► For the first time, our results show mitoxantrone anticancer drug binds to histone H1, via hydrophobic, hydrogen, van der Waals and electrostatic interactions. ► Binding of mitoxantrone molecules to histone H1 is positive cooperative. ► Histone H1 may be considered as a new target for mitoxantrone at the chromatin level. - Using ultraviolet spectroscopy technique, we have investigated the interaction of anticancer drug, mitoxantrone with calf thymus histone H1 chromosomal protein in 100 mM phosphate buffer, pH 7.0, at temperatures 300 and 310 K. UV spectroscopy results show interactions between mitoxantrone and histone H1 with a positive cooperative binding process which was confirmed by Scatchard plot. According to the obtained results, it is concluded that histone H1 can be considered as a target for mitoxantrone binding at the chromatin level.

  16. Gallic Acid Decreases Inflammatory Cytokine Secretion Through Histone Acetyltransferase/Histone Deacetylase Regulation in High Glucose-Induced Human Monocytes.

    Science.gov (United States)

    Lee, Wooje; Lee, Sang Yeol; Son, Young-Jin; Yun, Jung-Mi

    2015-07-01

    Hyperglycemia contributes to diabetes and several diabetes-related complications. Gallic acid is a polyhydroxy phenolic compound found in various natural products. In this study, we investigated the effects and mechanism of gallic acid on proinflammatory cytokine secretion in high glucose-induced human monocytes (THP-1 cells). THP-1 cells were cultured under normoglycemic or hyperglycemic conditions, in the absence or presence of gallic acid. Hyperglycemic conditions significantly induced histone acetylation, nuclear factor-κB (NF-κB) activation, and proinflammatory cytokine release from THP-1 cells, whereas gallic acid suppressed NF-κB activity and cytokine release. It also significantly reduced CREB-binding protein/p300 (CBP/p300, a NF-κB coactivator) gene expression, acetylation levels, and CBP/p300 histone acetyltransferase (HAT) activity. In addition, histone deacetylase 2 (HDAC2) expression was significantly induced. These results suggest that gallic acid inhibits hyperglycemic-induced cytokine production in monocytes through epigenetic changes involving NF-κB. Therefore, gallic acid may have potential for the treatment and prevention of diabetes and its complications.

  17. [Change in histone proteins in rat liver chromatin during exposure of the animal to functional stress].

    Science.gov (United States)

    Panin, L E; Svechnikova, I G; Maianskaia, N N

    1996-01-01

    Pattern of rat liver histones at intensive physical exercises with preliminary injection of lysosomotropic drugs was studied by method of electrophoresis in PAAG. Elevation of the acetylated forms of histone H4 was revealed. The increased proteolysis of lysine-rich histones (H1, H2A, H2B) was shown in swimming rats previously stimulated by prodigiosan. The possible role of lysosomal proteinases of liver cells in mechanism of chromatine activation is discussed.

  18. Extracellular histones play an inflammatory role in acid aspiration-induced acute respiratory distress syndrome.

    Science.gov (United States)

    Zhang, Yanlin; Wen, Zongmei; Guan, Li; Jiang, Ping; Gu, Tao; Zhao, Jinyuan; Lv, Xin; Wen, Tao

    2015-01-01

    Systemic inflammation is a key feature in acid aspiration-induced acute respiratory distress syndrome (ARDS), but the factors that trigger inflammation are unclear. The authors hypothesize that extracellular histones, a newly identified inflammatory mediator, play important roles in the pathogenesis of ARDS. The authors used a hydrochloric acid aspiration-induced ARDS model to investigate whether extracellular histones are pathogenic and whether targeting histones are protective. Exogenous histones and antihistone antibody were administered to mice. Heparin can bind to histones, so the authors studied whether heparin could protect from ARDS using cell and mouse models. Furthermore, the authors analyzed whether extracellular histones are clinically involved in ARDS patients caused by gastric aspiration. Extracellular histones in bronchoalveolar lavage fluid of acid-treated mice were significantly higher (1.832 ± 0.698) at 3 h after injury than in sham-treated group (0.63 ± 0.153; P = 0.0252, n = 5 per group). Elevated histones may originate from damaged lung cells and neutrophil infiltration. Exogenous histones aggravated lung injury, whereas antihistone antibody markedly attenuated the intensity of ARDS. Notably, heparin provided a similar protective effect against ARDS. Analysis of plasma from ARDS patients (n = 21) showed elevated histones were significantly correlated with the degree of ARDS and were higher in nonsurvivors (2.723 ± 0.2933, n = 7) than in survivors (1.725 ± 0.1787, P = 0.006, n = 14). Extracellular histones may play a contributory role toward ARDS by promoting tissue damage and systemic inflammation and may become a novel marker reflecting disease activity. Targeting histones by neutralizing antibody or heparin shows potent protective effects, suggesting a potentially therapeutic strategy.

  19. Some physico-chemical characteristics of a modified histone H2b on acute radiation affection

    International Nuclear Information System (INIS)

    Khrapunov, S.N.; Mel'nik, G.G.; Blyum, Ya.B.; Tsudzevich, B.A.; Kucherenko, N.E.

    1980-01-01

    A study was made of optical characteristics of histone H2b isolated from liver nuclei 12 h following irradiation in a dose of 0.21 C/kg. It was demonstrated that under similar conditions, the control and exposed histones H2b have different steric organization which correlates with radiation-induced modifications of lateral radicals in H2b histone molecules

  20. Histones Differentially Modulate the Anticoagulant and Profibrinolytic Activities of Heparin, Heparin Derivatives, and Dabigatran.

    Science.gov (United States)

    Ammollo, Concetta Tiziana; Semeraro, Nicola; Carratù, Maria Rosaria; Colucci, Mario; Semeraro, Fabrizio

    2016-02-01

    The antithrombin activity of unfractionated heparin (UFH) is offset by extracellular histones, which, along with DNA, represent a novel mediator of thrombosis and a structural component of thrombi. Here, we systematically evaluated the effect of histones, DNA, and histone-DNA complexes on the anticoagulant and profibrinolytic activities of UFH, its derivatives enoxaparin and fondaparinux, and the direct thrombin inhibitor dabigatran. Thrombin generation was assessed by calibrated automated thrombinography, inhibition of factor Xa and thrombin by synthetic substrates, tissue plasminogen activator-mediated clot lysis by turbidimetry, and thrombin-activatable fibrinolysis inhibitor (TAFI) activation by a functional assay. Histones alone delayed coagulation and slightly stimulated fibrinolysis. The anticoagulant activity of UFH and enoxaparin was markedly inhibited by histones, whereas that of fondaparinux was enhanced. Histones neutralized both the anti-Xa and anti-IIa activities of UFH and preferentially blocked the anti-IIa activity of enoxaparin. The anti-Xa activity of fondaparinux was not influenced by histones when analyzed by chromogenic substrates, but was potentiated in a plasma prothrombinase assay. Histones inhibited the profibrinolytic activity of UFH and enoxaparin and enhanced that of fondaparinux by acting on the modulation of TAFI activation by anticoagulants. Histone H1 was mainly responsible for these effects. Histone-DNA complexes, as well as intact neutrophil extracellular traps, impaired the activities of UFH, enoxaparin, and fondaparinux. Dabigatran was not noticeably affected by histones and/or DNA, whatever the assay performed. In conclusion, histones and DNA present in the forming clot may variably influence the antithrombotic activities of anticoagulants, suggesting a potential therapeutic advantage of dabigatran and fondaparinux over heparins. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  1. Targeting Extracellular Histones with Novel RNA Bio drugs for the Treatment of Acute Lung Injury

    Science.gov (United States)

    2017-10-01

    AWARD NUMBER: W81XWH-16-1-0179 TITLE: Targeting Extracellular Histones with Novel RNA Bio -drugs for the Treatment of Acute Lung Injury...4. TITLE AND SUBTITLE Targeting Extracellular Histones with Novel RNA Bio -drugs for the Treatment of Acute Lung Injury 5a. CONTRACT NUMBER 5b...and field situations. To accomplish this goal, we developed novel bio -reagents (RNA aptamers) that bind to those histones known to cause MODS/ARDS and

  2. Histone hypoacetylation is required to maintain late replication timing of constitutive heterochromatin.

    Science.gov (United States)

    Casas-Delucchi, Corella S; van Bemmel, Joke G; Haase, Sebastian; Herce, Henry D; Nowak, Danny; Meilinger, Daniela; Stear, Jeffrey H; Leonhardt, Heinrich; Cardoso, M Cristina

    2012-01-01

    The replication of the genome is a spatio-temporally highly organized process. Yet, its flexibility throughout development suggests that this process is not genetically regulated. However, the mechanisms and chromatin modifications controlling replication timing are still unclear. We made use of the prominent structure and defined heterochromatic landscape of pericentric regions as an example of late replicating constitutive heterochromatin. We manipulated the major chromatin markers of these regions, namely histone acetylation, DNA and histone methylation, as well as chromatin condensation and determined the effects of these altered chromatin states on replication timing. Here, we show that manipulation of DNA and histone methylation as well as acetylation levels caused large-scale heterochromatin decondensation. Histone demethylation and the concomitant decondensation, however, did not affect replication timing. In contrast, immuno-FISH and time-lapse analyses showed that lowering DNA methylation, as well as increasing histone acetylation, advanced the onset of heterochromatin replication. While dnmt1(-)(/)(-) cells showed increased histone acetylation at chromocenters, histone hyperacetylation did not induce DNA demethylation. Hence, we propose that histone hypoacetylation is required to maintain normal heterochromatin duplication dynamics. We speculate that a high histone acetylation level might increase the firing efficiency of origins and, concomitantly, advances the replication timing of distinct genomic regions.

  3. Comparative proteomic analysis of histone post-translational modifications upon ischemia/reperfusion-induced retinal injury

    DEFF Research Database (Denmark)

    Zhao, Xiaolu; Sidoli, Simone; Wang, Leilei

    2014-01-01

    We present a detailed quantitative map of single and coexisting histone post-translational modifications (PTMs) in rat retinas affected by ischemia and reperfusion (I/R) injury. Retinal I/R injury contributes to serious ocular diseases, which can lead to vision loss and blindness. We applied linear...... ion trap-orbitrap hybrid tandem mass spectrometry (MS/MS) to quantify 131 single histone marks and 143 combinations of multiple histone marks in noninjured and injured retinas. We observed 34 histone PTMs that exhibited significantly (p

  4. Total levels of hippocampal histone acetylation predict normal variability in mouse behavior.

    Directory of Open Access Journals (Sweden)

    Addie May I Nesbitt

    Full Text Available Genetic, pharmacological, and environmental interventions that alter total levels of histone acetylation in specific brain regions can modulate behaviors and treatment responses. Efforts have been made to identify specific genes that are affected by alterations in total histone acetylation and to propose that such gene specific modulation could explain the effects of total histone acetylation levels on behavior - the implication being that under naturalistic conditions variability in histone acetylation occurs primarily around the promoters of specific genes.Here we challenge this hypothesis by demonstrating with a novel flow cytometry based technique that normal variability in open field exploration, a hippocampus-related behavior, was associated with total levels of histone acetylation in the hippocampus but not in other brain regions.Results suggest that modulation of total levels of histone acetylation may play a role in regulating biological processes. We speculate in the discussion that endogenous regulation of total levels of histone acetylation may be a mechanism through which organisms regulate cellular plasticity. Flow cytometry provides a useful approach to measure total levels of histone acetylation at the single cell level. Relating such information to behavioral measures and treatment responses could inform drug delivery strategies to target histone deacetylase inhibitors and other chromatin modulators to places where they may be of benefit while avoiding areas where correction is not needed and could be harmful.

  5. Deficit in DNA content relative to histones in X-irradiated HeLa cells

    International Nuclear Information System (INIS)

    Bases, R.; Mendez, F.; Neubort, S.

    1976-01-01

    The DNA and histone content of HeLa S-3 cell cultures was measured by direct mass assays 21 hours after 1000 rad of X-irradiation, when the cells were arrested in G2 phase. The nuclear DNA content of such cultures was found to be deficient (73 per cent of control values). In contrast, the synthesis of nuclear histones persisted, and the total histone content was close to 100 per cent of control values. When synchronously-growing cultures were irradiated in mid-S phase and examined 3.5 hours later in G2 phase, both DNA and histone content were equal to control values. (author)

  6. Investigation of the reactions of histone protein hydroperoxides and their role in DNA damage

    International Nuclear Information System (INIS)

    Luxford, C.; Dean, R.T.; Davies, M.J.

    1998-01-01

    Free radical attack on DNA results in base changes, cross-linking and strand cleavage leading to mutations if unrepaired. Histone proteins are intimately involved in DNA packaging and are excellent candidates for investigating DNA damage arising from protein-OOH-derived radicals. This study aimed (i) to investigate the formation of hydroperoxide on the linker histone H1 via radical reactions in the presence of O 2 ; (ii) to examine the radicals formed from transition metal ion-catalyzed breakdown of histone H1-OOH and (iii) to determine whether histone H1-OOH-derived radicals can damage DNA and free bases. (i) Histone H1 solutions were γ-irradiated ( 60 Co source) in the presence of O 2 and histone H1-OOH concentrations determined using a manual iodometric assay. Formation ( histone H1-OOH was dose-dependent and, in the absence of light or transition metal ions these hydroperoxides were found to be very stable (half life of 24 hours at 4degC ). (ii) Electron Paramagnetic Resonance (EPR) spectroscopy and spin trapping was used t investigate the Cu + -catalyzed breakdown of histone H1-OOH to form histone H1 protein side chain and -backbone carbon-centred radicals. Further EPR/spin trapping experiments showed that histone H1-OOH-derived radicals can oxidise pyrimidine bases (eg. uridine with the resultant trapping of three radical species; two pyrimidine radicals, C5-yl and Ct yl adducts (via addition of histone H1-OOH-derived radicals to the C5-C6 double bond o the pyrimidine ring) and an acyl radical adduct, whose origin is currently unknown. (iii) Damage to DNA and 2'-deoxyguanosine after reaction of histone H1-OOH-derive radicals were detected and quantified using HPLC (with EC and UV detection). We have identified 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) as a significant product ( histone H1-OOH-derived oxidative DNA modification. Increasing histone H1-OOH concentrations resulted in a concomitant increase in the amount of 8-oxodG formed. Our studies show

  7. O-antigen protects gram-negative bacteria from histone killing.

    Directory of Open Access Journals (Sweden)

    Catherine Chaput

    Full Text Available Beyond their traditional role of wrapping DNA, histones display antibacterial activity to Gram-negative and -positive bacteria. To identify bacterial components that allow survival to a histone challenge, we selected resistant bacteria from homologous Escherichia coli libraries that harbor plasmids carrying pieces of the chromosome in different sizes. We identified genes required for exopolysaccharide production and for the synthesis of the polysaccharide domain of the lipopolysaccharide, called O-antigen. Indeed, O-antigen and exopolysaccharide conferred further resistance to histones. Notably, O-antigen also conferred resistance to histones in the pathogens Shigella flexneri and Klebsiella pneumoniae.

  8. New clinical developments in histone deacetylase inhibitors for epigenetic therapy of cancer

    Directory of Open Access Journals (Sweden)

    Ma Yuehua

    2009-06-01

    Full Text Available Abstract DNA methylation and histone acetylation are two well known epigenetic chromatin modifications. Epigenetic agents leading to DNA hypomethylation and histone hyperacetylation have been approved for treatment of hematological disorders. The first histone deacetylase inhibitor, vorinostat, has been licensed for cutaneous T cell lymphoma treatment. More than 11 new epigenetic agents are in various stages of clinical development for therapy of multiple cancer types. In this review we summarize novel histone deacetylase inhibitors and new regimens from clinical trials for epigenetic therapy of cancer.

  9. The role of H1 linker histone subtypes in preserving the fidelity of elaboration of mesendodermal and neuroectodermal lineages during embryonic development.

    Directory of Open Access Journals (Sweden)

    Giang D Nguyen

    Full Text Available H1 linker histone proteins are essential for the structural and functional integrity of chromatin and for the fidelity of additional epigenetic modifications. Deletion of H1c, H1d and H1e in mice leads to embryonic lethality by mid-gestation with a broad spectrum of developmental alterations. To elucidate the cellular and molecular mechanisms underlying H1 linker histone developmental functions, we analyzed embryonic stem cells (ESCs depleted of H1c, H1d and H1e subtypes (H1-KO ESCs by utilizing established ESC differentiation paradigms. Our study revealed that although H1-KO ESCs continued to express core pluripotency genes and the embryonic stem cell markers, alkaline phosphatase and SSEA1, they exhibited enhanced cell death during embryoid body formation and during specification of mesendoderm and neuroectoderm. In addition, we demonstrated deregulation in the developmental programs of cardiomyocyte, hepatic and pancreatic lineage elaboration. Moreover, ectopic neurogenesis and cardiomyogenesis occurred during endoderm-derived pancreatic but not hepatic differentiation. Furthermore, neural differentiation paradigms revealed selective impairments in the specification and maturation of glutamatergic and dopaminergic neurons with accelerated maturation of glial lineages. These impairments were associated with deregulation in the expression profiles of pro-neural genes in dorsal and ventral forebrain-derived neural stem cell species. Taken together, these experimental observations suggest that H1 linker histone proteins are critical for the specification, maturation and fidelity of organ-specific cellular lineages derived from the three cardinal germ layers.

  10. An extensive analysis of the hereditary hemochromatosis gene HFE and neighboring histone genes: associations with childhood leukemia.

    Science.gov (United States)

    Davis, Charronne F; Dorak, M Tevfik

    2010-04-01

    The most common mutation of the HFE gene C282Y has shown a risk association with childhood acute lymphoblastic leukemia (ALL) in Welsh and Scottish case-control studies. This finding has not been replicated outside Britain. Here, we present a thorough analysis of the HFE gene in a panel of HLA homozygous reference cell lines and in the original population sample from South Wales (117 childhood ALL cases and 414 newborn controls). The 21 of 24 variants analyzed were from the HFE gene region extending 52 kb from the histone gene HIST1H1C to HIST1H1T. We identified the single-nucleotide polymorphism (SNP) rs807212 as a tagging SNP for the most common HFE region haplotype, which contains wild-type alleles of all HFE variants examined. This intergenic SNP rs807212 yielded a strong male-specific protective association (per allele OR = 0.38, 95% CI = 0.22-0.64, P (trend) = 0.0002; P = 0.48 in females), which accounted for the original C282Y risk association. In the HapMap project data, rs807212 was in strong linkage disequilibrium with 25 other SNPs spanning 151 kb around HFE. Minor alleles of these 26 SNPs characterized the most common haplotype for the HFE region, which lacked all disease-associated HFE variants. The HapMap data suggested positive selection in this region even in populations where the HFE C282Y mutation is absent. These results have implications for the sex-specific associations observed in this region and suggest the inclusion of rs807212 in future studies of the HFE gene and the extended HLA class I region.

  11. Impact of plasma histones in human sepsis and their contribution to cellular injury and inflammation.

    Science.gov (United States)

    Ekaney, Michael Liembo; Otto, Gordon Philipp; Sossdorf, Maik; Sponholz, Christoph; Boehringer, Michael; Loesche, Wolfgang; Rittirsch, Daniel; Wilharm, Arne; Kurzai, Oliver; Bauer, Michael; Claus, Ralf Alexander

    2014-09-24

    Circulating histones have been identified as mediators of damage in animal models of sepsis and in patients with trauma-associated lung injury. Despite existing controversies on actual histone concentrations, clinical implications and mechanism of action in various disease conditions, histone levels in human sepsis, association with disease progression and mediated effects on endothelial and immune cells remain unreported. This study aimed to determine histone levels and its clinical implication in septic patients and to elucidate histone-mediated effects ex-vivo. Histone levels, endogenous activated protein C (APC) levels and clinical data from two independent cohorts of septic patients were obtained. Histone levels were compared with various control groups including healthy individuals, intensive care unit (ICU) patients without sepsis, ICU patients with multiple organ failure and patients with minor or multiple trauma, all without infection. Endothelial and monocytic cells were stimulated with histones. Cellular integrity and sepsis prototypical cytokines were evaluated. The mechanism of action of histones via Toll-like receptor 4 (TLR4) was evaluated using a function blocking antibody. Histone degradation in plasma was studied by immunoblotting. Histone H4 levels were significantly elevated in patients with sepsis (cohort I; n = 15 and cohort II; n = 19) versus ICU controls (n = 12), patients with multiple organ failure (n = 12) or minor trauma (n = 7), associated with need for renal replacement therapy and decrease in platelet count during disease progression, and remarkably were significantly associated with increased mortality rates in septic patients (ICU-, 28 day- and 90 day mortality rates). There was an inverse correlation between plasma histones and endogenous APC levels. Histone stimulation induced the release of sepsis prototypic cytokines and decreased cell integrity indicated by a significant increase of lactate dehydrogenase (LDH) and propidium

  12. Hyaluronan protection of corneal endothelial cells against extracellular histones after phacoemulsification.

    Science.gov (United States)

    Kawano, Hiroki; Sakamoto, Taiji; Ito, Takashi; Miyata, Kazunori; Hashiguchi, Teruto; Maruyama, Ikuro

    2014-11-01

    To determine the effect of histones on corneal endothelial cells generated during cataract surgery. Kagoshima University Hospital, Kagoshima, Japan. Experimental study. Standard phacoemulsification was performed on enucleated pig eyes. Histones in the anterior segment of the eye were determined by immunohistochemistry. Cultured human corneal endothelial cells were exposed to histones for 18 hours, and cell viability was determined by 2-(2-methoxy-4-nitrophenyl)-3-(4-nitro-phenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt assay. The concentration of interleukin-6 (IL-6) in the culture medium of human corneal endothelial cells was measured using enzyme-linked immunosorbent assay. The effects of signal inhibitors U0126, SB203580, and SP600125 were evaluated. The protective effect of hyaluronan against histones was evaluated in human corneal endothelial cells with and without hyaluronan. Cellular debris containing histones was observed in the anterior chamber of pig eyes after phacoemulsification. Exposure of human corneal endothelial cells to 50 μg/mL of histones or more led to cytotoxic effects. The IL-6 concentration was significantly increased dose dependently after exposure of human corneal endothelial cells to histones (Phistone-induced IL-6 production was significantly decreased by extracellular signal-regulated kinases 1/2 and p-38 mitogen-activated protein kinase inhibitors (Phistones caused formation of histone aggregates, decreased the cytotoxic effects of the histones, and blocked the increase in IL-6 (PHistones were released extracellularly during phacoemulsification and exposure of human corneal endothelial cells to histones increased the IL-6 secretion. The intraoperative use of hyaluronan may decrease the cytotoxic effects of histones released during cataract surgery. No author has a financial or proprietary interest in any material or method mentioned. Copyright © 2014 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  13. Deposition of newly synthesized histones: new histones H2A and H2B do not deposit in the same nucleosome with new Histones H3 and H4

    International Nuclear Information System (INIS)

    Jackson, V.

    1987-01-01

    The authors have developed procedures to study histone-histone interactions during the deposition of histones in replicating cells. Cells are labeled for 60 min with dense amino acids, and subsequently, the histones within the nucleosomes are cross-linked into an octameric complex with formaldehyde. These complexes are sedimented to equilibrium in density gradients and octamer and dioctamer complexes separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. With reversal of the cross-link, the distribution of the individual density-labeled histones in the octamer is determined. Newly synthesized H3 and H4 deposits as a tetramer and are associated with old H2A and H2B. Newly synthesized H2A and H2B deposit as a dimer associated with old H2A, H2B, H3, and H4. The significance of these results with respect to the dynamics of histone interactions in the nucleus is discussed. Control experiments are presented to test for artifactual formation of these complexes during preparative procedures. In addition, reconstitution experiments were performed to demonstrate that the composition of these octameric complexes can be determined from their distribution of density gradients

  14. Radiosensitization of colorectal carcinoma cell lines by histone deacetylase inhibition

    International Nuclear Information System (INIS)

    Flatmark, Kjersti; Nome, Ragnhild V; Folkvord, Sigurd; Bratland, Åse; Rasmussen, Heidi; Ellefsen, Mali Strand; Fodstad, Øystein; Ree, Anne Hansen

    2006-01-01

    The tumor response to preoperative radiotherapy of locally advanced rectal cancer varies greatly, warranting the use of experimental models to assay the efficacy of molecular targeting agents in rectal cancer radiosensitization. Histone deacetylase (HDAC) inhibitors, agents that cause hyperacetylation of histone proteins and thereby remodeling of chromatin structure, may override cell cycle checkpoint responses to DNA damage and amplify radiation-induced tumor cell death. Human colorectal carcinoma cell lines were exposed to ionizing radiation and HDAC inhibitors, and cell cycle profiles and regulatory factors, as well as clonogenicity, were analyzed. In addition to G 2 /M phase arrest following irradiation, the cell lines displayed cell cycle responses typical for either intact or defective p53 function (the presence or absence, respectively, of radiation-induced expression of the cell cycle inhibitor p21 and subsequent accumulation of G 1 phase cells). In contrast, histone acetylation was associated with complete depletion of the G 1 population of cells with functional p53 but accumulation of both G 1 and G 2 /M populations of cells with defective p53. The cellular phenotypes upon HDAC inhibition were consistent with the observed repression of Polo-like kinase-1, a regulatory G 2 /M phase kinase. Following pre-treatment with HDAC inhibitors currently undergoing clinical investigation, the inhibitory effect of ionizing radiation on clonogenicity was significantly amplified. In these experimental models, HDAC inhibition sensitized the tumor cells to ionizing radiation, which is in accordance with the concept of increased probability of tumor cell death when chromatin structure is modified

  15. Repressive histone methylation regulates cardiac myocyte cell cycle exit.

    Science.gov (United States)

    El-Nachef, Danny; Oyama, Kyohei; Wu, Yun-Yu; Freeman, Miles; Zhang, Yiqiang; Robb MacLellan, W

    2018-05-22

    Mammalian cardiac myocytes (CMs) stop proliferating soon after birth and subsequent heart growth comes from hypertrophy, limiting the adult heart's regenerative potential after injury. The molecular events that mediate CM cell cycle exit are poorly understood. To determine the epigenetic mechanisms limiting CM cycling in adult CMs (ACMs) and whether trimethylation of lysine 9 of histone H3 (H3K9me3), a histone modification associated with repressed chromatin, is required for the silencing of cell cycle genes, we developed a transgenic mouse model where H3K9me3 is specifically removed in CMs by overexpression of histone demethylase, KDM4D. Although H3K9me3 is found across the genome, its loss in CMs preferentially disrupts cell cycle gene silencing. KDM4D binds directly to cell cycle genes and reduces H3K9me3 levels at these promotors. Loss of H3K9me3 preferentially leads to increased cell cycle gene expression resulting in enhanced CM cycling. Heart mass was increased in KDM4D overexpressing mice by postnatal day 14 (P14) and continued to increase until 9-weeks of age. ACM number, but not size, was significantly increased in KDM4D expressing hearts, suggesting CM hyperplasia accounts for the increased heart mass. Inducing KDM4D after normal development specifically in ACMs resulted in increased cell cycle gene expression and cycling. We demonstrated that H3K9me3 is required for CM cell cycle exit and terminal differentiation in ACMs. Depletion of H3K9me3 in adult hearts prevents and reverses permanent cell cycle exit and allows hyperplastic growth in adult hearts in vivo. Copyright © 2017. Published by Elsevier Ltd.

  16. Innovative Strategies for Selective Inhibition of Histone Deacetylases

    DEFF Research Database (Denmark)

    Maolanon, Alex Ramalak; Madsen, Andreas Stahl; Olsen, Christian Adam

    2016-01-01

    Histone deacetylases (HDAC) are a family of closely related enzymes involved in epigenetic and posttranscriptional regulation of numerous genes and proteins. Their deregulation is associated with a number of diseases, and a handful of HDAC inhibitors have been approved for cancer treatment. None......, functionally important, features. Based on this analysis, we suggest alternative strategies to achieve selective HDAC inhibition that does not rely on chelation of the zinc ion in the active site but rather on disruption of protein-protein interactions important for HDAC activity. We believe that, although...

  17. PARP-1 Interaction with and Activation by Histones and Nucleosomes.

    Science.gov (United States)

    Thomas, Colin; Kotova, Elena; Tulin, Alexei V

    2017-01-01

    Poly(ADP-ribose) Polymerase 1 (PARP-1) is an abundant chromatin associated protein, typical for most eukaryotic nuclei. The localization of PARP-1 in chromatin and its enzymatic activation involves multiple interactions of PARP-1 with nucleosomal histones, other proteins, and DNA. We report a set of methods designed to reconstitute PARP-1 regulation in vitro. These methods involve the expression of PARP-1 and PARP-1-regulating proteins using bacterial and eukaryotic systems, purification of these proteins using chromatography, testing of individual interactions in vitro, assembly of active complexes, and reconstitution of PARP-1 regulating reactions in vitro.

  18. Natural and Synthetic Macrocyclic Inhibitors of the Histone Deacetylase Enzymes

    DEFF Research Database (Denmark)

    Maolanon, Alex; Kristensen, Helle; Leman, Luke

    2017-01-01

    Inhibition of histone deacetylase (HDAC) enzymes has emerged as a target for development of cancer chemotherapy. Four compounds have gained approval for clinical use by the Food and Drug Administration (FDA) in the US, and several are currently in clinical trials. However, none of these compounds...... HDAC enzymes may hold an advantage over traditional hydroxamic acid-containing inhibitors, which rely on chelation to the conserved active site zinc ion. Here, we review the literature on macrocyclic HDAC inhibitors obtained from natural sources and structure-activity relationship studies inspired...

  19. Hepatic steatosis in transgenic mice overexpressing human histone deacetylase 1

    International Nuclear Information System (INIS)

    Wang, Ai-Guo; Seo, Sang-Beom; Moon, Hyung-Bae; Shin, Hye-Jun; Kim, Dong Hoon; Kim, Jin-Man; Lee, Tae-Hoon; Kwon, Ho Jeong; Yu, Dae-Yeul; Lee, Dong-Seok

    2005-01-01

    It is generally thought that histone deacetylases (HDACs) play important roles in the transcriptional regulation of genes. However, little information is available concerning the specific functions of individual HDACs in disease states. In this study, two transgenic mice lines were established which harbored the human HDAC1 gene. Overexpressed HDAC1 was detected in the nuclei of transgenic liver cells, and HDAC1 enzymatic activity was significantly higher in the transgenic mice than in control littermates. The HDAC1 transgenic mice exhibited a high incidence of hepatic steatosis and nuclear pleomorphism. Molecular studies showed that HDAC1 may contribute to nuclear pleomorphism through the p53/p21 signaling pathway

  20. Measurement with SR-0 experimental modules of the SPHINX nuclear transmutation system. Variants 2008

    International Nuclear Information System (INIS)

    Rypar, Vojtech; Juricek, Vlastimil; Svadlenkova, Marie; Heraltova, Lenka; Viererbl, Ladislav; Lahodova, Zdena

    2008-12-01

    Experiments were performed with two LR-0 rector core arrangements and 3 variants of SR-0 insertion modules with a view to establishing the critical parameters of the reactor cores for the 3 module variants comprising different materials and different numbers of LR-0 fuel pins. The effect of the materials on the photon dose distribution and, on the axial and radial neutron field distributions (via 140 Ba and 140 La activities) was examined and the reaction rate distribution of activation foils inside the experimental module was measured

  1. Side core lifter

    Energy Technology Data Exchange (ETDEWEB)

    Edelman, Ya A

    1982-01-01

    A side core lifter is proposed which contains a housing with guide slits and a removable core lifter with side projections on the support section connected to the core receiver. In order to preserve the structure of the rock in the core sample by means of guaranteeing rectilinear movement of the core lifter in the rock, the support and core receiver sections are hinged. The device is equipped with a spring for angular shift in the core-reception part.

  2. Functional convergence of histone methyltransferases EHMT1 and KMT2C involved in intellectual disability and autism spectrum disorder.

    Directory of Open Access Journals (Sweden)

    Tom S Koemans

    2017-10-01

    Full Text Available Kleefstra syndrome, caused by haploinsufficiency of euchromatin histone methyltransferase 1 (EHMT1, is characterized by intellectual disability (ID, autism spectrum disorder (ASD, characteristic facial dysmorphisms, and other variable clinical features. In addition to EHMT1 mutations, de novo variants were reported in four additional genes (MBD5, SMARCB1, NR1I3, and KMT2C, in single individuals with clinical characteristics overlapping Kleefstra syndrome. Here, we present a novel cohort of five patients with de novo loss of function mutations affecting the histone methyltransferase KMT2C. Our clinical data delineates the KMT2C phenotypic spectrum and reinforces the phenotypic overlap with Kleefstra syndrome and other related ID disorders. To elucidate the common molecular basis of the neuropathology associated with mutations in KMT2C and EHMT1, we characterized the role of the Drosophila KMT2C ortholog, trithorax related (trr, in the nervous system. Similar to the Drosophila EHMT1 ortholog, G9a, trr is required in the mushroom body for short term memory. Trr ChIP-seq identified 3371 binding sites, mainly in the promoter of genes involved in neuronal processes. Transcriptional profiling of pan-neuronal trr knockdown and G9a null mutant fly heads identified 613 and 1123 misregulated genes, respectively. These gene sets show a significant overlap and are associated with nearly identical gene ontology enrichments. The majority of the observed biological convergence is derived from predicted indirect target genes. However, trr and G9a also have common direct targets, including the Drosophila ortholog of Arc (Arc1, a key regulator of synaptic plasticity. Our data highlight the clinical and molecular convergence between the KMT2 and EHMT protein families, which may contribute to a molecular network underlying a larger group of ID/ASD-related disorders.

  3. Senescent mouse cells fail to overtly regulate the HIRA histone chaperone and do not form robust Senescence Associated Heterochromatin Foci

    Directory of Open Access Journals (Sweden)

    Enders Greg H

    2010-06-01

    Full Text Available Abstract Background Cellular senescence is a permanent growth arrest that occurs in response to cellular stressors, such as telomere shortening or activation of oncogenes. Although the process of senescence growth arrest is somewhat conserved between mouse and human cells, there are some critical differences in the molecular pathways of senescence between these two species. Recent studies in human fibroblasts have defined a cell signaling pathway that is initiated by repression of a specific Wnt ligand, Wnt2. This, in turn, activates a histone chaperone HIRA, and culminates in formation of specialized punctate domains of facultative heterochromatin, called Senescence-Associated Heterochromatin Foci (SAHF, that are enriched in the histone variant, macroH2A. SAHF are thought to repress expression of proliferation-promoting genes, thereby contributing to senescence-associated proliferation arrest. We asked whether this Wnt2-HIRA-SAHF pathway is conserved in mouse fibroblasts. Results We show that mouse embryo fibroblasts (MEFs and mouse skin fibroblasts, do not form robust punctate SAHF in response to an activated Ras oncogene or shortened telomeres. However, senescent MEFs do exhibit elevated levels of macroH2A staining throughout the nucleus as a whole. Consistent with their failure to fully activate the SAHF assembly pathway, the Wnt2-HIRA signaling axis is not overtly regulated between proliferating and senescent mouse cells. Conclusions In addition to the previously defined differences between mouse and human cells in the mechanisms and phenotypes associated with senescence, we conclude that senescent mouse and human fibroblasts also differ at the level of chromatin and the signaling pathways used to regulate chromatin. These differences between human and mouse senescence may contribute to the increased propensity of mouse fibroblasts (and perhaps other mouse cell types to become immortalized and transformed, compared to human cells.

  4. Adolescent alcohol exposure alters lysine demethylase 1 (LSD1) expression and histone methylation in the amygdala during adulthood.

    Science.gov (United States)

    Kyzar, Evan J; Zhang, Huaibo; Sakharkar, Amul J; Pandey, Subhash C

    2017-09-01

    Alcohol exposure in adolescence is an important risk factor for the development of alcoholism in adulthood. Epigenetic processes are implicated in the persistence of adolescent alcohol exposure-related changes, specifically in the amygdala. We investigated the role of histone methylation mechanisms in the persistent effects of adolescent intermittent ethanol (AIE) exposure in adulthood. Adolescent rats were exposed to 2 g/kg ethanol (2 days on/off) or intermittent n-saline (AIS) during postnatal days (PND) 28-41 and used for behavioral and epigenetic studies. We found that AIE exposure caused a long-lasting decrease in mRNA and protein levels of lysine demethylase 1(Lsd1) and mRNA levels of Lsd1 + 8a (a neuron-specific splice variant) in specific amygdaloid structures compared with AIS-exposed rats when measured at adulthood. Interestingly, AIE increased histone H3 lysine 9 dimethylation (H3K9me2) levels in the central nucleus of the amygdala (CeA) and medial nucleus of the amygdala (MeA) in adulthood without producing any change in H3K4me2 protein levels. Acute ethanol challenge (2 g/kg) in adulthood attenuated anxiety-like behaviors and the decrease in Lsd1 + 8a mRNA levels in the amygdala induced by AIE. AIE caused an increase in H3K9me2 occupancy at the brain-derived neurotrophic factor exon IV promoter in the amygdala that returned to baseline after acute ethanol challenge in adulthood. These results indicate that AIE specifically modulates epizymes involved in H3K9 dimethylation in the amygdala in adulthood, which are possibly responsible for AIE-induced chromatin remodeling and adult psychopathology such as anxiety. © Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  5. Histone 3.3 Participates in a Self-Sustaining Cascade of Apoptosis That Contributes to the Progression of Chronic Obstructive Pulmonary Disease

    Science.gov (United States)

    Barrero, Carlos A.; Perez-Leal, Oscar; Aksoy, Mark; Moncada, Camilo; Ji, Rong; Lopez, Yolanda; Mallilankaraman, Karthik; Madesh, Muniswamy; Criner, Gerard J.; Kelsen, Steven G.

    2013-01-01

    Rationale: Shifts in the gene expression of nuclear protein in chronic obstructive pulmonary disease (COPD), a progressive disease that is characterized by extensive lung inflammation and apoptosis, are common; however, the extent of the elevation of the core histones, which are the major components of nuclear proteins and their consequences in COPD, has not been characterized, which is important because extracellular histones are cytotoxic to endothelial and airway epithelial cells. Objectives: To investigate the role of extracellular histones in COPD disease progression. Methods: We analyzed the nuclear lung proteomes of ex-smokers with and without the disease. Further studies on the consequences of H3.3 were also performed. Measurements and Main Results: A striking finding was a COPD-specific eightfold increase of hyperacetylated histone H3.3. The hyperacetylation renders H3.3 resistant to proteasomal degradation despite ubiquitination; when combined with the reduction in proteasome activity that is known for COPD, this resistance helps account for the increased levels of H3.3. Using anti-H3 antibodies, we found H3.3 in the airway lumen, alveolar fluid, and plasma of COPD samples. H3.3 was cytotoxic to lung structural cells via a mechanism that involves the perturbation of Ca2+ homeostasis and mitochondrial toxicity. We used the primary human airway epithelial cells and found that the antibodies to either the C or N terminus of H3 could partially reverse H3.3 toxicity. Conclusions: Our data indicate that there is an uncontrolled positive feedback loop in which the damaged cells release acetylated H3.3, which causes more damage, adds H3.3 release, and contributes toward the disease progression. PMID:23924319

  6. HMCan-diff: a method to detect changes in histone modifications in cells with different genetic characteristics

    KAUST Repository

    Ashoor, Haitham; Louis-Brennetot, Caroline; Janoueix-Lerosey, Isabelle; Bajic, Vladimir B.; Boeva, Valentina

    2016-01-01

    Comparing histone modification profiles between cancer and normal states, or across different tumor samples, can provide insights into understanding cancer initiation, progression and response to therapy. ChIP-seq histone modification data of cancer

  7. Loading of Arabidopsis centromeric histone CENH3 occurs mainly during G2 and requires the presence of the histone fold domain

    Czech Academy of Sciences Publication Activity Database

    Lermontova, L.; Schubert, V.; Fuchs, J.; Klatte, J.; Macas, Jiří; Schubert, I.

    2006-01-01

    Roč. 18, - (2006), s. 2443-2451 ISSN 1040-4651 Institutional research plan: CEZ:AV0Z50510513 Keywords : histone CENH3 * Arabidopsis Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 9.868, year: 2006

  8. Epigenetic Histone Marks of Extended Meta-Polycentric Centromeres of Lathyrus and Pisum Chromosomes

    Czech Academy of Sciences Publication Activity Database

    Neumann, Pavel; Schubert, V.; Vrbová, Iva; Manning, Jasper Eugene; Houben, A.; Macas, Jiří

    2016-01-01

    Roč. 7, č. 234 (2016) ISSN 1664-462X R&D Projects: GA ČR(CZ) GAP501/11/1843 Institutional support: RVO:60077344 Keywords : Centromere structure * epigenetic modifications * histone phosphorylation * histone methylation Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.298, year: 2016

  9. Vitamin K3 triggers human leukemia cell death through hydrogen peroxide generation and histone hyperacetylation.

    Science.gov (United States)

    Lin, Changjun; Kang, Jiuhong; Zheng, Rongliang

    2005-10-01

    Vitamin K3 (VK3) is a well-known anticancer agent, but its mechanism remains elusive. In the present study, VK3 was found to simultaneously induce cell death, reactive oxygen species (ROS) generation, including superoxide anion (O2*-) and hydrogen peroxide (H2O2) generation, and histone hyperacetylation in human leukemia HL-60 cells in a concentration- and time-dependent manner. Catalase (CAT), an antioxidant enzyme that specifically scavenges H2O2, could significantly diminish both histone acetylation increase and cell death caused by VK3, whereas superoxide dismutase (SOD), an enzyme that specifically eliminates O2*-, showed no effect on both of these, leading to the conclusion that H2O2 generation, but not O2*- generation, contributes to VK3-induced histone hyperacetylation and cell death. This conclusion was confirmed by the finding that enhancement of VK3-induced H2O2 generation by vitamin C (VC) could significantly promote both the histone hyperacetylation and cell death. Further studies suggested that histone hyperacetylation played an important role in VK3-induced cell death, since sodium butyrate, a histone deacetylase (HDAC) inhibitor, showed no effect on ROS generation, but obviously potentiated VK3-induced histone hyperacetylation and cell death. Collectively, these results demonstrate a novel mechanism for the anticancer activity of VK3, i.e., VK3 induced tumor cell death through H2O2 generation, which then further induced histone hyperacetylation.

  10. Inhibition of histone deacetylases stimulates HBV replication independent of protein X

    NARCIS (Netherlands)

    van de Klundert, Maarten A. A.; Swart, Marjolein; Zaaijer, Hans L.; Kootstra, Neeltje A.

    2015-01-01

    Aim: HBV expresses an accessory protein called X (HBx), which supports HBV replication by increasing transcription from episomal templates. Here, we investigate whether HBx augments HBV replication by interfering with the deacetylation of HBV DNA associated histones by histone deacetylases (HDACs).

  11. Evaluation of Proteomic Search Engines for the Analysis of Histone Modifications

    Science.gov (United States)

    2015-01-01

    Identification of histone post-translational modifications (PTMs) is challenging for proteomics search engines. Including many histone PTMs in one search increases the number of candidate peptides dramatically, leading to low search speed and fewer identified spectra. To evaluate database search engines on identifying histone PTMs, we present a method in which one kind of modification is searched each time, for example, unmodified, individually modified, and multimodified, each search result is filtered with false discovery rate less than 1%, and the identifications of multiple search engines are combined to obtain confident results. We apply this method for eight search engines on histone data sets. We find that two search engines, pFind and Mascot, identify most of the confident results at a reasonable speed, so we recommend using them to identify histone modifications. During the evaluation, we also find some important aspects for the analysis of histone modifications. Our evaluation of different search engines on identifying histone modifications will hopefully help those who are hoping to enter the histone proteomics field. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium with the data set identifier PXD001118. PMID:25167464

  12. Integrative analysis of histone ChIP-seq and transcription data using Bayesian mixture models

    DEFF Research Database (Denmark)

    Klein, Hans-Ulrich; Schäfer, Martin; Porse, Bo T

    2014-01-01

    Histone modifications are a key epigenetic mechanism to activate or repress the transcription of genes. Datasets of matched transcription data and histone modification data obtained by ChIP-seq exist, but methods for integrative analysis of both data types are still rare. Here, we present a novel...

  13. A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism

    DEFF Research Database (Denmark)

    Feng, Dan; Liu, Tao; Sun, Zheng

    2011-01-01

    Disruption of the circadian clock exacerbates metabolic diseases, including obesity and diabetes. We show that histone deacetylase 3 (HDAC3) recruitment to the genome displays a circadian rhythm in mouse liver. Histone acetylation is inversely related to HDAC3 binding, and this rhythm is lost whe...

  14. Natural variation of histone modification and its impact on gene expression in the rat genome

    NARCIS (Netherlands)

    Rintisch, Carola; Heinig, Matthias; Bauerfeind, Anja; Schafer, Sebastian; Mieth, Christin; Patone, Giannino; Hummel, Oliver; Chen, Wei; Cook, Stuart; Cuppen, Edwin; Colomé-Tatché, Maria; Johannes, Frank; Jansen, Ritsert C; Neil, Helen; Werner, Michel; Pravenec, Michal; Vingron, Martin; Hubner, Norbert

    Histone modifications are epigenetic marks that play fundamental roles in many biological processes including the control of chromatin-mediated regulation of gene expression. Little is known about interindividual variability of histone modification levels across the genome and to what extent they

  15. Evaluation of proteomic search engines for the analysis of histone modifications.

    Science.gov (United States)

    Yuan, Zuo-Fei; Lin, Shu; Molden, Rosalynn C; Garcia, Benjamin A

    2014-10-03

    Identification of histone post-translational modifications (PTMs) is challenging for proteomics search engines. Including many histone PTMs in one search increases the number of candidate peptides dramatically, leading to low search speed and fewer identified spectra. To evaluate database search engines on identifying histone PTMs, we present a method in which one kind of modification is searched each time, for example, unmodified, individually modified, and multimodified, each search result is filtered with false discovery rate less than 1%, and the identifications of multiple search engines are combined to obtain confident results. We apply this method for eight search engines on histone data sets. We find that two search engines, pFind and Mascot, identify most of the confident results at a reasonable speed, so we recommend using them to identify histone modifications. During the evaluation, we also find some important aspects for the analysis of histone modifications. Our evaluation of different search engines on identifying histone modifications will hopefully help those who are hoping to enter the histone proteomics field. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium with the data set identifier PXD001118.

  16. [Comparative investigation of the non-histone proteins of chromatin from pigeon erythroblasts and erythrocytes].

    Science.gov (United States)

    Fedina, A B; Gazarian, G G

    1976-01-01

    Chromosomal non-histone proteins are obtained from nuclei of two types of pigeon erythroid cells: erythroblasts (cells active in RNA synthesis) and erythrocytes (cells with repressed RNA synthesis). They are well soluble in solutions of low ionic strength. Electrophoretic separation of the obtained non-histone proteins in polyacrylamide gels with urea and SDS shows the presence of qualitative differences in the pattern of non-histone proteins of chromatine from erythroblasts and erythrocytes. By electrophoresis in urea some protein bands of non-histone proteins of chromatine from erythroblasts were found which disappear with the aging of cells. At the same time two protein fractions were observed in chromatine from erythrocytes which were absent in that of erythroblasts. Disappearance of some high molecular weight protein fractions from erythrocyte chromatine as compared to erythroblasts was observed by separation of the non-histone proteins in the presence of SDS. These fractions of the non-histone proteins disappearing during aging of cells are well extractable from erythroblast chromatine by 0.35 M NaCl solution. In the in vitro system with E. coli RNA polymerase addition of non-histone proteins of chromatine from erythroblasts to chromatine from erythrocytes increases RNA synthesis 2--3 times. At the same time addition of non-histone proteins from erythrocytes is either without any influence on this process or somewhat inhibiting.

  17. Mechanical Stability and Fibrinolytic Resistance of Clots Containing Fibrin, DNA, and Histones*

    Science.gov (United States)

    Longstaff, Colin; Varjú, Imre; Sótonyi, Péter; Szabó, László; Krumrey, Michael; Hoell, Armin; Bóta, Attila; Varga, Zoltán; Komorowicz, Erzsébet; Kolev, Krasimir

    2013-01-01

    Neutrophil extracellular traps are networks of DNA and associated proteins produced by nucleosome release from activated neutrophils in response to infection stimuli and have recently been identified as key mediators between innate immunity, inflammation, and hemostasis. The interaction of DNA and histones with a number of hemostatic factors has been shown to promote clotting and is associated with increased thrombosis, but little is known about the effects of DNA and histones on the regulation of fibrin stability and fibrinolysis. Here we demonstrate that the addition of histone-DNA complexes to fibrin results in thicker fibers (increase in median diameter from 84 to 123 nm according to scanning electron microscopy data) accompanied by improved stability and rigidity (the critical shear stress causing loss of fibrin viscosity increases from 150 to 376 Pa whereas the storage modulus of the gel increases from 62 to 82 pascals according to oscillation rheometric data). The effects of DNA and histones alone are subtle and suggest that histones affect clot structure whereas DNA changes the way clots are lysed. The combination of histones + DNA significantly prolongs clot lysis. Isothermal titration and confocal microscopy studies suggest that histones and DNA bind large fibrin degradation products with 191 and 136 nm dissociation constants, respectively, interactions that inhibit clot lysis. Heparin, which is known to interfere with the formation of neutrophil extracellular traps, appears to prolong lysis time at a concentration favoring ternary histone-DNA-heparin complex formation, and DNase effectively promotes clot lysis in combination with tissue plasminogen activator. PMID:23293023

  18. Progressive methylation of ageing histones by Dot1 functions as a timer

    NARCIS (Netherlands)

    De Vos, Dirk; Frederiks, Floor; Terweij, Marit; van Welsem, Tibor; Verzijlbergen, Kitty F.; Iachina, Ekaterina; de Graaf, Erik L.; Altelaar, A. F. Maarten; Oudgenoeg, Gideon; Heck, Albert J. R.; Krijgsveldz, Jeroen; Bakker, Barbara M.; van Leeuwen, Fred

    Post-translational modifications of histone proteins have a crucial role in regulating gene expression. If efficiently re-established after chromosome duplication, histone modifications could help propagate gene expression patterns in dividing cells by epigenetic mechanisms. We used an integrated

  19. The histone methyltransferase SET8 is required for S-phase progression

    DEFF Research Database (Denmark)

    Jørgensen, Stine; Elvers, Ingegerd; Trelle, Morten Beck

    2008-01-01

    Chromatin structure and function is influenced by histone posttranslational modifications. SET8 (also known as PR-Set7 and SETD8) is a histone methyltransferase that monomethylates histonfe H4-K20. However, a function for SET8 in mammalian cell proliferation has not been determined. We show...

  20. Deposition of nucleosomal antigens (histones and DNA) in the epidermal basement membrane in human lupus nephritis.

    NARCIS (Netherlands)

    Grootscholten, C.; Bruggen, M.C.J. van; Pijl, J.W. van der; Jong, E.M.G.J. de; Ligtenberg, G.; Derksen, R.H.W.M.; Berden, J.H.M.

    2003-01-01

    OBJECTIVE: Antinuclear autoantibodies complexed to nucleosomes can bind to heparan sulfate (HS) in the glomerular basement membrane. This binding is due to the binding of the positively charged histones to the strongly anionic HS. Nucleosomes and histones have been identified in glomerular deposits

  1. Presence of Cytotoxic Extracellular Histones in Machine Perfusate of Donation After Circulatory Death Kidneys.

    Science.gov (United States)

    van Smaalen, Tim C; Beurskens, Daniëlle M H; Hoogland, E R Pieter; Winkens, Bjorn; Christiaans, Maarten H L; Reutelingsperger, Chris P; van Heurn, L W Ernest; Nicolaes, Gerry A F

    2017-04-01

    Extracellular histones are cytotoxic molecules that are related to cell stress and death. They have been shown to play a crucial role in multiple pathophysiologic processes like sepsis, inflammation, vascular dysfunction, and thrombosis. Their role in organ donation and graft function and survival is still unknown. The aim of this study was to assess whether an association exists between the presence of extracellular histones in machine perfusates and deceased donor kidney viability. Machine perfusates of 390 donations after circulatory death kidneys were analyzed for histone concentration, and corresponding graft function and survival were assessed. Extracellular histone concentrations were significantly higher in perfusates of kidneys with posttransplant graft dysfunction (primary nonfunction and delayed graft function) and were an independent risk factor for delayed graft function (odds ratio, 2.152; 95% confidence interval [95% CI], 1.199-3.863) and 1 year graft failure (hazard ratio, 1.386; 95% CI, 1.037-1.853), but not for primary nonfunction (odds ratio, 1.342; 95% CI, 0.900-2.002). One year graft survival was 12% higher in the group with low histone concentrations (P = 0.008) as compared with the group that contained higher histone concentrations. This study warrants future studies to probe for a possible role of cytotoxic extracellular histones in organ viability and suggests that quantitation of extracellular histones might contribute to assessment of posttransplant graft function and survival.

  2. Nucleosomes and histones are present in glomerular deposits in human lupus nephritis

    NARCIS (Netherlands)

    vanBruggen, MCJ; Kramers, C; Walgreen, B; Elema, JD; Kallenberg, CGM; vandenBorn, J; Smeenk, RJT; Assmann, KJM; Muller, S; Monestier, M; Berden, JHM

    Background. Recently we showed that antinuclear autoantibodies complexed to nucleosomes can bind to heparan sulphate (HS) in the glomerular basement membrane (GEM) via the histone part of the nucleosome. Histones have been identified in glomerular deposits in human and murine lupus nephritis. In

  3. Automated setup for characterization of intact histone tails in Suz12-/- stem cells

    DEFF Research Database (Denmark)

    Sidoli, Simone; Schwämmle, Veit; Hansen, Thomas Aarup

    Epigenetics is defined as the study of heritable changes that occur without modifying the DNA sequence. Histone proteins are crucial components of epigenetic mechanisms and regulation, since they are fundamental for chromatin structure. Mass spectrometry-based proteomics is already an integrated...... developed a high-resolving and automated LC-MS/MS setup to characterize intact histone tails (middle-down strategy)...

  4. Suz12 is essential for mouse development and for EZH2 histone methyltransferase activity

    DEFF Research Database (Denmark)

    Pasini, Diego; Bracken, Adrian P; Jensen, Michael R

    2004-01-01

    SUZ12 is a recently identified Polycomb group (PcG) protein, which together with EZH2 and EED forms different Polycomb repressive complexes (PRC2/3). These complexes contain histone H3 lysine (K) 27/9 and histone H1 K26 methyltransferase activity specified by the EZH2 SET domain. Here we show...

  5. Extranuclear detection of histones and nucleosomes in activated human lymphoblasts as an early event in apoptosis.

    NARCIS (Netherlands)

    Gabler, C.; Blank, N.; Hieronymus, T.; Schiller, M.; Berden, J.H.M.; Kalden, J.R.; Lorenz, H.M.

    2004-01-01

    OBJECTIVE: To evaluate the presence of histones and nucleosomes in cell lysates of freshly isolated peripheral blood mononuclear cells (PBMC), fully activated lymphoblasts, or lymphoblasts after induction of apoptosis. METHODS: Each histone class (H1, H2A, H2B, H3, and H4) was detected by western

  6. Effect of gamma irradiation on rat thymus arginine-rich H3 histone in vitro

    International Nuclear Information System (INIS)

    Patil, M.S.; Narasimhan, Saroja; Sreenivasan, A.

    1977-01-01

    Physicochemical properties of rat thymus H3 histone have been studied following gamma radiation (25-90 krad) in 0.2 N HCl. Polyacrylamide gel electrophoretic pattern (PGE) of H3 histone indicated that aggregates were formed in the histone fraction following gamma irradiation. The PGE pattern of the irradiated-histone fraction remained unaltered even after it was treated with 8.0 M urea to eliminate noncovalent bonding. On the other hand, the irradiated sample treated with β-mercaptoethanol exhibited the PGE pattern which was essentially similar to that of unirradiated sample. These results indicate that the aggregates seen in the PGE pattern of irradiated-H3 histone may be formed through interpolypeptide chain disulphide linkeges rather than by noncovalent bonding. This contention is also supported by the fact that irradiated-H3 histone exhibited hyperchromic shift at 240-250 nm region as well as increased disulphide content. Other results revealed that DNA-dependent RNA synthesis in vitro was inhibited to a greater extent by irradiated-H3 histone than by unirradiated-H3 histone. (author)

  7. Targeting Extracellular Histones with Novel RNA Biodrugs for the Treatment of Acute Lung Injury

    Science.gov (United States)

    2017-10-01

    The lung was saline perfused in vivo, inflated prior to fixation, and will be examined for pathologic changes and immunostained for histones. Future...histone levels and organ pathology . 14 4. IMPACT: Describe distinctive contributions, major accomplishments, innovations, successes, or any...4th Annual Abboud Cardiovascular Research Center (ACRC) Symposium, March 30, 2017, University of Iowa. Treatment of myocardial depression in sepsis

  8. A Role for Histone Deacetylases in the Cellular and Behavioral Mechanisms Underlying Learning and Memory

    Science.gov (United States)

    Mahgoub, Melissa; Monteggia, Lisa M.

    2014-01-01

    Histone deacetylases (HDACs) are a family of chromatin remodeling enzymes that restrict access of transcription factors to the DNA, thereby repressing gene expression. In contrast, histone acetyltransferases (HATs) relax the chromatin structure allowing for an active chromatin state and promoting gene transcription. Accumulating data have…

  9. HISTONE DEACETYLASE 9 represses seedling traits in Arabidopsis thaliana dry seeds

    NARCIS (Netherlands)

    van Zanten, Martijn; Zöll, C.; Wang, Z.; Philipp, C.; Carles, A.; Li, Y.; Kornet, N.G.; Liu, Y.; Soppe, W.J.J.

    2014-01-01

    Plant life is characterized by major phase changes. We studied the role of histone deacetylase (HDAC) activity in the transition from seed to seedling in Arabidopsis. Pharmacological inhibition of HDAC stimulated germination of freshly harvested seeds. Subsequent analysis revealed that histone

  10. Data-variant kernel analysis

    CERN Document Server

    Motai, Yuichi

    2015-01-01

    Describes and discusses the variants of kernel analysis methods for data types that have been intensely studied in recent years This book covers kernel analysis topics ranging from the fundamental theory of kernel functions to its applications. The book surveys the current status, popular trends, and developments in kernel analysis studies. The author discusses multiple kernel learning algorithms and how to choose the appropriate kernels during the learning phase. Data-Variant Kernel Analysis is a new pattern analysis framework for different types of data configurations. The chapters include

  11. Pulmonary endothelial activation caused by extracellular histones contributes to neutrophil activation in acute respiratory distress syndrome.

    Science.gov (United States)

    Zhang, Yanlin; Guan, Li; Yu, Jie; Zhao, Zanmei; Mao, Lijun; Li, Shuqiang; Zhao, Jinyuan

    2016-11-21

    During the acute respiratory distress syndrome (ARDS), neutrophils play a central role in the pathogenesis, and their activation requires interaction with the endothelium. Extracellular histones have been recognized as pivotal inflammatory mediators. This study was to investigate the role of pulmonary endothelial activation during the extracellular histone-induced inflammatory response in ARDS. ARDS was induced in male C57BL/6 mice by intravenous injection with lipopolysaccharide (LPS) or exogenous histones. Concurrent with LPS administration, anti-histone H4 antibody (anti-H4) or non-specific IgG was administered to study the role of extracellular histones. The circulating von Willebrand factor (vWF) and soluble thrombomodulin (sTM) were measured with ELISA kits at the preset time points. Myeloperoxidase (MPO) activity in lung tissue was measured with a MPO detection kit. The translocation of P-selectin and neutrophil infiltration were measured by immunohistochemical detection. For in vitro studies, histone H4 in the supernatant of mouse lung vascular endothelial cells (MLVECs) was measured by Western blot. The binding of extracellular histones with endothelial membrane was examined by confocal laser microscopy. Endothelial P-selectin translocation was measured by cell surface ELISA. Adhesion of neutrophils to MLVECs was assessed with a color video digital camera. The results showed that during LPS-induced ARDS extracellular histones caused endothelial and neutrophil activation, as seen by P-selectin translocation, release of vWF, an increase of circulating sTM, lung neutrophil infiltration and increased MPO activity. Extracellular histones directly bound and activated MLVECs in a dose-dependent manner. On the contrary, the direct stimulatory effect of exogenous histones on neutrophils was very limited, as measured by neutrophil adhesion and MPO activity. With the contribution of activated endothelium, extracellular histones could effectively activating

  12. Current Proteomic Methods to Investigate the Dynamics of Histone Turnover in the Central Nervous System.

    Science.gov (United States)

    Farrelly, L A; Dill, B D; Molina, H; Birtwistle, M R; Maze, I

    2016-01-01

    Characterizing the dynamic behavior of nucleosomes in the central nervous system is vital to our understanding of brain-specific chromatin-templated processes and their roles in transcriptional plasticity. Histone turnover-the complete loss of old, and replacement by new, nucleosomal histones-is one such phenomenon that has recently been shown to be critical for cell-type-specific transcription in brain, synaptic plasticity, and cognition. Such revelations that histones, long believed to static proteins in postmitotic cells, are highly dynamic in neurons were only possible owing to significant advances in analytical chemistry-based techniques, which now provide a platform for investigations of histone dynamics in both healthy and diseased tissues. Here, we discuss both past and present proteomic methods (eg, mass spectrometry, human "bomb pulse labeling") for investigating histone turnover in brain with the hope that such information may stimulate future investigations of both adaptive and aberrant forms of "neuroepigenetic" plasticity. © 2016 Elsevier Inc. All rights reserved.

  13. Prepatterning of developmental gene expression by modified histones before zygotic genome activation

    DEFF Research Database (Denmark)

    Lindeman, Leif C.; Andersen, Ingrid S.; Reiner, Andrew H.

    2011-01-01

    A hallmark of anamniote vertebrate development is a window of embryonic transcription-independent cell divisions before onset of zygotic genome activation (ZGA). Chromatin determinants of ZGA are unexplored; however, marking of developmental genes by modified histones in sperm suggests a predictive...... role of histone marks for ZGA. In zebrafish, pre-ZGA development for ten cell cycles provides an opportunity to examine whether genomic enrichment in modified histones is present before initiation of transcription. By profiling histone H3 trimethylation on all zebrafish promoters before and after ZGA......, we demonstrate here an epigenetic prepatterning of developmental gene expression. This involves pre-ZGA marking of transcriptionally inactive genes involved in homeostatic and developmental regulation by permissive H3K4me3 with or without repressive H3K9me3 or H3K27me3. Our data suggest that histone...

  14. Radicals derived from histone hydroperoxides damage nucleobases in RNA and DNA

    DEFF Research Database (Denmark)

    Luxford, C; Dean, R T; Davies, Michael Jonathan

    2000-01-01

    Exposure of individual histone proteins (H1, H2A, H2B, H3, or H4) and histone octamers (consisting of two molecules each of H2A, H2B, H3, and H4) to hydroxyl radicals, generated by gamma-irradiation, in the presence of O(2) generates protein-bound hydroperoxides in a dose-dependent fashion......; this is in accord with previous studies with other proteins. These histone hydroperoxides are stable in the absence of exogenous catalysts (e.g., heat, light, and transition metal ions), but in the presence of these agents decompose rapidly to give a variety of radicals which have been identified by EPR spin...... trapping. Histone hydroperoxide-derived radicals generated on decomposition of the hydroperoxides with Cu(+) react with both pyrimidine and purine nucleobases. Thus, with uridine the histone hydroperoxide-derived radicals undergo addition across the C(5)-C(6) double bond of the pyrimidine ring to give...

  15. Targeted resequencing of regulatory regions at schizophrenia risk loci: Role of rare functional variants at chromatin repressive states.

    Science.gov (United States)

    González-Peñas, Javier; Amigo, Jorge; Santomé, Luis; Sobrino, Beatriz; Brenlla, Julio; Agra, Santiago; Paz, Eduardo; Páramo, Mario; Carracedo, Ángel; Arrojo, Manuel; Costas, Javier

    2016-07-01

    There is mounting evidence that regulatory variation plays an important role in genetic risk for schizophrenia. Here, we specifically search for regulatory variants at risk by sequencing promoter regions of twenty-three genes implied in schizophrenia by copy number variant or genome-wide association studies. After strict quality control, a total of 55,206bp per sample were analyzed in 526 schizophrenia cases and 516 controls from Galicia, NW Spain, using the Applied Biosystems SOLiD System. Variants were filtered based on frequency from public databases, chromatin states from the RoadMap Epigenomics Consortium at tissues relevant for schizophrenia, such as fetal brain, mid-frontal lobe, and angular gyrus, and prediction of functionality from RegulomeDB. The proportion of rare variants at polycomb repressive chromatin state at relevant tissues was higher in cases than in controls. The proportion of rare variants with predicted regulatory role was significantly higher in cases than in controls (P=0.0028, OR=1.93, 95% C.I.=1.23-3.04). Combination of information from both sources led to the identification of an excess of carriers of rare variants with predicted regulatory role located at polycomb repressive chromatin state at relevant tissues in cases versus controls (P=0.0016, OR=19.34, 95% C.I.=2.45-2495.26). The variants are located at two genes affected by the 17q12 copy number variant, LHX1 and HNF1B. These data strongly suggest that a specific epigenetic mechanism, chromatin remodeling by histone modification during early development, may be impaired in a subset of schizophrenia patients, in agreement with previous data. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Histone deacetylase inhibition sensitizes osteosarcoma to heavy ion radiotherapy

    International Nuclear Information System (INIS)

    Blattmann, Claudia; Oertel, Susanne; Thiemann, Markus; Dittmar, Anne; Roth, Eva; Kulozik, Andreas E.; Ehemann, Volker; Weichert, Wilko; Huber, Peter E.; Stenzinger, Albrecht; Debus, Jürgen

    2015-01-01

    Minimal improvements in treatment or survival of patients with osteosarcoma have been achieved during the last three decades. Especially in the case of incomplete tumor resection, prognosis remains poor. Heavy ion radiotherapy (HIT) and modern anticancer drugs like histone deacetylase inhibitors (HDACi) have shown promising effects in osteosarcoma in vitro. In this study, we tested the effect of HIT and the combination of HIT and the HDACi suberoylanilide hydroxamic acid (SAHA) in a xenograft mouse model. Osteosarcoma xenografts were established by subcutaneous injection of KHOS-24OS cells and treated with either vehicle (DMSO), SAHA, HIT or HIT and SAHA. Tumor growth was determined and tumor necrosis, proliferation rate, apoptotic rate as well as vessel density were evaluated. Here, we show that the combination of HIT and SAHA induced a significant delay of tumor growth through increased rate of apoptosis, increased expression of p53 and p21 Waf1/Cip1 , inhibition of proliferation and angiogenesis compared to tumors treated with HIT only. HIT and in particular the combination of HIT and histone deacetylase inhibition is a promising treatment strategy in OS and may be tested in clinical trials

  17. Transrepressive function of TLX requires the histone demethylase LSD1.

    Science.gov (United States)

    Yokoyama, Atsushi; Takezawa, Shinichiro; Schüle, Roland; Kitagawa, Hirochika; Kato, Shigeaki

    2008-06-01

    TLX is an orphan nuclear receptor (also called NR2E1) that regulates the expression of target genes by functioning as a constitutive transrepressor. The physiological significance of TLX in the cytodifferentiation of neural cells in the brain is known. However, the corepressors supporting the transrepressive function of TLX have yet to be identified. In this report, Y79 retinoblastoma cells were subjected to biochemical techniques to purify proteins that interact with TLX, and we identified LSD1 (also called KDM1), which appears to form a complex with CoREST and histone deacetylase 1. LSD1 interacted with TLX directly through its SWIRM and amine oxidase domains. LSD1 potentiated the transrepressive function of TLX through its histone demethylase activity as determined by a luciferase assay using a genomically integrated reporter gene. LSD1 and TLX were recruited to a TLX-binding site in the PTEN gene promoter, accompanied by the demethylation of H3K4me2 and deacetylation of H3. Knockdown of either TLX or LSD1 derepressed expression of the endogenous PTEN gene and inhibited cell proliferation of Y79 cells. Thus, the present study suggests that LSD1 is a prime corepressor for TLX.

  18. Effects of sequence on DNA wrapping around histones

    Science.gov (United States)

    Ortiz, Vanessa

    2011-03-01

    A central question in biophysics is whether the sequence of a DNA strand affects its mechanical properties. In epigenetics, these are thought to influence nucleosome positioning and gene expression. Theoretical and experimental attempts to answer this question have been hindered by an inability to directly resolve DNA structure and dynamics at the base-pair level. In our previous studies we used a detailed model of DNA to measure the effects of sequence on the stability of naked DNA under bending. Sequence was shown to influence DNA's ability to form kinks, which arise when certain motifs slide past others to form non-native contacts. Here, we have now included histone-DNA interactions to see if the results obtained for naked DNA are transferable to the problem of nucleosome positioning. Different DNA sequences interacting with the histone protein complex are studied, and their equilibrium and mechanical properties are compared among themselves and with the naked case. NLM training grant to the Computation and Informatics in Biology and Medicine Training Program (NLM T15LM007359).

  19. Histone Deacetylase Inhibitor Therapy in Epithelial Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Noriyuki Takai

    2010-01-01

    Full Text Available Since epigenetic alterations are believed to be involved in the repression of tumor suppressor genes and promotion of tumorigenesis in ovarian cancers, novel compounds endowed with a histone deacetylase (HDAC inhibitory activity are an attractive therapeutic approach. In this review, we discuss the biologic and therapeutic effects of HDAC inhibitors (HDACIs in treating ovarian cancer. HDACIs were able to mediate inhibition of cell growth, cell cycle arrest, apoptosis, and expression of genes related to the malignant phenotype in a variety of ovarian cancer cell lines. Furthermore, HDACIs were able to induce the accumulation of acetylated histones in the chromatin of the p21WAF1 gene in human ovarian carcinoma cells. In xenograft models, some of HDACIs have demonstrated antitumor activity with only few side effects. Some clinical trials demonstrate that HDACI drugs provide an important class of new mechanism-based therapeutics for ovarian cancer. In this review, we discuss the biologic and therapeutic effects of HDACIs in treating ovarian cancer, especially focusing on preclinical studies and clinical trials.

  20. GCPII Variants, Paralogs and Orthologs

    Czech Academy of Sciences Publication Activity Database

    Hlouchová, Klára; Navrátil, Václav; Tykvart, Jan; Šácha, Pavel; Konvalinka, Jan

    2012-01-01

    Roč. 19, č. 9 (2012), s. 1316-1322 ISSN 0929-8673 R&D Projects: GA ČR GAP304/12/0847 Institutional research plan: CEZ:AV0Z40550506 Keywords : PSMA * GCPIII * NAALADase L * splice variants * homologs * PSMAL Subject RIV: CE - Biochemistry Impact factor: 4.070, year: 2012

  1. Odontogenic keratocyst: a peripheral variant.

    Science.gov (United States)

    Vij, H; Vij, R; Gupta, V; Sengupta, S

    2011-01-01

    Odontogenic keratocyst, which is developmental in nature, is an intraosseous lesion though on rare occasions it may occur in an extraosseous location. The extraosseous variant is referred to as peripheral odontogenic keratocyst. Though, clinically, peripheral odontogenic keratocyst resembles the gingival cyst of adults, it has histologic features that are pathognomonic of odontogenic keratocyst. This article presents a case of this uncommon entity.

  2. Histone Deacetylase Inhibition Promotes Osteoblast Maturation by Altering the Histone H4 Epigenome and Reduces Akt Phosphorylation*

    Science.gov (United States)

    Dudakovic, Amel; Evans, Jared M.; Li, Ying; Middha, Sumit; McGee-Lawrence, Meghan E.; van Wijnen, Andre J.; Westendorf, Jennifer J.

    2013-01-01

    Bone has remarkable regenerative capacity, but this ability diminishes during aging. Histone deacetylase inhibitors (HDIs) promote terminal osteoblast differentiation and extracellular matrix production in culture. The epigenetic events altered by HDIs in osteoblasts may hold clues for the development of new anabolic treatments for osteoporosis and other conditions of low bone mass. To assess how HDIs affect the epigenome of committed osteoblasts, MC3T3 cells were treated with suberoylanilide hydroxamic acid (SAHA) and subjected to microarray gene expression profiling and high-throughput ChIP-Seq analysis. As expected, SAHA induced differentiation and matrix calcification of osteoblasts in vitro. ChIP-Seq analysis revealed that SAHA increased histone H4 acetylation genome-wide and in differentially regulated genes, except for the 500 bp upstream of transcriptional start sites. Pathway analysis indicated that SAHA increased the expression of insulin signaling modulators, including Slc9a3r1. SAHA decreased phosphorylation of insulin receptor β, Akt, and the Akt substrate FoxO1, resulting in FoxO1 stabilization. Thus, SAHA induces genome-wide H4 acetylation and modulates the insulin/Akt/FoxO1 signaling axis, whereas it promotes terminal osteoblast differentiation in vitro. PMID:23940046

  3. Animal MRI Core

    Data.gov (United States)

    Federal Laboratory Consortium — The Animal Magnetic Resonance Imaging (MRI) Core develops and optimizes MRI methods for cardiovascular imaging of mice and rats. The Core provides imaging expertise,...

  4. Swine Influenza/Variant Influenza Viruses

    Science.gov (United States)

    ... Address What's this? Submit What's this? Submit Button Influenza Types Seasonal Avian Swine Variant Pandemic Other Information on Swine Influenza/Variant Influenza Virus Language: English (US) Español Recommend ...

  5. Specific histone modification responds to arsenic-induced oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Lu [Department of Toxicology, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, School of Public Health, Sun Yat-sen University, Guangzhou (China); Li, Jun [Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, Guizhou (China); Zhan, Zhengbao; Chen, Liping; Li, Daochuan; Bai, Qing; Gao, Chen; Li, Jie; Zeng, Xiaowen; He, Zhini; Wang, Shan; Xiao, Yongmei [Department of Toxicology, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, School of Public Health, Sun Yat-sen University, Guangzhou (China); Chen, Wen, E-mail: chenwen@mail.sysu.edu.cn [Department of Toxicology, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, School of Public Health, Sun Yat-sen University, Guangzhou (China); Zhang, Aihua, E-mail: aihuagzykd@163.com [Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, Guizhou (China)

    2016-07-01

    To explore whether specific histone modifications are associated with arsenic-induced oxidative damage, we recruited 138 arsenic-exposed and arsenicosis subjects from Jiaole Village, Xinren County of Guizhou province, China where the residents were exposed to arsenic from indoor coal burning. 77 villagers from Shang Batian Village that were not exposed to high arsenic coal served as the control group. The concentrations of urine and hair arsenic in the arsenic-exposure group were 2.4-fold and 2.1-fold (all P < 0.001) higher, respectively, than those of the control group. Global histone modifications in human peripheral lymphocytes (PBLCs) were examined by ELISA. The results showed that altered global levels of H3K18ac, H3K9me2, and H3K36me3 correlated with both urinary and hair-arsenic levels of the subjects. Notably, H3K36me3 and H3K18ac modifications were associated with urinary 8-OHdG (H3K36me3: β = 0.16; P = 0.042, H3K18ac: β = − 0.24; P = 0.001). We also found that the modifications of H3K18ac and H3K36me3 were enriched in the promoters of oxidative stress response (OSR) genes in human embryonic kidney (HEK) cells and HaCaT cells, providing evidence that H3K18ac and H3K36me3 modifications mediate transcriptional regulation of OSR genes in response to NaAsO{sub 2} treatment. Particularly, we found that reduced H3K18ac modification correlated with suppressed expression of OSR genes in HEK cells with long term arsenic treatment and in PBLCs of all the subjects. Taken together, we reveal a critical role for specific histone modification in response to arsenic-induced oxidative damage. - Highlights: • H3K18ac, H3K9me2 and H3K36me3 were associated with arsenic exposed levels. • H3K18ac and H3K36me3 were correlated with oxidative damage induced by arsenic. • H3K18ac and H3K36me3 might involve in transcriptional regulation of OSR genes. • Dysregulation of H3K18ac and H3K36me3 might be biomarkers of arsenic toxicity.

  6. Specific histone modification responds to arsenic-induced oxidative stress

    International Nuclear Information System (INIS)

    Ma, Lu; Li, Jun; Zhan, Zhengbao; Chen, Liping; Li, Daochuan; Bai, Qing; Gao, Chen; Li, Jie; Zeng, Xiaowen; He, Zhini; Wang, Shan; Xiao, Yongmei; Chen, Wen; Zhang, Aihua

    2016-01-01

    To explore whether specific histone modifications are associated with arsenic-induced oxidative damage, we recruited 138 arsenic-exposed and arsenicosis subjects from Jiaole Village, Xinren County of Guizhou province, China where the residents were exposed to arsenic from indoor coal burning. 77 villagers from Shang Batian Village that were not exposed to high arsenic coal served as the control group. The concentrations of urine and hair arsenic in the arsenic-exposure group were 2.4-fold and 2.1-fold (all P < 0.001) higher, respectively, than those of the control group. Global histone modifications in human peripheral lymphocytes (PBLCs) were examined by ELISA. The results showed that altered global levels of H3K18ac, H3K9me2, and H3K36me3 correlated with both urinary and hair-arsenic levels of the subjects. Notably, H3K36me3 and H3K18ac modifications were associated with urinary 8-OHdG (H3K36me3: β = 0.16; P = 0.042, H3K18ac: β = − 0.24; P = 0.001). We also found that the modifications of H3K18ac and H3K36me3 were enriched in the promoters of oxidative stress response (OSR) genes in human embryonic kidney (HEK) cells and HaCaT cells, providing evidence that H3K18ac and H3K36me3 modifications mediate transcriptional regulation of OSR genes in response to NaAsO 2 treatment. Particularly, we found that reduced H3K18ac modification correlated with suppressed expression of OSR genes in HEK cells with long term arsenic treatment and in PBLCs of all the subjects. Taken together, we reveal a critical role for specific histone modification in response to arsenic-induced oxidative damage. - Highlights: • H3K18ac, H3K9me2 and H3K36me3 were associated with arsenic exposed levels. • H3K18ac and H3K36me3 were correlated with oxidative damage induced by arsenic. • H3K18ac and H3K36me3 might involve in transcriptional regulation of OSR genes. • Dysregulation of H3K18ac and H3K36me3 might be biomarkers of arsenic toxicity.

  7. Interactions of Histone Acetyltransferase p300 with the Nuclear Proteins Histone and HMGB1, As Revealed by Single Molecule Atomic Force Spectroscopy.

    Science.gov (United States)

    Banerjee, S; Rakshit, T; Sett, S; Mukhopadhyay, R

    2015-10-22

    One of the important properties of the transcriptional coactivator p300 is histone acetyltransferase (HAT) activity that enables p300 to influence chromatin action via histone modulation. p300 can exert its HAT action upon the other nuclear proteins too--one notable example being the transcription-factor-like protein HMGB1, which functions also as a cytokine, and whose accumulation in the cytoplasm, as a response to tissue damage, is triggered by its acetylation. Hitherto, no information on the structure and stability of the complexes between full-length p300 (p300FL) (300 kDa) and the histone/HMGB1 proteins are available, probably due to the presence of unstructured regions within p300FL that makes it difficult to be crystallized. Herein, we have adopted the high-resolution atomic force microscopy (AFM) approach, which allows molecularly resolved three-dimensional contour mapping of a protein molecule of any size and structure. From the off-rate and activation barrier values, obtained using single molecule dynamic force spectroscopy, the biochemical proposition of preferential binding of p300FL to histone H3, compared to the octameric histone, can be validated. Importantly, from the energy landscape of the dissociation events, a model for the p300-histone and the p300-HMGB1 dynamic complexes that HAT forms, can be proposed. The lower unbinding forces of the complexes observed in acetylating conditions, compared to those observed in non-acetylating conditions, indicate that upon acetylation, p300 tends to weakly associate, probably as an outcome of charge alterations on the histone/HMGB1 surface and/or acetylation-induced conformational changes. To our knowledge, for the first time, a single molecule level treatment of the interactions of HAT, where the full-length protein is considered, is being reported.

  8. Solar Simulated Ultraviolet Radiation Induces Global Histone Hypoacetylation in Human Keratinocytes.

    Science.gov (United States)

    Zhang, Xiaoru; Kluz, Thomas; Gesumaria, Lisa; Matsui, Mary S; Costa, Max; Sun, Hong

    2016-01-01

    Ultraviolet radiation (UVR) from sunlight is the primary effector of skin DNA damage. Chromatin remodeling and histone post-translational modification (PTM) are critical factors in repairing DNA damage and maintaining genomic integrity, however, the dynamic changes of histone marks in response to solar UVR are not well characterized. Here we report global changes in histone PTMs induced by solar simulated UVR (ssUVR). A decrease in lysine acetylation of histones H3 and H4, particularly at positions of H3 lysine 9, lysine 56, H4 lysine 5, and lysine 16, was found in human keratinocytes exposed to ssUVR. These acetylation changes were highly associated with ssUVR in a dose-dependent and time-specific manner. Interestingly, H4K16ac, a mark that is crucial for higher order chromatin structure, exhibited a persistent reduction by ssUVR that was transmitted through multiple cell divisions. In addition, the enzymatic activities of histone acetyltransferases were significantly reduced in irradiated cells, which may account for decreased global acetylation. Moreover, depletion of histone deacetylase SIRT1 in keratinocytes rescued ssUVR-induced H4K16 hypoacetylation. These results indicate that ssUVR affects both HDAC and HAT activities, leading to reduced histone acetylation.

  9. Dynamic changes in the interchromosomal interaction of early histone gene loci during development of sea urchin.

    Science.gov (United States)

    Matsushita, Masaya; Ochiai, Hiroshi; Suzuki, Ken-Ichi T; Hayashi, Sayaka; Yamamoto, Takashi; Awazu, Akinori; Sakamoto, Naoaki

    2017-12-15

    The nuclear positioning and chromatin dynamics of eukaryotic genes are closely related to the regulation of gene expression, but they have not been well examined during early development, which is accompanied by rapid cell cycle progression and dynamic changes in nuclear organization, such as nuclear size and chromatin constitution. In this study, we focused on the early development of the sea urchin Hemicentrotus pulcherrimus and performed three-dimensional fluorescence in situ hybridization of gene loci encoding early histones (one of the types of histone in sea urchin). There are two non-allelic early histone gene loci per sea urchin genome. We found that during the morula stage, when the early histone gene expression levels are at their maximum, interchromosomal interactions were often formed between the early histone gene loci on separate chromosomes and that the gene loci were directed to locate to more interior positions. Furthermore, these interactions were associated with the active transcription of the early histone genes. Thus, such dynamic interchromosomal interactions may contribute to the efficient synthesis of early histone mRNA during the morula stage of sea urchin development. © 2017. Published by The Company of Biologists Ltd.

  10. Histone deacetylase inhibitors: can we consider potent anti-neoplastic agents for the treatment of asthma?

    Science.gov (United States)

    Royce, Simon G; Ververis, Katherine; Karagiannis, Tom C

    2012-01-01

    Histone deacetylase inhibitors have emerged as a new class of anti-cancer therapeutics due to their potent anti-proliferative and apoptotic effects in malignant cells. Accumulating evidence is indicating that histone deacetylase inhibitors may also have potential clinical utility in non-oncological applications, including asthma. However, the potential of histone deacetylase inhibitors in asthma remains controversial. For example, the mechanisms of action of the broad-spectrum histone deacetylase inhibitor, Trichostatin A, in animal models of allergic airways disease are conflicting. Further, there is evidence suggesting potential problems associated with histone deacetylase 2 inhibition and conventional glucocorticosteroid therapy. Similarly, disparate findings are emerging following modulation of the class III, sirtuin 1 enzyme. Indeed, it is becoming apparent that the mechanism of action may not be related to histone deacetylase inhibition activity per se. Further, there is only limited evidence that these compounds possess anti-inflammatory effects in models of asthma. In this review, we provide an overview of the biology of the metal-dependent and sirtuin deacetylases in the context of asthma. The controversies surrounding the potential use of histone deacetylase inhibitors in asthma are discussed and future directions involving the investigation of more specific analogues are explored.

  11. Developmentally Regulated Post-translational Modification of Nucleoplasmin Controls Histone Sequestration and Deposition

    Directory of Open Access Journals (Sweden)

    Takashi Onikubo

    2015-03-01

    Full Text Available Nucleoplasmin (Npm is an abundant histone chaperone in vertebrate oocytes and embryos. During embryogenesis, regulation of Npm histone binding is critical for its function in storing and releasing maternal histones to establish and maintain the zygotic epigenome. Here, we demonstrate that Xenopus laevis Npm post-translational modifications (PTMs specific to the oocyte and egg promote either histone deposition or sequestration, respectively. Mass spectrometry and Npm phosphomimetic mutations used in chromatin assembly assays identified hyperphosphorylation on the N-terminal tail as a critical regulator for sequestration. C-terminal tail phosphorylation and PRMT5-catalyzed arginine methylation enhance nucleosome assembly by promoting histone interaction with the second acidic tract of Npm. Electron microscopy reconstructions of Npm and TTLL4 activity toward the C-terminal tail demonstrate that oocyte- and egg-specific PTMs cause Npm conformational changes. Our results reveal that PTMs regulate Npm chaperoning activity by modulating Npm conformation and Npm-histone interaction, leading to histone sequestration in the egg.

  12. The Role of Dietary Histone Deacetylases (HDACs Inhibitors in Health and Disease

    Directory of Open Access Journals (Sweden)

    Shalome A. Bassett

    2014-10-01

    Full Text Available Modification of the histone proteins associated with DNA is an important process in the epigenetic regulation of DNA structure and function. There are several known modifications to histones, including methylation, acetylation, and phosphorylation, and a range of factors influence each of these. Histone deacetylases (HDACs remove the acetyl group from lysine residues within a range of proteins, including transcription factors and histones. Whilst this means that their influence on cellular processes is more complex and far-reaching than histone modifications alone, their predominant function appears to relate to histones; through deacetylation of lysine residues they can influence expression of genes encoded by DNA linked to the histone molecule. HDAC inhibitors in turn regulate the activity of HDACs, and have been widely used as therapeutics in psychiatry and neurology, in which a number of adverse outcomes are associated with aberrant HDAC function. More recently, dietary HDAC inhibitors have been shown to have a regulatory effect similar to that of pharmacological HDAC inhibitors without the possible side-effects. Here, we discuss a number of dietary HDAC inhibitors, and how they may have therapeutic potential in the context of a whole food.

  13. Histone and RNA-binding protein interaction creates crosstalk network for regulation of alternative splicing.

    Science.gov (United States)

    Kim, Yong-Eun; Park, Chungoo; Kim, Kyoon Eon; Kim, Kee K

    2018-04-30

    Alternative splicing is an essential process in eukaryotes, as it increases the complexity of gene expression by generating multiple proteins from a single pre-mRNA. However, information on the regulatory mechanisms for alternative splicing is lacking, because splicing occurs over a short period via the transient interactions of proteins within functional complexes of the spliceosome. Here, we investigated in detail the molecular mechanisms connecting alternative splicing with epigenetic mechanisms. We identified interactions between histone proteins and splicing factors such as Rbfox2, Rbfox3, and splicing factor proline and glutamine rich protein (SFPQ) by in vivo crosslinking and immunoprecipitation. Furthermore, we confirmed that splicing factors were bound to specific modified residues of histone proteins. Additionally, changes in histone methylation due to histone methyltransferase inhibitor treatment notably affected alternative splicing in selected genes. Therefore, we suggested that there may be crosstalk mechanisms connecting histone modifications and RNA-binding proteins that increase the local concentration of RNA-binding proteins in alternative exon loci of nucleosomes by binding specific modified histone proteins, leading to alternative splicing. This crosstalk mechanism may play a major role in epigenetic processes such as histone modification and the regulation of alternative splicing. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Genome-Wide Identification of Histone Modifiers and Their Expression Patterns during Fruit Abscission in Litchi

    Directory of Open Access Journals (Sweden)

    Jianguo Li

    2017-04-01

    Full Text Available Modifications to histones, including acetylation and methylation processes, play crucial roles in the regulation of gene expression in plant development as well as in stress responses. However, limited information on the enzymes catalyzing histone acetylation and methylation in non-model plants is currently available. In this study, several histone modifier (HM types, including six histone acetyltransferases (HATs, 11 histone deacetylases (HDACs, 48 histone methyltransferases (HMTs, and 22 histone demethylases (HDMs, are identified in litchi (Litchi chinensis Sonn. cv. Feizixiao based on similarities in their sequences to homologs in Arabidopsis (A. thaliana, tomato (Solanum lycopersicum, and rice (Oryza sativa. Phylogenetic analyses reveal that HM enzymes can be grouped into four HAT, two HDAC, two HMT, and two HDM subfamilies, respectively, while further expression profile analyses demonstrate that 17 HMs were significantly altered during fruit abscission in two field treatments. Analyses reveal that these genes exhibit four distinct patterns of expression in response to fruit abscission, while an in vitro assay was used to confirm the HDAC activity of LcHDA2, LcHDA6, and LcSRT2. Our findings are the first in-depth analysis of HMs in the litchi genome, and imply that some are likely to play important roles in fruit abscission in this commercially important plant.

  15. Differentiation of eosinophilic leukemia EoL-1 cells into eosinophils induced by histone deacetylase inhibitors.

    Science.gov (United States)

    Ishihara, Kenji; Takahashi, Aki; Kaneko, Motoko; Sugeno, Hiroki; Hirasawa, Noriyasu; Hong, JangJa; Zee, OkPyo; Ohuchi, Kazuo

    2007-03-06

    EoL-1 cells differentiate into eosinophils in the presence of n-butyrate, but the mechanism has remained to be elucidated. Because n-butyrate can inhibit histone deacetylases, we hypothesized that the inhibition of histone deacetylases induces the differentiation of EoL-1 cells into eosinophils. In this study, using n-butyrate and two other histone deacetylase inhibitors, apicidin and trichostatin A, we have analyzed the relationship between the inhibition of histone deacetylases and the differentiation into eosinophils in EoL-1 cells. It was demonstrated that apicidin and n-butyrate induced a continuous acetylation of histones H4 and H3, inhibited the proliferation of EoL-1 cells without attenuating the level of FIP1L1-PDGFRA mRNA, and induced the expression of markers for mature eosinophils such as integrin beta7, CCR1, and CCR3 on EoL-1 cells, while trichostatin A evoked a transient acetylation of histones and induced no differentiation into eosinophils. These findings suggest that the continuous inhibition of histone deacetylases in EoL-1 cells induces the differentiation into mature eosinophils.

  16. Histones from Dying Renal Cells Aggravate Kidney Injury via TLR2 and TLR4

    Science.gov (United States)

    Allam, Ramanjaneyulu; Scherbaum, Christina Rebecca; Darisipudi, Murthy Narayana; Mulay, Shrikant R.; Hägele, Holger; Lichtnekert, Julia; Hagemann, Jan Henrik; Rupanagudi, Khader Valli; Ryu, Mi; Schwarzenberger, Claudia; Hohenstein, Bernd; Hugo, Christian; Uhl, Bernd; Reichel, Christoph A.; Krombach, Fritz; Monestier, Marc; Liapis, Helen; Moreth, Kristin; Schaefer, Liliana

    2012-01-01

    In AKI, dying renal cells release intracellular molecules that stimulate immune cells to secrete proinflammatory cytokines, which trigger leukocyte recruitment and renal inflammation. Whether the release of histones, specifically, from dying cells contributes to the inflammation of AKI is unknown. In this study, we found that dying tubular epithelial cells released histones into the extracellular space, which directly interacted with Toll-like receptor (TLR)-2 (TLR2) and TLR4 to induce MyD88, NF-κB, and mitogen activated protein kinase signaling. Extracellular histones also had directly toxic effects on renal endothelial cells and tubular epithelial cells in vitro. In addition, direct injection of histones into the renal arteries of mice demonstrated that histones induce leukocyte recruitment, microvascular vascular leakage, renal inflammation, and structural features of AKI in a TLR2/TLR4-dependent manner. Antihistone IgG, which neutralizes the immunostimulatory effects of histones, suppressed intrarenal inflammation, neutrophil infiltration, and tubular cell necrosis and improved excretory renal function. In summary, the release of histones from dying cells aggravates AKI via both its direct toxicity to renal cells and its proinflammatory effects. Because the induction of proinflammatory cytokines in dendritic cells requires TLR2 and TLR4, these results support the concept that renal damage triggers an innate immune response, which contributes to the pathogenesis of AKI. PMID:22677551

  17. Real-Time Tracking of Parental Histones Reveals Their Contribution to Chromatin Integrity Following DNA Damage.

    Science.gov (United States)

    Adam, Salomé; Dabin, Juliette; Chevallier, Odile; Leroy, Olivier; Baldeyron, Céline; Corpet, Armelle; Lomonte, Patrick; Renaud, Olivier; Almouzni, Geneviève; Polo, Sophie E

    2016-10-06

    Chromatin integrity is critical for cell function and identity but is challenged by DNA damage. To understand how chromatin architecture and the information that it conveys are preserved or altered following genotoxic stress, we established a system for real-time tracking of parental histones, which characterize the pre-damage chromatin state. Focusing on histone H3 dynamics after local UVC irradiation in human cells, we demonstrate that parental histones rapidly redistribute around damaged regions by a dual mechanism combining chromatin opening and histone mobilization on chromatin. Importantly, parental histones almost entirely recover and mix with new histones in repairing chromatin. Our data further define a close coordination of parental histone dynamics with DNA repair progression through the damage sensor DDB2 (DNA damage-binding protein 2). We speculate that this mechanism may contribute to maintaining a memory of the original chromatin landscape and may help preserve epigenome stability in response to DNA damage. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  18. Extracting histones for the specific purpose of label-free MS.

    Science.gov (United States)

    Govaert, Elisabeth; Van Steendam, Katleen; Scheerlinck, Ellen; Vossaert, Liesbeth; Meert, Paulien; Stella, Martina; Willems, Sander; De Clerck, Laura; Dhaenens, Maarten; Deforce, Dieter

    2016-12-01

    Extracting histones from cells is the first step in studies that aim to characterize histones and their post-translational modifications (hPTMs) with MS. In the last decade, label-free quantification is more frequently being used for MS-based histone characterization. However, many histone extraction protocols were not specifically designed for label-free MS. While label-free quantification has its advantages, it is also very susceptible to technical variation. Here, we adjust an established histone extraction protocol according to general label-free MS guidelines with a specific focus on minimizing sample handling. These protocols are first evaluated using SDS-PAGE. Hereafter, a selection of extraction protocols was used in a complete histone workflow for label-free MS. All protocols display nearly identical relative quantification of hPTMs. We thus show that, depending on the cell type under investigation and at the cost of some additional contaminating proteins, minimizing sample handling can be done during histone isolation. This allows analyzing bigger sample batches, leads to reduced technical variation and minimizes the chance of in vitro alterations to the hPTM snapshot. Overall, these results allow researchers to determine the best protocol depending on the resources and goal of their specific study. Data are available via ProteomeXchange with identifier PXD002885. © 2016 The Authors. Proteomics Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Extracellular histones, cell-free DNA, or nucleosomes: differences in immunostimulation.

    Science.gov (United States)

    Marsman, Gerben; Zeerleder, Sacha; Luken, Brenda M

    2016-12-08

    In inflammation, extensive cell death may occur, which results in the release of chromatin components into the extracellular environment. Individually, the purified chromatin components double stranded (ds)DNA and histones have been demonstrated, both in vitro and in vivo, to display various immunostimulatory effects, for example, histones induce cytotoxicity and proinflammatory signaling through toll-like receptor (TLR)2 and 4, while DNA induces signaling through TLR9 and intracellular nucleic acid sensing mechanisms. However, DNA and histones are organized in nucleosomes in the nucleus, and evidence suggests that nucleosomes are released as such in inflammation. The cytotoxicity and proinflammatory signaling induced by nucleosomes have not been studied as extensively as the separate effects brought about by histones and dsDNA, and there appear to be some marked differences. Remarkably, little distinction between the different forms in which histones circulate has been made throughout literature. This is partly due to the limitations of existing techniques to differentiate between histones in their free or DNA-bound form. Here we review the current understanding of immunostimulation induced by extracellular histones, dsDNA and nucleosomes, and discuss the importance of techniques that in their detection differentiate between these different chromatin components.

  20. Histone peptide AKRHRK enhances H2O2-induced DNA damage and alters its site specificity

    International Nuclear Information System (INIS)

    Midorikawa, Kaoru; Murata, Mariko; Kawanishi, Shosuke

    2005-01-01

    Histone proteins are involved in compaction of DNA and the protection of cells from oxygen toxicity. However, several studies have demonstrated that the metal-binding histone reacts with H 2 O 2 , leading to oxidative damage to a nucleobase. We investigated whether histone can accelerate oxidative DNA damage, using a minimal model for the N-terminal tail of histone H4, CH 3 CO-AKRHRK-CONH 2 , which has a metal-binding site. This histone peptide enhanced DNA damage induced by H 2 O 2 and Cu(II), especially at cytosine residues, and induced additional DNA cleavage at the 5'-guanine of GGG sequences. The peptide also enhanced the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine and ESR spin-trapping signal from H 2 O 2 and Cu(II). Cyclic redox reactions involving histone-bound Cu(II) and H 2 O 2 , may give rise to multiple production of radicals leading to multiple hits in DNA. It is noteworthy that the histone H4 peptide with specific sequence AKRHRK can cause DNA damage rather than protection under metal-overloaded condition

  1. Structure of the human histone chaperone FACT Spt16 N-terminal domain

    Energy Technology Data Exchange (ETDEWEB)

    Marcianò, G.; Huang, D. T., E-mail: d.huang@beatson.gla.ac.uk [Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, Scotland (United Kingdom)

    2016-01-22

    The Spt16–SSRP1 heterodimer is a histone chaperone that plays an important role in regulating chromatin assembly. Here, a crystal structure of the N-terminal domain of human Spt16 is presented and it is shown that this domain may contribute to histone binding. The histone chaperone FACT plays an important role in facilitating nucleosome assembly and disassembly during transcription. FACT is a heterodimeric complex consisting of Spt16 and SSRP1. The N-terminal domain of Spt16 resembles an inactive aminopeptidase. How this domain contributes to the histone chaperone activity of FACT remains elusive. Here, the crystal structure of the N-terminal domain (NTD) of human Spt16 is reported at a resolution of 1.84 Å. The structure adopts an aminopeptidase-like fold similar to those of the Saccharomyces cerevisiae and Schizosaccharomyces pombe Spt16 NTDs. Isothermal titration calorimetry analyses show that human Spt16 NTD binds histones H3/H4 with low-micromolar affinity, suggesting that Spt16 NTD may contribute to histone binding in the FACT complex. Surface-residue conservation and electrostatic analysis reveal a conserved acidic patch that may be involved in histone binding.

  2. Histone acetylation and CREB binding protein are required for neuronal resistance against ischemic injury.

    Directory of Open Access Journals (Sweden)

    Ferah Yildirim

    Full Text Available Epigenetic transcriptional regulation by histone acetylation depends on the balance between histone acetyltransferase (HAT and deacetylase activities (HDAC. Inhibition of HDAC activity provides neuroprotection, indicating that the outcome of cerebral ischemia depends crucially on the acetylation status of histones. In the present study, we characterized the changes in histone acetylation levels in ischemia models of focal cerebral ischemia and identified cAMP-response element binding protein (CREB-binding protein (CBP as a crucial factor in the susceptibility of neurons to ischemic stress. Both neuron-specific RNA interference and neurons derived from CBP heterozygous knockout mice showed increased damage after oxygen-glucose deprivation (OGD in vitro. Furthermore, we demonstrated that ischemic preconditioning by a short (5 min subthreshold occlusion of the middle cerebral artery (MCA, followed 24 h afterwards by a 30 min occlusion of the MCA, increased histone acetylation levels in vivo. Ischemic preconditioning enhanced CBP recruitment and histone acetylation at the promoter of the neuroprotective gene gelsolin leading to increased gelsolin expression in neurons. Inhibition of CBP's HAT activity attenuated neuronal ischemic preconditioning. Taken together, our findings suggest that the levels of CBP and histone acetylation determine stroke outcome and are crucially associated with the induction of an ischemia-resistant state in neurons.

  3. Structure of the human histone chaperone FACT Spt16 N-terminal domain

    International Nuclear Information System (INIS)

    Marcianò, G.; Huang, D. T.

    2016-01-01

    The Spt16–SSRP1 heterodimer is a histone chaperone that plays an important role in regulating chromatin assembly. Here, a crystal structure of the N-terminal domain of human Spt16 is presented and it is shown that this domain may contribute to histone binding. The histone chaperone FACT plays an important role in facilitating nucleosome assembly and disassembly during transcription. FACT is a heterodimeric complex consisting of Spt16 and SSRP1. The N-terminal domain of Spt16 resembles an inactive aminopeptidase. How this domain contributes to the histone chaperone activity of FACT remains elusive. Here, the crystal structure of the N-terminal domain (NTD) of human Spt16 is reported at a resolution of 1.84 Å. The structure adopts an aminopeptidase-like fold similar to those of the Saccharomyces cerevisiae and Schizosaccharomyces pombe Spt16 NTDs. Isothermal titration calorimetry analyses show that human Spt16 NTD binds histones H3/H4 with low-micromolar affinity, suggesting that Spt16 NTD may contribute to histone binding in the FACT complex. Surface-residue conservation and electrostatic analysis reveal a conserved acidic patch that may be involved in histone binding

  4. Histones and their modifications in ovarian cancer - drivers of disease and therapeutic targets.

    Science.gov (United States)

    Marsh, Deborah J; Shah, Jaynish S; Cole, Alexander J

    2014-01-01

    Epithelial ovarian cancer has the highest mortality of the gynecological malignancies. High grade serous epithelial ovarian cancer (SEOC) is the most common subtype, with the majority of women presenting with advanced disease where 5-year survival is around 25%. Platinum-based chemotherapy in combination with paclitaxel remains the most effective treatment despite platinum therapies being introduced almost 40 years ago. Advances in molecular medicine are underpinning new strategies for the treatment of cancer. Major advances have been made by international initiatives to sequence cancer genomes. For SEOC, with the exception of TP53 that is mutated in virtually 100% of these tumors, there is no other gene mutated at high frequency. There is extensive copy number variation, as well as changes in methylation patterns that will influence gene expression. To date, the role of histones and their post-translational modifications in ovarian cancer is a relatively understudied field. Post-translational histone modifications play major roles in gene expression as they direct the configuration of chromatin and so access by transcription factors. Histone modifications include methylation, acetylation, and monoubiquitination, with involvement of enzymes including histone methyltransferases, histone acetyltransferases/deacetylases, and ubiquitin ligases/deubiquitinases, respectively. Complexes such as the Polycomb repressive complex also play roles in the control of histone modifications and more recently roles for long non-coding RNA and microRNAs are emerging. Epigenomic-based therapies targeting histone modifications are being developed and offer new approaches for the treatment of ovarian cancer. Here, we discuss histone modifications and their aberrant regulation in malignancy and specifically in ovarian cancer. We review current and upcoming histone-based therapies that have the potential to inform and improve treatment strategies for women with ovarian cancer.

  5. Histones and their modifications in ovarian cancer – drivers of disease and therapeutic targets

    Directory of Open Access Journals (Sweden)

    Deborah Joy Marsh

    2014-06-01

    Full Text Available Epithelial ovarian cancer has the highest mortality of the gynecological malignancies. High grade serous epithelial ovarian cancer (SEOC is the most common subtype, with the majority of women presenting with advanced disease where 5 year survival is around 25%. Platinum-based chemotherapy in combination with paclitaxel remains the most effective treatment despite platinum therapies being introduced almost 40 years ago. Advances in molecular medicine are underpinning new strategies for the treatment of cancer. Major advances have been made by international initiatives to sequence cancer genomes. For SEOC, with the exception of TP53 that is mutated in virtually 100% of these tumors, there is no other gene mutated at high frequency. There is extensive copy number variation, as well as changes in methylation patterns that will influence gene expression. To date, the role of histones and their post-translational modifications in ovarian cancer is a relatively understudied field. Post-translational histone modifications play major roles in gene expression as they direct the configuration of chromatin and so access by transcription factors. Histone modifications include methylation, acetylation and monoubiquitination, with involvement of enzymes including histone methyl transferases (HMTases, histone acetyltransferases/deacetylases and ubiquitin ligases/deubiquitinases respectively. Complexes such as the Polycomb Repressive Complex also play roles in the control of histone modifications and more recently roles for long non-coding (lnc RNA and microRNAs (miRNAs are emerging. Epigenomic-based therapies targeting histone modifications are being developed and offer new approaches for the treatment of ovarian cancer. Here we discuss histone modifications and their aberrant regulation in malignancy and specifically in ovarian cancer. We review current and upcoming histone-based therapies that have the potential to inform and improve treatment strategies for

  6. The histone genes in HeLa cells are on individual transcriptional units

    International Nuclear Information System (INIS)

    Hackett, P.B.; Traub, P.; Gallwitz, D.

    1978-01-01

    The distances of the five major histone genes from their promotors have been investigated in order to determine whether in human cells these genes could be transcribed as a single polycistronic transcriptional unit. By measuring the decreases of both histone protein and histone mRNA synthesis as functions of the ultraviolet light dosage, it was possible to calculate the distances of the histone genes from their promotors. The inactivation kinetics for histone genes H1 and H3 are first-order, indicating a single type of transcriptional unit for each gene. The dose-response kinetics for genes H2A, H2B and H4 are first-order with two distinct rates; 10 to 15% of the genes for each of these histones appear to be much more sensitive to ultraviolet light inactivation than are the majority. It is concluded that the transcriptional units for 85 to 90% of the genes for H2A, H2B and H4 are similar. As determined by the inhibition of protein synthesis, the inactivation coefficients for the major component of each histone are: H1, 907 mm 2 /erg; H2A, 878 mm 2 /erg; H2B, 871 mm 2 /erg; H3, 965 mm 2 /erg; and H4, 792 mm 2 /erg. The sensitivities of histone mRNA synthesis to irradiation were measured by translation in vitro with similar results. The calculated target sizes for the genes (in base-pairs) are: H1, 1190; H2A, 1240; H2B, 1250; H3, 1130; and H4, 1380. This similarity in target sizes for all five of the histones genes indicates that they are primarily transcribed from individual transcriptional units. (author)

  7. Extracellular histones disarrange vasoactive mediators release through a COX-NOS interaction in human endothelial cells.

    Science.gov (United States)

    Pérez-Cremades, Daniel; Bueno-Betí, Carlos; García-Giménez, José Luis; Ibañez-Cabellos, José Santiago; Hermenegildo, Carlos; Pallardó, Federico V; Novella, Susana

    2017-08-01

    Extracellular histones are mediators of inflammation, tissue injury and organ dysfunction. Interactions between circulating histones and vascular endothelial cells are key events in histone-mediated pathologies. Our aim was to investigate the implication of extracellular histones in the production of the major vasoactive compounds released by human endothelial cells (HUVECs), prostanoids and nitric oxide (NO). HUVEC exposed to increasing concentrations of histones (0.001 to 100 μg/ml) for 4 hrs induced prostacyclin (PGI2) production in a dose-dependent manner and decreased thromboxane A2 (TXA2) release at 100 μg/ml. Extracellular histones raised cyclooxygenase-2 (COX-2) and prostacyclin synthase (PGIS) mRNA and protein expression, decreased COX-1 mRNA levels and did not change thromboxane A2 synthase (TXAS) expression. Moreover, extracellular histones decreased both, eNOS expression and NO production in HUVEC. The impaired NO production was related to COX-2 activity and superoxide production since was reversed after celecoxib (10 μmol/l) and tempol (100 μmol/l) treatments, respectively. In conclusion, our findings suggest that extracellular histones stimulate the release of endothelial-dependent mediators through an up-regulation in COX-2-PGIS-PGI2 pathway which involves a COX-2-dependent superoxide production that decreases the activity of eNOS and the NO production. These effects may contribute to the endothelial cell dysfunction observed in histone-mediated pathologies. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  8. Excess free histone H3 localizes to centrosomes for proteasome-mediated degradation during mitosis in metazoans.

    Science.gov (United States)

    Wike, Candice L; Graves, Hillary K; Wason, Arpit; Hawkins, Reva; Gopalakrishnan, Jay; Schumacher, Jill; Tyler, Jessica K

    2016-08-17

    The cell tightly controls histone protein levels in order to achieve proper packaging of the genome into chromatin, while avoiding the deleterious consequences of excess free histones. Our accompanying study has shown that a histone modification that loosens the intrinsic structure of the nucleosome, phosphorylation of histone H3 on threonine 118 (H3 T118ph), exists on centromeres and chromosome arms during mitosis. Here, we show that H3 T118ph localizes to centrosomes in humans, flies, and worms during all stages of mitosis. H3 abundance at the centrosome increased upon proteasome inhibition, suggesting that excess free histone H3 localizes to centrosomes for degradation during mitosis. In agreement, we find ubiquitinated H3 specifically during mitosis and within purified centrosomes. These results suggest that targeting of histone H3 to the centrosome for proteasome-mediated degradation is a novel pathway for controlling histone supply, specifically during mitosis.

  9. The effect of hepatoprotective preparations thioctacid and flavobion on histones in intact and regenerating lever in irradiated rats

    International Nuclear Information System (INIS)

    Kozhurkova, M.; Kropachova, E.; Mishurova, R.; Reksa, R.

    1992-01-01

    The changes in concentration, total content of histones and relative proportion of individual histone fractions in intact and regenerating liver were followed in rats after administration of hepatoprotective agents flavobion and thioctacid and after whole-body gamma irradiation with a dose 5.7 Gy. Thioctacid alone caused an increase in histone concentration in intact liver whereas flavobion alone did not produce significant quantitative changes. Irradiation alone decreased markedly the concentration and total content of histones in intact as well as regenerating liver of unprotected rats. Administration of thioctacid or flavobion protected from these quantitative histone changes or alleviated them consideradly. In relative proportion of individual histone fractions, the most profound changes were found in H1 histone after flavobion application

  10. Identification of catechols as histone-lysine demethylase inhibitors

    DEFF Research Database (Denmark)

    Nielsen, Anders L; Kristensen, Line H; Stephansen, Karen B

    2012-01-01

    Identification of inhibitors of histone-lysine demethylase (HDM) enzymes is important because of their involvement in the development of cancer. An ELISA-based assay was developed for identification of inhibitors of the HDM KDM4C in a natural products library. Based on one of the hits with affinity...... in the low µM range (1, a catechol), a subset of structurally related compounds was selected and tested against a panel of HDMs. In this subset, two inhibitors (2 and 10) had comparable affinities towards KDM4C and KDM6A but no effect on PHF8. One inhibitor restored H3K9me3 levels in KDM4C transfected U2-OS...

  11. Histone deacetylases as regulators of inflammation and immunity.

    Science.gov (United States)

    Shakespear, Melanie R; Halili, Maria A; Irvine, Katharine M; Fairlie, David P; Sweet, Matthew J

    2011-07-01

    Histone deacetylases (HDACs) remove an acetyl group from lysine residues of target proteins to regulate cellular processes. Small-molecule inhibitors of HDACs cause cellular growth arrest, differentiation and/or apoptosis, and some are used clinically as anticancer drugs. In animal models, HDAC inhibitors are therapeutic for several inflammatory diseases, but exacerbate atherosclerosis and compromise host defence. Loss of HDAC function has also been linked to chronic lung diseases in humans. These contrasting effects might reflect distinct roles for individual HDACs in immune responses. Here, we review the current understanding of innate and adaptive immune pathways that are regulated by classical HDAC enzymes. The objective is to provide a rationale for targeting (or not targeting) individual HDAC enzymes with inhibitors for future immune-related applications. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Chromatin Regulation and the Histone Code in HIV Latency
.

    Science.gov (United States)

    Turner, Anne-Marie W; Margolis, David M

    2017-06-01

    The formation of a latent reservoir of Human Immunodeficiency Virus (HIV) infection hidden from immune clearance remains a significant obstacle to approaches to eradicate HIV infection. Towards an understanding of the mechanisms of HIV persistence, there is a growing body of work implicating epigenetic regulation of chromatin in establishment and maintenance of this latent reservoir. Here we discuss recent advances in the field of chromatin regulation, specifically in our understanding of the histone code, and how these discoveries relate to our current knowledge of the chromatin mechanisms linked to HIV transcriptional repression and the reversal of latency. We also examine mechanisms unexplored in the context of HIV latency and briefly discuss current therapies aimed at the induction of proviral expression within latently infected cells. We aim to emphasize that a greater understanding of the epigenetic mechanisms which govern HIV latency could lead to new therapeutic targets for latency reversal and clearance cure strategies.

  13. Coronary artery anatomy and variants

    Energy Technology Data Exchange (ETDEWEB)

    Malago, Roberto; Pezzato, Andrea; Barbiani, Camilla; Alfonsi, Ugolino; Nicoli, Lisa; Caliari, Giuliana; Pozzi Mucelli, Roberto [Policlinico G.B. Rossi, University of Verona, Department of Radiology, Verona (Italy)

    2011-12-15

    Variants and congenital anomalies of the coronary arteries are usually asymptomatic, but may present with severe chest pain or cardiac arrest. The introduction of multidetector CT coronary angiography (MDCT-CA) allows the detection of significant coronary artery stenosis. Improved performance with isotropic spatial resolution and higher temporal resolution provides a valid alternative to conventional coronary angiography (CCA) in many patients. MDCT-CA is now considered the ideal tool for three-dimensional visualization of the complex and tortuous anatomy of the coronary arteries. With multiplanar and volume-rendered reconstructions, MDCT-CA may even outperform CCA in determining the relative position of vessels, thus providing a better view of the coronary vascular anatomy. The purpose of this review is to describe the normal anatomy of the coronary arteries and their main variants based on MDCT-CA with appropriate reconstructions. (orig.)

  14. Histone H1(0) mapping using monoclonal antibodies.

    Science.gov (United States)

    Dousson, S; Gorka, C; Gilly, C; Lawrence, J J

    1989-06-01

    Monoclonal antibodies (mAb) to ox liver histone H1 degree were produced and characterized. Two sets of mice were immunized either with pure H1(0) or with an H1(0)-yeast tRNA complex. Eleven hybridomas of various clonal origin were selected. Typing of the antibodies indicated that all but three IgM belonged to the IgG1 class and contained kappa light chains. Immunoblotting experiments using peptides derived from H1(0) or H5 treated by various proteolytic agents (trypsin, N-bromosuccinimide, cyanogen bromide, acetic acid), revealed that nine of the mAb reacted with the globular part of H1(0). More advanced characterization of the antigenic determinants allowed us to determine distinct regions within this globular part which are involved in the antigenic recognition. The peptopes could be subdivided into two groups. Three mAb bound to residues 24-27 and were specific for H1(0). Six mAb bound to residues 27-30 and were specific for H1(0) except one of them which strongly cross-reacted with H5 and GH5. Two mAb reacted with the entire histone H1(0) but failed to react with any of the peptides, suggesting that the corresponding epitope is a conformational antigenic determinant. In order to confirm the localization of the two distinct regions which are involved in the antigenic recognition, a synthetic decapeptide corresponding to the beginning of human H1(0) globular part (from residue 19 to residue 28) was synthesized. Inhibition experiments of the reaction between H1(0) and the various IgG1 mAb by increasing amounts of peptide-bovine serum albumin conjugates were then performed.

  15. Histone Deacetylases in Bone Development and Skeletal Disorders

    Science.gov (United States)

    Bradley, Elizabeth W.; Carpio, Lomeli R.; van Wijnen, Andre J.; McGee-Lawrence, Meghan E.; Westendorf, Jennifer J.

    2015-01-01

    Histone deacetylases (Hdacs) are conserved enzymes that remove acetyl groups from lysine side chains in histones and other proteins. Eleven of the 18 Hdacs encoded by the human and mouse genomes depend on Zn2+ for enzymatic activity, while the other 7, the sirtuins (Sirts), require NAD2+. Collectively, Hdacs and Sirts regulate numerous cellular and mitochondrial processes including gene transcription, DNA repair, protein stability, cytoskeletal dynamics, and signaling pathways to affect both development and aging. Of clinical relevance, Hdacs inhibitors are United States Food and Drug Administration-approved cancer therapeutics and are candidate therapies for other common diseases including arthritis, diabetes, epilepsy, heart disease, HIV infection, neurodegeneration, and numerous aging-related disorders. Hdacs and Sirts influence skeletal development, maintenance of mineral density and bone strength by affecting intramembranous and endochondral ossification, as well as bone resorption. With few exceptions, inhibition of Hdac or Sirt activity though either loss-of-function mutations or prolonged chemical inhibition has negative and/or toxic effects on skeletal development and bone mineral density. Specifically, Hdac/Sirt suppression causes abnormalities in physiological development such as craniofacial dimorphisms, short stature, and bone fragility that are associated with several human syndromes or diseases. In contrast, activation of Sirts may protect the skeleton from aging and immobilization-related bone loss. This knowledge may prolong healthspan and prevent adverse events caused by epigenetic therapies that are entering the clinical realm at an unprecedented rate. In this review, we summarize the general properties of Hdacs/Sirts and the research that has revealed their essential functions in bone forming cells (e.g., osteoblasts and chondrocytes) and bone resorbing osteoclasts. Finally, we offer predictions on future research in this area and the utility of

  16. Histone h1 depletion impairs embryonic stem cell differentiation.

    Science.gov (United States)

    Zhang, Yunzhe; Cooke, Marissa; Panjwani, Shiraj; Cao, Kaixiang; Krauth, Beth; Ho, Po-Yi; Medrzycki, Magdalena; Berhe, Dawit T; Pan, Chenyi; McDevitt, Todd C; Fan, Yuhong

    2012-01-01

    Pluripotent embryonic stem cells (ESCs) are known to possess a relatively open chromatin structure; yet, despite efforts to characterize the chromatin signatures of ESCs, the role of chromatin compaction in stem cell fate and function remains elusive. Linker histone H1 is important for higher-order chromatin folding and is essential for mammalian embryogenesis. To investigate the role of H1 and chromatin compaction in stem cell pluripotency and differentiation, we examine the differentiation of embryonic stem cells that are depleted of multiple H1 subtypes. H1c/H1d/H1e triple null ESCs are more resistant to spontaneous differentiation in adherent monolayer culture upon removal of leukemia inhibitory factor. Similarly, the majority of the triple-H1 null embryoid bodies (EBs) lack morphological structures representing the three germ layers and retain gene expression signatures characteristic of undifferentiated ESCs. Furthermore, upon neural differentiation of EBs, triple-H1 null cell cultures are deficient in neurite outgrowth and lack efficient activation of neural markers. Finally, we discover that triple-H1 null embryos and EBs fail to fully repress the expression of the pluripotency genes in comparison with wild-type controls and that H1 depletion impairs DNA methylation and changes of histone marks at promoter regions necessary for efficiently silencing pluripotency gene Oct4 during stem cell differentiation and embryogenesis. In summary, we demonstrate that H1 plays a critical role in pluripotent stem cell differentiation, and our results suggest that H1 and chromatin compaction may mediate pluripotent stem cell differentiation through epigenetic repression of the pluripotency genes.

  17. Inhibition of histone deacetylases prevents cytokine-induced toxicity in beta cells

    DEFF Research Database (Denmark)

    Larsen, L; Tonnesen, M; Ronn, S G

    2007-01-01

    B (NFkappaB) is a critical signalling molecule in inflammation and is required for expression of the gene encoding inducible NO synthase (iNOS) and of pro-apoptotic genes. NFkappaB has recently been shown to associate with chromatin-modifying enzymes histone acetyltransferases and histone...... by immunoblotting and by immunoblotting combined with electrophoretic mobility shift assay, respectively. Viability was analysed by 3-(4,5-dimethyldiazol-2-yl)-2,5-diphenyl-tetrazolium bromide and apoptosis by terminal deoxynucleotidyl transferase mediated dUTP nick end labeling (TUNEL) assay and histone...

  18. Profiling Changes in Histone Post-translational Modifications by Top-Down Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Mowei; Wu, Si; Stenoien, David L.; Zhang, Zhaorui; Connolly, Lanelle; Freitag, Michael; Pasa-Tolic, Ljiljana

    2016-11-11

    Top-down mass spectrometry is a valuable tool for charactering post-translational modifications on histones for understanding of gene control and expression. In this protocol, we describe a top-down workflow using liquid chromatography coupled to mass spectrometry for fast global profiling of changes in histone proteoforms between a wild-type and a mutant of a fungal species. The proteoforms exhibiting different abundances can be subjected to further targeted studies by other mass spectrometric or biochemical assays. This method can be generally adapted for preliminary screening for changes in histone modifications between samples such as wild-type vs. mutant, and control vs. disease.

  19. Lipids Reprogram Metabolism to Become a Major Carbon Source for Histone Acetylation

    DEFF Research Database (Denmark)

    McDonnell, Eoin; Crown, Scott B; Fox, Douglas B

    2016-01-01

    Cells integrate nutrient sensing and metabolism to coordinate proper cellular responses to a particular nutrient source. For example, glucose drives a gene expression program characterized by activating genes involved in its metabolism, in part by increasing glucose-derived histone acetylation....... Here, we find that lipid-derived acetyl-CoA is a major source of carbon for histone acetylation. Using (13)C-carbon tracing combined with acetyl-proteomics, we show that up to 90% of acetylation on certain histone lysines can be derived from fatty acid carbon, even in the presence of excess glucose...

  20. Effect of histones on hematopoietic stem cells-precursor in normal and irradiated organism

    International Nuclear Information System (INIS)

    Semina, O.V.; Semenets, T.N.; Zeppezauer, M.; Cebecauer, L.; Poverenny, A.M.

    1994-01-01

    Radiotherapeutic activity of histone fractions H 1 and H 2A /H 2B were studied. It was demonstrated that both fractions are able to reduce the damaging effect of ionizing radiation on spleen colony forming unit (CFU-S) population. Histone preparations stimulated colony-forming activity of bone marrow cells exposed to dose of 0.5-3.0 Gy both in the case of incubation with preparations and intravenous or intraperitoneal administration into recipients of irradiated cells. The effect of histones and accessory thymocytes on CFU-S population is compared

  1. Microcystic Variant of Urothelial Carcinoma

    Directory of Open Access Journals (Sweden)

    Anthony Kodzo-Grey Venyo

    2013-01-01

    Full Text Available Background. Microcystic variant of urothelial carcinoma is one of the new variants of urothelial carcinoma that was added to the WHO classification in 2004. Aims. To review the literature on microcystic variant of urothelial carcinoma. Methods. Various internet search engines were used to identify reported cases of the tumour. Results. Microscopic features of the tumour include: (i Conspicuous intracellular and intercellular lumina/microcysts encompassed by malignant urothelial or squamous cells. (ii The lumina are usually empty; may contain granular eosinophilic debris, mucin, or necrotic cells. (iii The cysts may be variable in size; round, or oval, up to 2 mm; lined by urothelium which are either flattened cells or low columnar cells however, they do not contain colonic epithelium or goblet cells; are infiltrative; invade the muscularis propria; mimic cystitis cystica and cystitis glandularis; occasionally exhibit neuroendocrine differentiation. (iv Elongated and irregular branching spaces are usually seen. About 17 cases of the tumour have been reported with only 2 patients who have survived. The tumour tends to be of high-grade and high-stage. There is no consensus opinion on the best option of treatment of the tumour. Conclusions. It would prove difficult at the moment to be dogmatic regarding its prognosis but it is a highly aggressive tumour. New cases of the tumour should be reported in order to document its biological behaviour.

  2. Binding of ethidium to the nucleosome core particle. 2. Internal and external binding modes

    International Nuclear Information System (INIS)

    McMurray, C.T.; Small, E.W.; van Holde, K.E.

    1991-01-01

    The authors have previously reported that the binding of ethidium bromide to the nucleosome core particle results in a stepwise dissociation of the structure which involves the initial release of one copy each of H2A and H2B. In this report, they have examined the absorbance and fluorescence properties of intercalated and outside bound forms of ethidium bromide. From these properties, they have measured the extent of external, electrostatic binding of the dye versus internal, intercalation binding to the core particle, free from contribution by linker DNA. They have established that dissociation is induced by the intercalation mode of binding to DNA within the core particle DNA, and not by binding to the histones or by nonintercalative binding to DNA. The covalent binding of [ 3 H]-8-azidoethidium to the core particle clearly shows that < 1.0 adduct is formed per histone octamer over a wide range of input ratios. Simultaneously, analyses of steady-state fluorescence enhancement and fluorescence lifetime data from bound ethidium complexes demonstrate extensive intercalation binding. Combined analyses from steady-state fluorescence intensity with equilibrium dialysis or fluorescence lifetime data revealed that dissociation began when ∼14 ethidium molecules are bound by intercalation to each core particle and < 1.0 nonintercalated ion pair was formed per core particle

  3. CRY2 genetic variants associate with dysthymia.

    Directory of Open Access Journals (Sweden)

    Leena Kovanen

    Full Text Available People with mood disorders often have disruptions in their circadian rhythms. Recent molecular genetics has linked circadian clock genes to mood disorders. Our objective was to study two core circadian clock genes, CRY1 and CRY2 as well as TTC1 that interacts with CRY2, in relation to depressive and anxiety disorders. Of these three genes, 48 single-nucleotide polymorphisms (SNPs whose selection was based on the linkage disequilibrium and potential functionality were genotyped in 5910 individuals from a nationwide population-based sample. The diagnoses of major depressive disorder, dysthymia and anxiety disorders were assessed with a structured interview (M-CIDI. In addition, the participants filled in self-report questionnaires on depressive and anxiety symptoms. Logistic and linear regression models were used to analyze the associations of the SNPs with the phenotypes. Four CRY2 genetic variants (rs10838524, rs7121611, rs7945565, rs1401419 associated significantly with dysthymia (false discovery rate q<0.05. This finding together with earlier CRY2 associations with winter depression and with bipolar type 1 disorder supports the view that CRY2 gene has a role in mood disorders.

  4. Mosaic structure of intragenic repetitive elements in histone H1-like protein Hc2 varies within serovars of Chlamydia trachomatis

    Directory of Open Access Journals (Sweden)

    Nilsson Anders

    2010-03-01

    Full Text Available Abstract Background The histone-like protein Hc2 binds DNA in Chlamydia trachomatis and is known to vary in size between 165 and 237 amino acids, which is caused by different numbers of lysine-rich pentamers. A more complex structure was seen in this study when sequences from 378 specimens covering the hctB gene, which encodes Hc2, were compared. Results This study shows that the size variation is due to different numbers of 36-amino acid long repetitive elements built up of five pentamers and one hexamer. Deletions and amino acid substitutions result in 14 variants of repetitive elements and these elements are combined into 22 configurations. A protein with similar structure has been described in Bordetella but was now also found in other genera, including Burkholderia, Herminiimonas, Minibacterium and Ralstonia. Sequence determination resulted in 41 hctB variants that formed four clades in phylogenetic analysis. Strains causing the eye disease trachoma and strains causing invasive lymphogranuloma venereum infections formed separate clades, while strains from urogenital infections were more heterogeneous. Three cases of recombination were identified. The size variation of Hc2 has previously been attributed to deletions of pentamers but we show that the structure is more complex with both duplication and deletions of 36-amino acid long elements. Conclusions The polymorphisms in Hc2 need to be further investigated in experimental studies since DNA binding is essential for the unique biphasic life cycle of the Chlamydiacae. The high sequence variation in the corresponding hctB gene enables phylogenetic analysis and provides a suitable target for the genotyping of C. trachomatis.

  5. Combination treatment with docetaxel and histone deacetylase inhibitors downregulates androgen receptor signaling in castration-resistant prostate cancer.

    Science.gov (United States)

    Park, Sang Eun; Kim, Ha-Gyeong; Kim, Dong Eun; Jung, Yoo Jung; Kim, Yunlim; Jeong, Seong-Yun; Choi, Eun Kyung; Hwang, Jung Jin; Kim, Choung-Soo

    2018-04-01

    Backgrounds Since most patients with castration-resistant prostate cancer (CRPC) develop resistance to its standard therapy docetaxel, many studies have attempted to identify novel combination treatment to meet the large clinical unmet need. In this study, we examined whether histone deacetylase inhibitors (HDACIs) enhanced the effect of docetaxel on AR signaling in CRPC cells harboring AR and its splice variants. Methods HDACIs (vorinostat and CG200745) were tested for their ability to enhance the effects of docetaxel on cell viability and inhibition of AR signaling in CRPC 22Rv1 and VCaP cells by using CellTiter-Glo™ Luminescent cell viability assay, synergy index analysis and Western blotting. The nuclear localization of AR was examined via immunocytochemical staining in 22Rv1 cells and primary tumor cells from a patient with CRPC. Results Combination treatment with HDACIs (vorinostat or CG200745) and docetaxel synergistically inhibited the growth of 22Rv1 and VCaP cells. Consistently, the combination treatment decreased the levels of full-length AR (AR-FL), AR splice variants (AR-Vs), prostate-specific antigen (PSA), and anti-apoptotic Bcl-2 proteins more efficiently compared with docetaxel or vorinostat alone. Moreover, the combination treatment accelerated the acetylation and bundling of tubulin, which significantly inhibited the nuclear accumulation of AR in 22Rv1 cells. The cytoplasmic colocalization of AR-FL and AR-V7 with microtubule bundles increased after combination treatment in primary tumor cells from a patient with CRPC. Conclusions The results suggested that docetaxel, in combination with HDACIs, suppressed the expression and nuclear translocation of AR-FL and AR-Vs and showed synergistic anti-proliferative effect in CRPC cells. This combination therapy may be useful for the treatment of patients with CRPC.

  6. Characterization of form variants of Xenorhabdus luminescens.

    Science.gov (United States)

    Gerritsen, L J; de Raay, G; Smits, P H

    1992-01-01

    From Xenorhabdus luminescens XE-87.3 four variants were isolated. One, which produced a red pigment and antibiotics, was luminescent, and could take up dye from culture media, was considered the primary form (XE-red). A pink-pigmented variant (XE-pink) differed from the primary form only in pigmentation and uptake of dye. Of the two other variants, one produced a yellow pigment and fewer antibiotics (XE-yellow), while the other did not produce a pigment or antibiotics (XE-white). Both were less luminescent, did not take up dye, and had small cell and colony sizes. These two variants were very unstable and shifted to the primary form after 3 to 5 days. It was not possible to separate the primary form and the white variant completely; subcultures of one colony always contained a few colonies of the other variant. The white variant was also found in several other X. luminescens strains. DNA fingerprints showed that all four variants are genetically identical and are therefore derivatives of the same parent. Protein patterns revealed a few differences among the four variants. None of the variants could be considered the secondary form. The pathogenicity of the variants decreased in the following order: XE-red, XE-pink, XE-yellow, and XE-white. The mechanism and function of this variability are discussed. Images PMID:1622273

  7. Smad4 mediated BMP2 signal is essential for the regulation of GATA4 and Nkx2.5 by affecting the histone H3 acetylation in H9c2 cells

    International Nuclear Information System (INIS)

    Si, Lina; Shi, Jin; Gao, Wenqun; Zheng, Min; Liu, Lingjuan; Zhu, Jing; Tian, Jie

    2014-01-01

    Highlights: • BMP2 can upregulated cardiac related gene GATA4, Nkx2.5, MEF2c and Tbx5. • Inhibition of Smad4 decreased BMP2-induced hyperacetylation of histone H3. • Inhibition of Smad4 diminished BMP2-induced overexpression of GATA4 and Nkx2.5. • Inhibition of Smad4 decreased hyperacetylated H3 in the promoter of GATA4 and Nkx2.5. • Smad4 is essential for BMP2 induced hyperacetylated histone H3. - Abstract: BMP2 signaling pathway plays critical roles during heart development, Smad4 encodes the only common Smad protein in mammals, which is a pivotal nuclear mediator. Our previous studies showed that BMP2 enhanced the expression of cardiac transcription factors in part by increasing histone H3 acetylation. In the present study, we tested the hypothesis that Smad4 mediated BMP2 signaling pathway is essential for the expression of cardiac core transcription factors by affecting the histone H3 acetylation. We successfully constructed a lentivirus-mediated short hairpin RNA interference vector targeting Smad4 (Lv-Smad4) in rat H9c2 embryonic cardiac myocytes (H9c2 cells) and demonstrated that it suppressed the expression of the Smad4 gene. Cultured H9c2 cells were transfected with recombinant adenoviruses expressing human BMP2 (AdBMP2) with or without Lv-Smad4. Quantitative real-time RT-PCR analysis showed that knocking down of Smad4 substantially inhibited both AdBMP2-induced and basal expression levels of cardiac transcription factors GATA4 and Nkx2.5, but not MEF2c and Tbx5. Similarly, chromatin immunoprecipitation (ChIP) analysis showed that knocking down of Smad4 inhibited both AdBMP2-induced and basal histone H3 acetylation levels in the promoter regions of GATA4 and Nkx2.5, but not of Tbx5 and MEF2c. In addition, Lv-Smad4 selectively suppressed AdBMP2-induced expression of HAT p300, but not of HAT GCN5 in H9c2 cells. The data indicated that inhibition of Smad4 diminished both AdBMP2 induced and basal histone acetylation levels in the promoter regions of

  8. Smad4 mediated BMP2 signal is essential for the regulation of GATA4 and Nkx2.5 by affecting the histone H3 acetylation in H9c2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Si, Lina; Shi, Jin; Gao, Wenqun [Heart Centre, Children’s Hospital of Chongqing Medical University, 136 Zhongshan 2nd Road, Yu Zhong District, Chongqing 400014 (China); Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, 136 Zhongshan 2nd Road, Yu Zhong District, Chongqing 400014 (China); Zheng, Min [Heart Centre, Children’s Hospital of Chongqing Medical University, 136 Zhongshan 2nd Road, Yu Zhong District, Chongqing 400014 (China); Liu, Lingjuan; Zhu, Jing [Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, 136 Zhongshan 2nd Road, Yu Zhong District, Chongqing 400014 (China); Tian, Jie, E-mail: jietian@cqmu.edu.cn [Heart Centre, Children’s Hospital of Chongqing Medical University, 136 Zhongshan 2nd Road, Yu Zhong District, Chongqing 400014 (China)

    2014-07-18

    Highlights: • BMP2 can upregulated cardiac related gene GATA4, Nkx2.5, MEF2c and Tbx5. • Inhibition of Smad4 decreased BMP2-induced hyperacetylation of histone H3. • Inhibition of Smad4 diminished BMP2-induced overexpression of GATA4 and Nkx2.5. • Inhibition of Smad4 decreased hyperacetylated H3 in the promoter of GATA4 and Nkx2.5. • Smad4 is essential for BMP2 induced hyperacetylated histone H3. - Abstract: BMP2 signaling pathway plays critical roles during heart development, Smad4 encodes the only common Smad protein in mammals, which is a pivotal nuclear mediator. Our previous studies showed that BMP2 enhanced the expression of cardiac transcription factors in part by increasing histone H3 acetylation. In the present study, we tested the hypothesis that Smad4 mediated BMP2 signaling pathway is essential for the expression of cardiac core transcription factors by affecting the histone H3 acetylation. We successfully constructed a lentivirus-mediated short hairpin RNA interference vector targeting Smad4 (Lv-Smad4) in rat H9c2 embryonic cardiac myocytes (H9c2 cells) and demonstrated that it suppressed the expression of the Smad4 gene. Cultured H9c2 cells were transfected with recombinant adenoviruses expressing human BMP2 (AdBMP2) with or without Lv-Smad4. Quantitative real-time RT-PCR analysis showed that knocking down of Smad4 substantially inhibited both AdBMP2-induced and basal expression levels of cardiac transcription factors GATA4 and Nkx2.5, but not MEF2c and Tbx5. Similarly, chromatin immunoprecipitation (ChIP) analysis showed that knocking down of Smad4 inhibited both AdBMP2-induced and basal histone H3 acetylation levels in the promoter regions of GATA4 and Nkx2.5, but not of Tbx5 and MEF2c. In addition, Lv-Smad4 selectively suppressed AdBMP2-induced expression of HAT p300, but not of HAT GCN5 in H9c2 cells. The data indicated that inhibition of Smad4 diminished both AdBMP2 induced and basal histone acetylation levels in the promoter regions of

  9. Core Hunter 3: flexible core subset selection.

    Science.gov (United States)

    De Beukelaer, Herman; Davenport, Guy F; Fack, Veerle

    2018-05-31

    Core collections provide genebank curators and plant breeders a way to reduce size of their collections and populations, while minimizing impact on genetic diversity and allele frequency. Many methods have been proposed to generate core collections, often using distance metrics to quantify the similarity of two accessions, based on genetic marker data or phenotypic traits. Core Hunter is a multi-purpose core subset selection tool that uses local search algorithms to generate subsets relying on one or more metrics, including several distance metrics and allelic richness. In version 3 of Core Hunter (CH3) we have incorporated two new, improved methods for summarizing distances to quantify diversity or representativeness of the core collection. A comparison of CH3 and Core Hunter 2 (CH2) showed that these new metrics can be effectively optimized with less complex algorithms, as compared to those used in CH2. CH3 is more effective at maximizing the improved diversity metric than CH2, still ensures a high average and minimum distance, and is faster for large datasets. Using CH3, a simple stochastic hill-climber is able to find highly diverse core collections, and the more advanced parallel tempering algorithm further increases the quality of the core and further reduces variability across independent samples. We also evaluate the ability of CH3 to simultaneously maximize diversity, and either representativeness or allelic richness, and compare the results with those of the GDOpt and SimEli methods. CH3 can sample equally representative cores as GDOpt, which was specifically designed for this purpose, and is able to construct cores that are simultaneously more diverse, and either are more representative or have higher allelic richness, than those obtained by SimEli. In version 3, Core Hunter has been updated to include two new core subset selection metrics that construct cores for representativeness or diversity, with improved performance. It combines and outperforms the

  10. k-core covers and the core

    NARCIS (Netherlands)

    Sanchez-Rodriguez, E.; Borm, Peter; Estevez-Fernandez, A.; Fiestras-Janeiro, G.; Mosquera, M.A.

    This paper extends the notion of individual minimal rights for a transferable utility game (TU-game) to coalitional minimal rights using minimal balanced families of a specific type, thus defining a corresponding minimal rights game. It is shown that the core of a TU-game coincides with the core of

  11. Loss of the histone methyltransferase EZH2 induces resistance to multiple drugs in acute myeloid leukemia

    DEFF Research Database (Denmark)

    Göllner, Stefanie; Oellerich, Thomas; Agrawal-Singh, Shuchi

    2017-01-01

    In acute myeloid leukemia (AML), therapy resistance frequently occurs, leading to high mortality among patients. However, the mechanisms that render leukemic cells drug resistant remain largely undefined. Here, we identified loss of the histone methyltransferase EZH2 and subsequent reduction...

  12. Generalized nucleation and looping model for epigenetic memory of histone modifications

    Science.gov (United States)

    Erdel, Fabian; Greene, Eric C.

    2016-01-01

    Histone modifications can redistribute along the genome in a sequence-independent manner, giving rise to chromatin position effects and epigenetic memory. The underlying mechanisms shape the endogenous chromatin landscape and determine its response to ectopically targeted histone modifiers. Here, we simulate linear and looping-driven spreading of histone modifications and compare both models to recent experiments on histone methylation in fission yeast. We find that a generalized nucleation-and-looping mechanism describes key observations on engineered and endogenous methylation domains including intrinsic spatial confinement, independent regulation of domain size and memory, variegation in the absence of antagonists, and coexistence of short- and long-term memory at loci with weak and strong constitutive nucleation. These findings support a straightforward relationship between the biochemical properties of chromatin modifiers and the spatiotemporal modification pattern. The proposed mechanism gives rise to a phase diagram for cellular memory that may be generally applicable to explain epigenetic phenomena across different species. PMID:27382173

  13. The role of DNA methylation and histone modifications in neurodegenerative diseases: A systematic review

    NARCIS (Netherlands)

    K.-X. Wen (Ke-Xin); J. Milic (Jelena); El-Khodor, B. (Bassem); K. Dhana (Klodian); J. Nano (Jana); Pulido, T. (Tammy); B. Kraja (Bledar); A. Zaciragic (Asija); W.M. Bramer (Wichor); J. Troup; R. Chowdhury (Rajiv); Arfam Ikram, M.; A. Dehghan (Abbas); T. Muka (Taulant); O.H. Franco (Oscar)

    2016-01-01

    textabstractImportance Epigenetic modifications of the genome, such as DNA methylation and histone modifications, have been reported to play a role in neurodegenerative diseases (ND) such as Alzheimer's disease (AD) and Parkinson's disease (PD). Objective To systematically review studies

  14. Restoring chromatin after replication: How new and old histone marks come together

    DEFF Research Database (Denmark)

    Jasencakova, Zusana; Groth, Anja

    2010-01-01

    In dividing cells genome stability and function rely on faithful transmission of both DNA sequence and its organization into chromatin. In the course of DNA replication chromatin undergoes transient genome-wide disruption followed by restoration on new DNA. This involves tight coordination of DNA...... replication and chromatin assembly processes in time and space. Dynamic recycling and de novo deposition of histones are fundamental for chromatin restoration. Histone post-translational modifications (PTMs) are thought to have a causal role in establishing distinct chromatin structures. Here we discuss PTMs...... present on new and parental histones and how they influence genome stability and restoration of epigenetically defined domains. Newly deposited histones must change their signature in the process of chromatin restoration, this may occur in a step-wise fashion involving replication-coupled processes...

  15. Linker Histone Phosphorylation Regulates Global Timing of Replication Origin Firing*S⃞

    Science.gov (United States)

    Thiriet, Christophe; Hayes, Jeffrey J.

    2009-01-01

    Despite the presence of linker histone in all eukaryotes, the primary function(s) of this histone have been difficult to clarify. Knock-out experiments indicate that H1s play a role in regulation of only a small subset of genes but are an essential component in mouse development. Here, we show that linker histone (H1) is involved in the global regulation of DNA replication in Physarum polycephalum. We find that genomic DNA of H1 knock-down cells is more rapidly replicated, an effect due at least in part to disruption of the native timing of replication fork firing. Immunoprecipitation experiments demonstrate that H1 is transiently lost from replicating chromatin via a process facilitated by phosphorylation. Our results suggest that linker histones generate a chromatin environment refractory to replication and that their transient removal via protein phosphorylation during S phase is a critical step in the epigenetic regulation of replication timing. PMID:19015270

  16. Effects of environmental stressors on histone modifications and their relevance to carcinogenesis: a systematic review.

    NARCIS (Netherlands)

    Dik, S.; Scheepers, P.T.J.; Godderis, L.

    2012-01-01

    Carcinogenesis is a complex process involving both genetic and epigenetic mechanisms. The cellular molecular epigenetic machinery, including histone modifications, is associated with changes in gene expression induced by exposure to environmental agents. In this paper, we systematically reviewed

  17. Brownian dynamics simulation of the cross-talking effect among modified histones on conformations of nucleosomes

    Science.gov (United States)

    Duan, Zhao-Wen; Li, Wei; Xie, Ping; Dou, Shuo-Xing; Wang, Peng-Ye

    2010-04-01

    Using Brownian dynamics simulation, we studied the effect of histone modifications on conformations of an array of nucleosomes in a segment of chromatin. The simulation demonstrated that the segment of chromatin shows the dynamic behaviour that its conformation can switch between a state with nearly all of the histones being wrapped by DNA and a state with nearly all of the histones being unwrapped by DNA, thus involving the “cross-talking" interactions among the histones. Each state can stay for a sufficiently long time. These conformational states are essential for gene expression or gene silence. The simulation also shows that these conformational states can be inherited by the daughter DNAs during DNA replication, giving a theoretical explanation of the epigenetic phenomenon.

  18. Brownian dynamics simulation of the cross-talking effect among modified histones on conformations of nucleosomes

    International Nuclear Information System (INIS)

    Zhao-Wen, Duan; Wei, Li; Ping, Xie; Shuo-Xing, Dou; Peng-Ye, Wang

    2010-01-01

    Using Brownian dynamics simulation, we studied the effect of histone modifications on conformations of an array of nucleosomes in a segment of chromatin. The simulation demonstrated that the segment of chromatin shows the dynamic behaviour that its conformation can switch between a state with nearly all of the histones being wrapped by DNA and a state with nearly all of the histones being unwrapped by DNA, thus involving the “cross-talking” interactions among the histones. Each state can stay for a sufficiently long time. These conformational states are essential for gene expression or gene silence. The simulation also shows that these conformational states can be inherited by the daughter DNAs during DNA replication, giving a theoretical explanation of the epigenetic phenomenon. (cross-disciplinary physics and related areas of science and technology)

  19. In vitro generation of polysialylated cervical mucins by bacterial polysialyltransferases to counteract cytotoxicity of extracellular histones.

    Science.gov (United States)

    Galuska, Sebastian P; Galuska, Christina E; Tharmalingam, Tharmala; Zlatina, Kristina; Prem, Gerlinde; Husejnov, Farzali C O; Rudd, Pauline M; Vann, Willie F; Reid, Colm; Vionnet, Justine; Gallagher, Mary E; Carrington, Faye A; Hassett, Sarah-Louise; Carrington, Stephen D

    2017-06-01

    Neutrophil extracellular traps (NET) are formed against pathogens. However, various diseases are directly linked to this meshwork of DNA. The cytotoxic properties of extracellular histones especially seem to be an important trigger during these diseases. Furthermore, NET accumulation on implants is discussed to result in an impaired efficiency or failure, depending on the category of implant. Interestingly, mucins have been investigated as surface coatings potentially capable of reducing neutrophil adhesion. Similarly, polysialic acid was shown to inactivate the cytotoxic properties of extracellular histones. We wanted to combine the probability to decrease the adhesion of neutrophils using mucins with the capability of sialic acid polymers to counteract histone-mediated cytotoxicity. To this end, we elongate cervical mucins using bacterial polysialyltransferases. Subsequent cell-based experiments demonstrated the activity of elongated mucins against histone-mediated cytotoxicity. Thus, polysialylated mucins may represent a novel component to coat implants or to combat diseases with exaggerated NET formation. © 2017 Federation of European Biochemical Societies.

  20. Restoration of Transforming Growth Factor Beta Signaling by Histone Deacetylase Inhibitors in Human Prostate Carcinoma

    National Research Council Canada - National Science Library

    Qian, Zheng D

    2006-01-01

    The goal of the current grant is to investigate the potential antitumor activity of histone deacetylase inhibitor MS-275 along with the activation of TGFb signaling pathway with the restoration of TGFb receptor II...

  1. Modulation of Breast Tumor Cell Response to Retinoids by Histone Deacetylase Inhibitors

    National Research Council Canada - National Science Library

    Sacchi, Nicoletta

    2003-01-01

    .... One form of RA-resistance in breast cancer can be traced to loss of expression of the tumor suppressor RAR beta, due to epigenetic changes including DNA methylation and histone deacetylation in one...

  2. Restoration of Transforming Growth Factor Beta Signaling by Histone Deacetylase Inhibitors in Human Prostate Carcinoma

    National Research Council Canada - National Science Library

    Qian, Zheng D

    2005-01-01

    The goal of the current grant is to investigate the potential antitumor activity of histone deacetylase inhibitor MS-275 a with the activation of TGFb signaling pathway with the restoration of TGFbeta receptor II...

  3. Histone Deacetylase (HDAC) Inhibitors - emerging roles in neuronal memory, learning, synaptic plasticity and neural regeneration.

    Science.gov (United States)

    Ganai, Shabir Ahmad; Ramadoss, Mahalakshmi; Mahadevan, Vijayalakshmi

    2016-01-01

    Epigenetic regulation of neuronal signalling through histone acetylation dictates transcription programs that govern neuronal memory, plasticity and learning paradigms. Histone Acetyl Transferases (HATs) and Histone Deacetylases (HDACs) are antagonistic enzymes that regulate gene expression through acetylation and deacetylation of histone proteins around which DNA is wrapped inside a eukaryotic cell nucleus. The epigenetic control of HDACs and the cellular imbalance between HATs and HDACs dictate disease states and have been implicated in muscular dystrophy, loss of memory, neurodegeneration and autistic disorders. Altering gene expression profiles through inhibition of HDACs is now emerging as a powerful technique in therapy. This review presents evolving applications of HDAC inhibitors as potential drugs in neurological research and therapy. Mechanisms that govern their expression profiles in neuronal signalling, plasticity and learning will be covered. Promising and exciting possibilities of HDAC inhibitors in memory formation, fear conditioning, ischemic stroke and neural regeneration have been detailed.

  4. Epigenetic regulation of the NR4A orphan nuclear receptor NOR1 by histone acetylation.

    Science.gov (United States)

    Zhao, Yue; Nomiyama, Takashi; Findeisen, Hannes M; Qing, Hua; Aono, Jun; Jones, Karrie L; Heywood, Elizabeth B; Bruemmer, Dennis

    2014-12-20

    The nuclear receptor NOR1 is an immediate-early response gene implicated in the transcriptional control of proliferation. Since the expression level of NOR1 is rapidly induced through cAMP response element binding (CREB) protein-dependent promoter activation, we investigated the contribution of histone acetylation to this transient induction. We demonstrate that NOR1 transcription is induced by histone deacetylase (HDAC) inhibition and by depletion of HDAC1 and HDAC3. HDAC inhibition activated the NOR1 promoter, increased histone acetylation and augmented the recruitment of phosphorylated CREB to the promoter. Furthermore, HDAC inhibition increased Ser133 phosphorylation of CREB and augmented NOR1 protein stability. These data outline previously unrecognized mechanisms of NOR1 regulation and illustrate a key role for histone acetylation in the rapid induction of NOR1. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  5. Similar distributions of repaired sites in chromatin of normal and xeroderma pigmentosum variant cells damaged by ultraviolet light

    International Nuclear Information System (INIS)

    Cleaver, J.E.

    1979-01-01

    Excision repair of damage from ultraviolet light in both normal and xeroderma pigmentosum variant fibroblasts at early times after irradiation occurred preferentially in regions of DNA accessible to micrococcal nuclease digestion. These regions are predominantly the linker regions between nucleosomes in chromatin. The alterations reported at polymerization and ligation steps of excision repair in the variant are therefore not associated with changes in the relative distributions of repair sites in linker and core particle regions of DNA. (Auth.)

  6. Antibodies from the sera of HIV-infected patients efficiently hydrolyze all human histones.

    Science.gov (United States)

    Baranova, Svetlana V; Buneva, Valentina N; Nevinsky, Georgy A

    2016-08-01

    Histones and their post-translational modifications have key roles in chromatin remodeling and gene transcription. Besides intranuclear functions, histones act as damage-associated molecular pattern molecules when they are released into the extracellular space. Administration of exogenous histones to animals leads to systemic inflammatory and toxic responses through activating Toll-like receptors and inflammasome pathways. Here, using ELISA it was shown that sera of HIV-infected patients and healthy donors contain autoantibodies against histones. Autoantibodies with enzymic activities (abzymes) are a distinctive feature of autoimmune diseases. It was interesting whether antibodies from sera of HIV-infected patients can hydrolyze human histones. Electrophoretically and immunologically homogeneous IgGs were isolated from sera of HIV-infected patients by chromatography on several affinity sorbents. We present first evidence showing that 100% of IgGs purified from the sera of 32 HIV-infected patients efficiently hydrolyze from one to five human histones. Several rigid criteria have been applied to show that the histone-hydrolyzing activity is an intrinsic property of IgGs of HIV-infected patients. The relative efficiency of hydrolysis of histones (H1, H2a, H2b, H3, and H4) significantly varied for IgGs of different patients. IgGs from the sera of 40% of healthy donors also hydrolyze histones but with an average efficiency approximately 16-fold lower than that of HIV-infected patients. Similar to proteolytic abzymes from the sera of patients with several autoimmune diseases, histone-hydrolyzing IgGs from HIV-infected patients were inhibited by specific inhibitors of serine and of metal-dependent proteases, but an unexpected significant inhibition of the activity by specific inhibitor of thiol-like proteases was also observed. Because IgGs can efficiently hydrolyze histones, a negative role of abzymes in development of acquired immune deficiency syndrome cannot be

  7. Extracellular histones reduce survival and angiogenic responses of late outgrowth progenitor and mature endothelial cells.

    Science.gov (United States)

    Mena, H A; Carestia, A; Scotti, L; Parborell, F; Schattner, M; Negrotto, S

    2016-02-01

    ESSENTIALS: Extracellular histones are highly augmented in sites of neovessel formation, such as regeneration tissues. We studied histone effect on survival and angiogenic activity of mature and progenitor endothelial cells. Extracellular histones trigger apoptosis and pyroptosis and reduce angiogenesis in vivo and in vitro. Histone blockade can be useful as a therapeutic strategy to improve angiogenesis and tissue regeneration. Extracellular histones are highly augmented in sites of neovessel formation, like regeneration tissues. Their cytotoxic effect has been studied in endothelial cells, although the mechanism involved and their action on endothelial colony-forming cells (ECFCs) remain unknown. To study the effect of histones on ECFC survival and angiogenic functions and compare it with mature endothelial cells. Nuclear morphology analysis showed that each human recombinant histone triggered both apoptotic-like and necrotic-like cell deaths in both mature and progenitor endothelial cells. While H1 and H2A exerted a weak toxicity, H2B, H3 and H4 were the most powerful. The percentage of apoptosis correlated with the percentage of ECFCs exhibiting caspase-3 activation and was zeroed by the pan-caspase inhibitor Z-VAD-FMK. Necrotic-like cell death was also suppressed by this compound and the caspase-1 inhibitor Ac-YVAD-CMK, indicating that histones triggered ECFC pyroptosis. All histones, at non-cytotoxic concentrations, reduced migration and H2B, H3 and H4 induced cell cycle arrest and impaired tubulogenesis via p38 activation. Neutrophil-derived histones exerted similar effects. In vivo blood vessel formation in the quail chorioallantoic membrane was also reduced by H2B, H3 and H4. Their cytotoxic and antiangiogenic effects were suppressed by unfractioned and low-molecular-weight heparins and the combination of TLR2 and TLR4 blocking antibodies. Histones trigger both apoptosis and pyroptosis of ECFCs and inhibit their angiogenic functions. Their cytotoxic and

  8. Histones Induce the Procoagulant Phenotype of Endothelial Cells through Tissue Factor Up-Regulation and Thrombomodulin Down-Regulation.

    Science.gov (United States)

    Kim, Ji Eun; Yoo, Hyun Ju; Gu, Ja Yoon; Kim, Hyun Kyung

    2016-01-01

    The high circulating levels of histones found in various thrombotic diseases may compromise the anticoagulant barrier of endothelial cells. We determined how histones affect endothelial procoagulant tissue factor (TF) and anticoagulant thrombomodulin (TM). Surface antigens, soluble forms, and mRNA levels of TF and TM were measured by flow cytometry, ELISA, and real-time RT-PCR, respectively. TF and TM activity were measured using procoagulant activity, thrombin generation, or chromogenic assays. Involvement of the toll-like receptor (TLR) was assessed using the neutralizing antibodies. Histones dose-dependently induced surface antigens, activity and mRNA levels of endothelial TF. Histone-treated endothelial cells significantly shortened the lag time and enhanced the endogenous thrombin potential of normal plasma, which was normalized by a TF neutralizing antibody. Histones induced phosphatidylserine and protein-disulfide isomerase expression in endothelial cells. Histones also reduced the surface antigen, activity, and mRNA levels of endothelial TM. Polysialic acid and heparin reversed the histone-induced TF up-regulation and TM down-regulation. Activated protein C did not affect the TF up-regulation, but interrupted TM down-regulation. TLR2, and TLR4 inhibitors partially blocked the TF up-regulation. Histones induced the endothelial procoagulant phenotype through TF up-regulation and TM down-regulation. The effects of histones were partly mediated by TLR2, TLR4. Strategies to inhibit the harmful effects of histones in endothelial cells may be required in order to prevent a thrombotic environment.

  9. Characterization of joining sites of a viral histone H4 on host insect chromosomes.

    Directory of Open Access Journals (Sweden)

    Sunil Kumar

    Full Text Available A viral histone H4 (CpBV-H4 is encoded in a polydnavirus, Cotesia plutellae bracovirus (CpBV. It plays a crucial role in parasitism of an endoparasitoid wasp, C. plutellae, against diamondback moth, Plutella xylostella, by altering host gene expression in an epigenetic mode by its N-terminal tail after joining host nucleosomes. Comparative transcriptomic analysis between parasitized and nonparasitized P. xylostella by RNA-Seq indicated that 1,858 genes were altered at more than two folds in expression levels at late parasitic stage, including 877 up-regulated genes and 981 down-regulated genes. Among parasitic factors altering host gene expression, CpBV-H4 alone explained 16.3% of these expressional changes. To characterize the joining sites of CpBV-H4 on host chromosomes, ChIP-Seq (chromatin immunoprecipitation followed by deep sequencing was applied to chromatins extracted from parasitized larvae. It identified specific 538 ChIP targets. Joining sites were rich (60.2% in AT sequence. Almost 40% of ChIP targets included short nucleotide repeat sequences presumably recognizable by transcriptional factors and chromatin remodeling factors. To further validate these CpBV-H4 targets, CpBV-H4 was transiently expressed in nonparasitized host at late larval stage and subjected to ChIP-Seq. Two kinds of ChIP-Seqs shared 51 core joining sites. Common targets were close (within 1 kb to genes regulated at expression levels by CpBV-H4. However, other host genes not close to CpBV-H4 joining sites were also regulated by CpBV-H4. These results indicate that CpBV-H4 joins specific chromatin regions of P. xylostella and controls about one sixth of the total host genes that were regulated by C. plutellae parasitism in an epigenetic mode.

  10. A truncating mutation of HDAC2 in human cancers confers resistance to histone deacetylase inhibition

    DEFF Research Database (Denmark)

    Ropero, S; Fraga, MF; Ballestar, E

    2006-01-01

    Disruption of histone acetylation patterns is a common feature of cancer cells, but very little is known about its genetic basis. We have identified truncating mutations in one of the primary human histone deacetylases, HDAC2, in sporadic carcinomas with microsatellite instability and in tumors a...... deacetylase inhibitors. As such drugs may serve as therapeutic agents for cancer, our findings support the use of HDAC2 mutational status in future pharmacogenetic treatment of these individuals....

  11. Accuracy of circulating histones in predicting persistent organ failure and mortality in patients with acute pancreatitis.

    Science.gov (United States)

    Liu, T; Huang, W; Szatmary, P; Abrams, S T; Alhamdi, Y; Lin, Z; Greenhalf, W; Wang, G; Sutton, R; Toh, C H

    2017-08-01

    Early prediction of acute pancreatitis severity remains a challenge. Circulating levels of histones are raised early in mouse models and correlate with disease severity. It was hypothesized that circulating histones predict persistent organ failure in patients with acute pancreatitis. Consecutive patients with acute pancreatitis fulfilling inclusion criteria admitted to Royal Liverpool University Hospital were enrolled prospectively between June 2010 and March 2014. Blood samples were obtained within 48 h of abdominal pain onset and relevant clinical data during the hospital stay were collected. Healthy volunteers were enrolled as controls. The primary endpoint was occurrence of persistent organ failure. The predictive values of circulating histones, clinical scores and other biomarkers were determined. Among 236 patients with acute pancreatitis, there were 156 (66·1 per cent), 57 (24·2 per cent) and 23 (9·7 per cent) with mild, moderate and severe disease respectively, according to the revised Atlanta classification. Forty-seven healthy volunteers were included. The area under the receiver operating characteristic (ROC) curve (AUC) for circulating histones in predicting persistent organ failure and mortality was 0·92 (95 per cent c.i. 0·85 to 0·99) and 0·96 (0·92 to 1·00) respectively; histones were at least as accurate as clinical scores or biochemical markers. For infected pancreatic necrosis and/or sepsis, the AUC was 0·78 (0·62 to 0·94). Histones did not predict or correlate with local pancreatic complications, but correlated negatively with leucocyte cell viability (r = -0·511, P = 0·001). Quantitative assessment of circulating histones in plasma within 48 h of abdominal pain onset can predict persistent organ failure and mortality in patients with acute pancreatitis. Early death of immune cells may contribute to raised circulating histone levels in acute pancreatitis. © 2017 The Authors. BJS published by John Wiley & Sons Ltd on behalf of BJS

  12. Phosphorylation of histone H3 at threonine 11 establishes a novel chromatin mark for transcriptional regulation

    OpenAIRE

    Metzger, Eric; Yin, Na; Wissmann, Melanie; Kunowska, Natalia; Fischer, Kristin; Friedrichs, Nicolaus; Patnaik, Debasis; Higgins, Jonathan M.G.; Potier, Noelle; Scheidtmann, Karl-Heinz; Buettner, Reinhard; Schüle, Roland

    2007-01-01

    Posttranslational modifications of histones such as methylation, acetylation, and phosphorylation regulate chromatin structure and gene expression. Here we show that protein kinase C-related kinase 1 (PRK1) phosphorylates histone H3 at threonine 11 (H3T11) upon ligand-dependent recruitment to androgen receptor (AR) target genes. PRK1 is pivotal to AR function since PRK1 knockdown or inhibition impedes AR-dependent transcription. Blocking PRK1 function abrogates androgen-induced H3T11 phosphor...

  13. Complex exon-intron marking by histone modifications is not determined solely by nucleosome distribution.

    Directory of Open Access Journals (Sweden)

    Pawandeep Dhami

    2010-08-01

    Full Text Available It has recently been shown that nucleosome distribution, histone modifications and RNA polymerase II (Pol II occupancy show preferential association with exons ("exon-intron marking", linking chromatin structure and function to co-transcriptional splicing in a variety of eukaryotes. Previous ChIP-sequencing studies suggested that these marking patterns reflect the nucleosomal landscape. By analyzing ChIP-chip datasets across the human genome in three cell types, we have found that this marking system is far more complex than previously observed. We show here that a range of histone modifications and Pol II are preferentially associated with exons. However, there is noticeable cell-type specificity in the degree of exon marking by histone modifications and, surprisingly, this is also reflected in some histone modifications patterns showing biases towards introns. Exon-intron marking is laid down in the absence of transcription on silent genes, with some marking biases changing or becoming reversed for genes expressed at different levels. Furthermore, the relationship of this marking system with splicing is not simple, with only some histone modifications reflecting exon usage/inclusion, while others mirror patterns of exon exclusion. By examining nucleosomal distributions in all three cell types, we demonstrate that these histone modification patterns cannot solely be accounted for by differences in nucleosome levels between exons and introns. In addition, because of inherent differences between ChIP-chip array and ChIP-sequencing approaches, these platforms report different nucleosome distribution patterns across the human genome. Our findings confound existing views and point to active cellular mechanisms which dynamically regulate histone modification levels and account for exon-intron marking. We believe that these histone modification patterns provide links between chromatin accessibility, Pol II movement and co-transcriptional splicing.

  14. Hepatic radiofrequency ablation causes an increase of circulating histones in patients with hepatocellular carcinoma.

    Science.gov (United States)

    Gu, Tao; Ge, Yang; Song, Yuezhang; Fu, Zhanzhao; Zhang, Yunjie; Wang, Guangxia; Shao, Shasha; Wen, Tao

    2015-11-01

    Radiofrequency ablation (RFA) has been increasingly accepted for the treatment of hepatocellular carcinoma (HCC). However, RFA has been associated with an obvious systemic inflammatory response, but little is known about the underlying mechanisms. Circulating histones are recently identified as pivotal inflammatory mediators. Hence, we investigated whether circulating histones are involved in RFA-related inflammation. Serial blood samples were collected from 42 HCC patients undergoing RFA at 3 time points: pre-RFA, post-RFA (within 24 h), and in 4-week follow up after RFA. Plasma histones, myeloperoxidase (MPO), inflammatory cytokines (IL-1β, IL-6, IL-10, TNF-α), liver damage parameters (ALT, AST), and creatinine were measured. Compared to pre-RFA (0.837 μg/ml), there was a significant increase in the levels of circulating histones within 24 h post-RFA (4.576 μg/ml, p histones decreased to pre-RFA levels in 4-week follow up after RFA. Meanwhile, MPO, IL-6, and IL-10 were elevated remarkably within 24 h post-RFA, indicative of an occurrence of the inflammatory response. Notably, histone levels correlated well with MPO (r = 0.5678), IL-6 (r = 0.4851), and IL-10 (r = 0.3574), respectively. In addition, there was a significant damage of liver function in patients within 24 h post-RFA, evidenced by the increased levels of ALT and AST. No changes in creatinine levels were observed. These data demonstrate that circulating histones are excessively released in HCC patients treated with RFA, which may lead to systemic inflammation by stimulating neutrophil activation and promoting cytokine production. Circulating histones may act as a novel marker to indicate the extent of inflammation related to RFA.

  15. Quantitative assessment of chemical artefacts produced by propionylation of histones prior to mass spectrometry analysis.

    Science.gov (United States)

    Soldi, Monica; Cuomo, Alessandro; Bonaldi, Tiziana

    2016-07-01

    Histone PTMs play a crucial role in regulating chromatin structure and function, with impact on gene expression. MS is nowadays widely applied to study histone PTMs systematically. Because histones are rich in arginine and lysine, classical shot-gun approaches based on trypsin digestion are typically not employed for histone modifications mapping. Instead, different protocols of chemical derivatization of lysines in combination with trypsin have been implemented to obtain "Arg-C like" digestion products that are more suitable for LC-MS/MS analysis. Although widespread, these strategies have been recently described to cause various side reactions that result in chemical modifications prone to be misinterpreted as native histone marks. These artefacts can also interfere with the quantification process, causing errors in histone PTMs profiling. The work of Paternoster V. et al. is a quantitative assessment of methyl-esterification and other side reactions occurring on histones after chemical derivatization of lysines with propionic anhydride [Proteomics 2016, 16, 2059-2063]. The authors estimate the effect of different solvents, incubation times, and pH on the extent of these side reactions. The results collected indicate that the replacement of methanol with isopropanol or ACN not only blocks methyl-esterification, but also significantly reduces other undesired unspecific reactions. Carefully titrating the pH after propionic anhydride addition is another way to keep methyl-esterification under control. Overall, the authors describe a set of experimental conditions that allow reducing the generation of various artefacts during histone propionylation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Circulating Histones Are Major Mediators of Cardiac Injury in Patients With Sepsis.

    Science.gov (United States)

    Alhamdi, Yasir; Abrams, Simon T; Cheng, Zhenxing; Jing, Shengjie; Su, Dunhao; Liu, Zhiyong; Lane, Steven; Welters, Ingeborg; Wang, Guozheng; Toh, Cheng-Hock

    2015-10-01

    To investigate the impact of circulating histones on cardiac injury and dysfunction in a murine model and patients with sepsis. Prospective, observational clinical study with in vivo and ex vivo translational laboratory investigations. General ICU and university research laboratory. Sixty-five septic patients and 27 healthy volunteers. Twelve-week-old male C57BL/6N mice. Serial blood samples from 65 patients with sepsis were analyzed, and left ventricular function was assessed by echocardiography. Patients' sera were incubated with cultured cardiomyocytes in the presence or absence of antihistone antibody, and cellular viability was assessed. Murine sepsis was initiated by intraperitoneal Escherichia coli injection (10(8) colony-forming unit/mouse) in 12-week-old male C57BL/6N mice, and the effect of antihistone antibody (10 mg/kg) was studied. Murine blood samples were collected serially, and left ventricular function was assessed by intraventricular catheters and electrocardiography. Circulating histones and cardiac troponins in human and murine plasma were quantified. In 65 patients with sepsis, circulating histones were significantly elevated compared with healthy controls (n = 27) and linearly correlated with cardiac troponin T levels (rs = 0.650; p histone levels were significantly associated with new-onset left ventricular dysfunction (p = 0.001) and arrhythmias (p = 0.01). Left ventricular dysfunction only predicted adverse outcomes when combined with elevated histones or cardiac troponin levels. Furthermore, patients' sera directly induced histone-specific cardiomyocyte death ex vivo, which was abrogated by antihistone antibodies. In vivo studies on septic mice confirmed the cause-effect relationship between circulating histones and the development of cardiac injury, arrhythmias, and left ventricular dysfunction. Circulating histones are novel and important mediators of septic cardiomyopathy, which can potentially be utilized for prognostic and therapeutic

  17. Neutralisation of the anti-coagulant effects of heparin by histones in blood plasma and purified systems.

    Science.gov (United States)

    Longstaff, Colin; Hogwood, John; Gray, Elaine; Komorowicz, Erzsebet; Varjú, Imre; Varga, Zoltán; Kolev, Krasimir

    2016-03-01

    Neutrophil extracellular traps (NETs) composed primarily of DNA and histones are a link between infection, inflammation and coagulation. NETs promote coagulation and approaches to destabilise NETs have been explored to reduce thrombosis and treat sepsis. Heparinoids bind histones and we report quantitative studies in plasma and purified systems to better understand physiological consequences. Unfractionated heparin (UFH) was investigated by activated partial thromboplastin time (APTT) and alongside low-molecular-weight heparins (LMWH) in purified systems with thrombin or factor Xa (FXa) and antithrombin (AT) to measure the sensitivity of UFH or LMWH to histones. A method was developed to assess the effectiveness of DNA and non-anticoagulant heparinoids as anti-histones. Histones effectively neutralised UFH, the IC50 value for neutralisation of 0.2 IU/ml UFH was 1.8 µg/ml histones in APTT and 4.6 µg/ml against 0.6 IU/ml UFH in a purified system. Histones also inhibited the activities of LMWHs with thrombin (IC50 6.1 and 11.0 µg/ml histones, for different LMWHs) or FXa (IC50 7.8 and 7.0 µg/ml histones). Direct interactions of UFH and LMWH with DNA and histones were explored by surface plasmon resonance, while rheology studies showed complex effects of histones, UFH and LMWH on clot resilience. A conclusion from these studies is that anticoagulation by UFH and LMWH will be compromised by high affinity binding to circulating histones even in the presence of DNA. A complete understanding of the effects of histones, DNA and heparins on the haemostatic system must include an appreciation of direct effects on fibrin and clot structure.

  18. An advanced coarse-grained nucleosome core particle model for computer simulations of nucleosome-nucleosome interactions under varying ionic conditions.

    Directory of Open Access Journals (Sweden)

    Yanping Fan

    Full Text Available In the eukaryotic cell nucleus, DNA exists as chromatin, a compact but dynamic complex with