WorldWideScience

Sample records for core depressurization effect

  1. The effect of sudden depressurization on pilots at cruising altitude.

    Science.gov (United States)

    Muehlemann, Thomas; Holper, Lisa; Wenzel, Juergen; Wittkowski, Martin; Wolf, Martin

    2013-01-01

    The standard flight level for commercial airliners is ∼12 km (40 kft; air pressure: ∼ 200 hPa), the maximum certification altitude of modern airliners may be as high as 43-45 kft. Loss of structural integrity of an airplane may result in sudden depressurization of the cabin potentially leading to hypoxia with loss of consciousness of the pilots. Specialized breathing masks supply the pilots with oxygen. The aim of this study was to experimentally simulate such sudden depressurization to maximum design altitude in a pressure chamber while measuring the arterial and brain oxygenation saturation (SaO(2) and StO(2)) of the pilots. Ten healthy subjects with a median age of 50 (range 29-70) years were placed in a pressure chamber, breathing air from a cockpit mask. Pressure was reduced from 753 to 148 hPa within 20 s, and the test mask was switched to pure O(2) within 2 s after initiation of depressurization. During the whole procedure SaO(2) and StO(2) were measured by pulse oximetry, respectively near-infrared spectroscopy (NIRS; in-house built prototype) of the left frontal cortex. During the depressurization the SaO(2) dropped from median 93% (range 91-98%) to 78% (62-92%) by 16% (6-30%), while StO(2) decreased from 62% (47-67%) to 57% (43-62%) by 5% (3-14%). Considerable drops in oxygenation were observed during sudden depressurization. The inter-subject variability was high, for SaO(2) depending on the subjects' ability to preoxygenate before the depressurization. The drop in StO(2) was lower than the one in SaO(2) maybe due to compensation in blood flow.

  2. Sensitivity Analyses in Small Break LOCA with HPI-Failure: Effect of Break-Size in Secondary-Side Depressurization

    Science.gov (United States)

    Kinoshita, Ikuo; Torige, Toshihide; Yamada, Minoru

    2014-06-01

    In the case of total failure of the high pressure injection (HPI) system following small break loss of coolant accident (SBLOCA) in pressurized water reactor (PWR), the break size is so small that the primary system does not depressurize to the accumulator (ACC) injection pressure before the core is uncovered extensively. Therefore, steam generator (SG) secondary-side depressurization is necessary as an accident management in order to grant accumulator system actuation and core reflood. A thermal-hydraulic analysis using RELAP5/MOD3 was made on SBLOCA with HPI-failure for Oi Units 3/4 operated by Kansai Electoric Power Co., which are conventional 4 loop PWR plants. The effectiveness of SG secondary-side depressurization procedure was investigated for the real plant design and operational characteristics. The sensitivity analyses using RELAP5/MOD3.2 showed that the accident management was effective for a wide range of break sizes, various orientations and positions. The critical break can be 3 inch cold-leg bottom break.

  3. Analysis of design and operational effects of filtered containment venting on depressurization and fission product release

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Woon; Seol, Wook-Cheol; Kim, Jisu [Dongguk Univ., Gyeongbuk (Korea, Republic of)

    2017-03-15

    Effects of design and operational parameters of filtered containment venting system during a specified containment depressurization and relative aero sol release amount are analyzed. The analyses is performed by using the MAAP4 code for the APR1400 reactor. Major results uniquely identified from the analyses can be noted as following: Even though containment depressurization is accelerated as the pipe size increases, the venting system solution is also depleted earlier. Elapsed times to reach lower end pressure of 2 bar are nearly identical regardless of the vent initiation pressure and thus early venting is not much beneficial than late venting. Stroke time of the isolation valves has no effect on the depressurization performance and thus slow opening is beneficial for load reduction from the vent effluent.

  4. Propellant actuated nuclear reactor steam depressurization valve

    Science.gov (United States)

    Ehrke, Alan C.; Knepp, John B.; Skoda, George I.

    1992-01-01

    A nuclear fission reactor combined with a propellant actuated depressurization and/or water injection valve is disclosed. The depressurization valve releases pressure from a water cooled, steam producing nuclear reactor when required to insure the safety of the reactor. Depressurization of the reactor pressure vessel enables gravity feeding of supplementary coolant water through the water injection valve to the reactor pressure vessel to prevent damage to the fuel core.

  5. Numerical Simulation of Methane Production from Hydrates Induced by Different Depressurizing Approaches

    Directory of Open Access Journals (Sweden)

    Yanghui Li

    2012-02-01

    Full Text Available Several studies have demonstrated that methane production from hydrate-bearing porous media by means of depressurization-induced dissociation can be a promising technique. In this study, a 2D axisymmetric model for simulating the gas production from hydrates by depressurization is developed to investigate the gas production behavior with different depressurizing approaches. The simulation results showed that the depressurization process with depressurizing range has significant influence on the final gas production. On the contrary, the depressurizing rate only affects the production lifetime. More amount of cumulative gas can be produced with a larger depressurization range or lowering the depressurizing rate for a certain depressurizing range. Through the comparison of the combined depressurization modes, the Class 2 (all the hydrate dissociation simulations are performed by reducing the initial system pressure with the same depressurizing range initially, then to continue the depressurization process conducted by different depressurizing rates and complete when the system pressure decreases to the atmospheric pressure is much superior to the Class 1 (different depressurizing ranges are adopted in the initial period of the gas production process, when the pressure is reduced to the corresponding value of depressurization process at the different depressurizing range, the simulations are conducted at a certain depressurizing rate until the pressure reaches the atmospheric pressure for a long and stable gas production process. The parameter analysis indicated that the gas production performance decreases and the period of stable production increases with the initial pressure for the case of depressurizing range. Additionally, for the case of depressurizing range, the better gas production performance is associated with higher ambient temperature for production process, and the effect of thermal conductivity on gas production performance can be

  6. Retrogradation of Maize Starch after High Hydrostatic Pressure Gelation: Effect of Amylose Content and Depressurization Rate

    KAUST Repository

    Yang, Zhi

    2016-05-24

    High hydrostatic pressure (HHP) has been employed to gelatinize or physically modify starch dispersions. In this study, waxy maize starch, normal maize starch, and two high amylose content starch were processed by a HHP of the order of 600 MPa, at 25°C for 15min. The effect of HHP processing on the crystallization of maize starches with various amylose content during storage at 4°C was investigated. Crystallization kinetics of HHP treated starch gels were investigated using rheology and FTIR. The effect of crystallization on the mechanical properties of starch gel network were evaluated in terms of dynamic complex modulus (G*). The crystallization induced increase of short-range helices structures were investigated using FTIR. The pressure releasing rate does not affect the starch retrogradation behaviour. The rate and extent of retrogradation depends on the amylose content of amylose starch. The least retrogradation was observed in HHP treated waxy maize starch. The rate of retrogradation is higher for HHP treated high amylose maize starch than that of normal maize starch. A linear relationship between the extent of retrogradation (phase distribution) measured by FTIR and G* is proposed.

  7. Retrogradation of Maize Starch after High Hydrostatic Pressure Gelation: Effect of Amylose Content and Depressurization Rate.

    Directory of Open Access Journals (Sweden)

    Zhi Yang

    Full Text Available High hydrostatic pressure (HHP has been employed to gelatinize or physically modify starch dispersions. In this study, waxy maize starch, normal maize starch, and two high amylose content starch were processed by a HHP of the order of 600 MPa, at 25°C for 15min. The effect of HHP processing on the crystallization of maize starches with various amylose content during storage at 4°C was investigated. Crystallization kinetics of HHP treated starch gels were investigated using rheology and FTIR. The effect of crystallization on the mechanical properties of starch gel network were evaluated in terms of dynamic complex modulus (G*. The crystallization induced increase of short-range helices structures were investigated using FTIR. The pressure releasing rate does not affect the starch retrogradation behaviour. The rate and extent of retrogradation depends on the amylose content of amylose starch. The least retrogradation was observed in HHP treated waxy maize starch. The rate of retrogradation is higher for HHP treated high amylose maize starch than that of normal maize starch. A linear relationship between the extent of retrogradation (phase distribution measured by FTIR and G* is proposed.

  8. Sediment–well interaction during depressurization

    KAUST Repository

    Shin, Hosung

    2016-10-05

    Depressurization gives rise to complex sediment–well interactions that may cause the failure of wells. The situation is aggravated when high depressurization is imposed on sediments subjected to an initially low effective stress, such as in gas production from hydrate accumulations in marine sediments. Sediment–well interaction is examined using a nonlinear finite element simulator. The hydro-mechanically coupled model represents the sediment as a Cam-Clay material, uses a continuous function to capture compressibility from low to high effective stress, and recognizes the dependency of hydraulic conductivity on void ratio. Results highlight the critical effect of hydro-mechanical coupling as compared to constant permeability models: A compact sediment shell develops against the screen, the depressurization zone is significantly smaller than the volume anticipated assuming constant permeability, settlement decreases, and the axial load on the well decreases; in the case of hydrates, gas production will be a small fraction of the mass estimated using a constant permeability model. High compressive axial forces develop in the casing within the production horizon, and the peak force can exceed the yield capacity of the casing and cause its collapse. Also tensile axial forces may develop in the casing above the production horizon as the sediment compacts in the depressurized zone and pulls down from the well. Well engineering should consider: slip joints to accommodate extensional displacement above the production zone, soft telescopic/sliding screen design to minimize the buildup of compressive axial force within the production horizon, and enlarged gravel pack to extend the size of the depressurized zone.

  9. Assessment of Severe Accident Depressurization Valve Activation Strategy for Chinese Improved 1000 MWe PWR

    Directory of Open Access Journals (Sweden)

    Ge Shao

    2013-01-01

    Full Text Available To prevent HPME and DCH, SADV is proposed to be added to the pressurizer for Chinese improved 1000 MWe PWR NPP with the reference of EPR design. Rapid depressurization capability is assessed using the mechanical analytical code. Three typical severe accident sequences of TMLB’, SBLOCA, and LOFW are selected. It shows that with activation of the SADV the RCS pressure is low enough to prevent HPME and DCH. Natural circulation at upper RPV and hot leg is considered for the rapid depressurization capacity analysis. The result shows that natural circulation phenomenon results in heat transfer from the core to the pipes in RCS which may cause the creep rupture of pipes in RCS and delays the severe accident progression. Different SADV valve areas are investigated to the influence of depressurization of RCS. Analysis shows that the introduction of SADV with right valve area will delay progression of core degradation to RPV failure. Valve area is to be optimized since smaller SADV area will reduce its effect and too large valve area will lead to excessive loss of water inventory in RCS and makes core degradation progression to RPV failure faster without additional core cooling water sources.

  10. Physical property changes in hydrate-bearing sediment due to depressurization and subsequent repressurization

    Science.gov (United States)

    Waite, W.F.; Kneafsey, T.J.; Winters, W.J.; Mason, D.H.

    2008-01-01

    Physical property measurements of sediment cores containing natural gas hydrate are typically performed on material exposed, at least briefly, to non-in situ conditions during recovery. To examine the effects of a brief excursion from the gas-hydrate stability field, as can occur when pressure cores are transferred to pressurized storage vessels, we measured physical properties on laboratory-formed sand packs containing methane hydrate and methane pore gas. After depressurizing samples to atmospheric pressure, we repressurized them into the methane-hydrate stability field and remeasured their physical properties. Thermal conductivity, shear strength, acoustic compressional and shear wave amplitudes, and speeds of the original and depressurized/repressurized samples are compared. X-ray computed tomography images track how the gas-hydrate distribution changes in the hydrate-cemented sands owing to the depressurizaton/repressurization process. Because depressurization-induced property changes can be substantial and are not easily predicted, particularly in water-saturated, hydrate-bearing sediment, maintaining pressure and temperature conditions throughout the core recovery and measurement process is critical for using laboratory measurements to estimate in situ properties.

  11. Continuous coarse ash depressurization system

    Science.gov (United States)

    Liu, Guohai; Peng, Wan Wang; Vimalchand, Pannalal

    2012-11-13

    A system for depressurizing and cooling a high pressure, high temperature dense phase solids stream having coarse solid particles with entrained gas therein. In one aspect, the system has an apparatus for at least partially depressurizing and cooling the high pressure, high temperature dense phase solids stream having gas entrained therein and a pressure letdown device for further depressurization and separating cooled coarse solid particles from a portion of the entrained gas, resulting in a lower temperature, lower pressure outlet of solid particles for downstream processing or discharge to a storage silo for future use and/or disposal. There are no moving parts in the flow path of the solids stream in the system.

  12. Experimental study of effectiveness of four radon mitigation solutions, based on underground depressurization, tested in prototype housing built in a high radon area in Spain

    Energy Technology Data Exchange (ETDEWEB)

    Frutos Vazquez, Borja, E-mail: borjafv@ietcc.csic.e [Eduardo Torroja Institute for Construction Science (a Spanish National Research Council body), C/Serreno Galvache 4, 28033 Madrid (Spain); Olaya Adan, Manuel [Eduardo Torroja Institute for Construction Science (a Spanish National Research Council body), C/Serreno Galvache 4, 28033 Madrid (Spain); Santiago Quindos Poncela, Luis; Sainz Fernandez, Carlos; Fuente Merino, Ismael [Medical Physics, Chair of the Faculty of Medicine, University of Cantabria, Cardenal Herrera Oria s/n, 39011 Santander (Spain)

    2011-04-15

    The present paper discusses the results of an empirical study of four approaches to reducing indoor radon concentrations based on depressurization techniques in underground sumps. The experiments were conducted in prototype housing built in an area of Spain where the average radon concentration at a depth of 1 m is 250 kBq m{sup -3}. Sump effectiveness was analysed in two locations: underneath the basement, which involved cutting openings into the foundation, ground storey and roof slabs, and outside the basement walls, which entailed digging a pit alongside the building exterior. The effectiveness of both sumps was likewise tested with passive and forced ventilation methods. The systems proved to be highly efficient, lowering radon levels by 91-99%, except in the solution involving passive ventilation and the outside sump, where radon levels were reduced by 53-55%. At wind speeds of over 8 m/s, however, passive ventilation across an outside sump lowered radon levels by 95% due to a Venturi effect induced drop in pressure. - Highlights: {yields} This experience can help to delimit effectiveness of this kind of depressurization solutions because all of them has been tested in the same radon exhalation rate conditions and in the same building. In this sense this paper constitute an original work and even more if we note that initial radon concentration were very high, in order of 40 kBq m{sup -3} in the basement {yields} Radon reduction up to 300 Bq m{sup -3} from 40 kBq m{sup -3} (initial conditions inside the building) {yields} The systems proved to be highly efficient, reducing radon levels by 91-99%, with the exception of the outside sump-natural convection combination, where rates declined on the order of 53-55% {yields} The effectiveness of the sump located outside the basement walls rose by 40 percentage points (from 53 to 93%) when forced rather than passive extraction was used. {yields} The natural convection extraction systems proved to be 40% more

  13. Effects of Fluid Saturation on Gas Recovery from Class-3 Hydrate Accumulations Using Depressurization: Case Study of Yuan-An Ridge Site in Southwestern Offshore Taiwan

    Science.gov (United States)

    Huang, Yi-Jyun; Wu, Cheng-Yueh; Hsieh, Bieng-Zih

    2016-04-01

    Gas hydrates are crystalline compounds in which guest gas molecules are trapped in host lattices of ice crystals. In Taiwan, the significant efforts have recently begun to evaluate the reserves of hydrate because the vast accumulations of gas hydrates had been recognized in southwestern offshore Taiwan. Class-3 type hydrate accumulations are referred to an isolated hydrate layer without an underlying zone of mobile fluids, and the entire hydrate layer may be well within the hydrate stability zone. The depressurization method is a useful dissociation method for gas production from Class-3 hydrate accumulations. The dissociation efficiency is controlled by the responses of hydrate to the propagating pressure disturbance, and the pressure propagation is relating to the amount (or saturation) of the mobile fluid in pore space of the hydrate layer. The purpose of this study is to study the effects of fluid saturation on the gas recovery from a class-3 hydrate accumulation using depressurization method. The case of a class-3 hydrate deposit of Yuan-An Ridge in southwestern offshore Taiwan is studied. The numerical method was used in this study. The reservoir simulator we used to study the dissociation of hydrate and the production of gas was the STARS simulator developed by CMG, which coupled heat transfer, geo-chemical, geo-mechanical, and multiphase fluid flow mechanisms. The study case of Yuan-An Ridge is located in southwestern offshore Taiwan. The hydrate deposit was found by the bottom simulating reflectors (BSRs). The geological structure of the studied hydrate deposit was digitized to build the geological model (grids) of the case. The formation parameters, phase behavior data, rock and fluid properties, and formation's initial conditions were assigned sequentially to grid blocks, and the completion and operation conditions were designed to wellbore blocks to finish the numerical model. The changes of reservoir pressure, temperature, saturation due to the hydrate

  14. Radon mitigation by depressurization of concrete walls and slabs.

    Science.gov (United States)

    Leung, J K; Tso, M Y; Hung, L C

    1999-10-01

    A special laboratory, the Radioisotope Unit Radon Analysis Laboratory, has been built for the study of radon mitigation in high-rise buildings. Reduction of radon exhalation rate from concrete walls as a result of depressurizing the interior of the wall was studied by embedding tunnels in a wall and pumping away the radon in the wall. The reduction in exhalation rate was quantified against the applied depressurization, the separation of the tunnels, the depth of the tunnel, and the thickness of the wall. Results show that radon exhalation rate from a wall embedded with tunnels can be reduced significantly by applying depressurization. For example, the radon exhalation rate from a wall of 20 cm thickness containing tunnels separated by 0.7 m can be reduced by 60% at a depressurization of 67 kPa (20 in Hg). This paper summarizes the effect of depressurization and suggests practical ways of applying the technique in radon mitigation in high-rise commercial buildings.

  15. Experimental study of effectiveness of four radon mitigation solutions, based on underground depressurization, tested in prototype housing built in a high radon area in Spain.

    Science.gov (United States)

    Frutos Vázquez, Borja; Olaya Adán, Manuel; Quindós Poncela, Luis Santiago; Sainz Fernandez, Carlos; Fuente Merino, Ismael

    2011-04-01

    The present paper discusses the results of an empirical study of four approaches to reducing indoor radon concentrations based on depressurization techniques in underground sumps. The experiments were conducted in prototype housing built in an area of Spain where the average radon concentration at a depth of 1 m is 250 kBq m(-3). Sump effectiveness was analysed in two locations: underneath the basement, which involved cutting openings into the foundation, ground storey and roof slabs, and outside the basement walls, which entailed digging a pit alongside the building exterior. The effectiveness of both sumps was likewise tested with passive and forced ventilation methods. The systems proved to be highly efficient, lowering radon levels by 91-99%, except in the solution involving passive ventilation and the outside sump, where radon levels were reduced by 53-55%. At wind speeds of over 8 m/s, however, passive ventilation across an outside sump lowered radon levels by 95% due to a Venturi effect induced drop in pressure. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Evaluation of steam generator U-tube integrity during PWR station blackout with secondary system depressurization

    Energy Technology Data Exchange (ETDEWEB)

    Hidaka, Akihide; Asaka, Hideaki; Sugimoto, Jun [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Ueno, Shingo; Yoshino, Takehito

    1999-12-01

    In PWR severe accidents such as station blackout, the integrity of steam generator U-tube would be threatened early at the transient among the pipes of primary system. This is due to the hot leg countercurrent natural circulation (CCNC) flow which delivers the decay heat of the core to the structures of primary system if the core temperature increases after the secondary system depressurization. From a view point of accident mitigation, this steam generator tube rupture (SGTR) is not preferable because it results in the direct release of primary coolant including fission products (FP) to the environment. Recent SCDAP/RELAP5 analyses by USNRC showed that the creep failure of pressurizer surge line which results in release of the coolant into containment would occur earlier than SGTR during the secondary system depressurization. However, the analyses did not consider the decay heat from deposited FP on the steam generator U-tube surface. In order to investigate the effect of decay heat on the steam generator U-tube integrity, the hot leg CCNC flow model used in the USNRC's calculation was, at first, validated through the analysis for JAERI's LSTF experiment. The CCNC model reproduced well the thermohydraulics observed in the LSTF experiment and thus the model is mostly reliable. An analytical study was then performed with SCDAP/RELAP5 for TMLB' sequence of Surry plant with and without secondary system depressurization. The decay heat from deposited FP was calculated by JAERI's FP aerosol behavior analysis code, ART. The ART analysis showed that relatively large amount of FPs may deposit on steam generator U-tube inlet mainly by thermophoresis. The SCDAP/RELAP5 analyses considering the FP decay heat predicted small safety margin for steam generator U-tube integrity during secondary system depressurization. Considering associated uncertainties in the analyses, the potential for SGTR cannot be ignored. Accordingly, this should be considered in the

  17. Numerical Investigation of the Transient Behavior of a Hot Gas Duct under Rapid Depressurization

    Directory of Open Access Journals (Sweden)

    JingBao Liu

    2016-01-01

    Full Text Available A hot gas duct is an indispensable component for the nuclear-process heat applications of the Very-High-Temperature Reactor (VHTR, which has to fulfill three requirements: to withstand high temperature, high pressure, and large pressure transient. In this paper, numerical investigation of pressure transient is performed for a hot gas duct under rapid depressurization. System depressurization imposes an imploding pressure differential on the internal structural elements of a hot gas duct, the structural integrity of which is susceptible to being damaged. Pressure differential and its imposed duration, which are two key factors to evaluate the damage severity of a hot gas duct under depressurization, are examined in regard to depressurization rate and insulation packing tightness. It is revealed that depressurization rate is a decisive parameter for controlling the pressure differential and its duration, whereas insulating-packing tightness has little effect on them.

  18. Experimental Investigation on the Behavior of Supercritical CO2 during Reservoir Depressurization.

    Science.gov (United States)

    Li, Rong; Jiang, Peixue; He, Di; Chen, Xue; Xu, Ruina

    2017-08-01

    CO2 sequestration in saline aquifers is a promising way to address climate change. However, the pressure of the sequestration reservoir may decrease in practice, which induces CO2 exsolution and expansion in the reservoir. In this study, we conducted a core-scale experimental investigation on the depressurization of CO2-containing sandstone using NMR equipment. Three different series of experiments were designed to investigate the influence of the depressurization rate and the initial CO2 states on the dynamics of different trapping mechanisms. The pressure range of the depressurization was from 10.5 to 4.0 MPa, which covered the supercritical and gaseous states of the CO2 (named as CO2(sc) and CO2(g), respectively). It was found that when the aqueous phase saturated initially, the exsolution behavior strongly depended on the depressurization rate. When the CO2 and aqueous phase coexisting initially, the expansion of the CO2(sc/g) contributed to the incremental CO2 saturation in the core only when the CO2 occurred as residually trapped. It indicates that the reservoir depressurization has the possibility to convert the solubility trapping to the residual trapping phase, and/or convert the residual trapping to mobile CO2.

  19. Stability analysis on production well in the hydrate-bearing sediments during depressurization

    Science.gov (United States)

    Kim, A. R.; Cho, G. C.; KIM, S. J.; Lee, J. Y.

    2016-12-01

    Methane hydrate has great potential as a new energy source and has been studied for scientific and technical advances. Among the production methods for methane recovery, depressurization has been proven as the most effective and productive method through the previous production test and numerical studies. However, the significant mechanical responses of hydrate-bearing sediment such as large volume contraction, and subsidence are possibly generated during methane production induced by depressurization. Moreover, this phenomenon is further exacerbated by strength and stiffness reduction in the hydrate-bearing sediments (HBS) as hydrate dissociation advances. As a result, the highest compressive strength is concentrated in the vicinity of the production wellbore and the wellhead. Therefore, it is essential to be addressed and evaluated that the mechanical responses of HBS and the stability analysis of the production well during depressurization and hydrate dissociation in order to prevent destruction of the production facilities and consequent leakage of the methane gas. In this study, a reservoir-scale THM coupled simulation using FLAC3D was conducted to evaluate the mechanical responses of HBS and the stability of the wellbore during the methane production by depressurization at the Ulleung Basin. The structural design and the mechanical properties including the dimensions of wellbore components, and interface properties related to the interaction behavior between the sediment and the wellbore, were considered in the three-dimensional model.

  20. Sensitivity study on depressurized LOFC accidents with failure of RCCS in a modular gas-cooled reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seyun [Nuclear Power Laboratory, Korea Electric Power Research Institute, Munji-ro 65, Yuseong, Daejeon 305-380 (Korea, Republic of); Tak, Nam-Il; Lim, Hong-Sik [Korea Atomic Energy Research Institute, 150 Dukjin-dong, Yuseong, Deajeon 305-353 (Korea, Republic of); Ha, Sang-Jun [Nuclear Power Laboratory, Korea Electric Power Research Institute, Munji-ro 65, Yuseong, Daejeon 305-380 (Korea, Republic of)

    2010-05-15

    A modular gas-cooled reactor design with a thermal output of 600 MWt and a core exit temperature of 950 deg. C has been designed by the Korea Atomic Energy Research Institute based on the GT-MHR reactor concept which adopts a prismatic core. A sensitivity study on the transient plant behavior during a postulated depressurized LOFC accident concurrent with the failure of the RCCS was performed. In the transient analysis, the GAMMA+ code which can handle multi-dimensional, multicomponent problems was used. The RCCS is a passive system which is very reliable and supplies a significant heat removal mechanism during abnormal conditions in a GCR. To investigate the safety characteristics of a GCR under the one of the worst accidental scenarios, a simultaneous failure of the RCCS with a depressurized LOFC was assumed. The thermal behavior of the reactor system was analyzed in various conditions. It is found that the maximum temperature of the reactor fuel compact could exceed 1600 deg. C at about 50 h at the condition of a depressurized LOFC with a failure of the RCCS. A problem with the structural integrity of the reactor pressure vessel could also be a critical factor. The insulation of a reactor cavity wall serves as a dominant obstacle against a heat transfer from the reactor vessel to the surrounding ground when the RCCS fails to operate. Without insulation material on the reactor cavity wall, the gradients of the increasing rate of the maximum temperature diminish and the peak values decrease. The maximum temperatures of the fuel compact and the reactor vessel are less sensitive to the concrete and surrounding soil properties, those are the thermal conductivity and volumetric heat capacity, when the insulation material is used. The uncertainties in the properties of the concrete and the surrounding soil become significant without an insulation material in the cavity. To improve the safety of a modular GCR, more effective and feasible heat removal mechanism need to

  1. Core shift effect in blazars

    Science.gov (United States)

    Agarwal, A.; Mohan, P.; Gupta, Alok C.; Mangalam, A.; Volvach, A. E.; Aller, M. F.; Aller, H. D.; Gu, M. F.; Lähteenmäki, A.; Tornikoski, M.; Volvach, L. N.

    2017-07-01

    We studied the pc-scale core shift effect using radio light curves for three blazars, S5 0716+714, 3C 279 and BL Lacertae, which were monitored at five frequencies (ν) between 4.8 and 36.8 GHz using the University of Michigan Radio Astronomical Observatory (UMRAO), the Crimean Astrophysical Observatory (CrAO) and Metsähovi Radio Observatory for over 40 yr. Flares were Gaussian fitted to derive time delays between observed frequencies for each flare (Δt), peak amplitude (A) and their half width. Using A ∝ να, we infer α in the range of -16.67-2.41 and using Δ t ∝ ν ^{1/k_r}, we infer kr ∼ 1, employed in the context of equipartition between magnetic and kinetic energy density for parameter estimation. From the estimated core position offset (Ωrν) and the core radius (rcore), we infer that opacity model may not be valid in all cases. The mean magnetic field strengths at 1 pc (B1) and at the core (Bcore) are in agreement with previous estimates. We apply the magnetically arrested disc model to estimate black hole spins in the range of 0.15-0.9 for these blazars, indicating that the model is consistent with expected accretion mode in such sources. The power-law-shaped power spectral density has slopes -1.3 to -2.3 and is interpreted in terms of multiple shocks or magnetic instabilities.

  2. Dissociation of Laboratory-Synthesized Methane Hydrate in Coarse-Grained Sediments by Slow Depressurization

    Science.gov (United States)

    Phillips, S. C.; You, K.; Borgfeldt, T.; Meyer, D.; Dong, T.; Flemings, P. B.

    2016-12-01

    We performed four dissociation experiments in which experimentally-formed methane hydrate was dissociated via slow, stepwise depressurization, revealing in situ salinity conditions. Overall, these results suggest the occurrence of local pore water freshening around dissociating hydrate in which bulk equilibrium behavior is limited by salt diffusion. Depressurization was performed at a constant confining temperature over 1 to 3 weeks by releasing small volumes of methane gas from the top of a vertically-oriented sample into an inverted graduated cylinder. We identify three distinct regimes of depressurization based on pressure drop behavior: (1) release of free gas down to initial hydrate dissociation at 3.3 MPa in NaBr or 4.64 MPa in NaCl, (2) dissociation of methane hydrate characterized by a slow, logarithmic increase in pressure after each gas release and (3) residual free gas release. Initial hydrate dissociation in NaCl brine at 4.64 MPa corresponds to the phase boundary for hydrate in 9.6 wt% NaCl. In the NaCl experiment, pressure increases of 0.16 MPa while the sample was shut in over 3 days likely correspond to a recovery in salinity of 0.7 wt. %. Salt ions likely diffuse from brine ahead of the hydrate front, based on a length scale for diffusion of NaCl of 6.3 cm for 3 days. In this experiment dissociation at bulk equilibrium is expected to decline from 4.54 to 4.04 MPa; however actual dissociation during 73 gas releases over 15 days, results in a pressure drop from 4.64 to 3.25 MPa. Hydrate samples were formed by injection of methane gas at 1 ºC and 12.24 MPa within a cylinder packed with medium-grained quartz sand and initially saturated in a 7 wt% NaBr or NaCl solution. In two experiments in which the system was thoroughly leak tested, total methane consumed during formation and recovered during depressurization match within 7% indicating this approach to be relatively accurate for determining total methane in experimental or pressure core samples.

  3. Maximum Recoverable Gas from Hydrate Bearing Sediments by Depressurization

    KAUST Repository

    Terzariol, Marco

    2017-11-13

    The estimation of gas production rates from hydrate bearing sediments requires complex numerical simulations. This manuscript presents a set of simple and robust analytical solutions to estimate the maximum depressurization-driven recoverable gas. These limiting-equilibrium solutions are established when the dissociation front reaches steady state conditions and ceases to expand further. Analytical solutions show the relevance of (1) relative permeabilities between the hydrate free sediment, the hydrate bearing sediment, and the aquitard layers, and (2) the extent of depressurization in terms of the fluid pressures at the well, at the phase boundary, and in the far field. Close form solutions for the size of the produced zone allow for expeditious financial analyses; results highlight the need for innovative production strategies in order to make hydrate accumulations an economically-viable energy resource. Horizontal directional drilling and multi-wellpoint seafloor dewatering installations may lead to advantageous production strategies in shallow seafloor reservoirs.

  4. Geomechanical response of permafrost-associated hydrate deposits to depressurization-induced gas production

    Energy Technology Data Exchange (ETDEWEB)

    Rutqvist, J.; Moridis, G.J.; Grover, T.; Collett, T.

    2009-02-01

    In this simulation study, we analyzed the geomechanical response during depressurization production from two known hydrate-bearing permafrost deposits: the Mallik (Northwest Territories, Canada) deposit and Mount Elbert (Alaska, USA) deposit. Gas was produced from these deposits at constant pressure using horizontal wells placed at the top of a hydrate layer (HL), located at a depth of about 900 m at the Mallik and 600 m at the Mount Elbert. The simulation results show that general thermodynamic and geomechanical responses are similar for the two sites, but with substantially higher production and more intensive geomechanical responses at the deeper Mallik deposit. The depressurization-induced dissociation begins at the well bore and then spreads laterally, mainly along the top of the HL. The depressurization results in an increased shear stress within the body of the receding hydrate and causes a vertical compaction of the reservoir. However, its effects are partially mitigated by the relatively stiff permafrost overburden, and compaction of the HL is limited to less than 0.4%. The increased shear stress may lead to shear failure in the hydrate-free zone bounded by the HL overburden and the downward-receding upper dissociation interface. This zone undergoes complete hydrate dissociation, and the cohesive strength of the sediment is low. We determined that the likelihood of shear failure depends on the initial stress state as well as on the geomechanical properties of the reservoir. The Poisson's ratio of the hydrate-bearing formation is a particularly important parameter that determines whether the evolution of the reservoir stresses will increase or decrease the likelihood of shear failure.

  5. AP1000 station blackout study with and without depressurization using RELAP5/SCDAPSIM

    Energy Technology Data Exchange (ETDEWEB)

    Trivedi, A.K. [Nuclear Engineering and Technology Program, Indian Institute of Technology, Kanpur 208016 (India); Allison, C. [Innovative Systems Software Idaho Falls, ID 83406 (United States); Khanna, A., E-mail: akhanna@iitk.ac.in [Nuclear Engineering and Technology Program, Indian Institute of Technology, Kanpur 208016 (India); Munshi, P. [Nuclear Engineering and Technology Program, Indian Institute of Technology, Kanpur 208016 (India)

    2016-10-15

    Highlights: • A representative RELAP5/SCDAPSIM model of AP1000 has been developed. • Core is modeled using SCDAP. • A SBO for the AP1000 has been simulated for high pressure (no depressurization) and low pressure (depressurization). • Significant differences in the damage progression have been observed for the two cases. • Results also reinforced the fact that surge line fails before vessel failure in case of high pressure scenario. - Abstract: Severe accidents like TMI-2, Chernobyl, Fukushima made it inevitable to analyze station blackout (SBO) for all the old as well as new designs although it is not a regulatory requirement in most of the countries. For such improbable accidents, a SBO for the AP1000 using RELAP5/SCDAPSIM has been simulated. Many improvements have been made in fuel damage progression models of SCDAP after the Fukushima accident which are now being tested for the new reactor designs. AP1000 is a 2-loop pressurized water reactor (PWR) with all the emergency core cooling systems based on natural circulation. Its core design is very similar to 3-loop PWR with 157 fuel assemblies. The primary circuit pumps, pressurizer and steam generators (with necessary secondary side) are modeled using RELAP5. The core has been divided into 20 axial nodes and 6 radial rings; the corresponding six groups of assemblies have been modeled as six pipe components with proportionate flow area. Fuel assemblies are modeled using SCDAP fuel and control components. SCDAP has 2d-heat conduction and radiative heat transfer, oxidation and complete severe fuel damage progression models. The final input deck achieved all the steady state thermal hydraulic conditions comparable to the design control document of AP1000. To quantify the core behavior, under unavailability of all safety systems, various time profiles for SBO simulations @ high pressure and low pressure have been compared. This analysis has been performed for 102% (3468 MWt) of the rated core power. The

  6. Core Competencies for Training Effective School Consultants

    Science.gov (United States)

    Burkhouse, Katie Lynn Sutton

    2012-01-01

    The purpose of this research was to develop and validate a set of core competencies of effective school-based consultants for preservice school psychology consultation training. With recent changes in service delivery models, psychologists are challenged to engage in more indirect, preventative practices (Reschly, 2008). Consultation emerges as…

  7. One-dimensional modeling of radial heat removal during depressurized heatup transients in modular pebble-bed and prismatic high temperature gas-cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Savage, M.G.

    1984-07-01

    A one-dimensional computational model was developed to evaluate the heat removal capabilities of both prismatic-core and pebble-bed modular HTGRs during depressurized heatup transients. A correlation was incorporated to calculate the temperature- and neutron-fluence-dependent thermal conductivity of graphite. The modified Zehner-Schluender model was used to determine the effective thermal conductivity of a pebble bed, accounting for both conduction and radiation. Studies were performed for prismatic-core and pebble-bed modular HTGRs, and the results were compared to analyses performed by GA and GR, respectively. For the particular modular reactor design studied, the prismatic HTGR peak temperature was 2152.2/sup 0/C at 38 hours following the transient initiation, and the pebble-bed peak temperature was 1647.8/sup 0/C at 26 hours. These results compared favorably with those of GA and GE, with only slight differences caused by neglecting axial heat transfer in a one-dimensional radial model. This study found that the magnitude of the initial power density had a greater effect on the temperature excursion than did the initial temperature.

  8. Micro-seismic Signals Recorded During Fast Depressurization of Natural Volcanic Samples in a Shock Tube Apparatus

    Science.gov (United States)

    Arciniega-Ceballos, A.; Alatorre-Ibargüengoitia, M.; Dingwell, D. B.; Scheu, B.; Delgado Granados, H.; Navarrete Montesinos, M.; Richard, D.; Kueppers, U.; Lavallée, Y.

    2009-12-01

    Volcanic eruptions generate different types of seismic signals in a wide frequency bandwidth. Volcano seismology studies have dealt with analyzing seismic signals characteristics and waveform patterns in order to discriminate between source, path and site effects and reconstruct the volcanic source dynamics. The source may involve brittle failure, magma transport, magma fragmentation, bubble collapse, fluid depressurization, fluid instabilities, degassing or a combination of these processes. Given the complexity of the volcanic source dynamics and the impossibility to undertake direct observations of the source, laboratory experiments provide a promising approach to investigate the source process. In this study we present preliminary results of an experimental approach in a shock tube apparatus. The apparatus consists of two serial steel pipes separated by a diaphragm: the autoclave which represents the "source mechanism", where the samples are pressurized and fragmented, and a tank which represents a conduit. The physical mechanism consists of the slow pressurization (using Argon gas) followed by rapid depressurization of natural samples of ash (> 0.5 mm), pumice (with average porosity of 63%,) and fragmented particles of pumice. Several experiments were designed under controlled pressure conditions (ranging from 4 to 20 MPa), at room temperature. Micro-seismic signals were detected during the depressurization process using high dynamic piezo film sensors (PDF, 0.001 - 10 G Hz analog bandwidth, low impedance), fixed and distributed along the tube system. In addition, two laser beams (wavelength 532 nm) measure the speed of the ejected materials; all sensors were correlated and synchronized with two dynamic pressure sensors located at the autoclave. The resonance of the empty tube apparatus was characterized in order to distinguish between natural resonance of the tank due to the pressure shock wave and the signals generated by depressurization of the system and

  9. Numerical simulations of sand production in interbedded hydrate-bearing sediments during depressurization

    Science.gov (United States)

    Uchida, Shun; Lin, Jeen-Shang; Myshakin, Evgeniy; Seol, Yongkoo; Collett, Timothy S.; Boswell, Ray

    2017-01-01

    Geomechanical behavior of hydrate-bearing sediments during gas production is complex, involving changes in hydrate-dependent mechanical properties. When interbedded clay layers are present, the complexity is more pronounced because hydrate dissociation tends to occur preferentially in the sediments adjacent to the clay layers due to clay layers acting as a heat source. This would potentially lead to shearing deformation along the sand/clay contacts and may contribute to solid migration, which hindered past field-scale gas production tests. This paper presents a near-wellbore simulation of sand/clay interbedded hydrate-bearing sediments that have been subjected to depressurization and discusses the effect of clay layers on sand production.

  10. Comparative experiments to assess the effects of accumulator nitrogen injection on passive core cooling during small break LOCA

    Energy Technology Data Exchange (ETDEWEB)

    Li, YuQuan; Hao, Botao; Zhong, Jia; Wan Nam [State Nuclear Power Technology R and D Center, South Park, Beijing Future Science and Technology City, Beijing (China)

    2017-02-15

    The accumulator is a passive safety injection device for emergency core cooling systems. As an important safety feature for providing a high-speed injection flow to the core by compressed nitrogen gas pressure during a loss-of-coolant accident (LOCA), the accumulator injects its precharged nitrogen into the system after its coolant has been emptied. Attention has been drawn to the possible negative effects caused by such a nitrogen injection in passive safety nuclear power plants. Although some experimental work on the nitrogen injection has been done, there have been no comparative tests in which the effects on the system responses and the core safety have been clearly assessed. In this study, a new thermal hydraulic integral test facility—the advanced core-cooling mechanism experiment (ACME)—was designed and constructed to support the CAP1400 safety review. The ACME test facility was used to study the nitrogen injection effects on the system responses to the small break loss-of-coolant accident LOCA (SBLOCA) transient. Two comparison test groups—a 2-inch cold leg break and a double-ended direct-vessel-injection (DEDVI) line break—were conducted. Each group consists of a nitrogen injection test and a nitrogen isolation comparison test with the same break conditions. To assess the nitrogen injection effects, the experimental data that are representative of the system responses and the core safety were compared and analyzed. The results of the comparison show that the effects of nitrogen injection on system responses and core safety are significantly different between the 2-inch and DEDVI breaks. The mechanisms of the different effects on the transient were also investigated. The amount of nitrogen injected, along with its heat absorption, was likewise evaluated in order to assess its effect on the system depressurization process. The results of the comparison and analyses in this study are important for recognizing and understanding the potential negative

  11. Comparative Experiments to Assess the Effects of Accumulator Nitrogen Injection on Passive Core Cooling During Small Break LOCA

    Directory of Open Access Journals (Sweden)

    Li Yuquan

    2017-02-01

    Full Text Available The accumulator is a passive safety injection device for emergency core cooling systems. As an important safety feature for providing a high-speed injection flow to the core by compressed nitrogen gas pressure during a loss-of-coolant accident (LOCA, the accumulator injects its precharged nitrogen into the system after its coolant has been emptied. Attention has been drawn to the possible negative effects caused by such a nitrogen injection in passive safety nuclear power plants. Although some experimental work on the nitrogen injection has been done, there have been no comparative tests in which the effects on the system responses and the core safety have been clearly assessed. In this study, a new thermal hydraulic integral test facility—the advanced core-cooling mechanism experiment (ACME—was designed and constructed to support the CAP1400 safety review. The ACME test facility was used to study the nitrogen injection effects on the system responses to the small break loss-of-coolant accident LOCA (SBLOCA transient. Two comparison test groups—a 2-inch cold leg break and a double-ended direct-vessel-injection (DEDVI line break—were conducted. Each group consists of a nitrogen injection test and a nitrogen isolation comparison test with the same break conditions. To assess the nitrogen injection effects, the experimental data that are representative of the system responses and the core safety were compared and analyzed. The results of the comparison show that the effects of nitrogen injection on system responses and core safety are significantly different between the 2-inch and DEDVI breaks. The mechanisms of the different effects on the transient were also investigated. The amount of nitrogen injected, along with its heat absorption, was likewise evaluated in order to assess its effect on the system depressurization process. The results of the comparison and analyses in this study are important for recognizing and understanding the

  12. The possibility and the effects of a steam explosion in the BWR lower head on recriticality of a BWR core

    Energy Technology Data Exchange (ETDEWEB)

    Sehgal, B.R.; Dinh, T.N. [Sehgal Consult (Sweden)

    2002-12-01

    The report describes an analysis considering a BWR postulated severe accident scenario during which the late vessel automatic depressurization brings the water below the level of the bottom core plate. The subsequent lack of ECCS leads to core heat up during which the control rods melt and the melt deposits on the core plate. At that point of time in the scenario, the core fuel bundles are still intact and the Zircaloy clad oxidation is about to start. The objective of the study is to provide the conditions of reflood into the hot core due to the level swell or a slug delivered from the lower head as the control rod melt drops into the water. These conditions are employed in the neutronic analysis with the RECRIT code to determine if the core recriticality may be achieved. (au)

  13. Heat transfer characteristics in depressurized LOFC accidents with a failure of the RCCS in a modular gas-cooled reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seyun; Ha, Sangjun [Korea Electric Power Research Institute, Daejeon (Korea, Republic of); Tak, Namil; Lim, Hongsik [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-10-15

    A modular gas-cooled reactor has inherent safety characteristics with its large heat capacity and low power density of the core when compared with conventional light water reactors. The reactor cavity cooling system (RCCS) serves as an ultimate heat sink in a high temperature gas-cooled reactor and is a system for the removal of the decay and residual heat from the uninsulated reactor vessel to ensure a plant safety. To understand the inherent safety features of the designed reactor, analyses for the RCCS performance in various severe accident conditions are required. A depressurized loss of forced circulation (LOFC) accident was considered as an initiating condition. To investigate the safety characteristics of a GCR under the one of the worst accidental scenarios, a simultaneous failure of the RCCS is considered in this study.

  14. Superrotation of Earth’s Inner Core, Extraterrestrial Impacts, and the Effective Viscosity of Outer Core

    Directory of Open Access Journals (Sweden)

    Pirooz Mohazzabi

    2015-01-01

    Full Text Available The recently verified superrotation of Earth’s inner core is examined and a new model is presented which is based on the tidal despinning of the mantle and the viscosity of the outer core. The model also takes into account other damping mechanisms arising from the inner core superrotation such as magnetic and gravitational coupling as well as contribution from eddy viscosity in the outer core. The effective viscosity obtained in this model confirms a previously well constrained value of about 103 Pa s. In addition, the model shows that the currently measured superrotation of the inner core must be almost exactly equal to its asymptotic or steady-state value. The effect of extraterrestrial impacts is also investigated, and it is shown that perturbations due to such impacts can only persist over a short geological time.

  15. CORE

    DEFF Research Database (Denmark)

    Krigslund, Jeppe; Hansen, Jonas; Hundebøll, Martin

    2013-01-01

    different flows. Instead of maintaining these approaches separate, we propose a protocol (CORE) that brings together these coding mechanisms. Our protocol uses random linear network coding (RLNC) for intra- session coding but allows nodes in the network to setup inter- session coding regions where flows...... intersect. Routes for unicast sessions are agnostic to other sessions and setup beforehand, CORE will then discover and exploit intersecting routes. Our approach allows the inter-session regions to leverage RLNC to compensate for losses or failures in the overhearing or transmitting process. Thus, we...... increase the benefits of XORing by exploiting the underlying RLNC structure of individual flows. This goes beyond providing additional reliability to each individual session and beyond exploiting coding opportunistically. Our numerical results show that CORE outperforms both forwarding and COPE...

  16. Facies-controlled fluid migration patterns and subsequent reservoir collapse by depressurization - the Entrada Sandstone, Utah

    Science.gov (United States)

    Sundal, A.; Skurtveit, E.; Midtkandal, I.; Hope, I.; Larsen, E.; Kristensen, R. S.; Braathen, A.

    2016-12-01

    The thick and laterally extensive Middle Jurassic Entrada Sandstone forms a regionally significant reservoir both in the subsurface and as outcrops in Utah. Individual layers of fluvial sandstone within otherwise fine-grained aeolian dunes and silty inter-dune deposits of the Entrada Earthy Member are of particular interest as CO2 reservoir analogs to study injectivity, reservoir-caprock interaction and bypass systems. Detailed mapping of facies and deformation structures, including petrographic studies and core plug tests, show significant rock property contrasts between layers of different sedimentary facies. Beds representing fluvial facies appear as white, medium-grained, well-sorted and cross-stratified sandstone, displaying high porosity, high micro-scale permeability, low tensile strength, and low seismic velocity. Subsequent to deposition, these beds were structurally deformed and contain a dense network of deformation bands, especially in proximity to faults and injectites. Over- and underlying low-permeability layers of inter-dune aeolian facies contain none or few deformation bands, display significantly higher rock strengths and high seismic velocities compared to the fluvial inter-beds. Permeable units between low-permeability layers are prone to become over-pressured during burial, and the establishment of fluid escape routes during regional tectonic events may have caused depressurization and selective collapse of weak layers. Through-cutting, vertical sand pipes display large clasts of stratified sandstone suspended in remobilized sand matrix, and may have served as permeable fluid conduits and pressure vents before becoming preferentially cemented and plugged. Bleached zones around faults and fractures throughout the succession indicate leakage and migration of reducing fluids. The fluvial beds are porous and would appear in wireline logs and seismic profiles as excellent reservoirs; whereas due to dense populations of deformation bands they may in

  17. An approach to the subslab depressurization remedial action in a high (222)Rn concentration dwelling.

    Science.gov (United States)

    Llerena, J J; Cortina, D; Durán, I; Sorribas, R

    2010-03-01

    Galicia (NW Spain) is a radon-prone area in the Iberian Peninsula. Measurements were carried out at a rural dwelling, with an annual average of radon concentration over 4000 Bq m(-3) and a maximum of 9000 Bq m(-3), found during a radon screening campaign held in the Autonomous Community of Galicia. We performed a detailed study to identify the main contamination source and the behaviour of the radon concentration, in which a linear dependence with temperature was verified, once corrected for relative humidity. We used different passive methods (charcoal canisters and two types of etched track detectors) as well as a radon concentration monitor that provided continuous measurement. Subsequent to this characterization, and in order to reduce the high radon concentration, a remedial action was developed using different passive and forced ventilation methods. A modified subslab depressurization technique was found to be the most effective remedy, providing a radon concentration reduction of around 96%. This method also has the advantages of being inexpensive and reliable over time. 2009 Elsevier Ltd. All rights reserved.

  18. Experimental investigation of iodine removal and containment depressurization in containment spray system test facility of 700 MWe Indian pressurized heavy water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Manish [Department of Mechanical Engineering, I.I.T., Bombay, Powai, Mumbai (India); Kandar, T.K.; Vhora, S.F.; Mohan, Nalini [Directorate of Technology Development, Nuclear Power Corporation of India Limited, Mumbai (India); Iyer, K.N. [Department of Mechanical Engineering, I.I.T., Bombay, Powai, Mumbai (India); Prabhu, S.V., E-mail: svprabhu@iitb.ac.in [Department of Mechanical Engineering, I.I.T., Bombay, Powai, Mumbai (India)

    2017-05-15

    Highlights: • Depressurization rate in a scaled down vessel filled with air and steam is studied. • Iodine removal rate in a scaled down vessel filled with steam/air is investigated. • Effect of SMD and vessel pressure on depressurization rate is studied. • Depressurization rate decreases with the increase in the droplet size (590 μm – 1 mm) • Decrease in pressure and iodine concentration with time follow exponential trend. - Abstract: As an additional safety measure in the new 700 MWe Indian pressurized heavy water reactors, the first of a kind system called containment Spray System is introduced. The system is designed to cater/mitigate the conditions after design basis accidents i.e., loss of coolant accident and main steam line break. As a contribution to the safety analysis of condition following loss-of-coolant accidents, experiments are carried out to establish the performance of the system. The loss of coolant is simulated by injecting saturated steam and iodine vapors into the containment vessel in which air is enclosed at atmospheric and room temperature, and then the steam-air mixture is cooled by sprays of water. The effect of water spray on the containment vessel pressure and the iodine scrubbing in a scaled down facility is investigated for the containment spray system of Indian pressurized heavy water reactors. The experiments are carried out in the scaled down vessel of the diameter of 2.0 m and height of 3.5 m respectively. Experiments are conducted with water at room temperature as the spray medium. Two different initial vessel pressure i.e. 0.7 bar and 1.0 bar are chosen for the studies as they are nearing the loss of coolant accident & main steam line break pressures in Indian pressurized heavy water reactors. These pressures are chosen based on the containment resultant pressures after a design basis accident. The transient temperature and pressure distribution of the steam in the vessel are measured during the depressurization

  19. RECOMMENDED SUB-SLAB DEPRESSURIZATION SYSTEMS DESIGN STANDARD OF THE FLORIDA RADON RESEARCH PROGRAM

    Science.gov (United States)

    The report recommends sub-slab depressurization systems design criteria to the State of Florida's Department of Community Affairs for their building code for radon resistant houses. Numerous details are set forth in the full report. Primary criteria include: (1) the operating soi...

  20. ENGINEERING DESIGN CRITERIA FOR SUB-SLAB DEPRESSURIZATION SYSTEMS IN LOW-PERMEABILTY SOLIDS

    Science.gov (United States)

    The report describes the development of engineering design criteria for the successful design, installation, and operation of sub-slab depressurization systems, based on radon (Rn) mitigation experience on 14 slab-on-grade houses in South Central Florida. The Florida houses are c...

  1. RCGVS design improvement and depressurization capability tests for Ulchin nuclear power plant units 3 and 4

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Kang Sik; Seong, Ho Je; Jeong, Won Sang; Seo, Jong Tae; Lee, Sang Keun [Korea Power Engineering Company, Inc., Seoul (Korea, Republic of); Lim, Keun Hyo; Choi, Kwon Sik; Oh, Chul Sung [Korea Electric Power Cooperation, Taejon (Korea, Republic of)

    1998-12-31

    The Reactor Coolant Gas Vent System(RCGVS) design for Ulchin Nuclear Power Plant Units 3 and 4 (UCN 3 and 4) has been improved from the Yonggwang Nuclear Power Plant Units 3 and 4 (YGN 3 and 4) based on the evaluation results for depressurization capability tests performed at YGN 3 and 4. There has been a series of plant safety analyses for Natural Circulation Cooldown(NCC) event and thermo-dynamic analyses with RELAP5 code for the steam blowdown phenomena in order to optimize the orifice size of UCN 3 and 4 RCGVS. Based on these analyses results, the RCGVS orifics size for UCN 3 and 4 has been reduced to 9/32 inch from the 11/32 inch for YGN 3 and 4. The depressurization capability tests, which were performed at UCN 3 in order to verify the FSAR NCC analysis results, show that the RCGVS depressurization rates are being within the acceptable ranges. Therefore, it is concluded that the orificed flow path of UCN 3 and 4 RCGVS is adequately designed, and can provide the safety-grade depressurization capability required for a safe plant operation. 6 refs., 5 figs., 1 tab. (Author)

  2. Core size effects on safety performances of LMRs

    Energy Technology Data Exchange (ETDEWEB)

    Na, Byung Chan; Hahn, Do Hee [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    An oxide fuel small size core (1200 MWt) was analyzed in comparison with a large size core (3600 MWt) in order to evaluate the size effects on transient safety performances of liquid-metal reactors (LMRs). In the first part of the study, main static safety parameters (i.e., Doppler coefficient, sodium void effect, etc.) of the two cores were characterized, and the second part of the study was focused on the dynamic behavior of the cores in two representative transient events: the unprotected loss-of-flow (ULOF) and the unprotected transient overpower (UTOP). Margins to fuel melting and sodium boiling have been evaluated for these representative transients. Results show that the small core has a generally better or equivalent level of safety performances during these events. 6 refs., 4 figs., 2 tabs. (Author)

  3. Modeling of transport phenomena during gas hydrate decomposition by depressurization and/or thermal stimulation

    Science.gov (United States)

    Abendroth*, Sven; Klump, Jens; Thaler, Jan; Schicks, Judith M.

    2013-04-01

    In the context of the German joint project SUGAR (Submarine Gas Hydrate Reservoirs: exploration, extraction and transport) we conducted a series of experiments in the LArge Reservoir Simulator (LARS) at the German Research Centre of Geosciences Potsdam (Beeskow-Strauch et al., this volume). These experiments allow us to investigate the formation and dissociation of hydrates at large scale laboratory conditions. Processes inside LARS are modeled to study the effects of sediment properties as well as physical and chemical processes on parameters such as hydrate dissociation rate and methane production rate. The experimental results from LARS are used to provide details about processes inside the pressure vessel, validate the models through history matching, and feed back into the design of future experiments. In experiments in LARS the amount of methane produced from gas hydrates was much lower than expected. Previously published models predict a methane production rate higher than the observed in experiments and field studies (Uddin and Wright 2005; Uddin et al. 2010; Wright et al. 2011). The authors of the aforementioned studies point out that the current modeling approach overestimates the gas production rate when modeling gas production by depressurization. Uddin and Wright (2005) suggested that trapping of gas bubbles inside the porous medium is responsible for the reduced gas production rate. They point out that this behavior of multi-phase flow is not well explained by a "residual oil" model, but rather resembles a "foamy oil" model. Our study applies Uddin's (2010) "foamy oil" model and combines it with history matches of our experiments in LARS. First results indicate a better agreement between experimental and model results when using the "foamy oil" model instead of conventional models featuring gas flow in water. Further experiments with LARS, including hydrate dissociation by depressurization and thermal stimulation by in-situ combustion will be used to

  4. The Effect of Core Exercises on Transdiaphragmatic Pressure

    OpenAIRE

    Strongoli, Lisa M.; Gomez, Christopher L.; Coast, J. Richard

    2010-01-01

    Abdominal exercises, such as sit ups and leg lifts, are used to enhance strength of the core muscles. An overlooked aspect of abdominal exercises is the compression the abdomen, leading to increased diaphragmatic work. We hypothesized that core exercises would produce a variety of transdiaphragmatic pressures. We also sought to determine if some of the easy exercises would produce pressures sufficient for a training stimulus to the diaphragm. We evaluated the effect of 13 different abdominal ...

  5. Effective interactions and operators in no-core shell model

    OpenAIRE

    Stetcu, I.; Rotureau, J.

    2012-01-01

    Solutions to the nuclear many-body problem rely on effective interactions, and in general effective operators, to take into account effects not included in calculations. These include effects due to the truncation to finite model spaces where a numerical calculation is tractable, as well as physical terms not included in the description in the first place. In the no-core shell model (NCSM) framework, we discuss two approaches to the effective interactions based on (i) unitary transformations ...

  6. Effects of Core-Musculature Fatigue on Maximal Shoulder Strength.

    Science.gov (United States)

    Rosemeyer, James R; Hayes, Bradley T; Switzler, Craig L; Hicks-Little, Charlie A

    2015-11-01

    Core stability has been shown to affect lower-extremity motion, but activation of the core has also been observed just before movements of the upper extremity. However, there is limited evidence regarding the effects that core musculature has on upper-extremity strength. To determine the effects of core fatigue on maximal shoulder strength. Crossover study. Sports-medicine research laboratory. 23 participants (15 male and 8 female, age 21.3 ± 2.5 y, height 174.5 ± 10.3 cm, weight 71.3 ± 12.0 kg). All participants performed maximal voluntary isometric contractions in 3 different planes (sagittal, frontal, transverse) of shoulder-joint motion. A core-fatiguing protocol was conducted, and the same 3 shoulder-strength tests were repeated and compared with the initial measurements. Strength measures were recorded in kilograms with a dynamometer. Results showed a significant decrease in strength in the frontal (-0.56 ± 1.06 kg, P = .020) and transverse (-0.89 ± 1.49 kg, P = .012) planes but not in the sagittal plane (-0.20 ± 0.98 kg, P > .05). Furthermore, regardless of the specific strength test measured, results revealed that the 1st (-7.05% ± 11.65%, P = .012) and 2nd (-5.71% ± 12.03%, P = .042) strength-test measurements after the fatiguing protocol were significantly decreased, while the 3rd strength-test measurement (-4.19% ± 12.48%, P = .140) did not show statistical significance. These results indicate that decrease in core stability may have an influence on shoulder strength. The literature suggests that the core is designed for endurance, and this study helps validate its recovery properties. Further research is needed to determine the significance of this effect and how injury rates coincide.

  7. Effects of mouldy core and core rot on physiological and biochemical responses of apple fruit.

    Science.gov (United States)

    Li, Shunfeng; Zhang, Lihua; Liu, Xinghua

    2011-11-01

    Apple mouldy core (MC) and core rot (CR) are pathogenic disorders associated with the core region of fruits of susceptible varieties that have open calyx tubes. MC is not economically important because its symptoms are restricted to within the seed cavities, but CR is an important postharvest disease because its symptoms penetrate the fruit flesh and bring about economic losses. Recently, most studies have focused on causal agents and control of apple MC and CR. However, there is little information on the physiological and biochemical responses of apple fruits with MC and CR. The results indicated that MC and CR have different effects on the physiological and biochemical indices of apple fruits. Higher polyphenol oxidase (PPO) activity and total phenolic content were found in MC, dry CR (DCR) and asymptomatic tissue of wet CR (asympWCR) fruits than in healthy fruits, as well as significantly higher catalase and peroxidase activities in DCR and symptomatic tissue of WCR (sympWCR) fruits respectively, while asympWCR fruits showed a marked increase in malondialdehyde content, membrane permeability and superoxide production and a significant decrease in superoxide dismutase activity. The findings suggest that PPO and phenolic compounds may play a key role in the defence system of apple fruits against MC and CR. Copyright © 2011 Society of Chemical Industry.

  8. Hysteresis effects in the cores of particle accelerator magnets

    CERN Document Server

    AUTHOR|(CDS)2086181; Schoerling, Daniel

    A study of the hysteresis effects in the cores of particle accelerator magnets has been performed in the framework of the work presented in this thesis. This study has been focused on normal conducting particle accelerator magnets whose cores are manufactured using ferromagnetic materials. The magnetic circuits have been modelled using the developed models: one model for the magnetic circuit and one for the magnetization of the material in the core. The parameters of the magnetic circuit model have been identified with the help of simulations which rely on the finite element method (Opera 3D), while the parameters of the magnetic hysteresis model have been identified through experimental measurements performed using a method developed in the framework of this work. The modelling results have been validated by means of experimental measurements performed on two magnets: one small size magnet which has been specifically designed and manufactured, and one magnet which is currently used in a particle accelerator ...

  9. The Effect of Core Configuration on Thermal Barrier Thermal Performance

    Science.gov (United States)

    DeMange, Jeffrey J.; Bott, Robert H.; Druesedow, Anne S.

    2015-01-01

    Thermal barriers and seals are integral components in the thermal protection systems (TPS) of nearly all aerospace vehicles. They are used to minimize heat transfer through interfaces and gaps and protect underlying temperature-sensitive components. The core insulation has a significant impact on both the thermal and mechanical properties of compliant thermal barriers. Proper selection of an appropriate core configuration to mitigate conductive, convective and radiative heat transfer through the thermal barrier is challenging. Additionally, optimization of the thermal barrier for thermal performance may have counteracting effects on mechanical performance. Experimental evaluations have been conducted to better understand the effect of insulation density on permeability and leakage performance, which can significantly impact the resistance to convective heat transfer. The effect of core density on mechanical performance was also previously investigated and will be reviewed. Simple thermal models were also developed to determine the impact of various core parameters on downstream temperatures. An extended understanding of these factors can improve the ability to design and implement these critical TPS components.

  10. Mechanical Properties of Porous Titanium Structure Fabricated by Investment Casting with Pressurization/Depressurization System

    Energy Technology Data Exchange (ETDEWEB)

    Kang, San; Lee, Ji-Woon; Hyun, Soong-Keun [Inha University, Seoul (Korea, Republic of); Lee, Byong-Pil; Kim, Myoung-Gyun [Research Institute of Industrial Science and Technology (RIST), Pohang (Korea, Republic of); Kim, Young-Jig [Sungkyunkwan University, Suwon (Korea, Republic of)

    2014-03-15

    A porous titanium structure was fabricated by investment casting with a pressurization/depressurization system, and its mechanical properties were studied. A Micro-Vickers hardness profile revealed that hardness gradually increased from the matrix to the metal/mold interface. A compression test was conducted on a single cell of the porous Ti structure. The theoretical and experimental values of yield strength were in good agreement. Such agreement suggested that the reaction layer did not affect the macro-mechanical properties of the porous Ti structure.

  11. Relativistic beaming and orientation effects in core-dominated quasars

    CERN Document Server

    Ubachukwu, A A

    2002-01-01

    In this paper, we investigate the relativistic beaming effects in a well-defined sample of core-dominated quasars using the correlation between the relative prominence of the core with respect to the extended emission (defined as the ratio of the core- to the lobe- flux density measured in the rest frame of the source) and the projected linear size as an indicator of relativistic beaming and source orientation. Based on the orientation-dependent relativistic beaming and unification paradigm for high luminosity sources in which the Fanaroff-Riley class-II radio galaxies form the unbeamed parent population of both the lobe- and coredominated quasars which are expected to lie at successively smaller angles to the line of sight, we find that the flows in the cores of these coredominated quasars are highly relativistic, with optimum bulk Lorentz factor, $\\gamma_{opt}\\sim6-16$, and also highly anisotropic, with an average viewing angle, $\\sim9^0-16^0$. Furthermore, the largest boosting occurs within a critical cone...

  12. Effects of lumbar artificial disc design on intervertebral mobility: in vivo comparison between mobile-core and fixed-core.

    Science.gov (United States)

    Delécrin, Joël; Allain, Jérôme; Beaurain, Jacques; Steib, Jean-Paul; Huppert, Jean; Chataigner, Hervé; Ameil, Marc; Aubourg, Lucie; Nguyen, Jean-Michel

    2012-06-01

    Although in theory, the differences in design between fixed-core and mobile-core prostheses should influence motion restoration, in vivo kinematic differences linked with prosthesis design remained unclear. The aim of this study was to investigate the rationale that the mobile-core design seems more likely to restore physiological motion since the translation of the core could help to mimic the kinematic effects of the natural nucleus. In vivo intervertebral motion characteristics of levels implanted with the mobile-core prosthesis were compared with untreated levels of the same population, levels treated by a fixed-core prosthesis, and normal levels (data from literature). Patients had a single-level implantation at L4L5 or L5S1 including 72 levels with a mobile-core prosthesis and 33 levels with a fixed-core prosthesis. Intervertebral mobility characteristics included the range of motion (ROM), the motion distribution between flexion and extension, the prosthesis core translation (CT), and the intervertebral translation (VT). A method adapted to the implanted segments was developed to measure the VT: metal landmarks were used instead of the bony landmarks. The reliability assessment of the VT measurement method showed no difference between three observers (p core prosthesis replicated physiological VT at L4L5 levels but not at L5S1 levels, and that the fixed-core prosthesis did not replicate physiological VT at any level by increasing VT. As the VT decreased when the CT increased (p core mobility minimized the VT. Furthermore, some physiologic mechanical behaviors seemed to be maintained: the VT was higher at implanted the L4L5 level than at the implanted L5S1 level, and the CT appeared lower at the L4L5 level than at the L5S1 level. ROM and motion distribution were not different between the mobile-core prosthesis and the fixed-core prosthesis implanted levels. This study validated in vivo the concept that a mobile-core helps to restore some physiological

  13. Effect of In-core Blockage by Debris during Post-LOCA Long Term Core Cooling Phase of Kori-2

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Taewan [Incheon National University, Incheon (Korea, Republic of); Jin, Chang-Yong; Bang, Young-Seok [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2016-10-15

    Generic Safety Issue (GSI) 191 concerns the degradation of heat transfer in the core during Post loss-of-coolant-accident (LOCA) long term core cooling (LTCC) phase by debris which may go through the sump strainer and could be deposited at the core inlet and fuel surface. United State Nuclear Regulatory Commission (US NRC) approved a generic and conservative methodology described in WCAP-16793-NP Rev. 2, and has made use of it for GSI-191 resolution. In Korea, as a part of periodic safety review of Kori-2, an evaluation of thermal hydraulic effect of in-core blockage by debris has carried out based on a conservative emergency core cooling system (ECCS) evaluation method (EM). This paper describes a realistic approach to evaluate the thermal hydraulic effect of in-core blockage by debris during post-LOCA LTCC of Kori-2. The MARS-KS 1.3 code has been employed for the thermal hydraulic analysis. The effect of in-core blockage by debris has been evaluated by thermal hydraulic analyses with MARS-KS. In order to evaluate the heat transfer degradation by debris deposition a conservative and realistic fuel models has been developed, respectively. The analysis indicates that the PCT during the post-LOCA LTCC phase increases due to the heat transfer degradation by debris deposition and flow reduction by in-core blockage. It is also found that the PCT increases more in hot leg break case because of a larger reduction in core flow by higher pressure drop at the core inlet.

  14. Experimental Investigation Evaporation of Liquid Mixture Droplets during Depressurization into Air Stream

    Science.gov (United States)

    Liu, L.; Bi, Q. C.; Terekhov, Victor I.; Shishkin, Nikolay E.

    2010-03-01

    The objective of this study is to develop experimental method to study the evaporation process of liquid mixture droplets during depressurization and into air stream. During the experiment, a droplet was suspended on a thermocouple; an infrared thermal imager was used to measure the droplet surface temperature transition. Saltwater droplets were used to investigate the evaporation process during depressurization, and volatile liquid mixtures of ethanol, methanol and acetone in water were applied to experimentally research the evaporation into air stream. According to the results, the composition and concentration has a complex influence on the evaporation rate and the temperature transition. With an increase in the share of more volatile component, the evaporation rate increases. While, a higher salt concentration in water results in a lower evaporation rate. The shape variation of saltwater droplet also depends on the mass concentration in solution, whether it is higher or lower than the eutectic point (22.4%). The results provide important insight into the complex heat and mass transfer of liquid mixture during evaporation.

  15. THE EFFECT OF CORE EXERCISES ON TRANSDIAPHRAGMATIC PRESSURE

    Directory of Open Access Journals (Sweden)

    Lisa M. Strongoli

    2010-06-01

    Full Text Available Abdominal exercises, such as sit ups and leg lifts, are used to enhance strength of the core muscles. An overlooked aspect of abdominal exercises is the compression the abdomen, leading to increased diaphragmatic work. We hypothesized that core exercises would produce a variety of transdiaphragmatic pressures. We also sought to determine if some of the easy exercises would produce pressures sufficient for a training stimulus to the diaphragm. We evaluated the effect of 13 different abdominal exercises, ranging in difficulty, on transdiaphragmatic pressure (Pdi, an index of diaphragmatic activity. Six healthy subjects, aged 22 to 53, participated. Each subject was instrumented with two balloon-tipped catheters to obtain gastric and esophageal pressures, from which Pdi was calculated. Prior to initiating the exercises, each subject performed a maximal inspiratory pressure (MIP maneuver. Resting Pdi was also measured. The exercises were performed from least to most difficult, with five repetitions each. There was a significant difference between the exercises and the MIP Pdi, as well as between the exercises and resting Pdi (p 50% of the Pdi during the MIP maneuver, which may provide a training stimulus to the diaphragm if used as a regular exercise. The Pdi measurements also provide insight into diaphragm recruitment during different core exercises, and may aid in the design of exercises to improve diaphragm strength and endurance

  16. Creep effect modeling for a core free tubular actuator

    Science.gov (United States)

    Sarban, Rahimullah; Oubaek, Jakob; Jones, Richard W.

    2009-03-01

    Of the range of dielectric EAP-based actuators that currently exist those having a cylindrical configuration are perhaps the most important. Up until now the most popular tubular actuator designs have exploited the exceptional pre-strain performance of the acrylics VHB 2910 and VHB 2905. Unfortunately pre-stained acrylic film rolled tubular actuators with a spring core experience problems concerning reliability and life expectancy. Partly because of these problems research is beginning to be directed towards the design, fabrication and characterisation of core free tubular actuators. This work reviews the Voltage-Strain modeling of core free rolled actuators that are constructed using a dielectric electro active polymer film that employs smart electrode technology. Position response tests, whereby a step input of 1500 V was applied to each actuator, confirmed that time dependent strain influences the Voltage-Strain behaviour of the actuators. To represent the time dependent strain behaviour a creep effect model was combined with Pelrine's electromechanical model to provide a more accurate representation of the Voltage-Strain characteristics of the actuators.

  17. Dynamic calculations of the core/shell structured Ising-type endohedral fullerenes: The effect of core and core/shell interaction

    Science.gov (United States)

    Kantar, Ersin

    2017-11-01

    In this study, we examine by comparing the dynamic magnetic and hysteretic properties of Ising-type endohedral fullerene (EF) with various dopant magnetic particles confined within a spherical cage. The model of EF X@C60(Spin-1/2) with X = spin-1/2, spin-1 and spin-3/2 is proposed to study the effect of the nature of core particle on the magnetic properties. The results were obtained by mean-field theory as well as Glauber-type stochastic dynamics, and focused on the response of thermal and hysteretic behaviors of systems. The system exhibits second- and first-order phase transitions. In three different core cases, the system also exhibits type-II superconductivity behavior with a dynamic hysteresis curves of the core. All results display magnetic properties of the EF which strongly depend on the nature of core particle. Moreover, core particle and core/shell (C-S) interaction are proposed as the basic factors affecting the magnetic properties of EF system.

  18. The effect of an eight-week training programme on core stability in ...

    African Journals Online (AJOL)

    A strong core musculature dynamically stabilises the pelvis during functional movements. Although it has been established that focused core training has a positive effect in numerous sports, little is known about the effect in gymnasts. The aim of this study was to assess the effect of an eight week core training programme on ...

  19. REFERENCE MANUAL FOR RASSMIT VERSION 2.1: SUB-SLAB DEPRESSURIZATION SYSTEM DESIGN PERFORMANCE SIMULATION PROGRAM

    Science.gov (United States)

    The report is a reference manual for RASSMlT Version 2.1, a computer program that was developed to simulate and aid in the design of sub-slab depressurization systems used for indoor radon mitigation. The program was designed to run on DOS-compatible personal computers to ensure ...

  20. Combining Slater-type orbitals and effective core potentials

    Science.gov (United States)

    Lesiuk, Michał; Tucholska, Aleksandra M.; Moszynski, Robert

    2017-05-01

    We present a general methodology to evaluate matrix elements of the effective core potentials (ECPs) within a one-electron basis set of Slater-type orbitals (STOs). The scheme is based on translation of individual STO distributions in the framework of the Barnett-Coulson method. We discuss different types of integrals which naturally appear and reduce them to a few basic quantities which can be calculated recursively or purely numerically. Additionally, we consider evaluation of the STOs matrix elements involving the core polarization potentials and effective spin-orbit potentials. Construction of the STOs basis sets designed specifically for use with ECPs is discussed and differences in comparison with all-electron basis sets are briefly summarized. We verify the validity of the present approach by calculating excitation energies, static dipole polarizabilities, and valence orbital energies for the alkaline-earth metals (Ca, Sr, and Ba). Finally, we evaluate interaction energies, permanent dipole moments, and ionization energies for barium and strontium hydrides, and compare them with the best available experimental and theoretical data.

  1. On the effective parallel programming of multi-core processors

    NARCIS (Netherlands)

    Varbanescu, A.L.

    2010-01-01

    Multi-core processors are considered now the only feasible alternative to the large single-core processors which have become limited by technological aspects such as power consumption and heat dissipation. However, due to their inherent parallel structure and their diversity, multi-cores are

  2. Effects of surface anisotropy on magnetic vortex core

    Energy Technology Data Exchange (ETDEWEB)

    Pylypovskyi, Oleksandr V., E-mail: engraver@univ.net.ua [Taras Shevchenko National University of Kiev, 01601 Kiev (Ukraine); Sheka, Denis D. [Taras Shevchenko National University of Kiev, 01601 Kiev (Ukraine); Kravchuk, Volodymyr P.; Gaididei, Yuri [Institute for Theoretical Physics, 03143 Kiev (Ukraine)

    2014-06-01

    The vortex core shape in the three dimensional Heisenberg magnet is essentially influenced by a surface anisotropy. We predict that depending of the surface anisotropy type there appears barrel- or pillow-shaped deformation of the vortex core along the magnet thickness. Our theoretical study is well confirmed by spin–lattice simulations. - Highlights: • The shape of magnetic vortex core is essentially influenced by SA (surface anisotropy). • We predict barrel- or pillow-shaped deformation of the vortex depending on SA. • The variational approach fully describes the vortex core deformation. • We performed spin–lattice simulations to detect SA influence on the vortex core.

  3. Effects of climbing on core strength and mobility in adults.

    Science.gov (United States)

    Muehlbauer, T; Stuerchler, M; Granacher, U

    2012-06-01

    The objective of this study was to examine the impact of an indoor climbing training and detraining program on core/handgrip strength and trunk mobility in men and women. 28 young sedentary adults participated in this study and were assigned to an intervention (30±3 years) or a control (29±2 years) group. The intervention group participated in 8 weeks (2 times/week) of indoor climbing training, followed by 8 weeks of detraining. Tests included the measurement of maximal isometric strength (MIS) of the trunk flexors/extensors, the assessment of trunk mobility in the sagittal (SAP) and the coronal (CRP) plane as well as testing of handgrip strength. After training, significant improvements were observed in MIS of the trunk flexors/extensors (~19-22%, all pindoor climbing training program conducted in sedentary adults proved to be feasible (i. e., attendance rate of 89.4%) and effective. It is suggested that indoor climbing should be permanently conducted to maintain the observed improvements in core muscle strength and trunk mobility. © Georg Thieme Verlag KG Stuttgart · New York.

  4. Effects of core and non-dominant arm strength training on drive distance in elite golfers

    Directory of Open Access Journals (Sweden)

    Dong Jun Sung

    2016-06-01

    Conclusion: The combination of core and non-dominant arm strength exercises can provide a more effective specialized training program than core alone training for golfers to increase their drive distances.

  5. EFFECTIVENESS OF CORE STABILIZATION EXERCISES AND MOTOR CONTROL EXERCISES IN PATIENTS WITH LOW BACK ACHE

    OpenAIRE

    Vikranth .G .R; Lawrence Mathias; Mohd Meraj Ghori

    2015-01-01

    Background: Motor control exercises are isolated strengthening exercise for the deep spinal muscles (transverse abdominus, multifidus) whereas Core stability is achieved by global strengthening of the core muscles. There are not much studies available in the literature done or studied the short term effect of the motor control and core stabilization on subjects with low back pain. Therefore, the purpose of this study to find the comparative effect of motor control exercises versus core stabil...

  6. Simulation of the automatic depressurization system (Ads) for a boiling water reactor (BWR) based on RELAP; Simulacion del sistema de despresurizacion automatica (ADS) para un reactor de agua en ebullicion (BWR) basado en RELAP

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez G, C.; Chavez M, C., E-mail: ces.raga@gmail.com [UNAM, Facultad de Ingenieria, Circuito Interior, Ciudad Universitaria, 04510 Mexico D. F. (Mexico)

    2012-10-15

    The automatic depressurization system (Ads) of the boiling water reactor (BWR) like part of the emergency cooling systems is designed to liberate the vapor pressure of the reactor vessel, as well as the main vapor lines. At the present time in the Engineering Faculty, UNAM personnel works in the simulation of the Laguna Verde reactor based on the nuclear code RELAP/SCADAP and in the incorporation to the same of the emergency cooling systems. The simulation of the emergency cooling systems began with the inclusion of two hydrodynamic volumes, one source and another drain, and the incorporation of the initiation logic for each emergency system. In this work is defined and designed a simplified model of Ads of the reactor, considering a detail level based on the main elements that compose it. As tool to implement the proposed model, the RELAP code was used. The simulated main functions of Ads are centered in the quick depressurization of the reactor by means of the vapor discharge through the relief/safety valves to the suppression pool, and, in the event of break of the main vapor line, the reduction of the vessel pressure operates for that the cooling systems of the core to low pressure (Lpcs and Lpci) they can begin their operation. (Author)

  7. An analysis of the state-of-the-art for the safety depressurization system design of YGN 3 and 4

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jae Yung; Ahn, Jang Sun; Park, Chun Tae; Choi, Soon Hoh; Sul, Yung Sil [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-06-01

    The purpose of this technical state-of-the-art report is to review and analyze the Safety Depressurization System Design for YGN 3 and 4 Power Plants. The SDS was added to the YGN 3 and 4 NSSS design during the design processing to mitigate the beyond design basis event of the TLOFW in response to the KINS solicitation. The SDS provides a manual means of rapidly depressuring the RCS for the highly event of a TLOFW to both S/G. As a result of this study, it is identified that the SDS backfitting for YGN 3 and 4 is appropriate. And, it is judged that the licensing problems such as the system flowrates test and verification, the globe valves position indicator problem, IOSDS and are sufficiently resolved and is satisfied. 12 figs., 10 tabs., 22 refs. (Author).

  8. Evaluation of core modeling effect on transients for multi-flow zone design of SFR

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Andong; Choi, Yong Won [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2016-10-15

    SFR core is composed of different types of assemblies including fuel driver, reflector, blanket, control, safety drivers and other drivers. Modeling of different types of assemblies is inevitable in general. But modeling of core flow zones of with different channels needs a lot of effort and could be a challenge for system code modeling due to its limitation on the number of modeling components. In this study, core modeling effect on SFR transient was investigated with flow-zone model and averaged inner core channel model to improve modeling efficiency and validation of simplified core model for EBR-II loss of flow transient case with the modified TRACE code for SFRs. Core modeling effect on the loss flow transient was analyzed with flow-zoned channel model, single averaged inner core model and highest flow channel with averaged inner core channel model for EBR-II SHRT-17 test core. Case study showed that estimations of transient pump and channel flow as well as channel outlet temperatures were similar for all cases macroscopically. Comparing the result of the base case (flow-zone channel inner core model) and the case 2 (highest flow channel considered averaged inner core channel model), flow and channel outlet temperature response were closer than the case1 (single averaged inner core model)

  9. A simple method for environmental cell depressurization for use with an electron microscope.

    Science.gov (United States)

    Ogawa, Naoki; Mizokawa, Ryo; Saito, Minoru; Ishikawa, Akira

    2017-08-09

    With the aid of the environmental cell (EC) in electron microscopy, hydrated specimens have been observed at high resolutions that optical microscopy cannot attain. Due to the ultra-high vacuum conditions of the inner column of the electron microscope, the EC requires sealing films that are sufficiently thin to allow electron transmission and that are sufficiently tough to withstand the pressure difference between the inside and outside of the EC. However, most hydrated specimens can be observed at low vacuum because the saturated vapor pressure of water is known to be 0.02 atm at room temperature. These concepts have been used in the differential pumping system, but it is complicated and relatively expensive. In this work, we propose a simple method for depressurization of the EC using a 'balloon structure' and demonstrate the theoretical benefits and practical improvement for specimen observations in low-vacuum conditions. © The Author 2017. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Statistical characteristics of evaporating-freezing process of water droplet during quick depressurization

    Science.gov (United States)

    Du, Wang-Fang; Zhao, Jian-Fu; Li, Kai

    2013-07-01

    This work investigates experimentally flashing evaporation process of water droplets released into vacuum, particularly on the quantitative characteristics of the process, in order to reveal the influences of the randomicity of the sub-process of nucleation and non-condensable air dissolved inside the liquid. It's clearly shown that nucleation time is a random variable. That may be caused by the following facts that nucleation for ice in high-supercooled water exhibits a strong randomicity and that there exists strong perturbation during quick depressurization. Freezing temperature of liquid droplet is approximately constant after recalescence, which may be determined by the vapor partial pressure at the terminal state. Freezing time is independent of nucleation time, but exhibits an obvious dependence on terminal pressure and drop diameter. Supercooling corresponding to the nucleation is independent of terminal pressure. The averaged values of supercooling at three different terminal pressures of 450, 600 and 1000 Pa are the same, namely 10 K. Furthermore, the influences of non-condensable gases on the process are analyzed and discussed in detail based on the experimental observations.

  11. Monitoring system of depressurization valves of migrated gas in annular space of flexible risers

    Energy Technology Data Exchange (ETDEWEB)

    Mesquita, Luiz A.; Santos, Joilson M.; Carvalho, Antonio L.; Loureiro, Patricia [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)

    2005-07-01

    PETROBRAS Research and Development Center - CENPES developed an automatic system for monitoring pressure of annular space due to permeation of gas in flexible risers to inspect continuously integrity of such lines. To help maintaining physical integrity of flexible risers, two PSV's are installed to end fittings on top of riser, so that operation of any valve grants the maximum admissible gas pressure within the riser annular space, as overpressure might cause damages to external polymeric layer of flexible riser. Due to the fact that there is no mechanism allowing operation to verify correct PSV performance and frequency of valve's closings and openings, we felt to be necessary the development and implement an automatic instrumented system, integrated to platform's automation and control infrastructure. The objective of this instrumentation is to monitor and register pressure of annular space in flexible riser, as well as XV's depressurization frequency. Having such information registered and monitored, can infer some riser structural conditions, anticipating repairs and preventive maintenance. In this paper we present developed system details including instruments required, application, operation of associated screens that are used in the ECOS, with events, alarms and industrial automation services required (Application development and system integration). (author)

  12. Effect of Core Training on Male Handball Players' Throwing Velocity.

    Science.gov (United States)

    Manchado, Carmen; García-Ruiz, José; Cortell-Tormo, Juan Manuel; Tortosa-Martínez, Juan

    2017-02-01

    In handball, throwing velocity is considered to be one of the essential factors in achieving the ultimate aim of scoring a goal. The objective of the present study was to analyze the effect of a core training program on throwing velocity in 30 handball players (age 18.7 ± 3.4 years, body height 179.3 ± 7.0 cm, body mass 78.9 ± 7.7 kg), 16 of whom were in the junior category and 14 of whom were in the senior category. The 30 players were randomly divided into two groups, the control group (n = 15) and the experimental group (n = 15). For a period of ten weeks, both groups attended their regular handball training sessions (four per week), but in addition, the experimental group participated in a program specifically aimed at progressively strengthening the lumbo-pelvic region and consisting of seven exercises performed after the general warm-up in each regular session. Pre- and post-tests were carried out to analyze each player's throwing velocity from different throwing positions and thus assess the effects of this specific training program. Statistically significant differences (p ≤ 0.05) in throwing velocity were observed between the experimental group, which presented a percentage improvement of 4.5%, and the control group, which did not show any improvement. The results seem to indicate that an increase in the strength and stability of the lumbo-pelvic region can contribute to an improvement in the kinetic chain of the specific movement of throwing in handball, thus, increasing throwing velocity.

  13. Effect of core stiffness on the in vitro fracture of crowned, endodontically treated teeth.

    Science.gov (United States)

    Pilo, Raphael; Cardash, Harold S; Levin, Eli; Assif, David

    2002-09-01

    Dentin and core materials that substitute for missing dentin are dissimilar materials. A core material with a lower elastic modulus may deform more under applied stress and therefore result in reduced stress concentration at the core/dentin junction. This in vitro study examined the effect of core stiffness on the fracture resistance and failure characteristics of a crowned, endodontically treated tooth under simulated occlusal load. Forty extracted human mandibular premolars were divided equally into 4 groups and prepared for posts and cast crowns as follows: group 1 = cast post and core, cast crown; group 2 = preformed metal post, composite core, and cast crown; group 3 = preformed metal post, amalgam core, and cast crown; and group 4 (control) = preformed metal post, no core, and cast crown. All prepared teeth had 2 mm of sound dentin on which the cemented crown rested. A continuous load (kg) was applied to the buccal cusp at a 30-degree angle to the long axis of each tooth at a crosshead speed of 2 mm/min until failure. Collected data were subjected to 1-way analysis of variance with the Welch modification to compare groups (Pcrown, post, and core was found only in group 2(20%). Within the limitations of this study, core stiffness did not affect the failure resistance of teeth restored with posts and cores and complete-coverage cast metal crowns. The dominant pattern of failure was unrepairable root fracture. Only the composite core exhibited repairable fractures.

  14. Effects of Core-valence and Core-core Correlation On the Line-strength of the Resonance Lines In Li-i and Na-i

    OpenAIRE

    Brage, Tomas; Fischer, C.F.; Jonsson, P

    1994-01-01

    The resonance lines in Li I and Na I both exhibit a puzzling discrepancy between experiment and accurate ab initio calculations. Only results from a semiempirical method, that in principal neglects core-core correlation, agree with the experiments. The agreement with a multiconfiguration Hartree-Fock calculation, including only core-valence correlation, shows that this might be fortuitous. A method for including some core-core correlation is designed and gives results in excellent agreement w...

  15. The Effect of Core and Veneering Design on the Optical Properties of Polyether Ether Ketone.

    Science.gov (United States)

    Zeighami, S; Mirmohammadrezaei, S; Safi, M; Falahchai, S M

    2017-12-01

    This study aimed to evaluate the effect of core shade and core and veneering thickness on color parameters and translucency of polyether ether ketone (PEEK). Sixty PEEK discs (0.5 and 1 mm in thickness) with white and dentine shades were veneered with A2 shade indirect composite resin with 0.5, 1 and 1.5 mm thickness (n=5). Cores without the veneering material served as controls for translucency evaluation. Color parameters were measured by a spectroradiometer. Color difference (ΔE₀₀) and translucency parameters (TP) were computed. Data were analyzed using one-way ANOVA and Tukey's test (for veneering thickness) and independent t-test (for core shade and thickness) via SPSS 20.0 (p⟨0.05). Regarding the veneering thickness, white cores of 0.5 mm thickness showed significant differences in all color parameters. In white cores of 1 mm thickness and dentine cores of 0.5 and 1 mm thickness, there were statistically significant differences only in L∗, a∗ and h∗. The mean TP was significantly higher in all white cores of 1 mm thickness than dentine cores of 1 mm. Considering ΔE₀₀=3.7 as clinically unacceptable, only three groups had higher mean ΔE₀₀ values. Core shade, core thickness, and the veneering thickness affected the color and translucency of PEEK restorations. Copyright© 2017 Dennis Barber Ltd.

  16. The effect of core configuration on temperature coefficient of reactivity in IRR-1

    Energy Technology Data Exchange (ETDEWEB)

    Bettan, M.; Silverman, I.; Shapira, M.; Nagler, A. [Soreq Nuclear Research Center, Yavne (Israel)

    1997-08-01

    Experiments designed to measure the effect of coolant moderator temperature on core reactivity in an HEU swimming pool type reactor were performed. The moderator temperature coefficient of reactivity ({alpha}{sub {omega}}) was obtained and found to be different in two core loadings. The measured {alpha}{sub {omega}} of one core loading was {minus}13 pcm/{degrees}C at the temperature range of 23-30{degrees}C. This value of {alpha}{sub {omega}} is comparable to the data published by the IAEA. The {alpha}{sub {omega}} measured in the second core loading was found to be {minus}8 pcm/{degrees}C at the same temperature range. Another phenomenon considered in this study is core behavior during reactivity insertion transient. The results were compared to a core simulation using the Dynamic Simulator for Nuclear Power Plants. It was found that in the second core loading factors other than the moderator temperature influence the core reactivity more than expected. These effects proved to be extremely dependent on core configuration and may in certain core loadings render the reactor`s reactivity coefficient undesirable.

  17. Spatially resolved Raman spectroscopy on indium-catalyzed core-shell germanium nanowires: size effects

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Y; Zardo, I; Garma, T; Heiss, M; Fontcuberta i Morral, A [Walter Schottky Institut, Physik Department, Technische Universitaet Muenchen, Am Coulombwall 3, D-85748 Garching (Germany); Cao, L Y; Brongersma, M L [Geballe Laboratory for Advanced Materials, 476 Lomita Mall, Stanford University, Stanford, CA 94305 (United States); Morante, J R; Arbiol, J [Departament d' Electronica, Universitat de Barcelona, 08028 Barcelona, CAT (Spain)

    2010-03-12

    The structure of indium-catalyzed germanium nanowires is investigated by atomic force microscopy, scanning confocal Raman spectroscopy and transmission electron microscopy. The nanowires are formed by a crystalline core and an amorphous shell. We find that the diameter of the crystalline core varies along the nanowire, down to few nanometers. Phonon confinement effects are observed in the regions where the crystalline region is the thinnest. The results are consistent with the thermally insulating behavior of the core-shell nanowires.

  18. [Effects of Core Stability Training on Masters Swimmers].

    Science.gov (United States)

    Esser, Margarete

    2017-06-01

    Background Back pain is a frequent problem for swimmers, especially for Masters swimmers. The cause seems to be insufficient core stability. Objective The goal of this study is to investigate whether specific core musculature training has a positive influence on low back pain and swimmers' perceived performance. Method Two groups (Masters swimmers and a control group) performed a guided 8-week training program. Changes in the core musculature were documented via tests carried out before and after the training program. Additional information was collected during the tests and at a follow-up interview 6 months later. Results Although a significant improvement was seen in both groups, the overall improvement in the Masters group was greater. At the follow-up interview, 72.3 % of all participants reported less back pain and said that they also noticed other benefits in daily life and during swimming. Conclusion This study shows that an 8-week training program can lead to an obvious and long-lasting decrease in back pain in all tested groups, particularly in Masters swimmers. © Georg Thieme Verlag KG Stuttgart · New York.

  19. Effect of Ambipolar Diffusion on Ion Abundances in Contracting Protostellar Cores

    Science.gov (United States)

    Ciolek, Glenn E.; Mouschovias, Telemachos Ch.

    1998-09-01

    Numerical simulations and analytical solutions have established that ambipolar diffusion can reduce the dust-to-gas ratio in magnetically and thermally supercritical cores during the epoch of core formation. We study the effect that this has on the ion chemistry in contracting protostellar cores and present a simplified analytical method that allows one to calculate the ion power-law exponent k (≡d ln ni/d ln nn, where ni and nn are the ion and neutral densities, respectively) as a function of core density. We find that, as in earlier numerical simulations, no single value of k can adequately describe the ion abundance for nn 1/2 during the core formation epoch (densities principle, to determine whether ambipolar diffusion is responsible for core formation in interstellar molecular clouds. For densities >>105 cm-3, k is generally <<1/2.

  20. Localized Effects in the Nonlinear Behavior of Sandwich Panels with a Transversely Flexible Core

    DEFF Research Database (Denmark)

    Frostig, Y.; Thomsen, Ole Thybo

    2005-01-01

    This paper presents the results of an investigation of the role of localized effects within the geometrically nonlinear domain on structural sandwich panels with a "compliant" core. Special emphasis is focused on the nonlinear response near concentrated loads and stiffened core regions. The adopt...

  1. Effect of Core Training on 16 Year-Old Soccer Players

    Science.gov (United States)

    Afyon, Yakup Akif

    2014-01-01

    Core trainings have been widely used by trainers recently in order to improve performance of soccer players. In this context, the aim of this study is to examine the effect of core training on some motoric capabilities of 16 years old soccer players. Thirty certified soccer players who were 16 years old from B.B. Bodrumspor Club in 2013-2014…

  2. Effect of Core Training Program on Physical Functional Performance in Female Soccer Players

    Science.gov (United States)

    Taskin, Cengiz

    2016-01-01

    The purpose of this study was to determine the effect of core training program on speed, acceleration, vertical jump, and standing long jump in female soccer players. A total of 40 female soccer players volunteered to participate in this study. They were divided randomly into 1 of 2 groups: core training group (CTG; n = 20) and control group (CG;…

  3. The Temperature of the Dimethylhydrazine Drops Moving in the Atmosphere after Depressurization of the Fuel Tank Rockets

    Directory of Open Access Journals (Sweden)

    Bulba Elena

    2016-01-01

    Full Text Available This work includes the results of the numerical modeling of temperature changes process of the dimethylhydrazine (DMH drops, taking into account the radial temperature gradient in the air after the depressurization of the fuel compartments rockets at high altitude. There is formulated a mathematical model describing the process of DMH drops thermal state modifying when it's moving to the Earth's surface. There is the evaluation of the influence of the characteristic size of heptyl drops on the temperature distribution. It's established that the temperatures of the small size droplets practically completely coincide with the distribution of temperature in the atmosphere at altitudes of up to 40 kilometers.

  4. Effectiveness of Wyoming's Sage-Grouse Core Areas: Influences on Energy Development and Male Lek Attendance.

    Science.gov (United States)

    Gamo, R Scott; Beck, Jeffrey L

    2017-02-01

    Greater sage-grouse (Centrocercus urophasianus) populations have declined across their range due to human-assisted factors driving large-scale habitat change. In response, the state of Wyoming implemented the Sage-grouse Executive Order protection policy in 2008 as a voluntary regulatory mechanism to minimize anthropogenic disturbance within defined sage-grouse core population areas. Our objectives were to evaluate areas designated as Sage-grouse Executive Order Core Areas on: (1) oil and gas well pad development, and (2) peak male lek attendance in core and non-core sage-grouse populations. We conducted our evaluations at statewide and Western Association of Fish and Wildlife Agencies management zone (MZ I and MZ II) scales. We used Analysis of Covariance modeling to evaluate change in well pad development from 1986-2014 and peak male lek attendance from 958 leks with consistent lek counts within increasing (1996-2006) and decreasing (2006-2013) timeframes for Core and non-core sage-grouse populations. Oil and gas well pad development was restricted in Core Areas. Trends in peak male sage-grouse lek attendance were greater in Core Areas compared to non-core areas at the statewide scale and in MZ II, but not in MZ I, during population increase. Trends in peak male lek attendance did not differ statistically between Core and non-core population areas statewide, in MZ I, or MZ II during population decrease. Our results provide support for the effectiveness of Core Areas in maintaining sage-grouse populations in Wyoming, but also indicate the need for increased conservation actions to improve sage-grouse population response in MZ.

  5. Effectiveness of Wyoming's Sage-Grouse Core Areas: Influences on Energy Development and Male Lek Attendance

    Science.gov (United States)

    Gamo, R. Scott; Beck, Jeffrey L.

    2017-02-01

    Greater sage-grouse ( Centrocercus urophasianus) populations have declined across their range due to human-assisted factors driving large-scale habitat change. In response, the state of Wyoming implemented the Sage-grouse Executive Order protection policy in 2008 as a voluntary regulatory mechanism to minimize anthropogenic disturbance within defined sage-grouse core population areas. Our objectives were to evaluate areas designated as Sage-grouse Executive Order Core Areas on: (1) oil and gas well pad development, and (2) peak male lek attendance in core and non-core sage-grouse populations. We conducted our evaluations at statewide and Western Association of Fish and Wildlife Agencies management zone (MZ I and MZ II) scales. We used Analysis of Covariance modeling to evaluate change in well pad development from 1986-2014 and peak male lek attendance from 958 leks with consistent lek counts within increasing (1996-2006) and decreasing (2006-2013) timeframes for Core and non-core sage-grouse populations. Oil and gas well pad development was restricted in Core Areas. Trends in peak male sage-grouse lek attendance were greater in Core Areas compared to non-core areas at the statewide scale and in MZ II, but not in MZ I, during population increase. Trends in peak male lek attendance did not differ statistically between Core and non-core population areas statewide, in MZ I, or MZ II during population decrease. Our results provide support for the effectiveness of Core Areas in maintaining sage-grouse populations in Wyoming, but also indicate the need for increased conservation actions to improve sage-grouse population response in MZ.

  6. Material dimensionality effects on the nanoindentation behavior of Al/a-Si core-shell nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Fleming, Robert A. [Department of Mechanical Engineering, University of Arkansas, Fayetteville, AR 72701 (United States); Center for Advanced Surface Engineering, University of Arkansas, Fayetteville, AR 72701 (United States); Goss, Josue A. [Center for Advanced Surface Engineering, University of Arkansas, Fayetteville, AR 72701 (United States); Zou, Min, E-mail: mzou@uark.edu [Department of Mechanical Engineering, University of Arkansas, Fayetteville, AR 72701 (United States); Center for Advanced Surface Engineering, University of Arkansas, Fayetteville, AR 72701 (United States)

    2017-08-01

    Highlights: • Nanoindentation behavior of Al/a-Si core-shell nanostructures were studied. • 3D core confinement enables significant deformation recovery beyond elastic limit. • As the confinement is reduced, the deformation recovery is reduced or suppressed. • Atomistic simulations suggest core confinement affects dislocation dynamics. • 3D confinement has the highest percentage of dislocation removal after unloading. - Abstract: The nanoindentation behavior of hemispherical Al/a-Si core-shell nanostructures (CSNs), horizontally-aligned Al/a-Si core-shell nanorods (CSRs) with various lengths, and an Al/a-Si layered thin film has been studied to understand the effects of geometrical confinement of the Al core on the CSN deformation behavior. When loaded beyond the elastic limit, the CSNs have an unconventional load-displacement behavior with no residual displacement after unloading, resulting in no net shape change after indentation. This behavior is enabled by dislocation activities within the confined Al core, as indicated by discontinuous indentation signatures (load-drops and load-jumps) observed in the load-displacement data. When the geometrical confinement of the core is slightly reduced, as in the case of CSRs with the shortest rod length, the discontinuous indentation signatures and deformation resistance are heavily reduced. Further decreases in core confinement result in conventional nanoindentation behavior, regardless of geometry. Supporting molecular dynamics simulations show that dislocations nucleated in the core of a CSN are more effectively removed during unloading compared to CSRs, which supports the hypothesis that the unique deformation resistance of Al/a-Si CSNs are enabled by 3-dimensional confinement of the Al core.

  7. Material dimensionality effects on the nanoindentation behavior of Al/a-Si core-shell nanostructures

    Science.gov (United States)

    Fleming, Robert A.; Goss, Josue A.; Zou, Min

    2017-08-01

    The nanoindentation behavior of hemispherical Al/a-Si core-shell nanostructures (CSNs), horizontally-aligned Al/a-Si core-shell nanorods (CSRs) with various lengths, and an Al/a-Si layered thin film has been studied to understand the effects of geometrical confinement of the Al core on the CSN deformation behavior. When loaded beyond the elastic limit, the CSNs have an unconventional load-displacement behavior with no residual displacement after unloading, resulting in no net shape change after indentation. This behavior is enabled by dislocation activities within the confined Al core, as indicated by discontinuous indentation signatures (load-drops and load-jumps) observed in the load-displacement data. When the geometrical confinement of the core is slightly reduced, as in the case of CSRs with the shortest rod length, the discontinuous indentation signatures and deformation resistance are heavily reduced. Further decreases in core confinement result in conventional nanoindentation behavior, regardless of geometry. Supporting molecular dynamics simulations show that dislocations nucleated in the core of a CSN are more effectively removed during unloading compared to CSRs, which supports the hypothesis that the unique deformation resistance of Al/a-Si CSNs are enabled by 3-dimensional confinement of the Al core.

  8. Effect of varying geometrical parameters of trapezoidal corrugated-core sandwich structure

    Directory of Open Access Journals (Sweden)

    Zaid N.Z.M.

    2017-01-01

    Full Text Available Sandwich structure is an attractive alternative that increasingly used in the transportation and aerospace industry. Corrugated-core with trapezoidal shape allows enhancing the damage resistance to the sandwich structure, but on the other hand, it changes the structural response of the sandwich structure. The aim of this paper is to study the effect of varying geometrical parameters of trapezoidal corrugated-core sandwich structure under compression loading. The corrugated-core specimen was fabricated using press technique, following the shape of trapezoidal shape. Two different materials were used in the study, glass fibre reinforced plastic (GFRP and carbon fibre reinforced plastic (CFRP. The result shows that the mechanical properties of the core in compression loading are sensitive to the variation of a number of unit cells and the core thickness.

  9. The effects of core muscle release technique on lumbar spine deformation and low back pain.

    Science.gov (United States)

    Lee, Myounggi; Song, Changho; Jo, Younggwan; Ha, Donghun; Han, Dongwook

    2015-05-01

    [Purpose] The purpose of this study was to examine the effects of the core muscle release technique on correction of lumbar deformation and alleviation of low back pain. [Subjects] Ninety patients diagnosed with lumbar deformation and low back pain participated in this study. [Methods] The participants were divided into three groups according to method of treatment. The first group was treated with the core muscle release technique (CRT), the second group was treated with general exercise, and the third group was treated with electrotherapy. The core muscle release technique group received 50-minute of the core muscle release technique 5 times a week for 2 weeks, and the participants in this group were instructed not to receive any other treatments. After the 2 weeks of treatment, the patients were reexamined. The general exercise group performed Williams flexion exercises and McKenzie extension exercises 5 times a week for 2 weeks. The electrotherapy group was treated by application of electrotherapy with an interferential current therapy machine (TM-301. TOPMED. Seongnam, Republic of Korea) to the abdominal muscles and back muscles of the lumbar region. [Results] The data suggest that the core muscle release technique, general exercise, and electrotherapy all helped to decrease the alignment angle and VAS score. Of these treatment methods, however, the core muscle release technique was the most effective for treatment of lumbar spine deformation and low back pain. [Conclusion] The core muscle release technique was most effective for correction of lumbar spine deformation and pain alleviation.

  10. Effective delayed neutron fraction and prompt neutron lifetime of Tehran research reactor mixed-core

    Science.gov (United States)

    Lashkari, A.; Khalafi, H.; Kazeminejad, H.

    2013-01-01

    In this work, kinetic parameters of Tehran research reactor (TRR) mixed cores have been calculated. The mixed core configurations are made by replacement of the low enriched uranium control fuel elements with highly enriched uranium control fuel elements in the reference core. The MTR_PC package, a nuclear reactor analysis tool, is used to perform the analysis. Simulations were carried out to compute effective delayed neutron fraction and prompt neutron lifetime. Calculation of kinetic parameters is necessary for reactivity and power excursion transient analysis. The results of this research show that effective delayed neutron fraction decreases and prompt neutron lifetime increases with the fuels burn-up. Also, by increasing the number of highly enriched uranium control fuel elements in the reference core, the prompt neutron lifetime increases, but effective delayed neutron fraction does not show any considerable change. PMID:24976672

  11. Natural variability and anthropogenic effects in a Central Mediterranean core

    Directory of Open Access Journals (Sweden)

    S. Alessio

    2012-04-01

    Full Text Available We evaluate the contribution of natural variability to the modern decrease in foraminiferal δ18O by relying on a 2200-yr-long, high-resolution record of oxygen isotopic ratio from a Central Mediterranean sediment core. Pre-industrial values are used to train and test two sets of algorithms that are able to forecast the natural variability in δ18O over the last 150 yr. These algorithms are based on autoregressive models and neural networks, respectively; they are applied separately to each of the δ18O series' significant variability components, rather than to the complete series. The separate components are extracted by singular-spectrum analysis and have narrow-band spectral content, which reduces the forecast error. By comparing the sum of the predicted low-frequency components to its actual values during the Industrial Era, we deduce that the natural contribution to these components of the modern δ18O variation decreased gradually, until it reached roughly 40%, as early as the end of the 1970s.

  12. Enhanced Nonadiabaticity in Vortex Cores due to the Emergent Hall Effect

    KAUST Repository

    Bisig, André

    2017-01-04

    We present a combined theoretical and experimental study, investigating the origin of the enhanced nonadiabaticity of magnetic vortex cores. Scanning transmission x-ray microscopy is used to image the vortex core gyration dynamically to measure the nonadiabaticity with high precision, including a high confidence upper bound. We show theoretically, that the large nonadiabaticity parameter observed experimentally can be explained by the presence of local spin currents arising from a texture induced emergent Hall effect. This study demonstrates that the magnetic damping α and nonadiabaticity parameter β are very sensitive to the topology of the magnetic textures, resulting in an enhanced ratio (β/α>1) in magnetic vortex cores or Skyrmions.

  13. Effects of Pelvic and Core Strength Training on High School Cross-Country Race Times.

    Science.gov (United States)

    Clark, Anne W; Goedeke, Maggie K; Cunningham, Saengchoy R; Rockwell, Derek E; Lehecka, Bryan J; Manske, Robert C; Smith, Barbara S

    2017-08-01

    Clark, AW, Goedeke, MK, Cunningham, SR, Rockwell, DE, Lehecka, BJ, Manske, RC, and Smith, BS. Effects of pelvic and core strength training on high school cross-country race times. J Strength Cond Res 31(8): 2289-2295, 2017-There is only limited research examining the effect of pelvic and core strength training on running performance. Pelvic and core muscle fatigue is believed to contribute to excess motion along frontal and transverse planes which decreases efficiency in normal sagittal plane running motions. The purpose of this study was to determine whether adding a 6-week pelvic and core strengthening program resulted in decreased race times in high school cross-country runners. Thirty-five high school cross-country runners (14-19 years old) from 2 high schools were randomly assigned to a strengthening group (experimental) or a nonstrengthening group (control). All participants completed 4 standardized isometric strength tests for hip abductors, adductors, extensors, and core musculature in a test-retest design. The experimental group performed a 6-week pelvic and core strengthening program along with their normal training. Participants in the control group performed their normal training without additional pelvic and core strengthening. Baseline, 3-week, and 6-week race times were collected using a repeated measures design. No significant interaction between experimental and control groups regarding decreasing race times and increasing pelvic and core musculature strength occurred over the 6-week study period. Both groups increased strength and decreased overall race times. Clinically significant findings reveal a 6-week pelvic and core stability strengthening program 3 times a week in addition to coach led team training may help decrease race times.

  14. The effects of core muscle release technique on lumbar spine deformation and low back pain

    OpenAIRE

    Lee, Myounggi; Song, Changho; Jo, Younggwan; Ha, Donghun; Han, Dongwook

    2015-01-01

    [Purpose] The purpose of this study was to examine the effects of the core muscle release technique on correction of lumbar deformation and alleviation of low back pain. [Subjects] Ninety patients diagnosed with lumbar deformation and low back pain participated in this study. [Methods] The participants were divided into three groups according to method of treatment. The first group was treated with the core muscle release technique (CRT), the second group was treated with general exercise, an...

  15. Effect of core stability exercise on postural stability in children with Down syndrome

    OpenAIRE

    Sobhy M. Aly

    2016-01-01

    Down syndrome is one of the commonest causes of developmental delay in children. Postural stability problems often exist with Down syndrome. To investigate the effect of core stability exercises on postural stability in children with down syndrome. Thirty children (21 boys and 9 girls) with down syndrome, with ages ranged from 6 to 10 years were participated in this study. They were assigned randomlyinto study and control group. Study group received core stability exercises and conventional p...

  16. The effect of active core exercise on fitness and foot pressure in Taekwondo club students

    OpenAIRE

    Yoon, Seong-Deok; Sung, Dong-Hun; Park, Gi Duck

    2015-01-01

    [Purpose] The effects of core training using slings and Togus on the improvement of posture control in Taekwondo club students, that is, balance ability, were investigated. To that end, changes in the Taekwondo players? balance ability resulting from active core training for eight weeks were examined through fitness and foot pressure. [Subjects] The present study was conducted with 13 male Taekwondo players of K University in Deagu, South Korea. Once the experiment process was explained, cons...

  17. Effects of core muscle stability training on the weight distribution and stability of the elderly

    OpenAIRE

    Kang, Kwon-Young

    2015-01-01

    [Purpose] This study investigated the effects of core muscle stability training on the weight distribution and stability of the elderly. [Subjects and Methods] Thirty elderly persons were randomly divided into an experimental group which performed core strengthening exercises, and a control group which performed standard strengthening exercises for 8 weeks. A Tetrax Interactive Balance System was used to evaluate the weight distribution index (WDI) and the stability index (SI). [Results] The ...

  18. Effect of annealing temperature on the stress and structural properties of Ge core fibre

    Science.gov (United States)

    Zhao, Ziwen; Cheng, Xueli; Xue, Fei; He, Ting; Wang, Tingyun

    2017-09-01

    Effect of annealing temperature on the stress and structural properties of a Ge core fibre via the molten core drawing (MCD) method is investigated using Raman spectroscopy, Scanning electronic microscopy (SEM), and X-ray diffraction. The experimental results showed that the Raman peak position of the Ge fibre shifted from 297.6 cm-1 to 300.5 cm-1, and the FWHM value decreased from 4.53 cm-1 to 4.31 cm-1, when the annealing is carried out at 700 °C, 800 °C, and 900 °C, respectively. For the Ge core annealed at 900 °C, an apparent crystal grain can be seen in the SEM image, and the diffraction peaks of the (3 3 1) plane are generated in the X-ray diffraction spectra. These results show that optimising the annealing temperature allows the release of the residual stress in the Ge core. When the Ge core fibre is annealed at 900 °C, it exhibits the lowest residual stress and the highest crystal quality, and the quality improvement relative to that of the sample annealed at 800 °C is significant. Hence, annealing at around 900 °C can greatly improve the quality of a Ge core fibre. Further performance improvement of the Ge core fibre by annealing techniques can be anticipated.

  19. MOX fuel core physics experiments and analysis. Aiming for plutonium effective use

    Energy Technology Data Exchange (ETDEWEB)

    Kanda, Keiji [Kyoto Univ. (Japan); Yamamoto, Toru; Matuura, Hidefumi; Tatsumi, Masahiro; Sakurada, Koichi; Sasaki, Makoto; Maruyama, Hiromi

    1998-11-01

    Nuclear Power Generation Engineering Corporation (NUPEC) conducts an investigation on high modulating core concept with increased water/fuel ratio of core to increase consumption ration nuclear fissionable plutonium for a base of APWR and ABWR cores under a trust project of the Agency of Trade and Industry. In order to support the core analysis in this investigation, the core physical experiment (MISTRAL program) laid the high modulated MOX fuel reactor to target was conducted with CEA/DRN in France under collaborative research. The experiment is now proceeding under a plan from 1996 to 2000, and its results are obtaining at present to promote their analyses. In order to elucidate well features of MOX reactor at the high modulating system, NUPEC is also obtaining the results of MOX fuel core physical experiment with previous water/fuel ratio (EPICURE program) previously conducted by CEA/DRN to analyze them. In this paper, core concept for effective application of plutonium and then MISTRAL program were described. And, analysis on MOX fuel reactor physical experiment (EPICURE) previously conducted by CEA/DRN and on experimental results of MISTRAL program obtained at present were also described. (G.K.)

  20. The Effects of Core Stabilization Exercise on Dynamic Balance and Gait Function in Stroke Patients

    Science.gov (United States)

    Chung, Eun-Jung; Kim, Jung-Hee; Lee, Byoung-Hee

    2013-01-01

    [Purpose] The purpose of this study was to determine the effects of core stabilization exercise on dynamic balance and gait function in stroke patients. [Subjects] The subjects were 16 stroke patients, who were randomly divided into two groups: a core stabilization exercise group of eight subjects and control group of eight subjects. [Methods] Subjects in both groups received general training five times per week. Subjects in the core stabilization exercise group practiced an additional core stabilization exercise program, which was performed for 30 minutes, three times per week, during a period of four weeks. All subjects were evaluated for dynamic balance (Timed Up and Go test, TUG) and gait parameters (velocity, cadence, step length, and stride length). [Results] Following intervention, the core exercise group showed a significant change in TUG, velocity, and cadence. The only significant difference observed between the core group and control group was in velocity. [Conclusion] The results of this study suggest the feasibility and suitability of core stabilization exercise for stroke patients. PMID:24259857

  1. The effect of HCV Core protein on the expression of miR-150

    Directory of Open Access Journals (Sweden)

    Sayad Khanizadeh

    2016-09-01

    Full Text Available Background : Hepatitis C virus (HCV is considered as one of the major pathogenic agents of chronic liver diseases. Previous studies have shown that HCV proteins can interaction with gene regulatory networks such as microRNAs. The aim of this study was to investigate the effect of HCV core protein on the expression of miR-150 in a cell culture model. Materials and Methods: Plasmids expressing full HCV core protein was transfected into Huh7 cell lines while a GFP expressing plasmid employed as negative control. Subsequently, total RNA extracted and Real-Time PCR performed to measure the expression level of miR-150 expression. Moreover, trypan blue exclusion assay was performed to investigate the effect of core protein on cell viability. Results: The gene expression analysis of miR-150 in Huh7 cells showed that endogenous HCV core protein could significantly down regulation of miR-150 when compared to GFP control plasmid and normal cells (P<0.01. Beside, core protein induced no significant proliferative or cytotoxic effects on hepatic cells as determined by trypan blue exclusion assay (P<0.05. Conclusion: Our study suggests that HCV core protein can led to down regulation of miR-150 expression. This data revealed that HCV protein interactions with cell regulatory machinery may contribute to pathogenesis of chronic liver diseases.

  2. Choosing Blindly: Instructional Materials, Teacher Effectiveness, and the Common Core

    Science.gov (United States)

    Chingos, Matthew M.; Whitehurst, Grover J.

    2012-01-01

    Evidence shows that instructional materials have large effects on student learning. However, little research exists on the effectiveness of most instructional materials, and very little systematic information has been collected on which materials are being used in which schools. In this new report, Russ Whitehurst and Fellow Matthew Chingos argue…

  3. Microhabitat Conditions in Wyoming's Sage-Grouse Core Areas: Effects on Nest Site Selection and Success.

    Science.gov (United States)

    Dinkins, Jonathan B; Smith, Kurt T; Beck, Jeffrey L; Kirol, Christopher P; Pratt, Aaron C; Conover, Michael R

    2016-01-01

    The purpose of our study was to identify microhabitat characteristics of greater sage-grouse (Centrocercus urophasianus) nest site selection and survival to determine the quality of sage-grouse habitat in 5 regions of central and southwest Wyoming associated with Wyoming's Core Area Policy. Wyoming's Core Area Policy was enacted in 2008 to reduce human disturbance near the greatest densities of sage-grouse. Our analyses aimed to assess sage-grouse nest selection and success at multiple micro-spatial scales. We obtained microhabitat data from 928 sage-grouse nest locations and 819 random microhabitat locations from 2008-2014. Nest success was estimated from 924 nests with survival data. Sage-grouse selected nests with greater sagebrush cover and height, visual obstruction, and number of small gaps between shrubs (gap size ≥0.5 m and sage-grouse were selecting different nest sites in Core Areas relative to areas outside of Core. The Kaplan-Meier nest success estimate for a 27-day incubation period was 42.0% (95% CI: 38.4-45.9%). Risk of nest failure was negatively associated with greater rock and more medium-sized gaps between shrubs (gap size ≥2.0 m and <3.0 m). Within our study areas, Wyoming's Core Areas did not have differing microhabitat quality compared to outside of Core Areas. The close proximity of our locations within and outside of Core Areas likely explained our lack of finding differences in microhabitat quality among locations within these landscapes. However, the Core Area Policy is most likely to conserve high quality habitat at larger spatial scales, which over decades may have cascading effects on microhabitat quality available between areas within and outside of Core Areas.

  4. DESIGN AND TESTING OF SUB-SLAB DEPRESSURIZATION FOR RADON MITIGATION IN NORTH FLORIDA HOUSES - PART I. PERFORMANCE AND DURABILITY - VOLUME 2. DATA APPENDICES

    Science.gov (United States)

    The report gives results of a demonstration/research project to evaluate sub-slab depressurization (SSD) techniques for radon mitigation in North Florida where the housing stock is primarily slab-on-grade and the sub-slab medium typically consists of native soil and sand. Objecti...

  5. DESIGN AND TESTING OF SUB-SLAB DEPRESSURIZATION FOR RADON MITIGATION IN NORTH FLORIDA HOUSES - PART I. PERFORMANCE AND DURABILITY - VOLUME 1. TECHNICAL REPORT

    Science.gov (United States)

    The report gives results of a demonstration/research project to evaluate sub-slab depressurization (SSD) techniques for radon mitigation in North Florida where the housing stock is primarily slab-on-grade and the sub-slab medium typically consists of native soil and sand. Objecti...

  6. Effect of core strength training on dynamic balance and agility in adolescent badminton players.

    Science.gov (United States)

    Ozmen, Tarik; Aydogmus, Mert

    2016-07-01

    The aim of the present study was to investigate effect of core strength training (CST) on core endurance, dynamic balance and agility in adolescent badminton players. Twenty adolescent (age = 10.8 ± 0.3 years; height = 140.6 ± 4.4 cm, weight = 33.9 ± 5.8 kg) badminton players were randomly divided into two groups as training group (TG) and control (CG) group. All subjects were evaluated with Star Excursion Balance Test (SEBT), Illinois Agility Test, and the core endurance tests. The TG completed CST twice a week, for 6 weeks. There were significant increases in (p  0.05). The CST resulted in significant gains in directions of the SEBT and core endurances in adolescent badminton players, but not in agility. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. EFFECT OF CORE STABILITY TRAINING ON DYNAMIC BALANCE IN HEALTHY YOUNG ADULTS - A RANDOMIZED CONTROLLED TRIAL

    Directory of Open Access Journals (Sweden)

    Dhvani N Shah

    2014-10-01

    Full Text Available Background: Balance is a key component of normal daily activities. Therefore, it is necessary to find various programs to improve balance. The core functions to maintain postural alignment and balance during functional activities. The purpose was to study the effects of the core stability training on dynamic balance in healthy, young adults. Methods: It was an interventional study, in which 60 healthy young adults were selected. They were randomly divided into two groups of 30 each, one being experimental group and other control group. Measurement of their height, weight, BMI and leg length was taken. Subjects in both the groups were assessed for core stability with pressure biofeedback unit (PBU and dynamic balance using Star Excursion Balance Test (SEBT pre and post intervention. Subjects in the experimental group underwent progressive core stability training program for six weeks (3days/week and control group was refrained from any type of structured training program. Results: There was statistically significant improvement in core stability and dynamic balance of the experimental group after six weeks of intervention. Conclusion: It is concluded that core stability training of six weeks duration is effective in improving dynamic balance in healthy, young adults.

  8. Effect of reaction time on formation of silica core/shell particles

    Directory of Open Access Journals (Sweden)

    Milan P. Nikolić

    2015-12-01

    Full Text Available The silica core/shell nanostructures were prepared by a wet-chemical process. Silica core particles were prepared by hydrolysis and condensation of tetraethylorthosilicate. The obtained particles (average size ∼0.4 µm were used as templates for assembling of silica nanoparticles generated from highly basic sodium silicate solution. The silica core particles were functionalized with 3-aminopropyltriethoxysilane (APTES to allow electrostatic assembling of silica nanoparticles on the surface of silica core particles. In order to find the optimal conditions for synthesis of silica core/shell particles with mesoporous shells, the effect of reaction time on formation of silica nanoparticles was investigated. The effect of process parameters on generation and aggregation of silica nanoparticles prepared from highly basic sodium silicate solution was also investigated. It was shown that the size of silica nanoparticles and tendency towards aggregation increase with increasing the reaction time and temperature. These behaviours were reflected on the formation of mesoporous silica shell around silica core particles. Thin and uniform mesoporous silica layers were obtained if reaction times were kept short. When the reaction time was prolonged, the thicker and non-uniform shells were obtained.

  9. Numerical studies of depressurization-induced gas production from an interbedded marine turbidite gas hydrate reservoir model

    Science.gov (United States)

    Myshakin, Evgeniy; Lin, Jeen-Shang; Uchida, Shun; Seol, Yongkoo; Collett, Timothy S.; Boswell, Ray

    2017-01-01

    The numerical simulation of thin hydrate-bearing sand layers interbedded with mud layers is investigated. In this model, the lowest hydrate layer occurs at the base of gas hydrate stability and overlies a thinly-interbedded saline aquifer. The predicted gas rates reach 6.25 MMscf/day (1.77 x 105 m3 /day) after 90 days of continuous depressurization with manageable water production. Development of horizontal dissociating interfaces between hydrate-bearing sand and mud layers is a primary determinant of reservoir performance. A set of simulations has been executed to assess uncertainty in in situ permeability and to determine the impact of the saline aquifer on productivity.

  10. On the Relativistic Beaming and Orientation Effects in Core ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    rest frame of the source) and the projected linear size as an indicator of rela- tivistic beaming and source orientation. Based on the orientation-dependent relativistic .... samples is still unclear (see Singal 1993; Nilsson et al. 1993; Ubachukwu & Ogwo. 1998). Nevertheless, this effect if present, should be accounted for before ...

  11. Hydro-geomechanical behaviour of gas-hydrate bearing soils during gas production through depressurization and CO2 injection

    Science.gov (United States)

    Deusner, C.; Gupta, S.; Kossel, E.; Bigalke, N.; Haeckel, M.

    2015-12-01

    Results from recent field trials suggest that natural gas could be produced from marine gas hydrate reservoirs at compatible yields and rates. It appears, from a current perspective, that gas production would essentially be based on depressurization and, when facing suitable conditions, be assisted by local thermal stimulation or gas hydrate conversion after injection of CO2-rich fluids. Both field trials, onshore in the Alaska permafrost and in the Nankai Trough offshore Japan, were accompanied by different technical issues, the most striking problems resulting from un-predicted geomechanical behaviour, sediment destabilization and catastrophic sand production. So far, there is a lack of experimental data which could help to understand relevant mechanisms and triggers for potential soil failure in gas hydrate production, to guide model development for simulation of soil behaviour in large-scale production, and to identify processes which drive or, further, mitigate sand production. We use high-pressure flow-through systems in combination with different online and in situ monitoring tools (e.g. Raman microscopy, MRI) to simulate relevant gas hydrate production scenarios. Key components for soil mechanical studies are triaxial systems with ERT (Electric resistivity tomography) and high-resolution local strain analysis. Sand production control and management is studied in a novel hollow-cylinder-type triaxial setup with a miniaturized borehole which allows fluid and particle transport at different fluid injection and flow conditions. Further, the development of a large-scale high-pressure flow-through triaxial test system equipped with μ-CT is ongoing. We will present results from high-pressure flow-through experiments on gas production through depressurization and injection of CO2-rich fluids. Experimental data are used to develop and parametrize numerical models which can simulate coupled process dynamics during gas-hydrate formation and gas production.

  12. Deuterium isotope effects on iron core formation in ferritin

    Energy Technology Data Exchange (ETDEWEB)

    Papaefthymiou, G. C., E-mail: gcp@villanova.edu; Viescas, A. J.; Horn, R.; Carney, E. [Villanova University, Department of Physics (United States); Zhao, G.; Chasteen, N. D. [University of New Hampshire, Department of Chemistry (United States); Lee, J. [Brown University, Department of Chemistry (United States); Gorun, S. M. [New Jersey Institute of Technology, Department of Chemistry and Environmental Science (United States)

    2005-09-15

    We present comparative Moessbauer investigations of nanosized FeOOH and FeOOD biomineral phases nucleated within the 7-nm diameter cavity of horse-spleen apoferritin in order to assess deuterium isotopic effects on nanoscale, bioinorganic lattice structures with extended hydrogen bond networks. Differences in magnetic anisotropy energy, packing density and degree of crystallinity in the resulting iron oxo-hydroxide nanophases obtained via D{sub 2}O (heavy water) vs. H{sub 2}O (light water) solution chemistry are noted. These observations point to the possibility of stabilizing new thermodynamic states in the solid-state by utilizing isotope effects, with important implications for new synthetic pathways to novel nano materials.

  13. Effect of Core Stability Training on Trunk Function, Standing Balance, and Mobility in Stroke Patients.

    Science.gov (United States)

    Haruyama, Koshiro; Kawakami, Michiyuki; Otsuka, Tomoyoshi

    2017-03-01

    Trunk function is important for standing balance, mobility, and functional outcome after stroke, but few studies have evaluated the effects of exercises aimed at improving core stability in stroke patients. To investigate the effectiveness of core stability training on trunk function, standing balance, and mobility in stroke patients. An assessor-blinded, randomized controlled trial was undertaken in a stroke rehabilitation ward, with 32 participants randomly assigned to an experimental group or a control group (n = 16 each). The experimental group received 400 minutes of core stability training in place of conventional programs within total training time, while the control group received only conventional programs. Primary outcome measures were evaluated using the Trunk Impairment Scale (TIS), which reflects trunk function. Secondary outcome measures were evaluated by pelvic tilt active range of motion in the sagittal plane, the Balance Evaluation Systems Test-brief version (Brief-BESTest), Functional Reach test, Timed Up-and-Go test (TUG), and Functional Ambulation Categories (FAC). A general linear repeated-measures model was used to analyze the results. A treatment effect was found for the experimental group on the dynamic balance subscale and total score of the TIS ( P = .002 and P Core stability training has beneficial effects on trunk function, standing balance, and mobility in stroke patients. Our findings might provide support for introducing core stability training in stroke rehabilitation.

  14. Effects of Starch on Properties of Alumina-based Ceramic Cores

    Directory of Open Access Journals (Sweden)

    LI Fengguang

    2016-12-01

    Full Text Available In order to improve the poor leachability of alumina-based ceramic cores, different amount of starch was added to the specimens as pore former. Alumina-based ceramic cores were prepared by hot injection technology using corundum powder as base material, paraffin wax and beeswax as plasticizer, silica powder and magnesium oxide powder as mineralizing agent, wherein the parameters of the hot injection process were as follows:temperature of the slurry was 90℃, hot injection pressure was 0.5 MPa and holding time was 25 s. The effects of starch content on the properties of alumina-based ceramic cores were studied and discussed. The results indicate that during sintering period, the loss of starch in the specimens makes porosity of the alumina-based ceramic cores increase. When starch content increases, the room-temperature flexural strength of the ceramic cores reduces and the apparent porosity increases; the volatile solvent increases and the bulk density decreases. After being sintered at 1560℃ for 2.5 h, room-temperature flexural strength of the alumina-based ceramic cores with starch content of 8%(mass fraction is 24.8 MPa, apparent porosity is 47.98% when the volatile solvent is 1.92 g/h and bulk density is 1.88 g/cm3, the complex properties are optimal.

  15. Effect of long-term isometric training on core/torso stiffness.

    Science.gov (United States)

    Lee, Benjamin C Y; McGill, Stuart M

    2015-06-01

    Although core stiffness enhances athletic performance traits, controversy exists regarding the effectiveness of isometric vs. dynamic core training methods. This study aimed to determine whether long-term changes in stiffness can be trained, and if so, what is the most effective method. Twenty-four healthy male subjects (23 ± 3 years; 1.8 ± 0.06 m; 77.5 ± 10.8 kg) were recruited for passive and active stiffness measurements before and after a 6-week core training intervention. Twelve subjects (22 ± 2 years; 1.8 ± 0.08 m; 78.3 ± 12.3 kg) were considered naive to physical and core exercise. The other 12 subjects (24 ± 3 years; 1.8 ± 0.05 m; 76.8 ± 9.7 kg) were Muay Thai athletes (savvy). A repeated-measures design compared core training methods (isometric vs. dynamic, with a control group) and subject training experience (naive vs. savvy) before and after a 6-week training period. Passive stiffness was assessed on a "frictionless" bending apparatus and active stiffness assessed through a quick release mechanism. Passive stiffness increased after the isometric training protocol. Dynamic training produced a smaller effect, and as expected, there was no change in the control group. Active stiffness did not change in any group. Comparisons between subject and training groups did not reveal any interactions. Thus, an isometric training approach was superior in terms of enhancing core stiffness. This is important since increased core stiffness enhances load bearing ability, arrests painful vertebral micromovements, and enhances ballistic distal limb movement. This may explain the efficacy reported for back and knee injury reduction.

  16. The Effect of Long Term Isometric Training on Core/Torso Stiffness.

    Science.gov (United States)

    Lee, Benjamin; McGill, Stuart

    2015-03-23

    While core stiffness enhances athletic performance traits controversy exists regarding the effectiveness of isometric vs dynamic core training methods. This study aimed to determine if long term changes in stiffness can be trained, and if so, what is the most effective method. Twenty four healthy male subjects (23 ± 3 years, 1.8 ± 0.06 m, 77.5 ± 10.8 kg) were recruited for passive and active stiffness measurements before and after a six week core training intervention. Twelve subjects (22 ± 2 years, 1.8 ± 0.08 m, 78.3 ± 12.3 kg) were considered naïve to physical and core exercise. The other twelve subjects (24 ± 3 years, 1.8 ± 0.05 m, 76.8 ± 9.7 kg) were Muay Thai athletes (savvy). A repeated measures design compared core training methods (Isometric vs. Dynamic, with a Control group) and subject training experience (naïve vs. savvy) before and after a six week training period. Passive stiffness was assessed on a 'frictionless' bending apparatus and active stiffness assessed via a quick release mechanism. Passive stiffness increased following the isometric training protocol. Dynamic training produced a smaller effect and as expected there was no change in the Control group. Active stiffness did not change in any group. Comparisons between subject and training groups did not reveal any interactions. Thus, an isometric training approach was superior in terms of enhancing core stiffness. This is important since increased core stiffness enhances load bearing ability, arrests painful vertebral micromovements and enhances ballistic distal limb movement. This may explain the efficacy reported for back and knee injury reduction.

  17. EFFECTIVENESS OF CORE STABILIZATION EXERCISES AND MOTOR CONTROL EXERCISES IN PATIENTS WITH LOW BACK ACHE

    Directory of Open Access Journals (Sweden)

    Vikranth .G .R

    2015-06-01

    Full Text Available Background: Motor control exercises are isolated strengthening exercise for the deep spinal muscles (transverse abdominus, multifidus whereas Core stability is achieved by global strengthening of the core muscles. There are not much studies available in the literature done or studied the short term effect of the motor control and core stabilization on subjects with low back pain. Therefore, the purpose of this study to find the comparative effect of motor control exercises versus core stabilization exercises on improvement of pain and disability in subjects with mechanical low back pain. Method: An experimental study design, 30 subjects with non-specific mechanical low back pain were randomized into 2 groups with 15 subjects each in Group A and Group B. Subjects in Group A received Motor control exercises and subjects in Group B received Core stability exercises. Both the group received conventional exercises. The duration of intervention was given for two weeks. Outcome measurements such as pain using VAS, Functional disability using Oswestry Disability Index Questionnaire were measured before and after two weeks of intervention. Results: Analysis using paired ‘t’ test and wilcoxon signed rank test found that there is a statistically significant improvement (p<0.05 in pain, functional disability within the groups. Comparative analysis using independent ‘t’ test and Mann Whitney U test for comparison of difference in improvement in VAS and ODI between two groups, it was found that there was significant difference in improvement of VAS and ODI between groups. Group-A showed better improvement in VAS and ODI compared to Group B with an effect size of 1.47 and 0.99 respectively. Conclusion: It is concluded that the Motor control exercises showed statistically significant improvement in reducing back pain and disability when compared to the Core Stabilization exercises. Thus, performing Motor Control exercises reduces pain and disability

  18. The Effect of Cyclic Loading on the Compressive Strength of Core Build-Up Materials.

    Science.gov (United States)

    Zankuli, Muayed A; Silikas, Nick; Devlin, Hugh

    2015-01-15

    To evaluate the effect of cyclic loading on compressive strength of core build-up materials. Four dual-cured composites (Core.X Flow, Grandio Core, Bright Flow Core, Spee-Dee) and one light-cured reinforced resin-modified glass ionomer (Fuji II LC) were tested. One hundred cylindrical specimens (4 mm × 6 mm) were prepared. Each material had two groups (ten specimens to be tested under static loading and ten specimens to be tested after cyclic loading). The specimens were stored wet, and after 30 days, one group of each material was cyclically loaded (for 250,000 cycles with a frequency of 1.6 Hz under stress load of 68.6 N) in a chewing simulator CS-4.2. Then specimens were subjected to static compressive loading until failure in a universal testing machine. Mean compressive strength values before cycling ranged from 144 MPa (15.8) for Fuji II LC to 277 MPa (23.2) for Grandio Core. Independent t-test showed no statistically significant difference (p > 0.05) in the compressive strength of each material before and after cycling (p = 0.7 Grandio Core, p = 0.3 Core.X Flow, p = 0.6 Bright Flow Core, p = 0.2 Spee-Dee, p = 0.6 Fuji II LC); however, there was a statistically significant difference between the materials when comparing before and after cycling. All tested materials showed no reduction in the compressive strength after cycling. Therefore, the tested materials can survive 1 year in service without a reduction in compressive strength. © 2015 by the American College of Prosthodontists.

  19. Single Event Effects (SEE) Testing of Embedded DSP Cores within Microsemi RTAX4000D Field Programmable Gate Array (FPGA) Devices

    Science.gov (United States)

    Perez, Christopher E.; Berg, Melanie D.; Friendlich, Mark R.

    2011-01-01

    Motivation for this work is: (1) Accurately characterize digital signal processor (DSP) core single-event effect (SEE) behavior (2) Test DSP cores across a large frequency range and across various input conditions (3) Isolate SEE analysis to DSP cores alone (4) Interpret SEE analysis in terms of single-event upsets (SEUs) and single-event transients (SETs) (5) Provide flight missions with accurate estimate of DSP core error rates and error signatures.

  20. Core polarization effects in the Hartree--Fock--random phase approximation schemes

    Energy Technology Data Exchange (ETDEWEB)

    Lipparini, E.; Stringari, S.

    1987-02-01

    Core polarization effects in odd nuclei are investigated in the framework of the Hartree--Fock and random phase approximation schemes. The results of the particle vibration coupling model are recovered by linearizing the equations of motion in the interaction Hamiltonian between the external and the core particles. The formalism is used to study the renormalization of diagonal and off-diagonal M1 matrix elements. It is found that M1 polarization effects exhibit a very strong dependence on the range of the force. Copyright 1987 Academic Press, Inc.

  1. Hollow Electron Beam Collimation for HL-LHC - Effects on the Beam Core

    CERN Document Server

    Fitterer, M; Valishev, A; Bruce, R; Papotti, G; Redaelli, S; Valentino, G; Valentino, G; Valuch, D; Xu, C

    2017-01-01

    Collimation with hollow electron beams is currently one of the most promising concepts for active halo control in the High Luminosity Large Hadron Collider (HL-LHC). To ensure the successful operation of the hollow beam collimator the unwanted effects on the beam core, which might arise from the operation with a pulsed electron beam, must be minimized. This paper gives a summary of the effect of hollow electron lenses on the beam core in terms of sources, provides estimates for HL-LHC and discusses the possible mitigation methods.

  2. Hollow Electron Beam Collimation for HL-LHC - Effects on the Beam Core

    Energy Technology Data Exchange (ETDEWEB)

    Fitterer, M. [Fermilab; Stancari, G. [Fermilab; Valishev, A. [Fermilab; Bruce, R. [CERN; Papotti, G [CERN; Redaelli, S. [CERN; Valentino, G. [Malta U.; Valentino, G. [CERN; Valuch, D. [CERN; Xu, C. [CERN

    2017-06-13

    Collimation with hollow electron beams is currently one of the most promising concepts for active halo control in the High Luminosity Large Hadron Collider (HL-LHC). To ensure the successful operation of the hollow beam collimator the unwanted effects on the beam core, which might arise from the operation with a pulsed electron beam, must be minimized. This paper gives a summary of the effect of hollow electron lenses on the beam core in terms of sources, provides estimates for HL-LHC and discusses the possible mitigation methods.

  3. Effect of Thermal Fluctuations on the Radiative Rate in Core/Shell Quantum Dots.

    Science.gov (United States)

    Balan, Arunima D; Eshet, Hagai; Olshansky, Jacob H; Lee, Youjin V; Rabani, Eran; Alivisatos, A Paul

    2017-03-08

    The effect of lattice fluctuations and electronic excitations on the radiative rate is demonstrated in CdSe/CdS core/shell spherical quantum dots (QDs). Using a combination of time-resolved photoluminescence spectroscopy and atomistic simulations, we show that lattice fluctuations can change the radiative rate over the temperature range from 78 to 300 K. We posit that the presence of the core/shell interface plays a significant role in dictating this behavior. We show that the other major factor that underpins the change in radiative rate with temperature is the presence of higher energy states corresponding to electron excitation into the shell. These effects should be present in other core/shell samples and should also affect other excited state rates, such as the rate of Auger recombination or the rate of charge transfer.

  4. Core-hole effects on the B K edge in MgB sub 2

    CERN Document Server

    Jiang, B; Spence, J C H

    2003-01-01

    The projected density of states (DOS) for the ground and excited states of boron in MgB sub 2 has been calculated using the augmented plane wave plus local orbital method. The core-hole interaction is found to have a significant effect on the B p sub x p sub y states, but has little effect on the more metallic B p sub z states. The unoccupied B p sub x p sub y DOS near the Fermi level decreases as a function of core-hole strength. Comparisons with experimental electron energy loss spectra of the B K edge show that a simulation with half a core hole provides the best approximation to the final states in MgB sub 2.

  5. EFFECTIVENESS OF SWISS BALL VS FLOOR EXERCISES ON CORE MUSCLE STRENGTH IN ELITE CRICKETERS

    Directory of Open Access Journals (Sweden)

    K. Sai sudha

    2015-10-01

    Full Text Available Background: Cricket is one of the most popular game in India played by men and women of all ages. The increased physical demands on the players may be associated with an increased risk of injuries. Core muscle strength is important to prevent risk of injuries in elite cricketers. The beginners in the cricket must have enough strength of core muscles, as core is the bridge between upper and lower limbs. So, it should be strong enough to prevent low back and lower limb injuries in cricketers. The aim is to determine the effectiveness of swiss ball exercises versus floor exercises on core muscle strength in elite cricketers. The objective is to study and compare the effectiveness of swiss ball exercises and floor exercises in elite cricketers in terms of back strength. Method: The total number of students in this study were 30 eilte cricketers between 16-25 years out of which 15 subjects were included each in floor exercise(n=15 and swiss ball group(n=15. Back strength was measured before and after the intervention of 6 weeks using isokinetic analyser. Results: After the analysis, the results revealed significant improvement of back strength in both the groups(p< 0.00. The swiss ball group showed significant results when compared with floor exercise group. Conclusion: Although the study showed beneficial results in both the groups, the results reflected that swiss ball group had better improvement of core muscle strength than the floor exercise group.

  6. Effects of core and veneer thicknesses on the color of CAD-CAM lithium disilicate ceramics.

    Science.gov (United States)

    Kang, Wol; Park, Jong-Kyoung; Kim, So-Ri; Kim, Woong-Chul; Kim, Ji-Hwan

    2017-07-06

    The color of dental ceramics is important for achieving successful esthetic restorations. However, insufficient studies are available of the color of recently introduced computer-aided design-computer-aided manufacturing (CAD-CAM) lithium disilicate ceramics as functions of the core and veneer thicknesses. The purpose of this in vitro study was to evaluate the effects of the thickness of different core and veneer thicknesses on the color of CAD-CAM lithium disilicate ceramics. A total of 42 specimens from 2 groups of 7 ceramic cores at 3 thicknesses (0.8, 1.0, and 1.2 mm) were fabricated. The veneer was fabricated at 3 thicknesses (0.3, 0.5, and 0.7 mm). The group name was based on the name of the ceramic core (IPS e.max CAD; lithium disilicate [LD], IPS Empress CAD; leucite-reinforced glass-ceramic [LR]), and the associated number was determined by the combined thicknesses of the core and the veneer: 1=0.8+0.7; 2=1.0+0.5; and 3=1.2+0.3. The color coordinates and the color differences were calculated using a spectrophotometer. The color difference was analyzed using the CIEDE2000 chrominance and the acceptability threshold. Two-way ANOVA was used to identify the color difference based on the core/veneer thicknesses, and the Tukey honest significant differences and Games-Howell tests were conducted to verify the ΔE00 differences of the group (α=.05). In addition, regression analysis was carried out to estimate the causal relationship between the independent variables and the chrominance. At a certain thickness, the color differences of LD1, LR1, and LR2 were not clinically acceptable based on the thicknesses of the core and the veneer. Results of 2-way ANOVA demonstrated that the different thicknesses of core/veneer combination significantly affected the color difference (Pcore decreased by 0.2 mm. The color is influenced by the thicknesses of the core and the veneer. With a certain thickness, the color differences increased as the thickness of the core

  7. Effect of core stabilization exercises on functional disability in patients with chronic low back pain

    Directory of Open Access Journals (Sweden)

    Amila Kapetanovic

    2016-04-01

    Full Text Available Introduction: The aim of this study was to assess core stabilization exercise effects in reducing functional disability in patients with chronic low back pain (CLBP.Methods: This study included total of 90 patients aged 40 to 60 years. After a ten-day rehabilitation program the patients from an examination group (n = 30 performed home exercise program five times a week, patients from a first control group (n = 30 three times a week, while patients from a second control group (n = 30 did not perform the exercises at all. The patients performed core stabilization exercises of moderate intensity once a day in 30 minutes sessions. The patient's functional disability was estimated using the Oswestry Disability Index (ODI.Results: After two months of rehabilitation there was a statistically significant increase in functional ability in patients who performed the core stabilization exercises five times a week(p = 0.0001 and in patients who performed the core stabilization exercises three times per week (p = 0.0001. A statistically significant difference in functional ability was not recorded in patients who did not perform the exercises. The analysis of the average values of the ODI differences at the beginning and after two months of rehabilitation showed a statistically significant difference between the group who did not perform the exercises and the group who performed the core stabilization exercises three times a week (p = 0.0001, and between the group who did not perform the exercises and the group who performed the core stabilization exercises five times a week (p = 0.0001.Conclusions: The implementation of the core stabilization exercises leads to a reduction of functional disability in patients with CLBP.

  8. Humidity Effects on Soluble Core Mechanical and Thermal Properties (Polyvinyl Alcohol/Microballoon Composite)

    Science.gov (United States)

    1993-01-01

    This document constitutes the final report for the study of humidity effects and loading rate on soluble core (PVA/MB composite material) mechanical and thermal properties. This report describes test results, procedures employed, and any unusual occurrences or specific observations associated with this test program.

  9. Effective thermal/mechanical properties of honeycomb core panels for hot structure applications

    NARCIS (Netherlands)

    Fatemi, J.; Lemmen, M.H.J.

    2009-01-01

    The present work addresses the computation of the effective thermal and mechanical properties of a honeycombcore sandwich panel. The panel considered has a hexagon-cell honeycomb core. An alternative method, based on the Gebhart factors within a hexagonal cell, is presented in addition to the

  10. HOLLOW ELECTRON BEAM COLLIMATION FOR HL-LHC - EFFECT ON THE BEAM CORE

    Energy Technology Data Exchange (ETDEWEB)

    Fitterer, M. [Fermilab; Stancari, G. [Fermilab; Valishev, A. [Fermilab; Bruce, R. [CERN; Papadopoulou, S. [CERN; Papotti, G. [CERN; Pellegrini, D. [CERN; Pellegrini, S. [CERN; Valuch, D. [CERN; Wagner, J. F. [CERN

    2016-10-05

    Collimation with hollow electron beams or lenses (HEL) is currently one of the most promising concepts for active halo control in HL-LHC. In previous studies it has been shown that the halo can be efficiently removed with a hollow electron lens. Equally important as an efficient removal of the halo, is also to demonstrate that the core stays unperturbed. In this paper, we present a summary of the experiment at the LHC and simulations in view of the effect of the HEL on the beam core in case of a pulsed operation.

  11. The Effects of Core Stability Exercise on the Dynamic Balance of Volleyball Players

    Directory of Open Access Journals (Sweden)

    Hassan Sadeghi

    2013-12-01

    Full Text Available Dynamic balance is a key component of injury prevention and rehabilitation in sports. Training the core muscles has been hypothesized as an intervention for improving balance. However, there is a lack of current scientific evidence to support this claim. The purpose of this study was to evaluate the effects of a core stability program on dynamic balance of volleyball players as measured with the Star Excursion Balance Test (SEBT. Thirty healthy participants were divided into 2 groups: control and exercise groups. All participants performed the SEBT before and after 8-week exercise time. During the 8-week time, the exercise group performed a core stability program, whereas the control group abstained from any new exercise. These results also illustrated there was significant differences in the scores for pre-test and post-test of all direction according SEBT in the experimental group. An independent sample t-test was conducted to compare experimental and control group (F=43.573, Sig=0.000. These results were a significant difference in the scores for control and experimental groups. Maximum excursion distances improved for the exercise group, compared with the control group. This result justifies the hypothesis that core strengthening can improve dynamic postural control during landing of volleyball players significantly. Keywords: Core stabilization; volleyball player; dynamic balance; SEBT

  12. Tree ring effects and ice core acidities clarify the volcanic record of the 1st millennium

    Science.gov (United States)

    Baillie, M. G. L.; McAneney, J.

    2014-04-01

    Various attempts have been made to link tree-ring and ice-core records, something vital for the understanding of the environmental response to major volcanic eruptions in the past. Here we demonstrate that, by taking note of the spacing between events, it is possible to clarify linkages between tree-response, as witnessed by frost rings in bristlecone pines from Western North America and volcanic acid deposition in ice cores. The results demonstrate that in the 6th and 7th centuries of the current era, and presumably for all earlier dates, the key European ice chronologies from the North Greenland Ice Core Project, namely Dye3, GRIP, NGRIP and NEEM appear to have been wrongly dated by 7 years, with the ice dates being too old. Similar offsets are observed for the Antarctic Law Dome and West Antarctic Ice Sheet Divide WDC06A ice-core chronologies that have been linked to the Greenland record. Importantly, the results clarify which frost rings in bristlecone pines are related to volcanic activity and which may be the result of other causes. In addition, it is possible to show that ice core researchers have used inappropriate linkages to tree effects to justify their chronology.

  13. Electrical transport and photovoltaic effects of core-shell CuO/C60 nanowire heterostructure.

    Science.gov (United States)

    Bao, Qiaoliang; Li, Chang Ming; Liao, Lei; Yang, Hongbin; Wang, Wei; Ke, Chang; Song, Qunliang; Bao, Haifeng; Yu, Ting; Loh, Kian Ping; Guo, Jun

    2009-02-11

    An organic/inorganic hybrid heterostructure consisting of p-type CuO nanowire core and n-type C(60) shell was fabricated and its electrical transport properties were studied for the first time. It was found that the devices with contacts on shell-shell show an ohmic behavior but the devices with contacts on core-shell forms a single p-n junction and display a rectifying behavior. Logarithmic current-voltage curves at various temperatures show that the tunneling transport plays a critical role in the electrical transport. Photovoltaic effects were observed in the core-shell contacted CuO/C(60) junctions under illumination. This work demonstrates that an inorganic/organic coaxial nanowire can provide potential in nanoelectronic devices and could further stack high density hybrid nanowires array as a renewable power source.

  14. Electrical transport and photovoltaic effects of core-shell CuO/C60 nanowire heterostructure

    Science.gov (United States)

    Bao, Qiaoliang; Li, Chang Ming; Liao, Lei; Yang, Hongbin; Wang, Wei; Ke, Chang; Song, Qunliang; Bao, Haifeng; Yu, Ting; Loh, Kian Ping; Guo, Jun

    2009-02-01

    An organic/inorganic hybrid heterostructure consisting of p-type CuO nanowire core and n-type C60 shell was fabricated and its electrical transport properties were studied for the first time. It was found that the devices with contacts on shell-shell show an ohmic behavior but the devices with contacts on core-shell forms a single p-n junction and display a rectifying behavior. Logarithmic current-voltage curves at various temperatures show that the tunneling transport plays a critical role in the electrical transport. Photovoltaic effects were observed in the core-shell contacted CuO/C60 junctions under illumination. This work demonstrates that an inorganic/organic coaxial nanowire can provide potential in nanoelectronic devices and could further stack high density hybrid nanowires array as a renewable power source.

  15. Effects of core muscle stability training on the weight distribution and stability of the elderly.

    Science.gov (United States)

    Kang, Kwon-Young

    2015-10-01

    [Purpose] This study investigated the effects of core muscle stability training on the weight distribution and stability of the elderly. [Subjects and Methods] Thirty elderly persons were randomly divided into an experimental group which performed core strengthening exercises, and a control group which performed standard strengthening exercises for 8 weeks. A Tetrax Interactive Balance System was used to evaluate the weight distribution index (WDI) and the stability index (SI). [Results] The experimental group showed a significant improvement in terms of WDI and the SI. However, the control group showed no significant improvement in either. [Conclusion] Core muscle stability training should be considered as a therapeutic method for the elderly to improve their WDI, and SI, and as a fall prevention measure.

  16. Effects of Radial Reflector Composition on Core Reactivity and Peak Power

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang Yoon; Lee, Kyung Hoon; Song, Jae Seung

    2007-10-15

    The effects of radial SA-240 alloy shroud on core reactivity and peak power are evaluated. The existence of radial SA-240 alloy shroud makes reflector water volume decrease, so the thermal absorption cross section of radial reflector is lower than without SA-240 alloy shroud case. Finally, the cycle length is increased from 788 EFPD to 845 EFPD and the peak power is decreased from 1.66 to 1.49. In the case of without SA-240 alloy shroud, a new core loading pattern search has been performed. For the guarantee of the same equivalent cycle length of with SA-240 alloy shroud case, the enrichment of U-235 should be increased from 4.22 w/o to 4.68 w/o. The nuclear key safety parameters of new core loading pattern have been calculated and recorded for the future.

  17. Effect of Mineral Dissolution/Precipitation and CO2 Exsolution on CO2 transport in Geological Carbon Storage.

    Science.gov (United States)

    Xu, Ruina; Li, Rong; Ma, Jin; He, Di; Jiang, Peixue

    2017-09-19

    Geological carbon sequestration (GCS) in deep saline aquifers is an effective means for storing carbon dioxide to address global climate change. As the time after injection increases, the safety of storage increases as the CO2 transforms from a separate phase to CO2(aq) and HCO3(-) by dissolution and then to carbonates by mineral dissolution. However, subsequent depressurization could lead to dissolved CO2(aq) escaping from the formation water and creating a new separate phase which may reduce the GCS system safety. The mineral dissolution and the CO2 exsolution and mineral precipitation during depressurization change the morphology, porosity, and permeability of the porous rock medium, which then affects the two-phase flow of the CO2 and formation water. A better understanding of these effects on the CO2-water two-phase flow will improve predictions of the long-term CO2 storage reliability, especially the impact of depressurization on the long-term stability. In this Account, we summarize our recent work on the effect of CO2 exsolution and mineral dissolution/precipitation on CO2 transport in GCS reservoirs. We place emphasis on understanding the behavior and transformation of the carbon components in the reservoir, including CO2(sc/g), CO2(aq), HCO3(-), and carbonate minerals (calcite and dolomite), highlight their transport and mobility by coupled geochemical and two-phase flow processes, and consider the implications of these transport mechanisms on estimates of the long-term safety of GCS. We describe experimental and numerical pore- and core-scale methods used in our lab in conjunction with industrial and international partners to investigate these effects. Experimental results show how mineral dissolution affects permeability, capillary pressure, and relative permeability, which are important phenomena affecting the input parameters for reservoir flow modeling. The porosity and the absolute permeability increase when CO2 dissolved water is continuously

  18. Effect of Lumbar Progressive Resistance Exercise on Lumbar Muscular Strength and Core Muscular Endurance in Soldiers.

    Science.gov (United States)

    Mayer, John M; Childs, John D; Neilson, Brett D; Chen, Henian; Koppenhaver, Shane L; Quillen, William S

    2016-11-01

    Low back pain is common, costly, and disabling for active duty military personnel and veterans. The evidence is unclear on which management approaches are most effective. The purpose of this study was to assess the effectiveness of lumbar extensor high-intensity progressive resistance exercise (HIPRE) training versus control on improving lumbar extension muscular strength and core muscular endurance in soldiers. A randomized controlled trial was conducted with active duty U.S. Army Soldiers (n = 582) in combat medic training at Fort Sam Houston, Texas. Soldiers were randomized by platoon to receive the experimental intervention (lumbar extensor HIPRE training, n = 298) or control intervention (core stabilization exercise training, n = 284) at one set, one time per week, for 11 weeks. Lumbar extension muscular strength and core muscular endurance were assessed before and after the intervention period. At 11-week follow-up, lumbar extension muscular strength was 9.7% greater (p = 0.001) for HIPRE compared with control. No improvements in core muscular endurance were observed for HIPRE or control. Lumbar extensor HIPRE training is effective to improve isometric lumbar extension muscular strength in U.S. Army Soldiers. Research is needed to explore the clinical relevance of these gains. Reprint & Copyright © 2016 Association of Military Surgeons of the U.S.

  19. The effects of stainless steel radial reflector on core reactivity for small modular reactor

    Science.gov (United States)

    Kang, Jung Kil; Hah, Chang Joo; Cho, Sung Ju; Seong, Ki Bong

    2016-01-01

    Commercial PWR core is surrounded by a radial reflector, which consists of a baffle and water. Radial reflector is designed to reflect neutron back into the core region to improve the neutron efficiency of the reactor and to protect the reactor vessels from the embrittling effects caused by irradiation during power operation. Reflector also helps to flatten the neutron flux and power distributions in the reactor core. The conceptual nuclear design for boron-free small modular reactor (SMR) under development in Korea requires to have the cycle length of 4˜5 years, rated power of 180 MWth and enrichment less than 5 w/o. The aim of this paper is to analyze the effects of stainless steel radial reflector on the performance of the SMR using UO2 fuels. Three types of reflectors such as water, water/stainless steel 304 mixture and stainless steel 304 are selected to investigate the effect on core reactivity. Additionally, the thickness of stainless steel and double layer reflector type are also investigated. CASMO-4/SIMULATE-3 code system is used for this analysis. The results of analysis show that single layer stainless steel reflector is the most efficient reflector.

  20. Assessment of the control rods shadow effect in the VENUS-F core

    Directory of Open Access Journals (Sweden)

    Cetnar Jerzy

    2014-12-01

    Full Text Available The partitioning and transmutation (P&T of spent nuclear fuel is an important field of present development of nuclear energy technologies. One of the possible ways to carry out the P&T process is to use the accelerator driven systems (ADS. This technology has been developed within the EURATOM Framework Programmes for several years now. Current research in this field is carried out within the scope of 7th FP project FREYA. Important parts of the project are experiments performed in the GUINEVERE facility devoted to characterising the subcritical core kinetics and development of reactivity monitoring techniques. The present paper considers the effects of control rods use on the core reactivity. In order to carry out the evaluation of the experimental results, it is important to have detailed core characteristics at hand and to take into consideration the differences in the effect of control rods acting separately or together (the so-called shadow effect on both the reactivity value and the measured neutron flux. Also any core asymmetry should be revealed. This goal was achieved by both MCNP simulations and the experimental results. However, in the case of experimental results, the need for calculating respective correction factors was unavoidable.

  1. System design description for GCFR-core flow test loop

    Energy Technology Data Exchange (ETDEWEB)

    Huntley, W.R.; Grindell, A.G.

    1980-12-01

    The Core Flow Test Loop is a high-pressure, high-temperature, out-of-reactor helium circulation system that is being constructed to permit detailed study of the thermomechanical and thermal performance at prototypic steady-state and transient operating conditions of simulated segments of core assemblies for a GCFR Demonstration Plant, as designed by General Atomic Company. It will also permit the expermental verification of predictive analytical models of the GCFR core assemblies needed to reduce operational and safety uncertainties of the GCFR. Full-sized blanket assemblies and segments of fuel rod and control rod fuel assemblies will be simulated with test bundles of electrically powered fuel rod or blanket rod simulators. The loop will provide the steady-state and margin test requirements of bundle power and heat removal, and of helium coolant flow rate, pressure, and temperature for test bundles having up to 91 rods; these requirements set the maximum power, coolant helium flow, and thermal requirements for the loop. However, the size of the test vessel that contains the test bundles will be determined by the bundles that simulate a full-sized GCFR blanket assembly. The loop will also provide for power and coolant transients to simulate transient operation of GCFR core assemblies, including the capability for rapid helium depressurization to simulate the depressurization class of GCFR accidents. In addition, the loop can be used as an out-of-reactor test bed for characterizing in-reactor test bundle configurations.

  2. Effect of core stability exercise on postural stability in children with Down syndrome

    Directory of Open Access Journals (Sweden)

    Sobhy M. Aly

    2016-10-01

    Full Text Available Down syndrome is one of the commonest causes of developmental delay in children. Postural stability problems often exist with Down syndrome. To investigate the effect of core stability exercises on postural stability in children with down syndrome. Thirty children (21 boys and 9 girls with down syndrome, with ages ranged from 6 to 10 years were participated in this study. They were assigned randomlyinto study and control group. Study group received core stability exercises and conventional physical therapy program while control group received Conventional physical therapy program. The duration of treatment was 8 weeks. Postural stability was evaluated pre and post treatment by Biodex *Balance System. There was a significant decrease in anteroposterior, mediolateral, and overall stability indices of the study group compared with control group post treatment (p <0.001. Both groups showed a significant decrease in anteroposterior, mediolateral, and overall stability indices post treatment compared with pre treatment (p < 0.001. Eight weeks of core stability exercises is effective in improving postural stabilityand balance of children with Down syndrome. Core stability exercises should be considered as important part of the rehabilitation program for childrenwith Down syndrome.

  3. The effect of short-term Swiss ball training on core stability and running economy.

    Science.gov (United States)

    Stanton, Robert; Reaburn, Peter R; Humphries, Brendan

    2004-08-01

    The purpose of this study was to investigate the effect of a short-term Swiss ball training on core stability and running economy. Eighteen young male athletes (15.5 +/- 1.4 years; 62.5 +/- 4.7 kg; sigma9 skinfolds 78.9 +/- 28.2 mm; VO2max 55.3 +/- 5.7 ml.kg(-1).min(-1)) were divided into a control (n = 10) and experimental (n = 8) groups. Athletes were assessed before and after the training program for stature, body mass, core stability, electromyographic activity of the abdominal and back muscles, treadmill VO2max, running economy, and running posture. The experimental group performed 2 Swiss ball training sessions per week for 6 weeks. Data analysis revealed a significant effect of Swiss ball training on core stability in the experimental group (p Swiss ball training may positively affect core stability without concomitant improvements in physical performance in young athletes. Specificity of exercise selection should be considered.

  4. Polarization effects on spectra of spherical core/shell nanostructures: Perturbation theory against finite difference approach

    Energy Technology Data Exchange (ETDEWEB)

    Ibral, Asmaa [Equipe d' Optique et Electronique du Solide, Département de Physique, Faculté des Sciences, Université Chouaïb Doukkali, B. P. 20 El Jadida principale, El Jadida, Royaume du Maroc (Morocco); Laboratoire d' Instrumentation, Mesure et Contrôle, Département de Physique, Faculté des Sciences, Université Chouaïb Doukkali, B. P. 20 El Jadida principale, El Jadida, Royaume du Maroc (Morocco); Zouitine, Asmaa [Département de Physique, Ecole Nationale Supérieure d' Enseignement Technique, Université Mohammed V Souissi, B. P. 6207 Rabat-Instituts, Rabat, Royaume du Maroc (Morocco); Assaid, El Mahdi, E-mail: eassaid@yahoo.fr [Equipe d' Optique et Electronique du Solide, Département de Physique, Faculté des Sciences, Université Chouaïb Doukkali, B. P. 20 El Jadida principale, El Jadida, Royaume du Maroc (Morocco); Laboratoire d' Instrumentation, Mesure et Contrôle, Département de Physique, Faculté des Sciences, Université Chouaïb Doukkali, B. P. 20 El Jadida principale, El Jadida, Royaume du Maroc (Morocco); and others

    2015-02-01

    Poisson equation is solved analytically in the case of a point charge placed anywhere in a spherical core/shell nanostructure, immersed in aqueous or organic solution or embedded in semiconducting or insulating matrix. Conduction and valence band-edge alignments between core and shell are described by finite height barriers. Influence of polarization charges induced at the surfaces where two adjacent materials meet is taken into account. Original expressions of electrostatic potential created everywhere in the space by a source point charge are derived. Expressions of self-polarization potential describing the interaction of a point charge with its own image–charge are deduced. Contributions of double dielectric constant mismatch to electron and hole ground state energies as well as nanostructure effective gap are calculated via first order perturbation theory and also by finite difference approach. Dependencies of electron, hole and gap energies against core to shell radii ratio are determined in the case of ZnS/CdSe core/shell nanostructure immersed in water or in toluene. It appears that finite difference approach is more efficient than first order perturbation method and that the effect of polarization charge may in no case be neglected as its contribution can reach a significant proportion of the value of nanostructure gap.

  5. Bridging exchange bias effect in NiO and Ni(core)@NiO(shell) nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Rinaldi-Montes, Natalia, E-mail: nataliarin@gmail.com [Departamento de Física, Universidad de Oviedo, E-33007 Oviedo (Spain); Gorria, Pedro [Departamento de Física & IUTA, EPI, Universidad de Oviedo, E-33203 Gijón (Spain); Martínez-Blanco, David [Servicios Científico-Técnicos, Universidad de Oviedo, E-33006 Oviedo (Spain); Fuertes, Antonio B. [Instituto Nacional del Carbón, CSIC, E-33080 Oviedo (Spain); Fernández Barquín, Luis [CITIMAC, Facultad de Ciencias, Universidad de Cantabria, E-39005 Santander (Spain); Puente-Orench, Inés [Instituto de Ciencia de Materiales de Aragón, CSIC-Universidad de Zaragoza and Institut Laue-Langevin, BP 156, F-38042 Grenoble Cedex 9 (France); Blanco, Jesús A. [Departamento de Física, Universidad de Oviedo, E-33007 Oviedo (Spain)

    2016-02-15

    Among all bi-magnetic core(transition metal)@shell(transition metal oxide) nanoparticles (NPs), Ni@NiO ones show an onset temperature for the exchange bias (EB) effect far below the Néel temperature of bulk antiferromagnetic NiO. In this framework, the role played by the magnetism of NiO at the nanoscale is investigated by comparing the microstructure and magnetic properties of NiO and Ni@NiO NPs. With the aim of bridging the two systems, the diameter of the NiO NPs (~4 nm) is chosen to be comparable to the shell thickness of Ni@NiO ones (~2 nm). The EB effect in Ni@NiO NPs is attributed to the exchange coupling between the core and the shell, with an interfacial exchange energy of ΔE~0.06 erg cm{sup −2}, thus comparable to previous reports on Ni/NiO interfaces both in thin film and NP morphologies. In contrast, the EB detected in NiO NPs is explained in a picture where uncompensated spins located on a magnetically disordered surface shell are exchange coupled to the antiferromagnetic core. In all the studied NPs, the variation of the EB field as a function of temperature is described according to a negative exponential law with a similar decay constant, yielding a vanishing EB effect around T~40–50 K. In addition, the onset temperature for the EB effect in both NiO and Ni@NiO NPs seems to follow a universal dependence with the NiO crystallite size. - Highlights: • Comparison of the exchange bias effect in NiO and Ni(core)@NiO(shell) nanoparticles. • Universal temperature dependence of the exchange bias effect. • Suggested similar physical origin of the effect in both systems. • Size and crystallinity of the NiO shell hold the key for exchange bias properties.

  6. Equation of state effects on gravitational waves from rotating core collapse

    Science.gov (United States)

    Richers, Sherwood; Ott, Christian D.; Abdikamalov, Ernazar; O'Connor, Evan; Sullivan, Chris

    2017-03-01

    Gravitational waves (GWs) generated by axisymmetric rotating collapse, bounce, and early postbounce phases of a galactic core-collapse supernova are detectable by current-generation gravitational wave observatories. Since these GWs are emitted from the quadrupole-deformed nuclear-density core, they may encode information on the uncertain nuclear equation of state (EOS). We examine the effects of the nuclear EOS on GWs from rotating core collapse and carry out 1824 axisymmetric general-relativistic hydrodynamic simulations that cover a parameter space of 98 different rotation profiles and 18 different EOS. We show that the bounce GW signal is largely independent of the EOS and sensitive primarily to the ratio of rotational to gravitational energy, T /|W | , and at high rotation rates, to the degree of differential rotation. The GW frequency (fpeak˜600 - 1000 Hz ) of postbounce core oscillations shows stronger EOS dependence that can be parametrized by the core's EOS-dependent dynamical frequency √{G ρ¯ c } . We find that the ratio of the peak frequency to the dynamical frequency fpeak/√{G ρc ¯ } follows a universal trend that is obeyed by all EOS and rotation profiles and that indicates that the nature of the core oscillations changes when the rotation rate exceeds the dynamical frequency. We find that differences in the treatments of low-density nonuniform nuclear matter, of the transition from nonuniform to uniform nuclear matter, and in the description of nuclear matter up to around twice saturation density can mildly affect the GW signal. More exotic, higher-density physics is not probed by GWs from rotating core collapse. We furthermore test the sensitivity of the GW signal to variations in the treatment of nuclear electron capture during collapse. We find that approximations and uncertainties in electron capture rates can lead to variations in the GW signal that are of comparable magnitude to those due to different nuclear EOS. This emphasizes the

  7. Shallow donor inside core/shell spherical nanodot: Effect of nanostructure size and dielectric environment on energy spectrum

    Science.gov (United States)

    Chafai, A.; Dujardin, F.; Essaoudi, I.; Ainane, A.; Ahuja, R.

    2017-11-01

    We have reported the impact of the core and shell radii on the energy spectrum of centered shallow donor confined inside CdSe/ZnTe core/shell quantum dot and ZnTe/CdSe inverted core/shell quantum dot. The dielectric discontinuity between the nanosystems and their surrounding medium was considered. In order to examine the behavior of the donor binding energy as a function of the spatial parameters a variational approach within the framework of the effective-mass approximation was deployed. Our model shows that for a fixed shell radius the increase of the core radius value blue-shifts the binding energy of the donor inside inverted core/shell quantum dot only if the value of the core to shell radii ratio is between 0.9 and 1, otherwise it is red-shifted. By contrast, for core/shell quantum dot system the binding energy is red-shifted by increasing the core radius for a fixed nanostructure size and for all values of the core to shell radii ratio. We have also found that the donor binding energy values are more important in a core/shell nanodot than in an inverted core/shell quantum dot.

  8. Alternative cooling water flow path for RHR heat exchanger and its effect on containment response during extended station blackout for Chinshan BWR-4 plant

    Energy Technology Data Exchange (ETDEWEB)

    Yuann, Yng-Ruey, E-mail: ryyuann@iner.gov.tw

    2016-04-15

    Highlights: • Motivating alternative RHR heat exchanger tube-side flow path and determining required capacity. • Calculate NSSS and containment response during 24-h SBO for Chinshan BWR-4 plant. • RETRAN and GOTHIC models are developed for NSSS and containment, respectively. • Safety relief valve blowdown flow and energy to drywell are generated by RETRAN. • Analyses are performed with and without reactor depressurization, respectively. - Abstract: The extended Station Blackout (SBO) of 24 h has been analyzed with respect to the containment response, in particular the suppression pool temperature response, for the Chinshan BWR-4 plant of MARK-I containment. The Chinshan plant, owned by Taiwan Power Company, has twin units with rated core thermal power of 1840 MW each. The analysis is aimed at determining the required alternative cooling water flow capacity for the residual heat removal (RHR) heat exchanger when its tube-side sea water cooling flow path is blocked, due to some reason such as earthquake or tsunami, and is switched to the alternative raw water source. Energy will be dissipated to the suppression pool through safety relief valves (SRVs) of the main steam lines during SBO. The RETRAN model is used to calculate the Nuclear Steam Supply System (NSSS) response and generate the SRV blowdown conditions, including SRV pressure, enthalpy, and mass flow rate. These conditions are then used as the time-dependent boundary conditions for the GOTHIC code to calculate the containment pressure and temperature response. The shaft seals of the two recirculation pumps are conservatively assumed to fail due to loss of seal cooling and a total leakage flow rate of 36 gpm to the drywell is included in the GOTHIC model. Based on the given SRV blowdown conditions, the GOTHIC containment calculation is performed several times, through the adjustment of the heat transfer rate of the RHR heat exchanger, until the criterion that the maximum suppression pool temperature

  9. Effect of various intermediate ceramic layers on the interfacial stability of zirconia core and veneering ceramics.

    Science.gov (United States)

    Yoon, Hyung-In; Yeo, In-Sung; Yi, Yang-Jin; Kim, Sung-Hun; Lee, Jai-Bong; Han, Jung-Suk

    2015-01-01

    The purposes of this study were to evaluate the effects of intermediate ceramics on the adhesion between the zirconia core and veneer ceramics. The polished surfaces of fully sintered Y-TZP blocks received three different treatments: (1) connector (C), (2) liner (L) or (3) wash layer (W). All the treated zirconia blocks were veneered with either (a) fluorapatite glass-ceramic (E) or (b) feldspathic porcelain (V) and divided into four groups (CE, CV, LE and WV). For the control group, the testing surfaces of metal blocks were veneered with feldspathic porcelain (VM). A half of the samples in each group (n = 21) were exposed to thermocycling, while the other half of the specimens were stored at room temperature under dry conditions. All specimens were subjected to the shear test and the failed surfaces were microscopically examined. The elemental distribution at the zirconia core/veneer interface was analyzed. The specimens in Groups CE and CV exhibited significantly greater mean bond strength values than those in Groups LE and WV, respectively (p core/veneer adhesion than the other intermediate ceramics evaluated in the study. However, thermal cycling affected the bond strength at the core/veneer interface differently according to the intermediate ceramics.

  10. A Preliminary Investigation of Rapid Depressurization Phenomena Following a Sudden DLOFC in a VHTR

    Energy Technology Data Exchange (ETDEWEB)

    Richard C. Martineau; Ray A. Berry; Dana A. Knoll

    2009-03-01

    Air ingress has been identified as a potential threat for Very High Temperature gas-cooled Reactors (VHTR). Reactor components constructed of graphite will, at high temperatures, produce exothermic reactions in the presence of oxygen. The danger lies in the possibility of fuel element damage and core structural failure. Previous investigations of air ingress mechanisms have focused on thermal and molecular diffusion, density-driven stratified flow, and natural convection. Here, we investigate the possibility of a rapid ingress of air due to a Taylor wave expansion after a hypothetical sudden loss of coolant accident (LOCA) scenario in a VHTR. Our analysis starts with a one-dimensional shock tube simulation to simply illustrate the development of a Taylor wave with resulting reentrant flow. Then, a simulation is performed of an idealized two-dimensional axisymmetric representation of the lower plenum of General Atomics GT-MHR subjected to a hypothetical catastrophic break of the hot duct. Analysis shows the potential for significant and rapid air ingress into the reactor vessel in the case of a large break in the cooling system.

  11. Interactions between isolated nucleosome core particles: A tail-bridging effect?

    Science.gov (United States)

    Mangenot, S.; Raspaud, E.; Tribet, C.; Belloni, L.; Livolant, F.

    2002-03-01

    Interactions between isolated nucleosome core particles are studied as a function of the monovalent salt concentration by osmometry and by electrophoretic mobility measurements. The data are compared to the measurements performed on the protein-free DNA fragments and also analysed using the conventional theoretical approach. At low salt, an electrostatic screening effect accounts for the variation of the second virial coefficient whereas the simple hard-core contribution becomes predominant at high salt. In the intermediate range, an attraction occurs. In the light of previous results (Mangenot et al. , Biophys. J. 82, 345 (2002)), we show that the flexible basic proteic tails are responsible for this attraction. A tail-bridging effect is discussed.

  12. Effects of Functional Training Program in Core Muscles in Women with Fibromyalgia

    Directory of Open Access Journals (Sweden)

    Iván Darío Pinzón-Ríos

    2015-01-01

    Full Text Available Abstract: Objective: To evaluate the effects of a program of functional muscles core training targeting women with fibromyalgia. Materials and methods: A quasi-experimental type trial was conducted, before and after an intervention, for 20 days, often three days/week, 60 minutes each session. In a single-group of eight women, changes in muscle strength, pain, quality of life related to health and physical activity were evaluated. Results: An increase in repetitions of the test trunk flexion, time on the left and right bridge testing lateral and prone bridge the test were found. All features of pain decreased, and, according to the S-FIQ, a decrease in morning fatigue, stiffness and anxiety was reported. Also Met’s/minute-weeks increased after intervention. Conclusion: These data suggest that functional program core muscle training is effective in increasing muscle strength, pain modulation, functional performance optimization, and increased levels of physical activity in women with fibromyalgia.

  13. Photochemical Synthesis of Au@Pd Core-Shell Nanoparticles for Methanol Oxidation Reaction: the Promotional Effect of the Au Core

    Directory of Open Access Journals (Sweden)

    Dong Yingnan

    2016-01-01

    Full Text Available A novel method for synthesizing Au@Pd core-shell nanoparticles was proposed based on photochemistry. By irradiating the mixture of Au (III and Pd (II ions using ultraviolet light, the Au@Pd core-shell nanoparticles were prepared. The size of the nanoparticles and the thickness of the Pd shell could be efficiently adjusted by changing the molar ratio of Au (III to Pd (II ion. In this way, nanoparticles with diameter in the range of 5.6~4.6 nm were obtained. The core-shell structure of the synthesized nanoparticles was showed by the characterization using UV-Vis, TEM/HR-TEM and XPS. The paper investigated the electrocatalysis performance of Au@Pd nanoparticles in the methanol catalytic oxidation reaction, as well as the electron donating effect of Au core to Pd shell and the promotion of this effect on the catalytic activity of Pd shell. The experimental results provided reference for the development of non-platinum catalysts of low-temperature fuel cell anode.

  14. Combined effect of thermoplastic and thermosetting adhesives on properties of particleboard with rice husk core

    OpenAIRE

    Kwon,Jin Heon; Ayrilmis,Nadir; Han, Tae Hyung

    2014-01-01

    This study investigated the combined effect of adhesive type and content on the dimensional stability and mechanical properties of three-layer particleboards made from a mixture of wood particles (face layer: 30 wt %) and rice husk particles (core layer: 70 wt %). Two types of thermosetting adhesives, liquid urea-formaldehyde (UF) and phenol-formaldehyde (PF), and thermoplastic adhesive (low density polyethylene: LDPE) powder were used as binder in the experiments. Thickness swelling and wate...

  15. Investigation of the Effects of Teaching Core Exerciseson Young Soccer Players

    Science.gov (United States)

    Yapici, Aysegül

    2016-01-01

    The objective of this study is to investigate the effects of teaching core exercises on some motoric parameters in young soccer players. 32 amateur male football players from Afjet Afyonspor and Muglaspor football team; 16 experimental group (average age 13.75 ± 0.46 years; mean body height 1.65.± 0.09 cm; mean body mass 52.88 ± 8.04 kg) and 16…

  16. The effect of core stability exercises on functional capacity and fatigue in patients with multiple sclerosis

    OpenAIRE

    Hosein Shahrokhi; Amir Letafatkar; Amir Barati; Hasan Daneshmandi; Ali Ashraf Jamshidi

    2017-01-01

    Background : Multiple sclerosis (MS) is a chronic progressive disease on the central nervous system with signs and symptoms such as fatigue and reduced functional capacity. The purpose of this study was to assess the effect of core stability exercises on functional capacity and fatigue in patients with multiple sclerosis. Materials and Methods: The present quasi-experimental study used a pretest-posttest design. The subjects with the age of 20-40, expanded disability status scale (EDSS) 1...

  17. The Effects of Signal Erosion and Core Genome Reduction on the Identification of Diagnostic Markers

    Science.gov (United States)

    2016-09-20

    Tropical 18 Hygiene , Faculty of Tropical Medicine, Mahidol University, Bangkok 19 20 Running head: Core genome decay and signal erosion effects on...Cook University, Mahidol University, and the 300 US Army Medical Research Unit (USAMRU). All final culture and DNA extraction 301 procedures were... Cultures were grown on LB agar plates and incubated at 37°C for 308 TR-16-190 DISTRIBUTION STATEMENT A: Approved for public release; distribution is

  18. Effect of Intraoral Mechanical Cleaning Techniques on Bond Strength of Cast Crowns to Metal Cores.

    Science.gov (United States)

    AlZain, Sahar; Kattadiyil, Mathew T; AlHelal, Abdulaziz; Alqahtani, Ali

    2017-11-30

    To evaluate the effect of cleaning of metal cores from provisional cement, using an intraoral airborne-particle abrasion method, on the bond strength of permanent resin cement with cast crowns to cores. Thirty stainless steel models of a standard complete crown tooth preparation were fabricated. Thirty Type III gold crowns were fabricated. Each cast crown corresponded to one stainless steel crown preparation model. All crowns were cemented with noneugenol zinc oxide cement and stored for 7 days at 37°C. All crowns were debonded, and the cement was cleaned with airborne-particle abrasion using 50 μm aluminum oxide at 4.1 bar (0.41 MPa) followed by ultrasonic cleaning. Based on the mechanical cleaning technique of the remaining provisional cement on surfaces of cast cores, specimens were equally divided into 3 groups: hand cleaning (HC) with a dental excavator, hand cleaning followed by polishing using a brush and pumice (BP), and hand cleaning followed by intraoral airborne-particle abrasion (APA). All crowns were then cemented to their corresponding cores using universal resin cement. All crowns were stored for 7 days at 37°C. An Instron universal testing machine was used to record the bond strength of crowns. Airborne-particle abrasion method for intraoral mechanical cleaning revealed a statistically significantly higher bond strength compared to the other two methods. When comparing the three methods of provisional cement cleaning from metal cores, airborne-particle abrasion resulted in the highest bond strength for cast crowns. © 2017 by the American College of Prosthodontists.

  19. Lack of Effect of Risperidone on Core Autistic Symptoms: Data from a Longitudinal Study

    Science.gov (United States)

    Underwood-Riordan, Heather; Randall, Fellana; Zhang, Yi; Constantino, John N.

    2014-01-01

    Abstract Objective: The purpose of this study was to investigate the course of autistic symptoms, using a quantitative measure of core autistic traits, among risperidone-treated children who participated in a 10 year life course longitudinal study. Methods: Parents completed surveys of intervention history, as well as serial symptom severity measurements using the Social Responsiveness Scale (SRS), on their autism spectrum disorder (ASD)-affected children. Fifty participants (out of a total of 184 with full intervention histories) were reported to have been treated with risperidone during the course of the study. Serial SRS scores during risperidone treatment were available for a majority of children whose parents reported a positive effect from risperidone. Results: Two thirds of risperidone-treated children (n=33) were reported by parents to have improved by taking the medication, with the principal effects described being that children were calmer, better focused, and less aggressive. SRS scores of children reported to have responded positively to risperidone did not improve over time. Conclusions: Risperidone's beneficial effect on aggression and other elements of adaptive functioning were not necessarily accompanied by reduction in core ASD symptoms, as serially assessed by the same caregivers who reported improvement in their children. These results reflect the distinction between reduction in core symptom burden and improvement in adaptive functioning. Given the cumulative risks of atypical neuroleptics, the findings underscore the importance of periodic re-evaluation of medication benefit for children with ASD receiving neuroleptic treatment. PMID:25361070

  20. The effectiveness of core stabilization exercise in adolescent idiopathic scoliosis: A randomized controlled trial.

    Science.gov (United States)

    Gür, Gözde; Ayhan, Cigdem; Yakut, Yavuz

    2017-06-01

    Core stabilization training is used to improve postural balance in musculoskeletal problems. The purpose of this study was to investigate the effectiveness of stabilization training in adolescent idiopathic scoliosis. A randomized controlled trial, pretest-posttest design. In total, 25 subjects with adolescent idiopathic scoliosis were randomly divided into two groups: stabilization group ( n = 12) and control group ( n = 13). The stabilization group received core stabilization in addition to traditional rehabilitation, and the control group received traditional rehabilitation for 10 weeks. Assessment included Cobb's angle on radiograph, apical vertebral rotation in Adam's test, trunk asymmetry (Posterior Trunk Symmetry Index), cosmetic trunk deformity (Trunk Appearance Perception Scale), and quality of life (Scoliosis Research Society-22 questionnaire). Inter-group comparisons showed significantly greater improvements in the mean change in lumbar apical vertebral rotation degree and the pain domain of Scoliosis Research Society-22 in the stabilization group than those in the control group ( p < 0.05). No significant differences were observed for other measurements between the groups; however, trends toward greater improvement were observed in the stabilization group. Core stabilization training in addition to traditional exercises was more effective than traditional exercises alone in the correction of vertebral rotation and reduction of pain in adolescent idiopathic scoliosis. Clinical relevance Stabilization exercises are more effective in reducing rotation deformity and pain than traditional exercises in the conservative rehabilitation of adolescent idiopathic scoliosis. These improvements suggest that stabilization training should be added to rehabilitation programs in adolescent idiopathic scoliosis.

  1. Effectiveness of core biopsy for screen-detected breast lesions under 10 mm: implications for surgical management.

    Science.gov (United States)

    Farshid, Gelareh; Downey, Peter; Pieterse, Steve; Gill, P Grantley

    2017-09-01

    Technical advances have improved the detection of small mammographic lesions. In the context of mammographic screening, accurate sampling of these lesions by percutaneous biopsy is crucial in limiting diagnostic surgical biopsies, many of which show benign results. Women undergoing core biopsy between January 1997 and December 2007 for core histology, 345 women (43.0%) were immediately cleared of malignancy and 300 (37.4%) were referred for definitive cancer treatment. A further 157 women (19.6%) required diagnostic surgical biopsy because of indefinite or inadequate core results or radiological-pathological discordance, and one woman (0.1%) needed further imaging in 12 months. The open biopsies were malignant in 46 (29.3%) cases. The positive predictive value of malignant core biopsy was 100%. The negative predictive value for benign core results was 97.7%, and the false-negative rate was 2.6%. The lesion could not be visualized after core biopsy in 5.1% of women and in 4.0% of women with malignant core biopsies excision specimens did not contain residual malignancy. Excessive delays in surgery because of complications of core biopsy were not reported. Even at this small size range, core biopsy evaluation of screen-detected breast lesions is highly effective and accurate. A lesion miss rate of 3.1% and under-representation of lesions on core samples highlight the continued need for multidisciplinary collaboration and selective use of diagnostic surgical biopsy. © 2015 Royal Australasian College of Surgeons.

  2. Effects of Lumbar Core Stability Exercise Programme on Knee Pain, Range of Motion, and Function Post Anterior Cruciate Ligament Reconstruction

    Directory of Open Access Journals (Sweden)

    Priyanka Panchal

    2017-12-01

    Conclusion: Institutional conventional exercise protocol is effective in reducing pain and improving the ROM post and lumbar core stability exercise programme is effective in improving function, post ACL reconstruction.

  3. Cationic niosomes an effective gene carrier composed of novel spermine-derivative cationic lipids: effect of central core structures.

    Science.gov (United States)

    Opanasopit, Praneet; Leksantikul, Lalita; Niyomtham, Nattisa; Rojanarata, Theerasak; Ngawhirunpat, Tanasait; Yingyongnarongkul, Boon-Ek

    2017-05-01

    Cationic niosomes formulated from Span 20, cholesterol (Chol) and novel spermine-based cationic lipids of multiple central core structures (di(oxyethyl)amino, di(oxyethyl)amino carboxy, 3-amino-1,2-dioxypropyl and 2-amino-1,3-dioxypropyl) were successfully prepared for improving transfection efficiency in vitro. The niosomes composed of spermine cationic lipid with central core structure of di(oxyethyl)amino revealed the highest gene transfection efficiency. To investigate the factors affecting gene transfection and cell viability including differences in the central core structures of cationic lipids, the composition of vesicles, molar ratio of cationic lipids in formulations and the weight ratio of niosomes to DNA. Cationic niosomes composed of nonionic surfactants (Span20), cholesterol and spermine-based cationic lipids of multiple central core structures were formulated. Gene transfection and cell viability were evaluated on a human cervical carcinoma cell line (HeLa cells) using pDNA encoding green fluorescent protein (pEGFP-C2). The morphology, size and charge were also characterized. High transfection efficiency was obtained from cationic niosomes composed of Span20:Chol:cationic lipid at the molar ratio of 2.5:2.5:0.5 mM. Cationic lipids with di(oxyethyl)amino as a central core structure exhibited highest transfection efficiency. In addition, there was also no serum effect on transfection efficiency. These novel cationic niosomes may constitute a good alternative carrier for gene transfection.

  4. Photoemission Studies of Si Quantum Dots with Ge Core: Dots formation, Intermixing at Si-clad/Ge-core interface and Quantum Confinement Effect

    Directory of Open Access Journals (Sweden)

    Yudi Darma

    2008-03-01

    Full Text Available Spherical Si nanocrystallites with Ge core (~20nm in average dot diameter have been prepared by controlling selective growth conditions of low-pressure chemical vapor deposition (LPCVD on ultrathin SiO2 using alternately pure SiH4 and 5% GeH4 diluted with He. XPS results confirm the highly selective growth of Ge on the pregrown Si dots and subsequently complete coverage by Si selective growth on Ge/Si dots. Compositional mixing and the crystallinity of Si dots with Ge core as a function of annealing temperature in the range of 550-800oC has been evaluated by XPS analysis and confirms the diffusion of Ge atoms from Ge core towards the Si clad accompanied by formation of GeOx at the Si clad surface. The first subband energy at the valence band of Si dot with Ge core has been measured as an energy shift at the top of the valence band density of state using XPS. The systematic shift of the valence band maximum towards higher binding energy with progressive deposition in the dot formation indicate the charging effect of dots and SiO2 layer by photoemission during measurements.

  5. The effect of trunk coordination exercise on dynamic postural control using a Core Noodle.

    Science.gov (United States)

    Miyake, Yuki; Nakamura, Shinichiro; Nakajima, Masaaki

    2014-10-01

    To investigate the influence of trunk coordination exercise on dynamic postural control relative to postural sway. The effects of trunk coordination exercises were examined using a Core Noodle for the postural sway in healthy students who were assigned to an exercise or control group. The independent variable was the extent of exposure to Core Noodle exercise, and the dependent variable was dynamic postural control. A stabilometer, which measures dynamic postural control, was used to evaluate the effectiveness of the exercises. In addition, center of gravity movements were assessed using a Gravicorder G-620 stabilometer in which the subject was asked to shift their center of gravity between 2 circles on a computer monitor. Pre- and post-intervention dynamic postural control was statistically evaluated between the exercise group and control group using the Mann-Whitney test. Finally, we investigated the application of these exercises for a stroke patient. For post-intervention, the envelop area, mean length of the pathways between 2 circles, and the number of circles were significantly higher in the exercise group. Trunk coordination exercise performed Core Noodle may be used to enhance the dynamic postural balance of healthy young adults, and it can also be adapted for stroke patients. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Effect of Zinc Incorporation on the Performance of Red Light Emitting InP Core Nanocrystals.

    Science.gov (United States)

    Xi, Lifei; Cho, Deok-Yong; Besmehn, Astrid; Duchamp, Martial; Grützmacher, Detlev; Lam, Yeng Ming; Kardynał, Beata E

    2016-09-06

    This report presents a systematic study on the effect of zinc (Zn) carboxylate precursor on the structural and optical properties of red light emitting InP nanocrystals (NCs). NC cores were assessed using X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), energy-dispersive X-ray spectroscopy (EDX), and high-resolution transmission electron microscopy (HRTEM). When moderate Zn:In ratios in the reaction pot were used, the incorporation of Zn in InP was insufficient to change the crystal structure or band gap of the NCs, but photoluminescence quantum yield (PLQY) increased dramatically compared with pure InP NCs. Zn was found to incorporate mostly in the phosphate layer on the NCs. PL, PLQY, and time-resolved PL (TRPL) show that Zn carboxylates added to the precursors during NC cores facilitate the synthesis of high-quality InP NCs by suppressing nonradiative and sub-band-gap recombination, and the effect is visible also after a ZnS shell is grown on the cores.

  7. Ultrathin Interface Regime of Core-Shell Magnetic Nanoparticles for Effective Magnetism Tailoring.

    Science.gov (United States)

    Moon, Seung Ho; Noh, Seung-Hyun; Lee, Jae-Hyun; Shin, Tae-Hyun; Lim, Yongjun; Cheon, Jinwoo

    2017-02-08

    The magnetic exchange coupling interaction between hard and soft magnetic phases has been important for tailoring nanoscale magnetism, but spin interactions at the core-shell interface have not been well studied. Here, we systematically investigated a new interface phenomenon termed enhanced spin canting (ESC), which is operative when the shell thickness becomes ultrathin, a few atomic layers, and exhibits a large enhancement of magnetic coercivity (HC). We found that ESC arises not from the typical hard-soft exchange coupling but rather from the large magnetic surface anisotropy (KS) of the ultrathin interface. Due to this large increase in magnetism, ultrathin core-shell nanoparticles overreach the theoretical limit of magnetic energy product ((BH)max) and exhibit one of the largest values of specific loss power (SLP), which testifies to their potential capability as an effective mediator of magnetic energy conversion.

  8. Analysis of ringing effects due to magnetic core materials in pulsed nuclear magnetic resonance circuits

    Energy Technology Data Exchange (ETDEWEB)

    Prabhu Gaunkar, N., E-mail: neelampg@iastate.edu; Bouda, N. R. Y.; Nlebedim, I. C.; Hadimani, R. L.; Mina, M.; Jiles, D. C. [Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011 (United States); Bulu, I.; Ganesan, K.; Song, Y. Q. [Schlumberger-Doll Research, Cambridge, Massachusetts 02139 (United States)

    2015-05-07

    This work presents investigations and detailed analysis of ringing in a non-resonant pulsed nuclear magnetic resonance (NMR) circuit. Ringing is a commonly observed phenomenon in high power switching circuits. The oscillations described as ringing impede measurements in pulsed NMR systems. It is therefore desirable that those oscillations decay fast. It is often assumed that one of the causes behind ringing is the role of the magnetic core used in the antenna (acting as an inductive load). We will demonstrate that an LRC subcircuit is also set-up due to the inductive load and needs to be considered due to its parasitic effects. It is observed that the parasitics associated with the inductive load become important at certain frequencies. The output response can be related to the response of an under-damped circuit and to the magnetic core material. This research work demonstrates and discusses ways of controlling ringing by considering interrelationships between different contributing factors.

  9. Probability of lek collapse is lower inside sage-grouse Core Areas: Effectiveness of conservation policy for a landscape species.

    Science.gov (United States)

    Spence, Emma Suzuki; Beck, Jeffrey L; Gregory, Andrew J

    2017-01-01

    Greater sage-grouse (Centrocercus urophasianus) occupy sagebrush (Artemisia spp.) habitats in 11 western states and 2 Canadian provinces. In September 2015, the U.S. Fish and Wildlife Service announced the listing status for sage-grouse had changed from warranted but precluded to not warranted. The primary reason cited for this change of status was that the enactment of new regulatory mechanisms was sufficient to protect sage-grouse populations. One such plan is the 2008, Wyoming Sage Grouse Executive Order (SGEO), enacted by Governor Freudenthal. The SGEO identifies "Core Areas" that are to be protected by keeping them relatively free from further energy development and limiting other forms of anthropogenic disturbances near active sage-grouse leks. Using the Wyoming Game and Fish Department's sage-grouse lek count database and the Wyoming Oil and Gas Conservation Commission database of oil and gas well locations, we investigated the effectiveness of Wyoming's Core Areas, specifically: 1) how well Core Areas encompass the distribution of sage-grouse in Wyoming, 2) whether Core Area leks have a reduced probability of lek collapse, and 3) what, if any, edge effects intensification of oil and gas development adjacent to Core Areas may be having on Core Area populations. Core Areas contained 77% of male sage-grouse attending leks and 64% of active leks. Using Bayesian binomial probability analysis, we found an average 10.9% probability of lek collapse in Core Areas and an average 20.4% probability of lek collapse outside Core Areas. Using linear regression, we found development density outside Core Areas was related to the probability of lek collapse inside Core Areas. Specifically, probability of collapse among leks >4.83 km from inside Core Area boundaries was significantly related to well density within 1.61 km (1-mi) and 4.83 km (3-mi) outside of Core Area boundaries. Collectively, these data suggest that the Wyoming Core Area Strategy has benefited sage

  10. Probability of lek collapse is lower inside sage-grouse Core Areas: Effectiveness of conservation policy for a landscape species.

    Directory of Open Access Journals (Sweden)

    Emma Suzuki Spence

    Full Text Available Greater sage-grouse (Centrocercus urophasianus occupy sagebrush (Artemisia spp. habitats in 11 western states and 2 Canadian provinces. In September 2015, the U.S. Fish and Wildlife Service announced the listing status for sage-grouse had changed from warranted but precluded to not warranted. The primary reason cited for this change of status was that the enactment of new regulatory mechanisms was sufficient to protect sage-grouse populations. One such plan is the 2008, Wyoming Sage Grouse Executive Order (SGEO, enacted by Governor Freudenthal. The SGEO identifies "Core Areas" that are to be protected by keeping them relatively free from further energy development and limiting other forms of anthropogenic disturbances near active sage-grouse leks. Using the Wyoming Game and Fish Department's sage-grouse lek count database and the Wyoming Oil and Gas Conservation Commission database of oil and gas well locations, we investigated the effectiveness of Wyoming's Core Areas, specifically: 1 how well Core Areas encompass the distribution of sage-grouse in Wyoming, 2 whether Core Area leks have a reduced probability of lek collapse, and 3 what, if any, edge effects intensification of oil and gas development adjacent to Core Areas may be having on Core Area populations. Core Areas contained 77% of male sage-grouse attending leks and 64% of active leks. Using Bayesian binomial probability analysis, we found an average 10.9% probability of lek collapse in Core Areas and an average 20.4% probability of lek collapse outside Core Areas. Using linear regression, we found development density outside Core Areas was related to the probability of lek collapse inside Core Areas. Specifically, probability of collapse among leks >4.83 km from inside Core Area boundaries was significantly related to well density within 1.61 km (1-mi and 4.83 km (3-mi outside of Core Area boundaries. Collectively, these data suggest that the Wyoming Core Area Strategy has benefited

  11. Detailed study of macrobending effects in a wide transmission bandwidth hollow-core photonic bandgap fiber

    Science.gov (United States)

    Chen, Y.; Sandoghchi, S. R.; Numkam, E.; Bradley, T. D.; Hayes, J. R.; Wheeler, N. V.; Jasion, G.; Gray, D. R.; Poletti, F.; Petrovich, M. N.; Richardson, D. J.

    2016-04-01

    We study in detail the macrobending effects in a wide transmission bandwidth (~200nm) 19 cell hollow-core photonic bandgap fiber operating at 1550nm. Our results indicate low bend sensitivity over a ~130nm wide interval within the transmission window, with negligible loss (<0.1dB) for bending radii down to 5mm. The "red shift" and "blue shift" of the bandgap edge have been observed at the short and long wavelength edges, respectively. The cutoff wavelengths where air-guiding modes stop guiding can be extracted from the bending loss spectra, which matches well with the simulated effective refractive index map of such fiber.

  12. Effect of core strength on the measure of power in the extremities.

    Science.gov (United States)

    Shinkle, Justin; Nesser, Thomas W; Demchak, Timothy J; McMannus, David M

    2012-02-01

    The purpose of this study was to (a) develop a functional field test to assess the role of the core musculature and its impact on sport performance in an athletic population and (b) develop a functional field test to determine how well the core can transfer forces from the lower to the upper extremities. Twenty-five DI collegiate football players performed medicine ball throws (forward, reverse, right, and left) in static and dynamic positions. The results of the medicine ball throws were compared with several athletic performance measurements: 1 repetition maximum (1RM) squat, squat kg/bw, 1RM bench press, bench kg/bw, countermovement vertical jump (CMJ), 40-yd dash (40 yd), and proagility (PrA). Push press power (PWR) was used to measure the transfer of forces through the body. Several correlations were found in both the static and dynamic medicine ball throws when compared with the performance measures. Static reverse correlated with CMJ (r = 0.44), 40 yd (r = 0.5), and PrA (r = 0.46). Static left correlated with bench kg/bw (0.42), CMJ (0.44), 40 yd (0.62), and PrA (0.59). Static right also correlated with bench kg/bw (0.41), 40 yd (0.44), and PrA (0.65). Dynamic forward (DyFw) correlated with the 1RM squat (r = 0.45) and 1RM bench (0.41). Dynamic left and Dynamic right correlated with CMJ, r = 0.48 and r = 0.40, respectively. Push press power correlated with bench kg/bw (0.50), CMJ (0.48), and PrA (0.48). A stepwise regression for PWR prediction identified 1RM squat as the best predictor. The results indicate that core strength does have a significant effect on an athlete's ability to create and transfer forces to the extremities. Currently, plank exercises are considered an adequate method of training the core for athletes to improve core strength and stability. This is a problem because it puts the athletes in a nonfunctional static position that is very rarely replicated in the demands of sport-related activities. The core is the center of most kinetic

  13. The effects of core-reflected waves on finite fault inversions with teleseismic body wave data

    Science.gov (United States)

    Qian, Yunyi; Ni, Sidao; Wei, Shengji; Almeida, Rafael; Zhang, Han

    2017-11-01

    Teleseismic body waves are essential for imaging rupture processes of large earthquakes. Earthquake source parameters are usually characterized by waveform analyses such as finite fault inversions using only turning (direct) P and SH waves without considering the reflected phases from the core-mantle boundary (CMB). However, core-reflected waves such as ScS usually have amplitudes comparable to direct S waves due to the total reflection from the CMB and might interfere with the S waves used for inversion, especially at large epicentral distances for long duration earthquakes. In order to understand how core-reflected waves affect teleseismic body wave inversion results, we develop a procedure named Multitel3 to compute Green's functions that contain turning waves (direct P, pP, sP, direct S, sS and reverberations in the crust) and core-reflected waves (PcP, pPcP, sPcP, ScS, sScS and associated reflected phases from the CMB). This ray-based method can efficiently generate synthetic seismograms for turning and core-reflected waves independently, with the flexibility to take into account the 3-D Earth structure effect on the timing between these phases. The performance of this approach is assessed through a series of numerical inversion tests on synthetic waveforms of the 2008 Mw7.9 Wenchuan earthquake and the 2015 Mw7.8 Nepal earthquake. We also compare this improved method with the turning-wave only inversions and explore the stability of the new procedure when there are uncertainties in a priori information (such as fault geometry and epicentre location) or arrival time of core-reflected phases. Finally, a finite fault inversion of the 2005 Mw8.7 Nias-Simeulue earthquake is carried out using the improved Green's functions. Using enhanced Green's functions yields better inversion results as expected. While the finite source inversion with conventional P and SH waves is able to recover large-scale characteristics of the earthquake source, by adding PcP and ScS phases

  14. Effects of anisotropic turbulent thermal diffusion on spherical magnetoconvection in the Earth's core

    Science.gov (United States)

    Ivers, D. J.; Phillips, C. G.

    2018-03-01

    We re-consider the plate-like model of turbulence in the Earth's core, proposed by Braginsky and Meytlis (1990), and show that it is plausible for core parameters not only in polar regions but extends to mid- and low-latitudes where rotation and gravity are not parallel, except in a very thin equatorial layer. In this model the turbulence is highly anisotropic with preferred directions imposed by the Earth's rotation and the magnetic field. Current geodynamo computations effectively model sub-grid scale turbulence by using isotropic viscous and thermal diffusion values significantly greater than the molecular values of the Earth's core. We consider a local turbulent dynamo model for the Earth's core in which the mean magnetic field, velocity and temperature satisfy the Boussinesq induction, momentum and heat equations with an isotropic turbulent Ekman number and Roberts number. The anisotropy is modelled only in the thermal diffusion tensor with the Earth's rotation and magnetic field as preferred directions. Nonlocal organising effects of gravity and rotation (but not aspect ratio in the Earth's core) such as an inverse cascade and nonlocal transport are assumed to occur at longer length scales, which computations may accurately capture with sufficient resolution. To investigate the implications of this anisotropy for the proposed turbulent dynamo model we investigate the linear instability of turbulent magnetoconvection on length scales longer than the background turbulence in a rotating sphere with electrically insulating exterior for no-slip and isothermal boundary conditions. The equations are linearised about an axisymmetric basic state with a conductive temperature, azimuthal magnetic field and differential rotation. The basic state temperature is a function of the anisotropy and the spherical radius. Elsasser numbers in the range 1-20 and turbulent Roberts numbers 0.01-1 are considered for both equatorial symmetries of the magnetic basic state. It is found

  15. Strain-induced structural defects and their effects on the electrochemical performances of silicon core/germanium shell nanowire heterostructures.

    Science.gov (United States)

    Lin, Yung-Chen; Kim, Dongheun; Li, Zhen; Nguyen, Binh-Minh; Li, Nan; Zhang, Shixiong; Yoo, Jinkyoung

    2017-01-19

    We report on strain-induced structural defect formation in core Si nanowires of a Si/Ge core/shell nanowire heterostructure and the influence of the structural defects on the electrochemical performances in lithium-ion battery anodes based on Si/Ge core/shell nanowire heterostructures. The induced structural defects consisting of stacking faults and dislocations in the core Si nanowire were observed for the first time. The generation of stacking faults in the Si/Ge core/shell nanowire heterostructure is observed to prefer settling in either only the Ge shell region or in both the Ge shell and Si core regions and is associated with the increase of the shell volume fraction. The relaxation of the misfit strain in the [112] oriented core/shell nanowire heterostructure leads to subsequent gliding of Shockley partial dislocations, preferentially forming the twins. The observation of crossover of defect formation is of great importance for understanding heteroepitaxy in radial heterostructures at the nanoscale and for building three dimensional heterostructures for the various applications. Furthermore, the effect of the defect formation on the nanomaterial's functionality is investigated using electrochemical performance tests. The Si/Ge core/shell nanowire heterostructures enhance the gravimetric capacity of lithium ion battery anodes under fast charging/discharging rates compared to Si nanowires. However, the induced structural defects hamper lithiation of the Si/Ge core/shell nanowire heterostructure.

  16. The effects of sodium oxybate on core body and skin temperature regulation in narcolepsy.

    Science.gov (United States)

    van der Heide, Astrid; Donjacour, Claire E H M; Pijl, Hanno; Reijntjes, Robert H A M; Overeem, Sebastiaan; Lammers, Gert J; Van Someren, Eus J W; Fronczek, Rolf

    2015-10-01

    Patients suffering from narcolepsy type 1 show altered skin temperatures, resembling the profile that is related to sleep onset in healthy controls. The aim of the present study is to investigate the effects of sodium oxybate, a widely used drug to treat narcolepsy, on the 24-h profiles of temperature and sleep-wakefulness in patients with narcolepsy and controls. Eight hypocretin-deficient male narcolepsy type 1 patients and eight healthy matched controls underwent temperature measurement of core body and proximal and distal skin twice, and the sleep-wake state for 24 h. After the baseline assessment, 2 × 3 g of sodium oxybate was administered for 5 nights, immediately followed by the second assessment. At baseline, daytime core body temperature and proximal skin temperature were significantly lower in patients with narcolepsy (core: 36.8 ± 0.05 °C versus 37.0 ± 0.05 °C, F = 8.31, P = 0.01; proximal: 33.4 ± 0.26 °C versus 34.3 ± 0.26 °C, F = 5.66, P = 0.03). In patients, sodium oxybate administration increased proximal skin temperature during the day (F = 6.46, P = 0.04) to a level similar as in controls, but did not affect core body temperature, distal temperature or distal-proximal temperature gradient. Sodium oxybate administration normalised the predictive value of distal skin temperature and distal-proximal temperature gradient for the onset of daytime naps (P treatment. A causal relationship is not proven. © 2015 European Sleep Research Society.

  17. The effect of core training on distal limb performance during ballistic strike manoeuvres.

    Science.gov (United States)

    Lee, Benjamin; McGill, Stuart

    2017-09-01

    Ballistic limb motion is enabled by proximal "core" stiffness. However, controversy exists regarding the best method of training this characteristic. This study sought to determine the most effective core training method to enhance distal limb athleticism. A total of 12 participants (24 ± 3 years, 1.8 ± 0.05 m, 76.8 ± 9.7 kg) consisting of Muay Thai athletes performed a core training protocol (Isometric vs. Dynamic, with Control) for 6 weeks, using a repeated measures design to assess performance (peak strike velocity, peak impact force, muscular activation) in various strikes. Isometric training increased impact force in Jab (554.4 ± 70.1 N), Cross (1895.2 ± 203.1 N), Combo (616.8 ± 54.9 N), and Knee (1240.0 ± 89.1 N) trials (P Knee (3.2 ± 0.3 m · s -1 ) trials (P < 0.05). Isometric training increased Combo impact force 935.1 ± 100.3 N greater than Dynamic and 931.6 ± 108.5 N more than Control (P < 0.05). Dynamic training increased Jab strike velocity 1.3 ± 0.1 m · s -1 greater than Isometric and 0.8 ± 0.1 m · s -1 more than Control (P < 0.05). It appears that both static and dynamic approaches to core training are needed to enhance both velocity and force in distal limbs.

  18. Post-exercise cold water immersion: effect on core temperature and melatonin responses.

    Science.gov (United States)

    Robey, Elisa; Dawson, Brian; Halson, Shona; Goodman, Carmel; Gregson, Warren; Eastwood, Peter

    2013-02-01

    To study the effect of post-exercise cold water immersion (CWI) on core temperature and melatonin responses, 10 male cyclists completed two evening (~1800 hours) cycling trials followed by a 15-min CWI (14 °C) or warm water immersion (WWI; 34 °C), and were then monitored for 90 min post-immersion. The exercise trial involved 15 min at 75 % peak power, followed by a 15 min time trial. Core (rectal) temperature was not different between the two conditions pre-exercise (~37.4 °C), post-exercise (~39 °C) or immediately post-immersion (~37.7 °C), but was significantly (p exercise levels at 60 and 90 min post-immersion in both conditions. Core temperature was significantly lower after CWI than WWI at 30 min (36.84 ± 0.24 vs. 37.42 ± 0.40 °C, p exercise (~5 pM) to 90 min post-immersion (~8.3 pM), but were not different between conditions. At 30 and 90 min post-immersion heart rate was significantly lower (~5-10 bpm, p exercise in the evening lowers core temperature below baseline for at least 90 min; however, the magnitude of decrease is significantly greater following CWI. The usual evening increase in melatonin is unaffected by exercise or post-exercise water immersion undertaken between ~1800 and ~2000 hours.

  19. Relaxative effect of core licorice aqueous extract on mouse isolated uterine horns.

    Science.gov (United States)

    Jia, Jianwei; Li, Yuxiang; Lei, Zhen; Hao, Yinju; Wu, Yang; Zhao, Qipeng; Wang, Hao; Ma, Lin; Liu, Juan; Zhao, Chengjun; Jiang, Yuanxu; Wang, Yanrong; Tan, Hanran; Dai, Xiuying; Zhang, Wannian; Sun, Tao; Yu, Jianqiang

    2013-06-01

    Primary dysmenorrhea is one of the most frequent gynecological disorders in young women. Chinese herbal medicine has the advantage in terms of multi-targeting efficacy, lower toxicity, as well as lower cost. Core licorice is the hard and atropurpureus heart part in root and rootstock of Glycyrrhiza uralensis Fisch (Leguminosae), having a therapeutic effect on dysmenorrhea. This experiment indicated the spasmolytic effect of core licorice aqueous extract (CLE) on spontaneous rhythmic contractions and spasmogen-provoked contractions of stilbestrol primed, estrogen-dominated, non-pregnant mouse isolated uterine horns and its spasmolytic mechanism. We investigated the spasmolytic effect of CLE (0.025-0.1 mg/mL) on spontaneous contractions and potassium chloride (KCl, 40 mM), acetylcholine (ACh, 5 μg/mL), carbachol (CCh, 5 μg/mL), oxytocin (OT, 2 U/L) or bradykinin (5 ng/mL)-provoked contractions of mouse isolated uterine horns. Contractions were recorded by tension force transducers using Biolap 420F software on a PC. Our present study showed that graded, escalated concentrations of CLE (0.025-0.1 mg/mL) significantly inhibited the amplitude of spontaneous phasic contractions (15.03-55.10%), as well as the contractions produced by KCl (40 mM; 20.16-53.99%), ACh (5 μg/mL; 14.65-48.32%), CCh (5 μg/mL; 38.40-76.70%), OT (2 U/L; 21.53-58.49%) or bradykinin (5 ng/mL; 58.01-79.44%) of the estrogen-dominated isolated mice uterine horn preparations in a concentration-related manner. The spasmolytic effect of CLE observed in the present study lends pharmacological support to the traditional use of core licorice in the management, control and treatment of primary dysmenorrhea.

  20. Effect of the Centrifugal and Centripetal Effects in Core Versus (SemiPeriphery in Central Europe Countries

    Directory of Open Access Journals (Sweden)

    Martin Mariš

    2016-01-01

    Full Text Available The paper focuses on examining regional disparities in Austria, Czech republic, Slovakia and Hungary (CE countries in spatial perspective on NUTS III level. It took two crucial topics: spatial regional imbalances and polarization of the development. Spatial imbalances over the territory were examined via using the Moran’s coefficient of spatial autocorrelation and the Geary’s C statistics for mutual comparisons of achieving results. Both results showed a significant degree of the inequality. Polarization of the development was examined via measuring the possible centrifugal and centripetal effects, present in the proximity of the core regions of CE countries. Empirical examination showed “contradictory” results, indicating presence of both effects based on Gi(d statistics introduced by Getis and Ord (1992. Thus we can conclude the spatial imbalance over the territory of CE countries is significant, and we can’t rule out acting of centrifugal and centripetal effects, however distinctly in some core regions.

  1. Effect of Core Impurity on Kink Soliton Motion in Dislocation Line

    OpenAIRE

    G. Zheng; Zhang, J.; Zhang, J.

    1996-01-01

    Modified Sine-Gordon equation is established to investigate the kink soliton motion affected by core impurities. The dragging force that the core impurities exert on the moving kink soliton is determined by computer simulation of diffusing of solute atoms in dislocation core. The soliton motion can be dissolves into two kinds of movement : the changing of soliton position and soliton shape. These two kinds of movements correspond to the longitude core diffusion(LCD) and transverse core diffus...

  2. Effects of axial higher mode on core stability of natural circulation BWR

    Energy Technology Data Exchange (ETDEWEB)

    Inada, F.; Furuya, M.; Yasuo, A. [Central Research Institute of Electric Power Industry, Tokyo (Japan)

    2003-07-01

    The effect of the chimney on the core stability of natural circulation BWR was investigated using linear stability analysis. The point kinetics model was used for estimating void-reactivity feedback. Drift-flux model was used to evaluate boiling two-phase flow. When chimney was short, the 1st mode was dominant in the case of low power as well as high power. Higher inlet subcooling and higher power could lead to destabilizing effect, and in some case core instability could occur. On the other hand, when chimney was long, it was found that higher harmonics of void fraction perturbation in the chimney could be important. In the case of low power, the 1st mode was less stable, and lower power could lead to the destabilizing effect. In the case of higher power, the higher mode was dominant rather than the 1st mode, and higher inlet subcooling could lead to destabilizing effect, but it was still stable. Sensitivity of stability in the case of long chimney was smaller than that of short chimney, and the instability phenomenon was not generated easily in the case of the long chimney.

  3. Release of Dissolved CO2 from Water in Laboratory Porous Media Following Rapid Depressurization

    Science.gov (United States)

    Crews, J. B.; Cooper, C. A.

    2011-12-01

    A bench-top laboratory study is undertaken to investigate the effects of seismic shocks on brine aquifers into which carbon dioxide has been injected for permanent storage. Long-term storage in deep saline aquifers has been proposed and studied as one of the most viable near-term options for sequestering fossil fuel-derived carbon dioxide from the atmosphere to curb anthropogenic climate change. Upon injection into the subsurface, it is expected that CO2, as either a gas or supercritical fluid, will mix convectively with the formation water. The possibility exists, however, that dissolved CO2 will come out of solution as a result of an earthquake. The effect is similar to that of slamming an unsealed container of carbonated beverage on a table; previously dissolved CO2 precipitates, forms bubbles, and rises due to buoyancy. In this study, we measure the change in gas-phase CO2 concentration as a function of the magnitude of the shock and the initial concentration of CO2. In addition, we investigate and seek to characterize the nucleation and transport of CO2 bubbles in a porous medium after a seismic shock. Experiments are conducted using a Hele-Shaw cell and a CCD camera to quantify the fraction of dissolved CO2 that comes out of solution as a result of a sharp mechanical impulse. The data are used to identify and constrain the conditions under which CO2 comes out of solution and, further, to understand the end-behavior of the precipitated gas-phase CO2 as it moves through or is immobilized in a porous medium.

  4. Fulde–Ferrell state in superconducting core/shell nanowires: role of the orbital effect

    Science.gov (United States)

    Mika, Marek; Wójcik, Paweł

    2017-11-01

    The orbital effect on the Fulde–Ferrell (FF) phase is investigated in superconducting core/shell nanowires subjected to the axial magnetic field. Confinement in the radial direction results in quantization of the electron motion with energies determined by the radial j and orbital m quantum numbers. In the external magnetic field, the twofold degeneracy with respect to the orbital magnetic quantum number m is lifted which leads to the Fermi wave vector mismatch between the paired electrons, (k, j, m, \\uparrow) ≤ftrightarrow (-k, j, -m, \\downarrow) . This mismatch is transferred to the nonzero total momentum of the Cooper pairs, which results in a formation of the FF phase occurring sequentially with increasing magnetic field. By changing the nanowire radius R and the superconducting shell thickness d, we discuss the role of the orbital effect in the FF phase formation in both the nanowire-like (R/d \\ll 1 ) and nanofilm-like (R/d \\gg 1 ) regime. We have found that the irregular pattern of the FF phase which appears for the case of the nanowire-like regime, for the nanofilm-like geometry evolves towards the regular distribution in which the FF phase stability regions emerge periodically between the BCS states. The transition between these two different phase diagrams is explained as resulting from the orbital effect and the multigap character of superconductivity in the core/shell nanowires.

  5. The Effects of Electrostimulation and Core Exercises on Recovery After High-Intensity Exercise

    Directory of Open Access Journals (Sweden)

    Ahmet Mor

    2017-12-01

    Full Text Available Introduction and objectives: The purpose of this study was to determine the effects of electrostimulation and core exercises on recovery after high-intensity exercise. Methods: The participants of this study consists of 12 male bodybuilders who regularly train and between the ages 18-30. Tabata high intensity interval training (HIIT was applied with different recovery methods to the athletes on three different days and the recovery levels of athletes were analysed. Heart rate and blood lactate levels were measured at baseline (PRE at immediately after the HIIT (POST, at the 1 minutes after HIIT (1min, at the 5 minutes after HIIT (5min, and at the 10 minutes after HIIT (10min. On the rest days, serum lactate dehydrogenase (LDH and serum creatine kinase (CK  measurements were done to determine the muscle damage. Results: The in-group comparisons for lactate levels showed no significant difference (p>0,01. The level of lactate on the 10min was found to be significantly lower than the 5min in the core exercise group (p0,01. These results show that the lactate level reaches to the maximum level after HIIT, and the level of lactate decreases between the 5th and the 10th minutes. Discussion and conclusion: These indicate that the active recovery methods are more effective than the passive. It was found that the active recovery methods accelerate the lactate removal from the metabolism and provide effective recovery in short time during the recovery period after exercise.

  6. Fulde-Ferrell state in superconducting core/shell nanowires: role of the orbital effect.

    Science.gov (United States)

    Mika, Marek; Wojcik, Pawel

    2017-10-05

    The orbital effect on the Fulde-Ferrell (FF) phase is investigated in superconducting core/shell nanowires subjected to the axial magnetic field. The confinement in the radial direction results in the quantization of the electron motion with energies determined by the radial $j$ and orbital $m$ quantum numbers. In the external magnetic field the twofold degeneracy with respect to the orbital magnetic quantum number $m$ is lifted which leads to the Fermi wave vector mismatch between the paired electrons $(k, j,m,\\uparrow) \\leftrightarrow (-k, j,-m,\\downarrow)$. This mismatch is transfered to the nonzero total momentum of the Cooper pairs which results in the formation of FF phase occurring sequentially with increasing magnetic field. By changing the nanowire radius $R$ and the superconducting shell thickness $d$, we discuss the role of the orbital effect in the FF phase formation in both the nanowire-like ($R/d \\ll 1$) and nanofilm-like ($R/d \\gg 1$) regime. We have found that the irregular pattern of the FF phase, which appears for the case of the nanowire-like regime, evolves towards the regular distribution, in which the FF phase stability regions appear periodically between the BCS state, for the nanofilm-like geometry. The crossover between these two different phase diagrams is explained as resulting from the orbital effect and the multigap character of superconductivity in core/shell nanowires. © 2017 IOP Publishing Ltd.

  7. Worksite back and core exercise in firefighters: Effect on development of lumbar multifidus muscle size.

    Science.gov (United States)

    Mayer, John M; Nuzzo, James L

    2015-01-01

    Firefighting is a dangerous occupation with a high incidence of low back pain and injury. Abnormal back muscle function and morphology has been linked to low back pain and poor physical performance. The effect of exercise training on back muscle size and symmetry has not been investigated in firefighters. The purpose of this study was to assess the effect of worksite exercise training for eliciting lumbar multifidus muscle hypertrophy in firefighters. A cluster randomized controlled trial was conducted with healthy, career firefighters (n=64) from a medium-sized fire department. Participants were randomized by fire station to exercise training (n=36) (supervised back and core exercise performed on duty, 2X/week, 24 weeks) or control (n=28). The cross-sectional area (CSA) of the L4 and L5 lumbar multifidus muscle was assessed with ultrasonography at baseline and following the intervention. At 24 weeks, no significant differences were noted between the groups in the adjusted (by baseline scores and body mass) L4 and L5 lumbar multifidus muscle CSA and asymmetry values. A worksite exercise training program targeting the back and core is not effective for eliciting hypertrophy of the lumbar multifidus muscle in healthy firefighters.

  8. Effects of core self-evaluations on the job burnout of nurses: the mediator of organizational commitment.

    Science.gov (United States)

    Zhou, Yangen; Lu, Jiamei; Liu, Xianmin; Zhang, Pengcheng; Chen, Wuying

    2014-01-01

    To explore the impact of Core self-evaluations on job burnout of nurses, and especially to test and verify the mediator role of organizational commitment between the two variables. Random cluster sampling was used to pick up participants sample, which consisted of 445 nurses of a hospital in Shanghai. Core self-evaluations questionnaire, job burnout scale and organizational commitment scale were administrated to the study participants. There are significant relationships between Core self-evaluations and dimensions of job burnout and organizational commitment. There is a significant mediation effect of organizational commitment between Core self-evaluations and job burnout. To enhance nurses' Core self-evaluations can reduce the incidence of job burnout.

  9. Effect of core stability training on throwing velocity in female handball players.

    Science.gov (United States)

    Saeterbakken, Atle H; van den Tillaar, Roland; Seiler, Stephen

    2011-03-01

    The purpose was to study the effect of a sling exercise training (SET)-based core stability program on maximal throwing velocity among female handball players. Twenty-four female high-school handball players (16.6 ± 0.3 years, 63 ± 6 kg, and 169 ± 7 cm) participated and were initially divided into a SET training group (n = 14) and a control group (CON, n = 10). Both groups performed their regular handball training for 6 weeks. In addition, twice a week, the SET group performed a progressive core stability-training program consisting of 6 unstable closed kinetic chain exercises. Maximal throwing velocity was measured before and after the training period using photocells. Maximal throwing velocity significantly increased 4.9% from 17.9 ± 0.5 to 18.8 ± 0.4 m·s in the SET group after the training period (p < 0.01), but was unchanged in the control group (17.1 ± 0.4 vs. 16.9 ± 0.4 m·s). These results suggest that core stability training using unstable, closed kinetic chain movements can significantly improve maximal throwing velocity. A stronger and more stable lumbopelvic-hip complex may contribute to higher rotational velocity in multisegmental movements. Strength coaches can incorporate exercises exposing the joints for destabilization force during training in closed kinetic chain exercises. This may encourage an effective neuromuscular pattern and increase force production and can improve a highly specific performance task such as throwing.

  10. The effect of active core exercise on fitness and foot pressure in Taekwondo club students.

    Science.gov (United States)

    Yoon, Seong-Deok; Sung, Dong-Hun; Park, Gi Duck

    2015-02-01

    [Purpose] The effects of core training using slings and Togus on the improvement of posture control in Taekwondo club students, that is, balance ability, were investigated. To that end, changes in the Taekwondo players' balance ability resulting from active core training for eight weeks were examined through fitness and foot pressure. [Subjects] The present study was conducted with 13 male Taekwondo players of K University in Deagu, South Korea. Once the experiment process was explained, consent was obtained from those who participated voluntarily. [Methods] Air cushions (Germany), Jumpers (Germany), and Aero-Steps (Germany) were used as lumbar stabilization exercise tools. As a method of training proprioceptive senses by stimulating somatesthesia in standing postures, the subjects performed balance squats, supine pelvic lifts, and push-up plus exercise using slings while standing on an Aero-Step and performed hip extension parallel squats (Wall Gym Ball), and standing press-ups on a Togu using their own weight. The subjects performed four sets of these isometric exercises while maintaining an exercise time per set at 30 seconds in each session and repeated this session three times per week. [Result] Left grip strength significantly increased and number of sit-ups, which indicates muscle endurance, also significantly increased after the eight weeks exercise compared with before the exercise. The values measured during the sit and reach test, which indicate flexibility, also significantly increase after the eight weeks of exercise compared with before the exercise but only in the left foot. [Conclusion] The result of present study suggest that active core exercise using Slings and Togus can be applied as a very effective exercise program for enhancing balance, which is an important physical factor for Taekwondo club students.

  11. Effects of Isha Hatha Yoga on Core Stability and Standing Balance.

    Science.gov (United States)

    Kumar, Sendhil; Prasad, Shyam; Balakrishnan, Bhavani; Muthukumaraswamy, Karunambigai; Ganesan, Mohan

    2016-01-01

    Context • Isha Hatha yoga is a form of yoga practice that practitioners claim can improve health. Gaining a scientific understanding of its effects on health is a crucial step in claiming health benefits. Objective • The study intended to investigate the effects of Isha Hatha yoga on core stability and standing balance in healthy volunteers. Design • The research team designed a quasiexperimental study. Setting • The setting was at Isha Yoga Center at Isha Foundation in Coimbatore, India. Participants • Participants were individuals registered for a residential program providing training in Isha Hatha yoga at the Isha Yoga Center. Intervention • The training consisted of 21 d of training in Isha Hatha yoga, including Upa yoga, Surya Kriya, Angamardhana, Bhuta Suddhi, and asanas. Outcome Measures • The single-leg stork test and the plank test were conducted before and after the training. Results • Significant increases occurred in the standing-stork test scores on the right (P = .014) and left (P = .033) sides and in the plank test scores (P yoga showed significant improvements in core strength and balance.

  12. Effects of different core exercises on respiratory parameters and abdominal strength.

    Science.gov (United States)

    Cavaggioni, Luca; Ongaro, Lucio; Zannin, Emanuela; Iaia, F Marcello; Alberti, Giampietro

    2015-10-01

    [Purpose] This study determined the effects a new modality of core stabilization exercises based on diaphragmatic breathing on pulmonary function, abdominal fitness, and movement efficiency. [Subjects] Thirty-two physically active, healthy males were randomly assigned to an experimental group (n = 16) and a control group (n = 16). [Methods] The experimental group combined diaphragmatic breathing exercises with global stretching postures, and the control group performed common abdominal exercises (e.g., crunch, plank, sit-up), both for 15 minutes twice weekly for 6 weeks. Pulmonary function (measured by forced vital capacity, forced expiratory volume in 1 second, and peak expiratory flow) and abdominal fitness (measured with the American College of Sports Medicine curl-up [cadence] test and the Functional Movement Screen(TM)) were evaluated before and after the intervention. [Results] Significant changes in curl-up (cadence) test scores, Functional Movement Screen scores, and all pulmonary parameters were recorded in the experimental group at the posttraining assessment, whereas in the control group, no significant differences over baseline were observed in any parameters. [Conclusion] Compared with traditional abdominal exercises, core stabilization exercises based on breathing and global stretching postures are more effective in improving pulmonary function and abdominal fitness.

  13. Core-decomposition-facilitated fabrication of hollow rare-earth silicate nanowalnuts from core-shell structures via the Kirkendall effect

    Science.gov (United States)

    Zhou, Wenli; Zou, Rui; Yang, Xianfeng; Huang, Ningyu; Huang, Junjian; Liang, Hongbin; Wang, Jing

    2015-08-01

    Hollow micro-/nanostructures have been widely applied in the fields of lithium ion batteries, catalysis, biosensing, biomedicine, and so forth. The Kirkendall effect, which involves a non-equilibrium mutual diffusion process, is one of many important fabrication strategies for the formation of hollow nanomaterials. Accordingly, full understanding of the interdiffusion process at the nanoscale is very important for the development of novel multifunctional hollow materials. In this work, hollow Y2SiO5 nanowalnuts have been fabricated from the conversion of YOHCO3@SiO2 core-shell nanospheres via the Kirkendall effect. More importantly, it was found that in the conversion process, the decomposition of YOHCO3 core imposes on the formation of the Y2SiO5 interlayer by facilitating the initial nucleation of the Kirkendall nanovoids and accelerating the interfacial diffusion of Y2O3@SiO2 core@shell. The simple concept developed herein can be employed as a general Kirkendall effect strategy without the assistance of any catalytically active Pt nanocrystals or gold motion for future fabrication of novel hollow nanostructures. Moreover, the photoluminescence properties of rare-earth ion doped hollow Y2SiO5 nanoparticles are researched.Hollow micro-/nanostructures have been widely applied in the fields of lithium ion batteries, catalysis, biosensing, biomedicine, and so forth. The Kirkendall effect, which involves a non-equilibrium mutual diffusion process, is one of many important fabrication strategies for the formation of hollow nanomaterials. Accordingly, full understanding of the interdiffusion process at the nanoscale is very important for the development of novel multifunctional hollow materials. In this work, hollow Y2SiO5 nanowalnuts have been fabricated from the conversion of YOHCO3@SiO2 core-shell nanospheres via the Kirkendall effect. More importantly, it was found that in the conversion process, the decomposition of YOHCO3 core imposes on the formation of the Y2Si

  14. Transient effect of core stability exercises on postural sway during quiet standing.

    Science.gov (United States)

    Kaji, Ayuko; Sasagawa, Shun; Kubo, Takahiro; Kanehisa, Hiroaki

    2010-02-01

    This study aimed to examine the transient effect of core stability exercises on the motion of the center of pressure (COP) during quiet standing. Seventeen healthy young adults (7 women and 10 men) were required to perform elbow-toe and hand-heel exercises for 30 seconds in both cases. Before and 1 minute after the execution of the 2 exercises, the subjects repeated 30 seconds of quiet standing with eyes closed 3 times on a force platform with intervals of 10 seconds between trials. The intervention of the 2 exercises induced significant decreases in the maximal range of mediolateral sway (34.7 +/- 7.0 mm to 30.2 +/- 6.1 mm, p = 0.0001), standard deviation of mediolateral sway (6.4 +/- 1.2 mm to 5.8 +/- 1.0 mm, p = 0.0006), the mean speed of anteroposterior sway (14.1 +/- 2.5 mm per second to 13.2 +/- 2.3 mm per second, p = 0.004), mean speed of mediolateral sway (22.8 +/- 2.8 mm per second to 20.9 +/- 2.3 mm per second, p = 0.004), sway speed (29.3 +/- 3.9 mm per second to 27.0 +/- 3.2 mm per second, p = 0.002), and sweep speed (73.2 +/- 23.4 mm per second to 62.0 +/- 19.7 mm per second, p = 0.005) of the COP trajectory, calculated from the force platform data. This result indicates that the practice of core stability exercises transiently decreases the area of the COP trajectory and its mediolateral and total excursions during quiet standing with the eyes closed. Performing core stability exercises as part of warm-up programs may be useful for temporarily improving postural control during standing in main exercise programs.

  15. Effects of lipooligosaccharide inner core truncation on bile resistance and chick colonization by Campylobacter jejuni.

    Directory of Open Access Journals (Sweden)

    Taketoshi Iwata

    Full Text Available Campylobacter jejuni is the most common bacterium that causes diarrhea worldwide, and chickens are considered the main reservoir of this pathogen. This study investigated the effects of serial truncation of lipooligosaccharide (LOS, a major component of the outer membrane of C. jejuni, on its bile resistance and intestinal colonization ability in chickens. Genes encoding manno-heptose synthetases or glycosyltransferases were inactivated to generate isogenic mutants. Serial truncation of the LOS core oligosaccharide caused a stepwise increase in susceptibilities of two C. jejuni strains, NCTC 11168 and 81-176, to bile acids. Inactivation of hldE, hldD, or waaC caused severe truncation of the core oligosaccharide, which greatly increased the susceptibility to bile acids. Both wild-type strains grew normally in chicken intestinal extracts, whereas the mutants with severe oligosaccharide truncation were not detected 12 h after inoculation. These mutants attained viable bacterial counts in the bile acid-free extracts 24 h after inoculation. The wild-type strain 11-164 was present in the cecal contents at >10(7 CFU/g on 5 days after challenge infection and after this time period, whereas its hldD mutant was present at <10(3 CFU/g throughout the experimental period. Trans-complementation of the hldD mutant with the wild-type hldD allele completely restored the in vivo colonization level to that of the wild-type strain. Mutants with a shorter LOS had higher hydrophobicities. Thus, the length of the LOS core oligosaccharide affected the surface hydrophobicity and bile resistance of C. jejuni as well as its ability to colonize chicken intestines.

  16. The effect of core stability exercises on functional capacity and fatigue in patients with multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Hosein Shahrokhi

    2017-06-01

    Full Text Available Background : Multiple sclerosis (MS is a chronic progressive disease on the central nervous system with signs and symptoms such as fatigue and reduced functional capacity. The purpose of this study was to assess the effect of core stability exercises on functional capacity and fatigue in patients with multiple sclerosis. Materials and Methods: The present quasi-experimental study used a pretest-posttest design. The subjects with the age of 20-40, expanded disability status scale (EDSS 1-4 and purposefully and voluntarily selected and randomly allocated to the experimental and control groups. Training program for groups were carried out in eight weeks, three sessions per week and each session one hour. Functional reach test (FR was used to measure functional capacity and Fatigue Severity Scale (FSS was used to measure fatigue. The data were analyzed by paired and independent sample t-test at a significance level of 0.05. Results: The results showed that core stability training led to a significant increase in functional capacity and a significant reduction in fatigue (P≤ 0.05. Also significant differences observed in functional capacity and fatigue scale in post-test between experimental and control groups (P≤ 0.05. Conclusion: According to research findings, the core stability exercises can be factor for considerable improvement in functional capacity and reduced fatigue in patients with multiple sclerosis.   . Furthermore, the respective specialists can use these exercise as a complementary treatment along with the drug therapy for patients with multiple sclerosis.

  17. Effect of surface conditioning modalities on the repair bond strength of resin composite to the zirconia core / veneering ceramic complex.

    Science.gov (United States)

    Ozcan, Mutlu; Valandro, Luiz Felipe; Pereira, Sarina Maciel; Amaral, Regina; Bottino, Marco Antonio; Pekkan, Gurel

    2013-06-01

    This study evaluated the effect of different surface conditioning protocols on the repair strength of resin composite to the zirconia core / veneering ceramic complex, simulating the clinical chipping phenomenon. Forty disk-shaped zirconia core (Lava Zirconia, 3M ESPE) (diameter: 3 mm) specimens were veneered circumferentially with a feldspathic veneering ceramic (VM7, Vita Zahnfabrik) (thickness: 2 mm) using a split metal mold. They were then embedded in autopolymerizing acrylic with the bonding surfaces exposed. Specimens were randomly assigned to one of the following surface conditioning protocols (n = 10 per group): group 1, veneer: 4% hydrofluoric acid (HF) (Porcelain Etch) + core: aluminum trioxide (50-µm Al2O3) + core + veneer: silane (ESPE-Sil); group 2: core: Al2O3 (50 µm) + veneer: HF + core + veneer: silane; group 3: veneer: HF + core: 30 µm aluminum trioxide particles coated with silica (30 µm SiO2) + core + veneer: silane; group 4: core: 30 µm SiO2 + veneer: HF + core + veneer: silane. Core and veneer ceramic were conditioned individually but no attempt was made to avoid cross contamination of conditioning, simulating the clinical intraoral repair situation. Adhesive resin (VisioBond) was applied to both the core and the veneer ceramic, and resin composite (Quadrant Posterior) was bonded onto both substrates using polyethylene molds and photopolymerized. After thermocycling (6000 cycles, 5°C-55°C), the specimens were subjected to shear bond testing using a universal testing machine (1 mm/min). Failure modes were identified using an optical microscope, and scanning electron microscope images were obtained. Bond strength data (MPa) were analyzed statistically using the non-parametric Kruskal-Wallis test followed by the Wilcoxon rank-sum test and the Bonferroni Holm correction (α = 0.05). Group 3 demonstrated significantly higher values (MPa) (8.6 ± 2.7) than those of the other groups (3.2 ± 3.1, 3.2 ± 3, and 3.1 ± 3.5 for groups 1, 2, and 4

  18. Effect on deformation process of adding a copper core to multifilament MgB2 superconducting wire

    DEFF Research Database (Denmark)

    Hancock, Michael Halloway; Bay, Niels

    2007-01-01

    Using the PIT method, multifilament wire with different packing strategies has been manufactured. In all, three types of wire have been investigated, a 19-filament configuration using ex-situ powder in an Fe-matrix and two 8-filament configurations in an Fe-matrix applying a copper core, one using...... in-situ and another using ex-situ powder. The effect on the annealing requirements during mechanical processing of adding such a copper core has been investigated. The results show that the number of required annealings drops by about a factor of one half with the addition of a copper core...

  19. Meissner Effects, Vortex Core States, and the Vortex Glass Phase Transition.

    Science.gov (United States)

    Huang, Ming

    This thesis covers three topics involving Meissner effects and the resulting defect structures. The first is a study of Meissner effects in superconductivity and in systems with broken translational symmetry. The Meissner effect in superconductors is a rigidity against external magnetic field caused by the breaking of the gauge symmetry. Other condensed matter systems also exhibit rigidities like this: The breaking of the translational symmetry in a cubic-liquid -crystal causes the system to expel twist deformations and the breaking of the translational symmetry in a nematic liquid crystal gives it a tendency to expel twist and bend deformations. In this thesis, we study these generalized Meissner effects in detail. The second is a study of the quasiparticle states bound to the vortex defect in superconductors. Scanning -tunneling-microscope measurements by Harald Hess et al. of the local density of states in a vortex core show a pronounced peak at small bias. These measurements contradict with previous theoretical calculations. Here, we solve the Bogoliubov equations to obtain the local density of states in the core and satisfactorily explain the experimental observations. We also predicted additional structure in the local density of states which were later observed in experiments. The third is a study of vortex dynamics in the precense of disorder. A mean field theory is developed for the recently proposed normal to superconducting vortex glass transition. Using techniques developed to study the critical dynamics of spin glasses, we calculate the mean field vortex glass phase boundary and the critical exponents. We also explain the experimentally observed magnetic field induced transition broadening.

  20. Clinical and neural effects of six-week administration of oxytocin on core symptoms of autism.

    Science.gov (United States)

    Watanabe, Takamitsu; Kuroda, Miho; Kuwabara, Hitoshi; Aoki, Yuta; Iwashiro, Norichika; Tatsunobu, Natsubori; Takao, Hidemasa; Nippashi, Yasumasa; Kawakubo, Yuki; Kunimatsu, Akira; Kasai, Kiyoto; Yamasue, Hidenori

    2015-11-01

    Autism spectrum disorder is a prevalent neurodevelopmental disorder with no established pharmacological treatment for its core symptoms. Although previous literature has shown that single-dose administration of oxytocin temporally mitigates autistic social behaviours in experimental settings, it remains in dispute whether such potentially beneficial responses in laboratories can result in clinically positive effects in daily life situations, which are measurable only in long-term observations of individuals with the developmental disorder undergoing continual oxytocin administration. Here, to address this issue, we performed an exploratory, randomized, double-blind, placebo-controlled, crossover trial including 20 high-functional adult males with autism spectrum disorder. Data obtained from 18 participants who completed the trial showed that 6-week intranasal administration of oxytocin significantly reduced autism core symptoms specific to social reciprocity, which was clinically evaluated by Autism Diagnostic Observation Scale (P = 0.034, PFDR oxytocin-induced enhancement of task-independent resting-state functional connectivity between anterior cingulate cortex and dorso-medial prefrontal cortex (rho = -0.60, P = 0.011), which was measured by functional magnetic resonance imaging. Moreover, using the same social-judgement task as used in our previous single-dose oxytocin trial, we confirmed that the current continual administration also significantly mitigated behavioural and neural responses during the task, both of which were originally impaired in autistic individuals (judgement tendency: P = 0.019, d = 0.62; eye-gaze effect: P = 0.03, d = 0.56; anterior cingulate activity: P = 0.00069, d = 0.97; dorso-medial prefrontal activity: P = 0.0014, d = 0.92; all, PFDR effect sizes of the 6-week intervention were not larger than those seen in our previous single-dose intervention. These findings not only provide the evidence for clinically beneficial effects of

  1. Effects of Cryogenic Temperature on Fracture Toughness of Core-Shell Rubber (CSR) Toughened Epoxy Nanocomposites

    Science.gov (United States)

    Wang, J.; Cannon, S. A.; Magee, D.; Schneider, J. A.

    2008-01-01

    This study investigated the effects of core-shell rubber (CSR) nanoparticles on the mechanical properties and fracture toughness of an epoxy resin at ambient and liquid nitrogen (LN2) temperatures. Varying amounts of Kane Ace MX130 toughening agent were added to a commercially available EPON 862/Epikure W epoxy resin. Elastic modulus was calculated using quasi-static tensile data. Fracture toughness was evaluated by the resulting breaking energy measured in Charpy impact tests conducted on an instrumented drop tower. The size and distribution of the CSR nanoparticles were characterized using Transmission Electron Microscopy (TEM) and Small Angle X-ray Scattering (SAXS). Scanning Electron Microscopy (SEM) was used to study the fracture surface morphology. The addition of the CSR nanoparticles increased the breaking energy with negligible change in elastic modulus and ultimate tensile stress (UTS). At ambient temperature the breaking energy increased with increasing additions of the CSR nanoparticles, while at LN2 temperatures, it reached a maximum at 5 wt% CSR concentration. KEY WORDS: liquid nitrogen (LN2) properties, fracture toughness, core-shell rubber (CSR).

  2. Comparative Experiments to Assess the Effects of Accumulator Nitrogen Injection on Passive Core Cooling During Small Break LOCA

    OpenAIRE

    Yuquan, Li; Botao, Hao; Jia, Zhong; Nan, Wang

    2017-01-01

    The accumulator is a passive safety injection device for emergency core cooling systems. As an important safety feature for providing a high-speed injection flow to the core by compressed nitrogen gas pressure during a loss-of-coolant accident (LOCA), the accumulator injects its precharged nitrogen into the system after its coolant has been emptied. Attention has been drawn to the possible negative effects caused by such a nitrogen injection in passive safety nuclear power plants. Although so...

  3. Effect of core strengthening with pelvic proprioceptive neuromuscular facilitation on trunk, balance, gait, and function in chronic stroke

    OpenAIRE

    Sharma, Vishal; Kaur, Jaskirat

    2017-01-01

    The purpose of this study was to evaluate the effects of core strengthening combined with pelvic proprioceptive neuromuscular facilitation (PNF) on trunk impairment, balance, gait, and functional ability of chronic stroke patients. Twenty-three participants with chronic stroke were recruited and randomly allocated to one of the two groups: core strengthening combined with pelvic PNF (group 1, n=13), and pelvic PNF with trunk flexibility exercises (group 2, n=10). Intervention was given to bot...

  4. The cost effectiveness of vacuum-assisted versus core-needle versus surgical biopsy of breast lesions.

    Science.gov (United States)

    Fernández-García, P; Marco-Doménech, S F; Lizán-Tudela, L; Ibáñez-Gual, M V; Navarro-Ballester, A; Casanovas-Feliu, E

    To determine the cost effectiveness of breast biopsy by 9G vacuum-assisted guided by vertical stereotaxy or ultrasonography in comparison with breast biopsy by 14G core-needle biopsy and surgical biopsy. We analyzed a total of 997 biopsies (181 vacuum-assisted, 626 core, and 190 surgical biopsies). We calculated the total costs (indirect and direct) of the three types of biopsy. We did not calculate intangible costs. We measured the percentage of correct diagnoses obtained with each technique. To identify the most cost-effective option, we calculated the mean ratios for the three types of biopsies. Total costs were €225.09 for core biopsy, €638.90 for vacuum-assisted biopsy, and €1780.01 for surgical biopsy. The overall percentage of correct diagnoses was 91.81% for core biopsy, 94.03% for vacuum-assisted biopsy, and 100% for surgical biopsy; however, these differences did not reach statistical significance (p=0.3485). For microcalcifications, the percentage of correct diagnoses was 50% for core biopsy and 96.77% for vacuum-assisted biopsy (p<0.0001). For nodules, there were no significant differences among techniques. The mean cost-effectiveness ratio considering all lesions was 2.45 for core biopsy, 6.79 for vacuum-assisted biopsy, and 17.80 for surgical biopsy. Core biopsy was the dominant option for the diagnosis of suspicious breast lesions in general. However, in cases with microcalcifications, the low percentage of correct diagnoses achieved by core biopsy (50%) advises against its use in this context, where vacuum-assisted biopsy would be the technique of choice because it is more cost-effective than surgical biopsy, the other technique indicated for biopsying microcalcifications. Copyright © 2016 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.

  5. Effects of 12-week core stabilization exercise on the Cobb angle and lumbar muscle strength of adolescents with idiopathic scoliosis

    OpenAIRE

    Ko, Kwang-Jun; Kang, Seol-Jung

    2017-01-01

    To identify the effects of core stabilization exercise on the Cobb angle and lumbar muscle strength of adolescent patients with idiopathic scoliosis. Subjects in the present study consisted of primary school students who were confirmed to have scoliosis on radiologic examination performed during their visit to the National Fitness Center in Seoul, Korea. Depending on whether they participated in a 12-week core stabilization exercise program, subjects were divided into the exercise (n=14, age ...

  6. Understanding the effects of the core on the nutation of the Earth

    Directory of Open Access Journals (Sweden)

    Véronique Dehant

    2017-11-01

    Full Text Available In this review paper, we examine the changes in the Earth orientation in space and focus on the nutation (shorter-term periodic variations, which is superimposed on precession (long-term trend on a timescale of years. We review the nutation modelling involving several coupling mechanisms at the core-mantle boundary using the Liouville angular momentum equations for a two-layered Earth with a liquid flattened core. The classical approach considers a Poincaré fluid for the core with an inertial pressure coupling mechanism at the core-mantle boundary. We examine possible additional coupling mechanisms to explain the observations. In particular, we examine how we can determine the flattening of the core as well as information on the magnetic field and the core flow from the nutation observations. The precision of the observations is shown to be high enough to increase our understanding on the coupling mechanisms at the core-mantle boundary.

  7. Core self-evaluations and training effectiveness: prediction through motivational intervening mechanisms.

    Science.gov (United States)

    Stanhope, Daniel S; Pond, Samuel B; Surface, Eric A

    2013-09-01

    Understanding the processes through which trainee characteristics influence learning is important for identifying mechanisms that drive training effectiveness. We examine the direct and indirect paths through which core self-evaluations (CSE) impact learning. We also include general cognitive ability (GCA) to explore whether CSE's paths to effectiveness differ from those of a well-documented predictor of learning. We proposed a model in which CSE contributes to training effectiveness through its influence on motivational intervening mechanisms, and we tested this model empirically with military personnel (N = 638) who participated in job-required training. The data supported a partially mediated model. Irrespective of inclusion of GCA as a control variable, motivation and effort allocation (MEA) process variables (i.e., training motivation, midtraining self-efficacy, and midtraining goal setting) mediated (or partially mediated) the relationship between CSE and training outcomes that included affective (e.g., intentions to transfer), cognitive (e.g., declarative knowledge), and skill-based (e.g., proficiency) learning. Conversely, GCA had neither direct nor indirect effects on affective learning but did demonstrate direct effects on cognitive and skill-based learning. Results support the utility of including CSE in training research and practice, suggest that MEA serves as an explanatory mechanism for CSE's relation to learning outcomes, and demonstrate that CSE and GCA differentially influence training effectiveness and do so through different explanatory mechanisms. PsycINFO Database Record (c) 2013 APA, all rights reserved

  8. The effect of peculiar complex core balance training on isokinetic muscle functions of the knee and lumbus.

    Science.gov (United States)

    Lee, Myungsun; Han, Gunsoo

    2016-04-01

    [Purpose] This study aimed to investigate the effect of peculiar complex core balance training on the isokinetic muscle function of the knee joint and lumbus to provide fundamental data for establishing a training program that focuses on improving the performance and prevention of injury by developing the core and low extremity muscles. [Subjects and Methods] The participants in this study included a total of ten high school athletes involved in a throwing event for over five years. The subjects were randomly divided into two groups: The experimental group (N=5) and the control group (N=5). The experimental group underwent peculiar complex core balance training. [Results] According to the analysis of covariance, there was a significant effect of peculiar complex core balance training. Therefore, the isokinetic muscle function of the knee joint and lumbus in the experimental group participating in peculiar complex core balance training was significantly increased compared to the control group. [Conclusion] It is concluded that peculiar complex core balance training had a positive effect on the isokinetic muscle function of the knee and lumbus in throwing event athletes.

  9. COMPARE THE EFFECTIVENESS OF EMG BIOFEEDBACK ASSISSTED CORE STABILITY EXERCISES VERSUS CORE STABILITY EXERCISES ALONE ON PAIN AND DISABILITY IN PATIENTS WITH LOW BACK PAI

    National Research Council Canada - National Science Library

    Gurkirat Kaur; Pravin Kumar

    2016-01-01

    .... Thus the purpose of the study is to see the efficacy of EMG biofeedback assisted core stability exercises versus core stability exercises alone in patients suffering from pain and disability. Methodology...

  10. The effect of post, core, crown type, and ferrule presence on the biomechanical behavior of endodontically treated bovine anterior teeth.

    Science.gov (United States)

    da Silva, Natércia Rezende; Raposo, Luís Henrique Araújo; Versluis, Antheunis; Fernandes-Neto, Alfredo Júlio; Soares, Carlos José

    2010-11-01

    Unresolved controversy exists concerning the remaining coronal tooth structure of anterior endodontically treated teeth and the best treatment option for restoring them. The purpose of this study was to evaluate the effect of post, core, crown type, and ferrule presence on the deformation, fracture resistance, and fracture mode of endodontically treated bovine incisors. One hundred and eighty bovine incisors were selected and divided into 12 treatment groups (n=15). The treatment variations were: with or without ferrule, restored with cast post and core, glass fiber post with composite resin core, or glass fiber post with fiber-reinforced core, and metal- or alumina-reinforced ceramic crown (n=15). The restored incisors were loaded at a 135-degree angle, and the deformation was measured using strain gauges placed on the buccal and proximal root surfaces. Specimens were subsequently loaded to the point of fracture. Strain and fracture resistance results were analyzed by 3-way ANOVA and Tukey HSD tests (α=.05). Ferrule presence did not significantly influence the buccal strain and fracture resistance for the ceramic crown groups, irrespective of core and crown type. Ferrule presence resulted in lower strains and higher fracture resistance in the metal crown groups, irrespective of core. The cast post and core showed lower strain values than groups with glass fiber posts when restored with metal crowns. Core type did not affect the deformation and fracture resistance of endodontically treated incisors restored with alumina-reinforced ceramic crowns. The presence of a ferrule improved the mechanical behavior of teeth restored with metal crowns, irrespective of core type. Copyright © 2010 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  11. Effect of the Free Core Resonance derived from tidal strain data

    Science.gov (United States)

    Amoruso, Antonella; Crescentini, Luca; Milyukov, Vadim; Mironov, Aleksey; Myasnikov, Andrey

    2017-04-01

    To investigate the effect of the Free Core Resonance (FCR) we use the data from two European strain stations: Baksan (Russia), and Gran Sasso (Italy). Eight years of strain recorded by two crossed 90-m long laser interferometers (BA and BC) at Gran Sasso underground observatory, and six years of strain recorded by the 75-m long laser interferometer at Baksan underground observatory, have been analysed. For the FCR parameter estimation we use 8 diurnal tidal constituents (namely Q1, O1, P1, K1, Ψ1, Φ1, J1, OO1) and compare measurements and model predictions through a joint fit on BAKSAN, BA, and BC tidal parameters minimizing the £1 misfit function. As measurements we use the amplitudes of the sine and cosine terms of the observed tides, obtained from the output amplitudes and phases of the VAV03 code [Venedikov et al., 2003] applied on the pre-whitened strain series. Retrieved tidal parameters are corrected for ocean loading and local effects. Measured tidal parameters for the three interferometers in the diurnal band have been compared with predicted SNRE tides. The out-of-phase Φ1wave discrepancies are outside the uncertainties for all interferometers, and the Baksan out-of-phase J1wave discrepancy is outside the uncertainty too. The results of analysis show that at the 80% (50%) confidence level the period of the Free Core Nutation (TFCN) is between 413.5 (421.2) and 436.8 (431.0) sidereal days. The quality factor is badly constrained because of the large uncertainty on the Ψ1 phase. Probability density function of Q-factor shows a peak around 18000. The joint analysis confirms the results obtained from the analysis of the Gran Sasso strain tides only [Amoruso et al., 2012] and are comparable to those from gravity tides. This work is partly supported by the Russian Foundation for Basic Research under Grant No 16-05-00122. References Amoruso, A., Botta, V., Crescentini, L., 2012. Free Core Resonance parameters from strain data: sensitivity analysis and

  12. Molecular electrostatic potential at the atomic sites in the effective core potential approximation

    Science.gov (United States)

    Lesiuk, Michał; Zachara, Janusz

    2013-02-01

    Considering calculations of the molecular electrostatic potential at the atomic sites (MEP@AS) in the presence of effective core potentials (ECP), we found that the consequent use of the definition of MEP@AS based on the energy derivative with respect to nuclear charge leads to a formula that differs by one term from the result of simple application of Coulomb's law. We have developed a general method to analytically treat derivatives of ECP with respect to nuclear charge. Benchmarking calculations performed on a set of simple molecules show that our formula leads to a systematic decrease in the error connected with the introduction of ECP when compared to all-electron results. Because of a straightforward implementation and relatively low costs of the developed procedure we suggest to use it by default.

  13. Proteomics Core

    Data.gov (United States)

    Federal Laboratory Consortium — Proteomics Core is the central resource for mass spectrometry based proteomics within the NHLBI. The Core staff help collaborators design proteomics experiments in a...

  14. Electron Interference in Hall Effect Measurements on GaAs/InAs Core/Shell Nanowires.

    Science.gov (United States)

    Haas, Fabian; Zellekens, Patrick; Lepsa, Mihail; Rieger, Torsten; Grützmacher, Detlev; Lüth, Hans; Schäpers, Thomas

    2017-01-11

    We present low-temperature magnetotransport measurements on GaAs/InAs core/shell nanowires contacted by regular source-drain leads as well as laterally attached Hall contacts, which only touch parts of the nanowire sidewalls. Low-temperature measurements between source and drain contacts show typical phase coherent effects, such as universal conductance fluctuations in a magnetic field aligned perpendicularly to the nanowire axis as well as Aharonov-Bohm-type oscillations in a parallel aligned magnetic field. However, the signal between the Hall contacts shows a Hall voltage buildup, when the magnetic field is turned perpendicular to the nanowire axis while current is driven through the wire using the source-drain contacts. At low temperatures, the phase coherent effects measured between source and drain leads are superimposed on the Hall voltage, which can be explained by nonlocal probing of large segments of the nanowire. In addition, the Aharonov-Bohm-type oscillations are also observed in the magnetoconductance at magnetic fields aligned parallel to the nanowire axis, using the laterally contacted leads. This measurement geometry hereby directly corresponds to classical Aharonov-Bohm experiments using planar quantum rings. In addition, the Hall voltage is used to characterize the nanowires in terms of charge carrier concentration and mobility, using temperature- and gate-dependent measurements as well as measurements in tilted magnetic fields. The GaAs/InAs core/shell nanowire used in combination with laterally attached contacts is therefore the ideal system to three-dimensionally combine quantum ring experiments using the cross-sectional plane and Hall experiments using the axial nanowire plane.

  15. Disparate effects of feeding on core body and adipose tissue temperatures in animals selectively bred for Nervous or Calm temperament.

    Science.gov (United States)

    Henry, Belinda A; Blache, Dominique; Rao, Alexandra; Clarke, Iain J; Maloney, Shane K

    2010-09-01

    In addition to homeostatic regulation of body mass, nonhomeostatic factors impact on energy balance. Herein we describe effects of temperament on adipose and core body temperatures in sheep. Animals were genetically selected for Nervous or Calm traits. We characterized the effects of 1) high- and low-energy intake and maintenance feeding, 2) meal anticipation, and 3) adrenocorticotropin challenge on core body and adipose temperatures. Temperature measurements (5 min) were made using a thermistor inserted into the carotid artery (core body) and a probe in the retroperitoneal fat. An imposed feeding window was used to establish postprandial elevations in temperature. Fat tissue was taken from retroperitoneal and subcutaneous regions for real-time PCR analyses. We demonstrate that innate differences in temperament impact on adipose and core body temperatures in response to various dietary and evocative stimuli. In response to homeostatic cues (low-energy intake and maintenance feeding) core body temperature tended to be higher in Calm compared with Nervous animals. In contrast, in response to nonhomeostatic cues, Nervous animals had higher anticipatory thermogenic responses than Calm animals. Expression of uncoupling protein (UCP)-1 and -2 mRNA were higher in retroperitoneal tissue than in subcutaneous tissue, but UCP3 and leptin mRNA levels were similar at both sites; expression of these genes was similar in Nervous and Calm animals. There were no differences in stress responsiveness. We conclude that temperament differentially influences adipose thermogenesis and the regulation of core body temperature in responses to both homeostatic and nonhomeostatic stimuli.

  16. Effect of Silicon on Activity Coefficients of Platinum in Liquid Fe-Si, With Application to Core Formation

    Science.gov (United States)

    Righter, K.; Pando, K.; Danielson, L. R.; Humayun, M.

    2017-01-01

    Earth's core contains approximately 10% of a light element that is likely a combination of S, C, Si, and O, with Si possibly being the most abundant light element. Si dissolved into Fe liquids can have a large effect on the magnitude of the activity coefficient of siderophile elements (SE) in Fe liquids, and thus the partitioning behavior of those elements between core and mantle. The effect of Si can be small such as for Ni and Co, or large such as for Mo, Ge, Sb, As. The effect of Si on many siderophile elements is unknown yet could be an important, and as yet unquantified, influence on the core-mantle partitioning of SE. Here we report new experiments designed to quantify the effect of Si on the partitioning of Pt (with Re and Ru in progress or planned) between metal and silicate melt. The results will be applied to Earth, for which we have excellent constraints on the mantle Pt concentrations.

  17. Effect of reaction time on formation of silica core/shell particles

    OpenAIRE

    Milan P. Nikolić; Radoslav Filipović; Slobodanka Stanojević-Nikolić

    2015-01-01

    The silica core/shell nanostructures were prepared by a wet-chemical process. Silica core particles were prepared by hydrolysis and condensation of tetraethylorthosilicate. The obtained particles (average size ∼0.4 µm) were used as templates for assembling of silica nanoparticles generated from highly basic sodium silicate solution. The silica core particles were functionalized with 3-aminopropyltriethoxysilane (APTES) to allow electrostatic assembling of silica nanoparticles on the surface o...

  18. The effect of length, duration, and intensity of psychological therapy on CORE global distress scores.

    Science.gov (United States)

    Evans, Lauren Jayne; Beck, Alison; Burdett, Mark

    2017-09-01

    This study explores whether improvements, as measured by the CORE-OM/10, as a result of psychological therapy were related to length of treatment in weeks, number of treatment sessions, or treatment intensity, as well as any effect of diagnostic group. Pre- and post-therapy CORE-OM/10 scores were extracted from the clinical records of all secondary care adult psychological therapy team patients who undertook psychological therapy between 2010 and 2013 in one mental health trust. Of the 4,877 patients identified, 925 had complete records. Length of therapy was divided by the number of sessions to create 'treatment intensity' (sessions per week). Nonparametric analyses were used, initial score was controlled for, and diagnostic group was explored. No relationship was found between change in score and the number of sessions, therapy length, or treatment intensity; however, change in score was positively correlated with first-session score. Patients with higher initial scores had longer therapies; however, treatment intensity was similar for patients with lower pre-therapy distress. There were differences in treatment length (weeks) between diagnostic groups. Demographic differences were found between patients with and without complete records, prompting caution in terms of generalizability. These findings are consistent with the responsive regulation model (Barkham et al., 1996) which proposes that patients vary in their response to treatment, resulting in no associations between session numbers or treatment intensity and therapeutic gain with aggregated scores. Patients with higher CORE scores at the outset of psychological therapy had longer not more intensive therapy. There was variation in treatment intensity between diagnostic clusters. Number of sessions, length of therapy (in weeks), and treatment intensity (the number of sessions per week between the first and last therapy sessions) were not related to therapeutic gains. These results fit with a responsive

  19. Differential Effects of Hydrophobic Core Packing Residues for Thermodynamic and Mechanical Stability of a Hyperthermophilic Protein.

    Science.gov (United States)

    Tych, Katarzyna M; Batchelor, Matthew; Hoffmann, Toni; Wilson, Michael C; Hughes, Megan L; Paci, Emanuele; Brockwell, David J; Dougan, Lorna

    2016-07-26

    Proteins from organisms that have adapted to environmental extremes provide attractive systems to explore and determine the origins of protein stability. Improved hydrophobic core packing and decreased loop-length flexibility can increase the thermodynamic stability of proteins from hyperthermophilic organisms. However, their impact on protein mechanical stability is not known. Here, we use protein engineering, biophysical characterization, single-molecule force spectroscopy (SMFS), and molecular dynamics (MD) simulations to measure the effect of altering hydrophobic core packing on the stability of the cold shock protein TmCSP from the hyperthermophilic bacterium Thermotoga maritima. We make two variants of TmCSP in which a mutation is made to reduce the size of aliphatic groups from buried hydrophobic side chains. In the first, a mutation is introduced in a long loop (TmCSP L40A); in the other, the mutation is introduced on the C-terminal β-strand (TmCSP V62A). We use MD simulations to confirm that the mutant TmCSP L40A shows the most significant increase in loop flexibility, and mutant TmCSP V62A shows greater disruption to the core packing. We measure the thermodynamic stability (ΔGD-N) of the mutated proteins and show that there is a more significant reduction for TmCSP L40A (ΔΔG = 63%) than TmCSP V62A (ΔΔG = 47%), as might be expected on the basis of the relative reduction in the size of the side chain. By contrast, SMFS measures the mechanical stability (ΔG*) and shows a greater reduction for TmCSP V62A (ΔΔG* = 8.4%) than TmCSP L40A (ΔΔG* = 2.5%). While the impact on the mechanical stability is subtle, the results demonstrate the power of tuning noncovalent interactions to modulate both the thermodynamic and mechanical stability of a protein. Such understanding and control provide the opportunity to design proteins with optimized thermodynamic and mechanical properties.

  20. Core-excitation effects in O20(d,pO21 transfer reactions: Suppression or enhancement?

    Directory of Open Access Journals (Sweden)

    A. Deltuva

    2017-06-01

    Full Text Available O20(d,pO21 transfer reactions are described using momentum-space Faddeev-type equations for transition operators and including the vibrational excitation of the 20O core. The available experimental cross section data at 10.5 MeV/nucleon beam energy for the 21O ground state 52+ and excited state 12+ are quite well reproduced by our calculations including the core excitation. Its effect can be roughly simulated reducing the single-particle cross section by the corresponding spectroscopic factor. Consequently, the extraction of the spectroscopic factors taking the ratio of experimental data and single-particle cross section at this energy is a reasonable procedure. However, at higher energies core-excitation effects are much more complicated and have no simple relation to spectroscopic factors. We found that core-excitation effects are qualitatively very different for reactions with the orbital angular momentum transfer ℓ=0 and ℓ=2, suppressing the cross sections for the former and enhancing for the latter, and changes the shape of the angular distribution in both cases. Furthermore, the core-excitation effect is a result of a complicated interplay between its contributions of the two- and three-body nature.

  1. Effects of hepatitis C virus core protein and nonstructural protein 4B on the Wnt/β-catenin pathway.

    Science.gov (United States)

    Jiang, Xiao-Hua; Xie, Yu-Tao; Cai, Ya-Ping; Ren, Jing; Ma, Tao

    2017-05-25

    Hepatitis C virus (HCV) core protein and nonstructural protein 4B (NS4B) are potentially oncogenic. Aberrant activation of the Wnt/β-catenin signaling pathway is closely associated with hepatocarcinogenesis. We investigated the effects of HCV type 1b core protein and NS4B on Wnt/β-catenin signaling in various liver cells, and explored the molecular mechanism underlying HCV-related hepatocarcinogenesis. Compared with the empty vector control, HCV core protein and NS4B demonstrated the following characteristics in the Huh7 cells: significantly enhanced β-catenin/Tcf-dependent transcriptional activity (F = 40.87, P  0.05), but they did significantly enhance Wnt3a-induced β-catenin/Tcf-dependent transcriptional activity (F = 64.25, P core protein than with NS4B (P core protein and NS4B directly activate the Wnt/β-catenin signaling pathway in Huh7 cells and LO2 cells induced by Wnt3a. These data suggest that HCV core protein and NS4B contribute to HCV-associated hepatocellular carcinogenesis.

  2. EFFECTS OF CORE STABILIZATION PROGRAM AND CONVENTIONAL EXERCISES IN THE MANAGEMENT OF PATIENTS WITH CHRONIC MECHANICAL LOW BACK PAIN

    Directory of Open Access Journals (Sweden)

    Suresh Babu Reddy .A

    2015-04-01

    Full Text Available Background: Conventional back care exercises are advocated to treat the pain and to strengthen the involved muscles. There will be possibility of the pain getting recurred due to disproportionate balance and stability in the muscles. The core stabilization is major trend in rehabilitation, it aims at improving stability during functional activities, balance, flexibility, strength training and effectively manage the pain as well. Objective: To find the efficacy of the concept of core stabilization when compared to conventional back care exercises in patients with chronic mechanical low back pain. Methods: Forty patients with chronic Mechanical Low back pain were selected through purposive sampling and were randomly assigned into control group who received conventional back exercises and SWD (n=20, experimental group who received core stabilization and SWD (n=20. Both the groups received SWD, along with conventional back exercises for one group and core stabilization for the other group three days a week for 6 weeks. The treatment outcome was assessed using visual analogue scale, Rolland Morris Disability Questionnaire and Lumbar range of motion using goniometer. Results: After a 6 weeks training period the core stabilization group scored significantly higher than the conventional group for VAS (p=0.05 RMDQ (p=0.05 whereas ROM improved higher in conventional group (p=0.05. Conclusion: After the treatment sessions Core stabilization group registered a significant improvement when compared to conventional back care exercises in improving function and in relieving pain.

  3. Cost-effectiveness of gammaCore (non-invasive vagus nerve stimulation) for acute treatment of episodic cluster headache.

    Science.gov (United States)

    Mwamburi, Mkaya; Liebler, Eric J; Tenaglia, Andrew T

    2017-11-01

    Cluster headache is a debilitating disease characterized by excruciatingly painful attacks that affects 0.15% to 0.4% of the US population. Episodic cluster headache manifests as circadian and circannual seasonal bouts of attacks, each lasting 15 to 180 minutes, with periods of remission. In chronic cluster headache, the attacks occur throughout the year with no periods of remission. While existing treatments are effective for some patients, many patients continue to suffer. There are only 2 FDA-approved medications for episodic cluster headache in the United States, while others, such as high-flow oxygen, are used off-label. Episodic cluster headache is associated with comorbidities and affects work, productivity, and daily functioning. The economic burden of episodic cluster headache is considerable, costing more than twice that of nonheadache patients. gammaCore adjunct to standard of care (SoC) was found to have superior efficacy in treatment of acute episodic cluster headaches compared with sham-gammaCore used with SoC in ACT1 and ACT2 trials. However, the economic impact has not been characterized for this indication. We conducted a cost-effectiveness analysis of gammaCore adjunct to SoC compared with SoC alone for the treatment of acute pain associated with episodic cluster headache attacks. The model structure was based on treatment of acute attacks with 3 outcomes: failures, nonresponders, and responders. The time horizon of the model is 1 year using a payer perspective with uncertainty incorporated. Parameter inputs were derived from primary data from the randomized controlled trials for gammaCore. The mean annual costs associated with the gammaCore-plus-SoC arm was $9510, and mean costs for the SoC-alone arm was $10,040. The mean quality-adjusted life years for gammaCore-plus-SoC arm were 0.83, and for the SoC-alone arm, they were 0.74. The gammaCore-plus-SoC arm was dominant over SoC alone. All 1-way and multiway sensitivity analyses were cost-effective

  4. The effect of post length and core material on root fracture with respect to different post materials.

    Science.gov (United States)

    Kaya, Bekir Murat; Ergun, Gulfem

    2013-09-01

    The aim of this study was to evaluate the effect of different core materials and post length on the fracture strength of different posts (CAD/CAM zirconia post (ZR post)) and an individually formed glass fiber reinforced composite post (FRC post). One hundred maxillary central incisors received endodontic treatment and were divided into two groups according to the post length: (1) 10 mm in length and (2) 15 mm in length (n = 50/per group). Then the specimens were randomly assigned into five sub-groups (n = 10/per group) as follows: One-piece milled zirconia post and core (group Zr), zirconia post with resin core (Biscore, Bisco) (group Zr/R), zirconia post with resin composite core (Admira, Voco) (group Zr/RC), FRC post with resin core (group F/R) and FRC post with resin composite core (group F/RC). The posts were cemented with a self-adhesive luting agent according to the manufacturer's instructions by using endo tips and light-cured for 40 s using a halogen light curing unit. Metal crowns were made for each specimen, cemented and loaded to failure. Fracture loads (N) and modes of failure were recorded. The data were analyzed using three-way analysis of variance (ANOVA) followed by Tukey's post-hoc test (p post material (p post length (p posts with zirconia- or resin-based cores can be recommended as an alternative to FRC posts with resin-based cores. The fracture patterns observed in teeth restored with fiber posts were more favorable than teeth restored with zirconia posts. Clinical significance. A higher restoring success rate can be achieved by fiber posts rather than zirconia posts, since the failure mode for these posts would be restorable. Additionally, post length is a more critical factor in teeth restored with one-piece milled zirconia posts than in those restored with fiber posts.

  5. [Effect of gilding technique on the release of elements from copper-based alloy post-core].

    Science.gov (United States)

    Pan, Lu; Chen, Xin-min; Niu, Lin; Zhang, Shan-chuan

    2007-07-01

    To evaluate the effect of gilding technique on the release of element from copper-based alloy post-core exposed to artificial saliva. The quantities of nickel ion and copper ion released from common copper-based alloy post-core (control group), blasting gilding copper-based alloy post-core (blasting group) and burnishing gilding Copper-based alloy post-core (burnishing group) in artificial saliva after 1 month,3 months,6 months and 8 months of exposure were measured with atomic absorption spectrophotometer. The tooth tissues were stripped off at the eighth month and the oxygenization on the surface of the posts were observed. There was a significant difference of element release of nickel between the gilding groups and the control group at the sixth and eighth month. There was a significant difference of element release of copper between the gilding groups and the control group at the third, sixth and eighth month. The quantities of element released from the gilding groups were fewer than those from the control groups. The release of nickel and copper ions increased with the length of exposure significantly after three month of exposure. The element release from the control groups increased more rapidly than the gilding groups. The surface of the post-core in the control groups were all oxygenized while those in the gilding groups had been oxygenized only near the margins of the cores and the upper 1/3 part of the post with uncontinuous and relatively thin layers. Gilding surface treatment can decrease the release of nickel and copper ions from copper based-alloy post-core and the surface oxygenization, which will improve the biocompatibility of the core.

  6. Inhibitory effect of light of different wavelengths on the fall of core temperature during the nighttime.

    Science.gov (United States)

    Morita, T; Teramoto, Y; Tokura, H

    1995-01-01

    Nocturnal core temperature fall was significantly inhibited by green, blue, and red light exposure with 1,000 lx from 21:00 h to 02:00 h. The core temperature in red became identical from that in control during the following sleep period, but not in green and blue. These findings are discussed in terms of urinary melatonin behavior.

  7. Using high resolution tritium profiles to quantify the effects of melt on two Spitsbergen ice cores

    NARCIS (Netherlands)

    van der Wel, L.G.; Streurman, H.J.; Isaksson, E.; Helsen, M.M.|info:eu-repo/dai/nl/325802459; van de Wal, R.S.W.|info:eu-repo/dai/nl/101899556; Martma, T.; Pohjola, V.A.; Moore, J.C.; Meijer, H.A.J.

    2011-01-01

    Ice cores from small ice caps provide valuable climatic information, additional to that of Greenland and Antarctica. However, their integrity is usually compromised by summer meltwater percolation. To determine to what extent this can affect such ice cores, we performed high-resolution tritium

  8. The Effects of Common Core State Standards on School Superintendent Leadership and School Culture

    Science.gov (United States)

    Boulton, Sean Mark

    2017-01-01

    Researchers have suggested that the implementation of Common Core State Standards has the potential to influence school leadership styles and practices. It was not known, however, how implementation of Common Core State Standards influenced school superintendent leadership styles and practices and overall school culture in the state of California.…

  9. Sectioned Core Doping Effect on Higher-Order Mode Amplification in Yb-Doped Rod-Type Photonic Crystal Fibers

    DEFF Research Database (Denmark)

    Poli, F.; Lægsgaard, Jesper; Passaro, D.

    2009-01-01

    The amplification properties of guided modes in Yb-doped rod-type photonic crystal fibers with sectioned core doping have been investigated, evaluating the doped-area radius which provides the effective suppression of both LP 11- and LP02-like modes.......The amplification properties of guided modes in Yb-doped rod-type photonic crystal fibers with sectioned core doping have been investigated, evaluating the doped-area radius which provides the effective suppression of both LP 11- and LP02-like modes....

  10. Effect of initial vortex core size on the coherent structures in the swirling jet near field

    Science.gov (United States)

    Rukes, Lothar; Sieber, Moritz; Paschereit, C. Oliver; Oberleithner, Kilian

    2015-10-01

    This study investigates the sensitivity to initial conditions of swirling jets undergoing vortex breakdown. Emphasis is placed on the recirculation bubble and on the helical coherent structures that evolve in its periphery. It is proposed that the vortex core size of the incoming swirling jet is the critical parameter that determines the dynamics of these coherent structures. This proposition is assessed with Stereo Particle-Image-Velocimetry (PIV) measurements of the breakdown region of two swirling jet configurations with different vortex core sizes at very similar overall swirl intensities. The swirling jets were generated by radial vanes entering a mixing tube, and the vortex core size was adjusted by using different center-body geometries. The time-averaged flow fields in the breakdown region reveal substantial differences in the jet spreading and the size of the recirculation bubble. Proper Ortogonal Decomposition (POD) was applied to the anti-axisymmetric and axisymmetric velocity fluctuations, to reconstruct the dynamics of the helical instability and the breakdown bubble, respectively. We find that the mode shape of the helical instability is not affected by the vortex core size. The frequency is found to coincide with the vortex core rotation rate, which relates inversely to the core size. The shape and dynamics of the non-periodic breakdown bubble are significantly affected by a change in vortex core size. The POD reveals that the energy content of the dominant non-periodic structure is changed markedly with the vortex core size. The bubble dynamics are further investigated by tracking the upstream stagnation point from the PIV snapshots. It is shown that a larger vortex core promotes smooth fluctuations of the recirculation bubble, while a small initial vortex core is linked to bimodal fluctuations of the recirculation bubble. The conclusions drawn from this study are relevant for fundamental swirling jet studies, as well as for the design of swirl

  11. Core components for effective infection prevention and control programmes: new WHO evidence-based recommendations.

    Science.gov (United States)

    Storr, Julie; Twyman, Anthony; Zingg, Walter; Damani, Nizam; Kilpatrick, Claire; Reilly, Jacqui; Price, Lesley; Egger, Matthias; Grayson, M Lindsay; Kelley, Edward; Allegranzi, Benedetta

    2017-01-01

    Health care-associated infections (HAI) are a major public health problem with a significant impact on morbidity, mortality and quality of life. They represent also an important economic burden to health systems worldwide. However, a large proportion of HAI are preventable through effective infection prevention and control (IPC) measures. Improvements in IPC at the national and facility level are critical for the successful containment of antimicrobial resistance and the prevention of HAI, including outbreaks of highly transmissible diseases through high quality care within the context of universal health coverage. Given the limited availability of IPC evidence-based guidance and standards, the World Health Organization (WHO) decided to prioritize the development of global recommendations on the core components of effective IPC programmes both at the national and acute health care facility level, based on systematic literature reviews and expert consensus. The aim of the guideline development process was to identify the evidence and evaluate its quality, consider patient values and preferences, resource implications, and the feasibility and acceptability of the recommendations. As a result, 11 recommendations and three good practice statements are presented here, including a summary of the supporting evidence, and form the substance of a new WHO IPC guideline.

  12. Photoneutron effects on pulse reactor kinetics for the Annular Core Research Reactor (ACRR).

    Energy Technology Data Exchange (ETDEWEB)

    Parma, Edward J., Jr.

    2009-06-01

    The Annular Core Research Reactor (ACRR) is a swimming-pool type pulsed reactor that maintains an epithermal neutron flux and a nine-inch diameter central dry cavity. One of its uses is neutron and gamma-ray irradiation damage studies on electronic components under transient reactor power conditions. In analyzing the experimental results, careful attention must be paid to the kinetics associated with the reactor to ensure that the transient behavior of the electronic device is understood. Since the ACRR fuel maintains a substantial amount of beryllium, copious quantities of photoneutrons are produced that can significantly alter the expected behavior of the reactor power, especially following a reactor pulse. In order to understand these photoneutron effects on the reactor kinetics, the KIFLE transient reactor-analysis code was modified to include the photoneutron groups associated with the beryllium. The time-dependent behavior of the reactor power was analyzed for small and large pulses, assuming several initial conditions including following several pulses during the day, and following a long steady-state power run. The results indicate that, for these types of initial conditions, the photoneutron contribution to the reactor pulse energy can have a few to tens of percent effect.

  13. The effect of carbon nanotube chirality on the spiral flow of copper atoms in their cores

    Energy Technology Data Exchange (ETDEWEB)

    Lim, M.C.G., E-mail: M070041@e.ntu.edu.sg [Nanyang Technological University, School of Mechanical and Aerospace Engineering, 50 Nanyang Avenue, Singapore 639798 (Singapore); Zhong, Z.W. [Nanyang Technological University, School of Mechanical and Aerospace Engineering, 50 Nanyang Avenue, Singapore 639798 (Singapore)

    2012-12-14

    The effect of carbon nanotube (CNT) chirality on the flow of copper atoms along its core has been investigated using molecular dynamics simulations. The investigation is conducted using CNTs of different chirality, and different flow conditions such as temperatures, bias voltages and the initial positions of the copper atoms. The results show that the atoms flow in a spiral fashion along the CNT channels. The effect is most evident in the CNT channel with zigzag CNTs. The movement of the copper atoms is more erratic when the temperature is increased at a low biased voltage, regardless of the types of channel used. The initial positions of the copper atoms affect the way they converge as they move downstream along the channel. A bias voltage of 4 V favours the initiation of a spiral flow, especially when the position of the copper atoms is far from the central axis of the channel. -- Highlights: Black-Right-Pointing-Pointer We model the transportation of copper atoms in armchair and zigzag CNT channels. Black-Right-Pointing-Pointer The spiral flow of copper atoms occurs in a semiconductor-semiconductor CNT. Black-Right-Pointing-Pointer The compact copper mass is predicted to occur at 673 K with a 4 V bias voltage.

  14. Effects of nucleus accumbens core and shell lesions on autoshaped lever-pressing.

    Science.gov (United States)

    Chang, Stephen E; Holland, Peter C

    2013-11-01

    Certain Pavlovian conditioned stimuli (CSs) paired with food unconditioned stimuli (USs) come to elicit approach and even consumption-like behaviors in rats (sign-tracking). We investigated the effects of lesions of the nucleus accumbens core (ACbC) or shell (ACbS) on the acquisition of sign-tracking in a discriminative autoshaping procedure in which presentation of one lever CS was followed by delivery of sucrose, and another was not. Although we previously found that bilateral lesions of the whole ACb disrupted the initial acquisition of sign-tracking, neither ACbC or ACbS lesions affected the rate or percentage of trials in which rats pressed the CS+. In addition, detailed video analysis showed no effect of either lesion on the topography of the sign-tracking conditioned response (CR). These and other results from lesion studies of autoshaping contrast with those from previous sign-tracking experiments that used purely visual cues (Parkinson et al., 2000a,b), suggesting that the neural circuitry involved in assigning incentive value depends upon the nature of the CS. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Core components for effective infection prevention and control programmes: new WHO evidence-based recommendations

    Directory of Open Access Journals (Sweden)

    Julie Storr

    2017-01-01

    Full Text Available Abstract Health care-associated infections (HAI are a major public health problem with a significant impact on morbidity, mortality and quality of life. They represent also an important economic burden to health systems worldwide. However, a large proportion of HAI are preventable through effective infection prevention and control (IPC measures. Improvements in IPC at the national and facility level are critical for the successful containment of antimicrobial resistance and the prevention of HAI, including outbreaks of highly transmissible diseases through high quality care within the context of universal health coverage. Given the limited availability of IPC evidence-based guidance and standards, the World Health Organization (WHO decided to prioritize the development of global recommendations on the core components of effective IPC programmes both at the national and acute health care facility level, based on systematic literature reviews and expert consensus. The aim of the guideline development process was to identify the evidence and evaluate its quality, consider patient values and preferences, resource implications, and the feasibility and acceptability of the recommendations. As a result, 11 recommendations and three good practice statements are presented here, including a summary of the supporting evidence, and form the substance of a new WHO IPC guideline.

  16. The specific edge effects of 2D core/shell model for spin-crossover nanoparticles

    Science.gov (United States)

    Muraoka, Azusa; Boukheddaden, Kamel; Linarès, Jorge; Varret, Francois

    2012-02-01

    We analyzed the size effect of spin-crossover nanoparticles at the edges of the 2D square lattices core/shell model, where the edge atoms are constrained to the high spin (HS) state. We performed MC simulations using the Ising-like Hamiltonian, [ H=-J∑(i,j)∑l i'=±1; j'=±1 S( i,j )S( i+i',j+j' ) +( δ2-kBT2g )∑(i,j)S( i,j ) ] The molar entropy change is δS 50J/K/mol, lng=δS/R 6 (R is the perfect gas constant), energy gap is δ=1300K. The HS fixed edges were based on the observation of an increasing residual HS fraction at low temperature upon particle size reduction. This specific boundary condition acts as a negative pressure which shifts downwards the equilibrium temperature. The interplay between the equilibrium temperature (=δ/kBlng) variation and the expected variation of the effective interactions in the system leads to a non-monotonous dependence of the hysteresis loop width upon the particle size. We described how the occurrence condition of the first-order transition has to be adapted to the nanoscale.

  17. Effects of proprioceptive training program on core stability and center of gravity control in sprinters.

    Science.gov (United States)

    Romero-Franco, Natalia; Martínez-López, Emilio; Lomas-Vega, Rafael; Hita-Contreras, Fidel; Martínez-Amat, Antonio

    2012-08-01

    The purpose of this study was to determinate the effect of a 6-week specific-sprinter proprioceptive training program on core stability and gravity center control in sprinters. Thirty-three athletes (age = 21.82 ± 4.84 years, height = 1.76 ± 0.07 m, weight = 67.82 ± 08.04 kg, body mass index = 21.89 ± 2.37 kg · m(-2)) from sprint disciplines were divided into a control (n = 17) and experimental (n = 16) groups. A 30-minute proprioceptive training program was included in the experimental group training sessions, and it was performed for 6 weeks, 3 times each week. This program included 5 exercises with the BOSU and Swiss ball as unstable training tools that were designed to reproduce different moments of the technique of a sprint race. Stability with eyes open (EO) and eyes closed, postural stability, and gravity center control were assessed before and after the training program. Analyses of covariance (α = 0.05) revealed significant differences in stability in the medial-lateral plane with EO, gravity center control in the right direction and gravity center control in the back direction after the exercise intervention in the experimental athletes. Nevertheless, no other significant differences were demonstrated. A sprinter-specific proprioceptive training program provided postural stability with EO and gravity center control measures improvements, although it is not clear if the effect of training would transfer to the general population.

  18. High-efficient production of SiC/SiO2 core-shell nanowires for effective microwave absorption

    KAUST Repository

    Zhong, Bo

    2017-02-21

    In the current report, we have demonstrated that the high-efficient production of SiC/SiO2 core-shell nanowires can be achieved through the introduction of trace of water vapor during the chemical vapor deposition process. The yield of the SiC/SiO2 core-shell nanowires is dramatically improved due to the introduction of water vapor. The SiC/SiO2 core-shell nanowires exhibit an excellent microwave absorption property in the frequency range of 2.0–18.0GHz with a very low weight percentage of 0.50wt.% in the absorbers. A minimum reflection loss value of −32.72dB (>99.99% attenuation) at 13.84GHz has been observed with the absorber thickness of 3.0mm. Moreover, the SiC/SiO2 core-shell nanowires based absorber can reach an effective absorption bandwidth (<−10dB) of 5.32GHz with the absorber thickness of 3.5mm. Furthermore, a possible absorption mechanism is also proposed in detail for such effective attenuation of microwave which can be attributed to the dielectric loss and magnetic loss of SiC/SiO2 core-shell nanowires.

  19. THE EFFECT OF 8-WEEK CORE TRAINING ON 100 M BACKSTROKE SWIMMING PERFORMANCE ON 13-15 AGE MALE SWIMMERS

    Directory of Open Access Journals (Sweden)

    Ahmet Gönener

    2017-12-01

    Full Text Available In this study, It was aimed to investigate the effect of 8-week core training on backstroke swimming style 100 m performance in male swimming group of 13-15 age group. 24 athletes from the Gebze Gençlerbirliği Swimming Club participated in this study. The groups are divided into experiment group and control group randomly as 12 persons per group. During the study, the experimental group participated in core training in addition to swimming for 3 days a week. Control group just participated in swimming training during the survey. The exercises were designed as strength training for core muscles for 8 weeks. 100 m swimming test was used as a test measurement tool. The obtained data from pre and post test comparison was analyzed with Wilcoxon Signed Ranks test in SPSS 21.0 statistical package program. When the pretest and posttest results were compared as intragroup, a statistically significant difference was found in the experimental group (p.05. As a result, it was seen that the core area trained by 8-week core training on 13-15 age male swimmers have a positive effect on 100 m backstroke style performance.

  20. The effects of core stability strength exercise on muscle activity and trunk impairment scale in stroke patients.

    Science.gov (United States)

    Yu, Seong-Hun; Park, Seong-Doo

    2013-01-01

    The purpose of this study was to examine the effects of core stability-enhancing exercises on the lower trunk and muscle activity of stroke patients. The control group (n = 10) underwent standard exercise therapy, while the experiment group (n =10) underwent both the core stability-enhancing exercise and standard exercise therapy simultaneously. The standard exercise therapy applied to the two groups included weight bearing and weight shifts and joint movements to improve flexibility and the range of motion. The core stability-enhancing exercise was performed 5 times a week for 30 min over a period of 4 weeks in the room where the patients were treated. For all 20 subject, the items measured before the exercise were measured after the therapeutic intervention, and changes in muscle activity of the lower trunk were evaluated. The activity and stability of the core muscles were measured using surface electromyography and the trunk impairment scale (TIS). The mean TIS score and muscle activity of the lower trunk increased in the experiment group significantly after performing the core stability-enhancing exercise (Pcore stability-enhancing exercise is effective in improving muscle activity of the lower trunk, which is affected by hemiplegia.

  1. A Numerical Study on the Effect of Facesheet-Core Disbonds on the Buckling Load of Curved Honeycomb Sandwich Panels

    Science.gov (United States)

    Pineda, Evan J.; Myers, David E.; Bednarcyk, Brett A.; Krivanek, Thomas M.

    2015-01-01

    A numerical study on the effect of facesheet-core disbonds on the post-buckling response of curved honeycomb sandwich panels is presented herein. This work was conducted as part of the development of a damage tolerance approach for the next-generation Space Launch System heavy lift vehicle payload fairing. As such, the study utilized full-scale fairing barrel segments as the structure of interest. The panels were composed of carbon fiber reinforced polymer facesheets and aluminum honeycomb core. The panels were analyzed numerically using the finite element method. Facesheet and core nodes in a predetermined circular region were detached to simulate a disbond induced via low-speed impact between the outer mold line facesheet and honeycomb core. Surface-to-surface contact in the disbonded region was invoked to prevent interpenetration of the facesheet and core elements. The diameter of this disbonded region was varied and the effect of the size of the disbond on the post-buckling response was observed. A significant change in the slope of the edge load-deflection response was used to determine the onset of global buckling and corresponding buckling load.

  2. The effect of short-term isometric training on core/torso stiffness.

    Science.gov (United States)

    Lee, Benjamin; McGill, Stuart

    2017-09-01

    "Core" exercise is a basic part of many physical training regimens with goals ranging from rehabilitation of spine and knee injuries to improving athletic performance. Core stiffness has been proposed to perform several functions including reducing pain by minimising joint micro-movements, and enhancing strength and speed performance. This study probes the links between a training approach and immediate but temporary changes in stiffness. Passive and active stiffness was measured on 24 participants; 12 having little to no experience in core training (inexperienced), and the other 12 being athletes experienced to core training methods; before and after a 15 min bout of isometric core exercises. Passive stiffness was assessed on a "frictionless" bending apparatus and active stiffness assessed via a quick release mechanism. Short-term isometric core training increased passive and active stiffness in most directions for both inexperienced and experienced participants, passive left lateral bend among experienced participants being the exception (P core stiffness, in this case following a single session. This may influence performance and injury resilience for a brief period.

  3. The Effects of Acute Stress on Core Executive Functions: A Meta-Analysis and Comparison with Cortisol

    Science.gov (United States)

    Shields, Grant S.; Sazma, Matthew A.; Yonelinas, Andrew P.

    2016-01-01

    Core executive functions such as working memory, inhibition, and cognitive flexibility are integral to daily life. A growing body of research has suggested that acute stress may impair core executive functions. However, there are a number of inconsistencies in the literature, leading to uncertainty about how or even if acute stress influences core executive functions. We addressed this by conducting a meta-analysis of acute stress effects on working memory, inhibition, and cognitive flexibility. We found that stress impaired working memory and cognitive flexibility, whereas it had nuanced effects on inhibition. Many of these effects were moderated by other variables, such as sex. In addition, we compared effects of acute stress on core executive functions to effects of cortisol administration and found some striking differences. Our findings indicate that stress works through mechanisms aside from or in addition to cortisol to produce a state characterized by more reactive processing of salient stimuli but greater control over actions. We conclude by highlighting some important future directions for stress and executive function research. PMID:27371161

  4. The effects of isolated and integrated 'core stability' training on athletic performance measures: a systematic review.

    Science.gov (United States)

    Reed, Casey A; Ford, Kevin R; Myer, Gregory D; Hewett, Timothy E

    2012-08-01

    Core stability training, operationally defined as training focused to improve trunk and hip control, is an integral part of athletic development, yet little is known about its direct relation to athletic performance. This systematic review focuses on identification of the association between core stability and sports-related performance measures. A secondary objective was to identify difficulties encountered when trying to train core stability with the goal of improving athletic performance. A systematic search was employed to capture all articles related to athletic performance and core stability training that were identified using the electronic databases MEDLINE, CINAHL and SPORTDiscus™ (1982-June 2011). A systematic approach was used to evaluate 179 articles identified for initial review. Studies that performed an intervention targeted toward the core and measured an outcome related to athletic or sport performances were included, while studies with a participant population aged 65 years or older were excluded. Twenty-four in total met the inclusionary criteria for review. Studies were evaluated using the Physical Therapy Evidence Database (PEDro) scale. The 24 articles were separated into three groups, general performance (n = 8), lower extremity (n = 10) and upper extremity (n = 6), for ease of discussion. In the majority of studies, core stability training was utilized in conjunction with more comprehensive exercise programmes. As such, many studies saw improvements in skills of general strengths such as maximum squat load and vertical leap. Surprisingly, not all studies reported measurable increases in specific core strength and stability measures following training. Additionally, investigations that targeted the core as the primary goal for improved outcome of training had mixed results. Core stability is rarely the sole component of an athletic development programme, making it difficult to directly isolate its affect on athletic performance

  5. The Effects of Isolated and Integrated ‘Core Stability’ Training on Athletic Performance Measures

    Science.gov (United States)

    Reed, Casey A.; Ford, Kevin R.; Myer, Gregory D.; Hewett, Timothy E.

    2014-01-01

    Background Core stability training, operationally defined as training focused to improve trunk and hip control, is an integral part of athletic development, yet little is known about its direct relation to athletic performance. Objective This systematic review focuses on identification of the association between core stability and sports-related performance measures. A secondary objective was to identify difficulties encountered when trying to train core stability with the goal of improving athletic performance. Data sources A systematic search was employed to capture all articles related to athletic performance and core stability training that were identified using the electronic databases MEDLINE, CINAHL and SPORTDiscus™ (1982-June2011). Study selection A systematic approach was used to evaluate 179 articles identified for initial review. Studies that performed an intervention targeted toward the core and measured an outcome related to athletic or sport performances were included, while studies with a participant population aged 65 years or older were excluded. Twenty-four in total met the inclusionary criteria for review. Study appraisal and synthesis methods Studies were evaluated using the Physical Therapy Evidence Database (PEDro) scale. The 24 articles were separated into three groups, general performance (n = 8), lower extremity (n = 10) and upper extremity (n = 6), for ease of discussion. Results In the majority of studies, core stability training was utilized in conjunction with more comprehensive exercise programmes. As such, many studies saw improvements in skills of general strengths such as maximum squat load and vertical leap. Surprisingly, not all studies reported measurable increases in specific core strength and stability measures following training. Additionally, investigations that targeted the core as the primary goal for improved outcome of training had mixed results. Limitations Core stability is rarely the sole component of an athletic

  6. EFFECTIVENESS OF SWISS BALL VS FLOOR EXERCISES ON CORE MUSCLE STRENGTH IN ELITE CRICKETERS

    OpenAIRE

    K. Sai sudha; Dr. A. Viswanath Reddy; Dr. K. Madhavi

    2015-01-01

    Background: Cricket is one of the most popular game in India played by men and women of all ages. The increased physical demands on the players may be associated with an increased risk of injuries. Core muscle strength is important to prevent risk of injuries in elite cricketers. The beginners in the cricket must have enough strength of core muscles, as core is the bridge between upper and lower limbs. So, it should be strong enough to prevent low back and lower limb injuries in cricketers. T...

  7. The effect of post-core and ferrule on the fracture resistance of endodontically treated maxillary central incisors

    Directory of Open Access Journals (Sweden)

    Sendhilnathan Dakshinamurthy

    2008-01-01

    Full Text Available Aim: To evaluate the effect of post reinforcement, post type and ferrule on the fracture resistance of endodontically treated maxillary central incisors. Materials and Methods: Sixty central incisor teeth were selected and grouped into six groups, viz. A, B, C, D, E, and F, each consisting of 10 specimens. Group A specimens were not subjected to any restorative treatment. Group B specimens were endodontically treated and crowned. Specimens of groups C and D were restored with custom cast post and core. Specimens of groups E and F were treated with prefabricated titanium post and composite core. Specimens of groups C and E were restored with porcelain-fused metal (PFM crown having 2 mm ferrule. Specimens of groups D and F were restored with PFM crown having no ferrule. All the specimens were subjected to load (newton, N on the lingual surface at a 135° angle to the long axis with a universal testing machine until it fractured. The fracture load and mode of fracture of each specimen were noted. One-way analysis of variance with Tukey honestly significant difference procedure was employed to identify the significant difference among the groups at 5% level (P < 0.05. Results: There were significant differences among the six groups studied (P < 0.0001. The highest fracture strength was recorded with specimen of group C (1376.7 N. There were significant differences between groups A and D versus groups B, E, and F. There were no significant differences between groups B, E, and F. Cervical root fracture was the predominant mode of failure in all the groups except group A. Conclusion: The results showed that endodontically treated teeth restored with custom cast post core were as strong as the untreated group. Teeth restored with custom cast post core were better resistant to fracture than teeth restored with prefabricated titanium post and composite core. Ferrule is more important in custom cast post core than in prefabricated post and composite core.

  8. Role understanding and effective communication as core competencies for collaborative practice.

    Science.gov (United States)

    Suter, Esther; Arndt, Julia; Arthur, Nancy; Parboosingh, John; Taylor, Elizabeth; Deutschlander, Siegrid

    2009-01-01

    The ability to work with professionals from other disciplines to deliver collaborative, patient-centred care is considered a critical element of professional practice requiring a specific set of competencies. However, a generally accepted framework for collaborative competencies is missing, which makes consistent preparation of students and staff challenging. Some authors have argued that there is a lack of conceptual clarity of the "active ingredients" of collaboration relating to quality of care and patient outcomes, which may be at the root of the competencies issue. As part of a large Health Canada funded study focused on interprofessional education and collaborative practice, our goal was to understand the competencies for collaborative practice that are considered most relevant by health professionals working at the front line. Interview participants comprised 60 health care providers from various disciplines. Understanding and appreciating professional roles and responsibilities and communicating effectively emerged as the two perceived core competencies for patient-centred collaborative practice. For both competencies there is evidence of a link to positive patient and provider outcomes. We suggest that these two competencies should be the primary focus of student and staff education aimed at increasing collaborative practice skills.

  9. The effect of pineapple core fiber on dough rheology and the quality of mantou

    Directory of Open Access Journals (Sweden)

    Sy-Yu Shiau

    2015-09-01

    Full Text Available The consumption of dietary fiber offers the health benefit of lowering the risk of many chronic diseases. Pineapple core fiber (PCF in this study was extracted and incorporated into dough and mantou (i.e., steamed bread. The effects of PCF substitution and fiber size on textural and rheological properties of dough and mantou were evaluated by a texture analyzer. The substitution of wheat flour by PCF resulted in a stiffer and less extensible dough with or without fermentation. The hardness and gumminess of mantou significantly increased as the PCF substitution increased from 0% to 15%, but the cohesiveness, specific volume, and elasticity significantly decreased with the fiber substitution. Ten percent PCF-enriched dough and mantou with various fiber sizes had similar rheological and textural properties, except for the k1 and k2 values. By sensory evaluation, 5% PCF-enriched mantou and the control bread had better acceptability in texture, color, odor, and overall acceptability, compared to mantous enriched with 10% or 15% PCF. Significant correlations existed between the rheological properties of dough and textural parameters of mantou and between the sensory quality and textural parameters of mantou. Therefore, we suggest that fiber-enriched mantou can be prepared with 5% PCF substitution to increase the intake of dietary fiber and maintain the quality of mantou.

  10. Effects of nitrogen seeding on core ion thermal transport in JET ILW L-mode plasmas

    Science.gov (United States)

    Bonanomi, N.; Mantica, P.; Citrin, J.; Giroud, C.; Lerche, E.; Sozzi, C.; Taylor, D.; Tsalas, M.; Van Eester, D.; contributors, JET

    2018-02-01

    A set of experiments was carried out in JET ILW (Joint European Torus with ITER-Like Wall) L-mode plasmas in order to study the effects of light impurities on core ion thermal transport. N was puffed into some discharges and its profile was measured by active Charge Exchange diagnostics, while ICRH power was deposited on- and off-axis in ({\\hspace{0pt}}3He)-D minority scheme in order to have a scan of local heat flux at constant total power with and without N injection. Experimentally, the ion temperature profiles are more peaked for similar heat fluxes when N is injected in the plasma. Gyro-kinetic simulations using the GENE code indicate that a stabilization of Ion Temperature Gradient driven turbulent transport due to main ion dilution and to changes in Te/Ti and s/q is responsible of the enhanced peaking. The quasi-linear models TGLF and QuaLiKiz are tested against the experimental and the gyro-kinetic results.

  11. New method for determining free core nutation parameters, considering geophysical effects

    Science.gov (United States)

    Vondrák, J.; Ron, C.

    2017-08-01

    Context. In addition to the torques exerted by the Moon, Sun, and planets, changes of precession-nutation are known to be caused also by geophysical excitations. Recently studies suggest that geomagnetic jerks (GMJ) might be associated with sudden changes of phase and amplitude of free core nutation. We showed that using atmospheric and oceanic excitations with those by GMJ improves substantially the agreement with observed celestial pole offsets. Aims: Traditionally, the period Tf and quality factor Qf of the free core nutation (FCN) are derived from VLBI-based celestial pole offsets (CPO). Either direct analysis of the observed CPO, or indirect method using resonant effects of nutation terms with frequencies close to FCN, are used. The latter method is usually preferred, since it yields more accurate results. Our aim is to combine both approaches to better derive FCN parameters. Methods: We numerically integrated the part of CPO that is due to geophysical excitations for different combinations of Tf, Qf, using Brzeziński's broadband Liouville equations (Brzeziński 1994, Manuscripta geodaetica, 19, 157), and compared the results with the observed values of CPO. The values yielding the best fit were then estimated. The observed CPO, however, must be corrected for the change of nutation that is caused by the Tf, Qf values different from those used to calculate IAU 2000 model of nutation. To this end, we have used the Mathews-Herring-Buffet transfer function and applied it to the five most affected terms of nutation (with periods 365.26, 182.62, 121.75, 27.55 and 13.66 days). Results: The results, based on the CPO data in the interval 1986.0—2016.0 and excitations with three different models, are presented. We demonstrate that better results are obtained if the influence of additional excitations at GMJ epochs is added to excitations by the atmosphere and oceans. Our preferred values are Tf = 430.28 ± 0.04 mean solar days and Qf = 19 500 ± 200.

  12. A core outcome set for studies evaluating the effectiveness of prepregnancy care for women with pregestational diabetes

    NARCIS (Netherlands)

    Egan, A.M. (Aoife M.); S. Galjaard (Sander); Maresh, M.J.A. (Michael J. A.); Loeken, M.R. (Mary R.); Napoli, A. (Angela); Anastasiou, E. (Eleni); Noctor, E. (Eoin); H.W. de Valk (Harold); M.N. van Poppel (Mireille); Todd, M. (Marie); Smith, V. (Valerie); Devane, D. (Declan); F. Dunne (Fidelma)

    2017-01-01

    textabstractAims/hypothesis: The aim of this study was to develop a core outcome set (COS) for trials and other studies evaluating the effectiveness of prepregnancy care for women with pregestational (pre-existing) diabetes mellitus. Methods: A systematic literature review was completed to identify

  13. Thoughening of SAN with acryliv core-shell rubber particles: particle size effect or cross-link density

    NARCIS (Netherlands)

    Steenbrink, A.C.; Steenbrink, A.C.; Litvinov, V.M.; Gaymans, R.J.

    1998-01-01

    The effect of rubber particle size on fracture toughness and tensile properties have been investigated using styrene-acrylonitrile as a matrix. Pre-formed particles with poly(butyl-acrylate) core and a poly(methylmethacrylate) shell, ranging from 0.1 to 0.6 μm in diameter, were used as a toughening

  14. Effect of core/veneer thickness ratio and veneer translucency on absolute and relative translucency of CAD-On restorations

    Directory of Open Access Journals (Sweden)

    Mennatallah Mohie el-Din Wahba, (BDS, MSc

    2017-06-01

    Conclusions: Only veneer translucency had significant effect over contrast ratio values, while on the other hand, absolute translucency values were significantly affected by the core/veneer thickness ratio, veneer translucency and interaction between them. It was clear that absolute translucency measurements showed higher translucency values for the restorations than contrast ratio measurements.

  15. The Effects of the Heat and Moisture Exchanger on Humidity, Airway Temperature, and Core Body Temperature

    National Research Council Canada - National Science Library

    Delventhal, Mary

    1999-01-01

    Findings from several studies have demonstrated that the use of a heat and moisture exchanger increases airway humidity, which in turn increases mean airway temperature and prevents decreases in core body temperature...

  16. Effect of core-corona plasma structure on seeding of instabilities in wire array Z pinches

    Science.gov (United States)

    Lebedev; Beg; Bland; Chittenden; Dangor; Haines; Pikuz; Shelkovenko

    2000-07-03

    We present the first measurements by x-ray radiography of the development of instabilities during the implosion phase of wire array Z pinches. The seeding of perturbations on the dense core of each wire is provided by nonuniform sweeping of the low-density coronal plasma from the cores by the global JxB force. The spatial scale of these perturbations ( approximately 0.5 mm for Al and approximately 0.25 mm for W) is determined by the size of the wire cores ( approximately 0.25 mm for Al and approximately 0.1 mm for W). A qualitative change in implosion dynamics, with transition to 0D-like trajectory, was observed in Al arrays when the ratio of interwire gap to wire core size was decreased to approximately 3.

  17. Anthropogenic effects on sediment quality offshore southwestern Taiwan: Assessing the sediment core geochemical record

    Digital Repository Service at National Institute of Oceanography (India)

    Selvaraj, K.; Parthiban, G.; Chen, C.T.A.; Lou, J.Y.

    Slag material was dumped in two sites off southwestern Taiwan by the China Steel Corporation during 1984-1995. By geochemically analyzing four sediment cores, the impact of slag on the sediment chemistry is investigated. Elemental profiles from...

  18. Effect of Surface Stability on Core Muscle Activity During Dynamic Resistance Exercises

    OpenAIRE

    Thompson, Brennan J.

    2009-01-01

    The purpose of this study was to compare core muscle activity during resistance exercises performed on stable ground versus an unstable surface and to examine whether lifting at different relative intensities affects core muscle activity levels. Twelve trained men performed four different movements including the deadlift, back squat, military press, and curl. Surface electromyography (EMG) was utilized to assess the activity of the rectus abdominis, external oblique, transversus abdominis, an...

  19. The effect of Cissus quadrangularis (CQR-300 and a Cissus formulation (CORE on obesity and obesity-induced oxidative stress

    Directory of Open Access Journals (Sweden)

    Agbor Gabriel A

    2007-02-01

    Full Text Available Abstract Aim Obesity is generally linked to complications in lipid metabolism and oxidative stress. The aim of this study was to compare the effect of a proprietary extract of Cissus quadrangularis (CQR-300 to that of a proprietary formulation containing CQR-300 (CORE on weight, blood lipids, and oxidative stress in overweight and obese people. Methods The first part of the study investigated the in vitro antioxidant properties of CQR-300 and CORE using 3 different methods, while the second part of the study was a double-blind placebo controlled design, involving initially 168 overweight and obese persons (38.7% males; 61.3% females; ages 19–54, of whom 153 completed the study. All participants received two daily doses of CQR-300, CORE, or placebo and were encouraged to maintain their normal levels of physical activity. Anthropometric measurements and blood sampling were done at the beginning and end of the study period. Results CQR-300 as well as CORE exhibited antioxidant properties in vitro. They also acted as in vivo antioxidants, bringing about significant (p Conclusion CQR-300 (300 mg daily and CORE (1028 mg daily brought about significant reductions in weight and blood glucose levels, while decreasing serum lipids thus improving cardiovascular risk factors. The increase in plasma 5-HT and creatinine for both groups hypothesizes a mechanism of controlling appetite and promoting the increase of lean muscle mass by Cissus quadrangularis, thereby supporting the clinical data for weight loss and improving cardiovascular health.

  20. The effect of humidified heated breathing circuit on core body temperature in perioperative hypothermia during thyroid surgery.

    Science.gov (United States)

    Park, Hue Jung; Moon, Ho Sik; Moon, Se Ho; Do Jeong, Hyeon; Jeon, Young Jae; Do Han, Keung; Koh, Hyun Jung

    2017-01-01

    Purpose: During general anesthesia, human body easily reaches a hypothermic state, which is mainly caused by heat redistribution. Most studies suggested that humidified heated breathing circuits (HHBC) have little influence on maintenance of the core temperature during early phase of anesthesia. This study was aimed at examining heat preservation effect with HHBC in case of undergoing surgery with less exposure of surgical fields and short surgical duration. Methods: Patients aged 19 to 70 yr - old, ASA-PS I or II who were scheduled for elective thyroidectomy were assigned and divided to the group using HHBC (G1) and the group using conventional circuit (G2) by random allocation. During operation, core, skin, and room temperatures were measured every 5minutes by specific thermometer. Results: G1 was decreased by a lesser extent than G2 in core temperature, apparently higher at 30 and 60 minutes after induction. Skin and room temperatures showed no differences between the two groups (p>0.05). Consequently, we confirmed HHBC efficiently prevented a decrease in core temperature during early period in small operation which has difficulty in preparing warming devices or environments were not usually considered. Conclusions: This study showed that HHBC influences heat redistribution in early period of operation and can lessen the magnitude of the decrease in core body temperature. Therefore, it can be applied efficiently for other active warming devices in mild hypothermia.

  1. Electroluminescence of superatom-like Ge-core/Si-shell quantum dots by alternate field-effect-induced carrier injection

    Science.gov (United States)

    Makihara, Katsunori; Ikeda, Mitsuhisa; Fujimura, Nobuyuki; Yamada, Kentaro; Ohta, Akio; Miyazaki, Seiichi

    2018-01-01

    We have fabricated high-density superatom-like Si–Ge-based quantum dots (Si-QDs with Ge core) and studied their luminescence properties. Electroluminescence was observed from the Si-QDs with Ge core at room temperature in the near-infrared region by the application of square-wave pulsed bias of ±1 V at 500 kHz, which was attributed to radiative recombination between quantized states in the Ge core with deep potential well for holes caused by field-effect-induced alternate electron/hole injection from the substrate. The results lead to the development of Si-based light-emitting devices that are highly compatible with ultra-large-scale integration processing, which was found difficult to realize in silicon photonics.

  2. Edge-Termination and Core-Modification Effects of Hexagonal Nanosheet Graphene

    Directory of Open Access Journals (Sweden)

    Jin-Pei Deng

    2014-02-01

    Full Text Available Optimized geometries and electronic structures of two different hexagonal grapheme nanosheets (HGNSs, with armchair (n-A-HGNS, n = 3–11 and zigzag (n-Z-HGNS, n = 1–8 edges have been calculated by using the GGA/PBE method implemented in the SIESTA package, with the DZP basis set, where n represents the number of peripheral rings. The computed HOMO-LUMO energy gap (Eg = ELUMO − EHOMO decreases for fully H-terminated A- and Z-HGNSs with increasing n, i.e., with increasing nanosheet size and pπ-orbitals being widely delocalized over the sheet surface. The full terminations, calculated with various functional groups, including the electron-withdrawing (F-, Cl-, and CN- and -donating (OH-, and SH- substitutions, were addressed. Significant lowering of EHOMO and ELUMO was obtained for CN-terminated HGNS as compared to those for H-terminated ones due to the mesomeric effect. The calculated Eg value decreases with increasing n for all terminations, whereby for the SH-termination in HGNS, the termination effect becomes less significant with increasing n. Further, the calculation results for stabilities of HGNS oxides support the tendency toward the oxidative reactivity at the edge site of the sheet, which shows most pronounced C-C bond length alternation, by chemical modification. Physical properties of HGNSs with various numbers of the core-defects, which can be obtained by strong oxidation, were also investigated. Their structures can change drastically from planar to saddle-like shapes. These conformations could be used as stationary phases with controlled interaction in the separation methods such as HPLC and the other chemical analysis techniques.

  3. Effects of core strength training using stable versus unstable surfaces on physical fitness in adolescents: a randomized controlled trial.

    Science.gov (United States)

    Granacher, Urs; Schellbach, Jörg; Klein, Katja; Prieske, Olaf; Baeyens, Jean-Pierre; Muehlbauer, Thomas

    2014-01-01

    It has been demonstrated that core strength training is an effective means to enhance trunk muscle strength (TMS) and proxies of physical fitness in youth. Of note, cross-sectional studies revealed that the inclusion of unstable elements in core strengthening exercises produced increases in trunk muscle activity and thus provide potential extra training stimuli for performance enhancement. Thus, utilizing unstable surfaces during core strength training may even produce larger performance gains. However, the effects of core strength training using unstable surfaces are unresolved in youth. This randomized controlled study specifically investigated the effects of core strength training performed on stable surfaces (CSTS) compared to unstable surfaces (CSTU) on physical fitness in school-aged children. Twenty-seven (14 girls, 13 boys) healthy subjects (mean age: 14 ± 1 years, age range: 13-15 years) were randomly assigned to a CSTS (n = 13) or a CSTU (n = 14) group. Both training programs lasted 6 weeks (2 sessions/week) and included frontal, dorsal, and lateral core exercises. During CSTU, these exercises were conducted on unstable surfaces (e.g., TOGU© DYNAIR CUSSIONS, THERA-BAND© STABILITY TRAINER). Significant main effects of Time (pre vs. post) were observed for the TMS tests (8-22%, f = 0.47-0.76), the jumping sideways test (4-5%, f = 1.07), and the Y balance test (2-3%, f = 0.46-0.49). Trends towards significance were found for the standing long jump test (1-3%, f = 0.39) and the stand-and-reach test (0-2%, f = 0.39). We could not detect any significant main effects of Group. Significant Time x Group interactions were detected for the stand-and-reach test in favour of the CSTU group (2%, f = 0.54). Core strength training resulted in significant increases in proxies of physical fitness in adolescents. However, CSTU as compared to CSTS had only limited additional effects (i.e., stand-and-reach test). Consequently, if the

  4. Ice cores

    DEFF Research Database (Denmark)

    Svensson, Anders

    2014-01-01

    Ice cores from Antarctica, from Greenland, and from a number of smaller glaciers around the world yield a wealth of information on past climates and environments. Ice cores offer unique records on past temperatures, atmospheric composition (including greenhouse gases), volcanism, solar activity......, dustiness, and biomass burning, among others. In Antarctica, ice cores extend back more than 800,000 years before present (Jouzel et al. 2007), whereas. Greenland ice cores cover the last 130,000 years...

  5. Effects of 12-week core stabilization exercise on the Cobb angle and lumbar muscle strength of adolescents with idiopathic scoliosis.

    Science.gov (United States)

    Ko, Kwang-Jun; Kang, Seol-Jung

    2017-04-01

    To identify the effects of core stabilization exercise on the Cobb angle and lumbar muscle strength of adolescent patients with idiopathic scoliosis. Subjects in the present study consisted of primary school students who were confirmed to have scoliosis on radiologic examination performed during their visit to the National Fitness Center in Seoul, Korea. Depending on whether they participated in a 12-week core stabilization exercise program, subjects were divided into the exercise (n=14, age 12.71±0.72 years) or control (n=15, age 12.80±0.86 years) group. The exercise group participated in three sessions of core stabilization exercise per week for 12 weeks. The Cobb angle, flexibility, and lumbar muscle strength tests were performed before and after core stabilization exercise. Repeated-measure two-way analysis of variance was performed to compare the treatment effects between the exercise and control groups. There was no significant difference in thoracic Cobb angle between the groups. The exercise group had a significant decrease in the lumbar Cobb angle after exercise compared to before exercise (Pstrength after exercise compared to before exercise (PCore stabilization exercise can be an effective therapeutic exercise to decrease the Cobb angle and improve lumbar muscle strength in adolescents with idiopathic scoliosis.

  6. Numerical Simulation of the Depressurization Process of a Natural Gas Hydrate Reservoir: An Attempt at Optimization of Field Operational Factors with Multiple Wells in a Real 3D Geological Model

    Directory of Open Access Journals (Sweden)

    Zhixue Sun

    2016-09-01

    Full Text Available Natural gas hydrates, crystalline solids whose gas molecules are so compressed that they are denser than a typical fluid hydrocarbon, have extensive applications in the areas of climate change and the energy crisis. The hydrate deposit located in the Shenhu Area on the continental slope of the South China Sea is regarded as the most promising target for gas hydrate exploration in China. Samples taken at drilling site SH2 have indicated a high abundance of methane hydrate reserves in clay sediments. In the last few decades, with its relatively low energy cost, the depressurization gas recovery method has been generally regarded as technically feasible and the most promising one. For the purpose of a better acquaintance with the feasible field operational factors and processes which control the production behavior of a real 3D geological CH4-hydrate deposit, it is urgent to figure out the effects of the parameters such as well type, well spacing, bottom hole pressure, and perforation intervals on methane recovery. One years’ numerical simulation results show that under the condition of 3000 kPa constant bottom hole pressure, 1000 m well spacing, perforation in higher intervals and with one horizontal well, the daily peak gas rate can reach 4325.02 m3 and the cumulative gas volume is 1.291 × 106 m3. What’s more, some new knowledge and its explanation of the curve tendency and evolution for the production process are provided. Technically, one factor at a time design (OFAT and an orthogonal design were used in the simulation to investigate which factors dominate the productivity ability and which is the most sensitive one. The results indicated that the order of effects of the factors on gas yield was perforation interval > bottom hole pressure > well spacing.

  7. Novel therapeutic mechanisms determine the effectiveness of lipid-core nanocapsules on melanoma models.

    Science.gov (United States)

    Drewes, Carine C; Fiel, Luana A; Bexiga, Celina G; Asbahr, Ana Carolina C; Uchiyama, Mayara K; Cogliati, Bruno; Araki, Koiti; Guterres, Sílvia S; Pohlmann, Adriana R; Farsky, Sandra P

    2016-01-01

    Melanoma is a severe metastatic skin cancer with poor prognosis and no effective treatment. Therefore, novel therapeutic approaches using nanotechnology have been proposed to improve therapeutic effectiveness. Lipid-core nanocapsules (LNCs), prepared with poly(ε-caprolactone), capric/caprylic triglyceride, and sorbitan monostearate and stabilized by polysorbate 80, are efficient as drug delivery systems. Here, we investigated the effects of acetyleugenol-loaded LNC (AcE-LNC) on human SK-Mel-28 melanoma cells and its therapeutic efficacies on melanoma induced by B16F10 in C57B6 mice. LNC and AcE-LNC had z-average diameters and zeta potential close to 210 nm and -10.0 mV, respectively. CytoViva(®) microscopy images showed that LNC and AcE-LNC penetrated into SK-Mel-28 cells, and remained in the cytoplasm. AcE-LNC in vitro treatment (18-90×10(9) particles/mL; 1 hour) induced late apoptosis and necrosis; LNC and AcE-LNC (3-18×10(9) particles/mL; 48 hours) treatments reduced cell proliferation and delayed the cell cycle. Elevated levels of nitric oxide were found in supernatant of LNC and AcE-LNC, which were not dependent on nitric oxide synthase expressions. Daily intraperitoneal or oral treatment (days 3-10 after tumor injection) with LNC or AcE-LNC (1×10(12) particles/day), but not with AcE (50 mg/kg/day, same dose as AcE-LNC), reduced the volume of the tumor; nevertheless, intraperitoneal treatment caused toxicity. Oral LNC treatment was more efficient than AcE-LNC treatment. Moreover, oral treatment with nonencapsulated capric/caprylic triglyceride did not inhibit tumor development, implying that nanocapsule supramolecular structure is important to the therapeutic effects. Together, data herein presented highlight the relevance of the supramolecular structure of LNCs to toxicity on SK-Mel-28 cells and to the therapeutic efficacy on melanoma development in mice, conferring novel therapeutic mechanisms to LNC further than a drug delivery system.

  8. Effect of core strength and endurance training on performance in college students: randomized pilot study.

    Science.gov (United States)

    Schilling, Jim F; Murphy, Jeff C; Bonney, John R; Thich, Jacob L

    2013-07-01

    Core training continues to be emphasized with the proposed intent of improving athletic performance. The purpose of this investigation was to discover if core isometric endurance exercises were superior to core isotonic strengthening exercises and if either influenced specific endurance, strength, and performance measures. Ten untrained students were randomly assigned to core isometric endurance (n = 5) and core isotonic strength training (n = 5). Each performed three exercises, two times per week for six weeks. A repeated measures ANOVA was used to compare the measurements for the dependent variables and significance by bonferroni post-hoc testing. The training protocols were compared using a 2 × 3 mixed model ANOVA. Improvement in trunk flexor and extensor endurance (p strength (p strength group. Improvement in trunk flexor and right lateral endurance (p strength in the squat (p < 0.05) were found with the endurance group. Neither training protocol claimed superiority and both were ineffective in improving performance. Published by Elsevier Ltd.

  9. THE EFFECT OF INSTABILITY TRAINING ON KNEE JOINT PROPRIOCEPTION AND CORE STRENGTH

    Directory of Open Access Journals (Sweden)

    Mutlu Cuğ

    2012-09-01

    Full Text Available Although there are many studies demonstrating increased trunk activation under unstable conditions, it is not known whether this increased activation would translate into meaningful trunk strength with a prolonged training program. Additionally, while balance-training programs have been shown to improve stability, their effect on specific joint proprioception is not clear. Thus the objective of this study was to examine training adaptations associated with a 10-week instability-training program. Participants were tested pre-and post- training for trunk extension and flexion strength and knee proprioception. Forty-three participants participated in either a 10-week (3 days per week instability-training program using Swiss balls and body weight as resistance or a control group (n = 17. The trained group increased (p < 0. 05 trunk extension peak torque/body weight (23.6% and total work output (20.1% from pre- to post- training while the control group decreased by 6.8% and 6.7% respectively. The exercise group increased their trunk flexion peak torque/body weight ratios by 18.1% while the control group decreased by 0.4%. Knee proprioception (combined right and left joint repositioning improved 44.7% from pre- to post-training (p = 0.0006 and persisted (21.5% for 9 months post-training. In addition there was a side interaction with the position sense of the right knee at 9 months showing 32.1% (p = 0.03 less deviation from the reference angle than the right knee during pre-testing. An instability-training program using Swiss balls with body weight as resistance can provide prolonged improvements in joint proprioception and core strength in previously untrained individuals performing this novel training stress which would contribute to general health

  10. The effect of instability training on knee joint proprioception and core strength.

    Science.gov (United States)

    Cuğ, Mutlu; Ak, Emre; Ozdemir, Recep Ali; Korkusuz, Feza; Behm, David G

    2012-01-01

    Although there are many studies demonstrating increased trunk activation under unstable conditions, it is not known whether this increased activation would translate into meaningful trunk strength with a prolonged training program. Additionally, while balance-training programs have been shown to improve stability, their effect on specific joint proprioception is not clear. Thus the objective of this study was to examine training adaptations associated with a 10-week instability-training program. Participants were tested pre- and post-training for trunk extension and flexion strength and knee proprioception. Forty-three participants participated in either a 10-week (3 days per week) instability-training program using Swiss balls and body weight as resistance or a control group (n = 17). The trained group increased (p core strength in previously untrained individuals performing this novel training stress which would contribute to general health. Key pointsAlthough traditional free weight resistance exercises have been recommended as most beneficial for improving strength and power in athletes (Behm et al., 2010b), an IT program using Swiss balls and body weight as a resistance may provide an alternative starting point for the sedentary untrained population.As it is well documented that force or strength is decreased when unbalanced (Behm et al., 2010b) and balance-training programs improve balance (Behm and Kean 2006), this type of instability RT program can provide significant adaptations to improve trunk strength especially with the untrained.This type of training should also be incorporated into a new program as the improvements in joint proprioception may help protect from joint injuries over a protracted period.The finding that improved joint proprioception persists for months after training should be emphasized to those individuals whose training is regularly or inconsistently interrupted.

  11. The electronic structure and effective excitonic g factors of GaAs/GaMnAs core-shell nanowires

    Science.gov (United States)

    Li, Dong-Xiao; Xiong, Wen

    2017-12-01

    We calculate the electronic structures of cylindrical GaAs/GaMnAs core-shell nanowires in the magnetic field based on the eight-band effective-mass kṡp theory, and it is found that the hole states can present strong band-crossings. The probability densities of several lowest electron states and highest hole states at the Γ point are analyzed, and strangely, the distribution of the electron states are more complex than that of the hole states. Furthermore, the components of the electron states will change substantially as the increase of the radius R, which are almost unchanged for the hole states. A very interesting phenomenon is that the effective excitonic g factors gex can be tuned from a large positive value for GaMnAs nanowires to a small negative value for GaAs nanowires, and gex of GaAs nanowires and GaMnAs nanowires will vary slightly and greatly, respectively as the increase of the magnetic field. Meanwhile, we can obtain large gex in cylindrical GaAs/GaMnAs core-shell nanowires when the small magnetic field, the large concentration of manganese ions, the small core radius and the small radius are chosen. Another important result is also found that the radiative intensities of two σ polarized lights can be separated gradually by decreasing the core radius Rc , which can be used to detect two σ polarized lights in the experiment.

  12. Comparative evaluation of effects of different surface treatment methods on bond strength between fiber post and composite core.

    Science.gov (United States)

    Mosharraf, Ramin; Baghaei Yazdi, Najmeh

    2012-05-01

    Debonding of a composite resin core of the fiber post often occurs at the interface between these two materials. The aim of this study was to evaluate the effects of different surface treatment methods on bond strength between fiber posts and composite core. Sixty-four fiber posts were picked in two groups (Hetco and Exacto). Each group was further divided into four subgroups using different surface treatments: 1) silanization; 2) sandblasting; 3) Treatment with 24% H(2)O(2), and 4) no treatment (control group). A cylindrical plexiglass matrix was placed around the post and filled with the core resin composite. Specimens were stored in 5000 thermal cycles between 5℃ and 55℃. Tensile bond strength (TBS) test and evaluation using stereomicroscope were performed on the specimen and the data were analyzed using two-way ANOVA, Post Hoc Scheffe tests and Fisher's Exact Test (α=.05). There was a significant difference between the effect of different surface treatments on TBS (Pstrength of fiber posts to composite resin core, but there were not any significant differences between these groups and control group. There was not any significant difference between two brands of fiber posts that had been used in this study. Although silanization and sandblasting can improve the TBS, there was not any significant differences between surface treatments used.

  13. Effects of pore topology and iron oxide core on doxorubicin loading and release from mesoporous silica nanoparticles

    Science.gov (United States)

    Ronhovde, Cicily J.; Baer, John; Larsen, Sarah C.

    2017-06-01

    Mesoporous silica nanoparticles (MSNs) have a network of pores that give rise to extremely high specific surface areas, making them attractive materials for applications such as adsorption and drug delivery. The pore topology can be readily tuned to achieve a variety of structures such as the hexagonally ordered Mobil Crystalline Material 41 (MCM-41) and the disordered "wormhole" (WO) mesoporous silica (MS) structure. In this work, the effects of pore topology and iron oxide core on doxorubicin loading and release were investigated using MSNs with pore diameters of approximately 3 nm and sub-100 nm particle diameters. The nanoparticles were loaded with doxorubicin, and the drug release into phosphate-buffered saline (PBS, 10 mM, pH 7.4) at 37 °C was monitored by fluorescence spectroscopy. The release profiles were fit using the Peppas model. The results indicated diffusion-controlled release for all samples. Statistically significant differences were observed in the kinetic host-guest parameters for each sample due to the different pore topologies and the inclusion of an iron oxide core. Applying a static magnetic field to the iron oxide core WO-MS shell materials did not have a significant impact on the doxorubicin release. This is the first time that the effects of pore topology and iron oxide core have been isolated from pore diameter and particle size for these materials.

  14. Effect of Silane Solvent on Microtensile Bond Strength of Hy-drogen Peroxide-Treated Fiber Post and Composite Core

    Directory of Open Access Journals (Sweden)

    Sh. Kasraei

    2008-09-01

    Full Text Available Objective: The aim of this in vitrostudy was to evaluate the effect of the type of solvent in silane solution on microtensile bond strength of fiber posts to composite resin cores af-ter application of 24% hydrogen peroxide.Materials and Methods: Eighteen white fiber posts, immersed in 24% hydrogen peroxide were divided into three groups (n=6. In the group A post surfaces were silanized with an ethanol based solution, in group B with an acetone based solution, in the group C with and un-diluted methacryloxytrimethoxysilane (as the control group. The cores were built up using flowable composite. Microtensile bond strength test and evaluations using stereomi-croscope were performed on the samples and the data were analyzed using one-way ANOVA and Tukey HSD tests.Results: A significant difference was observed between the amounts of microtensile bond strength of fiber poststo composite cores in the groups A and B, and the ones in group C (P0.05.Conclusion: The type of solvent in silane solution has no effect on microtensile bond strength between fiber post andcomposite resin core after application of 24% Hydrogen Peroxide.

  15. COMPARE THE EFFECTIVENESS OF EMG BIOFEEDBACK ASSISSTED CORE STABILITY EXERCISES VERSUS CORE STABILITY EXERCISES ALONE ON PAIN AND DISABILITY IN PATIENTS WITH LOW BACK PAI

    OpenAIRE

    Gurkirat Kaur; Pravin Kumar

    2016-01-01

    Background: Low Back Pain (LBP) is a health related problem than affects 80% of the population within the age limit of 15 to 45 years. The primary treatment used for patients with LBP includes muscle strengthening along with thermotherapeutic modalities. Thus the purpose of the study is to see the efficacy of EMG biofeedback assisted core stability exercises versus core stability exercises alone in patients suffering from pain and disability. Methodology: A total of 30 patients were divide...

  16. Improvements in Sand Mold/Core Technology: Effects on Casting Finish

    Energy Technology Data Exchange (ETDEWEB)

    Prof. John J. Lannutti; Prof. Carroll E. Mobley

    2005-08-30

    In this study, the development and impact of density gradients on metal castings were investigated using sand molds/cores from both industry and from in-house production. In spite of the size of the castings market, almost no quantitative information about density variation within the molds/cores themselves is available. In particular, a predictive understanding of how structure and binder content/chemistry/mixing contribute to the final surface finish of these products does not exist. In this program we attempted to bridge this gap by working directly with domestic companies in examining the issues of surface finish and thermal reclamation costs resulting from the use of sand molds/cores. We show that these can be substantially reduced by the development of an in-depth understanding of density variations that correlate to surface finish. Our experimental tools and our experience with them made us uniquely qualified to achieve technical progress.

  17. Core correlation effects in multiconfiguration calculations of isotope shifts in Mg I

    CERN Document Server

    Filippin, Livio; Ekman, Jörgen; Jönsson, Per

    2016-01-01

    The present work reports results from systematic multiconfiguration Dirac-Hartree-Fock calculations of isotope shifts for several well-known transitions in neutral magnesium. Relativistic normal and specific mass shift factors as well as the electronic probability density at the origin are calculated. Combining these electronic quantities with available nuclear data, energy and transition level shifts are determined for the $^{26}$Mg$-^{24}$Mg pair of isotopes. Different models for electron correlation are adopted. It is shown that although valence and core-valence models provide accurate values for the isotope shifts, the inclusion of core-core excitations in the computational strategy significantly improves the accuracy of the transition energies and normal mass shift factors.

  18. EFFECT OF PILOT HOLE TAPPING ON PULLOUT STRENGTH AND INSERTION TORQUE OF DUAL CORE PEDICLE SCREWS.

    Science.gov (United States)

    Rosa, Rodrigo César; Silva, Patrícia; Falcai, Maurício José; Shimano, Antônio Carlos; Defino, Helton Luiz Aparecido

    2010-01-01

    To evaluate the influence of pilot hole tapping on pullout resistance and insertion torque of pedicle screws with a conical core. Mechanical tests using a universal testing machine were performed on pedicle screws with a conical core that were inserted into pedicles in the fifth lumbar vertebra of calves. The insertion torque was measured using a torque meter with a capacity of 10 Nm, which was considered to be the highest torque value. The pilot holes were prepared using a probe of external diameter 3.8 mm and tapping of the same dimensions and thread characteristics as the screw. Decreased insertion torque and pullout resistance were observed in the group with prior tapping of the pilot hole. Pilot hole tapping reduced the insertion torque and pullout resistance of pedicle screws with a conical core that had been inserted into the pedicle of the fifth lumbar vertebra of calves.

  19. The Effect of Temperature on Faceplate/Core Delamination in Composite/Titanium Sandwich Plates

    Science.gov (United States)

    Liechti, Kenneth M.; Marton, Balazs

    2000-01-01

    A study was made of the delamination behavior of sandwich beams made of titanium core bonded to face-plates that consisted of carbon fiber reinforced polymer composite. Nominally mode I behavior was considered at 23C and 180C, by making use of a specially reinforced double cantilever (DCB) specimens. The toughness of the bond between the faceplate and the core was determined on the basis of a beam on elastic foundation analysis. The specimen compliance, and toughness were all independent of temperature in these relatively short-term experiments. The fracture mechanism showed temperature dependence, due to the hygrothermal sensitivity of the adhesive.

  20. The entropy core in galaxy clusters: numerical and physical effects in cosmological grid simulations

    OpenAIRE

    Vazza, F.

    2010-01-01

    We investigated the numerical and physical reasons leading to a flat distribution of low gas entropy in the core region of galaxy clusters, as commonly found in grid cosmological simulations. To this end, we run a set of 30 high resolution re-simulations of a 3 x 10^14 M_sol/h cluster of galaxies with the AMR code ENZO, exploring and investigating the details involved in the production of entropy in simulated galaxy clusters. The occurrence of the flat entropy core is found to be mainly due t...

  1. Coring Methane Hydrate by using Hybrid Pressure Coring System of D/V Chikyu

    Science.gov (United States)

    Kubo, Y.; Mizuguchi, Y.; Inagaki, F.; Eguchi, N.; Yamamoto, K.

    2013-12-01

    Pressure coring is a technique to keep in-situ conditions in recovering sub-seafloor sediment samples, which are potentially rich in soluble or hydrated gas. In regular core sampling, gas fractions are easily lost through the changes in the pressure and temperature during core recovery, and it has significant impact on the chemical components of the sample. Rapid degassing may also cause critical damages of original structures. To study original characteristics of gaseous sub-seafloor sediment, a new Hybrid Pressure Coring System (Hybrid PCS) was developed for the D/V Chikyu operation by adapting some of the existing pressure sampling technologies. Hybrid PCS is composed of three main parts: top section for the wireline operation, middle section for the accumulator and pressure controlling system, and the bottom section for the autoclave chamber. The design concept is based on that of Pressure Core Sampler used in Ocean Drilling Program, and of Pressure Temperature Core Sampler (PTCS) and Non-cooled PTCS of Japan Oil, Gas and Metals National Corporation (JOGMEC). Several modifications were made including that on the ball valve, which operates to close the autoclave after coring. The core samples are 51 mm in diameter and up to 3.5 m in length. The system is combined with the Extented Shoe Coring System on the Chikyu and best suited for coring of semi-consolidated formation up to about 3400 m from the sea level. Sample autoclave is compatible with Pressure Core Analysis and Transfer System (PCATS) of Geotek Ltd for sub-sampling and analysis under in-situ pressure. The analysis in PCATS includes X-ray CT scan and core logging with P-wave velocity and gamma density. Depressurization provides accurate volume of gas and its sub-sampling. Hybrid PCS was first tested during the Chikyu Exp. 906 at a submarine mud-volcano in the Nankai Trough. A 0.9 m of hydrate rich material was recovered from the summit (water depth: 2000 m) and the intact hydrate structure was observed

  2. Effect of periodic melting on geochemical and isotopic signals in an ice core from Lomonosovfonna, Svalbard

    NARCIS (Netherlands)

    Pohjola, V.A.; Moore, J.C.; Isaksson, E.; Jauhiainen, T.; Wal, R.S.W. van de; Martma, T.; Meijer, H.A.J.; Vaikmäe, R.

    2002-01-01

    [1] We examine the quality of atmospherically deposited ion and isotope signals in an ice core taken from a periodically melting ice field, Lomonosovfonna in central Spitsbergen, Svalbard. The aim is to determine the degree to which the signals are altered by periodic melting of the ice. We use

  3. Effect of crosstalk on component savings in multi-core fiber networks

    DEFF Research Database (Denmark)

    Nooruzzaman, Md; Morioka, Toshio

    2017-01-01

    We estimate potential component savings in MCF-based networks by using shortest path traffic routing and compare them with the current SCF-based systems. We also investigate the potential impact of various inter-core crosstalk values on the number of needed transponders in MCF networks....

  4. Effects of the core functions of government on the diversity of executive agendas

    NARCIS (Netherlands)

    Jennings, W.; Bevan, S.; Timmermans, A.; Breeman, G.E.; Brouard, S.; Chaqués-Bonafont, L.; Green-Pedersen, C.; John, P.; Mortensen, P.B.; Palau Roque, A.

    2011-01-01

    The distribution of attention across issues is of fundamental importance to the political agenda and outputs of government. This article presents an issue-based theory of the diversity of governing agendas where the core functions of government—defense, international affairs, the economy, government

  5. Effect of Auger Recombination on Lasing in Heterostructured Quantum Dots with Engineered Core/Shell Interfaces.

    Science.gov (United States)

    Park, Young-Shin; Bae, Wan Ki; Baker, Thomas; Lim, Jaehoon; Klimov, Victor I

    2015-11-11

    Nanocrystal quantum dots (QDs) are attractive materials for applications as laser media because of their bright, size-tunable emission and the flexibility afforded by colloidal synthesis. Nonradiative Auger recombination, however, hampers optical amplification in QDs by rapidly depleting the population of gain-active multiexciton states. In order to elucidate the role of Auger recombination in QD lasing and isolate its influence from other factors that might affect optical gain, we study two types of CdSe/CdS core/shell QDs with the same core radii and the same total sizes but different properties of the core/shell interface ("sharp" vs "smooth"). These samples exhibit distinctly different biexciton Auger lifetimes but are otherwise virtually identical. The suppression of Auger recombination in the sample with a smooth (alloyed) interface results in a notable improvement in the optical gain performance manifested in the reduction of the threshold for amplified spontaneous emission and the ability to produce dual-color lasing involving both the band-edge (1S) and the higher-energy (1P) electronic states. We develop a model, which explicitly accounts for the multiexciton nature of optical gain in QDs, and use it to analyze the competition between stimulated emission from multiexcitons and their decay via Auger recombination. These studies re-emphasize the importance of Auger recombination control for the realization of real-life QD-based lasing technologies and offer practical strategies for suppression of Auger recombination via "interface engineering" in core/shell structures.

  6. Highly Sensitive Liquid Core Temperature Sensor Based on Multimode Interference Effects

    Directory of Open Access Journals (Sweden)

    Miguel A. Fuentes-Fuentes

    2015-10-01

    Full Text Available A novel fiber optic temperature sensor based on a liquid-core multimode interference device is demonstrated. The advantage of such structure is that the thermo-optic coefficient (TOC of the liquid is at least one order of magnitude larger than that of silica and this, combined with the fact that the TOC of silica and the liquid have opposite signs, provides a liquid-core multimode fiber (MMF highly sensitive to temperature. Since the refractive index of the liquid can be easily modified, this allows us to control the modal properties of the liquid-core MMF at will and the sensor sensitivity can be easily tuned by selecting the refractive index of the liquid in the core of the device. The maximum sensitivity measured in our experiments is 20 nm/°C in the low-temperature regime up to 60 °C. To the best of our knowledge, to date, this is the largest sensitivity reported for fiber-based MMI temperature sensors.

  7. Effect of sodium hypochlorite contamination on microhardness of dental core build-up materials.

    Science.gov (United States)

    Wegehaupt, Florian Just; Betschart, Jasmin; Attin, Thomas

    2010-08-01

    This study aimed to determine the influence of sodium hypochlorite (NaOCl) contamination on the microhardness of build-up composites. Fifty-two samples, from each of three build-up materials (LuxaCore Dual, MultiCore flow and Rebilda DC) were prepared. Half of the samples from each material were stored in physiologic saline (baseline control) while the other halves were stored in NaOCl. After 1 h, the samples were rinsed with tap water, cut axially and measured for Knoop hardness at different depth levels. The results were analysed by ANOVA and unpaired t-tests (pmicrohardness were observed for LuxaCore Dual up to 0.2 mm, Rebilda DC up to 0.3 mm, and for MultiCore flow up to 0.4 mm under the surface level. Contact with sodium hypochlorite on build-up materials causes reduction of the microhardness. The softening is not only limited on the surface, but can also be found in deeper layers of build-up materials.

  8. Analytical theory of rotational motion of the Moon and dynamical effects caused by its liquid core

    Science.gov (United States)

    Barkin, Yu. V.; Ferrandiz, J. M.; Navarro, J. F.

    2008-09-01

    Abstract. In the work the analytical theory of forced librations of the Moon considered as a celestial body with a liquid core and rigid non -spherical mantle is developed. For the basic variables: Andoyer, Poincare and Eulerian angles, and also for various dynamic characteristics of the Moon the tables for amplitudes and phases of perturbations of the first order have been constructed. Resonant periods of free l ibrations have been estimated. The influence of a liquid core results in decreasing of the period of librations in longitude approximately on 0.316 day, and in change of the period of free wandering a pole of the Moon on 25.8 days. In the first approximati on the liquid core does not render influence on the value of Cassini's inclination and on the period of precession of the angular momentum vector. However it causes an additional "quasi-diurnal" librations with period about 27.165 days. In comparison with model of rigid nonspherical of the Moon the presence of a liquid core should result in increase of amplitudes of the Moon librations on 0.06 %.

  9. Effect of surface conditioning techniques on the resistance of resin composite core materials on titanium posts

    NARCIS (Netherlands)

    Akisli, [No Value; Ozcan, M; Nergiz, [No Value

    2003-01-01

    Objective: This study evaluated the resistance of various post and core materials against torsional forces on differently conditioned titanium posts. Method and materials: One hundred fifty pure titanium posts (DIN 17850-Ti4/3.7065) were conditioned utilizing Silicoater Classical, Silicoater MD,

  10. Time course of the acute effects of core stabilisation exercise on seated postural control.

    Science.gov (United States)

    Lee, Jordan B; Brown, Stephen H M

    2017-09-20

    Core stabilisation exercises are often promoted for purposes ranging from general fitness to high-performance athletics, and the prevention and rehabilitation of back troubles. These exercises, when performed properly, may have the potential to enhance torso postural awareness and control, yet the potential for achieving immediate gains has not been completely studied. Fourteen healthy young participants performed a single bout of non-fatiguing core stabilisation exercise that consisted of repeated sets of 2 isometric exercises, the side bridge and the four-point contralateral arm-and-leg extension. Seated postural control, using an unstable balance platform on top of a force plate, was assessed before and after exercise, including multiple time points within a 20-minute follow-up period. Nine standard postural control variables were calculated at each time point, including sway displacement and velocity ranges, root mean squares and cumulative path length. Statistical analysis showed that none of the postural control variables were significantly different at any time point following completion of core stabilisation exercise. Thus, we conclude that a single bout of acute core stabilisation exercise is insufficient to immediately improve seated trunk postural control in young healthy individuals.

  11. Humidity effects on soluble core mechanical and thermal properties (polyvinyl alcohol/microballoon composite) type CG extendospheres, volume 2

    Science.gov (United States)

    1993-01-01

    This document constitutes the final report for the study of humidity effects and loading rate on soluble core (PVA/MB composite material) mechanical and thermal properties under Contract No. 100345. This report describes test results procedures employed, and any unusual occurrences or specific observations associated with this test program. The primary objective of this work was to determine if cured soluble core filler material regains its tensile and compressive strength after exposure to high humidity conditions and following a drying cycle. Secondary objectives include measurements of tensile and compressive modulus, and Poisson's ratio, and coefficient of thermal expansion (CTE) for various moisture exposure states. A third objective was to compare the mechanical and thermal properties of the composite using 'SG' and 'CG' type extendospheres. The proposed facility for the manufacture of soluble cores at the Yellow Creek site incorporates no capability for the control of humidity. Recent physical property tests performed with the soluble core filler material showed that prolonged exposure to high humidity significantly degradates in strength. The purpose of these tests is to determine if the product, process or facility designs require modification to avoid imparting a high risk condition to the ASRM.

  12. Effects of IV Acetaminophen on Core Body Temperature and Hemodynamic Responses in Febrile Critically Ill Adults: A Randomized Controlled Trial.

    Science.gov (United States)

    Schell-Chaple, Hildy M; Liu, Kathleen D; Matthay, Michael A; Sessler, Daniel I; Puntillo, Kathleen A

    2017-07-01

    To determine the effects of IV acetaminophen on core body temperature, blood pressure, and heart rate in febrile critically ill patients. Randomized, double-blind, placebo-controlled clinical trial. Three adult ICUs at a large, urban, academic medical center. Forty critically ill adults with fever (core temperature, ≥ 38.3°C). An infusion of acetaminophen 1 g or saline placebo over 15 minutes. Core temperature and vital signs were measured at baseline and at 5-15-minute intervals for 4 hours after infusion of study drug. The primary outcome was time-weighted average core temperature adjusted for baseline temperature. Secondary outcomes included adjusted time-weighted average heart rate, blood pressure, and respiratory rate, along with changes-over-time for each. Baseline patient characteristics were similar in those given acetaminophen and placebo. Patients given acetaminophen had an adjusted time-weighted average temperature that was 0.47°C less than those given placebo (95% CI, -0.76 to -0.18; p = 0.002). The acetaminophen group had significantly lower adjusted time-weighted average systolic blood pressure (-17 mm Hg; 95% CI, -25 to -8; p acetaminophen decreased temperature, blood pressure, and heart rate. IV acetaminophen thus produces modest fever reduction in critical care patients, along with clinically important reductions in blood pressure.

  13. Effects of Fish and Grape Seed Oils as Core of Haloperidol-Loaded Nanocapsules on Oral Dyskinesia in Rats.

    Science.gov (United States)

    Benvegnú, Dalila Moter; Roversi, Katiane; Barcelos, Raquel Cristine Silva; Trevizol, Fabíola; Pase, Camila Simonetti; Segat, Hecson Jesser; Dias, Verônica Tironi; Savian, Ana Luiza; Piccoli, Bruna Lopes; Piccolo, Jaqueline; Dutra-Filho, Carlos Severo; Emanuelli, Tatiana; de Bona da Silva, Cristiane; Beck, Ruy Carlos Ruver; Burger, Marilise Escobar

    2018-02-01

    Haloperidol is a widely used antipsychotic, despite the severe motor side effects associated with its chronic use. This study was carried out to compare oral dyskinesia induced by different formulations of haloperidol-loaded nanocapsules containing caprylic/capric triglycerides, fish oil or grape seed oil (GSO) as core, as well as free haloperidol. Haloperidol-loaded lipid-core nanocapsules formulations were prepared, physicochemical characterized and administered (0.5 mg kg -1 -ip) to rats for 28 days. Oral dyskinesia was evaluated acutely and subchronically and after that cell viability and free radical generation in cortex and substantia nigra. All formulations presented satisfactory physicochemical parameters. Acutely, all formulations were able to prevent oral dyskinesia development in comparison to free haloperidol, except haloperidol-loaded nanocapsules containing GSO, whose effect was only partial. After subchronic treatment, all haloperidol-loaded nanocapsules formulations prevented oral dyskinesia in relation to free drug. Also, haloperidol-loaded nanocapsules containing fish oil and GSO were more effective than caprylic/capric triglycerides nanocapsules and free haloperidol in cell viability preservation and control of free radical generation. Our findings showed that fish oil formulation may be considered as the best formulation of haloperidol-loaded lipid-core nanocapsules, being able to prevent motor side effects associated with chronic use of antipsychotic drugs, as haloperidol.

  14. COMPARE THE EFFECTIVENESS OF EMG BIOFEEDBACK ASSISSTED CORE STABILITY EXERCISES VERSUS CORE STABILITY EXERCISES ALONE ON PAIN AND DISABILITY IN PATIENTS WITH LOW BACK PAI

    Directory of Open Access Journals (Sweden)

    Gurkirat Kaur

    2016-06-01

    Full Text Available Background: Low Back Pain (LBP is a health related problem than affects 80% of the population within the age limit of 15 to 45 years. The primary treatment used for patients with LBP includes muscle strengthening along with thermotherapeutic modalities. Thus the purpose of the study is to see the efficacy of EMG biofeedback assisted core stability exercises versus core stability exercises alone in patients suffering from pain and disability. Methodology: A total of 30 patients were divided through convenient sampling method into two group- A and B. Each group had 15 patients. In Group A-SWD, traction, IFT and core stability exercises were given where as in Group B EMG biofeedback assisted core stability exercises were given for 5 treatment session per week for 2 weeks and reassessment was done on 5th and 10th day post treatment. Result: The result of the study showed that there was statistically significant (p<0.05 improvement in both Group A and B in terms of pain (NPRS and disability (ODQ after 10th day of treatment. Whereas on comparison within groups the result showed that there was significant (p<0.05 improvement in Group B 10th day post treatment rather than Group A on day 10th. Conclusion: The study supports that EMG biofeedback assisted core stability exercises are helpful for treating patients with LBP to reduce their pain as well as disability.

  15. High-Entropy Alloys: A Current Evaluation of Founding Ideas and Core Effects and Exploring "Nonlinear Alloys"

    Science.gov (United States)

    Miracle, Daniel B.

    2017-11-01

    The burgeoning field of high-entropy alloys (HEAs) is underpinned by two foundational concepts, and early research has been motivated by several hypotheses known as "core effects." The field is now entering its teenage years, and sufficient data have been collected to evaluate these hypotheses and to take a fresh look at the foundational concepts. Although recent assessments have concluded that two of the four HEA hypotheses are not supported by available data, new studies are already coming online to extend these analyses, and new interpretations are inspiring new directions for research within the field. This article gives an up-to-date evaluation of the HEA "core effects" and proposes "nonlinear alloys" as a new strategy to embrace the founding concept of compositional and microstructural vastness.

  16. Antiviral effect of gold/copper sulfide core-shell nanoparticles on GI.1 human norovirus virus like particles (VLPS)

    Science.gov (United States)

    Alston, Brittny C.

    This research studied the effects of the Au/CuS core shell nanoparticles on norovirus (NoV) VLPs in efforts to disrupt the capsids and ultimately inactivate the virus. The results of the study showed that treatment of the GI.1 norovirus VLP ranging from 0.37-5.6ug/mL5.6 microg/mL with Au/CuS core shell nanoparticle concentrations ranging from 1%-25% (v/v) was effective in altering and completely inactivating the viral capsid of the VLP. The likely mechanism of action of the nanoparticles was that the particles degraded the capsid protein and disrupted the viral capsids. This mechanism of action has been supported by the TEM imaging results and Western blotting analysis of capsid protein which showed that the viral capsids were compromised and the major capsid protein degraded.

  17. Historical profiles of PCB in dated sediment cores suggest recent lake contamination through the "halo effect".

    Science.gov (United States)

    Naffrechoux, Emmanuel; Cottin, Nathalie; Pignol, Cécile; Arnaud, Fabien; Jenny, Jean-Philippe; Perga, Marie-Elodie

    2015-02-03

    We investigated the major sources of polychlorinated biphenyls (PCB) and interpreted the environmental fate processes of these persistent organic pollutants in the past and current PCB contamination of three large, urbanized, French peri-alpine lakes. Dated sediment cores were analyzed in order to reconstruct and compare the historical contamination in all three lakes. Stratigraphic changes of PCB contents and fluxes were considered as revealing the temporal dynamics of PCB deposition to the lakes and the distribution of the seven indicator congeners (further referred to as PCBi) as an indicator of the main contamination origin and pathway. Although located within a single PCB industrial production region, concentration profiles for the three lakes differed in timing, peak concentration magnitudes, and in the PCBi congeners compositions. PCBi fluxes to the sediment and the magnitude of the temporal changes were generally much lower in Lake Annecy (0.05-2 ng·cm(-2)·yr(-1)) as compared to Lakes Geneva (0.05-5 ng·cm(-2)·yr(-1)) and Bourget (5-290 ng·cm(-2)·yr(-1)). For all three lakes, the paramount contamination occurred in the early 1970s. In Lakes Annecy and Bourget, PCB fluxes have declined and plateaued at 0.5 and 8 ng·cm(-2)·yr(-1), respectively, since the early 1990s. In Lake Geneva, PCB fluxes have further decreased by the end of the XX(th) century and are now very low. For the most contaminated lake (Lake Bourget), the high PCBi flux (5-290 ng·cm(-2)·yr(-1)) and the predominance of heavy congeners for most of the time period are consistent with a huge local input to the lake. This still high rate of Lake Bourget is explained by transport of suspended solids from one of its affluents, polluted by an industrial point source. Intermediate historical levels and PCBi distribution over time for Lake Geneva suggest a mixed contamination (urban point sources and distant atmospheric transport), while atmospheric deposition to Lake Annecy explains its lowest

  18. Core-excited states and core-polarization effects in sup 2 sup 1 sup 0 At and sup 2 sup 1 sup 1 At

    CERN Document Server

    Bayer, S; Dracoulis, G D; Baxter, A M; Kibedi, T; Kondev, F G

    2001-01-01

    Excited states in the nuclei sup 2 sup 1 sup 0 At and sup 2 sup 1 sup 1 At have been studied using sup 2 sup 0 sup 8 Pb( sup 7 Li,xn) reactions. Detailed spectroscopy of levels up to 30 Planck constant has been achieved. New isomeric levels arising from core-excited states were observed, with the highest-lying isomers attributed to a coupling of the pi[h sub 9 sub / sub 2 sup 2 i sub 1 sub 3 sub / sub 2] configuration to double neutron-particle-hole excitations. Clear relationships between the states observed in sup 2 sup 1 sup 0 At and sup 2 sup 1 sup 1 At were identified. Semiempirical shell-model calculations reproduce very well the yrast states in both nuclei. Uncertainty in the modeling of core-polarization was seen as a limiting factor in the calculation of accurate level energies for core-excited states.

  19. Effective adsorbent for arsenic removal: core/shell structural nano zero-valent iron/manganese oxide.

    Science.gov (United States)

    Bui, Trung Huu; Kim, Choonsoo; Hong, Sung Pil; Yoon, Jeyong

    2017-11-01

    Recently, nano zero-valent iron (nZVI) has emerged as an effective adsorbent for the removal of arsenic from aqueous solutions. However, its use in various applications has suffered from reactivity loss resulting in a decreased efficiency. Thus, the aim of this study was to develop an effective arsenic adsorbent as a core/shell structural nZVI/manganese oxide (or nZVI/Mn oxide) to minimize the reactivity loss of the nZVI. As the major result, the arsenic adsorption capacities of the nZVI/Mn oxide for As(V) and As(III) were approximately two and three times higher than that of the nZVI, respectively. In addition, the As(V) removal efficiency of the nZVI/Mn oxide was maintained through 4 cycles of regeneration whereas that of the nZVI was decreased significantly. The enhanced reactivity and reusability of the nZVI/Mn oxide can be successfully explained by the synergistic interaction of the nZVI core and manganese oxide shell, in which the manganese oxides participate in oxidation reactions with corroded Fe(2+) and subsequently retard the release of aqueous iron providing additional surface sites for arsenic adsorption. In summary, this study reports the successful fabrication of a core/shell nZVI/Mn oxide as an effective adsorbent for the removal of arsenic from aqueous solutions.

  20. Optimum design of imploded core plasma for effective fast ignition at GXII

    Directory of Open Access Journals (Sweden)

    Nagatomo H.

    2013-11-01

    Full Text Available In the implosion phase of the fast ignition scheme, most critical issues are breakup of the cone tip and the formation of high ρ-R core plasma to improve its heating efficiency. For the integrated fast ignition experiment at ILE Osaka University, robust and reliable implosion must be redesign. In this paper, feasible target design under the constraint condition of existing GXII and LFEX facilities is studied using two-dimensional radiation hydrodynamic simulations, and an optimum target design based on low velocity implosion is proposed. The advantages of low velocity implosion are low adiabat, robust against Rayleigh-Taylor instability, which are verified. Also longer life time of compressed core plasma which is preferable for fast ignition is confirmed in this study.

  1. Transport properties of iron at Earth’s core conditions: The effect of spin disorder

    Czech Academy of Sciences Publication Activity Database

    Drchal, Václav; Kudrnovský, Josef; Wagenknecht, D.; Turek, I.; Khmelevskyi, S.

    2017-01-01

    Roč. 96, č. 2 (2017), s. 1-5, č. článku 024432. ISSN 2469-9950 R&D Projects: GA ČR GA15-13436S Grant - others:GA MŠk(CZ) LM2015042; Ga MŠk(CZ) LM2015070 Institutional support: RVO:68378271 Keywords : Earth's core * electrical conductivity * spin-disorder resistivity * violation of Matthiessen rule Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.836, year: 2016

  2. Ultrasound-guided core biopsy: an effective method of detecting axillary nodal metastases.

    LENUS (Irish Health Repository)

    Solon, Jacqueline G

    2012-02-01

    BACKGROUND: Axillary nodal status is an important prognostic predictor in patients with breast cancer. This study evaluated the sensitivity and specificity of ultrasound-guided core biopsy (Ax US-CB) at detecting axillary nodal metastases in patients with primary breast cancer, thereby determining how often sentinel lymph node biopsy could be avoided in node positive patients. STUDY DESIGN: Records of patients presenting to a breast unit between January 2007 and June 2010 were reviewed retrospectively. Patients who underwent axillary ultrasonography with or without preoperative core biopsy were identified. Sensitivity, specificity, positive predictive value, and negative predictive value for ultrasonography and percutaneous biopsy were evaluated. RESULTS: Records of 718 patients were reviewed, with 445 fulfilling inclusion criteria. Forty-seven percent (n = 210\\/445) had nodal metastases, with 110 detected by Ax US-CB (sensitivity 52.4%, specificity 100%, positive predictive value 100%, negative predictive value 70.1%). Axillary ultrasonography without biopsy had sensitivity and specificity of 54.3% and 97%, respectively. Lymphovascular invasion was an independent predictor of nodal metastases (sensitivity 60.8%, specificity 80%). Ultrasound-guided core biopsy detected more than half of all nodal metastases, sparing more than one-quarter of all breast cancer patients an unnecessary sentinel lymph node biopsy. CONCLUSIONS: Axillary ultrasonography, when combined with core biopsy, is a valuable component of the management of patients with primary breast cancer. Its ability to definitively identify nodal metastases before surgical intervention can greatly facilitate a patient\\'s preoperative integrated treatment plan. In this regard, we believe our study adds considerably to the increasing data, which indicate the benefit of Ax US-CB in the preoperative detection of nodal metastases.

  3. The effect of Core Stability Exercises (CSE) on trunk sagittal acceleration

    OpenAIRE

    Aluko, Augustine

    2012-01-01

    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University. Aims: The aim of this study was to investigate Core Stability Exercise (CSE) induced changes in trunk sagittal acceleration as a measure of performance in participants following an acute onset of non-specific low back pain (LBP). Methodology: A Lumbar Motion Monitor (LMM) was used to measure trunk sagittal acceleration. The LMM was demonstrated to be reliable [Intra-Class Correlation (ICC)...

  4. Effects of Pilates core stability exercises on the balance abilities of archers

    OpenAIRE

    Park, Jeong-Min; Hyun, Gwang-Suk; Jee, Yong-Seok

    2016-01-01

    This study aimed to provide fundamental data contributing to archery performance improvement and stabilization of shooting posture in archers by examining the influence of Pilates core stability (PCS) exercises on dynamic and static balance. The study was conducted from December 2015 to March 2016 on high school archers who were registered as archers in the Korea Archery Association with 5 or more years of archery experience. Twenty voluntary subjects (exercise group n=10; control group n=10)...

  5. Transport properties of iron at Earth's core conditions: The effect of spin disorder

    Science.gov (United States)

    Drchal, V.; Kudrnovský, J.; Wagenknecht, D.; Turek, I.; Khmelevskyi, S.

    2017-07-01

    The electronic and thermal transport properties of the Earth's core are crucial for many geophysical models such as the geodynamo model of the Earth's magnetic field and of its reversals. Here we show, by considering bcc iron and an iron-rich iron-silicon alloy as a representative of the Earth's core composition and applying first-principles modeling, that the spin disorder at the Earth's core conditions not considered previously provides an essential contribution, of order 20 μ Ω cm, to the electrical resistivity. This value is comparable in magnitude with the electron-phonon and with the recently estimated electron-electron scattering contributions. The origin of the spin-disorder resistivity (SDR) consists of the existence of fluctuating local moments that are stabilized at high temperatures by the magnetic entropy even at pressures at which the ground state of iron is nonmagnetic. We find that electron-phonon and SDR contributions are not additive at high temperatures. We thus observe a large violation of the Matthiessen rule, not common in conventional metallic alloys at ambient conditions.

  6. Nucleus accumbens core and shell are necessary for reinforcer devaluation effects on Pavlovian conditioned responding

    Directory of Open Access Journals (Sweden)

    Teghpal eSingh

    2010-10-01

    Full Text Available The nucleus accumbens (NA has been hypothesized to be part of a circuit in which cue-evoked information about expected outcomes is mobilized to guide behavior. Here we tested this hypothesis using a Pavlovian reinforcer devaluation task, previously applied to assess outcome-guided behavior after damage to regions such as the orbitofrontal cortex and amygdala that send projections to NA. Rats with sham lesions or neurotoxic lesions of either the core or shell subdivision of NA were trained to associate a 10 sec CS+ with delivery of three food pellets. After training, half of the rats in each lesion group received food paired with illness induced by LiCl injections; the remaining rats received food and illness unpaired. Subsequently, responding to the CS+ was assessed in an extinction probe test. Both sham and lesioned rats conditioned to the CS+ and formed a conditioned taste aversion. However only sham rats reduced their conditioned responding as a result of reinforcer devaluation; devalued rats with lesions of either core or shell showed levels of responding that were similar to lesioned, non-devalued rats. This impairment was not due to the loss of motivational salience conferred to the CS+ in lesioned rats as both groups responded similarly for the cue in conditioned reinforcement testing. These data suggest that NA core and shell are part of a circuit necessary for the use of cue-evoked information about expected outcomes to guide behavior.

  7. Effects of Soft-Core Potentials and Coulombic Potentials on Bremsstrahlung Radiation during Laser Matter Interaction

    Science.gov (United States)

    Pandit, Rishi; Sentoku, Yasuhiko; Sawada, Hiroshi; Ramunno, Lora; Ackad, Edward

    2017-10-01

    An intense, short laser pulse incident on rare-gas clusters can produce nano-plasmas containing energetic electrons. As these electrons undergo scattering, both from phonons and ions, they emit bremsstrahlung radiation. Here we compare a theory of Bremsstrahlung emission appropriate for the interaction of intense lasers with matter using soft-core potentials and coulombic potential. A new scaling for the radiation cross-section and Emissivity via bremsstrahlung are derived for soft-core potential which depends on the potential depth, used to avoid coulomb singularity and for coulombic potential and implemented in a particle in cell code (PICLS). The radiation cross-section and emissivity via bremsstrahlung is found to increase rapidly with increases in potential depth up to 100 eV and then becomes mostly saturated for larger depths of a soft-core potential. For both cases, the radiation cross-section and emissivity of Bremsstrahlung increases with increases in laser wavelength. The bremsstrahlung emission may provide a broadband light source for diagnostics. This work was supported by Air Force Office of Scientific Research under AFOSR Award No. FA9550-14-1-0247.

  8. Transformer core

    NARCIS (Netherlands)

    Mehendale, A.; Hagedoorn, Wouter; Lötters, Joost Conrad

    2008-01-01

    A transformer core includes a stack of a plurality of planar core plates of a magnetically permeable material, which plates each consist of a first and a second sub-part that together enclose at least one opening. The sub-parts can be fitted together via contact faces that are located on either side

  9. Transformer core

    NARCIS (Netherlands)

    Mehendale, A.; Hagedoorn, Wouter; Lötters, Joost Conrad

    2010-01-01

    A transformer core includes a stack of a plurality of planar core plates of a magnetically permeable material, which plates each consist of a first and a second sub-part that together enclose at least one opening. The sub-parts can be fitted together via contact faces that are located on either side

  10. Ground state energy and wave function of an off-centre donor in spherical core/shell nanostructures: Dielectric mismatch and impurity position effects

    Energy Technology Data Exchange (ETDEWEB)

    Ibral, Asmaa [Equipe d’Optique et Electronique du Solide, Département de Physique, Faculté des Sciences, Université Chouaïb Doukkali, B.P. 20 El Jadida Principale, El Jadida 24000 (Morocco); Laboratoire d’Instrumentation, Mesure et Contrôle, Département de Physique, Université Chouaïb Doukkali, B.P. 20 El Jadida Principale, El Jadida (Morocco); Zouitine, Asmae [Département de Physique, Ecole Nationale Supérieure d’Enseignement Technique, Université Mohammed V Souissi, B.P. 6207 Rabat-Instituts, Rabat (Morocco); Assaid, El Mahdi, E-mail: eassaid@yahoo.fr [Equipe d’Optique et Electronique du Solide, Département de Physique, Faculté des Sciences, Université Chouaïb Doukkali, B.P. 20 El Jadida Principale, El Jadida 24000 (Morocco); Laboratoire d’Instrumentation, Mesure et Contrôle, Département de Physique, Université Chouaïb Doukkali, B.P. 20 El Jadida Principale, El Jadida (Morocco); Feddi, El Mustapha [Département de Physique, Ecole Nationale Supérieure d’Enseignement Technique, Université Mohammed V Souissi, B.P. 6207 Rabat-Instituts, Rabat (Morocco); and others

    2014-09-15

    Ground state energy and wave function of a hydrogen-like off-centre donor impurity, confined anywhere in a ZnS/CdSe spherical core/shell nanostructure are determined in the framework of the envelope function approximation. Conduction band-edge alignment between core and shell of nanostructure is described by a finite height barrier. Dielectric constant mismatch at the surface where core and shell materials meet is taken into account. Electron effective mass mismatch at the inner surface between core and shell is considered. A trial wave function where coulomb attraction between electron and off-centre ionized donor is used to calculate ground state energy via the Ritz variational principle. The numerical approach developed enables access to the dependence of binding energy, coulomb correlation parameter, spatial extension and radial probability density with respect to core radius, shell radius and impurity position inside ZnS/CdSe core/shell nanostructure.

  11. Experimental Study of the Effectiveness of Sacrificial Cladding Using Polymeric Foams as Crushable Core with a Simply Supported Steel Beam

    Directory of Open Access Journals (Sweden)

    H. Ousji

    2016-01-01

    Full Text Available The present paper focuses on the study of the effectiveness of the sacrificial cladding using polymeric foam as crushable core to reduce the delivered blast energy using a simplified structure. The latter consists of a simply supported steel beam under a localized blast load. The tested sacrificial cladding has a cross-sectional area of 80 × 80 mm2. The effect of the front plate mass and the crushable core properties (plateau stress and thickness is studied. Three polymeric foams are investigated: (a the expanded polystyrene foam (PS13 with a density of 13 kg/m3, (b the closed-cell polyurethane (PU30 with a density of 30 kg/m3, and (c the open-cell polyurethane (PU50 with a density of 50 kg/m3. Four front plate masses are used: 144, 188, 336, and 495 g. All possible combinations are tested to determine their absorption capacity. The obtained results show that the absorption capability increases by increasing the front plate mass, the plateau stress, and the thickness of the crushable core. The open-cell polyurethane PU50 performs better. Disintegration problems are observed on the expanded polystyrene PS13 after the end of the compression process.

  12. The effect of alumina and aluminium nitride coating by reactive magnetron sputtering on the resin bond strength to zirconia core.

    Science.gov (United States)

    Külünk, Tolga; Külünk, Safak; Baba, Seniha; Oztürk, Ozgür; Danişman, Sengül; Savaş, Soner

    2013-11-01

    Although several surface treatments have been recently investigated both under in vitro and in vivo conditions, controversy still exists regarding the selection of the most appropriate zirconia surface pre-treatment. The purpose of this study was to evaluate the effect of alumina (Al) and aluminium nitride (AlN) coating on the shear bond strength of adhesive resin cement to zirconia core. Fifty zirconia core discs were divided into 5 groups; air particle abrasion with 50 µm aluminum oxide particles (Al2O3), polishing + Al coating, polishing + AlN coating, air particle abrasion with 50 µm Al2O3 + Al coating and air particle abrasion with 50 µm Al2O3 + AlN coating. Composite resin discs were cemented to each of specimens. Shear bond strength (MPa) was measured using a universal testing machine. The effects of the surface preparations on each specimen were examined with scanning electron microscope (SEM). Data were statistically analyzed by one-way ANOVA (α=.05). The highest bond strengths were obtained by air abrasion with 50 µm Al2O3, the lowest bond strengths were obtained in polishing + Al coating group (Pstrength of adhesive resin cement to zirconia core.

  13. Does the effectiveness of core stability exercises correlate with the severity of spinal stenosis in patients with lumbar spinal stenosis?

    Science.gov (United States)

    Chen, Chaxiang; Lin, Zhichao; Zhang, Yingjie; Chen, Zemin; Tang, Shujie

    2017-01-01

    To determine whether the effectiveness of core stability exercises correlates with the severity of spinal stenosis in patients with degenerative lumbar spinal stenosis. Forty-two patients with degenerative lumbar spinal stenosis treated in the department of orthopedics of our hospital between May 2013 and January 2016 were included in the study. All the patients performed core stability exercises once daily for six weeks, and the clinical outcomes were evaluated using Japanese Orthopaedic Association (JOA) score and self-reported walking capacity. The anteroposterior osseous spinal canal diameter was measured to evaluate the severity of spinal stenosis. The correlation between the stenosis degree and the differences of Japanese Orthopaedic Association score or self-reported walking capacity at baseline and after treatment were analyzed. The patients were divided into three groups according to the spinal stenosis degree. In the three groups, there was no significant difference in JOA or self-reported walking distance at baseline (p>0.05) and after treatment (p>0.05). The JOA scores and self-reported walking distance were significantly increased after treatment (p0.05) or self-reported walking distance (p>0.05). There was no significantcorrelation between the effectiveness of core stability exercises and the severity of spinal stenosis in patients with degenerative lumbar spinal stenosis.

  14. [The effect of core veneer thickness ratio on the flexural strength of diatomite-based dental ceramic].

    Science.gov (United States)

    Jiang, Jie; Zhang, Xin; Gao, Mei-qin; Zhang, Fei-min; Lu, Xiao-li

    2015-06-01

    To evaluate the effect of different core veneer thickness ratios on the flexural strength and failure mode of bilayered diatomite-based dental ceramics. Diatomite-based dental ceramics blocks (16 mm×5.4 mm×1 mm) were sintered with different thickness of veneer porcelains: 0 mm (group A), 0.6 mm (group B), 0.8 mm (group C) and 1.0 mm (group D). Flexural strength was detected and scanning electron microscope was used to observe the interface microstructure. Statistical analysis was performed using SPSS 17.0 software package. With the increase of the thickness of the veneer porcelain, flexural strength of group C showed highest flexural strength up to (277.24±5.47) MPa. Different core veneer thickness ratios can significantly influence the flexural strength of bilayered diatomite-based dental ceramics. Supported by Science and Technology Projects of Nantong City (HS2013010).

  15. THE EFFECT OF IMPLEMENTING CORE BANKING SERVICES ON PROFITABILITY. CASE STUDY: ALL BRANCHES OF A PRIVATE BANK IN MASHHAD

    Directory of Open Access Journals (Sweden)

    Mansour Dehghan

    2015-07-01

    Full Text Available Recently, the growth of information technology and increasing competition among banks has considerably affected attracting customers. Banking industry has made great changes to transform into the core banking. The present study aims to assess the effect of the implementation of core banking services on profitability. These services, as different branches of electronic banking, are consisting of internet banking, mobile banking, telephone banking, point of sale (POS, ATM, and electronic money which are all tested in the current study. In order to test research hypotheses and the existing relationship between variables, needed data has been collected and analyzed through the application of stepwise regression model. The achieved findings indicate a significant relationship between the application of internet banking and ATM and the variable of profitability, while there is no significant relationship between the application of telephone banking, mobile banking, POS, and electronic money and profitability.

  16. Core outcome sets for use in effectiveness trials involving people with bipolar and schizophrenia in a community-based setting (PARTNERS2): study protocol for the development of two core outcome sets.

    Science.gov (United States)

    Keeley, Thomas; Khan, Humera; Pinfold, Vanessa; Williamson, Paula; Mathers, Jonathan; Davies, Linda; Sayers, Ruth; England, Elizabeth; Reilly, Siobhan; Byng, Richard; Gask, Linda; Clark, Mike; Huxley, Peter; Lewis, Peter; Birchwood, Maximillian; Calvert, Melanie

    2015-02-12

    In the general population the prevalence of bipolar and schizophrenia is 0.24% and 1.4% respectively. People with schizophrenia and bipolar disorder have a significantly reduced life expectancy, increased rates of unemployment and a fear of stigma leading to reduced self-confidence. A core outcome set is a standardised collection of items that should be reported in all controlled trials within a research area. There are currently no core outcome sets available for use in effectiveness trials involving bipolar or schizophrenia service users managed in a community setting. A three-step approach is to be used to concurrently develop two core outcome sets, one for bipolar and one for schizophrenia. First, a comprehensive list of outcomes will be compiled through qualitative research and systematic searching of trial databases. Focus groups and one-to-one interviews will be completed with service users, carers and healthcare professionals. Second, a Delphi study will be used to reduce the lists to a core set. The three-round Delphi study will ask service users to score the outcome list for relevance. In round two stakeholders will only see the results of their group, while in round three stakeholders will see the results of all stakeholder group by stakeholder group. Third, a consensus meeting with stakeholders will be used to confirm outcomes to be included in the core set. Following the development of the core set a systematic literature review of existing measures will allow recommendations for how the core outcomes should be measured and a stated preference survey will explore the strength of people's preferences and estimate weights for the outcomes that comprise the core set. A core outcome set represents the minimum measurement requirement for a research area. We aim to develop core outcome sets for use in research involving service users with schizophrenia or bipolar managed in a community setting. This will inform the wider PARTNERS2 study aims and objectives

  17. Comparative sodium void effects for different advanced liquid metal reactor fuel and core designs

    Energy Technology Data Exchange (ETDEWEB)

    Dobbin, K.D.; Kessler, S.F.; Nelson, J.V.; Gedeon, S.R.; Omberg, R.P.

    1991-07-01

    An analysis of metal-, oxide, and nitride-fueled advanced liquid metal reactor cores was performed to investigate the calculated differences in sodium void reactivity, and to determine the relationship between sodium void reactivity and burnup reactivity swing using the three fuel types. The results of this analysis indicate that nitride fuel has the least positive sodium void reactivity for any given burnup reactivity swing. Thus, it appears that a good design compromise between transient overpower and loss of flow response is obtained using nitride fuel. Additional studies were made to understand these and other nitride advantages. 8 refs., 5 figs., 3 tabs.

  18. Effects of vibrational motion on core-level spectra of prototype organic molecules

    Energy Technology Data Exchange (ETDEWEB)

    Uejio, Janel S.; Schwartz, Craig P.; Saykally, Richard J.; Prendergast, David

    2008-08-21

    A computational approach is presented for prediction and interpretation of core-level spectra of complex molecules. Applications are presented for several isolated organic molecules, sampling a range of chemical bonding and structural motifs. Comparison with gas phase measurements indicate that spectral lineshapes are accurately reproduced both above and below the ionization potential, without resort to ad hoc broadening. Agreement with experiment is significantly improved upon inclusion of vibrations via molecular dynamics sampling. We isolate and characterize spectral features due to particular electronic transitions enabled by vibrations, noting that even zero-point motion is sufficient in some cases.

  19. Effect of wettability on scale-up of multiphase flow from core-scale to reservoir fine-grid-scale

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Y.C.; Mani, V.; Mohanty, K.K. [Univ. of Houston, TX (United States)

    1997-08-01

    Typical field simulation grid-blocks are internally heterogeneous. The objective of this work is to study how the wettability of the rock affects its scale-up of multiphase flow properties from core-scale to fine-grid reservoir simulation scale ({approximately} 10{prime} x 10{prime} x 5{prime}). Reservoir models need another level of upscaling to coarse-grid simulation scale, which is not addressed here. Heterogeneity is modeled here as a correlated random field parameterized in terms of its variance and two-point variogram. Variogram models of both finite (spherical) and infinite (fractal) correlation length are included as special cases. Local core-scale porosity, permeability, capillary pressure function, relative permeability functions, and initial water saturation are assumed to be correlated. Water injection is simulated and effective flow properties and flow equations are calculated. For strongly water-wet media, capillarity has a stabilizing/homogenizing effect on multiphase flow. For small variance in permeability, and for small correlation length, effective relative permeability can be described by capillary equilibrium models. At higher variance and moderate correlation length, the average flow can be described by a dynamic relative permeability. As the oil wettability increases, the capillary stabilizing effect decreases and the deviation from this average flow increases. For fractal fields with large variance in permeability, effective relative permeability is not adequate in describing the flow.

  20. Effect of Rigid Polyurethane Foam Core Density on Flexural and Compressive Properties of Sandwich Panels with Glass/Epoxy Faces

    Directory of Open Access Journals (Sweden)

    saeed Nemati

    2013-01-01

    Full Text Available Sandwich panels as composite materials have two external walls of either metallic or polymer type. The space between these walls is filled by hard foam or other materials and the thickness of different layers is based on the final application of the panel. In the present work, the extent of variation in core density of polyether urethane foam and subsequent flexural and compressive changes in sandwich panels with glass or epoxy face sheets are tested and investigated. A number of hard polyether urethane foams with different middle panel layers density 80-295 kg/m3 are designed to study the effect of foam density on mechanical properties including flexural and compressive properties. Flexural and compressive test resultsshow that increased core density leads to improved mechanical properties. The slope of the curve decreases beyond density of 235 kg/m3. The reason may be explained on the limitation of shear intensity in increasing the mechanical properties. In this respect an optimum density of 235 kg/m3 is obtained for the system under examinations and for reaching higher strength panels, foams of different core materials should be selected.

  1. Crystalline/amorphous tungsten oxide core/shell hierarchical structures and their synergistic effect for optical modulation.

    Science.gov (United States)

    Zhou, D; Xie, D; Shi, F; Wang, D H; Ge, X; Xia, X H; Wang, X L; Gu, C D; Tu, J P

    2015-12-15

    High-performance electrochromic films with large color contrast and fast switching speed are of great importance for developing advanced smart windows. In this work, crystalline/amorphous WO3 core/shell (c-WO3@a-WO3) nanowire arrays rationally are synthesized by combining hydrothermal and electrodeposition methods. The 1D c-WO3@a-WO3 core/shell hierarchical structures show a synergistic effect for the enhancement of optical modulation, especially in the infrared (IR) region. By optimizing the electrodeposition time of 400s, the core/shell array exhibits a significant optical modulation (70.3% at 750nm, 42.0% at 2000nm and 51.4% at 10μm), fast switching speed (3.5s and 4.8s), high coloration efficiency (43.2cm(2)C(-1) at 750nm) and excellent cycling performance (68.5% after 3000 cycles). The crystalline/amorphous nanostructured film can provide an alternative way for developing high-performance electrochromic materials. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Effects of Swiss-ball core strength training on strength, endurance, flexibility, and balance in sedentary women.

    Science.gov (United States)

    Sekendiz, Betül; Cuğ, Mutlu; Korkusuz, Feza

    2010-11-01

    The purpose of this study was to investigate the effects of Swiss-ball core strength training on trunk extensor (abdominal)/flexor (lower back) and lower limb extensor (quadriceps)/flexor (hamstring) muscular strength, abdominal, lower back and leg endurance, flexibility and dynamic balance in sedentary women (n = 21; age = 34 ± 8.09; height = 1.63 ± 6.91 cm; weight = 64 ± 8.69 kg) trained for 45 minutes, 3 d·wk-1 for 12 weeks. Results of multivariate analysis revealed significant difference (p ≤ 0.05) between pre and postmeasures of 60 and 90° s trunk flexion/extension, 60 and 240° s-1 lower limb flexion/extension (Biodex Isokinetic Dynamometer), abdominal endurance (curl-up test), lower back muscular endurance (modified Sorensen test), lower limb endurance (repetitive squat test), lower back flexibility (sit and reach test), and dynamic balance (functional reach test). The results support the fact that Swiss-ball core strength training exercises can be used to provide improvement in the aforementioned measures in sedentary women. In conclusion, this study provides practical implications for sedentary individuals, physiotherapists, strength and conditioning specialists who can benefit from core strength training with Swiss balls.

  3. Effect of different surface treatments on microtensile bond strength of two resin cements to aged simulated composite core materials.

    Science.gov (United States)

    Esmaeili, Behnaz; Alaghehmand, Homayoon; Shakerian, Mohadese

    2015-01-01

    Roughening of the aged composite resin core (CRC) surface seems essential for durable adhesion. The aim of this study was to investigate the influence of various surface treatments and different resin cements on microtensile bond strength (µ TBS) between two aged core build-up composites (CBCs) and feldspathic ceramic. A total of 16 composite blocks made of two CBCs, Core.it and Build-it were randomly assigned to four surface treatment groups after water storage and thermocycling (2 weeks and 500 cycles). Experimental groups included surface roughening with air abrasion (AA), hydrofluoric acid, pumice, and laser and then were bonded to computer-aided design/computer-aided manufacturing feldspathic ceramic blocks using two resin cements, Panavia F2 (PF), and Duo-link (DL). The µ TBS was tested, and the fracture mode was assessed. The data were analyzed with multiple analysis of variance to estimate the contribution of different surface treatments, resin cements, and two aged CRCs on µ TBS. Statistical significance level was set at α strength (P strength was in AA group cemented with PF (31.83 MPa). The most common failure mode was cohesive fracture in the cement. Different surface treatments had different effects on µ TBS of aged CRCs to feldspathic ceramics. PF was significantly better than DL.

  4. Investigating the effectiveness of many-core network processors for high performance cyber protection systems. Part I, FY2011.

    Energy Technology Data Exchange (ETDEWEB)

    Wheeler, Kyle Bruce; Naegle, John Hunt; Wright, Brian J.; Benner, Robert E., Jr.; Shelburg, Jeffrey Scott; Pearson, David Benjamin; Johnson, Joshua Alan; Onunkwo, Uzoma A.; Zage, David John; Patel, Jay S.

    2011-09-01

    This report documents our first year efforts to address the use of many-core processors for high performance cyber protection. As the demands grow for higher bandwidth (beyond 1 Gbits/sec) on network connections, the need to provide faster and more efficient solution to cyber security grows. Fortunately, in recent years, the development of many-core network processors have seen increased interest. Prior working experiences with many-core processors have led us to investigate its effectiveness for cyber protection tools, with particular emphasis on high performance firewalls. Although advanced algorithms for smarter cyber protection of high-speed network traffic are being developed, these advanced analysis techniques require significantly more computational capabilities than static techniques. Moreover, many locations where cyber protections are deployed have limited power, space and cooling resources. This makes the use of traditionally large computing systems impractical for the front-end systems that process large network streams; hence, the drive for this study which could potentially yield a highly reconfigurable and rapidly scalable solution.

  5. Evaluation of the Effect of Different Ferrule Designs on Fracture Resistance of Maxillary Incisors Restored with Bonded Posts and Cores

    Directory of Open Access Journals (Sweden)

    E. Jalalian

    2010-09-01

    Full Text Available Introduction: In cases of severe hard tissue loss, 2 mm circumferential ferrule is difficult to achieve. So in these cases we should use different ferrule designs.This in vitro study investigated the effect of different ferrule designs on the fractureresistance of teeth restored with bonded post and cores.Materials and Methods: Forty freshly-extracted central incisors were endodontically treated. The teeth were randomly divided into four groups; group 1 were teeth with 2 mm circumferential ferrule above the CEJ, group 2 were teeth with 2 mm ferrule only on the palatal side of the teeth, group 3 consisted of teeth with 2 mm ferrule only on the facial side and group 4 were teeth with 2 mm ferrule on the palatal and facial side of teeth with interproximal concavities.All teeth were restored with fiber posts and composite cores. The specimen was mounted on a universal testing machine and compressive load was applied to the long axis of the specimen until failure occurred.Results: The fracture resistance was 533.79 ± 232.28 in group 1, 634.75± 133.35 in group 2, 828.90 ±118.27 in group 3 and 678.78± 160.20 in group 4. The post hoc analysis showed statistically significant difference between groups 1 and 3 .Conclusions: The results of this in vitro study showed that facial ferrule increases the fracture resistance of endodontically treated teeth restored with bonded post and cores.

  6. Effect of time interval between core preparation and post cementation on pushout bond strength of glass fiber-reinforced posts.

    Science.gov (United States)

    Niakan, Mahsa; Mosharraf, Ramin

    2017-01-01

    The aim of this study was to investigate the effect of timing of coronal preparation on the pushout bond strength of fiber postluted with resin cement in the root canal. In this experimental study, 48 mandibular human premolars were selected in a 3-week range. After root canal treatment and postspace preparation, a post #2(Angelus, Brazil) was cemented into the canal by a resin-based cement (Bifix SE, VOCO, Germany). Cylindrical resin composite cores were built on the posts. Then, the specimens were divided into 4 groups of 12 specimens each: one control group without core preparation and 3 experimental groups with core preparation that was done 15 min, 1 h, and 24 h after postcementation. One day after postcementation, each root was sectioned into 3 segments. Each slice was connected to universal testing machine. The load was applied at the speed of 0.5 mm/min till failure happened. The collected data were analyzed (SPSS/PC 20.0; SPSS Inc., Chicago, IL, USA) using two-way ANOVA and post hoc Tukey test at P 0.05). Nevertheless, there were significant differences among root regions (P fiber post and bond strength is higher in the cervical segment.

  7. Effect of water on metal-silicate partitioning and hydrogen incorporation in the core of the Earth and Mars

    Science.gov (United States)

    Clesi, Vincent; Bouhifd, Mohamed Ali; Bolfan-Casanova, Nathalie; Manthilake, Geeth; Andrault, Denis; Raepsaet, Caroline; Bureau, Hélène; Khodja, Hicham

    2017-04-01

    The accretion of planets from primordial materials and their subsequent differentiation to form a core and a mantle are fundamental questions in terrestrial and solar system. Many of the questions about the processes are still open and much debated. For example, could the presence of water during the metallic phase segregation affect the planet-accretion models? The existing studies on the elemental metal-silicate partitioning under hydrous conditions are limited to 1 GPa [5,6] well below the likely conditions prevailing during core formation on Earth and Mars. In the present study we use multi-anvil technique aver a range of P, T, fO_2 and water content (5 - 20 GPa, 2000 - 2500 K, from 1 to 5 log units below the iron-wüstite buffer, and for XH2O varying from 500 ppm to 1.5 wt.{%}). The present experimental results show that except for Fe, there is no effect of water on the partitioning of moderately siderophile elements. It allowed us to build consistent models of planetary accretion from reducing to oxidized conditions. Furthermore, for the range of water concentrations studied, there is no evidence of an important hydrogen incorporation into planetary cores, thus making unlikely for hydrogen to be a major light element of the core as previsously assumed [7]. [1] Morbidelli et al. (2000) Meteoritics & Planetary Science 1320, 1309-1320. [2] Marty (2012) EPSL 313-314, 56-66. [3] O'Brien et al. (2014) Icarus 239, 74-84. [4] Sarafian et al. (2014) Science 346, 623-626. [5] Righter and Drake (1999) EPSL 171, 383-399. [6] Jana and Walker (1999) GCA 63, 2299-2310. [7] Okuchi, T. (1997) Science 278, 1781-1784

  8. Macerated-Pineapple Core Crude Extract-derived Bromelain Has Low Cytotoxic Effect in NIH-3T3 Fibroblast

    Directory of Open Access Journals (Sweden)

    Dewi Liliany Margaretta

    2015-08-01

    Full Text Available BACKGROUND: Bromelain is a sulfhydryl proteolytic enzyme that can hydrolyze protein, protease or peptide. Bromelain can be found in pineapple stem, fruit and core. Bromelain is composed of 212 amino acid residues with cysteine-25 forming a polypeptide chain that can hydrolyze peptide bonds by H2O. In medicine, bromelain has been developed as antibiotic, cancer drug, anti-inflammatory agent and immunomodulator. In dentistry, bromelain has potential to reduce plaque formation on the teeth and to irrigate root canal. METHODS: Pineapple core was dried for 3 days to get simplicia. Then simplicia was extracted with water solvent for 24 hours. After that, the macerated-pineapple core crude extract-derived bromelain (PCB was separated by Sodium Dodecyl Sulphate-Polyacrylamide Gel Electrophoresis (SDS-PAGE followed by Coomassie Brilliant Blue (CBB staining to ensure the presence of bromelain. In cytotoxic test, NIH-3T3 fibroblast cultures were treated with extracts in various concentrations to for 24 or 48 hours. Number of fibroblasts was calculated using 3-(4,5-dimethylthiazol-2- yl-2,5-Diphenyltetrazolium bromide (MTT assay. RESULTS: Pineapple core extraction using maceration method produced relative high yield (concentration: 1.5424 g/mL of bromelain, which was confirmed by CBB staining results with the molecular weight of 33 kDa. Based on cytotoxic test results of PCB on NIH-3T3 fibroblasts, 24-hours-incubation LD50 was 95.7 g/L, while 48-hours-incubation LD50 was 51.1 g/L. CONCLUSIONS: PCB has low cytotoxic effect in NIH-3T3 fibroblasts. KEYWORDS: bromelain, pineapple, extract, cytotoxic, MTT.

  9. The Effects of Simulated Wildland Firefighting Tasks on Core Temperature and Cognitive Function under Very Hot Conditions

    Directory of Open Access Journals (Sweden)

    F. Michael Williams-Bell

    2017-10-01

    Full Text Available Background: The severity of wildland fires is increasing due to continually hotter and drier summers. Firefighters are required to make life altering decisions on the fireground, which requires analytical thinking, problem solving, and situational awareness. This study aimed to determine the effects of very hot (45°C; HOT conditions on cognitive function following periods of simulated wildfire suppression work when compared to a temperate environment (18°C; CON.Methods: Ten male volunteer firefighters intermittently performed a simulated fireground task for 3 h in both the CON and HOT environments, with cognitive function tests (paired associates learning and spatial span assessed at baseline (cog 1 and during the final 20-min of each hour (cog 2, 3, and 4. Reaction time was also assessed at cog 1 and cog 4. Pre- and post- body mass were recorded, and core and skin temperature were measured continuously throughout the protocol.Results: There were no differences between the CON and HOT trials for any of the cognitive assessments, regardless of complexity. While core temperature reached 38.7°C in the HOT (compared to only 37.5°C in the CON; p < 0.01, core temperature declined during the cognitive assessments in both conditions (at a rate of −0.15 ± 0.20°C·hr−1 and −0.63 ± 0.12°C·hr−1 in the HOT and CON trial respectively. Firefighters also maintained their pre-exercise body mass in both conditions, indicating euhydration.Conclusions: It is likely that this maintenance of euhydration and the relative drop in core temperature experienced between physical work bouts was responsible for the preservation of firefighters' cognitive function in the present study.

  10. Assessment of water hammer effects on boiling water nuclear reactor core dynamics

    Directory of Open Access Journals (Sweden)

    Bousbia-Salah Anis

    2007-01-01

    Full Text Available Complex phenomena, as water hammer transients, occurring in nuclear power plants are still not very well investigated by the current best estimate computational tools. Within this frame work, a rapid positive reactivity addition into the core generated by a water hammer transient is considered. The numerical simulation of such phenomena was carried out using the coupled RELAP5/PARCS code. An over all data comparison shows good agreement between the calculated and measured core pressure wave trends. However, the predicted power response during the excursion phase did not correctly match the experimental tendency. Because of this, sensitivity studies have been carried out in order to identify the most influential parameters that govern the dynamics of the power excursion. After investigating the pressure wave amplitude and the void feed back responses, it was found that the disagreement between the calculated and measured data occurs mainly due to the RELAP5 low void condensation rate which seems to be questionable during rapid transients. .

  11. Effect of irrigation fluid temperature on core body temperature and inflammatory response during arthroscopic shoulder surgery.

    Science.gov (United States)

    Pan, Xiaoyun; Ye, Luyou; Liu, Zhongtang; Wen, Hong; Hu, Yuezheng; Xu, Xinxian

    2015-08-01

    This study was designed to evaluate the influence of irrigation fluid on the patients' physiological response to arthroscopic shoulder surgery. Patients who were scheduled for arthroscopic shoulder surgery were prospectively included in this study. They were randomly assigned to receive warm arthroscopic irrigation fluid (Group W, n = 33) or room temperature irrigation fluid (Group RT, n = 33) intraoperatively. Core body temperature was measured at regular intervals. The proinflammatory cytokines TNF-α, IL-1, IL-6, and IL-10 were measured in drainage fluid and serum. The changes of core body temperatures in Group RT were similar with those in Group W within 15 min after induction of anesthesia, but the decreases in Group RT were significantly greater after then. The lowest temperature was 35.1 ± 0.4 °C in Group RT and 35.9 ± 0.3 °C in Group W, the difference was statistically different (P irrigation fluid compared with warm irrigation fluid. And local inflammatory response is significantly reduced by using warm irrigation fluid. It seems that warm irrigation fluid is more recommendable for arthroscopic shoulder surgery.

  12. High frequency magneto-dielectric effects in self-assembled ferrite-ferroelectric core-shell nanoparticles

    Directory of Open Access Journals (Sweden)

    M. Popov

    2014-09-01

    Full Text Available Magneto-dielectric effects in self-assembled core-shell nanoparticles of nickel ferrite (NFO and barium titanate (BTO have been investigated in the millimeter wave frequencies. The core-shell nano-composites were synthesized by coating 100 nm nickel ferrite and 50 nm barium titanate nanoparticles with complementary coupling groups and allowing them to self-assemble in the presence of a catalyst forming heterogeneous nanocomposites. Magneto-electric (ME characterization of as-assembled particles has been carried out by measurements of the relative permittivity ɛr as a function of frequency f under an applied static magnetic field H over 16–24 GHz. Measurements show an H-induced decrease in ɛr of 1 to 1.5%. But a giant magneto-dielectric effect with an H-induced change in permittivity as high as 28% is measured under dielectric resonance in the samples. A strong ME coupling was also evident from H-tuning of dielectric resonance in the composites. A theory for the high frequency magneto-dielectric effect has been developed and consists of the following steps. First the Bruggeman model is used to estimate the effective dielectric constant for the shell consisting of the BTO particles and voids considered as spherical air-pores. Then the permittivity for the core and shell is estimated taking into consideration the sample porosity. Finally the H-dependence of the permittivity due to ME interactions is calculated from the free energy considerations. Estimated ɛr vs. H and dielectric resonance frequency vs. H characteristics are in general agreement with the data.

  13. Core BPEL

    DEFF Research Database (Denmark)

    Hallwyl, Tim; Højsgaard, Espen

    extensions. Combined with the fact that the language definition does not provide a formal semantics, it is an arduous task to work formally with the language (e.g. to give an implementation). In this paper we identify a core subset of the language, called Core BPEL, which has fewer and simpler constructs......, does not allow omissions, and does not contain ignorable elements. We do so by identifying syntactic sugar, including default values, and ignorable elements in WS-BPEL. The analysis results in a translation from the full language to the core subset. Thus, we reduce the effort needed for working...... formally with WS-BPEL, as one, without loss of generality, need only consider the much simpler Core BPEL. This report may also be viewed as an addendum to the WS-BPEL standard specification, which clarifies the WS-BPEL syntax and presents the essential elements of the language in a more concise way...

  14. Ice Cores

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Records of past temperature, precipitation, atmospheric trace gases, and other aspects of climate and environment derived from ice cores drilled on glaciers and ice...

  15. Core benefits

    National Research Council Canada - National Science Library

    Keith, Brian W

    2010-01-01

    This SPEC Kit explores the core employment benefits of retirement, and life, health, and other insurance -benefits that are typically decided by the parent institution and often have significant governmental regulation...

  16. Hollow Core?

    Science.gov (United States)

    Qiao, G. J.; Liu, J. F.; Wang, Yang; Wu, X. J.; Han, J. L.

    We carried out the Gaussian fitting to the profile of PSR B1237+25 and found that six components rather than five are necessary to make a good fit. In the central part, we found that the core emission is not filled pencil beam but is a small hollow cone. This implies that the impact angle could be $\\beta<0.5^\\circ$. The ``hollow core'' is in agreement with Inverse Compton Scattering model of radio pulsars.

  17. Effect of Temperature and Vibration on Electrical Connectors with Different Number of Contact Cores

    Directory of Open Access Journals (Sweden)

    Song W. L.

    2016-01-01

    Full Text Available In this paper, we presented the results from three related analysis performed by adopting the failure models, which provided an explanation of performance influencing factors caused by different number of contact cores, for the purpose of measuring the temperature change and deformation value, which were the factors causing contact failure. The failures were localized in contact parts of the connectors. Performed investigations included thermal analysis, modal analysis, harmonic response analysis and contact failure analysis. From the results of these simulations, related temperature and vibration analysis nephograms were got respectively. And the correctness of results of thermal analysis was verified by Fourier law. The research results of this paper provide a reference for thermal analysis and vibration analysis of electrical connectors, which is important for ensuring the reliability and safety of electrical connectors.

  18. The effect of warm-core eddies on oceanic productivity off northeastern New Zealand

    Science.gov (United States)

    Bradford, J. M.; Heath, R. A.; Chang, F. H.; Hay, C. H.

    1982-12-01

    Two hydrological features influence the primary productivity of an area off East Cape, New Zealand. Deep winter mixing (>275 m) occurs inside a warm-core anticyclonic eddy 190 km offshore. It is suggested that the deep mixing limits primary production, thus conserving nutrients so that they are in greater supply than in peripheral regions. Consequently a spring phytoplankton bloom develops inside the eddy, and this is followed by a corresponding growth in the number of salps. The second feature is the nearshore upwelling over Ranfurly Bank, which increases primary production and influences shelf and slope waters just east and south of the bank. Both features have important implications for pelagic fisheries and the sea-floor fauna.

  19. Effects of neutron-star superconductivity on magnetic monopoles and core field decay

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, J.A.; Ruderman, M.A.; Shaham, J.

    1986-04-15

    From the magnetic properties of old neutron stars we propose that an observation of a sufficiently old pulsar limits any ''grand unified theory'' heavy magnetic monopole flux in the pulsar neighborhood to below 5 x 10/sup -24/tau/sub 10/ /sup -2/cm/sup -/ /sup 2/sr/sup -1/sec/sup -1/, where tau/sub 10/ is the age (in 10/sup 10/ yr) of the pulsar's present magnetic field and monopole speeds are approx.10/sup -3/ c. For the millisecond pulsar PSR 1937+214 a major improvement over the Parker limit is obtained, which is also better than various limits from monopole catalysis of baryon decay, provided tau/sub 10/> or approx. =10/sup -1/. The consideration of monopole dynamics inside superconducting neutron-star cores leads to this conclusion.

  20. Nonstationary coherent optical effects caused by pulse propagation through acetylene-filled hollow-core photonic-crystal fibers

    Science.gov (United States)

    Ocegueda, M.; Hernandez, E.; Stepanov, S.; Agruzov, P.; Shamray, A.

    2014-06-01

    Experimental observations of nonstationary coherent optical phenomena, i.e., optical nutation, free induction, and photon echo, in the acetylene (12C2H2) filled hollow-core photonic-crystal fiber (PCF) are reported. The presented results were obtained for the acetylene vibration-rotational transition P9 at wavelength 1530.37 nm at room temperature under a gas pressure of acetylene molecules' presence inside the effective PCF modal area and by intermolecule collisions. An accelerated attenuation of the optical nutation oscillations is explained by a random orientation of acetylene molecules.

  1. The effect of trunk stabilization exercises with a swiss ball on core muscle activation in the elderly.

    Science.gov (United States)

    Kim, Seong Gil; Yong, Min Sik; Na, Sang Su

    2014-09-01

    [Purpose] The purpose of this study was to investigate the effects of trunk stabilization exercise on the muscle EMG activations related to core stability. [Subjects and Methods] Fifteen elderly people in a geriatric hospital performed trunk stabilization exercises with a Swiss ball for 20 minutes five times per week for 8 weeks. Trunk muscle activations were measured using electromyography before and after the intervention. [Results] After the intervention, the muscle activations of the rectus abdominis, erector spinae, lateral low-back (quadratus lumborum and external oblique), and gluteus medius muscles increased significantly. [Conclusion] The trunk stabilization exercise with a Swiss ball significantly increased the muscle activities of the elderly.

  2. Microscale Sensing of Oxygen via Encapsulated Porphyrin Nanofibers: Effect of Indicator and Polymer "Core" Permeability.

    Science.gov (United States)

    Xue, Ruipeng; Ge, Chen; Richardson, Kris; Palmer, Andre; Viapiano, Mariano; Lannutti, John J

    2015-04-29

    Biomimetic polymer nanofibers integrate sensing capabilities creating utility across many biological and biomedical applications. We created fibers consisting of either a poly(ether sulfone) (PES) or a polysulfone (PSU) core coated by a biocompatible polycaprolactone (PCL) shell to facilitate cell attachment. Oxygen sensitive luminescent probes Pt(II) meso-tetra(pentafluorophenyl)porphine (PtTFPP) or Pd(II) meso-tetra(pentafluorophenyl)porphine (PdTFPP), were incorporated in the core via single-step coaxial electrospinning providing superior sensitivity, high brightness, linear response, and excellent stability. Both PES-PCL and PSU-PCL fibers provide more uniform probe distribution than polydimethylsiloxane (PDMS). PSU-based sensing fibers possessed optimum sensitivity due to their relatively higher oxygen permeability. During exposure to 100% nitrogen and 100% oxygen, PES-PCL fiber displayed an I0/I100 value of 6.7; PSU-PCL exhibited a value of 8.9 with PtTFPP as the indicator. In contrast, PdTFPP-containing fibers possess higher sensitivity due to the long porphyrin lifetime. The corresponding I0/I100 values were 80.6 and 106.7 for the PES-PCL and PSU-PCL matrices, respectively. The response and recovery times were 0.24/0.39 s for PES-PCL and 0.38/0.83 s for PSU-PCL which are 0.12 and 0.11 s faster, respectively, than the Pt-based porphyrin in the same matrices. Paradoxically, lower oxygen permeabilities make these polymers better suited to measuring higher (i. e., ∼20%) oxygen contents than PDMS. Individual fiber sensing was studied by fluorescence spectrometry and at a sub-micrometer scale by total internal reflection fluorescence (TIRF). Specific polymer blends relate polymer composition to the resulting sensor properties. All compositions displayed linear Stern-Volmer plots; sensitivity could be tailored by matrix or the sensing probe selection.

  3. Effects of caffeine on skin and core temperatures, alertness, and recovery sleep during circadian misalignment.

    Science.gov (United States)

    McHill, Andrew W; Smith, Benjamin J; Wright, Kenneth P

    2014-04-01

    Caffeine promotes wakefulness during night shift work, although it also disturbs subsequent daytime sleep. Increased alertness by caffeine is associated with a higher core body temperature (CBT). A lower CBT and a narrow distal-to-proximal skin temperature gradient (DPG) have been reported to be associated with improved sleep, yet whether caffeine influences the DPG is unknown. We tested the hypothesis that the use caffeine during nighttime total sleep deprivation would reduce the DPG, increase CBT and alertness, and disturb subsequent daytime recovery sleep. We also expected that a greater widening of the DPG prior to sleep would be associated with a greater degree of sleep disturbance. Thirty healthy adults (9 females) aged 21.6 ± 3.5 years participated in a double-blind, 28-h modified constant routine protocol. At 23 h of wakefulness, participants in the treatment condition (n = 10) were given 2.9 mg/kg caffeine, equivalent to ~200 mg (or 2 espressos) for a 70-kg adult, 5 h before a daytime recovery sleep episode. Throughout the protocol, core and skin body temperatures, DPG, sleep architecture, and subjective alertness and mood were measured. Prior to sleep, caffeine significantly widened the DPG and increased CBT, alertness, and clear-headedness (p sleep (p sleep were associated with a longer latency to sleep, and a wider DPG was associated with disturbed recovery sleep (i.e., increased wakefulness after sleep onset, increased stage 1 sleep, decreased sleep efficiency, and decreased slow wave sleep) (p sleep. Furthermore, our findings highlight that sleep disturbances associated with caffeine consumed near the circadian trough of alertness are still present when daytime recovery sleep occurs 5 h or approximately 1 half-life later.

  4. Effects of publications in proceedings on the measure of the core size of coauthors

    Science.gov (United States)

    Miśkiewicz, Janusz

    2013-10-01

    Coauthors (CA) of a “lead investigator” (LI) can receive a rank (r) according to their “importance” in having published joint publications with the LI. It is commonly accepted, without any proof, that publications in peer review journals and for example conference proceedings do not have the same “value” in a CV, and the same applies to papers contributing to encyclopedia and book chapters. It is examined here whether the relationship between the number (J) of publications of some scientist with her/his coauthors, ranked according to their decreasing importance, i.e. J∝1/rα, as found by Ausloos (2013) [1], still holds if the overall publication list is broken into such specific types of publications. Several authors, with different careers, but mainly having worked in the field of statistical mechanics, are studied here to sort out answers to the questions. The exponent α turns out to be weakly scientist dependent, only if the maximum value of J and r is large and is ˜+1 then. The mA core value, i.e. the core number of CAs, for proceedings only is about half of the total one, i.e. when all publications are counted. Contributions to the numerical values from both encyclopedia and book chapters are marginal. The role of a time span on mA is also examined in two cases in relation to career activity considerations. It can be considered that the findings serve as a contrasting point of view on how to quantify an individual (publication) career as recently done by Petersen et al. (2010, 2012, 2011) [2-4], here emphasizing the collaboration size and evolution, rather than a citation count, moreover specifying the type of publication. Through the various mA’s one can distinguish different behavior patterns of a scientific publication with CAs.

  5. Effect of soft-core potentials on inverse bremsstrahlung heating during laser matter interactions

    Science.gov (United States)

    Pandit, Rishi R.; Sentoku, Yasuhiko; Becker, Valerie R.; Barrington, Kasey; Thurston, Jeremy; Cheatham, Jonathan; Ramunno, Lora; Ackad, Edward

    2017-07-01

    Inverse bremsstrahlung heating (IBH) is studied by using scattering theory for the interaction of intense lasers with matter using soft-core potentials. This involves three different kinds of interactions: (i) the interaction of the electrons with the external laser field, (ii) the electron-ion interaction, and (iii) the electron-electron interaction. In the interaction of rare-gas clusters with ultrashort laser pulses, nano-plasmas with high densities are created. A new scaling for the differential cross-section and the rate of energy absorption via IBH is derived which depends on the external laser field as well as electric field due to the other particles. When the particles are treated as charge distributions, the electric fields due to the other particles depend on a parameter of the non-Coulombic soft-core field, the potential depth, often used to avoid the Coulomb singularity. Thus, the rate of IBH also depends on the potential depth. Calculations are performed for electrons in a range of wavelength regimes from the vacuum ultraviolet to the mid-infrared. The rate of energy absorption via IBH is found to increase rapidly with increases in the potential depth and then quickly becomes mostly saturated at the Coulomb value for greater depths. The rate of energy absorption via IBH is found to be non-linear with laser intensities. The differential cross-section as well as the rate of energy absorption of IBH is found to increase with increases in laser wavelength. Finally, lower laser intensities saturate more slowly, requiring a larger potential depth to saturate.

  6. Thermo-mechanical interaction effects in foam cored sandwich panels-correlation between High-order models and Finite element analysis results

    DEFF Research Database (Denmark)

    Palleti, Hara Naga Krishna Teja; Santiuste, Carlos; Thomsen, Ole Thybo

    2010-01-01

    Thermo-mechanical interaction effects including thermal material degradation in polymer foam cored sandwich structures is investigated using the commercial Finite Element Analysis (FEA) package ABAQUS/Standard. Sandwich panels with different boundary conditions in the form of simply supported...

  7. Effects of acupuncture, core-stability exercises, and treadmill walking exercises in treating a patient with postsurgical lumbar disc herniation: a clinical case report

    National Research Council Canada - National Science Library

    Ganiyu, Sokunbi Oluwaleke; Gujba, Kachalla Fatimah

    2015-01-01

    The objective of this study is to investigate the effects of acupuncture, core-stability exercises, and treadmill 12-minute walking exercises in treating patients with postsurgical lumbar disc herniation...

  8. Effectiveness of core stability exercises and recovery myofascial release massage on fatigue in breast cancer survivors: a randomized controlled clinical trial

    National Research Council Canada - National Science Library

    Cantarero-Villanueva, Irene; Fernández-Lao, Carolina; Del Moral-Avila, Rosario; Fernández-de-Las-Peñas, César; Feriche-Fernández-Castanys, María Belén; Arroyo-Morales, Manuel

    2012-01-01

    The purpose of the present paper was to evaluate the effects of an 8-week multimodal program focused on core stability exercises and recovery massage with DVD support for a 6-month period in physical...

  9. Effectiveness of Core Stability Exercises and Recovery Myofascial Release Massage on Fatigue in Breast Cancer Survivors: A Randomized Controlled Clinical Trial

    National Research Council Canada - National Science Library

    Cantarero-Villanueva, Irene; Fernández-Lao, Carolina; del Moral-Avila, Rosario; Fernández-de-las-Peñas, César; Feriche-Fernández-Castanys, María Belén; Arroyo-Morales, Manuel

    2012-01-01

    The purpose of the present paper was to evaluate the effects of an 8-week multimodal program focused on core stability exercises and recovery massage with DVD support for a 6-month period in physical...

  10. Effect of core design and veneering technique on damage and reliability of Y-TZP-supported crowns.

    Science.gov (United States)

    Guess, Petra C; Bonfante, Estevam A; Silva, Nelson R F A; Coelho, Paulo G; Thompson, Van P

    2013-03-01

    To evaluate the effect of framework design modification and veneering techniques in fatigue reliability and failure modes of veneered Yttria-Stabilized Tetragonal Zirconia Polycrystals (Y-TZP) crowns. A CAD-based mandibular molar crown preparation served as a master die. Y-TZP crown cores (VITA-In-Ceram-YZ, Vita-Zahnfabrik, Bad Säckingen, Germany) in conventional (0.5mm uniform thickness) or anatomically designed fashion (cusp support) were porcelain veneered with either hand-layer (VM9) or pressed (PM9) techniques. Crowns (n=84) were cemented on 30 days aged dentin-like composite dies with resin cement. Crowns were subjected to single load to fracture (n=3 each group) and mouth-motion step-stress fatigue (n=18) by sliding a WC indenter (r=3.18 mm) 0.7 mm buccally on the inner incline surface of the mesio-lingual cusp. Stress-level curves (use level probability lognormal) and reliability (with 2-sided 90% confidence bounds, CB) for completion of a mission of 50.000 cycles at 200 N load were calculated. Fractographic analyses were performed under light-polarized and scanning electron microscopes. Higher reliability for hand-layer veneered conventional core (0.99, CB 0.98-1) was found compared to its counterpart press-veneered (0.50 CB 0.33-65). Framework design modification significantly increased reliability for both veneering techniques (PM9 [0.98 CB 0.87-0.99], VM9 [1.00 CB 0.99-1]) and resulted in reduced veneer porcelain fracture sizes. Main fracture mode observed was veneer porcelain chipping, regardless of framework design and veneering technique. Hand-layer porcelain veneered on conventional core designs presented higher reliability than press-veneered with similar core designs. Anatomic core design modification significantly increased the reliability and resulted in reduced chip size of either veneering techniques. Copyright © 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  11. Effects of cooling rate on vermicular graphite percentage in a brake drum produced by one-step cored wire injection

    Directory of Open Access Journals (Sweden)

    Yu-shuang Feng

    2015-09-01

    Full Text Available In this research, a vermicular graphite cast iron brake drum was produced by cored wire injection in a one-step method. Silica sand and low-density alumina-silicate ceramic were used as molding materials in order to investigate the effect of cooling rate on percentage of vermicular graphite and mechanical properties of the brake drum casting. Several thermocouples were inserted into the casting in the desired positions to measure the temperature change. By means of one-step cored wire injection, the two residual concentrations of Mg and RE were effectively controlled in the ranges of 0.013%-0.017% and 0.019%-0.025%, respectively, which are crucial for the production of vermicular graphite cast iron and the formation of vermicular graphite. In addition, the cooling rate had a significant effect on the vermicular graphite percentage. In the case of the silica mold brake drum casting, there was an obvious difference in the cooling rate with the wall change, leading to a change in vermicular graphite percentage from 70.8% to 90%. In the low-density alumina-silicate ceramic mold casting, no obvious change in temperature was detected by the thermocouples and the percentage of the vermicular graphite was stable at 85%. Therefore, the vermicular graphite cast iron brake drum with a better combination of mechanical properties could be obtained.

  12. Effect of position and height of a mobile core type artificial disc on the biomechanical behaviour of the lumbar spine.

    Science.gov (United States)

    Rohlmann, A; Zander, T; Bock, B; Bergmann, G

    2008-02-01

    The extent of natural disc removal and the implant position and height of an artificial disc with a mobile core were studied for their effects on intersegmental rotation, intradiscal pressure, and facet joint force. A validated finite element model of the lumbar spine was used. The model was loaded with the upper body weight, a follower load, and muscle forces to simulate standing, flexion, extension, lateral bending, and axial rotation. The implant position was varied up to 2 mm in an anterior and posterior direction and up to 3 mm in a lateral direction. Three different implant heights were simulated. The effect of removing the lateral parts of the annulus was also studied. The implant position and height markedly affect intersegmental rotation and facet joint forces but have hardly any influence on intradiscal pressure in the adjacent discs. Removing the lateral parts of the annulus increases intersegmental rotation and facet joint force mainly for lateral bending and axial rotation. The calculated translation of the mobile implant core is about 1 mm at most, and thus its effect is often overestimated. Great care should be taken to choose the optimal implant height and to insert the implant in the best position for each individual patient.

  13. [Effect of core: dentin thickness ratio on the flexure strength of IPS Empress II heat-pressed all-ceramic restorative material].

    Science.gov (United States)

    Liu, Yi-hong; Feng, Hai-lan; Bao, Yi-wang; Qiu, Yan

    2007-02-18

    To evaluate the effect of core:dentin thickness ratio on the flexure strength, fracture mode and origin of bilayered IPS Empress II ceramic composite specimens. IPS Empress II core ceramic, dentin porcelain and bilayered composite specimens with core:dentin thickness ratio of 2:1 and 1:1 were tested in three-point flexure strength. Mean strengths and standard deviations were determined. The optical microscopy was employed for identification of the fracture mode and origin. The flexure strength of dentin porcelain was the smallest(62.7 MPa), and the strength of bilayered composite specimens was smaller than single-layered core ceramic(190.2 MPa). The core: dentin ratio did not influence the strength of bilayered composite specimens. The frequency of occurrence of bilayered specimen delaminations was higher in the group of core: dentin thickness ratio of 1:1 than in the group of 2:1. IPS Empress II core ceramic was significantly stronger than veneering dentin porcelain. Core:dentin thickness ratio could significantly influence the fracture mode and origin, and bilayered IPS Empress II ceramic composite specimens showed little influence in the fracture strength.

  14. The effects of applying silicon carbide coating on core reactivity of pebble-bed HTR in water ingress accident

    Energy Technology Data Exchange (ETDEWEB)

    Zuhair, S.; Setiadipura, Topan [National Nuclear Energy Agency of Indonesia, Serpong Tagerang Selatan (Indonesia). Center for Nuclear Reactor Technology and Safety; Su' ud, Zaki [Bandung Institute of Technology (Indonesia). Dept. of Physics

    2017-03-15

    Graphite is used as the moderator, fuel barrier material, and core structure in High Temperature Reactors (HTRs). However, despite its good thermal and mechanical properties below the radiation and high temperatures, it cannot avoid corrosion as a consequence of an accident of water/air ingress. Degradation of graphite as a main HTR material and the formation of dangerous CO gas is a serious problem in HTR safety. One of the several steps that can be adopted to avoid or prevent the corrosion of graphite by the water/air ingress is the application of a thin layer of silicon carbide (SiC) on the surface of the fuel element. This study investigates the effect of applying SiC coating on the fuel surfaces of pebble-bed HTR in water ingress accident from the reactivity points of view. A series of reactivity calculations were done with the Monte Carlo transport code MCNPX and continuous energy nuclear data library ENDF/B-VII at temperature of 1200 K. Three options of UO{sub 2}, PuO{sub 2}, and ThO{sub 2}/UO{sub 2} fuel kernel were considered to obtain the inter comparison of the core reactivity of pebble-bed HTR in conditions of water/air ingress accident. The calculation results indicated that the UO{sub 2}-fueled pebble-bed HTR reactivity was slightly reduced and relatively more decreased when the thickness of the SiC coating increased. The reactivity characteristic of ThO{sub 2}/UO{sub 2}-fueled pebble-bed HTR showed a similar trend to that of UO{sub 2}, but did not show reactivity peak caused by water ingress. In contrast with UO{sub 2}- and ThO{sub 2}-fueled pebble-bed HTR, although the reactivity of PuO{sub 2}-fueled pebble-bed HTR was the lowest, its characteristics showed a very high reactivity peak (0.33 Δk/k) and this introduction of positive reactivity is difficult to control. SiC coating on the surface of the plutonium fuel pebble has no significant impact. From the comparison between reactivity characteristics of uranium, thorium and plutonium cores with 0

  15. Porosity Effect in the Core Thermal Hydraulics for Ultra High Temperature Gas-cooled Reactor

    Directory of Open Access Journals (Sweden)

    Motoo Fumizawa

    2008-12-01

    Full Text Available This study presents an experimental method of porosity evaluation and a predictive thermal-hydraulic analysis with packed spheres in a nuclear reactor core. The porosity experiments were carried out in both a fully shaken state with the closest possible packing and in a state of non-vibration. The predictive analysis considering the fixed porosity value was applied as a design condition for an Ultra High Temperature Reactor Experiment (UHTREX. The thermal-hydraulic computer code was developed and identified as PEBTEMP. The highest outlet coolant temperature of 1316 oC was achieved in the case of an UHTREX at Los Alamos Scientific Laboratory, which was a small scale UHTR. In the present study, the fuel was changed to a pebble type, a porous media. In order to compare the present pebble bed reactor and UHTREX, a calculation based on HTGR-GT300 was carried out in similar conditions with UHTREX; in other words, with an inlet coolant temperature of 871oC, system pressure of 3.45 MPa and power density of 1.3 w/cm3. As a result, the fuel temperature in the present pebble bed reactor showed an extremely lower value compared to that of UHTREX.

  16. Effects of Pilates core stability exercises on the balance abilities of archers.

    Science.gov (United States)

    Park, Jeong-Min; Hyun, Gwang-Suk; Jee, Yong-Seok

    2016-12-01

    This study aimed to provide fundamental data contributing to archery performance improvement and stabilization of shooting posture in archers by examining the influence of Pilates core stability (PCS) exercises on dynamic and static balance. The study was conducted from December 2015 to March 2016 on high school archers who were registered as archers in the Korea Archery Association with 5 or more years of archery experience. Twenty voluntary subjects (exercise group n=10; control group n=10) with an understanding toward the aims of this study were selected and their body composition, static and dynamic balance abilities, before and after the PCS program, were measured. As for the static balance ability, there were no significant differences between pre- and postvalues in the exercise group after completing the PCS program. Similarly, these results were also represented in the control group. In the aspect of comparisons between postvalues in both groups, there were significant improvements in only the exercise group. As for the dynamic balance ability, there were significant differences between pre- and postvalues in the exercise group, except for up-right and left postures, whereas, there were no changes or decreases between pre- and postvalues in the control group after completing the PCS program. Meanwhile, in the aspect of comparisons between postvalues in both groups, there were significant improvements in up, and up right, and down right part and overall dynamic scores of the exercise groups.

  17. Effects of Publications in Proceedings on the Measure of the Core Size of Coauthors

    CERN Document Server

    Miśkiewicz, Janusz

    2013-01-01

    Coauthors (CA) of a "lead investigator" (LI) can receive a rank (r) according to their "importance" in having published joint publications with the LI. It is commonly accepted, without any proof, that publications in peer review journals and e.g. conference proceedings do not have the same "value" in a CV. Same for papers contributed to encyclopedia and book chapters. It is here examined whether the relationship between the number (J) of publications of some scientist with her/his coauthors, ranked according to their decreasing importance, i.e. $ J \\propto 1/r^{\\alpha} $, as found by Ausloos, still holds if the overall publication list is broken into such specific types of publications. Several authors, with different careers, but mainly having worked in the field of statistical mechanics, are studied here to sort out answers to the questions. The exponent $\\alpha$ turns out to be weakly scientist dependent, only if the maximum value of J and r is large and is $\\sim +1$ then. The $m_A$ core value, i.e. the co...

  18. Coupled-core fluxgate magnetometer: Novel configuration scheme and the effects of a noise-contaminated external signal

    Energy Technology Data Exchange (ETDEWEB)

    Palacios, Antonio [San Diego State University, Nonlinear Dynamical Systems Group, Department of Mathematics and Statistics, San Diego, CA 92182-7720 (United States)]. E-mail: palacios@euler.sdsu.edu; Aven, John [San Diego State University, Nonlinear Dynamical Systems Group, Department of Mathematics and Statistics, San Diego, CA 92182-7720 (United States); In, Visarath [Space and Naval Warfare Systems Center San Diego, Code 2363, 53560 Hull St, San Diego, CA 92152-5001 (United States)]. E-mail: visarath@spawar.navy.mil; Longhini, Patrick [Space and Naval Warfare Systems Center San Diego, Code 2363, 53560 Hull St, San Diego, CA 92152-5001 (United States); Kho, Andy [Space and Naval Warfare Systems Center San Diego, Code 2363, 53560 Hull St, San Diego, CA 92152-5001 (United States); Neff, Joseph D. [Space and Naval Warfare Systems Center San Diego, Code 2363, 53560 Hull St, San Diego, CA 92152-5001 (United States); Bulsara, Adi [Space and Naval Warfare Systems Center San Diego, Code 2363, 53560 Hull St, San Diego, CA 92152-5001 (United States)]. E-mail: bulsara@spawar.navy.mil

    2007-07-16

    Recent theoretical and experimental work has shown that unidirectional coupling can induce oscillations in overdamped and undriven nonlinear dynamical systems that are non-oscillatory when uncoupled; in turn, this has been shown to lead to new mechanisms for weak (compared to the energy barrier height) signal detection and amplification. The potential applications include fluxgate magnetometers, electric field sensors, and arrays of Superconducting Quantum Interference Device (SQUID) rings. In the particular case of the fluxgate magnetometer, we have developed a ''coupled-core fluxgate magnetometer'' (CCFM); this device has been realized in the laboratory and its dynamics used to quantify many properties that are generic to this class of systems and coupling. The CCFM operation is underpinned by the emergent oscillatory behavior in a unidirectionally coupled ring of wound ferromagnetic cores, each of which can be treated as an overdamped bistable dynamic system when uncoupled. In particular, one can determine the regimes of existence and stability of the (coupling-induced) oscillations, and the scaling behavior of the oscillation frequency. More recently, we studied the effects of a (Gaussian) magnetic noise floor on a CCFM system realized with N=3 coupled ferromagnetic cores. In this Letter, we first introduce a variation on the basic CCFM configuration that affords a path to enhanced device sensitivity, particularly for N>=3 coupled elements. We then analyze the response of the basic CCFM configuration as well as the new setup to a dc target signal that has a small noisy component (or ''contamination'')

  19. Effect of Core/Shell Interface on Carrier Dynamics and Optical Gain Properties of Dual-Color Emitting CdSe/CdS Nanocrystals.

    Science.gov (United States)

    Pinchetti, Valerio; Meinardi, Francesco; Camellini, Andrea; Sirigu, Gianluca; Christodoulou, Sotirios; Bae, Wan Ki; De Donato, Francesco; Manna, Liberato; Zavelani-Rossi, Margherita; Moreels, Iwan; Klimov, Victor I; Brovelli, Sergio

    2016-07-26

    Two-color emitting colloidal semiconductor nanocrystals (NCs) are of interest for applications in multimodal imaging, sensing, lighting, and integrated photonics. Dual color emission from core- and shell-related optical transitions has been recently obtained using so-called dot-in-bulk (DiB) CdSe/CdS NCs comprising a quantum-confined CdSe core embedded into an ultrathick (∼7-9 nm) CdS shell. The physical mechanism underlying this behavior is still under debate. While a large shell volume appears to be a necessary condition for dual emission, comparison between various types of thick-shell CdSe/CdS NCs indicates a critical role of the interface "sharpness" and the presence of potential barriers. To elucidate the effect of the interface morphology on the dual emission, we perform side-by-side studies of CdSe/CdS DiB-NCs with nominally identical core and shell dimensions but different structural properties of the core/shell interface arising from the crystal structure of the starting CdSe cores (zincblende vs wurtzite). While both structures exhibit dual emission under comparable pump intensities, NCs with a zincblende core show a faster growth of shell luminescence with excitation fluence and a more readily realized regime of amplified spontaneous emission (ASE) even under "slow" nanosecond excitation. These distinctions can be linked to the structure of the core/shell interface: NCs grown from the zincblende cores contain a ∼3.5 nm thick zincblende CdS interlayer, which separates the core from the wurtzite CdS shell and creates a potential barrier for photoexcited shell holes inhibiting their relaxation into the core. This helps maintain a higher population of shell states and simplifies the realization of dual emission and ASE involving shell-based optical transitions.

  20. Effects of core-to-dentin thickness ratio on the biaxial flexural strength, reliability, and fracture mode of bilayered materials of zirconia core (Y-TZP) and veneer indirect composite resins.

    Science.gov (United States)

    Su, Naichuan; Liao, Yunmao; Zhang, Hai; Yue, Li; Lu, Xiaowen; Shen, Jiefei; Wang, Hang

    2017-01-01

    Indirect composite resins (ICR) are promising alternatives as veneering materials for zirconia frameworks. The effects of core-to-dentin thickness ratio (C/Dtr) on the mechanical property of bilayered veneer ICR/yttria-tetragonal zirconia polycrystalline (Y-TZP) core disks have not been previously studied. The purpose of this in vitro study was to assess the effects of C/Dtr on the biaxial flexural strength, reliability, and fracture mode of bilayered veneer ICR/ Y-TZP core disks. A total of 180 bilayered 0.6-mm-thick composite resin disks in core material and C/Dtr of 2:1, 1:1, and 1:2 were tested with either core material placed up or placed down for piston-on-3-ball biaxial flexural strength. The mean biaxial flexural strength, Weibull modulus, and fracture mode were measured to evaluate the variation trend of the biaxial flexural strength, reliability, and fracture mode of the bilayered disks with various C/Dtr. One-way analysis of variance (ANOVA) and chi-square tests were used to evaluate the variation tendency of fracture mode with the C/Dtr or material placed down during testing (α=.05). Light microscopy was used to identify the fracture mode. The mean biaxial flexural strength and reliability improved with the increase in C/Dtr when specimens were tested with the core material either up and down, and depended on the materials that were placed down during testing. The rates of delamination, Hertzian cone cracks, subcritical radial cracks, and number of fracture fragments partially depended on the C/Dtr and the materials that were placed down during testing. The biaxial flexural strength, reliability, and fracture mode in bilayered structures of Y-TZP core and veneer ICR depend on both the C/Dtr and the material that was placed down during testing. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  1. Effects of rare earth doping on multi-core iron oxide nanoparticles properties

    Science.gov (United States)

    Petran, Anca; Radu, Teodora; Borodi, Gheorghe; Nan, Alexandrina; Suciu, Maria; Turcu, Rodica

    2018-01-01

    New multi-core iron oxide magnetic nanoparticles doped with rare earth metals (Gd, Eu) were obtained by a one step synthesis procedure using a solvothermal method for potential biomedical applications. The obtained clusters were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), energy-dispersive X-ray microanalysis (EDX), X-ray photoelectron spectroscopy (XPS) and magnetization measurements. They possess high colloidal stability, a saturation magnetization of up to 52 emu/g, and nearly spherical shape. The presence of rare earth ions in the obtained samples was confirmed by EDX and XPS. XRD analysis proved the homogeneous distribution of the trivalent rare earth ions in the inverse-spinel structure of magnetite and the increase of crystal strain upon doping the samples. XPS study reveals the valence state and the cation distribution on the octahedral and tetrahedral sites of the analysed samples. The observed shift of the XPS valence band spectra maximum in the direction of higher binding energies after rare earth doping, as well as theoretical valence band calculations prove the presence of Gd and Eu ions in octahedral sites. The blood protein adsorption ability of the obtained samples surface, the most important factor of the interaction between biomaterials and body fluids, was assessed by interaction with bovine serum albumin (BSA). The rare earth doped clusters surface show higher afinity for binding BSA. In vitro cytotoxicity test results for the studied samples showed no cytotoxicity in low and medium doses, establishing a potential perspective for rare earth doped MNC to facilitate multiple therapies in a single formulation for cancer theranostics.

  2. Effects of different per translational kinetics on the dynamics of a core circadian clock model.

    Directory of Open Access Journals (Sweden)

    Paula S Nieto

    Full Text Available Living beings display self-sustained daily rhythms in multiple biological processes, which persist in the absence of external cues since they are generated by endogenous circadian clocks. The period (per gene is a central player within the core molecular mechanism for keeping circadian time in most animals. Recently, the modulation PER translation has been reported, both in mammals and flies, suggesting that translational regulation of clock components is important for the proper clock gene expression and molecular clock performance. Because translational regulation ultimately implies changes in the kinetics of translation and, therefore, in the circadian clock dynamics, we sought to study how and to what extent the molecular clock dynamics is affected by the kinetics of PER translation. With this objective, we used a minimal mathematical model of the molecular circadian clock to qualitatively characterize the dynamical changes derived from kinetically different PER translational mechanisms. We found that the emergence of self-sustained oscillations with characteristic period, amplitude, and phase lag (time delays between per mRNA and protein expression depends on the kinetic parameters related to PER translation. Interestingly, under certain conditions, a PER translation mechanism with saturable kinetics introduces longer time delays than a mechanism ruled by a first-order kinetics. In addition, the kinetic laws of PER translation significantly changed the sensitivity of our model to parameters related to the synthesis and degradation of per mRNA and PER degradation. Lastly, we found a set of parameters, with realistic values, for which our model reproduces some experimental results reported recently for Drosophila melanogaster and we present some predictions derived from our analysis.

  3. Ultrafast magnetic vortex core switching driven by the topological inverse Faraday effect.

    Science.gov (United States)

    Taguchi, Katsuhisa; Ohe, Jun-ichiro; Tatara, Gen

    2012-09-21

    We present a theoretical discovery of an unconventional mechanism of inverse Faraday effect which acts selectively on topological magnetic structures. The effect, topological inverse Faraday effect, is induced by the spin Berry's phase of the magnetic structure when a circularly polarized light is applied. Thus a spin-orbit interaction is not necessary unlike that in the conventional inverse Faraday effect. We demonstrate by numerical simulation that topological inverse Faraday effect realizes ultrafast switching of a magnetic vortex within a switching time of 150 ps without magnetic field.

  4. Effect of core ceramic grinding on fracture behaviour of bilayered zirconia veneering ceramic systems under two loading schemes.

    Science.gov (United States)

    Jian, Yu-Tao; Tang, Tian-Yu; Swain, Michael V; Wang, Xiao-Dong; Zhao, Ke

    2016-12-01

    The aim of this in vitro study was to evaluate the effect of core ceramic grinding on the fracture behaviour of bilayered zirconia under two loading schemes. Interfacial surfaces of sandblasted zirconia disks (A) were ground with 80 (B), 120 (C) and 220 (D) grit diamond discs, respectively. Surface roughness and topographic analysis were performed using a confocal scanning laser microscope (CSLM) and a scanning electron microscopy (SEM). Relative monoclinic content was evaluated using X-ray diffraction analysis (XRD) then reevaluated after simulated veneer firing. Biaxial fracture strength (σ) and Weibull modulus (m) were calculated either with core in compression (subgroup Ac-Dc) or in tension (subgroup At-Dt). Facture surfaces were examined by SEM and energy dispersive X-ray spectroscopy (EDS). Maximum tensile stress at fracture was estimated by finite element analysis. Statistical data analysis was performed using Kruskal-Wallis and one-way ANOVA at a significance level of 0.05. As grit size of the diamond disc increased, zirconia surface roughness decreased (pveneering treatment reversed the transformation of monoclinic phase observed after initial grinding. No difference in initial (p=0.519 for subgroups Ac-Dc) and final fracture strength (p=0.699 for subgroups Ac-Dc; p=0.328 for subgroups At-Dt) was found among the four groups for both loading schemes. While coarse grinding slightly increased final fracture strength reliability (m) for subgroups Ac-Dc. Two different modes of fracture were observed according to which material was on the bottom surface. Components of the liner porcelain remained on the zirconia surface after fracture for all groups. Technician grinding changed surface topography of zirconia ceramic material, but was not detrimental to the bilayered system strength after veneer application. Coarse grinding slightly improved the fracture strength reliability of the bilayered system tested with core in compression. It is recommended that

  5. Performance Analysis on Passive Emergency Core Cooling System in the Low Power and Shutdown Operation

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Soon Il; Hong, Soon Joon [FNC TECH. Yongin (Korea, Republic of); Kang, Sang Hee; Kim, Han Gon [Korea Hydro and Nuclear Power Co., Daejeon (Korea, Republic of)

    2016-05-15

    A Passive Emergency Core Cooling System (PECCS) is to be adopted as an improved safety design feature of APR+. During plant Shutdowns, certain maintenance and testing activities require a drain down of the RCS to a partially filled condition. And Shutdown Cooling System(SCS) is placed into service to accomplish Reactor coolant system(RCS) cooldown to refueling temperatures. If SCS operation is not re-established, core boiling and pressurization can produce rapid core uncovery. When unfavorable accidents such loss of SCS happen, the PECCS should be able to make up the core and then cool down the core. This study discusses the applicability of PECCS and the performance analysis during loss of SCS or RCS inventory. In this study, the applicability of PECCS and analysis performance during loss of SCS or RCS inventory were assessed. RELAP5 calculations show that PECCS can make up the core and then prevent the core from being damaged. Resultant analysis shows the role of the ADV for RCS depressurization, and SITs for RCS making up.

  6. Optimizing performance by improving core stability and core strength.

    Science.gov (United States)

    Hibbs, Angela E; Thompson, Kevin G; French, Duncan; Wrigley, Allan; Spears, Iain

    2008-01-01

    Core stability and core strength have been subject to research since the early 1980s. Research has highlighted benefits of training these processes for people with back pain and for carrying out everyday activities. However, less research has been performed on the benefits of core training for elite athletes and how this training should be carried out to optimize sporting performance. Many elite athletes undertake core stability and core strength training as part of their training programme, despite contradictory findings and conclusions as to their efficacy. This is mainly due to the lack of a gold standard method for measuring core stability and strength when performing everyday tasks and sporting movements. A further confounding factor is that because of the differing demands on the core musculature during everyday activities (low load, slow movements) and sporting activities (high load, resisted, dynamic movements), research performed in the rehabilitation sector cannot be applied to the sporting environment and, subsequently, data regarding core training programmes and their effectiveness on sporting performance are lacking. There are many articles in the literature that promote core training programmes and exercises for performance enhancement without providing a strong scientific rationale of their effectiveness, especially in the sporting sector. In the rehabilitation sector, improvements in lower back injuries have been reported by improving core stability. Few studies have observed any performance enhancement in sporting activities despite observing improvements in core stability and core strength following a core training programme. A clearer understanding of the roles that specific muscles have during core stability and core strength exercises would enable more functional training programmes to be implemented, which may result in a more effective transfer of these skills to actual sporting activities.

  7. Effects of core characters and veneering technique on biaxial flexural strength in porcelain fused to metal and porcelain veneered zirconia

    OpenAIRE

    Oh, Ju-Won; Song, Kwang-Yeob; Ahn, Seung-Geun; Park, Ju-Mi; Lee, Min-Ho; Seo, Jae-Min

    2015-01-01

    PURPOSE The purpose of this study was to assess the impact of the core materials, thickness and fabrication methods of veneering porcelain on prosthesis fracture in the porcelain fused to metal and the porcelain veneered zirconia. MATERIALS AND METHODS Forty nickel-chrome alloy cores and 40 zirconia cores were made. Half of each core group was 0.5 mm-in thickness and the other half was 1.0 mm-in thickness. Thus, there were four groups with 20 cores/group. Each group was divided into two subgr...

  8. Effective targeting of gemcitabine to pancreatic cancer through PEG-cored Flt-1 antibody-conjugated dendrimers.

    Science.gov (United States)

    Öztürk, Kıvılcım; Esendağlı, Güneş; Gürbüz, Mustafa Ulvi; Tülü, Metin; Çalış, Sema

    2017-01-30

    Tumor-targeted delivery of anticancer drugs using dendrimers has been recognized as a promising strategy to increase efficiency and reduce adverse effects of chemotherapy. Herein, we developed a dendrimer-based drug delivery system targeting Flt-1 (a receptor for vascular endothelial growth factors (VEGF)) receptor to improve therapeutic efficacy of gemcitabine in pancreatic cancer. Synthesized polyethylene glycol (PEG)-cored PAMAM dendrimers, which bear anionic carboxylic acid groups on the surface were modified with PEG chains, which were then conjugated with Flt-1 antibody. Following structural and chemical characterization studies, gemcitabine HCl-dendrimer inclusion complexes were successfully prepared. These complexes were efficiently engulfed by Flt-1 expressing pancreatic cancer cells, which enhanced the cytotoxicity of gemcitabine. Moreover, pancreatic tumors established in mice were highly targeted by PEG-cored Flt-1 antibody-conjugated dendrimers and increased accumulation of these gemcitabine-loaded complexes exhibited satisfactory in vivo anti-cancer efficacy. In conclusion, dendrimer-based targeted delivery of chemotherapeutics may serve as a promising approach for the treatment of malignancies such as pancreatic cancer that do not benefit from conventional chemotherapy. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Elucidating the effects of laccase-modifying compounds treatments on bast and core fibers in flax pulp.

    Science.gov (United States)

    Fillat, Amanda; Roncero, M Blanca; Vidal, Teresa

    2012-01-01

    Laccases in combination with various chemical compounds have been tested with a view to obtain environmental friendly, high-value paper products from unbleached flax pulp, which is currently being assessed as a raw material for biotechnological innovation. With the aim of better understanding the effects of violuric acid (VA) and p-coumaric acid (PCA) on flax pulp, changes in the chemical composition of the two major fiber types it contains were assessed. Following classification, the initial pulp was split into two fractions according to fiber size, namely: bast (long) fibers and core (short) fibers. Fiber size was found to significantly influence the properties of pulp and it response to various laccase treatments. The laccase-PCA treatment substantially increased kappa number (KN) and color in both fiber fractions, which suggests grafting of the phenolic compound onto fibers. On the other hand, the laccase-VA treatment produced long fibers with a low lignin content (KN = 1.3) and a high brightness (5% points higher than for the control fraction), which testifies to its bleaching efficiency. Both biotreatments produced long fibers containing highly crystalline cellulose and caused HexA removal from global and short fibers. On the other hand, the laccase treatments caused no morphological changes in the fibers, the integrity of which was largely preserved. As shown here, laccase acts as polymerization agent with PCA and as delignification agent with VA; also, the two enzymes systems act differently on bast and core fibers. Copyright © 2011 Wiley Periodicals, Inc.

  10. Field calibration of soil-core microcosms for evaluating fate and effects of genetically engineered microorganisms in terrestrial ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Bolton, H Jr; Fredrickson, J K; Bentjen, S A; Workman, D J; Li, S W; Thomas, J M

    1991-04-01

    Pacific Northwest Laboratory compared intact soil-core microcosms and the field for ecosystem structural and functional properties after the introduction of a model genetically engineered microorganism (GEM). This project used two distinct microbial types as model GEMs, Gram-negative Pseudomonas sp. RC1, which was an aggressive root colonizer, and Gram-positive Streptomyces lividans TK24. The model GEMs were added to surface soil in separate studies, with RC1 studied throughout the growth of winter wheat (Triticum aestivum), while TK24 was studied throughout a ten month period. Also, RC1 was used in studies conducted during two consecutive field seasons (1988 to 1990) to determine how year-to-year field variability influenced the calibration of microcosms with the field. The main conclusions of this research were that intact soil-core microcosms can be useful to simulate the field for studies of microbial fate and effects on ecosystem structural and functional properties. In general, microcosms in the growth chamber, which simulated average field variations, were similar to the field for most parameters or differences could be attributed to the great extremes in temperature that occurred in the field compared to the microcosms. Better controls of environmental variables including temperature and moisture will be necessary to more closely simulate the field for future use of microcosms for risk assessment. 126 refs., 13 figs., 12 tabs.

  11. Effects of Rotation on Stochasticity of Gravitational Waves in the Nonlinear Phase of Core-collapse Supernovae

    Science.gov (United States)

    Kotake, Kei; Iwakami-Nakano, Wakana; Ohnishi, Naofumi

    2011-08-01

    By performing three-dimensional (3D) simulations that demonstrate the neutrino-driven core-collapse supernovae aided by the standing accretion shock instability (SASI), we study how the spiral modes of the SASI can impact the properties of the gravitational-wave (GW) emission. To see the effects of rotation in the nonlinear postbounce phase, we give a uniform rotation on the flow advecting from the outer boundary of the iron core, the specific angular momentum of which is assumed to agree with recent stellar evolution models. We compute fifteen 3D models in which the initial angular momentum and the input neutrino luminosities from the protoneutron star are changed in a systematic manner. By performing a ray-tracing analysis, we accurately estimate the GW amplitudes generated by anisotropic neutrino emission. Our results show that the gravitational waveforms from neutrinos in models that include rotation exhibit a common feature; otherwise, they vary much more stochastically in the absence of rotation. The breaking of the stochasticity stems from the excess of the neutrino emission parallel to the spin axis. This is because the compression of matter is more enhanced in the vicinity of the equatorial plane due to the growth of the spiral SASI modes, leading to the formation of the spiral flows circulating around the spin axis with higher temperatures. We point out that recently proposed future space interferometers like Fabry-Perot-type DECIGO would permit the detection of these signals for a Galactic supernova.

  12. Effectiveness of Core Stability Exercises and Recovery Myofascial Release Massage on Fatigue in Breast Cancer Survivors: A Randomized Controlled Clinical Trial

    OpenAIRE

    Irene Cantarero-Villanueva; Carolina Fernández-Lao; Rosario del Moral-Avila; César Fernández-de-las-Peñas; María Belén Feriche-Fernández-Castanys; Manuel Arroyo-Morales

    2011-01-01

    The purpose of the present paper was to evaluate the effects of an 8-week multimodal program focused on core stability exercises and recovery massage with DVD support for a 6-month period in physical and psychological outcomes in breast cancer survivors. A randomized controlled clinical trial was performed. Seventy-eight (n = 78) breast cancer survivors were assigned to experimental (core stability exercises plus massage-myofascial release) and control (usual health care) groups. The interven...

  13. Advanced Pressure Coring System for Deep Earth Sampling (APRECOS)

    Science.gov (United States)

    Anders, E.; Rothfuss, M.; Müller, W. H.

    2009-04-01

    Nowadays the recovery of cores from boreholes is a standard operation. However, during that process the mechanical, physical, and chemical properties as well as living conditions for microorganisms are significantly altered. In-situ sampling is one approach to overcome the severe scientific limitations of conventional, depressurized core investigations by recovering, processing, and conducting experiments in the laboratory, while maintaining unchanged environmental parameters. The most successful equipment today is the suite of tools developed within the EU funded projects HYACE (Hydrate Autoclave Coring Equipment) and HYACINTH (Deployment of HYACE tools In New Tests on Hydrates) between 1997 and 2005. Within several DFG (German Research Foundation) projects the Technical University Berlin currently works on concepts to increase the present working pressure of 250 bar as well as to reduce logistical and financial expenses by merging redundant and analogous procedures and scaling down the considerable size of key components. It is also proposed to extend the range of applications for the wireline rotary pressure corer and the sub-sampling and transfer system to all types of soil conditions (soft to highly-consolidated). New modifications enable the tools to be used in other pressure related fields of research, such as unconventional gas exploration (coal-bed methane, tight gas, gas hydrate), CO2 sequestration, and microbiology of the deep biosphere. Expedient enhancement of an overall solution for pressure core retrieval, process and investigation will open the way for a complete on-site, all-purpose, in-situ equipment. The advanced assembly would allow for executing the whole operation sequences of coring, non-destructive measurement, sub-sampling and transfer into storage, measurement and transportation chambers, all in sterile, anaerobic conditions, and without depressurisation in quick succession. Extensive post-cruise handling and interim storage would be

  14. Effect of lipolysis on drug release from self-microemulsifying drug delivery systems (SMEDDS) with different core/shell drug location.

    Science.gov (United States)

    Zhang, Jianbin; Lv, Yan; Zhao, Shan; Wang, Bing; Tan, Mingqian; Xie, Hongguo; Lv, Guojun; Ma, Xiaojun

    2014-06-01

    The objective of this study is to investigate the effect of lipolysis on the release of poorly water-soluble drug from SMEDDS in the perspective of drug core/shell location. For this purpose, four SMEDDS formulations with various core/shell properties were developed based on long-chain lipid or medium-chain lipid as well as different surfactant/oil ratios. Poorly water-soluble drugs, hymecromone and resveratrol, were significantly solubilized in all SMEDDS formulations and the diluted microemulsions. Fluorescence spectra analysis indicated that hymecromone was mainly located in the shell of microemulsions, while resveratrol was located in the core. The effect of lipolysis on the release rates of drugs with different core/shell locations were investigated by a modified in vitro drug release model. For the drug located in the shell, hymecromone, the release profiles were not affected during the lipolysis process and no significant differences were observed among four formulations. For the drug located in the core, resveratrol, the release rates were increased to various degrees depending on the extent of digestion. In conclusion, the drug core/shell location plays an important role for determining the effect of lipolysis on drug release from SMEDDS formulation.

  15. Organizing Core Tasks

    DEFF Research Database (Denmark)

    Boll, Karen

    Civil servants conduct the work which makes welfare states functions on an everyday bases: Police men police, school teachers teach, and tax inspectors inspect. Focus in this paper is on the core tasks of tax inspectors. The paper argues that their core task of securing the collection of revenue...... has remained much the same within the last 10 years. However, how the core task has been organized has changed considerable under the influence of various “organizing devices”. The paper focusses on how organizing devices such as risk assessment, output-focus, effect orientation, and treatment...... projects influence the organization of core tasks within the tax administration. The paper shows that the organizational transformations based on the use of these devices have had consequences both for the overall collection of revenue and for the employees’ feeling of “making a difference”. All in all...

  16. Ab initio effective core potentials including relativistic effects and their application to the electronic structure calculations of heavy atoms and molecules

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y.S.

    1977-11-01

    The effects of the 4f shell of electrons and the relativity of valence electrons are compared. The effect of 4f shell (lanthanide contraction) is estimated from the numerical Hartree-Fock (HF) calculations of pseudo-atoms corresponding to Hf, Re, Au, Hg, Tl, Pb and Bi without 4f electrons and with atomic numbers reduced by 14. The relativistic effect estimated from the numerical Dirac-Hartree-Fock (DHF) calculations of those atoms is comparable in the magnitude with that of the 4f shell of electrons. Both are larger for 6s than for 5d or 6p electrons. The various relativistic effects on valence electrons are discussed in detail to determine the proper level of the approximation for the valence electron calculations of systems with heavy elements. An effective core potential system has been developed for heavy atoms in which relativistic effects are included in the effective potentials.

  17. The effects of sodium oxybate on core body and skin temperature regulation in narcolepsy

    National Research Council Canada - National Science Library

    Heide, A. van der; Donjacour, C.E; Pijl, H; Reijntjes, R.H; Overeem, S; Lammers, G.J; Someren, E.J.W. van; Fronczek, R

    2015-01-01

    .... The aim of the present study is to investigate the effects of sodium oxybate, a widely used drug to treat narcolepsy, on the 24-h profiles of temperature and sleep-wakefulness in patients with narcolepsy and controls...

  18. Effect of curing modes of dual-curing core systems on microtensile bond strength to dentin and formation of an acid-base resistant zone.

    Science.gov (United States)

    Li, Na; Takagaki, Tomohiro; Sadr, Alireza; Waidyasekera, Kanchana; Ikeda, Masaomi; Chen, Jihua; Nikaido, Toru; Tagami, Junji

    2011-12-01

    To evaluate the microtensile bond strength (μTBS) and acid-base resistant zone (ABRZ) of two dualcuring core systems to dentin using four curing modes. Sixty-four caries-free human molars were randomly divided into two groups according to two dual-curing resin core systems: (1) Clearfil DC Core Automix; (2) Estelite Core Quick. For each core system, four different curing modes were applied to the adhesive and core resin: (1) dual-cured and dual-cured (DD); (2) chemically cured and dual-cured (CD); (3) dual-cured and chemically cured (DC); (4) chemically cured and chemically cured (CC). The specimens were sectioned into sticks (n = 20 for each group) for the microtensile bond test. μTBS data were analyzed using two-way ANOVA and the Dunnett T3 test. Failure patterns were examined with scanning electron microscopy (SEM) to determine the proportion of each mode. Dentin sandwiches were produced and subjected to an acid-base challenge. After argon-ion etching, the ultrastructure of ABRZ was observed using SEM. For Clearfil DC Core Automix, the μTBS values in MPa were as follows: DD: 29.1 ± 5.4, CD: 21.6 ± 5.6, DC: 17.9 ± 2.8, CC: 11.5 ± 3.2. For Estelite Core Quick, they were: DD: 48.9 ±5.7, CD: 20.5 ± 4.7, DC: 41.4 ± 8.3, CC: 19.1 ± 6.0. The bond strength was affected by both material and curing mode, and the interaction of the two factors was significant (p core systems affects bond strength to dentin, but has no significant effect on the formation of ABRZ.

  19. Effect of ZnO core electrodeposition conditions on electrochemical and photocatalytic properties of polypyrrole-graphene oxide shelled nanoarrays

    Science.gov (United States)

    Pruna, A.; Shao, Q.; Kamruzzaman, M.; Li, Y. Y.; Zapien, J. A.; Pullini, D.; Busquets Mataix, D.; Ruotolo, A.

    2017-01-01

    Novel hybrid core-shell nanoarchitectures were fabricated by a simple two-step electrochemical approach: first ZnO nanorod core was electrodeposited from Zn(NO3)2 solution; further, the core nanoarray was coated with a shell based on polypyrrole hybridized with graphene oxide by electropolymerization. The properties of the core/shell nanoarchitectures were studied as a function of the core properties induced by electrodeposition parameters. The ZnO nanostructures showed improved crystallinity and c-axis preferred orientation with increasing cathodic deposition potential while the increased deposition duration resulted in a morphology transition from nanorod to pyramidal shape. The electrochemical activity of the core/shell arrays was found to increase with the deposition potential of ZnO core but decreased when morphology changed from nanorod to pyramid shape. The photocatalytic results showed improved activity for the core/hybrid shell nanoarrays with respect to ZnO and ZnO/PPy ones. The degradation rate for methylene blue decreased with prolonged deposition duration of the core. The obtained results highlight the importance of electrochemical tuning of ZnO-based core/shell nanoarrays for improved performance in electrochemical and photocatalytic applications.

  20. Analytical Switching Cycle Modeling of Bidirectional High Voltage Flyback Converter for Capacitive Load Considering Core Loss Effect

    DEFF Research Database (Denmark)

    Huang, Lina; Zhang, Zhe; Andersen, Michael A. E.

    2015-01-01

    With the advancement of material science, various smart materials with intrinsic capacitive property are emerging. The high voltage (HV) power electronics converters with bidirectional energy flow functionality for supplying the capacitive load are highly demanded. A switching cycle based...... of configuration and working principle. Considering the parasitic elements as well as the core loss effect, the converter is modeled with analytical formulas for one switching cycle. The comparison between the model based calculation results and prototype experiments based measurement results are used to validate...... analytical model of HV bidirectional converter driving capacitive load is beneficial in thoroughly understanding the operational behavior, investigating the energy efficiency and optimizing the design. In this paper, a HV bidirectional flyback converter for capacitive load is generally discussed in terms...

  1. Effects of vigorous walking exercise on core body temperature and inhibitory control in thermosensitive persons with multiple sclerosis.

    Science.gov (United States)

    Sandroff, Brian M; Motl, Robert W; Davis, Scott L

    2016-01-01

    Acute, moderate intensity aerobic exercise might improve cognition in multiple sclerosis (MS), but it is unknown if increases in core body temperature (Ctemp) that negates those effects in thermosensitive persons with MS. Fourteen fully ambulatory, thermosensitive persons with MS completed 20-min bouts of vigorous intensity treadmill walking exercise and seated quiet rest in a randomized, counterbalanced order. Ctemp was measured throughout each experimental condition. Inhibitory control (i.e., an executive function) was measured immediately prior to and following each condition. Ctemp was elevated (~0.6 °C) with vigorous exercise versus quiet rest (p exercise versus quiet rest (ηp(2) = 0.29). Exercise-related increases in Ctemp do not nullify the potential acute exercise benefits on inhibitory control in MS.

  2. Effects of Core-Shell Rubber (CSR) Nanoparticles on the Fracture Toughness of an Epoxy Resin at Cryogenic Temperatures

    Science.gov (United States)

    Wang, J.; Cannon, S. A.; Schneider, J. A.

    2008-01-01

    This study investigates the effects of core-shell rubber (CSR) nanoparticles on the fracture toughness of an epoxy resin at liquid nitrogen (LN2) temperatures. Varying amounts of Kane Ace (Registered TradeMark) MX130 toughening agent were added to a commercially available EPON 862/W epoxy resin. Resulting fracture toughness was evaluated by the use of Charpy impact tests conducted on an instrumented drop tower. The size and distribution of the CSR nanoparticles were characterized using Transmission Electric Microscopy (TEM) and Small Angle X-ray Scattering (SAXS). Up to nominal 4.6% addition of the CSR nanoparticles, resulted in a nearly 5 times increase in the measured breaking energy. However, further increases in the amount of CSR nanoparticles had no appreciable affect on the breaking energy.

  3. Towards spatial kinetics in a low void effect sodium fast reactor: core analysis and validation of the TFM neutronic approach

    Directory of Open Access Journals (Sweden)

    Laureau Axel

    2017-01-01

    Full Text Available The studies presented in this paper are performed in the general framework of transient coupled calculations with accurate neutron kinetics models able to characterize spatial decoupling in the core. An innovative fission matrix interpolation model has been developed with a correlated sampling technique associated to the Transient Fission Matrix (TFM approach. This paper presents a validation of this Monte Carlo based kinetic approach on sodium fast reactors. An application case representative of an assembly of the low void effect sodium fast reactor ASTRID is used to study the physics of this kind of system and to illustrate the capabilities provided by this approach. To validate the interpolation model developed, different comparisons have been performed with direct Monte Carlo and ERANOS deterministic S N calculations on spatial kinetics parameters (flux redistribution, reactivity estimation, etc. together with point kinetics feedback estimations.

  4. The effect of boron dilution transient on the VVER-1000 reactor core using MCNP and COBRA-EN codes

    Energy Technology Data Exchange (ETDEWEB)

    Jafari, Naser; Talebi, Saeed [Amirkabir Univ. of Technology, Tehran Polytechnic (Iran, Islamic Republic of). Dept. of Energy Engineering and Physics

    2017-07-15

    In this paper, the effect of boron dilution transient, as a consequence of the malfunction of the boron control system, was investigated in a VVER-1000 reactor, and then an appropriate setpoint was determined for the actuation of the emergency protection system to the reactor shutdown. In order to simulate the boron dilution, first, the whole reactor core was simulated by MCNPX code to compute the radial and axial power distribution. Then, the COBRA-EN code was employed using calculated power distribution for analyzing the thermal-hydraulic of hot fuel assembly and for extracting the safety parameters. For the safe operation of the reactor, certain parameters must be in defined specified ranges. Comparison between our results and FSARs data shows that the present modeling provides a good prediction of boron dilution transient with the maximum relative difference about 4%.

  5. The effects of exchange bias on Fe-Co/MgO magnetic nanoparticles with core/shell morphology

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Boubeta, C; Balcells, Ll; MartInez, B [Instituto de Ciencia de Materiales de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra (Spain); Monty, C, E-mail: ben.martinez@icmab.e [CNRS/Procedes, Materiaux et Energie Solaire (PROMES), 66120 Font Romeu (France)

    2010-01-20

    The effects of exchange bias on core/shell structured nanoparticles are analyzed. Nanoparticles are integrated with high moment Fe-Co crystallites covered epitaxially with MgO shells. It is observed that the coercive field H{sub C}(FeCo)>H{sub C}(Co)>H{sub C}(Fe); however, the exchange bias field H{sub E} of the Co sample is higher than that of the FeCo one, while H{sub E} = 0 for the Fe sample. It is suggested that the exchange bias is induced by the formation of a (Co, Mg)O solid solution. In fact, we show that it is possible to modify the exchange bias properties by manipulating the level of Mg dusting at the interface, as recently reported for thin films.

  6. Detecting scattered light from low-mass molecular cores at 3.6 μm. Impact of global effects on the observation of coreshine

    Science.gov (United States)

    Steinacker, J.; Andersen, M.; Thi, W.-F.; Bacmann, A.

    2014-03-01

    Context. Recently discovered scattered light at 3-5 μm from low-mass cores (so-called "coreshine") reveals the presence of grains around 1 μm, which is larger than the grains found in the low-density interstellar medium. But only about half of the 100+ cores investigated so far show the effect. This prompts further studies on the origin of this detection rate. Aims: We aim to supply criteria for detecting scattered light at 3.6 μm from molecular cloud cores. Methods: From the 3D continuum radiative transfer equation, we derive the expected scattered light intensity from a core placed in an arbitrary direction seen from Earth. We use the approximation of single scattering, consider extinction up to 2nd-order Taylor approximation, and neglect spatial gradients in the dust size distribution. We analyze how scattered light can outshine the absorbing effect of extinction in front of background radiation by the core for given grain properties, anisotropic interstellar radiation field and background field. The impact of the directional characteristics of the scattering on the detection of scattered light from cores is calculated for a given grain size distribution, and local effects like additional radiation field components are discussed. The surface brightness profiles of a core with a 1D density profile are calculated for various Galactic locations, and the results are compared to the approximate detection limits. Results: We find that for optically thin radiation and a constant size distribution, a simple limit for detecting scattered light from a low-mass core can be derived that holds for grains with sizes smaller than 0.5 μm. The extinction by the core prohibits detection in bright parts of the Galactic plane, especially near the Galactic center. For scattered light received from low-mass cores with grain sizes beyond 0.5 μm, the directional characteristics of the scattering favors the detection of scattered light above and below the Galactic center, and to

  7. Brazilian Portuguese version of the CORE-OM: cross-cultural adaptation of an instrument to assess the efficacy and effectiveness of psychotherapy

    Directory of Open Access Journals (Sweden)

    Márcia Rosane Moreira Santana

    2015-12-01

    Full Text Available Introduction: The Clinical Outcome in Routine Evaluation - Outcome Measurement (CORE-OM was developed in the 1990s, with the aim of assessing the efficacy and effectiveness of mental health treatments. Objective: To adapt the CORE-OM for use in the Brazilian population. Method: The instrument was translated and adapted based on the international protocol developed by the CORE System Trust which contains seven steps: translation, semantic equivalence analysis, synthesis of the translated versions, pre-testing in the target population, data analysis and back translation. Results: After semantic analysis, modifications were necessary in seven of the 34 original items. Changes were made to avoid repetition of words and the use of terms difficult to understand. Internal consistency analysis showed evidence of score stability in the CORE-OM adapted to Brazilian Portuguese. Conclusion: The instrument was successfully adapted to Brazilian Portuguese, and its semantic and conceptual properties were equivalent to those of the original instrument.

  8. Effect of controlling recrystallization from the melt on the residual stress and structural properties of the Silica-clad Ge core fiber

    Science.gov (United States)

    Zhao, Ziwen; Cheng, Xueli; He, Ting; Xue, Fei; Zhang, Wei; Chen, Na; Wen, Jianxiang; Zeng, Xianglong; Wang, Tingyun

    2017-09-01

    Effect of controlling recrystallization from the melt (1000 °C) on the residual stress and structural properties of a Ge core fiber via molten core drawing (MCD) method is investigated. Ge core fibers is investigated using Raman spectroscopy, scanning electron microscope (SEM), and X-ray diffraction (XRD). Compared with the as-drawn Ge fiber, the Raman peak of the recrystallized Ge fiber shift from 300 cm-1 to 300.6 cm-1 and full width at half maximum (FWHM) decreased from 5.36 cm-1 to 4.48 cm-1. The Ge crystal grains which sizes are of 200-600 nm were formed during the process of recrystallization; the XRD peak of (1 1 1) plane is observed after recrystallization. These results show that controlling recrystallization allows the release of the thermal stress, and improvement of the crystal quality of Ge core.

  9. Effect of welding process, type of electrode and electrode core diameter on the tensile property of 304L austenitic stainless steel

    Directory of Open Access Journals (Sweden)

    Akinlabi OYETUNJI

    2014-11-01

    Full Text Available The effect of welding process, type of electrode and electrode core diameter on the tensile property of AISI 304L Austenitic Stainless Steel (ASS was studied. The tensile strength property of ASS welded samples was evaluated. Prepared samples of the ASS were welded under these three various variables. Tensile test was then carried out on the welded samples. It was found that the reduction in ultimate tensile strength (UTS of the butt joint samples increases with increase in core diameter of the electrode. Also, the best electrode for welding 304L ASS is 308L stainless steel-core electrode of 3.2 mm core diameter. It is recommended that the findings of this work can be applied in the chemical, food and oil industries where 304L ASS are predominantly used.

  10. Effect of three different core materials on the fracture resistance of endodontically treated deciduous mandibular second molars: an in vitro study.

    Science.gov (United States)

    Shah, Preetam; Gugwad, Sachin C; Bhat, Chetan; Lodaya, Rahul

    2012-01-01

    Endodontic treatment makes the tooth brittle due to loss of bulk of tooth structure, decrease in the moisture content of dentin and dentin elasticity. The following study was carried out to evaluate the effect of endodontic treatment on the fracture resistance of the tooth and reinforcing ability of three different core materials. The following study comprised of sample size of 30 deciduous second molars divided into control group (6) and test group (24). Access opening was done in 24 and 18th teeth with access opening were restored with three different core materials namely IRM (6), silver amalgam (6), GIC (6). All the 30 were subjected to fracture test using UTM (Universal testing machine)- Instron 95. Result showed a drastic reduction in the fracture resistance of the tooth on access opening (1/3rd) and out of the three core materials glass ionomer was shown to be the best core material giving the highest fracture registrance followed by silver amalgam and IRM.

  11. Effect of core ceramic grinding on fracture behaviour of bilayered lithium disilicate glass-ceramic under two loading schemes.

    Science.gov (United States)

    Wang, Xiao-Dong; Jian, Yu-Tao; Guess, Petra C; Swain, Michael V; Zhang, Xin-Ping; Zhao, Ke

    2014-11-01

    The purpose of this in vitro study was to evaluate the effect of core ceramic grinding on the fracture behaviour of bilayered lithium disilicate glass-ceramic (LDG) under two loading schemes. Interfacial surfaces of sandblasted LDG disks (A) were ground with 220 (B), 500 (C) and 1200 (D) grit silicon carbide (SiC) sandpapers, respectively. Surface roughness and topographic analysis were performed using a profilometer and a scanning electron microscopy (SEM), and then underwent retesting after veneer firing. Biaxial fracture strength (σf) and Weibull modulus (m) were calculated either with core in tension (subgroup t) or in compression (subgroup c). Failure modes were observed by SEM, and loading induced stress distribution was simulated and analyzed by finite element analysis. Statistical data analysis was performed using Kruskal-Wallis, one-way ANOVA, and paired test at a significance level of 0.05. As the grits size of SiC increased, LDG surface roughness decreased from group A to D (pveneer firing. No difference in σf (p=0.41 for subgroups At-Dt; p=0.11 for subgroups Ac-Dc), m values as well as failure modes was found among four subgroups for both loading schemes. Specimens in subgroup t showed higher σf (pveneer application. LDG bilayered system was more sensitive to fracture when loaded with veneer porcelain in tension. Within the limitations of the simulated grinding applied, it is concluded that veneer porcelain can be applied directly after technician grinding of LDG ceramic as it has no detrimental effect on the strength of bilayered structures. The connector areas of LDG fixed dental prosthesis are more sensitive to fracture compared with single crowns, and should be fabricated with more caution. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Effect of core-shell copper oxide nanoparticles on cell culture morphology and photosynthesis (photosystem II energy distribution) in the green alga, Chlamydomonas reinhardtii.

    Science.gov (United States)

    Saison, Cyril; Perreault, François; Daigle, Jean-Christophe; Fortin, Claude; Claverie, Jérôme; Morin, Mario; Popovic, Radovan

    2010-01-31

    The effect of core-shell copper oxide nanoparticles with sizes smaller than 100 nm on cellular systems is still not well understood. Documenting these effects is pressing since core-shell copper oxide nanoparticles are currently components of pigments used frequently as antifouling paint protecting boats from crustacean, weed and slime fouling. However, the use of such paints may induce strong deteriorative effects on different aquatic trophic levels that are not the intended targets. Here, the toxic effect of core-shell copper oxide nanoparticles on the green alga, Chlamydomonas reinhardtii was investigated with regards to the change of algal cellular population structure, primary photochemistry of photosystem II and reactive oxygen species formation. Algal cultures were exposed to 0.004, 0.01 and 0.02 g/l of core-shell copper oxide nanoparticles for 6h and a change in algal population structure was observed, while the formation of reactive oxygen species was determined using the 2',7'-dichlorodihydrofluorescein diacetate marker measured by flow cytometry. For the study of the photosystem II primary photochemistry we investigated the change in chlorophyll a rapid rise of fluorescence. We found that core-shell copper oxide nanoparticles induced cellular aggregation processes and had a deteriorative effect on chlorophyll by inducing the photoinhibition of photosystem II. The inhibition of photosynthetic electron transport induced a strong energy dissipation process via non-photochemical pathways. The deterioration of photosynthesis was interpreted as being caused by the formation of reactive oxygen species induced by core-shell copper oxide nanoparticles. However, no formation of reactive oxygen species was observed when C. reinhardtii was exposed to the core without the shell or to the shell only. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  13. Examination of the magnetism dynamics from intermixing effects in γ-Fe{sub 2}O{sub 3}/MnO core-shell nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Skoropata, E., E-mail: umskoroe@myumanitoba.ca; Lierop, J. van, E-mail: Johan.van.Lierop@umanitoba.ca [Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB R3T 2N2 Canada (Canada); Su, T. T.; Ouyang, H. [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan (China); Freeland, J. W. [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

    2015-05-07

    We have examined the effects of core-shell intermixing on the dynamical magnetism of γ-Fe{sub 2}O{sub 3}/MnO nanoparticles. The core and shell phases were identified using x-ray diffraction, and x-ray absorption spectroscopy identified Mn ions in both octahedral and tetrahedral sites, consistent with a significant amount of substitution at the core-shell interface to form an Fe/Mn-ferrite. The dynamical response was probed by Mössbauer spectroscopy, which decouples surface and core spins, and suggested a change in the relaxation behaviour among the spin populations within γ-Fe{sub 2}O{sub 3}/MnO relative to the γ-Fe{sub 2}O{sub 3} seed particles. Interestingly, the magnetic relaxation effects at the atomic scale, measured via Mössbauer spectroscopy, were enhanced, indicating that the addition of an MnO shell and intermixing affected the dynamical freezing process which altered the surface magnetism of the γ-Fe{sub 2}O{sub 3} core. Our results show that both the MnO shell and the interfacial intermixed layer are important in determining the core-shell nanoparticle magnetism.

  14. Effect of Silicon on Activity Coefficients of Siderophile Elements (P, Au, Pd, As, Ge, Sb, and In) in Liquid Fe, with Application to Core Formation

    Science.gov (United States)

    Righter, K.; Pando, K.; Danielson, L. R.; Humayun, M.; Righter, M.; Lapen, T.; Boujibar, A.

    2016-01-01

    Earth's core contains approximately 10 percent light elements that are likely a combination of S, C, Si, and O, with Si possibly being the most abundant. Si dissolved into Fe liquids can have a large effect on the magnitude of the activity coefficient of siderophile elements (SE) in Fe liquids, and thus the partitioning behavior of those elements between core and mantle. The effect of Si can be small such as for Ni and Co, or large such as for Mo, Ge, Sb, As. The effect of Si on many siderophile elements is unknown yet could be an important, and as yet unquantified, influence on the core-mantle partitioning of SE. Here we report new experiments designed to quantify the effect of Si on the partitioning of P, Au, Pd, and many other SE between metal and silicate melt. The results will be applied to Earth, for which we have excellent constraints on the mantle siderophile element concentrations.

  15. A review of irradiation effects on LWR core internal materials - neutron embrittlement.

    Energy Technology Data Exchange (ETDEWEB)

    Chopra, O. K.; Rao, A. S. (Environmental Science Division); (U.S NRC)

    2011-05-01

    Austenitic stainless steels (SSs) are used extensively as structural alloys in the internal components of light water reactor (LWR) pressure vessels because of their relatively high strength, ductility, and fracture toughness. However, exposure to neutron irradiation for extended periods not only changes the microstructure and microchemistry of these steels, but also degrades their fracture properties. The existing data on irradiated austenitic SSs are reviewed to determine the effects of key parameters such as material type and condition and irradiation temperature, dose, and dose rate on neutron embrittlement. Differences in the radiation-induced degradation of fracture properties between LWR and fast-reactor irradiations are also discussed. The results are used to (a) define a threshold fluence above which irradiation effects on fracture toughness of the material are significant, (b) evaluate the potential of neutron embrittlement under LWR operating conditions, and (c) assess the potential effects of voids on fracture toughness.

  16. A review of irradiation effects on LWR core internal materials - Neutron embrittlement

    Energy Technology Data Exchange (ETDEWEB)

    Chopra, O.K., E-mail: okc@anl.gov [Environmental Science Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Rao, A.S. [Division of Engineering, US Nuclear Regulatory Commission, Washington, DC 20555 (United States)

    2011-05-01

    Austenitic stainless steels (SSs) are used extensively as structural alloys in the internal components of light water reactor (LWR) pressure vessels because of their relatively high strength, ductility, and fracture toughness. However, exposure to neutron irradiation for extended periods not only changes the microstructure and microchemistry of these steels, but also degrades their fracture properties. The existing data on irradiated austenitic SSs are reviewed to determine the effects of key parameters such as material type and condition and irradiation temperature, dose, and dose rate on neutron embrittlement. Differences in the radiation-induced degradation of fracture properties between LWR and fast-reactor irradiations are also discussed. The results are used to (a) define a threshold fluence above which irradiation effects on fracture toughness of the material are significant, (b) evaluate the potential of neutron embrittlement under LWR operating conditions, and (c) assess the potential effects of voids on fracture toughness.

  17. Core Skills for Effective Science Communication: A Teaching Resource for Undergraduate Science Education

    Science.gov (United States)

    Mercer-Mapstone, Lucy; Kuchel, Louise

    2017-01-01

    Science communication is a diverse and transdisciplinary field and is taught most effectively when the skills involved are tailored to specific educational contexts. Few academic resources exist to guide the teaching of communication with non-scientific audiences for an undergraduate science context. This mixed methods study aimed to explore what…

  18. Music in U.S. Federal Education Policy: Estimating the Effect of "Core Status" for Music

    Science.gov (United States)

    Elpus, Kenneth

    2013-01-01

    This article reviews the political and empirical record within music education surrounding the Goals 2000: Educate America Act and reports a new study evaluating the effects of the law on music and arts education policies in U.S. high schools. School-level data (N = 670 schools) from the National Education Longitudinal Study of 1988 and the…

  19. The effects of sodium oxybate on core body and skin temperature regulation in narcolepsy

    NARCIS (Netherlands)

    van der Heide, Astrid; Donjacour, Claire E H M; Pijl, Hanno; Reijntjes, Robert H A M; Overeem, Sebastiaan; Lammers, Gert J; Van Someren, Eus J W; Fronczek, Rolf

    2015-01-01

    Patients suffering from narcolepsy type 1 show altered skin temperatures, resembling the profile that is related to sleep onset in healthy controls. The aim of the present study is to investigate the effects of sodium oxybate, a widely used drug to treat narcolepsy, on the 24-h profiles of

  20. BDK-doped core microstructured PMMA optical fiber for effective Bragg grating photo-inscription

    DEFF Research Database (Denmark)

    Hu, Xuehao; Woyessa, Getinet; Kinet, Damien

    2017-01-01

    An endlessly single-mode doped microstructured poly(methyl methacrylate) (PMMA) optical fiber is produced for effective fiber Bragg grating (FBG) photo-inscription by means of a 400 nm femtosecond pulsed laser and the phase mask technique. The fiber presents a uniform benzyl dimethyl ketal (BDK...

  1. Investigation on the Effect of Underwater Acoustic Pressure on the Fundamental Mode of Hollow-Core Photonic Bandgap Fibers

    Directory of Open Access Journals (Sweden)

    Adel Abdallah

    2015-01-01

    Full Text Available Recently, microstructured optical fibers have become the subject of extensive research as they can be employed in many civilian and military applications. One of the recent areas of research is to enhance the normalized responsivity (NR to acoustic pressure of the optical fiber hydrophones by replacing the conventional single mode fibers (SMFs with hollow-core photonic bandgap fibers (HC-PBFs. However, this needs further investigation. In order to fully understand the feasibility of using HC-PBFs as acoustic pressure sensors and in underwater communication systems, it is important to study their modal properties in this environment. In this paper, the finite element solver (FES COMSOL Multiphysics is used to study the effect of underwater acoustic pressure on the effective refractive index neff of the fundamental mode and discuss its contribution to NR. Besides, we investigate, for the first time to our knowledge, the effect of underwater acoustic pressure on the effective area Aeff and the numerical aperture (NA of the HC-PBF.

  2. The Effect of Core and Lower Limb Exercises on Trunk Strength and Lower Limb Stability on Australian Soldiers

    OpenAIRE

    Rolf Sellentin; Rhondda Jones

    2012-01-01

    Study Design: A before and after design in the collection of data and using analyses of variance to examine the changes in each test score. Objectives: The objectives and hypotheses of this study are: (1) Do specific core exercises, incorporating the lower limbs improve lower limb stability and trunk core muscle strength?; (2) Can the Star Excursion Balance Test be used as a measure of ankle and lower limb stability without a history of ankle instability?; (3) Can static core test...

  3. Effects of core characters and veneering technique on biaxial flexural strength in porcelain fused to metal and porcelain veneered zirconia.

    Science.gov (United States)

    Oh, Ju-Won; Song, Kwang-Yeob; Ahn, Seung-Geun; Park, Ju-Mi; Lee, Min-Ho; Seo, Jae-Min

    2015-10-01

    The purpose of this study was to assess the impact of the core materials, thickness and fabrication methods of veneering porcelain on prosthesis fracture in the porcelain fused to metal and the porcelain veneered zirconia. Forty nickel-chrome alloy cores and 40 zirconia cores were made. Half of each core group was 0.5 mm-in thickness and the other half was 1.0 mm-in thickness. Thus, there were four groups with 20 cores/group. Each group was divided into two subgroups with two different veneering methods (conventional powder/liquid layering technique and the heat-pressing technique). Tensile strength was measured using the biaxial flexural strength test based on the ISO standard 6872:2008 and Weibull analysis was conducted. Factors influencing fracture strength were analyzed through three-way ANOVA (α≤.05) and the influence of core thickness and veneering method in each core materials was assessed using two-way ANOVA (α≤.05). The biaxial flexural strength test showed that the fabrication method of veneering porcelain has the largest impact on the fracture strength followed by the core thickness and the core material. In the metal groups, both the core thickness and the fabrication method of the veneering porcelain significantly influenced on the fracture strength, while only the fabrication method affected the fracture strength in the zirconia groups. The fabrication method is more influential to the strength of a prosthesis compared to the core character determined by material and thickness of the core.

  4. Investigating the Effects of Safety Management System Practice, Benevolent Leadership and Core Self-evaluations on Cabin Crew Safety Behavior

    National Research Council Canada - National Science Library

    CHEN, Ching-Fu; CHEN, Shu-Chuan

    2014-01-01

    .... Specifically, we specify perceived airlines' Safety Management System practice, department managers' benevolent leadership and individual core self-evaluations as three factors affecting cabin crew...

  5. Effectiveness of the Surgery Core Clerkship Flipped Classroom: a prospective cohort trial.

    Science.gov (United States)

    Liebert, Cara A; Lin, Dana T; Mazer, Laura M; Bereknyei, Sylvia; Lau, James N

    2016-02-01

    The flipped classroom has been proposed as an alternative curricular approach to traditional didactic lectures but has not been previously applied to a surgery clerkship. A 1-year prospective cohort of students (n = 89) enrolled in the surgery clerkship was taught using a flipped classroom approach. A historical cohort of students (n = 92) taught with a traditional lecture curriculum was used for comparison. Pretest and post-test performance, end-of-clerkship surveys, and National Board of Medical Examiners (NBME) scores were analyzed to assess effectiveness. Mean pretest and post-test scores increased across all modules (P flipped classroom contributed to this increase. Implementation of a flipped classroom in the surgery clerkship is feasible and results in high learner satisfaction, effective knowledge acquisition, and increased career interest in surgery with noninferior NBME performance. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Republic of Poland; Detailed Assessment of Observance of Basel Core Principles for Effective Banking Supervision

    OpenAIRE

    International Monetary Fund

    2012-01-01

    The 2008 transition to the new banking supervisory framework in Poland has been relatively smooth, and the banking system has proven effective in weathering the financial crisis. This assessment focuses on the working of the Polish Financial Supervision Commission (KNF), which is responsible for banking supervision in Poland. KNF has undertaken numerous proactive measures to preserve financial sector stability during the crisis. As a priority, KNF’s interaction with bank auditors as well as...

  7. High Frequency Magneto Dielectric Effects In Self Assembled Ferrite Ferroelectric Core Shell Nanoparticles

    Science.gov (United States)

    2014-09-10

    estimate the magneto-capacitance effect in BTO or PZT films on substrates of ferromagnetic alloys.25 This work is on the observation and theory of MDE...The sample shows ferromagnetic behavior with hysteresis and remnance and the magnetization compared favorably with reported value for...samples. A strong ME coupling was also evident from H-tuning of dielectric resonance in the composites. A theory for the high frequency magneto

  8. A Novel Polyaniline-Coated Bagasse Fiber Composite with Core-Shell Heterostructure Provides Effective Electromagnetic Shielding Performance.

    Science.gov (United States)

    Zhang, Yang; Qiu, Munan; Yu, Ying; Wen, Bianying; Cheng, Lele

    2017-01-11

    A facile route was proposed to synthesize polyaniline (PANI) uniformly deposited on bagasse fiber (BF) via a one-step in situ polymerization of aniline in the dispersed system of BF. Correlations between the structural, electrical, and electromagnetic properties were extensively investigated. Scanning electron microscopy images confirm that the PANI was coated dominantly on the BF surface, indicating that the as-prepared BF/PANI composite adopted the natural and inexpensive BF as its core and the PANI as the shell. Fourier transform infrared spectra suggest significant interactions between the BF and PANI shell, and a high degree of doping in the PANI shell was achieved. X-ray diffraction results reveal that the crystallization of the PANI shell was improved. The dielectric behaviors are analyzed with respect to dielectric constant, loss tangent, and Cole-Cole plots. The BF/PANI composite exhibits superior electrical conductivity (2.01 ± 0.29 S·cm-1), which is higher than that of the pristine PANI with 1.35 ± 0.15 S·cm-1. The complex permittivity, electromagnetic interference (EMI), shielding effectiveness (SE) values, and attenuation constants of the BF/PANI composite were larger than those of the pristine PANI. The EMI shielding mechanisms of the composite were experimentally and theoretically analyzed. The absorption-dominated total EMI SE of 28.8 dB at a thickness of 0.4 mm indicates the usefulness of the composite for electromagnetic shielding. Moreover, detailed comparison of electrical and EMI shielding properties with respect to the BF/PANI, dedoped BF/PANI composite, and the pristine PANI indicate that the enhancement of electromagnetic properties for the BF/PANI composite was due to the improved conductivity and the core-shell architecture. Thus, the composite has potential commercial applications for high-performance electromagnetic shielding materials and also could be used as a conductive filler to endow polymers with electromagnetic shielding

  9. Effect of number of firings on the color and translucency of ceramic core materials with veneer ceramic of different thicknesses.

    Science.gov (United States)

    Bayindir, Funda; Ozbayram, Ozlem

    2017-05-12

    Whether masking or translucency should be the goal for achieving an esthetic restoration with ceramic materials is unknown. The purpose of this in vitro study was to examine the effect of the number of firings on the color and translucency of ceramic core material with different thicknesses of veneer ceramic. Three different ceramic systems were used: IPS Empress (IE), IPS e.max Press (IEP), and Turkom Cera (TC). Ninety disk-shaped cores, 10 mm in diameter and 0.8 mm in thickness were prepared using each system (n=30). The specimens were divided into 3 subgroups (n=10) according to the thickness of the veneering ceramic: 0.5, 1.0, and 1.5 mm. The specimens were fired 1, 3, and 5 times, and the color parameters of the specimens were measured. The color measurements were repeated, and the data were statistically evaluated using 2-way and multifactorial analysis of variance, the Duncan test, and the Bonferroni post hoc test. The number of firings affected the translucency parameter and CIELab values. Increased porcelain thickness led to decreased translucency parameter and L* values and increased a* and b* values (Ptranslucent (P.05). The number of firings affected the color change of the IE and IEP systems but not of the translucency parameter system. Repeated firings and porcelain thickness affected the final color and translucency of the ceramic systems tested. These 2 factors adversely affected the esthetic result and should be considered in both the preparation and the laboratory phase. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  10. Compressive strength and the effect of duration after photo-activation among dual-cure bulk fill composite core materials.

    Science.gov (United States)

    Alkhudhairy, Fahad; Vohra, Fahim

    2016-01-01

    To assess compressive strength and effect of duration after photoactivation on the compressive strength of different dual cure bulk fill composites. Seventy-two disc shaped (4x10mm) specimens were prepared from three dual cure bulk fill materials, ZirconCore (ZC) (n=24), MulticCore Flow (MC) (n=24) and Luxacore Dual (LC) (n=24). Half of the specimens in each material were tested for failure loads after one hour [MC1 (n=12), LC1 (n=12) & ZC1 (n=12)] and the other half in 7 days [MC7 (n=12), LC7 (n=12), ZC7 (n=12)] from photo-polymerization using the universal testing machine at a cross-head speed of 0.5 cm/minutes. Compressive strength was calculated using the formula UCS=4f/πd(2). Compressive strengths among different groups were compared using analysis of variance (ANOVA) and Tukey's multiple comparisons test. Maximum and minimum compressive strengths were observed in ZC7 (344.14±19.22) and LC1 (202.80±15.52) groups. Specimens in LC1 [202.80 (15.52)] showed significantly lower compressive strength as compared to MC1 [287.06 (15.03)] (pstrengths compared to LC7 [324.56 (19.47)] and MC7 [315.26 (12.36)]. Compressive strengths among all three materials were significantly higher (pstrength compared to MC and LC. Increasing the post photo-activation duration (from one hour to 7 days) significantly improves the compressive strengths of dual cure bulk fill material.

  11. Effect of Installation of Mixer/Ejector Nozzles on the Core Flow Exhaust of High-Bypass-Ratio Turbofan Engines

    Science.gov (United States)

    Harrington, Douglas E.

    1998-01-01

    The aerospace industry is currently investigating the effect of installing mixer/ejector nozzles on the core flow exhaust of high-bypass-ratio turbofan engines. This effort includes both full-scale engine tests at sea level conditions and subscale tests in static test facilities. Subscale model tests are to be conducted prior to full-scale testing. With this approach, model results can be analyzed and compared with analytical predications. Problem areas can then be identified and design changes made and verified in subscale prior to committing to any final design configurations for engine ground tests. One of the subscale model test programs for the integrated mixer/ejector development was a joint test conducted by the NASA Lewis Research Center and Pratt & Whitney Aircraft. This test was conducted to study various mixer/ejector nozzle configurations installed on the core flow exhaust of advanced, high-bypass-ratio turbofan engines for subsonic, commercial applications. The mixer/ejector concept involves the introduction of largescale, low-loss, streamwise vortices that entrain large amounts of secondary air and rapidly mix it with the primary stream. This results in increased ejector pumping relative to conventional ejectors and in more complete mixing within the ejector shroud. The latter improves thrust performance through the efficient energy exchange between the primary and secondary streams. This experimental program was completed in April 1997 in Lewis' CE-22 static test facility. Variables tested included the nozzle area ratio (A9/A8), which ranged from 1.6 to 3.0. This ratio was varied by increasing or decreasing the nozzle throat area, A8. Primary nozzles tested included both lobed mixers and conical primaries. These configurations were tested with and without an outer shroud, and the shroud position was varied by inserting spacers in it. In addition, data were acquired with and without secondary flow.

  12. Effects of a dynamic core stability program on the biomechanics of cutting maneuvers: A randomized controlled trial.

    Science.gov (United States)

    Whyte, E F; Richter, C; O'Connor, S; Moran, K A

    2018-02-01

    Deficits in trunk control predict ACL injuries which frequently occur during high-risk activities such as cutting. However, no existing trunk control/core stability program has been found to positively affect trunk kinematics during cutting activities. This study investigated the effectiveness of a 6-week dynamic core stability program (DCS) on the biomechanics of anticipated and unanticipated side and crossover cutting maneuvers. Thirty-one male, varsity footballers participated in this randomized controlled trial. Three-dimensional trunk and lower limb biomechanics were captured in a motion analysis laboratory during the weight acceptance phase of anticipated and unanticipated side and crossover cutting maneuvers at baseline and 6-week follow-up. The DCS group performed a DCS program three times weekly for 6 weeks in a university rehabilitation room. Both the DCS and control groups concurrently completed their regular practice and match play. Statistical parametric mapping and repeated measures analysis of variance were used to determine any group (DCS vs control) by time (pre vs post) interactions. The DCS resulted in greater internal hip extensor (P=.017, η 2 =0.079), smaller internal knee valgus (P=.026, η 2 =0.076), and smaller internal knee external rotator moments (P=.041, η 2 =0.066) during anticipated side cutting compared with the control group. It also led to reduced posterior ground reaction forces for all cutting activities (P=.015-.030, η 2 =0.074-0.105). A 6-week DCS program did not affect trunk kinematics, but it did reduce a small number of biomechanical risk factors for ACL injury, predominantly during anticipated side cutting. A DCS program could play a role in multimodal ACL injury prevention programs. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Ultrasonic measurement of the effects of adhesive application and power density on the polymerization behavior of core build-up resins.

    Science.gov (United States)

    Sunada, Noriatsu; Ishii, Ryo; Shiratsuchi, Koji; Shimizu, Yusuke; Tsubota, Keishi; Kurokawa, Hiroyasu; Miyazaki, Masashi

    2013-01-01

    To use ultrasonic measurements to monitor the effects of adhesive application and power density on the polymerization behavior of dual-cured core build-up resins. Ultrasonic measurements were carried out using a pulser-receiver, transducers and an oscilloscope. The core build-up resins were mixed, inserted into a transparent mold and then placed onto a sample stage with or without self-etch adhesive. Power densities of 0 (no light irradiation), 200 and 600 mW/cm(2) were used for curing. The transit time through the core build-up resin disk was divided by the specimen thickness to obtain the longitudinal sound velocity (V). Light irradiation of the core build-up resins at a power density of 600 mW/cm(2) caused V values to rise to an initial plateau of 1550-1650 m/s, then to rise rapidly to a second plateau of 2800-3200 m/s. The rate of V increase was slower when the resin cements were light-irradiated and became faster when irradiated at a higher power density. There were no significant differences between the groups with or without adhesive. The polymerization behavior of the core build-up resins was affected by the power density of the curing unit. The influence of adhesive application differed among the core build-up resins tested.

  14. Effect of core quantum-dot size on power-conversion-efficiency for silicon solar-cells implementing energy-down-shift using CdSe/ZnS core/shell quantum dots.

    Science.gov (United States)

    Baek, Seung-Wook; Shim, Jae-Hyoung; Seung, Hyun-Min; Lee, Gon-Sub; Hong, Jin-Pyo; Lee, Kwang-Sup; Park, Jea-Gun

    2014-11-07

    Silicon solar cells mainly absorb visible light, although the sun emits ultraviolet (UV), visible, and infrared light. Because the surface reflectance of a textured surface with SiNX film on a silicon solar cell in the UV wavelength region (250-450 nm) is higher than ∼27%, silicon solar-cells cannot effectively convert UV light into photo-voltaic power. We implemented the concept of energy-down-shift using CdSe/ZnS core/shell quantum-dots (QDs) on p-type silicon solar-cells to absorb more UV light. CdSe/ZnS core/shell QDs demonstrated clear evidence of energy-down-shift, which absorbed UV light and emitted green-light photoluminescence signals at a wavelength of 542 nm. The implementation of 0.2 wt% (8.8 nm QDs layer) green-light emitting CdSe/ZnS core/shell QDs reduced the surface reflectance of the textured surface with SiNX film on a silicon solar-cell from 27% to 15% and enhanced the external quantum efficiency (EQE) of silicon solar-cells to around 30% in the UV wavelength region, thereby enhancing the power conversion efficiency (PCE) for p-type silicon solar-cells by 5.5%.

  15. Effects of environmental regulations on heavy metal pollution decline in core sediments from Manila Bay.

    Science.gov (United States)

    Hosono, Takahiro; Su, Chih-Chieh; Siringan, Fernando; Amano, Atsuko; Onodera, Shin-ichi

    2010-05-01

    We investigated the high-resolution heavy metal pollution history of Manila Bay using heavy metal concentrations and Pb isotope ratios together with (210)Pb dating to find out the effects of environmental regulations after the 1990 s. Our results suggested that the rate of decline in heavy metal pollution increased dramatically from the end of the 1990 s due to stricter environmental regulations, Administrative Order No. 42, being enforced by the Philippines government. The presented data and methodology should form the basis for future monitoring, leading to pollution control, and to the generation of preventive measures at the pollution source for the maintenance of environmental quality in the coastal metropolitan city of Manila. Although this is the first report of a reduction in pollution in Asian developing country, our results suggest that we can expect to find similar signs of pollution decline in other parts of the world as well. (c) 2010 Elsevier Ltd. All rights reserved.

  16. The effect of core and lanthanide ion dopants in sodium fluoride-based nanocrystals on phagocytic activity of human blood leukocytes

    Energy Technology Data Exchange (ETDEWEB)

    Sojka, Bartlomiej [Wroclaw University of Science and Technology, Department of Experimental Physics (Poland); Liskova, Aurelia; Kuricova, Miroslava [Slovak Medical University, Medical Faculty, Department of Immunology and Immunotoxicology (Slovakia); Banski, Mateusz; Misiewicz, Jan [Wroclaw University of Science and Technology, Department of Experimental Physics (Poland); Dusinska, Maria [Norwegian Institute for Air Research, Health Effects Laboratory, Department of Environmental Chemistry (Norway); Horvathova, Mira; Ilavska, Silvia; Szabova, Michaela [Slovak Medical University, Medical Faculty, Department of Immunology and Immunotoxicology (Slovakia); Rollerova, Eva [Slovak Medical University, Faculty of Public Health, Department of Toxicology (Slovakia); Podhorodecki, Artur, E-mail: artur.p.podhorodecki@pwr.edu.pl [Wroclaw University of Science and Technology, Department of Experimental Physics (Poland); Tulinska, Jana, E-mail: jana.tulinska@szu.sk [Slovak Medical University, Medical Faculty, Department of Immunology and Immunotoxicology (Slovakia)

    2017-02-15

    Sodium fluoride-based β-NaLnF4 nanoparticles (NPs) doped with lanthanide ions are promising materials for application as luminescent markers in bio-imaging. In this work, the effect of NPs doped with yttrium (Y), gadolinium (Gd), europium (Eu), thulium (Tm), ytterbium (Yb) and terbium (Tb) ions on phagocytic activity of monocytes and granulocytes and the respiratory burst was examined. The surface functionalization of <10-nm NPs was performed according to our variation of patent pending ligand exchange method that resulted in meso-2,3-dimercaptosuccinic acid (DMSA) molecules on their surface. Y-core-based NCs were doped with Eu ions, which enabled them to be excited with UV light wavelengths. Cultures of human peripheral blood (n = 8) were in vitro treated with five different concentrations of eight NPs for 24 h. In summary, neither type of nanoparticles is found toxic with respect to conducted test; however, some cause toxic effects (they have statistically significant deviations compared to reference) in some selected doses tested. Both core types of NPs (Y-core and Gd-core) impaired the phagocytic activity of monocytes the strongest, having minimal or none whatsoever influence on granulocytes and respiratory burst of phagocytic cells. The lowest toxicity was observed in Gd-core, Yb, Tm dopants and near-infrared nanoparticles. Clear dose-dependent effect of NPs on phagocytic activity of leukocytes and respiratory burst of cells was observed for limited number of samples.

  17. Investigating the Effects of I-Shaped Cores in an Outer-Rotor Transverse Flux Permanent Magnet Generator

    DEFF Research Database (Denmark)

    Hosseini, Seyedmohsen; Moghani, Javad Shokrollahi; Jensen, Bogi Bech

    2011-01-01

    that although using I-shaped cores can increase the output power to weight ratio and the power factor, the cogging torque as well as output harmonics increase. Moreover, construction with I-shaped cores is complicated because of the forces exerted on these during operation. The analysis in this paper presents...

  18. Using high-resolution tritium profiles to quantify the effects of melt on two Spitsbergen ice cores

    NARCIS (Netherlands)

    Wel, L.G. van der; Streurman, H.J.; Isaksson, E.; Helsen, M.M.; Wal, R.S.W. van de; Martma, T.; Pohjola, V.A.; Moore, J.C.; Meijer, H.A.J.

    2011-01-01

    Ice cores from small ice caps provide valuable climatic information, additional to that of Greenland and Antarctica. However, their integrity is usually compromised by summer meltwater percolation. To determine to what extent this can affect such ice cores, we performed high-resolution tritium

  19. Effect of core size and excipients on the lag time and drug release from a pulsatile drug delivery system.

    Science.gov (United States)

    Efentakis, M; Iliopoyloy, A; Siamidi, A

    2011-01-01

    Pulsatile drug delivery system, based on a core-in-cup dry-coated tablet was examined and evaluated. The system consisted of three different parts: a core tablet (with increasing diameter), containing the active ingredient acting as reservoir; an impermeable outer shell; and a top cover layer barrier. The core tablet contained either caffeine or theophylline as model drugs. To investigate and evaluate how the geometrical characteristics of the core tablets, drugs, and excipients influence the behavior of the system presented, namely, lag time and drug release. Drug release exhibited a lag time period dependent on the core tablet size, drug solubility, and characteristics of polymer and polymer mixtures. The lag time was increased by increasing the core tablet diameter and the quantity of soluble lactose in the top cover layer. The quantity and characteristics of materials, the core tablet size, and the erosion of the top cover layer were found to be important factors in controlling the lag time and release. Increase in core tablet diameter resulted in lower lag times and greater release and release rates. Similarly, by increasing sufficiently the quantity of the soluble excipient lactose, in the top layer we observed a decrease of the lag times and an increase of release.

  20. Effect of different composite core materials on fracture resistance of endodontically treated teeth restored with FRC posts.

    Science.gov (United States)

    Panitiwat, Prapaporn; Salimee, Prarom

    2017-01-01

    This study evaluated the fracture resistance of endodontically treated teeth restored with fiber reinforced composite posts, using three resin composite core build-up materials, (Clearfil Photo Core (CPC), MultiCore Flow (MCF), and LuxaCore Z-Dual (LCZ)), and a nanohybrid composite, (Tetric N-Ceram (TNC)). Forty endodontically treated lower first premolars were restored with quartz fiber posts (D.T. Light-Post) cemented with resin cement (Panavia F2.0). Samples were randomly divided into four groups (n=10). Each group was built-up with one of the four core materials following its manufacturers' instructions. The teeth were embedded in acrylic resin blocks. Nickel-Chromium crowns were fixed on the specimens with resin cement. The fracture resistance was determined using a universal testing machine with a crosshead speed of 1 mm/min at 1350 to the tooth axis until failure occurred. All core materials used in the study were subjected to test for the flexural modulus according to ISO 4049:2009. One-way ANOVA and Bonferroni multiple comparisons test indicated that the fracture resistance was higher in the groups with CPC and MCF, which presented no statistically significant difference (p>0.05), but was significantly higher than in those with LCZ and TNC (pmaterials was aligned with the same tendency of fracture loads. Among the cores used in this study, the composite core with high filler content tended to enhance fracture thresholds of teeth restored with fiber posts more than others.

  1. Core Stability Training for Injury Prevention

    OpenAIRE

    Huxel Bliven, Kellie C.; Anderson, Barton E.

    2013-01-01

    Context: Enhancing core stability through exercise is common to musculoskeletal injury prevention programs. Definitive evidence demonstrating an association between core instability and injury is lacking; however, multifaceted prevention programs including core stabilization exercises appear to be effective at reducing lower extremity injury rates. Evidence Acquisition: PubMed was searched for epidemiologic, biomechanic, and clinical studies of core stability for injury prevention (keywords: ...

  2. Effect of Ni Core Structure on the Electrocatalytic Activity of Pt-Ni/C in Methanol Oxidation

    Science.gov (United States)

    Kang, Jian; Wang, Rongfang; Wang, Hui; Liao, Shijun; Key, Julian; Linkov, Vladimir; Ji, Shan

    2013-01-01

    Methanol oxidation catalysts comprising an outer Pt-shell with an inner Ni-core supported on carbon, (Pt-Ni/C), were prepared with either crystalline or amorphous Ni core structures. Structural comparisons of the two forms of catalyst were made using transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), and methanol oxidation activity compared using CV and chronoamperometry (CA). While both the amorphous Ni core and crystalline Ni core structures were covered by similar Pt shell thickness and structure, the Pt-Ni(amorphous)/C catalyst had higher methanol oxidation activity. The amorphous Ni core thus offers improved Pt usage efficiency in direct methanol fuel cells. PMID:28811402

  3. Effect of Ni Core Structure on the Electrocatalytic Activity of Pt-Ni/C in Methanol Oxidation

    Directory of Open Access Journals (Sweden)

    Vladimir Linkov

    2013-07-01

    Full Text Available Methanol oxidation catalysts comprising an outer Pt-shell with an inner Ni-core supported on carbon, (Pt-Ni/C, were prepared with either crystalline or amorphous Ni core structures. Structural comparisons of the two forms of catalyst were made using transmission electron microscopy (TEM, X-ray diffraction (XRD and X-ray photoelectron spectroscopy (XPS, and methanol oxidation activity compared using CV and chronoamperometry (CA. While both the amorphous Ni core and crystalline Ni core structures were covered by similar Pt shell thickness and structure, the Pt-Ni(amorphous/C catalyst had higher methanol oxidation activity. The amorphous Ni core thus offers improved Pt usage efficiency in direct methanol fuel cells.

  4. The Analysis of the Science and Technology Enterprise Core Employee Turnover Negative Effects – Based on the theory of psychological contract

    Directory of Open Access Journals (Sweden)

    Jin Xin

    2015-01-01

    Full Text Available This article explores the problem of negative effect of resignation of core employees from scientific enterprise based on psychological contract theory and summary of references. It uses questionnaires to analyze the data and construct a model of negative effect of resignation caused by psychological contract violation. It also makes an analysis on resignation tendency and negative effect of resignation in two perspectives to provide a basis for reduction of the negative effect.

  5. The Analysis of the Science and Technology Enterprise Core Employee Turnover Negative Effects – Based on the theory of psychological contract

    OpenAIRE

    Jin Xin; Li Lijun

    2015-01-01

    This article explores the problem of negative effect of resignation of core employees from scientific enterprise based on psychological contract theory and summary of references. It uses questionnaires to analyze the data and construct a model of negative effect of resignation caused by psychological contract violation. It also makes an analysis on resignation tendency and negative effect of resignation in two perspectives to provide a basis for reduction of the negative effect.

  6. EFFECTS OF QUINOLINIC ACID-INDUCED LESIONS OF THE NUCLEUS ACCUMBENS CORE ON INTER-TEMPORAL CHOICE

    Science.gov (United States)

    Bezzina, G.; Cheung, T.H.C.; Asgari, K.; Hampson, C.L.; Body, S.; Bradshaw, C.M.; Szabadi, E.; Deakin, J.F.W.; Anderson, I.M.

    2007-01-01

    Rationale There is evidence that lesions of the nucleus accumbens core (AcbC) promote preference for smaller earlier reinforcers over larger delayed reinforcers in inter-temporal choice paradigms. It is not known whether this reflects an effect of the lesion on the rate of delay discounting, on sensitivity to reinforcer magnitude, or both. Aim We examined the effect of AcbC lesions on inter-temporal choice using a quantitative method that allows effects on delay discounting to be distinguished from effects on sensitivity to reinforcer size. Method 16 rats received bilateral quinolinic acid-induced lesions of the AcbC; 14 received sham lesions. They were trained under a discrete-trials progressive delay schedule to press two levers (A and B) for a sucrose solution. Responses on A delivered 50 μl of the solution after a delay dA; responses on B delivered 100 μl after dB. dB increased across blocks of trials, while dA was manipulated across phases of the experiment. Indifference delay dB(50) (value of dB corresponding to 50% choice of B) was estimated in each phase, and linear indifference functions (dB(50) vs. dA) derived. Results dB(50) increased linearly with dA (r2>0.95 in each group). The intercept of the indifference function was lower in the lesioned than the sham-lesioned group; slope did not differ between groups. The lesioned rats had extensive neuronal loss in the AcbC. Conclusions The results confirm that lesions of the AcbC promote preference for smaller, earlier reinforcers and suggest that this reflects an effect of the lesion on the rate of delay discounting. PMID:17659381

  7. Effects of quinolinic acid-induced lesions of the nucleus accumbens core on inter-temporal choice: a quantitative analysis.

    Science.gov (United States)

    Bezzina, G; Cheung, T H C; Asgari, K; Hampson, C L; Body, S; Bradshaw, C M; Szabadi, E; Deakin, J F W; Anderson, I M

    2007-11-01

    There is evidence that lesions of the nucleus accumbens core (AcbC) promote preference for smaller earlier reinforcers over larger delayed reinforcers in inter-temporal choice paradigms. It is not known whether this reflects an effect of the lesion on the rate of delay discounting, on sensitivity to reinforcer magnitude, or both. We examined the effect of AcbC lesions on inter-temporal choice using a quantitative method that allows effects on delay discounting to be distinguished from effects on sensitivity to reinforcer size. Sixteen rats received bilateral quinolinic acid-induced lesions of the AcbC; 14 received sham lesions. They were trained under a discrete-trials progressive delay schedule to press two levers (A and B) for a sucrose solution. Responses on A delivered 50 microl of the solution after a delay d(A); responses on B delivered 100 microl after d(B). d(B) increased across blocks of trials, while d(A) was manipulated across phases of the experiment. Indifference delay d(B(50)) (value of d(B) corresponding to 50% choice of B) was estimated in each phase, and linear indifference functions (d(B(50)) vs d(A)) derived. d(B(50)) increased linearly with d(A) (r(2) > 0.95 in each group). The intercept of the indifference function was lower in the lesioned than the sham-lesioned group; slope did not differ between groups. The lesioned rats had extensive neuronal loss in the AcbC. The results confirm that lesions of the AcbC promote preference for smaller, earlier reinforcers and suggest that this reflects an effect of the lesion on the rate of delay discounting.

  8. Effects of Isha Hatha Yoga on Core Stability and Standing Balance.

    Science.gov (United States)

    Carneiro, Élida Mara; Moraes, Giselle Vanessa; Terra, Guilherme Azevedo

    2016-01-01

    Context • The coexistence of affective disorders, especially anxiety and depression, with medical illness is a topic of considerable clinical and research interest. Complementary biofield modalities are therapies that involve touch or placement of the hands in or through biofields. Spiritual healing, or Spiritist passe (SP), is a kind of laying on of hands (LOH), and therefore is a biofield therapy. Objective • The current study intended to evaluate the effects of SP on psychological parameters such as anxiety and depression and on the perceptions of muscle tension and wellness as well as physiological parameters, such as pain intensity, heart rate (HR), and oxygen saturation (SpO2). Design • This study was a randomized, controlled trial. Setting • The study took place at the medical clinic of the clinical hospital of the Federal University of Triângulo Mineiro (HC/UFTM) in Uberaba, Brazil. Participants • The participants were patients aged ≥18 y who had been hospitalized in the clinic between August 2014 and June 2015. Intervention • Participants in the no-SP and SP groups were instructed to direct their thoughts to Jesus with wishes to heal during the intervention. In the SP group, the patients underwent application of the SP, and in the no-SP group, workers, students, or volunteers at the Clinical Hospital of Uberaba practiced a kind of LOH in a nonspiritual therapy with intention to healing emitting sincere wishes of improvement to the patients by thought. All procedures in those groups were carried out during a 10-min period on 3 consecutive days. In the control group, the patients lay for 10 min during the same periods on the 3 days, with no intervention occurring. Outcome Measures • The study evaluated depression and anxiety using the Hospital Anxiety and Depression (HAD) scale as well as patients' pain using a visual analog scale (VAS). The study also measured their perceptions of muscle tension and wellness and their physiological

  9. Effect of drink temperature on core temperature and endurance cycling performance in warm, humid conditions.

    Science.gov (United States)

    Burdon, Catriona; O'Connor, Helen; Gifford, Janelle; Shirreffs, Susan; Chapman, Phillip; Johnson, Nathan

    2010-09-01

    The aims of this study were to determine the effect of cold (4 °C) and thermoneutral (37 °C) beverages on thermoregulation and performance in the heat and to explore sensory factors associated with ingesting a cold stimulus. Seven males (age 32.8 ± 6.1 years, [V(.)]O(2peak) 59.4 ± 6.6 ml x kg(-1) x min(-1)) completed cold, thermoneutral, and thermoneutral + ice trials in randomized order. Participants cycled for 90 min at 65%[V(.)]O(2peak) followed by a 15-min performance test at 28 °C and 70% relative humidity. They ingested 2.3 ml x kg(-1) of a 7.4% carbohydrate-electrolyte solution every 10 min during the 90-min steady-state exercise including 30 ml ice puree every 5 min in the ice trial. Absolute changes in skin temperature (0.22 ± 1.1 °C vs. 1.14 ± 0.9 °C; P = 0.02), mean body temperature (1.2 ± 0.3 vs. 1.6 ± 0.3 °C; P = 0.03), and heat storage were lower across the 90-min exercise bout for the cold compared with the thermoneutral trial. Significant improvements (4.9 ± 2.4%, P cold but no significant differences were detected with ice. Consumption of cold beverages during prolonged exercise in the heat improves body temperature measures and performance. Consumption of ice did not reveal a sensory response, but requires further study. Beverages consumed by athletes exercising in the heat should perhaps be cold for performance and safety reasons.

  10. Electron correlation effect on radiative decay processes of the core-excited states of Be-like ions

    Energy Technology Data Exchange (ETDEWEB)

    Sang, Cuicui, E-mail: sangcc@126.com [Department of Physics, Qinghai Normal University, Xining 810001 (China); Li, Kaikai [College of Forensic Science, People' s Public Security University of China, Beijing 100038 (China); Sun, Yan; Hu, Feng [School of Mathematic and Physical Science, Xuzhou Institute of Technology, Xuzhou 221400, Jiangsu (China)

    2016-07-15

    Highlights: • Radiative rates of the states 1s2s{sup 2}2p and 1s2p{sup 3} with Z = 8–54 are studied. • Electron correlation effect on the radiative transition rates is studied. • Forbidden transitions are explored. - Abstract: Energy levels and the radiative decay processes of the core-excited configurations 1s2s{sup 2}2p and 1s2p{sup 3} of Be-like ions with Z = 8–54 are studied. Electron correlation effect on the energy levels and the radiative transition rates are studied in detail. Except for E1 radiative transition rates, the E2, M1 and M2 forbidden transitions are also explored. Further relativistic corrections from the Breit interaction, quantum electrodynamics and the finite nuclear size are included in the calculations to make the results more precise. Good agreement is found between our results and other theoretical data.

  11. Analysis of Core Stability Exercise Effect on the Physical and Psychological Function of Elderly Women Vulnerable to Falls during Obstacle Negotiation.

    Science.gov (United States)

    Ko, Dae-Sik; Jung, Dae-In; Jeong, Mi-Ae

    2014-11-01

    [Purpose] The aim of the present study was to investigate the effects of core stability exercise (CSE) on the physical and psychological functions of elderly women while negotiating general obstacles. [Subjects and Methods] After allocating 10 elderly women each to the core stability training group and the control group, we carried out Performance-Oriented Mobility Assessment (POMA) and measured crossing velocity (CV), maximum vertical heel clearance (MVHC), and knee flexion angle for assessing physical performances. We evaluated depression and fear of falling for assessing psychological functions. [Results] Relative to the control group, the core stability training group showed statistically significant overall changes after the training session: an increase in POMA scores, faster CV, lower MVHC, and a decrease in knee flexion angle. Furthermore, depression and fear of falling decreased significantly. [Conclusion] CSE can have a positive effect on the improvement of physical and psychological performances of older women who are vulnerable to falls as they negotiate everyday obstacles.

  12. Effect of Magnetic Field and Shell Thickness on Binding Energies of a ZnSe/ZnS Core Shell Quantum Dot

    Science.gov (United States)

    Bhat, Bashir Mohi ud din; Parvaiz, Muhammad Shunaid; Sen, Pratima

    2017-02-01

    We investigated the effect of external magnetic field and shell thickness on the binding energies of a ZnSe/ZnS core shell quantum dot. The binding energies were calculated using the variational method within the effective mass approximation and confinement potential. The binding energy of the 2 s and 2 p + states was found to increase with magnetic field. However, the 2 p 0 state was found to be independent of the magnetic field at a shell thickness of 0.5 nm. Degeneracy of the lifted 2 p states was found to occur. The results also showed that the electron binding energy increases at the outset with the increasing shell thickness, and at larger shell thicknesses, the binding energy saturates. The binding energy was found to be decreasing with increasing core diameter and becomes appreciably smaller at core radius of 0.42 nm. The observed results were compared with the previously reported results.

  13. INCREASES IN CORE TEMPERATURE COUNTERBALANCE EFFECTS OF HEMOCONCENTRATION ON BLOOD VISCOSITY DURING PROLONGED EXERCISE IN THE HEAT

    Science.gov (United States)

    Buono, Michael J.; Krippes, Taylor; Kolkhorst, Fred W.; Williams, Alexander T.; Cabrales, Pedro

    2015-01-01

    Previous studies have reported that blood viscosity is significantly increased following exercise. However, these studies measured both pre- and post-exercise blood viscosity at 37 °C even though core and blood temperatures would be expected to have increased during the exercise. Consequently, the effect of exercise-induced hyperthermia on mitigating change in blood viscosity may have been missed. The purpose of this study was to isolate the effects of exercise-induced hemoconcentration and hyperthermia, as well as determine their combined effects, on blood viscosity. Nine subjects performed 2 h of moderate-intensity exercise in the heat (37 °C, 40% rH), which resulted in significant increases from pre-exercise values for rectal temperature (37.11 ± 0.35 °C to 38.76 ± 0.13 °C), hemoconcentration (hematocrit = 43.6 ± 3.6% to 45.6 ± 3.5%), and dehydration (Δbody weight = −3.6 ± 0.7%). Exercise-induced hemoconcentration significantly (P viscosity by 9% (3.97 to 4.30 cP at 300 s−1) while exercise-induced hyperthermia significantly decreased blood viscosity by 7% (3.97 to 3.70 cP at 300 s−1). However, when both factors were considered together, there was no overall change in blood viscosity (3.97 to 4.03 cP at 300 s−1). The effects of exercise-induced hemoconcentration, increased plasma viscosity, and increased red blood cell aggregation, all of which increased blood viscosity, were counterbalanced by increased RBC deformability (e.g., RBC membrane shear elastic modulus and elongation index) caused by the hyperthermia. Thus, blood viscosity remained unchanged following prolonged moderate-intensity exercise in the heat. PMID:26682653

  14. Effect of silica fiber on the mechanical and chemical behavior of alumina-based ceramic core material

    Directory of Open Access Journals (Sweden)

    Weiguo Jiang

    2017-12-01

    Full Text Available In order to improve the chemical leachability, the alumina-based ceramic core material with the silica fiber was injected and sintered at 1100 °C/4 h, 1200 °C/4 h, 1300 °C/4 h and 1400 °C/4 h, respectively. The micrographs of ceramic core materials at sintered and leached state were characterized by scanning electron microscopy (SEM. The phase composition of ceramic core material after sintering and the leaching product after leaching were detected by X-ray diffraction (XRD. The porosity, room temperature bend strength, creep property at elevated temperature and the leaching rate in aqueous caustic solution were studied. The experimental results show that the ceramic core material with silica fiber obtain a fair balance between mechanical and chemical properties at sintering of 1300 °C/4 h. Specifically, the leach rate of ceramic core material with silica fiber is increased apparently. High leaching surface and weak adhesive strength between agglomerated alumina particles are the reasons that responsible for the ceramic core material with silica fiber be leaching fast than that of the ceramic core material without fiber.

  15. Birefringent hollow core fibers

    DEFF Research Database (Denmark)

    Roberts, John

    2007-01-01

    Hollow core photonic crystal fiber (HC-PCF), fabricated according to a nominally non-birefringent design, shows a degree of un-controlled birefringence or polarization mode dispersion far in excess of conventional non polarization maintaining fibers. This can degrade the output pulse in many...... and an increased overlap between the polarization modes at the glass interfaces. The interplay between these effects leads to a wavelength for optimum polarization maintenance, lambda(PM), which is detuned from the wavelength of highest birefringence. By a suitable fiber design involving antiresonance of the core...

  16. The effect of core material, veneering porcelain, and fabrication technique on the biaxial flexural strength and weibull analysis of selected dental ceramics.

    Science.gov (United States)

    Lin, Wei-Shao; Ercoli, Carlo; Feng, Changyong; Morton, Dean

    2012-07-01

    The objective of this study was to compare the effect of veneering porcelain (monolithic or bilayer specimens) and core fabrication technique (heat-pressed or CAD/CAM) on the biaxial flexural strength and Weibull modulus of leucite-reinforced and lithium-disilicate glass ceramics. In addition, the effect of veneering technique (heat-pressed or powder/liquid layering) for zirconia ceramics on the biaxial flexural strength and Weibull modulus was studied. Five ceramic core materials (IPS Empress Esthetic, IPS Empress CAD, IPS e.max Press, IPS e.max CAD, IPS e.max ZirCAD) and three corresponding veneering porcelains (IPS Empress Esthetic Veneer, IPS e.max Ceram, IPS e.max ZirPress) were selected for this study. Each core material group contained three subgroups based on the core material thickness and the presence of corresponding veneering porcelain as follows: 1.5 mm core material only (subgroup 1.5C), 0.8 mm core material only (subgroup 0.8C), and 1.5 mm core/veneer group: 0.8 mm core with 0.7 mm corresponding veneering porcelain with a powder/liquid layering technique (subgroup 0.8C-0.7VL). The ZirCAD group had one additional 1.5 mm core/veneer subgroup with 0.7 mm heat-pressed veneering porcelain (subgroup 0.8C-0.7VP). The biaxial flexural strengths were compared for each subgroup (n = 10) according to ISO standard 6872:2008 with ANOVA and Tukey's post hoc multiple comparison test (p≤ 0.05). The reliability of strength was analyzed with the Weibull distribution. For all core materials, the 1.5 mm core/veneer subgroups (0.8C-0.7VL, 0.8C-0.7VP) had significantly lower mean biaxial flexural strengths (p veneered ZirCAD groups showed greater flexural strength than the monolithic Empress and e.max groups, regardless of core thickness and fabrication techniques. Comparing fabrication techniques, Empress Esthetic/CAD, e.max Press/CAD had similar biaxial flexural strength (p= 0.28 for Empress pair; p= 0.87 for e.max pair); however, e.max CAD/Press groups had

  17. Bioinformatics Core Project Management

    Science.gov (United States)

    Vangala, Mahesh; Vincent, James; Driscoll, Heather

    2013-01-01

    Bioinformatics cores that provide fee for service style support encounter a wide variety of projects. The scope of projects varies greatly among investigators. Because of this variety, it is difficult to develop a set of predefined services that fit all project types. While our own core has developed a baseline set of services, we found in practice these often needed significant modification to meet the goals of particular investigator. To overcome this problem we factored common features of all projects and partitioned them into groups: workflow management, data management, user results, and tracking and reporting. We then implemented best practices for each group using commercial and open source software combined with our own management policies. Finally we linked these areas together to produce an overall integrated project management solution that combines workflow management, data management, user results management and reporting capabilities. This system solves the problem of developing well defined services that are trackable and repeatable while simultaneously enabling flexibility that is easily managed. The result improves the effectiveness and efficiency of the bioinformatics core for scientists working within the core, for investigators receiving core support and for external auditors and evaluators.

  18. Concept of effective states of atoms in compounds to describe properties determined by the densities of valence electrons in atomic cores

    OpenAIRE

    Titov, Anatoly V.; Lomachuk, Yuriy V.; Skripnikov, Leonid V.

    2014-01-01

    A new approach for describing the effective electronic states of "atoms in compounds" to study the properties of molecules and condensed matter which are circumscribed by the operators heavily concentrated in atomic cores is proposed. Among the properties are hyperfine structure, space parity (P) and time reversal invariance (T) nonconservation effects, chemical shifts of x-ray emission lines (XES), M\\"{o}ssbauer effect, etc. Advantage of the approach is that a good quantitative agreement of ...

  19. Identification of human telomerase inhibitors having the core of N-acyl-4,5-dihydropyrazole with anticancer effects.

    Science.gov (United States)

    Xiao, Xuan; Ni, Yong; Jia, Ying-Ming; Zheng, Min; Xu, Han-Fei; Xu, Jun; Liao, Chenzhong

    2016-03-15

    Eight human telomerase inhibitors (5a-5h) having the core of N-acyl-4,5-dihydropyrazole with anticancer effects were identified in this study. Biological results revealed that a few compounds had potent anticancer activities against three common tumor cell lines (SGC-7901, HepG2 and MGC-803). Among them, compound 5c, with a molecular weight of only 272.2 Da, had antiproliferative activities against SGC-7901 and MGC-803 with EC50 values of 2.06 ± 0.17 and 2.89 ± 0.62 μM, respectively, better than 5-Fluorouracil. Compound 5c inhibited the enzyme of telomerase with an IC50 value of 1.86 ± 0.51 μM, surpassing the control compound, ethidium bromide. Modeling study showed that this compound can reside in the binding pocket of the telomerase/TNA:DNA hairpin complex. When the moiety of N-acyl was changed to N-sulfonyl, the gotten compounds (8a-8i) had deteriorative activities against both these three cancer cell lines and the enzyme of telomerase. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Resistivity During Boiling in the SB-15-D Core from the Geysers Geothermal Field: The Effects of Capillarity

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, J.; Duba, A.; Bonner, B.; Kasameyer, P.

    1997-01-01

    In a laboratory study of cores from borehole SB-15-D in The Geysers geothermal area, we measured the electrical resistivity of metashale with and without pore-pressure control, with confining pressures up to 100 bars and temperatures between 20 and 150 C, to determine how the pore-size distribution and capillarity affected boiling. We observed a gradual increase in resistivity when the downstream pore pressure or confining pressure decreased below the phase boundary of free water. For the conditions of this experiment, boiling, as indicated by an increase in resistivity, is initiated at pore pressures of approximately 0.5 to 1 bar (0.05 to 0.1 MPa) below the free-water boiling curve, and it continues to increase gradually as pressure is lowered to atmospheric. A simple model of the effects of capillarity suggests that at 145 C, less than 15% of the pore water can boil in these rocks. If subsequent experiments bear out these preliminary observations, then boiling within a geothermal reservoir is controlled not just by pressure and temperature but also by pore-size distribution. Thus, it may be possible to determine reservoir characteristics by monitoring changes in electrical resistivity as reservoir conditions change.

  1. Effects of Core-Shell Rubber (CSR) Nanoparticles on the Cryogenic Fracture Toughness of CSR Modified Epoxy

    Science.gov (United States)

    Wang, Jun; Magee, Daniel; Schneider, Judy; Cannon, Seth

    2009-01-01

    This study investigated the effects of core-shell rubber (CSR) nanoparticles on the mechanical properties and fracture toughness of an epoxy resin at ambient and liquid nitrogen (LN2) temperatures. Varying amounts of Kane Ace(Registered TradeMark) MX130 and Kane Ace(Registered TradeMark) MX960 toughening agent were added to a commercially available EPON 862/Epikure W epoxy resin. Elastic modulus was calculated using quasi-static tensile data. Fracture toughness was evaluated by the resulting breaking energy measured in Charpy impact tests conducted on an instrumented drop tower. The size and distribution of the CSR nanoparticles were characterized using Transmission Electron Microscopy (TEM) and Small Angle X-ray Scattering (SAXS). Scanning Electron Microscopy (SEM) was used to study the fracture surface morphology. The addition of the CSR nanoparticles increased the breaking energy with negligible change in elastic modulus and ultimate tensile stress (UTS). At ambient temperature the breaking energy increased with increasing additions of the CSR nanoparticles up to 13.8wt%, while at LN2 temperatures, it reached a plateau at much lower CSR concentration.

  2. Effects of risperidone on core symptoms of autistic disorder based on childhood autism rating scale: an open label study.

    Science.gov (United States)

    Ghaeli, Padideh; Nikvarz, Naemeh; Alaghband-Rad, Javad; Alimadadi, Abbas; Tehrani-Doost, Mehdi

    2014-01-01

    The aim of the present study was to evaluate the effect of risperidone in patients afflicted by autistic disorder especially with regards to its three core symptoms, including "relating to others", "communication skills", and "stereotyped behaviors" based on Childhood Autism Rating Scale (CARS). An 8-week open-label study of risperidone for treatment of autistic disorder in children 4-17 years old was designed. Risperidone dose titration was as follow: 0.02 mg/kg/day at the first week, 0.04 mg/kg/day at the second week, and 0.06 mg/kg/day at the third week and thereafter. The outcome measures were scores obtained by CARS, Aberrant Behavior Checklist (ABC), and Clinical Global Impression-Improvement (CGI-I) scale. Fifteen patients completed this study. After 8 weeks, CARS total score decreased significantly, (P=0.001). At the end of the study, social interactions and verbal communication skills of the patients were significantly improved (Pautistic disorder.

  3. Description of Weak Halogen Bonding Using Various Levels of Symmetry-Adapted Perturbation Theory Combined with Effective Core Potentials

    Directory of Open Access Journals (Sweden)

    Piotr Matczak

    2017-01-01

    Full Text Available The present work starts with providing a description of the halogen bonding (XB interaction between the halogen atom of MH3X (where M = C–Pb and X = I, At and the N atom of HCN. This interaction leads to the formation of stable yet very weakly bound MH3X⋯NCH complexes for which the interaction energy (Eint between MH3X and HCN is calculated using various symmetry-adapted perturbation theory (SAPT methods combined with the def2-QZVPP basis set and midbond functions. This basis set assigns effective core potentials (ECPs not only to the I or At atom directly participating in the XB interaction with HCN but also to the M atom when substituted with Sn or Pb. Twelve SAPT methods (or levels are taken into consideration. According to the SAPT analysis of Eint, the XB interaction in the complexes shows mixed electrostatic-dispersion nature. Next, the accuracy of SAPT Eint is evaluated by comparing with CCSD(T reference data. This comparison reveals that high-order SAPT2+(3 method and the much less computationally demanding SAPT(DFT method perform very well in describing Eint of the complexes. However, the accuracy of these methods decreases dramatically if they are combined with the so-called Hartree-Fock correction.

  4. Effects of body mass index on foot posture alignment and core stability in a healthy adult population.

    Science.gov (United States)

    AlAbdulwahab, Sami S; Kachanathu, Shaji John

    2016-06-01

    Foot biomechanics and core stability (CS) play significant roles in the quality of standing and walking. Minor alterations in body composition may influence base support or CS strategies. The aim of this study was to investigate the effect of the body mass index (BMI) on the foot posture index (FPI) and CS in a healthy adult population. A total of 39 healthy adult subjects with a mean age of 24.3±6.4 years and over-weight BMI values between 25 and 29.9 kg/m2 (27.43±6.1 kg/m2) participated in this study. Foot biomechanics were analyzed using the FPI. CS was assessed using a plank test with a time-to-failure trial. The Spearman correlation coefficient indicated a significant correlation between BMI and both the FPI (r=0.504, P=0.001) and CS (r= -0.34, P=0.036). Present study concluded that an overweight BMI influences foot posture alignment and body stability. Consequently, BMI should be considered during rehabilitation management for lower extremity injuries and body balance.

  5. Effect of two connector designs on the fracture resistance of all-ceramic core materials for fixed dental prostheses.

    Science.gov (United States)

    Plengsombut, Kwansiri; Brewer, Jane D; Monaco, Edward A; Davis, Elaine L

    2009-03-01

    Most all-ceramic fixed dental prostheses (FDPs) fail at the connectors. The purpose of this study was to determine the effect of 2 connector designs on the fracture resistance of core materials used for all-ceramic FDPs. Three materials were tested: (1) heat-pressed lithium disilicate glass ceramic (IPS e.max Press (Press)), (2) milled lithium disilicate glass ceramic (IPS e.max CAD (CAD)), and (3) milled yttrium-stabilized tetragonal zirconia polycrystals (Y-TZP) (IPS e.max ZirCAD (ZirCAD)). Specimens were made into 30 x 4 x 4-mm bars to represent 3-unit FDPs. Two connector designs, round (0.60 +/-0.01-mm radius of curvature) and sharp (0.06 +/-0.001-mm radius of curvature), with a 3.00 +/-0.05-mm cross-section for each connector, were studied (n=5). Each specimen was loaded to fracture in a universal testing machine with a crosshead speed of 0.1 mm/min. Data were analyzed with a 2-way univariate ANOVA and Tukey HSD test (alpha=.05). Mean (SD) failure loads for round connector designs were 684.2 (70.1) N for ZirCAD, 260 (7.8) N for CAD, and 172.9 (35.5) N for Press. Mean (SD) failure loads for sharp connector designs were 386.3 (51.5) N for ZirCAD, 87.9 (7.0) N for CAD, and 125.1 (15.1) N for Press. The 2-way univariate ANOVA indicated statistically significant differences (Pmaterial and connector design, and, also, a significant interaction between material and connector design. Higher maximum failure loads were found for the round connector design when compared to the sharp connector design, for ZirCAD and CAD. However, this difference was not statistically significant for the Press groups. SEM subjective assessment of the fractured specimens revealed that the fracture initiated from the gingival surface (tensile) of the connector toward the pontic (central loading point). Fracture resistance of ceramic core materials is affected by fabrication technique and connector design. Connector design affected fracture resistance of the milled ceramic, but not the

  6. The Effects of Cardiovascular Fitness and Body Composition on Maximal Core Temperature in Collegiate Football Players During Pre-season.

    Science.gov (United States)

    McClelland, JoAnna M; Godek, Sandra Fowkes; Chlad, Pamela S; Feairheller, Deborah L; Morrison, Katherine E

    2017-07-14

    This study evaluated the effects of BMI and aerobic fitness (VO2max) on maximal core temperature values (Tcmax) in 17 NCAA Division III football players during pre-season. The subjects included nine backs (BKs) and eight linemen (LM). VO2max testing was performed one week prior to pre-season. Core temperature was monitored via ingestible sensor every 10 min during practices on day 4(D1), day 5(D2), day 7(D3), and post-acclimatization on day 14(D4). Wet bulb globe temperature (WBGT) was recorded on each collection day. Independent, paired t-tests and Pearson's correlations were performed (α=0.05). There were no significant correlations between VO2max and Tcmax on D1 (WBGT=29.07°C) or D2 (WBGT=30.93°C), but on D3 (WBGT=31.39 °C) there was a non-significant moderate negative correlation (r=-0.564, P=0.090). There were no significant correlations between BMI and Tcmax on D1or D2, but on D3 there was a non-significant moderate positive correlation (r=0.596, P=0.069). Paired t-tests revealed that overall Tcmax (D1-3) (38.56±0.32°C) was statistically higher (P=0.002) than D4 (38.16±0.30 °C). Independent t-tests between groups showed the Tcmax values during pre-acclimatization (D1-D3) were significantly higher in LM (38.50±0.37°C) than BKs (38.16±0.35°C) (P=0.007). VO2max was significantly lower (P=0.006) in LM [36.89±6.40 ml/kg•min] than BKs [47.44±7.09 ml/kg•min] and BMI was significantly higher (P=0.019) in LM (35.59±4.00 kg/m) than BKs (28.68±3.38 kg/m). The results of this study demonstrate that LM are significantly less fit than BKs and have a greater BMI. When WBGT was the highest on D3, the results suggest that those with lower VO2max and higher BMI experienced a higher Tcmax.

  7. Mediation Effect of Research Skills Proficiency on the Core Self-Evaluations--Research Engagement Relationship among Master of Education Students in Uganda

    Science.gov (United States)

    Atibuni, Dennis Zami; Olema, David Kani; Ssenyonga, Joseph; Karl, Steffens; Kibanja, Grace Milly

    2017-01-01

    This study investigated the mediation effect of research skills proficiency on the relationship between core self-evaluations and research engagement among Master of Education students in Uganda. Questionnaire surveys including closed ended questions were administered to two cohorts of the students, 2011/2012 and 2012/2013, (N = 102). Results…

  8. Teacher Engagement in Core Components of an Effective, Early Childhood Professional Development Course: Links to Changes in Teacher-Child Interactions

    Science.gov (United States)

    Williford, Amanda P.; Carter, Lauren M.; Maier, Michelle F.; Hamre, Bridget K.; Cash, Anne; Pianta, Robert C.; Downer, Jason T.

    2017-01-01

    This study built on prior research regarding the effectiveness of the National Center for Research in Early Childhood Education (NCRECE) course by exploring the individual course components. Core aspects of course engagement and performance were described and examined in relation to improvements in the observed quality of teacher-child…

  9. Introduction of Core Based Subjects in the Curriculum of Technical and Vocational Institutions in Ghana: Assessment of Its Effect on Practical Training Sessions

    Science.gov (United States)

    William, Otu

    2015-01-01

    Technical education among other things focuses on training the skill manpower needs of the youth in most countries of which Ghana is no exception. This study looks at Ghana Education Service technical and vocational sector reform programme introduced in 2010 with emphasis on the introduction of compulsory core based subjects and its effect on…

  10. A Comparative Evaluation of Effect of Different Chemical Solvents on the Shear Bond Strength of Glass Fiber reinforced Post to Core Material.

    Science.gov (United States)

    Sharma, Ashish; Samadi, Firoza; Jaiswal, Jn; Saha, Sonali

    2014-01-01

    To compare the effect of different chemical solvents on glass fiber reinforced posts and to study the effect of these solvents on the shear bond strength of glass fiber reinforced post to core material. This study was conducted to evaluate the effect of three chemical solvents, i.e. silane coupling agent, 6% H2O2 and 37% phosphoric acid on the shear bond strength of glass fiber post to a composite resin restorative material. The changes in post surface characteristics after different treatments were also observed, using scanning electron microscopy (SEM) and shear bond strength was analyzed using universal testing machine (UTM). Surface treatment with hydrogen peroxide had greatest impact on the post surface followed by 37% phosphoric acid and silane. On evaluation of the shear bond strength, 6% H2O2 exhibited the maximum shear bond strength followed in descending order by 37% phosphoric acid and silane respectively. The surface treatment of glass fiber post enhances the adhesion between the post and composite resin which is used as core material. Failure of a fiber post and composite resin core often occurs at the junction between the two materials. This failure process requires better characterization. How to cite this article: Sharma A, Samadi F, Jaiswal JN, Saha S. A Comparative Evaluation of Effect of Different Chemical Solvents on the Shear Bond Strength of Glass Fiber Reinforced Post to Core Material. Int J Clin Pediatr Dent 2014;7(3):192-196.

  11. The effect of shoulder core exercises on isometric torque of glenohumeral joint movements in healthy young females

    Directory of Open Access Journals (Sweden)

    Afsun Nodehi Moghadam

    2011-01-01

    Conclusions: These findings indicated that shoulder core exercise training leads to an increase in peak torque for all glenohumeral movements that can be considered in glenohumeral muscles strengthening programs.

  12. A finite element study of teeth restored with post and core: Effect of design, material, and ferrule

    Directory of Open Access Journals (Sweden)

    Viram Upadhyaya

    2016-01-01

    Conclusion: A rigid material with high modulus of elasticity for post and core system creates most uniform stress distribution pattern. Ferrule provides uniform distribution of stresses and decreases the cervical stresses.

  13. The Effect of Core Stabilization Exercises Using a Sling on Pain and Muscle Strength of Patientswith Chronic Low Back Pain

    National Research Council Canada - National Science Library

    Yoo, Young-Dae; Lee, Yeon-Seop

    2012-01-01

    [Purpose] This study examined the feasibility of using an intervention of core stabilization exercises using a sling to control pain and muscle strength of patients with chronic low back pain. [Subjects...

  14. Effect of different composite core materials on fracture resistance of endodontically treated teeth restored with FRC posts

    Directory of Open Access Journals (Sweden)

    Prapaporn PANITIWAT

    Full Text Available Abstract Objective This study evaluated the fracture resistance of endodontically treated teeth restored with fiber reinforced composite posts, using three resin composite core build-up materials, (Clearfil Photo Core (CPC, MultiCore Flow (MCF, and LuxaCore Z-Dual (LCZ, and a nanohybrid composite, (Tetric N-Ceram (TNC. Material and Methods Forty endodontically treated lower first premolars were restored with quartz fiber posts (D.T. Light-Post cemented with resin cement (Panavia F2.0. Samples were randomly divided into four groups (n=10. Each group was built-up with one of the four core materials following its manufacturers’ instructions. The teeth were embedded in acrylic resin blocks. Nickel-Chromium crowns were fixed on the specimens with resin cement. The fracture resistance was determined using a universal testing machine with a crosshead speed of 1 mm/min at 1350 to the tooth axis until failure occurred. All core materials used in the study were subjected to test for the flexural modulus according to ISO 4049:2009. Results One-way ANOVA and Bonferroni multiple comparisons test indicated that the fracture resistance was higher in the groups with CPC and MCF, which presented no statistically significant difference (p>0.05, but was significantly higher than in those with LCZ and TNC (p<0.05. In terms of the flexural modulus, the ranking from the highest values of the materials was aligned with the same tendency of fracture loads. Conclusion Among the cores used in this study, the composite core with high filler content tended to enhance fracture thresholds of teeth restored with fiber posts more than others.

  15. Effectiveness of core stability exercises and recovery myofascial release massage on fatigue in breast cancer survivors: a randomized controlled clinical trial.

    Science.gov (United States)

    Cantarero-Villanueva, Irene; Fernández-Lao, Carolina; Del Moral-Avila, Rosario; Fernández-de-Las-Peñas, César; Feriche-Fernández-Castanys, María Belén; Arroyo-Morales, Manuel

    2012-01-01

    The purpose of the present paper was to evaluate the effects of an 8-week multimodal program focused on core stability exercises and recovery massage with DVD support for a 6-month period in physical and psychological outcomes in breast cancer survivors. A randomized controlled clinical trial was performed. Seventy-eight (n = 78) breast cancer survivors were assigned to experimental (core stability exercises plus massage-myofascial release) and control (usual health care) groups. The intervention period was 8 weeks. Mood state, fatigue, trunk curl endurance, and leg strength were determined at baseline, after the last treatment session, and at 6 months of followup. Immediately after treatment and at 6 months, fatigue, mood state, trunk curl endurance, and leg strength exhibited greater improvement within the experimental group compared to placebo group. This paper showed that a multimodal program focused on core stability exercises and massage reduced fatigue, tension, depression, and improved vigor and muscle strength after intervention and 6 months after discharge.

  16. Development of a core outcome set for effectiveness trials aimed at optimising prescribing in older adults in care homes.

    Science.gov (United States)

    Millar, Anna N; Daffu-O'Reilly, Amrit; Hughes, Carmel M; Alldred, David P; Barton, Garry; Bond, Christine M; Desborough, James A; Myint, Phyo K; Holland, Richard; Poland, Fiona M; Wright, David

    2017-04-12

    Prescribing medicines for older adults in care homes is known to be sub-optimal. Whilst trials testing interventions to optimise prescribing in this setting have been published, heterogeneity in outcome reporting has hindered comparison of interventions, thus limiting evidence synthesis. The aim of this study was to develop a core outcome set (COS), a list of outcomes which should be measured and reported, as a minimum, for all effectiveness trials involving optimising prescribing in care homes. The COS was developed as part of the Care Homes Independent Pharmacist Prescribing Study (CHIPPS). A long-list of outcomes was identified through a review of published literature and stakeholder input. Outcomes were reviewed and refined prior to entering a two-round online Delphi exercise and then distributed via a web link to the CHIPPS Management Team, a multidisciplinary team including pharmacists, doctors and Patient Public Involvement representatives (amongst others), who comprised the Delphi panel. The Delphi panellists (n = 19) rated the importance of outcomes on a 9-point Likert scale from 1 (not important) to 9 (critically important). Consensus for an outcome being included in the COS was defined as ≥70% participants scoring 7-9 and drug events, prescribing errors, falls, quality of life, all-cause mortality and admissions to hospital (and associated costs)) met the criteria for inclusion in the final COS. We have developed a COS for effectiveness trials aimed at optimising prescribing in older adults in care homes using robust methodology. Widespread adoption of this COS will facilitate evidence synthesis between trials. Future work should focus on evaluating appropriate tools for these key outcomes to further reduce heterogeneity in outcome measurement in this context.

  17. Photoelectron spectroscopy at a free-electron laser. Investigation of space-charge effects in angle-resolved and core-level spectroscopy and realizaton of a time-resolved core-level photoemission experiment

    Energy Technology Data Exchange (ETDEWEB)

    Marczynski-Buehlow, Martin

    2012-01-30

    The free-electron laser (FEL) in Hamburg (FLASH) is a very interesting light source with which to perform photoelectron spectroscopy (PES) experiments. Its special characteristics include highly intense photon pulses (up to 100 J/pulse), a photon energy range of 30 eV to 1500 eV, transverse coherence as well as pulse durations of some ten femtoseconds. Especially in terms of time-resolved PES (TRPES), the deeper lying core levels can be reached with photon energies up to 1500 eV with acceptable intensity now and, therefore, element-specific, time-resolved core-level PES (XPS) is feasible at FLASH. During the work of this thesis various experimental setups were constructed in order to realize angle-resolved (ARPES), core-level (XPS) as well as time-resolved PES experiments at the plane grating monochromator beamline PG2 at FLASH. Existing as well as newly developed systems for online monitoring of FEL pulse intensities and generating spatial and temporal overlap of FEL and optical laser pulses for time-resolved experiments are successfully integrated into the experimental setup for PES. In order to understand space-charge effects (SCEs) in PES and, therefore, being able to handle those effects in future experiments using highly intense and pulsed photon sources, the origin of energetic broadenings and shifts in photoelectron spectra are studied by means of a molecular dynamic N-body simulation using a modified Treecode Algorithm for sufficiently fast and accurate calculations. It turned out that the most influencing parameter is the ''linear electron density'' - the ratio of the number of photoelectrons to the diameter of the illuminated spot on the sample. Furthermore, the simulations could reproduce the observations described in the literature fairly well. Some rules of thumb for XPS and ARPES measurements could be deduced from the simulations. Experimentally, SCEs are investigated by means of ARPES as well as XPS measurements as a function of

  18. Effect of Silicon on Activity Coefficients of P, Bl, CD, SN, and AG in Liquid Fe-Si, and Implications for Differentiation and Core Formation

    Science.gov (United States)

    Righter, K.; Pando, K.; Ross, D. K.

    2017-01-01

    Cores of differentiated bodies (Earth, Mars, Mercury, Moon, Vesta) contain light elements such as S, C, Si, and O. We have previously measured small effects of Si on metal-silicate partitioning of Ni and Co [1,2], and larger effects for Mo, Ge, Sb, As [2]. The effect of Si on many siderophile elements could be an important, and as yet unquantified, influence on the core-mantle partitioning of SE. Here we report new experiments designed to quantify the effect of Si on the partitioning of Bi, Cd, Sn, Ag, and P between metal and silicate melt. The results will be applied to Earth, Mars, Mercury, Moon, and Vesta, for which we have excellent constraints on the mantle Bi, Cd, Sn, Ag, and P concentrations from mantle and/or basalt samples.

  19. A Distributed Effects Perspective of Dimensionally Defined Psychiatric Disorders: And Convergent versus Core Deficit Effects in ADHD

    Directory of Open Access Journals (Sweden)

    T. Sigi eHale

    2014-06-01

    Full Text Available The focus of psychiatric and psychological research has arguably shifted from brain damage and psychosis to more common forms of psychopathology that reflect extremes variants of otherwise normal cognitive and behavioral characteristics. Now, in addition to trying to understand overtly damaged brain function (flat tire effects, we are also seeking to understand liabilities associated with non-optimized, but otherwise intact, cognitive and behavioral abilities (poor tuning effects. This shift has pushed us to evolve our investigational strategies to more broadly consider whole-brain integrated brain-systems, as well as seek to develop more specific quantifiable indicators of impoverished brain function and behavior. This paper discusses such challenges in relation to dimensionally defined psychiatric disorders and presents a novel whole-brain integrated perspective of ADHD brain function pathology.

  20. Long-range interactions in the effective low-energy Hamiltonian of Sr2IrO4 : A core-to-core resonant inelastic x-ray scattering study

    Science.gov (United States)

    Agrestini, S.; Kuo, C.-Y.; Moretti Sala, M.; Hu, Z.; Kasinathan, D.; Ko, K.-T.; Glatzel, P.; Rossi, M.; Cafun, J.-D.; Kvashnina, K. O.; Matsumoto, A.; Takayama, T.; Takagi, H.; Tjeng, L. H.; Haverkort, M. W.

    2017-05-01

    We have investigated the electronic structure of Sr2IrO4 using core-to-core resonant inelastic x-ray scattering. The experimental spectra can be well reproduced using ab initio density functional theory based multiplet ligand field theory calculations, thereby validating these calculations. We found that the low-energy, effective Ir t2 g orbitals are practically degenerate in their crystal-field energy. We uncovered that Sr2IrO4 and iridates in general are negative charge transfer systems with large covalency and a substantial oxygen ligand hole character in the Ir t2 g Wannier orbitals. This has far reaching consequences, as not only the on-site crystal-field energies are determined by the long-range crystal structure, but, more significantly, magnetic exchange interactions will have long-range distance dependent anisotropies in the spin direction. These findings set constraints and show pathways for the design of d5 materials that can host compasslike magnetic interactions.

  1. [The effects of core proteoglycan on the expressions of I and III collagen in human renal tubular epithelial cell induced by TGFbeta1 in vitro].

    Science.gov (United States)

    Cheng, Xue-Qin; Bao, Hua-Ying; Pan, Xiao-Qin; Fei, Li; Huang, Song-Ming; Zhang, Wei-Zhen

    2008-12-01

    To explore the roles of core proteoglycan and TGFbeta1 on the expressions of I and III collagen in human renal tubular epithelial cell line(HK-2) in vitro. Confluent HK-2 cells were exposed to TGFbeta1 and core proteoglycan for up to 48 h. The cells were divided into four groups. Group (1), negative control group; group(2), single 10 microg/L TGFbeta1 treated group; group (3), 10 microg/L TGFbeta1+10 microg/L core proteoglycan group; group (4), 10 microg/L TGFbeta1+100 microg/L core proteoglycan group. Morphologic characterization of HK-2 cells was shown by invertmicroscope; Precise amounts of I and III collagen mRNA were measured by RT-PCR. After 48 h, morphology of (1) group cells had no changes, most cells were normal shape; (2) group cells took great changes, most cells converted into spindle shape, like fibroblast, (3) and (4) groups, spindle shape cells reduced significantly. In contrast to (1) group, the expressions of I collagen in (2) group from mRNA significant increased by 27.86-fold. The expressions of III collagen increased by 21.83-fold. Comparing (3) and (4) groups to(2) group, the expressions of I collagen from mRNA effectively decreased 36.39% and 53.36%. III collagen expressions increased 26.35% and 47.96%èP<0.05érespectively. But, neither (3) group nor (4) group alone could regulate I and III collagen mRNA to normal levels. Core proteoglycan can inhibit the expressions of I and III collagen in HK-2 cells induced by TGFbeta1 in vitro. Possibly, suggest core proteoglycan contribute to the regulation of renal fibrosis.

  2. Effects of core instability strength training on trunk muscle strength, spinal mobility, dynamic balance and functional mobility in older adults.

    Science.gov (United States)

    Granacher, Urs; Lacroix, Andre; Muehlbauer, Thomas; Roettger, Katrin; Gollhofer, Albert

    2013-01-01

    Age-related postural misalignment, balance deficits and strength/power losses are associated with impaired functional mobility and an increased risk of falling in seniors. Core instability strength training (CIT) involves exercises that are challenging for both trunk muscles and postural control and may thus have the potential to induce benefits in trunk muscle strength, spinal mobility and balance performance. The objective was to investigate the effects of CIT on measures of trunk muscle strength, spinal mobility, dynamic balance and functional mobility in seniors. Thirty-two older adults were randomly assigned to an intervention group (INT; n = 16, aged 70.8 ± 4.1 years) that conducted a 9-week progressive CIT or to a control group (n = 16, aged 70.2 ± 4.5 years). Maximal isometric strength of the trunk flexors/extensors/lateral flexors (right, left)/rotators (right, left) as well as of spinal mobility in the sagittal and the coronal plane was measured before and after the intervention program. Dynamic balance (i.e. walking 10 m on an optoelectric walkway, the Functional Reach test) and functional mobility (Timed Up and Go test) were additionally tested. Program compliance was excellent with participants of the INT group completing 92% of the training sessions. Significant group × test interactions were found for the maximal isometric strength of the trunk flexors (34%, p strength, spinal mobility, dynamic balance and functional mobility can be mitigated by CIT. This training regimen could be used as an adjunct or even alternative to traditional balance and/or resistance training. Copyright © 2012 S. Karger AG, Basel.

  3. Effect of Different Surface Treatments on the Bond Strength of Lithium Disilicate Ceramic to the Zirconia Core.

    Science.gov (United States)

    Yilmaz-Savas, Tuba; Demir, Necla; Ozturk, A Nilgun; Kilic, Hamdi Sukur

    2016-06-01

    The aim of this study was to evaluate the effect of different surface treatments [sandblasting, Erbium:Yttrium-Aluminium-Garnet (Er:YAG), and femtosecond lasers] on the shear bond strength (SBS) of the CAD-on technique. Although demand for all-ceramic restorations has increased, chipping remains one of the major problems for zirconia-based restorations. Forty yttrium-stabilized tetragonal zirconia polycrystalline (Y-TZP) zirconia plates (IPS e.max ZirCAD, Ivoclar Vivadent) were cut, sintered (12.4 × 11.4 × 3 mm) and divided into four groups according to the surface treatments (n = 10): a control group with no surface treatment (Group C), sandblasting with 50 μm Al2O3 (Group S), Er:YAG laser irradiation (Group E), and femtosecond laser irradiation (Group F). Also, 40 cylindrical (5 mm diameter, 2 mm height) lithium disilicate (IPS e.max CAD) veneer ceramics were cut and fused to all zirconia cores by a glass-fusion ceramic and crystallized according to the CAD-on technique. Specimens were subjected to shear force using a universal testing machine. The load was applied at a crosshead speed of 0.5 mm/min until failure. Mean SBS (MPa) were analyzed with one way ANOVA (p veneer specimens. However, the novel CAD-on technique with no surface treatment also showed high bonding strength. Thus, this technique could prevent ceramic chipping without additional surface treatments.

  4. Insights into chromatographic separation using core-shell metal-organic frameworks: Size exclusion and polarity effects.

    Science.gov (United States)

    Qin, Weiwei; Silvestre, Martin E; Kirschhöfer, Frank; Brenner-Weiss, Gerald; Franzreb, Matthias

    2015-09-11

    Porous metal-organic frameworks (MOFs) [Cu3(BTC)2(H2O)3]n (also known as HKUST-1; BTC, benzene-1,3,5-tricarboxylic acid) were synthesized as homogeneous shell onto carboxyl functionalized magnetic microparticles through a liquid phase epitaxy (LPE) process. The as-synthesized core-shell HKUST-1 magnetic microparticles composites were characterized by XRD and SEM, and used as stationary phase in high performance liquid chromatography (HPLC). The effects of the unique properties of MOFs onto the chromatographic performance are demonstrated by the experiments. First, remarkable separation of pyridine and bipyridine is achieved, although both molecules show a strong interaction between the Cu-ions in HKUST-1 and the nitrogen atoms in their heterocyles. The difference can be explained due to size exclusion of bipyridine from the well defined pore structure of crystalline HKUST-1. Second, the enormous variety of possible interactions of sample molecules with the metal ions and linkers within MOFs allows for specifically tailored solid phases for challenging separation tasks. For example, baseline separation of three chloroaniline (CLA) isomers tested can be achieved without the need for gradient elution modes. Along with the experimental HPLC runs, in-depth modelling with a recently developed chromatography modelling software (ChromX) was applied and proofs the software to be a powerful tool for exploring the separation potential of thin MOF films. The pore diffusivity of pyridine and CLA isomers within HKUST-1 are found to be around 2.3×10(-15)m(2)s(-1). While the affinity of HKUST-1 to the tested molecules strongly differs, the maximum capacities are in the same range, with 0.37molL(-1) for pyridine and 0.23molL(-1) for CLA isomers, corresponding to 4.0 and 2.5 molecules per MOF unit cell, respectively. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Ag@Au core-shell nanoparticles synthesized by pulsed laser ablation in water: Effect of plasmon coupling and their SERS performance.

    Science.gov (United States)

    Vinod, M; Gopchandran, K G

    2015-01-01

    Ag@Au core-shell nanoparticles are synthesised by pulsed laser ablation in water using low energy laser pulses. The plasmon characteristics of these core-shell nanoparticles are found to be highly sensitive to the thickness of Au coating. In the synthesis, at first silver nanocolloid was prepared by ablating Ag target and then it is followed by ablation of Au target for different time durations to form Ag@Au core-shell nanostructures. The effect of plasmon-plasmon coupling on the absorption spectra is investigated by decreasing the effective distance between the nanoparticles. This is achieved by reducing the total volume of the colloidal suspension by simple evaporation of water, the solvent used. The suitability of these core-shell nanostructures for application as surface enhanced Raman scattering substrates are tested with crystal violet as probe molecules. Influence of plasmon coupling on the enhancement of Raman bands is found to be different for different bands. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. A COMPARATIVE STUDY TO FIND OUT THE EFFECTIVENESS BETWEEN CORE STABILIZATION VS MCKENZIE EXERCISES IN THE TREATMENT OF PATIENTS WITH MECHANICAL LOW BACK PAIN

    Directory of Open Access Journals (Sweden)

    Abhijit Dutta

    2015-10-01

    Full Text Available Background: Mechanical Low back pain is a leading cause of disability. It occurs in similar proportions in all cultures, interferes with quality of life and work performance. Both male and female populations are affected; however, there is a tendency towards a higher incidence in male patients. Mechanical low back pain is associated with pain and clinical instability in lumbar motion segments. Exercises play an important part in the rehabilitation of low back pain. The aim of this study was to compare the effectiveness between Core stabilization vs McKenzie exercises in the treatment of patients with mechanical low back pain. Methods: 30 patients were selected between the age groups of 20 yrs to 50 yrs and having a past history of low back pain for one month. 15 patients were allotted to each group of experiment. Group I was given Core stabilization exercises and Group II with McKenzie exercises. Interferential therapy was a common treatment for both the groups. Evaluations of the subjects were done using the Revised Oswestry Disability Index and Dynamic Endurance tests. Results: Data analysis revealed statistically significant difference between both the groups (p<0.05 and proved that Core stabilization exercises is more effective than McKenzie exercises in mechanical low back pain. Conclusion: This study shows that core stabilization exercises possess a greater potential over McKenzie exercises in treating Mechanical Low back pain patients.

  7. Comparison of the effects of core stabilization and chest mobilization exercises on lung function and chest wall expansion in stroke patients.

    Science.gov (United States)

    Park, Shin-Jun; Lee, Ju-Hwan; Min, Kyung-Ok

    2017-07-01

    [Purpose] The main purpose of this study was to compare the effects of core stabilization and chest mobilization exercises on pulmonary function and chest expansion in chronic stroke patients. [Subjects and Methods] Thirty stroke patients were randomly divided into two groups: a core stabilization exercise group (n=15) and a chest mobilization exercise group (n=15). Each exercise was performed 3 times per week for 30 minutes for 4 weeks, and pulmonary function and chest expansion when breathing were measured for both groups. [Results] There were significant increases in both forced vital capacity and forced expiratory volume in 1 second before and after intervention. Core stabilization exercise resulted in a significant increase in peak expiratory flow, and significant increases in upper and lower chest expansion were detected with chest mobilization exercise. However, no significant difference was revealed between the two groups. [Conclusion] This study suggested that both exercises were effective in some aspects of pulmonary function while core stabilization can help increase peak expiratory flow and chest mobilization can assist with chest expansion.

  8. Cation Exchange Combined with Kirkendall Effect in the Preparation of SnTe/CdTe and CdTe/SnTe Core/Shell Nanocrystals.

    Science.gov (United States)

    Jang, Youngjin; Yanover, Diana; Čapek, Richard Karel; Shapiro, Arthur; Grumbach, Nathan; Kauffmann, Yaron; Sashchiuk, Aldona; Lifshitz, Efrat

    2016-07-07

    Controlling the synthesis of narrow band gap semiconductor nanocrystals (NCs) with a high-quality surface is of prime importance for scientific and technological interests. This Letter presents facile solution-phase syntheses of SnTe NCs and their corresponding core/shell heterostructures. Here, we synthesized monodisperse and highly crystalline SnTe NCs by employing an inexpensive, nontoxic precursor, SnCl2, the reactivity of which was enhanced by adding a reducing agent, 1,2-hexadecanediol. Moreover, we developed a synthesis procedure for the formation of SnTe-based core/shell NCs by combining the cation exchange and the Kirkendall effect. The cation exchange of Sn(2+) by Cd(2+) at the surface allowed primarily the formation of SnTe/CdTe core/shell NCs. Further continuation of the reaction promoted an intensive diffusion of the Cd(2+) ions, which via the Kirkendall effect led to the formation of the inverted CdTe/SnTe core/shell NCs.

  9. Divergent effects of D₂/₃ receptor activation in the nucleus accumbens core and shell on impulsivity and locomotor activity in high and low impulsive rats.

    Science.gov (United States)

    Moreno, M; Economidou, D; Mar, A C; López-Granero, C; Caprioli, D; Theobald, D E; Fernando, A; Newman, A H; Robbins, T W; Dalley, Jeffrey W

    2013-07-01

    Previously we demonstrated reduced D2/3 receptor availability in the ventral striatum of hyper-impulsive rats on the five-choice serial reaction time task (5-CSRTT). However, the anatomical locus of D2/3 receptor dysfunction in high impulsive (HI) rats is unknown. In the present study, we investigated whether D2/3 receptor dysfunction in HI rats is localised to the core or shell sub-regions of the nucleus accumbens (NAcb). Rats were selected for low (low impulsive, LI) and high impulsivity on the 5-CSRTT and implanted with guide cannulae targeting the NAcb core and shell. The D2/3 receptor agonist quinpirole was locally injected in the NAcb (0.1, 0.3 and 1 μg per infusion) and its effects investigated on the performance of LI and HI rats on the 5-CSRTT as well as spontaneous locomotor activity in an open field. Intra-NAcb core quinpirole increased premature responding in HI rats but not in LI rats. In contrast, intra-NAcb shell quinpirole strongly increased locomotor activity in HI rats, unlike LI rats. This effect was blocked by intra-NAcb shell infusions of the D2/3 receptor antagonist nafadotride (0.03 μg). However, nafadotride was ineffective in blocking the effects of intra-NAcb core quinpirole on premature responding in HI rats. These findings indicate that impulsivity and hyperactivity are separately regulated by core and shell sub-regions of the NAcb and that HI rats show an enhanced response to D2/3 receptor activation in these regions. These results suggest that the symptom clusters of hyperactivity and impulsivity in attention-deficit hyperactivity disorder may be neurally dissociable at the level of the NAcb.

  10. Synthesis of large uniform gold and core-shell gold-silver nanoparticles: Effect of temperature control

    Science.gov (United States)

    Tiunov, I. A.; Gorbachevskyy, M. V.; Kopitsyn, D. S.; Kotelev, M. S.; Ivanov, E. V.; Vinokurov, V. A.; Novikov, A. A.

    2016-01-01

    The temperatures of nucleation and growth for gold and silver nanoparticles are quite close to each other in citrate-based seeded-growth synthesis. Hence, thorough temperature control during the synthesis of gold and gold-silver core-shell nanoparticles is expected to improve the yield of uniform non-aggregated nanoparticles suitable for selective contrasting of surface defects. Gold and gold-silver core-shell nanoparticles of size ranging from 20 to 160 nm were synthesized using various means of temperature control. The synthesized nanoparticles were characterized by transmission electron microscopy (TEM), dynamic light scattering (DLS) and UV-Vis spectroscopy. Model nanocracks were milled on pipeline steel specimen by focused ion beam (FIB). It was found that to produce large uniform core-shell nanoparticles, thorough temperature control is required during formation of the gold seeds and the silver shell. Moreover, the synthesized nanoparticles were used for selective contrasting of defects on metal surface.

  11. The chording effect on core losses of three-phase induction motor under sinusoidal and PWM voltage supplies

    Science.gov (United States)

    Deshmukh, Ram; Moses, A. J.; Anayi, F.

    The core losses and the lower-order voltage harmonics of four different chorded motors fed from sinusoidal supply and inverter voltage supply were invigilated at no-load condition. All the four motors were tested with 4, 8 and 16 kHz switching frequencies and 30, 40, 50 and 60 Hz modulation frequencies The motor with 120° coil pitch has the least core losses and the lower-order voltage harmonics under sinusoidal and pulse width modulation (PWM) voltage supplies at all switching and modulation frequencies. The drop in the core losses for this motor was 46% and 53% under sinusoidal and PWM voltage supplies, respectively. The motor with 120° coil pitch is recommended to be used under sinusoidal and PWM voltage supplies.

  12. Comparison of gravity-resisted and gym-based core training on core ...

    African Journals Online (AJOL)

    Conditioning specialists have been incorporating concepts of gravity-resisted core training, both on stable and unstable surfaces, to enhance core endurance despite limited empirical evidence. The purpose of this study was to compare the effects of gravity-resisted and gym-based core training on core endurance.

  13. Silicon nanotube field effect transistor with core-shell gate stacks for enhanced high-performance operation and area scaling benefits

    KAUST Repository

    Fahad, Hossain M.

    2011-10-12

    We introduce the concept of a silicon nanotube field effect transistor whose unique core-shell gate stacks help achieve full volume inversion by giving a surge in minority carrier concentration in the near vicinity of the ultrathin channel and at the same time rapid roll-off at the source and drain junctions constituting velocity saturation-induced higher drive current-enhanced high performance per device with efficient real estate consumption. The core-shell gate stacks also provide superior short channel effects control than classical planar metal oxide semiconductor field effect transistor (MOSFET) and gate-all-around nanowire FET. The proposed device offers the true potential to be an ideal blend for quantum ballistic transport study of device property control by bottom-up approach and high-density integration compatibility using top-down state-of-the-art complementary metal oxide semiconductor flow. © 2011 American Chemical Society.

  14. Effect of climate and ice-flow transients on ice-divide position and ice-core records

    Science.gov (United States)

    Koutnik, M.; Waddington, E.; Fudge, T. J.; Neumann, T.; Rasmussen, S.; Dahl-Jensen, D.

    2012-04-01

    Transients in accumulation and in ice flow can drive ice-divide migration. However, it is likely that dynamical changes initiated near the ice-sheet margin control ice-divide position. Interior ice exhibits a rapid response to modern marginal changes, and larger marginal changes during glacial-interglacial transitions likely led to a larger response. We investigate how flux variations that drive ice-divide migrations on hundreds to tens of thousands of year timescales can affect the depth-age scale, the layer-thickness profile, and the ice-temperature profile at ice-core sites at or near a stable divide position. For this study we use a 2.5-D ice-flow model that sufficiently captures the broad-scale behavior of ice-sheet interiors including ice-divide migration. A simpler 1-D or 2-D model is often used to interpret ice-core records and we compare our flowband behavior to calculations with these models. We apply our ice-flow models to ice-sheet settings similar to 1) Central West Antarctica near the WAIS Divide ice-core site and to 2) Central Greenland near the GRIP and GISP2 ice-core sites. These interior sites may have experienced divide migrations of at least tens of kilometers and they have provided valuable ice-core records. While we do not know the actual migration histories at these sites we will explore the response to plausible changes in accumulation and ice flow on various timescales. We assess the degree to which upstream affects may need to be considered in order to characterize ice-sheet history at an ice-core site. In addition to using the ice-flow models with prescribed forcing to aid in the interpretation of ice-core records, the measured depth-age scale and ice-temperature profile may be used as additional data to constrain an inverse problem to infer histories of accumulation rate, ice thickness, and ice-divide position from radar-observed internal layers; it is important to understand the sensitivity of the measured values to the unknown values

  15. Effect of an iron core on the stability of a current-carrying plasma: application to RINGBOOG 2

    Energy Technology Data Exchange (ETDEWEB)

    Vanwees, A.C.A.; Dekock, L.C.J.M.; Manintveld, P.

    1980-09-01

    A practical solution is given for realizing the poloidal field of a Tokamak plasma situated very close to an iron core. For the geometry of RINGBOOG 2 the expanding force of the toroidal current-carrying plasma is nearly compensated by the magnetic force generated by the stray field of the iron core. This field configuration is very unstable for horizontal plasma displacements. An external field is proposed which mainly compensates the unfavorable gradient of the vertical field, and to a lesser extent, gives the right position.

  16. Core stability exercise is as effective as task-oriented motor training in improving motor proficiency in children with developmental coordination disorder: a randomized controlled pilot study.

    Science.gov (United States)

    Au, Mei K; Chan, Wai M; Lee, Lin; Chen, Tracy Mk; Chau, Rosanna Mw; Pang, Marco Yc

    2014-10-01

    To compare the effectiveness of a core stability program with a task-oriented motor training program in improving motor proficiency in children with developmental coordination disorder (DCD). Randomized controlled pilot trial. Outpatient unit in a hospital. Twenty-two children diagnosed with DCD aged 6-9 years were randomly allocated to the core stability program or the task-oriented motor program. Both groups underwent their respective face-to-face training session once per week for eight consecutive weeks. They were also instructed to carry out home exercises on a daily basis during the intervention period. Short Form of the Bruininks-Oseretsky Test of Motor Proficiency (Second Edition) and Sensory Organization Test at pre- and post-intervention. Intention-to-treat analysis revealed no significant between-group difference in the change of motor proficiency standard score (P=0.717), and composite equilibrium score derived from the Sensory Organization Test (P=0.100). Further analysis showed significant improvement in motor proficiency in both the core stability (mean change (SD)=6.3(5.4); p=0.008) and task-oriented training groups (mean change(SD)=5.1(4.0); P=0.007). The composite equilibrium score was significantly increased in the task-oriented training group (mean change (SD)=6.0(5.5); P=0.009), but not in the core stability group (mean change(SD) =0.0(9.6); P=0.812). In the task-oriented training group, compliance with the home program was positively correlated with change in motor proficiency (ρ=0.680, P=0.030) and composite equilibrium score (ρ=0.638, P=0.047). The core stability exercise program is as effective as task-oriented training in improving motor proficiency among children with DCD. © The Author(s) 2014.

  17. Effects of lights of different color temperature on the nocturnal changes in core temperature and melatonin in humans.

    Science.gov (United States)

    Morita, T; Tokura, H

    1996-09-01

    A variety of types of artificial illumination has recently become available, differing in the quality of illumination and range of color temperature. In our previous studies we found that in subjects with normal color vision the nocturnal fall in core temperature and the increase of urinary melatonin excretion were suppressed by bright blue or green light, but not by bright red or dim lights. The aim of our present study was to examine from the view point of chronobiology whether the lights of different color temperature often used in everyday life may affect core temperature and urinary melatonin secretion differently. Experiments were carried out on five subjects with normal color vision. They were exposed for 5 hr (from 21:00 h to 2:00 h) to two kinds of bright (1000 lx) light of different color temperature (6500 K, 3000 K) with dim (50 lx) light as a control; after exposure they slept in darkness. Our main results were as follows: The light with a high color temperature of 6500 K more strongly suppressed the nocturnal fall of the core temperature and the nocturnal increase of melatonin secretion than the light with a low color temperature of 3000 K. This difference was particularly evident for core temperature during the sleep period following experimental illumination.

  18. The Curriculum-Faculty-Reinforcement Alignment and Its Effect on Learning Retention of Core Marketing Concepts of Marketing Capstone Students

    Science.gov (United States)

    Raska, David; Keller, Eileen Weisenbach; Shaw, Doris

    2014-01-01

    Curriculum-Faculty-Reinforcement (CFR) alignment is an alignment between fundamental marketing concepts that are integral to the mastery of knowledge expected of our marketing graduates, their perceived importance by the faculty, and their level of reinforcement throughout core marketing courses required to obtain a marketing degree. This research…

  19. Effect of different inner core diameters on structural strength of cannulated pedicle screws under various lumbar spine movements.

    Science.gov (United States)

    Chang, Chia-Ming; Lai, Yu-Shu; Cheng, Cheng-Kung

    2017-08-15

    Currently, cannulated pedicle screws have been widely used in minimal invasive or navigation techniques. However, the stress distribution and the strength of different core diameters of cannulated screw are not clear. This study aimed to investigate the mechanical strength of cannulated screws with different inner core diameter under various lumbar spine movements using finite element analysis. The results showed that the von-Mises stress of a cannulated screw was larger than that of a solid screw in all loading conditions, especially above 2 mm in cannulated core diameter. In lateral bending, extension, and flexion, the maximum von-Mises stress was found approximate to the proximal thread for all types of screws. In rotation condition, the maximum von-Mises stress was located at the middle of the screw. Additionally, the difference in stiffness of instrumented levels was not significant among four screws under the same loading condition. Cannulated screws could provide enough stability for the vertebral body fusion comparing to solid screws. The diameter of cannulated core is suggested not to exceed 2.0 mm.

  20. The effect of self-set grade goals and core self-evaluations on academic performance : A diary study

    NARCIS (Netherlands)

    Bipp, T.; Kleingeld, A.; van den Tooren, M.; Schinkel, S.

    2015-01-01

    The aim of this diary study was to examine the eff ect of self-set grade goals and core self-evaluations on academic performance. Data were collected among 59 university students (M age = 18.4 yr., SD = 0.8) In a 2-wk. exam period on up to five exam days. Multilevel analyses revealed that the

  1. Size effect in the melting and freezing behaviors of Al/Ti core-shell nanoparticles using molecular dynamics simulations

    Science.gov (United States)

    Jin-Ping, Zhang; Yang-Yang, Zhang; Er-Ping, Wang; Cui-Ming, Tang; Xin-Lu, Cheng; Qiu-Hui, Zhang

    2016-03-01

    The thermal stability of Ti@Al core/shell nanoparticles with different sizes and components during continuous heating and cooling processes is examined by a molecular dynamics simulation with embedded atom method. The thermodynamic properties and structure evolution during continuous heating and cooling processes are investigated through the characterization of the potential energy, specific heat distribution, and radial distribution function (RDF). Our study shows that, for fixed Ti core size, the melting temperature decreases with Al shell thickness, while the crystallizing temperature and glass formation temperature increase with Al shell thickness. Diverse melting mechanisms have been discovered for different Ti core sized with fixed Al shell thickness nanoparticles. The melting temperature increases with the Ti core radius. The trend agrees well with the theoretical phase diagram of bimetallic nanoparticles. In addition, the glass phase formation of Al-Ti nanoparticles for the fast cooling rate of 12 K/ps, and the crystal phase formation for the low cooling rate of 0.15 K/ps. The icosahedron structure is formed in the frozen 4366 Al-Ti atoms for the low cooling rate. Project supported by the National Natural Science Foundation of China (Grant No. 21401064), the Science & Technology Development Program of Henan Province, China (Grant No. 142300410282), and the Program of Henan Educational Committee, China (Grant No. 13B140986).

  2. Susceptibility losses in heating of magnetic core/shell nanoparticles for hyperthermia: a Monte Carlo study of shape and size effects.

    Science.gov (United States)

    Vasilakaki, M; Binns, C; Trohidou, K N

    2015-05-07

    Optimizing the heating properties of magnetic nanoparticles is of great importance for hyperthermia applications. Recent experimental results show that core/shell nanoparticles could give an increased specific absorption rate (SAR) compared to the magnetic oxide nanoparticles currently used. We have developed a modified phenomenological model based on the linear Néel-Brown relaxation model to calculate the SAR due to susceptibility losses in complex nanoparticles with ferromagnetic (FM) core/ferrimagnetic (FiM) shell morphology. We use the Monte Carlo (MC) simulation technique with the implementation of the Metropolis algorithm to investigate the effect of size and shape on the magnetisation behaviour of complex ferromagnetic/ferrimagnetic nanoparticles covered by a surfactant layer. The findings of our simulations are used as an input in our modified model for the calculation of the SAR. Our calculations show that for all the sizes and shapes the complex FM/FiM nanoparticles give higher SAR values than the pure ferrimagnetic ones due to their higher core saturation magnetisation. For all sizes the nanoparticles with the truncated cuboctahedral shape give the highest SAR values and the cubic ones the lowest ones. The decrease in the surfactant thickness results in an increase of the SAR values. Our results have the same characteristics as the available experimental data from Fe/Fe3O4 nanoparticles, confirming that the complex nanoparticles with core/shell morphology can optimise the heating properties for hyperthermia.

  3. Effects of a nine-week core strengthening exercise program on vertical jump performances and static balance in volleyball players with trunk instability.

    Science.gov (United States)

    Sharma, A; Geovinson, S G; Singh Sandhu, J

    2012-12-01

    The aim of this study was to establish the effects of core strengthening exercise program on trunk instability in response to vertical jump performances and static balance variables in volleyball players. As a core stabilization program aids in developing a stable spine over the pelvis and improves trunk stability this concept should be incorporated in sports tasks involving jump and reach in those with an unstable spine. Forty state level volleyball players with trunk instability were randomly divided into two groups, control ([C] m=10; f=10) and experimental ([E] m=10; f=10). Modified double straight leg lowering test was used to check the degree of trunk instability. Counter movement jump, squat jump, spike jump and block jumps were used to measure jumping abilities and a wobble board test was used to test balance. Pre- and postreadings were noted before and after the nine-week training protocol and statistical data analysis was done using SPSS 16. After nine weeks of core stabilization training, trunk stability (Pjump (Pjump (d=0.25) and block jump (d=0.52) in (E) group. Other jumps and static balance were improved but non-significant when compared between groups. Nine-week strategic core strengthening exercise program increases trunk stability and in turn improves block difference (vertical jump parameter).

  4. PACAP38 differentially effects genes and CRMP2 protein expression in ischemic core and penumbra regions of permanent middle cerebral artery occlusion model mice brain.

    Science.gov (United States)

    Hori, Motohide; Nakamachi, Tomoya; Shibato, Junko; Rakwal, Randeep; Tsuchida, Masachi; Shioda, Seiji; Numazawa, Satoshi

    2014-09-23

    Pituitary adenylate-cyclase activating polypeptide (PACAP) has neuroprotective and axonal guidance functions, but the mechanisms behind such actions remain unclear. Previously we examined effects of PACAP (PACAP38, 1 pmol) injection intracerebroventrically in a mouse model of permanent middle cerebral artery occlusion (PMCAO) along with control saline (0.9% NaCl) injection. Transcriptomic and proteomic approaches using ischemic (ipsilateral) brain hemisphere revealed differentially regulated genes and proteins by PACAP38 at 6 and 24 h post-treatment. However, as the ischemic hemisphere consisted of infarct core, penumbra, and non-ischemic regions, specificity of expression and localization of these identified molecular factors remained incomplete. This led us to devise a new experimental strategy wherein, ischemic core and penumbra were carefully sampled and compared to the corresponding contralateral (healthy) core and penumbra regions at 6 and 24 h post PACAP38 or saline injections. Both reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting were used to examine targeted gene expressions and the collapsin response mediator protein 2 (CRMP2) protein profiles, respectively. Clear differences in expression of genes and CRMP2 protein abundance and degradation product/short isoform was observed between ischemic core and penumbra and also compared to the contralateral healthy tissues after PACAP38 or saline treatment. Results indicate the importance of region-specific analyses to further identify, localize and functionally analyse target molecular factors for clarifying the neuroprotective function of PACAP38.

  5. PACAP38 Differentially Effects Genes and CRMP2 Protein Expression in Ischemic Core and Penumbra Regions of Permanent Middle Cerebral Artery Occlusion Model Mice Brain

    Directory of Open Access Journals (Sweden)

    Motohide Hori

    2014-09-01

    Full Text Available Pituitary adenylate-cyclase activating polypeptide (PACAP has neuroprotective and axonal guidance functions, but the mechanisms behind such actions remain unclear. Previously we examined effects of PACAP (PACAP38, 1 pmol injection intracerebroventrically in a mouse model of permanent middle cerebral artery occlusion (PMCAO along with control saline (0.9% NaCl injection. Transcriptomic and proteomic approaches using ischemic (ipsilateral brain hemisphere revealed differentially regulated genes and proteins by PACAP38 at 6 and 24 h post-treatment. However, as the ischemic hemisphere consisted of infarct core, penumbra, and non-ischemic regions, specificity of expression and localization of these identified molecular factors remained incomplete. This led us to devise a new experimental strategy wherein, ischemic core and penumbra were carefully sampled and compared to the corresponding contralateral (healthy core and penumbra regions at 6 and 24 h post PACAP38 or saline injections. Both reverse transcription-polymerase chain reaction (RT-PCR and Western blotting were used to examine targeted gene expressions and the collapsin response mediator protein 2 (CRMP2 protein profiles, respectively. Clear differences in expression of genes and CRMP2 protein abundance and degradation product/short isoform was observed between ischemic core and penumbra and also compared to the contralateral healthy tissues after PACAP38 or saline treatment. Results indicate the importance of region-specific analyses to further identify, localize and functionally analyse target molecular factors for clarifying the neuroprotective function of PACAP38.

  6. Effectiveness of core stabilization exercises and routine exercise therapy in management of pain in chronic non-specific low back pain: A randomized controlled clinical trial.

    Science.gov (United States)

    Akhtar, Muhammad Waseem; Karimi, Hossein; Gilani, Syed Amir

    2017-01-01

    Low back pain is a frequent problem faced by the majority of people at some point in their lifetime. Exercise therapy has been advocated an effective treatment for chronic low back pain. However, there is lack of consensus on the best exercise treatment and numerous studies are underway. Conclusive studies are lacking especially in this part of the world. Thisstudy was designed to compare the effectiveness of specific stabilization exercises with routine physical therapy exerciseprovided in patients with nonspecific chronic mechanical low back pain. This is single blinded randomized control trial that was conducted at the department of physical therapy Orthopedic and Spine Institute, Johar Town, Lahore in which 120 subjects with nonspecific chronic low back pain participated. Subjects with the age between 20 to 60 years and primary complaint of chronic low back pain were recruited after giving an informed consent. Participants were randomly assigned to two treatment groups A & B which were treated with core stabilization exercise and routine physical therapy exercise respectively. TENS and ultrasound were given as therapeutic modalities to both treatment groups. Outcomes of the treatment were recorded using Visual Analogue Scale (VAS) pretreatment, at 2 nd , 4 th and 6 th week post treatment. The results of this study illustrate that clinical and therapeutic effects of core stabilization exercise program over the period of six weeks are more effective in terms of reduction in pain, compared to routine physical therapy exercise for similar duration. This study found significant reduction in pain across the two groups at 2 nd , 4 th and 6 th week of treatment with p value less than 0.05. There was a mean reduction of 3.08 and 1.71 on VAS across the core stabilization group and routine physical therapy exercise group respectively. Core stabilization exercise is more effective than routine physical therapy exercise in terms of greater reduction in pain in patients with

  7. Effectiveness of core stabilization exercises and routine exercise therapy in management of pain in chronic non-specific low back pain: A randomized controlled clinical trial

    Science.gov (United States)

    Akhtar, Muhammad Waseem; Karimi, Hossein; Gilani, Syed Amir

    2017-01-01

    Background & Objective: Low back pain is a frequent problem faced by the majority of people at some point in their lifetime. Exercise therapy has been advocated an effective treatment for chronic low back pain. However, there is lack of consensus on the best exercise treatment and numerous studies are underway. Conclusive studies are lacking especially in this part of the world. Thisstudy was designed to compare the effectiveness of specific stabilization exercises with routine physical therapy exerciseprovided in patients with nonspecific chronic mechanical low back pain. Methods: This is single blinded randomized control trial that was conducted at the department of physical therapy Orthopedic and Spine Institute, Johar Town, Lahore in which 120 subjects with nonspecific chronic low back pain participated. Subjects with the age between 20 to 60 years and primary complaint of chronic low back pain were recruited after giving an informed consent. Participants were randomly assigned to two treatment groups A & B which were treated with core stabilization exercise and routine physical therapy exercise respectively. TENS and ultrasound were given as therapeutic modalities to both treatment groups. Outcomes of the treatment were recorded using Visual Analogue Scale (VAS) pretreatment, at 2nd, 4th and 6th week post treatment. Results: The results of this study illustrate that clinical and therapeutic effects of core stabilization exercise program over the period of six weeks are more effective in terms of reduction in pain, compared to routine physical therapy exercise for similar duration. This study found significant reduction in pain across the two groups at 2nd, 4th and 6th week of treatment with p value less than 0.05. There was a mean reduction of 3.08 and 1.71 on VAS across the core stabilization group and routine physical therapy exercise group respectively. Conclusion: Core stabilization exercise is more effective than routine physical therapy exercise in terms

  8. Anisotropic charged core envelope star

    Science.gov (United States)

    Mafa Takisa, P.; Maharaj, S. D.

    2016-08-01

    We study a charged compact object with anisotropic pressures in a core envelope setting. The equation of state is quadratic in the core and linear in the envelope. There is smooth matching between the three regions: the core, envelope and the Reissner-Nordström exterior. We show that the presence of the electric field affects the masses, radii and compactification factors of stellar objects with values which are in agreement with previous studies. We investigate in particular the effect of electric field on the physical features of the pulsar PSR J1614-2230 in the core envelope model. The gravitational potentials and the matter variables are well behaved within the stellar object. We demonstrate that the radius of the core and the envelope can vary by changing the parameters in the speed of sound.

  9. Nanoporous polymer liquid core waveguides

    DEFF Research Database (Denmark)

    Gopalakrishnan, Nimi; Christiansen, Mads Brøkner; Ndoni, Sokol

    2010-01-01

    We demonstrate liquid core waveguides defined by UV to enable selective water infiltration in nanoporous polymers, creating an effective refractive index shift Δn=0.13. The mode confinement and propagation loss in these waveguides are presented.......We demonstrate liquid core waveguides defined by UV to enable selective water infiltration in nanoporous polymers, creating an effective refractive index shift Δn=0.13. The mode confinement and propagation loss in these waveguides are presented....

  10. Effects of lesions of the nucleus accumbens core on choice between small certain rewards and large uncertain rewards in rats.

    Science.gov (United States)

    Cardinal, Rudolf N; Howes, Nathan J

    2005-05-28

    Animals must frequently make choices between alternative courses of action, seeking to maximize the benefit obtained. They must therefore evaluate the magnitude and the likelihood of the available outcomes. Little is known of the neural basis of this process, or what might predispose individuals to be overly conservative or to take risks excessively (avoiding or preferring uncertainty, respectively). The nucleus accumbens core (AcbC) is known to contribute to rats' ability to choose large, delayed rewards over small, immediate rewards; AcbC lesions cause impulsive choice and an impairment in learning with delayed reinforcement. However, it is not known how the AcbC contributes to choice involving probabilistic reinforcement, such as between a large, uncertain reward and a small, certain reward. We examined the effects of excitotoxic lesions of the AcbC on probabilistic choice in rats. Rats chose between a single food pellet delivered with certainty (p = 1) and four food pellets delivered with varying degrees of uncertainty (p = 1, 0.5, 0.25, 0.125, and 0.0625) in a discrete-trial task, with the large-reinforcer probability decreasing or increasing across the session. Subjects were trained on this task and then received excitotoxic or sham lesions of the AcbC before being retested. After a transient period during which AcbC-lesioned rats exhibited relative indifference between the two alternatives compared to controls, AcbC-lesioned rats came to exhibit risk-averse choice, choosing the large reinforcer less often than controls when it was uncertain, to the extent that they obtained less food as a result. Rats behaved as if indifferent between a single certain pellet and four pellets at p = 0.32 (sham-operated) or at p = 0.70 (AcbC-lesioned) by the end of testing. When the probabilities did not vary across the session, AcbC-lesioned rats and controls strongly preferred the large reinforcer when it was certain, and strongly preferred the small reinforcer when the