WorldWideScience

Sample records for core damage accidents

  1. Analysis and research status of severe core damage accidents

    International Nuclear Information System (INIS)

    1984-03-01

    The Severe Core Damage Research and Analysis Task Force was established in Nuclear Safety Research Center, Tokai Research Establishment, JAERI, in May, 1982 to make a quantitative analysis on the issues related with the severe core damage accident and also to survey the present status of the research and provide the required research subjects on the severe core damage accident. This report summarizes the results of the works performed by the Task Force during last one and half years. The main subjects investigated are as follows; (1) Discussion on the purposes and necessities of severe core damage accident research, (2) proposal of phenomenological research subjects required in Japan, (3) analysis of severe core damage accidents and identification of risk dominant accident sequences, (4) investigation of significant physical phenomena in severe core damage accidents, and (5) survey of the research status. (author)

  2. Containment loading during severe core damage accidents

    International Nuclear Information System (INIS)

    Fermandjian, J.; Evrard, J.M.; Cenerino, C.; Berthion, Y.; Carvallo, G.

    1984-11-01

    The objective of the article is to study the influence of the state of the reactor cavity (dry or flooded) and of the corium coolability on the thermal-hydraulics in the containment in the case of an accident sequence involving core melting and subsequent containment basemat erosion, in a 900 MWe PWR unit. Calculations are performed by using the JERICHO thermal hydraulics code

  3. Analysis of severe core damage accident progression for the heavy water reactor

    International Nuclear Information System (INIS)

    Tong Lili; Yuan Kai; Yuan Jingtian; Cao Xuewu

    2010-01-01

    In this study, the severe accident progression analysis of generic Canadian deuterium uranium reactor 6 was preliminarily provided using an integrated severe accident analysis code. The selected accident sequences were multiple steam generator tube rupture and large break loss-of-coolant accidents because these led to severe core damage with an assumed unavailability for several critical safety systems. The progressions of severe accident included a set of failed safety systems normally operated at full power, and initiative events led to primary heat transport system inventory blow-down or boil off. The core heat-up and melting, steam generator response,fuel channel and calandria vessel failure were analyzed. The results showed that the progression of a severe core damage accident induced by steam generator tube rupture or large break loss-of-coolant accidents in a CANDU reactor was slow due to heat sinks in the calandria vessel and vault. (authors)

  4. Consequence analysis of core damage states following severe accidents for the CANDU reactor design

    International Nuclear Information System (INIS)

    Wahba, N.N.; Kim, Y.T.; Lie, S.G.

    1997-01-01

    The analytical methodology used to evaluate severe accident sequences is described. The relevant thermal-mechanical phenomena and the mathematical approach used in calculating the timing of the accident progression and source term estimate are summarized. The postulated sever accidents analyzed, in general, mainly differ in the timing to reach and progress through each defined c ore damage state . This paper presents the methodology and results of the timing and steam discharge calculations as well as source term estimate out of containment for accident sequences classified as potentially leading to core disassembly following a small break loss-of-coolant accident (LOCA) scenario as a specific example. (author)

  5. Core damage frequency estimation using accident sequence precursor data: 1990-1993

    International Nuclear Information System (INIS)

    Martz, H.F.

    1998-01-01

    The Nuclear Regulatory Commission's (NRC's) ongoing Accident Sequence Precursor (ASP) program uses probabilistic risk assessment (PRA) techniques to assess the potential for severe core damage (henceforth referred to simply as core damage) based on operating events. The types of operating events considered include accident sequence initiators, safety equipment failures, and degradation of plant conditions that could increase the probability that various postulated accident sequences occur. Such operating events potentially reduce the margin of safety available for prevention of core damage an thus can be considered as precursors to core damage. The current process for identifying, analyzing, and documenting ASP events is described in detail in Vanden Heuval et al. The significance of a Licensee Event Report (LER) event (or events) is measured by means of the conditional probability that the event leads to core damage, the so-called conditional core damage probability or, simply, CCDP. When the first ASP study results were published in 1982, it covered the period 1969--1979. In addition to identification and ranking of precursors, the original study attempted to estimate core damage frequency (CDF) based on the precursor events. The purpose of this paper is to compare the average annual CDF estimates calculated using the CCDP sum, Cooke-Goossens, Bier, and Abramson estimators for various reactor classes using the combined ASP data for the four years, 1990--1993. An important outcome of this comparison is an answer to the persistent question regarding the degree and effect of the positive bias of the CCDP sum method in practice. Note that this paper only compares the estimators with each other. Because the true average CDF is unknown, the estimation error is also unknown. Therefore, any observations or characterizations of bias are based on purely theoretical considerations

  6. Phenomena occurring in the reactor coolant system during severe core damage accidents

    International Nuclear Information System (INIS)

    Malinauskas, A.P.

    1989-01-01

    The reactor coolant system (RCS) of a nuclear power plant consists of the reactor pressure vessel and the piping and associated components that are required for the continuous circulation of the coolant which is used to maintain thermal equilibrium throughout the system. In the event of an accident, the RCS also serves as one of several barriers to the escape of radiotoxic material into the biosphere. In contrast to normal operating conditions, severe core damage accidents are characterized by significant temporal and spatial variations in heat and mass fluxes, and by eventual geometrical changes within the RCS. Furthermore, the difficulties in describing the system in the severe accident mode are compounded by the occurrence of chemical reactions. These reactions can influence both the thermal and the mass transport behavior of the system. In addition, behavior of the reactor vessel internals and of materials released from the core region (especially the radioactive fission products) in the course of the accident likewise become of concern to the analyst. This report addresses these concerns. 9 refs., 1 tab

  7. Precursors to potential severe core damage accidents: 1996. A status report. Volume 25

    International Nuclear Information System (INIS)

    Belles, R.J.; Cletcher, J.W.; Copinger, D.A.; Muhlheim, M.D.; Dolan, B.W.; Minarick, J.W.

    1997-12-01

    This report describes the 14 operational events in 1996 that affected 13 commercial light-water reactors and that are considered to be precursors to potential severe core damage accidents. All these events had conditional probabilities of subsequent severe core damage greater than or equal to 1.0 x 10 -6 . These events were identified by first computer-screening the 1996 licensee event reports from commercial light-water reactors to identify those events that could potentially be precursors. Candidate precursors were selected and evaluated in a process similar to that used in previous assessments. Selected events underwent engineering evaluation that identified, analyzed, and documented the precursors. Other events designated by the Nuclear Regulatory Commission (NRC) also underwent a similar evaluation. Finally, documented precursors were submitted for review by licensees and NRC headquarters and regional offices to ensure the plant design and its response to the precursor were correctly characterized. This study is a continuation of earlier work, which evaluated 1969--1995 events. The report discusses the general rationale for this study, the selection and documentation of events as precursors, and the estimation of conditional probabilities of subsequent severe core damage for the events

  8. Precursors to potential severe core damage accidents: 1997 - A status report. Volume 26

    International Nuclear Information System (INIS)

    Belles, R.J.; Cletcher, J.W.; Copinger, D.A.; Muhlheim, M.D.; Dolan, B.W.; Minarick, J.W.

    1998-11-01

    This report describes the five operational events in 1997 that affected five commercial light-water reactors (LWRs) and that are considered to be precursors to potential severe core damage accidents. All these events had conditional probabilities of subsequent severe core damage greater than or equal to 1.0 x 10 -6 . These events were identified by first computer-screening the 1997 licensee event reports from commercial LWRs to identify those events that could be precursors. Candidate precursors were selected and evaluated in a process similar to that used in previous assessments. Selected events underwent engineering evaluation that identified, analyzed, and documented the precursors. Other events designated by the Nuclear Regulatory Commission (NRC) also underwent a similar evaluation. Finally, documented precursors were submitted for review by licensees and NRC headquarters to ensure that the plant design and its response to the precursor were correctly characterized. This study is a continuation of earlier work, which evaluated 1969--1996 events. The report discusses the general rationale for this study, the selection and documentation of events as precursors, and the estimation of conditional probabilities of subsequent severe core damage for the events

  9. Precursors to potential severe core damage accidents: 1992, A status report

    International Nuclear Information System (INIS)

    Cox, D.F.; Cletcher, J.W.; Copinger, D.A.; Cross-Dial, A.E.; Morris, R.H.; Vanden Heuvel, L.N.; Dolan, B.W.; Jansen, J.M.; Minarick, J.W.; Lau, W.; Salyer, W.D.

    1993-12-01

    Twenty-seven operational events with conditional probabilities of subsequent severe core damage of 1.0 x 10E-06 or higher occurring at commercial light-water reactors during 1992 are considered to be precursors to potential core damage. These are described along with associated significance estimates, categorization, and subsequent analyses. The report discusses (1) the general rationale for this study, (2) the selection and documentation of events as precursors, (3) the estimation and use of conditional probabilities of subsequent severe core damage to rank precursor events, and (4) the plant models used in the analysis process

  10. Precursors to potential severe core damage accidents. A status report, 1982--1983

    Energy Technology Data Exchange (ETDEWEB)

    Forester, J.A.; Mitchell, D.B.; Whitehead, D.W. [and others

    1997-04-01

    This study is a continuation of earlier work that evaluated 1969-1981 and 1984-1994 events affecting commercial light-water reactors. One-hundred nine operational events that affected 51 reactors during 1982 and 1983 and that are considered to be precursors to potential severe core damage are described. All these events had conditional probabilities of subsequent severe core damage greater than or equal to 1.0 x 10{sup {minus}6}. These events were identified by first computer screening the 1982-83 licensee event reports from commercial light-water reactors to select events that could be precursors to core damage. Candidates underwent engineering evaluation that identified, analyzed, and documented the precursors. This report discusses the general rationale for the study, the selection and documentation of events as precursors, and the estimation of conditional probabilities of subsequent severe core damage for the events.

  11. Precursors to potential severe core damage accidents. A status report, 1982--1983

    International Nuclear Information System (INIS)

    Forester, J.A.; Mitchell, D.B.; Whitehead, D.W.

    1997-04-01

    This study is a continuation of earlier work that evaluated 1969-1981 and 1984-1994 events affecting commercial light-water reactors. One-hundred nine operational events that affected 51 reactors during 1982 and 1983 and that are considered to be precursors to potential severe core damage are described. All these events had conditional probabilities of subsequent severe core damage greater than or equal to 1.0 x 10 -6 . These events were identified by first computer screening the 1982-83 licensee event reports from commercial light-water reactors to select events that could be precursors to core damage. Candidates underwent engineering evaluation that identified, analyzed, and documented the precursors. This report discusses the general rationale for the study, the selection and documentation of events as precursors, and the estimation of conditional probabilities of subsequent severe core damage for the events

  12. Precursors to potential severe core damage accidents: 1995 A status report

    International Nuclear Information System (INIS)

    Belles, R.J.; Cletcher, J.W.; Copinger, D.A.

    1997-04-01

    Ten operational events that affected 10 commercial light-water reactors during 1995 and that are considered to be precursors to potential severe core damage are described. All these events had conditional probabilities of subsequent severe core damage greater than or equal to 1.0 x 10 -6 . These events were identified by first computer-screening the 1995 licensee event reports from commercial light-water reactors to identify those events that could potentially be precursors. Candidate precursors were selected and evaluated in a process similar to that used in previous assessments. Selected events underwent engineering evaluation that identified, analyzed, and documented the precursors. Other events designated by the Nuclear Regulatory Commission (NRC) also underwent a similar evaluation. Finally, documented precursors were submitted for review by licensees and NRC headquarters and regional offices to ensure the plant design and its response to the precursor were correctly characterized. This study is a continuation of earlier work, which evaluated 1969-1981 and 1984-1994 events. The report discusses the general rationale for this study, the selection and documentation of events as precursors, and the estimation of conditional probabilities of subsequent severe core damage for the events

  13. Precursors to potential severe core damage accidents: 1994, a status report. Volume 22: Appendix I

    International Nuclear Information System (INIS)

    Belles, R.J.; Cletcher, J.W.; Copinger, D.A.; Vanden Heuvel, L.N.; Dolan, B.W.; Minarick, J.W.

    1995-12-01

    Nine operational events that affected eleven commercial light-water reactors (LWRs) during 1994 and that are considered to be precursors to potential severe core damage are described. All these events had conditional probabilities of subsequent severe core damage greater than or equal to 1.0 x 10 -6 . These events were identified by computer-screening the 1994 licensee event reports from commercial LWRs to identify those that could be potential precursors. Candidate precursors were then selected and evaluated in a process similar to that used in previous assessments. Selected events underwent engineering evaluation that identified, analyzed, and documented the precursors. Other events designated by the Nuclear Regulatory Commission (NRC) also underwent a similar evaluation. Finally, documented precursors were submitted for review by licensees and NRC headquarters and regional offices to ensure that the plant design and its response to the precursor were correctly characterized. This study is a continuation of earlier work, which evaluated 1969--1981 and 1984--1993 events. The report discusses the general rationale for this study, the selection and documentation of events as precursors, and the estimation of conditional probabilities of subsequent severe core damage for events. This document is bound in two volumes: Vol. 21 contains the main report and Appendices A--H; Vol. 22 contains Appendix 1

  14. Precursors to potential severe core damage accidents: 1995 A status report

    Energy Technology Data Exchange (ETDEWEB)

    Belles, R.J.; Cletcher, J.W.; Copinger, D.A. [and others

    1997-04-01

    Ten operational events that affected 10 commercial light-water reactors during 1995 and that are considered to be precursors to potential severe core damage are described. All these events had conditional probabilities of subsequent severe core damage greater than or equal to 1.0 x 10{sup {minus}6}. These events were identified by first computer-screening the 1995 licensee event reports from commercial light-water reactors to identify those events that could potentially be precursors. Candidate precursors were selected and evaluated in a process similar to that used in previous assessments. Selected events underwent engineering evaluation that identified, analyzed, and documented the precursors. Other events designated by the Nuclear Regulatory Commission (NRC) also underwent a similar evaluation. Finally, documented precursors were submitted for review by licensees and NRC headquarters and regional offices to ensure the plant design and its response to the precursor were correctly characterized. This study is a continuation of earlier work, which evaluated 1969-1981 and 1984-1994 events. The report discusses the general rationale for this study, the selection and documentation of events as precursors, and the estimation of conditional probabilities of subsequent severe core damage for the events.

  15. Precursors to potential severe core damage accidents: 1994, a status report. Volume 22: Appendix I

    Energy Technology Data Exchange (ETDEWEB)

    Belles, R.J.; Cletcher, J.W.; Copinger, D.A.; Vanden Heuvel, L.N. [Oak Ridge National Lab., TN (United States); Dolan, B.W.; Minarick, J.W. [Oak Ridge National Lab., TN (United States)]|[Science Applications International Corp., Oak Ridge, TN (United States)

    1995-12-01

    Nine operational events that affected eleven commercial light-water reactors (LWRs) during 1994 and that are considered to be precursors to potential severe core damage are described. All these events had conditional probabilities of subsequent severe core damage greater than or equal to 1.0 {times} 10{sup {minus}6}. These events were identified by computer-screening the 1994 licensee event reports from commercial LWRs to identify those that could be potential precursors. Candidate precursors were then selected and evaluated in a process similar to that used in previous assessments. Selected events underwent engineering evaluation that identified, analyzed, and documented the precursors. Other events designated by the Nuclear Regulatory Commission (NRC) also underwent a similar evaluation. Finally, documented precursors were submitted for review by licensees and NRC headquarters and regional offices to ensure that the plant design and its response to the precursor were correctly characterized. This study is a continuation of earlier work, which evaluated 1969--1981 and 1984--1993 events. The report discusses the general rationale for this study, the selection and documentation of events as precursors, and the estimation of conditional probabilities of subsequent severe core damage for events. This document is bound in two volumes: Vol. 21 contains the main report and Appendices A--H; Vol. 22 contains Appendix 1.

  16. Accidents with damage to nuclear core. A perspective for TMI-2

    International Nuclear Information System (INIS)

    Alonso, A.

    1980-01-01

    The most direct consequence of the TMI-2 accident was the destruction of substantial fraction of the fuel element cladding. With the aim of given a certain perspective to that accident, an analysis is made of the causes by which the fuel element clad may lose its integrity. The Windscale, SL-1 and Enrico Fermi accidents constitute important examples to that end. These accidents are analyzed giving special emphasis to those aspects which apear later on at TMI-2. The general consequences of the latter are examined with a certain details, including the social, institutional, technological and economic aspects of the accident. (author)

  17. The loadings and strength of nuclear power plant structures in core damage accidents

    International Nuclear Information System (INIS)

    Varpasuo, P.

    1994-01-01

    The reactor cavity of VVER-91 NPP is a thick-walled, cylindrical reinforced concrete structure. In case of molten core-water reaction during the severe reactor accident the load carrying capacity of the cavity structure is of interest against the short impulse type loading caused by the steam explosion phenomenon. The assumed size of the impulse was 20 kPa-s and the duration was 10 ms. This investigation was divided in several phases. First, the elastic response of the cavity was determined using the ABAQUS code. Next, the static response of the cavity was evaluated using elasto-plastic properties of reinforcement and concrete and also taking into account the cracking of the concrete. This analysis was done with the aid of ABAQUS/STANDARD and ANSYS codes and the obtained results agreed reasonably with each other. In order to obtain a qualitative picture of the behaviour of the structure under the impulse load a simplified single degree of freedorn model was developed. The hoop reinforcement of the cavity was taken as an elasto-plastic spring and the wall concrete acted as a mass. Using this model the suitable amount of hoop reinforcement was determined. In next phase, the dynamic analysis of the structure was attempted using elasto-plastic material properties and concrete cracking. (13 refs., 57 figs.)

  18. Precursors to potential severe core damage accidents: 1992, a status report

    International Nuclear Information System (INIS)

    1993-12-01

    This document is part of a report which documents 1992 operational events selected as accident sequence precursors. This report describes the 27 precursors identified from the 1992 licensee event reports. It also describe containment-related events; open-quote interesting close-quote events; potentially significant events that were considered impractical to analyze; copies of the licensee event reports which were cited in the cases above; and comments from the licensee and NRC in response to the preliminary reports

  19. Comparison of computer codes relative to the aerosol behavior in the reactor containment building during severe core damage accidents in a PWR

    International Nuclear Information System (INIS)

    Fermandjian, J.; Dunbar, I.; Gauvain, J.; Ricchena, R.

    1986-02-01

    The present study concerns a comparative exercise, performed within the framework of the Commission of the European Communities, of the computer codes (AEROSISM-M, UK; AEROSOLS/BI, France; CORRAL-2, CEC and NAUA Mod5, Germany) used in order to assess the aerosol behavior in the reactor containment building during severe core damage accidents in a PWR

  20. Evaluation of re-criticality potential in Fukushima Dai-ichi reactors following core damage accidents

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    The re-criticality potential of the debris-bed, formed of the degraded core materials, cannot be ruled out during the cooling-down procedure of the Fukushima Dai-ichi NPPs. In this study the re-criticality potential has systematically investigated based on the core disruption phase analysis using a IMPACT-SAMPSON code prepared by The Institute of Applied Energy (IAE). The results obtained for the re-criticality potential, characterized by the eigen-values k-eff dependent on the debris composition formed at the core, RPV bottom, and PCV pedestal, are reflected to the arguments on the re-criticality prevention measures, such as timing and concentration of boron-compounds, during the cooling-down process of the Fukushima Dai-ichi NPPs. (author)

  1. Comparison of computer codes relative to the aerosol behavior in the reactor containment building during severe core damage accidents in a PWR

    International Nuclear Information System (INIS)

    Fermandjian, J.; Bunz, H.; Dunbar, I.; Gauvain, J.; Ricchena, R.

    1986-01-01

    The present study concerns a comparative exercise, performed within the framework of the Commission of the European Communities, of the computer codes (AEROSIM-M, UK; AEROSOLS/B1, France; CORRAL-2, CEC and NAUA Mod5, Germany) used in order to assess the aerosol behavior in the reactor containment building during severe core damage accidents in a PWR. Topics considered in this paper include aerosols, containment buildings, reactor safety, fission product release, reactor cores, meltdown, and monitoring

  2. Overview of core disruptive accidents

    International Nuclear Information System (INIS)

    Marchaterre, J.F.

    1977-01-01

    An overview of the analysis of core-disruptive accidents is given. These analyses are for the purpose of understanding and predicting fast reactor behavior in severe low probability accident conditions, to establish the consequences of such conditions and to provide a basis for evaluating consequence limiting design features. The methods are used to analyze core-disruptive accidents from initiating event to complete core disruption, the effects of the accident on reactor structures and the resulting radiological consequences are described

  3. Phenomena occuring in the reactor coolant system during severe core damage accidents

    International Nuclear Information System (INIS)

    Malinauskas, A.P.

    1990-01-01

    The reactor coolant system (RCS) of a nuclear power plant consists of the reactor pressure vessel and the piping and associated components that are required for the continuous circulation of the coolant which is used to maintain thermal equilibrium throughout the system. This paper discusses, how in the event of an accident, the RCS also serves as one of several barriers to the escape of radiotoxic material into the biosphere. The physical and chemical processes occurring within the RCS during normal operation of the reactor are relatively uncomplicated and are reasonably well understood. When the flow of coolant is properly adjusted, the thermal energy resulting from nuclear fission (or, in the shutdown mode, from radioactive decay processes) and secondary inputs, such as pumps, are exactly balanced by thermal losses through the RCS boundaries and to the various heat sinks that are employed to effect the conversion of heat to electrical energy. Because all of the heat and mass fluxes remain sensibly constant with time, mathematical descriptions of the thermophysical processes are relatively straightforward, even for boiling water reactor (BWR) systems. Although the coolant in a BWR does undergo phase changes, the phase boundaries remain well-defined and time-invariant

  4. Precursors to potential severe core damage accidents: 1992, A status report. Volume 17, Main report and Appendix A

    Energy Technology Data Exchange (ETDEWEB)

    Cox, D.F.; Cletcher, J.W.; Copinger, D.A.; Cross-Dial, A.E.; Morris, R.H.; Vanden Heuvel, L.N. [Oak Ridge National Lab., TN (United States); Dolan, B.W.; Jansen, J.M.; Minarick, J.W. [Science Applications International Corp., Oak Ridge, TN (United States); Lau, W.; Salyer, W.D. [Reliability and Performance Associates (United States)

    1993-12-01

    Twenty-seven operational events with conditional probabilities of subsequent severe core damage of 1.0 {times} 10E-06 or higher occurring at commercial light-water reactors during 1992 are considered to be precursors to potential core damage. These are described along with associated significance estimates, categorization, and subsequent analyses. The report discusses (1) the general rationale for this study, (2) the selection and documentation of events as precursors, (3) the estimation and use of conditional probabilities of subsequent severe core damage to rank precursor events, and (4) the plant models used in the analysis process.

  5. Comparison of european computer codes relative to the aerosol behavior in PWR containment buildings during severe core damage accidents. (Modelling of steam condensation on the particles)

    International Nuclear Information System (INIS)

    Bunz, H.; Dunbar, L.H.; Fermandjian, J.; Lhiaubet, G.

    1987-11-01

    An aerosol code comparison exercise was performed within the framework of the Commission of European Communities (Division of Safety of Nuclear Installations). This exercise, focused on the process of steam condensation onto the aerosols occurring in PWR containment buildings during severe core damage accidents, has allowed to understand the discrepancies between the results obtained. These discrepancies are due, in particular, to whether the curvature effect is modelled or not in the codes

  6. Assessment of fission product release from the reactor containment building during severe core damage accidents in a PWR

    International Nuclear Information System (INIS)

    Fermandjian, J.; Evrard, J.M.; Generino, G.

    1984-07-01

    Fission product releases from the RCB associated with hypothetical core-melt accidents ABβ, S 2 CDβ and TLBβ in a PWR-900 MWe have been performed using French computer codes (in particular, the JERICHO Code for containment response analysis and AEROSOLS/B1 for aerosol behavior in the containment) related to thermalhydraulics and fission product behavior in the primary system and in the reactor containment building

  7. Present status and needs of research on severe core damage

    International Nuclear Information System (INIS)

    1982-05-01

    The needs for research on severe core damage accident have been emphasized recently, in particular, since TMI-2 accident. The Severe Core Damage Research Task Force was established by the Divisions of Reactor Safety and Reactor Safety Evaluation to evaluate individual phenomenon, to survey the present status of research and to provide the recommended research subjects on severe accidents. This report describes the accident phenomena involving some analytical results, status of research and recommended research subjects on severe core damage accidents, divided into accident sequence, fuel damage, and molten material behavior, fission product behavior, hydrogen generation and combustion, steam explosion and containment integrity. (author)

  8. Precursors to potential severe core damage accidents: 1994, a status report. Volume 21: Main report and appendices A--H

    International Nuclear Information System (INIS)

    Belles, R.J.; Cletcher, J.W.; Copinger, D.A.; Vanden Heuvel, L.N.; Dolan, B.W.; Minarick, J.W.

    1995-12-01

    Nine operational events that affected eleven commercial light-water reactors (LWRs) during 1994 and that are considered to be precursors to potential severe core damage are described. All these events had conditional probabilities of subsequent severe core damage greater than or equal to 1.0 x 10 -6 . These events were identified by computer-screening the 1994 licensee event reports from commercial LWRs to identify those that could be potential precursors. Candidate precursors were then selected and evaluated in a process similar to that used in previous assessments. Selected events underwent engineering evaluation that identified, analyzed, and documented the precursors. Other events designated by the Nuclear Regulatory Commission (NRC) also underwent a similar evaluation. Finally, documented precursors were submitted for review by licensees and NRC headquarters and regional offices to ensure that the plant design and its response to the precursor were correctly characterized. This study is a continuation of earlier work, which evaluated 1969--1981 and 1984--1993 events. The report discusses the general rationale for this study, the selection and documentation of events as precursors, and the estimation of conditional probabilities of subsequent severe core damage for events. This document is bound in two volumes: Vol. 21 contains the main report and Appendices A--H; Vol. 22 contains Appendix 1

  9. Core damage risk indicators

    International Nuclear Information System (INIS)

    Szikszai, T.

    1994-01-01

    The purpose of this document is to show a method for the fast recalculation of the PSA. To avoid the information loose, it is necessary to simplify the PSA models, or at least reorganize them. The method, introduced in this document, require that preparation, so we try to show, how to do that. This document is an introduction. This is the starting point of the work related to the development of the risk indicators. In the future, with the application of this method, we are going to show an everyday use of the PSA results to produce the indicators of the core damage risk. There are two different indicators of the plant safety performance, related to the core damage risk. The first is the core damage frequency indicator (CDFI), and the second is the core damage probability indicator (CDPI). Of course, we cannot describe all of the possible ways to use these indicators, rather we will try to introduce the requirements to establish such an indicator system and the calculation process

  10. Comparison of european computer codes relative to the aerosol behavior in PWR containment buildings during severe core damage accidents

    International Nuclear Information System (INIS)

    Fermandjian, J.; Beonio-Brocchieri, F.

    1986-09-01

    The present study concerns a comparative exercise, performed within the framework of the Commission of the European Communities, of the computer codes used in reactor safety in order to assess their capability of realistically describing the aerosol behavior in PWR reactor containment buildings during severe accidents. The codes included in the present study are the following: AEROSIM-M, AEROSOLS/Bl, CORRAL-2, NAUA Mod5. In AEROSIM-M, AEROSOLS/Bl and NAUA Mod5, the integro-differential equation for the evolution of the particle mass distribution is approximated by a set of coupled first order differential equations. To this end, the particle distribution function is replaced by a number of discrete monodisperse fractions. The CORRAL-2 has an essentially empirical basis (processes not explicitely modelled, but their net effects accounted for). The physical processes taken into account in the codes are shown finally

  11. Assessment of accident energetics in LMFBR core-disruptive accidents

    International Nuclear Information System (INIS)

    Fauske, H.K.

    1977-01-01

    An assessment of accident energetics in LMFBR core-disruptive accidents is given with emphasis on the generic issues of energetic recriticality and energetic fuel-coolant interaction events. Application of a few general behavior principles to the oxide-fueled system suggests that such events are highly unlikely following a postulated core meltdown event

  12. Grain boundary sweeping and liquefaction-induced fission product behavior in nuclear fuel under severe-core damage accident conditions

    International Nuclear Information System (INIS)

    Rest, J.

    1984-05-01

    The theoretical FASTGRASS-VFP model has been used in the interpretation of fission gas, iodine, tellurium, and cesium release from: (1) irradiated high-burnup LWR fuel in a flowing steam atmosphere during high-temperature, in-cell heating tests performed at Oak Ridge National Laboratory; and (2) trace-irradiated and high-burnup LWR fuel during severe-fuel-damage (SFD) tests performed in the PBF reactor in Idaho. A theory of grain boundary sweeping of gas bubbles, gas bubble behavior during fuel liquefaction (destruction of grain boundaries due to formation of a U-rich melt phase), and U-Zr eutectic melting has been included within the FASTGRASS-VFP formalism. Results of the analyses demonstrate that intragranular fission product behavior during both types of tests can be interpreted in terms of a grain-growth/grain-boundary-sweeping mechanism that enhances the flow of fission products from within the grains to the grain boundaries. Whereas fuel liquefaction leads to an enhanced release of fission products in trace-irradiated fuel, the occurrence of fuel liquefaction in high-burnup fuel can degrade fission product release. This phenomenon is due in part to reduced gas-bubble mobilities in a viscous medium as compared to vapor transport, and in part to a degradation of grain growth rates and the subsequent decrease in grain-boundary sweeping of intragranular fission products into the liquefied lamina. The analysis shows that total UO 2 dissolution due to eutectic melting leads to increased release for both trace-irradiated and high-burnup fuel. The FASTGRASS-VFP predictions, measured release rates from the above tests, and previously published release rates are compared and differences between fission product behavior in trace-irradiated and in high-burnup fuel are highlighted

  13. Evaluation of potential severe accidents during low power and shutdown operations at Surry, Unit 1: Analysis of core damage frequency from internal events during mid-loop operations, Appendices A--D. Volume 2, Part 2

    International Nuclear Information System (INIS)

    Chu, T.L.; Musicki, Z.; Kohut, P.

    1994-06-01

    During 1989, the Nuclear Regulatory Commission (NRC) initiated an extensive program to carefully examine the Potential risks during low Power and shutdown operations. The program includes two parallel projects being performed by Brookhaven National Laboratory (BNL) and Sandia National Laboratories (SNL). Two plants, Surry (pressurized water reactor) and Grand Gulf (boiling water reactor), were selected as the Plants to be studied. The objectives of the program are to assess the risks of severe accidents initiated during plant operational states other than full power operation and to compare the estimated core damage frequencies, important accident sequences and other qualitative and quantitative results with those accidents initiated during full power operation as assessed in NUREG-1150. The objective of this report is to document the approach utilized in the Surry plant and discuss the results obtained. A parallel report for the Grand Gulf plant is prepared by SNL. This study shows that the core-damage frequency during mid-loop operation at the Surry plant is comparable to that of power operation. We recognize that there is very large uncertainty in the human error probabilities in this study. This study identified that only a few procedures are available for mitigating accidents that may occur during shutdown. Procedures written specifically for shutdown accidents would be useful. This document, Volume 2, Pt. 2 provides appendices A through D of this report

  14. Evaluation of potential severe accidents during low power and shutdown operations at Surry, Unit 1: Analysis of core damage frequency from internal events during mid-loop operations, Main report (Chapters 7--12). Volume 2, Part 1B

    International Nuclear Information System (INIS)

    Chu, T.L.; Musicki, Z.; Kohut, P.

    1994-06-01

    During 1989, the Nuclear Regulatory Commission (NRC) initiated an extensive program to carefully examine the potential risks during low power and shutdown operations. The program includes two parallel projects being performed by Brookhaven National Laboratory (BNL) and Sandia National Laboratories (SNL). Two plants, Surry (pressurized water reactor) and Grand Gulf (boiling water reactor), were selected as the plants to be studied. The objectives of the program are to assess the risks of severe accidents initiated during plant operational states other than full power operation and to compare the estimated core damage frequencies, important accident sequences and other qualitative and quantitative results with those accidents initiated during full power operation as assessed in NUREG-1150. The objective of this report is to document the approach utilized in the Surry plant and discuss the results obtained. A parallel report for the Grand Gulf plant is prepared by SNL. This study shows that the core-damage frequency during mid-loop operation at the Surry plant is comparable to that of power operation. We recognize that there is very large uncertainty in the human error probabilities in this study. This study identified that only a few procedures are available for mitigating accidents that may occur during shutdown. Procedures written specific shutdown accidents would be useful

  15. Evaluation of potential severe accidents during low power and shutdown operations at Surry, Unit 1: Analysis of core damage frequency from internal fires during mid-loop operations. Volume 3, Part 1, Main report

    International Nuclear Information System (INIS)

    Musicki, Z.; Chu, T.L.; Yang, J.; Ho, V.; Hou, Y.M.; Lin, J.; Siu, N.

    1994-07-01

    During l989, the Nuclear Regulatory Commission (NRC) initiated an extensive program to carefully examine the potential risks during low power and shutdown operations. The program includes two parallel projects being performed by Brookhaven National Laboratory (BNL) and Sandia National Laboratories (SNL). Two plants, Surry (pressurized water reactor) and Grand Gulf (boiling water reactor), were selected as the plants to be studied. The objectives of the program are to assess the risks of severe accidents initiated during plant operational states other than fun power operation and to compare the estimated core damage frequencies, important accident sequences and other qualitative and quantitative results with those accidents initiated during full power operation as assessed in NUREG-1150. The objective of this report is to document the approach utilized in ' the Surry plant and discuss the results obtained. A parallel report for the Grand Gulf plant is prepared by SNL. This study shows that the core-damage frequency during mid-loop operation at the Surry plant is comparable to that of power operation. We recognize that there is very large uncertainty in the human error probabilities in this study. This study identified that only a few. procedures are available for mitigating accidents that may occur during shutdown. Procedures written specifically for shutdown accidents would be useful

  16. Evaluation of potential severe accidents during low power and shutdown operations at Surry, Unit 1: Analysis of core damage frequency from internal events during mid-loop operations, Appendices E (Sections E.1--E.8). Volume 2, Part 3A

    International Nuclear Information System (INIS)

    Chu, T.L.; Musicki, Z.; Kohut, P.

    1994-06-01

    During 1989, the Nuclear Regulatory Commission (NRC) initiated an extensive program to carefully examine the potential risks during low power and shutdown operations. The program includes two parallel projects being performed by Brookhaven National Laboratory (BNL) and Sandia National Laboratories (SNL). Two plants, Surry (pressurized water reactor) and Grand Gulf (boiling water reactor), were selected as the plants to be studied. The objectives of the program are to assess the risks of severe accidents initiated during plant operational states other than full power operation and to compare the estimated core damage frequencies, important accident sequences and other qualitative and quantitative results with those accidents initiated during full power operation as assessed in NUREG-1150. The objective of this report is to document the approach utilized in the Surry plant and discuss the results obtained. A parallel report for the Grand Gulf plant is prepared by SNL. This study shows that the core-damage frequency during mid-loop operation at the Surry plant is comparable to that of power operation. The authors recognize that there is very large uncertainty in the human error probabilities in this study. This study identified that only a few procedures are available for mitigating accidents that may occur during shutdown. Procedures written specifically for shutdown accidents would be useful

  17. Evaluation of potential severe accidents during low power and shutdown operations at Surry, Unit 1: Analysis of core damage frequency from internal events during mid-loop operations, Main report (Chapters 1--6). Volume 2, Part 1A

    International Nuclear Information System (INIS)

    Chu, T.L.; Musicki, Z.; Kohut, P.

    1992-06-01

    During 1989, the Nuclear Regulatory Commission (NRC) initiated an extensive program to carefully examine the potential risks during low power and shutdown operations. The program includes two parallel projects being performed by Brookhaven National Laboratory (BNL) and Sandia National Laboratories (SNL). Two plants, Surry (pressurized water reactor) and Grand Gulf (boiling water reactor), were selected as the plants to be studied. The objectives of the program are to assess the risks of severe accidents initiated during plant operational states other than full power operation and to compare the estimated core damage frequencies, important accident sequences and other qualitative and quantitative results with those accidents initiated during full power operation as assessed in NUREG-1150. The objective of this report is to document the approach utilized in the Surry plant and discuss the results obtained. A parallel report for the Grand Gulf plant is prepared by SNL. This study shows that the core-damage frequency during mid-loop operation at the Surry plant is comparable to that of power operation. We recognize that there is very large uncertainty in the human error probabilities in this study. This study identified that only a few procedures are available for mitigating accidents that may occur during shutdown written specifically for shutdown accidents would be useful. This document presents Chapters 1--6 of the report

  18. Evaluation of potential severe accidents during low power and shutdown operations at Surry, Unit 1: Analysis of core damage frequency from internal events during mid-loop operations, Appendices A--D. Volume 2, Part 2

    Energy Technology Data Exchange (ETDEWEB)

    Chu, T.L.; Musicki, Z.; Kohut, P. [Brookhaven National Lab., Upton, NY (United States)] [and others

    1994-06-01

    During 1989, the Nuclear Regulatory Commission (NRC) initiated an extensive program to carefully examine the Potential risks during low Power and shutdown operations. The program includes two parallel projects being performed by Brookhaven National Laboratory (BNL) and Sandia National Laboratories (SNL). Two plants, Surry (pressurized water reactor) and Grand Gulf (boiling water reactor), were selected as the Plants to be studied. The objectives of the program are to assess the risks of severe accidents initiated during plant operational states other than full power operation and to compare the estimated core damage frequencies, important accident sequences and other qualitative and quantitative results with those accidents initiated during full power operation as assessed in NUREG-1150. The objective of this report is to document the approach utilized in the Surry plant and discuss the results obtained. A parallel report for the Grand Gulf plant is prepared by SNL. This study shows that the core-damage frequency during mid-loop operation at the Surry plant is comparable to that of power operation. We recognize that there is very large uncertainty in the human error probabilities in this study. This study identified that only a few procedures are available for mitigating accidents that may occur during shutdown. Procedures written specifically for shutdown accidents would be useful. This document, Volume 2, Pt. 2 provides appendices A through D of this report.

  19. Modeling and analysis framework for core damage propagation during flow-blockage-initiated accidents in the advanced neutron source reactor at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S.H.; Taleyarkhan, R.P.; Navarro-Valenti, S.; Georgevich, V. [Oak Ridge National Lab., TN (United States)

    1995-09-01

    This paper describes modeling and analysis to evaluate the extent of core damage during flow blockage events in the Advanced Neutron Source (ANS) reactor planned to be built at the Oak Ridge National Laboratory (ORNL). Damage propagation is postulated to occur from thermal conduction between damaged and undamaged plates due to direct thermal contact. Such direct thermal contact may occur because of fuel plate swelling during fission product vapor release or plate buckling. Complex phenomena of damage propagation were modeled using a one-dimensional heat transfer model. A scoping study was conducted to learn what parameters are important for core damage propagation, and to obtain initial estimates of core melt mass for addressing recriticality and steam explosion events. The study included investigating the effect of the plate contact area, the convective heat transfer coefficient, thermal conductivity upon fuel swelling, and the initial temperature of the plate being contacted by the damaged plate. Also, the side support plates were modeled to account for their effects on damage propagation. The results provide useful insights into how various uncertain parameters affect damage propagation.

  20. Evaluation of potential severe accidents during low power and shutdown operations at Surry, Unit-1: Analysis of core damage frequency from internal events during mid-loop operations. Appendix I, Volume 2, Part 5

    Energy Technology Data Exchange (ETDEWEB)

    Chu, T.L.; Musicki, Z.; Kohut, P.; Yang, J.; Bozoki, G.; Hsu, C.J.; Diamond, D.J. [Brookhaven National Lab., Upton, NY (United States); Bley, D.; Johnson, D. [PLG Inc., Newport Beach, CA (United States); Holmes, B. [AEA Technology, Dorset (United Kingdom)] [and others

    1994-06-01

    Traditionally, probabilistic risk assessments (PRA) of severe accidents in nuclear power plants have considered initiating events potentially occurring only during full power operation. Some previous screening analyses that were performed for other modes of operation suggested that risks during those modes were small relative to full power operation. However, more recent studies and operational experience have implied that accidents during low power and shutdown could be significant contributors to risk. During 1989, the Nuclear Regulatory Commission (NRC) initiated an extensive program to carefully examine the potential risks during low power and shutdown operations. The program includes two parallel projects being performed by Brookhaven National Lab. (BNL) and Sandia National Labs. (SNL). Two plants, Surry (pressurized water reactor) and Grand Gulf (boiling water reactor), were selected as the plants to be studied. The objectives of the program are to assess the risks of severe accidents initiated during plant operational states other than full power operation and to compare the estimated core damage frequencies, important accident sequences and other qualitative and quantitative results with those accidents initiated during full power operation as assessed in NUREG-1150. The objective of this volume of the report is to document the approach utilized in the level-1 internal events PRA for the Surry plant, and discuss the results obtained. A phased approach was used in the level-1 program. In phase 1, which was completed in Fall 1991, a coarse screening analysis examining accidents initiated by internal events (including internal fire and flood) was performed for all plant operational states (POSs). The objective of the phase 1 study was to identify potential vulnerable plant configurations, to characterize (on a high, medium, or low basis) the potential core damage accident scenarios, and to provide a foundation for a detailed phase 2 analysis.

  1. Evaluation of potential severe accidents during low power and shutdown operations at Surry, Unit-1: Analysis of core damage frequency from internal events during mid-loop operations. Appendix I, Volume 2, Part 5

    International Nuclear Information System (INIS)

    Chu, T.L.; Musicki, Z.; Kohut, P.; Yang, J.; Bozoki, G.; Hsu, C.J.; Diamond, D.J.; Bley, D.; Johnson, D.; Holmes, B.

    1994-06-01

    Traditionally, probabilistic risk assessments (PRA) of severe accidents in nuclear power plants have considered initiating events potentially occurring only during full power operation. Some previous screening analyses that were performed for other modes of operation suggested that risks during those modes were small relative to full power operation. However, more recent studies and operational experience have implied that accidents during low power and shutdown could be significant contributors to risk. During 1989, the Nuclear Regulatory Commission (NRC) initiated an extensive program to carefully examine the potential risks during low power and shutdown operations. The program includes two parallel projects being performed by Brookhaven National Lab. (BNL) and Sandia National Labs. (SNL). Two plants, Surry (pressurized water reactor) and Grand Gulf (boiling water reactor), were selected as the plants to be studied. The objectives of the program are to assess the risks of severe accidents initiated during plant operational states other than full power operation and to compare the estimated core damage frequencies, important accident sequences and other qualitative and quantitative results with those accidents initiated during full power operation as assessed in NUREG-1150. The objective of this volume of the report is to document the approach utilized in the level-1 internal events PRA for the Surry plant, and discuss the results obtained. A phased approach was used in the level-1 program. In phase 1, which was completed in Fall 1991, a coarse screening analysis examining accidents initiated by internal events (including internal fire and flood) was performed for all plant operational states (POSs). The objective of the phase 1 study was to identify potential vulnerable plant configurations, to characterize (on a high, medium, or low basis) the potential core damage accident scenarios, and to provide a foundation for a detailed phase 2 analysis

  2. Modeling and analysis framework for core damage propagation during flow-blockage-initiated accidents in the Advanced Neutron Source reactor at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Kim, S.H.; Taleyarkhan, R.P.; Navarro-Valenti, S.; Georgevich, V.

    1995-01-01

    This paper describes modeling and analysis to evaluate the extent of core damage during flow blockage events in the Advanced Neutron Source (ANS) reactor planned to be built at ORNL. Damage propagation is postulated to occur from thermal conduction between dmaged and undamaged plates due to direct thermal contact. Such direct thermal contact may occur beause of fuel plate swelling during fission product vapor release or plate buckling. Complex phenomena of damage propagation were modeled using a one-dimensional heat transfer model. A parametric study was done for several uncertain variables. The study included investigating effects of plate contact area, convective heat transfer coefficient, thermal conductivity on fuel swelling, and initial temperature of the plate being contacted by the damaged plate. Also, the side support plates were modeled to account for their effects of damage propagation. Results provide useful insights into how variouss uncertain parameters affect damage propagation

  3. Evaluation of potential severe accidents during low power and shutdown operations at Surry, Unit 1: Analysis of core damage frequency from internal events during mid-loop operations. Appendix E (Sections E.9-E.16), Volume 2, Part 3B

    Energy Technology Data Exchange (ETDEWEB)

    Chu, T.L.; Musicki, Z.; Kohut, P.; Yang, J.; Bozoki, G.; Hsu, C.J.; Diamond, D.J.; Wong, S.M. [Brookhaven National Lab., Upton, NY (United States); Bley, D.; Johnson, D. [PLG Inc., Newport Beach, CA (United States)] [and others

    1994-06-01

    Traditionally, probabilistic risk assessments (PRA) of severe accidents in nuclear power plants have considered initiating events potentially occurring only during full power operation. Some previous screening analyses that were performed for other modes of operation suggested that risks during those modes were small relative to full power operation. However, more recent studies and operational experience have implied that accidents during low power and shutdown could be significant contributors to risk. Two plants, Surry (pressurized water reactor) and Grand Gulf (boiling water reactor), were selected as the plants to be studied. The objectives of the program are to assess the risks of severe accidents initiated during plant operational states other than full power operation and to compare the estimated core damage frequencies, important accident sequences and other qualitative and quantitative results with those accidents initiated during full power operation as assessed in NUREG-1150. The scope of the program includes that of a level-3 PRA. In phase 2, mid-loop operation was selected as the plant configuration to be analyzed based on the results of the phase 1 study. The objective of the phase 2 study is to perform a detailed analysis of the potential accident scenarios that may occur during mid-loop operation, and compare the results with those of NUREG-1150. The scope of the level-1 study includes plant damage state analysis, and uncertainty analysis. Volume 1 summarizes the results of the study. Internal events analysis is documented in Volume 2. It also contains an appendix that documents the part of the phase 1 study that has to do with POSs other than mid-loop operation. Internal fire and internal flood analyses are documented in Volumes 3 and 4. A separate study on seismic analysis, documented in Volume 5, was performed for the NRC by Future Resources Associates, Inc. Volume 6 documents the accident progression, source terms, and consequence analysis.

  4. Evaluation of potential severe accidents during low power and shutdown operations at Surry, Unit-1: Analysis of core damage frequency from internal events during mid-loop operations. Appendices F-H, Volume 2, Part 4

    International Nuclear Information System (INIS)

    Chu, T.L.; Musicki, Z.; Kohut, P.; Yang, J.; Bozoki, G.; Hsu, C.J.; Diamond, D.J.; Bley, D.; Johnson, D.; Holmes, B.

    1994-06-01

    Traditionally, probabilistic risk assessments (PRA) of severe accidents in nuclear power plants have considered initiating events potentially occurring only during full power operation. Some previous screening analyses that were performed for other modes of operation suggested that risks during those modes were small relative to full power operation. However, more recent studies and operational experience have implied that accidents during low power and shutdown could be significant contributors to risk. Two plants, Surry (pressurized water reactor) and Grand Gulf (boiling water reactor), were selected as the plants to be studied. The objectives of the program are to assess the risks of severe accidents initiated during plant operational states other than full power operation and to compare the estimated core damage frequencies, important accident sequences and other qualitative and quantitative results with those accidents initiated during full power operation as assessed in NUREG-1150. The scope of the program includes that of a level-3 PRA. In phase 2, mid-loop operation was selected as the plant configuration to be analyzed based on the results of the phase 1 study. The objective of the phase 2 study is to perform a detailed analysis of the potential accident scenarios that may occur during mid-loop operation, and compare the results with those of NUREG-1150. The scope of the level-1 study includes plant damage state analysis, and uncertainty analysis. Volume 1 summarizes the results of the study. Internal events analysis is documented in Volume 2. It also contains an appendix that documents the part of the phase 1 study that has to do with POSs other than mid-loop operation. Internal fire and internal flood analyses are documented in Volumes 3 and 4. A separate study on seismic analysis, documented in Volume 5, was performed for the NRC by Future Resources Associates, Inc. Volume 6 documents the accident progression, source terms, and consequence analysis

  5. Evaluation of potential severe accidents during low power and shutdown operations at Surry, Unit 1: Analysis of core damage frequency from internal events during mid-loop operations. Appendix E (Sections E.9-E.16), Volume 2, Part 3B

    International Nuclear Information System (INIS)

    Chu, T.L.; Musicki, Z.; Kohut, P.; Yang, J.; Bozoki, G.; Hsu, C.J.; Diamond, D.J.; Wong, S.M.; Bley, D.; Johnson, D.

    1994-06-01

    Traditionally, probabilistic risk assessments (PRA) of severe accidents in nuclear power plants have considered initiating events potentially occurring only during full power operation. Some previous screening analyses that were performed for other modes of operation suggested that risks during those modes were small relative to full power operation. However, more recent studies and operational experience have implied that accidents during low power and shutdown could be significant contributors to risk. Two plants, Surry (pressurized water reactor) and Grand Gulf (boiling water reactor), were selected as the plants to be studied. The objectives of the program are to assess the risks of severe accidents initiated during plant operational states other than full power operation and to compare the estimated core damage frequencies, important accident sequences and other qualitative and quantitative results with those accidents initiated during full power operation as assessed in NUREG-1150. The scope of the program includes that of a level-3 PRA. In phase 2, mid-loop operation was selected as the plant configuration to be analyzed based on the results of the phase 1 study. The objective of the phase 2 study is to perform a detailed analysis of the potential accident scenarios that may occur during mid-loop operation, and compare the results with those of NUREG-1150. The scope of the level-1 study includes plant damage state analysis, and uncertainty analysis. Volume 1 summarizes the results of the study. Internal events analysis is documented in Volume 2. It also contains an appendix that documents the part of the phase 1 study that has to do with POSs other than mid-loop operation. Internal fire and internal flood analyses are documented in Volumes 3 and 4. A separate study on seismic analysis, documented in Volume 5, was performed for the NRC by Future Resources Associates, Inc. Volume 6 documents the accident progression, source terms, and consequence analysis

  6. Reactivity accident analysis in MTR cores

    International Nuclear Information System (INIS)

    Waldman, R.M.; Vertullo, A.C.

    1987-01-01

    The purpose of the present work is the analysis of reactivity transients in MTR cores with LEU and HEU fuels. The analysis includes the following aspects: the phenomenology of the principal events of the accident that takes place, when a reactivity of more than 1$ is inserted in a critical core in less than 1 second. The description of the accident that happened in the RA-2 critical facility in September 1983. The evaluation of the accident from different points of view: a) Theoretical and qualitative analysis; b) Paret Code calculations; c) Comparison with Spert I and Cabri experiments and with post-accident inspections. Differences between LEU and HEU RA-2 cores. (Author)

  7. CINETHICA - Core accident analysis code

    International Nuclear Information System (INIS)

    Nakata, H.

    1989-10-01

    A computer program for nuclear accident analysis has been developed based on the point-kinetics approximation and one-dimensional heat transfer model for reactivity feedback calculation. Hansen's method/1/ were used for the kinetics equation solution and explicit Euler method were adopted for the thermohidraulic equations. The results were favorably compared to those from the GAPOTKIN Code/2/. (author) [pt

  8. Evaluation of potential severe accidents during low power and shutdown operations at Grand Gulf, Unit 1. Volume 5: Analysis of core damage frequency from seismic events for plant operational state 5 during a refueling outage

    International Nuclear Information System (INIS)

    Budnitz, R.J.; Davis, P.R.; Ravindra, M.K.; Tong, W.H.

    1994-08-01

    In 1989 the US Nuclear Regulatory Commission (NRC) initiated an extensive program to examine carefully the potential risks during low-power and shutdown operations. The program included two parallel projects, one at Sandia National Laboratories studying a boiling water reactor (Grand Gulf), and the other at Brookhaven National Laboratory studying a pressurized water reactor (Surry Unit 1). Both the Sandia and Brookhaven projects have examined only accidents initiated by internal plant faults---so-called ''internal initiators.'' This project, which has explored the likelihood of seismic-initiated core damage accidents during refueling outage conditions, is complementary to the internal-initiator analyses at Brookhaven and Sandia. This report covers the seismic analysis at Grand Gulf. All of the many systems modeling assumptions, component non-seismic failure rates, and human effort rates that were used in the internal-initiator study at Grand Gulf have been adopted here, so that the results of the study can be as comparable as possible. Both the Sandia study and this study examine only one shutdown plant operating state (POS) at Grand Gulf, namely POS 5 representing cold shutdown during a refueling outage. This analysis has been limited to work analogous to a level-1 seismic PRA, in which estimates have been developed for the core-damage frequency from seismic events during POS 5. The results of the analysis are that the core-damage frequency for earthquake-initiated accidents during refueling outages in POS 5 is found to be quite low in absolute terms, less than 10 -7 /year

  9. Evaluation of potential severe accidents during low power and shutdown operations at Surry, Unit 1. Volume 5: Analysis of core damage frequency from seismic events during mid-loop operations

    International Nuclear Information System (INIS)

    Budnitz, R.J.; Davis, P.R.; Ravindra, M.K.; Tong, W.H.

    1994-08-01

    In 1989 the US Nuclear Regulatory Commission (NRC) initiated an extensive program to examine carefully the potential risks during low-power and shutdown operations. The program included two parallel projects, one at Brookhaven National Laboratory studying a pressurized water reactor (Surry Unit 1) and the other at Sandia National Laboratories studying a boiling water reactor (Grand Gulf). Both the Brookhaven and Sandia projects have examined only accidents initiated by internal plant faults--so-called ''internal initiators.'' This project, which has explored the likelihood of seismic-initiated core damage accidents during refueling shutdown conditions, is complementary to the internal-initiator analyses at Brookhaven and Sandia. This report covers the seismic analysis at Surry Unit 1. All of the many systems modeling assumptions, component non-seismic failure rates, and human error rates that were used in the internal-initiator study at Surry have been adopted here, so that the results of the two studies can be as comparable as possible. Both the Brookhaven study and this study examine only two shutdown plant operating states (POSs) during refueling outages at Surry, called POS 6 and POS 10, which represent mid-loop operation before and after refueling, respectively. This analysis has been limited to work analogous to a level-1 seismic PRA, in which estimates have been developed for the core-damage frequency from seismic events during POSs 6 and 10. The results of the analysis are that the core-damage frequency of earthquake-initiated accidents during refueling outages in POS 6 and POS 10 is found to be low in absolute terms, less than 10 -6 /year

  10. Event course analysis of core disruptive accidents

    International Nuclear Information System (INIS)

    Hering, W.; Homann, C.; Sengpiel, W.; Struwe, D.; Messainguiral, C.

    1995-01-01

    The theortical studies of the behavior of a PWR core in a meltdown accident are focused on hydrogen release, materials redistribution in the core area including forming of an oxide melt pool, quantity of melt and its composition, and temperatures attained by the RPV internals (esp. in the upper plenum) during the accident up to the time of melt relocation into the lower plenum. The calculations are done by the SCDAP/RELAP5 code. For its validation selected CORA results and Phebus FPTO results have been used. (orig.)

  11. Energetics of LMFBR core disruptive accidents

    International Nuclear Information System (INIS)

    Marchaterre, J.F.

    1979-01-01

    In general, in the design of fast reactor systems, containment design margins are specified by investigating the response of the containment to core disruptive accidents. The results of these analyses are then translated into criteria which the designers must meet. Currently, uniform and agreed upon criteria are lacking, and in this time while they are being developed, the designer should be aware of the considerations which go into the particular criteria he must work with, and participate in their development. This paper gives an overview of the current state of the art in assessing core disruptive accidents and the design implications of this process. (orig.)

  12. Assessment of CRBR core disruptive accident energetics

    International Nuclear Information System (INIS)

    Theofanous, T.G.; Bell, C.R.

    1984-03-01

    The results of an independent assessment of core disruptive accident energetics for the Clinch River Breeder Reactor are presented in this document. This assessment was performed for the Nuclear Regulatory Commission under the direction of the CRBR Program Office within the Office of Nuclear Reactor Regulation. It considered in detail the accident behavior for three accident initiators that are representative of three different classes of events; unprotected loss of flow, unprotected reactivity insertion, and protected loss of heat sink. The primary system's energetics accommodation capability was realistically, yet conservatively, determined in terms of core events. This accommodation capability was found to be equivalent to an isentropic work potential for expansion to one atmosphere of 2550 MJ or a ramp rate of about 200 $/s applied to a classical two-phase disassembly

  13. Core loss during a severe accident (COLOSS)

    International Nuclear Information System (INIS)

    Adroguer, B.; Bertrand, F.; Chatelard, P.; Cocuaud, N.; Van Dorsselaere, J.P.; Bellenfant, L.; Knocke, D.; Bottomley, D.; Vrtilkova, V.; Belovsky, L.; Mueller, K.; Hering, W.; Homann, C.; Krauss, W.; Miassoedov, A.; Schanz, G.; Steinbrueck, M.; Stuckert, J.; Hozer, Z.; Bandini, G.; Birchley, J.; Berlepsch, T. von; Kleinhietpass, I.; Buck, M.; Benitez, J.A.F.; Virtanen, E.; Marguet, S.; Azarian, G.; Caillaux, A.; Plank, H.; Boldyrev, A.; Veshchunov, M.; Kobzar, V.; Zvonarev, Y.; Goryachev, A.

    2005-01-01

    The COLOSS project was a 3-year shared-cost action, which started in February 2000. The work-programme performed by 19 partners was shaped around complementary activities aimed at improving severe accident codes. Unresolved risk-relevant issues regarding H 2 production, melt generation and the source term were studied through a large number of experiments such as (a) dissolution of fresh and high burn-up UO 2 and MOX by molten Zircaloy (b) simultaneous dissolution of UO 2 and ZrO 2 (c) oxidation of U-O-Zr mixtures (d) degradation-oxidation of B 4 C control rods. Corresponding models were developed and implemented in severe accident computer codes. Upgraded codes were then used to apply results in plant calculations and evaluate their consequences on key severe accident sequences in different plants involving B 4 C control rods and in the TMI-2 accident. Significant results have been produced from separate-effects, semi-global and large-scale tests on COLOSS topics enabling the development and validation of models and the improvement of some severe accident codes. Breakthroughs were achieved on some issues for which more data are needed for consolidation of the modelling in particular on burn-up effects on UO 2 and MOX dissolution and oxidation of U-O-Zr and B 4 C-metal mixtures. There was experimental evidence that the oxidation of these mixtures can contribute significantly to the large H 2 production observed during the reflooding of degraded cores under severe accident conditions. The plant calculation activity enabled (a) the assessment of codes to calculate core degradation with the identification of main uncertainties and needs for short-term developments and (b) the identification of safety implications of new results. Main results and recommendations for future R and D activities are summarized in this paper

  14. Core-melting accidents in Chernobyl and Harrisburg

    International Nuclear Information System (INIS)

    Loon, A.J. van; Vonderen, A.C.M. van

    1987-01-01

    This publication deals with the essences of the reactor accident in Chernobylsk and the conclusions to be drawn from these with regard to reactor safety. Therein the technical differences between the reactor types in the West and the East play an important role. Also attention is spent to the now generally accepted philosophy that by simplification and making use of proven technologies, a further deminishing of the risks can be achieved step by step. In ch.'s 2 and 4 the origin and course of the accidents in respectively Chernobylsk and Harrisburg are analyzed; in the analysis of the Chernobylsk accident also date have been used which were provided by the Sovjet-Union, supplied with results of studies of the U.S. Department of Energy (DOE). In ch. 3 this information is compared with the insights which have grown at KEMA about these on the base of reactor physical and thermohydraulic considerations and of computer calculations reproducing the course of the accident. An important question is if, and if so: to which extent, an accident such as the one in Chernobylsk also can take place in the West. In order to answer that question as accurate as possible the consequences of core meltings accidents and the risk for such an accident taking place are pursued. In ch. 6 the legal frameworks are indicated by which the risk may be limited and by which eventually yet occurring damage may be arranged. Ch. 7 finally deals with the lessons which the accidents in Chernobylsk and Harrisburg have learnt us and with the possible consequences of these for the further application of nuclear power in the Netherlands. (H.W.). 105 refs.; 42 figs.; 17 refs

  15. Analysis of core damage frequency: Surry, Unit 1 internal events

    International Nuclear Information System (INIS)

    Bertucio, R.C.; Julius, J.A.; Cramond, W.R.

    1990-04-01

    This document contains the accident sequence analysis of internally initiated events for the Surry Nuclear Station, Unit 1. This is one of the five plant analyses conducted as part of the NUREG-1150 effort by the Nuclear Regulatory Commission. NUREG-1150 documents the risk of a selected group of nuclear power plants. The work performed and described here is an extensive of that published in November 1986 as NUREG/CR-4450, Volume 3. It addresses comments form numerous reviewers and significant changes to the plant systems and procedures made since the first report. The uncertainty analysis and presentation of results are also much improved. The context and detail of this report are directed toward PRA practitioners who need to know how the work was performed and the details for use in further studies. The mean core damage frequency at Surry was calculated to be 4.05-E-5 per year, with a 95% upper bound of 1.34E-4 and 5% lower bound of 6.8E-6 per year. Station blackout type accidents (loss of all AC power) were the largest contributors to the core damage frequency, accounting for approximately 68% of the total. The next type of dominant contributors were Loss of Coolant Accidents (LOCAs). These sequences account for 15% of core damage frequency. No other type of sequence accounts for more than 10% of core damage frequency. 49 refs., 52 figs., 70 tabs

  16. Precursors to potential severe core damage accidents: 1992, a status report; Volume 18: Appendices B, C, D, E, F, and G

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-12-01

    This document is part of a report which documents 1992 operational events selected as accident sequence precursors. This report describes the 27 precursors identified from the 1992 licensee event reports. It also describe containment-related events; {open_quote}interesting{close_quote} events; potentially significant events that were considered impractical to analyze; copies of the licensee event reports which were cited in the cases above; and comments from the licensee and NRC in response to the preliminary reports.

  17. Modeling of reflood of severely damaged reactor core

    International Nuclear Information System (INIS)

    Bachrata, A.

    2012-01-01

    The TMI-2 accident and recently Fukushima accident demonstrated that the nuclear safety philosophy has to cover accident sequences involving massive core melt in order to develop reliable mitigation strategies for both, existing and advanced reactors. Although severe accidents are low likelihood and might be caused only by multiple failures, accident management is implemented for controlling their course and mitigating their consequences. In case of severe accident, the fuel rods may be severely damaged and oxidized. Finally, they collapse and form a debris bed on core support plate. Removal of decay heat from a damaged core is a challenging issue because of the difficulty for water to penetrate inside a porous medium. The reflooding (injection of water into core) may be applied only if the availability of safety injection is recovered during accident. If the injection becomes available only in the late phase of accident, water will enter a core configuration that will differ from original rod bundle geometry and will resemble to the severe damaged core observed in TMI-2. The higher temperatures and smaller hydraulic diameters in a porous medium make the coolability more difficult than for intact fuel rods under typical loss of coolant accident conditions. The modeling of this kind of hydraulic and heat transfer is a one of key objectives of this. At IRSN, part of the studies is realized using an European thermo-hydraulic computer code for severe accident analysis ICARE-CATHARE. The objective of this thesis is to develop a 3D reflood model (implemented into ICARE-CATHARE) that is able to treat different configurations of degraded core in a case of severe accident. The proposed model is characterized by treating of non-equilibrium thermal between the solid, liquid and gas phase. It includes also two momentum balance equations. The model is based on a previously developed model but is improved in order to take into account intense boiling regimes (in particular

  18. USNRC severe core damage assessment program

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, J E [EG and G Idaho, Inc., Idaho Falls (USA); Johnston, W V; Kelber, C N [Nuclear Regulatory Commission, Washington, DC (USA)

    1981-01-01

    The accident at the Three Mile Island nuclear power station has significantly altered the perception of the importance of beyond-design-basis accidents in licensing and safety reviews of light-water reactors in the USA. Increased consideration will be given by the United States Nuclear Regulatory Commission to low-probability, high-risk core melt accidents in future licensing proceedings. To this end, the USNRC is mounting experimental and analytic methods development programs to provide the technical basis for future LWR design and licensing criteria related to class-9 accidents. The scope, objectives, and content of five major new programs addressing safety and licensing issues for beyond-design-basis accidents are reviewed and the rationale and logic for formulation of the programs is discussed.

  19. Determinants of the property damage costs of tanker accidents

    International Nuclear Information System (INIS)

    Talley, W.K.

    1999-01-01

    This study investigates determinants of the vessel, oil cargo spillage, and other-property damage costs of tanker accidents. Tobit estimation of a three-equation recursive model suggests that, among types of tanker accidents, fire/explosion accidents incur the largest vessel damage costs, but the smallest oil cargo spillage costs. Alternatively, grounding accidents incur the smallest vessel damage costs, but the largest oil cargo spillage costs, reflecting the difficulty of controlling oil cargo spillage subsequent to such accidents. Also, oil cargo spillage costs are lower for US flag tanker accidents. A dollar of vessel damage cost increases other-property damage cost by 0.06 dollars, whereas a dollar of oil cargo spillage increases this cost by 1.55 dollars

  20. Severe core damage experiments and analysis for CANDU applications

    International Nuclear Information System (INIS)

    Mathew, P.M.; White, A.J.; Snell, V.G.; Bonechi, M.

    2003-01-01

    AECL uses the MAAP CANDU code to calculate the progression of a severe core damage accident in a CANDU reactor to support Level 2 Probabilistic Safety Assessment and Severe Accident Management activities. Experimental data are required to ensure that the core damage models used in MAAP CANDU code are adequate. In SMiRT 16, details of single channel experiments were presented to elucidate the mechanisms of core debris formation. This paper presents the progress made in severe core damage experiments since then using single channels in an inert atmosphere and results of the model development work to support the experiments. The core disassembly experiments are conducted with one-fifth scale channels made of Zr-2.5wt%Nb containing twelve simulated fuel bundles in an inert atmosphere. The reference fuel channel geometry consists of a pressure tube/calandria tube composite, with the pressure tube ballooned into circumferential contact with the calandria tube. Experimental results from single channel tests showed the development of time-dependent sag when the reference channel temperature exceeded 850 degC. The test results also showed significant strain localization in the gap at the bundle junctions along the bottom side of the channel, thus suggesting creep to be the main deformation mechanism for debris formation. An ABAQUS finite element model using two-dimensional beam elements with circular cross-section was developed to explain the experimental findings. A comparison of the calculated central sag (at mid-span), the axial displacement at the free end of the channel and the post-test sag profile showed good agreement with the experiments, when strain localization was included in the model, suggesting such a simple modelling approach would be adequate to explain the test findings. The results of the tests are important not only in the context of the validation of the analytical tools and models adopted by AECL for the severe accident analysis of CANDU reactors but

  1. Compensation for damages in case of a nuclear accident

    International Nuclear Information System (INIS)

    Leger, M.

    2011-01-01

    This article presents the system of compensation for damages in case of a nuclear accident. This system of civil liability for nuclear damage, as a specific regime, departs on several points from the common rules of civil liability, in order to provide an adequate and equitable compensation for the damages suffered by the victims of nuclear accidents. The French system of civil liability for nuclear damage results from two International Conventions integrated in French law (Paris convention 1960 and Brussels convention 1963) and the French law of 1968, October 30 on civil liability in the area of nuclear energy. These texts define the conditions under which a nuclear operator could be held liable in case of a nuclear accident. The protocols to amend the Paris and Brussels Conventions of 2004, not yet come into force, are also presented. They ensure that increased resources are available to compensate a greater number of victims of a nuclear accident. (author)

  2. Evaluation of potential severe accidents during low power and shutdown operations at Surry, Unit 1: Analysis of core damage frequency from internal floods during mid-loop operations. Volume 4

    International Nuclear Information System (INIS)

    Kohut, P.

    1994-07-01

    The major objective of the Surry internal flood analysis was to provide an improved understanding of the core damage scenarios arising from internal flood-related events. The mean core damage frequency of the Surry plant due to internal flood events during mid-loop operations is 4.8E-06 per year, and the 5th and 95th percentiles are 2.2E-07 and 1.8E-05 per year, respectively. Some limited sensitivity calculations were performed on three plant improvement options. The most significant result involves modifications of intake-level structure on the canal, which reduced core damage frequency contribution from floods in mid-loop by about 75%

  3. Core fusion accidents in nuclear power reactors. Knowledge review

    International Nuclear Information System (INIS)

    Bentaib, Ahmed; Bonneville, Herve; Clement, Bernard; Cranga, Michel; Fichot, Florian; Koundy, Vincent; Meignen, Renaud; Corenwinder, Francois; Leteinturier, Denis; Monroig, Frederique; Nahas, Georges; Pichereau, Frederique; Van-Dorsselaere, Jean-Pierre; Cenerino, Gerard; Jacquemain, Didier; Raimond, Emmanuel; Ducros, Gerard; Journeau, Christophe; Magallon, Daniel; Seiler, Jean-Marie; Tourniaire, Bruno

    2013-01-01

    This reference document proposes a large and detailed review of severe core fusion accidents occurring in nuclear power reactors. It aims at presenting the scientific aspects of these accidents, a review of knowledge and research perspectives on this issue. After having recalled design and operation principles and safety principles for reactors operating in France, and the main studied and envisaged accident scenarios for the management of severe accidents in French PWRs, the authors describe the physical phenomena occurring during a core fusion accident, in the reactor vessel and in the containment building, their sequence and means to mitigate their effects: development of the accident within the reactor vessel, phenomena able to result in an early failure of the containment building, phenomena able to result in a delayed failure with the corium-concrete interaction, corium retention and cooling in and out of the vessel, release of fission products. They address the behaviour of containment buildings during such an accident (sizing situations, mechanical behaviour, bypasses). They review and discuss lessons learned from accidents (Three Mile Island and Chernobyl) and simulation tests (Phebus-PF). A last chapter gives an overview of software and approaches for the numerical simulation of a core fusion accident

  4. Evaluation of potential severe accidents during low power and shutdown operations at Grand Gulf, Unit 1: Analysis of core damage frequency from internally induced flooding events for Plant Operational State 5 during a refueling outage. Volume 4

    International Nuclear Information System (INIS)

    Dandini, V.; Staple, B.; Kirk, H.; Whitehead, D.; Forester, J.

    1994-07-01

    An estimate of the contribution of internal flooding to the mean core damage frequency at the Grand Gulf Nuclear Station was calculated for Plant Operational State 5 during a refueling outage. Pursuant to this objective, flood zones and sources were identified and flood volumes were calculated. Equipment necessary for the maintenance of plant safety was identified and its vulnerability to flooding was determined. Event trees and fault trees were modified or developed as required, and PRA quantification was performed using the IRRAS code. The mean core damage frequency estimate for GGNS during POS 5 was found to be 2.3 E-8 per year

  5. Transport-diffusion comparisons for small core LMFBR disruptive accidents

    International Nuclear Information System (INIS)

    Tomlinson, E.T.

    1977-11-01

    A number of numerical experiments were performed to assess the validity of diffusion theory for calculating the reactivity state of various small core LMFBR disrupted geometries. The disrupted configurations correspond, in general, to various configurations predicted by SAS3A for transient undercooling (TUC) and transient overpower (TOP) accidents for homogeneous cores and to the ZPPR-7 configurations for heterogeneous core. In all TUC cases diffusion theory was shown to be inadequate for the calculation of reactivity changes during core disassembly

  6. The compensation of damage in Germany following the Chernobyl accident

    International Nuclear Information System (INIS)

    Eich, W.

    2003-01-01

    In the framework of the workshop on the indemnification of damage in the event of a nuclear accident, this paper presents the proceeding of the the discussion on the compensation of damage in Germany following the Chernobyl accident. This paper presents also the national experiences and opinions, a documentation of the Federal Office of Administration on the topic, the example of Tokai-mura accident third party liability and compensation and the third party liability in the field of nuclear law in Ireland. (A.L.B.)

  7. Core damage frequency perspectives based on IPE results

    International Nuclear Information System (INIS)

    Dingman, S.E.; Camp, A.L.; LaChance, J.L.; Drouin, M.T.

    1996-01-01

    In November 1988, the US Nuclear Regulatory Commission (NRC) issued Generic Letter 88-20 requesting that all licensees perform an individual Plant Examination (IPE) to identify any plant-specific vulnerability to severe accidents and report the results to the Commission. This paper provides perspectives gained from reviewing 75 Individual Plant Examination (IPE) submittals covering 108 nuclear power plant units. Variability both within and among reactor types is examined to provide perspectives regarding plant-specific design and operational features, and modeling assumptions that play a significant role in the estimates of core damage frequencies in the IPEs

  8. Characteristics of severely damaged fuel from PBF tests and the TMI-2 accident

    International Nuclear Information System (INIS)

    Osetek, D.J.; Cook, B.A.; Dallman, R.J.; Broughton, J.M.

    1986-01-01

    As a result of the TMI-2 reactor accident, the US Nuclear Regulatory Commission initiated a research program to investigate phenomena associated with severe fuel damage accidents. This program is sponsored by several countries and includes in-pile and out-of-pile experiments, separate effects studies, and computer code development. The principal in-pile testing portion of the program includes four integral severe fuel damage (SFD) tests in the Power Burst Facility (PBF) at the Idaho National Engineering Laboratory (INEL). The INEL is also responsible for examining the damaged core in the Three Mile Island-Unit 2 (TMI-2) reactor, which offers the unique opportunity to directly compare the findings of an experimental program to those of an actual reactor accident. The principal core damage phenomena which can occur during a severe accident are discussed, and examples from the INEL research programs are used to illustrate the characteristics of these phenomena. The preliminary results of the programs are presented, and their impact on plant operability during severe accidents is discussed

  9. Reference accident (Core disruption accident - safety analysis detailed report no. 11)

    Energy Technology Data Exchange (ETDEWEB)

    1988-01-15

    The PEC safety analysis led to the conclusion that all credible sequences (incident sequences characterized by a frequency of occurrence above 10/sup minus 7/ events per year) are limited to the design basis conditions of components of the plant protection systems, and that none of them leads to a release of mechanical energy or to an extensive damage of the core and primary containment structures event in the case of failure to scram. Nevertheless, as is done in other countries for similar reactors, some events beyond the limits of credibility were considered for the PEC reactor. These were defined on a absolutely hypothetical basis that involves severe core disruption and dynamic loading of primary containment boundary. A series of containments, each having a different role, was designed to mitigate the radiological effects of a postulated core disruptive accident. The final aim was to demonstrate that residual heat can be removed and that the release of radioactivity to the environment is within acceptable limits.

  10. Post-accident core coolability of light water reactors

    International Nuclear Information System (INIS)

    Michio, I.; Teruo, I.; Tomio, Y.; Tsutao, H.

    1983-01-01

    A study on post-accident core coolability of LWR is discussed based on the practical fuel failure behavior experienced in NSRR, PBF, PNS and others. The fuel failure behavior at LOCA, RIA and PCM conditions are reviewed, and seven types of fuel failure modes are extracted as the basic failure mechanism at accident conditions. These are: cladding melt or brittle failure, molten UO 2 failure, high temperature cladding burst, low temperature cladding burst, failure due to swelling of molten UO 2 , failure due to cracks of embrittled cladding for irradiated fuel rods, and TMI-2 core failure. The post-accident core coolability at each failure mode is discussed. The fuel failures caused actual flow blockage problems. A characteristic which is common among these types is that the fuel rods are in the conditions violating the present safety criteria for accidents, and UO 2 pellets are in melting or near melting hot conditions when the fuel rods failed

  11. Compensation for damage in the case of transfrontier reactor accidents

    International Nuclear Information System (INIS)

    Gornig, G.

    1986-01-01

    The author discusses possibilities to recover in German and Soviet courts claims for the compensation of damage for a German citizen arising from the reactor accident in Chernobyl. Concerning the claims for damage suffered in the Federal Republic of Germany he investigates possible breaches of bilateral or multilateral international agreements and of universal international law by the Soviet Union. (WG) [de

  12. Civil Cases Proof Peculiarities of Road Traffic Accidents Damages

    Directory of Open Access Journals (Sweden)

    Polyakov D. N.

    2012-11-01

    Full Text Available The author reveals proof peculiarities in civil cases of reparation of damages harmed by road traffic accident, in relation to the determination of a respondent (debtor. In the article are analyzed the appropriate norms of the RF Civil code regulating the rules and conditions of civil liability for damage caused by using a transport facility as a source of danger

  13. Re criticality assessment following reactor core damage in Fukushima unit 2

    International Nuclear Information System (INIS)

    Jeong, Hae Sun; Song, Jin Ho; Park, Chang Je; Ha, Kwang Soon; Song, Yong Mann; Ryu, Eun Hyun

    2012-01-01

    Following the severe core damage accident at the Fukushima nuclear power plants (NPPs), many researchers have studied a possible Re criticality caused by core melting or corium. However, no one can accurately examine the internal conditions of the reactor vessel, and thus there have been different opinions from some organizations depending on their assumption and analysis methods. If there is a potential Re criticality in the reactor vessel, some counter plans for the accident management should be established to prevent and mitigate re criticality, and to return the plant to a safe and stable state. In this study, the criticality level following a severe core damage accident was first analyzed using the MCNPX 2.6.0 code. Based on this result, practical strategies in terms of accident management were obtained by charging soluble boron (H 3B O 3) into re flooded water

  14. Economic damage caused by a nuclear reactor accident

    International Nuclear Information System (INIS)

    Goemans, T.; Schwarz, J.J.

    1988-01-01

    This study is directed towards the estimation of the economic damage which arises from a severe possible accident with a newly built 1000 MWE nuclear power plant in the Netherlands. A number of cases have been considered which are specified by the weather conditions during and the severity of the accident and the location of the nuclear power plant. For each accident case the economic damage has been estimated for the following impact categories: loss of the power plant, public health, evacuation and relocation of population, export of agricultural products, working and living in contaminated regions, decontamination, costs of transportation and incoming foreign tourism. The consequences for drinking water could not be quantified adequately. The total economic damage could reach 30 billion guilders. Besides the power plant itself, loss of export and decreasing incoming foreign tourism determine an important part of the total damage. 12 figs.; 52 tabs

  15. Nuclear power reactor core melt accidents. Current State of Knowledge

    International Nuclear Information System (INIS)

    Jacquemain, Didier; Cenerino, Gerard; Corenwinder, Francois; Raimond, Emmanuel IRSN; Bentaib, Ahmed; Bonneville, Herve; Clement, Bernard; Cranga, Michel; Fichot, Florian; Koundy, Vincent; Meignen, Renaud; Corenwinder, Francois; Leteinturier, Denis; Monroig, Frederique; Nahas, Georges; Pichereau, Frederique; Van-Dorsselaere, Jean-Pierre; Couturier, Jean; Debaudringhien, Cecile; Duprat, Anna; Dupuy, Patricia; Evrard, Jean-Michel; Nicaise, Gregory; Berthoud, Georges; Studer, Etienne; Boulaud, Denis; Chaumont, Bernard; Clement, Bernard; Gonzalez, Richard; Queniart, Daniel; Peltier, Jean; Goue, Georges; Lefevre, Odile; Marano, Sandrine; Gobin, Jean-Dominique; Schwarz, Michel; Repussard, Jacques; Haste, Tim; Ducros, Gerard; Journeau, Christophe; Magallon, Daniel; Seiler, Jean-Marie; Tourniaire, Bruno; Durin, Michel; Andreo, Francois; Atkhen, Kresna; Daguse, Thierry; Dubreuil-Chambardel, Alain; Kappler, Francois; Labadie, Gerard; Schumm, Andreas; Gauntt, Randall O.; Birchley, Jonathan

    2015-11-01

    For over thirty years, IPSN and subsequently IRSN has played a major international role in the field of nuclear power reactor core melt accidents through the undertaking of important experimental programmes (the most significant being the Phebus-FP programme), the development of validated simulation tools (the ASTEC code that is today the leading European tool for modelling severe accidents), and the coordination of the SARNET (Severe Accident Research Network) international network of excellence. These accidents are described as 'severe accidents' because they can lead to radioactive releases outside the plant concerned, with serious consequences for the general public and for the environment. This book compiles the sum of the knowledge acquired on this subject and summarises the lessons that have been learnt from severe accidents around the world for the prevention and reduction of the consequences of such accidents, without addressing those from the Fukushima accident, where knowledge of events is still evolving. The knowledge accumulated by the Institute on these subjects enabled it to play an active role in informing public authorities, the media and the public when this accident occurred, and continues to do so to this day. Following the introduction, which describes the structure of this book and highlights the objectives of R and D on core melt accidents, this book briefly presents the design and operating principles (Chapter 2) and safety principles (Chapter 3) of the reactors currently in operation in France, as well as the main accident scenarios envisaged and studied (Chapter 4). The objective of these chapters is not to provide exhaustive information on these subjects (the reader should refer to the general reference documents listed in the corresponding chapters), but instead to provide the information needed in order to understand, firstly, the general approach adopted in France for preventing and mitigating the consequences of core melt

  16. Thermal and hydraulic behaviour of CANDU cores under severe accident conditions - final report. Vol. 1

    International Nuclear Information System (INIS)

    Rogers, J.T.

    1984-06-01

    This report gives the results of a study of the thermo-hydraulic aspects of severe accident sequences in CANDU reactors. The accident sequences considered are the loss of the moderator cooling system and the loss of the moderator heat sink, each following a large loss-of-coolant accident accompanied by loss of emergency coolant injection. Factors considered include expulsion and boil-off of the moderator, uncovery, overheating and disintegration of the fuel channels, quenching of channel debris, re-heating of channel debris following complete moderator expulsion, formation and possible boiling of a molten pool of core debris and the effectiveness of the cooling of the calandria wall by the shield tank water during the accident sequences. The effects of these accident sequences on the reactor containment are also considered. Results show that there would be no gross melting of fuel during moderator expulsion from the calandria, and for a considerable time thereafter, as quenched core debris re-heats. Core melting would not begin until about 135 minutes after accident initiation in a loss of the moderator cooling system and until about 30 minutes in a loss of the moderator heat sink. Eventually, a pool of molten material would form in the bottom of the calandria, which may or may not boil, depending on property values. In all cases, the molten core would be contained within the calandria, as long as the shield tank water cooling system remains operational. Finally, in the period from 8 to 50 hours after the initiation of the accident, the molten core would re-solidify within the calandria. There would be no consequent damage to containment resulting from these accident sequences, nor would there be a significant increase in fission product releases from containment above those that would otherwise occur in a dual failure LOCA plus LOECI

  17. Nuclear Power Reactor Core Melt Accidents. Current State of Knowledge

    International Nuclear Information System (INIS)

    Bentaib, Ahmed; Bonneville, Herve; Clement, Bernard; Cranga, Michel; Fichot, Florian; Koundy, Vincent; Meignen, Renaud; Corenwinder, Francois; Leteinturier, Denis; Monroig, Frederique; Nahas, Georges; Pichereau, Frederique; Van-Dorsselaere, Jean-Pierre; Cenerino, Gerard; Jacquemain, Didier; Raimond, Emmanuel; Ducros, Gerard; Journeau, Christophe; Magallon, Daniel; Seiler, Jean-Marie; Tourniaire, Bruno

    2013-01-01

    For over thirty years, IPSN and subsequently IRSN has played a major international role in the field of nuclear power reactor core melt accidents through the undertaking of important experimental programmes (the most significant being the Phebus- FP programme), the development of validated simulation tools (the ASTEC code that is today the leading European tool for modelling severe accidents), and the coordination of the SARNET (Severe Accident Research Network) international network of excellence. These accidents are described as 'severe accidents' because they can lead to radioactive releases outside the plant concerned, with serious consequences for the general public and for the environment. This book compiles the sum of the knowledge acquired on this subject and summarises the lessons that have been learnt from severe accidents around the world for the prevention and reduction of the consequences of such accidents, without addressing those from the Fukushima accident, where knowledge of events is still evolving. The knowledge accumulated by the Institute on these subjects enabled it to play an active role in informing public authorities, the media and the public when this accident occurred, and continues to do so to this day

  18. IAEA Regional Workshop on Development and Validation of EOP/AMG for Effective Prevention/Mitigation of Severe Core Damage

    International Nuclear Information System (INIS)

    1999-01-01

    Materials of the IAEA Regional Workshop contain 24 presented lectures. Authors deal with development and validation of emergency operating procedures as well as with accident management guidelines (EOP/AMG) for effective prevention and mitigation of severe core damage

  19. Evaluation of potential severe accidents during low power and shutdown operations at Grand Gulf, Unit 1: Analysis of core damage frequency from internal fire events for Plant Operational State 5 during a refueling outage. Volume 3

    International Nuclear Information System (INIS)

    Lambright, J.; Yakle, J.

    1994-07-01

    This report, Volume 3, presents the details of the analysis of core damage frequency due to fire during shutdown Plant Operational State 5 at the Grand Gulf Nuclear Station. Insights from previous fire analyses (Peach Bottom, Surry, LaSalle) were used to the greatest extent possible in this analysis. The fire analysis was fully integrated utilizing the same event trees and fault trees that were used in the internal events analysis. In assessing shutdown risk due to fire at Grand Gulf, a detailed screening was performed which included the following elements: (a) Computer-aided vital area analysis; (b) Plant inspections; (c) Credit for automatic fire protection systems; (d) Recovery of random failures; (e) Detailed fire propagation modeling. This screening process revealed that all plant areas had a negligible (<1.0E-8 per year) contribution to fire-induced core damage frequency

  20. Proposal for computer investigation of LMFBR core meltdown accidents

    International Nuclear Information System (INIS)

    Boudreau, J.E.; Harlow, F.H.; Reed, W.H.; Barnes, J.F.

    1974-01-01

    The environmental consequences of an LMFBR accident involving breach of containment are so severe that such accidents must not be allowed to happen. Present methods for analyzing hypothetical core disruptive accidents like a loss of flow with failure to scram cannot show conclusively that such accidents do not lead to a rupture of the pressure vessel. A major deficiency of present methods is their inability to follow large motions of a molten LMFBR core. Such motions may lead to a secondary supercritical configuration with a subsequent energy release that is sufficient to rupture the pressure vessel. The Los Alamos Scientific Laboratory proposes to develop a computer program for describing the dynamics of hypothetical accidents. This computer program will utilize implicit Eulerian fluid dynamics methods coupled with a time-dependent transport theory description of the neutronic behavior. This program will be capable of following core motions until a stable coolable configuration is reached. Survey calculations of reactor accidents with a variety of initiating events will be performed for reactors under current design to assess the safety of such reactors

  1. High enrichment to low enrichment core's conversion. Accidents analysis

    International Nuclear Information System (INIS)

    Abbate, P.; Rubio, R.; Doval, A.; Lovotti, O.

    1990-01-01

    This work analyzes the different accidents that may occur in the reactor's facility after the 20% high-enriched uranium core's conversion. The reactor (of 5 thermal Mw), built in the 50's and 60's, is of the 'swimming pool' type, with light water and fuel elements of the curve plates MTR type, enriched at 93.15 %. This analysis includes: a) accidents by reactivity insertion; b) accidents by coolant loss; c) analysis by flow loss and d) fission products release. (Author) [es

  2. Case for integral core-disruptive accident analysis

    International Nuclear Information System (INIS)

    Luck, L.B.; Bell, C.R.

    1985-01-01

    Integral analysis is an approach used at the Los Alamos National Laboratory to cope with the broad multiplicity of accident paths and complex phenomena that characterize the transition phase of core-disruptive accident progression in a liquid-metal-cooled fast breeder reactor. The approach is based on the combination of a reference calculation, which is intended to represent a band of similar accident paths, and associated system- and separate-effect studies, which are designed to determine the effect of uncertainties. Results are interpreted in the context of a probabilistic framework. The approach was applied successfully in two studies; illustrations from the Clinch River Breeder Reactor licensing assessment are included

  3. Event course analysis of core disruptive accidents; Ereignisablaufanalyse kernzerstoerender Unfaelle

    Energy Technology Data Exchange (ETDEWEB)

    Hering, W.; Homann, C.; Sengpiel, W.; Struwe, D.; Messainguiral, C.

    1995-08-01

    The theortical studies of the behavior of a PWR core in a meltdown accident are focused on hydrogen release, materials redistribution in the core area including forming of an oxide melt pool, quantity of melt and its composition, and temperatures attained by the RPV internals (esp. in the upper plenum) during the accident up to the time of melt relocation into the lower plenum. The calculations are done by the SCDAP/RELAP5 code. For its validation selected CORA results and Phebus FPTO results have been used. (orig.)

  4. Large population center and core melt accident considerations in siting

    International Nuclear Information System (INIS)

    Camarinopoulos, L.; Yadigaroglu, G.

    1983-01-01

    The problem of providing suitable demographic siting criteria in the presence of a very large population center in an otherwise sparsely populated region is addressed. Simple calculations were performed making maximum use of pretabulated results of studies where core melt accidents are considered. These show that taking into consideration the air flow patterns in the region can lower the expected population doses from core melt accidents more effectively than distance alone. Expected doses are compared to the annual background radiation dose. A simple siting criterion combining geographical considerations with the probability of a release reaching the large population center is proposed

  5. Management of radioactive waste from a major core damage in a BWR power plant

    International Nuclear Information System (INIS)

    Elkert, J.; Christensen, H.; Torstenfelt, B.

    1990-01-01

    Large amounts of fission products would be released in case of a major core damage in a nuclear power reactor. In this theoretical study the core damage is caused by a loss of coolant accident followed by a complete loss of all electric power for about 30 minutes resulting in the release of 10% of the core inventory of noble gases. A second case has also been briefly studied, in which the corresponding core damage is supposed to be created merely by the complete loss of electric power during a limited time period. It appears from the study that the radioactive waste generated as a consequence of an accident of the extent can be managed in the reference reactor with only minor modifications required in the waste plant. The detailed results of the study are reactor specific, but many of the findings and recommendations are generally applicable. (author) 28 refs

  6. Degraded core accidents: review of aerosol behaviour in the containment of a PWR

    International Nuclear Information System (INIS)

    Nichols, A.L.; Walker, B.C.

    1981-09-01

    Low probability-high consequence accidents have become an important issue in reactor safety studies. Such accidents would involve damage to the core and the subsequent release of radioactive fission products into the environment. Aerosols play a major role in the transport and removal of these fission products in the reactor building containment. The aerosol mechanisms, computer modelling codes and experimental studies used to predict aerosol behaviour in the containment of a PWR are reviewed. There are significant uncertainties in the aerosol source terms and specific recommendations have been made for further studies, particularly with respect to code development and high density aerosol-fission product transport within closed systems. (author)

  7. Review of the Shoreham Nuclear Power Station Probabilistic Risk Assessment: internal events and core damage frequency

    International Nuclear Information System (INIS)

    Ilberg, D.; Shiu, K.; Hanan, N.; Anavim, E.

    1985-11-01

    A review of the Probabilistic Risk Assessment of the Shoreham Nuclear Power Station was conducted with the broad objective of evaluating its risks in relation to those identified in the Reactor Safety Study (WASH-1400). The scope of the review was limited to the ''front end'' part, i.e., to the evaluation of the frequencies of states in which core damage may occur. Furthermore, the review considered only internally generated accidents, consistent with the scope of the PRA. The review included an assessment of the assumptions and methods used in the Shoreham study. It also encompassed a reevaluation of the main results within the scope and general methodological framework of the Shoreham PRA, including both qualitative and quantitative analyses of accident initiators, data bases, and accident sequences which result in initiation of core damage. Specific comparisons are given between the Shoreham study, the results of the present review, and the WASH-1400 BWR, for the core damage frequency. The effect of modeling uncertainties was considered by a limited sensitivity study so as to show how the results would change if other assumptions were made. This review provides an independently assessed point value estimate of core damage frequency and describes the major contributors, by frontline systems and by accident sequences. 17 figs., 81 tabs

  8. Scoping Analysis on Core Disruptive Accident in PGSFR (2015 Results)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Won; Chang, Won-Pyo; Ha, Kwi-Seok; Ahn, Sang June; Kang, Seok Hun; Choi, Chi-Woong; Lee, Kwi Lim; Jeong, Jae-Ho; Kim, Jin Su; Jeong, Taekyeong [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    In general, the severe accident is classified by three phases. The first phase is the initiation (pre-disassembly) phase that occurs the gradual core meltdown from accident initiation to the point of neutronic shutdown with an intact geometry. The second phase is the transition phase that happens the fuel transition from a solid to a liquid phase. Fuel and cladding can melt to form a molten pool and core can boil, then criticality conditions can recur. The third phase is the disassembly phase. In other words, this phase is Core Disruptive Accident (CDA). Power excursion is followed until the core is disassembled in this phase. In the early considerations of Liquid Metal Fast Breeder Reactor (LMFBR) energetics, the term Hypothetical Core Disruptive Accidents (HCDAs) was in common use. This was not only to connote the extremely low probability of initiation of such accidents, but also the tentative nature of our understanding of their behavior and resulting consequences. A numerical analysis is conducted to estimate the energy release, pressure behavior and core expansion behavior induced by CDA of PGSFR using CDA-ER and CDA-CEME codes. Conservatively, the calculated results of energy release and pressure behavior induced by CDA without Doppler effect in PGSFR when whole cores were melted (100 $/s) were 7.844 GJ and 4.845 GPa, respectively. With Doppler effect, the analyzed maximum energy release and pressure were 6.696 GJ and 3.449 GPa, respectively. The calculated results of the core expansion behavior during 0.015 seconds after the explosion without Doppler effect in PGSFR when whole cores were melted (100 $/s) were as follows: The total energy is calculated to be 1.87 GJ. At 0.01 s, the kinetic energy of the sodium is 1.85 GJ, while the expansion work and internal energy of the bubble are 19.7 MJ and 0.98 J, respectively. With Doppler effect, the total energy is calculated to be 1.33 GJ. At 0.01 s, the kinetic energy of the sodium is 1.31 GJ, while the expansion

  9. Release of fission products during controlled loss-of-coolant accidents and hypothetical core meltdown accidents

    International Nuclear Information System (INIS)

    Albrecht, H.; Malinauskas, A.P.

    1978-01-01

    A few years ago the Projekt Nukleare Sicherheit joined the United States Nuclear Regulatory Commission in the development of a research program which was designed to investigate fission product release from light water reactor fuel under conditions ranging from spent fuel shipping cask accidents to core meltdown accidents. Three laboratories have been involved in this cooperative effort. At Argonne National Laboratory (ANL), the research effort has focused on noble gas fission product release, whereas at Oak Ridge National Laboratory (ORNL) and at Kernforschungszentrum Karlsruhe (KfK), the studies have emphasized the release of species other than the noble gases. In addition, the ORNL program has been directed toward the development of fission product source terms applicable to analyses of spent fuel shipping cask accidents and controlled loss-of-coolant accidents, and the KfK program has been aimed at providing similar source terms which are characteristic of core meltdown accidents. The ORNL results are presented for fission product release from defected fuel rods into a steam atmosphere over the temperature range 500 to 1200 0 C, and the KfK results for release during core meltdown sequences

  10. Shock loading of reactor vessel following hypothetical core disruptive accident

    International Nuclear Information System (INIS)

    Srinivas, G.; Doshi, J.B.

    1990-01-01

    Hypothetical Core Disruptive Accident (HCDA) has been historically considered as the maximum credible accident in Fast Breeder Reactor systems. Environmental consequences of such an accident depends to a great extent on the ability of the reactor vessel to maintain integrity during the shock loading following an HCDA. In the present paper, a computational model of the reactor core and the surrounding coolant with a free surface is numerical technique. The equations for conservation of mass, momentum and energy along with an equation of state are considered in two dimensional cylindrical geometry. The reactor core at the end of HCDA is taken as a bubble of hot, vaporized fuel at high temperature and pressure, formed at the center of the reactor vessel and expanding against the surrounding liquid sodium coolant. The free surface of sodium at the top of the vessel and the movement of the core bubble-liquid coolant interface are tracked by Marker and Cell (MAC) procedure. The results are obtained for the transient pressure at the vessel wall and also for the loading on the roof plug by the impact of the slug of liquid sodium. The computer code developed is validated against a benchmark experiment chosen to be ISPRA experiment reported in literature. The computer code is next applied to predict the loading on the Indian Prototype Fast Breeder Reactor (PFBR) being developed at Kalpakkam

  11. Core failure accident pathways and ways to control it

    International Nuclear Information System (INIS)

    Mayinger, F.

    1982-01-01

    In the German Risk Study accidents are assumed to result in core meltdown whenever the criteria spelt out in the guidelines of the Advisory Committee on Reactor Safeguards are no longer met. This assumption must be seen in the light of an earlier state of the art in which no detailed information could be obtained about intermediate stages in emergency core cooling systems working according to permit up to the complete failure of all heat removal systems. However, experimental studies and theoretical analyses conducted over the past few years have advanced the state of the art such that it is now possible to predict with considerably more physical reality the behavior of a core in a loss-of-coolant accident. These findings are not only based on calculations, but also on the results of experiments in large facilities allowing direct comparisons to be made with conditions in nuclear power plants. Studies of the effects of systems failures both in major leakages and in the small leakages regarded to be much more dangerous show much more favorable conditions with respect to core coolability than had to be anticipated on the basis of earlier assumptions. This also implies that it would neither be necessary nor meaningful to reinforce emergency core cooling systems. Instead, it is much more important, besides having technically highly qualified and thoroughly trained operating crews, to inform those crews reliably of the hydrodynamic and thermodynamic state of the primary system, especially the core. (orig.) [de

  12. Structural assessment of TAPS core shroud under accident loads

    International Nuclear Information System (INIS)

    Bhasin, Vivek; Kushwaha, H.S.; Mahajan, S.C.; Kakodkar, A.

    1996-09-01

    Over the last few years, the Core Shroud of Boiling Water Reactors (BWRs) operating in foreign countries, have developed cracks at weld locations. As a first step for assessment of structural safety of Tarapur Atomic Power Station (TAPS) core shroud, its detailed stress analysis was done for postulated accident loads. This report is concerned with structural assessment of core shroud, of BWR at TAPS, subjected to loads resulting from main steam line break (MSLB), recirculation line break (RLB) and safe shut down earthquake. The stress analysis was done for core shroud in healthy condition and without any crack since, visual examination conducted till now, do not indicate presence of any flaw. Dynamic structural analysis for MSLB and RLB events was done using dynamic load factor (DLF) method. The complete core shroud and its associated components were modelled and analysed using 3D plate/shell elements. Since, the components of core shroud are submerged in water, hence, hydrodynamic added mass was also considered for evaluation of natural frequencies. It was concluded that from structural point of view, adequate safety margin is available under all the accident loads. Nonlinear analysis was done to evaluate buckling/collapse load. The collapse/buckling load have sufficient margin against the allowable limits. The displacements are low hence, the insertion of control rod may not be affected. (author)

  13. RBMK-1500 accident management for loss of long-term core cooling

    International Nuclear Information System (INIS)

    Uspuras, E.; Kaliatka, A.

    2001-01-01

    Results of the Level 1 probabilistic safety assessment of the Ignalina NPP has shown that in topography of the risk, transients dominate above the accidents with LOCAs and failure of the core long-term cooling are the main factors to frequency of the core damage. Previous analyses have shown, that after initial event, as a rule, the reactivity control, as well as short-term and intermediate cooling are provided. However, the acceptance criteria of the long-term cooling are not always carried out. It means that from this point of view the most dangerous accident scenarios are the scenarios related to loss of the core long-term cooling. On the other hand, the transition to the core condition due to loss of the long-term cooling specifies potential opportunities for the management of the accident consequences. Hence, accident management for the mitigation of the accident consequences should be considered and developed. The most likely initiating event, which probably leads to the loss of long term cooling accident, is station blackout. The station blackout is the loss of normal electrical power supply for local needs with an additional failure on start-up of all diesel generators. In the case of loss of electrical power supply MCPs, the circulating pumps of the service water system and MFWPs are switched-off. At the same time, TCV of both turbines are closed. Failure of diesel generators leads to the non-operability of the ECCS long-term cooling subsystem. It means the impossibility to feed MCC by water. The analysis of the station blackout for Ignalina NPP was performed using RELAP5 code. (author)

  14. The role of fission products in whole core accidents

    Energy Technology Data Exchange (ETDEWEB)

    Baker, A R [FRSD, UKAEA, RNPDE, Risley, Warrington (United Kingdom); Teague, H J [SRD, UKAEA, Culcheth, Warrington (United Kingdom)

    1977-07-01

    The review of the role of fission products in whole-core accidents falls into two parts. Firstly, there is a discussion of the hypothetical accidents usually considered in the UK and how they are dealt with. Secondly, there is a discussion of individual topics where fission products are known to be important or might be so. There is a brief discussion of the UK work on the establishment of an equation of state for unirradiated fuel and how this might be extended to incorporate fission product effects. The main issue is the contribution of fission products to the effective vapour pressure and the experimental programme on the pulsed reactor VIPER investigates this. Fission products may influence the probability of occurrence and the severity of MFCIs. Finally, the fission product effects in the pre-disassembly, disassembly and recriticality stages of an accident are discussed. (author)

  15. Examination of offsite emergency protective measures for core melt accidents

    International Nuclear Information System (INIS)

    Aldrich, D.C.; McGrath, P.E.; Ericson, D.M. Jr.; Jones, R.B.; Rasmussen, N.C.

    Evacuation, sheltering followed by population relocation, and iodine prophylaxis are evaluated as offsite public protective measures in response to potential nuclear reactor accidents involving core-melt. Evaluations were conducted using a modified version of the Reactor Safety Study consequence model. Models representing each protective measure were developed and are discussed. Potential PWR core-melt radioactive material releases are separated into two categories, ''Melt-through'' and ''Atmospheric,'' based upon the mode of containment falure. Protective measures are examined and compared for each category in terms of projected doses to the whole body and thyroid. Measures for ''Atmospheric'' accidents are also examined in terms of their influence on the occurrence of public health effects

  16. Summary of treat experiments on oxide core-disruptive accidents

    International Nuclear Information System (INIS)

    Dickerman, C.E.; Rothman, A.B.; Klickman, A.E.; Spencer, B.W.; DeVolpi, A.

    1979-02-01

    A program of transient in-reactor experiments is being conducted by Argonne National Laboratory in the Transient Reactor Test (TREAT) facility to guide and support analyses of hypothetical core-disruptive accidents (HCDA) in liquid-metal fast breeder reactors (LMFBR). Test results provide data needed to establish the response of LMFBR cores to hypothetical accidents producing fuel failure, coolant boiling, and the movement of coolant, molten fuel, and molten cladding. These data include margins to fuel failure, the modes of failure and movements, and evidence for identification of the mechanisms which determine the failure and movements. A key element in the program is the fast-neutron hodoscope, which detects fuel movement as a function of time during experiments

  17. The role of fission product in whole core accidents - research in the USA

    Energy Technology Data Exchange (ETDEWEB)

    Dietrich, L W [Argonne National Laboratory, Division of Reactor Analysis and Safety, Argonne, IL (United States); Jackson, J F [Los Alamos Scientific Laboratory, Q Division - Energy, Los Alamos, NM (United States)

    1977-07-01

    Clinch River Breeder Reactor (CRBR) Project, is balanced, consisting of a reliability programme to prevent malfunctions or accidents, backup systems to accommodate malfunctions or accidents, and systems to cope with the consequences of CDAs. In connection with the CRBR, the Nuclear Regulatory Commission (NRC) has established that {sup t}he probability of core melt and disruptive accidents can and must be reduced to a sufficiently low level to justify their exclusion from the design basis accident spectrum (a goal probability of 10{sup -6} per reactor-year for dose exceeding current guidelines has been established). Thus, CDA accommodation is approached on the basis of reasonable conservatism in evaluation and mitigation. The ERDA fast reactor safety research programme is presently directed towards establishment of four 'lines of assurance' (LOA). The four lines of assurance are: prevent core disruptive accidents; limit core damage; control CDA progression; attenuate radiological consequences. The considerations of fission product effects germane to the present paper are primarily of concern in evaluation of the second and third lines. Since fission products have the potential for dispersing fuel from the core region and thereby producing reactor shutdown, knowledge of their effects can contribute to demonstrating that there is a low probability (10{sup -2} ) of a CDA initiator producing whole-core involvement. Similarly, knowledge of fission product effects can contribute to demonstrating that there Is a low probability of a whole-core disruptive accident leading to sufficient energy release to challenge the containment capability.

  18. Historical update of past and recent skin damage radiation accidents

    International Nuclear Information System (INIS)

    Lushbaugh, C.C.; Fry, S.A.; Ricks, R.C.; Hubner, K.F.; Burr, W.W.

    1986-01-01

    Records of radiation accidents worldwide since 1944 are maintained at the Radiation Accident Registry of the Radiation Emergency Assistance Center/Training Site (REAC/TS) in Oak Ridge. These records show that in 263 major radiation accidents there have been 150 severe local radiation injuries, of which 117 have been exposure to sealed radioactive sources. Most lesions resulted from the unsafe handling of 192 Ir radiography sources. Recent redesign of these devices, used for testing the integrity of welds, promises to eliminate these accidents. However, many other kinds of irradiators used in industry and scientific research still remain in the public domain, capable of causing irreparable dermal damage. Registry records reveal many unsolved physical and medical problems whose solution is urgently needed to improve the prognosis and therapy of such lesions. Pathologically, radiation-induced skin lesions are well described and an approximate dose-response relationship is univerally accepted even though the actual 'dose' is rarely known at first. Radiation dose is estimated biologically after the lesion has run its pathological course or after a medical physicist has prepared a retrospective 'mock-up' of the accident. (author)

  19. How to arrest a core meltdown accident (doing nothing)

    International Nuclear Information System (INIS)

    Baron, Jorge H.

    2000-01-01

    In the eventual situation of a severe accident in a nuclear reactor, the molten core is able to relocate inside the pressure vessel. This may lead to the vessel failure, due to the thermal attack of the molten core (at approximation of 3000K) on the vessel steel wall. The vessel failure implies the failure of a very important barrier that contains the radioactive materials generated during the reactor operation, with a significant risk of producing high radiation doses both on operators and on the public. It is expected, for the new generation of nuclear reactors, that these will be required to withstand (by design) a core melt down accident, without the need for an immediate evacuation of the surrounding population. In this line, the use of a totally passive system is postulated, which fulfills the objective of containing the molten core inside the pressure vessel, at low temperature (approximation 1200K) precluding its failure. The conceptual design of a passive in-vessel core catcher is presented in this paper, built up of zinc, and designed for the CAREM-25 nuclear power plant. (author)

  20. Accident source terms for boiling water reactors with high burnup cores.

    Energy Technology Data Exchange (ETDEWEB)

    Gauntt, Randall O.; Powers, Dana Auburn; Leonard, Mark Thomas

    2007-11-01

    The primary objective of this report is to provide the technical basis for development of recommendations for updates to the NUREG-1465 Source Term for BWRs that will extend its applicability to accidents involving high burnup (HBU) cores. However, a secondary objective is to re-examine the fundamental characteristics of the prescription for fission product release to containment described by NUREG-1465. This secondary objective is motivated by an interest to understand the extent to which research into the release and behaviors of radionuclides under accident conditions has altered best-estimate calculations of the integral response of BWRs to severe core damage sequences and the resulting radiological source terms to containment. This report, therefore, documents specific results of fission product source term analyses that will form the basis for the HBU supplement to NUREG-1465. However, commentary is also provided on observed differences between the composite results of the source term calculations performed here and those reflected NUREG-1465 itself.

  1. Reactor Core Coolability Analysis during Hypothesized Severe Accidents of OPR1000

    International Nuclear Information System (INIS)

    Lee, Yongjae; Seo, Seungwon; Kim, Sung Joong; Ha, Kwang Soon; Kim, Hwan-Yeol

    2014-01-01

    Assessment of the safety features over the hypothesized severe accidents may be performed experimentally or numerically. Due to the considerable time and expenditures, experimental assessment is implemented only to the limited cases. Therefore numerical assessment has played a major role in revisiting severe accident analysis of the existing or newly designed power plants. Computer codes for the numerical analysis of severe accidents are categorized as the fast running integral code and detailed code. Fast running integral codes are characterized by a well-balanced combination of detailed and simplified models for the simulation of the relevant phenomena within an NPP in the case of a severe accident. MAAP, MELCOR and ASTEC belong to the examples of fast running integral codes. Detailed code is to model as far as possible all relevant phenomena in detail by mechanistic models. The examples of detailed code is SCDAP/RELAP5. Using the MELCOR, Carbajo. investigated sensitivity studies of Station Black Out (SBO) using the MELCOR for Peach Bottom BWR. Park et al. conduct regulatory research of the PWR severe accident. Ahn et al. research sensitivity analysis of the severe accident for APR1400 with MELCOR 1.8.4. Lee et al. investigated RCS depressurization strategy and developed a core coolability map for independent scenarios of Small Break Loss-of-Coolant Accident (SBLOCA), SBO, and Total Loss of Feed Water (TLOFW). In this study, three initiating cases were selected, which are SBLOCA without SI, SBO, and TLOFW. The initiating cases exhibit the highest probability of transitioning into core damage according to PSA 1 of OPR 1000. The objective of this study is to investigate the reactor core coolability during hypothesized severe accidents of OPR1000. As a representative indicator, we have employed Jakob number and developed JaCET and JaMCT using the MELCOR simulation. Although the RCS pressures for the respective accident scenarios were different, the JaMCT and Ja

  2. Analysis of core damage frequency, Surry, Unit 1 internal events appendices

    International Nuclear Information System (INIS)

    Bertucio, R.C.; Julius, J.A.; Cramond, W.R.

    1990-04-01

    This document contains the appendices for the accident sequence analyses of internally initiated events for the Surry Nuclear Station, Unit 1. This is one of the five plant analyses conducted as part of the NUREG-1150 effort by the Nuclear Regulatory Commission. NUREG-1150 documents the risk of a selected group of nuclear power plants. The work performed is an extensive reanalysis of that published in November 1986 as NUREG/CR-4450, Volume 3. It addresses comments from numerous reviewers and significant changes to the plant systems and procedures made since the first report. The uncertainty analysis and presentation of results are also much improved. The context and detail of this report are directed toward PRA practitioners who need to know how the work was performed and the details for use in further studies. The mean core damage frequency at Surry was calculated to be 4.0E-5 per year, with a 95% upper bound of 1.3E-4 and 5% lower bound of 6.8E-6 per year. Station blackout type accidents (loss of all AC power) were the largest contributors to the core damage frequency, accounting for approximately 68% of the total. The next type of dominant contributors were Loss of Coolant Accidents (LOCAs). These sequences account for 15% of core damage frequency. No other type of sequence accounts for more than 10% of core damage frequency

  3. Evaluation of nuclear power plant component failure probability and core damage probability using simplified PSA model

    International Nuclear Information System (INIS)

    Shimada, Yoshio

    2000-01-01

    It is anticipated that the change of frequency of surveillance tests, preventive maintenance or parts replacement of safety related components may cause the change of component failure probability and result in the change of core damage probability. It is also anticipated that the change is different depending on the initiating event frequency or the component types. This study assessed the change of core damage probability using simplified PSA model capable of calculating core damage probability in a short time period, which is developed by the US NRC to process accident sequence precursors, when various component's failure probability is changed between 0 and 1, or Japanese or American initiating event frequency data are used. As a result of the analysis, (1) It was clarified that frequency of surveillance test, preventive maintenance or parts replacement of motor driven pumps (high pressure injection pumps, residual heat removal pumps, auxiliary feedwater pumps) should be carefully changed, since the core damage probability's change is large, when the base failure probability changes toward increasing direction. (2) Core damage probability change is insensitive to surveillance test frequency change, since the core damage probability change is small, when motor operated valves and turbine driven auxiliary feed water pump failure probability changes around one figure. (3) Core damage probability change is small, when Japanese failure probability data are applied to emergency diesel generator, even if failure probability changes one figure from the base value. On the other hand, when American failure probability data is applied, core damage probability increase is large, even if failure probability changes toward increasing direction. Therefore, when Japanese failure probability data is applied, core damage probability change is insensitive to surveillance tests frequency change etc. (author)

  4. Analysis of forces on core structures during a loss-of-coolant accident. Final report

    International Nuclear Information System (INIS)

    Griggs, D.P.; Vilim, R.B.; Wang, C.H.; Meyer, J.E.

    1980-08-01

    There are several design requirements related to the emergency core cooling which would follow a hypothetical loss-of-coolant accident (LOCA). One of these requirements is that the core must retain a coolable geometry throughout the accident. A possible cause of core damage leading to an uncoolable geometry is the action of forces on the core and associated support structures during the very early (blowdown) stage of the LOCA. An equally unsatisfactory design result would occur if calculated deformations and failures were so extensive that the geometry used for calculating the next stages of the LOCA (refill and reflood) could not be known reasonably well. Subsidiary questions involve damage preventing the operation of control assemblies and loss of integrity of other needed safety systems. A reliable method of calculating these forces is therefore an important part of LOCA analysis. These concerns provided the motivation for the study. The general objective of the study was to review the state-of-the-art in LOCA force determination. Specific objectives were: (1) determine state-of-the-art by reviewing current (and projected near future) techniques for LOCA force determination, and (2) consider each of the major assumptions involved in force determination and make a qualitative assessment of their validity

  5. TMI-2 reactor-vessel head removal and damaged-core-removal planning

    International Nuclear Information System (INIS)

    Logan, J.A.; Hultman, C.W.; Lewis, T.J.

    1982-01-01

    A major milestone in the cleanup and recovery effort at TMI-2 will be the removal of the reactor vessel closure head, planum, and damaged core fuel material. The data collected during these operations will provide the nuclear power industry with valuable information on the effects of high-temperature-dissociated coolant on fuel cladding, fuel materials, fuel support structural materials, neutron absorber material, and other materials used in reactor structural support components and drive mechanisms. In addition, examination of these materials will also be used to determine accident time-temperature histories in various regions of the core. Procedures for removing the reactor vessel head and reactor core are presented

  6. EPRTM engineered features for core melt mitigation in severe accidents

    International Nuclear Information System (INIS)

    Fischer, Manfred; Henning, Andreas

    2009-01-01

    For the prevention of accident conditions, the EPR TM relies on the proven 3-level safety concepts inherited from its predecessors, the French 'N4' and the German 'Konvoi' NPP. In addition, a new, fourth 'beyond safety' level is implemented for the mitigation of postulated severe accidents (SA) with core melting. It is aimed at preserving the integrity of the containment barrier and at significantly reducing the frequency and magnitude of activity releases into the environment under such extreme conditions. Loss of containment integrity is prevented by dedicated design measures that address short- and long-term challenges, like: the melt-through of the reactor pressure vessel under high internal pressure, energetic hydrogen/steam explosions, containment overpressure failure, and basemat melt-through. The EPR TM SA systems and components that address these issues are: - the dedicated SA valves for the depressurization the primary circuit, - the provisions for H 2 recombination, atmospheric mixing, steam dilution, - the core melt stabilization system, - the dedicated SA containment heat removal system. The core melt stabilization system (CMSS) of the EPR TM is based on a two-stage ex-vessel approach. After its release from the RPV the core debris is first accumulated and conditioned in the (dry) reactor pit by the addition of sacrificial concrete. Then the created molten pool is spread into a lateral core catcher to establish favorable conditions for the later flooding, quenching and cooling with water passively drained from the Internal Refueling Water Storage Tank. Long-term heat removal from the containment is achieved by sprays that are supplied with water by the containment heat removal system. Complementing earlier publications focused on the principle function, basic design, and validation background of the EPR TM CMSS, this paper describes the state achieved after detailed design, as well as the technical solutions chosen for its main components, including

  7. Analysis of core damage frequency from internal events: Peach Bottom, Unit 2

    International Nuclear Information System (INIS)

    Kolaczkowski, A.M.; Lambright, J.A.; Ferrell, W.L.; Cathey, N.G.; Najafi, B.; Harper, F.T.

    1986-10-01

    This document contains the internal event initiated accident sequence analyses for Peach Bottom, Unit 2; one of the reference plants being examined as part of the NUREG-1150 effort by the Nuclear Regulatory Commission. NUREG-1150 will document the risk of a selected group of nuclear power plants. As part of that work, this report contains the overall core damage frequency estimate for Peach Bottom, Unit 2, and the accompanying plant damage state frequencies. Sensitivity and uncertainty analyses provided additional insights regarding the dominant contributors to the Peach Bottom core damage frequency estimate. The mean core damage frequency at Peach Bottom was calculated to be 8.2E-6. Station blackout type accidents (loss of all ac power) were found to dominate the overall results. Anticipated Transient Without Scram accidents were also found to be non-negligible contributors. The numerical results are largely driven by common mode failure probability estimates and to some extent, human error. Because of significant data and analysis uncertainties in these two areas (important, for instance, to the most dominant scenario in this study), it is recommended that the results of the uncertainty and sensitivity analyses be considered before any actions are taken based on this analysis

  8. MORECA: A computer code for simulating modular high-temperature gas-cooled reactor core heatup accidents

    International Nuclear Information System (INIS)

    Ball, S.J.

    1991-10-01

    The design features of the modular high-temperature gas-cooled reactor (MHTGR) have the potential to make it essentially invulnerable to damage from postulated core heatup accidents. This report describes the ORNL MORECA code, which was developed for analyzing postulated long-term core heatup scenarios for which active cooling systems used to remove afterheat following the accidents can be assumed to the unavailable. Simulations of long-term loss-of-forced-convection accidents, both with and without depressurization of the primary coolant, have shown that maximum core temperatures stay below the point at which any significant fuel failures and fission product releases are expected. Sensitivity studies also have been done to determine the effects of errors in the predictions due both to uncertainties in the modeling and to the assumptions about operational parameters. MORECA models the US Department of Energy reference design of a standard MHTGR

  9. Core disruptive accident and recriticality analysis with FX2-POOL

    International Nuclear Information System (INIS)

    Abramson, P.B.

    1976-01-01

    The current state of development of FX2-POOL, a two-dimensional hydrodynamic, thermodynamic and neutronic scoping model for Hypothetical Core Disruptive Accident analysis is described. Checkout comparisons to VENUS for prompt burst conditions were good. Use of FX2-POOL to examine the importance of fuel to steel heat transfer during a prompt burst indicates that heat transfer plays no important role on that time scale. Scoping studies of material thermohydrodynamics for about 20 to 30 milliseconds following the prompt burst indicate that heat transfer is important on the time scale necessary for the CDA bubble to grow to the size of the original core. Preliminary results are presented for energetics of boiling fuel steel pools which are forced recritical by local surface pressurization

  10. Indemnification of damage in the event of a nuclear accident

    International Nuclear Information System (INIS)

    2003-01-01

    The Workshop on the Indemnification of Damage in the Event of a Nuclear Accident, organised by the OECD Nuclear Energy Agency in close co-operation with the French authorities, was held in Paris from 26 to 28 November 2001. This event was an integral part of the International Nuclear Emergency Exercise INEX 2000. It attracted wide participation from national nuclear authorities, regulators, operators of nuclear installations, nuclear insurers and international organisations. The objective was to test the capacity of the existing nuclear liability and compensation mechanisms in the 29 countries represented at the workshop to manage the consequences of a nuclear emergency. This workshop was based upon the scenario used for the INEX 2000 Exercise, i.e. an accident simulated at the Gravelines nuclear power plant in the north of France in May 2001. These proceedings contain a comparative analysis of legislative and regulatory provisions governing emergency response and nuclear third party liability, based upon country replies to a questionnaire. This publication also includes the full responses provided to that questionnaire, as well as the texts of presentations made by special guests from Germany and Japan describing the manner in which the public authorities in their respective countries responded to two nuclear accidents of a very different nature and scale. (authors)

  11. Fuel and control rod failure behavior during degraded core accidents

    International Nuclear Information System (INIS)

    Chung, K.S.

    1984-01-01

    As a part of the pretest and posttest analyses of Light Water Reactor Source Term Experiments (STEP) which are conducted in the Transient Reactor Test (TREAT) facility, this paper investigates the thermodynamic and material behaviors of nuclear fuel pins and control rods during severe core degradation accidents. A series of four STEP tests are being performed to simulate the characteristics of the power reactor accidents and investigate the behavior of fission product release during these accidents. To determine the release rate of the fission products from the fuel pins and the control rod materials, information concerning the timing of the clad failure and the thermodynamic conditions of the fuel pins and control rods are needed to be evaluated. Because the phase change involves a large latent heat and volume expansion, and the phase change is a direct cause of the clad failure, the understanding of the phase change phenomena, particularly information regarding how much of the fuel pin and control rod materials are melted are very important. A simple energy balance model is developed to calculate the temperature profile and melt front in various heat transfer media considering the effects of natural convection phenomena on the melting and freezing front behavior

  12. Detonability of containment building atmospheres during core-meltdown accidents

    International Nuclear Information System (INIS)

    Jaung, R.; Berlad, L.; Pratt, W.

    1983-01-01

    During Core-Meltdown Accidents in Light Water Reactors, significant quantities of combustible gases could be released to the containment building. The highest possible peak pressure fields that may occur through combustion processes are associated with detonation phenomena. Accordingly, it is necessary to understand and identify the possible ways in which detonations may or may not occur. Although no comprehensive theory of detonation is currently available, there are useful guidelines, which can be derived from current theoretical concepts and the body of experimental data. This paper examines these guidelines and indicates how they may be used to evaluate the possible occurrence of detonation-related combustion processes. In particular, this study identifies three features that an initiation source must achieve if it is to ultimately result in a stable detonation. One of these features requires post-shock initial conditions that lead to very short ignition delays. This concept is used to examine the possibility of achieving quasi-steady detonation phenomena in nuclear reactor containment buildings during postulated core-melt accidents

  13. SCDAP: a light water reactor computer code for severe core damage analysis

    International Nuclear Information System (INIS)

    Marino, G.P.; Allison, C.M.; Majumdar, D.

    1982-01-01

    Development of the first code version (MODO) of the Severe Core Damage Analysis Package (SCDAP) computer code is described, and calculations made with SCDAP/MODO are presented. The objective of this computer code development program is to develop a capability for analyzing severe disruption of a light water reactor core, including fuel and cladding liquefaction, flow, and freezing; fission product release; hydrogen generation; quenched-induced fragmentation; coolability of the resulting geometry; and ultimately vessel failure due to vessel-melt interaction. SCDAP will be used to identify the phenomena which control core behavior during a severe accident, to help quantify uncertainties in risk assessment analysis, and to support planning and evaluation of severe fuel damage experiments and data. SCDAP/MODO addresses the behavior of a single fuel bundle. Future versions will be developed with capabilities for core-wide and vessel-melt interaction analysis

  14. TMI-2 core damage: a summary of present knowledge

    International Nuclear Information System (INIS)

    Owen, D.E.; Mason, R.E.; Meininger, R.D.; Franz, W.A.

    1983-01-01

    Extensive fuel damage (oxidation and fragmentation) has occurred and the top approx. 1.5 m of the center portion of the TMI-2 core has relocated. The fuel fragmentation extends outward to slightly beyond one-half the core radius in the direction examined by the CCTV camera. While the radial extent of core fragmentation in other directions was not directly observed, control and spider drop data and in-core instrument data suggest that the core void is roughly symmetrical, although there are a few indications of severe fuel damage extending to the core periphery. The core material fragmented into a broad range of particle sizes, extending down to a few microns. APSR movement data, the observation of damaged fuel assemblies hanging unsupported from the bottom of the reactor upper plenum structure, and the observation of once-molten stainless steel immediately above the active core indicate high temperatures (up to at least 1720 K) extended to the very top of the core. The relative lack of damage to the underside of the plenum structure implies a sharp temperature demarcation at the core/plenum interface. Filter debris and leadscrew deposit analyses indicate extensive high temperature core materials interaction, melting of the Ag-In-Cd control material, and transport of particulate control material to the plenum and out of the vessel

  15. Core dynamics of HTR under ATWS and accident conditions

    International Nuclear Information System (INIS)

    Nabbi, R.

    1988-05-01

    The systematic classification of the ATWS has been undertaken by analogy to the considerations made for LWR. The initiating events of ATWS and protection actions of safety systems resulting from monitoring of the system variables have been described. The main emphasis of this work is the analysis of the core dynamic consequences of scram failure during the anticipated transients. The investigation has shown that because of the temperature feedback mechanisms a temperature rise during the ATWS results in a self-shutdown of the reactor. Further inherent safety features of the HTR - conditioned by the high heat capacity of the core and by the compressibility of the coolant - do effectively counteract an undesirable increase of temperature and pressure in the primary circuit. In case of the long-term failure of the forced cooling and following core heatup, neutron physical phenomena appear which determine the reactivity behaviour of the HTR. They are, for instance, the decay of Xenon 135, release of the fission products and subsiding of the top reflector. The results of the computer simulations show that a recriticality has to be excluded during the first 2 days if the reactor is shutdown by the reflector rods at the beginning of the accident. (orig./HP) [de

  16. Neutronic analysis of LMFBRs during severe core disruptive accidents

    International Nuclear Information System (INIS)

    Tomlinson, E.T.

    1979-01-01

    A number of numerical experiments were performed to assess the validity of diffusion theory and various perturbation methods for calculating the reactivity state of a severely disrupted liquid metal cooled fast breeder reactor (LMFBR). The disrupted configurations correspond, in general, to phases through which an LMFBR core could pass during a core disruptive accident (CDA). Two-reactor models were chosen for this study, the two zone, homogeneous Clinch River Breeder Reactor and the Large Heterogeneous Reactor Design Study Core. The various phases were chosen to approximate the CDA results predicted by the safety analysis code SAS3D. The calculational methods investigated in this study include the eigenvalue difference technique based on both discrete ordinate transport theory and diffusion theory, first-order perturbation theory, exact perturbation theory, and a new hybrid perturbation theory. Selected cases were analyzed using Monte Carlo methods. It was found that in all cases, diffusion theory and perturbation theory yielded results for the change in reactivity that significantly disagreed with both the discrete ordinate and Monte Carlo results. These differences were, in most cases, in a nonconservative direction

  17. Mechanical injuries, burns and combination damage caused by reactor accidents

    International Nuclear Information System (INIS)

    Koslowski, L.

    1981-01-01

    In cases of combination damage the initial treatment of wounds is the same as with injuries without accompanying radiation exposure. In the beginning the general principles of surgical treatment apply. In case of a mass accident, the examination of the injured to decide on the necessary kind of treatment has priority. A common problem to all the decisions is that the extent of a radiation exposure that may have been sustained cannot be established at once. Whether the radiation exposure has been so heavy as to require the modification of the surgical measures can be seen only from the blood count, the bone marrow biopsy, the reticulocyte count or from a chromosome analysis. (DG) [de

  18. Indemnification of Damage in the Event of a Nuclear Accident

    International Nuclear Information System (INIS)

    2006-01-01

    The Second International Workshop on the Indemnification of Nuclear Damage was held in Bratislava, Slovak Republic, from 18 to 20 May 2005. The workshop was co-organised by the OECD Nuclear Energy Agency and the Nuclear Regulatory Authority of the Slovak Republic. It attracted wide participation from national nuclear authorities, regulators, operators of nuclear installations, nuclear insurers and international organisations. The purpose of the workshop was to assess the third party liability and compensation mechanisms that would be implemented by participating countries in the event of a nuclear accident taking place within or near their borders. To accommodate this objective, two fictitious accident scenarios were developed: one involving a fire in a nuclear installation located in the Slovak Republic and resulting in the release of significant amounts of radioactive materials off-site, and the other a fire on board a ship transporting enriched uranium hexafluoride along the Danube River. The first scenario was designed to involve the greatest possible number of countries, with the second being restricted to countries with a geographical proximity to the Danube. These proceedings contain the papers presented at the workshop, as well as reports on the discussion sessions held. (author)

  19. Methodological aspects of core meltdown accidents frequency estimates

    International Nuclear Information System (INIS)

    Matthis, P.

    1984-01-01

    A survey is given of the work of the ecological institute relating to models and methods used in the German Risk Study for the assessment of core meltdown accident frequency. A statistical model used by the ecological institute for the estimation of the outage behaviour of components is taken as a comparison, which leads to the conclusion that no appropriate methods for the assessment of component reliability are available to date. Furthermore, there are no secured methods for error propagation computation. The lower limits for the ranges of reliability of components are calculated by approximation. As a result of imperfect modelling and of a number of methodical inaccuracies and neglects, the German Risk Study underestimates the ranges of component reliability by a factor of 3 to 70 (depending on the type of component). (RF) [de

  20. Comparison of advanced mid-sized reactors regarding passive features, core damage frequencies and core melt retention features

    International Nuclear Information System (INIS)

    Wider, H.

    2005-01-01

    New Light Water Reactors, whose regular safety systems are complemented by passive safety systems, are ready for the market. The special aspect of passive safety features is their actuation and functioning independent of the operator. They add significantly to reduce the core damage frequency (CDF) since the operator continues to play its independent role in actuating the regular safety devices based on modern instrumentation and control (I and C). The latter also has passive features regarding the prevention of accidents. Two reactors with significant passive features that are presently offered on the market are the AP1000 PWR and the SWR 1000 BWR. Their passive features are compared and also their core damage frequencies (CDF). The latter are also compared with those of a VVER-1000. A further discussion about the two passive plants concerns their mitigating features for severe accidents. Regarding core-melt retention both rely on in-vessel cooling of the melt. The new VVER-1000 reactor, on the other hand features a validated ex-vessel concept. (author)

  1. Analysis of core damage frequency from internal events: Surry, Unit 1

    International Nuclear Information System (INIS)

    Harper, F.T.

    1986-11-01

    This document contains the accident sequence analyses for Surry, Unit 1; one of the reference plants being examined as part of the NUREG-1150 effort by the Nuclear Regulatory Commission (NRC). NUREG-1150 will document the risk of a selected group of nuclear power plants. As part of that work, this report contains the overall core damage frequency estimate for Surry, Unit 1, and the accompanying plant damage state frequencies. Sensitivity and uncertainty analyses provide additional insights regarding the dominant contributors to the Surry core damage frequency estimate. The numerical results are driven to some degree by modeling assumptions and data selection for issues such as reactor coolant pump seal LOCAs, common cause failure probabilities, and plant response to station blackout and loss of electrical bust initiators. The sensitivity studies explore the impact of alternate theories and data on these issues

  2. Evaluation of downmotion time interval molten materials to core catcher during core disruptive accidents postulated in LMFR

    International Nuclear Information System (INIS)

    Voronov, S.A.; Kiryushin, A.I.; Kuzavkov, N.G.; Vlasichev, G.N.

    1994-01-01

    Hypothetical core disruptive accidents are postulated to clear potential of a reactor plant to withstand extreme conditions and to generate measures for management and mitigation of accidents consequence. In Russian advanced reactors there is a core catcher below the diagrid to prevent vessel bottom melting and to localize fuel debris. In this paper the calculation technique and estimation of relocation time of molten fuel and materials are presented in the case of core disruptive accidents postulated for LMFR reactor. To evaluate minimum interval of fuel relocation time the calculations for different initial data are provided. Large mass of materials between the core and the catcher in LMFR reactor hinders molten materials relocation toward the vessel bottom. That condition increases the time interval of reaching core catcher by molten fuel. Computations performed allowed to evaluate the minimum molten materials relocation time from the core to the core catcher. This time interval is in a range of 3.5-5.5 hours. (author)

  3. Implications for accident management of adding water to a degrading reactor core

    International Nuclear Information System (INIS)

    Kuan, P.; Hanson, D.J.; Pafford, D.J.; Quick, K.S.; Witt, R.J.

    1994-02-01

    This report evaluates both the positive and negative consequences of adding water to a degraded reactor core during a severe accident. The evaluation discusses the earliest possible stage at which an accident can be terminated and how plant personnel can best respond to undesired results. Specifically discussed are (a) the potential for plant personnel to add water for a range of severe accidents, (b) the time available for plant personnel to act, (c) possible plant responses to water added during the various stages of core degradation, (d) plant instrumentation available to understand the core condition and (e) the expected response of the instrumentation during the various stages of severe accidents

  4. Implications for accident management of adding water to a degrading reactor core

    Energy Technology Data Exchange (ETDEWEB)

    Kuan, P.; Hanson, D.J.; Pafford, D.J.; Quick, K.S.; Witt, R.J. [EG and G Idaho, Inc., Idaho Falls, ID (United States)

    1994-02-01

    This report evaluates both the positive and negative consequences of adding water to a degraded reactor core during a severe accident. The evaluation discusses the earliest possible stage at which an accident can be terminated and how plant personnel can best respond to undesired results. Specifically discussed are (a) the potential for plant personnel to add water for a range of severe accidents, (b) the time available for plant personnel to act, (c) possible plant responses to water added during the various stages of core degradation, (d) plant instrumentation available to understand the core condition and (e) the expected response of the instrumentation during the various stages of severe accidents.

  5. Sensitivity Analysis of Core Damage by Loss of Auxiliary Feed Water during the Extended Loss of All AC Power

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Woo Jae; Chung, Soon Il; Hwang, Su Hyun; Lee, Kyung Jin; Lee, Byung Chul [FNC Tech., Yongin (Korea, Republic of); Yun, Duk Joo; Lee, Seung Chan [Korea Hydro and Nuclear Power Co. Ltd., Daejeon (Korea, Republic of)

    2015-10-15

    In this study, the reactor core damage time for OPR1000 type Nuclear Power Plant (NPP) was analyzed to develop a strategy to handle ELAP and to apply to the EOP. The reactor core damage time in the ELAP condition was calculated according to the time of Auxiliary Feedwater (AFW) loss. Fukushima accident was caused by long hours of Station Black Out (SBO) caused by natural disaster beyond Design Based Accident (DBA) criteria. It led to the reactor core damage. After the accident, the regulatory authorities of each country (Japan, US, EU, IAEA, and etc.) recommended developing the necessary systems and strategies in order to cover up the Extended Loss of All AC Power (ELAP) such as one occurred in the Fukushima accident. And the need of procedure or guideline to cope with ELAP has been raised through the stress test for Wolsong Nuclear Power Plant unit 1. Current Emergency Operating Procedures (EOP) used in domestic nuclear power plant are seemed to be insufficient to cope with ELAP. Therefore, it has been required to be improved. As the result, the time of AFW loss in the ELAP condition influences greatly on core damage time.

  6. Role of fission product in whole core accidents: research in the USA

    International Nuclear Information System (INIS)

    Jackson, J.F.; Deitrich, L.W.

    1977-01-01

    The techniques being developed in the United States for analyzing postulated whole-core accidents in LMFBRs are briefly reviewed. The key mechanistic analysis methods are discussed in detail. Important research projects in the area of fission product effects are examined. Some typical results on the role of fission products in whole-core accidents are presented

  7. The influence of chemistry on core melt accidents

    International Nuclear Information System (INIS)

    Liljenzin, J.O.

    1990-01-01

    Chemical reactions play an important role in assessing the safety of nuclear power plants. The main source of heat in the early stage of an accident is due to a chemical reaction between steam and the circonium encapsulating the nuclear fuel. The heating and melting of fuel leads to a release of fission products which rapidly condense to form particles suspended in the surrounding gas. These aerosols are the main carriers of radioactivity as they may transport active material from the reactor vessel into the reactor containment building where it is deposited. The content of fission products in the aerosol particles and their chemical form determine their interaction with water molecules. Chemical forces laed to an absorption of water in the particles which transforms them into droplets with increased mass. The particles become spherical and hence deposit more rapidly on surrounding surfaces. There is a rapid reaction between boron carbide and stainless steel in the control blades of boiling water reactors. There is only a small formation of boric acid. This leads to a smaller formation of volatile iodine compounds. But the alloying process is likely to cause melting of the control blades so the are removed from the reactor core, a process which may have negative secondary effects. It has been found that a series of materials that are present in the reactor containment are likely to participate in various chemical reactions during an accident. Among these are electric cables, motors, thermal insulation, surface coatings and sheet metal. Metallic surface coatings and sheet metal can be some of the main sources of hydrogen. Effects from chemical reactions can be more accurately predicted by the new SHMAPP code, developed within this project, combining thermal, hydraulic and chemical phenomena. (AB)

  8. Evaluation of potential severe accidents during low power and shutdown operations at Grand Gulf, Unit 1. Analysis of core damage frequency from internal events for plant operational state 5 during a refueling outage. Internal events appendices K to M

    International Nuclear Information System (INIS)

    Forester, J.; Yakle, J.; Walsh, B.; Darby, J.; Whitehead, D.; Staple, B.; Brown, T.

    1994-07-01

    This report provides supporting documentation for various tasks associated with the performance of the probabilistic risk assessment for Plant Operational State 5 (approximately Cold Shutdown as defined by Grand Gulf Technical Specifications) during a refueling outage at Grand Gulf, Unit 1 as documented in Volume 2, Part 1 of NUREG/CR-6143. The report contains the following appendices: K - HEP Locator Files; L - Supporting Information for the Plant Damage State Analysis; M - Summary of Results from the Coarse Screening Analysis - Phase 1A

  9. Containment loadings due to hydrogen burning in LWR core meltdown accidents

    International Nuclear Information System (INIS)

    Cybulskis, P.

    1981-01-01

    The potential pressure loadings due to hydrogen burning under conditions representative of meltdown accident conditions are examined for a variety of PWR and BWR containment designs. For the PWR, the large dry, ice condenser, as well as subatmospheric containments are considered. For the BWR, MARK I, II, and III pressure suppression containments are evaluated. The key factors considered are: free volume, design pressure, extend to hydrogen generation, and the flammability of the atmosphere under a range of accident conditions. The potential for and the possible implications of hydrogen detonation are also considered. The results of these analyses show that the accumulation and rapid burning of the quantities of hydrogen that would be generated during core meltdown accidents will lead to pressures above design levels in all of the containments considered. As would be expected, containments characterized by small volumes and/or low design pressures are the most vulnerable to damage due to hydrogen burning. Large volume, high pressure designs may also be threatened but offer significantly more potential for accomodating hydrogen burns. The attainment of detonable hydrogen mixtures is made easier by smaller containment volumes. Detonable mixtures are also possible in the larger volume containments, but imply the accumulation of hydrogen for long periods of time without prior ignition. Hydrogen detonations, if they occur, would probably challenge the integrity of any of the containments considered. (orig.)

  10. Core disruptive accident analysis in prototype fast breeder reactor

    International Nuclear Information System (INIS)

    Chellapandi, P.; Velusamy, K.; Kannan, S.E.; Singh, Om Pal; Chetal, S.C.; Bhoje, S.B.

    2002-01-01

    Liquid metal cooled fast breeder reactors, in particular, pool type have many inherent and engineered safety features and hence a core disruptive accident (CDA) involving melt down of the whole core is a very low probable event ( -6 /ry). The important mechanical consequences such as straining of the main vessel including top shield, structural integrity of safety grade decay heat exchangers (DHX) and intermediate heat exchangers (IHX) sodium release to reactor containment building (RCB) through the penetrations in the top shield, sodium fire and consequent temperature and pressure rise in RCB are theoretically analysed using computer codes. Through the analyses with these codes, it is demonstrated that an energetic CDA capability to the maximum 100 MJ mechanical energy in PFBR can be well contained in the primary containment. The sodium release to RCB is 350 kg and pressure rise in RCB is ∼10 kPa. In order to raise the confidence on the theoretical predictions, very systematic experimental program has been carried out. Totally 67 tests were conducted. This experimental study indicated that the primary containment is integral. The main vessel can withstand the energy release of ∼1200 MJ. The structural integrity of IHX and DHX is assured up to 200 MJ. The transient force transmitted to reactor vault is negligible. The average water leak measured under simulated tests for 122 MJ work potential is about 1.8 kg and the maximum leak is 2.41 kg. Extrapolation of the measured maximum leak based on simulation principles yields ∼ 233 kg of sodium leak in the reactor. Based on the above-mentioned theoretical and experimental investigations, the design pressure of 20 kPa is used for PFBR

  11. Analysis of core damage frequency: Peach Bottom, Unit 2 internal events appendices

    International Nuclear Information System (INIS)

    Kolaczkowski, A.M.; Cramond, W.R.; Sype, T.T.; Maloney, K.J.; Wheeler, T.A.; Daniel, S.L.

    1989-08-01

    This document contains the appendices for the accident sequence analysis of internally initiated events for the Peach Bottom, Unit 2 Nuclear Power Plant. This is one of the five plant analyses conducted as part of the NUREG-1150 effort for the Nuclear Regulatory Commission. The work performed and described here is an extensive reanalysis of that published in October 1986 as NUREG/CR-4550, Volume 4. It addresses comments from numerous reviewers and significant changes to the plant systems and procedures made since the first report. The uncertainty analysis and presentation of results are also much improved, and considerable effort was expended on an improved analysis of loss of offsite power. The content and detail of this report is directed toward PRA practitioners who need to know how the work was done and the details for use in further studies. The mean core damage frequency is 4.5E-6 with 5% and 95% uncertainty bounds of 3.5E-7 and 1.3E-5, respectively. Station blackout type accidents (loss of all ac power) contributed about 46% of the core damage frequency with Anticipated Transient Without Scram (ATWS) accidents contributing another 42%. The numerical results are driven by loss of offsite power, transients with the power conversion system initially available operator errors, and mechanical failure to scram. 13 refs., 345 figs., 171 tabs

  12. Core damage frequency observations and insights of LWRs based on the IPEs

    Energy Technology Data Exchange (ETDEWEB)

    Dingman, S.E.; Camp, A.L. [Sandia National Labs., Albuquerque, NM (United States); Drouin, M.T. [and others

    1995-04-01

    Seventy-eight plants are expected to submit Individual Plant Examinations (IPEs) for severe accident vulnerabilities to the US Nuclear Regulatory Commission (NRC). The majority of the plants have elected to perform full Level 1 probabilistic risk assessments (PRAs) to meet the intent of the IPEs. Because of this, it is possible to compare the results from the IPE submittals to determine general observations and {open_quotes}lessons learned{close_quotes} from the IPEs. The IPE Insights Program is performing this evaluation, and preliminary results are presented in this paper. The core damage frequency and core damage sequences are identified and compared for pressurized water reactors and boiling water reactors. Examination of the results indicates that variations among plant results are due to a combination of actual plant design/operational features and analysis approaches. The findings are consistent with previous NRC studies, such as WASH-1400 and NUREG-1150.

  13. Core damage frequency observations and insights of LWRs based on the IPEs

    International Nuclear Information System (INIS)

    Dingman, S.E.; Camp, A.L.; Drouin, M.T.; Kolaczkowski, A.; Darby, J.; LaChance, J.L.; Yakle, J.

    1995-01-01

    Seventy-eight plants are expected to submit Individual Plant Examinations (IPEs) for severe accident vulnerabilities to the U.S. Nuclear Regulatory Commission (NRC). The majority of the plants have elected to perform full Level 1 probabilistic risk assessments (PRAs) to meet the intent of the IPES. Because of this, it is possible to compare the results from the IPE submittals to determine general observations and open-quotes lessons learnedclose quotes from the IPES. The IPE Insights Program is performing this evaluation, and preliminary results are presented in this paper. The core damage frequency and core damage sequences are identified and compared for pressurized water reactors and boiling water reactors. Examination of the results indicates that variations among plant results are due to a combination of actual plant design/operational features and analysis approaches. The findings are consistent with previous NRC studies, such as WASH-1400 and NUREG-1 150

  14. A backward method to estimate the Dai-ichi reactor core damage using radiation exposure in the environment

    International Nuclear Information System (INIS)

    PM Udiyani; S Kuntjoro; S Widodo

    2016-01-01

    The Fukushima accident resulted in the melting of the reactor core due to loss of supply of coolant when the reactor stopped from operating conditions. The earthquake and tsunami caused loss of electricity due to the flooding that occurred in the reactor. The absence of the coolant supply after reactor shutdown resulted in heat accumulation, causing the temperature of the fuel to rise beyond its melting point. In the early stages of the accident, operator could not determine the severity of the accident and the percentage of the reactor core damaged. The available data was based on the radiation exposure in the environment that was reported by the authorities. The aim of this paper is to determine the severity of the conditions in the reactor core based on the radiation doses measured in the environment. The method is performed by backward counting based on the measuring radiation exposure and radionuclides releases source term. The calculation was performed by using the PC-COSYMA code. The results showed that the core damage fraction at Dai-ichi Unit 1 was 70%, and the resulting individual effective dose in the exclusion area is 401 mSv, while the core damage fraction at Unit 2 was 30%, and the resulting individual effective dose was 9.1 mSv, while for Unit 3, the core damage fraction was 25% for an individual effective dose of 92.2 mSv. The differences between the results of the calculation for estimation of core damage proposed in this paper with the previously reported results is probably caused by the applied model for assessment, differences in postulations and assumptions, and the incompleteness of the input data. This difference could be reduced by performing calculations and simulations for more varied assumptions and postulations. (author)

  15. Severe accident phenomena

    International Nuclear Information System (INIS)

    Jokiniemi, J.; Kilpi, K.; Lindholm, I.; Maekynen, J.; Pekkarinen, E.; Sairanen, R.; Silde, A.

    1995-02-01

    Severe accidents are nuclear reactor accidents in which the reactor core is substantially damaged. The report describes severe reactor accident phenomena and their significance for the safety of nuclear power plants. A comprehensive set of phenomena ranging from accident initiation to containment behaviour and containment integrity questions are covered. The report is based on expertise gained in the severe accident assessment projects conducted at the Technical Research Centre of Finland (VTT). (49 refs., 32 figs., 12 tabs.)

  16. analysis of reactivity accidents in MTR for various protection system parameters and core condition

    International Nuclear Information System (INIS)

    Mohamed, F.M.

    2011-01-01

    Egypt Second Research Reactor (ETRR-2) core was modified to irradiate LEU (Low Enriched Uranium) plates in two irradiation boxes for fission 99 Mo production. The old core comprising 29 fuel elements and one Co Irradiation Device (CID) and the new core comprising 27 fuel elements, CID, and two 99 Mo production boxes. The in core irradiation has the advantage of no special cooling or irradiation loop is required. The purpose of the present work is the analysis of reactivity accidents (RIA) for ETRR-2 cores. The analysis was done to evaluate the accidents from different point of view:1- Analysis of the new core for various Reactor Protection System (RPS) parameters 2- Comparison between the two cores. 3- Analysis of the 99 Mo production boxes.PARET computer code was employed to compute various parameters. Initiating events in RIA involve various modes of reactivity insertion, namely, prompt critical condition (p=1$), accidental ejection of partial and complete CID uncontrolled withdrawal of a control rod accident, and sudden cooling of the reactor core. The time histories of reactor power, energy released, and the maximum fuel, clad and coolant temperatures of fuel elements and LEU plates were calculated for each of these accidents. The results show that the maximum clad temperatures remain well below the clad melting of both fuel and uranium plates during these accidents. It is concluded that for the new core, the RIA with scram will not result in fuel or uranium plate failure.

  17. Accident Damage Analysis Module (ADAM) – Technical Guidance, Software tool for Consequence Analysis calculations

    OpenAIRE

    FABBRI LUCIANO; BINDA MASSIMO; BRUINEN DE BRUIN YURI

    2017-01-01

    This report provides a technical description of the modelling and assumptions of the Accident Damage Analysis Module (ADAM) software application, which has been recently developed by the Joint Research Centre (JRC) of the European Commission (EC) to assess physical effects of an industrial accident resulting from an unintended release of a dangerous substance

  18. Review of the Oconee-3 probabilistic risk assessment: external events, core damage frequency. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Hanan, N.A.; Ilberg, D.; Xue, D.; Youngblood, R.; Reed, J.W.; McCann, M.; Talwani, T.; Wreathall, J.; Kurth, P.D.; Bandyopadhyay, K.

    1986-03-01

    A review of the Oconee-3 Probabilistic Risk Assessment (OPRA) was conducted with the broad objective of evaluating qualitatively and quantitatively (as much as possible) the OPRA assessment of the important sequences that are ''externally'' generated and lead to core damage. The review included a technical assessment of the assumptions and methods used in the OPRA within its stated objective and with the limited information available. Within this scope, BNL performed a detailed reevaluation of the accident sequences generated by internal floods and earthquakes and a less detailed review (in some cases a scoping review) for the accident sequences generated by fires, tornadoes, external floods, and aircraft impact. 12 refs., 24 figs., 31 tabs.

  19. Review of the Oconee-3 probabilistic risk assessment: external events, core damage frequency. Volume 2

    International Nuclear Information System (INIS)

    Hanan, N.A.; Ilberg, D.; Xue, D.

    1986-03-01

    A review of the Oconee-3 Probabilistic Risk Assessment (OPRA) was conducted with the broad objective of evaluating qualitatively and quantitatively (as much as possible) the OPRA assessment of the important sequences that are ''externally'' generated and lead to core damage. The review included a technical assessment of the assumptions and methods used in the OPRA within its stated objective and with the limited information available. Within this scope, BNL performed a detailed reevaluation of the accident sequences generated by internal floods and earthquakes and a less detailed review (in some cases a scoping review) for the accident sequences generated by fires, tornadoes, external floods, and aircraft impact. 12 refs., 24 figs., 31 tabs

  20. Iodine behaviour in PWR accidents leading to severe core damage

    International Nuclear Information System (INIS)

    Lucas, M.; Devillers, C.; Fermandjian, J.; Manesse, D.

    1982-09-01

    This paper deals with the iodine partition coefficient between the water at the bottom of the reactor building and the atmosphere above it. Molecular iodine is considered as a potential contributor to the airborne activity inside the reactor building. The concentration of molecular iodine in the containment atmosphere will depend, on one hand, upon mechanisms which generate that species and, on the other hand, upon the kinetics of chemical reactions which consume that species. Experiments have therefore been performed on the two following items: - molecular iodine formation through ν radiation from cesium iodide aerosols (droplets) in the reactor containment building, for doses ranging between 1.2 and 8 MRad (12 and 80 kSv), with solutions of various pH's and at different temperatures, - rate of hypoiodous acid disproportionation into iodate and iodide influencing further behavior of molecular iodine

  1. Station blackout core damage frequency in an advanced nuclear reactor

    International Nuclear Information System (INIS)

    Carvalho, Luiz Sergio de

    2004-01-01

    Even though nuclear reactors are provided with protection systems so that they can be automatically shut down in the event of a station blackout, the consequences of this event can be severe. This is because many safety systems that are needed for removing residual heat from the core and for maintaining containment integrity, in the majority of the nuclear power plants, are AC dependent. In order to minimize core damage frequency, advanced reactor concepts are being developed with safety systems that use natural forces. This work shows an improvement in the safety of a small nuclear power reactor provided by a passive core residual heat removal system. Station blackout core melt frequencies, with and without this system, are both calculated. The results are also compared with available data in the literature. (author)

  2. Core damage frequency prespectives for BWR 3/4 and Westinghouse 4-loop plants based on IPE results

    International Nuclear Information System (INIS)

    Dingman, S.; Camp, S.; LaChance, J.; Mary Drouin

    1995-01-01

    This paper discusses the core damage frequency (CDF) insights gained by analyzing the results of the Individual Plant Examinations (IPES) for two groups of plants: boiling water reactor (BWR) 3/4 plants with Reactor Core Isolation Cooling systems, and Westinghouse 4-loop plants. Wide variability was observed for the plant CDFs and for the CDFs of the contributing accident classes. On average, transients-with loss of injection, station blackout sequences, and transients with loss of decay heat removal are important contributors for the BWR 3/4 plants, while transients, station blackout sequences, and loss-of-coolant accidents are important for the Westinghouse 4-loop plants. The key factors that contribute to the variability in the results are discussed. The results are often driven by plant-specific design and operational characteristics, but differences in modeling approaches are also important for some accident classes

  3. Visualization of Heat Transfer and Core Damage With RGUI 1.5

    International Nuclear Information System (INIS)

    Mesina, George L.

    2002-01-01

    Graphical User Interfaces (GUI) have become an integral and essential part of computer software. In the ever-changing world of computing, they provide the user with a valuable means to learn, understand, and use the application software while also helping applications adapt to and span different computing paradigms, such as different operating systems. For these reasons, GUI development for nuclear plant analysis programs has been ongoing for a decade and a half and much progress has been made. With the development of codes such as RELAP5-3D [1] and SCDAP/RELAP5 that have multi-dimensional modeling capability, it has become necessary to represent three-dimensional, calculated data. The RELAP5-3D Graphical User Interface (RGUI) [4] was designed specifically for this purpose. It reduces the difficulty of analyzing complex three-dimensional models and enhances the analysts' ability to recognize plant behavior visually. Previous versions of RGUI [5] focused on visualizing reactor coolant behavior during a simulated transient or accident. Recent work has extended RGUI to display two other phenomena, heat transfer and core damage. Heat transfer is depicted through the visualization of RELAP5-3D heat structures. Core damage is visualized by displaying fuel rods and other core structures in a reactor vessel screen. Conditions within the core are displayed via numerical results and color maps. These new features of RGUI 1.5 are described and illustrated. (authors)

  4. Thermal hydraulic features of the TMI accident

    International Nuclear Information System (INIS)

    Tolman, B.

    1985-01-01

    The TMI-2 accident resulted in extensive core damage and recent data confirms that the reactor vessel was challenged from molten core materials. A hypothesized TMI accident sencario is presented that consistently explains the TMI data and is also consistent with research findings from independent severe fuel damage experiements. The TMI data will prove useful in confirming our understanding of severe core damage accidents under realistic reactor systems conditions. This understanding will aid in addressing safety and regulatory issues related to severe core damage accidents in light water reactors

  5. Quantification of LOCA core damage frequency based on thermal-hydraulics analysis

    International Nuclear Information System (INIS)

    Cho, Jaehyun; Park, Jin Hee; Kim, Dong-San; Lim, Ho-Gon

    2017-01-01

    Highlights: • We quantified the LOCA core damage frequency based on the best-estimated success criteria analysis. • The thermal-hydraulic analysis using MARS code has been applied to Korea Standard Nuclear Power Plants. • Five new event trees with new break size boundaries and new success criteria were developed. • The core damage frequency is 5.80E−07 (/y), which is 12% less than the conventional PSA event trees. - Abstract: A loss-of-coolant accident (LOCA) has always been significantly considered one of the most important initiating events. However, most probabilistic safety assessment models, up to now, have undoubtedly adopted the three groups of LOCA, and even an exact break size boundary that used in WASH-1400 reports was published in 1975. With an awareness of the importance of a realistic PSA for a risk-informed application, several studies have tried to find the realistic thermal-hydraulic behavior of a LOCA, and improve the PSA model. The purpose of this research is to obtain realistic results of the LOCA core damage frequency based on a success criteria analysis using the best-estimate thermal-hydraulics code. To do so, the Korea Standard Nuclear Power Plant (KSNP) was selected for this study. The MARS code was used for a thermal hydraulics analysis and the AIMS code was used for the core damage quantification. One of the major findings in the thermal hydraulics analysis was that the decay power is well removed by only a normal secondary cooling in LOCAs of below 1.4 in and by only a high pressure safety injection in LOCAs of 0.8–9.4 in. Based on the thermal hydraulics results regarding new break size boundaries and new success criteria, five new event trees (ETs) were developed. The core damage frequency of new LOCA ETs is 5.80E−07 (/y), which is 12% less than the conventional PSA ETs. In this research, we obtained not only thermal-hydraulics characteristics for the entire break size of a LOCA in view of the deterministic safety

  6. Quantification of LOCA core damage frequency based on thermal-hydraulics analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jaehyun, E-mail: chojh@kaeri.re.kr; Park, Jin Hee; Kim, Dong-San; Lim, Ho-Gon

    2017-04-15

    Highlights: • We quantified the LOCA core damage frequency based on the best-estimated success criteria analysis. • The thermal-hydraulic analysis using MARS code has been applied to Korea Standard Nuclear Power Plants. • Five new event trees with new break size boundaries and new success criteria were developed. • The core damage frequency is 5.80E−07 (/y), which is 12% less than the conventional PSA event trees. - Abstract: A loss-of-coolant accident (LOCA) has always been significantly considered one of the most important initiating events. However, most probabilistic safety assessment models, up to now, have undoubtedly adopted the three groups of LOCA, and even an exact break size boundary that used in WASH-1400 reports was published in 1975. With an awareness of the importance of a realistic PSA for a risk-informed application, several studies have tried to find the realistic thermal-hydraulic behavior of a LOCA, and improve the PSA model. The purpose of this research is to obtain realistic results of the LOCA core damage frequency based on a success criteria analysis using the best-estimate thermal-hydraulics code. To do so, the Korea Standard Nuclear Power Plant (KSNP) was selected for this study. The MARS code was used for a thermal hydraulics analysis and the AIMS code was used for the core damage quantification. One of the major findings in the thermal hydraulics analysis was that the decay power is well removed by only a normal secondary cooling in LOCAs of below 1.4 in and by only a high pressure safety injection in LOCAs of 0.8–9.4 in. Based on the thermal hydraulics results regarding new break size boundaries and new success criteria, five new event trees (ETs) were developed. The core damage frequency of new LOCA ETs is 5.80E−07 (/y), which is 12% less than the conventional PSA ETs. In this research, we obtained not only thermal-hydraulics characteristics for the entire break size of a LOCA in view of the deterministic safety

  7. Comparative study of heterogeneous and homogeneous LMFBR cores in some accident conditions

    International Nuclear Information System (INIS)

    Renard, A.; Evrard, G.

    1978-01-01

    An heterogeneous design and a homogeneous one of a LMFBR core with the same power and similar dimensions are compared from the safety point-of-view. The comparison is performed for several accident conditions, such as Loss-of-Flow and Transient Overpower, with the same failure criteria and model assumptions for both cores. Qualitative trends are deduced from the behaviour of the core designs in the investigated transient conditions. (author)

  8. Modelling of RPV lower head under core melt severe accident condition using OpenFOAM

    International Nuclear Information System (INIS)

    Madokoro, Hiroshi; Kretzschmar, Frank; Miassoedov, Alexei

    2017-01-01

    Although six years have been passed since the tragic severe accident at Fukushima Daiichi, still large uncertainties exist in modeling of core degradation and reactor pressure vessel (RPV) failure. It is extremely important to obtain a better understanding of complex phenomena in the lower head in order to improve accident management measures. The possible failure mode of reactor pressure vessel and its failure time are especially a matter of importance. Thermal behavior of the molten pool can be simulated by the Phase-change Effective Convectivity Model (PECM), which is a distributed-parameter model developed in the Royal Institute of Technology (KTH), Sweden. The model calculates convective currents not using a pure CFD approach but based on so called “characteristic velocities” that are determined by empirical correlations depending on the geometry and physical properties of the molten pool. At the Karlsruhe Institute of Technology (KIT), the PECM has been implemented in the open-source CFD software OpenFOAM in order to receive detailed predictions of a core melt behavior in the RPV lower head under severe accident conditions. An advantage of using OpenFOAM is that it is very flexible to add and modify models and physical properties. In the current work, the solver is extended to couple PECM with a structure analysis model of the vessel wall. The model considers thermal expansion, plasticity, creep and damage. The model and physical properties are based on those implemented in ANSYS. Although the previous implementation had restriction that the amount of and geometry of the melt cannot be changed, our coupled model allows flexibility of the melt amount and geometry. The extended solver was used to simulate the LIVE-L1 and -L7V experiments and has demonstrated good prediction of the temperature distribution in the molten pool and heat flux distribution through the vessel wall. Regarding the vessel failure the model was applied to one of the FOREVER tests

  9. Evaluation of long-term post-accident core cooling of Three Mile Island Unit 2

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-04-15

    On the basis of current understanding of the accident scenario and available data, the staff reports here on its evaluation of the condition of the core and the core flow resistance as it might affect ability to cool the core by natural circulation. The natural circulation cooling capability of TMI-2 for the estimated core flow resistance and a variety of other conditions is evaluated and a comparison of the Base Case and off-nominal plant configurations is presented. The potential for and effects of natural convection core cooling are addressed, and the staff recommendations for reactor performance acceptance criteria upon initiation of natural convection are presented.

  10. Behaviour of LWR core materials under accident conditions. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    1996-12-01

    At the invitation of the Government of the Russian Federation, following a proposal of the International Working Group on Water Reactor Fuel Performance and Technology, the IAEA convened a Technical Committee Meeting on Behaviour of LWR Core Materials Under Accident Conditions from 9 to 13 October 1995 in Dimitrovgrad to analyze and evaluate the behaviour of LWR core materials under accident conditions with special emphasis on severe accidents. In-vessel severe accidents phenomena were considered in detail, but specialized thermal hydraulic aspects as well as ex-vessel phenomena were outside the scope of the meeting. Forty participants representing eight countries attended the meeting. Twenty-three papers were presented and discussed during five sessions. Refs, figs, tabs

  11. Accidents and transients analyses of a super fast reactor with single flow pass core

    International Nuclear Information System (INIS)

    Sutanto,; Oka, Yoshiaki

    2014-01-01

    Highlights: • Safety analysis of a Super FR with single flow pass core is conducted. • Loss of feed water flow leads to a direct effect on the loss of fuel channel flow. • The core pressure is sensitive to LOCA accidents due to the direct effect. • Small LOCA introduces a critical break. • The safety criteria for all selected events are satisfied. - Abstract: The supercritical water cooled fast reactor with single flow pass core has been designed to simplify refueling and the structures of upper and lower mixing plenums. To evaluate the safety performance, safety analysis has been conducted with regard to LOCA and non-LOCA accidents including transient events. Safety analysis results show that the safety criteria are satisfied for all selected events. The total loss of feed water flow is the most important accident which the maximum cladding surface temperature (MCST) is high due to a direct effect of the accident on the total loss of flow in all fuel assemblies. However, actuation of the ADS can mitigate the accident. Small LOCA also introduces a critical break at 7.8% break which results high MCST at BOC because the scram and ADS are not actuated. Early ADS actuation is effective to mitigate the accident. In large LOCA, 100% break LOCA results a high MCST of flooding phase at BOC due to high power peaking at the bottom part. Use of high injection flow rate by 2 LPCI units is effective to decrease the MCST

  12. Economic damage caused by a nuclear reactor accident

    International Nuclear Information System (INIS)

    Baan, P.J.A.

    1988-01-01

    The impacts of a nuclear reactor accident have been estimated for: the public water supply; the use of surface water for sprinkling in agriculture, for industry water supply, recreation, etc.; and fisheries. Contamination of water sources may affect the public water supply severely. In such a situation demand of water cannot always be met. Agriculture faces production losses, if demand for uncontaminated surface water cannot be met. The impacts on recreation can also be significant. The losses to other water users are less substantial. Fisheries may lose (export) markets, as people become reluctant to buy fish and fish products. 33 refs.; 3 figs.; 35 tabs

  13. Core damage frequency (reactor design) perspectives based on IPE results

    International Nuclear Information System (INIS)

    Camp, A.L.; Dingman, S.E.; Forester, J.A.

    1996-01-01

    This paper provides perspectives gained from reviewing 75 Individual Plant Examination (IPE) submittals covering 108 nuclear power plant units. Variability both within and among reactor types is examined to provide perspectives regarding plant-specific design and operational features, and C, modeling assumptions that play a significant role in the estimates of core damage frequencies in the IPEs. Human actions found to be important in boiling water reactors (BWRs) and in pressurized water reactors (PWRs) are presented and the events most frequently found important are discussed

  14. Development of a DNBR evaluation method for the CEA ejection accident in SMART core

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Dae Hyun; Yoo, Y. J.; In, W. K.; Chang, M. H. [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-12-01

    A methodology applicable to the analysis of the CEA ejection accident in SMART is developed for the evaluation of the fraction of fuel failure caused by DNB. The transient behavior of the core thermal-hydraulic conditions is calculated by the subchannel analysis code MATRA. The minimum DNBR during the accident is calculated by KRB-1 CHF correlation considering the 1/8 symmetry of hot assembly. The variation of hot assembly power during the accident is simulated by the LTC(Limiting transient Curve) which is determined from the analysis of power distribution data resulting from the three-dimensional core dynamics calculations. The initial condition of the accident is determined by considering LOC(Limiting Conditions for Operation) of SMART core. Two different methodologies for the evaluation of DNB failure rate are established; a deterministic method based on the DNB envelope, and a probabilistic method based on the DNB probability of each fuel rod. The methodology developed in this study is applied to the analysis of CEA ejection accident in the preliminary design core of SMART. As the result, the fractions of DNB fuel failure by the deterministic method and the probabilistic method are calculated as 38.7% and 7.8%, respectively. 16 refs., 16 figs., 5 tabs. (Author)

  15. Clinical peculiarities of the brain damage in the liquidators of the Chernobyl accident

    Energy Technology Data Exchange (ETDEWEB)

    Zozulya, Y A; Vinnitsky, A R; Stepanenko, I V [Institute of Neurosurgery, Academy of Medical Sciences, Kiev (Ukraine)

    1997-09-01

    Investigation into the features of the brain damage by the liquidators of the Chernobyl accident has become an urgent issue of today due to a number of circumstances. According to the classical concept dominating radiobiology until recently, the brain being composed of highly - differentiated nerve cells, present a radioresistant structure responsive to radiation injury induced by high and very high radiation doses (10000 rem and higher) only. The results of clinical examinations given to the Chernobyl accident recovery workers at Kiev Institute of Neurosurgery, Academy of Medical Sciences of Ukraine, show that even the so - called ``small - dose`` radiation, when consumed continuously, produces neurological sings of brain damage. 6 figs.

  16. Clinical peculiarities of the brain damage in the liquidators of the Chernobyl accident

    International Nuclear Information System (INIS)

    Zozulya, Y.A.; Vinnitsky, A.R.; Stepanenko, I.V.

    1997-01-01

    Investigation into the features of the brain damage by the liquidators of the Chernobyl accident has become an urgent issue of today due to a number of circumstances. According to the classical concept dominating radiobiology until recently, the brain being composed of highly - differentiated nerve cells, present a radioresistant structure responsive to radiation injury induced by high and very high radiation doses (10000 rem and higher) only. The results of clinical examinations given to the Chernobyl accident recovery workers at Kiev Institute of Neurosurgery, Academy of Medical Sciences of Ukraine, show that even the so - called ''small - dose'' radiation, when consumed continuously, produces neurological sings of brain damage. 6 figs

  17. Code package {open_quotes}SVECHA{close_quotes}: Modeling of core degradation phenomena at severe accidents

    Energy Technology Data Exchange (ETDEWEB)

    Veshchunov, M.S.; Kisselev, A.E.; Palagin, A.V. [Nuclear Safety Institute, Moscow (Russian Federation)] [and others

    1995-09-01

    The code package SVECHA for the modeling of in-vessel core degradation (CD) phenomena in severe accidents is being developed in the Nuclear Safety Institute, Russian Academy of Science (NSI RAS). The code package presents a detailed mechanistic description of the phenomenology of severe accidents in a reactor core. The modules of the package were developed and validated on separate effect test data. These modules were then successfully implemented in the ICARE2 code and validated against a wide range of integral tests. Validation results have shown good agreement with separate effect tests data and with the integral tests CORA-W1/W2, CORA-13, PHEBUS-B9+.

  18. Examination of offsite radiological emergency measures for nuclear reactor accidents involving core melt

    International Nuclear Information System (INIS)

    Aldrich, D.C.; McGrath, P.E.; Rasmussen, N.C.

    1978-06-01

    Evacuation, sheltering followed by population relocation, and iodine prophylaxis are evaluated as offsite public protective measures in response to nuclear reactor accidents involving core-melt. Evaluations were conducted using a modified version of the Reactor Safety Study consequence model. Models representing each measure were developed and are discussed. Potential PWR core-melt radioactive material releases are separated into two categories, ''Melt-through'' and ''Atmospheric,'' based upon the mode of containment failure. Protective measures are examined and compared for each category in terms of projected doses to the whole body and thyroid. Measures for ''Atmospheric'' accidents are also examined in terms of their influence on the occurrence of public health effects

  19. Review of the SCDAP/RELAP5/MOD3.1 code structure and core T/H model before core damage

    International Nuclear Information System (INIS)

    Kim, See Darl; Kim, Dong Ha

    1998-04-01

    The SCDAP/RELAP5 code has been developed for best estimate transient simulation of light water reactor coolant systems during a severe accident. The code is being developed at the INEL under the primary sponsorship of the Office of Nuclear Regulatory Research of the U.S. NRC. As The current time, the SCDAP/RELAP5/MOD3.1 code is the result of merging the RELAP5/MOD3 and SCDAP models. The code models the coupled behavior of the reactor coolant system, core, fission product released during a severe accident transient as well as large and small break loss of coolant accidents, operational transients such as anticipated transient without SCRAM, loss of offsite power, loss of feedwater, and loss of flow. Major purpose of the report is to provide information about the characteristics of SCDAP/RELAP5/MOD3.1 core T/H models for an integrated severe accident computer code being developed under the mid/long-term project. This report analyzes the overall code structure which consists of the input processor, transient controller, and plot file handler. The basic governing equations to simulate the thermohydraulics of the primary system are also described. As the focus is currently concentrated in the core, core nodalization parameters of the intact geometry and the phenomenological subroutines for the damaged core are summarized for the future usage. In addition, the numerical approach for the heat conduction model is investigated along with heat convection model. These studies could provide a foundation for input preparation and model improvement. (author). 6 refs., 3 tabs., 4 figs

  20. Transport of nuclides during a core meltdown accident, with consideration of filtered venting

    International Nuclear Information System (INIS)

    Haeggblom, H.

    1981-01-01

    A BWR core meltdown accident has been studied with respect to the transport of radioactive and nonactive gases and aerosols. A system consisting of a containment with an outer stone condenser in three parts was considered. Calculations of the aerosol behaviour have been made with the computer programme NAUA and HAARM-3, assuming one single compartment. Results from these calculations have been used for multicompartment calculations with CORRAL II. The code was modified so that particles of different sizes could be considered in the different compartments, and the time dependence of the particles can be arbitrary. In addition to the aerosol transport and deposition, the corresponding quantities for elemental iodine were calculated. It was concluded, that if the total volume of the condenser system is of the order of 10 5 m 3 , practically all elemental iodine and particles can be retained in the system. The only leakage to the environment will be caused by inefficient sealing during the first five hours. The pressure can never damage the condenser. (author)

  1. Teaching to the Common Core by Design, Not Accident

    Science.gov (United States)

    Phillips, Vicki; Wong, Carina

    2012-01-01

    The Bill & Melinda Gates Foundation has created tools and supports intended to help teachers adapt to the Common Core State Standards in English language arts and mathematics. The tools seek to find the right balance between encouraging teachers' creativity and giving them enough guidance to ensure quality. They are the product of two years of…

  2. Risks and benefits of the interventions aimed at minimizing nuclear damage in the Chernobyl accident

    International Nuclear Information System (INIS)

    Rossiello, L.A.; Failla, L.

    1997-01-01

    The damages that the absorption of ionizing radiation (i.r.) can cause to humans may be classified as 1) nonstochastic (somatic or deterministic) or 2) stochastic (probabilistic) , which result, for example, from high doses of i.r. absorbed after a serious nuclear accident. Though the Chernobyl case involved both kinds of damage, this paper deals only with stochastic damage risk, and confine our considerations to individuals who were directly Affected and received high i.r. doses. The purpose of this paper is to provide elements on which to base future decisions on the evacuation and return of populations affected by serious nuclear accidents. Unlike the abundant literature on the subject, and as a necessary complement thereto within the bounds of a strict synthesis, to identify the most significant parameters applicable to single individuals rather than to the population at large, and referring solely to risks of stochastic damage

  3. Analysis of core and core barrel heat-up under conditions simulating severe reactor accidents

    International Nuclear Information System (INIS)

    Chellaiah, S.; Viskanta, R.; Ranganathan, P.; Anand, N.K.

    1987-01-01

    This paper reports on the development of a model for estimating the temperature distributions in the reactor core, core barrel, thermal shield and reactor pressure vessel of a PWR during an undercooling transient. A number of numerical calculations simulating the core uncovering of the TMI-2 reactor and the subsequent heat-up of the core have been performed. The results of the calculations show that the exothermic heat release due to Zircaloy oxidation contributes to the sharp heat-up of the core. However, the core barrel temperature rise which is driven by the temperature increase of the edge of the core (e.g., the core baffle) is very modest. The maximum temperature of the core barrel never exceeded 610 K (at a system pressure of 68 bar) after a 75 minute simulation following the start of core uncovering

  4. Analysis of space-time core dynamics on reactor accident at Chernobyl

    International Nuclear Information System (INIS)

    Takano, Makoto; Shindo, Ryuichi; Yamashita, Kiyonobu; Sawa, Kazuhiro

    1987-05-01

    Regarding reactor accident at Chernobyl in USSR, core dynamics has been analyzed by COMIC code which solves space-time dependent diffusion equation in three-dimension taking spatial thermohydraulic effect into account. The code was originally developed for high temperature gas-cooled reactors (HTGR), however, has been modified to include light water as coolant, instead of helium, for analysis of the accident. In the analysis, emphasis is placed on spatial effects on core dynamics. The analyses are performed for the cases of modeling the core fully and partially where 6 fuel channels surround one control rod channel. The result shows that the speed of applying void reactivity averaged over the core depends on the power and coolant flow distributions. Therefore, these distributions have potential to influence on the value and the time of peak power estimated by calculation. (author)

  5. Economic estimation of risk and compensation of damage from accidents in power engineering objects

    International Nuclear Information System (INIS)

    Lesnykh, V.V.

    1996-01-01

    Place and basic peculiarities of the task relative to compensation of damage due to accidents in the problem on technical-economical studies of the power engineering objects, including NPPs, are analyzed. Certain approaches in the task of the risk economical estimates and basic provisions of the economical damage compensation system are presented. Description of imitated and analytical approach in the task of estimating financial state is given and certain study results are presented. 11 refs., 8 figs

  6. An examination of impact damage in glass-phenolic and aluminum honeycomb core composite panels

    Science.gov (United States)

    Nettles, A. T.; Lance, D. G.; Hodge, A. J.

    1990-01-01

    An examination of low velocity impact damage to glass-phenolic and aluminum core honeycomb sandwich panels with carbon-epoxy facesheets is presented. An instrumented drop weight impact test apparatus was utilized to inflict damage at energy ranges between 0.7 and 4.2 joules. Specimens were checked for extent of damage by cross sectional examination. The effect of core damage was assessed by subjecting impact-damaged beams to four-point bend tests. Skin-only specimens (facings not bonded to honeycomb) were also tested for comparison purposes. Results show that core buckling is the first damage mode, followed by delaminations in the facings, matrix cracking, and finally fiber breakage. The aluminum honeycomb panels exhibited a larger core damage zone and more facing delaminations than the glass-phenolic core, but could withstand more shear stress when damaged than the glass-phenolic core specimens.

  7. LFR core design for prevention & mitigation of severe accidents

    International Nuclear Information System (INIS)

    Grasso, Giacomo

    2012-01-01

    Conclusions: • Aiming at fully complying Gen-IV safety requirements – even in case of Fukushima-like events –, prevention and mitigation strategies must be stressed in FR design. • The safety of Lead-cooled Fast Reactors can rely on intrinsic features due to the coolant, such as: • the practical impossibility of Lead boiling, hence the unreliability of core (only) voiding for wide safety margins, and the retention of corium; • the high density of lead, for the buoyancy of Control Rods (allowing their safe positioning below the core), and the dispersion of molten core up to the setting up of a “cold melting pot”. • the possibility to adopt wide coolant channels for encouraging natural circulation, without affecting the hardness of the neutron spectrum; • the hard neutron spectrum allows the adiabatic operation of LFRs (which implies minimal criticality swings even through long cycles) with small amounts of Mas (hence with a negligible detriment to the safety features); • an effective reduction of the coolant density effect simply through the shortening of the active height

  8. Aging, Loss-of-Coolant Accident (LOCA), and high potential testing of damaged cables

    International Nuclear Information System (INIS)

    Vigil, R.A.; Jacobus, M.J.

    1994-04-01

    Experiments were conducted to assess the effects of high potential testing of cables and to assess the survivability of aged and damaged cables under Loss-of-Coolant Accident (LOCA) conditions. High potential testing at 240 Vdc/mil on undamaged cables suggested that no damage was incurred on the selected virgin cables. During aging and LOCA testing, Okonite ethylene propylene rubber (EPR) cables with a bonded jacket experienced unexpected failures. The failures appear to be primarily related to the level of thermal aging and the presence of a bonded jacket that ages more rapidly than the insulation. For Brand Rex crosslinked polyolefin (XLPO) cables, the results suggest that 7 mils of insulation remaining should give the cables a high probability of surviving accident exposure following aging. The voltage necessary to detect when 7 mils of insulation remain on unaged Brand Rex cables is approximately 35 kVdc. This voltage level would almost certainly be unacceptable to a utility for use as a damage assessment tool. However, additional tests indicated that a 35 kvdc voltage application would not damage virgin Brand Rex cables when tested in water. Although two damaged Rockbestos silicone rubber cables also failed during the accident test, no correlation between failures and level of damage was apparent

  9. Incorporation of phenomenological uncertainties in probabilistic safety analysis - application to LMFBR core disruptive accident energetics

    Energy Technology Data Exchange (ETDEWEB)

    Najafi, B; Theofanous, T G; Rumble, E T; Atefi, B

    1984-08-01

    This report describes a method for quantifying frequency and consequence uncertainty distribution associated with core disruptive accidents (CDAs). The method was developed to estimate the frequency and magnitude of energy impacting the reactor vessel head of the Clinch River Breeder Plant (CRBRP) given the occurrence of hypothetical CDAs. The methodology is illustrated using the CRBR example.

  10. Severe Accident Mitigation by using Core Catcher applicable for Korea standard nuclear power plant

    International Nuclear Information System (INIS)

    Park, Hae Kyun; Kim, Sang Nyung

    2013-01-01

    Nuclear power plants have been designed and operated in order to prevent severe accident because of their risk that contains tremendous radioactive materials that are potentially hazardous. Moreover, the government requested the nuclear industry to implement a severe accident management strategy for existing reactors to mitigate the risk of potential severe accidents. However, Korea standard nuclear power plant(APR-1400 and OPR-1000) are much more vulnerable for severe accident management than that of developed countries. Due to the design feature of reactor cavity in Korea standard nuclear power plant, inequable and serious Molten Core-Concrete Interaction(MCCI) may cause considerable safety problem to the reactor containment liner. At worst, it brings the release of radioactive materials to the environment. This accident applies to the fourth level of defense in depth(IAEA 1996), 'severe accident'. This study proposes and designs the 'slope' to secure reactor containment liner integrity when the corium spreads out from the destroyed reactor vessel to the reactor cavity due to the core melting accident. For this, make the initial corium distribution evenly exploit the 'slope' on the basis of the study of Ex-vessel corium behavior to prevent inequable and serious MCCI, in order to mitigate severe accident. The viscosity has a dominant position in the calculation. According to the result, the spread out distance on the slope is 10.7146841m, considering the rough surface of the concrete(slope) and margin of reactor cavity end(under 11m). Easy to design, production and economic feasibility are the advantage of the designed slope in this study. However, the slope design may unsuitable when the sequences of the accidents did not satisfy the assumptions as mentioned. Despite of those disadvantages, the slope will show a great performance to mitigate the severe accident. As mentioned in assumption, the corium releasing time property was conservatively calculated

  11. Severe Accident Mitigation by using Core Catcher applicable for Korea standard nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hae Kyun; Kim, Sang Nyung [Kyung Hee Univ., Yongin (Korea, Republic of)

    2013-10-15

    Nuclear power plants have been designed and operated in order to prevent severe accident because of their risk that contains tremendous radioactive materials that are potentially hazardous. Moreover, the government requested the nuclear industry to implement a severe accident management strategy for existing reactors to mitigate the risk of potential severe accidents. However, Korea standard nuclear power plant(APR-1400 and OPR-1000) are much more vulnerable for severe accident management than that of developed countries. Due to the design feature of reactor cavity in Korea standard nuclear power plant, inequable and serious Molten Core-Concrete Interaction(MCCI) may cause considerable safety problem to the reactor containment liner. At worst, it brings the release of radioactive materials to the environment. This accident applies to the fourth level of defense in depth(IAEA 1996), 'severe accident'. This study proposes and designs the 'slope' to secure reactor containment liner integrity when the corium spreads out from the destroyed reactor vessel to the reactor cavity due to the core melting accident. For this, make the initial corium distribution evenly exploit the 'slope' on the basis of the study of Ex-vessel corium behavior to prevent inequable and serious MCCI, in order to mitigate severe accident. The viscosity has a dominant position in the calculation. According to the result, the spread out distance on the slope is 10.7146841m, considering the rough surface of the concrete(slope) and margin of reactor cavity end(under 11m). Easy to design, production and economic feasibility are the advantage of the designed slope in this study. However, the slope design may unsuitable when the sequences of the accidents did not satisfy the assumptions as mentioned. Despite of those disadvantages, the slope will show a great performance to mitigate the severe accident. As mentioned in assumption, the corium releasing time property was

  12. Parameters affecting of Akkuyu's safety assessment for severe core damages

    Science.gov (United States)

    Kavun, Yusuf; Karasulu, Muzaffer

    2015-07-01

    We have looked at all past core meltdowns (Three Mile Island, Chernobyl and Fukushima incidents) and postulated the fourth one might be taking place in the future most probably in a newly built reactors anywhere of the earth in any type of NPP. The probability of this observation is high considering the nature of the machine and human interaction. Operation experience is a very significant parameter as well as the safety culture of the host nation. The concerns is not just a lack of experience with industry with the new comers, but also the infrastructure and established institutions who will be dealing with the Emergencies. Lack of trained and educated Emergency Response Organizations (ERO) is a major concern. The culture on simple fire drills even makes the difference when a severe condition occurs in the industry. The study assumes the fourth event will be taking place at the Akkuyu NGS and works backwards as required by the "what went wrong " scenarios and comes up with interesting results. The differences studied in depth to determine the impact to the severe accidents. The all four design have now core catchers. We have looked at the operator errors'like in TMI); Operator errors combined with design deficiencies(like in Chernobyl) and natural disasters( like in Fukushima) and found operator errors to be more probable event on the Akkuyu's postulated next incident. With respect to experiences of the operators we do not have any data except for long and successful operating history of the Soviet design reactors up until the Chernobyl incident. Since the Akkuyu will be built, own and operated by the Russians we have found no alarming concerns at the moment. At the moment, there is no body be able to operate those units in Turkey. Turkey is planning to build the required manpower during the transition period. The resolution of the observed parameters lies to work and educate, train of the host nation and exercise together.

  13. Analysis of the loss of coolant accident for LEU cores of Pakistan research reactor-1

    International Nuclear Information System (INIS)

    Khan, L.A.; Bokhari, I.H.; Raza, S.H.

    1993-12-01

    Response of LEU cores for PARR-1 to a Loss of Coolant Accident (LOCA) has been studied. It has been assumed that pool water drains out to double ended rupture of primary coolant pipe or complete shearing of an experimental beam tube. Results show that for an operating power level of 10 MW, both the first high power and equilibrium cores would enter into melting conditions if the pool drain time is less than 22 h and 11 h respectively. However, an Emergency Core Cooling System (ECCS) capable of spraying the core at flow rate of 8.3 m/sup 3/h, for the above mentioned duration, would keep the peak core temperature much below the critical value. Maximum operating power levels below which melting would not occur have been assessed to 3.4 MW and 4.8 MW, respectively, for the first high power and equilibrium cores. (author) 5 figs

  14. Compensation for damages in case of a nuclear accident; L'indemnisation des prejudices en cas d'accident nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Leger, M. [CEA Saclay, 91 - Gif sur Yvette (France)

    2011-01-15

    This article presents the system of compensation for damages in case of a nuclear accident. This system of civil liability for nuclear damage, as a specific regime, departs on several points from the common rules of civil liability, in order to provide an adequate and equitable compensation for the damages suffered by the victims of nuclear accidents. The French system of civil liability for nuclear damage results from two International Conventions integrated in French law (Paris convention 1960 and Brussels convention 1963) and the French law of 1968, October 30 on civil liability in the area of nuclear energy. These texts define the conditions under which a nuclear operator could be held liable in case of a nuclear accident. The protocols to amend the Paris and Brussels Conventions of 2004, not yet come into force, are also presented. They ensure that increased resources are available to compensate a greater number of victims of a nuclear accident. (author)

  15. Comparison of the behaviour of two core designs for ASTRID in case of severe accidents

    Energy Technology Data Exchange (ETDEWEB)

    Bertrand, F., E-mail: frederic.bertrand@cea.fr [CEA, DEN, DER, F-13108 Saint Paul-lez-Durance (France); Marie, N.; Prulhière, G.; Lecerf, J. [CEA, DEN, DER, F-13108 Saint Paul-lez-Durance (France); Seiler, J.M. [CEA, DEN, DTN, F-38054 Grenoble (France)

    2016-02-15

    Highlights: • Low void worth CFV and SFRv2 cores are compared for ASTRID pre-conceptual design. • Severe accident behaviour is assessed with a simplified calculation approach and tools. • Mitigation to limit reactivity inserted by core compaction is easier for CFV than for SFRv2 core. • When facing arbitrary reactivity ramps, CFV core would lead to lower energy release than SFRv2 core. • Time scale for core degradation is one order of magnitude larger for CFV than for SFRv2. - Abstract: The present paper is dedicated to the studies carried out during the first stage of the pre-conceptual design of the French demonstrator of fourth generation SFR reactors (ASTRID) in order to compare the behaviour of two envisaged core concepts under severe accident transients. Among the two studied core concepts, whose powers are 1500 MWth, the first one is a classical homogeneous core (called SFRv2) with large pin diameter whose the sodium overall voiding reactivity effect is 5 $. The second concept is an axially heterogeneous core (called CFV) whose global void reactivity effect is negative (−1.2 $ at the end of cycle at the equilibrium). The comparison of the cores relies on two typical accident families: a reactivity insertion (unprotected transient overpower, UTOP) and an overall loss of core cooling (unprotected loss of flow, ULOF). In the first part of the comparison, the primary phase of an UTOP is studied in order to assess typical features of the transient behaviour: power and reactivity evolutions, material heating and melting/vaporization and mechanical energy release due to fuel vapor expansion. The second part of the comparison deals with the calculation of the reactivity potential for degraded states (molten pools) representative of the secondary phase of a mild UTOP and of a strong UTOP (strong or mild qualifies the reactivity ramp inserted). According to the reactivity potential, the amount of fuel to extract from the core and the amount of absorber

  16. Analysis of hypothetical LMFBR whole-core accidents in the USA

    International Nuclear Information System (INIS)

    Ferguson, D.R.; Deitrich, L.W.; Brown, N.W.; Waltar, A.E.

    1978-01-01

    The issue of hypothetical whole-core accidents continues to play a significant role in assessment of the potential risk to the public associated with LMFBR operation in the USA. The paper briefly characterizes the changing nature of this role, with emphasis on the current risk-oriented perspective. It then describes the models and codes used for accident analysis in the USA which have been developed under DOE sponsorship and summarizes some specific applications of the codes to the current generation of fast reactors. An assessment of future trends in this area concludes the paper

  17. Considerations on the influence of fission products in whole core accidents

    International Nuclear Information System (INIS)

    Meyer Heine, A.; Pattoret, A.; Schmitz, F.

    1977-01-01

    If the hypothetical Whole Core Accidents which are taken into account in reactor safety analysis can change from one country to another, there is nevertheless a general agreement over their description and main phases. Furthermore the important parameters have also been identified by every laboratory. During the development of such core accidents the role of the fission products in essential. It is not the purpose of this paper to give an exhaustive description of the phases which can be influenced by the fission products, we will try however to focus this study on the most important ones. In a second step we will discuss the equation of state of irradiated fuels; here again one principal preoccupation being to quantify the influence of fission products on reactor accidents. It is not our purpose to enter on the fundamental aspects of the equation of state. The studies and the experimental program launched at the CEA will then be described. Special attention will be directed towards the eventual role of fission products in molten fuel-coolant interactions (MFCls) or the events leading to the initiation of whole core accidents. This paper will be limited to oxide fuels. Whether the whole core accident is initiated by a reactivity defect or a coolant coast-down, one has to deal with four great categories of phenomena. Loss of flow: the power is around the nominal value, while the coolant flow has been reduced by a factor of 5 to 10. This induces boiling and clad weakening. Will the plenum pressure lead to a clad rupture? In case of a rupture, what will be the effect on the voiding of the channel? Transient over power: influence of gases from gaseous and volatile fission products on the fuel movements? MFCIs: Influence of the fission products in the mode of contact between fuel and coolant? Influence on the fuel characteristics. Sodium vapour bubble expansion: influence of the fission products on the heat transfer and eventual condensation of the bubble?

  18. Medical treatment of radiation damages and medical emergency planning in case of nuclear power plant incidents and accidents

    International Nuclear Information System (INIS)

    Ohlenschlaeger, L.

    1981-03-01

    Medical measures in case of radiation damages are discussed on the basis of five potential categories of radiation incidents and accidents, respectively, viz. contaminations, incorporations, external local and general radiation over-exposures, contaminated wounds, and combinations of radiation damages and conventional injuries. Considerations are made for diagnostic and therapeutic initial measures especially in case of minor and moderate radiation accidents. The medical emergency planning is reviewed by means of definations used in the practical handling of incidents or accidents. The parameters are: extent of the incident or accident, number of persons involved, severity of radiation damage. Based on guiding symptoms the criteria for the classification into minor, moderate or severe radiation accidents are discussed. Reference is made to the Medical Radiation Protection Centers existing in the Federal Republic of Germany and the possibility of getting advices in case of radiation incidents and accidents. (orig.) [de

  19. Risk reduction of core-melt accidents in advaned CAPRA burner cores

    International Nuclear Information System (INIS)

    Maschek, W.; Struwe, D.; Eigemann, M.

    1997-01-01

    As part of the CAPRA Program (Consommation Accrue de Plutonium dans les RApides) the feasibility of fast reactors is investigated to burn plutonium and also to destruct minor actinides. The design of CAPRA cores shows significant differences compared to conventional cores. Especially the high Pu-enrichment has an important influence on the core melt-down behavior and the associated recriticality risk. To cope with this risk, inherent design features and special measures/devices are investigated for their potential of early fuel discharge to reduce the criticality of the reactor core. An assessment of such measures/devices is given and experimental needs are formulated. 11 refs., 5 figs

  20. How did Fukushima-Dai-ichi core meltdown change the probability of nuclear accidents?

    International Nuclear Information System (INIS)

    Escobar Rangel, Lina; Leveque, Francois

    2012-10-01

    How to predict the probability of a nuclear accident using past observations? What increase in probability the Fukushima Dai-ichi event does entail? Many models and approaches can be used to answer these questions. Poisson regression as well as Bayesian updating are good candidates. However, they fail to address these issues properly because the independence assumption in which they are based on is violated. We propose a Poisson Exponentially Weighted Moving Average (PEWMA) based in a state-space time series approach to overcome this critical drawback. We find an increase in the risk of a core meltdown accident for the next year in the world by a factor of ten owing to the new major accident that took place in Japan in 2011. (authors)

  1. Control rod drop accident analysis for the mixed core project in Ling Ao NPS

    International Nuclear Information System (INIS)

    Zhang Shishun; Zhou Zhou; Xiao Min

    2004-01-01

    AFA-2G assemblies in Ling Ao NPS (LNPS) have been replaced gradually by AFA-3G assemblies from cycle 2 and subsequent cycles. the enrichment of the fuels will be increased from 3.2% to 3.7% from cycle 3 in Ling Ao. Therefore, the study of ling Ao mixed core and increased enrichment have been performed since 2001. Lots of accidents need to be re-analyzed in Ling Ao NPS in order to verify its safety requirements for the new fuel management. Control rod drop accident for LNPS was re-analyzed in 2001 in frame of FRAMATOME ANP analytical methodology. The analytical codes used in the accident analysis include SCIENCE, ESPADON, CINEMA, CANTAL and FLICA III. The control rod drop accident analysis is performed with respect to the 10 reference cycles of the generic fuel management design for Ling Ao mixed core and increased enrichment study. The pre-drop FδH for the first transition cycles and other cycles are 1.52 and 1.55, respectively. For detected dropped rod configurations, the negative flux rate protection system actuates a reactor trip. For the non-detected dropped rod configurations, the minimum DNBR values have been evaluated with conservative analysis methodology and assumptions and the DNBR fuel design limit is respected the analytical results shows that, for all the non-detected dropped rod configurations, the minimum DNB margin is about 2% which occurs in AFA-2G fuel assembly in the first transition cycle. (author)

  2. The role of fission gas in the analysis of hypothetical core disruptive accidents

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, E A [Gesellschaft fuer Kernforschung mbH, INR Kernforschungszentrum, Karlsruhe (Germany)

    1977-07-01

    This paper summarizes recent work at Karlsruhe with the goal of understanding the effects of fission gas in hypothetical core disruptive accidents. The fission gas behavior model is discussed. The computer programs LANGZEIT and KURZZEIT describe the long-term and the transient gas behavior, respectively. Recent improvements in the modeling and a comparison of results with experimental data are reported. A somewhat detailed study of the role of fission gas in transient overpower (TOP) accidents was carried out. If pessimistic assumptions, like pin failure near the axial midplane are made, these accidents end in core disassembly. The codes HOPE and KADIS were used to analyze the initiating and the disassembly phase in these studies. Improvements of the codes are discussed. They include an automatic data transfer from HOPE to KADIS, and a new equation of state in KADIS, with an improved model for fission gas behavior. The analysis of a 15 cents/sec reactivity ramp accident is presented. Different pin failure criteria are used. In the cases selected, the codes predict an energetic disassembly. For the much discussed loss-of-flow driven TOP, detailed models are presently not available at Karlsruhe. Therefore, only a few comments and the results of a few scoping calculations will be presented.

  3. Local governments' roles of the compensation for damage by the Tokai JCO criticality accident

    Energy Technology Data Exchange (ETDEWEB)

    Tanabe, Tomoyuki [Central Research Inst. of Electric Power Industry, Tokyo (Japan). Socio-Economic Research Center

    2003-03-01

    The Tokai JCO criticality accident on September 30, 1999 was the first case to which The Law on Compensation for Nuclear Damage was applied. Although the Law on Compensation for Nuclear Damage formulates the outline of the institutional framework for nuclear third party liability together with operator's insurance scheme, details of actual compensation procedure are not specified. By this reason, the compensation procedure in the Tokai accident had been executed without a concrete legal specification and a precedent. In spite of this situation, the compensation procedure with the accident led to an unexpectedly successful result. We observe the several reasons why the compensation procedure was implemented successfully despite the lack of concrete legal specification and a precedent. One of the reasons is that the local governments, Tokai Village and Ibaraki Prefecture, immediately took the leadership in implementing a temporary regime of compensation procedure without wasting time for waiting national government's directives. Upon practicing this compensation procedure, the local governments implemented the following steps. (1) Initial estimation of the amount and scope of damage. (2) Providing the criteria and heads of damage subject to compensation. (3) Unitary compensation procedure at the local levels. (4) Distribution of emergency payments for the victims. (5) Facilitating compensatory negotiation between the victims and JCO as arbitrator. However, some concerns are also pointed out about the fact that the local government directed the whole procedure without sufficient adjustment with the national government for compensation policy. Among all, in the compensation led by the local governments, it was difficult to guarantee fairness of compensation because victims who are influential on the local government such as industrial associations would have unfairly strong negotiation power in the compensatory negotiation, while the operator being

  4. Local governments' roles of the compensation for damage by the Tokai JCO criticality accident

    International Nuclear Information System (INIS)

    Tanabe, Tomoyuki

    2003-01-01

    The Tokai JCO criticality accident on September 30, 1999 was the first case to which The Law on Compensation for Nuclear Damage was applied. Although the Law on Compensation for Nuclear Damage formulates the outline of the institutional framework for nuclear third party liability together with operator's insurance scheme, details of actual compensation procedure are not specified. By this reason, the compensation procedure in the Tokai accident had been executed without a concrete legal specification and a precedent. In spite of this situation, the compensation procedure with the accident led to an unexpectedly successful result. We observe the several reasons why the compensation procedure was implemented successfully despite the lack of concrete legal specification and a precedent. One of the reasons is that the local governments, Tokai Village and Ibaraki Prefecture, immediately took the leadership in implementing a temporary regime of compensation procedure without wasting time for waiting national government's directives. Upon practicing this compensation procedure, the local governments implemented the following steps. (1) Initial estimation of the amount and scope of damage. (2) Providing the criteria and heads of damage subject to compensation. (3) Unitary compensation procedure at the local levels. (4) Distribution of emergency payments for the victims. (5) Facilitating compensatory negotiation between the victims and JCO as arbitrator. However, some concerns are also pointed out about the fact that the local government directed the whole procedure without sufficient adjustment with the national government for compensation policy. Among all, in the compensation led by the local governments, it was difficult to guarantee fairness of compensation because victims who are influential on the local government such as industrial associations would have unfairly strong negotiation power in the compensatory negotiation, while the operator being responsible for the

  5. On the sequence of core-melt accidents: Fission product release, source terms and Chernobyl release

    Energy Technology Data Exchange (ETDEWEB)

    Albrecht, H

    1986-01-01

    There is a sketch of our ideas on the course of a core melt-out accident in a PWR. There is then a survey of the most important results on fission product release, which were obtained by experiments on the SASCHA melt-out plant. The 3rd part considers questions which are important for determining source terms for the environment and the last part contains some considerations on radioactivity release from the Chernobyl reactor.

  6. Termination of light-water reactor core-melt accidents with a chemical core catcher: the core-melt source reduction system (COMSORS)

    International Nuclear Information System (INIS)

    Forsberg, C.W.; Parker, G.W.; Rudolph, J.C.; Osborne-Lee, I.W.; Kenton, M.A.

    1996-09-01

    The Core-Melt Source Reduction System (COMSORS) is a new approach to terminate light-water reactor core melt accidents and ensure containment integrity. A special dissolution glass is placed under the reactor vessel. If core debris is released onto the glass, the glass melts and the debris dissolves into the molten glass, thus creating a homogeneous molten glass. The molten glass, with dissolved core debris, spreads into a wide pool, distributing the heat for removal by radiation to the reactor cavity above or by transfer to water on top of the molten glass. Expected equilibrium glass temperatures are approximately 600 degrees C. The creation of a low-temperature, homogeneous molten glass with known geometry permits cooling of the glass without threatening containment integrity. This report describes the technology, initial experiments to measure key glass properties, and modeling of COMSORS operations

  7. Determination of the availability of core exit thermocouples during severe accident situations

    International Nuclear Information System (INIS)

    Edson, J.L.

    1985-04-01

    This report presents the findings and recommendations of the Nuclear Power Plant Instrumentation Evaluation (NPPIE) program concerning signal validation methods to determine the on-line availability of core exit thermocouples during accident situations. Methods of selecting appropriate signal validation techniques are discussed and sources of error identified. This report shows that through the use of these techniques the existence of high-temperature-caused errors may be detected as they occur. Specific recommendations for application of selected signal validation techniques to core exit thermocouples and other measurement systems are made. 23 refs., 22 figs., 3 tabs

  8. Zircaloy-oxidation and hydrogen-generation rates in degraded-core accident situations

    International Nuclear Information System (INIS)

    Chung, H.M.; Thomas, G.R.

    1983-02-01

    Oxidation of Zircaloy cladding is the primary source of hydrogen generated during a degraded-core accident. In this paper, reported Zircaloy oxidation rates, either measured at 1500 to 1850 0 C or extrapolated from the low-temperature data obtained at 0 C, are critically reviewed with respect to their applicability to a degraded-core accident situation in which the high-temperature fuel cladding is likely to be exposed to and oxidized in mixtures of hydrogen and depleted steam, rather than in an unlimited flux of pure steam. New results of Zircaloy oxidation measurements in various mixtures of hydrogen and steam are reported for >1500 0 C. The results show significantly smaller oxidation and, hence, hydrogen-generation rates in the mixture, compared with those obtained in pure steam. It is also shown that a significant fraction of hydrogen, generated as a result of Zircaloy oxidation, is dissolved in the cladding material itself, which prevents that portion of hydrogen from reaching the containment building space. Implications of these findings are discussed in relation to a more realistic method of quantifying the hydrogen source term for a degraded-core accident analysis

  9. An investigation of core liquid level depression in small break loss-of-coolant accidents

    International Nuclear Information System (INIS)

    Schultz, R.R.; Watkins, J.C.; Motley, F.E.; Stumpf, H.; Chen, Y.S.

    1991-08-01

    Core liquid level depression can result in partial core dryout and heatup early in a small break loss-of-coolant accident (SBLOCA) transient. Such behavior occurs when steam, trapped in the upper regions of the reactor primary system (between the loop seal and the core inventory), moves coolant out of the core region and uncovers the rod upper elevations. The net result is core liquid level depression. Core liquid level depression and subsequent core heatups are investigated using subscale data from the ROSA-IV Program's 1/48-scale Large Scale Test Facility (LSTF) and the 1/1705-scale Semiscale facility. Both facilities are Westinghouse-type, four-loop, pressurized water reactor simulators. The depression phenomena and factors which influence the minimum core level are described and illustrated using examples from the data. Analyses of the subject experiments, conducted using the TRAC-PF1/MOD1 (Version 12.7) thermal-hydraulic code, are also described and summarized. Finally, the response of a typical Westinghouse four-loop plant (RESAR-3S) was calculated to qualitatively study coal liquid level depression in a full-scale system. 31 refs., 37 figs., 6 tabs

  10. Specific features of RBMK severe accidents progression and approach to the accident management

    International Nuclear Information System (INIS)

    Vasilevskij, V.P.; Nikitin, Yu.M.; Petrov, A.A.; Potapov, A.A.; Cherkashov, Yu.M.

    2001-01-01

    Fundamental construction features of the LWGR facilities (absence of common external containment shell, disintegrated circulation circuit and multichannel reactor core, positive vapor reactivity coefficient, high mass of thermally capacious graphite moderator) predetermining development of assumed heavy non-projected accidents and handling them are treated. Rating the categories of the reactor core damages for non-projected accidents and accident types producing specific grope of damages is given. Passing standard non-projected accidents, possible methods of attack accident consequences, as well as methods of calculated analysis of non-projected accidents are demonstrated [ru

  11. Status of the TMI-2 core: a review of damage assessments

    International Nuclear Information System (INIS)

    Croucher, D.W.

    1981-01-01

    Assessments of the damage within the core of the Three Mile Island Unit 2 reactor, performed by reconstructing the transient thermal-hydraulic sequence of events, estimating the amount of hydrogen generation, and evaluating the amount of fission products released, are reviewed and summarized. Minimum and maximum bounds of damage to the core are identified

  12. The radiological consequences of degraded core accidents for the Sizewell PWR The impact of adopting revised frequencies of occurrence

    CERN Document Server

    Kelly, G N

    1983-01-01

    The radiological consequences of degraded core accidents postulated for the Sizewell PWR were assessed in an earlier study and the results published in NRPB-R137. Further analyses have since been made by the Central Electricity Generating Board (CEGB) of degraded core accidents which have led to a revision of their predicted frequencies of occurrence. The implications of these revised frequencies, in terms of the risk to the public from degraded core accidents, are evaluated in this report. Increases, by factors typically within the range of about 1.5 to 7, are predicted in the consequences, compared with those estimated in the earlier study. However, the predicted risk from degraded core accidents, despite these increases, remains exceedingly small.

  13. Safety evaluation of accident-tolerant FCM fueled core with SiC-coated zircalloy cladding for design-basis-accidents and beyond DBAs

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Ji-Han, E-mail: chunjh@kaeri.re.kr; Lim, Sung-Won; Chung, Bub-Dong; Lee, Won-Jae

    2015-08-15

    Highlights: • Thermal conductivity model of the FCM fuel was developed and adopted in the MARS. • Scoping analysis for candidate FCM FAs was performed to select feasible FA. • Preliminary safety criteria for FCM fuel and SiC/Zr cladding were set up. • Enhanced safety margin and accident tolerance for FCM-SiC/Zr core were demonstrated. - Abstract: The FCM fueled cores proposed as an accident tolerant concept is assessed against the design-basis-accident (DBA) and the beyond-DBA (BDBA) scenarios using MARS code. A thermal conductivity model of FCM fuel is incorporated in the MARS code to take into account the effects of irradiation and temperature that was recently measured by ORNL. Preliminary analyses regarding the initial stored energy and accident tolerant performance were carried out for the scoping of various cladding material candidates. A 16 × 16 FA with SiC-coated Zircalloy cladding was selected as the feasible conceptual design through a preliminary scoping analysis. For a selected design, safety analyses for DBA and BDBA scenarios were performed to demonstrate the accident tolerance of the FCM fueled core. A loss of flow accident (LOFA) scenario was selected for a departure-from-nucleate-boiling (DNB) evaluation, and large-break loss of coolant accident (LBLOCA) scenario for peak cladding temperature (PCT) margin evaluation. A control element assembly (CEA) ejection accident scenario was selected for peak fuel enthalpy and temperature. Moreover, a station blackout (SBO) and LBLOCA without a safety injection (SI) scenario were selected as a BDBA. It was demonstrated that the DBA safety margin of the FCM core is satisfied and the time for operator actions for BDBA s is evaluated.

  14. Thermal and hydraulic behaviour of CANDU cores under severe accident conditions - final report

    International Nuclear Information System (INIS)

    Rogers, J.T.

    1984-06-01

    This volume of appendices presents listings and sample runs of the computer codes used in the study of the thermalhydraulic behaviour of CANDU reactor cores during severe loss of coolant accidents. The codes, written in standard FORTRAN, are MODBOIL, to calculate moderator temperatures, pressures and water levels; DEBRIS, to calculate the transient temperature distribution in the debris of calandria and pressure tubes and fuel pellets; MOLTENPOOL, to calculate the temperature history in a pool of molten debris; CONFILM, to calculate the behaviour of a condensing film of vaporized core debris on the calandria wall, and BLDG, to calculate the pressurization of the containment during the expulsion of moderator through pressure relief ducts. In addition there are discussions of the average condensation heat transfer coefficient for vaporized core material on the calandria wall, and of vapor explosions

  15. Severe accident mitigation and core melt retention in the European pressurized reactor (EPR)

    International Nuclear Information System (INIS)

    Fischer, Manfred

    2003-01-01

    For the mitigation of severe accidents, the FPR has adopted and improved the defense-in-depth approaches of its predecessors, the French 'N4' and the German 'Konvoi' PWR's. Beyond these evolutionary changes, it includes a new, 4-th level of defense aimed at limiting the consequences of a postulated severe accident with core melting. This involves a strengthening of the confinement function and the avoidance of large early releases, by the prevention of scenarios and events with potentially high loads on the containment, incl. RPV failure at high pressure. The remaining low-pressure accidents are mitigated by dedicated design measures. The paper gives an overview and of the measures for H 2 -mitigation and steam explosion and focuses on a detailed description of the precautions and design measures for the stabilization and long-term cooling of the molten core. In the EPR the latter is achieved by melt spreading into a large outside-cooled crucible lateral to the pit, which is passively flooded and cooled with water from the IRWST. The separation of functions between pit and spreading room not only isolates the core catcher from the various loads during RPV failure, but also avoids any risks related to an unintended initiation of flooding during power operation. A stable state of the melt is reached after a few hours. Complete solidification is achieved within days. The core catcher can optionally be cooled actively by the CHRS, which avoids further steaming into the containment and establishes ambient pressure conditions in the long term. (author)

  16. Development of severe accident analysis code - A study on the molten core-concrete interaction under severe accidents

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Chang Hyun; Lee, Byung Chul; Huh, Chang Wook; Kim, Doh Young; Kim, Ju Yeul [Seoul National University, Seoul (Korea, Republic of)

    1996-07-01

    The purpose of this study is to understand the phenomena of the molten core/concrete interaction during the hypothetical severe accident, and to develop the model for heat transfer and physical phenomena in MCCIs. The contents of this study are analysis of mechanism in MCCIs and assessment of heat transfer models, evaluation of model in CORCON code and verification in CORCON using SWISS and SURC Experiments, and 1000 MWe PWR reactor cavity coolability, and establishment a model for prediction of the crust formation and temperature of melt-pool. The properties and flow condition of melt pool covering with the conditions of severe accident are used to evaluate the heat transfer coefficients in each reviewed model. Also, the scope and limitation of each model for application is assessed. A phenomenological analysis is performed with MELCOR 1.8.2 and MELCOR 1.8.3 And its results is compared with corresponding experimental reports of SWISS and SURC experiments. And the calculation is performed to assess the 1000 MWe PWR reactor cavity coolability. To improve the heat transfer model between melt-pool and overlying coolant and analyze the phase change of melt-pool, 2 dimensional governing equations are established using the enthalpy method and computational program is accomplished in this study. The benchmarking calculation is performed and its results are compared to the experiment which has not considered effects of the coolant boiling and the gas injection. Ultimately, the model shall be developed for considering the gas injection effect and coolant boiling effect. 66 refs., 10 tabs., 29 refs. (author)

  17. Analysis of reactivity accidents of the RSG-GAS core with silicide fuel

    International Nuclear Information System (INIS)

    Tukiran

    2002-01-01

    The fuels of RSG-GAS reactor is changed from uranium oxide to uranium silicide. For time being, the fuel of RSG-GAS core are mixed up between oxide and silicide fuels with 250 gr of loading and 2.96 g U/cm 3 of density, respectively. While, silicide fuel with 300 gr of loading is still under research. The advantages of silicide fuels are can be used in high density, so that, it can be stayed longer in the core at higher burn-up, therefore, the length of cycle is longer. The silicide fuel in RSG-GAS core is used in step-wise by using mixed up core. Firstly, it is used silicide fuel with 250 gr of loading and then, silicide fuel with 300 gr of loading (3.55 g U/cm 3 of density). In every step-wise of fuel loading must be analysed its safety margin. In this occasion, it is analysed the reactivity accident of RSG-GAS core with 300 gr of silicide fuel loading. The calculation was done by using POKDYN code which available at P2TRR. The calculation was done by reactivity insertion at start up and power rangers. From all cases which were have been done, the results of analysis showed that there is no anomaly and safety margin break at RSG-GAS core with 300 gr silicide fuel loading

  18. Assessment of damage potential to the TMI-2 lower head due to thermal attack by core debris

    International Nuclear Information System (INIS)

    Cronenberg, A.W.; Behling, S.R.; Broughton, J.M.

    1986-06-01

    Camera inspection of the Three Mile Island Unit 2 (TMI-2) inlet plenum region has shown that approximately 10 to 20 percent of the core material loading may have relocated to the lower plenum. Although vessel integrity was maintained, a question of primary concern is ''how close to vessel failure'' did this accident come. This report summarizes the results of thermal analyses aimed at assessing damage potential to the TMI-2 lower head and attached instrument penetration tubes due to thermal attack by hot core debris. Results indicate that the instrument penetration nozzles could have experienced melt failure at localized hot spot regions, with attendant debris drainage and plugging of the instrument lead tubes. However, only minor direct thermal attack of the vessel liner is predicted

  19. Reactivity Accidents in CAREM-25 Core with and Without Safety Systems Actuation

    International Nuclear Information System (INIS)

    Gimenez, Marcelo; Vertullo, Alicia; Schlamp, Miguel

    2000-01-01

    A reactivity accident in CAREM core can be provoked by different initiating events, a cold water injection in pressure vessel, a secondary side steam line breakage and a failure in the absorbing rods drive system.The present work analyses inadverted control rod withdraws transients.Maximum worth control rod (2.5 $) at normal velocity (1 cm/s) is adopted for the simulations (Reactivity ramp of 0.018 $/s).Different scenarios considering actuation of first shutdown system (FSS), second shutdown system (SSS) and selflimiting conditions were modeled.Results of the accident with actuation of FSS show that safety margins are well above critical values (DNBR and CPR).In the cases with failure of the FSS and success of SSS or selflimited, safety margins are below critical values, however, the SSS provides a reduction of elapsed time under advised margins

  20. Examination of off-site emergency protective measures for core melt accidents

    International Nuclear Information System (INIS)

    Aldrich, D.C.; Ericson, D.M. Jr.; Jones, R.B.

    1978-01-01

    Results from the Reactor Safety Study (RSS) have shown that to cause significant impacts off-site, i.e., sufficient quantities of biologically important radionuclides released, it is necessary to have a core melt accident. To mitigate the impact of such potential accidents, the design of appropriate emergency response actions requires information as to the relative merit of publicly available protective measures. In order to provide this information, a study using the consequence model developed for the RSS is being conducted to evaluate (in terms of reduced public health effects and dose exposure) potential off-site protective strategies. The paper describes the methods being used in the study as well as the results and conclusions obtained

  1. Tailoring Sandwich Face/Core Interfaces for Improved Damage Tolerance

    DEFF Research Database (Denmark)

    Lundsgaard-Larsen, Christian; Berggreen, Christian; Carlsson, Leif A.

    2010-01-01

    A face/core debond in a sandwich structure may propagate in the interface or kink into either the face or core. It is found that certain modifications of the face/core interface region influence the kinking behavior, which is studied experimentally in the present paper. A sandwich double cantilever....... The transition points where the crack kinks are identified and the influence of four various interface design modifications on the propagation path and fracture resistance are investigated....

  2. Study On Safety Analysis Of PWR Reactor Core In Transient And Severe Accident Conditions

    International Nuclear Information System (INIS)

    Le Dai Dien; Hoang Minh Giang; Nguyen Thi Thanh Thuy; Nguyen Thi Tu Oanh; Le Thi Thu; Pham Tuan Nam; Tran Van Trung; Le Van Hong; Vo Thi Huong

    2014-01-01

    The cooperation research project on the Study on Safety Analysis of PWR Reactor Core in Transient and Severe Accident Conditions between Institute for Nuclear Science and Technology (INST), VINATOM and Korean Atomic Energy Research Institute (KAERI), Korea has been setup to strengthen the capability of researches in nuclear safety not only in mastering the methods and computer codes, but also in qualifying of young researchers in the field of nuclear safety analysis. Through the studies on the using of thermal hydraulics computer codes like RELAP5, COBRA, FLUENT and CFX the thermal hydraulics research group has made progress in the research including problems for safety analysis of APR1400 nuclear reactor, PIRT methodologies and sub-channel analysis. The study of severe accidents has been started by using MELCOR in collaboration with KAERI experts and the training on the fundamental phenomena occurred in postulated severe accident. For Vietnam side, VVER-1000 nuclear reactor is also intensively studied. The design of core catcher, reactor containment and severe accident management are the main tasks concerning VVER technology. The research results are presented in the 9 th National Conference on Mechanics, Ha Noi, December 8-9, 2012, the 10 th National Conference on Nuclear Science and Technology, Vung Tau, August 14-15, 2013, as well as published in the journal of Nuclear Science and Technology, Vietnam Nuclear Society and other journals. The skills and experience from using computer codes like RELAP5, MELCOR, ANSYS and COBRA in nuclear safety analysis are improved with the nuclear reactors APR1400, Westinghouse 4 loop PWR and especially the VVER-1000 chosen for the specific studies. During cooperation research project, man power and capability of Nuclear Safety center of INST have been strengthen. Three masters were graduated, 2 researchers are engaging in Ph.D course at Hanoi University of Science and Technology and University of Science and Technology, Korea

  3. Quench cooling of superheated debris beds in containment during LWR core meltdown accidents

    International Nuclear Information System (INIS)

    Ginsberg, T.; Chen, J.C.

    1984-01-01

    Light water reactor core meltdown accident sequence studies suggest that superheated debris beds may settle on the concrete floor beneath the reactor vessel. A model for the heat transfer processes during quench of superheated debris beds cooled by an overlying pool of water has been presented in a prior paper. This paper discusses the coolability of decay-heated debris beds from the standpoint of their transient quench characteristics. It is shown that even though a debris bed configuration may be coolable from the point of view of steady-state decay heat removal, the quench behavior from an initially elevated temperature may lead to bed melting prior to quench of the debris

  4. Analysis of core melt accident in Fukushima Daiichi-Unit 1 nuclear reactor

    International Nuclear Information System (INIS)

    Tanabe, Fumiya

    2011-01-01

    In order to obtain a profound understanding of the serious situation in Unit 1 and Unit 2/3 reactors of Fukushima Daiichi Nuclear Power Station (hereafter abbreviated as 1F1 and 1F2/3, respectively), which was directly caused by tsunami due to a huge earthquake on 11 March 2011, analyses of severe core damage are performed. In the present report, the analysis method and 1F1 analysis are described. The analysis is essentially based on the total energy balance in the core. In the analysis, the total energy vs. temperature curve is developed for each reactor, which is based on the estimated core materials inventory and material property data. Temperature and melt fraction are estimated by comparing the total energy curve with the total stored energy in the core material. The heat source is the decay heat of fission products and actinides together with reaction heat from the zirconium steam reaction. (author)

  5. Modeling of reflood of severely damaged reactor core

    OpenAIRE

    Bachrata, Andrea

    2012-01-01

    Les événements récents au Japon sur les centrales nucléaires de Fukushima ont montré que des accidents conduisant à la fusion du cœur peuvent survenir bine plus souvent qu’on ne l’avait supposé et que leur impact sur l’environnement et la vie publique est considérable. Pour les réacteurs actuels, un des moyens principaux pour stopper la progression de l’accident est de tenter de refroidir le plus rapidement possible les matériaux en utiliser une injection d’eau de secours. Suivant l’instant d...

  6. Use of PSA and severe accident assessment results for the accident management

    International Nuclear Information System (INIS)

    Jang, S. H.; Kim, H. G.; Jang, H. S.; Moon, S. K.; Park, J. U.

    1993-12-01

    The objectives for this study are to investigate the basic principle or methodology which is applicable to accident management, by using the results of PSA and severe accident research, and also facilitate the preparation of accidents management program in the future. This study was performed as follows: derivation of measures for core damage prevention, derivation of measures for accident mitigation, application of computerized tool to assess severe accident management

  7. Use of PSA and severe accident assessment results for the accident management

    Energy Technology Data Exchange (ETDEWEB)

    Jang, S H; Kim, H G; Jang, H S; Moon, S K; Park, J U [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    1993-12-15

    The objectives for this study are to investigate the basic principle or methodology which is applicable to accident management, by using the results of PSA and severe accident research, and also facilitate the preparation of accidents management program in the future. This study was performed as follows: derivation of measures for core damage prevention, derivation of measures for accident mitigation, application of computerized tool to assess severe accident management.

  8. Use of decision trees for evaluating severe accident management strategies in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Jae, Moosung [Hanyang Univ., Seoul (Korea, Republic of). Dept. of Nuclerar Engineering; Lee, Yongjin; Jerng, Dong Wook [Chung-Ang Univ., Seoul (Korea, Republic of). School of Energy Systems Engineering

    2016-07-15

    Accident management strategies are defined to innovative actions taken by plant operators to prevent core damage or to maintain the sound containment integrity. Such actions minimize the chance of offsite radioactive substance leaks that lead to and intensify core damage under power plant accident conditions. Accident management extends the concept of Defense in Depth against core meltdown accidents. In pressurized water reactors, emergency operating procedures are performed to extend the core cooling time. The effectiveness of Severe Accident Management Guidance (SAMG) became an important issue. Severe accident management strategies are evaluated with a methodology utilizing the decision tree technique.

  9. Computational Aerodynamics of Shuttle Orbiter Damage Scenarios in Support of the Columbia Accident Investigation

    Science.gov (United States)

    Bibb, Karen L.; Prabhu, Ramadas K.

    2004-01-01

    In support of the Columbia Accident Investigation, inviscid computations of the aerodynamic characteristics for various Shuttle Orbiter damage scenarios were performed using the FELISA unstructured CFD solver. Computed delta aerodynamics were compared with the reconstructed delta aerodynamics in order to postulate a progression of damage through the flight trajectory. By performing computations at hypervelocity flight and CF4 tunnel conditions, a bridge was provided between wind tunnel testing in Langley's 20-Inch CF4 facility and the flight environment experienced by Columbia during re-entry. The rapid modeling capability of the unstructured methodology allowed the computational effort to keep pace with the wind tunnel and, at times, guide the wind tunnel efforts. These computations provided a detailed view of the flowfield characteristics and the contribution of orbiter components (such as the vertical tail and wing) to aerodynamic forces and moments that were unavailable from wind tunnel testing. The damage scenarios are grouped into three categories. Initially, single and multiple missing full RCC panels were analyzed to determine the effect of damage location and magnitude on the aerodynamics. Next is a series of cases with progressive damage, increasing in severity, in the region of RCC panel 9. The final group is a set of wing leading edge and windward surface deformations that model possible structural deformation of the wing skin due to internal heating of the wing structure. By matching the aerodynamics from selected damage scenarios to the reconstructed flight aerodynamics, a progression of damage that is consistent with the flight data, debris forensics, and wind tunnel data is postulated.

  10. An analysis of reactor structural response to fuel sodium interaction in a hypothetical core disruptive accident

    International Nuclear Information System (INIS)

    Suzuki, K.; Tashiro, M.; Sasanuma, K.; Nagashima, K.

    1976-01-01

    This study shows the effect of constraints around FSI zone on FSI phenomena and deformations of reactor structures. SUGAR-PISCES code system has been developed to evaluate the phenomena of FSI and the response of reactor structure. SUGAR calculates the phenomena of FSI. PISCES, developed by Physics International Company in U.S.A., calculates the dynamic response of reactor structure in two-dimensional, time-dependent finite-difference Lagrangian model. The results show that the peak pressure and energy by FSI and the deformation of reactor structures are about twice in case of FSI zone surrounding by blanket than by coolant. The FSI phenomena highly depend on the reactor structure and the realistic configuration around core must be considered for analyzing hypothetical core disruptive accident. This work was supported by a grant from Power Reactor and Nuclear Fuel Development Corporation. (auth.)

  11. Simulant - water experiments to characterize the debris bed formed in severe core melt accidents

    International Nuclear Information System (INIS)

    Mathai, Amala M.; Anandan, J.; Sharma, Anil Kumar; Murthy, S.S.; Malarvizhi, B.; Lydia, G.; Das, Sanjay Kumar; Nashine, B.K.; Selvaraj, P.

    2015-01-01

    Molten Fuel Coolant Interaction (WO) and debris bed configuration on the core catcher plate assumes importance in assessing the Post Accident Heat Removal (PARR) of a heat generating debris bed. The key factors affecting the coolability of the debris bed are the bed porosity, morphology of the fragmented particles, degree of spreading/heaping of the debris on the core catcher and the fraction of lump formed. Experiments are conducted to understand the fragmentation kinetics and subsequent debris bed formation of molten woods metal in water at interface temperatures near the spontaneous nucleation temperature of water. Morphology of the debris particles is investigated to understand the fragmentation mechanisms involved. The spreading behavior of the debris on the catcher plate and the particle size distribution are presented for 5 kg and 10 kg melt inventories. Porosity of the undisturbed bed on the catcher plate is evaluated using a LASER sensor technique. (author)

  12. Applicability of PRISM PRA Methodology to the Level II Probabilistic Safety Analysis of KALIMER-600 (I) (Core Damage Event Tree Analysis Part)

    International Nuclear Information System (INIS)

    Park, S. Y.; Kim, T. W.; Ha, K. S.; Lee, B. Y.

    2009-03-01

    The Korea Atomic Energy Research Institute (KAERI) has been developing liquid metal reactor (LMR) design technologies under a National Nuclear R and D Program. Nevertheless, there is no experience of the PSA domestically for a fast reactor with the metal fuel. Therefore, the objective of this study is to establish the methodologies of risk assessment for the reference design of KALIMER-600 reactor. An applicability of the PSA of the PRISM plant to the KALIMER-600 has been studied. The study is confined to a core damage event tree analysis which is a part of a level 2 PSA. Assuming that the accident types, which can be developed from level 1 PSA, are same as the PRISM PRA, core damage categories are defined and core damage event trees are developed for the KALIMER-600 reactor. Fission product release fractions of the core damage categories and branch probabilities of the core damage event trees are referred from the PRISM PRA temporarily. Plant specific data will be used during the detail analysis

  13. In-core fuel disruption experiments simulating LOF accidents for homogeneous and heterogeneous core LMFBRs: FD2/4 series

    International Nuclear Information System (INIS)

    Wright, S.A.; Mast, P.K.; Schumacher, Gustav; Fischer, E.A.

    1982-01-01

    A series of Fuel Disruption (FD) experiments simulating LOF accidents transients for homogeneous- and heterogeneous-core LMFBRs is currently being performed in the Annular Core Research Reactor at SNL. The test fuel is observed with high-speed cinematography to determine the timing and the mode of the fuel disruption. The five experiments performed to date show that the timing and mode of fuel disruption depend on the power level, fuel temperature (after preheat and at disruption), and the fuel temperature gradient. Two basic modes of fuel disruption were observed; solid-state disruption and liquid-state swelling followed by slumping. Solid-state dispersive fuel behavior (several hundred degrees prior to fuel melting) is only observed at high power levels (6P 0 ), low preheat temperatures (2000 K), and high thermal gradients (2800 K/mm). The swelling/slumping behavior was observed in all cases near the time of fuel melting. Computational models have been developed that predict the fuel disruption modes and timing observed in the experiments

  14. Research activities at JAERI on core material behaviour under severe accident conditions

    International Nuclear Information System (INIS)

    Uetsuka, H.; Katanashi, S.; Ishijima, K.

    1996-01-01

    At the Japan Atomic Energy Research Institute (JAERI), experimental studies on physical phenomena under the condition of a severe accident have been conducted. This paper presents the progress of the experimental studies on fuel and core materials behaviour such as the thermal shock fracture of fuel cladding due to quenching, the chemical interaction of core materials at high temperatures and the examination of TMI-2 debris. The mechanical behaviour of fuel rod with heavily embrittled cladding tube due to the thermal shock during delayed reflooding have been investigated at the Nuclear Safety Research Reactor (NSSR) of JAERI. A test fuel rod was heated in steam atmosphere by both electric and nuclear heating using the NSSR, then the rod was quenched by reflooding at the test section. Melting of core component materials having relatively low melting points and their eutectic reaction with other materials significantly influence on the degradation and melt down of fuel bundles during severe accidents. Therefore basic information on the reaction of core materials is necessary to understand and analyze the progress of core melting and relocation. Chemical interactions have been widely investigated at high temperatures for various binary systems of core component materials including absorber materials such as Zircaloy/Inconel, Zircaloy/stainless steel, Zircaloy/(Ag-In-Cd), stainless steel B 4 C and Zircaloy/B 4 C. It was found that the reaction generally obeyed a parabolic rate law and the reaction rate was determined for each reaction system. Many debris samples obtained from the degraded core of TMI-2 were transported to JAERI for numerous examinations and analyses. The microstructural examination revealed that the most part of debris was ceramic and it was not homogeneous in a microscopic sense. The thermal diffusivity data was also obtained for the temperature range up to about 1800K. The data from the large scale integral experiments were also obtained through the

  15. Radioactive contamination of Danish territory after core-melt accidents at the Barsebaeck power plant

    International Nuclear Information System (INIS)

    Gjoerup, H.L.; Jensen, N.O.; Hedemann Jensen, P.; Kristensen, L.; Nielsen, O.J.; Petersen, E.L.; Petersen, T.; Roed, J.; Thykier-Nielsen, S.; Heikel Vinter, F.; Warming, L.; Aarkrog, A.

    1982-03-01

    An assessment is made of the radioactive contamination of Danish territory in the event of a core-melt accident at the Barsebaeck nuclear power plant in Sweden. Accidents including both core melt-down and containment failure are considered. Consequences are calculated for a BWR-3 release under common meteorological conditions and for a BWR-2 release under extreme meteorological conditions. Calculations are based on experiments and theoretical work relating to deposition velocities for different types of surface, shielding effect of structures, and weathering. The effects are described of different dose-reducing measures, e.g., decontamination, relocation, destruction of contaminated foodstuffs. The collective effective dose equivalent from external gamma radiation from deposited activity integrated over a time period of 30 years, is calculated to be 3.6 Megamanrem in the BWR-3 case without dose-reducing measures. For the BWR-2 case, the corresponding dose is approx. 41 Megamanrem. A combination of temporary relocation, hosing of roads etc. and digging of gardens is estimated to reduce these doses to approx. 2.5 Megamanrem and approx. 15 Megamanrem, respectively. The collective committed effective dose equivalent from the consumption of contaminated foodstuffs is calculated to 23 Megamanrem in the BWR-3 case without dose-reducing measures. This dose could be reduced to 0.2 Megamanrem if contaminated crops are destroyed during the first year after the accident and if changes are made in agricultural production in the contaminated area. The corresponding doses in the BWR-2 case would be 197 Megamanrem and 1.4 Megmanrem, respectively. (author)

  16. Fission product release from HTGR fuel under core heatup accident conditions - HTR2008-58160

    International Nuclear Information System (INIS)

    Verfondern, K.; Nabielek, H.

    2008-01-01

    Various countries engaged in the development and fabrication of modern fuel for the High Temperature Gas-Cooled Reactor (HTGR) have initiated activities of modeling the fuel and fission product release behavior with the aim of predicting the fuel performance under operating and accidental conditions of future HTGRs. Within the IAEA directed Coordinated Research Project CRP6 on 'Advances in HTGR Fuel Technology Development' active since 2002, the 13 participating Member States have agreed upon benchmark studies on fuel performance during normal operation and under accident conditions. While the former has been completed in the meantime, the focus is now on the extension of the national code developments to become applicable to core heatup accident conditions. These activities are supported by the fact that core heatup simulation experiments have been resumed recently providing new, highly valuable data. Work on accident performance will be - similar to the normal operation benchmark - consisting of three essential parts comprising both code verification that establishes the correspondence of code work with the underlying physical, chemical and mathematical laws, and code validation that establishes reasonable agreement with the existing experimental data base, but including also predictive calculations for future heating tests and/or reactor concepts. The paper will describe the cases to be studied and the calculational results obtained with the German computer model FRESCO. Among the benchmark cases in consideration are tests which were most recently conducted in the new heating facility KUEFA. Therefore this study will also re-open the discussion and analysis of both the validity of diffusion models and the transport data of the principal fission product species in the HTGR fuel materials as essential input data for the codes. (authors)

  17. Consequence analysis of core meltdown accidents in liquid metal fast reactor

    International Nuclear Information System (INIS)

    Suk, S.D.; Hahn, D.

    2001-01-01

    Core disruptive accidents have been investigated at Korea Atomic Energy Research Institute(KAERI) as part of work to demonstrate the inherent and ultimate safety of the conceptual design of the Korea Advanced Liquid Metal Reactor(KALIMER), a 150 Mw pool-type sodium cooled prototype fast reactor that uses U-Pu-Zr metallic fuel. In this study, a simple method was developed using a modified Bethe-Tait method to simulate the kinetics and hydraulic behavior of a homogeneous spherical core over the period of the super-prompt critical power excursion induced by the ramp reactivity insertion. Calculations of energy release during excursions in the sodium-voided core of the KALIMER were subsequently performed using the method for various reactivity insertion rates up to 100 $/s, which has been widely considered to be the upper limit of ramp rates due to fuel compaction. Benchmark calculations were made to compare with the results of more detailed analysis for core meltdown energetics of the oxide fuelled fast reactor. A set of parametric studies was also performed to investigate the sensitivity of the results on the various thermodynamics and reactor parameters. (author)

  18. Stability Analysis of the EBR-I Mark-II Core Meltdown Accident

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Jae-Yong; Kang, Chang Mu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    The purpose of this paper is to analyze the stability of the EBR-I core meltdown accident using the NuSTAB code. The result of NuSTAB analysis is compared with previous stability analysis by Sandmeier using the root locus method. The Experimental Breeder Reactor I (EBR-1) at Argonne National Laboratory was designed to demonstrate fast reactor breeding and to prove the use of liquid-metal coolant for power production and reached criticality in August 1951. The EBR-I reactor was undergoing a series of physics experiments and the Mark-II core was melted accidentally on Nov. 29, 1955. The experiment was going to increase core temperature to 500C to see if the reactor loses reactivity, and scram when the power reached 1500 kW or doubling of fission rate per second. However the operator scrammed with a slow moving control and missed the shutdown by two seconds and caused the core meltdown. The NuSTAB code has an advantage of analyzing space-dependent fast reactors and predicting regional oscillations compared to the point kinetics. Also, NuSTAB can be useful when the coupled neutronic-thermal-hydraulic codes cannot be used for stability analysis. Future work includes analyses of the PGSFR for various operating conditions as well as further validation of the NuSTAB calculations against SFR stability experiments when such experiments become available.

  19. Specialists' meeting on role of fission products in whole core accidents

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-07-01

    Safety of nuclear reactors has been a central concern of the nuclear energy industry from the very beginning. This concern, and the resultant excellence of design, fabrication, and operation, aided by extensive engineered safety features, has given nuclear energy its superior record of protection of the environment and of the public health and safety. With respect to the fast reactor, it was recognized early in the program that there exists a theoretical possibility of a core compaction leading to significant energy release. The considerations of fission product effects are primarily on of the main concerns in evaluation of safety issues. Since fission products have the potential for dispersing fuel from the core region and thereby producing reactor shutdown, knowledge of their effects can contribute to demonstrating that there is a low probability producing whole-core involvement. Similarly, knowledge of fission product effects can contribute to demonstrating that there is a low probability of a whole-core disruptive accident leading to sufficient energy release to challenge the containment capability.

  20. Specialists' meeting on role of fission products in whole core accidents

    International Nuclear Information System (INIS)

    1977-01-01

    Safety of nuclear reactors has been a central concern of the nuclear energy industry from the very beginning. This concern, and the resultant excellence of design, fabrication, and operation, aided by extensive engineered safety features, has given nuclear energy its superior record of protection of the environment and of the public health and safety. With respect to the fast reactor, it was recognized early in the program that there exists a theoretical possibility of a core compaction leading to significant energy release. The considerations of fission product effects are primarily on of the main concerns in evaluation of safety issues. Since fission products have the potential for dispersing fuel from the core region and thereby producing reactor shutdown, knowledge of their effects can contribute to demonstrating that there is a low probability producing whole-core involvement. Similarly, knowledge of fission product effects can contribute to demonstrating that there is a low probability of a whole-core disruptive accident leading to sufficient energy release to challenge the containment capability

  1. Tailoring Sandwich Face/Core Interfaces for Improved Damage Tolerance

    DEFF Research Database (Denmark)

    Lundsgaard-Larsen, Christian; Berggreen, Christian; Carlsson, Leif A.

    2010-01-01

    Various modifications of the face/core interface in foam core sandwich specimens are examined in a series of two papers. This paper constitutes part I and describes the finite element analysis of a sandwich test specimen, i.e. a DCB specimen loaded by uneven bending moments (DCB-UBM). Using...... this test almost any mode-mixity between pure mode I and mode II can be obtained. A cohesive zone model of the mixed mode fracture process involving large-scale bridging is developed. Results from the analysis are used in Part II, which describes methods and results of a series of experiments....

  2. Stiffness and strength degradation of damaged truss core composites

    Czech Academy of Sciences Publication Activity Database

    Šiška, Filip; Tawfeeq, Arwa F.; Dlouhý, I.; Barnett, M.R.

    2015-01-01

    Roč. 125, JUL (2015), s. 287-294 ISSN 0263-8223 R&D Projects: GA MŠk EE2.3.20.0197 Institutional support: RVO:68081723 Keywords : Truss core composites * Finite element * Strain rate * High temperature tests Subject RIV: JI - Composite Materials Impact factor: 3.853, year: 2015

  3. Estimation of the mechanical effects of a core disruptive accident on a LMFBR

    International Nuclear Information System (INIS)

    Robbe, M.F.; Lepareux, M.; Treille, E.

    2001-01-01

    In case of a Hypothetical Core Disruptive Accident (HCDA) in a Liquid Metal Reactor, the interaction between fuel and liquid sodium creates a high pressure gas bubble in the core. The violent expansion of this bubble loads the vessel and the internal structures, whose deformation is important. In order to demonstrate the CASTEM-PLEXUS capability to predict the behaviour of real reactors], axisymmetric computations of the MARA series were confronted with the experimental results. The computations performed at the beginning of the years 90 showed a rather good agreement between the experimental and computed results for the MARA 8 and MARA 10 tests even if there were some discrepancies which might be eliminated by increasing the fineness of the mesh. On the contrary, the prediction of the MARS structure displacements and strains was overestimated. This conservatism was supposed to come from the fact that several MARS non axisymmetric structures like core elements, pumps and heat exchangers were not represented in the CASTEM-PLEXUS model. These structures, acting as porous barriers, had a protective effect on the containment by absorbing energy and slowing down the fluid impacting the containment. For these reasons, we developed in CASTEM-PLEXUS a new HCDA constitutive law taking into account the presence of the internal structures (without meshing them) by means of an equivalent porosity method and we simulated the MARS test another time with the new HCDA constitutive law. This paper presents the numerical results relative to the structure behaviour during the accident. The results are described through the evolution of several variables versus time: deformed shape of the structures and the mesh, displacements, stresses and plastic strains. (author)

  4. Molten Core - Concrete interactions in nuclear accidents. Theory and design of an experimental facility

    International Nuclear Information System (INIS)

    Sevon, T.

    2005-11-01

    In a hypothetical severe accident in a nuclear power plant, the molten core of the reactor may flow onto the concrete floor of containment building. This would cause a molten core . concrete interaction (MCCI), in which the heat transfer from the hot melt to the concrete would cause melting of the concrete. In assessing the safety of nuclear reactors, it is important to know the consequences of such an interaction. As background to the subject, this publication includes a description of the core melt stabilization concept of the European Pressurized water Reactor (EPR), which is being built in Olkiluoto in Finland. The publication includes a description of the basic theory of the interaction and the process of spalling or cracking of concrete when it is heated rapidly. A literature survey and some calculations of the physical properties of concrete and corium. concrete mixtures at high temperatures have been conducted. In addition, an equation is derived for conservative calculation of the maximum possible concrete ablation depth. The publication also includes a literature survey of experimental research on the subject of the MCCI and discussion of the results and deficiencies of the experiments. The main result of this work is the general design of an experimental facility to examine the interaction of molten metals and concrete. The main objective of the experiments is to assess the probability of spalling, or cracking, of concrete under pouring of molten material. A program of five experiments has been designed, and pre-test calculations of the experiments have been conducted with MELCOR 1.8.5 accident analysis program and conservative analytic calculations. (orig.)

  5. Advanced neutron source reactor conceptual safety analysis report, three-element-core design: Chapter 15, accident analysis

    International Nuclear Information System (INIS)

    Chen, N.C.J.; Wendel, M.W.; Yoder, G.L.; Harrington, R.M.

    1996-02-01

    In order to utilize reduced enrichment fuel, the three-element-core design for the Advanced Neutron Source has been proposed. The proposed core configuration consists of inner, middle, and outer elements, with the middle element offset axially beneath the inner and outer elements, which are axially aligned. The three-element-core RELAP5 model assumes that the reactor hardware is changed only within the core region, so that the loop piping, heat exchangers, and pumps remain as assumed for the two-element-core configuration. To assess the impact of changes in the core region configuration and the thermal-hydraulic steady-state conditions, the safety analysis has been updated. This report gives the safety margins for the loss-of-off-site power and pressure-boundary fault accidents based on the RELAP5 results. AU margins are greater for the three-element-core simulations than those calculated for the two-element core

  6. Assessment of Core Failure Limits for Light Water Reactor Fuel under Reactivity Initiated Accidents

    International Nuclear Information System (INIS)

    Jernkvist, Lars Olof; Massih, Ali R.

    2004-12-01

    Core failure limits for high-burnup light water reactor UO 2 fuel rods, subjected to postulated reactivity initiated accidents (RIAs), are here assessed by use of best-estimate computational methods. The considered RIAs are the hot zero power rod ejection accident (HZP REA) in pressurized water reactors and the cold zero power control rod drop accident (CZP CRDA) in boiling water reactors. Burnup dependent core failure limits for these events are established by calculating the fuel radial average enthalpy connected with incipient fuel pellet melting for fuel burnups in the range of 30 to 70 MWd/kgU. The postulated HZP REA and CZP CRDA result in lower enthalpies for pellet melting than RIAs that take place at rated power. Consequently, the enthalpy thresholds presented here are lower bounds to RIAs at rated power. The calculations are performed with best-estimate models, which are applied in the FRAPCON-3.2 and SCANAIR-3.2 computer codes. Based on the results of three-dimensional core kinetics analyses, the considered power transients are simulated by a Gaussian pulse shape, with a fixed width of either 25 ms (REA) or 45 ms (CRDA). Notwithstanding the differences in postulated accident scenarios between the REA and the CRDA, the calculated core failure limits for these two events are similar. The calculated enthalpy thresholds for fuel pellet melting decrease gradually with fuel burnup, from approximately 960 J/gUO 2 at 30 MWd/kgU to 810 J/gUO 2 at 70 MWd/kgU. The decline is due to depression of the UO 2 melting temperature with increasing burnup, in combination with burnup related changes to the radial power distribution within the fuel pellets. The presented fuel enthalpy thresholds for incipient UO 2 melting provide best-estimate core failure limits for low- and intermediate-burnup fuel. However, pulse reactor tests on high-burnup fuel rods indicate that the accumulation of gaseous fission products within the pellets may lead to fuel dispersal into the coolant at

  7. Analysis of hypothetical LMFBR whole-core accidents in the USA

    International Nuclear Information System (INIS)

    Ferguson, D.R.; Deitrich, L.W.; Brown, N.W.; Waltar, A.E.

    1978-01-01

    Methods used for analysis of material behaviour, accident phenomenology and integrated accident calculations are reviewed. Applications of these methods to hypothetical LOF and TOP accidents are discussed. Recent results obtained from applications to FFTF and CRBRP are presented. (author)

  8. Organizing irresponsibility? The (inter)national management of a nuclear accident damages as discursive regime

    International Nuclear Information System (INIS)

    Topcu, Sezin

    2014-01-01

    This article analyzes the historical process related to the international organization of responsibilities and the management of the damages in case of a nuclear disaster. The author shows that the political and legal settings on which the discourse of an 'international regime of civil responsibility' (that emerged in the 1960's) relies, have globally aimed at maintaining a 'historical and spectacular gap' between the damages the nuclear operators are taking responsibility for, and the real and extensive damages engendered by a major accident. She argues that the existence of such a 'gap' is inherent to the nuclear sector, that it is a form of government (both of economic affairs and of the public space) which was historically constructed, and that the existence of such a gap is crucial for the survival of the nuclear industry itself. Thus the notion of 'responsibility' in the nuclear sector appears to serve mainly as a discursive regime, as a means to organize not only responsibilities but also irresponsibilities, whatever the geographic scale (national or international) at which they should be managed

  9. An Analysis of Reactor Structural Response to Fuel Sodium Interaction in a Hypothetical Core Disruptive Accident

    International Nuclear Information System (INIS)

    Suzuki, K.; Tashiro, M.; Sasanuma, K.; Nagashima, K.

    1976-01-01

    This study shows the effect of constraints around FSI zone on FSI phenomena and deformations of reactor structures. SUGAR-PISCES code system has been developed to evaluate the phenomena of FSI and the response of reactor structure. SUGAR calculates the phenomena of FSI. PISCES, developed by Physics International Company in U.S.A, calculates the dynamic response of reactor structure in two-dimensional, time-dependent finite-difference Lagrangian model. The results show that the peak pressure and energy by FSI and the deformation of reactor structures are about twice in case of FSI zone surrounding by blanket than by coolant. The FSI phenomena highly depend on the reactor structure and the realistic configuration around core must be considered for analyzing hypothetical core disruptive accident. In conclusion: FSI phenomena depend highly on constraints around FSI zone, so that the constraints must be dealt with realistically in analytical models. Although a two-dimensional model is superior to a quasi-two-dimensional model. The former needs long calculation time, so it is very expensive using in parametric study. Therefore, it is desirable that the two-dimensional model is used in the final study of reactor design and the quasi-two-dimensional model is used in parametric study. The blanket affects on the acoustic pressure and the deformations of radial structures, but affects scarcely on the upper vessel deformation. The blanket also affects on the mechanical work largely. The core barrel gives scarcely the effects on pressure in single phase but gives highly the effects on pressure in two-phase and deformation of reactor structures in this study. For studying the more realistic phenomena of FSI in the reactor design, the following works should be needed. (i) Spatial Distribution of FSI Region Spatial and time-dependent distribution of fuel temperature and molten fuel fraction must be taken in realistic simulation of accident condition. To this purpose, the code will

  10. Analysis of loss of coolant accident and emergency core cooling system

    International Nuclear Information System (INIS)

    Abe, Kiyoharu; Kobayashi, Kenji; Hayata, Kunihisa; Tasaka, Kanji; Shiba, Masayoshi

    1977-01-01

    In this paper, the analysis for the performance evaluation of emergency core cooling system is described, which is the safety protection device to the loss of coolant accidents due to the break of primary cooling pipings of light water reactors. In the LOCA analysis for the performance evaluation of ECCS, it must be shown that a reactor core keeps the form which can be cooled with the ECCS in case of LOCA, and the overheat of the core can be prevented. Namely, the shattering of fuel cladding tubes is never to occur, and for the purpose, the maximum temperature of Zircaloy 2 or 4 cladding tubes must be limited to 1200 deg C, and the relative thickness of oxide film must be below 15%. The calculation for determining the temperature of cladding tubes in case of the LOCA in BWRs and PWRs is explained. First, the primary cooling system, the ECCS and the related installations of BWRs and PWRs are outlined. The code systems for LOCA/ECCS analysis are divid ed into several steps, such as blowdown process, reflooding process and heatup calculation. The examples of the sensitivity analysis of the codes are shown. The LOCA experiments carried out so far in Japan and foreign countries and the LOCA analysis of a BWR with RELAP-4J code are described. The guidance for the performance evaluation of ECCS was established in 1975 by the Reactor Safety Deliberation Committee in Japan, and the contents are quoted. (Kako, I.)

  11. Analysis of the core reflooding of a PWR reactor under a loss-of-coolant postulated accident

    International Nuclear Information System (INIS)

    Austregesilo Filho, H.

    1978-12-01

    The main purpose of this work is to analyse the termohydraulic behaviour of emergency cooling water, during reflooding of a PWR core submitted to a postulated loss-of-coolant accident, with the scope of giving the boundary conditions needed to verify fuel element and containment integrity. The analytical model presented was applied to the simulation of Angra I core reflooding phase, after a double-ended break between pressure vessel and discharge of one of the main coolant pumps. For this accident, with a discharge coefficient of C sub(D) = 0.4, the highest peak cladding temperature is expected. (author) [pt

  12. Potential biological indicators of multi-organ damage: Application to radiation accident victims

    International Nuclear Information System (INIS)

    Bertho, J.M.; Souidi, M.; Gourmelon, P.

    2009-01-01

    Accidental irradiations induce a complex pathological situation, difficult to assess and to treat. However, recent results describing new biological indicators of radiation-induced damages such as Flt3-ligand, citrulline and oxy-sterol concentration in the plasma, together with results obtained in large animal models of high dose irradiation, allowed a better understanding of pathophysiological mechanisms induced by uncontrolled irradiations. This conducted to leave the classical paradigm of the acute radiation syndrome, described as the association of three individual syndromes, the hematopoietic syndrome, the gastro-intestinal syndrome and the cerebrovascular syndrome, in favour of a multiple organ dysfunction syndrome, with the implication of other organs and systems. Follow-up of victims from two recent radiation accidents brings a confirmation of the usefulness of the newly described biological indicators, and also a partial confirmation of this new concept of a multiple organ dysfunction syndrome. (authors)

  13. A risk-based evaluation of LMFBR containment response under core disruptive accident conditions

    International Nuclear Information System (INIS)

    Hartung, J.; Berk, S.

    1978-01-01

    Probabilistic risk methodology is utilized to evaluate the failure modes and effects of LMFBR containment systems under Core Disruptive Accident (CDA) conditions. First, the potential causes of LMFBR containment failure under CDA conditions are discussed and categorized. Then, a simple scoping-type risk assessment of a reference design is presented to help place these potential causes of failure in perspective. The highest risk containment failure modes are identified for the reference design, and several design and research and development options which appear capable of reducing these risks are discussed. The degree to which large LMFBR containment systems must mitigate the consequences of CDA's to achieve a level of risk (for LMFBR's) comparable to the already very low risk of contemporary LWR's is explored. Based on the results of this evaluation, several suggestions are offered concerning CDA-related design goals and research and development priorities for large LMFBR's. (author)

  14. Methods to prevent the source term of methyl lodide during a core melt accident

    Energy Technology Data Exchange (ETDEWEB)

    Karhu, A. [VTT Energy (Finland)

    1999-11-01

    The purpose of this literature review is to gather available information of the methods to prevent a source term of methyl iodide during a core melt accident. The most widely studied methods for nuclear power plants include the impregnated carbon filters and alkaline additives and sprays. It is indicated that some deficiencies of these methods may emerge. More reactive impregnants and additives could make a great improvement. As a new method in the field of nuclear applications, the potential of transition metals to decompose methyl iodide, is introduced in this review. This area would require an additional research, which could elucidate the remaining questions of the reactions. The ionization of the gaseous methyl iodide by corona-discharge reactors is also shortly described. (au)

  15. Degraded core accidents for the Sizewell PWR A sensitivity analysis of the radiological consequences

    CERN Document Server

    Kelly, G N; Clarke, R H; Ferguson, L; Haywood, S M; Hemming, C R; Jones, J A

    1982-01-01

    The radiological impact of degraded core accidents postulated for the Sizewell PWR was assessed in an earlier study. In this report the sensitivity of the predicted consequences to variation in the values of a number of important parameters is investigated for one of the postulated accidental releases. The parameters subjected to sensitivity analyses are the dose-mortality relationship for bone marrow irradiation, the energy content of the release, the warning time before the release to the environment, and the dry deposition velocity for airborne material. These parameters were identified as among the more important in determining the uncertainty in the results obtained in the initial study. With a few exceptions the predicted consequences were found to be not very sensitive to the parameter values investigated, the range of variation in the consequences for the limiting values of each parameter rarely exceeded a factor of a few and in many cases was considerably less. The conclusions reached are, however, p...

  16. Quench cooling of superheated debris beds in containment during LWR core meltdown accidents

    International Nuclear Information System (INIS)

    Ginsberg, T.; Chen, J.C.

    1984-01-01

    Light water reactor core meltdown accident sequence studies suggest that superheated debris beds may settle on the concrete floor beneath the reactor vessel. A model for the heat transfer processes during quench (removal of stored energy from initial temperature to saturation temperature) of superheated debris beds cooled by an overlying pool of water has been presented in a prior paper. This paper discusses the coolability of decay-heated debris beds from the standpoint of their transient quench characteristics. It is shown that even though a debris bed configuration may be coolable from the point of view of steady-state decay heat removal, the quench behavior from an initially elevated temperature may lead to bed melting prior to quench of the debris

  17. An assessment of Class-9 (core-melt) accidents for PWR dry-containment systems

    International Nuclear Information System (INIS)

    Theofanous, T.G.; Saito, M.

    1981-01-01

    The phenomenology of core-melt accidents in dry containments was examined for the purpose of identifying the margins of safety in such Class-9 situations. The scale (geometry) effects appear to crucially limit the extent (severity) of steam explosions. This together with the established reduced explosivity of the corium-A/water system, and the inherently high capability of dry containments (redinforced concrete, and shields in some cases, seismic design etc.) lead to the conclusion that failure due to steam explosions may be considered essentially incredible. These premixture scaling considerations also impact ultimate debris disposition and coolability and need additional development. A water-flooded reactor cavity would have beneficial effects in limiting (but not necessarily eliminating) melt-concrete interactions. Independently of the initial degree of quenching and/or scale of fragmentation, mechanisms exist that drive the system towards ultimate stability (coolability). Additional studies, with intermediate-scale prototypic materials are recommended to better explore these mechanisms. Containment heat removal systems must provide the crucial capability of mitigating such accidents. Passive systems should be explored and assessed against currently available and/or improved active systems taking into account the rather loose time constraints required for activation. It appears that containment margins for accommodating the hydrogen problem are limited. This problem appears to stand out not only in terms of potential consequences but also in terms of lack of any readily available and clear cut solutions at this time. (orig.)

  18. Sensitivity analysis of thermal hydraulic response in containment at core meltdown accident

    International Nuclear Information System (INIS)

    Kobayashi, Kensuke; Ishigami, Tsutomu; Horii, Hideo; Chiba, Takemi.

    1985-01-01

    A sensitivity analysis of thermal hydraulic response in a containment during a 'station blackout' (the loss of all AC power) accident at Browns Ferry unit one plant was performed with the computer code MARCH 1.0. In the analysis, the plant station batteries were assumed to be available for 4h after the initiation of the accident. The thermal hydraulic response in the containment was calculated by varying several input data for MARCH 1.0 independently and the deviation among calculated results were investigated. The sensitivity analysis showed that (a) the containment would fail due to the overtemperature without any operator actions for plant recovery, which would be strongly dependent on the model of the debris-concrete interaction and the input parameters for specifying the containment failure modes in MARCH 1.0, (b) a core melting temperature and an amount of water left in a primary system at the end of the meltdown were identified as important parameters which influenced the time of the containment failure, and (c) experimental works regarding the parameters mentioned above could be recommended. (author)

  19. Safeguarding of emergency core cooling in case of loss-of-coolant accidents with insulation material release

    International Nuclear Information System (INIS)

    Pointner, W.; Broecker, A.

    2012-01-01

    The report on safeguarding of emergency core cooling in case of loss-of-coolant accidents with insulation material release covers the following issues: assessment of the relevant status for PWR, evaluation of the national and international (USA, Canada, France) status, actualization of recommendations, transferability from PWR to BWR. Generic studies on the core cooling capability in case of insulation material release in BWR-type reactors were evaluated.

  20. A description of nuclear reactor accidents and their consequences

    International Nuclear Information System (INIS)

    Murray, A.

    1989-01-01

    Nuclear reactor accidents which have caused core damage, released a significant amount of radioactivity, or caused death or serious injury are described. The reactor accidents discussed in detail include Chernobyl, Three Mile Island, SL-1 and Windscale, although information on other less consequential accidents is also provided. The consequences of these accidents are examined in terms of the amounts of radioactivity released, the radiation doses received, and remedial actions and interventions taken following the accident. 10 refs., 1 fig., 2 tabs

  1. Analyzing the BWR rod drop accident in high-burnup cores

    International Nuclear Information System (INIS)

    Diamond, D.J.; Neymotin, L.; Kohut, P.

    1995-01-01

    This study was undertaken for the US Nuclear Regulatory Commission to determine the fuel enthalpy during a rod drop accident (RDA) for cores with high burnup fuel. The calculations were done with the RAMONA-4B code which models the core with 3-dimensional neutron kinetics and multiple parallel coolant channels. The calculations were done with a model for a BWR/4 with fuel bundles having burnups up to 30 GWd/t and also with a model with bundle burnups to 60 GWd/t. This paper also discusses potential sources of uncertainty in calculations with high burnup fuel. One source is the ''rim'' effect which is the extra large peaking of the power distribution at the surface of the pellet. This increases the uncertainty in reactor physics and heat conduction models that assume that the energy deposition has a less peaked spatial distribution. Two other sources of uncertainty are the result of the delayed neutron fraction decreasing with burnup and the positive moderator temperature feedback increasing with burnup. Since these effects tend to increase the severity of the event, an RDA calculation for high burnup fuel will underpredict the fuel enthalpy if the effects are not properly taken into account. Other sources of uncertainty that are important come from the initial conditions chosen for the RDA. This includes the initial control rod pattern as well as the initial thermal-hydraulic conditions

  2. Core to surge-line energy transport in a severe accident scenario

    International Nuclear Information System (INIS)

    Marzo, M. di; Almenas, K.; Gopalnarayanan, S.

    1994-01-01

    The analysis of loss of coolant accidents in a nuclear power plant, which progress to the stage where the core is uncovered, poses important safety related questions. One of these concerns the rate of energy transport to metal components of the primary system. An experimental program has been conducted at the Univ. of Maryland test facility which quantifies the rate of energy transfer from an uncovered core in a B ampersand W (once-through type steam generators) plant. SF 6 is used to simulate the natural circulation driving force of the high pressure steam expected at prototypical conditions. A time-dependent scaling methodology is developed to transpose experimental data to prototypical conditions. To achieve this transformation, a nominal fluid temperature increase rate of 1.0 degrees C/s is inferred from available TMI-2 event data. To bracket the range of potential prototypical transient scenarios, temperature ramps of 0.8 degrees C/s and 1.2 degrees C/s are also considered. Repeated tests, covering a range of test facility conditions, lead to estimated failure times at the surge line nozzle of 1.5 to 2 hours after initiation of the natural circulation phase of the transient

  3. Prediction of thermoplastic failure of a reactor pressure vessel under a postulated core melt accident

    International Nuclear Information System (INIS)

    Duijvestijn, G.; Birchley, J.; Reichlin, K.

    1997-01-01

    This paper presents the lower head failure calculations performed for a postulated accident scenario in a commercial nuclear power plant. A postulated one inch break in the primary coolant circuit leads to dryout and subsequent meltdown of the core. The reference plant is a pressurized water reactor without penetrations in the reactor vessel lower head. The molten core material accumulates in the lower head, eventually causing failure of the vessel. The analysis investigates flow conditions in the melt pool, temperature evolution in the reactor vessel wall, and structure mechanical evaluation of the vessel under strong thermal loads and a range of internal pressures. The calculations were performed using the ADINA finite element codes. The analysis focusses on the failure processes, time and mode of failure. The most likely mode of failure at low pressure is global rupture due to gradual accumulation of creep strain over a large part of the heated area. In contrast, thermoplasticity becomes important at high pressure or following a pressure spike and can lead to earlier local failure. In situations in which part of the heat load is concentrated over a small area, resulting in a hot spot, local failure occurs, but not until the temperatures are close to the melting point. At low pressure, in particular, the hot spot area remains intact until the structure is molten across more than half of the thickness. (author) 14 figs., 16 refs

  4. Conditions for oxygen-deficient combustion during accidents with severe core concrete thermal attack

    International Nuclear Information System (INIS)

    Luangdilok, W.; Elicson, G.T.; Berger, W.E. Jr.

    1993-01-01

    This paper addresses the interactions between MCCI (molten core-concrete interactions)-induced offgas releases, mostly the combustible gases, natural circulation between the cavity and the lower containment based on recent research developments in the area of mixed convection flow (Epstein, et al., 1989; Epstein, 1988; Epstein, 1992) between compartments, and their effects on combustion in PWR containments during prolonged severe accidents. Specifically, large dry PWR containments undergoing severe core-concrete attack during station blackouts where the containment atmosphere is expected to be inerted are objects of this analysis. The purpose of this paper, given the conditions that oxygen can be brought to the cavity, is to demonstrate that consumption of most oxygen present in the containment can be achieved in a reasonable time scale assuming that combustion is not subject to flammability limits due to the high cavity temperatures. The conditions for cavity combustion depend on several factors including good gas flowpaths between the cavity and other containment regions, and combustion processes within the cavity with the hot debris acting as the ignition source

  5. Evaluation of final vapor pressures in the loss of flow accident in an irradiation device of a pool reactor core

    International Nuclear Information System (INIS)

    Verri, A.

    1987-01-01

    The reliability feature, are described for a device containing samples, at a temperatures of 300 grade centigrades, in a reactor core for a long time. After an examination of the maximum accident event, the maximum vapour pressure originated by the inlet of reactor cooling water into the experimental device, is evaluated

  6. Evaluation of potential severe accidents during low power and shutdown operations at Grand Gulf, Unit 1. Volume 2, Part 1C: Analysis of core damage frequency from internal events for plant operational State 5 during a refueling outage, Main report (Sections 11--14)

    International Nuclear Information System (INIS)

    Whitehead, D.; Darby, J.; Yakle, J.

    1994-06-01

    This document contains the accident sequence analysis of internally initiated events for Grand Gulf, Unit 1 as it operates in the Low Power and Shutdown Plant Operational State 5 during a refueling outage. The report documents the methodology used during the analysis, describes the results from the application of the methodology, and compares the results with the results from two full power analyses performed on Grand Gulf

  7. Evaluation of potential severe accidents during low power and shutdown operations at Grand Gulf, Unit 1: Analysis of core damage frequency from internal events for Plant Operational State 5 during a refueling outage. Volume 2, Part 2: Internal Events Appendices A to H

    International Nuclear Information System (INIS)

    Darby, J.; Whitehead, D.; Staple, B.; Dandini, V.

    1994-06-01

    This document contains the accident sequence analysis of internally initiated events for Grand Gulf, Unit 1 as it operates in the Low Power and Shutdown Plant Operational State 5 during a refueling outage. The report documents the methodology used during the analysis, describes the results from the application of the methodology, and compares the results with the results from two full power analyses performed on Grand Gulf

  8. Evaluation of potential severe accidents during Low Power and Shutdown Operations at Grand Gulf, Unit 1. Volume 2, Part 1B: Analysis of core damage frequency from internal events for Plant Operational State 5 during a refueling outage, Main report (Section 10)

    International Nuclear Information System (INIS)

    Whitehead, D.; Darby, J.; Yakle, J.

    1994-06-01

    This document contains the accident sequence analysis of internally initiated events for Grand Gulf, Unit 1 as it operates in the Low Power and Shutdown Plant Operational State 5 during a refueling outage. The report documents the methodology used during the analysis, describes the results from the application of the methodology, and compares the results with the results from two full power performed on Grand Gulf. This document, Volume 2, Part 1B, presents chapters Section 10 of this report, Human Reliability Analysis

  9. SEVERE ACCIDENT ISSUES RAISED BY THE FUKUSHIMA ACCIDENT AND IMPROVEMENTS SUGGESTED

    OpenAIRE

    SONG, JIN HO; KIM, TAE WOON

    2014-01-01

    This paper revisits the Fukushima accident to draw lessons in the aspect of nuclear safety considering the fact that the Fukushima accident resulted in core damage for three nuclear power plants simultaneously and that there is a high possibility of a failure of the integrity of reactor vessel and primary containment vessel. A brief review on the accident progression at Fukushima nuclear power plants is discussed to highlight the nature and characteristic of the event. As the severe accide...

  10. Calculation of individual and population doses on Danish territory resulting from hypothetical core-melt accidents at the Barsebaeck reactor

    International Nuclear Information System (INIS)

    1977-01-01

    Individual and population doses within Danish territory are calculated from hypothetical, severe core-melt accidents at the Swedish nuclear plant at Barsebaeck. The fission product inventory of the Barsebaeck reactor is calculated. The release fractions for the accidents are taken from WASH-1400. Based on parametric studies, doses are calculated for very unfavourable, but not incredible weather conditions. The probability of such conditions in combination with wind direction towards Danish territory is estimated. Doses to bone marrow, lungs, GI-tract and thyroid are calculated based on dose models developed at Risoe. These doses are found to be consistent with doses calculated with the models used in WASH-1400. (author)

  11. Steady-state thermal hydraulic analysis and flow channel blockage accident analysis of JRR-3 silicide core

    International Nuclear Information System (INIS)

    Kaminaga, Masanori

    1997-03-01

    JRR-3 is a light water moderated and cooled, beryllium and heavy water reflected pool type research reactor using low enriched uranium (LEU) plate-type fuels. Its thermal power is 20 MW. The core conversion program from uranium-aluminum (UAl x -Al) dispersion type fuel (aluminide fuel) to uranium-silicon-aluminum (U 3 Si 2 -Al) dispersion type fuel (silicide fuel) is currently conducted at the JRR-3. This report describes about the steady-state thermal hydraulic analysis results and the flow channel blockage accident analysis result. In JRR-3, there are two operation mode. One is high power operation mode up to 20 MW, under forced convection cooling using the primary and the secondary cooling systems. The other is low power operation mode up to 200 kW, under natural circulation cooling between the reactor core and the reactor pool without the primary and the secondary cooling systems. For the analysis of the flow channel blockage accident, COOLOD code was used. On the other hand, steady-state thermal hydraulic analysis for both of the high power operation mode under forced convection cooling and low power operation under natural convection cooling, COOLOD-N2 code was used. From steady-state thermal hydraulic analysis results of both forced and natural convection cooling, fuel temperature, minimum DNBR etc. meet the design criteria and JRR-3 LEU silicide core has enough safety margin under normal operation conditions. Furthermore, flow channel blockage accident analysis results show that one channel flow blockage accident meet the safety criteria for accident conditions which have been established for JRR-3 LEU silicide core. (author)

  12. Analysis for mechanical consequences of a core disruptive accident in Prototype Fast Breeder Reactor

    International Nuclear Information System (INIS)

    Chellapandi, P.; Velusamy, K.; Chetal, S.C.; Bhoje, S.B.; Lal, H.; Sethi, V.S.

    2003-01-01

    The mechanical consequences of a core disruptive accident (CDA) in a fast breeder reactor are described. The consequences are development of deformations and strains in the vessels, intermediate heat exchangers (IHX) and decay heat exchangers (DHX), impact of sodium slug on the bottom surface of the top shield, sodium release to reactor containment building through top shield penetrations, sodium fire and consequent temperature and pressure rise in reactor containment building (RCB). These are quantified for 500 MWe Prototype Fast Breeder Reactor (PFBR) for a CDA with 100 MJ work potential. The results are validated by conducting a series of experiments on 1/30 and 1/13 scaled down models with increasing complexities. Mechanical energy release due to nuclear excursion is simulated by chemical explosion of specially developed low density explosive charge. Based on these studies, structural integrity of primary containment, IHX and DHX is demonstrated. The sodium release to RCB is 350 kg which causes pressure rise of 12 kPa in RCB. (author)

  13. Thermal hydraulic And RSG-Gas Core Reactivity Characteristics Due To Cold Water Insertion Accident

    International Nuclear Information System (INIS)

    Hastuti, Endiah Puji; Suparlina, Lily; Tukiran

    2000-01-01

    Under normal operating condition,the primary coolant is circulated by 2 out of the 3 primary coolant pumps. Unnecessary operation of the reserve pump would result in a temperatur decrease of the primary coolant by less than 5 o C. the corresponding increase of reactivity amounts to Δρ ≤0,1 %. The analysis was done using silicide core configuration data with 3.55 gU /cm 3 fuel loading. The calculation model was done with and without automatic control rod. The calculation results for the worst case condition, shows that reactor reached the maximum power 28.52 MW at 81.1 seconds, after the accident occurred. The maximal fuel element, cladding and outlet coolant temperatures are 148.3 o C,142.1 o C, and 75.7 o C, respectively. Safety margins for DNBR and flow instability reached 1.25 and 4.20, respectively. Comparing to the RSG-GAS safety margin at transient condition reguirement >1.48, RSG-GAS has enough safety margin if the power trip executed at 114% of 25 MW

  14. Preparations to load, transport, receive, and store the damaged TMI-2 [Three Mile Island] reactor core

    International Nuclear Information System (INIS)

    Reno, H.W.; Schmitt, R.C.; Quinn, G.J.; Ayers, A.L. Jr.; Lilburn, B.J. Jr.; Uhl, D.L.

    1986-03-01

    The March 1979 incident at the Three Mile Island Nuclear Power Station (TMI) which damaged the core of the Unit 2 reactor resulted in numerous scientific and technical challenges. Some of those challenges involve removing, packaging, and transporting the core debris to the Idaho National Engineering Laboratory (INEL) for storage, examination, and preparation for final disposal. This paper highlights preparations for transporting the core debris from TMI to INEL and receiving and storing that material at INEL. Issues discussed include interfacing of equipment and facilities at TMI, loading operations, transportation activities using a newly designed cask, receiving and storing operations at INEL, and criticality control during storage. Key to the transportation effort was designing, testing, fabricating, and licensing two rail casks which individually provide double containment of the damaged fuel. 27 figs

  15. Preliminary Assessment of the Possible BWR Core/Vessel Damage States for Fukushima Daiichi Station Blackout Scenarios Using RELAP/SCDAPSIM

    Directory of Open Access Journals (Sweden)

    C. M. Allison

    2012-01-01

    Full Text Available Immediately after the accident at Fukushima Daiichi, Innovative Systems Software and other members of the international SCDAP Development and Training Program started an assessment of the possible core/vessel damage states of the Fukushima Daiichi Units 1–3. The assessment included a brief review of relevant severe accident experiments and a series of detailed calculations using RELAP/SCDAPSIM. The calculations used a detailed RELAP/SCDAPSIM model of the Laguna Verde BWR vessel and related reactor cooling systems. The Laguna Verde models were provided by the Comision Nacional de Seguridad Nuclear y Salvaguardias, the Mexican nuclear regulatory authority. The initial assessment was originally presented to the International Atomic Energy Agency on March 21 to support their emergency response team and later to our Japanese members to support their Fukushima Daiichi specific analysis and model development.

  16. Dynamic structural response of reactor-core subassemblies (hexcans) due to accident overpressurization

    International Nuclear Information System (INIS)

    Pfeiffer, P.A.; Kulak, R.F.

    1993-01-01

    This paper presents a two-dimensional structural analysis for the evaluation of a single core subassembly due to internal overpressure associated with possible failure of fuel pins having high fission gas plenum pressure. Structural models are developed for the subassemblies and their surroundings with emphasis on the critical physical aspects of the problem. With these models the strains, deformations and the extent of permanent damage (plastic strain) to the subassemblies can be assessed. The nonlinear structural analyses was performed with a finite element program called STRAW (Structural Transient Response of Assembly Wrappers). This finite element program is applicable to nonlinear large displacement problems. The results of this study indicate that the permanent deformation (damage) is strongly influenced by the rise time (time to reach peak pressure) of the pressure pulse and the pressure in the fuel pin. The rise time is influenced by the opening time of the flow path for release of gas from the fuel pin plenum. Several examples are illustrated with various rise times and pressure magnitudes and the resulting permanent deformation of the hexcan wall. (author)

  17. Dynamic structural response of reactor-core subassemblies (hexcans) due to accident overpressurization

    International Nuclear Information System (INIS)

    Pfeiffer, P.A.; Kulak, R.F.

    1993-01-01

    This paper presents a two-dimensional structural analysis for the evaluation of a single core subassembly due to internal overpressure associated with possible failure of fuel pins having high fission gas plenum pressure. Structural models are developed for the subassemblies and their surroundings with emphasis on the critical physical aspects of the problem. With these models the strains, deformations and the extent of permanent damage (plastic strain) to the subassemblies can be assessed. The nonlinear structural analyses was performed with a finite element program called STRAW (Structural Transient Response of Assembly Wrappers). This finite element program is applicable to nonlinear large displacement problems. The results of this study indicate that the permanent deformation (damage) is strongly influenced by the rise time (time to reach peak pressure) of the pressure pulse and the pressure in the fuel pin. The rise time is influenced by the opening time of the flow path for release of gas from the fuel pin plenum. Several examples are illustrated with various rise times and pressure magnitudes and the resulting permanent deformation of the hexcan wall

  18. Structural response of reactor-core hexcan subassemblies subjected to dynamic overpressurization under accident conditions

    International Nuclear Information System (INIS)

    Pfeiffer, P.A.; Kulak, R.F.

    1993-01-01

    This paper presents a two-dimensional structural analysis for the evaluation of a single core subassembly due to internal overpressure associated with possible failure of fuel pins having high fission gas plenum pressure. Structural models are developed for the subassemblies and their surroundings with emphasis on the critical physical aspects of the problem. With these models the strains, deformations and the extent of permanent damage (plastic strain) to the subassemblies can be assessed. The nonlinear structural analyses was performed with a finite element program called STRAW (Structural Transient Response of Assembly Wrappers). This finite element program is applicable to nonlinear large displacement problems. The results of this study indicate that the permanent deformation (damage) is strongly influenced by the rise time (time to reach peak pressure) of the pressure pulse and the pressure in the fuel pin. The rise time is influenced by the opening time of the flow path for release of gas from the fuel pin plenum. Several examples are illustrated with various rise times and pressure magnitudes and the resulting permanent deformation of the hexcan wall

  19. Applications of nano-fluids to enhance LWR accidents management in in-vessel retention and emergency core cooling systems

    International Nuclear Information System (INIS)

    Chupin, A.; Hu, L. W.; Buongiorno, J.

    2008-01-01

    Water-based nano-fluid, colloidal dispersions of nano-particles in water; have been shown experimentally to increase the critical heat flux and surface wettability at very low concentrations. The use of nano-fluids to enhance accidents management would allow either to increase the safe margins in case of severe accidents or to upgrade the power of an existing power plant with constant margins. Building on the initial work, computational fluid dynamics simulations of the nano-fluid injection system have been performed to evaluate the feasibility of a nano-fluid injection system for in-vessel retention application. A preliminary assessment was also conducted on the emergency core cooling system of the European Pressurized Reactor (EPR) to implement a nano-fluid injection system for improving the management of loss of coolant accidents. Several design options were compared/or their respective merits and disadvantages based on criteria including time to injection, safety impact, and materials compatibility. (authors)

  20. Consideration of severe accident issues for the general electric BWR standard plant a status report

    International Nuclear Information System (INIS)

    Holtzclaw, K.W.

    1983-01-01

    In early 1982 the U.S. NRC proposed a policy to address severe accident rulemaking on future plants by utilizing standard plant licensing documentation. This paper, GE's submission, discusses the features of the design that prevent severe accidents from leading to core damage or that mitigate the effects of severe accidents should core damage occur. The quantification of the accident prevention and mitigation features, including those incorporated in the design since the accident at TMI, is provided by means of a comprehensive probabilistic risk assessment, which provides an analysis of the probability and consequences of postulated severe accidents

  1. Recriticality, a Key Phenomenon to Investigate in Core Disruptive Accident Scenarios of Current and Future Fast Reactor Designs

    International Nuclear Information System (INIS)

    Maschek, W.; Rineiski, A.; Flad, M.; Kriventsev, V.; Gabrielli, F.; Morita, K.

    2012-01-01

    Final comments and conclusions: • Modern plants, should have performed better under Fukushima type event. • In future fast reactor systems significantly higher active and passive safety features are installed, which should cope with events like Fukushima. • One important lesson: put a focus on rare initiators, accident routes and consequences that are neither expected nor have been observed, events that are categorized under ‘black swans’. • Importance of severe accident research demonstrated - both analytically and experimentally for assessing and interpreting accident scenarios and developments. Precondition for developing preventive & mitigative safety measures. Passive safety measures are in the focus of advanced design options and must work under conditions of multiple loads and aggravating events. • Fast reactor systems behavior as the SFR under severe accident conditions: – In fast spectrum systems as the SFR the core is not in its neutronically most reactive configuration and SFRs may be loaded with MAs for waste management; – Recriticalities have a high probability because of the higher enrichment levels; – Short time scales have to be envisioned for core melt-down; – Decay heat levels might be significantly higher, if MA bearing fuel is involved. • Improve design by measures for prevention and/or mitigation of recriticalities; – High reliability of simulations required for proof; • Assessment of fuel relocated on peripheral structures; • Preventive/mitigating measures should not replace containment measures

  2. Flow with boiling in four-cusp channels simulating damaged core in PWR type reactors

    International Nuclear Information System (INIS)

    Esteves, M.M.

    1985-01-01

    The study of subcooled nucleate flow boiling in non-circular channels is of great importance to engineering applications in particular to Nuclear Engineering. In the present work, an experimental apparatus, consisting basically of a refrigeration system, running on refrigerant-12, has been developed. Preliminary tests were made with a circular tube. The main objective has been to analyse subcooled flow boiling in four-cusp channels simulating the flow conditions in a PWR core degraded by accident. Correlations were developed for the forced convection film coefficient for both single-phase and subcooled flow boiling. The incipience of boiling in such geometry has also been studied. (author) [pt

  3. Systematic technology evaluation program for SiC/SiC composite-based accident-tolerant LWR fuel cladding and core structures: Revision 2015

    Energy Technology Data Exchange (ETDEWEB)

    Katoh, Yutai [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, Kurt A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-08-01

    Fuels and core structures in current light water reactors (LWR’s) are vulnerable to catastrophic failure in severe accidents as unfortunately evidenced by the March 2011 Fukushima Dai-ichi Nuclear Power Plant Accident. This vulnerability is attributed primarily to the rapid oxidation kinetics of zirconium alloys in a water vapor environment at very high temperatures. Zr alloys are the primary material in LWR cores except for the fuel itself. Therefore, alternative materials with reduced oxidation kinetics as compared to zirconium alloys are sought to enable enhanced accident-tolerant fuels and cores.

  4. Analysis of simulation results of damaged nuclear fuel accidents at NPPs with shell-type nuclear reactors

    Directory of Open Access Journals (Sweden)

    Igor L. Kozlov

    2015-03-01

    Full Text Available Lessons from the accident at the Fukushima Daiichi NPP made it necessary to reevaluate and intensificate the work on modeling and analyzing various scenarios of severe accidents with damage to the nuclear fuel in the reactor, containment and spent nuclear fuel storage pool with the expansion of the primary initiating event causes group listing. Further development of computational tools for modeling the explosion prevention criteria as to steam and gas mixtures, considering the specific thermal-hydrodynamic conditions and mechanisms of explosive situations arrival at different stages of a severe accident development, is substantiated. Based on the analysis of the known shell-type nuclear reactors accidents results the explosion safety thermodynamic criteria are presented, the parameters defining the steam and gas explosions conditions are found, the need to perform the further verification and validation of deterministic codes serving to simulate general accident processes behavior as well as phase-to-phase interaction calculated dependencies is established. The main parameters controlling and defining the criteria explosion safety effective regulation areas and their optimization conditions are found.

  5. Flowing and freezing of molten core materials during unprotected loss of flow accidents in sodium cooled fast reactors

    International Nuclear Information System (INIS)

    Maschek, W.; Royl, P.

    1988-09-01

    Flowing and freezing of mobile core materials change the fissile material distribution and core-inventory under hypothetical accident conditions and determine the path to permanent shutdown of the neutronic events and the energetic potentials. The report classifies the bondary conditions for such flowing and freezing processes by going through the different situations under which these processes can occur in the scenario of the unprotected loss of flow (ULOF) accident. The classification is based on ULOF-accident simulations for a homogeneous reactor core concept of a 300 MWe LMFBR (e. g. SNR-300), but many boundary conditions are also characteristic for other core designs. A review of the relevant experiments is then made to correlate the available experimental information with these classified boundary conditions and to look at the resulting flowing and freezing processes. Boundary conditions that have been experimentally shown to be important are assigned high priorities. The data are specifically valued in relation to these boundary conditions of high priorities. The review includes the major experimental programs with published results. The discussion shows that the results from most clean condition tests for melt relocations are valuable for a better understanding of basic phenomena and analytical model development, but are not directly applicable to real accident conditions. The database for relevant boundary conditions from the ULOF scenario is limited and largely included in integral sequence tests from which quantitative information for modelling is difficult to obtain. Needs for additional investigations are identified. The suggestions are mainly restricted to investigations of the early phase of fuel removal. They are given with reference to candidate facilities and include relocations in the subassemblies and in the inter-subassembly gaps. Particular emphasis is put on the leading edge properties and possible driving forces to which more attention

  6. The management of severe accidents in modern pressure tube reactors

    International Nuclear Information System (INIS)

    Popov, N.K.; Santamaura, P.; Blahnik, C.; Snell, V.G.; Duffey, R.B.

    2007-01-01

    Advanced new reactor designs resist severe accidents through a balance between prevention and mitigation. This balance is achieved by designing to ensure that such accidents are very rare; and by limiting core damage progression and releases from the plant in the event of such rare accidents. These design objectives are supported by a suitable combination of probabilistic safety analysis, engineering judgment and experimental and analytical study. This paper describes the approach used for the Advanced CANDU Reactor TM -1000 (ACR-1000) design, which includes provisions to both prevent and mitigate severe accidents. The paper describes the use of PSA as a 'design assist' tool; the analysis of core damage progression pathways; the definition of the core damage states; the capability of the mitigating systems to stop and control severe accident events; and the severe accident management opportunities for consequence reduction. (author)

  7. The differentiated assessment of damage to economy of subjects of the Siberian Federal District from road and transport accident rate

    Science.gov (United States)

    Petrov, Artur I.; Svistunova, Vera A.; Petrova, Daria A.

    2018-01-01

    The results of assessment of damage from the road accident rate in subjects of the Siberian Federal District (SFD) of the Russian Federation are presented in the article. The thesis about spatial differentiation of the Gross Regional Product (GRP) losses in different regions of the country because of people’s death and injuries in the road accidents (RA) and due to formations of property and ecological damage was chosen as a working hypothesis. The calculations, carried out for 12 subjects of the SFD, confirmed this idea. The range of calculated values of economic damage from road accident rate (in % of GRP) was from 1.3 (Tomsk region) to 12.6 (Republic of Tyva) in 2015. In article the attempt to explain the received result by heterogeneous development of economics in various Russian regions is made. The consequence of it is a heterogeneous quality of people’s life and quite various perception of life value by inhabitants of different regions that influences their life safety level.

  8. In-vessel core degradation in LWR severe accidents: a state of the art report to CSNI january 1991

    International Nuclear Information System (INIS)

    1991-11-01

    This state of the art report on in-vessel core degradation has been produced at the request of CSNI Principal Working Group 2. The objective of the report is to present to CSNI member countries the status of research and related information on in-vessel degraded core behaviour in both Pressurised Water Reactors (PWR) and Boiling Water Reactors (BWR). Information on experiments, codes and comparisons of calculations with experiments up to january 1991 is summarised and reviewed. Integrated codes, which are wider in scope than just in-vessel degradation are covered as well as specialist, degraded core codes. Implications for PWR and BWR plant calculations are considered. Conclusions and recommendations for research, plant calculations and further CSNI activity in this area are the subject of the final chapter. A major conclusion of the report is that early phase core degradation is relatively well understood. However, codes need further development to bring them up to date with the experimental database, particularly to include low temperature liquefaction processes. These processes significantly affect early phase core degradation and their neglect could affect assessments of accident management actions (including recriticality in BWR severe accidents)

  9. How to arrest a core meltdown accident (doing nothing); Como detener un accidente con fusion de nucleo (sin hacer nada)

    Energy Technology Data Exchange (ETDEWEB)

    Baron, Jorge H [Autoridad Regulatoria Nuclear, Buenos Aires (Argentina)

    2000-07-01

    In the eventual situation of a severe accident in a nuclear reactor, the molten core is able to relocate inside the pressure vessel. This may lead to the vessel failure, due to the thermal attack of the molten core (at approximation of 3000K) on the vessel steel wall. The vessel failure implies the failure of a very important barrier that contains the radioactive materials generated during the reactor operation, with a significant risk of producing high radiation doses both on operators and on the public. It is expected, for the new generation of nuclear reactors, that these will be required to withstand (by design) a core melt down accident, without the need for an immediate evacuation of the surrounding population. In this line, the use of a totally passive system is postulated, which fulfills the objective of containing the molten core inside the pressure vessel, at low temperature (approximation 1200K) precluding its failure. The conceptual design of a passive in-vessel core catcher is presented in this paper, built up of zinc, and designed for the CAREM-25 nuclear power plant. (author)

  10. The Accident Analysis Due to Reactivity Insertion of RSG GAS 3.55 g U/cc Silicide Core

    International Nuclear Information System (INIS)

    Endiah Puji-Hastuti; Surbakti, Tukiran

    2004-01-01

    The fuels of RSG-GAS reactor was changed from uranium oxide with 250 g U of loading or 2.96 g U/cc of fuel loading to uranium silicide with the same loading. The silicide fuels can be used in higher density, staying longer in the reactor core and hence having a longer cycle length. The silicide fuel in RSG-GAS core was made up in step-wise by using mixed up core Firstly, it was used silicide fuel with 250 g U of loading and then, silicide fuel with 300 g U of loading (3.55 g U/cc of fuel loading). In every step-wise of fuel loading, it must be analyzed its safety margin. In this occasion, the reactivity accident of RSG-GAS core with 300 g U of silicide fuel loading is analyzed. The calculation was done using EUREKA-2/RR code available at P2TRR. The calculation was done by reactivity insertion at start up and power rangers. The worst case accident is transient due to control rod with drawl failure at start up by means of lowest initial power (0.1 W), either in power range. From all cases which have been done, the results of analysis showed that there is no anomaly and safety margin break at RSG-GAS core with 300 g U silicide fuel loading. (author)

  11. NPP Krsko Severe Accident Management Guidelines Upgrade

    International Nuclear Information System (INIS)

    Mihalina, Mario; Spalj, Srdjan; Glaser, Bruno; Jalovec, Robi; Jankovic, Gordan

    2014-01-01

    Nuclear Power Plant Krsko (NEK) has decided to take steps for upgrade of safety measures to prevent severe accidents, and to improve the means to successfully mitigate their consequences. The content of the program for the NEK Safety Upgrade is consistent with the nuclear industry response to Fukushima accident, which revealed many new insights into severe accidents. Therefore, new strategies and usage of new systems and components should be integrated into current NEK Severe Accident Management Guidelines (SAMG's). SAMG's are developed to arrest the progression of a core damage accident and to limit the extent of resulting releases of fission products. NEK new SAMG's revision major changes are made due to: replacement of Electrical Recombiners by Passive Autocatalytic Recombiners (PARs) and the installation of Passive Containment Filtered Vent System (PCFV); to handle a fuel damage situation in Spent Fuel Pool (SFP) and to assess risk of core damage situation during shutdown operation. (authors)

  12. Effects of recent modeling developments in prompt burst hypothetical core disruptive accident calculations

    International Nuclear Information System (INIS)

    Sienicki, J.J.; Abramson, P.B.

    1978-01-01

    The main objective of the development of multifield, multicomponent thermohydrodynamic computer codes is the detailed study of hypothetical core disruptive accidents (HCDAs) in liquid-metal fast breeder reactors. The main contributions such codes are expected to make are the inclusion of detailed modeling of the relative motion of liquid and vapor (slip), the inclusion of modeling of nonequilibrium/nonsaturation thermodynamics, and the use of more detailed neutronics methods. Scoping studies of the importance of including these phenomena performed with the parametric two-field, two-component coupled neutronic/thermodynamic/hydrodynamic code FX2-TWOPOOL indicate for the prompt burst portion of an HCDA that: (1) Vapor-liquid slip plays a relatively insignificant role in establishing energetics, implying that analyses that do not model vapor-liquid slip may be adequate. Furthermore, if conditions of saturation are assumed to be maintained, calculations that do not permit vapor-liquid slip appear to be conservative. (2) The modeling of conduction-limited fuel vaporization and condensation causes the energetics to be highly sensitive to variations in the droplet size (i.e., in the parametric values) for the sizes of interest in HCDA analysis. Care must therefore be exercised in the inclusion of this phenomenon in energetics calculations. (3) Insignificant differences are observed between the use of space-time kinetics (quasi-static diffusion theory) and point kinetics, indicating again that point kinetics is normally adequate for analysis of the prompt burst portion of an HCDA. (4) No significant differences were found to result from assuming that delayed neutron precursors remain stationary where they are created rather than assuming that they move together with fuel. (5) There is no need for implicit coupling between the neutronics and the hydrodynamics/thermodynamics routines, even outside the prompt burst portion

  13. Reentrainment of aerosols during the filtered venting after a severe core melt accident

    International Nuclear Information System (INIS)

    Mueller, M.

    1997-01-01

    The major objective of this project is the experimental determination of the aerosol reentrainment from boiling pool during controlled filtered venting of the containment vessel after a severe core melt accident. For this reason a linear downscaled (1:20) model containment with an inner free volume of 5 m 3 is provided. Both, water soluble and unsoluble model substances are used as fission product simulants. The major advantage of the pilot plant is the ability to run it at steady state conditions of any period of time. Further, modelling of the aerosol reentrainment from boiling pool allows upscaling of results on nuclear power plants. The deterministic aerosol reentrainment model can also be used to calculate entrainment phenomena in the process industries such at distillation columns or at flash evaporators. Steady state experiments with water soluble model substances clearly reveal enhanced aerosol reentrainment from boiling pool due to increasing boiling pool concentration of fission product simulants and due to increasing gas velocities above the boiling pool surface. But there can be seen no influence of corium concrete interactions on the aerosol reentrainment. Compared to the steam production due to the decay heat the resulting gas volume flux is negligible. Next, there can be seen aerosol reentrainment from boiling pool only above boiling pool areas. Further, experiments under steady state conditions with unsoluble fission product simulants show on the one hand scrubbing effects in the boiling pool, on the other hand no aerosol reentrainment of solid particles 3 μm. The so called reentrainment factor - ratio between fission product simulant in the venting system and in the boiling pool - is for water soluble model substances in the range of 10 -5 , for unsoluble fission product simulants in the range of 10 -6 . (author) figs., tabs., 57 refs

  14. Simulation of a hypothetical core disruptive accident in the mars test-facility

    International Nuclear Information System (INIS)

    Robbe, M.F.; Lepareux, M.

    2001-01-01

    In France, a large experimental programme MARA/MARS was undertaken in the 80's to estimate the mechanical consequences of an HCDA (Hypothetical Core Disruptive Accident) and to validate the SIRIUS computer code used at that time for the numerical simulations. At the end of the 80's, it was preferred to add a HCDA sodium-bubble-argon tri-component constitutive law to the general ALE fast dynamics finite element CASTEM-PLEXUS code rather than going on developing and using the specialized SIRIUS code. The experimental results of the MARA programme were used in the 90's to validate and qualify the CASTEM-PLEXUS code. A first series of computations of the tests MARA 8, MARA 10 and MARS was realised. The simulations showed a rather good agreement between the experimental and computed results for the MARA 8 and MARA 10 tests - even if there were some discrepancies - but the prediction of the MARS structure displacements and strains was overestimated. This conservatism was supposed to come from the fact that several MARS non axisymmetric structures like core elements, pumps and heat exchangers were not represented in the CASTEM-PLEXUS model. These structures, acting as porous barriers, had a protective effect on the mock-up containment by absorbing energy and slowing down the fluid impacting the containment. For these reasons, we developed in CASTEM-PLEXUS a new HCDA constitutive law taking into account the presence of the internal structures (without meshing them) by means of an equivalent porosity method. In other respects, the process used for dealing with the fluid-structure coupling in CASTEM-PLEXUS was improved. Thus a second series of simulations of the tests MARA8 and MARA10 was realised. A simulation of the test MARS was carried out too with the same simplified representation of the peripheral structures as in order to estimate the improvement provided by the new fluid-structure coupling. This paper presents a third numerical simulation of the MARS test with the

  15. A core hSSB1–INTS complex participates in the DNA damage response

    OpenAIRE

    Zhang, Feng; Ma, Teng; Yu, Xiaochun

    2013-01-01

    Human single-stranded DNA-binding protein 1 (hSSB1) plays an important role in the DNA damage response and the maintenance of genomic stability. It has been shown that the core hSSB1 complex contains hSSB1, INTS3 and C9orf80. Using protein affinity purification, we have identified integrator complex subunit 6 (INTS6) as a major subunit of the core hSSB1 complex. INTS6 forms a stable complex with INTS3 and hSSB1 both in vitro and in vivo. In this complex, INTS6 directly interacts with INTS3. I...

  16. Drilling induced damage of core samples. Evidences from laboratory testing and numerical modelling

    International Nuclear Information System (INIS)

    Lanaro, Flavio

    2008-01-01

    Extensive sample testing in uniaxial and Brazilian test conditions were carried out for the Shobasama and MIU Research Laboratory Site (Gifu Pref., Japan). The compressive and tensile strength of the samples was observed to be negatively correlated to the in-situ stress components. Such correlation was interpreted as stress-release induced sample damage. Similar stress conditions were then numerically simulated by means of the BEM-DDM code FRACOD 2D in plane strain conditions. This method allows for explicitly consider the influence of newly initiated or propagating fractures on the stress field and deformation of the core during drilling process. The models show that already at moderate stress levels some fracturing of the core during drilling might occur leading to reduced laboratory strength of the samples. Sample damage maps were produced independently from the laboratory test results and from the numerical models and show good agreement with each other. (author)

  17. Thermohydraulics in a high-temperature gas-cooled reactor primary loop during early phases of unrestricted core-heatup accidents

    International Nuclear Information System (INIS)

    Kroeger, P.G.; Colman, J.; Hsu, C.J.

    1983-01-01

    In High Temperature Gas Cooled Reactor (HTGR) siting considerations, the Unrestricted Core Heatup Accidents (UCHA) are considered as accidents of highest consequence, corresponding to core meltdown accidents in light water reactors. Initiation of such accidents can be, for instance, due to station blackout, resulting in scram and loss of all main loop forced circulation, with none of the core auxiliary cooling system loops being started. The result is a slow but continuing core heatup, extending over days. During the initial phases of such UCHA scenarios, the primary loop remains pressurized, with the system pressure slowly increasing until the relief valve setpoint is reached. The major objectives of the work described here were to determine times to depressurization as well as approximate loop component temperatures up to depressurization

  18. Theoretical analysis and numerical modelling of heat transfer and fuel migration in underlying soils and constructive elements of nuclear plants during an accident release from the core

    International Nuclear Information System (INIS)

    Arutunjan, R.V.; Bolshov, L.A.; Vitukov, V.V.; Goloviznin, V.M.; Dykhne, A.M.; Kiselev, V.P.; Klementova, S.V.; Krayushkin, I.E.; Moskovchenko, A.V.; Pismennii, V.D.; Popkov, A.G.; Chernov, S.Y.; Chudanov, V.V.; Khoruzhii, O.V.; Yudin, A.I.

    1990-01-01

    Migration of fuel fragments and core fission products during severe accidents on nuclear plants is studied analytically and numerically. The problems of heat transfer and migration of volume heat sources in construction materials and underlying soils are considered

  19. An estimation of core damage frequency of a pressurized water reactor during mid-loop operation

    International Nuclear Information System (INIS)

    Chao, C.C.; Chen, C.T.; Lee, M.

    2004-01-01

    The core damage frequency during mid-loop operation of a Westinghouse designed 3-loop Pressurizer Water Reactor (PWR) due to loss of Residual Heat Removal (RHR) events was assessed. The assessment considers two types of outages (refueling and drained maintenance), and uses failure data collected specifically for shutdown condition. Event trees were developed for five categories of loss of RHR events. Human actions to mitigate the loss of RHR events was identified and human error probabilities were quantified using HCR and THERP model. The result showed that the core damage frequency due to loss of RHR events during mid-loop operation is 3.1x10 -5 per year. The results also showed that the core damage frequency can be reduced significantly by removing a pressurizer safety valve before entering mid-loop operation. The establishment of reflux cooling, i.e. decay heat removal through steam generator secondary side also plays important role in mitigating the loss of RHR events. (author)

  20. Assessment of core damage frequency owing to possible fires at NPP with RBMK type reactors

    Energy Technology Data Exchange (ETDEWEB)

    Vinnikov, B. [National Research Centre Kurchatov Inst., 1, Kurchatov Square, Moscow, 123 182 (Russian Federation); NRC Kurchatov Inst. (Russian Federation)

    2012-07-01

    According to Scientific and Technical Cooperation between the USA and Russia in the field of nuclear engineering the Idaho National Laboratory has transferred to the possession of the National Research Center ' Kurchatov Inst. ' the SAPHIRE software without any fee. With the help of the software Kurchatov Inst. developed a Pilot Living PSA- Model of Leningrad NPP Unit 1. Computations of core damage frequencies were carried out for additional Initiating Events. In the submitted paper such additional Initiating Events are fires in various compartments of the NPP. During the computations of each fire, structure of the PSA - Model was not changed, but Fault Trees for the appropriate systems, which are removed from service during the fire, were changed. It follows from the computations, that for ten fires Core Damaged Frequencies (CDF) are not changed. Other six fires will cause additional core damage. On the basis of the calculated results it is possible to determine a degree of importance of these fires and to establish sequence of performance of fire-prevention measures in various places of the NPP. (authors)

  1. Assessment of core damage frequency owing to possible fires at NPP with RBMK type reactors

    International Nuclear Information System (INIS)

    Vinnikov, B.

    2012-01-01

    According to Scientific and Technical Cooperation between the USA and Russia in the field of nuclear engineering the Idaho National Laboratory has transferred to the possession of the National Research Center ' Kurchatov Inst. ' the SAPHIRE software without any fee. With the help of the software Kurchatov Inst. developed a Pilot Living PSA- Model of Leningrad NPP Unit 1. Computations of core damage frequencies were carried out for additional Initiating Events. In the submitted paper such additional Initiating Events are fires in various compartments of the NPP. During the computations of each fire, structure of the PSA - Model was not changed, but Fault Trees for the appropriate systems, which are removed from service during the fire, were changed. It follows from the computations, that for ten fires Core Damaged Frequencies (CDF) are not changed. Other six fires will cause additional core damage. On the basis of the calculated results it is possible to determine a degree of importance of these fires and to establish sequence of performance of fire-prevention measures in various places of the NPP. (authors)

  2. The composition of aerosols generated during a severe reactor accident: Experimental results from the Power Burst Facility Severe Fuel Damage Test 1-4

    International Nuclear Information System (INIS)

    Petti, D.A.; Hobbins, R.R.; Hagrman, D.L.

    1994-01-01

    Experimental results on fission product and aerosol release during the Power Burst Facility Severe Fuel Damages (SFD) Test 1-4 are examined to determine the composition of aerosols that would be generated during a severe reactor accident. The SFD 1-4 measured aerosol contained significant quantities of volatile fission products (VFPs) (cesium, iodine, tellurium), control materials (silver and cadmium), and structural materials (tin), indicating that fission product release, vaporization of control material, and release of tin from oxidized Zircaloy were all important aerosol sources. On average the aerosol composition is between one-quarter and one-half VFPs (especially cesium), with the remainder being control material (especially cadmium), and structural material (especially tin). Source term computer codes like CORSOR-M tend to overpredict the release of structural and control rod material relative to fission products by a factor of between 2 and 15 because the models do not account for relocation of molten control, fuel, and structural material during the degradation process, which tends to reduce the aerosol source. The results indicate that the aerosol generation in a severe reactor accident is intimately linked to the core degradation process. They recommend that these results be used to improve the models in source term computer codes

  3. Estimative of core damage frequency in IPEN'S IEA-R1 research reactor due to the initiating event of loss of coolant caused by large rupture in the pipe of the primary circuit

    International Nuclear Information System (INIS)

    Hirata, Daniel Massami; Sabundjian, Gaiane; Cabral, Eduardo Lobo Lustosa

    2009-01-01

    The National Commission of Nuclear Energy (CNEN), which is the Brazilian nuclear regulatory commission, imposes safety and licensing standards in order to ensure that the nuclear power plants operate in a safe way. For licensing a nuclear reactor one of the demands of CNEN is the simulation of some accidents and thermalhydraulic transients considered as design base to verify the integrity of the plant when submitted to adverse conditions. The accidents that must be simulated are those that present large probability to occur or those that can cause more serious consequences. According to the FSAR (Final Safety Analysis Report) the initiating event that can cause the largest damage in the core, of the IEA-R1 research reactor at IPEN-CNEN/SP, is the LOCA (Loss of Coolant Accident). The objective of this paper is estimate the frequency of the IEA-R1 core damage, caused by this initiating event. In this paper we analyze the accident evolution and performance of the systems which should mitigate this event: the Emergency Coolant Core System (ECCS) and the isolated pool system. They will be analyzed by means of the event tree. In this work the reliability of these systems are also quantified using the fault tree. (author)

  4. The OECD/NEA workshop on the indemnification of nuclear damage in the event of a nuclear accident

    International Nuclear Information System (INIS)

    Wagstaff, F.

    2002-01-01

    Since 1993, the OECD Nuclear Energy Agency (OECD/NEA) has run the International Nuclear Emergency Exercise (INEX) Program. The program serves to discuss an effective accident management approach on the basis of a simulated nuclear accident situation together with the states involved and their institutions, and also elaborate measures for its further improvement. At the present time, the INEX Program has reached Phase 3 in which, for the first time, also aspects of liability for the consequences of accidents were included. These aspects were made the subject of a workshop held after an emergency exercise. The scenario covered was based on an INES level-4 accident in the French Gravelines Nuclear Power Station situated close to the French-Belgian border. The workshop dealt with these topics, among others: the application of the Paris Convention on Third Party Liability, the Brussels Supplementary Convention, and the Vienna Convention on Civil Liability for Nuclear Damage as well as the Supplementary Compensation Convention of 1997. It was seen that there was a clear need for further discussion, especially to shed more light on the interrelationship of these treaties. (orig.) [de

  5. TMI-2 core examination plan

    International Nuclear Information System (INIS)

    Owen, D.E.; MacDonald, P.E.; Hobbins, R.R.; Ploggr, S.A.

    1982-01-01

    The Three Mile Island (TMI-2) core examination is divided into four stages: (1) before removing the head; (2) before removing the plenum; (3) during defueling; and (4) offsite examinations. Core examinations recommended during the first three stages are primarily devoted to documenting the post-accident condition of the core. The detailed analysis of core damage structures will be performed during offsite examinations at government and commercial hot cell facilities. The primary objectives of these examinations are to enhance the understanding of the degraded core accident sequence, to develop the technical bases for reactor regulations, and to improve LWR design and operation

  6. Estimation of core-damage frequency to evolutionary ALWR [advanced light water reactor] due to seismic initiating events: Task 4.3.3

    International Nuclear Information System (INIS)

    Brooks, R.D.; Harrison, D.G.; Summitt, R.L.

    1990-04-01

    The Electric Power Research Institute (EPRI) is presently developing a requirements document for the design of advanced light water reactors (ALWRs). One of the basic goals of the EPRI ALWR Requirements Document is that the core-damage frequency for an ALWR shall be less than 1.0E-5. To aid in this effort, the Department of Energy's Advanced Reactor Severe Accident Program (ARSAP) initiated a functional probabilistic risk assessment (PRA) to determine how effectively the evolutionary plant requirements contained in the existing EPRI Requirements Document assure that this safety goal will be met. This report develops an approximation of the core-damage frequency due to seismic events for both evolutionary plant designs (pressurized-water reactor (PWR) and boiling-water reactor(BWR)) as modeled in the corresponding functional PRAs. Component fragility values were taken directly form information which has been submitted for inclusion in Appendix A to Volume 1 of the EPRI Requirements Document. The results show a seismic core-damage frequency of 5.2E-6 for PWRS and 5.0E-6 for BWRs. Combined with the internal initiators from the functional PRAs, the overall core-damage frequencies are 6.0E-6 for the pwr and BWR, both of which satisfy the 1.0E-5 EPRI goal. In addition, site-specific considerations, such as more rigid components and less conservative fragility data and seismic hazard curves, may further reduce these frequencies. The effect of seismic events on structures are not addressed in this generic evaluation and should be addressed separately on a design-specific basis. 7 refs., 6 figs., 3 tabs

  7. Field and laboratory investigations of coring-induced damage in core recovered from Marker Bed 139 at the waste isolation pilot plant underground facility

    International Nuclear Information System (INIS)

    Holcomb, D.J.; Zeuch, D.H.; Morin, K.; Hardy, R.; Tormey, T.V.

    1995-09-01

    A combined laboratory and field investigation was carried out to determine the extent of coring-induced damage done to samples cored from Marker Bed 139 at the WIPP site. Coring-induced damage, if present, has the potential to significantly change the properties of the material used for laboratory testing relative to the in situ material properties, resulting in misleading conclusions. In particular, connected, crack-like damage could make the permeability of cored samples orders of magnitude greater than the in situ permeabilities. Our approach compared in situ velocity and resistivity measurements with laboratory measurements of the same properties. Differences between in situ and laboratory results could be attributed to differences in the porosity due to cracks. The question of the origin of the changes could not be answered directly from the results of the measurements. Pre-existing cracks, held closed by the in situ stress, could open when the core was cut free, or new cracks could be generated by coring-induced damage. We used core from closely spaced boreholes at three orientations (0 degree, ±45 degrees relative to vertical) to address the origin of cracks. The absolute orientation of pre-existing cracks would be constant, independent of the borehole orientation. In contrast, cracks induced by coring were expected to show an orientation dependent on that of the source borehole

  8. Field and laboratory investigations of coring-induced damage in core recovered from Marker Bed 139 at the waste isolation pilot plant underground facility

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, D.J.; Zeuch, D.H.; Morin, K.; Hardy, R.; Tormey, T.V.

    1995-09-01

    A combined laboratory and field investigation was carried out to determine the extent of coring-induced damage done to samples cored from Marker Bed 139 at the WIPP site. Coring-induced damage, if present, has the potential to significantly change the properties of the material used for laboratory testing relative to the in situ material properties, resulting in misleading conclusions. In particular, connected, crack-like damage could make the permeability of cored samples orders of magnitude greater than the in situ permeabilities. Our approach compared in situ velocity and resistivity measurements with laboratory measurements of the same properties. Differences between in situ and laboratory results could be attributed to differences in the porosity due to cracks. The question of the origin of the changes could not be answered directly from the results of the measurements. Pre-existing cracks, held closed by the in situ stress, could open when the core was cut free, or new cracks could be generated by coring-induced damage. We used core from closely spaced boreholes at three orientations (0{degree}, {plus_minus}45{degrees} relative to vertical) to address the origin of cracks. The absolute orientation of pre-existing cracks would be constant, independent of the borehole orientation. In contrast, cracks induced by coring were expected to show an orientation dependent on that of the source borehole.

  9. Severe accidents at nuclear power plants. Their risk assessment and accident management

    International Nuclear Information System (INIS)

    Abe, Kiyoharu.

    1995-05-01

    This document is to explain the severe accident issues. Severe Accidents are defined as accidents which are far beyond the design basis and result in severe damage of the core. Accidents at Three Mild Island in USA and at Chernobyl in former Soviet Union are examples of severe accidents. The causes and progressions of the accidents as well as the actions taken are described. Probabilistic Safety Assessment (PSA) is a method to estimate the risk of severe accidents at nuclear reactors. The methodology for PSA is briefly described and current status on its application to safety related issues is introduced. The acceptability of the risks which inherently accompany every technology is then discussed. Finally, provision of accident management in Japan is introduced, including the description of accident management measures proposed for BWRs and PWRs. (author)

  10. Modification of Ca2+ - exchange in blood cells of cattles with radioiodine damage of thyroid gland after Chernobyl accident

    International Nuclear Information System (INIS)

    Shevchenko, A.S.; Kobyalko, V.O.; Shevchenko, T.S.; Lazarev, N.M.; Astasheva, N.P.; Aleksakhin, R.M.

    1993-01-01

    Increasing of Ca 2+ concentration in cytoplasm and of the rate of 45 Ca iflux into cows erythrocytes in 19-24 month efter Chernobyl accident was revealed. Correlation between Ca 2+ concentration in cytoplasm of erythrocytes and thyroxin content in plasma of cows with radioiodine damage of thyroid gland was found. Reduction of the rate of 45 Ga influx into erythrocytes in cows with radiation doses of 20-60 By on thyroid gland was shown in later time after accident (3-5 years). Changes in Ca 2+ permeability through membranes of erythrocytes and neutrophiles after injection of 131 I into calfs in doses of 300 Gy and more on thyroid gland was found

  11. Prevention and investigations of core degradation in case of beyond design accidents of the 2400 MWTH gas-cooled fast reactor

    International Nuclear Information System (INIS)

    Bertrand, F.; Gatin, V.; Bentivoglio, F.; Gueneau, C.

    2011-01-01

    The present paper deals with studies carried out to assess the ability of the core of the Gas Fast Reactor (GFR) to withstand beyond design accidents. The work presented here is aimed at simulating the behaviour of this core by using analytical models whose input parameters are calculated with the CATHARE2 code. Among possible severe accident initiators, the Unprotected Loss Of Coolant Accident (ULOCA of 3 Inches diameter) is investigated in detail in the paper with CATHARE2. Additionally, a simplified pessimistic assessment of the effect of a postulated power excursion that could result from the failure of prevention provisions is presented. (author)

  12. Preliminary analysis of control rod accidents in the CRCN-R1 multipurpose reactor core of Recife in Brazil

    International Nuclear Information System (INIS)

    Souza dos Santos, Rubens; Rubens Maiorino, Jose

    1999-01-01

    The paper shows some results of the neutronic accident analyses arisen by uncontrolled control rod withdrawal, based on the Conceptual Project of the CRCN-R1 MultiPurpose Reactor of Recife. In that reactor, a project of the CNEN/Brazil, under the leadership of the IPEN/Sao Paulo, is verified the thermal hydraulic limits in the reactor core during transients that simulate startup and power operation accidents. It has utilized a computer program that solved the kinetic equations based on multigroup diffusion theory, in our case we have used 4 energy groups, Two-Dimensional X-Y in the space, and 6 groups of delayed neutrons. A simple model of feedback is admitted in the capture and scattering macroscopic cross sections, in the fuel regions, temperature and coolant densities dependents. Based on those models, the results demonstrated that the reactor exhibits good degree of safety. (author)

  13. An assessment of the radiological consequences of releases to groundwater following a core-melt accident at the Sizewell PWR

    International Nuclear Information System (INIS)

    Maul, P.R.

    1984-03-01

    In the extremely unlikely event of a degraded core accident at the proposed Sizewell PWR it is theoretically possible for the core to melt through the containment, after which activity could enter groundwater directly or as a result of subsequent leaching of the core in the ground. The radiological consequences of such an event are analysed and compared with the analysis undertaken by the NRPB for the corresponding releases to atmosphere. It is concluded that the risks associated with the groundwater route are much less important than those associated with the atmospheric route. The much longer transport times in the ground compared with those in the atmosphere enable countermeasures to be taken, if necessary, to restrict doses to members of the public to very low levels in the first few years following the accident. The entry of long-lived radionuclides into the sea over very long timescales results in the largest contribution to population doses, but these are delivered at extremely low dose rates which would be negligible compared with background exposure. (author)

  14. Malignant neoplasms on the territories of Russia damaged owing to the Chernobyl accident

    International Nuclear Information System (INIS)

    Remennik, L.V.; Starinsky, V.V.; Mokina, V.D.; Chissov, V.I.; Scheplyagina, L.A.; Petrova, G.V.; Rubtsova, M.M.

    1996-01-01

    The work presents the results of descriptive analysis of development of onco epidemiological situation in six of the most polluted regions owing to the Chernobyl accident in 1981-1994. The growth of malignancies incidence is marked in all territories as well as in the Russian Federation as a whole. The most adverse tendencies have been revealed in the Bryansk, Orel, Ryazan regions. It is marked that the formation of a structure, levels and trends of the malignancies incidence has been occurring under influence of a complex of factors usual up to the accident. The analysis of the data from the specialized cancer-register evidences that the incidence of thyroid malignancies is actively growing in the population of the Bryansk region. The probability of connection of growth of the thyroid cancer incidence in children of the Bryansk region with the Chernobyl accident is reasonably high, but should be confirmed through the application of methods of analytical epidemiology

  15. The effects of applying silicon carbide coating on core reactivity of pebble-bed HTR in water ingress accident

    Energy Technology Data Exchange (ETDEWEB)

    Zuhair, S.; Setiadipura, Topan [National Nuclear Energy Agency of Indonesia, Serpong Tagerang Selatan (Indonesia). Center for Nuclear Reactor Technology and Safety; Su' ud, Zaki [Bandung Institute of Technology (Indonesia). Dept. of Physics

    2017-03-15

    Graphite is used as the moderator, fuel barrier material, and core structure in High Temperature Reactors (HTRs). However, despite its good thermal and mechanical properties below the radiation and high temperatures, it cannot avoid corrosion as a consequence of an accident of water/air ingress. Degradation of graphite as a main HTR material and the formation of dangerous CO gas is a serious problem in HTR safety. One of the several steps that can be adopted to avoid or prevent the corrosion of graphite by the water/air ingress is the application of a thin layer of silicon carbide (SiC) on the surface of the fuel element. This study investigates the effect of applying SiC coating on the fuel surfaces of pebble-bed HTR in water ingress accident from the reactivity points of view. A series of reactivity calculations were done with the Monte Carlo transport code MCNPX and continuous energy nuclear data library ENDF/B-VII at temperature of 1200 K. Three options of UO{sub 2}, PuO{sub 2}, and ThO{sub 2}/UO{sub 2} fuel kernel were considered to obtain the inter comparison of the core reactivity of pebble-bed HTR in conditions of water/air ingress accident. The calculation results indicated that the UO{sub 2}-fueled pebble-bed HTR reactivity was slightly reduced and relatively more decreased when the thickness of the SiC coating increased. The reactivity characteristic of ThO{sub 2}/UO{sub 2}-fueled pebble-bed HTR showed a similar trend to that of UO{sub 2}, but did not show reactivity peak caused by water ingress. In contrast with UO{sub 2}- and ThO{sub 2}-fueled pebble-bed HTR, although the reactivity of PuO{sub 2}-fueled pebble-bed HTR was the lowest, its characteristics showed a very high reactivity peak (0.33 Δk/k) and this introduction of positive reactivity is difficult to control. SiC coating on the surface of the plutonium fuel pebble has no significant impact. From the comparison between reactivity characteristics of uranium, thorium and plutonium cores with 0

  16. Analyses of containment loading by hydrogen burning during hypothetical core meltdown accidents

    International Nuclear Information System (INIS)

    Bracht, K.; Tiltmann, M.

    1983-01-01

    The possibility of occurance of violent hydrogen burning during a LWR meltdown accident and its consequences to containment atmosphere conditions are discussed. Two accident sequences with low and high system pressure during the in-vessel-melt phase of a meltdown accident are considered. In both sequences only deflagration, but no detonation may become possible, presuming homogeneity of the containment atmospheres. In a low pressure szenario the pressure increase due to deflagration will not reach the failure pressure of the containment, if combustion takes place when the flammability limit is reached. For the special situation of a rapid release of steam and hydrogen after a high-pressure failure of a reactor pressure vessel, calculations with a multicompartment code show that the possibility for hydrogen burning does not exist. Thus, an additional augmentation of the steam spike as a consequence of the failure of the pressure vessel cannot occur. (orig.)

  17. Use of classical criterions of a decision making for choice of measures on decrease of economic damage from nuclear and radiation accidents

    International Nuclear Information System (INIS)

    Rylov, M.I.; Kamynov, Sh.V.; Mozhaev, A.S.; Anisimov, N.A.; Nikitin, V.S.

    2004-01-01

    Application of classical criteria of decision making for choice of measures on the decrease of economic damage from possible nuclear and radiation accidents during spent fuel unloading from nuclear submarines and storage in the process of their utilization was demonstrated. Economic damage was chosen as optimization index, three versions of possible accidents and limited number of measures on the decrease of their effect were treated for illustration of the suggested approach. On the base of analysis of classical criteria the optimal strategy for decrease of economic damage was chosen [ru

  18. Development of accident sequence precursors methodologies for core damage Probabilities in NPPs

    International Nuclear Information System (INIS)

    Munoz, R.; Minguez, E.; Melendez, E.; Sanchez-Perea, M.; Izquierdo, J.M.

    1998-01-01

    Several licensing programs have focused on the evaluation of the importance of operating events occurred in NPPs. Some have worked the dynamic aspects of the sequence of events involved, reproducing the incidents, while others are based on PSA applications to incident analysis. A method that controls the two above approaches to determine risk analysis derives from the Integrated Safety Assessment methodology (ISA). The dynamics of the event is followed by transient simulation in tree form, building a Setpoint or Deterministic Dynamic Event Tree (DDET). When a setpoint is reached, the actuation of a protection is triggered, then the tree is opened in branches corresponding to different functioning states. The engineering simulator with the new states followers each branch. One of these states is the nominal one, which is the PSA is associated to the success criterion of the system. The probability of the sequence is calculated in parallel to the dynamics. The following tools should perform the couple simulation: 1. A Scheduler that drives the simulation of the different sequences, and open branches upon demand. It will be the unique generator of processes while constructing the tree calculation, and will develop the computation in a distributed computational environment. 2. The Plant Simulator, which models the plant systems and the operator actions throughout a sequence. It receives the state of the equipment in each sequence and must provide information about setpoint crossing to the Scheduler. It will receive decision flags to continue or to stop each sequence, and to send new conditions to other plant simulators. 3. The Probability Calculator, linked only to the Scheduler, is the fault trees associated with each event tree header and performing their Boolean product. (Author)

  19. Whole-core damage analysis of EBR-II driver fuel elements following SHRT program

    International Nuclear Information System (INIS)

    Chang, L.K.; Koenig, J.F.; Porter, D.L.

    1987-01-01

    In the Shutdown Heat Removal Testing (SHRT) program in EBR-II, fuel element cladding temperatures of some driver subassemblies were predicted to exceed temperatures at which cladding breach may occur. A whole-core thermal analysis of driver subassemblies was performed to determine the cladding temperatures of fuel elemnts, and these temperatures were used for fuel element damage calculation. The accumulated cladding damage of fuel element was found to be very small and fuel element failure resulting from SHRT transients is unlikely. No element breach was noted during the SHRT transients. The reactor was immediately restarted after the most severe SHRT transient had been completed and no driver fuel breach has been noted to date. (orig.)

  20. Recreational stimulants, herbal, and spice cannabis: The core psychobiological processes that underlie their damaging effects.

    Science.gov (United States)

    Parrott, Andrew C; Hayley, Amie C; Downey, Luke A

    2017-05-01

    Recreational drugs are taken for their positive mood effects, yet their regular usage damages well-being. The psychobiological mechanisms underlying these damaging effects will be debated. The empirical literature on recreational cannabinoids and stimulant drugs is reviewed. A theoretical explanation for how they cause similar types of damage is outlined. All psychoactive drugs cause moods and psychological states to fluctuate. The acute mood gains underlie their recreational usage, while the mood deficits on withdrawal explain their addictiveness. Cyclical mood changes are found with every central nervous system stimulant and also occur with cannabis. These mood state changes provide a surface index for more profound psychobiological fluctuations. Homeostatic balance is altered, with repetitive disturbances of the hypothalamic-pituitary-adrenal axis, and disrupted cortisol-neurohormonal secretions. Hence, these drugs cause increased stress, disturbed sleep, neurocognitive impairments, altered brain activity, and psychiatric vulnerability. Equivalent deficits occur with novel psychoactive stimulants such as mephedrone and artificial "spice" cannabinoids. These psychobiological fluctuations underlie drug dependency and make cessation difficult. Psychobiological stability and homeostatic balance are optimally restored by quitting psychoactive drugs. Recreational stimulants such as cocaine or MDMA (3.4-methylenedioxymethamphetamine) and sedative drugs such as cannabis damage human homeostasis and well-being through similar core psychobiological mechanisms. Copyright © 2017 John Wiley & Sons, Ltd.

  1. The effect of uncertainties in nuclear reactor plant-specific failure data on core damage frequency

    International Nuclear Information System (INIS)

    Martz, H.F.

    1995-05-01

    It is sometimes the case in PRA applications that reported plant-specific failure data are, in fact, only estimates which are uncertain. Even for detailed plant-specific data, the reported exposure time or number of demands is often only an estimate of the actual exposure time or number of demands. Likewise the reported number of failure events or incidents is sometimes also uncertain because incident or malfunction reports may be ambiguous. In this report we determine the corresponding uncertainty in core damage frequency which can b attributed to such uncertainties in plant-specific data using a simple but typical nuclear power reactor example

  2. Experimental study on air ingress during a primary pipe rupture accident with a graphite reactor core simulator

    International Nuclear Information System (INIS)

    Takeda, Tetsuaki; Hishida, Makoto; Baba, Shinichi

    1991-11-01

    When a primary coolant pipe of a High Temperature Gas Cooled Reactor (HTGR) ruptures, helium gas in the reactor core blows out into the container, and the primary cooling system reduces the pressure. After the pressures are balanced between the reactor and the container, air is expected to enter into the reactor core from the breach. It seems to be probable that the graphite structures is oxidized by air. Hence, it is necessary to investigate the air ingress process and the behavior of the generating gases by the oxidation reactions. The previous experimental study is performed on the molecular diffusion and natural convection of the two component gas mixtures using a test model simulating simply the reactor. Objective of the study was to investigate the air ingress process during the early stage of the primary pipe rupture accident. However, since the model did not have any kind of graphite components, the reaction between graphite and oxygen was not simulated. The present model includes the reactor core and the high temperature plenum simulators made of graphite. The major results obtained in the present study are summarized in the followings: (1) The air ingress process with graphite oxidation reaction is similar to that without the reaction qualitatively. (2) When the reactor core simulator is maintained at low temperatures (lower than 450degC), the initiation time of the natural circulation of air is almost equal to that of the natural circulation of nitrogen. On the other hand, when the temperature of the reactor core simulator is high (more than 500degC), the initiation time of the natural circulation of air is earlier than that of nitrogen. (3) When the temperature of the reactor core simulator is higher than 600degC, oxygen is almost dissipated by the graphite structures. When the temperature of the reactor core simulator is below 700degC, carbon dioxide mainly is generated by the oxidation reactions. (author)

  3. Study of diluting and absorber materials to control the reactivity during a postulated core meltdown accident in generation IV reactors

    International Nuclear Information System (INIS)

    Plevacova, Kamila

    2010-01-01

    In order to limit the consequences of a hypothetical core meltdown accident in Generation IV Sodium Fast Reactors, absorber materials in or near the core, such as boron carbide B 4 C, and diluting materials in the core catcher will be used to prevent recriticality within the mixture of molten oxide fuel and molten structures called corium. The aim of the PhD thesis was to select materials of both types and to understand their behaviour during their interaction with corium, from chemical and thermodynamic points of view. Concerning B 4 C, thermodynamic calculations and experiments agree with the formation of two immiscible phases at high temperature in the B 4 C - UO 2 system: one oxide and one boride. This separation of phases can reduce the efficiency of the neutrons absorption inside the molten fuel contained in the oxide phase. Moreover, volatilization of a part of the boron element can occur. According to these results, the necessary quantity of B 4 C to be introduced should be reconsidered for postulated severe accident sequence. Other solution could be the use of Eu 2 O 3 or HfO 2 as absorber material. These oxides form a solid solution with the oxide fuel. Concerning the diluting materials, mixed oxides Al 2 O 3 - HfO 2 and Al 2 O 3 - Eu 2 O 3 were preselected. These systems being completely unknown to date at high temperature in association with UO 2 , first points on the corresponding ternary phase diagrams were researched. Contrary to Al 2 O 3 - Eu 2 O 3 - UO 2 system, the Al 2 O 3 - HfO 2 - UO 2 mixture presents only one eutectic and thus only one solidification path which makes easier forecasting the behaviour of corium in the core catcher. (author)

  4. Study of diluting and absorber materials to control reactivity during a postulated core melt down accident in Generation IV reactors

    International Nuclear Information System (INIS)

    Plevacova, K.

    2010-01-01

    In order to limit the consequences of a hypothetical core meltdown accident in Generation IV Sodium Fast Reactors, absorber materials in or near the core, such as boron carbide B 4 C, and diluting materials in the core catcher will be used to prevent recriticality within the mixture of molten oxide fuel and molten structures called corium. The aim of the PhD thesis was to select materials of both types and to understand their behaviour during their interaction with corium, from chemical and thermodynamic point of view. Concerning B 4 C, thermodynamic calculations and experiments agree with the formation of two immiscible phases at high temperature in the B 4 C - UO 2 system: one oxide and one boride. This separation of phases can reduce the efficiency of the neutrons absorption inside the molten fuel contained in the oxide phase. Moreover, a volatilization of a part of the boron element can occur. According to these results, the necessary quantity of B 4 C to be introduced should be reconsidered for postulated severe accident sequence. Other solution could be the use of Eu 2 O 3 or HfO 2 as absorber material. These oxides form a solid solution with the oxide fuel. Concerning the diluting materials, mixed oxides Al 2 O 3 - HfO 2 and Al 2 O 3 - Eu 2 O 3 were preselected. These systems being completely unknown to date at high temperature in association with UO 2 , first points on the corresponding ternary phase diagrams were researched. Contrary to Al 2 O 3 - Eu 2 O 3 - UO 2 system, the Al 2 O 3 - HfO 2 - UO 2 mixture presents only one eutectic and thus only one solidification path which makes easier forecasting the behaviour of corium in the core catcher. (author) [fr

  5. Sensitivity Analysis of Core Damage from Reactor Coolant Pump Seal Leakage during Extended Loss of All AC Power

    Energy Technology Data Exchange (ETDEWEB)

    Park, Da Hee; Kim, Min Gi; Lee, Kyung Jin; Hwang, Su hyun; Lee, Byung Chul [FNC Technology Co. Ltd., Yongin (Korea, Republic of); Yoon, Duk Joo; Lee, Seung Chan [Korea Hydro and Nuclear Power Co. Ltd., Daejeon (Korea, Republic of)

    2015-10-15

    In this study, in order to comprehend the Fukushima accident, the sensitivity analysis was performed to analyze the behavior of Reactor Coolant System (RCS) during ELAP using the RELAP5/MOD3.3 code. The Fukushima accident was caused by tsunami resulted in Station Black Out (SBO) followed by the reactor core melt-down and release of radioactive materials. After the accident, the equipment and strategies for the Extended Loss of All AC Power (ELAP) were recommended strongly. In this analysis, sensitivity studies for the RCP seal failure of the OPR1000 type NPP were performed by using RELAP5/MOD3.3 code. Six cases with different leakage rate of RCP seal were studied for ELAP with operator action or not. The main findings are summarized as follows: (1) Without the operator action, the core uncovery time is determined by the leakage rate of RCP seal. When the leakage rate per RCP seal are 5 gpm, 50 gpm, and 300 gpm respectively, the core uncovery time are 1.62 hr, 1.58 hr, and 1.29 hr respectively. Namely, If the leakage rate of RCP seal was much bigger, the uncover time of core would be shorter. (2) In case that the cooling by SG secondary side was performed using the TDAFP and SG ADV, the core uncovery time was significantly extended.

  6. Compendium of ECCS [Emergency Core Cooling Systems] research for realistic LOCA [loss-of-coolant accidents] analysis: Final report

    International Nuclear Information System (INIS)

    1988-12-01

    In the United States, Emergency Core Cooling Systems (ECCS) are required for light water reactors (LWRs) to provide cooling of the reactor core in the event of a break or leak in the reactor piping or an inadvertent opening of a valve. These accidents are called loss-of-coolant accidents (LOCA), and they range from small leaks up to a postulated full break of the largest pipe in the reactor cooling system. Federal government regulations provide that LOCA analysis be performed to show that the ECCS will maintain fuel rod cladding temperatures, cladding oxidation, and hydrogen production within certain limits. The NRC and others have completed a large body of research which investigated fuel rod behavior and LOCA/ECCS performance. It is now possible to make a realistic estimate of the ECCS performance during a LOCA and to quantify the uncertainty of this calculation. The purpose of this report is to summarize this research and to serve as a general reference for the extensive research effort that has been performed. The report: (1) summarizes the understanding of LOCA phenomena in 1974; (2) reviews experimental and analytical programs developed to address the phenomena; (3) describes the best-estimate computer codes developed by the NRC; (4) discusses the salient technical aspects of the physical phenomena and our current understanding of them; (5) discusses probabilistic risk assessment results and perspectives, and (6) evaluates the impact of research results on the ECCS regulations. 736 refs., 412 figs., 66 tabs

  7. Damage of reactor buildings occurred at the Fukushima Daiichi accident. Focusing on sequence leading to hydrogen explosions

    International Nuclear Information System (INIS)

    Naito, Masanori

    2011-01-01

    Fukushima Daiichi accident discharged enormous radioactive materials confined inside into the environment due to hydrogen explosions occurred at reactor buildings and forced many people to live the refugee life. This article described overview of Great East Japan Earthquake, specifications of Fukushima Daiichi nuclear power plants, sequence of plant status after earthquake occurrence and computerized simulation of plant behavior of Unit 1 leading to core melt and hydrogen explosion. Simulation results with estimated and assumed conditions showed water level decreased to bottom of reactor core after 4 hrs and 15 minutes passed, core melt started after 6 hrs and 49 minutes passed, failure of core support plate after 7 hrs and 18 minutes passed and through failure of penetration at bottom of pressure vessel after 7 hrs and 25 minutes passed. Hydrogen concentration at operating floor of reactor building of Unit 1 would be 15% accumulated and the pressure would amount to about 5 bars after hydrogen explosion if reactor building did not rupture with leak-tight structure. Since reactor building was not pressure-proof structure, walls of operating floor would rupture before 5 bars attained. (T. Tanaka)

  8. Approach to accident management in RBMK-1500

    International Nuclear Information System (INIS)

    Kaliatka, A.; Urbonavicius, E.; Uspuras, E.

    2008-01-01

    In order to ensure the safe operation of the nuclear power plants accident management programs are being developed around the world. These accident management programs cover the whole spectrum of accidents, including severe accidents. A lot of work is done to investigate the severe accident phenomena and implement severe accident management in NPPs with vessel-type reactors, while less attention is paid to channel-type reactors CANDU and RBMK. Ignalina NPP with RBMK-1500 reactor has implemented symptom based emergency operation procedures, which cover management of accidents until the core damage and do not extend to core damage region. In order to ensure coverage of the whole spectrum of accidents and meet the requirements of IAEA the severe accident management guidelines have to be developed. This paper presents the basic principles and approach to management of beyond design basis accidents at Ignalina NPP. In general, this approach could be applied to NPPs with RBMK-1000 reactors that are available in Russia, but the design differences should be taken into account

  9. Japan's compensation system for nuclear damage - As related to the TEPCO Fukushima Daiichi nuclear accidents

    International Nuclear Information System (INIS)

    Nomura, Toyohiro; Matsuura, Shigekazu; Takahashi, Yasufumi; Takenaka, Chihiro; Hokugo, Taro; Kamada, Toshihiko; Kamai, Hiroyuki

    2012-01-01

    Following the TEPCO Fukushima Daiichi nuclear power plant accident, extraordinary efforts were undertaken in Japan to implement a compensation scheme for the proper and efficient indemnification of the affected victims. This publication provides English translations of key Japanese legislative and administrative texts and other implementing guidance, as well as several commentaries by Japanese experts in the field of third party nuclear liability. The OECD Nuclear Energy Agency (NEA) has prepared this publication in co-operation with the government of Japan to share Japan's recent experience in implementing its nuclear liability and compensation regime. The material presented in the publication should provide valuable insights for those wishing to better understand the regime applied to compensate the victims of the accident and for those working on potential improvements in national regimes and the international framework for third party nuclear liability

  10. Failure Predictions for VHTR Core Components using a Probabilistic Contiuum Damage Mechanics Model

    Energy Technology Data Exchange (ETDEWEB)

    Fok, Alex

    2013-10-30

    The proposed work addresses the key research need for the development of constitutive models and overall failure models for graphite and high temperature structural materials, with the long-term goal being to maximize the design life of the Next Generation Nuclear Plant (NGNP). To this end, the capability of a Continuum Damage Mechanics (CDM) model, which has been used successfully for modeling fracture of virgin graphite, will be extended as a predictive and design tool for the core components of the very high- temperature reactor (VHTR). Specifically, irradiation and environmental effects pertinent to the VHTR will be incorporated into the model to allow fracture of graphite and ceramic components under in-reactor conditions to be modeled explicitly using the finite element method. The model uses a combined stress-based and fracture mechanics-based failure criterion, so it can simulate both the initiation and propagation of cracks. Modern imaging techniques, such as x-ray computed tomography and digital image correlation, will be used during material testing to help define the baseline material damage parameters. Monte Carlo analysis will be performed to address inherent variations in material properties, the aim being to reduce the arbitrariness and uncertainties associated with the current statistical approach. The results can potentially contribute to the current development of American Society of Mechanical Engineers (ASME) codes for the design and construction of VHTR core components.

  11. Accidents in the operation of nuclear power stations. Action for damages against foreign operators

    International Nuclear Information System (INIS)

    Willner, K.

    1986-01-01

    On the occasion of a lecture evening of the Leo Goodman Library in Munich questions of civil liability of foreign reactor operators in cases of nuclear accidents were discussed by participants of various universities. Special subjects were i.a. problems of civil procedural and insurance law, absolute liability according to sec. 25 Atomic Energy Act as well as questions of applicable law. (WG) [de

  12. Determination of possible damage/degradation of the Sandia National Laboratories Personal Nuclear Accident Dosimeter (PNAD)

    International Nuclear Information System (INIS)

    Potter, Charles Augustus; Ward, Dann C.

    2008-01-01

    This report describes the results of an inspection performed on the existing stock of SNL Personal Nuclear Accident Dosimeters (PNADs). The current stock is approximately 20 years old, and has not been examined since their initial acceptance. A small random sample of PNADs were opened (a destructive process) and the contents visually examined. Sample contents were not degraded and indicate that the existing stock of SNL PNADs is acceptable for continued use

  13. Efficient method for simulation of BWR severe accident sequence events before core uncovery

    International Nuclear Information System (INIS)

    Harrington, R.M.

    1984-01-01

    BWR-LACP has been a versatile tool for the ORNL SASA program. The development effort was minimal, and the code is fast running and economical. Operator actions are easily simulated and the complete scope of both reactor vessel and primary containment are modeled. Valuable insights have been gained into accident sequences. A Fortran version is under development and it will be modified for application to Mark II plants

  14. On fission product retention in the core of the low powered high temperature reactor under accident conditions

    International Nuclear Information System (INIS)

    Bastek, H.

    1984-01-01

    In the core of the high temperature reactor the fuel element and the coated particles contained herein provide the safest enclosure for fission products. The complex process of fission product transport out of the particle kernel, through the particle coating and within the fuel element graphite is described in a simplified form by the Fick's diffusion. The effective diffusion coefficient is used for calculation. Starting from the existing ideas of fission product transport five burn-up and temperature-dependent diffusion coefficients for Cesium in (Th,U)O 2 -kernels are derived in this study. The results have been gained from several fuel element radiation experiments in recent years, which showed extreme variation in regard to burn-up, temperature cycle, neutron flux and operation time. Cs-137 release measurements from single particle kernels were present from all the experiments. Furthermore, annealing tests of AVR-fuel elements were analyzed. Heat-temperatur and heating-time, the fuel element burn-up in the AVR-reactor, as well as the measured Cs-137 inventory of the fuel elements before and after annealing, are included in the investigation as essential parameters. With the aid of the derived diffusion coeffizients and already present data sets the Cs-137 release of fuel elements into a small reactor core is investigated under unrestricted core heat-up. While the released Cs-137 is derived mainly from defective particles at accident temperatures up to 1600 0 C, the main part diffuses through the particle coating at higher accident temperatures. (orig./HP) [de

  15. NPP Krsko Severe Accident Management Guidelines Implementation

    International Nuclear Information System (INIS)

    Basic, I.; Krajnc, B.; Bilic-Zabric, T.; Spiler, J.

    2002-01-01

    Severe Accident Management is a framework to identify and implement the Emergency Response Capabilities that can be used to prevent or mitigate severe accidents and their consequences. The USA NRC has indicated that the development of a licensee plant specific accident management program will be required in order to close out the severe accident regulatory issue (Ref. SECY-88-147). Generic Letter 88-20 ties the Accident management Program to IPE for each plant. The SECY-89-012 defines those actions taken during the course of an accident by the plant operating and technical staff to: 1) prevent core damage, 2) terminate the progress of core damage if it begins and retain the core within the reactor vessel, 3) maintain containment integrity as long as possible, and 4) minimize offsite releases. The subject of this paper is to document the severe accident management activities, which resulted in a plant specific Severe Accident Management Guidelines implementation. They have been developed based on the Krsko IPE (Individual Plant Examination) insights, Generic WOG SAMGs (Westinghouse Owners Group Severe Accident Management Guidances) and plant specific documents developed within this effort. Among the required plant specific actions the following are the most important ones: Identification and documentation of those Krsko plant specific severe accident management features (which also resulted from the IPE investigations). The development of the Krsko plant specific background documents (Severe Accident Plant Specific Strategies and SAMG Setpoint Calculation). Also, paper discusses effort done in the areas of NPP Krsko SAMG review (internal and external ), validation on Krsko Full Scope Simulator (Severe Accident sequences are simulated by MAAP4 in real time) and world 1st IAEA Review of Accident Management Programmes (RAMP). (author)

  16. Performance experiments on the in-vessel core catcher during severe accidents

    International Nuclear Information System (INIS)

    Kang, Kyoung Ho; Park, Rae Joon; Cho, Young Rho; Kim, Sang Baik

    2004-01-01

    A US-Korean International Nuclear Energy Research Initiative (INERI) project has been initiated by the Idaho National Engineering and Environmental Laboratory (INEEL), Seoul National University (SNU), Pennsylvania State University (PSU), and the Korean Atomic Energy Research Institute (KAERI) to determine if IVR is feasible for high power reactors up to 1500 MWe by investigating the performance of enhanced ERVC and in-vessel core catcher. This program is initially focusing on the Korean Advanced Power Reactor 1400 MWe (APR1400) design. As for the enhancement of the coolability through the ERVC, boiling tests are conducted by using appropriate coating material on the vessel outer surface to promote downward facing boiling and selecting an improved vessel/insulation design to facilitate water flow and steam venting through the insulation in this program. Another approach for successful IVR are investigated by applying the in-vessel core catcher to provide an 'engineered gap' between the relocated core materials and the water-filled reactor vessel and a preliminary design for an in-vessel core catcher was developed during the first year of this program. Feasibility experiments using the LAVA facility, named LAVA-GAP experiments, are in progress to investigate the core catcher performance based on the conceptual design of the in-vessel core catcher proposed in this INERI project. The experiments were performed using 60kg of Al 2 O 3 thermite melt as a core material simulant with a 1/8 linear scale mock-up of the reactor vessel lower plenum. The hemispherical in-vessel core catcher was installed inside the lower head vessel maintaining a uniform gap of 10mm from the inner surface of the lower head vessel. Two types of the core catchers were used in these experiments. The first one was a single layered in-vessel core catcher without internal coating and the second one was a two layered in-vessel core catcher with an internal coating of 0.5mm-thick ZrO 2 via the plasma

  17. BNL program in support of LWR degraded-core accident analysis

    International Nuclear Information System (INIS)

    Ginsberg, T.; Greene, G.A.

    1982-01-01

    Two major sources of loading on dry watr reactor containments are steam generatin from core debris water thermal interactions and molten core-concrete interactions. Experiments are in progress at BNL in support of analytical model development related to aspects of the above containment loading mechanisms. The work supports development and evaluation of the CORCON (Muir, 1981) and MARCH (Wooton, 1980) computer codes. Progress in the two programs is described in this paper. 8 figures

  18. Accident sequence quantification with KIRAP

    International Nuclear Information System (INIS)

    Kim, Tae Un; Han, Sang Hoon; Kim, Kil You; Yang, Jun Eon; Jeong, Won Dae; Chang, Seung Cheol; Sung, Tae Yong; Kang, Dae Il; Park, Jin Hee; Lee, Yoon Hwan; Hwang, Mi Jeong.

    1997-01-01

    The tasks of probabilistic safety assessment(PSA) consists of the identification of initiating events, the construction of event tree for each initiating event, construction of fault trees for event tree logics, the analysis of reliability data and finally the accident sequence quantification. In the PSA, the accident sequence quantification is to calculate the core damage frequency, importance analysis and uncertainty analysis. Accident sequence quantification requires to understand the whole model of the PSA because it has to combine all event tree and fault tree models, and requires the excellent computer code because it takes long computation time. Advanced Research Group of Korea Atomic Energy Research Institute(KAERI) has developed PSA workstation KIRAP(Korea Integrated Reliability Analysis Code Package) for the PSA work. This report describes the procedures to perform accident sequence quantification, the method to use KIRAP's cut set generator, and method to perform the accident sequence quantification with KIRAP. (author). 6 refs

  19. Accident sequence quantification with KIRAP

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Un; Han, Sang Hoon; Kim, Kil You; Yang, Jun Eon; Jeong, Won Dae; Chang, Seung Cheol; Sung, Tae Yong; Kang, Dae Il; Park, Jin Hee; Lee, Yoon Hwan; Hwang, Mi Jeong

    1997-01-01

    The tasks of probabilistic safety assessment(PSA) consists of the identification of initiating events, the construction of event tree for each initiating event, construction of fault trees for event tree logics, the analysis of reliability data and finally the accident sequence quantification. In the PSA, the accident sequence quantification is to calculate the core damage frequency, importance analysis and uncertainty analysis. Accident sequence quantification requires to understand the whole model of the PSA because it has to combine all event tree and fault tree models, and requires the excellent computer code because it takes long computation time. Advanced Research Group of Korea Atomic Energy Research Institute(KAERI) has developed PSA workstation KIRAP(Korea Integrated Reliability Analysis Code Package) for the PSA work. This report describes the procedures to perform accident sequence quantification, the method to use KIRAP`s cut set generator, and method to perform the accident sequence quantification with KIRAP. (author). 6 refs.

  20. Comparative analysis of a hypothetical loss-of-flow accident in an irradiated LMFBR core using different computer models for a common benchmark problem

    International Nuclear Information System (INIS)

    Wider, H.U.; Devos, J.; Nguyen, H.; Goethem, G. Van.; Miles, K.J.; Tentner, A.M.; Pizzica, P.

    1989-01-01

    This report summarizes the results of an international exercise to compare whole-core accident calculations of the initiation phase of an unprotected LOF accident in a large irradiated LMFBR. The results for the accident phase before pin failure are in rather good agreement except for the fuel pin mechanics predictions. There are also some differences in the sodium boiling calculations but the voiding rates which are of key importance are very similar. The post - failure fuel motion and sodium voiding predictions show significant differences. However, the majority of these calculations agree that temporary fuel accumulations occur which increase the power beyond that caused by sodium voiding alone

  1. Numerical simulation of the insulation material transport to a PWR core under loss of coolant accident conditions

    International Nuclear Information System (INIS)

    Höhne, Thomas; Grahn, Alexander; Kliem, Sören; Rohde, Ulrich; Weiss, Frank-Peter

    2013-01-01

    Highlights: ► Detailed results of a numerical simulation of the insulation material transport to a PWR core are shown. ► The spacer grid is modeled as a strainer which completely retains the insulation material carried by coolant. ► The CFD calculations showed that the fibers at the upper spacer grid plane are not uniformly distributed. ► Furthermore the pressure loss does not exceed a critical limit. ► The PWR core coolablity can be guaranteed all the time during the transient. -- Abstract: In 1992, strainers on the suction side of the ECCS pumps in Barsebäck NPP Unit 2 became partially clogged with mineral wool because after a safety valve opened the steam impinged on thermally insulated equipment and released mineral wool. This event pointed out that strainer clogging is an issue in the course of a loss-of-coolant accident. Modifications of the insulation material, the strainer area and mesh size were carried out in most of the German NPPs. Moreover, back flushing procedures to remove the mineral wool from the strainers and differential pressure measurements were implemented to assure the performance of emergency core cooling during the containment sump recirculation mode. Nevertheless, it cannot be completely ruled out, that a limited amount of small fractions of the insulation material is transported into the RPV. During a postulated cold leg LOCA with hot leg ECC injection, the fibers enter the upper plenum and can accumulate at the fuel element spacer grids, preferably at the uppermost grid level. This effect might affect the ECC flow into the core and could result in degradation of core cooling. It was the aim of the numerical simulations presented to study where and how many mineral wool fibers are deposited at the upper spacer grid. The 3D, time dependent, multi-phase flow problem was modeled applying the CFD code ANSYS CFX. The CFD calculation does not yet include steam production in the core and also does not include re-suspension of the

  2. Kinetics Parameters of VVER-1000 Core with 3 MOX Lead Test Assemblies To Be Used for Accident Analysis Codes

    International Nuclear Information System (INIS)

    Pavlovitchev, A.M.

    2000-01-01

    The present work is a part of Joint U.S./Russian Project with Weapons-Grade Plutonium Disposition in VVER Reactor and presents the neutronics calculations of kinetics parameters of VVER-1000 core with 3 introduced MOX LTAs. MOX LTA design has been studied in [1] for two options of MOX LTA: 100% plutonium and of ''island'' type. As a result, zoning i.e. fissile plutonium enrichments in different plutonium zones, has been defined. VVER-1000 core with 3 introduced MOX LTAs of chosen design has been calculated in [2]. In present work, the neutronics data for transient analysis codes (RELAP [3]) has been obtained using the codes chain of RRC ''Kurchatov Institute'' [5] that is to be used for exploitation neutronics calculations of VVER. Nowadays the 3D assembly-by-assembly code BIPR-7A and 2D pin-by-pin code PERMAK-A, both with the neutronics constants prepared by the cell code TVS-M, are the base elements of this chain. It should be reminded that in [6] TVS-M was used only for the constants calculations of MOX FAs. In current calculations the code TVS-M has been used both for UOX and MOX fuel constants. Besides, the volume of presented information has been increased and additional explications have been included. The results for the reference uranium core [4] are presented in Chapter 2. The results for the core with 3 MOX LTAs are presented in Chapter 3. The conservatism that is connected with neutronics parameters and that must be taken into account during transient analysis calculations, is discussed in Chapter 4. The conservative parameters values are considered to be used in 1-point core kinetics models of accident analysis codes

  3. The nuclear accident of Fukushima Daiichi - Soil contamination between the damaged reactors and the Pacific Ocean

    International Nuclear Information System (INIS)

    2013-01-01

    This document more particularly addresses the issue of management of contaminated waters present on the Fukushima site. It comments the assessment of contaminated water volumes, the presence of contaminated waters under the reactor buildings and under the turbine buildings which are a major risk of pollution for underground waters. It evokes the results of measurements of a high activity of Tritium and Strontium between the plant and the ocean, and discusses the possible origins of this increased radioactivity, and possible actions to create a barrier between the ocean and underground water. Some lessons learned from the Chernobyl accident are evoked

  4. A study of core melting phenomena in reactor severe accident of PWR

    Energy Technology Data Exchange (ETDEWEB)

    Jeun, Gyoo Dong; Park, Shane; Kim, Jong Sun; Kim, Sung Joong [Hanyang Univ., Seoul (Korea, Republic of); Kim, Jin Man [Korea Maritime Univ., Busan (Korea, Republic of)

    2001-03-15

    In the 4th year, SCDAP/RELAP5 best estimate input data obtained from the TMI-2 accident analysis were applied to the analysis of domestic nuclear power plant. Ulchin nuclear power plant unit 3, 4 were selected as reference plant and steam generator tube rupture, station blackout SCDAP/RELAP5 calculation were performed to verify the adequacy of the best estimate input parameters and the adequacy of related models. Also, System 80+ EVSE simulation was executed to study steam explosion phenomena in the reactor cavity and EVSE load test was performed on the simplified reactor cavity geometry using TRACER-II code.

  5. Estimative of core damage frequency in IPEN's IEA-R1 research reactor (PSA level 1) due to the initiating event of loss of coolant caused by large rupture in the pipe of the primary circuit

    International Nuclear Information System (INIS)

    Hirata, Daniel Massami

    2009-01-01

    This work applies the methodology of probabilistic safety assessment level 1 to the research reactor IEA-R1 IPEN-CNEN/SP. Two categories of identified initiating events of accidents in the reactor are studied: loss of flow and loss of primary coolant. Among the initiating events, blockage of flow channel and loss of cooling fluid by major pipe rupture in the primary circuit are chosen for a detailed analysis. The event tree technique is used to analyze the evolution of the accident, including the actuation or the fail of actuation of the safety systems and the reactor damages. Using the fault tree the reliability of the following reactor safety systems is evaluated: reactor shutdown system, isolation of the reactor pool, emergency core cooling system (ECCS) and the electric system. Estimative for the frequency of damage to the reactor core and the probability of failure of the analyzed systems are calculated. The estimated values for the frequencies of core damage are within the expected margins and are of the same order of magnitude as those found for similar reactors. The reliability of the reactor shutdown system, isolation of the reactor pool and ECCS are satisfactory for the conditions these systems are required. However, for the electric system it is suggested an upgrade to increase its reliability. (author)

  6. Hypothetical core disruptive accident analysis of a 2000 MWsub(e) liquid metal cooled fast breeder reactor

    International Nuclear Information System (INIS)

    Struwe, D.

    1977-12-01

    A structural phase diagram for hypothetical core disruptive accidents (HCDA) has been developed based on a variety of analyses for different LMFBR's. The intention was to identify the strategic phases of HCDA's important with regard to safety aspects of the plant. These phases are investigated in detail for a 2,000 MWsub(e) LMFBR (SNR-2,000). Characteristic data of SNR-2,000 are discussed concerning their influence on safety analysis. Reasons for the choice of model parameters for special phenomena as fuel coolant interaction, fuel pin failure mechanisms and sodium voiding are given. The results of calculations with CAPRI-2, HOPE and KADIS are analyzed for possibilities to enter energetic core disassembly with consequences, making power values below 2,000 MWsub(e) necessary. Investigation of these results shows that the expected consequences do not lead to design requirements, restricting the magnitude of the electrical power output of LMFBR's to values below 2,000 MWsub(e). Therefore, consequences of HCDA's are principal not expected to limit the feasibility of conventional core design of this order of magnitude. (orig.) [de

  7. Coupling of 3-D core computational codes and a reactor simulation software for the computation of PWR reactivity accidents induced by thermal-hydraulic transients

    International Nuclear Information System (INIS)

    Raymond, P.; Caruge, D.; Paik, H.J.

    1994-01-01

    The French CEA has recently developed a set of new computer codes for reactor physics computations called the Saphir system which includes CRONOS-2, a three-dimensional neutronic code, FLICA-4, a three-dimensional core thermal hydraulic code, and FLICA-S, a primary loops thermal-hydraulic transient computation code, which are coupled and applied to analyze a severe reactivity accident induced by a thermal hydraulic transient: the Steamline Break accident for a pressurized water reactor until soluble boron begins to accumulate in the core. The coupling of these codes has proved to be numerically stable. 15 figs., 7 refs

  8. TMI-2 core examination

    International Nuclear Information System (INIS)

    Hobbins, R.R.; MacDonald, P.E.; Owen, D.E.

    1983-01-01

    The examination of the damaged core at the Three Mile Island Unit 2 (TMI-2) reactor is structured to address the following safety issues: fission product release, transport, and deposition; core coolability; containment integrity; and recriticality during severe accidents; as well as zircaloy cladding ballooning and oxidation during so-called design basis accidents. The numbers of TMI-2 components or samples to be examined, the priority of each examination, the safety issue addressed by each examination, the principal examination techniques to be employed, and the data to be obtained and the principal uses of the data are discussed in this paper

  9. The IPE Database: providing information on plant design, core damage frequency and containment performance

    International Nuclear Information System (INIS)

    Lehner, J.R.; Lin, C.C.; Pratt, W.T.; Su, T.; Danziger, L.

    1996-01-01

    A database, called the IPE Database has been developed that stores data obtained from the Individual Plant Examinations (IPEs) which licensees of nuclear power plants have conducted in response to the Nuclear Regulatory Commission's (NRC) Generic Letter GL88-20. The IPE Database is a collection of linked files which store information about plant design, core damage frequency (CDF), and containment performance in a uniform, structured way. The information contained in the various files is based on data contained in the IPE submittals. The information extracted from the submittals and entered into the IPE Database can be manipulated so that queries regarding individual or groups of plants can be answered using the IPE Database

  10. An assessment of fuel freezing and drainage phenomena in a reactor shield plug following a core disruptive accident

    International Nuclear Information System (INIS)

    El-Genk, M.; Cronenberg, A.W.

    1978-01-01

    An important problem related to the assessment of the recriticality potential for an LMFBR following a core disruptive accident is an understanding of the freezing phenomena of molten fuel on a cold structure which may prevent fuel dispersal and sunsequent shutdown. Transient analytical freezing and drainage calculations have been applied to molten UO 2 travel through the rather cold lower shield plug of the Clinch River Breeder Reactor (CRBR). The successive approximation technique is used to obtain a solution of the non-linear freezing problem, where such effects as heat generation, viscous heat dissipation, temperature dependent thermophysical properties and a convective boundary condition at the solidification front have been incorporated into the present analytical formulation. Results indicate that previous steady-state analysis overestimate the rate of frozen layer build-up by about a factor of two. However, of primary importance is the driving force for drainage and the diameter of the shield plug flow channel. (Auth.)

  11. Analysis of an out-of-pile experiment for materials redistribution under core disruptive accident condition of fast breeder reactors

    International Nuclear Information System (INIS)

    Sawada, Tetsuo; Ninokata, Hisashi; Shimizu, Akinao

    1995-01-01

    Calculation of one of the SIMBATH experiments was performed using the SIMMER-II code. The experiments were intended to simulate the fuel pin disintegration, the molten materials relocation and following materials redistribution that could occur during core disruptive accidents assumed in fast breeder reactors. The calculation by SIMMER-II showed that the incorporated step-wise fuel pin disintegration model and the modified particle jamming model were capable of reproducing the course of materials relocation within the identified ranges of the parameters which governed the blockages formation, i.e. the characteristic radius of solid particles jamming and/or sieving out in the flow and the effective particle viscosity. In particular the final materials redistribution calculated by SIMMER-II very well reproduced the experiment. This fact made it possible to interpret theoretically the mechanisms of flow blockages formation and related materials redistribution. (author)

  12. Estimation of irradiation-induced material damage measure of FCM fuel in LWR core

    International Nuclear Information System (INIS)

    Lee, Kyung-Hoon; Lee, Chungchan; Park, Sang-Yoon; Cho, Jin-Young; Chang, Jonghwa; Lee, Won Jae

    2014-01-01

    An irradiation-induced material damage measure on tri-isotropic (TRISO) multi-coating layers of fully ceramic micro-encapsulated (FCM) fuel to replace conventional uranium dioxide (UO 2 ) fuel for existing light water reactors (LWRs) has been estimated using a displacement per atom (DPA) cross section for a FCM fuel performance analysis. The DPA cross sections in 47 and 190 energy groups for both silicon carbide (SiC) and graphite are generated based on the molecular dynamics simulation by SRIM/TRIM. For the selected FCM fuel assembly design with FeCrAl cladding, a core depletion analysis was carried out using the DeCART2D/MASTER code system with the prepared DPA cross sections to evaluate the irradiation effect in the Korean OPR-1000. The DPA of the SiC and IPyC coating layers is estimated by comparing the discharge burnup obtained from the MASTER calculation with the burnup-dependent DPA for each coating layer calculated using DeCART2D. The results show that low uranium loading and hardened neutron spectrum compared to that of high temperature gas-cooled reactor (HTGR) result in high discharge burnup and high fast neutron fluence. In conclusion, it can be seen that the irradiation-induced material damage measure is noticeably increased under LWR operating conditions compared to HTGRs. (author)

  13. Analysis of core damage frequency due to external events at the DOE [Department of Energy] N-Reactor

    International Nuclear Information System (INIS)

    Lambright, J.A.; Bohn, M.P.; Daniel, S.L.; Baxter, J.T.; Johnson, J.J.; Ravindra, M.K.; Hashimoto, P.O.; Mraz, M.J.; Tong, W.H.; Conoscente, J.P.; Brosseau, D.A.

    1990-11-01

    A complete external events probabilistic risk assessment has been performed for the N-Reactor power plant, making full use of all insights gained during the past ten years' developments in risk assessment methodologies. A detailed screening analysis was performed which showed that all external events had negligible contribution to core damage frequency except fires, seismic events, and external flooding. A limited scope analysis of the external flooding risk indicated that it is not a major risk contributor. Detailed analyses of the fire and seismic risks resulted in total (mean) core damage frequencies of 1.96E-5 and 4.60E-05 per reactor year, respectively. Detailed uncertainty analyses were performed for both fire and seismic risks. These results show that the core damage frequency profile for these events is comparable to that found for existing commercial power plants if proposed fixes are completed as part of the restart program. 108 refs., 85 figs., 80 tabs

  14. Analysis of core damage frequency due to external events at the DOE (Department of Energy) N-Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lambright, J.A.; Bohn, M.P.; Daniel, S.L. (Sandia National Labs., Albuquerque, NM (USA)); Baxter, J.T. (Westinghouse Hanford Co., Richland, WA (USA)); Johnson, J.J.; Ravindra, M.K.; Hashimoto, P.O.; Mraz, M.J.; Tong, W.H.; Conoscente, J.P. (EQE, Inc., San Francisco, CA (USA)); Brosseau, D.A. (ERCE, Inc., Albuquerque, NM (USA))

    1990-11-01

    A complete external events probabilistic risk assessment has been performed for the N-Reactor power plant, making full use of all insights gained during the past ten years' developments in risk assessment methodologies. A detailed screening analysis was performed which showed that all external events had negligible contribution to core damage frequency except fires, seismic events, and external flooding. A limited scope analysis of the external flooding risk indicated that it is not a major risk contributor. Detailed analyses of the fire and seismic risks resulted in total (mean) core damage frequencies of 1.96E-5 and 4.60E-05 per reactor year, respectively. Detailed uncertainty analyses were performed for both fire and seismic risks. These results show that the core damage frequency profile for these events is comparable to that found for existing commercial power plants if proposed fixes are completed as part of the restart program. 108 refs., 85 figs., 80 tabs.

  15. Performance of core exit thermocouple for PWR accident management action in vessel top break LOCA simulation experiment at OECD/NEA ROSA project

    International Nuclear Information System (INIS)

    Suzuki, Mitsuhiro; Takeda, Takeshi; Nakamura, Hideo

    2009-01-01

    Presented are experiment results of the Large Scale Test Facility (LSTF) conducted at the Japan Atomic Energy Agency (JAEA) with a focus on core exit thermocouple (CET) performance to detect core overheat during a vessel top break loss-of-coolant accident (LOCA) simulation experiment. The CET temperatures are used to start accident management (AM) action to quickly depressurize steam generator (SG) secondary side in case of core temperature excursion. Test 6-1 is first test of the OECD/NEA ROSA Project started in 2005, simulating withdraw of a control rod drive mechanism penetration nozzle at the vessel top head. The break size is equivalent to 1.9% cold leg break. The AM action was initiated when CET temperature rose up to 623K. There was no reflux water fallback onto the CETs during the core heat-up period. The core overheat, however, was detected with a time delay of about 230s. In addition, a large temperature discrepancy was observed between the CETs and the hottest core region. This paper clarifies the reason of time delay and temperature discrepancy between the CETs and heated core during boil-off including three-dimensional steam flows in the core and core exit. The paper discusses applicability of the LSTF CET performance to pressurized water reactor (PWR) conditions and a possibility of alternative indicators for earlier AM action than in Test 6-1 is studied by using symptom-based plant parameters such as a reactor vessel water level detection. (author)

  16. Analysis of emergency operating procedures effectiveness for core damage prevention using computer code RELAP for nuclear power plants with VVER-1000/B-320 in reference to primary to secondary circuit leak with external power loss and BRU-A stuck open failure

    International Nuclear Information System (INIS)

    Arkhangelski, L.; Sheveliov, D. V.

    1999-01-01

    This report presents analysis of development emergency operating procedures effectiveness for possible accident on nuclear power plant with WWER-1000 reactor type. Accident initiating event is the primary to secondary circuit leak caused by steam generator primary cover lift-up. In according to conservative assumptions the following additional failures were considered: dump valve BRU-A stuck open failure; loss of external power. The results of this work are represented as a comparative analysis of two possible ways of accident evolution: according to functioning automatic safety systems responses; according to accident management based on development emergency operating procedures with operator intervention. Developed emergency operating procedures assure the following significant goals to mitigate accident sequences: optimal use of ECCS water inventory; severe core damage prevention; mitigation of environment radioactive contamination. (authors)

  17. Loss of Coolant Accident (LOCA) / Emergency Core Coolant System (ECCS Evaluation of Risk-Informed Margins Management Strategies for a Representative Pressurized Water Reactor (PWR)

    Energy Technology Data Exchange (ETDEWEB)

    Szilard, Ronaldo Henriques [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    A Risk Informed Safety Margin Characterization (RISMC) toolkit and methodology are proposed for investigating nuclear power plant core, fuels design and safety analysis, including postulated Loss-of-Coolant Accident (LOCA) analysis. This toolkit, under an integrated evaluation model framework, is name LOCA toolkit for the US (LOTUS). This demonstration includes coupled analysis of core design, fuel design, thermal hydraulics and systems analysis, using advanced risk analysis tools and methods to investigate a wide range of results.

  18. Review of the SIMMER-II analyses of liquid-metal-cooled fast breeder reactor core-disruptive accident fuel escape

    International Nuclear Information System (INIS)

    DeVault, G.P.; Bell, C.R.

    1985-01-01

    Early fuel removal from the active core of a liquid-metal-cooled fast breeder reactor undergoing a core-disruptive accident may reduce the potential for large energetics resulting from recriticalities. This paper presents a review of analyses with the SIMMER-II computer program of the effectiveness of possible fuel escape paths. Where possible, how SIMMER-II compares with or is validated against experiments that simulated the escape paths also is discussed

  19. Comparative analysis of unprotected loss-of-flow accidents for the 1.0 m EFR-LVC core using different computer codes

    International Nuclear Information System (INIS)

    Royl, P.; Frizonnet, J.M.; Moran, J.

    1993-02-01

    A comparative analysis of the unprotected loss of flow (ULOF) accident has been performed for the LVC core (Lower Void Core) of the European Fast Reactor EFR with the FRAX5B and FRAX5C codes from the AEA-T, the PHYSURAC code from CEA and the SAS4A REF92 code system developed jointly between KfK, CEA and PNC. The accident is triggered by the run down of the coolant pumps with failure to trip the reactor by the primary and/or secondary shutdown system. Only a limited amount of mitigating reactivity from the third shutdown line was considered so that the accident can progress into boiling and core disruption. This code outlines the important modelling differences and compares the different simulations. The discussion of the rather wide spectrum of calculated accident progressions identifies the generic differences, relates them to the applied models, and summarizes the key points that are responsible for the different progressions. A comparison of the consequence spectrum from all simulations indicates zero work energies for the majority of the calculations. All simulations show up the need for a continued accident analysis into the early and late transition phase

  20. Characterization of the Fault Core and Damage Zone of the Borrego Fault, 2010 M7.2 Rupture

    Science.gov (United States)

    Dorsey, M. T.; Rockwell, T. K.; Girty, G.; Ostermeijer, G.; Mitchell, T. M.; Fletcher, J. M.

    2017-12-01

    We collected a continuous sample of the fault core and 23 samples of the damage zone out to 52 m across the rupture trace of the 2010 M7.2 El Mayor-Cucapa earthquake to characterize the physical damage and chemical transformations associated with this active seismic source. In addition to quantifying fracture intensity from macroscopic analysis, we cut a continuous thin section through the fault core and from various samples in the damage zone, and ran each sample for XRD analyses for clay mineralogy, XRF for bulk geochemical analyses, and bulk and grain density from which porosity and volumetric strain were derived. The parent rock is a hydrothermally-altered biotite tonalite, with biotite partially altered to chlorite. The presence of epidote with chlorite suggests that these rocks were subjected to relatively high temperatures of 300-400° C. Adjacent to the outermost damage zone is a chaotic breccia zone with distinct chemical and physical characteristics, indicating possible connection to an ancestral fault to the southwest. The damage zone consists of an outer zone of protocataclasite, which grades inward towards mesocataclasite with seams of ultracataclasite. The fault core is anomalous in that it is largely composed of a sliver of marble that has been translated along the fault, so direct comparison with the damage zone is impaired. From collected data, we observe that chloritization increases into the breccia and damage zones, as does the presence of illite. Porosity reaches maximum values in the damage zone adjacent to the core, and closely follows trends in fracture intensity. Statistically significant gains in Mg, Na, K, Mn, and total bulk mass occurred within the inner damage zone, with losses of Ca and P mass, which led to the formation of chlorite and albite. The outer damage zone displays gains in Mg and Na mass with losses in Ca and P mass. The breccia zone shows gains in mass of Mg and Mn and loss in total bulk mass. A gain in LOI in both the

  1. Economic models of compensation for damages caused by nuclear accidents: some lessons for the revision of the Paris and Vienna Conventions

    International Nuclear Information System (INIS)

    Faure, Michael G.

    1995-01-01

    Alternative systems of compensation for damages caused by nuclear accidents have been proposed. In respect, the question merits attention to whether these alternative models of compensation discussed in the economic literature could be implemented when discussing the revision of the Paris and Vienna Conventions. 55 refs., 1 tab

  2. Comparative analysis of a hypothetical 0.1 $/SEC transient overpower accident in an irradiated LMFBR core using different computer models

    International Nuclear Information System (INIS)

    Cacciabue, P.C.; Fremont, R. de; Renard, A.

    1982-01-01

    The Report gives the results of comparative calculations performed by the Whole Core Accident Codes Group which is a subgroup of the Safety Working Group of the Fast Reactor Coordinating Committee for a hypothetical transient overpower accident in an irradiated LMFBR core. Different computer codes from members of the European Community and the United States were used. The calculations are based on a Benchmark problem, using commonly agreed input data for the most important phenomena, such as the fuel pin failure threshold, FCl parameters, etc. Beside this, results with alternative assumptions for theoretical modelling are presented with the scope to show in a parametric way the influence of more advanced modelling capabilities and/or better (so-called best estimate) input data for the most important phenomena on the accident sequences

  3. Accident prevention and security measures to prevent intentional harm and damage through nuclear energy

    International Nuclear Information System (INIS)

    Rauschning, D.

    1984-01-01

    The author explains the authorities' duty to provide for protection against intentional damage or physical harm through the use of nuclear energy. It belongs to the competence of the various authorities to define ways and means to afford protection, and to establish an appropriate network of provisions. There are provisions belonging to criminal law, those concerning liability and indemnity, and security regulations incorporated in the law on licensing and supervision. The author presents a detailed account of the law applicable and discusses the conflict of interests between governmental duties and intentions and the civil rights of the individual affected by the provisions. (HSCH) [de

  4. Bubble behavior in LMFBR core disruptive accidents. Annual report, June 1, 1975--June 30, 1976

    International Nuclear Information System (INIS)

    Reynolds, A.B.; Erdman, C.A.; Garner, P.L.; Kennedy, M.F.; Rao, S.P.; Refling, J.G.

    1976-08-01

    The work reported here is part of the Aerosol Release and Transport program for LMFBR safety assessment for the Reactor Safety Research Division of the U.S. Nuclear Regulatory Commission. Six areas were at various stages of investigation during this reporting period. A study of nonequilibrium mass transfer during fuel expansion and a study of the dynamics of fuel expansion into the sodium pool were completed. Studies are underway on condensation on above-core structures and on generation of aerosols from condensation. Studies were initiated on small-particle generation from hydrodynamic fragmentation, on particle kinematics and on particle-surface interaction

  5. Safety Strategy of JSFR establishing In-Vessel Retention of Core Disruptive Accident

    International Nuclear Information System (INIS)

    Tobita, Yoshiharu

    2013-01-01

    Coolability of debris bed was confirmed by debris bed temperature analysis coupled with the cooling system, according to the following material relocation scenario. → Case 1: Upward ejection in Transition Phase to cause shutdown. → Case 2: Early downward ejection of fuel through CRGT. → Case 3: Whole fuel accumulates on the core catcher (bounding). The flow reversal of a primary coolant loop of the two loop system of the JSFR which is caused by possible imbalance between two DHRS loops increase the flow in RV. Helpful for long-term cooling

  6. Key Characteristics of Combined Accident including TLOFW accident for PSA Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bo Gyung; Kang, Hyun Gook [KAIST, Daejeon (Korea, Republic of); Yoon, Ho Joon [Khalifa University of Science, Technology and Research, Abu Dhabi (United Arab Emirates)

    2015-05-15

    accident is very hazardous. If the operator initiates F and B operation properly under the combined accident including TLOFW accident, the operators can prevent the core damage. Since F and B operation is last resort to prevent core damage and necessary conditions of F and B operation are very complicated, the consequence of these events should be considered in PSA model to improve emergency response capabilities under the rare events. Dynamic PSA modeling is better to estimate the effects of heading order and timing issues. Especially, dynamic PSA can model accident sequences and estimate their probabilities through integrated, time-dependent, probabilistic and deterministic models of NPPs, based on the thermal-hydraulic processes and operator behavior in accident conditions. We will develop the dynamic PSA model for the combined accident including TLOFW accident in the further study.

  7. Parameters affecting of Akkuyu’s safety assessment for severe core damages

    Directory of Open Access Journals (Sweden)

    Kavun Yusuf

    2015-01-01

    Full Text Available We have looked at all past core meltdowns (Three Mile Island, Chernobyl and Fukushima incidents and postulated the fourth one might be taking place in the future most probably in a newly built reactors anywhere of the earth in any type of NPP. The probability of this observation is high considering the nature of the machine and human interaction. Operation experience is a very significant parameter as well as the safety culture of the host nation. The concerns is not just a lack of experience with industry with the new comers, but also the infrastructure and established institutions who will be dealing with the Emergencies. Lack of trained and educated Emergency Response Organizations (ERO is a major concern. The culture on simple fire drills even makes the difference when a severe condition occurs in the industry. The study assumes the fourth event will be taking place at the Akkuyu NGS and works backwards as required by the “what went wrong ” scenarios and comes up with interesting results. The differences studied in depth to determine the impact to the severe accidents. The all four design have now core catchers. We have looked at the operator errors’like in TMI; Operator errors combined with design deficiencies(like in Chernobyl and natural disasters( like in Fukushima and found operator errors to be more probable event on the Akkuyu’s postulated next incident. With respect to experiences of the operators we do not have any data except for long and successful operating history of the Soviet design reactors up until the Chernobyl incident. Since the Akkuyu will be built, own and operated by the Russians we have found no alarming concerns at the moment. At the moment, there is no body be able to operate those units in Turkey. Turkey is planning to build the required manpower during the transition period. The resolution of the observed parameters lies to work and educate, train of the host nation and exercise together.

  8. Development of the evaluation methodology for the material relocation behavior in the core disruptive accident of sodium cooled fast reactors

    International Nuclear Information System (INIS)

    Tobita, Yoshiharu; Kamiyama, Kenji; Tagami, Hirotaka; Matsuba, Ken-ichi; Suzuki, Tohru; Isozaki, Mikio; Yamano, Hidemasa; Morita, Koji; Guo, Liancheng; Zhang, Bin

    2014-01-01

    The in-vessel retention (IVR) of core disruptive accident (CDA) is of prime importance in enhancing safety characteristics of sodium-cooled fast reactors (SFRs). In the CDA of SFRs, molten core material relocates to the lower plenum of reactor vessel and may impose significant thermal load on the structures, resulting in the melt through of the reactor vessel. In order to enable the assessment of this relocation process and prove that IVR of core material is the most probable consequence of the CDA in SFRs, a research program to develop the evaluation methodology for the material relocation behavior in the CDA of SFRs has been conducted. This program consists of three developmental studies, namely the development of the analysis method of molten material discharge from the core region, the development of evaluation methodology of molten material penetration into sodium pool, and the development of the simulation tool of debris bed behavior. The analysis method of molten material discharge was developed based on the computer code SIMMER-III since this code is designed to simulate the multi-phase, multi-component fluid dynamics with phase changes involved in the discharge process. Several experiments simulating the molten material discharge through duct using simulant materials were utilized as the basis of validation study of the physical models in this code. It was shown that SIMMER-III with improved physical models could simulate the molten material discharge behavior including the momentum exchange with duct wall and thermal interaction with coolant. In order to develop evaluation methodology of molten material penetration into sodium pool, a series of experiments simulating jet penetration behavior into sodium pool in SFR thermal condition were performed. These experiments revealed that the molten jet was fragmented in significantly shorter penetration length than the prediction by existing correlation for light water reactor conditions, due to the direct

  9. TMI-2 core bore acquisition summary report

    International Nuclear Information System (INIS)

    Tolman, E.L.; Smith, R.P.; Martin, M.R.; McCardell, R.K.; Broughton, J.M.

    1986-09-01

    Core bore samples were obtained from the severely damaged TMI-2 core during July and August, 1986. A description of the TMI-2 core bore drilling unit used to obtain samples; a summary and discussion of the data from the ten core bore segments which were obtained; and the initial results of analysis and evaluation of these data are presented in this report. The impact of the major findings relative to our understanding of the accident scenario is also discussed

  10. Accident Source Terms for Pressurized Water Reactors with High-Burnup Cores Calculated using MELCOR 1.8.5.

    Energy Technology Data Exchange (ETDEWEB)

    Gauntt, Randall O.; Goldmann, Andrew; Kalinich, Donald A.; Powers, Dana A.

    2016-12-01

    In this study, risk-significant pressurized-water reactor severe accident sequences are examined using MELCOR 1.8.5 to explore the range of fission product releases to the reactor containment building. Advances in the understanding of fission product release and transport behavior and severe accident progression are used to render best estimate analyses of selected accident sequences. Particular emphasis is placed on estimating the effects of high fuel burnup in contrast with low burnup on fission product releases to the containment. Supporting this emphasis, recent data available on fission product release from high-burnup (HBU) fuel from the French VERCOR project are used in this study. The results of these analyses are treated as samples from a population of accident sequences in order to employ approximate order statistics characterization of the results. These trends and tendencies are then compared to the NUREG-1465 alternative source term prescription used today for regulatory applications. In general, greater differences are observed between the state-of-the-art calculations for either HBU or low-burnup (LBU) fuel and the NUREG-1465 containment release fractions than exist between HBU and LBU release fractions. Current analyses suggest that retention of fission products within the vessel and the reactor coolant system (RCS) are greater than contemplated in the NUREG-1465 prescription, and that, overall, release fractions to the containment are therefore lower across the board in the present analyses than suggested in NUREG-1465. The decreased volatility of Cs 2 MoO 4 compared to CsI or CsOH increases the predicted RCS retention of cesium, and as a result, cesium and iodine do not follow identical behaviors with respect to distribution among vessel, RCS, and containment. With respect to the regulatory alternative source term, greater differences are observed between the NUREG-1465 prescription and both HBU and LBU predictions than exist between HBU and LBU

  11. Efficient prevention and compensation of catastrophic risks. The example of damage by nuclear accidents

    International Nuclear Information System (INIS)

    Vanden Borre, T.

    2001-01-01

    This book deals with the liability for damage due to catastrophic risks. The nuclear liability law serves as an example of such a catastrophic risk. The question that we tried to answer is what an efficient compensation scheme for catastrophic risks should look like. This question is dealt with both from a law and an economic point of view and from a comparative point of view. The main element in comparing the laws in different countries is the comparison between Belgian and Dutch civil (nuclear) liability law. But also American nuclear liability law is part of the analysis (the Price-Anderson Act). The book consists of four parts: (nuclear) civil liability law, legal and economic approach, analysis of other compensation systems and conclusions. The big themes in this book are therefore civil (nuclear) liability law, insurance law and environmental liability law [nl

  12. Proposed model for fuel-coolant mixing during a core-melt accident

    International Nuclear Information System (INIS)

    Corradini, M.L.

    1983-01-01

    If complete failure of normal and emergency coolant flow occurs in a light water reactor, fission product decay heat would eventually cause melting of the reactor fuel and cladding. The core melt may then slump into the lower plenum and later into the reactor cavity and contact residual liquid water. A model is proposed to describe the fuel-coolant mixing process upon contact. The model is compared to intermediate scale experiments being conducted at Sandia. The modelling of this mixing process will aid in understanding three important processes: (1) fuel debris sizes upon quenching in water, (2) the hydrogen source term during fuel quench, and (3) the rate of steam production. Additional observations of Sandia data indicate that the steam explosion is affected by this mixing process

  13. Modeling of BWR core meltdown accidents - for application in the MELRPI. MOD2 computer code

    Energy Technology Data Exchange (ETDEWEB)

    Koh, B R; Kim, S H; Taleyarkhan, R P; Podowski, M Z; Lahey, Jr, R T

    1985-04-01

    This report summarizes improvements and modifications made in the MELRPI computer code. A major difference between this new, updated version of the code, called MELRPI.MOD2, and the one reported previously, concerns the inclusion of a model for the BWR emergency core cooling systems (ECCS). This model and its computer implementation, the ECCRPI subroutine, account for various emergency injection modes, for both intact and rubblized geometries. Other changes to MELRPI deal with an improved model for canister wall oxidation, rubble bed modeling, and numerical integration of system equations. A complete documentation of the entire MELRPI.MOD2 code is also given, including an input guide, list of subroutines, sample input/output and program listing.

  14. Possible emission of radioactive fission products during off-design accidents at a nuclear power plant with VVER-1000 reactor

    International Nuclear Information System (INIS)

    Dubkov, A.P.; Kozlov, V.F.; Luzanova, L.M.

    1995-01-01

    It is well known that eight nuclear power plants with VVER-1000 reactors have been constructed in Russia, Ukraine, and in the Republic of Belarus and they have been operating successfully without any serious accidents since 1980. These facilities have been analyzed for various accident scenarios, and measures have been incorporated which will prevent core damage during these possible events. However, an off-design accident can occur, and in such a case, the radiological consequences would exceed the worst design accidents. This paper reviews a number of potential off-design accidents in order to develop an accident plan to mitigate the consequences of such an accident

  15. Developing a knowledge base for the management of severe accidents

    International Nuclear Information System (INIS)

    Nelson, W.R.; Jenkins, J.P.

    1986-01-01

    Prior to the accident at Three Mile Island, little attention was given to the development of procedures for the management of severe accidents, that is, accidents in which the reactor core is damaged. Since TMI, however, significant effort has been devoted to developing strategies for severe accident management. At the same time, the potential application of artificial intelligence techniques, particularly expert systems, to complex decision-making tasks such as accident diagnosis and response has received considerable attention. The need to develop strategies for accident management suggests that a computerized knowledge base such as used by an expert system could be developed to collect and organize knowledge for severe accident management. This paper suggests a general method which could be used to develop such a knowledge base, and how it could be used to enhance accident management capabilities

  16. IPE Data Base: Plant design, core damage frequency and containment performance information

    International Nuclear Information System (INIS)

    Lehner, J.; Lin, C.C.; Pratt, W.T.; Su, T.; Danziger, L.

    1995-01-01

    This data base stores data obtained from the Individual Plant Examinations (IPEs) which licensees of nuclear power plants have conducted in response to NRC's Generic Letter GL88-20. The IPE Data Base is a collection of linked files which store information about plant design, core damage frequency, and containment performance in a uniform, structured way. The information contined in the various files is based on data contained in the IPE submittals. The information extracted from the submittals and entered into the IPE Data Base can be maniulated so that queries regarding individual or groups of plants can be answered using the IPE Data Base. The IPE Data Base supports detailed inquiries into the characteristics of individual plants or classes of plants. Progress has been made on the IPE Data Base and it is largely complete. Recent focus has been the development of a user friendly version which is menu driven and allows the user to ask queries of varying complexity easily, without the need to become familiar with particular data base formats or conventions such as those of DBase IV or Microsoft Access. The user can obtain the information he desired by quickly moving through a series of on-screen menus and ''clicking'' on appropriate choices. In this way even a first time user can benefit from the large amount of information stored in the IPE Data Base without the need of a learning period

  17. Analysis of core damage frequency from internal events: Methodology guidelines: Volume 1

    International Nuclear Information System (INIS)

    Drouin, M.T.; Harper, F.T.; Camp, A.L.

    1987-09-01

    NUREG-1150 examines the risk to the public from a selected group of nuclear power plants. This report describes the methodology used to estimate the internal event core damage frequencies of four plants in support of NUREG-1150. In principle, this methodology is similar to methods used in past probabilistic risk assessments; however, based on past studies and using analysts that are experienced in these techniques, the analyses can be focused in certain areas. In this approach, only the most important systems and failure modes are modeled in detail. Further, the data and human reliability analyses are simplified, with emphasis on the most important components and human actions. Using these methods, an analysis can be completed in six to nine months using two to three full-time systems analysts and part-time personnel in other areas, such as data analysis and human reliability analysis. This is significantly faster and less costly than previous analyses and provides most of the insights that are obtained by the more costly studies. 82 refs., 35 figs., 27 tabs

  18. ORAL MUCOSA DAMAGE BECAUSE OF HYPOCHLORITE ACCIDENT – A CASE REPORT AND LITERATURE REVIEW

    Directory of Open Access Journals (Sweden)

    Elitsa Deliverska

    2016-08-01

    Full Text Available Background Hypochlorite solution is widely used in dental practice during root canal treatment. Although it is generally regarded as being very safe, potentially severe complications can occur when it comes into contact with soft tissue especially due to its cytotoxic features. Objective The aim of our paper is to present a case of damage of oral mucosa because of leakage of 3% hypochlorite through rubber dam during endodontic treatment. Material and methods We present a 31 years old female with necrosis of buccal mucosa during the endodontic treatment of 46. Results Three days after the procedure the patient was referred to our department for consultation and treatment. Antiseptic lavage was performed and oral antibiotic was administrated. After 5 days intraoral examination showed signs of almost full recovery. Conclusion The need for proper tooth isolation during restorative procedures is obvious. Anything that obscures the operative field negatively impacts operator efficiency and effectiveness. Visibility, patient/operator safety, infection control and the physical properties of dental materials are all compromised when proper isolation is lacking.

  19. Grain boundary sweeping and dissolution effects on fission product behavior under severe fuel damage accident conditions

    International Nuclear Information System (INIS)

    Rest, J.

    1985-10-01

    The theoretical FASTGRASS-VFP model has been used in the interpretation of fission gas, iodine, tellurium, and cesium release from severe-fuel-damage (SFD) tests performed in the PBF reactor in Idaho. A theory of grain boundary sweeping of gas bubbles, gas bubble behavior during fuel liquefaction (destruction of grain boundaries due to formation of a U-rich melt phase), and during U-Zr eutectic melting has been included within the FASTGRASS-VFP formalism. The grain-boundary-sweeping theory considers the interaction between the moving grain boundary and two distinct size classes of bubbles, those on grain faces and on grain edges. The theory of the effects of fuel liquefaction and U-Zr eutectic melting on fission product behavior considers the migration and coalescence of fission gas bubbles in either molten uranium, or a zircaloy-uranium eutectic melt. The FASTGRASS-VFP predictions, measured release rates from the above tests, and previously published release rates are compared and differences between fission product behavior in trace-irradiated and in normally irradiated fuel are highlighted

  20. Analysis methodology for RBMK-1500 core safety and investigations on corium coolability during a LWR severe accident

    International Nuclear Information System (INIS)

    Jasiulevicius, Audrius

    2003-01-01

    This thesis presents the work involving two broad aspects within the field of nuclear reactor analysis and safety. These are: - development of a fully independent reactor dynamics and safety analysis methodology of the RBMK-1500 core transient accidents and - experiments on the enhancement of coolability of a particulate bed or a melt pool due to heat removal through the control rod guide tubes. The first part of the thesis focuses on the development of the RBMK-1500 analysis methodology based on the CORETRAN code package. The second part investigates the issue of coolability during severe accidents in LWR type reactors: the coolability of debris bed and melt pool for in-vessel and ex-vessel conditions. The first chapter briefly presents the status of developments in both the RBMK-1500 core analysis and the corium coolability areas. The second chapter describes the generation of the RBMK-1500 neutron cross section data library with the HELIOS code. The cross section library was developed for the whole range of the reactor conditions. The results of the benchmarking with the WIMS-D4 code and validation against the RBMK Critical Facility experiments is also presented here. The HELIOS generated neutron cross section data library provides a close agreement with the WIMS-D4 code results. The validation against the data from the Critical Experiments shows that the HELIOS generated neutron cross section library provides excellent predictions for the criticality, axial and radial power distribution, control rod reactivity worths and coolant reactivity effects, etc. The reactivity effects of voiding for the system, fuel assembly and additional absorber channel are underpredicted in the calculations using the HELIOS code generated neutron cross sections. The underprediction, however, is much less than that obtained when the WIMS-D4 code generated cross sections are employed. The third chapter describes the work, performed towards the accurate prediction, assessment and

  1. Analysis methodology for RBMK-1500 core safety and investigations on corium coolability during a LWR severe accident

    Energy Technology Data Exchange (ETDEWEB)

    Jasiulevicius, Audrius

    2003-07-01

    This thesis presents the work involving two broad aspects within the field of nuclear reactor analysis and safety. These are: - development of a fully independent reactor dynamics and safety analysis methodology of the RBMK-1500 core transient accidents and - experiments on the enhancement of coolability of a particulate bed or a melt pool due to heat removal through the control rod guide tubes. The first part of the thesis focuses on the development of the RBMK-1500 analysis methodology based on the CORETRAN code package. The second part investigates the issue of coolability during severe accidents in LWR type reactors: the coolability of debris bed and melt pool for in-vessel and ex-vessel conditions. The first chapter briefly presents the status of developments in both the RBMK-1500 core analysis and the corium coolability areas. The second chapter describes the generation of the RBMK-1500 neutron cross section data library with the HELIOS code. The cross section library was developed for the whole range of the reactor conditions. The results of the benchmarking with the WIMS-D4 code and validation against the RBMK Critical Facility experiments is also presented here. The HELIOS generated neutron cross section data library provides a close agreement with the WIMS-D4 code results. The validation against the data from the Critical Experiments shows that the HELIOS generated neutron cross section library provides excellent predictions for the criticality, axial and radial power distribution, control rod reactivity worths and coolant reactivity effects, etc. The reactivity effects of voiding for the system, fuel assembly and additional absorber channel are underpredicted in the calculations using the HELIOS code generated neutron cross sections. The underprediction, however, is much less than that obtained when the WIMS-D4 code generated cross sections are employed. The third chapter describes the work, performed towards the accurate prediction, assessment and

  2. Coolability of severely degraded CANDU cores

    International Nuclear Information System (INIS)

    Meneley, D.A.; Blahnik, C.; Rogers, J.T.; Snell, V.G.; Mijhawan, S.

    1995-07-01

    Analytical and experimental studies have shown that the separately cooled moderator in a CANDU reactor provides an effective heat sink in the event of a loss-of-coolant accident (LOCA) accompanied by total failure of the emergency core cooling system (ECCS). The moderator heat sink prevents fuel melting and maintains the integrity of the fuel channels, therefore terminating this severe accident short of severe core damage. Nevertheless, there is a probability, however low, that the moderator heat sink could fail in such an accident. The pioneering work of Rogers (1984) for such a severe accident using simplified models showed that the fuel channels would fail and a bed of dry, solid debris would be formed at the bottom of the calandria which would heat up and eventually melt. However, the molten pool of core material would be retained in the calandria vessel, cooled by the independently cooled shield-tank water, and would eventually re solidify. Thus, the calandria vessel would act inherently as a core-catcher as long as the shield tank integrity is maintained. The present paper reviews subsequent work on the damage to a CANDU core under severe accident conditions and describes an empirically based mechanistic model of this process. It is shown that, for such severe accident sequences in a CANDU reactor, the end state following core disassembly consists of a porous bed of dry solid, coarse debris, irrespective of the initiating event and the core disassembly process. (author). 48 refs., 3 tabs., 18 figs

  3. Coolability of severely degraded CANDU cores. Revised

    International Nuclear Information System (INIS)

    Meneley, D.A.; Blahnik, C.; Rogers, J.T.; Snell, V.G.; Nijhawan, S.

    1996-01-01

    Analytical and experimental studies have shown that the separately cooled moderator in a CANDU reactor provides an effective heat sink in the event of a loss-of-coolant accident (LOCA) accompanied by total failure of the emergency core cooling system (ECCS). The moderator heat sink prevents fuel melting and maintains the integrity of the fuel channels, therefore terminating this severe accident short of severe core damage. Nevertheless, there is a probability, however low, that the moderator heat sink could fail in such an accident. The pioneering work of Rogers (1984) for such a severe accident using simplified models showed that the fuel channels would fail and a bed of dry, solid debris would be formed at the bottom of the calandria which would heat up and eventually melt. However, the molten pool of core material would be retained in the calandria vessel, cooled by the independently cooled shield-tank water, and would eventually resolidify. Thus, the calandria vessel would act inherently as a 'core-catcher' as long as the shield tank integrity is maintained. The present paper reviews subsequent work on the damage to a CANDU core under severe accident conditions and describes an empirically based mechanistic model of this process. It is shown that, for such severe accident sequences in a CANDU reactor, the end state following core disassembly consists of a porous bed of dry solid, coarse debris, irrespective of the initiating event and the core disassembly process. (author)

  4. Consideration of severe accident issues for the General Electric BWR standard plant: Chapter 10

    International Nuclear Information System (INIS)

    Holtzclaw, K.W.

    1983-01-01

    In early 1982, the U.S. Nuclear Regulatory Commission (NRC) proposed a policy to address severe accident rulemaking on future plants by utilizing standard plant licensing documentation. GE provided appendices to the licensing documentation of its standard plant design, GESSAR II, which address severe accidents for the GE BWR/6 Mark III 238 nuclear island design. The GE submittals discuss the features of the design that prevent severe accidents from leading to core damage or that mitigate the effects of severe accidents should core damage occur. The quantification of the accident prevention and mitigation features, including those incorporated in the design since the accident at Three Mile Island (TMI), is provided by means of a comprehensive probabilistic risk assessment, which provides an analysis of the probability and consequences of postulated severe accidents

  5. Grain boundary sweeping and dissolution effects on fission product behaviour under severe fuel damage accident conditions

    International Nuclear Information System (INIS)

    Rest, J.

    1986-01-01

    The theoretical FASTGRASS-VFP model has been used in the interpretation of fission gas, iodine, tellurium, and cesium release from severe-fuel-damage (SFD) tests performed in the PBF reactor in Idaho. A theory of grain boundary sweeping of gas bubbles, gas bubble behavior during fuel liquefaction (destruction of grain boundaries due to formation of a U-rich melt phase), and during U-Zr eutectic melting has been included within the FASTGRASS-VFP formalism. The grain-boundary-sweeping theory considers the interaction between the moving grain boundary and two distinct size classes of bubbles, those on grain faces and on grain edges. The theory of the effects of fuel liquefaction and U-Zr eutectic melting on fission product behaviour considers the migration and coalescence of fission gas bubbles in either molten uranium, or a Zircaloy-Uranium eutectic melt. Results of the analyses demonstrate that intragranular fission product behavior during the tests can be interpreted in terms of a grain-growth/grain-boundary-sweeping mechanism that enhances the flow of fission products from within the grains to the grain boundaries. Whereas fuel liquefaction leads to an enhanced release of fission products in trace-irradiated fuel, the occurrence of fuel liquefaction in normally-irradiated fuel can degrade fission product release. This phenomenon is due in part to reduced gas-bubble mobilities in a viscous medium as compared to vapor transport, and in part to a degradation of grain growth rates and the subsequent decrease in grain-boundary sweeping of intragranular fission products into the liquified lamina. The analysis shows that total UO 2 dissolution due to eutectic melting leads to increased release for both trace-irradiated and normally-irradiated fuel. The FASTGRASS-VFP predictions, measured release rates from the above tests, and previously published release rates are compared and differences between fission product behavior in trace-irradiated and in normally

  6. FANCI Regulates Recruitment of the FA Core Complex at Sites of DNA Damage Independently of FANCD2.

    Directory of Open Access Journals (Sweden)

    Maria Castella

    2015-10-01

    Full Text Available The Fanconi anemia (FA-BRCA pathway mediates repair of DNA interstrand crosslinks. The FA core complex, a multi-subunit ubiquitin ligase, participates in the detection of DNA lesions and monoubiquitinates two downstream FA proteins, FANCD2 and FANCI (or the ID complex. However, the regulation of the FA core complex itself is poorly understood. Here we show that the FA core complex proteins are recruited to sites of DNA damage and form nuclear foci in S and G2 phases of the cell cycle. ATR kinase activity, an intact FA core complex and FANCM-FAAP24 were crucial for this recruitment. Surprisingly, FANCI, but not its partner FANCD2, was needed for efficient FA core complex foci formation. Monoubiquitination or ATR-dependent phosphorylation of FANCI were not required for the FA core complex recruitment, but FANCI deubiquitination by USP1 was. Additionally, BRCA1 was required for efficient FA core complex foci formation. These findings indicate that FANCI functions upstream of FA core complex recruitment independently of FANCD2, and alter the current view of the FA-BRCA pathway.

  7. Mechanisms of damage to the oxide layer of cladding of fuel rods under accident conditions like RI

    International Nuclear Information System (INIS)

    Busser, Vincent

    2009-01-01

    During reactivity initiated accident, the importance of cladding tube oxidation on its thermomechanical behavior has been investigated. After RIA tests in experimental reactors oxide damage including radial cracking and spallation of the outer oxide layer has been evidenced. This work aims at better understanding the key mechanisms controlling these phenomena. Laboratory air-oxidation of Zircaloy-4 cladding tubes has been performed at 470 C. SEM micrographs show that radial cracks are initiated from the outer surface of the oxide layer and propagated radially towards the oxide-metal interface. A model predicting the stress evolution within the oxide and the depth of crack has been developed and validated on literature tests and tests of this study. Ring compression tests were used for the experimental study of the oxide degradation under mechanical loading. Experimental data revealed three mechanisms: densification of the radial crack network, propagation of these radial cracks, branching and spallation of oxide fragments. The influence of the circumferential cracks, periodically distributed in the oxide layer, on the stress distribution in oxide fragments has been analysed using finite element modelling. The determining influence of these cracks on the maximum stress oxide fragments has been demonstrated. (author)

  8. PBDOWN - a computer code for simulating core material discharge and thermal to mechanical energy conversion in LMFBR hypothetical accidents

    International Nuclear Information System (INIS)

    Royl, P.

    1981-01-01

    PBDOWN is a computer code that simulates the blowdown of confined boiling materials ('pools') into a colder upper coolant plenum as time dependent ejection and expansion with consideration of a few selected exchange processes. Its application is restricted to situations resulting from hypothetical loss of flow (LOF) accidents in LMFBR's, where enough voiding has occured, that in core sodium vapor pressures become negligible. PBDOWN considers one working fluid for the discharge process (either fuel or steel) and a maximum of two working fluids (either fuel and sodium or steel and sodium) for the expansion process in the upper coolant plenum. Entrainment of sodium at the accelerated bubble liquid interfaces is mechanistically calculated by a Taylor instability entrainment model. Simulation of a hemispherical expansion form together with this mechanistic entrainment model gives a new integrated calculation of the time dependent sodium mass in the bubble. The paper summarizes the basic equations and assumptions of this computer model. Sample results compare different heat transfer and Na entrainment models during steel and fuel driven discharge processes. Mechanistic sodium entrainment simulation for SNR-type reactors coupled with a realistic heat transfer model is shown to reduce the integral mechanical work potential by a factor of 1.3 to 2.0 over the isentropic energy of the discharge working fluids. (orig.)

  9. Experimental investigation of material chemical effects on emergency core cooling pump suction filter performance after loss of coolant accident

    International Nuclear Information System (INIS)

    Park, Jong Woon; Park, Byung Gi; Kim, Chang Hyun

    2009-01-01

    Integral tests of head loss through an emergency core cooling filter screen are conducted, simulating reactor building environmental conditions for 30 days after a loss of coolant accident. A test rig with five individual loops each of whose chamber is established to test chemical product formation and measure the head loss through a sample filter. The screen area at each chamber and the amounts of reactor building materials are scaled down according to specific plant condition. A series of tests have been performed to investigate the effects of calcium-silicate, reactor building spray, existence of calcium-silicate with tri-sodium phosphate (TSP), and composition of materials. The results showed that head loss across the chemical bed with even a small amount of calcium-silicate insulation instantaneously increased as soon as TSP was added to the test solution. Also, the head loss across the filter screen is strongly affected by spray duration and the head loss increase is rapid at the early stage, because of high dissolution and precipitation of aluminum and zinc. After passivation of aluminum and zinc by corrosion, the head loss increase is much slowed down and is mainly induced by materials such as calcium, silicon, and magnesium leached from NUKON TM and concrete. Furthermore, it is newly found that the spay buffer agent, tri-sodium phosphate, to form protective coating on the aluminum surface and reduce aluminum leaching is not effective for a large amount of aluminum and a long spray.

  10. Assessment of radiological impact due to a hypothetical core disruptive accident for PFBR using an advanced atmospheric dispersion system

    International Nuclear Information System (INIS)

    Srinivas, C.V.; Venkatesan, R.; Natarajan, A.

    2004-01-01

    Radiological impact due to air borne effluent dispersion from a hypothetical Core Disruptive Accident (CDA) scenario for Prototype Fast Breeder Reactor (PFBR) at Kalpakkam coastal site is estimated using an advanced system consisting of a 3-d meso-scale atmospheric model and a random walk particle dispersion model. A simulation of dispersion for CDA carried out for a typical summer day on 24th May 2003 predicted development of land-sea breeze circulation and Thermal Internal Boundary Layer (TIBL) at Kalpakkam site, which have been confirmed by observations. Analysis of dose distribution corresponding to predicted atmospheric conditions shows maximum dose from stack releases beyond the site boundary at about 4 km during TIBL fumigation and stable conditions respectively. A multi mode spatial concentration distribution has been noticed with diurnal meandering of wind under land sea breeze circulation. Over a meso-scale range of 25 km, turning of plume under sea breeze and maximum concentration along plume centerline at distances of 3 to 10 km have been noticed. The study has enabled to simulate the more complex meteorological situation that is actually present at the site. (author)

  11. Post-accident core retention for LMFBR's. 2. Technical report, 1 July 1973--30 June 1974

    International Nuclear Information System (INIS)

    1974-09-01

    This report describes work performed at UCLA on Post Accident Heat Removal for the period July 1973 to July 1974. The work includes a preliminary identification of sequences of events that could lead to a completely disassembled core and analysis of several in-vessel processes relevant to establishing whether or not containment can be achieved. Preliminary observations on the dry-out of debris beds are reported. The effects of both stabilizing temperature gradients and thermal radiation on increases in the downward heat transfer from a molten layer of UO 2 are found to be significant. Boiling of the molten layer is considered and the existing experimental data is found to be inadequate. Predictions of heat transfer from a downward facing surface to a low Prandtl number fluid are not available. Recommendations for future work are made. The effects of disturbances on a quiescent molten layer are presented. A simple fast method of estimating recriticality is given and an estimate of possible ramp rates is made. Areas of uncertainty requiring further work are identified. (U.S.)

  12. Chemical considerations in severe accident analysis

    International Nuclear Information System (INIS)

    Malinauskas, A.P.; Kress, T.S.

    1988-01-01

    The Reactor Safety Study presented the first systematic attempt to include fission product physicochemical effects in the determination of expected consequences of hypothetical nuclear reactor power plant accidents. At the time, however, the data base was sparse, and the treatment of fission product behavior was not entirely consistent or accurate. Considerable research has since been performed to identify and understand chemical phenomena that can occur in the course of a nuclear reactor accident, and how these phenomena affect fission product behavior. In this report, the current status of our understanding of the chemistry of fission products in severe core damage accidents is summarized and contrasted with that of the Reactor Safety Study

  13. The contribution to site core damage frequency from independent occurrences of initiators in two or more units: How low is it?

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong-San; Park, Jin Hee; Lim, Ho Gon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Stutzke estimated the site risk by summing the contribution from common cause initiators and the contribution from single-unit initiators. He considered some kinds of multi-unit accident sequences caused by single-unit initiators. However, the contribution from independent occurrences of initiators in two or more units at a site was not taken into account. The purpose of this study is to estimate the contribution to site core damage frequency (CDF) from simultaneous occurrences of independent initiators in two or more units at the same site. Some assumptions and methods used in this analysis are firstly described, and the results and conclusions of the analysis are described. In this study, the contribution to site core damage frequency (CDF) from simultaneous occurrences of independent initiators in two or more units at the same site was estimated. A Korean six-unit site was selected as the reference site and the at-power internal events Level 1 PSA model for an OPR1000 unit at the reference site was used as the base model, and was modified to deal with some major dependencies between units at the site. Specifically, the availability of the AAC D/G, dependencies between offsite power recovery actions in different unis, and inter-unit CCF modeling for risk-significant components such as diesel generators were taken into account. As a result, the sum of dual-unit CDF due to independent occurrences of initiators in two units at the reference site was estimated to be sufficiently low to be neglected.

  14. Small break LOCA [loss of coolant accident] mitigation for Bellefonte

    International Nuclear Information System (INIS)

    Bayless, P.D.; Dobbe, C.A.

    1986-01-01

    Several 5-cm (2-in.) diameter cold leg break loss coolant accidents for the Bellefonte nuclear plant were analyzed as part of the Severe Accident Sequence Analysis Program. The transients assumed various system failures, and included the S 2 D sequence. Operator actions to mitigate the S 2 D transient were also investigated. The transients were analyzed until either core damage began or long-term decay heat removal was established. The S 2 D sequence was analyzed into the core damage phase of the transient. The analyses showed that the flow from one high pressure injection pump was necessary and sufficient to prevent core damage in the absence of operator actions. Operator actions were also able to prevent core damage for the S 2 D sequence

  15. Experience in construction of new safe confinement over ChNPP-4 damages in beyond design-basis accident: view in 30 year

    International Nuclear Information System (INIS)

    Nosovskij, A.V.

    2016-01-01

    Many organizations and institutions participated in the elimination of ChNPP-4 accident. However, the main efforts on conservation of the damaged unit and ChNPP-3 commissioning were performed in 1986-1987 by experts of the enterprises and organizations of the Ministry of Medium Machine Building of the Soviet Union, who have been sent to the staff of the specially created Construction Administration US-605. The paper presents the activity of US-605 experts, describes administrative and technical measures of radiation safety during construction of the Shelter in difficult radiation conditions. Such efforts enabled accumulation of significant and unique experience in mitigation of severe accident consequences, which shall be used to prevent any nuclear accidents and eliminate their consequences

  16. Accident progression event tree analysis for postulated severe accidents at N Reactor

    International Nuclear Information System (INIS)

    Wyss, G.D.; Camp, A.L.; Miller, L.A.; Dingman, S.E.; Kunsman, D.M.; Medford, G.T.

    1990-06-01

    A Level II/III probabilistic risk assessment (PRA) has been performed for N Reactor, a Department of Energy (DOE) production reactor located on the Hanford reservation in Washington. The accident progression analysis documented in this report determines how core damage accidents identified in the Level I PRA progress from fuel damage to confinement response and potential releases the environment. The objectives of the study are to generate accident progression data for the Level II/III PRA source term model and to identify changes that could improve plant response under accident conditions. The scope of the analysis is comprehensive, excluding only sabotage and operator errors of commission. State-of-the-art methodology is employed based largely on the methods developed by Sandia for the US Nuclear Regulatory Commission in support of the NUREG-1150 study. The accident progression model allows complex interactions and dependencies between systems to be explicitly considered. Latin Hypecube sampling was used to assess the phenomenological and systemic uncertainties associated with the primary and confinement system responses to the core damage accident. The results of the analysis show that the N Reactor confinement concept provides significant radiological protection for most of the accident progression pathways studied

  17. Calculation of the Incremental Conditional Core Damage Probability on the Extension of Allowed Outage Time

    International Nuclear Information System (INIS)

    Kang, Dae Il; Han, Sang Hoon

    2006-01-01

    RG 1.177 requires that the conditional risk (incremental conditional core damage probability and incremental conditional large early release probability: ICCDP and ICLERP), given that a specific component is out of service (OOS), be quantified for a permanent change of the allowed outage time (AOT) of a safety system. An AOT is the length of time that a particular component or system is permitted to be OOS while the plant is operating. The ICCDP is defined as: ICCDP = [(conditional CDF with the subject equipment OOS)- (baseline CDF with nominal expected equipment unavailabilities)] [duration of the single AOT under consideration]. Any event enabling the component OOS can initiate the time clock for the limiting condition of operation for a nuclear power plant. Thus, the largest ICCDP among the ICCDPs estimated from any occurrence of the basic events for the component fault tree should be selected for determining whether the AOT can be extended or not. If the component is under a preventive maintenance, the conditional risk can be straightforwardly calculated without changing the CCF probability. The main concern is the estimations of the CCF probability because there are the possibilities of the failures of other similar components due to the same root causes. The quantifications of the risk, given that a subject equipment is in a failed state, are performed by setting the identified event of subject equipment to TRUE. The CCF probabilities are also changed according to the identified failure cause. In the previous studies, however, the ICCDP was quantified with the consideration of the possibility of a simultaneous occurrence of two CCF events. Based on the above, we derived the formulas of the CCF probabilities for the cases where a specific component is in a failed state and we presented sample calculation results of the ICCDP for the low pressure safety injection system (LPSIS) of Ulchin Unit 3

  18. The management of severe accidents

    International Nuclear Information System (INIS)

    Pelce, J.; Brignon, P.

    1987-01-01

    In considering severe accidents in water power reactors, a major problem that arises is how to manage them in such a way that the situation can be controlled as well as possible, from the aspects both of preventing serious damage to the core of limiting the discharge of radioactivity. A number of countries have announced provisions in the field of accident management, some already set up, others planned, but these mainly apply to preventing damage to the core. Part of this report deals with this aspect, to show that there is a fairly wide consensus on how problems should be approached. Attitudes vary, on the other hand, in the approach to mitigate radioactive release. In fact, few countries have proposed concrete steps to manage severe accidents in the final stages when the core is seriously damaged. Since it is difficult to compare different approaches, only the French approach is described. This description is however very brief, because in the five or six years since it was defined, the approach has been presented many times. The stress is placed more on the comments which this type of approach suggests, to make the subsequent general discussion easier

  19. Deterministic analyses of severe accident issues

    International Nuclear Information System (INIS)

    Dua, S.S.; Moody, F.J.; Muralidharan, R.; Claassen, L.B.

    2004-01-01

    Severe accidents in light water reactors involve complex physical phenomena. In the past there has been a heavy reliance on simple assumptions regarding physical phenomena alongside of probability methods to evaluate risks associated with severe accidents. Recently GE has developed realistic methodologies that permit deterministic evaluations of severe accident progression and of some of the associated phenomena in the case of Boiling Water Reactors (BWRs). These deterministic analyses indicate that with appropriate system modifications, and operator actions, core damage can be prevented in most cases. Furthermore, in cases where core-melt is postulated, containment failure can either be prevented or significantly delayed to allow sufficient time for recovery actions to mitigate severe accidents

  20. A study of entrainment at a break and in the core during small break loss-of-coolant accidents in PWRs

    International Nuclear Information System (INIS)

    Yonomoto, Taisuke

    1996-05-01

    Objectives of the present study are to obtain a better understanding of entrainment at a break and in the core during small break loss-of-coolant-accidents (SBLOCAs) in PWRs, and to develop a means for the best evaluation of the phenomena. For the study of entrainment at a break, a theoretical model was developed, which was assessed by comparisons with several experimental data bases. By modifying a LOCA analysis code using the present model, experimental results obtained from SBLOCA experiments at a PWR large-scale simulator were reproduced very well. For the study of entrainment in the core, reflooding experiments were conducted at high pressure, from which the onset conditions were obtained. It was confirmed that the cooling behavior for a dry-out core is very simple under typical high pressure reflooding conditions for PWRs, because liquid entrainment does not occur in the core. (author)

  1. Core damage vulnerability due to the loss of ESW [essential service water] systems at multiplant sites: An assessment and options

    International Nuclear Information System (INIS)

    Kohut, P.; Musicki, Z.; Fitzpatrick, R.

    1989-01-01

    The main objective of this study is to establish the core damage vulnerability caused by the failure of the ESW systems in multiplant units that have only two sw pumps per unit with crosstie capability. Design and operating data have been surveyed to derive system failure frequency. A core damage model is constructed including operating configurations, specific recovery actions, and time and leak rate dependent RCP seal LOCA model. The estimated CDF SW = 2.55 x 10 -4 /yr is significant indicating the potential vulnerability of this particular SW design arrangement. A number of different potential improvements have been considered. The addition of a swing pump serving both units is shown to have the most significant CDF reduction potential (∼50%) combined with advantageous cost/benefit aspects. 2 refs., 2 tabs

  2. Thermohydraulics in a high-temperature gas-cooled reactor prestressed-concrete reactor vessel during unrestricted core-heatup accidents

    International Nuclear Information System (INIS)

    Kroeger, P.G.; Colman, J.; Araj, K.

    1983-01-01

    The hypothetical accident considered for siting considerations in High Temperature Gas-Cooled Reactors (HTGR) is the so called Unrestricted Core Heatup Accident (UCHA), in which all forced circulation is lost at initiation, and none of the auxillary cooling loops can be started. The result is a gradual slow core heatup, extending over days. Whether the liner cooling system (LCS) operates during this time is of crucial importance. If it does not, the resulting concrete decomposition of the prestressed concrete reactor vessel (PCRV) will ultimately cause containment building (CB) failure after about 6 to 10 days. The primary objective of the work described here was to establish for such accident conditions the core temperatures and approximate fuel failure rates, to check for potential thermal barrier failures, and to follow the PCRV concrete temperatures, as well as PCRV gas releases from concrete decomposition. The work was done for the General Atomic Corporation Base Line Zero reactor of 2240 MW(t). Most results apply at least qualitatively also to other large HTGR steam cycle designs

  3. iROCS: Integrated accident management framework for coping with beyond-design-basis external events

    International Nuclear Information System (INIS)

    Kim, Jaewhan; Park, Soo-Yong; Ahn, Kwang-Il; Yang, Joon-Eon

    2016-01-01

    Highlights: • An integrated mitigating strategy to cope with extreme external events, iROCS, is proposed. • The strategy aims to preserve the integrity of the reactor vessel as well as core cooling. • A case study for an extreme damage state is performed to assess the effectiveness and feasibility of candidate mitigation strategies under an extreme event. - Abstract: The Fukushima Daiichi accident induced by the Great East Japan earthquake and tsunami on March 11, 2011, poses a new challenge to the nuclear society, especially from an accident management viewpoint. This paper presents a new accident management framework called an integrated, RObust Coping Strategy (iROCS) to cope with beyond-design-basis external events (BDBEEs). The iROCS approach is characterized by classification of various plant damage conditions (PDCs) that might be impacted by BDBEEs and corresponding integrated coping strategies for each of PDCs, aiming to maintain and restore core cooling (i.e., to prevent core damage) and to maintain the integrity of the reactor pressure vessel if it is judged that core damage may not be preventable in view of plant conditions. From a case study for an extreme damage condition, it showed that candidate accident management strategies should be evaluated from the viewpoint of effectiveness and feasibility against accident scenarios and extreme damage conditions of the site, especially when employing mobile or portable equipment under BDBEEs within the limited time available to achieve desired goals such as prevention of core damage as well as a reactor vessel failure.

  4. Radiation damage to the thyroid and metabolic changes in cattle in the initial and remote period after the Chernobyl accident

    International Nuclear Information System (INIS)

    Iljazov, R.G.; Yunousova, R.M.

    1997-01-01

    The initial period after the Chernobyl accident was the most dangerous for animals kept in the zone of radioactive contamination. Dose burdens from I-isotopes on the thyroid gland of cattle in the initial period after the accident contributed significantly into the alteration of the hormonal status, physiological state and productive, qualities of cattle on farms of the Gomel area of Belarus

  5. An assessment of core wide coherency effects in the multichannel modeling of the initiating phase of a severe accident in a sodium fast reactor

    International Nuclear Information System (INIS)

    Guyot, M.; Gubernatis, P.; Suteau, C.; Le Tellier, R.; Lecerf, J.

    2014-01-01

    To consolidate the safety assessment for liquid-metal fast breeder reactors (LMFBRs), hypothetical core disruptive accident (HCDA) sequences have been extensively studied over the past decades. Numerous analyses of the so called initiating phase (or primary phase) of a HCDA have been made with the safety analysis system code SAS4A. The SAS4A accident analysis code requires that subassemblies or groups of subassemblies be represented together as independent channels. For simulating a severe accident sequence, a subassembly-to-channel assignment procedure has to be implemented to produce the consistent SAS4A input decks. Generally, one uses imposed criteria over relevant reactor parameters to determine the subassembly to- channel arrangement. The multiple-assembly-per-channel approach introduces core wide coherency effects, which can affect the reactivity balance and therefore the overall accident development. In this paper, a subassembly-to channel assignment procedure based on the subassembly power-to-flow ratio is presented and implemented to generate the SAS4A input decks over a range of parameter values. The corresponding SAS4A calculations have been performed on a large LMFBR. The purpose of the present series of calculations is to investigate the magnitude of errors encountered in the analysis of the initiating phase related to the subassembly-to-channel arrangement selection, by comparison with a one-subassembly-per-channel reference solution. It appears that a refinement in the channel arrangement substantially reduces core wide coherency effects. Analysis of the calculations also suggests that an accurate representation of the scenario requires the number of channels to be on approximately the same order of magnitude as the total number of subassemblies. Numerical results are examined to provide the reader with quantitative measurements of bias related to subassembly to- channel arrangement. (authors)

  6. Development of a parametric containment event tree model for a severe BWR accident

    Energy Technology Data Exchange (ETDEWEB)

    Okkonen, T [OTO-Consulting Ay, Helsinki (Finland)

    1995-04-01

    A containment event tree (CET) is built for analysis of severe accidents at the TVO boiling water reactor (BWR) units. Parametric models of severe accident progression and fission product behaviour are developed and integrated in order to construct a compact and self-contained Level 2 PSA model. The model can be easily updated to correspond to new research results. The analyses of the study are limited to severe accidents starting from full-power operation and leading to core melting, and are focused mainly on the use and effects of the dedicated severe accident management (SAM) systems. Severe accident progression from eight plant damage states (PDS), involving different pre-core-damage accident evolution, is examined, but the inclusion of their relative or absolute probabilities, by integration with Level 1, is deferred to integral safety assessments. (33 refs., 5 figs., 7 tabs.).

  7. Accident management: What is it and how do you do it?

    International Nuclear Information System (INIS)

    Henry, Robert E.; Hammersley, Robert J.

    2004-01-01

    Accident management is the composite of those actions that would prevent, stop and/or mitigate a severe accident in a nuclear power plant. Since they act to prevent core damage, the Emergency Operating Procedures (EOPs) are an integral part of accident management. Each of the Owners Groups have developed EOPs that are well thought out for instructing the operator to respond to accident conditions which could threaten the core. However, for those very low probability events in which the core could be uncovered and damaged, accident management actions arise from a logical evaluation of possible actions (strategies) for recovering from the accident state and protecting the public health and safety. To understand the character of accident management it is first necessary to define: 1. What is threatened as a result of the accident? 2. Fundamentally, what needs to be protected? 3. What is known during an accident? 4. What have we learned from the TMI-2 accident? 5. What have we learned from the plant specific IPEs? Once these subjects are reviewed on a utility specific and plant specific basis, accident management actions become relatively straightforward and likely can be effectively addressed using the total capability available in a given design. This paper discusses these five questions in a global manner with the aim being to aid plant specific implementation. (author)

  8. Modular Accident Analysis Program (MAAP) - MELCOR Crosswalk: Phase II Analyzing a Partially Recovered Accident Scenario

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, Nathan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Faucett, Christopher [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Haskin, Troy Christopher [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Luxat, Dave [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Geiger, Garrett [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Codella, Brittany [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-10-01

    Following the conclusion of the first phase of the crosswalk analysis, one of the key unanswered questions was whether or not the deviations found would persist during a partially recovered accident scenario, similar to the one that occurred in TMI - 2. In particular this analysis aims to compare the impact of core degradation morphology on quenching models inherent within the two codes and the coolability of debris during partially recovered accidents. A primary motivation for this study is the development of insights into how uncertainties in core damage progression models impact the ability to assess the potential for recovery of a degraded core. These quench and core recovery models are of the most interest when there is a significant amount of core damage, but intact and degraded fuel still remain in the cor e region or the lower plenum. Accordingly this analysis presents a spectrum of partially recovered accident scenarios by varying both water injection timing and rate to highlight the impact of core degradation phenomena on recovered accident scenarios. This analysis uses the newly released MELCOR 2.2 rev. 966 5 and MAAP5, Version 5.04. These code versions, which incorporate a significant number of modifications that have been driven by analyses and forensic evidence obtained from the Fukushima - Daiichi reactor site.

  9. Geometry of the Nojima fault at Nojima-Hirabayashi, Japan - I. A simple damage structure inferred from borehole core permeability

    Science.gov (United States)

    Lockner, David A.; Tanaka, Hidemi; Ito, Hisao; Ikeda, Ryuji; Omura, Kentaro; Naka, Hisanobu

    2009-01-01

    The 1995 Kobe (Hyogo-ken Nanbu) earthquake, M = 7.2, ruptured the Nojima fault in southwest Japan. We have studied core samples taken from two scientific drillholes that crossed the fault zone SW of the epicentral region on Awaji Island. The shallower hole, drilled by the Geological Survey of Japan (GSJ), was started 75 m to the SE of the surface trace of the Nojima fault and crossed the fault at a depth of 624 m. A deeper hole, drilled by the National Research Institute for Earth Science and Disaster Prevention (NIED) was started 302 m to the SE of the fault and crossed fault strands below a depth of 1140 m. We have measured strength and matrix permeability of core samples taken from these two drillholes. We find a strong correlation between permeability and proximity to the fault zone shear axes. The half-width of the high permeability zone (approximately 15 to 25 m) is in good agreement with the fault zone width inferred from trapped seismic wave analysis and other evidence. The fault zone core or shear axis contains clays with permeabilities of approximately 0.1 to 1 microdarcy at 50 MPa effective confining pressure (10 to 30 microdarcy at in situ pressures). Within a few meters of the fault zone core, the rock is highly fractured but has sustained little net shear. Matrix permeability of this zone is approximately 30 to 60 microdarcy at 50 MPa effective confining pressure (300 to 1000 microdarcy at in situ pressures). Outside this damage zone, matrix permeability drops below 0.01 microdarcy. The clay-rich core material has the lowest strength with a coefficient of friction of approximately 0.55. Shear strength increases with distance from the shear axis. These permeability and strength observations reveal a simple fault zone structure with a relatively weak fine-grained core surrounded by a damage zone of fractured rock. In this case, the damage zone will act as a high-permeability conduit for vertical and horizontal flow in the plane of the

  10. An analytical method to assess the damage and predict the residual strength of a ship in a shoal grounding accident scenario

    Directory of Open Access Journals (Sweden)

    Sun Bin

    2016-04-01

    Full Text Available In this paper, a simplified analytical method used to predict the residual ultimate strength of a ship hull after a shoal grounding accident is proposed. Shoal grounding accidents always lead to severe denting, though not tearing, of the ship bottom structure, which may threaten the global hull girder resistance and result in even worse consequences, such as hull collapse. Here, the degree of damage of the bottom structure is predicted by a series of analytical methods based on the plastic-elastic deformation mechanism. The energy dissipation of a ship bottom structure is obtained from individual components to determine the sliding distance of the seabed obstruction. Then, a new approach to assess the residual strength of the damaged ship subjected to shoal grounding is proposed based on the improved Smith's method. This analytical method is verified by comparing the results of the proposed method and those generated by numerical simulation using the software ABAQUS. The proposed analytical method can be used to assess the safety of a ship with a double bottom during its design phase and predict the residual ultimate strength of a ship after a shoal grounding accident occurs.

  11. Human factors review for nuclear power plant severe accident sequence analysis

    International Nuclear Information System (INIS)

    Krois, P.A.; Haas, P.M.

    1985-01-01

    The paper discusses work conducted to: (1) support the severe accident sequence analysis of a nuclear power plant transient based on an assessment of operator actions, and (2) develop a descriptive model of operator severe accident management. Operator actions during the transient are assessed using qualitative and quantitative methods. A function-oriented accident management model provides a structure for developing technical operator guidance on mitigating core damage preventing radiological release

  12. Survival of extensively damaged endodontically treated incisors restored with different types of posts-and-core foundation restoration material.

    Science.gov (United States)

    Lazari, Priscilla Cardoso; de Carvalho, Marco Aurélio; Del Bel Cury, Altair A; Magne, Pascal

    2018-05-01

    Which post-and-core combination will best improve the performance of extensively damaged endodontically treated incisors without a ferrule is still unclear. The purpose of this in vitro study was to investigate the restoration of extensively damaged endodontically treated incisors without a ferrule using glass-ceramic crowns bonded to various composite resin foundation restorations and 2 types of posts. Sixty decoronated endodontically treated bovine incisors without a ferrule were divided into 4 groups and restored with various post-and-core foundation restorations. NfPfB=no-ferrule (Nf) with glass-fiber post (Pf) and bulk-fill resin foundation restoration (B); NfPfP=no-ferrule (Nf) with glass-fiber post (Pf) and dual-polymerized composite resin core foundation restoration (P); NfPt=no-ferrule (Nf) with titanium post (Pt) and resin core foundation restoration; and NfPtB=no-ferrule (Nf) with titanium post (Pt) and bulk-fill resin core foundation restoration (B). Two additional groups from previously published data from the same authors (FPf=2mm of ferrule (F) and glass-fiber post (Pf) and composite resin core foundation restoration; and NfPf=no-ferrule (Nf) with glass-fiber post (Pf) and composite resin core foundation restoration), which were tested concomitantly and using the same experimental arrangement, were included for comparison. All teeth were prepared to receive bonded glass-ceramic crowns luted with dual-polymerized resin cement and were subjected to accelerated fatigue testing under submerged conditions at room temperature. Cyclic isometric loading was applied to the incisal edge at an angle of 30 degrees with a frequency of 5 Hz, beginning with a load of 100 N (5000 cycles). A 100-N load increase was applied every 15000 cycles. The specimens were loaded until failure or to a maximum of 1000 N (140000 cycles). The 6 groups (4 groups from the present study and 2 groups from the previously published study) were compared using the Kaplan-Meier survival

  13. Assessment of two BWR accident management strategies

    International Nuclear Information System (INIS)

    Hodge, S.A.; Petek, M.

    1991-01-01

    A recently completed Oak Ridge effort proposes two management strategies for mitigation of the events that might occur in-vessel after the onset of significant core damage in a BWR severe accident. While the probability of such an accident is low, there may be effective yet inexpensive mitigation measures that could be implemented employing the existing plant equipment and requiring only additions to the plant emergency procedures. In this spirit, accident management strategies have been proposed for use of a borated solution for reactor vessel refill should control blade damage occur during a period of temporary core dryout and for containment flooding to maintain the core debris within the reactor vessel if injection systems cannot be restored. The proposed strategy for poisoning of the water used for vessel reflood should injection systems be restored after control blade damage has occurred has great promise, using only the existing plant equipment but employing a different chemical form for the boron poison. The dominant BWR severe accident sequence is Station Blackout and without means for mechanical stirring or heating of the storage tank, the question of being able to form the poisoned solution under accident conditions becomes of supreme importance. On the other hand, the proposed strategy for drywell flooding to cool the reactor vessel bottom head and prevent the core and structure debris from escaping to the drywell holds less promise. This strategy does, however, have potential for future plant designs in which passive methods might be employed to completely submerge the reactor vessel under severe accident conditions without the need for containment venting

  14. Serious reactor accidents reconsidered

    International Nuclear Information System (INIS)

    1987-12-01

    The chance is determined for damage of the reactor core and that sequel events will cause excursion of radioactive materials into the environment. The gravity of such an accident is expressed by the source term. It appears that the chance for such an accident varies with the source term. In general it is valid that how larger the source term how smaller the chance is for it and vice versa. The chance for excursion is related to two complexes of events: serious damage (meltdown) of the reactor core, and the escape of the liberated radionuclides into the environment. The results are an order of magnitude consideration of the relation between the extent of the source term and the chance for it. From the spectrum of possible source terms three representative ones have been chosen: a large, a medium and a relative small source term. This choice is in accordance with international considerations. The hearth of this study is the estimation of the chance for occurrence of the three chosen source terms for new light-water reactors. refs.; figs.; tabs

  15. Theoretical investigations of the fission product release out of the core of a high temperature reactor during hypothetical heat up accidents as example of caesium

    International Nuclear Information System (INIS)

    Batalas, T.A.; Iniotakis, N.; Decken, C.B. von der.

    1986-03-01

    The investigation has been performed by means of a physical model, taking into account the micro- and macro-structures of the pyrolytical and graphitical reactor components as well as renouncing an introduction of effective diffusion coefficients by the description of the fission products transport through the coated particle layers and the fuel elements and renouncing an assumption of the spontaneously adsorption-desorption equilibrium on the surface of the fuel elements. The solving method and the respective computer codes were also developed. In addition the theoretically calculated and the experimentally determined results regarding the caesium release from single coated particles as well as fuel elements at accident temperatures were compared. Finally the caesium release from the core of the PNP-500 reactor during a heat up accident has been estimated and discussed. (orig./HP) [de

  16. Severe accident progression perspectives based on IPE results

    International Nuclear Information System (INIS)

    Lehner, J.R.; Lin, C.C.; Pratt, W.T.; Drouin, M.

    1996-01-01

    Accident progression perspectives were gathered from the level 2 PRA analyses (the analysis of the accident after core damage has occurred involving the containment performance and the radionuclide release from the containment) described in the IPE submittals. Insights related to the containment failure modes, the releases associated with those failure modes, and the factors responsible for the types of containment failures and release sizes reported were obtained. Complete results are discussed in NUREG-1560 and summarized here

  17. Learning from nuclear accident experience

    International Nuclear Information System (INIS)

    Vaurio, J.K.

    1984-01-01

    Statistical procedures are developed to estimate accident occurrence rates from historical event records, to predict future rates and trends, and to estimate the accuracy of the rate estimates and predictions. Maximum likelihood estimation is applied to several learning models, and results are compared to earlier graphical and analytical estimates. The models are based on (1) the cumulative number of operating years, (2) the cumulative number of plants built, and (3) accidents (explicitly), with the accident rate distinctly different before and after an accident. The statistical accuracies of the parameters estimated are obtained in analytical form using the Fisher information matrix. Using data on core damage accidents in electricity producing plants, it is estimated that the probability for a plant to have a serious flaw has decreased from 0.1 to 0.01 during the developmental phase of the nuclear industry. At the same time the equivalent frequency of accidents has decreased from 0.04 per reactor year to 0.0004 per reactor year, partly due to the increasing population of plants. 10 references, 7 figures, 2 tables

  18. Outline of Fukushima nuclear accident and future action. Lessons learned from accident and countermeasure plan

    International Nuclear Information System (INIS)

    Fukuda, Toshihiko

    2012-01-01

    Fukushima nuclear accident was caused by loss of all AC power sources (SBO) and loss of ultimate heat sink (LUHS) at Fukushima Daiichi Nuclear Power Plants (NPPs) hit by the Great East Japan Earthquake. This article reviewed outline of Fukushima nuclear accident progression when on year had passed since and referred to lessons learned from accident and countermeasure plan to prevent severe accident in SBO and LUHS events by earthquake and tsunami as future action. This countermeasure would be taken to (1) prevent serious flooding in case a tsunami overwhelms the breakwater, with improving water tightness of rooms for emergency diesel generator, batteries and power centers, (2) enhance emergency power supply and cooling function with mobile electricity generator, high pressure fire pump car and alternate water supply source, (3) mitigate environmental effects caused by core damage with installing containment filtered venting, and (4) enforce emergency preparedness in case of severe accident. Definite countermeasure plan for Kashiwazaki-Kariwa NPPs was enumerated. (T. Tanaka)

  19. A thermohydraulic analysis for LOCA accident of a CANDU 600 reactor core charged with SEU 43 fuel by means of FIREBIRD code

    International Nuclear Information System (INIS)

    Serbanel, M.; Catana, A.

    2001-01-01

    This report presents a comparative analysis of the behaviour of primary circuit during a LOCA 20% RIH accident for two types of reactor core, namely, normally charged, i.e., with clusters of 37 rods and charged with clusters of 43 rods, respectively. This type of accident was chosen since Canadian analyses showed that the associated transient regime stress the fuel elements. The void reactivity as a function of coolant average density was calibrated for a reference regime (LOCA 20% RIH) so that the results of the model be able to reproduce the average distribution in the reference transient regime. The computation makes use of CERBERUS and FIREBIRD codes externally coupled by files. The void reactivity of the hot pencil was obtained this way. An extremely conservative hypothesis was used, namely that the momentary power of the cluster hosting the pencil is the maximal power over the cluster for the corresponding half reactor core. To carry out this work the following steps were covered: 1. The scenario for the LOCA 20% RIH accident was worked out and the input data corresponding to the thermohydraulic and neutronic modules, for the complex model and the 37 rod clusters, were checked; 2. The input data corresponding to the thermohydraulic module for the complex model and the 43 rod cluster were checked; 3. The kinetic parameters corresponding to the 37 rod cluster were computed; 4. The kinetic parameters corresponding to the 43 rod cluster were computed and the file for the input data in the neutronic module was built; 5. A sub-routine for writing files with the thermohydraulic and neutronic quantities, in a format adequate to the other programs, was implemented; 6. The two transient regimes considered were implemented and the archives containing the quantities were built ;7. The results obtained were analyzed. The conclusion of this work is that in case of LOCA 20% RIH accident the 43 bar clusters have a better behaviour than the 37 bar clusters

  20. Numerical study on core damage and interpretation of in situ state of stress

    Energy Technology Data Exchange (ETDEWEB)

    Hakala, M. [Gridpoint Finland Oy (Finland)

    1999-06-01

    Core disking is a phenomenon where a diamond cored core sample will be sliced when released from a stressed host rock. Ring disking is a similar phenomenon which takes place during overcoring with a pilot hole. Because of the uniform shape and spacing of disk fracturing, it has the potential to be used for estimating the in situ state of stress. If this is feasible, it could be used in high stress states where the traditional stress measuring techniques are not valid or even possible. In this work the both the core disking and ring disking phenomena were studied based on the elastic bottom hole stress application developed and a series of fracture growth stability simulations. The results-showed that both phenomena are very complicated and site specific, but the spacing, shape, extent and initiation point are clearly stress state dependent. Throughout the work, guidelines for the in situ stress field interpretation method were developed and implemented for the borehole aligned orthogonal stress field and Poisson`s ratio of 0.25. Based on this study, the in situ state of stress can be estimated with acceptable accuracy if information on both core disking and ring disking is available. On the other hand, as an indirect method, there are no reasons to use it if direct measurements can be used. (orig.) 35 refs.

  1. Numerical study on core damage and interpretation of in situ state of stress

    International Nuclear Information System (INIS)

    Hakala, M.

    1999-06-01

    Core disking is a phenomenon where a diamond cored core sample will be sliced when released from a stressed host rock. Ring disking is a similar phenomenon which takes place during overcoring with a pilot hole. Because of the uniform shape and spacing of disk fracturing, it has the potential to be used for estimating the in situ state of stress. If this is feasible, it could be used in high stress states where the traditional stress measuring techniques are not valid or even possible. In this work the both the core disking and ring disking phenomena were studied based on the elastic bottom hole stress application developed and a series of fracture growth stability simulations. The results-showed that both phenomena are very complicated and site specific, but the spacing, shape, extent and initiation point are clearly stress state dependent. Throughout the work, guidelines for the in situ stress field interpretation method were developed and implemented for the borehole aligned orthogonal stress field and Poisson's ratio of 0.25. Based on this study, the in situ state of stress can be estimated with acceptable accuracy if information on both core disking and ring disking is available. On the other hand, as an indirect method, there are no reasons to use it if direct measurements can be used. (orig.)

  2. Advanced computational methods for the assessment of reactor core behaviour during reactivity initiated accidents. Final report; Fortschrittliche Rechenmethoden zum Kernverhalten bei Reaktivitaetsstoerfaellen. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Pautz, A.; Perin, Y.; Pasichnyk, I.; Velkov, K.; Zwermann, W.; Seubert, A.; Klein, M.; Gallner, L.; Krzycacz-Hausmann, B.

    2012-05-15

    The document at hand serves as the final report for the reactor safety research project RS1183 ''Advanced Computational Methods for the Assessment of Reactor Core Behavior During Reactivity-Initiated Accidents''. The work performed in the framework of this project was dedicated to the development, validation and application of advanced computational methods for the simulation of transients and accidents of nuclear installations. These simulation tools describe in particular the behavior of the reactor core (with respect to neutronics, thermal-hydraulics and thermal mechanics) at a very high level of detail. The overall goal of this project was the deployment of a modern nuclear computational chain which provides, besides advanced 3D tools for coupled neutronics/ thermal-hydraulics full core calculations, also appropriate tools for the generation of multi-group cross sections and Monte Carlo models for the verification of the individual calculational steps. This computational chain shall primarily be deployed for light water reactors (LWR), but should beyond that also be applicable for innovative reactor concepts. Thus, validation on computational benchmarks and critical experiments was of paramount importance. Finally, appropriate methods for uncertainty and sensitivity analysis were to be integrated into the computational framework, in order to assess and quantify the uncertainties due to insufficient knowledge of data, as well as due to methodological aspects.

  3. Detection and control of potential core damage during a small-break LOCA

    International Nuclear Information System (INIS)

    Thomas, G.R.; Zebroski, E.L.

    1981-01-01

    A refreshing development in small-break LOCA analysis and testing is the recognition that this work can be of real value to a plant operator. Event-trees, or safety sequence diagrams, are being made increasingly realistic and are being used to develop and to test the abnormal transient operating guidelines (ATOGs) which provide a basis for operator response, training, and simulator work now under way. Perhaps the most monumental lesson of the TMI-2 accident is that the tradition of extreme worst-case analysis and data gathering can provide a directly negative contribution to safety if it is used as the basis for designing procedures and training of operator response. The event-trees for guiding operator response to abnormal conditions, ATOGs, must be based on physically realistic, best-estimate models. Possibly, the most dramatic risk reduction achieved will be attained through the use of realistic accident analysis, which leads to realistic operator guidelines and training, improved display of the critical information to the operator, and improved management structure. Given the dominant contribution of small-break LOCAs to the overall public risk envelope, realism should be the primary banner for future work in this field

  4. Identification of flow regimes and heat transfer modes in Angra-2 core during the simulation of the small break loss of coolant accident of 250 cm2 in the cold leg of primary loop using RELAP5 code

    International Nuclear Information System (INIS)

    Borges, Eduardo M.; Sabundjian, Gaiane

    2017-01-01

    The aim of this paper is to identify the flow regimes, the heat transfer modes, and the correlations used by RELAP5/MOD3.2. gamma code in Angra-2 during the Small-Break Loss-of-Coolant Accident (SBLOCA) with a 250cm 2 of rupture area in the cold leg of primary loop. The Chapter 15 of the Final Safety Analysis Report of Angra-2 (FSAR-A2) reports this specific kind of accident. The results from this work demonstrated the several flow regimes and heat transfer modes that can be present in the core of Angra-2 during the postulated accident. The results obtained for Angra-2 nuclear reactor core during the postulated accident were satisfactory when compared with the FSAR-A2. Additionally, the results showed the correct actuation of the ECCS guaranteeing the integrity of the reactor core. (author)

  5. Identification of flow regimes and heat transfer modes in Angra-2 core during the simulation of the small break loss of coolant accident of 250 cm{sup 2} in the cold leg of primary loop using RELAP5 code

    Energy Technology Data Exchange (ETDEWEB)

    Borges, Eduardo M.; Sabundjian, Gaiane, E-mail: borges.em@hotmail.com, E-mail: gdjian@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNE-SP), Sao Paulo, SP (Brazil)

    2017-07-01

    The aim of this paper is to identify the flow regimes, the heat transfer modes, and the correlations used by RELAP5/MOD3.2. gamma code in Angra-2 during the Small-Break Loss-of-Coolant Accident (SBLOCA) with a 250cm{sup 2} of rupture area in the cold leg of primary loop. The Chapter 15 of the Final Safety Analysis Report of Angra-2 (FSAR-A2) reports this specific kind of accident. The results from this work demonstrated the several flow regimes and heat transfer modes that can be present in the core of Angra-2 during the postulated accident. The results obtained for Angra-2 nuclear reactor core during the postulated accident were satisfactory when compared with the FSAR-A2. Additionally, the results showed the correct actuation of the ECCS guaranteeing the integrity of the reactor core. (author)

  6. Interpretation of the Haestholmen in situ state of stress based on core damage observations

    International Nuclear Information System (INIS)

    Hakala, M.

    2000-01-01

    At the Haestholmen investigation site, direct in situ stress measurements, overcoring and hydraulic fracturing have been unsuccessful because of ring disking and horizontal hydraulic fracturing. Prior to this study, a detailed study on both core disking and ring disking was made, and based on those results an in situ state of stress interpretation method was developed. In this work this method is applied to the Haestholmen site. The interpretation is based on disk fracture type, spacing and shape. Also, the Hoek-Brown strength envelope and Poisson's ratio of intact rock are needed. The interpretation result is most reliable if both core disking and ring disking information at the same depth levels is available. A detailed core logging showed that ring disking is systematic below the -365 m level in the vertical overcoring stress measurement hole, HH-KR6. On the other hand, no representative core disking exists except for two points in two differently oriented subvertical boreholes HH-KR2 and HHKR7. Because the interpretation has to be based on ring disking only, upper and lower estimates for the vertical stress were set. These were gravitational and 67% of gravitational. Furthermore, the in situ stress state was assumed to be in horizontal and vertical planes, because the disking in vertical borehole HH-KR6 was not inclined. The interpretation resulted in a good estimate for the major horizontal stress but none of the horizontal stress rations ( 0.25, 0.5, 0.75 and 1.0 ) or vertical stress assumptions studied are clearly more probable the others. At the 500 m level the resulting maximum horizontal stress is 41 MPa. If a linear fit through the zero depth and zero stress point is applied, the maximum horizontal stress gradient is 0.0818 z MPa/m with a standard deviation between 5 and 12 per cent. The orientation of the major horizontal stress is 108 with standard deviation of 21 degrees. The interpreted major horizontal stress state also indicated that systematic

  7. Features of RAPTA-SFD code modelling of chemical interactions of basic materials of the WWER active zone in accident conditions with severe fuel damage

    International Nuclear Information System (INIS)

    Bibilashvili, Yu.K.; Sokolov, N.B.; Salatov, A.V.; Nechaeva, O.A.; Andreyeva-Andrievskaya, L.N.; Vlasov, F.Yu.

    1996-01-01

    A brief description of RAPTA-SFD code intended for computer simulations of WWER-type fuel elements (simulator or absorber element) in conditions of accident with severe damage of fuel. Presented are models of chemical interactions of basic materials of the active zone, emphasized are special feature of their application in carrying out of the CORA-W2 experiment within the framework of International Standard Problem ISP-36. Results obtained confirm expediency of phenomenological models application. (author). 6 refs, 7 figs, 1 tab

  8. Analyses of systems availability and operator actions to support the development of severe accident procedures

    International Nuclear Information System (INIS)

    Lutz, R.J. Jr.; Scobel, J.H.

    1989-01-01

    This paper reports on traditional analyses of severe accidents, such as those presented in Probabilistic Risk Assessment (PRA) studies of nuclear power stations, that have generally been performed on the assumption that all means of cooling the reactor core are lost and that no operator actions to mitigate the consequences or progression of the severe accident are performed. The assumption to neglect the availability of safety systems and operator actions which do not prevent core melting can lead to erroneous conclusions regarding the plant severer accident profile. Recent work in severe accident management has identified the need to perform analyses which consider all systems availabilities and operator actions, irrespective of their contribution to the prevention of core melting. These new analyses indicate that the traditional analyses result in overfly pessimistic predictions of the time of core melting and the subsequent potential for recovery of core cooling prior to core melting. Additionally, since the traditional analyses do not model all of the operator actions which are prescribed, the impact of additional severe accident operator actions on the progression and consequences of the accident cannot be reliably identified. Further, the more detailed analysis can change the focus of the importance of various system to the prevention of core damage and the mitigation of severe accident consequences. Finally, the simplicity of the traditional analyses can have a considerable impact on severe accident decision making, particularly in the evaluation of alternate plant design features and the priorities for research studies

  9. Evaluation of strategies for severe accident prevention and mitigation

    International Nuclear Information System (INIS)

    Tokarz, R.

    1989-01-01

    The NRC is planning to establish regulatory oversight on severe accident management capability in the US nuclear reactor industry. Accident management includes certain preparatory and recovery measures that can be taken by the plant operating and technical personnel to prevent or mitigate the consequences of a severe accident. Following an initiating event, accident management strategies include measures to (1) prevent core damage, (2) arrest the core damage if it begins and retain the core inside the vessel, (3) maintain containment integrity if the vessel is breached, and (4) minimize offsite releases. Objectives of the NRC Severe Accident Management Program are to assure that technically sound strategies are identified and guidance to implement these strategies is provided to utilities. This paper will describe work performed to date by Pacific Northwest Laboratory (PNL) and Battelle Memorial Institute (BMI) relative to severe accident strategy evaluation, as well as work to be performed and expected results. Working with Brookhaven National Laboratory, PNL evaluated a series of NRC suggested accident management strategies. The evaluation of these strategies was divided between PNL and Brookhaven National Laboratory and a similar paper will be presented by Brookhaven regarding their strategy evaluation. This paper will stress the overall safety issues related to the research and emphasize the strategies that are applicable to major safety issues. The relationship of these research activities to other projects is discussed, as well as planning for future changes in the direction of work to be undertaken

  10. Synthesis of the IRSN report on the topic of water way answers to implement in case of accident with core meltdown occurring on operating pressurized water nuclear reactors

    International Nuclear Information System (INIS)

    2009-06-01

    This report briefly discusses the efficiency of technical measures adopted for the implementation of water ways as answers to an accident with core meltdown in operating pressurized water nuclear reactors. While mentioning the importance of the hydro-geological characteristics of the various sites, the IRSN asks EDF to plan and implement means to prevent any rejection through water ways for some of these sites, to investigate the possibility of building a geotechnical enclosure, to define a storing-control-treatment-rejection chain which would guarantee an efficient management of the water to be pumped, to study retention phenomena for strontium and caesium isotopes in sands and gravels

  11. Radiation damage studies on new liquid scintillators and liquid-core scintillating fibers

    International Nuclear Information System (INIS)

    Golovkin, S.V.

    1994-01-01

    The radiation resistant of some new liquid scintillation and capillaries filled with liquid scintillators has been presented. It was found that scintillation efficiency of the scintillator based on 1-methyl naphthalene with a new R39 only by 10% at the dose of 190 Mrad and the radiation resistance of thin liquid-core scintillating was decreased fibers exceeded 60 Mrad. 35 refs

  12. Phenomenology of severe accidents in BWR type reactors. First part

    International Nuclear Information System (INIS)

    Sandoval V, S.

    2003-01-01

    A Severe Accident in a nuclear power plant is a deviation from its normal operating conditions, resulting in substantial damage to the core and, potentially, the release of fission products. Although the occurrence of a Severe Accident on a nuclear power plant is a low probability event, due to the multiple safety systems and strict safety regulations applied since plant design and during operation, Severe Accident Analysis is performed as a safety proactive activity. Nuclear Power Plant Severe Accident Analysis is of great benefit for safety studies, training and accident management, among other applications. This work describes and summarizes some of the most important phenomena in Severe Accident field and briefly illustrates its potential use based on the results of two generic simulations. Equally important and abundant as those here presented, fission product transport and retention phenomena are deferred to a complementary work. (Author)

  13. Application of NUREG-1150 methods and results to accident management

    International Nuclear Information System (INIS)

    Dingman, S.; Sype, T.; Camp, A.; Maloney, K.

    1991-01-01

    The use of NUREG-1150 and similar probabilistic risk assessments in the Nuclear Regulatory Commission (NRC) and industry risk management programs is discussed. Risk management is more comprehensive than the commonly used term accident management. Accident management includes strategies to prevent vessel breach, mitigate radionuclide releases from the reactor coolant system, and mitigate radionuclide releases to the environment. Risk management also addresses prevention of accident initiators, prevention of core damage, and implementation of effective emergency response procedures. The methods and results produced in NUREG-1150 provide a framework within which current risk management strategies can be evaluated, and future risk management programs can be developed and assessed. Examples of the use of the NUREG-1150 framework for identifying and evaluating risk management options are presented. All phases of risk management are discussed, with particular attention given to the early phases of accidents. Plans and methods for evaluating accident management strategies that have been identified in the NRC accident management program are discussed

  14. Application of NUREG-1150 methods and results to accident management

    International Nuclear Information System (INIS)

    Dingman, S.; Sype, T.; Camp, A.; Maloney, K.

    1990-01-01

    The use of NUREG-1150 and similar Probabilistic Risk Assessments in NRC and industry risk management programs is discussed. ''Risk management'' is more comprehensive than the commonly used term ''accident management.'' Accident management includes strategies to prevent vessel breach, mitigate radionuclide releases from the reactor coolant system, and mitigate radionuclide releases to the environment. Risk management also addresses prevention of accident initiators, prevention of core damage, and implementation of effective emergency response procedures. The methods and results produced in NUREG-1150 provide a framework within which current risk management strategies can be evaluated, and future risk management programs can be developed and assessed. Examples of the use of the NUREG-1150 framework for identifying and evaluating risk management options are presented. All phases of risk management are discussed, with particular attention given to the early phases of accidents. Plans and methods for evaluating accident management strategies that have been identified in the NRC accident management program are discussed. 2 refs., 3 figs

  15. Analysis of core damage frequency: Peach Bottom, Unit 2 internal events

    International Nuclear Information System (INIS)

    Kolaczkowski, A.M.; Cramond, W.R.; Sype, T.T.; Maloney, K.J.; Wheeler, T.A.; Daniel, S.L.

    1989-08-01

    This document contains the appendices for the accident sequence analysis of internally initiated events for the Peach Bottom, Unit 2 Nuclear Power Plant. This is one of the five plant analyses conducted as part of the NUREG-1150 effort for the Nuclear Regulatory Commission. The work performed and described here is an extensive reanalysis of that published in October 1986 as NUREG/CR-4550, Volume 4. It addresses comments from numerous reviewers and significant changes to the plant systems and procedures made since the first report. The uncertainty analysis and presentation of results are also much improved, and considerable effort was expended on an improved analysis of loss of offsite power. The content and detail of this report is directed toward PRA practitioners who need to know how the work was done and the details for use in further studies. 58 refs., 58 figs., 52 tabs

  16. CANDU safety under severe accidents

    International Nuclear Information System (INIS)

    Snell, V.G.; Howieson, J.Q.; Alikhan, S.; Frescura, G.M.; King, F.; Rogers, J.T.; Tamm, H.

    1996-01-01

    The characteristics of the CANDU reactor relevant to severe accidents are set first by the inherent properties of the design, and second by the Canadian safety/licensing approach. The pressure-tube concept allows the separate, low-pressure, heavy-water moderator to act as a backup heat sink even if there is no water in the fuel channels. Should this also fail, the calandria shell itself can contain the debris, with heat being transferred to the water-filled shield tank around the core. Should the severe core damage sequence progress further, the shield tank and the concrete reactor vault significantly delay the challenge to containment. Furthermore, should core melt lead to containment overpressure, the containment behaviour is such that leaks through the concrete containment wall reduce the possibility of catastrophic structural failure. The Canadian licensing philosophy requires that each accident, together with failure of each safety system in turn, be assessed (and specified dose limits met) as part of the design and licensing basis. In response, designers have provided CANDUs with two independent dedicated shutdown systems, and the likelihood of Anticipated Transients Without Scram is negligible. Probabilistic safety assessment studies have been performed on operating CANDU plants, and on the 4 x 880 MW(e) Darlington station now under construction; furthermore a scoping risk assessment has been done for a CANDU 600 plant. They indicate that the summed severe core damage frequency is of the order of 5 x 10 -6 /year. 95 refs, 3 tabs

  17. CANDU safety under severe accidents

    Energy Technology Data Exchange (ETDEWEB)

    Snell, V G; Howieson, J Q [Atomic Energy of Canada Ltd. (Canada); Alikhan, S [New Brunswick Electric Power Commission (Canada); Frescura, G M; King, F [Ontario Hydro (Canada); Rogers, J T [Carleton Univ., Ottawa, ON (Canada); Tamm, H [Atomic Energy of Canada Ltd. (Canada). Whiteshell Research Lab.

    1996-12-01

    The characteristics of the CANDU reactor relevant to severe accidents are set first by the inherent properties of the design, and second by the Canadian safety/licensing approach. The pressure-tube concept allows the separate, low-pressure, heavy-water moderator to act as a backup heat sink even if there is no water in the fuel channels. Should this also fail, the calandria shell itself can contain the debris, with heat being transferred to the water-filled shield tank around the core. Should the severe core damage sequence progress further, the shield tank and the concrete reactor vault significantly delay the challenge to containment. Furthermore, should core melt lead to containment overpressure, the containment behaviour is such that leaks through the concrete containment wall reduce the possibility of catastrophic structural failure. The Canadian licensing philosophy requires that each accident, together with failure of each safety system in turn, be assessed (and specified dose limits met) as part of the design and licensing basis. In response, designers have provided CANDUs with two independent dedicated shutdown systems, and the likelihood of Anticipated Transients Without Scram is negligible. Probabilistic safety assessment studies have been performed on operating CANDU plants, and on the 4 x 880 MW(e) Darlington station now under construction; furthermore a scoping risk assessment has been done for a CANDU 600 plant. They indicate that the summed severe core damage frequency is of the order of 5 x 10{sup -6}/year. 95 refs, 3 tabs.

  18. Concept and methodology for evaluating core damage frequency considering failure correlation at multi units and sites and its application

    Energy Technology Data Exchange (ETDEWEB)

    Ebisawa, K.; Teragaki, T.; Nomura, S. [Former Incorporated Administrative Agency, Japan Nuclear Safety Organization (Japan); Abe, H., E-mail: Hiroshi_abe@nsr.go.jp [Former Incorporated Administrative Agency, Japan Nuclear Safety Organization (Japan); Shigemori, M.; Shimomoto, M. [Mizuho Information & Research Institute, 2-3, Kanda-Nishikicho, Chiyoda-ku, Tokyo (Japan)

    2015-07-15

    Highlights: • We develop a method to evaluate CDF considering failure correlation at multi units. • We develop a procedure to evaluate correlation coefficient between multi components. • We evaluate CDF at two different BWR units using correlation coefficients. • We confirm the validity of method and correlation coefficient through the evaluation. - Abstract: The Tohoku earthquake (Mw9.0) occurred on March 11, 2011 and caused a large tsunami. The Fukushima Daiichi Nuclear Power Plant with six units were overwhelmed by the tsunami and core damage occurred. Authors proposed the concept and method for evaluating core damage frequency (CDF) considering failure correlation at the multi units and sites. Based on the above method, one of authors developed the procedure for evaluating the failure correlation coefficient and response correlation coefficient between the multi components under the strong seismic motion. These method and failure correlation coefficients were applied to two different BWR units and their CDF was evaluated by seismic probabilistic risk assessment technology. Through this quantitative evaluation, the validity of the method and failure correlation coefficient was confirmed.

  19. Concept and methodology for evaluating core damage frequency considering failure correlation at multi units and sites and its application

    International Nuclear Information System (INIS)

    Ebisawa, K.; Teragaki, T.; Nomura, S.; Abe, H.; Shigemori, M.; Shimomoto, M.

    2015-01-01

    Highlights: • We develop a method to evaluate CDF considering failure correlation at multi units. • We develop a procedure to evaluate correlation coefficient between multi components. • We evaluate CDF at two different BWR units using correlation coefficients. • We confirm the validity of method and correlation coefficient through the evaluation. - Abstract: The Tohoku earthquake (Mw9.0) occurred on March 11, 2011 and caused a large tsunami. The Fukushima Daiichi Nuclear Power Plant with six units were overwhelmed by the tsunami and core damage occurred. Authors proposed the concept and method for evaluating core damage frequency (CDF) considering failure correlation at the multi units and sites. Based on the above method, one of authors developed the procedure for evaluating the failure correlation coefficient and response correlation coefficient between the multi components under the strong seismic motion. These method and failure correlation coefficients were applied to two different BWR units and their CDF was evaluated by seismic probabilistic risk assessment technology. Through this quantitative evaluation, the validity of the method and failure correlation coefficient was confirmed

  20. Design criteria for a self-actuated shutdown system to ensure limitation of core damage

    International Nuclear Information System (INIS)

    Deane, N.A.; Atcheson, D.B.

    1981-09-01

    Safety-based functional requirements and design criteria for a self-actuated shutdown system (SASS) are derived in accordance with LOA-2 success criteria and reliability goals. The design basis transients have been defined and evaluated for the CDS Phase II design, which is a 2550 MWt mixed oxide heterogeneous core reactor. A partial set of reactor responses for selected transients is provided as a function of SASS characteristics such as reactivity worth, trip points, and insertion times

  1. The accident at the Three Mile Island nuclear power plant

    International Nuclear Information System (INIS)

    Butragueno, J.L.

    1980-01-01

    The sequence of events in the Three Mile Island, Unit 2, accident on the March 28, 1979 is analyzed. In this plant a loss of feed-water transient became a small LOCA that caused a serious core damage. A general emergency situation was declared after uncontrolled radioactive releases were detectec. (author)

  2. Evaluation of containment failure modes and fission product releases during core meltdown accidents in a BWR with a Mark III containment

    International Nuclear Information System (INIS)

    Ludewig, H.; Yu, W.S.; Jaung, R.; Pratt, W.T.

    1985-01-01

    An assessment is described of potential failure modes and fission product releases for a large number of postulated core meltdown accidents in a BWR with a Mark III containment. For this containment design, the most important failure mode was found to be due to hydrogen related phenomena. A one-dimensional lumped parameter computer code has been developed and used to determine the probability of various hydrogen phenomena for a range of postulated core meltdown sequences. Potential containment loads have been estimated and compared against the containment capacity to determine the probability of containment failure. The fission product release assessment began by using the MARCH/CORRAL system of codes with key input parameters varied over a reasonable range. The parameters relate to primary system retention, re-emission, pool scrubbing, and fission product release in-vessel vs ex-vessel. The final step used more mechanistic calculations based on the system of codes recently developed under sponsorship of the Accident Source Term Program Office, NRC, and compares these predictions with the range of releases calculated in the sensitivity study

  3. PBF severe fuel damage program: results and comparison to analysis

    International Nuclear Information System (INIS)

    McDonald, P.E.; Buescher, B.J.; Gruen, G.E.; Hobbins, R.R.; McCardell, R.K.

    1983-01-01

    The United States Nuclear Regulatory Commission has initiated a severe fuel damage research program in the Power Burst Facility (PBF) to investigate fuel rod and core response, and fission product and hydrogen release and transport under degraded core cooling accident conditions. This paper presents a description of Phase I of the PBF Severe Fuel Damage Program, discusses the results of the first experiment, and compares those results with analysis performed using the TRAC-BD1 computer code

  4. Accident Diagnosis and Prognosis Aide (ADPA)

    International Nuclear Information System (INIS)

    Gunter, A.D.; Touchton, R.A.

    1987-01-01

    This presentation provides a demonstration of a prototypical expert system developed by Technology Applications, Inc. (TAI) under a contract with the Department of Energy as a part of their Small Business Innovation Research Program. The Accident Diagnosis and Prognosis Aide (ADPA) Demonstration Prototype is a working scale model of a real-time expert system which: Diagnoses an accident situation (as well as a number of underlying failures, events, and conditions deduced along the way). Calculates the change in the likelihood of core damage as a function of the events and failures diagnosed. Dynamically generates a recovery procedure tailored to the specific plant state at hand

  5. Code assessment and modelling for Design Basis Accident analysis of the European Sodium Fast Reactor design. Part II: Optimised core and representative transients analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lazaro, A., E-mail: aulach@iqn.upv.es [JRC-IET European Commission, Westerduinweg 3, PO BOX 2, 1755 ZG Petten (Netherlands); Schikorr, M. [KIT, Institute for Neutron Physics and Reactor Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Mikityuk, K. [PSI, Paul Scherrer Institut, 5232 Villigen (Switzerland); Ammirabile, L. [JRC-IET European Commission, Westerduinweg 3, PO BOX 2, 1755 ZG Petten (Netherlands); Bandini, G. [ENEA, Via Martiri di Monte Sole 4, 40129 Bologna (Italy); Darmet, G.; Schmitt, D. [EDF, 1 Avenue du Général de Gaulle, 92141 Clamart (France); Dufour, Ph.; Tosello, A. [CEA, St. Paul lez Durance, 13108 Cadarache (France); Gallego, E.; Jimenez, G. [UPM, José Gutiérrez Abascal, 2, 28006 Madrid (Spain); Bubelis, E.; Ponomarev, A.; Kruessmann, R.; Struwe, D. [KIT, Institute for Neutron Physics and Reactor Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Stempniewicz, M. [NRG, Utrechtseweg 310, P.O. Box-9034, 6800 ES Arnhem (Netherlands)

    2014-10-01

    Highlights: • Benchmarked models have been applied for the analysis of DBA transients of the ESFR design. • Two system codes are able to simulate the behavior of the system beyond sodium boiling. • The optimization of the core design and its influence in the transients’ evolution is described. • The analysis has identified peak values and grace times for the protection system design. - Abstract: The new reactor concepts proposed in the Generation IV International Forum require the development and validation of computational tools able to assess their safety performance. In the first part of this paper the models of the ESFR design developed by several organisations in the framework of the CP-ESFR project were presented and their reliability validated via a benchmarking exercise. This second part of the paper includes the application of those tools for the analysis of design basis accident (DBC) scenarios of the reference design. Further, this paper also introduces the main features of the core optimisation process carried out within the project with the objective to enhance the core safety performance through the reduction of the positive coolant density reactivity effect. The influence of this optimised core design on the reactor safety performance during the previously analysed transients is also discussed. The conclusion provides an overview of the work performed by the partners involved in the project towards the development and enhancement of computational tools specifically tailored to the evaluation of the safety performance of the Generation IV innovative nuclear reactor designs.

  6. Code assessment and modelling for Design Basis Accident analysis of the European Sodium Fast Reactor design. Part II: Optimised core and representative transients analysis

    International Nuclear Information System (INIS)

    Lazaro, A.; Schikorr, M.; Mikityuk, K.; Ammirabile, L.; Bandini, G.; Darmet, G.; Schmitt, D.; Dufour, Ph.; Tosello, A.; Gallego, E.; Jimenez, G.; Bubelis, E.; Ponomarev, A.; Kruessmann, R.; Struwe, D.; Stempniewicz, M.

    2014-01-01

    Highlights: • Benchmarked models have been applied for the analysis of DBA transients of the ESFR design. • Two system codes are able to simulate the behavior of the system beyond sodium boiling. • The optimization of the core design and its influence in the transients’ evolution is described. • The analysis has identified peak values and grace times for the protection system design. - Abstract: The new reactor concepts proposed in the Generation IV International Forum require the development and validation of computational tools able to assess their safety performance. In the first part of this paper the models of the ESFR design developed by several organisations in the framework of the CP-ESFR project were presented and their reliability validated via a benchmarking exercise. This second part of the paper includes the application of those tools for the analysis of design basis accident (DBC) scenarios of the reference design. Further, this paper also introduces the main features of the core optimisation process carried out within the project with the objective to enhance the core safety performance through the reduction of the positive coolant density reactivity effect. The influence of this optimised core design on the reactor safety performance during the previously analysed transients is also discussed. The conclusion provides an overview of the work performed by the partners involved in the project towards the development and enhancement of computational tools specifically tailored to the evaluation of the safety performance of the Generation IV innovative nuclear reactor designs

  7. Coupled 3D-neutronics / thermal-hydraulics analysis of an unprotected loss-of-flow accident for a 3600 MWth SFR core

    International Nuclear Information System (INIS)

    Sun, K.; Chenu, A.; Mikityuk, K.; Krepel, J.; Chawla, R.

    2012-01-01

    The core behaviour of a large (3600 MWth) sodium-cooled fast reactor (SFR) is investigated in this paper with the use of a coupled TRACE/PARCS model. The SFR neutron spectrum is characterized by several performance advantages, but also leads to one dominating neutronics drawback - a positive sodium void reactivity. This implies a positive reactivity effect when sodium coolant is removed from the core. In order to evaluate such feedback in terms of the dynamics, a representative unprotected loss-of-flow (ULOF) transient, i.e. flow run-down without SCRAM in which sodium boiling occurs, is analyzed. Although analysis of a single transient cannot allow general conclusions to be drawn, it does allow better understanding of the underlying physics and can lead to proposals for improving the core response during such an accident. The starting point of this study is the reference core design considered in the framework of the Collaborative Project on the European Sodium Fast Reactor (CP-ESFR). To reduce the void effect, the core has been modified by introducing an upper sodium plenum (along with a boron layer) and by reducing the core height-to-diameter ratio. For the ULOF considered, a sharp increase in core power results in melting of the fuel in the case of the reference core. In the modified core, a large dryout leads to melting of the clad. It seems that, for the hypothetical event considered, fuel failure cannot be avoided with just improvement of the neutronics design; therefore, thermal-hydraulics optimization has been considered. An innovative assembly design is proposed to prevent sodium vapour blocking the fuel channel. This results in preventing a downward propagation of the sodium boiling to the core center, thus limiting it to the upper region. Such a void map introduces a negative coolant density reactivity feedback, which dominates the total reactivity change. As a result, the power level and the fuel temperature are effectively reduced, and a large dryout

  8. Coupled 3D-neutronics / thermal-hydraulics analysis of an unprotected loss-of-flow accident for a 3600 MWth SFR core

    Energy Technology Data Exchange (ETDEWEB)

    Sun, K. [Paul Scherrer Institut PSI, 5232 Villigen PSI (Switzerland); Ecole Polytechnique Federale de Lausanne EPFL, 1015 Lausanne (Switzerland); Chenu, A. [Ecole Polytechnique Federale de Lausanne EPFL, 1015 Lausanne (Switzerland); Mikityuk, K.; Krepel, J. [Paul Scherrer Institut PSI, 5232 Villigen PSI (Switzerland); Chawla, R. [Paul Scherrer Institut PSI, 5232 Villigen PSI (Switzerland); Ecole Polytechnique Federale de Lausanne EPFL, 1015 Lausanne (Switzerland)

    2012-07-01

    The core behaviour of a large (3600 MWth) sodium-cooled fast reactor (SFR) is investigated in this paper with the use of a coupled TRACE/PARCS model. The SFR neutron spectrum is characterized by several performance advantages, but also leads to one dominating neutronics drawback - a positive sodium void reactivity. This implies a positive reactivity effect when sodium coolant is removed from the core. In order to evaluate such feedback in terms of the dynamics, a representative unprotected loss-of-flow (ULOF) transient, i.e. flow run-down without SCRAM in which sodium boiling occurs, is analyzed. Although analysis of a single transient cannot allow general conclusions to be drawn, it does allow better understanding of the underlying physics and can lead to proposals for improving the core response during such an accident. The starting point of this study is the reference core design considered in the framework of the Collaborative Project on the European Sodium Fast Reactor (CP-ESFR). To reduce the void effect, the core has been modified by introducing an upper sodium plenum (along with a boron layer) and by reducing the core height-to-diameter ratio. For the ULOF considered, a sharp increase in core power results in melting of the fuel in the case of the reference core. In the modified core, a large dryout leads to melting of the clad. It seems that, for the hypothetical event considered, fuel failure cannot be avoided with just improvement of the neutronics design; therefore, thermal-hydraulics optimization has been considered. An innovative assembly design is proposed to prevent sodium vapour blocking the fuel channel. This results in preventing a downward propagation of the sodium boiling to the core center, thus limiting it to the upper region. Such a void map introduces a negative coolant density reactivity feedback, which dominates the total reactivity change. As a result, the power level and the fuel temperature are effectively reduced, and a large dryout

  9. The CIEMAT’s forensic analyses of Fukushima accident: Contribution to the BSAF project

    Energy Technology Data Exchange (ETDEWEB)

    Herranz, L.E.; López, C.; Fontanet, J.; Fernández, E.

    2015-07-01

    The Fukushima accident is being both a unique opportunity and a huge challenge for severe accident analysis. Through the simulation of the accidents in Units 1 through 3 with MELCOR 2.1, three scenarios have been postulated which outcomes look consistent with data. These analyses indicate that a massive core damage should have happened in Unit 1, with most core molten and located in the containment, whereas Units 2 and 3 core damage is anticipated to be much less; however, there might be differences among these “twin” units. Anyway, in all the units the amount of H2 produced is over 500 kg. This work has been carried out in the frame of the international project for the understanding of the severe accidents occurred at Fukushima, the OECD-BSAF project. (Author)

  10. Experiment of IEA-R1 reactor core cooling by air convection after pool water loss accident

    International Nuclear Information System (INIS)

    Torres, Walmir Maximo; Baptista Filho, Benedito Dias

    2000-01-01

    This paper presents a study of a Emergency Core Cooling to be applied to the IEA-R1 reactor. This system must have the characteristics of passive action, with water spraying over the core, and feeding by gravity from elevated reservoirs. In the evaluation, this system must demonstrate that when the reservoirs are emptied, the core cooling must assure to be fulfilled by air natural convection. This work presents the results of temperature distribution in a test section with plates electrically heated simulation the heat generation conditions on the most heated reactor element

  11. Estimation of the core-wide fuel rod damage during a LWR LOCA

    International Nuclear Information System (INIS)

    Mattila, L.; Sairanen, R.; Stengaard, J.-O.

    1975-01-01

    The number of fuel rods puncturing during a LWR LOCA must be estimated as a part of the plant radioactivity release analysis. Due to the great number of fuel rods in the core and the great number of contributing parameters, many of them associated with wide uncertainty and/or truly random variability limits, probabilistic methods are well applicable. A succession of computer models developed for this purpose is described together with applications to WWER-440 PWR. Deterministic models are shown to be seriously inadequate and even misleading under certain circumstances. A simple analytical probabilistic model appears to be suitable for many applications. Monte Carlo techniques allow the development of such sophisticated models that errors in the input data presently available probably become dominant in the residual uncertainty of the corewide fuel rod puncture analysis. (author)

  12. Primary Damage Characteristics in Metals Under Irradiation in the Cores of Thermal and Fast Reactors

    International Nuclear Information System (INIS)

    Pechenkin, V.A.

    2012-01-01

    For an analysis and forecasting of radiation-induced phenomena in structural materials of WWERs, PWRs and BN reactors the fast neutron fluence is usually used (for structural materials of the reactor cores and internals the fluence of neutrons with energy > 0.1 MeV, for WWER and PWRs vessel steels the fluence of neutrons with energy > 0.5 MeV in Russia and East Europe, and with energy > 1.0 MeV in USA and France). Displacements per atom (dpa) seem to be a more appropriate correlation parameter, because it allows comparing the results of materials irradiation in different neutron energy spectra or with different types of particles (neutrons, ions, fast electrons). Energy spectra of primary knocked atoms (PKA) and 'effective' dpa, which are introduced to take into account the point defect recombination during the relaxation stage of a displacement cascade, can be still better representation of the effect of irradiation on material properties. In this work the results of calculating dose rates (dpa/s, NRT-model), PKA energy spectra and PKA mean energies in metals under irradiation in the cores of Russian reactors WWER-440, WWER-1000 (both power thermal reactors) and BN-600 (power fast reactor) and BR-10 (test fast reactor) are presented. In all the reactors Fe and Zr are considered, with addition of Ti and W in BN-600. 'Effective' dose rates in these metals are calculated. Limitations and uncertainties in the standard dpa formulation (the NRT-dpa) are discussed. IPPE activities in the fields related to the TM subject are considered

  13. THE ROLE OF RADIATION ACCIDENTS AND INDUSTRIAL APPLICATIONS OF IONIZING RADIATION SOURCES IN THE PROBLEM OF RADIATION DAMAGE

    OpenAIRE

    Кіхтенко, Ігор Миколайович

    2016-01-01

    Subject of research – the relevance of radiation damage at modern development of industry and medicine. In the world of radiation sources used in different fields of practice and their application in the future will increase, which greatly increases the likelihood of injury in a significant contingent of people.Research topic – the definition of the role of nuclear energy and the industrial use of ionizing radiation sources in the problem of radiation damage. The purpose of research – identif...

  14. Managing water addition to a degraded core

    International Nuclear Information System (INIS)

    Kuan, P.; Hanson, D.J.; Odar, F.

    1992-01-01

    In this paper the authors present information that can be used in severe accident management by providing an improved understanding of the effects of water addition to a degraded core. This improved understanding is developed using a diagram showing a sequence of core damage states. Whenever possible, a temperature and a time after accident initiation are estimated for each damage state in the sequence diagram. This diagram can be used to anticipate the evolution of events during an accident. Possible responses of plant instruments are described to identify these damage states and the effects of water addition. The rate and amount of water addition needed (a) to remove energy from the core, (b) to stabilize the core or (c) to not adversely affect the damage progression, are estimated. Analysis of the capability to remove energy from large cohesive and particulate debris beds indicates that these beds may not be stabilized in the core region and they may partially relocate to the lower plenum of the reactor vessel

  15. Degraded core studies at INEL

    International Nuclear Information System (INIS)

    Buescher, B.J.; Howe, T.M.; Miller, R.W.

    1982-01-01

    During 1980, planning of prototypical severe fuel damage tests to be conducted in the Power Burst Facility (PBF) to investigate fuel behavior in severe accidents up to temperatures of 2400 0 K was initiated. This first series of tests is designated Phase I. Also, a code development effort was initiated to provide a reliable predictive tool for core behavior during severe accidents. During 1981, an assessment of capabilities and preliminary planning were begun for an in-pile experimental program to investigate the behavior of larger arrays of previously irradiated fuel rods at temperatures through UO 2 melting. This latter series of tests is designated Phase II

  16. Calculation of Core Damage Frequency for the Change of the Common Cause Failure Parameters According to the Testing Strategies

    International Nuclear Information System (INIS)

    Kang, Dae Il; Kim, Kil You; Jin, Young Ho; Kim, Tae Woon

    2011-01-01

    Common cause failure (CCF) probabilities are differently estimated according to testing strategies. There are two representative testing schemes; staggered testing and non-staggered testing schemes. For the cases where trains or channels of standby safety systems consisting of more than two redundant components are tested in a staggered manner, the standby safety components within a train can be tested simultaneously or consecutively. In this case, mixed testing scheme, staggered and non-staggered testing schemes, are used for testing the components. Kang et al. derived the formulas for the estimations of the CCF probabilities of the components under the mixed testing scheme. This paper presents the sensitivity study results on the core damage frequency (CDF) of the SMART (System-integrated Modular Advanced Reactor) for the changes of the CCF parameters according to the testing strategies

  17. Addressing severe accidents in the CANDU 9 design

    International Nuclear Information System (INIS)

    Nijhawan, S.M.; Wight, A.L.; Snell, V.G.

    1998-01-01

    CANDU 9 is a single-unit evolutionary heavy-water reactor based on the Bruce/Darlington plants. Severe accident issues are being systematically addressed in CANDU 9, which includes a number of unique features for prevention and mitigation of severe accidents. A comprehensive severe accident program has been formulated with feedback from potential clients and the Canadian regulatory agency. Preliminary Probabilistic Safety Analyses have identified the sequences and frequency of system and human failures that may potentially lead to initial conditions indicating onset of severe core damage. Severe accident consequence analyses have used these sequences as a guide to assess passive heat sinks for the core, and containment performance. Estimates of the containment response to mass and energy injections typical of postulated severe accidents have been made and the results are presented. We find that inherent CANDU severe accident mitigation features, such as the presence of large water volumes near the fuel (moderator and shield tank), permit a relatively slow severe accident progression under most plant damage states, facilitate debris coolability and allow ample time for the operator to arrest the progression within, progressively, the fuel channels, calandria vessel or shield tank. The large-volume CANDU 9 containment design complements these features because of the long times to reach failure

  18. Nuclear Fuel Behaviour during Reactivity Initiated Accidents. Workshop Proceedings

    International Nuclear Information System (INIS)

    2010-01-01

    A reactivity initiated accident (RIA) is a nuclear reactor accident that involves an unwanted increase in fission rate and reactor power. The power increase may damage the reactor core. The main objective of the workshop was to review the current status of the experimental and analytical studies of the fuel behavior during the RIA transients in PWR and BWR reactors and the acceptance criteria for RIA in use and under consideration. The workshop was organized in an opening session and 5 technical sessions: 1) Recent experimental results and experimental techniques used; 2) Modelling and Data Interpretation; 3) Code Assessment; 4) RIA Core Analysis and 5) Revision and application of safety criteria

  19. Reactor safety study. An assessment of accident risks in U.S. commercial nuclear power plants. Appendix I. Accident definition and use of event trees

    International Nuclear Information System (INIS)

    1975-10-01

    Information is presented concerning accident definition and use of event trees, event tree methodology, potential accidents covered by the reactor safety study, analysis of potential accidents involving the reactor core, and analysis of potential accidents not involving the core

  20. Accident analysis of Fukushima Daiichi Nuclear Power Station unit 1

    International Nuclear Information System (INIS)

    Kobayashi, Masahide; Narabayashi, Tadashi; Tsuji, Masashi; Chiba, Go; Nagata, Yasunori; Shimoe, Tomohiro

    2015-01-01

    As a result of the Great East Japan Earthquake that occurred on 11 March 2011, all AC and DC power at the Fukushima Daiichi NPP units 1 to 3 were lost soon after the tsunami. The core cooling function was lost, and the cores of units 1 to 3 were damaged. The purpose of this work is to clarify the progress of the accident in unit 1, which was damaged the earliest among the 3 units. Therefore, an original severe accident analysis code was developed, and the progress of the accident was evaluated from the analysis results and the actual data. As a result, the leakage path from a pressure vessel was clarified, and some lessons and knowledge were gained. (author)

  1. Procedures for the external event core damage frequency analyses for NUREG-1150

    International Nuclear Information System (INIS)

    Bohn, M.P.; Lambright, J.A.

    1990-11-01

    This report presents methods which can be used to perform the assessment of risk due to external events at nuclear power plants. These methods were used to perform the external events risk assessments for the Surry and Peach Bottom nuclear power plants as part of the NRC-sponsored NUREG-1150 risk assessments. These methods apply to the full range of hazards such as earthquakes, fires, floods, etc. which are collectively known as external events. The methods described in this report have been developed under NRC sponsorship and represent, in many cases, both advancements and simplifications over techniques that have been used in past years. They also include the most up-to-date data bases on equipment seismic fragilities, fire occurrence frequencies and fire damageability thresholds. The methods described here are based on making full utilization of the power plant systems logic models developed in the internal events analyses. By making full use of the internal events models one obtains an external event analysis that is consistent both in nomenclature and in level of detail with the internal events analyses, and in addition, automatically includes all the appropriate random and tests/maintenance unavailabilities as appropriate. 50 refs., 9 figs., 11 tabs

  2. Ex-core fuel damage event at paks causes, consequences and lessons learned

    International Nuclear Information System (INIS)

    Bajsz, J.; Gado, J.

    2004-01-01

    On April 10, 2003 Paks NPP experienced a loss of decay-heat removal to 30 irradiated fuel assemblies undergoing a cleaning process in a fuel service pit near the unit 2 spent fuel pool. Following chemical cleaning of high decay-heat fuel, a delay in removing the cleaning vessel's lid left the cleaning system in such a condition that did not provide adequate cooling to the fuel. After several hours of the fuel being under-cooled, a steam bubble developed in the vessel, essentially uncovering the fuel. When the lid of the vessel was removed, the sudden introduction of cool water thermally shocked the fuel causing significant structural damage and a release of fission product gases to the reactor building. The paper will discuss the causes of the event as well as the contributing factors to it. Detailed information will be given about the planning and preparation of the recovery actions. The in-depth analyses of the consequences and lessons learned complete the lecture. (author)

  3. Accident source terms for pressurized water reactors with high-burnup cores calculated using MELCOR 1.8.5.

    Energy Technology Data Exchange (ETDEWEB)

    Gauntt, Randall O.; Powers, Dana Auburn; Ashbaugh, Scott G.; Leonard, Mark Thomas; Longmire, Pamela

    2010-04-01

    In this study, risk-significant pressurized-water reactor severe accident sequences are examined using MELCOR 1.8.5 to explore the range of fission product releases to the reactor containment building. Advances in the understanding of fission product release and transport behavior and severe accident progression are used to render best estimate analyses of selected accident sequences. Particular emphasis is placed on estimating the effects of high fuel burnup in contrast with low burnup on fission product releases to the containment. Supporting this emphasis, recent data available on fission product release from high-burnup (HBU) fuel from the French VERCOR project are used in this study. The results of these analyses are treated as samples from a population of accident sequences in order to employ approximate order statistics characterization of the results. These trends and tendencies are then compared to the NUREG-1465 alternative source term prescription used today for regulatory applications. In general, greater differences are observed between the state-of-the-art calculations for either HBU or low-burnup (LBU) fuel and the NUREG-1465 containment release fractions than exist between HBU and LBU release fractions. Current analyses suggest that retention of fission products within the vessel and the reactor coolant system (RCS) are greater than contemplated in the NUREG-1465 prescription, and that, overall, release fractions to the containment are therefore lower across the board in the present analyses than suggested in NUREG-1465. The decreased volatility of Cs2MoO4 compared to CsI or CsOH increases the predicted RCS retention of cesium, and as a result, cesium and iodine do not follow identical behaviors with respect to distribution among vessel, RCS, and containment. With respect to the regulatory alternative source term, greater differences are observed between the NUREG-1465 prescription and both HBU and LBU predictions than exist between HBU and LBU

  4. Determination of doses to different organs and prediction of health detriment, after hypothetical accident in mtr reactor core

    Energy Technology Data Exchange (ETDEWEB)

    Amin, E A; Abd El-Ghani, A H [National Center of Nuclear Safety and Radiation Control Atomic Energy Authority, Cairo (Egypt)

    1997-12-31

    As a result of pypothetical accidents with release of high amount of fission products, the doses to different organs consequent upon inhalation of radioactive fission products are calculated. The processes are modeled using the ORIGIN and TIRION-4 codes: source term, containment and activity enclosure, time dependent activity behaviour in the building, and radiation exposure in the reactor building. Prediction of health detriments were calculated using ICRP-60 nominal probability coefficients and organ doses determined for bone, lung, and thyroid gland, after whole body exposure from internal inhalation and external emmersion. 11 tabs.

  5. Severe Accident Simulation of the Laguna Verde Nuclear Power Plant

    Directory of Open Access Journals (Sweden)

    Gilberto Espinosa-Paredes

    2012-01-01

    Full Text Available The loss-of-coolant accident (LOCA simulation in the boiling water reactor (BWR of Laguna Verde Nuclear Power Plant (LVNPP at 105% of rated power is analyzed in this work. The LVNPP model was developed using RELAP/SCDAPSIM code. The lack of cooling water after the LOCA gets to the LVNPP to melting of the core that exceeds the design basis of the nuclear power plant (NPP sufficiently to cause failure of structures, materials, and systems that are needed to ensure proper cooling of the reactor core by normal means. Faced with a severe accident, the first response is to maintain the reactor core cooling by any means available, but in order to carry out such an attempt is necessary to understand fully the progression of core damage, since such action has effects that may be decisive in accident progression. The simulation considers a LOCA in the recirculation loop of the reactor with and without cooling water injection. During the progression of core damage, we analyze the cooling water injection at different times and the results show that there are significant differences in the level of core damage and hydrogen production, among other variables analyzed such as maximum surface temperature, fission products released, and debris bed height.

  6. Accidents - Chernobyl accident; Accidents - accident de Tchernobyl

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This file is devoted to the Chernobyl accident. It is divided in four parts. The first part concerns the accident itself and its technical management. The second part is relative to the radiation doses and the different contaminations. The third part reports the sanitary effects, the determinists ones and the stochastic ones. The fourth and last part relates the consequences for the other European countries with the case of France. Through the different parts a point is tackled with the measures taken after the accident by the other countries to manage an accident, the cooperation between the different countries and the groups of research and studies about the reactors safety, and also with the international medical cooperation, specially for the children, everything in relation with the Chernobyl accident. (N.C.)

  7. ATHENA-2D: A computer code for simulation of hypothetical recriticality accidents in a thermal neutron spectrum

    International Nuclear Information System (INIS)

    Schwinkendorf, K.N.

    1995-01-01

    In a damaged light water reactor core (as in the aftermath of a Three-Mile-Island-like core meltdown), water reflood is performed to carry off decay heat. The severely degraded geometry of the fuel debris bed may increase core reactivity with water reflood. Sufficient boron poisoning of the reflood water is therefore very important. One hypothetical accident is the reintroduction of cooling water that is insufficiently borated, resulting in the damaged reactor attaining criticality in this uncontrolled configuration. The goal in simulating this accident is the prediction of the energy release from the resulting transient

  8. Use of simulators in severe accident management

    International Nuclear Information System (INIS)

    Evans, R.C.

    1994-01-01

    The U.S. nuclear utility industry is moving in a deliberate fashion through a coordinated industry severe accident working group to study and augment, where appropriate, the existing utility organizational and emergency planning structure to address accident and severe accident management. Full-scope simulators are used extensively to train licensed operators for their initial license examinations and continually thereafter in licensed operator requalification training and yearly examinations. The goal of the training (both initial and requalification) is to ensure that operators possess adequate knowledge, skills and abilities to prevent an event from progressing to core damage. The use of full-scope simulators in severe accident management training is in large part viewed by the industry as being premature. The working group study has not progressed to the point where the decision to employ full-scope simulators can be logically considered. It is not however premature to consider part-task or work station simulators as invaluable research tools to support the industry's study. These simulators could be employed, subject to limitations in the current state of knowledge regarding severe accident progression and phenomenological responses, in the validation and verification (V and V) of severe accident models or codes as they are developed. The U.S. nuclear utility industry has made substantial strides in the past 12 years in the accident prevention, mitigation and management arena. These strides are a product of the industry's preference for a logical and systematic approach to change. (orig.)

  9. Preliminary scoping safety analyses of the limiting design basis protected accidents for the Fast Flux Test Facility tritium production core

    International Nuclear Information System (INIS)

    Heard, F.J.

    1997-01-01

    The SAS4A/SASSYS-l computer code is used to perform a series of analyses for the limiting protected design basis transient events given a representative tritium and medical isotope production core design proposed for the Fast Flux Test Facility. The FFTF tritium and isotope production mission will require a different core loading which features higher enrichment fuel, tritium targets, and medical isotope production assemblies. Changes in several key core parameters, such as the Doppler coefficient and delayed neutron fraction will affect the transient response of the reactor. Both reactivity insertion and reduction of heat removal events were analyzed. The analysis methods and modeling assumptions are described. Results of the analyses and comparison against fuel pin performance criteria are presented to provide quantification that the plant protection system is adequate to maintain the necessary safety margins and assure cladding integrity

  10. Severe Accident R and D for Enhanced CANDU-6 Reactors

    International Nuclear Information System (INIS)

    Nitheanandan, Thambiayah

    2012-01-01

    CANDU reactors possess a number of inherent of inherent and designed safety features that make them resistant to core damage accidents. The unique feature is the low temperature moderator surrounding the fuel channels, which can serve as an alternate heat sink. The fuel is surrounded by three water systems: heavy water primary coolant, heavy water moderator, and light water calandria vault and shield water. In addition, the liquid inventory in the steam generators is a fourth indirect heat sink, able to cool the primary coolant. The water inventories in the emergency core cooling system and the reserve water tank at the dome of the containment can also provide fuel cooling and water makeup to prevent severe core damage or mitigate the consequences of a severe core damage accident. An assessment of the adequacy of the existing severe accident knowledge base, to confidently perform consequence analyses for the Enhanced CANDU-6 reactor in compliance with regulatory requirements, was recently completed. The assessment relied on systematic Phenomena Identification and Ranking Tables (PIRT) studies completed domestically and internationally. The assessment recommends cost-effective R and D to mitigate the consequences of severe accidents and associated risk vulnerabilities

  11. A content of minimizing the damage of health and welfare of the population as a result of the Chernobyl accident (questions and ansevers)

    International Nuclear Information System (INIS)

    Belyaev, S.T.; Demin, V.F.; Knizhnikov, V.A.

    1992-01-01

    A conception of minimizing the damage to the health and welfare of the population shich was exposed to radiation as result of the Chernobyl accident, was analyzed in form of questions and answers. Three chapters are considered: main positions and peculiarities; radiation situation; radiation effect on the health. Critical analysis of the conception is given. Its disadvantages were noted from the point of view of basis of some assessments of radiation safety and measures which were suggested to use for protection of health of the population. Social and economic problems arising in realization of given conception were considered. Comparative evaluation of this conception with results of overcoming the consequences of radiation action on population of Japan after nuclear explosions in Hiroshima and Nagasaki was presented

  12. Severe accident risks: An assessment for five US nuclear power plants: Appendices A, B, and C

    International Nuclear Information System (INIS)

    1990-12-01

    This report summarizes an assessment of the risks from severe accidents in five commercial nuclear power plants in the United States. These risks are measured in a number of ways, including: the estimated frequencies of core damage accidents from internally initiated accidents and externally initiated accidents for two or the plants; the performance of containment structures under severe accident loadings; the potential magnitude of radionuclide release and offsite consequences of such accidents; and the overall risk (the product of accident frequencies and consequences). Supporting this summary report are a large number of reports written under contract to NRC that provide the detailed discussion of the methods used and results obtained in these risk studies. Volume 2 of this report contains three appendices, providing greater detail on the methods used, an example risk calculation, and more detailed discussion of particular technical issues found important in the risk studies

  13. Severe accident risks: An assessment for five US nuclear power plants

    International Nuclear Information System (INIS)

    1991-01-01

    This report summarizes an assessment of the risks from severe accidents in five commercial nuclear power plants in the United State. These risks are measured in a number of ways, including: the estimated frequencies of core damage accidents from internally initiated accidents and externally initiated accidents for two of the plants; the performance of containment structures under severe accident loadings; the potential magnitude of radionuclide releases and offsite consequences of such accidents; and the overall risk (the product of accident frequencies and consequences). Supporting this summary report are a large number of reports written under contract to NRC that provide the detailed discussion of the methods used and results obtained in these risk studies. This report, Volume 3, contains two appendices. Appendix D summarizes comments received, and staff responses, on the first (February 1987) draft of NUREG-1150. Appendix E provides a similar summary of comments and responses, but for the second (June 1989) version of the report

  14. System 80+ design features for severe accident prevention and mitigation

    International Nuclear Information System (INIS)

    Jacob, M.C.; Schneider, R.E.; Finnicum, D.J.

    1993-01-01

    ABB-CE, in cooperation with the US Department of Energy, is working to develop and certify the System 80+ design, which is ABB-CE's standardized evolutionary Advanced Light Water Reactor (ALWR) design. It incorporates design enhancements based on Probabilistic Risk Assessment (PRA) insights, guidance from the EPRI's Utility Requirements Document, and US NRC's Severe Accident Policy. Major severe accident prevention and mitigation design features of the system is discussed along with its conformance to EPRI URD guidance, as applicable. Computer simulation of a best estimate severe accident scenario is presented to illustrate the acceptable containment performance of the design. It is concluded that by considering severe accident prevention and mitigation early in the design process, the System 80+ design represents a robust plant design that has low core damage frequencies, low containment conditional failure probabilities, and acceptable deterministic containment performance under severe accident conditions

  15. Effect of emergency core cooling system flow reduction on channel temperature during recirculation phase of large break loss-of-coolant accident at Wolsong unit 1

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Seon Oh; Cho, Yong Jin [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of); Kim, Sung Joong [Dept. of Nuclear Engineering, Hanyang University, Seoul (Korea, Republic of)

    2017-08-15

    The feasibility of cooling in a pressurized heavy water reactor after a large break loss-of-coolant accident has been analyzed using Multidimensional Analysis of Reactor Safety-KINS Standard code during the recirculation phase. Through evaluation of sensitivity of the fuel channel temperature to various effective recirculation flow areas, it is determined that proper cooling of the fuel channels in the broken loop is feasible if the effective flow area remains above approximately 70% of the nominal flow area. When the flow area is reduced by more than approximately 25% of the nominal value, however, incipience of boiling is expected, after which the thermal integrity of the fuel channel can be threatened. In addition, if a dramatic reduction of the recirculation flow occurs, excursions and frequent fluctuations of temperature in the fuel channels are likely to be unavoidable, and thus damage to the fuel channels would be anticipated. To resolve this, emergency coolant supply through the newly installed external injection path can be used as one alternative means of cooling, enabling fuel channel integrity to be maintained and permanently preventing severe accident conditions. Thus, the external injection flow required to guarantee fuel channel coolability has been estimated.

  16. Effect of emergency core cooling system flow reduction on channel temperature during recirculation phase of large break loss-of-coolant accident at Wolsong unit 1

    Directory of Open Access Journals (Sweden)

    Seon Oh Yu

    2017-08-01

    Full Text Available The feasibility of cooling in a pressurized heavy water reactor after a large break loss-of-coolant accident has been analyzed using Multidimensional Analysis of Reactor Safety-KINS Standard code during the recirculation phase. Through evaluation of sensitivity of the fuel channel temperature to various effective recirculation flow areas, it is determined that proper cooling of the fuel channels in the broken loop is feasible if the effective flow area remains above approximately 70% of the nominal flow area. When the flow area is reduced by more than approximately 25% of the nominal value, however, incipience of boiling is expected, after which the thermal integrity of the fuel channel can be threatened. In addition, if a dramatic reduction of the recirculation flow occurs, excursions and frequent fluctuations of temperature in the fuel channels are likely to be unavoidable, and thus damage to the fuel channels would be anticipated. To resolve this, emergency coolant supply through the newly installed external injection path can be used as one alternative means of cooling, enabling fuel channel integrity to be maintained and permanently preventing severe accident conditions. Thus, the external injection flow required to guarantee fuel channel coolability has been estimated.

  17. Method and device for catching reactor core melt-down masses in hypothetical accidents of nuclear power plants

    International Nuclear Information System (INIS)

    Morlock, G.; Wiesemes, J.; Bachner, D.

    1977-01-01

    The device is to receive the afterheat of the molten core and in this way to prevent afterflow of coolant and a new criticality. A tank below the reactor pressure vessel, with the proper diameter, contains a store of salt or a salt mixture suitable to receive the afterheat of a core melt-down as heat of fusion or conversion. Above the salt, there is a layer of thermoplastics or of a material forming a hardening foam. Coolant eventually continuing to flow out is separated from the core melt by this barrier layer, and thus the build-up of high steam pressures is prevented. Neutron-absorbing materials, like boron salts mixed to the salts, as well as a subdivision of the salt surface, e.g. by means of canalizing firebricks, prevent the formation of new criticality. Further installations within the tank, like pipings or channels, permit the introduction of water after cooling down of the core or salt melt-down mass and to wash out the brine with all radioactive and other constituents for transport to reprocessing or ultimate storage. (HP) [de

  18. Supervisor's accident investigation handbook

    International Nuclear Information System (INIS)

    1980-02-01

    This pamphlet was prepared by the Environmental Health and Safety Department (EH and S) of Lawrence Berkeley Laboratory (LBL) to provide LBL supervisors with a handy reference to LBL's accident investigation program. The publication supplements the Accident and Emergencies section of LBL's Regulations and Procedures Manual, Pub. 201. The present guide discusses only accidents that are to be investigated by the supervisor. These accidents are classified as Type C by the Department of Energy (DOE) and include most occupational injuries and illnesses, government motor-vehicle accidents, and property damages of less than $50,000

  19. Analysis of energy released from core disruptive accident of sodium cooled fast reactor using CDA-ER and VENUS-II codes

    Energy Technology Data Exchange (ETDEWEB)

    Kang, S. H.; Ha, K. S. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    The fast reactor has a unique feature in that rearranged core materials can produce a large increase in reactivity and recriticality. If such a rearrangement of core materials should occur rapidly, there would be a high rate of reactivity increase producing power excursions. The released energy from such an energetic recriticality might challenge the reactor vessel integrity. An analysis of the hypothetical excursions that result in the disassembly of the reactor plays an important role in a liquid metal fast reactor (LMFR) safety analysis. The analysis of such excursions generally consists of three phases (initial or pre-disassembly phase, disassembly phase, energy-work conversion phase). The first step is referred to as the 'accident initiation' or 'pre-disassembly' phase. In this phase, the accident is traced from some initiating event, such as a coolant pump failure or control rod ejection, up to a prompt critical condition where high temperatures and pressures rapidly develop in the core. Such complex processes as fuel pin failure, sodium voiding, and fuel slumping are treated in this phase. Several computer programs are available for this type of calculation, including SAS4A, MELT-II and FREADM. A number of models have been developed for this type of analysis, including the REXCO and SOCOOL-II computer programs. VENUS-II deals with the second phase (disassembly analysis). Most of the models used in the code have been based on the original work of Bethe and Tait. The disassembly motion is calculated using a set of two-dimensional hydrodynamics equations in the VENUS code. The density changes can be explicitly calculated, which in turn allows the use of a more accurate density dependent equation of state. The main functional parts of the computational model can be summarized as follows: Power and energy (point kinetics), Temperature (energy balance), Internal pressure (equation of state), Material displacement (hydrodynamics), Reactivity

  20. Analysis of energy released from core disruptive accident of sodium cooled fast reactor using CDA-ER and VENUS-II codes

    International Nuclear Information System (INIS)

    Kang, S. H.; Ha, K. S.

    2013-01-01

    The fast reactor has a unique feature in that rearranged core materials can produce a large increase in reactivity and recriticality. If such a rearrangement of core materials should occur rapidly, there would be a high rate of reactivity increase producing power excursions. The released energy from such an energetic recriticality might challenge the reactor vessel integrity. An analysis of the hypothetical excursions that result in the disassembly of the reactor plays an important role in a liquid metal fast reactor (LMFR) safety analysis. The analysis of such excursions generally consists of three phases (initial or pre-disassembly phase, disassembly phase, energy-work conversion phase). The first step is referred to as the 'accident initiation' or 'pre-disassembly' phase. In this phase, the accident is traced from some initiating event, such as a coolant pump failure or control rod ejection, up to a prompt critical condition where high temperatures and pressures rapidly develop in the core. Such complex processes as fuel pin failure, sodium voiding, and fuel slumping are treated in this phase. Several computer programs are available for this type of calculation, including SAS4A, MELT-II and FREADM. A number of models have been developed for this type of analysis, including the REXCO and SOCOOL-II computer programs. VENUS-II deals with the second phase (disassembly analysis). Most of the models used in the code have been based on the original work of Bethe and Tait. The disassembly motion is calculated using a set of two-dimensional hydrodynamics equations in the VENUS code. The density changes can be explicitly calculated, which in turn allows the use of a more accurate density dependent equation of state. The main functional parts of the computational model can be summarized as follows: Power and energy (point kinetics), Temperature (energy balance), Internal pressure (equation of state), Material displacement (hydrodynamics), Reactivity feedback (Doppler and

  1. Analysis of Fukushima unit 2 accident considering the operating conditions of RCIC system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Il, E-mail: sikim@kaeri.re.kr; Park, Jong Hwa; Ha, Kwang Soon; Cho, Song-Won; Song, JinHo

    2016-03-15

    Highlights: • Fukushima unit 2 accident was analyzed using MELCOR 1.8.6. • RCIC operating conditions were assumed and best case was selected. • Effect of RCIC operating condition on accident scenario was found. - Abstract: A severe accident in Fukushima occurred on March 11, 2011 and units 1, 2 and 3 were damaged severely. A tsunami following an earthquake made the supply of electricity power stop, and the safety systems, which use AC or DC power in plants could not operate properly. It is supposed that the degree of core degradation of unit 2 is less serious than in the other plants, and it was estimated that the operation of reactor core isolation cooling (RCIC) system at the initial stage of the accident minimized the core damage through decay heat removal. Although the operating conditions of the RCIC system are not known clearly, it can be important to analyze the accident scenario of unit 2. In this study, best case of the Fukushima unit 2 accident was presented considering the operating conditions of the RCIC system. The effects of operating condition on core degradation and fission product release rate to environment were also examined. In addition, importance of torus room flooding level in the accident analysis was discussed. MELCOR 1.8.6 was used in this research, and the geometries of plant and operating conditions of safety system were obtained from TEPCO through OECD/NEA BSAF Project.

  2. Joint research project WASA-BOSS: Further development and application of severe accident codes. Assessment and optimization of accident management measures. Project B: Accident analyses for pressurized water reactors with the application of the ATHLET-CD code

    International Nuclear Information System (INIS)

    Jobst, Matthias; Kliem, Soeren; Kozmenkov, Yaroslav; Wilhelm, Polina

    2017-02-01

    Within the framework of the project an ATHLET-CD input deck for a generic German PWR of type KONVOI has been created. This input deck was applied to the simulation of severe accidents from the accident categories station blackout (SBO) and small-break loss-of-coolant accidents (SBLOCA). The complete accident transient from initial event at full power until the damage of reactor pressure vessel (RPV) is covered and all relevant severe accident phenomena are modelled: start of core heat up, fission product release, melting of fuel and absorber material, oxidation and release of hydrogen, relocation of molten material inside the core, relocation to the lower plenum, damage and failure of the RPV. The model has been applied to the analysis of preventive and mitigative accident management measures for SBO and SBLOCA transients. Therefore, the measures primary side depressurization (PSD), injection to the primary circuit by mobile pumps and for SBLOCA the delayed injection by the cold leg hydro-accumulators have been investigated and the assumptions and start criteria of these measures have been varied. The time evolutions of the transients and time margins for the initiation of additional measures have been assessed. An uncertainty and sensitivity study has been performed for the early phase of one SBO scenario with PSD (until the start of core melt). In addition to that, a code -to-code comparison between ATHLET-CD and the severe accident code MELCOR has been carried out.

  3. ACR-1000 design provisions for severe accidents

    International Nuclear Information System (INIS)

    Popov, N.K.; Santamaura, P.; Shapiro, H.; Snell, V.G.

    2006-01-01

    Atomic Energy of Canada Limited (AECL) developed the Advanced CANDU Reactor-700 (ACR-700) as an evolutionary advancement of the current CANDU 6 reactor. As a further advancement of the ACR design, AECL is currently developing the ACR-1000 for the Canadian and international market. The ACR-1000 is aimed at producing electrical power for a capital cost and a unit-energy cost significantly less than that of the current generation of operating nuclear plants, while achieving enhanced safety features, shorter construction schedule, high plant capacity factor, improved operations and maintenance, and increased operating life. The reference ACR-1000 plant design is based on an integrated two-unit plant, using enriched fuel and light-water coolant, with each unit having a nominal gross output of about 1200 MWe. The ACR-1000 design meets Canadian regulatory requirements and follows established international practice with respect to severe accident prevention and mitigation. This paper presents the ACR-1000 features that are designed to mitigate limited core damage and severe core damage states, including core retention within vessel, core damage termination, and containment integrity maintenance. While maintaining existing structures of CANDU reactors that provide inherent prevention and retention of core debris, the ACR-1000 design includes additional features for prevention and mitigation of severe accidents. Core retention within vessel in CANDU-type reactors includes both retention within fuel channels, and retention within the calandria vessel. The ACR-1000 calandria vessel design permits for passive rejection of decay heat from the moderator to the shield water. Also, the calandria vessel is designed for debris retention by minimizing penetrations at the bottom periphery and by accommodating thermal and weight loads of the core debris. The ACR-1000 containment is required to withstand external events such as earthquakes, tornados, floods and aircraft crashes

  4. Using CdTe/ZnSe core/shell quantum dots to detect DNA and damage to DNA

    Directory of Open Access Journals (Sweden)

    Moulick A

    2017-02-01

    Full Text Available Amitava Moulick,1,2 Vedran Milosavljevic,1,2 Jana Vlachova,1,2 Robert Podgajny,3 David Hynek,1,2 Pavel Kopel,1,2 Vojtech Adam1,2 1Department of Chemistry and Biochemistry, Mendel University, 2Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic; 3Faculty of Chemistry, Jagiellonian University, Krakow, Poland Abstract: CdTe/ZnSe core/shell quantum dot (QD, one of the strongest and most highly luminescent nanoparticles, was directly synthesized in an aqueous medium to study its individual interactions with important nucleobases (adenine, guanine, cytosine, and thymine in detail. The results obtained from the optical analyses indicated that the interactions of the QDs with different nucleobases were different, which reflected in different fluorescent emission maxima and intensities. The difference in the interaction was found due to the different chemical behavior and different sizes of the formed nanoconjugates. An electrochemical study also confirmed that the purines and pyrimidines show different interactions with the core/shell QDs. Based on these phenomena, a novel QD-based method is developed to detect the presence of the DNA, damage to DNA, and mutation. The QDs were successfully applied very easily to detect any change in the sequence (mutation of DNA. The QDs also showed their ability to detect DNAs directly from the extracts of human cancer (PC3 and normal (PNT1A cells (detection limit of 500 pM of DNA, which indicates the possibilities to use this easy assay technique to confirm the presence of living organisms in extreme environments. Keywords: nanoparticles, nucleobases, biosensor, fluorescence, mutation

  5. The nuclear accident of Fukushima Daiichi - Management of contaminated waters from damaged reactors. Situation at the end of June 2103

    International Nuclear Information System (INIS)

    2013-01-01

    This report first describes the water accumulation and continuous flow in buildings of the Fukushima nuclear power station. This water has different origins: some was used to cool the damaged reactors, and some comes from the underground. Waters under buildings must to pumped, processed and stored. The report describes the main objectives of water processing (desalinating and partial removal of radionuclides) and how they are addressed by Tepco. The last part briefly describes how and where Tepco is storing this always increasing volume of processed waters, with of course other water-tightness problems

  6. Core baffle for nuclear reactors

    International Nuclear Information System (INIS)

    Machado, O.J.; Berringer, R.T.

    1977-01-01

    The invention concerns the design of the core of a LWR with a large number of fuel assemblies formed by fuel rods and kept in position by spacer grids. According to the invention, at the level of the spacer grids match plates are mounted with openings so the flow of coolant directed upwards will not be obstructed and a parallel bypass will be obtained in the space between the core barrel and the baffle plates. In case of an accident, this configuration reduces or avoids damage from overpressure reactions. (HP) [de

  7. Fission-product release during accidents

    International Nuclear Information System (INIS)

    Hunt, C.E.L.; Cox, D.S.

    1991-09-01

    One of the aims when managing a reactor accident is to minimize the release of radioactive fission products. Release is dependent not only on the temperature, but also on the partial pressure of oxygen. Strongly oxidizing atmospheres, such as those that occurred during the Chernobyl accident, released semi-volatile elements like ruthenium, which has volatile oxides. At low temperatures, UO 2 oxidization to U 3 O 8 can result in extensive breakup of the fuel, resulting in the release of non-volatile fission products as aerosols. Under less oxidizing conditions, when hydrogen accumulates from the zirconium-water reaction, the resulting low oxygen partial pressure can significantly reduce these reactions. At TMI-2, only the noble gases and volatile fission products were released in significant quantities. A knowledge of the effect of atmosphere as well as temperature on the release of fission products from damaged reactor cores is therefore a useful, if not necessary, component of information required for accident management

  8. Nuclear fuel in a reactor accident.

    Science.gov (United States)

    Burns, Peter C; Ewing, Rodney C; Navrotsky, Alexandra

    2012-03-09

    Nuclear accidents that lead to melting of a reactor core create heterogeneous materials containing hundreds of radionuclides, many with short half-lives. The long-lived fission products and transuranium elements within damaged fuel remain a concern for millennia. Currently, accurate fundamental models for the prediction of release rates of radionuclides from fuel, especially in contact with water, after an accident remain limited. Relatively little is known about fuel corrosion and radionuclide release under the extreme chemical, radiation, and thermal conditions during and subsequent to a nuclear accident. We review the current understanding of nuclear fuel interactions with the environment, including studies over the relatively narrow range of geochemical, hydrological, and radiation environments relevant to geological repository performance, and discuss priorities for research needed to develop future predictive models.

  9. A study of different cases of VVER reactor core flooding in a large break loss of coolant accident

    International Nuclear Information System (INIS)

    Bezrukov, Y.A.; Schekoldin, V.I.; Zaitsev, S.I.; Churkin, A.N.; Lisenkov, E.A.

    2016-01-01

    The paper covers a brief review of reflooding studies performed in different countries and the relevant tests performed in OKB GIDROPRESS (Russia) are discussed in more detail. The OKB GIDROPRESS test facility simulates the primary circuit of the VVER-440 reactor, with a full-scale fuel assembly (FA) mockup as the core simulator. The VVER core reflooding was studied in a FA mockup containing 126 fuel rod simulators with axial power peaking. The experiments were performed for two types of flooding. The first type is top flooding of the empty (steamed) FA mockup. The second type is bottom flooding of the FA mockup with level of boiling water. The test parameters are as follows: the range of the supplied power to the bundle is from 40 to 320 kW, the cooling water flow rate is from 0.04 to 1.1 kg/s, the maximum temperature of the fuel rod simulator is 800 C. degrees and the linear heat flux is from 0.1 to 1.0 kW/m. The test results were used for computer code validation, especially for the TRAP package code. The experiments show that as the transverse dimension of the FA mockup increases, the flow choking of the water supplied from the top by the steam flow significantly decreases

  10. Development of the evaluation methodology for the material relocation behavior in the core disruptive accident of sodium-cooled fast reactors

    International Nuclear Information System (INIS)

    Tobita, Yoshiharu; Kamiyama, Kenji; Tagami, Hirotaka; Matsuba, Ken-ichi; Suzuki, Tohru; Isozaki, Mikio; Yamano, Hidemasa; Morita, Koji; Guo, LianCheng; Zhang, Bin

    2016-01-01

    The in-vessel retention (IVR) of core disruptive accident (CDA) is of prime importance in enhancing safety characteristics of sodium-cooled fast reactors (SFRs). In the CDA of SFRs, molten core material relocates to the lower plenum of reactor vessel and may impose significant thermal load on the structures, resulting in the melt-through of the reactor vessel. In order to enable the assessment of this relocation process and prove that IVR of core material is the most probable consequence of the CDA in SFRs, a research program to develop the evaluation methodology for the material relocation behavior in the CDA of SFRs has been conducted. This program consists of three developmental studies, namely the development of the analysis method of molten material discharge from the core region, the development of evaluation methodology of molten material penetration into sodium pool, and the development of the simulation tool of debris bed behavior. The analysis method of molten material discharge was developed based on the computer code SIMMER-III since this code is designed to simulate the multi-phase, multi-component fluid dynamics with phase changes involved in the discharge process. Several experiments simulating the molten material discharge through duct using simulant materials were utilized as the basis of validation study of the physical models in this code. It was shown that SIMMER-III with improved physical models could simulate the molten material discharge behavior, including the momentum exchange with duct wall and thermal interaction with coolant. In order to develop an evaluation methodology of molten material penetration into sodium pool, a series of experiments simulating jet penetration behavior into sodium pool in SFR thermal condition were performed. These experiments revealed that the molten jet was fragmented in significantly shorter penetration length than the prediction by existing correlation for light water reactor conditions, due to the direct

  11. Risk of nuclear damage

    International Nuclear Information System (INIS)

    Kienzl, K.

    1997-01-01

    Following the opening and words of welcome by Mr. Fritz Unterpertinger (unit director at the Austrian Federal Ministry for the Environment, Youth and Family; BMUJF) Mrs Helga Kromp-Kolb (professor at the Institute for Meteorology and Physics of the University of Natural Resources Science Vienna) illustrated the risks of nuclear damage in Europe by means of a nuclear risk map. She explained that even from a scientific or technical point of view the assessment of risks arising from nuclear power stations was fraught with great uncertainties. Estimates about in how far MCAs (maximum credible accident) could still be controlled by safety systems vary widely and so do assessments of the probability of a core melt. But there is wide agreement in all risk assessments conducted so far that MCAs might occur within a - from a human point of view - conceivable number of years. In this connection one has to bear in mind that the occurrence of such a major accident - whatever its probability may be - could entail immense damage and the question arises whether or not it is at all justifiable to expose the general public to such a risk. Klaus Rennings (Centre for European Economic Research, Mannheim, Germany) dealt with the economic aspects of nuclear risk assessment. He explained that there are already a number of studies available aiming to assess the risk of damage resulting from a core melt accident in economic terms. As to the probability of occurrence estimates vary widely between one incident in 3,333 and 250,000 year of reactor operation. It is assumed, however, that a nuclear accident involving a core melt in Germany would probably exceed the damage caused by the Chernobyl accident. The following speakers addressed the legal aspects of risks associated with nuclear installations. Mrs Monika Gimpel-Hinteregger (professor at the Institute for Civil Law in Graz) gave an overview on the applicable Austrian law concerning third party liability in the field of nuclear energy

  12. Evaluation of reflooding effects on an overheated boiling water reactor core in a small steam-line break accident using MAAP, MELCOR, and SCDAP/RELAP5 computer codes

    International Nuclear Information System (INIS)

    Lindholm, I.; Pekkarinen, E.; Sjoevall, H.

    1995-01-01

    Selected core reflooding situations were investigated in the case of a Finnish boiling water reactor with three severe accident analysis computer codes (MAAP, MELCOR, and SCDAP/RELAP5). The unmitigated base case accident scenario was a 10% steam-line break without water makeup to the reactor pressure vessel initially. The pumping of water to the core was started with the auxiliary feed water system when the maximum fuel cladding temperature reached 1,500 K. The auxiliary feedwater system pumps water (temperature 303 K) through the core spray spargers (core spray) on the top of the core and through feedwater nozzles to the downcomer (downcomer injection). The scope of the study was restricted to cases where the overheated core was still geometrically intact at the start of the reflooding. The following different core reflooding situations were investigated: (1) auxiliary feedwater injection to core spray (45 kg/s); (2) auxiliary feedwater injection to downcomer (45 kg/s); (3) auxiliary feedwater injection to downcomer (45 kg/s) and to core spray (45 kg/s); (4) no reflooding of the core. All the three codes predicted debris formation after the water addition, and in all MAAP and MELCOR reflooding results the core was quenched. The major difference between the code predictions was in the amount of H 2 produced, though the trends in H 2 production were similar. Additional steam production during the quenching process accelerated the oxidation in the unquenched parts of the core. This result is in accordance with several experimental observations

  13. Technical bases for estimating fission product behavior during LWR accidents. Technical report

    International Nuclear Information System (INIS)

    1981-06-01

    The objective of this report is to provide the Nuclear Regulatory Commission and the public with a description of the best technical information currently available for estimating the release of radioactive material during postulated reactor accidents, and to identify where gaps exist in our knowledge. This report focuses on those low probability-high consequence accidents involving severe damage to the reactor core and core meltdown that dominate the risk to the public. Furthermore, in this report particular emphasis is placed on the accident behavior of radioactive iodine, as (1) radioiodine is predicted to be a major contributor to public exposure, (2) current regulatory accident analysis procedures focus on iodine, and (3) several technical issues have been raised recently about the magnitude of iodine release. The generation, transport, and attenuation of aerosols were also investigated in some detail to assess their effect on fission product release estimates and to determine the performance of engineered safety features under accident conditions exceeding their design bases

  14. Tchernobyl accident

    International Nuclear Information System (INIS)

    1986-06-01

    First, R.M.B.K type reactors are described. Then, safety problems are dealt with reactor control, behavior during transients, normal loss of power and behavior of the reactor in case of leak. A possible scenario of the accident of Tchernobyl is proposed: events before the explosion, possible initiators, possible scenario and events subsequent to the core meltdown (corium-concrete interaction, interaction with the groundwater table). An estimation of the source term is proposed first from the installation characteristics and the supposed scenario of the accident, and from the measurements in Europe; radiological consequences are also estimated. Radioactivity measurements (Europe, Scandinavia, Western Europe, France) are given in tables (meteorological maps and fallouts in Europe). Finally, a description of the site is given [fr

  15. A Basic Study on the Failure of Lower Head of Nuclear Reactor Vessel by Molten Core in Severe Accident

    International Nuclear Information System (INIS)

    Cho, Jongrea; Bang, Kwanghyun; Bae, Jihoon; Kim, Changsung; Jeon, Jongwon

    2013-01-01

    This paper is analyzed by transient analysis for eight hours. Thermal conditions were carried out to interpret the data obtained from the existing experiment, and the pressures analyses were conducted considering pressure drop by applying the 1MPa. According to the analysis, a portion of the nozzle and the head is soluble, while nozzles and heads were not separated. This structural analysis has a comparative analysis of strain and displacement due to the existence of creep. Without the creep effect, strain shows 2.7% in 2D model and 4.6 % in 3D model. And, strain shows 2.9% in 2D model and 4.7 % in 3D model, in creep effect condition. Both case is satisfied to allowable strain. When comparing both analyses about creep effect, strain differences are 0.2% in 2D model and 0.1% in 3D model. Thus, it can be seen that in these analyses, the effect that creep has is minor. The purpose of this study is to develop the analysis techniques of the reactor vessel lower head under in-vessel pressure loads and thermal loads in severe accident. First, the temperature distribution in accordance with time using the thermal loads imposed on the lower head inner wall for simplified 2D model and 3D model respectively was analyzed. Second, the pressure applied on the lower head inner wall, was calculated by using the simplified 2D model and 3D model respectively. And The results of the analysis are indicated by equivalent von-mises stress and sum of the displacement, respectively. Third, the creep model and parameters used in the calculation were selected as well as the curve fitting of the experimental creep data. The plastic strain is the major cause of failure of the reactor pressure vessel. However, it can be calculated in this study that creep is not an important factor of failure of the reactor pressure vessel given the above mechanical and thermal loads

  16. Experimental analysis of ex-vessel core catcher cooling system performance for EU-APR1400 during severe accident

    Energy Technology Data Exchange (ETDEWEB)

    Song, K. W.; Park, H. S.; Revankar, S. T. [POSTECH, Pohang (Korea, Republic of); Kim, H. Y. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    In the coolant channel which has a unique design and large scale flow paths, natural circulation is passively activated by buoyancy driven force. Since two-phase flow behavior in a large scale channel is different from that in a small scale channel, the two-phase flow affecting the cooling capability is difficult to be predicted in the large channel. Therefore, cooling experiment in the core catcher coolant path is necessary. Cooling Experiment - Passive Ex-vessel corium retaining and Cooling System(CE-PECS) is constructed in full scale(in height and width) slice of half prototype. It actually simulates steam-water flow in the coolant channel for different decay heat condition of the corium. In this study, thermal power considering of total amount of decay heat 190 kW which corresponds to 40MW of thermal power in the prototype is loaded on the top wall of the CE-PECS coolant channel. Natural circulation flow rate and pressure drops at the two-phase region are measured in various power level. Temperatures of heater block and working fluid in various position along the flow path enable to calculate heat fluxes and heat transfer coefficients distribution. These results are used for evaluating heat removal capability of core catcher facility. Two-phase natural circulation experiment is carried out in CE-PECS facility. Based on the prototypic condition, 190 kW of total power is supplied to the top of the coolant path. Uniform distribution of heat load on the downward facing heater bock produces -300 kW/m2 at 100 % power ratio. Although the experiment should consider the heat loss and heat flux uniformity, several noticeable conclusions have been made as followings; 1. Mass flow rate and two-phase pressure drop are measured in various power conditions. 2. Slightly inclined top wall at the downstream of the channel shows better heat exchange performance than horizontal top wall because enhanced convection due to the increase of void fraction improves local cooling. This

  17. Influence of the Chernobyl accident on the frequency of chromosomal damage and health status of Lithuanian clean-up workers

    International Nuclear Information System (INIS)

    Lazutka, R. J.; Ridmeika, G. J.

    2006-01-01

    Chromosomal damage and health status were analyzed in Chernobyl clean-up workers currently residing in Lithuania. Statistically significantly (P < 0.05) increased frequencies of chromosome-type aberrations (chromosome breaks, dicentric and ring chromosomes) as well as aberrant cells were found in the peripheral blood lymphocytes of clean-up workers when measured 6-8 years after the exposure. Significant health impairment was characteristic of these persons as well. On average, 5.6 diseases per patient were diagnosed in clean-up workers suffering from cardiovascular diseases. This high co-morbidity resulted in quite high rates of metabolic syndrome (16.7%). Among Chernobyl clean-up workers that had experienced post-traumatic stress disorder, 76% suffered from highly expressed sleep disturbances. Analysis of thyroid diseases among 500 clean-up workers has revealed that 27.6% individuals have different pathology of thyroid gland. Thus, even 20 years after the Chernobyl disaster, clean-up workers must be considered as a group of primary interest both for researchers and physicians. (author)

  18. Identification and assessment of BWR in-vessel severe accident mitigation strategies

    International Nuclear Information System (INIS)

    Hodge, S.A.; Cleveland, J.C.; Kress, T.S.; Petek, M.

    1992-10-01

    This report provides the results of work carried out in support of the US Nuclear Regulatory Commission Accident Management Research Program to develop a technical basis for evaluating the effectiveness and feasibility of current and proposed strategies for boiling water reactor (BWR) severe accident management. First, the findings of an assessment of the current status of accident management strategies for the mitigation of in-vessel events for BWR severe accident sequences are described. This includes a review of the BWR Owners' Group Emergency Procedure Guidelines (EPGSs) to determine the extent to which they currently address the characteristic events of an unmitigated severe accident and to provide the basis for recommendations for enhancement of accident management procedures. Second, where considered necessary, new candidate accident management strategies are proposed for mitigation of the late-phase (after core damage has occurred) events. Finally, recommendations are made for consideration of additional strategies where warranted, and two of the four candidate strategies identified by this effort are assessed in detail: (1) preparation of a boron solution for reactor vessel refill should control blade damage occur during a period of temporary core dryout and (2) containment flooding to maintain the core debris within the reactor vessel if the injection systems cannot be restored

  19. Identification and assessment of BWR in-vessel severe accident mitigation strategies

    International Nuclear Information System (INIS)

    Hodge, S.A.; Kress, T.S.; Cleveland, J.C.; Petek, M.

    1992-01-01

    This paper briefly describes the results of work carried out in support of the US Nuclear Regulatory Commission Accident Management Research Program to evaluate the effectiveness and feasibility of current and proposed strategies for BWR severe accident management. These results are described in detail in the just-released report Identification and Assessment of BWR In-Vessel Severe Accident Mitigation Strategies, NUREG/CR-5869, which comprises three categories of findings. First, an assessment of the current status of accident management strategies for the mitigation of in-vessel events for BWR severe accident sequences is combined with a review of the BWR Owners' Group Emergency Procedure Guidelines (EPGs) to determine the extent to which they currently address the characteristic events of an unmitigated severe accident. Second, where considered necessary, new candidate accident management strategies are proposed for mitigation of the late-phase (after core damage has occurred) events. Finally, two of the four candidate strategies identified by this effort are assessed in detail. These are (1) preparation of a boron solution for reactor vessel refill should control blade damage occur during a period of temporary core dryout and (2) containment flooding to maintain the core debris within the reactor vessel if the injection systems cannot be restored

  20. Identification and assessment of BWR in-vessel severe accident mitigation strategies

    Energy Technology Data Exchange (ETDEWEB)

    Hodge, S.A.; Cleveland, J.C.; Kress, T.S.; Petek, M. [Oak Ridge National Lab., TN (United States)

    1992-10-01

    This report provides the results of work carried out in support of the US Nuclear Regulatory Commission Accident Management Research Program to develop a technical basis for evaluating the effectiveness and feasibility of current and proposed strategies for boiling water reactor (BWR) severe accident management. First, the findings of an assessment of the current status of accident management strategies for the mitigation of in-vessel events for BWR severe accident sequences are described. This includes a review of the BWR Owners` Group Emergency Procedure Guidelines (EPGSs) to determine the extent to which they currently address the characteristic events of an unmitigated severe accident and to provide the basis for recommendations for enhancement of accident management procedures. Second, where considered necessary, new candidate accident management strategies are proposed for mitigation of the late-phase (after core damage has occurred) events. Finally, recommendations are made for consideration of additional strategies where warranted, and two of the four candidate strategies identified by this effort are assessed in detail: (1) preparation of a boron solution for reactor vessel refill should control blade damage occur during a period of temporary core dryout and (2) containment flooding to maintain the core debris within the reactor vessel if the injection systems cannot be restored.

  1. Porosity effects during a severe accident

    International Nuclear Information System (INIS)

    Cazares R, R. I.; Espinosa P, G.; Vazquez R, A.

    2015-09-01

    The aim of this work is to study the behaviour of porosity effects on the temporal evolution of the distributions of hydrogen concentration and temperature profiles in a fuel assembly where a stream of steam is flowing. The analysis considers the fuel element without mitigation effects. The mass transfer phenomenon considers that the hydrogen generated diffuses in the steam by convection and diffusion. Oxidation of the cladding, rods and other components in the core constructed in zirconium base alloy by steam is a critical issue in LWR accident producing severe core damage. The oxygen consumed by the zirconium is supplied by the up flow of steam from the water pool below the uncovered core, supplemented in the case of PWR by gas recirculation from the cooler outer regions of the core to hotter zones. Fuel rod cladding oxidation is then one of the key phenomena influencing the core behavior under high-temperature accident conditions. The chemical reaction of oxidation is highly exothermic, which determines the hydrogen rate generation and the cladding brittleness and degradation. The heat transfer process in the fuel assembly is considered with a reduced order model. The Boussinesq approximation was applied in the momentum equations for multicomponent flow analysis that considers natural convection due to buoyancy forces, which is related with thermal and hydrogen concentration effects. The numerical simulation was carried out in an averaging channel that represents a core reactor with the fuel rod with its gap and cladding and cooling steam of a BWR. (Author)

  2. Porosity effects during a severe accident

    Energy Technology Data Exchange (ETDEWEB)

    Cazares R, R. I. [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Posgrado en Energia y Medio Ambiente, San Rafael Atlixco 186, Col. Vicentina, 09340 Ciudad de Mexico (Mexico); Espinosa P, G.; Vazquez R, A., E-mail: ricardo-cazares@hotmail.com [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Area de Ingenieria en Recursos Energeticos, San Rafael Atlixco 186, Col. Vicentina, 09340 Ciudad de Mexico (Mexico)

    2015-09-15

    The aim of this work is to study the behaviour of porosity effects on the temporal evolution of the distributions of hydrogen concentration and temperature profiles in a fuel assembly where a stream of steam is flowing. The analysis considers the fuel element without mitigation effects. The mass transfer phenomenon considers that the hydrogen generated diffuses in the steam by convection and diffusion. Oxidation of the cladding, rods and other components in the core constructed in zirconium base alloy by steam is a critical issue in LWR accident producing severe core damage. The oxygen consumed by the zirconium is supplied by the up flow of steam from the water pool below the uncovered core, supplemented in the case of PWR by gas recirculation from the cooler outer regions of the core to hotter zones. Fuel rod cladding oxidation is then one of the key phenomena influencing the core behavior under high-temperature accident conditions. The chemical reaction of oxidation is highly exothermic, which determines the hydrogen rate generation and the cladding brittleness and degradation. The heat transfer process in the fuel assembly is considered with a reduced order model. The Boussinesq approximation was applied in the momentum equations for multicomponent flow analysis that considers natural convection due to buoyancy forces, which is related with thermal and hydrogen concentration effects. The numerical simulation was carried out in an averaging channel that represents a core reactor with the fuel rod with its gap and cladding and cooling steam of a BWR. (Author)

  3. The coupled kinetics of grain growth and fission product behavior in nuclear fuel under degraded-core accident conditions

    International Nuclear Information System (INIS)

    Rest, J.

    1985-01-01

    The theoretical FASTGRASS-VFP model has been used in the interpretation of fission gas, iodine, and cesium release from (1) irradiated high-burnup LWR fuel in a flowing steam atmosphere during high-temperature, in-cell heating tests (performed at Oak Ridge National Laboratory) and (2) trace-irratiated LWR fuel during severe-fuel-damage (SFD) tests (performed in the PBF reactor in Idaho). A theory of grain boundary sweeping of gas bubbles has been included within the FASTGRASS-VFP formalism. This theory considers the interaction between the moving grain boundary and two distinct size classes of bubbles, those on grain faces and on grain edges, and provides a means of determining whether gas bubbles are caught up and moved along by a moving grain boundary or whether the grain boundary is only temporarily retarded by the bubbles and then breaks away. In addition, as FASTGRASS-VFP provides for a mechanistic calculation of intra- and intergranular fission product behavior, the coupled calculation between fission gas behavior and grain growth is kinetically comprehensive. Results of the analyses demonstrate that intragranular fission product behavior during both types of tests can be interpreted in terms of a grain-growth/grain-boundary-sweeping mechanism that enhances the flow of fission products from within the grains to the grain boundaries. The effect of fuel oxidation by steam on fission product and grain growth behavior is also considered. The FASTGRASS-VFP predictions, measured release rates from the above tests, and previously published release rates are compared and differences between fission product behavior in trace-irradiated and in high-burnup fuel are highlighted. (orig.)

  4. Strategies for the prevention and mitigation of severe accidents

    International Nuclear Information System (INIS)

    Ader, C.; Heusener, G.; Snell, V.G.

    1999-01-01

    The currently operating nuclear power plants have, in general, achieved a high level of safety, as a result of design philosophies that have emphasized concepts such as defense-in-depth. This type of an approach has resulted in plants that have robust designs and strong containments. These designs were later found to have capabilities to protect the public from severe accidents (accidents more severe than traditional design basis in which substantial damage is done to the reactor core). In spite of this high level of safety, it has also been recognized that future plants need to be designed to achieve an enhanced level of safety, in particular with respect to severe accidents. This has led both regulatory authorities and utilities to develop guidance and/or requirements to guide plant designers in achieving improved severe accident performance through prevention and mitigation. The considerable research programs initiated after the TMI-2 accident have provided a large body of technical data, analytical methods, and the expertise necessary to provide for an understanding of a range of severe accident phenomena. This understanding of the ways severe accidents can progress and challenge containments, combined with the wide use of probabilistic safety assessments, have provided designers of evolutionary water cooled reactors opportunities to develop designs that minimize the challenges to the plant and to the public from severe accidents, including the development of accident management strategies intended to further reduce the risk of severe accidents. This paper describes some of the recent progress made in the understanding of severe accidents and related safety assessment methodology and how this knowledge has supported the incorporation of features into representative evolutionary designs that will prevent or mitigate many of the severe accident challenges present in current plants. (author)

  5. The need to study of bounding accident in reprocessing plant

    International Nuclear Information System (INIS)

    Segawa, Satoshi; Fujita, Kunio

    2013-01-01

    There is a clear consensus that the severe accident corresponds to the core damage accident for power reactors. On the other hand, for FCFs, there is no clear consensus on what is the accident to assess the safety in the region of beyond design basis, or what is the accident which has very low probability but large consequence. The need to examine a bounding consequence of each type of accident is explained to advance the rationality of safety management and regulation and, as a result, to reinforce the safety of a reprocessing plant. The likelihood of occurrence of an accident causing a bounding consequence should correspond to that of a severe accident at a nuclear power plant. The bounding consequence will be derived using the deterministic method and sound engineering judgment supplemented by the probabilistic method. Once an agreement on such a concept is reached among regulators, operators and related experts it will help to provide a solid basis to ensure the safety of a reprocessing plant independent of that of a nuclear power plant. In this paper, we show a preliminary risk profile of RRP calculated by QSA (Quantitative Safety Assessment) which JNFL developed. The profile shows that bounding consequences of various accidents in a range of occurrence frequency corresponding to a severe accident at a nuclear power plant. And we find that the bounding consequence of high-level liquid waste boiling is the largest among all in this range. Therefore, the risk of this event is shown in this paper as an example. To build a common consensus about bounding accidents among concerned parties will encourage regulatory body to introduce such an idea for more effective regulation with scientific rationality. Additionally the study of bounding accidents can contribute to substantial development for accident management strategy as reprocessing operators. (authors)

  6. PBF Severe Fuel-Damage Program: results and comparison to analysis

    International Nuclear Information System (INIS)

    MacDonald, P.E.; Buescher, B.J.; Hobbins, R.R.; McCardell, R.K.; Gruen, G.E.

    1983-01-01

    The United States Nuclear Regulatory Commission has initiated a severe fuel-damage research program in the Power Burst Facility (PBF) to investigate fuel-rod and core response, and fission-product and hydrogen release and transport under degraded-core-cooling accident conditions. This paper presents a description of Phase I of the PBF Severe Fuel Damage Program, discusses the results of the first experiment, and compares those results with analysis performed using the TRAC-BD1 computer code

  7. Sensitivity studies of air ingress accidents in modular HTGRs

    International Nuclear Information System (INIS)

    Ball, Syd; Richards, Matt; Shepelev, Sergey

    2008-01-01

    Postulated air ingress accidents, while of very low probability in a modular high-temperature gas-cooled reactor (HTGR), are of considerable interest to the plant designer, operator, and regulator because of the possibility that the core could sustain significant damage under some circumstances. Sensitivity analyses are described that cover a wide spectrum of conditions affecting outcomes of the postulated accident sequences, for both prismatic and pebble-bed core designs. The major factors affecting potential core damage are the size and location of primary system leaks, flow path resistances, the core temperature distribution, and the long-term availability of oxygen in the incoming gas from a confinement building. Typically, all the incoming oxygen entering the core area is consumed within the reactor vessel, so it is more a matter of where, not whether, oxidation occurs. An air ingress model with example scenarios and means for mitigating damage are described. Representative designs of modular HTGRs included here are a 400-MW(th) pebble-bed reactor (PBR), and a 600-MW(th) prismatic-core modular reactor (PMR) design such as the gas-turbine modular helium reactor (GT-MHR)

  8. Instrumentation needs in LWR severe fuel damage experiments

    International Nuclear Information System (INIS)

    McCormick, R.D.

    1980-01-01

    The Class 9 type nuclear accident is defined and the Three Mile Island type accident and proposed Idaho National Engineering Laboratory experiment series are described in some detail. Different types of severe fuel damage experiments are briefly discussed in order to show typical measurement requirements. General instrumentation needs and problems encountered in Class 9 accident research are outlined. It is concluded that the extremely high temperatures, high nuclear radiation fields, and oxidizing atmosphere will necessitate instrument development programs. Noncontact type sensing will be necessary in most of the molten core experiments

  9. Joint research project WASA-BOSS: Further development and application of severe accident codes. Assessment and optimization of accident management measures. Project B: Accident analyses for pressurized water reactors with the application of the ATHLET-CD code; Verbundprojekt WASA-BOSS: Weiterentwicklung und Anwendung von Severe Accident Codes. Bewertung und Optimierung von Stoerfallmassnahmen. Teilprojekt B: Druckwasserreaktor-Stoerfallanalysen unter Verwendung des Severe-Accident-Codes ATHLET-CD

    Energy Technology Data Exchange (ETDEWEB)

    Jobst, Matthias; Kliem, Soeren; Kozmenkov, Yaroslav; Wilhelm, Polina

    2017-02-15

    Within the framework of the project an ATHLET-CD input deck for a generic German PWR of type KONVOI has been created. This input deck was applied to the simulation of severe accidents from the accident categories station blackout (SBO) and small-break loss-of-coolant accidents (SBLOCA). The complete accident transient from initial event at full power until the damage of reactor pressure vessel (RPV) is covered and all relevant severe accident phenomena are modelled: start of core heat up, fission product release, melting of fuel and absorber material, oxidation and release of hydrogen, relocation of molten material inside the core, relocation to the lower plenum, damage and failure of the RPV. The model has been applied to the analysis of preventive and mitigative accident management measures for SBO and SBLOCA transients. Therefore, the measures primary side depressurization (PSD), injection to the primary circuit by mobile pumps and for SBLOCA the delayed injection by the cold leg hydro-accumulators have been investigated and the assumptions and start criteria of these measures have been varied. The time evolutions of the transients and time margins for the initiation of additional measures have been assessed. An uncertainty and sensitivity study has been performed for the early phase of one SBO scenario with PSD (until the start of core melt). In addition to that, a code -to-code comparison between ATHLET-CD and the severe accident code MELCOR has been carried out.