WorldWideScience

Sample records for core corrosion properties

  1. Deposition of corrosion products in-core

    International Nuclear Information System (INIS)

    Burrill, K.A.

    1994-11-01

    Data on corrosion product deposits on fuel sheaths are presented for a variety of operating conditions and water chemistries: boiling and non-boiling water; surface heat flux; pH, dissolved hydrogen concentration. Corrosion product behaviour in-core may be interpreted in terms of the solubility of magnetite and how it changes with water chemistry and temperature. A hypothesis of the deposition and release mechanisms was proposed in the 1970s in which particles deposited onto the sheath and subsequently dissolved in the heated water while being irradiated. Some of the deposition data may be interpreted using a model of these mechanisms. (author). 5 refs., 6 tabs., 8 figs

  2. Corrosion Properties of Laser Welded Stainless Steel

    DEFF Research Database (Denmark)

    Weldingh, Jakob; Olsen, Flemmming Ove

    1997-01-01

    In this paper the corrosion properties of laser welded AISI 316L stainless steel are examined. A number of different welds has been performed to test the influence of the weld parameters of the resulting corrosion properties. It has been chosen to use the potential independent critical pitting...... temperature (CPT) test as corrosion test. The following welding parameters are varied: Welding speed, lsser power, focus point position and laser operation mode (CW or pulsed)....

  3. Irradiation-Accelerated Corrosion of Reactor Core Materials. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, Zhujie [Univ. of Michigan, Ann Arbor, MI (United States); Was, Gary [Univ. of Michigan, Ann Arbor, MI (United States); Bartels, David [Univ. of Notre Dame, IN (United States)

    2015-04-02

    This project aims to understand how radiation accelerates corrosion of reactor core materials. The combination of high temperature, chemically aggressive coolants, a high radiation flux and mechanical stress poses a major challenge for the life extension of current light water reactors, as well as the success of most all GenIV concepts. Of these four drivers, the combination of radiation and corrosion places the most severe demands on materials, for which an understanding of the fundamental science is simply absent. Only a few experiments have been conducted to understand how corrosion occurs under irradiation, yet the limited data indicates that the effect is large; irradiation causes order of magnitude increases in corrosion rates. Without a firm understanding of the mechanisms by which radiation and corrosion interact in film formation, growth, breakdown and repair, the extension of the current LWR fleet beyond 60 years and the success of advanced nuclear energy systems are questionable. The proposed work will address the process of irradiation-accelerated corrosion that is important to all current and advanced reactor designs, but remains very poorly understood. An improved understanding of the role of irradiation in the corrosion process will provide the community with the tools to develop predictive models for in-reactor corrosion, and to address specific, important forms of corrosion such as irradiation assisted stress corrosion cracking.

  4. Reactor Structure Materials: Corrosion of Reactor Core Internals

    International Nuclear Information System (INIS)

    Van Dyck, S.

    2000-01-01

    The objectives of SCK-CEN's R and D programme on the corrosion of reactor core internals are: (1) to gain mechanistic insight into the Irradition Assisted Stress Corrosion Cracking (IASCC) phenomenon by studying the influence of separate parameters in well controlled experiments; (2) to develop and validate a predictive capability on IASCC by model description and (3) to define and validate countermeasures and monitoring techniques for application in reactors. Progress and achievements in 1999 are described

  5. Microstructural Characterization of Reinforced Mortar after Corrosion and Cathodic Prevention in the Presence of Core-Shell Micelles

    NARCIS (Netherlands)

    Koleva, D.A.

    2010-01-01

    This work reports on the microstructural properties of reinforced mortar after chloride-induced corrosion and two regimes of cathodic prevention. Additionally, the impact of a very low concentration polymeric nano-aggregates (core-shell micelles from PEO113-b-PS218), admixed in the mortar mixture is

  6. The corrosion and corrosion mechanical properties evaluation for the LBB concept in VVERs

    Energy Technology Data Exchange (ETDEWEB)

    Ruscak, M.; Chvatal, P.; Karnik, D.

    1997-04-01

    One of the conditions required for Leak Before Break application is the verification that the influence of corrosion environment on the material of the component can be neglected. Both the general corrosion and/or the initiation and, growth of corrosion-mechanical cracks must not cause the degradation. The primary piping in the VVER nuclear power plant is made from austenitic steels (VVER 440) and low alloy steels protected with the austenitic cladding (VVER 1000). Inspection of the base metal and heterogeneous weldments from the VVER 440 showed that the crack growth rates are below 10 m/s if a low oxygen level is kept in the primary environment. No intergranular cracking was observed in low and high oxygen water after any type of testing, with constant or periodic loading. In the framework of the LBB assessment of the VVER 1000, the corrosion and corrosion mechanical properties were also evaluated. The corrosion and corrosion mechanical testing was oriented predominantly to three types of tests: stress corrosion cracking tests corrosion fatigue tests evaluation of the resistance against corrosion damage. In this paper, the methods used for these tests are described and the materials are compared from the point of view of response on static and periodic mechanical stress on the low alloyed steel 10GN2WA and weld metal exposed in the primary circuit environment. The slow strain rate tests and static loading of both C-rings and CT specimens were performed in order to assess the stress corrosion cracking characteristics. Cyclic loading of CT specimens was done to evaluate the kinetics of the crack growth under periodical loading. Results are shown to illustrate the approaches used. The data obtained were evaluated also from the point of view of comparison of the influence of different structure on the stress corrosion cracking appearance. The results obtained for the base metal and weld metal of the piping are presented here.

  7. Anodizing of aluminum with improved corrosion properties

    International Nuclear Information System (INIS)

    John, P.; Khan, I.U.

    2010-01-01

    Anodizing of aluminum was studied in sulphuric/oxalic/boric acid electroiyte system. The corrosion resistance of the anodic oxide coating of aluminum was determined by potentiodynamic polarization test and scanning electron microscope (SEM) was used to investigate the surface morphology before and after corrosion test. It was found that the oxide coating obtained by this method showed better corrosion resistance with no significant difference in surface morphology. (author)

  8. Activity of corrosion products in pool type reactors with ascending flow in the core

    International Nuclear Information System (INIS)

    Andrade e Silva, Graciete S. de; Queiroz Bogado Leite, Sergio de

    1995-01-01

    A model for the activity of corrosion products in the water of a pool type reactor with ascending flow is presented. The problem is described by a set of coupled differential equations relating the radioisotope concentrations in the core and pool circuits and taking into account two types of radioactive sources: i) those from radioactive species formed in the fuel cladding, control elements, reflector, etc, and afterwards released to the primary stream by corrosion (named reactor sources) and ii) those formed from non radioactive isotopes entering the primary stream by corrosion of the circuit components and being activated when passing through the core (named circuit sources). (author). 6 refs, 3 figs, 4 tabs

  9. Simulation study on insoluble granular corrosion products deposited in PWR core

    International Nuclear Information System (INIS)

    Yang Xu; Zhou Tao; Ru Xiaolong; Lin Daping; Fang Xiaolu

    2014-01-01

    In the operation of reactor, such as fuel rods, reactor vessel internals etc. will be affected by corrosion erosion of high pressure coolant. It will produce many insoluble corrosion products. The FLUENT software is adopted to simulate insoluble granular corrosion products deposit distribution in the reactor core. The fluid phase uses the standard model to predict the flow field in the channel and forecast turbulence variation in the near-wall region. The insoluble granular corrosion products use DPM (Discrete Phase Model) to track the trajectory of the particles. The discrete phase model in FLUENT follows the Euler-Lagrange approach. The fluid phase is treated as a continuum by solving the Navier-Stokes equations, while the dispersed phase is solved by tracking a large number of particles through the calculated flow field. Through the study found, Corrosion products particles form high concentration area near the symmetry, and the entrance section of the corrosion products particles concentration is higher than export section. Corrosion products particles deposition attached on large area for the entrance of the cladding, this will change the core neutron flux distribution and the thermal conductivity of cladding material, and cause core axial offset anomaly (AOA). Corrosion products particles dot deposit in the outlet of cladding, which can lead to pitting phenomenon in a sheath. Pitting area will cause deterioration of heat transfer, destroy the cladding integrity. In view of the law of corrosion products deposition and corrosion characteristics of components in the reactor core. this paper proposes regular targeted local cleanup and other mitigation measures. (authors)

  10. Dissolution properties of cerium dibutylphosphate corrosion inhibitors

    NARCIS (Netherlands)

    Soestbergen, van M.; Erich, S.J.F.; Huinink, H.P.; Adan, O.C.G.

    2013-01-01

    The corrosion inhibitor cerium dibutylphosphate, Ce(dbp)3, prevents corrosion by cerium and dbp deposition at the alkaline cathode and acidic anode respectively. The pH dependent Ce(dbp)3 solubility seems to play an essential role in the inhibition degree. We found that Ce(dbp)3 scarcely dissolves

  11. Irradiation-accelerated corrosion of reactor core materials

    International Nuclear Information System (INIS)

    Bartels, David; Was, Gary; Jiao, Zhijie

    2012-09-01

    The combination of high temperature, chemically aggressive coolants, a high radiation flux and mechanical stress poses a major challenge for the life extension of current light water reactors, but also applies to most all other GenIV concepts. Of these four drivers, the combination of radiation and corrosion presents a unique and extremely challenging environment for materials, for which an understanding of the fundamental science is essentially absent. Irradiation can affect corrosion or oxidation in at least three different ways. Radiation interaction with water results in the decomposition of water into radicals and oxidizing species that will increase the electrochemical corrosion potential and lead to greater corrosion rates. Irradiation of the solid surface can produce excited states that can alter corrosion, such as in the case of photo-induced corrosion. Lastly, displacement damage in the solid will result in a high flux of defects to the solid-solution interface that can alter and perhaps, accelerate interface reactions. While there exists reasonable understanding of how corrosion is affected by irradiation of the aqueous environment, there is little understanding of how irradiation affects corrosion through its impact on the solid, whether metal or oxide. The reason is largely due to the difficulty of conducting experiments that can measure this effect separately. We have undertaken a project specifically to separate the several effects of irradiation on the mechanisms of corrosion. We seek to answer the question: How does radiation damage to the solution-oxide couple affect the oxidation process differently from radiation damage to either component alone? The approach taken in this work is to closely compare corrosion accelerated by (1) proton irradiation, (2) electron irradiation, and (3) chemical corrosion potential effects alone, under typical PWR operating conditions at 300 deg. C. Both 316 stainless steel and zirconium are to be studied. The proton

  12. Effect of high temperature filtration on out-core corrosion product activity

    International Nuclear Information System (INIS)

    Horvath, G.L.; Bogancs, J.

    1983-01-01

    Investigation of the effect of high temperature filtration on corrosion product transport and out-core corrosion product activity has been carried out for VVER-440 plants. In the physico-chemical model applied particulate and dissolved corrosion products were taken into account. We supposed 100% effectivity for the particulate filter. It was found that about 0,5% 160 t/h/ of the main flow would result in an approx.50% reduction of the out-core corrosion product activity. Investigation of the details of the physico-chemical model in Nuclear Power Plant Paks showed a particle deposition rate measured during power transients fairly agreeing with other measurements and data used in the calculations. (author)

  13. Controlled Release from Core-Shell Nanoporous Silica Particles for Corrosion Inhibition of Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    Xingmao Jiang

    2011-01-01

    Full Text Available Cerium (Ce corrosion inhibitors were encapsulated into hexagonally ordered nanoporous silica particles via single-step aerosol-assisted self-assembly. The core/shell structured particles are effective for corrosion inhibition of aluminum alloy AA2024-T3. Numerical simulation proved that the core-shell nanostructure delays the release process. The effective diffusion coefficient elucidated from release data for monodisperse particles in water was 1.0×10−14 m2s for Ce3+ compared to 2.5×10−13 m2s for NaCl. The pore size, pore surface chemistry, and the inhibitor solubility are crucial factors for the application. Microporous hydrophobic particles encapsulating a less soluble corrosion inhibitor are desirable for long-term corrosion inhibition.

  14. Controlled Release from Core-Shell Nano porous Silica Particles for Corrosion Inhibition of Aluminum Alloys

    International Nuclear Information System (INIS)

    Jiang, X.; Rathod, Sh.; Shah, P.; Brinker, C.J.; Jiang, X.; Jiang, Y.; Liu, N.; Xu, H.; Brinker, C.J.

    2011-01-01

    Cerium (Ce) corrosion inhibitors were encapsulated into hexagonally ordered nanoporous silica particles via single-step aerosol-assisted self-assembly. The core/shell structured particles are effective for corrosion inhibition of aluminum alloy AA2024-T3. Numerical simulation proved that the core-shell nanostructure delays the release process. The effective diffusion coefficient elucidated from release data for monodisperse particles in water was 1.0x10-14 m 2 s for Ce 3+ compared to 2.5x10-13 m 2 s for NaCl. The pore size, pore surface chemistry, and the inhibitor solubility are crucial factors for the application. Microporous hydrophobic particles encapsulating a less soluble corrosion inhibitor are desirable for long-term corrosion inhibition.

  15. Corrosion of MTR type fuel plates containing U3O8-Al cermet cores

    International Nuclear Information System (INIS)

    Durazzo, M.

    1985-01-01

    The fuel plate samples containing U 3 O 8 -Al cermet cores with concentrations from 10 to 90% of U 3 O 8 weight were fabricated. Samples with 58% of U 3 O 8 eight were fabricated using compacts with densities from 75 to 95% of theoretical density. The influences of U 3 O 8 concentration and porosity of compacted core on porosity and uniformity of core thickness are discussed. The U 3 O 8 -Al cores were submitted to corrosion tests and exposed to deionized water at temperatures of 30, 50, 70 and 90 0 C by cladding deffect produced artificially. The results shown that core corrosion is accompanied by hydrogen release. The total volum of released hydrogen and the time interval to observe the initiation of hydrogen releasing (incubation time) are depending on core pososity and absolute temperature. A mechanism for U 3 O 8 -Al core corrosion process is proposed and discussed. The cladding of fuel plate samples was submitted to corrosion tests under similar conditons of the IAE-R1 reactor operating at 2, 5 and 10 MW. (Author) [pt

  16. Corrosion Properties of Sintered and Wrought Stainless Seel

    DEFF Research Database (Denmark)

    Mathiesen, Troels; Maahn, Ernst Emanuel

    1997-01-01

    The corrosion properties of a range of stainless steels produced by powder metallurgy (PM) are compared with wrought AISI304 and AISI316 Steel. Characterisation of the passivation properties in 0.5M H2SO4 and pittingresistance in 0.3% chloride solution by polarisation show properties...

  17. [Corrosion resistant properties of different anodized microtopographies on titanium surfaces].

    Science.gov (United States)

    Fangjun, Huo; Li, Xie; Xingye, Tong; Yueting, Wang; Weihua, Guo; Weidong, Tian

    2015-12-01

    To investigate the corrosion resistant properties of titanium samples prepared by anodic oxidation with different surface morphologies. Pure titanium substrates were treated by anodic oxidation to obtain porous titanium films in micron, submicron, and micron-submicron scales. The surface morphologies, coating cross-sectional morphologies, crystalline structures, and surface roughness of these samples were characterized. Electrochemical technique was used to measure the corrosion potential (Ecorr), current density of corrosion (Icorr), and polarization resistance (Rp) of these samples in a simulated body fluid. Pure titanium could be modified to exhibit different surface morphologies by the anodic oxidation technique. The Tafel curve results showed that the technique can improve the corrosion resistance of pure titanium. Furthermore, the corrosion resistance varied with different surface morphologies. The submicron porous surface sample demonstrated the best corrosion resistance, with maximal Ecorr and Rp and minimal Icorr. Anodic oxidation technology can improve the corrosion resistance of pure titanium in a simulated body fluid. The submicron porous surface sample exhibited the best corrosion resistance because of its small surface area and thick barrier layer.

  18. Corrosion and electrochemical properties of lanthanum

    International Nuclear Information System (INIS)

    Tomashov, N.D.; Matveeva, T.V.

    The kinetics of the corrosion rate of lanthanum at 25 0 in air of different relative humidities, distilled water, sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid, hydrofluoric acid, potassium hydroxide of different concentrations and at 100 0 C in distilled water and potassium hydroxide have been studied. In air at 22--100% relative humidity, the corrosion rate of lanthanum increases with time and with increasing humidity. In distilled water and in potassium hydroxide solutions, the corrosion rate of lanthanum increases with time and decreasees when the concentration of alkali exceeds 20%. With increasing concentration of the acids, the corrosion rate of lanthanum increases in hydrochloric acid and nitric acid and passes through a maximum in sulfuric acid (20%) and phosphoric acid (60%). The values of the corrosion rates of lanthanum in 40% nitric acid, 35% hydrochloric acid, 20% sulfuric acid, 60% phosphoric acid, and 40% hydrofluoric acid are 8 x 10 5 ; 4.4 x 10 4 ; 1.3 x 10 3 ; 9 g/m 2 h respectively

  19. Properties of Douglas Point Generating Station heat transport corrosion products

    International Nuclear Information System (INIS)

    Montford, B.; Rummery, T.E.

    1975-09-01

    Chemical, radiochemical and structural properties of circulating and fixed corrosion products from the Douglas Point Generating Station are documented. Interaction of Monel-400 and carbon steel corrosion products is described, and the mechanisms of Monel-400 surface deposit release, and activity buildup in the coolant system, are briefly discussed. Efficiencies of filters and ion-exchangers for the removal of released radionuclides are given. (author)

  20. Stainless steel corrosion in conditions simulating WWER-1000 primary coolant. Corrosion behaviour in mixed core

    International Nuclear Information System (INIS)

    Krasnorutskij, V.S.; Petel'guzov, I.A.; Gritsina, V.M.; Zuek, V.A.; Tret'yakov, M.V.; Rud', R.A.; Svichkar', N.V.; Slabospitskaya, E.A.; Ishchenko, N.I.

    2011-01-01

    Research into corrosion kinetics of austenitic stainless steels (06Cr18Ni10Ti, 08Cr18Ni10Ti, 12Cr18Ni10Ti) in medium which corresponds to composition and parameters of WWER-1000 primary coolant with different pH values in autoclave out-pile conditions during 14000 hours is given. Surface of oxide films on stainless steels is investigated. Visual inspection of Westinghouse and TVEL fuel was carried out after 4 cycles in WWER-1000 primary water chemistry conditions at South Ukraine NPP. Westinghouse and TVEL fuel cladding materials possess high corrosion resistance. Blushing of weldments was observed. No visual corrosion defects or deposits were observed on fuel rods.

  1. Corrosion and tribological properties of basalt fiber reinforced composite materials

    Science.gov (United States)

    Ha, Jin Cheol; Kim, Yun-Hae; Lee, Myeong-Hoon; Moon, Kyung-Man; Park, Se-Ho

    2015-03-01

    This experiment has examined the corrosion and tribological properties of basalt fiber reinforced composite materials. There were slight changes of weight after the occurring of corrosion based on time and H2SO4 concentration, but in general, the weight increased. It is assumed that this happens due to the basalt fiber precipitate. Prior to the corrosion, friction-wear behavior showed irregular patterns compared to metallic materials, and when it was compared with the behavior after the corrosion, the coefficient of friction was 2 to 3 times greater. The coefficient of friction of all test specimen ranged from 0.1 to 0.2. Such a result has proven that the basalt fiber, similar to the resin rubber, shows regular patterns regardless of time and H2SO4 concentration because of the space made between resins and reinforced materials.

  2. Benchmarking of Zinc Coatings for Corrosion Protection: A Detailed Characterization of Corrosion and Electrochemical Properties of Zinc Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Wijesinghe, Sudesh L; Zixi, Tan [Singapore Institute of Manufacturing Technology, Nanyang Drive (Singapore)

    2017-02-15

    Due to various types of Zn coatings for many decades for various applications, it is imperative to study and compare their corrosion resistance properties of some of these. Here, we introduce a systematic methodology for evaluation and validation of corrosion protection properties of metallic coatings. According to this methodology, samples are were exposed in an advanced cyclic corrosion test chamber according to ISO 14993, and removed at the end of each withdrawal for respective corrosion and electrochemical characterization to evaluate both barrier and galvanic protection properties. Corrosion protection properties of coatings were evaluated by visual examination according to ISO 10289, mass loss and subsequent corrosion rate measurements, electrochemical properties, and advanced electrochemical scanning techniques. In this study, corrosion protection properties of a commercial zinc rich coating (ZRC) on AISI 1020 mild steel substrates were evaluated and benchmarked against hot dip galvanized (HDG). Results were correlated, and corrosion protection capabilities of the two coatings were compared. The zinc rich coating performed better than hot dip galvanized coating in terms of overall corrosion protection properties, according to the exposure and experimental conditions used in this study. It proved to be a suitable candidate to replace hot dip galvanized coatings for desired applications.

  3. Corrosion

    Science.gov (United States)

    Slabaugh, W. H.

    1974-01-01

    Presents some materials for use in demonstration and experimentation of corrosion processes, including corrosion stimulation and inhibition. Indicates that basic concepts of electrochemistry, crystal structure, and kinetics can be extended to practical chemistry through corrosion explanation. (CC)

  4. Structure and corrosion properties of PVD Cr-N coatings

    CERN Document Server

    Liu, C; Ziegele, H; Leyland, A; Matthews, A

    2002-01-01

    PVD Cr-N coatings produced by physical vapor deposition (PVD) are increasingly used for mechanical and tribological applications in various industrial sectors. These coatings are particularly attractive for their excellent corrosion resistance, which further enhances the lifetime and service quality of coated components. PVD Cr-N coated steels in an aqueous solution are usually corroded by galvanic attack via through-coating 'permeable' defects (e.g., pores). Therefore, the corrosion performance of Cr-N coated steel is determined by a number of variables of the coating properties and corrosive environment. These variables include: (i) surface continuity and uniformity; (ii) through-coating porosity; (iii) film density and chemical stability; (iv) growth stresses; (v) interfacial and intermediate layers; (vi) coating thickness; (vii) coating composition; and (viii) substrate properties. In this article, PVD Cr-N coatings were prepared, by electron-beam PVD and sputter deposition, with different compositions, t...

  5. Erosion–corrosion and corrosion properties of DLC coated low temperature Erosion–corrosion and corrosion properties of DLC coated low temperature

    DEFF Research Database (Denmark)

    Jellesen, Morten Stendahl; Christiansen, Thomas; Hilbert, Lisbeth Rischel

    2009-01-01

    of AISI 316 as substrate for DLC coatings are investigated. Corrosion and erosion–corrosion measurements were carried out on low temperature nitrided stainless steel AISI 316 and on low temperature nitrided stainless steel AISI 316 with a top layer of DLC. The combination of DLC and low temperature...... nitriding dramatically reduces the amount of erosion–corrosion of stainless steel under impingement of particles in a corrosive medium....

  6. Corrosion-induced microstructural changes in a US core graphite

    International Nuclear Information System (INIS)

    Eatherly, W.P.; Lee, D.A.

    1981-01-01

    The results reported here apply to Great Lakes grade H-451 graphite, the core graphite specified for the US HTGR. This graphite is structurally similar to the German reflector grades we have investigated at ORNL, and hence should be applicable to them if similar impurity levels are obtained. Moreover, these results extend and confirm the behavior pattern exhibited by the fuel matrix material A3-3 reported in the previous paper, although the effects are more pronounced in A3-3 presumably due to its resin-type binder and low heat-treatment temperatures

  7. Structure and corrosion properties of PVD Cr-N coatings

    International Nuclear Information System (INIS)

    Liu, C.; Bi, Q.; Ziegele, H.; Leyland, A.; Matthews, A.

    2002-01-01

    PVD Cr-N coatings produced by physical vapor deposition (PVD) are increasingly used for mechanical and tribological applications in various industrial sectors. These coatings are particularly attractive for their excellent corrosion resistance, which further enhances the lifetime and service quality of coated components. PVD Cr-N coated steels in an aqueous solution are usually corroded by galvanic attack via through-coating 'permeable' defects (e.g., pores). Therefore, the corrosion performance of Cr-N coated steel is determined by a number of variables of the coating properties and corrosive environment. These variables include: (i) surface continuity and uniformity; (ii) through-coating porosity; (iii) film density and chemical stability; (iv) growth stresses; (v) interfacial and intermediate layers; (vi) coating thickness; (vii) coating composition; and (viii) substrate properties. In this article, PVD Cr-N coatings were prepared, by electron-beam PVD and sputter deposition, with different compositions, thicknesses, and surface roughnesses, by changing the N 2 flow rate, applying multilayering techniques and changing the substrate finish prior to coating. The microstructure of such coatings is investigated by various analytical techniques such as glancing angle x-ray diffraction and scanning electron microscopy, which are also correlated with the corrosion performance of the coated steel. Both dc polarization and ac impedance spectroscopy were employed to investigate the corrosion resistance of Cr-N coated steel in a 0.5N NaCl solution. It has been found that the N 2 flow rate during reactive deposition strongly determines the microstructure of Cr-N coatings (due to the changing nitrogen content in the film) and can thus affect the corrosion resistance of coated systems. The surface finish of the steel substrate also affects the uniformity and coverage of PVD coatings; grooves and inclusions on the original substrate can raise the susceptibility of coated

  8. Corrosion properties and corrosion evolution of as-cast AZ91 alloy with rare earth yttrium

    International Nuclear Information System (INIS)

    Luo, T.J.; Yang, Y.S.

    2011-01-01

    Highlights: → Minor addition of Y will increase the corrosion resistance of AZ91 alloy, and 0.3 wt.% Y is the optimum addition. → A film composed of Mg(OH) 2 , MgCO 3 , Al(OH) 3 and Al 2 O 3 is formed on the surface of AZ91 alloy with rare earth Y free. → The film of AZ91 alloy with 0.3 wt.% Y is mainly composed of Mg(OH) 2 and MgCO 3 without any Al(OH) 3 and Al 2 O 3 . → The relative quantity of MgCO 3 in the surface film of AZ91 + 0.3 wt.% Y is bigger than that of AZ91 alloy with Y free. → Y 2 O 3 phase is found in the surface film of alloy III, which benefits to stabilize the surface film. -- Abstract: The corrosion resistance property and the corrosion evolution of as-cast AZ91 alloy with rare earth Y addition are investigated by using immersion tests, electrochemical impedance spectroscopy (EIS), and X-ray photoelectron spectroscopy (XPS). The results show that the proper amount of Y in the alloys can improve the corrosion resistance of AZ91 alloys effectively. With the increment of Y, the corrosion rate of the modified AZ91 alloys by Y addition was markedly less than that of AZ91 alloy. The corrosion rate of AZ91 alloy with 0.3 wt.% Y was the slightest, but further addition of Y content over 0.3 wt.% make the corrosion heavier. The XPS analysis suggests that the compound film of AZ91 alloy with 0.3 wt.% Y is mainly composed of Mg(OH) 2 and MgCO 3 without any Al(OH) 3 and Al 2 O 3 , in addition, Y 2 O 3 phase is found in the compound film of AZ91 alloy with 0.3 wt.% Y, which benefits to stabilize the surface film.

  9. Effect of steam corrosion on core post strength loss: I. Low, chronic steam ingress rates

    International Nuclear Information System (INIS)

    Wichner, R.P.

    1976-10-01

    The purpose of the study was to assess the effect of chronic, low levels of steam ingress into the primary system of the HTGR on the corrosion, and consequent strength loss of the core support posts. The assessment proceeded through the following three steps: (1) The impurity composition in the primary system was estimated as a function of a range of steady ingress rates of from 0.001 to 1.0 g/sec, both by means of an analysis of the Dragon steam ingress experiment and a computer code, TIMOX, which treats the primary system as a well-mixed pot. (2) The core post burnoffs which result from 40-year exposures to these determined impurity atmospheres were then estimated using a corrosion rate expression derived from published ATJ-graphite corrosion rate data. Burnoffs were determined for both the core posts at the nominal and the maximum sustained temperature, estimated to be 90 0 C above nominal. (3) The final step involved assessment of the degree of strength loss resulting from the estimated burnoffs. An empirical equation was developed for this purpose which compares reasonably well with strength loss data for a number of different graphites and specimen geometries

  10. Understanding susceptibility of in-core components to irradiation-assisted stress corrosion cracking

    International Nuclear Information System (INIS)

    Chung, H.M.; Ruther, W.E.; Sanecki, J.E.; Kassner, T.F.

    1991-03-01

    As nuclear plants age and accumulated fluences of core structural components increase, susceptibility of the components to irradiation-assisted stress corrosion cracking (IASCC) is also expected to increase. Irradiation-induced sensitization, commonly associated with an IASCC failure, was investigated in this study to provide a better understanding of long-term structural integrity of safety-significant in-core components. Irradiation-induced sensitization of high- and commercial-purity Type 304 stainless steels irradiated in BWRs was analyzed. 7 refs., 8 figs

  11. Microstructure, mechanical properties, bio-corrosion properties and antibacterial properties of Ti-Ag sintered alloys.

    Science.gov (United States)

    Chen, Mian; Zhang, Erlin; Zhang, Lan

    2016-05-01

    In this research, Ag element was selected as an antibacterial agent to develop an antibacterial Ti-Ag alloy by a powder metallurgy. The microstructure, phase constitution, mechanical properties, corrosion resistance and antibacterial properties of the Ti-Ag sintered alloys have been systematically studied by X-ray diffraction (XRD), scanning electron microscope (SEM), compressive test, electrochemical measurements and antibacterial test. The effects of the Ag powder size and the Ag content on the antibacterial property and mechanical property as well as the anticorrosion property have been investigated. The microstructure results have shown that Ti-Ag phase, residual pure Ag and Ti were the mainly phases in Ti-Ag(S75) sintered alloy while Ti2Ag was synthesized in Ti-Ag(S10) sintered alloy. The mechanical test indicated that Ti-Ag sintered alloy showed a much higher hardness and the compressive yield strength than cp-Ti but the mechanical properties were slightly reduced with the increase of Ag content. Electrochemical results showed that Ag powder size had a significant effect on the corrosion resistance of Ti-Ag sintered alloy. Ag content increased the corrosion resistance in a dose dependent way under a homogeneous microstructure. Antibacterial tests have demonstrated that antibacterial Ti-Ag alloy was successfully prepared. It was also shown that the Ag powder particle size and the Ag content influenced the antibacterial activity seriously. The reduction in the Ag powder size was benefit to the improvement in the antibacterial property and the Ag content has to be at least 3wt.% in order to obtain a strong and stable antibacterial activity against Staphylococcus aureus bacteria. The bacterial mechanism was thought to be related to the Ti2Ag and its distribution. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Tribological properties of coating films for core structure of HTGR

    International Nuclear Information System (INIS)

    Ozawa, Kenji; Kikuchi, Akiyoshi; Kawakami, Haruo

    1985-01-01

    The tribological properties of the various coating films used for the in-core structures of a high temperature gas-cooled experimental reactor were examined. When the explosion sprayed films of chrome carbide were applied for preventing galling in core restraining mechanism, the hardness of substrate materials exerted influence on the strength of the coating films. Also the effect of the surface roughness of the plasma sprayed films of zirconia on the sliding characteristics of the zirconia films and PGX graphite used for support plates was clarified. The coefficient of friction and the dependence of the amount of wear on surface pressure of these materials were examined. These results have been effectively utilized for the design of the test bodies of HENDEL-T2. In helium atmosphere, oxide film is hard to be formed on metal surface, especially on the contact surface of metals exposed to high temperature, there is the possibility to cause adhesion due to mutual diffusion and galling in sliding. As the means to prevent those, ceramic coating has been attempted. Sliding test, high pressure joining test, thermal cycle test and corrosion test in helium were carried out to evaluate the properties. (Koko, I.)

  13. Mechanical and corrosion properties of AA8011 sheets and foils:

    OpenAIRE

    Asanović, Vanja; Dalijić, Kemal; Radonjić, Dragan

    2006-01-01

    The mechanical and corrosion properties of a twin-roll cast Al-Fe-Si aluminum alloy with 0.74 % Fe and 0.52 % Si (AA8011) were investigated. The influence of the thermo-mehanical processing route on the mechanical behavior of AA8011 sheets was determined. Comparisons were made with AA3003 and A199.5 sheets. The restoration of the mechanical properties was used in the analysis of the recrystallization behavior of the twin-roll cast AA8011 alloy deformed under cold-working conditions and subseq...

  14. Laser cladding of Zr on Mg for improved corrosion properties

    International Nuclear Information System (INIS)

    Subramanian, R.; Sircar, S.; Mazumder, J.

    1989-01-01

    This paper reports the results of laser cladding of Mg-2wt%Zr, and Mg-5wt%Zr powder mixture onto magnesium. The microstructure of the laser clad was studied. From the microstructural study, the epitaxial regrowth of the clad region on the underlying substrate was observed. Martensite plates of different size were observed in transmission electron microscope for MG-2wt%Zr and Mg-5wt%Zr laser clad. The corrosion properties of the laser clad were evaluated in sea water (3.5% NaCl). The position of the laser claddings in the galvanic series of metals in sea water, the anodic polarization characteristics of the laser claddings and the protective nature and the stability of the passivating film formed have been determined. The formation of pits on the surface of the laser clad subjected to corrosion is reported. The corrosion properties of the laser claddings are compared with that of the commercially used magnesium alloy AZ91B

  15. Corrosion of cermet cores of fuel plates for nuclear research reactor

    International Nuclear Information System (INIS)

    Durazzo, M.; Ramanathan, L.V.

    1984-01-01

    Materials Testing Reactor (MTR) type fuel plates containing U 3 O 8 -Al cores and clad with Al are used in various research reactor. Preliminary investigations, where in the cladding of samples was drilled to simulate conditions of rupture due to pitting attack, revealed that considerable quantities of H 2 was evolved upon exposure of the core to water. The corrosion of cermets cores of different densities was characterized as a function of H 2 evolution that revealed 3 stages. A first stage consisting of an incubation period followed by initiation of H 2 evolution, a second stage with a constant rate of H 2 evolution and a third stage with a low rate of H 2 evolution. All 3 stages were found to vary as a function of cermet density and water temperature. (Author) [pt

  16. Corrosion behavior, mechanical properties, and long-term aging of nickel-plated uranium

    International Nuclear Information System (INIS)

    Dini, J.W.; Johnson, H.R.; Schoenfelder, C.W.

    1976-01-01

    The behavior of nickel-plated uranium upon exposure to moist nitrogen was evaluated. Plating thicknesses of 0.051 mm (2 mil) were adequate to prevent corrosion. Specimens with thinner coats showed some corrosion and some reduction in mechanical properties during subsequent testing. Plated samples exposed to dry air at ambient pressure for 10 y showed no corrosion and no degradation of mechanical properties. Surface and bulk hydrogen content, as well as free hydrogen generated during the test, were measured to determine the extent of corrosion. Results support an earlier proposed mechanism for uranium corrosion at low humidities

  17. Microstructure, mechanical properties, bio-corrosion properties and antibacterial properties of Ti–Ag sintered alloys

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Mian [Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, Northeastern University, Shenyang 110819 (China); Zhang, Erlin, E-mail: zhangel@atm.neu.edu.cn [Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, Northeastern University, Shenyang 110819 (China); Zhang, Lan [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China)

    2016-05-01

    In this research, Ag element was selected as an antibacterial agent to develop an antibacterial Ti–Ag alloy by a powder metallurgy. The microstructure, phase constitution, mechanical properties, corrosion resistance and antibacterial properties of the Ti–Ag sintered alloys have been systematically studied by X-ray diffraction (XRD), scanning electron microscope (SEM), compressive test, electrochemical measurements and antibacterial test. The effects of the Ag powder size and the Ag content on the antibacterial property and mechanical property as well as the anticorrosion property have been investigated. The microstructure results have shown that Ti–Ag phase, residual pure Ag and Ti were the mainly phases in Ti–Ag(S75) sintered alloy while Ti{sub 2}Ag was synthesized in Ti–Ag(S10) sintered alloy. The mechanical test indicated that Ti–Ag sintered alloy showed a much higher hardness and the compressive yield strength than cp-Ti but the mechanical properties were slightly reduced with the increase of Ag content. Electrochemical results showed that Ag powder size had a significant effect on the corrosion resistance of Ti–Ag sintered alloy. Ag content increased the corrosion resistance in a dose dependent way under a homogeneous microstructure. Antibacterial tests have demonstrated that antibacterial Ti–Ag alloy was successfully prepared. It was also shown that the Ag powder particle size and the Ag content influenced the antibacterial activity seriously. The reduction in the Ag powder size was benefit to the improvement in the antibacterial property and the Ag content has to be at least 3 wt.% in order to obtain a strong and stable antibacterial activity against Staphylococcus aureus bacteria. The bacterial mechanism was thought to be related to the Ti{sub 2}Ag and its distribution. - Highlights: • Ti–Ag alloy with up to 99% antibacterial rate was developed by powder metallurgy. • The effects of the Ag powder size and the Ag content on the

  18. Arc-Sprayed Fe-Based Coatings from Cored Wires for Wear and Corrosion Protection in Power Engineering

    Directory of Open Access Journals (Sweden)

    Korobov Yury

    2018-02-01

    Full Text Available High wear and corrosion of parts lead to an increase in operating costs at thermal power plants. The present paper shows a possible solution to this problem through the arc spraying of protective coatings. Cored wires of the base alloying system Fe-Cr-C were used as a feedstock. Rise of wear- and heat-resistance of the coatings was achieved by additional alloying with Al, B, Ti, and Y. The wear and heat resistance of the coatings were tested via a two-body wear test accompanied by microhardness measurement and the gravimetric method, respectively. A high-temperature corrosion test was performed at 550 °C under KCl salt deposition. The porosity and adhesion strengths of the coatings were also evaluated. The microstructure was investigated with a scanning electron microscope (SEM unit equipped with an energy dispersive X-ray (EDX microanalyzer, and the phase composition was assessed by X-ray diffractometry. The test results showed the positive influence of additional alloying with Y on the coating properties. A comparison with commercial boiler materials showed that the coatings have the same level of heat resistance as austenite steels and are an order of magnitude higher than that of pearlite and martensite-ferrite steels. The coatings can be applied to wear- and heat-resistant applications at 20–700 °C.

  19. Corrosion and Mechanical Properties of HANA-6 Strip

    International Nuclear Information System (INIS)

    Lee, Myung Ho; Kim, Jun Hwan; Park, Sang Yoon; Choi, Byoung Kwon; Jeong, Yong Hwan; Kim, Yoon Ho; Chung, Jin Gon

    2007-01-01

    The Zircaloy-4, one of zirconium alloys, has been used as a nuclear fuel and structural material because it has a satisfactory mechanical strength and corrosion resistance. As in many plants it was attempted to increase their discharge burn-up and power level, the development of new zirconium alloys for a high burn-up fuel material has been required. In response to these needs, in 1997 KAERI started the development of some Zr-based new alloys, called HANA alloys, for high burn-up fuel cladding material and has tested the out-of-pile and in-pile performance of these HANA claddings after manufacturing the claddings with HANA alloys. The sample specimens of the HANA cladding tubes showed a good performance for both corrosion resistance and creep properties at an irradiation test up to 12GWD/MtU in Halden test reactor as well as at various out of- pile tests. It is also scheduled to start the verification test of the in-pile performance of the HANA claddings in a commercial reactor by the end of 2007. KAERI and KNFC are also trying to extend the applicability of these alloys to the spacer grid for PWR nuclear fuel. As one of these attempts, KAERI has tested the properties of HANA-6 strips of 241.3 mm in width, and both 0.457 and 0.667 mm in thickness manufactured with a larger scale in width than a laboratory scale. The same test is scheduled to carry out for HANA-4 strips with a time lag. This paper summarized the results of the corrosion test, tensile test and bending test for the HANA- 6 strips up to now

  20. Properties of corrosion resistance in C + Mo multi implanted steel

    International Nuclear Information System (INIS)

    Zhang Tonghe; Wu Yuguang; Wang Xiaoyan

    2001-01-01

    The influence of multi-implantation on the corrosion resistance of H13 steel was studied using multi-sweep cyclic voltammetry. The formation conditions of phases and its effects on corrosion resistance were studied. The mechanism of improvement in corrosion resistance was discussed. The experimental results show that the increase of Mo dose can improve corrosion resistance, however the increase of C dose can enhance pitting corrosion potential. Both effects were obtained using dual-and multi-implantation. The passivation layer consists of the phases of Fe 2 Mo, FeMo, MoC, Fe 5 C 3 and Fe 7 C 3 in dual implantation surface of steel. It can improve corrosion resistance and increase pitting corrosion potential. Multi-implantation can further improve corrosion and pitting corrosion resistance compared with dual implantation

  1. Status report: Intergranular stress corrosion cracking of BWR core shrouds and other internal components

    International Nuclear Information System (INIS)

    1996-03-01

    On July 25, 1994, the US Nuclear Regulatory Commission (NRC) issued Generic Letter (GL) 94-03 to obtain information needed to assess compliance with regulatory requirements regarding the structural integrity of core shrouds in domestic boiling water reactors (BWRs). This report begins with a brief description of the safety significance of intergranular stress corrosion cracking (IGSCC) as it relates to the design and function of BWR core shrouds and other internal components. It then presents a brief history of shroud cracking events both in the US and abroad, followed by an indepth summary of the industry actions to address the issue of IGSCC in BWR core shrouds and other internal components. This report summarizes the staff's basis for issuing GL 94-03, as well as the staff's assessment of plant-specific responses to GL 94-03. The staff is continually evaluating the licensee inspection programs and the results from examinations of BWR core shrouds and other internal components. This report is representative of submittals to and evaluations by the staff as of September 30, 1995. An update of this report will be issued at a later date

  2. The Tension and Puncture Properties of HDPE Geomembrane under the Corrosion of Leachate.

    Science.gov (United States)

    Xue, Qiang; Zhang, Qian; Li, Zhen-Ze; Xiao, Kai

    2013-09-17

    To investigate the gradual failure of high-density polyethylene (HDPE) geomembrane as a result of long-term corrosion, four dynamic corrosion tests were conducted at different temperatures and durations. By combining tension and puncture tests, we systematically studied the variation law of tension and puncture properties of the HDPE geomembrane under different corrosion conditions. Results showed that tension and puncture failure of the HDPE geomembrane was progressive, and tensile strength in the longitudinal grain direction was evidently better than that in the transverse direction. Punctures appeared shortly after puncture force reached the puncture strength. The tensile strength of geomembrane was in inversely proportional to the corrosion time, and the impact of corrosion was more obvious in the longitudinal direction than transverse direction. As corrosion time increased, puncture strength decreased and corresponding deformation increased. As with corrosion time, the increase of corrosion temperature induced the decrease of geomembrane tensile strength. Tensile and puncture strength were extremely sensitive to temperature. Overall, residual strength had a negative correlation with corrosion time or temperature. Elongation variation increased initially and then decreased with the increase in temperature. However, it did not show significant law with corrosion time. The reduction in puncture strength and the increase in puncture deformation had positive correlations with corrosion time or temperature. The geomembrane softened under corrosion condition. The conclusion may be applicable to the proper designing of the HDPE geomembrane in landfill barrier system.

  3. Effects of annealing on tensile property and corrosion behavior of Ti-Al-Zr alloy

    International Nuclear Information System (INIS)

    Kim, Tae-Kyu; Choi, Byung-Seon; Jeong, Yong-Hwan; Lee, Doo-Jeong; Chang, Moon-Hee

    2002-01-01

    The effects of annealing on the tensile property and corrosion behavior of Ti-Al-Zr alloy were evaluated. The annealing in the temperature range from 500 to 800 deg. C for 1 h induced the growth of the grain and the precipitate sizes. The results of tensile tests at room temperature showed that the strengths and the ductility were almost independent of the annealing temperature. However, the results of corrosion test in an ammonia aqueous solution of pH 9.98 at 360 deg. C showed that the corrosion resistance depended on the annealing temperature, and the corrosion rate was accelerated with increasing annealing temperature. Hydrogen contents absorbed during the corrosion test of 220 days also increased with the annealing temperature. It could be attributed to the growth of Fe-rich precipitates by annealing. It is thus suggested that the lower annealing temperatures provide the better corrosion properties without degrading the tensile properties

  4. Effects of annealing on the corrosion behavior and mechanical properties of Ti-Al-V alloy

    International Nuclear Information System (INIS)

    Kim, T. K.; Choi, B. S.; Baek, J. H.; Choi, B. K.; Jeong, Y. H.; Lee, D. J.; Jang, M. H.; Jeong, Y. H.

    2002-01-01

    In order to determine the annealing condition after cold rolling, the effects of annealing on the corrosion behavior and mechanical properties of Ti-Al-V alloy were evaluated. The results of tensile tests at room temperature showed that the strengths and the ductility were almost independent of the annealing temperature. The results of hardness test also revealed that the hardness was independent of the annealing, However, the results of corrosion test in an ammoniated water of pH 9.98 at 360 .deg. C showed that the corrosion resistance depended on the annealing temperature, and the corrosion rate was accelerated with increasing annealing temperature. Hydrogen contents absorbed during the corrosion test of 120 days also increased with the annealing temperature. It may be attributed to the growth of α' precipitates by annealing. It is thus suggested that the lower annealing temperatures provide the better corrosion properties without degrading the tensile properties

  5. Metallic nanoshells with semiconductor cores: optical characteristics modified by core medium properties.

    Science.gov (United States)

    Bardhan, Rizia; Grady, Nathaniel K; Ali, Tamer; Halas, Naomi J

    2010-10-26

    It is well-known that the geometry of a nanoshell controls the resonance frequencies of its plasmon modes; however, the properties of the core material also strongly influence its optical properties. Here we report the synthesis of Au nanoshells with semiconductor cores of cuprous oxide and examine their optical characteristics. This material system allows us to systematically examine the role of core material on nanoshell optical properties, comparing Cu(2)O core nanoshells (ε(c) ∼ 7) to lower core dielectric constant SiO(2) core nanoshells (ε(c) = 2) and higher dielectric constant mixed valency iron oxide nanoshells (ε(c) = 12). Increasing the core dielectric constant increases nanoparticle absorption efficiency, reduces plasmon line width, and modifies plasmon energies. Modifying the core medium provides an additional means of tailoring both the near- and far-field optical properties in this unique nanoparticle system.

  6. Mechanical and Corrosion Properties of Magnesium-Bioceramic Nanocomposites

    Directory of Open Access Journals (Sweden)

    Kowalski K.

    2016-09-01

    Full Text Available Magnesium alloys have recently attracted much attention as a new generation of biodegradable metallic materials. In this work, Mg1Mn1Zn0.3Zr-bioceramic nanocomposites and their scaffolds were synthesized using a combination of mechanical alloying and a space-holder sintering process. The phase and microstructure analysis was carried out using X-ray diffraction, scanning electron microscopy and the properties were measured using hardness and corrosion testing equipment. Nanostructured Mg-bioceramic composites with a grain sizes below 73 nm were synthesized. The Vickers hardnesses for the bulk nanostructured Mg-based composites are two times greater than that of pure microcrystalline Mg metal (50 HV0.3. Produced Mg-based bionanomaterials can be applied in medicine.

  7. Improving the corrosion properties of magnesium AZ31 alloy GTA weld metal using microarc oxidation process

    Institute of Scientific and Technical Information of China (English)

    M.Siva Prasad; M.Ashfaq; N.Kishore Babu; A.Sreekanth; K.Sivaprasad; V.Muthupandi

    2017-01-01

    In this work,the morphology,phase composition,and corrosion properties of microarc oxidized (MAO) gas tungsten arc (GTA) weldments of AZ31 alloy were investigated.Autogenous gas tungsten arc welds were made as full penetration bead-on-plate welding under the alternating-current mode.A uniform oxide layer was developed on the surface of the specimens with MAO treatment in silicate-based alkaline electrolytes for different oxidation times.The corrosion behavior of the samples was evaluated by potentiodynamic polarization and electrochemical impedance spectroscopy.The oxide film improved the corrosion resistance substantially compared to the uncoated specimens.The sample coated for 10 min exhibited better corrosion properties.The corrosion resistance of the coatings was concluded to strongly depend on the morphology,whereas the phase composition and thickness were concluded to only slightly affect the corrosion resistance.

  8. Facile fabrication of core-shell Pr6O11-ZnO modified silane coatings for anti-corrosion applications

    Science.gov (United States)

    Jeeva Jothi, K.; Palanivelu, K.

    2014-01-01

    In this work, we have developed a facile and inexpensive method to fabricate anti-corrosive and hydrophobic surface with hierarchical micro and nano structures. We demonstrate for the first time the use of praseodymium oxide doped zinc oxide (Pr6O11-ZnO) nanocomposites loaded in a hybrid sol-gel (SiOx/ZrOx) layer, to effectively protect the underlying steel substrate from corrosion attack. The influence of Pr6O11-ZnO gives the surprising aspects based on active anti-corrosion and hydrophobic coatings. The spherical SiO2 particles have been successfully coated with Pr6O11-ZnO layer through sol-gel process. The resulted SiO2@Pr6O11-ZnO core-shell was characterized by Transmission Electron Microscopy (TEM), X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), and X-ray Photoelectron Spectroscopy (XPS). The barrier properties of the intact coatings were assessed by Electrochemical Impedance Spectroscopy (EIS). The fabrication of SiO2@Pr6O11-ZnO shows dual properties of hydrophobic and anti-corrosion micro/nanostructured sol-gel coatings follows a single/simple step coating procedure. This study has led to a better understanding factor influencing the anti-corrosion performance with embedded nanocomposites. These developments are particularly for silane network@ Pr6O11-ZnO for self-healing and self-cleaning behavior which can be designed for new protective coating system.

  9. Cathodic corrosion: Part 2. Properties of nanoparticles synthesized by cathodic corrosion

    International Nuclear Information System (INIS)

    Yanson, A.I.; Yanson, Yu.I.

    2013-01-01

    We demonstrate how cathodic corrosion in concentrated aqueous solutions enables one to prepare nanoparticles of various metals and metal alloys. Using various characterization methods we show that the composition of nanoparticles remains that of the starting material, and the resulting size distribution remains rather narrow. For the case of platinum we show how the size and possibly even the shape of the nanoparticles can be easily controlled by the parameters of corrosion. Finally, we discuss the advantages of using the nanoparticles prepared by cathodic corrosion for applications in (electro-)catalysis.

  10. Evaluation of properties of low activation Mn-Cr steel. 3. Evaluation of corrosion resistance

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Shigeru [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Fukaya, Kiyoshi [Nihon Advanced Technology Co., Ltd., Tokai, Ibaraki (Japan); Ishiyama, Shintaro [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Sato, Ikuo; Kusuhashi, Mikio; Hatakeyama, Takeshi [Japan Steel Works Ltd., Muroran, Hokkaido (Japan). Muroran Plant; Takahashi, Heishichiro [Hokkaido Univ., Sapporo, Hokkaido (Japan); Kikuchi, Mitsuru [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    2002-05-01

    JAERI and the Japan Steel Works LTD. (JSW) have developed new Mn-Cr steels as low induced activation material. Until now, chemical composition and metallurgical processes were optimized and some steels named VC-series were selected. The properties of the steels have been evaluated and reported elsewhere. In this study, corrosion resistance of VC-series was studied. Corrosion tests for stainless steels were performed to investigate a relationship between corrosion rate and chemical composition or sensitization. Furthermore, corrosion tests under actual environment for the vacuum vessel of the reinforced JT-60 were done for non-magnetic steels. As a result, almost no weight change was observed for uniform and gap corrosion tests, No crack was shown for double U-bend corrosion tests. (author)

  11. Automated-process gas-chromatograph system for use in accelerated corrosion testing of HTGR core-support posts

    International Nuclear Information System (INIS)

    Harper, R.E.; Herndon, P.G.

    1982-01-01

    An automated-process gas chromatograph is the heart of a gaseous-impurities-analysis system developed for the Oak Ridge National Laboratory Core Support Performance Test, at which graphite core-support posts for high-temperature gas-cooled fission reactors are being subjected to accelerated corrosion tests under tightly controlled conditions of atmosphere and temperature. Realistic estimation of in-core corrosion rates is critically dependent upon the accurate measurement of low concentrations of CO, CO 2 , CH 4 , H 2 , and O 2 in the predominantly helium atmosphere. In addition, the capital and labor investment associated with each test puts a premium upon the reliability of the analytical system, as excessive downtime or failure to obtain accurate data would result in unacceptable costs and schedule delays. After an extensive survey of available measurement techniques, gas chromatography was chosen for reasons of accuracy, flexibility, good-performance record, and cost

  12. Corrosion Resistance of 7475-T7351 Aluminum Alloy Plate for Aviation

    OpenAIRE

    LIU Ming; LI Hui-qu; CHEN Jun-zhou; LI Guo-ai; CHEN Gao-hong

    2017-01-01

    The intergranular corrosion and exfoliation corrosion properties of 7475-T7351 aluminum alloy plate for aviation were investigated, and the corrosion behaviors of the alloy were analyzed by metallographic analysis(MA) and transmission electron microscope(TEM). The results show that no obvious intergranular corrosion is observed, but exfoliation corrosion grade of 7475-T7351 aluminum alloy increases from EA on surface to EC in the core. The exfoliation corrosion of 7475 alloy plate is mainly b...

  13. Dependence of corrosion properties of AISI 304L stainless steel on the austenite grain size

    Energy Technology Data Exchange (ETDEWEB)

    Sabooni, Soheil; Rashtchi, Hamed; Eslami, Abdoulmajid; Karimzadeh, Fathallah; Enayati, Mohammad Hossein; Raeissi, Keyvan; Imani, Reihane Faghih [Isfahan Univ. of Technology, Isfahan (Iran, Islamic Republic of). Dept. of Materials Engineering; Ngan, Alfonso Hing Wan [The Univ. of Hong Kong (China). Dept. of Mechanical Engineering

    2017-07-15

    The corrosion resistance of austenitic stainless steels is known to be hampered by the loss of chromium available for passive surface layer formation as a result of chromium carbide precipitation at austenite grain boundaries during annealing treatments. Although high-temperature annealing can promote carbide dissolution leading to better corrosion resistance, grain coarsening also results, which would lead to poorer mechanical properties. Processing methods to achieve both good corrosion resistance and mechanical properties are thus highly desirable for austenitic stainless steels. In the present study, we show that the corrosion resistance of AISI 304L stainless steel can be improved by grain refinement into the ultrafine-grained regime. Specifically, samples with different austenite grain sizes in the range of 0.65-12 μm were studied by potentiodynamic polarization and electrochemical impedance spectroscopy tests in a 3.5 wt.% NaCl solution. All samples showed a typical passive behavior with similar corrosion potential, but the corrosion current density decreased significantly with decreasing grain size. The results show that the sample with the finest grain size had the best corrosion resistance due to a higher resistance of the passive layer to pitting attacks. This study indicates that grain refinement which improves mechanical properties can also significantly improve the corrosion resistance of AISI 304L stainless steel.

  14. Microstructure and Corrosion Resistance Property of a Zn-AI-Mg Alloy with Different Solidification Processes

    Directory of Open Access Journals (Sweden)

    Jiang Guang-rui

    2017-01-01

    Full Text Available Zn-Al-Mg alloy coating attracted much attention due to its high corrosion resistance properties, especially high anti-corrosion performance at the cut edge. As the Zn-Al-Mg alloy coating was usually produced by hot-dip galvanizing method, solidification process was considered to influence its microstructure and corrosion properties. In this work, a Zn-Al-Mg cast alloy was melted and cooled to room temperature with different solidification processes, including water quench, air cooling and furnace cooling. Microstructure of the alloy with different solidification processes was characterized by scanning electron microscopy (SEM. Result shows that the microstructure of the Zn-Al-Mg alloy are strongly influenced by solidification process. With increasing solidification rate, more Al is remained in the primary crystal. Electrochemical analysis indicates that with lowering solidification rate, the corrosion current density of the Zn-Al-Mg alloy decreases, which means higher corrosion resistance.

  15. Stress corrosion cracking properties of 15-5PH steel

    Science.gov (United States)

    Rosa, Ferdinand

    1993-01-01

    Unexpected occurrence of failures, due to stress corrosion cracking (SCC) of structural components, indicate a need for improved characterization of materials and more advanced analytical procedures for reliably predicting structures performance. Accordingly, the purpose of this study was to determine the stress corrosion susceptibility of 15-5PH steel over a wide range of applied strain rates in a highly corrosive environment. The selected environment for this investigation was a highly acidified sodium chloride (NaCl) aqueous solution. The selected alloy for the study was a 15-5PH steel in the H900 condition. The slow strain rate technique was selected to test the metals specimens.

  16. Mechanical Properties and Corrosion Characteristics of Thermally Aged Alloy 22

    International Nuclear Information System (INIS)

    Rebak, R B; Crook, P

    2002-01-01

    Alloy 22 (UNS N06022) is a candidate material for the external wall of the high level nuclear waste containers for the potential repository site at Yucca Mountain. In the mill-annealed (MA) condition, Alloy 22 is a single face centered cubic phase. When exposed to temperatures on the order of 600 C and above for times higher than 1 h, this alloy may develop secondary phases that reduce its mechanical toughness and corrosion resistance. The objective of this work was to age Alloy 22 at temperatures between 482 C and 760 C for times between 0.25 h and 6,000 h and to study the mechanical and corrosion performance of the resulting material. Aging was carried out using wrought specimens as well as gas tungsten arc welded (GTAW) specimens. Mechanical and corrosion testing was carried out using ASTM standards. Results show-that the higher the aging temperature and the longer the aging time, the lower the impact toughness of the aged material and the lower its corrosion resistance. However, extrapolating both mechanical and corrosion laboratory data predicts that Alloy 22 will remain corrosion resistant and mechanically robust for the projected lifetime of the waste container

  17. Corrosion properties of cladding materials from Zr1Nb alloy

    International Nuclear Information System (INIS)

    Kloc, K.; Kosler, S.

    1975-01-01

    The corrosion behaviour was observed of the Zr1Nb alloy in hot water and superheated steam and the effects of impurity content, of the purity of the corrosion environment and of the heat treatment of the alloy were studied on the alloy corrosion resistance. Also studied were the absorption of hydrogen by the alloy and its behaviour in reactor situations. It was ascertained that the alloy has a good corrosion resistance up to a temperature of 350 degC. The corrosion resistance is reduced by the presence of nitrogen above 50 to 70 ppm and of carbon above 50 to 90 ppm. A graphic representation is given of the dependence of corrosion resistance on the temperature of annealing, the nitrogen content of the alloy and the time of the action of hot water or steam, as well as the dependence of the hydrogen content in the alloy on the peripheral tension of the cladding in hot water both in non-active environment and at irradiation with a neutron flux of approximately 10 20 n/cm 2 . (J.B.)

  18. Corrosion properties of zirconium-based ceramic coatings for micro-bearing and biomedical applications

    International Nuclear Information System (INIS)

    Walkowicz, J; Zavaleyev, V; Dobruchowska, E; Murzynski, D; Donkov, N; Zykova, A; Safonov, V; Yakovin, S

    2016-01-01

    Ceramic oxide ZrO 2 and oxynitride ZrON coatings are widely used as protective coatings against diffusion and corrosion. The enhancement of the coatings' mechanical properties, as well as their wear and corrosion resistance, is very important for their tribological performance. In this work, ZrO 2 and ZrON coatings were deposited by magnetron sputtering on stainless steel (AISI 316) substrates. The adhesion, hardness and elastic properties were evaluated by standard methods. The surface structure of the deposited coatings was observed by electron scanning microscopy (SEM) and atomic force microscopy (AFM). The composition of the coatings was analyzed by X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray spectroscopy (EDS). The corrosion resistance properties were evaluated using the potentiodynamic method. The results show that the corrosion parameters are significantly increased in the cases of both oxynitride and oxide coatings in comparison with the stainless steel (AISI 316) substrates. (paper)

  19. Corrosion properties of zirconium-based ceramic coatings for micro-bearing and biomedical applications

    Science.gov (United States)

    Walkowicz, J.; Zavaleyev, V.; Dobruchowska, E.; Murzynski, D.; Donkov, N.; Zykova, A.; Safonov, V.; Yakovin, S.

    2016-03-01

    Ceramic oxide ZrO2 and oxynitride ZrON coatings are widely used as protective coatings against diffusion and corrosion. The enhancement of the coatings' mechanical properties, as well as their wear and corrosion resistance, is very important for their tribological performance. In this work, ZrO2 and ZrON coatings were deposited by magnetron sputtering on stainless steel (AISI 316) substrates. The adhesion, hardness and elastic properties were evaluated by standard methods. The surface structure of the deposited coatings was observed by electron scanning microscopy (SEM) and atomic force microscopy (AFM). The composition of the coatings was analyzed by X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray spectroscopy (EDS). The corrosion resistance properties were evaluated using the potentiodynamic method. The results show that the corrosion parameters are significantly increased in the cases of both oxynitride and oxide coatings in comparison with the stainless steel (AISI 316) substrates.

  20. Corrosion properties of sealing surface material for RPV under abnormal working conditions

    International Nuclear Information System (INIS)

    Liu Jinhua; Wen Yan; Zhang Xuemei; Hou Songmin; Gong Bin; He Yanchun

    2012-01-01

    Based on the corrosion issue of sealing surface material for RPV in some nuclear projects, the corrosion properties of sealing surface material for RPV under abnormal working conditions were investigated. The corrosion behavior of 308L stainless steel were studied by using autoclave in different contents of Cl - solutions, and these samples were observed and analyzed by means of the metalloscope and Scanning electron microscope (SEM). Results show that no pitting, crevice and stress corrosion occurred, when the content of Cl - was lower than 1 mg/L at the temperatures of 270℃ and the pressure of 5.5 MPa. However, with the increase of the content of Cl - , the susceptibility to pitting, crevice and stress corrosion of 308L was enhanced remarkably. (authors)

  1. Advanced in-situ characterisation of corrosion properties of LWR fuel cladding materials

    International Nuclear Information System (INIS)

    Arilahti, E.; Bojinov, M.; Beverskog, B.

    1999-01-01

    The trend towards higher fuel burnups imposes a demand for better corrosion and hydriding resistance of cladding materials. Development of new and improved cladding materials is a long process. There is a lack of fast and reliable in-situ techniques to investigate zirconium alloys in simulated or in-core LWR coolant conditions. This paper describes a Thin Layer Electrode (TLE) arrangement suitable for in-situ characterization of oxide films formed on fuel cladding materials. This arrangement enables us to carry out: Versatile Thin Layer Electrochemical measurements, including: (i) Thin Layer Electrochemical impedance Spectroscopic (TLEIS) measurements to characterize the oxidation kinetics and mechanisms of metals and the properties of their oxide films in aqueous environments. These measurements can also be performed in low conductivity electrolytes. (ii) Thin-Layer Wall-Jet (TLWJ) measurements, which give the possibility to detect soluble reaction products and to evaluate the influence of novel water chemistry additions on their release. Solid Contact measurements: (i) Contact Electric Resistance (CER) measurements to investigate the electronic properties of surface films on the basis of d.c. resistance measurements. (i) Contact Electric impedance (CEI) measurements to study the electronic properties of surface films using a.c. perturbation. All the above listed measurements can be performed using one single measurement device developed at VTT. This device can be conveniently inserted into an autoclave. Its geometry is currently being optimized in cooperation with the OECD Halden Reactor Project. In addition, the applicability of the device for in-core measurements has been investigated in a joint feasibility study performed by VTT and JRC Petten. Results of some autoclave studies of the effect of LiOH concentration on the stability of fuel cladding oxide films are presented in this paper. (author)

  2. Relationships between chemical compositions, microstructure, and corrosion properties in molybdenum ion implanted aluminum

    International Nuclear Information System (INIS)

    Kim, S.

    1986-01-01

    This thesis compares the corrosion properties of Al annealed after implantation with selected Mo concentrations to those of as-implanted Al with same Mo level and to pure Al. The principal results in this investigation are the improvement in the pitting corrosion resistance for Al implanted with Mo relative to pure Al in both the as-implanted and as-implanted-annealed state. The corrosion properties were related to the microstructures and chemical profiles in the surface-modified-regions. Potentiodynamic measurements indicate that stability of various species on the surface controls corrosion behavior in the Al-Mo system. Dual energy Mo implant procedure was used to produce a relatively thick ion implanted layer. The processing parameters were selected to produce specimen containing a continuous Al 12 Mo film with two different microstructures in the annealed material. The most improved pitting corrosion resistance was achieved in an as-implanted alloy which was implanted at 95 keV and then at 25 keV. This alloy was very resistant to pitting corrosion in a neutral aqueous solution containing 0.1 M chloride ion. Surface chemical analysis by Auger electron spectroscopy indicates that the role of Mo in inhibiting pitting corrosion is related to the formation of stable Mo oxide film

  3. Mechanical and corrosion properties of binary Mg–Dy alloys for medical applications

    International Nuclear Information System (INIS)

    Yang Lei; Huang Yuanding; Peng Qiuming; Feyerabend, Frank; Kainer, Karl Ulrich; Willumeit, Regine; Hort, Norbert

    2011-01-01

    Microstructure, mechanical and corrosion properties of binary magnesium–dysprosium (Mg-5, 10, 15, 20 wt.% Dy) alloys were investigated for medical applications. In the as-cast condition, the distribution of Dy is quite inhomogeneous. Mg–10Dy alloy exhibits a moderate tensile and compression yield strength, and the best elongation and corrosion resistance. After T4 (solutionizing) treatment, the distribution of Dy becomes homogeneous. The tensile and compression yield strength of all Mg–Dy alloys decreases. The elongation remains unchanged, while the corrosion resistance is largely improved after T4 treatment.

  4. Mechanical and corrosion properties of binary Mg-Dy alloys for medical applications

    Energy Technology Data Exchange (ETDEWEB)

    Yang Lei, E-mail: lei.yang@hzg.de [Helmholtz-Zentrum Geesthacht, Institute of Materials Research, Max-Planck-Str. 1, D-21502 Geesthacht (Germany); Yuanding, Huang; Qiuming, Peng; Feyerabend, Frank; Kainer, Karl Ulrich; Willumeit, Regine; Hort, Norbert [Helmholtz-Zentrum Geesthacht, Institute of Materials Research, Max-Planck-Str. 1, D-21502 Geesthacht (Germany)

    2011-12-15

    Microstructure, mechanical and corrosion properties of binary magnesium-dysprosium (Mg-5, 10, 15, 20 wt.% Dy) alloys were investigated for medical applications. In the as-cast condition, the distribution of Dy is quite inhomogeneous. Mg-10Dy alloy exhibits a moderate tensile and compression yield strength, and the best elongation and corrosion resistance. After T4 (solutionizing) treatment, the distribution of Dy becomes homogeneous. The tensile and compression yield strength of all Mg-Dy alloys decreases. The elongation remains unchanged, while the corrosion resistance is largely improved after T4 treatment.

  5. Developing of corrosion and creep property test database system

    International Nuclear Information System (INIS)

    Park, S. J.; Jun, I.; Kim, J. S.; Ryu, W. S.

    2004-01-01

    The corrosion and creep characteristics database systems were constructed using the data produced from corrosion and creep test and designed to hold in common the data and programs of tensile, impact, fatigue characteristics database that was constructed since 2001 and others characteristics databases that will be constructed in future. We can easily get the basic data from the corrosion and creep characteristics database systems when we prepare the new experiment and can produce high quality result by compare the previous test result. The development part must be analysis and design more specific to construct the database and after that, we can offer the best quality to customers various requirements. In this thesis, we describe the procedure about analysis, design and development of the impact and fatigue characteristics database systems developed by internet method using jsp(Java Server pages) tool

  6. Corrosion properties of the Mg alloy coated with polypyrrole films

    International Nuclear Information System (INIS)

    Grubač, Zoran; Rončević, Ivana Škugor; Metikoš-Huković, Mirjana

    2016-01-01

    Highlights: • Electropolymerization of pyrrole on Mg-alloy surface in presence of salicylate. • Salicylate dual role in PPy deposition: passivation and electron transfer mediation. • Redox potential of salicylate corresponds to potential of PPy nucleation. • EIS and polarization corrosion studies of PPy coated Mg-alloy in Hanks’ solution. • Polypyrrole significantly slowdown Mg alloy corrosion in Hanks’ solution. - Abstract: In the present study the reactive surface of Mg alloy was coated with the nontoxic biocompatible polypyrrole (PPy) film synthesized by electrochemical oxidation from an aqueous salicylate solution. Salicylate ions prevent Mg dissolution and act as an electron transfer mediator during the PPy film nucleation, formation and growth on the alloy surface. Kinetics of the pyrrole polymerization as well as corrosion resistance of the PPy coated Mg alloy in the Hanks’ solution were investigated using dc electrochemical methods and electrochemical impedance spectroscopy (EIS). Characterization of the surface film was performed by optical and Fourier transform infrared spectroscopy (FTIR).

  7. An Electrochemical Investigation into the Corrosion Protection Properties of Coatings for the Active Metal Copper

    OpenAIRE

    Carragher, Ursula

    2013-01-01

    In the research presented in this thesis, corrosion protection films were synthesised and characterised. The films were based on polypyrrole (PPy) coatings doped with combinations of tartrate, oxalate and dodecylbenzene sulfonate (DBS) along with the incorporation of multiwalled carbon nanotubes (MWCNT), and viologen films adsorbed at copper. The corrosion protective properties of these films were studied and compared to the uncoated copper substrate. They were assessed and stu...

  8. Electrochemical investigation of the properties of Co doped ZnO nanoparticle as a corrosion inhibitive pigment for modifying corrosion resistance of the epoxy coating

    International Nuclear Information System (INIS)

    Rostami, M.; Rasouli, S.; Ramezanzadeh, B.; Askari, A.

    2014-01-01

    Highlights: • Corrosion inhibitive pigment based on ZnOCo was synthesized through combustion method. • Doping ZnO nanoparticle with Co enhanced its inhibition properties considerably. • ZnOCo nanoparticle could enhance corrosion protective performance of epoxy coating. • Co doped ZnO nanoparticles behaved as efficient barrier and inhibitive pigment. - Abstract: Co doped ZnO nanoparticles were synthesized by combustion method. Then, the epoxy nanocomposites were prepared using various amounts of nanoparticles. Salt spray and electrochemical impedance spectroscopy (EIS) were used in order to investigate the corrosion inhibition effects of nanoparticles on the steel substrate. The morphology and composition of the films precipitated on the steel surface were investigated by scanning electron microscope (SEM) and energy dispersive spectroscopy. Results revealed that the corrosion inhibition properties of ZnO nanoparticle were significantly enhanced after doping with Co. Moreover, Co doped ZnO nanoparticles enhanced the corrosion resistance of the epoxy coating effectively

  9. Effect of steam corrosion on HTGR core support post strength loss. Part II. Consequences of steam generator tube rupture event

    International Nuclear Information System (INIS)

    Wichner, R.P.

    1977-01-01

    To perform the assessment, a series of eight tube-rupture events of varying severity and probability were postulated. Case 1 pertains to the situation where the moisture detection, loop isolation, and dump procedures function as planned; the remaining seven cases suppose various defects in the moisture detection system, the core auxiliary coolant system, and the integrity of the prestressed concrete reactor vessel. Core post burnoffs beneath three typical fuel zones were estimated for each postulated event from the determined impurity compositions and core post temperature history. Two separate corrosion rate expressions were assumed, as deemed most appropriate of those published for the high-oxidant level typical in tube rupture events. It was found that the nominal core post beneath the highest power factor fuel zone would lose from 0.02 to 2.5 percent of their strength, depending on an assumed corrosion rate equation and the severity of the event. The effect of hot streaking during cooldown was determined by using preliminary estimates of its magnitude. It was found that localized strength loss beneath the highest power factor zone ranges from 0.23 to 12 percent, assuming reasonably probable hot-streaking circumstances. The combined worst case, hot streaking typical for a load-following transient and most severe accident sequence, yields an estimated strength loss of from 25 to 33 percent for localized regions beneath the highest power factor zones

  10. Laboratory studies of the corrosion and mechanical properties of titanium grade-12 under WIPP repository conditions

    International Nuclear Information System (INIS)

    Sorensen, N.R.

    1990-01-01

    The author reviews laboratory work done at the Sandia Laboratories on the properties of titanium grade 12. The effect of gamma radiation on corrosion and mechanical properties has been investigated; no real effect has been detected on corrosion rate, Charpy impact energy, or tensile properties at 90 degrees and 10 4 rad/h. No structural changes are evident under examination by SEM or TEM. There is also no evidence of crevice corrosion after five years of exposure. The effect of radiation on hydrogen uptake was also investigated. Radiation appears to reduce the extent of uptake. The microstructure of titanium-12 changes with the addition of hydrogen to a structure with alternating layers of alpha and beta phase. A decrease in mechanical properties is associated with this change

  11. Mechanical properties and corrosion behaviour of MIG welded 5083 aluminium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Durmus, Huelya [Celal Bayar Univ., Turgutlu-Manisa (Turkey)

    2011-07-01

    For this study 5083 Aluminium alloy plates, as used in automobiles and watercraft, were experimentally MIG welded. The plates were joined with different wires and at various currents. The effects of welding with different parameters on the mechanical and corrosion properties were investigated. The corrosion behaviour of the MIG welded 5083 Aluminium base material was also investigated. The effects of the chemical composition of the filler material on the mechanical properties were examined by metallographic inspection and tensile testing. By EDS and XRD analyses of specimens it turned out that different structures in the weld metal (Cu3Si) affect its mechanical properties. The mechanical properties of the specimens welded with 5356 filler metal were found as quite well improved as compared to those specimens welded with 4043 and 5183 filler material. The results of the metallographic analysis, and mechanical and corrosion tests exhibited that the 5356 filler material was most suitable for the 5083 Al alloy base material. (orig.)

  12. Corrosion properties of plasma deposited high-alloy steel

    Czech Academy of Sciences Publication Activity Database

    Voleník, Karel; Pražák, M.; Kalabisová, E.; Kreislová, K.; Neufuss, Karel

    2002-01-01

    Roč. 47, - (2002), s. 243-254 ISSN 0001-7043 R&D Projects: GA ČR GA106/99/0298 Institutional research plan: CEZ:AV0Z2043910 Keywords : plasma deposits, high-alloy steel, polarization curves, corrosion test Subject RIV: BL - Plasma and Gas Discharge Physics

  13. Surface properties and corrosion behavior of Co-Cr alloy fabricated with selective laser melting technique.

    Science.gov (United States)

    Xin, Xian-zhen; Chen, Jie; Xiang, Nan; Wei, Bin

    2013-01-01

    We sought to study the corrosion behavior and surface properties of a commercial cobalt-chromium (Co-Cr) alloy which was fabricated with selective laser melting (SLM) technique. For this purpose, specimens were fabricated using different techniques, such as SLM system and casting methods. Surface hardness testing, microstructure observation, surface analysis using X-ray photoelectron spectroscopy (XPS) and electrochemical corrosion test were carried out to evaluate the corrosion properties and surface properties of the specimens. We found that microstructure of SLM specimens was more homogeneous than that of cast specimens. The mean surface hardness values of SLM and cast specimens were 458.3 and 384.8, respectively; SLM specimens showed higher values than cast ones in hardness. Both specimens exhibited no differences in their electrochemical corrosion properties in the artificial saliva through potentiodynamic curves and EIS, and no significant difference via XPS. Therefore, we concluded that within the scope of this study, SLM-fabricated restorations revealed good surface properties, such as proper hardness, homogeneous microstructure, and also showed sufficient corrosion resistance which could meet the needs of dental clinics.

  14. The Role of Passive Film Growth Kinetics and Properties in Stress Corrosion and Crevice Corrosion Susceptibility

    Science.gov (United States)

    1975-10-01

    Kleinzack-Mathieu Cl. Mertens, J. Meunier, Cl. Vanlengenhaghe, L. de Munck, L. Laureys , L. N. Nellmans, and M . Warzu, Corrosion Science, 3, 239 (1963). 10) H...312O448 DEPARTMENT OF COMMERCE 11. CoMfact/Grat No. WASHINGTON. D.C. 20234 M 1 mRO36-082 12. Spoasoring Organizstion N~me and Complete Address (Street...Ill. Undw Swnay Dr. 111"y Alu-Juhws. AsnluaM ScWaty fr Salome and T0e@* M /WY NATIONAL UMAU OF STANDAWS. Ernest Ambler. Acting Dimwt PART I (To be

  15. Bridging adhesion and barrier properties with functional dispersions : towards waterborne anti-corrosion coatings

    NARCIS (Netherlands)

    Soer, W.J.

    2008-01-01

    The successful preparation of waterborne anti-corrosion coatings based on maleic anhydride containing copolymers is described in this thesis. To obtain good anticorrosion coatings, three different properties should be present in a coating system; they should display good mechanical properties, good

  16. Effect of forging process on microstructure, mechanical and corrosion properties of biodegradable Mg-1Ca alloy

    International Nuclear Information System (INIS)

    Harandi, Shervin Eslami; Hasbullah Idris, Mohd; Jafari, Hassan

    2011-01-01

    Research highlights: → Forging temperature demonstrates more pronounced effect compared to forging speed. → Precipitation of Mg 2 Ca phase at grain boundaries accelerates corrosion rate. → Forging process doesn't provide the corrosion resistance required for bone healing. -- Abstract: The performance of Mg-1Ca alloy, a biodegradable metallic material, may be improved by hot working in order that it may be of use in bone implant applications. In this study, Mg-1Ca cast alloy was preheated to different temperatures before undergoing forging process with various forging speeds. Macro- and microstructure of the samples were examined by stereo and scanning electron microscopes (SEM) equipped with energy dispersive X-ray spectroscopy (EDS), respectively. To determine the mechanical properties of the alloy, hardness value and plastic deformation ability of the samples were measured. To investigate the corrosion behaviour of the alloy, immersion and electrochemical tests were performed on the samples in simulated body fluid and the corrosion products were characterized by SEM/EDS. The results showed that increasing forging temperature decreased grain size led to improved hardness value and plastic deformation ability of the alloy, whereas no significant effect was observed by changing forging speed. Moreover, forging at higher temperatures led to an increase in the amount of Mg 2 Ca phase at grain boundaries resulted in higher corrosion rates. It can be concluded that although forging process improved the mechanical properties of the alloy, it does not satisfy the corrosion resistance criteria required for bone healing.

  17. Effect of Zr on the Corrosion Properties of Mg-Li-Al Alloy

    International Nuclear Information System (INIS)

    Kim, Soon Ho; Choi, Sang Hyun; Kim, In Bae; Kim, Kyung Hyun

    1994-01-01

    Effect of Zr on the electrochemical corrosion characteristics of Mg-Li-Al alloy has been investigated by means of potentiodynamic polarization study. The electrochemical behaviors were evaluated in 0.03% NaCl solution and the solution buffered with KH 2 PO 5 · NaOH at room temperature. It was found that the addition of very small quantity of Zr (0.03wt%) in Mg-Li-Al alloy increased corrosion rates and amount of corrosion products and decreased the pitting resistance of the alloy. From the results it was concluded that Zr which is added to increase the strength of Mg-Li-Al alloy is harmful to corrosion properties of the alloy

  18. Corrosion and erosion properties of silicate and phosphate coatings on magnesium

    International Nuclear Information System (INIS)

    Ma, Y.; Nie, X.; Northwood, D.O.; Hu, H.

    2004-01-01

    Electrolytic plasma processing (EPP) is an emerging, environmentally friendly, surface engineering technique. In this study, we have utilized the EPP technique to deposit silicate and phosphate coatings on magnesium for both corrosion and erosion protection. Potentiodynamic polarization measurements were used to investigate the corrosion properties of the coated samples. A stirring device was also used for corrosion and erosion testing. Coated and uncoated samples were immersed in a 3.5 wt.% NaCl solution with SiO 2 sand in suspension and rotated at a given speed. Scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) analysis were used to study surface morphology and chemical composition of the coatings before and after corrosion-erosion testing

  19. Effect Mo Addition on Corrosion Property and Sulfide Stress Cracking Susceptibility of High Strength Low Alloy Steels

    International Nuclear Information System (INIS)

    Lee, Woo Yong; Koh, Seong Ung; Kim, Kyoo Young

    2005-01-01

    The purpose of this work is to understand the effect of Mo addition on SSC susceptibility of high strength low alloy steels in terms of microstructure and corrosion property. Materials used in this study are high strength low alloy (HSLA) steels with carbon content of 0.04wt% and Mo content varying from 0.1 to 0.3wt%. The corrosion property of steels was evaluated by immersion test in NACE-TM01-77 solution A and by analyzing the growth behavior of surface corrosion products. SSC resistance of steels was evaluated using constant load test. Electrochemical test was performed to investigate initial corrosion rate. Addition of Mo increased corrosion rate of steels by enhancing the porosity of surface corrosion products. however, corrosion rate was not directly related to SSC susceptibility of steels

  20. Corrosion and stress corrosion cracking in supercritical water

    Science.gov (United States)

    Was, G. S.; Ampornrat, P.; Gupta, G.; Teysseyre, S.; West, E. A.; Allen, T. R.; Sridharan, K.; Tan, L.; Chen, Y.; Ren, X.; Pister, C.

    2007-09-01

    Supercritical water (SCW) has attracted increasing attention since SCW boiler power plants were implemented to increase the efficiency of fossil-based power plants. The SCW reactor (SCWR) design has been selected as one of the Generation IV reactor concepts because of its higher thermal efficiency and plant simplification as compared to current light water reactors (LWRs). Reactor operating conditions call for a core coolant temperature between 280 °C and 620 °C at a pressure of 25 MPa and maximum expected neutron damage levels to any replaceable or permanent core component of 15 dpa (thermal reactor design) and 100 dpa (fast reactor design). Irradiation-induced changes in microstructure (swelling, radiation-induced segregation (RIS), hardening, phase stability) and mechanical properties (strength, thermal and irradiation-induced creep, fatigue) are also major concerns. Throughout the core, corrosion, stress corrosion cracking, and the effect of irradiation on these degradation modes are critical issues. This paper reviews the current understanding of the response of candidate materials for SCWR systems, focusing on the corrosion and stress corrosion cracking response, and highlights the design trade-offs associated with certain alloy systems. Ferritic-martensitic steels generally have the best resistance to stress corrosion cracking, but suffer from the worst oxidation. Austenitic stainless steels and Ni-base alloys have better oxidation resistance but are more susceptible to stress corrosion cracking. The promise of grain boundary engineering and surface modification in addressing corrosion and stress corrosion cracking performance is discussed.

  1. Vortex core properties in iron pnictides

    Directory of Open Access Journals (Sweden)

    Zakharchuk I.

    2014-07-01

    Full Text Available The mechanism of unconventional superconductivity in recently discovered Fe-based superconductors has been intensively discussed. A plausible candidate is the superconducting (SC pairing mediated by antiferromagnetic (AFM interactions. There are two different approaches predicting the s± pairing state, in which the SC gap shows an s-wave symmetry that changes sign between different Fermi-surface (FS sheets. The first one is based on the itinerant spin fluctuations promoted by FS nesting, and the second is based on the local AFM exchange couplings. We apply quasiclassical Eilenberger approach to the vortex state to calculate the cutoff parameter, ξh, at different levels of impurity scattering rates and to compare results with experimental data for iron pnictides. The s±-wave pairing symmetry is considered as a presumable state for these materials. Magnetic field dependence of ξh/ξc2 is found to be nonuniversal for s± pairing: depending on the chosen parameter set it can reside both below and above analytical Ginzburg-Landau curve. It is also found that normalized ξ2/ξc2(B/Bc2 dependence is increasing with pair-breaking (interband impurity scattering, and the intraband scattering results in decreasing of the ξ2/ξc2 value. Here, ξ2 is the vortex core size and ξc2 is the Ginzburg-Landau coherence length determined from the upper critical field. The ξ2/ξc2(B/Bc2 curve has a minimum at low temperatures and small scattering evolving into monotonously decreasing function at strong scattering and high temperatures.

  2. Influence of austempering heat treatment on mechanical and corrosion properties of ductile iron samples

    Directory of Open Access Journals (Sweden)

    M. Janjić

    2016-07-01

    Full Text Available Mechanical properties and corrosion resistance of metals are closely related to the microstructure characteristics of the material. The paper compares the results of these two sets of properties after investigating samples of base ductile iron and heat-treated samples of the base austempered ductile iron (ADI. The basic material is perlite ferritic iron alloyed with copper and nickel. To test the corrosion rate of the base material (ductile iron and the heattreated samples (ADI, electrochemical techniques of potentiostatic polarization were used (the technique of Tafel curves extrapolation and the potentiodynamic polarization technique.

  3. Structure, mechanical and corrosion properties of powdered stainless steel Kh13

    International Nuclear Information System (INIS)

    Radomysel'skij, I.D.; Napara-Volgina, S.G.; Orlova, L.N.; Apininskaya, L.M.

    1982-01-01

    Structure, mechanical and corrosion properties are studied for compact powdered stainless steel, Grade Kh13, produced from prealloyed powder and a mixture of chromium and iron powders by hot vacuum pressing (HVP) following four schemes: HVP of unsintered billets; HVP of presintered billets; HVP of unsintered billets followed by diffusion annealing; HVP of sintered billets followed by diffusion annealing. Analysis of the structure, mechanical and corrosion properties of Kh13 steel produced according to the four schemes confirmed that production of this steel by the HVP method without presintering of porous billets and diffusion annealing of compact stampings is possible only when prealloyed powder of particular composition is used as a starting material

  4. Corrosion engineering

    Energy Technology Data Exchange (ETDEWEB)

    Fontana, M.G.

    1986-01-01

    This book emphasizes the engineering approach to handling corrosion. It presents corrosion data by corrosives or environments rather than by materials. It discusses the corrosion engineering of noble metals, ''exotic'' metals, non-metallics, coatings, mechanical properties, and corrosion testing, as well as modern concepts. New sections have been added on fracture mechanics, laser alloying, nuclear waste isolation, solar energy, geothermal energy, and the Statue of Liberty. Special isocorrosion charts, developed by the author, are introduced as a quick way to look at candidates for a particular corrosive.

  5. Corrosion Properties of Dissimilar Friction Stir Welded 6061 Aluminum and HT590 Steel

    Science.gov (United States)

    Seo, Bosung; Song, Kuk Hyun; Park, Kwangsuk

    2018-05-01

    Corrosion properties of dissimilar friction stir welded 6061 aluminum and HT590 steel were investigated to understand effects of galvanic corrosion. As cathode when coupled, HT590 was cathodically protected. However, the passivation of AA6061 made the aluminum alloy cathode temporarily, which leaded to corrosion of HT590. From the EIS analysis showing Warburg diffusion plot in Nyquist plots, it can be inferred that the stable passivation layer was formed on AA6061. However, the weld as well as HT590 did not show Warburg diffusion plot in Nyquist plots, suggesting that there was no barrier for corrosion or even if it exists, the barrier had no function for preventing and/or retarding charge transport through the passivation layer. The open circuit potential measurements showed that the potential of the weld was similar to that of HT590, which lied in the pitting region for AA6061, making the aluminum alloy part of the weld keep corrosion state. That resulted in the cracked oxide film on AA6061 of the weld, which could not play a role of corrosion barrier.

  6. Structure and corrosion properties of Cr coating deposited on aerospace bearing steel

    Science.gov (United States)

    Wang, Fangfang; Zhang, Fengxiang; Zheng, Lijing; Zhang, Hu

    2017-11-01

    The corrosion protection of chromium coating deposited on aerospace bearing steels by using the Filtered Cathodic Vacuum Arc deposition- Metal Evaporation Vacuum Arc duplex technique (MEVVA-FCVA) had been investigated. The protection efficiency of chromium coating on different substrate materials had also been evaluated. The chromium coating was mainly composed of nanocrystallineα-Cr in a range of 50-200 nm. The orientation distributions of α-Cr film on substrates with different composition had a certain difference to each other. Electrochemical experimental results indicated that the chromium coating significantly improved the corrosion resistance of experimental bearing steels in 3.5% NaCl solution. The protective efficiency of chromium films were all over 98%. The corrosion resistance of chromium coating was influenced by the chemical composition of substrate material. The chromium coatings on higher Cr-containing substrate displayed lower corrosion current density and more positive corrosion potential. The increase of passive film thickness and the formation of a mass of chromium oxide and hydroxide on the surface are responsible for the improved corrosion properties.

  7. Aqueous corrosion of borosilicate glasses. Nature and properties of alteration layers

    International Nuclear Information System (INIS)

    Trotignon, Laurent

    1990-01-01

    This research thesis addresses physical and chemical processes which occur during aqueous corrosion of silicates, and the study of the properties of their interfaces with solutions, and thus issues related to the fate of high activity nuclear wastes which are embedded in a vitreous matrix as the potential release of radionuclides towards the environment then depends on the glass parcel behaviour submitted to chemical attacks which could alter it, notably by aqueous corrosion. The objective is then to model the dissolution of nuclear glass over long periods of time, and to predict the behaviour of radionuclides. The author compared the corrosion and alteration layers of gradually more complex borosilicate glasses, from a ternary sodium borosilicate glass to a simulated nuclear glass (the French reference glass R7T7). Complexity is increased by adding oxides. After some theoretical recalls on the structure and corrosion of borosilicate glasses, the author presents the studied materials, the corrosion experiments, and analytical techniques used to study alteration layers. The mechanism of formation of altered layers is studied based on corrosion experiments performed at 90 C on the whole set of glasses. Alteration layers formed on corroded glasses are studied and compared by using various techniques: electronic microscopy, high energy ion beams, spectroscopy, infrared, photo-electron spectroscopy. Implications for underground storage of nuclear glasses are discussed

  8. Anti-corrosive and anti-microbial properties of nanocrystalline Ni-Ag coatings

    Energy Technology Data Exchange (ETDEWEB)

    Raghupathy, Y.; Natarajan, K.A.; Srivastava, Chandan, E-mail: csrivastava@materials.iisc.ernet.in

    2016-04-15

    Graphical abstract: - Highlights: • Electrodeposition yielded phase-segregated, nanocrystalline Ni-Ag coatings. • Ni-Ag alloys exhibited smaller Ni crystals compared to pure Ni. • Ultra fine Ni grains of size 12–14 nm favoured Ni-Ag solid solution. • Nanocrystalline Ag resisted bio-fouling by Sulphate Reducing bacteria. • Ni-Ag outperformed pure Ni in corrosion and bio-corrosion tests. - Abstract: Anti-corrosive and anti-bacterial properties of electrodeposited nanocrystalline Ni-Ag coatings are illustrated. Pure Ni, Ni-7 at.% Ag, & Ni-14 at.% Ag coatings were electrodeposited on Cu substrate. Coating consisted of Ni-rich and Ag-rich solid solution phases. With increase in the Ag content, the corrosion resistance of the Ni-Ag coating initially increased and then decreased. The initial increase was due to the Ni-Ag solid solution. The subsequent decrease was due to the increased galvanic coupling between the Ag-rich and Ni-rich phases. For all Ag contents, the corrosion resistance of the Ni-Ag coating was higher than the pure Ni coating. Exposure to Sulphate Reducing Bacteria (SRB) revealed that the extent of bio-fouling decreased with increase in the Ag content. After 2 month exposure to SRB, the Ni-Ag coatings demonstrated less loss in corrosion resistance (58% for Ni-7 at.% Ag and 20% for Ni-14 at.% Ag) when compared pure Ni coating (115%).

  9. Influence of Microstructure on Corrosion Property of Mg-Al-Zn Alloy

    International Nuclear Information System (INIS)

    Lee, Jeong Ja; Na, Seung Chan; Yang, Won Seong; Hwang, WoonSuk; Jang, Si Sung; Yoo, Hwang Ryong

    2006-01-01

    Influence of microstructure on the corrosion property of Mg-Al-Zn Alloy was investigated using potentiodynamic polarization experiments, galvanic coupling experiments, and scanning electron microscopy in sodium chloride solutions. Pitting was the mot common form of attack in chloride solution, and filiform corrosion was also occurred in AZ91D-T4 alloy. On the contrary, filiform attack in the bulk matrix was predominant corrosion form in AZ91D-T6 alloy, and the number and size of pit were decreased than those of AZ91D-T4 alloy. Galvanic coupling effect between Mg 17 Al 12 and matrix was existed, but the propagation of galvanic corrosion was localized only near the Mg 17 Al 12 phase in AZ91D-6T alloy. The corrosion resistance of Mg-Al matrix increased with decreasing Al content in the matrix. And, it could be regarded that Al content in the matrix is decreased by precipitation of Mg 17 Al 12 curing the aging treatment and it decreases the anodic reaction rate of the matrix and galvanic effect in AZ91D-T6 alloy. It could be considered that the composition and macrostructure of surface protective layer would be varied by precipitation of Mg 17 Al 12 and subsequent decreasing of Al content in the matrix. And it would contribute the corrosion resistance of AZ91D-T6 aging alloy

  10. Evaluation on mechanical and corrosion properties of steam generator tubing materials

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In Sup; Lee, Byong Whi; Lee, Sang Kyu; Lee, Young Ho; Kim, Jun Whan; Lee, Ju Seok; Kwon, Hyuk Sang; Kim, Su Jung [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1998-06-15

    Steam generator is one of the major components of nuclear reactor pressure boundary. It's main function os transferring heat which generated in the reactor to turbine generator through steam generator tube. In these days, steam generator tubing materials of operating plant are used Inconel 600 alloys. But according to the operation time, there are many degradation phenomena which included mechanical damage due to flow induced vibration and corrosion damage due to PWSCC, IGA/SCC and pitting etc. Recently Inconel 690 alloys are selected as new and replacement steam generator tubes for domestic nuclear power plant. But there are few study about mechanical and corrosion properties of Inconel 600 and 690. The objectives of this study is to evaluate and compare mechanical and corrosion propertied of steam generator tube materials.

  11. Evaluation on mechanical and corrosion properties of steam generator tubing materials

    International Nuclear Information System (INIS)

    Kim, In Sup; Lee, Byong Whi; Lee, Sang Kyu; Lee, Young Ho; Kim, Jun Whan; Lee, Ju Seok; Kwon, Hyuk Sang; Kim, Su Jung

    1998-06-01

    Steam generator is one of the major components of nuclear reactor pressure boundary. It's main function os transferring heat which generated in the reactor to turbine generator through steam generator tube. In these days, steam generator tubing materials of operating plant are used Inconel 600 alloys. But according to the operation time, there are many degradation phenomena which included mechanical damage due to flow induced vibration and corrosion damage due to PWSCC, IGA/SCC and pitting etc. Recently Inconel 690 alloys are selected as new and replacement steam generator tubes for domestic nuclear power plant. But there are few study about mechanical and corrosion properties of Inconel 600 and 690. The objectives of this study is to evaluate and compare mechanical and corrosion propertied of steam generator tube materials

  12. Mechanical and corrosion properties of Ni-Cr-Fe Alloy 600 related to primary side SCC

    International Nuclear Information System (INIS)

    Begley, J.A.; Jacko, R.J.; Gold, R.E.

    1987-01-01

    The two-fold objective of the program is to provide the mechanical property data required for the development of a strain rate damage model for environmentally assisted cracking of Inconel 600 and to evaluate critical damage model parameters in primary water environments by conducting a series of stress corrosion tests. The test program includes mechanical property tests at 20 0 C, 316 0 C and strain rate tests to determine critical strain rate SCC parameters in primary water environments. Data are presented from slow strain rate tensile tests, stress relaxation tests and creep tests. A short discussion of the Gerber-Garud Strain Rate Damage Model is included to provide the background rationale for the test program. Utilitarian aspects of the Strain Rate Damage Model and the test program data are presented. Analysis of accelerated stress corrosion testing at high temperatures, and the contribution of thermally activated inelastic deformation to apparent activation energies for stress corrosion cracking is emphasized

  13. Electromagnetic absorbing property of the flaky carbonyl iron particles by chemical corrosion process

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Dianliang, E-mail: 272895980@qq.com [College of Aeronautical Engineering, Jilin Institute of Chemical Technology, Jilin 132022 (China); Liu, Ting; Zhou, Li [College of Aeronautical Engineering, Jilin Institute of Chemical Technology, Jilin 132022 (China); Xu, Yonggang [Science and Technology on Electromagnetic Scattering Laboratory, Shanghai 200438 (China)

    2016-12-01

    The flaky carbonyl iron particles (CIPs) were prepared using a milling process at the first step, then the chemical corrosion process was done to optimize the particle shape. The particle morphology was characterized by the scanning electron microscopy, the static magnetic property was evaluated on a vibrating sample magnetometer and X-ray diffraction (XRD) patterns were done to analyze the particle crystal grain structure. The complex permittivity and permeability were measured using a vector network analyzer in the frequency range of 2–18 GHz and the reflection loss (RL) was calculated. The results showed that the saturation magnetization value of the CIPs decreased as the CIPs was corroded to the small flakes in chemical corrosion process. The diffraction peaks of the single α-Fe existed in the XRD pattern of CIPs, and the characteristic peaks was more obvious and the intensity of the diffraction pattern was lower by corrosion. The permittivity and the permeability of the corroded milling CIPs was a little larger than the milling CIPs, it was due to the larger aspect ratio based on the fitting calculation process. At thickness 0.6 mm and 0.8 mm, the corroded milling CIPs composite had the better absorbing property than the other two samples. The frequency band (RL<−5 dB) could be widened to 8.96–18 GHz at 0.6 mm and 5.92–18 GHz at 0.8 mm, and RL less than −8 dB began to exist in 8.96–14.72 GHz at 0.8 mm. - Graphical abstract: The property of absorber using corrosion process could be enhanced. - Highlights: • The chemical corrosion process was done to optimize the particle shape. • The permittivity and permeability of corroded milling CIPs increased. • The aspect ratio of flaky CIPs increased in the corrosion process. • The corroded milling CIPs composite had the better absorbing property.

  14. Influence of alloying elements on the corrosion properties of shape memory stainless steels

    International Nuclear Information System (INIS)

    Della Rovere, C.A.; Alano, J.H.; Silva, R.; Nascente, P.A.P.; Otubo, J.; Kuri, S.E.

    2012-01-01

    Highlights: ► The corrosion properties of three Fe–Mn–Si–Cr–Ni–(Co) shape-memory stainless steels (SMSSs) were compared with those of a type 304 (SS 304) austenitic stainless steel. ► A considerably high Si content (about 40 at%) is present in the anodic passive films formed on SMSSs in 0.5 M H 2 SO 4 solution. ► The high protectiveness of the anodic passive film formed on SMSSs in 0.5 M H 2 SO 4 solution results from a protective film consisting of a (Fe, Cr)–mixed silicate. ► The SMSSs exhibited higher corrosion resistance than SS 304 in highly oxidizing environments. ► The SMSSs showed poor corrosion resistance in 3.5% NaCl solution compared to that of SS 304. - Abstract: The corrosion properties of three Fe–Mn–Si–Cr–Ni–(Co) shape memory stainless steels were studied based on X-ray photoelectron spectroscopy (XPS) analyses, immersion and polarization tests. The test results were compared with those of a type 304 austenitic stainless steel. The XPS analyses indicated substantial Si content in the anodic passive films formed on shape memory stainless steels in sulfuric acid solution and that the high protectiveness of these films results from a protective film consisting of a (iron, chromium)–mixed silicate. The corrosion rate of the shape memory stainless steels in boiling nitric acid solution was lower than that of austenitic stainless steel. The high silicon content was found to play an important role in the corrosion behavior of these shape memory alloys in highly oxidizing environments. Due to their high manganese content, the shape memory stainless steels showed poor corrosion behavior in 3.5% sodium chloride solution when compared with austenitic stainless steel.

  15. Microstructure, mechanical properties, bio-corrosion properties and cytotoxicity of as-extruded Mg-Sr alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Chaoyong [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); Pan, Fusheng, E-mail: fspan@cqu.edu.cn [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044 (China); Chongqing Academy of Science and Technology, Chongqing 401123 (China); Zhang, Lei; Pan, Hucheng; Song, Kai; Tang, Aitao [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China)

    2017-01-01

    In this study, as-extruded Mg-Sr alloys were studied for orthopedic application, and the microstructure, mechanical properties, bio-corrosion properties and cytotoxicity of as-extruded Mg-Sr alloys were investigated by optical microscopy, scanning electron microscopy with an energy dispersive X-ray spectroscopy, X-ray diffraction, tensile and compressive tests, immersion test, electrochemical test and cytotoxicity test. The results showed that as-extruded Mg-Sr alloys were composed of α-Mg and Mg{sub 17}Sr{sub 2} phases, and the content of Mg{sub 17}Sr{sub 2} phases increased with increasing Sr content. As-extruded Mg-Sr alloy with 0.5 wt.% Sr was equiaxed grains, while the one with a higher Sr content was long elongated grains and the grain size of the long elongated grains decreased with increasing Sr content. Tensile and compressive tests showed an increase of both tensile and compressive strength and a decrease of elongation with increasing Sr content. Immersion and electrochemical tests showed that as-extruded Mg-0.5Sr alloy exhibited the best anti-corrosion property, and the anti-corrosion property of as-extruded Mg-Sr alloys deteriorated with increasing Sr content, which was greatly associated with galvanic couple effect. The cytotoxicity test revealed that as-extruded Mg-0.5Sr alloy did not induce toxicity to cells. These results indicated that as-extruded Mg-0.5Sr alloy with suitable mechanical properties, corrosion resistance and good cytocompatibility was potential as a biodegradable implant for orthopedic application. - Highlights: • Biodegradable as-extruded Mg-Sr alloys were fabricated. • Microstructure of alloys changed with increasing Sr content. • Mechanical properties of alloys could be controlled by adjusting the Sr content. • Corrosion properties of alloys decreased with increasing Sr content. • As-extruded Mg-0.5Sr alloy was potential for orthopedic application.

  16. Metal Matrix Composite Coatings of Cupronickel Embedded with Nanoplatelets for Improved Corrosion Resistant Properties

    Directory of Open Access Journals (Sweden)

    Casey R. Thurber

    2018-01-01

    Full Text Available The deterioration of metals under the influence of corrosion is a costly problem faced by many industries. Therefore, particle-reinforced composite coatings are being developed in different technological fields with high demands for corrosion resistance. This work studies the effects of nanoplatelet reinforcement on the durability, corrosion resistance, and mechanical properties of copper-nickel coatings. A 90 : 10 Cu-Ni alloy was coelectrodeposited with nanoplatelets of montmorillonite (Mt embedded into the metallic matrix from electrolytic baths containing 0.05, 0.10, and 0.15% Mt. X-ray diffraction of the coatings indicated no disruption of the crystal structure with addition of the nanoplatelets into the alloy. The mechanical properties of the coatings improved with a 17% increase in hardness and an 85% increase in shear adhesion strength with nanoplatelet incorporation. The measured polarization resistance increased from 11.77 kΩ·cm2 for pure Cu-Ni to 33.28 kΩ·cm2 for the Cu-Ni-0.15% Mt coating after soaking in a simulated seawater environment for 30 days. The incorporation of montmorillonite also stabilized the corrosion potential during the immersion study and increased resistance to corrosion.

  17. Preparation of bimodal grain size 7075 aviation aluminum alloys and their corrosion properties

    Directory of Open Access Journals (Sweden)

    Wenming TIAN

    2017-10-01

    Full Text Available The bimodal grain size metals show improved strength and ductility compared to traditional metals; however, their corrosion properties are unknown. In order to evaluate the corrosion properties of these metals, the bimodal grain size 7075 aviation aluminum alloys containing different ratios of coarse (100 μm in diameter and fine (10 μm in diameter grains were prepared by spark plasma sintering (SPS. The effects of grain size as well as the mixture degree of coarse and fine grains on general corrosion were estimated by immersion tests, electrochemical measurements and complementary techniques such as scanning electron microscope (SEM and transmission electron microscope-energy disperse spectroscopy (TEM-EDS. The results show that, compared to fine grains, the coarse grains have a faster dissolution rate in acidic NaCl solution due to the bigger size, higher alloying elements content and larger area fraction of second phases in them. In coarse grains, the hydrogen ions have a faster reduction rate on cathodic second phases, therefore promoting the corrosion propagation. The mixture of coarse and fine grains also increases the electrochemical heterogeneity of alloys in micro-scale, and thus the increased mixture degree of these grains in metal matrix accelerates the corrosion rate of alloys in acidic NaCl solution.

  18. Corrosion resistance, mechanical properties, corrosion fatigue strength and cytocompatibility of new Ti alloys without Al and V.

    Science.gov (United States)

    Okazaki, Y; Rao, S; Ito, Y; Tateishi, T

    1998-07-01

    The effects of various metallic ions using various metallic powders on the relative growth ratio of fibroblasts L929 and osteoblasts MC3T3-E1 cells were carried out. Ti, Zr, Sn, Nb and Ta had evidently no effect on the relative growth ratios of cells. Otherwise, Al and V ions exhibit cytotoxicity from a concentration of > or = 0.2 ppm. This Al effect on cells tend to be stronger in medium containing small quantity of V ions (alloy exhibited a higher corrosion resistance in physiological saline solution. The addition of 0.02%O and 0.05%N to Ti-Zr alloy improved the mechanical properties at room temperature and corrosion fatigue strength. The relative growth ratios for the new Ti alloy plate and the alloy block extraction were unity. Further, the relative growth ratios were almost unity for the new Ti alloy against apatite ceramic pins up to 10(5) wear cycles in Eagle's MEM solution. However, there was a sharp decrease for Ti-6%Al-4%V ELI alloy from 3 x 10(4) wear cycles as V ion was released during wear into the wear test solution since the pH of the Eagle's MEM increases with increasing wear cycles.

  19. Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation.

    Science.gov (United States)

    Vojtěch, D; Kubásek, J; Serák, J; Novák, P

    2011-09-01

    In the present work Zn-Mg alloys containing up to 3wt.% Mg were studied as potential biodegradable materials for medical use. The structure, mechanical properties and corrosion behavior of these alloys were investigated and compared with those of pure Mg, AZ91HP and casting Zn-Al-Cu alloys. The structures were examined by light and scanning electron microscopy (SEM), and tensile and hardness testing were used to characterize the mechanical properties of the alloys. The corrosion behavior of the materials in simulated body fluid with pH values of 5, 7 and 10 was determined by immersion tests, potentiodynamic measurements and by monitoring the pH value evolution during corrosion. The surfaces of the corroded alloys were investigated by SEM, energy-dispersive spectrometry and X-ray photoelectron spectroscopy. It was found that a maximum strength and elongation of 150MPa and 2%, respectively, were achieved at Mg contents of approximately 1wt.%. These mechanical properties are discussed in relation to the structural features of the alloys. The corrosion rates of the Zn-Mg alloys were determined to be significantly lower than those of Mg and AZ91HP alloys. The former alloys corroded at rates of the order of tens of microns per year, whereas the corrosion rates of the latter were of the order of hundreds of microns per year. Possible zinc doses and toxicity were estimated from the corrosion behavior of the zinc alloys. It was found that these doses are negligible compared with the tolerable biological daily limit of zinc. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  20. Corrosion effect of fast reactor fuel claddings on their mechanical properties

    International Nuclear Information System (INIS)

    Davydov, E.F.; Krykov, F.N.; Shamardin, V.K.

    1985-01-01

    Fast reactor fuel cladding corrosion effect on its mechanical properties was investigated. UO 2 fuel elements were irradiated in the BOP-60 reactor at the linear heat rate of 42 kw/m. Fuel cladding is made of stainless steel OKh16N15M3BR. Calculated maximum cladding temperature is 920 K. Neutron fluence in the central part of fuel elements is 6.3x10 26 m+H- 2 . To investigate the strength changes temperature dependence of corrossion depth, cladding strength reduction factors was determined. Samples plasticity reduction with corrosion layer increase is considered to be a characteristic feature

  1. Corrosion properties of pulse-plated zinc-nickel alloy coatings

    Energy Technology Data Exchange (ETDEWEB)

    Alfantazi, A.M. [Univ. of British Columbia, Vancouver, British Columbia (Canada). Dept. of Metals and Materials Engineering; Erb, U. [Queen`s Univ., Kingston, Ontario (Canada)

    1996-11-01

    Corrosion properties of pulse-plated Zn-Ni alloy coating on a steel substrate were investigated using the neutral salt-spray test (ASTM B 117-81) and the potentiodynamic polarization technique (ASTM G 5-82). Performance of these alloy coatings with various Ni contents (up to 62 wt%) was compared to that of laboratory-prepared electrodeposited Zn coatings and commercial galvannealed (GA) steel. Results of the neutral salt-spray test indicated corrosion resistance of pulse-plated Zn-Ni alloy coatings was superior to that of the pure Zn and commercial GA coating. The Zn-20 wt% Ni and Zn-14 wt% Ni alloys gave the best protection of the Zn-Ni coatings tested. Potentiodynamic polarization tests confirmed excellent corrosion performance of the 20 wt% Ni alloy

  2. Comparison of anti-corrosion properties of polyurethane based composite coatings with low infrared emissivity

    International Nuclear Information System (INIS)

    Wang Yajun; Xu Guoyue; Yu Huijuan; Hu Chen; Yan Xiaoxing; Guo Tengchao; Li Jiufen

    2011-01-01

    Four polyurethane resins, pure polyurethane (PU), epoxy modified polyurethane (EPU), fluorinated polyurethane (FPU) and epoxy modified fluorinated polyurethane (EFPU), with similar polyurethane backbone structure but different grafting group were used as organic adhesive for preparing low infrared emissivity coatings with an extremely low emissivity near 0.10 at 8-14 μm, respectively. By using these four resins, the effect of different resin matrics on the corrosion protection of the low infrared emissivity coatings was investigated in detail by using neutral salt spray test, SEM and FTIR. It was found that the emissivity of the coatings with different resin matrics changes significantly in corrosion media. And the results indicated that the coating using EFPU as organic adhesive exhibited excellent corrosion resistance property which was mainly attributed to the presence of epoxy group and atomic fluorine in binder simultaneously.

  3. Characterization and properties of shock and corrosion resistant of titanium based coatings

    International Nuclear Information System (INIS)

    Motoiu, P.; Rosso, M.

    2001-01-01

    Thermal spraying technologies are an effective way to ensure surface protection against destructive effects of wear, corrosion and oxidizing phenomena. These technologies can be applied in majority of industrial sectors in order to improve properties of new parts or for reconditioning worn out parts technology. Ideally, it would be comfortable to have a material able to resist to all type of wear, but the work condition intricacy combined with economic reason have lead to the development of a big number of powder materials that are used in thermal spraying technologies. The titanium powders are suitable for coating layers which have a good behavior in 'metal on metal friction', toughness, shock and corrosion resistance. In particular, titanium layers obtained by plasma spraying are used in different aerospace and non aerospace applications due to the combination of low density, very good mechanical properties and high corrosion resistance. The accomplishment of new titanium thermal layers is effectively used in order to increase the lifetime of different engine parts securing the thermal protection in use, resistance to high corrosion and oxidizing phenomena. This paper deals about the mechanical properties of Ti based coatings applied by plasma spray process on steel substrates, the obtained results show the possibility to apply titanium coatings where special and high performance materials are needed. (author)

  4. Microstructure, mechanical and corrosion properties of Mg-Dy-Gd-Zr alloys for medical applications.

    Science.gov (United States)

    Yang, L; Huang, Y; Feyerabend, F; Willumeit, R; Mendis, C; Kainer, K U; Hort, N

    2013-11-01

    In previous investigations, a Mg-10Dy (wt.%) alloy with a good combination of corrosion resistance and cytocompatibility showed great potential for use as a biodegradable implant material. However, the mechanical properties of Mg-10Dy alloy are not satisfactory. In order to allow the tailoring of mechanical properties required for various medical applications, four Mg-10(Dy+Gd)-0.2Zr (wt.%) alloys were investigated with respect to microstructure, mechanical and corrosion properties. With the increase in Gd content, the number of second-phase particles increased in the as-cast alloys, and the age-hardening response increased at 200°C. The yield strength increased, while the ductility reduced, especially for peak-aged alloys with the addition of Gd. Additionally, with increasing Gd content, the corrosion rate increased in the as-cast condition owing to the galvanic effect, but all the alloys had a similar corrosion rate (~0.5 mm year(-1)) in solution-treated and aged condition. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  5. Microstructure, corrosion and tribological and antibacterial properties of Ti-Cu coated stainless steel.

    Science.gov (United States)

    Jin, Xiaomin; Gao, Lizhen; Liu, Erqiang; Yu, Feifei; Shu, Xuefeng; Wang, Hefeng

    2015-10-01

    A Ti-Cu coated layer on 316L stainless steel (SS) was obtained by using the Closed Field Unbalanced Magnetron Sputtering (CFUBMS) system to improve antibacterial activity, corrosion and tribological properties. The microstructure and phase constituents of Ti-Cu coated layer were characterized by using X-ray diffraction (XRD), scanning electron microscopy (SEM) and glow discharge optical emission spectrometry (GDOES). The corrosion and tribological properties of a stainless steel substrate, SS316L, when coated with Ti-Cu were investigated in a simulated body fluid (SBF) environment. The viability of bacteria attached to the antibacterial surface was tested using the spread plate method. The results indicate that the Ti-Cu coated SS316L could achieve a higher corrosion polarization resistance and a more stable corrosion potential in an SBF environment than the uncoated SS316L substrate. The desirable corrosion protection performance of Ti-Cu may be attributable to the formation of a Ti-O passive layer on the coating surface, protecting the coating from further corrosion. The Ti-Cu coated SS316L also exhibited excellent wear resistance and chemical stability during the sliding tests against Si3N4 balls in SBF environment. Moreover, the Ti-Cu coatings exhibited excellent antibacterial abilities, where an effective reduction of 99.9% of Escherichia coli (E.coli) within 12h was achieved by contact with the modified surface, which was attributed to the release of copper ions when the Ti-Cu coatings are in contact with bacterial solution. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Evaluation of spent fuel properties from a conceptual PEACER core

    International Nuclear Information System (INIS)

    Lim, Jae Yong; Kim, Myung Hyun; Kim, Chang Hyo; Hwang, Il Soon

    2003-01-01

    In this paper, a new conceptual core design, PEACER was evaluated in aspect of core performance and spent fuel properties. The core shape is like a pancake to increase axial neutron leakage. Square lattice array was applied which was suitable to decrease the flow speed of Pb-Bi coolant. Although over 30% TRU produced by pyroprocessing was loaded in U-Zr metal fuel, the cycle length of 1 year was achieved and the relative assembly power peaking was less than 1.3. In order to confirm nuclear performance of PEACER core design, several performance indices were adopted and developed. Simple indices such as FIR and FG were used to evaluate fissile breeding. BCM, TG, SNS, and OR calculated by plutonium composition vectors were chosen to distinguish the competency of proliferation resistance. For the estimation of transmutation capability, D-value and extended effective fission half-life time(T EX ) were used. According to these indices, the PEACER core had the better performance compared with other conventional reactor cores although fissile breeding was not acquired

  7. Enhanced mechanical properties and increased corrosion resistance of a biodegradable magnesium alloy by plasma electrolytic oxidation (PEO)

    International Nuclear Information System (INIS)

    White, Leon; Koo, Youngmi; Neralla, Sudheer; Sankar, Jagannathan; Yun, Yeoheung

    2016-01-01

    Highlights: • Plasma electrolytic oxidation (PEO) method was developed to control corrosion, porosity, and mechanical property. • Mechanical properties of PEO-coated AZ31 alloys were affected by the different electrolyte. • Mechanical properties and corrosion resistance of PEO-coated AZ31 alloys were compared with uncoated one. - Abstract: We report the enhanced mechanical properties of AZ31 magnesium alloys by plasma electrolytic oxidation (PEO) coating in NaOH, Na_2SiO_3, KF and NaH_2PO_4·2H_2O containing electrolytes. Mechanical properties including wear resistance, surface hardness and elastic modulus were increased for PEO-coated AZ31 Mg alloys (PEO-AZ31). DC polarization in Hank's solution indicating that the corrosion resistance significantly increased for PEO-coating in KF-contained electrolyte. Based on these results, the PEO coating method shows promising potential for use in biodegradable implant applications where tunable corrosion and mechanical properties are needed.

  8. Corrosion properties of chromia based eco - friendly coatings on mild steel

    Directory of Open Access Journals (Sweden)

    V. Brozek

    2016-10-01

    Full Text Available Ceramic nanocrystalline coatings of chromium oxide (III on steel S235JRH-1.0038 (EN 10025-1 were prepared using the liquid precursor plasma spraying (LPPS method from ammonia dichromate (VI. Their structure and anti – corrosion properties were compared to the standard chromium oxide (III coating prepared by thermal spraying. The newly prepared coatings had very high adhesion and minimal porosity. Anticorrosion properties were characterized by the means of the electrochemical impedance spectroscopy (EIS, measuring the charge transfer resistance Rct and capacitance of electrical double layer CPEdl in the 0,5 mol/l NaCl. Coatings of Cr2 O3 prepared by the LPPS method showed unambiguously improved anti - corrosion properties.

  9. Enhanced antimicrobial properties, cytocompatibility, and corrosion resistance of plasma-modified biodegradable magnesium alloys.

    Science.gov (United States)

    Zhao, Ying; Jamesh, Mohammed Ibrahim; Li, Wing Kan; Wu, Guosong; Wang, Chenxi; Zheng, Yufeng; Yeung, Kelvin W K; Chu, Paul K

    2014-01-01

    Magnesium alloys are potential biodegradable materials and have received increasing attention due to their outstanding biological performance and mechanical properties. However, rapid degradation in the physiological environment and potential toxicity limit clinical applications. Recently, special magnesium-calcium (Mg-Ca) and magnesium-strontium (Mg-Sr) alloys with biocompatible chemical compositions have been reported, but the rapid degradation still does not meet clinical requirements. In order to improve the corrosion resistance, a rough, hydrophobic and ZrO(2)-containing surface film is fabricated on Mg-Ca and Mg-Sr alloys by dual zirconium and oxygen ion implantation. Weight loss measurements and electrochemical corrosion tests show that the corrosion rate of the Mg-Ca and Mg-Sr alloys is reduced appreciably after surface treatment. A systematic investigation of the in vitro cellular response and antibacterial capability of the modified binary magnesium alloys is performed. The amounts of adherent bacteria on the Zr-O-implanted and Zr-implanted samples diminish remarkably compared to the unimplanted control. In addition, significantly enhanced cell adhesion and proliferation are observed from the Zr-O-implanted sample. The results suggest that dual zirconium and oxygen ion implantation, which effectively enhances the corrosion resistance, in vitro biocompatibility and antimicrobial properties of Mg-Ca and Mg-Sr alloys, provides a simple and practical means to expedite clinical acceptance of biodegradable magnesium alloys. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. Mechanical properties and corrosion resistance of supermartensitic stainless steel surfaces nitrided by plasma immersion ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Schibicheski, Bruna Corina Emanuely; Souza, Gelson Biscaia de; Oliveira, Willian Rafael de; Serbena, Francisco Carlos, E-mail: bruna_schibicheski@hotmail.com [Universidade Estadual de Ponta Grossa (UEPG), PR (Brazil); Marino, Cláudia E.B. [Universidade Federal do Paraná (UFPR), Curitiba, PR (Brazil)

    2016-07-01

    Full text: The supermartensitic stainless steel UNS S41426 is employed in marine oil and gas extraction ducts, where it is subjected to severe conditions of temperature, pressure and exposure to corrosive agents (as the H{sub 2}S). In such environments, pitting corrosion is a major cause of degradation of metallic alloys [1]. This work investigated the effectiveness of the nitrogen inlet, attained here by the plasma immersion ion implantation (PIII) technique, in improving the mechanical properties and corrosion resistance of the material surface. Samples were initially austenitized at 1100°C with a subsequent room temperature oil quenching in order to obtain a fully martensitic structure. The nitriding was carried out under 10 kV implantation energy and 30 ms pulse width. The temperatures ranged from 300 °C to 400°C, achieved by controlling the pulse repetition rates. Samples were characterized by X-ray diffraction, energy dispersive X-ray spectroscopy, instrumented indentation, scanning electron microscopy, potentiodynamic anodic polarization tests (in NaCl solution), and cathodic hydrogenation tests (in H{sub 2}SO{sub 4} solution). The PIII nitriding produced stratified layers up to 30 mm thick containing nitrogen expanded martensite and iron nitride phases (γ’-Fe{sub 4}N, ε- Fe{sub 2+x}N), depending on the treatment temperature. Consequently, the surface hardness increased from ∼3GPa (reference) up to ∼13GPa (400°C). Regarding the corrosion resistance, the nitrided surfaces presented a significant improvement as compared with the pristine surface, evidenced by the increase of the corrosion potential, which was also correlated to the hydrogen embrittlement reduction and the subsequent suppression of morphological changes. References: [1] M.G. Fontana, Corrosion Engineering, Singapore: McGraw-Hill, 1987. [2] B.C.E.S. Kurelo et al., Applied Surface Science 349 (2015) 403-414. (author)

  11. Mechanical properties, corrosion, and biocompatibility of Mg-Zr-Sr-Dy alloys for biodegradable implant applications.

    Science.gov (United States)

    Ding, Yunfei; Lin, Jixing; Wen, Cuie; Zhang, Dongmei; Li, Yuncang

    2017-11-28

    This study investigates the microstructure, mechanical properties, corrosion behavior, and biocompatibility of magnesium (Mg)-based Mg1Zr2SrxDy (x = 0, 1, 1.63, 2.08 wt %) alloys for biodegradable implant applications. The corrosion behavior of the Mg-based alloys has been evaluated in simulated body fluid using an electrochemical technique and hydrogen evolution. The biocompatibility of the Mg-based alloys has been assessed using SaSO2 cells. Results indicate that the addition of Dy to Mg-Zr-Sr alloy showed a positive impact on the corrosion behavior and significantly decreased the degradation rates of the alloys. The degradation rate of Mg1Zr2Sr1.0Dy decreased from 17.61 to 12.50 mm year -1 of Mg1Zr2Sr2.08Dy based on the hydrogen evolution. The ultimate compressive strength decreased from 270.90 MPa for Mg1Zr2Sr1Dy to 236.71 MPa for Mg1Zr2Sr2.08Dy. An increase in the addition of Dy to the Mg-based alloys resulted in an increase in the volume fraction of the Mg 2 Dy phase, which mitigated the galvanic effect between the Mg 17 Sr 2 phase and the Mg matrix, and led to an increase in the corrosion resistance of the base alloy. The biocompatibility of the Mg-based alloys was enhanced with decreasing corrosion rates. Mg1Zr2Sr2.08Dy exhibited the lowest corrosion rate and the highest biocompatibility compared with the other Mg-based alloys. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2017. © 2017 Wiley Periodicals, Inc.

  12. On the thermodynamic properties of the generalized Gaussian core model

    Directory of Open Access Journals (Sweden)

    B.M.Mladek

    2005-01-01

    Full Text Available We present results of a systematic investigation of the properties of the generalized Gaussian core model of index n. The potential of this system interpolates via the index n between the potential of the Gaussian core model and the penetrable sphere system, thereby varying the steepness of the repulsion. We have used both conventional and self-consistent liquid state theories to calculate the structural and thermodynamic properties of the system; reference data are provided by computer simulations. The results indicate that the concept of self-consistency becomes indispensable to guarantee excellent agreement with simulation data; in particular, structural consistency (in our approach taken into account via the zero separation theorem is obviously a very important requirement. Simulation results for the dimensionless equation of state, β P / ρ, indicate that for an index-value of 4, a clustering transition, possibly into a structurally ordered phase might set in as the system is compressed.

  13. Superhydrophobic honeycomb-like cobalt stearate thin films on aluminum with excellent anti-corrosion properties

    Science.gov (United States)

    Xiong, Jiawei; Sarkar, D. K.; Chen, X.-Grant

    2017-06-01

    Superhydrophobic cobalt stearate thin films with excellent anti-corrosion properties were successfully fabricated on aluminum substrates via electrodeposition process. The water-repellent properties were attributed to the honeycomb-like micro-nano structure as well as low surface energy of cobalt stearate. The correlation between the surface morphology, composition as well as wetting properties and the molar ratio of inorganic cobalt salt (Co(NO3)2) and organic stearic acid (SA) abbreviated as Co/SA, in the electrolyte were studied carefully. The optimum superhydrophobic surface obtained on the electrodeposited cathodic aluminum substrate, in the mixed ethanolic solution with Co/SA molar ratio of 0.2, was found to have a maximum contact angle of 161°. The polarization resistance of superhydrophobic aluminum substrates was calculated as high as 1591 kΩ cm2, which is determined to be two orders of magnitude larger than that of the as-received aluminum substrate as 27 kΩ cm2. Electrochemical impedance spectroscopy (EIS) was also employed to evaluate the corrosion resistance properties of these samples. Furthermore, electrical equivalent circuits (EEC) have been suggested in order to better understand the corrosion phenomena on these surfaces based on the corresponding EIS data.

  14. Physical properties of sidewall cores from Decatur, Illinois

    Science.gov (United States)

    Morrow, Carolyn A.; Kaven, Joern; Moore, Diane E.; Lockner, David A.

    2017-10-18

    To better assess the reservoir conditions influencing the induced seismicity hazard near a carbon dioxide sequestration demonstration site in Decatur, Ill., core samples from three deep drill holes were tested to determine a suite of physical properties including bulk density, porosity, permeability, Young’s modulus, Poisson’s ratio, and failure strength. Representative samples of the shale cap rock, the sandstone reservoir, and the Precambrian basement were selected for comparison. Physical properties were strongly dependent on lithology. Bulk density was inversely related to porosity, with the cap rock and basement samples being both least porous (

  15. Microstructure, mechanical properties, bio-corrosion properties and cytotoxicity of as-extruded Mg-Sr alloys.

    Science.gov (United States)

    Zhao, Chaoyong; Pan, Fusheng; Zhang, Lei; Pan, Hucheng; Song, Kai; Tang, Aitao

    2017-01-01

    In this study, as-extruded Mg-Sr alloys were studied for orthopedic application, and the microstructure, mechanical properties, bio-corrosion properties and cytotoxicity of as-extruded Mg-Sr alloys were investigated by optical microscopy, scanning electron microscopy with an energy dispersive X-ray spectroscopy, X-ray diffraction, tensile and compressive tests, immersion test, electrochemical test and cytotoxicity test. The results showed that as-extruded Mg-Sr alloys were composed of α-Mg and Mg 17 Sr 2 phases, and the content of Mg 17 Sr 2 phases increased with increasing Sr content. As-extruded Mg-Sr alloy with 0.5wt.% Sr was equiaxed grains, while the one with a higher Sr content was long elongated grains and the grain size of the long elongated grains decreased with increasing Sr content. Tensile and compressive tests showed an increase of both tensile and compressive strength and a decrease of elongation with increasing Sr content. Immersion and electrochemical tests showed that as-extruded Mg-0.5Sr alloy exhibited the best anti-corrosion property, and the anti-corrosion property of as-extruded Mg-Sr alloys deteriorated with increasing Sr content, which was greatly associated with galvanic couple effect. The cytotoxicity test revealed that as-extruded Mg-0.5Sr alloy did not induce toxicity to cells. These results indicated that as-extruded Mg-0.5Sr alloy with suitable mechanical properties, corrosion resistance and good cytocompatibility was potential as a biodegradable implant for orthopedic application. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Microstructures, mechanical properties and corrosion resistance of Hastelloy C22 coating produced by laser cladding

    International Nuclear Information System (INIS)

    Wang, Qin-Ying; Zhang, Yang-Fei; Bai, Shu-Lin; Liu, Zong-De

    2013-01-01

    Highlights: ► Hastelloy C22 coatings were prepared by diode laser cladding technique. ► Higher laser speed resulted in smaller grain size. ► Size-effect played the key role in the hardness measurements by different ways. ► Coating with higher laser scanning speed displayed higher nano-scratch resistance. ► Small grain size was beneficial for improvement of coating corrosion resistance. -- Abstract: The Hastelloy C22 coatings H1 and H2 were prepared by laser cladding technique with laser scanning speeds of 6 and 12 mm/s, respectively. Their microstructures, mechanical properties and corrosion resistance were investigated. The microstructures and phase compositions were studied by metallurgical microscope, scanning electron microscope and X-ray diffraction analysis. The hardness and scratch resistance were measured by micro-hardness and nanoindentation tests. The polarization curves and electrochemical impedance spectroscopy were tested by electrochemical workstation. Planar, cellular and dendritic solidifications were observed in the coating cross-sections. The coatings metallurgically well-bonded with the substrate are mainly composed of primary phase γ-nickel with solution of Fe, W, Cr and grain boundary precipitate of Mo 6 Ni 6 C. The hardness and corrosion resistance of steel substrate are significantly improved by laser cladding Hastelloy C22 coating. Coating H2 shows higher micro-hardness than that of H1 by 34% and it also exhibits better corrosion resistance. The results indicate that the increase of laser scanning speed improves the microstuctures, mechanical properties and corrosion resistance of Hastelloy C22 coating

  17. Corrosion properties of aluminum based alloys deposited by ion beam assisted deposition

    International Nuclear Information System (INIS)

    Enders, B.; Krauss, S.; Wolf, G.K.

    1994-01-01

    The replacement of cadmium coatings by other protective measures is an important task because of the environmentally detrimental properties of cadmium. Therefore, aluminum and aluminum alloy coatings containing elements such as silicon or magnesium with more positive or negative positions in the galvanic series in relation to pure aluminum were deposited by ion beam assisted deposition onto glass and low carbon steel. Pure aluminum films were deposited onto low carbon steel in order to study the influence of the ion-to-atom arrival ratio and the angle of ion incidence on the corrosion properties. For examination of the pitting behavior as a function of the concentration of alloying element, quasipotentiostatic current-potential and potentiostatic current-time plots were measured in chlorine-containing acetate buffer. It is shown that these alloys can protect steel substrates under uniform and pitting corrosion conditions considerably better than pure aluminum coatings. ((orig.))

  18. Interaction of Benzimidazoles and Benzotriazole: Its Corrosion Protection Properties on Mild Steel in Hydrochloric Acid

    Science.gov (United States)

    Ramya, K.; Mohan, Revathi; Joseph, Abraham

    2014-11-01

    Synergistic hydrogen-bonded interaction of alkyl benzimidazoles and 1,2,3-benzotrizole and its corrosion protection properties on mild steel in hydrochloric acid at different temperatures have been studied using polarization, EIS, adsorption, surface studies, and computational methods. The extent of synergistic interaction increases with temperature. Quantum chemical approach is used to calculate some electronic properties of the molecules and to ascertain the synergistic interaction, inhibitive effect, and molecular structures. The corrosion inhibition efficiencies and the global chemical reactivity relate to some parameters, such as total energy, E HOMO, E LUMO, and gap energy (Δ E). 1,2,3-Benzotrizole interacts with benzimidazoles derivatives up to a bond length of approximately 1.99 Å. This interaction represents the formation of a hydrogen bond between the 1,2,3-benzotrizole and benzimidazoles. This synergistic interaction of 1,2,3-benzotrizole and benzimidazole derivatives offers extended inhibition efficiency toward mild steel in hydrochloric acid.

  19. Tribological properties, corrosion resistance and biocompatibility of magnetron sputtered titanium-amorphous carbon coatings

    International Nuclear Information System (INIS)

    Dhandapani, Vishnu Shankar; Subbiah, Ramesh; Thangavel, Elangovan; Arumugam, Madhankumar; Park, Kwideok; Gasem, Zuhair M.; Veeraragavan, Veeravazhuthi; Kim, Dae-Eun

    2016-01-01

    Highlights: • a-C:Ti nanocomposite coatings were prepared on 316L stainless steel by using R.F. magnetron sputtering method. • Properties of the nanocomposite coatings were analyzed with respect to titanium content. • Corrosion resistance, biocompatibility and hydrophobicity of nanocomposite coating were enhanced with increasing titanium content. • Coating with 2.33 at.% titanium showed superior tribological properties compared to other coatings. - Abstract: Amorphous carbon incorporated with titanium (a-C:Ti) was coated on 316L stainless steel (SS) by magnetron sputtering technique to attain superior tribological properties, corrosion resistance and biocompatibility. The morphology, topography and functional groups of the nanostructured a-C:Ti coatings in various concentrations were analyzed using atomic force microscopy (AFM), Raman, X-Ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). Raman and XPS analyses confirmed the increase in sp"2 bonds with increasing titanium content in the a-C matrix. TEM analysis confirmed the composite nature of the coating and the presence of nanostructured TiC for Ti content of 2.33 at.%. This coating showed superior tribological properties compared to the other a-C:Ti coatings. Furthermore, electrochemical corrosion studies were performed against stimulated body fluid medium in which all the a-C:Ti coatings showed improved corrosion resistance than the pure a-C coating. Preosteoblasts proliferation and viability on the specimens were tested and the results showed that a-C:Ti coatings with relatively high Ti (3.77 at.%) content had better biocompatibility. Based on the results of this work, highly durable coatings with good biocompatibility could be achieved by incorporation of optimum amount of Ti in a-C coatings deposited on SS by magnetron sputtering technique.

  20. Superhydrophobic surface fabricated on iron substrate by black chromium electrodeposition and its corrosion resistance property

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Bo [Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, Qinghai (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Key Lab of Comprehensive and Highly Efficient Utilization of Salt Lake Resource, Chinese Academy of Science, Xining 810008, Qinghai (China); Feng, Haitao [Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, Qinghai (China); Key Lab of Comprehensive and Highly Efficient Utilization of Salt Lake Resource, Chinese Academy of Science, Xining 810008, Qinghai (China); Lin, Feng [Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, Qinghai (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Wang, Yabin [Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, Qinghai (China); Key Lab of Comprehensive and Highly Efficient Utilization of Salt Lake Resource, Chinese Academy of Science, Xining 810008, Qinghai (China); Wang, Liping [Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, Qinghai (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Dong, Yaping [Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, Qinghai (China); Key Lab of Comprehensive and Highly Efficient Utilization of Salt Lake Resource, Chinese Academy of Science, Xining 810008, Qinghai (China); Li, Wu, E-mail: liwu2016@126.com [Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, Qinghai (China); Key Lab of Comprehensive and Highly Efficient Utilization of Salt Lake Resource, Chinese Academy of Science, Xining 810008, Qinghai (China)

    2016-08-15

    Highlights: • Superhydrophobic surface was fabricated by black chromium electrodeposition and stearic acid modification. • The reaction process is simple, and of low cost, and no special instrument or environment is needed. • The obtained superhydrophobic surface presents good water repellency, and performs well at corrosion resistance. - Abstract: The fabrication of superhydrophobic surface on iron substrate is carried out through 20 min black chromium electrodeposition, followed by immersing in 0.05 M ethanolic stearic acid solution for 12 h. The resultant superhydrophobic complex film is characterized by scanning electron microscope (SEM), disperse Spectrometer (EDS), atomic force microscope (AFM), water contact angle (CA), sliding angle (SA) and X-ray photoelectron spectroscope (XPS), and its corrosion resistance property is measured with cyclic voltammetry (CV), linear polarization and electrochemical impedance spectroscopy (EIS). The results show that the fabricated superhydrophobic film has excellent water repellency (CA, 158.8°; SA, 2.1°) and significantly high corrosion resistance (1.31 × 10{sup 6} Ω cm{sup −2}) and excellent corrosion protection efficiency (99.94%).

  1. In vitro corrosion properties and cytocompatibility of Fe-Ga alloys as potential biodegradable metallic materials.

    Science.gov (United States)

    Wang, Henan; Zheng, Yang; Liu, Jinghua; Jiang, Chengbao; Li, Yan

    2017-02-01

    The in vitro biodegradable properties and cytocompatibility of Fe-Ga alloys including Fe 81 Ga 19 , (Fe 81 Ga 19 ) 98 B 2 and (Fe 81 Ga 19 ) 99.5 (TaC) 0.5 , and pure Fe were investigated for biomedical applications. The microstructure of the alloys was characterized using X-ray diffraction spectroscopy and optical microscopy. The results showed that A2 and D0 3 phases were detected for the three types of Fe-Ga alloys, and additional Fe 2 B and TaC phases were found in the (Fe 81 Ga 19 ) 98 B 2 and (Fe 81 Ga 19 ) 99.5 (TaC) 0.5 alloys, respectively. The corrosion rates of the Fe-Ga alloys were higher than that of pure Fe, as demonstrated by both potentiodynamic polarization measurements and immersion tests in simulated body fluid. The alloying element Ga lowered the corrosion potential of the Fe matrix and made it more susceptible to corrosion. Severe pitting corrosion developed on the surface of the Fe 81 Ga 19 alloy after the addition of ternary B or TaC due to the multi-phase microstructures. The MC3T3-E1 cells exhibited good adhesion and proliferation behavior on the surfaces of the Fe-Ga alloys after culture for 4h and 24h. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Experimental Investigation into Corrosion Effect on Mechanical Properties of High Strength Steel Bars under Dynamic Loadings

    Directory of Open Access Journals (Sweden)

    Hui Chen

    2018-01-01

    Full Text Available The tensile behaviors of corroded steel bars are important in the capacity evaluation of corroded reinforced concrete structures. The present paper studies the mechanical behavior of the corroded high strength reinforcing steel bars under static and dynamic loading. High strength reinforcing steel bars were corroded by using accelerated corrosion methods and the tensile tests were carried out under different strain rates. The results showed that the mechanical properties of corroded high strength steel bars were strain rate dependent, and the strain rate effect decreased with the increase of corrosion degree. The decreased nominal yield and ultimate strengths were mainly caused by the reduction of cross-sectional areas, and the decreased ultimate deformation and the shortened yield plateau resulted from the intensified stress concentration at the nonuniform reduction. Based on the test results, reduction factors were proposed to relate the tensile behaviors with the corrosion degree and strain rate for corroded bars. A modified Johnson-Cook strength model of corroded high strength steel bars under dynamic loading was proposed by taking into account the influence of corrosion degree. Comparison between the model and test results showed that proposed model properly describes the dynamic response of the corroded high strength rebars.

  3. Effects of solution treatment on mechanical properties and corrosion resistance of 4A duplex stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Panpan; Wang, Aiqin; Wang, Wenyan [Henan Univ. of Science and Technology, Luoyang (China). School of Material Science and Engineering; Xie, Jingpei [Henan Univ. of Science and Technology, Luoyang (China). Collaborative Innovation Center of Nonferrous Metals

    2018-02-15

    In this study, 4A duplex stainless steels were prepared via remelting in an intermediate frequency furnace and subsequently solution treated at different temperatures. The effects of solution treatment on the mechanical properties and corrosion resistance of 4A duplex stainless steel were investigated. Microstructures were characterized via optical microscopy and scanning electron microscopy. The mechanical properties were evaluated via hardness test, tensile test, and impact test experiments. The point corrosion resistance was studied via chemical immersion and potentiodynamic anodic polarization. The results showed that with increasing solution temperature in the range of 1223 - 1423 K, the tensile strength and hardness first decreased and then increased, and minimum values were obtained at 1323 K. The σ phase precipitated at the boundaries of the α/γ phases in samples solution treated at 1223 K, decreasing both impact energy and pitting potential of the experimental steels. When experimental steels were solution treated at 1373 K for 2 h, a suitable volume fraction of α/γ was uniformly distributed throughout the microstructure, and the steels exhibited optimal mechanical properties and pitting corrosion resistance.

  4. Studies on microstructure, mechanical and corrosion properties of high nitrogen stainless steel shielded metal arc welds

    Science.gov (United States)

    Mohammed, Raffi; Madhusudhan Reddy, G.; Srinivasa Rao, K.

    2018-03-01

    The present work is aimed at studying the microstructure, mechanical and corrosion properties of high nitrogen stainless steel shielded metal arc (SMA) welds made with Cromang-N electrode. Basis for selecting this electrode is to increase the solubility of nitrogen in weld metal due to high chromium and manganese content. Microstructures of the welds were characterized using optical microscopy (OM), field emission scanning electron microscopy (FESEM) and electron back scattered diffraction (EBSD) mainly to determine the morphology, phase analysis, grain size and orientation image mapping. Hardness, tensile and ductility bend tests were carried out to determine mechanical properties. Potentio-dynamic polarization testing was carried out to study the pitting corrosion resistance using a GillAC basic electrochemical system. Constant load type testing was carried out to study stress corrosion cracking (SCC) behaviour of welds. The investigation results shown that the selected Cr–Mn–N type electrode resulted in favourable microstructure and completely solidified as single phase coarse austenite. Mechanical properties of SMA welds are found to be inferior when compared to that of base metal and is due to coarse and dendritic structure.

  5. Mechanical properties of layers of corrosion products at steel / concrete interface

    International Nuclear Information System (INIS)

    Dehoux, Anita

    2012-01-01

    To take account of the development of corrosion products layers in residual lifetime calculations of reinforced concrete structures requires a good knowledge of the mechanical properties of these products. Our study aims to determine the mechanical properties of layers of corrosion products. The approach consists of an identification of the microstructure properties complemented by homogenization calculations to calculate a mesoscopic behavior in linear elasticity of layers of corrosion products. The study includes a series of experimental campaigns at the microscopic scale. Vickers micro indentation tests analyzed by a Gaussian mixture model approach allowed the acquisition of hardness and elastic moduli at the microscale. An identification of the microstructure products is performed by Raman microspectrometry. The microstructure's characterization brings valuable information for homogenization calculations. The first approach has consisted of calculations of random media homogenization by self-consistent and generalized self-consistent schemes. In the second approach, effective modulus calculations were performed using numerical microstructures resulting from 2D images taken with an optical microscope. The corpus is composed of samples of different ages and origins, their microstructures were compared. (author) [fr

  6. Microstructure, mechanical properties and bio-corrosion properties of Mg-Si(-Ca, Zn) alloy for biomedical application.

    Science.gov (United States)

    Zhang, Erlin; Yang, Lei; Xu, Jianwei; Chen, Haiyan

    2010-05-01

    Mg-Si alloy was investigated for biomedical application due to the biological function of Si in the human body. However, Mg-Si alloy showed a low ductility due to the presence of coarse Mg(2)Si. Ca and Zn elements were used to refine and modify the morphology of Mg(2)Si in order to improve the corrosion resistance and the mechanical properties. The cell toxicity of Mg, Zn and Ca metals was assessed by an MTT test. The test results indicated that increasing the concentrations of Mg, Zn and Ca ions did not cause cell toxicity, which showed that the release of these three elements would not lead to cell toxicity. Then, microstructure, mechanical properties and bio-corrosion properties of as-cast Mg-Si(-Ca, Zn) alloys were investigated by optical microscopy, scanning electronic microscopy, mechanical properties testing and electrochemical measurement. Ca element can slightly refine the grain size and the morphology Mg(2)Si phase in Mg-Si alloy. The bio-corrosion resistance of Mg-Si alloys was improved by the addition of Ca due to the reduction and refinement of Mg(2)Si phase; however, no improvement was observed in the strength and elongation. The addition of 1.6% Zn to Mg-0.6Si can modify obviously the morphology of Mg(2)Si phase from course eutectic structure to a small dot or short bar shape. As a result, tensile strength, elongation and bio-corrosion resistance were all improved significantly; especially, the elongation improved by 115.7%. It was concluded that Zn element was one of the best alloying elements of Mg-Si alloy for biomedical application. Copyright (c) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  7. THE ROLE OF SHIELDING GAS ON MECHANICAL, METALLURGICAL AND CORROSION PROPERTIES OF CORTEN STEEL WELDED JOINTS OF RAILWAY COACHES USING GMAW

    Directory of Open Access Journals (Sweden)

    Byju John

    2016-12-01

    Full Text Available This analysis lays emphasis on finding a suitable combination of shielding gas for welding underframe members such as sole bar of Railway Coaches made of corten steel; for improved mechanical, metallurgical and corrosion properties of welds using copper coated solid MIG/MAG welding filler wire size 1.2 mm conforming to AWS/SFA 5.18 ER 70 S in Semi-automatic GMAW process. Solid filler wire is preferred by welders due to less fumes, practically no slag and easy manipulation of welding torch with smooth wire flow during corrosion repair attention, when compared to Flux cored wire. Three joints using Gas metal arc welding (GMAW with shielding gases viz., Pure CO2, (80% Ar – 20% CO2 and (90% Ar – 10% CO2 were made from test pieces cut from Sole bar material of Railway Coach. Study of Mechanical properties such as tensile strength, hardness and toughness revealed that welded joint made using shielding gas (80% Ar – 20% CO2 has better Mechanical properties compared to the other two shielding gases and comparable to that of Parent metal. Type of Shielding gas used has influence on the chemical composition and macro & micro structures. The Tafel extrapolation study of freshly ground samples in 3.5% NaCl solution revealed that the welded joint made using shielding gas (80% Ar – 20% CO2 has also better corrosion resistance which is comparable to the Parent metal as well as similar commercial steels.

  8. Microstructure, mechanical property and corrosion behavior of interpenetrating (HA + β-TCP)/MgCa composite fabricated by suction casting

    International Nuclear Information System (INIS)

    Wang, X.; Dong, L.H.; Li, J.T.; Li, X.L.; Ma, X.L.; Zheng, Y.F.

    2013-01-01

    The novel interpenetrating (HA + β-TCP)/MgCa composites were fabricated by infiltrating MgCa alloy into porous HA + β-TCP using suction casting technique. The microstructure, mechanical properties and corrosion behaviors of the composites have been evaluated by means of scanning electron microscopy (SEM), X-ray diffraction (XRD), mechanical testing, electrochemical and immersion tests. It was shown that the composites had compact structure and the interfacial bonding between MgCa alloy and HA + β-TCP scaffolds was very well. The ultimate compressive strength of the composites was about 500–1000 fold higher than that of the original porous scaffolds, and it still retained quarter-half of the strength of the bulk MgCa alloy. The electrochemical and immersion tests indicated that the corrosion resistance of the composites was better than that of the MgCa matrix alloy, and the corrosion products of the composite surface were mainly Mg(OH) 2 , HA and Ca 3 (PO 4 ) 2 . Meanwhile, the mechanical and corrosive properties of the (HA + β-TCP)/MgCa composites were adjustable by the choice of HA content. - Highlights: • The composites were fabricated by infiltrating MgCa alloy into porous HA + β-TCP. • The microstructure, mechanical and corrosion properties were investigated. • It showed composites had compact structures and good interfacial bonding. • The mechanical and corrosive properties can be adjustable by the HA content. • The corrosion mechanism of the composite has been explained

  9. EFFECT OF INTERMETALLIC PHASES ON CORROSION BEHAVIOR AND MECHANICAL PROPERTIES OF DUPLEX STAINLESS STEEL AND SUPER-DUPLEX STAINLESS STEEL

    OpenAIRE

    Prabhu Paulraj; Rajnish Garg

    2015-01-01

    Duplex Stainless Steels (DSS) and Super Duplex Stainless Steel (SDSS) have excellent integration of mechanical and corrosion properties. However, the formation of intermetallic phases is a major problem in their usage. The mechanical and corrosion properties are deteriorated due to the presence of intermetallic phases. These phases are induced during welding, prolonged exposure to high temperatures, and improper heat treatments. The main emphasis of this review article is on intermetallic pha...

  10. In vitro corrosion properties and cytocompatibility of Fe-Ga alloys as potential biodegradable metallic materials

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Henan; Zheng, Yang; Liu, Jinghua; Jiang, Chengbao; Li, Yan, E-mail: liyan@buaa.edu.cn

    2017-02-01

    The in vitro biodegradable properties and cytocompatibility of Fe-Ga alloys including Fe{sub 81}Ga{sub 19}, (Fe{sub 81}Ga{sub 19}){sub 98}B{sub 2} and (Fe{sub 81}Ga{sub 19}){sub 99.5}(TaC){sub 0.5}, and pure Fe were investigated for biomedical applications. The microstructure of the alloys was characterized using X-ray diffraction spectroscopy and optical microscopy. The results showed that A2 and D0{sub 3} phases were detected for the three types of Fe-Ga alloys, and additional Fe{sub 2}B and TaC phases were found in the (Fe{sub 81}Ga{sub 19}){sub 98}B{sub 2} and (Fe{sub 81}Ga{sub 19}){sub 99.5}(TaC){sub 0.5} alloys, respectively. The corrosion rates of the Fe-Ga alloys were higher than that of pure Fe, as demonstrated by both potentiodynamic polarization measurements and immersion tests in simulated body fluid. The alloying element Ga lowered the corrosion potential of the Fe matrix and made it more susceptible to corrosion. Severe pitting corrosion developed on the surface of the Fe{sub 81}Ga{sub 19} alloy after the addition of ternary B or TaC due to the multi-phase microstructures. The MC3T3-E1 cells exhibited good adhesion and proliferation behavior on the surfaces of the Fe-Ga alloys after culture for 4 h and 24 h. - Highlights: • Fe-Ga alloys showed a higher degradation rate than pure Fe. • Fe-Ga alloys exhibited good cytocompatibility for the MC3T3-E1 cells. • The MC3T3-E1 cells were tolerable to the corrosion products of Fe-Ga alloys.

  11. The maraging steel corrosion properties with hardening of different kinds after double aging

    Directory of Open Access Journals (Sweden)

    L. V. Tarasenko

    2014-01-01

    Full Text Available The paper proposes to use high-strength corrosion-resistant maraging steels, which were developed for aircraft industry instead of carbon steel with coating to improve operation properties of the forcemeasuring resilient member in electronic strain-gauge balance.It examines the possibility to apply the martensitic-aging steels of Fe-Cr-Ni-Mo-Ti (ЭП678 and Fe-Cr-Ni-Mo-Cu-Nb (ЭП817 alloying systems. It was shown, that a traditional heat strain-hardening treatment including hardening and overageing of this steels provides combination of durability viscosity and corrosion- resistance, but at the same time it increases nonelastic effects and lowers the limit of elasticity because of reversing austenite formation. In this connection, it was proposed to use hardening with double aging i.e. main and low-temperature aging with no austenite formation as heat strainhardening treatment of steels for force-measuring resilient member. The goal of this work was to study the influence of double aging on the structure and properties of ЭП678 (06Х14Н6Д2МБТ and ЭП817 (03Х111Н10М2Т steels.The modes of double aging for ЭП817 steel were conformed to 4500С + 400 0С and 475 0С+ 400 0С, for ЭП678 steel – 530 0С + 500 0С. The structure and properties of hardened steels after main and double aging were compared.Metallographic analysis of samples after electrolytic etching was conducted with Leitz Metallovert microscope while the CamScan 4DV raster electronic microscope was used for Microroentgen-spectral analysis. The quantity of austenite was controlled with computerized setting DRON-4, the hardness was measured with ТК-2М instrument, corrosion-resistance was estimated with polarized curves, which were taken using a П-5848 potentiostat.The conducted research has shown, that double aging causes the additional hardening of steels due to disintegration of martensite and formation of dispersed Cu – corpuscles in ЭП817 steel and of Ni3Ti

  12. EFFECT OF INTERMETALLIC PHASES ON CORROSION BEHAVIOR AND MECHANICAL PROPERTIES OF DUPLEX STAINLESS STEEL AND SUPER-DUPLEX STAINLESS STEEL

    Directory of Open Access Journals (Sweden)

    Prabhu Paulraj

    2015-08-01

    Full Text Available Duplex Stainless Steels (DSS and Super Duplex Stainless Steel (SDSS have excellent integration of mechanical and corrosion properties. However, the formation of intermetallic phases is a major problem in their usage. The mechanical and corrosion properties are deteriorated due to the presence of intermetallic phases. These phases are induced during welding, prolonged exposure to high temperatures, and improper heat treatments. The main emphasis of this review article is on intermetallic phases and their effects on corrosion and mechanical properties. First the effect of various alloying elements on DSS and SDSS has been discussed followed by formation of various intermetallic phases. The intermetallic phases affect impact toughness and corrosion resistance significantly. Their deleterious effect on weldments has also been reviewed.

  13. Corrosion protection and antifouling properties of varnish-coated steel containing natural additive

    Directory of Open Access Journals (Sweden)

    Abd-El-Nabey Besheir Ahmed A.

    2017-01-01

    Full Text Available The corrosion protection and antifouling properties of varnish-coated steel panels containing different amounts of cannabis extracts were investigated using electrochemical impedance spectroscopy (EIS, salt spray and immersion tests in 0.5 M NaCl solution and subjected to a field test in seawater. Analysis of the experimental data showed that the presence of cannabis extract resisted the deterioration (peeling off tendency of the varnish-coated steel panels exposed to aggressive environments. Visual inspection showed that the cannabis extract also provided good antifouling properties.

  14. Microstructures, Corrosion and Tensile Properties of Ti-Al-Zr (PT-7M) Alloy

    International Nuclear Information System (INIS)

    Kim, Tae Hoon; Kang, Chang Sun; Baek, Jong Hyuk; Choi, Byoung Kwon; Jeong, Yong Hwan

    2006-01-01

    The primary circuit with the primary coolant of SMART (System integrated Modular Advanced ReacTor) is much different from that of commercial PWRs, i.e., an ammonia is used as a pH raising agent. To be used and have long term sustainability from this coarser environment, the titanium alloys should be proved they are good to hydrogen embrittlement. Thus, excellent mechanical properties and hydriding resistance is required for the safe operation during the reactor lifetime. The effects of hydrogen on the microstructure, mechanical properties and corrosion behavior of the Ti- Al-Zr (so-called PT-7M) alloy were studied

  15. PEO of pre-anodized Al–Si alloys: Corrosion properties and influence of sealings

    Energy Technology Data Exchange (ETDEWEB)

    Mohedano, M., E-mail: marta.mohedano@hzg.de [Helmholtz Zentrum Geesthacht, Magnesium Innovation Centre, Institute of Materials Research, Max-Planck-Str. 1, D-21502 Geesthacht (Germany); Matykina, E.; Arrabal, R.; Mingo, B.; Pardo, A. [Departamento de Ciencia de Materiales, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid (Spain)

    2015-08-15

    Highlights: • A356 gravity-cast and rheocast pre-anodized aluminium alloys were coated by PEO. • Different sealing techniques were applied after the coating process. • Iron-rich constituents of the substrate occlude the continuity of the porous anodic film. • PEO coatings consisted of a mixture of α-Al{sub 2}O{sub 3}, γ-Al{sub 2}O{sub 3} and mullite. • Post-treatments improved both hydrophobic and corrosion properties. - Abstract: Voltage-controlled PEO coatings were developed on A356 aluminum alloys (gravity-cast and rheocast) with a pre-anodized layer. The influence of the alloy manufacturing process and the effect of Si-rich phase on the structure and composition of the oxide layers were evaluated using SEM, EDS and XRD. The pre-anodized oxide layer preserves the microstructure of the substrate due to the presence of secondary phases that have a different behavior relative to the matrix during anodizing. PEO coatings consisted of a mixture of α-Al{sub 2}O{sub 3}, γ-Al{sub 2}O{sub 3} and mullite. The corrosion behavior and the effectiveness of different sealing techniques based on salts of nickel, cobalt, cerium and phosphonic acid were also studied. Post-treatments improved the hydrophobic properties of the coatings and showed a beneficial effect, significantly increasing the coating impedance and thereby reducing the susceptibility to corrosion.

  16. Tribological properties, corrosion resistance and biocompatibility of magnetron sputtered titanium-amorphous carbon coatings

    Science.gov (United States)

    Dhandapani, Vishnu Shankar; Subbiah, Ramesh; Thangavel, Elangovan; Arumugam, Madhankumar; Park, Kwideok; Gasem, Zuhair M.; Veeraragavan, Veeravazhuthi; Kim, Dae-Eun

    2016-05-01

    Amorphous carbon incorporated with titanium (a-C:Ti) was coated on 316L stainless steel (SS) by magnetron sputtering technique to attain superior tribological properties, corrosion resistance and biocompatibility. The morphology, topography and functional groups of the nanostructured a-C:Ti coatings in various concentrations were analyzed using atomic force microscopy (AFM), Raman, X-Ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). Raman and XPS analyses confirmed the increase in sp2 bonds with increasing titanium content in the a-C matrix. TEM analysis confirmed the composite nature of the coating and the presence of nanostructured TiC for Ti content of 2.33 at.%. This coating showed superior tribological properties compared to the other a-C:Ti coatings. Furthermore, electrochemical corrosion studies were performed against stimulated body fluid medium in which all the a-C:Ti coatings showed improved corrosion resistance than the pure a-C coating. Preosteoblasts proliferation and viability on the specimens were tested and the results showed that a-C:Ti coatings with relatively high Ti (3.77 at.%) content had better biocompatibility. Based on the results of this work, highly durable coatings with good biocompatibility could be achieved by incorporation of optimum amount of Ti in a-C coatings deposited on SS by magnetron sputtering technique.

  17. Rapid Tempering of Martensitic Stainless Steel AISI420: Microstructure, Mechanical and Corrosion Properties

    Science.gov (United States)

    Abbasi-Khazaei, Bijan; Mollaahmadi, Akbar

    2017-04-01

    In this research, the effect of rapid tempering on the microstructure, mechanical properties and corrosion resistance of AISI 420 martensitic stainless steel has been investigated. At first, all test specimens were austenitized at 1050 °C for 1 h and tempered at 200 °C for 1 h. Then, the samples were rapidly reheated by a salt bath furnace in a temperature range from 300 to 1050 °C for 2 min and cooled in air. The tensile tests, impact, hardness and electrochemical corrosion were carried out on the reheated samples. Scanning electron microscopy was used to study the microstructure and fracture surface. To investigate carbides, transmission electron microscopy and also scanning electron microscopy were used. X-ray diffraction was used for determination of the retained austenite. The results showed that the minimum properties such as the tensile strength, impact energy, hardness and corrosion resistance were obtained at reheating temperature of 700 °C. Semi-continuous carbides in the grain boundaries were seen in this temperature. Secondary hardening phenomenon was occurred at reheating temperature of 500 °C.

  18. Improvement of Adhesion Properties and Corrosion Resistance of Sol-Gel Coating on Zinc.

    Science.gov (United States)

    Savignac, Pauline; Menu, Marie-Joëlle; Gressier, Marie; Denat, Bastien; Khadir, Yacine El; Manov, Stephan; Ansart, Florence

    2018-05-03

    Corrosion is a major problem for durability of many metals and alloys. Among the efficient classical surface treatments, chromate-based treatments must be banished from industrial use due to their toxicity. At the same time, sol-gel routes have demonstrated high potential to develop an efficient barrier effect against aggressive environments. By this process, the anti-corrosion property can be also associated to others in the case of the development of multi-functional hybrid coatings. In this paper, the main goal is precisely to improve both the corrosion resistance and the adhesion properties of phosphated zinc substrates by the deposition of a hybrid (organic-inorganic) sol-gel layer. To reach this double objective, a choice between two formulations 3-glycidoxypropyltrimethoxysilane (GPTMS)/aluminum-tri-sec-butoxide (ASB) and 3-(trimethoxysilyl)propylmethacrylate (MAP)/tetraethylorthosilicate (TEOS) was firstly made based on the results obtained by microstructural characterizations using SEM, optical analysis, and mechanical characterization such as shock and/or scratch tests (coupled to climatic chamber and salt spray exposure). Several investigations were performed in this study, and the best formulation and performances of the system were obtained by adding a new precursor (1-[3-(trimethoxysilyl)propyl]ureido-UPS) under controlled conditions, as detailed in this paper.

  19. Theoretical predictions of anti-corrosive properties of THAM and its derivatives.

    Science.gov (United States)

    Malinowski, Szymon; Jaroszyńska-Wolińska, Justyna; Herbert, Tony

    2017-12-04

    We present quantum chemical theoretical estimations of the anti-corrosive properties of THAM (tris(hydroxymethyl)aminomethane) and three derivatives that differ in the number of benzene rings: THAM-1 (2-amino-3-hydroxy-2-(hydroxymethyl) propylobenzoate), THAM-2 (2-amino-2-(hydroxymetyl)prapan-1,3-diyldibenzoate) and THAM-3 (2-amino-propan-1,2,3-triyltribenzoate). Fourteen exchange-correlation functionals based on the density functional theory (DFT) were chosen for quantum chemical study of THAM derivatives. The objective was to examine the effect of benzene rings on potential anti-corrosive properties of THAM compounds. The results indicate that the addition of benzene rings in THAM derivatives is likely to significantly enhance electrostatic bonding of a THAM-based coating to a presented metal surface and, thus, its adhesion and long-term effect in corrosion inhibition. Whereas it is clear that all three derivatives appear to be superior in their bonding characteristics to pure THAM, the potential order of merit between the three is less clear, although THAM-3 presents as possibly superior.

  20. Novel dispersed magnetite core-shell nanogel polymers as corrosion inhibitors for carbon steel in acidic medium

    International Nuclear Information System (INIS)

    Atta, Ayman M.; El-Azabawy, Olfat E.; Ismail, H.S.; Hegazy, M.A.

    2011-01-01

    Graphical abstract: Display Omitted Research highlights: → Through a one-step thermal reaction, magnetite nanoparticles were synthesized, and self-assembled mixed films of modified cross-linked ionic polymer magnetite nanoparticles were prepared on iron surface. → The size distribution and shape of magnetite nanoparticles were examined using transmission electron microscopy (TEM). → The corrosion inhibition efficiency of carbon steel in 1 M HCl by the synthesized Fe 3 O 4 nanogel polymers has been studied using potentiodynamic polarization and EIS. → Scanning electron microscopy (SEM) measurements were applied to study the morphology of the carbon steel surface. - Abstract: Novel core-shell preparing poly(2-acrylamido-2-methylpropane sulfonic acid) (PAMPS) and copolymers with acrylic acid (AA) or acrylamide (AM) magnetic nanogels with controllable particle size produced via free aqueous polymerization at room temperature have been developed for the first time. The crosslinking polymerization was carried out in the presence of N,N'-methylenebisacrylamide (MBA) as a crosslinker, N,N,N',N'-tetramethylethylenediamine (TEMED) and potassium peroxydisulfate (KPS) as redox initiator system. The structure and morphology of the magnetic nanogels were characterized by Fourier transform infrared spectroscopy (FTIR), transmission and scanning electron microscopy (TEM and SEM). The effectiveness of the synthesized compounds as corrosion inhibitors for carbon steel in 1 M HCl was investigated by various electrochemical techniques such as potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The results showed enhancement in inhibition efficiencies with increasing the inhibitor concentrations and temperatures. The results showed the nanogel particles act as mixed inhibitors. Adsorption of nanogel particles was found to fit the Langmuir isotherm and was chemisorption.

  1. Properties, microstructure and resistance to metal corrosion from pure runoff of supermartensitic stainless steel

    International Nuclear Information System (INIS)

    Zappa, S; Burgueno, A; Svoboda, H. G; Ramini de Rissone, M; Surian, E. S

    2008-01-01

    Supermartensitic stainless steels (AISM) are characterized by their very low carbon content, providing good tenacity and weldability. They also contain Ni as a stabilizing agent of the austenite and Mo to improve corrosion resistance. The weldability of these materials is fundamentally important for their applications, mainly in the gas and oil industries. The presence of CO 2 , H 2 S, water with a high solids content and condensed water in the production of hydrocarbons together with the large amounts of Cl in these aqueous phases make localized corrosion one of the mechanisms for the degradation of these steels while in service. The protective gases used in the semiautomatic welding process with heavy or tubular wires (GMAW, FCAW) affect the chemical composition of the deposits, particularly the contents of C, O and N, generating variations in their properties. The mechanical properties of these steels are usually optimized after a post-welding heat treatment (PWHT), which may also significantly affect the corrosion resistance of the welding deposits. This work studied the influence of the welding procedure (protective gas and PWHT) on corrosion resistance from pitting of the unalloyed AISM metal. Two test pieces of unalloyed metal were welded according to ANSI/AWS A5.22-95 with a GMAW process using a 1.2 mm diameter tubular wire with metal filling that deposits a supermartensitic stainless steel. The effect of the gas protection was evaluated, welding one of the test pieces with Ar- 5%He and the other with Ar-18%CO 2 . The effect of the PWHT was analyzed, for which samples were extracted from each welded test piece, which were thermally treated at 650 o C for 15 minutes, producing as-welded (AW) samples and with PWHT. The chemical composition for both welding conditions was determined. Microstructural characterization was carried out for the four conditions , using optic and scanning electron microscopy and X-ray diffraction, and the Vickers microhardness was

  2. PEO of pre-anodized Al-Si alloys: Corrosion properties and influence of sealings

    Science.gov (United States)

    Mohedano, M.; Matykina, E.; Arrabal, R.; Mingo, B.; Pardo, A.

    2015-08-01

    Voltage-controlled PEO coatings were developed on A356 aluminum alloys (gravity-cast and rheocast) with a pre-anodized layer. The influence of the alloy manufacturing process and the effect of Si-rich phase on the structure and composition of the oxide layers were evaluated using SEM, EDS and XRD. The pre-anodized oxide layer preserves the microstructure of the substrate due to the presence of secondary phases that have a different behavior relative to the matrix during anodizing. PEO coatings consisted of a mixture of α-Al2O3, γ-Al2O3 and mullite. The corrosion behavior and the effectiveness of different sealing techniques based on salts of nickel, cobalt, cerium and phosphonic acid were also studied. Post-treatments improved the hydrophobic properties of the coatings and showed a beneficial effect, significantly increasing the coating impedance and thereby reducing the susceptibility to corrosion.

  3. Corrosion properties of HLW and spent fuel overpacks in highly alkaline environments

    International Nuclear Information System (INIS)

    Kursten, B.

    2009-01-01

    Throughout the world, deep geological disposal in stable rocks with low groundwater flow is considered for the long-term management of long-lived radioactive waste (vitrified high-level waste - VHLW - and spent fuel - SF).The main advantage of the SC design, with respect to corrosion, is that under the predicted conditions (i.e. highly alkaline concrete buffer), the carbon steel overpack is expected to undergo uniform corrosion (passive dissolution). The key objective of this study is to demonstrate that the carbon steel overpack will be able to ensure complete containment of the radioactivity at least during the thermal phase, this is the period during which the temperature of the host rock is expected to lie above the range of temperatures within which nominal radionuclide migration properties can be relied upon

  4. Stress corrosion cracking countermeasure observed on Ni-based alloy welds of BWR core support structure

    International Nuclear Information System (INIS)

    Sagawa, Wataru; Aoki, Takayuki; Itou, Takashi; Enomoto, Kunio; Hayashi, Eisaku; Ishikawa, Tetsuya

    2009-01-01

    The effect of hydrostatic test on the residual stress re-distribution was simulated by experiment to confirm the residual stress behavior of the cone-shaped shroud support to reactor pressure vessel (RPV) weld, where a number of cracks due to stress corrosion cracking (SCC) were observed on the inner side only. Test specimen with tensile residual stress was loaded and unloaded with axial plus bending load, which simulates the hydrostatic test load, and the strain change was measured during the test to observe the residual stress behavior. The results verify that the residual stresses of the shroud support to the RPV weld were reduced and the stresses on inner and outer sides were reversed by the hydrostatic test. As the SCC countermeasure, the shot peening (SP) technology was applied. Residual stress reduction by SP on the complicated configuration, and improvement of SCC resistance and endurance of the compressive residual stress were experimentally confirmed. Then, SP treatment procedures on the actual structure were confirmed and a field application technique was established

  5. Effect of copper addition on mechanical properties, corrosion resistance and antibacterial property of 316L stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Xi, Tong [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Shahzad, M. Babar [Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Xu, Dake [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Sun, Ziqing; Zhao, Jinlong [Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Yang, Chunguang, E-mail: cgyang@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Qi, Min [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Yang, Ke, E-mail: kyang@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China)

    2017-02-01

    The effects of addition of different Cu content (0, 2.5 and 3.5 wt%) on mechanical properties, corrosion resistance and antibacterial performance of 316L austenitic stainless steel (SS) after solution and aging treatment were investigated by mechanical test, transmission electron microscope (TEM), X-ray diffraction (XRD), electrochemical corrosion, X-ray photoelectron spectroscopy (XPS) and antibacterial test. The results showed that the Cu addition and heat treatment had no obvious influence on the microstructure with complete austenite features. The yield strength (YS) after solution treatment was almost similar, whereas the aging treatment obviously increased the YS due to formation of tiny Cu-rich precipitates. The pitting and protective potential of the solution treated Cu-bearing 316L SS in 0.9 wt% NaCl solution increased with increasing Cu content, while gradually declined after aging, owing to the high density Cu-rich precipitation. The antibacterial test proved that higher Cu content and aging were two compulsory processes to exert good antibacterial performance. The XPS results further indicated that aging enhanced the Cu enrichment in passive film, which could effectively stimulate the Cu ions release from the surface of passive film. - Highlights: • Higher Cu addition and aging guaranteed an excellent antibacterial property. • The Cu addition and heat treatment had no obvious influence on the microstructure. • The lower corrosion resistance for aging was attributed to Cu-rich precipitates.

  6. Bioactivity and corrosion properties of novel coatings containing strontium by micro-arc oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Kung, Kuan-Chen [Department of Materials Science and Engineering, National Cheng Kung University, Tainan, Taiwan (China); Lee, Tzer-Min, E-mail: tmlee@mail.ncku.edu.t [Institute of Oral Medicine, National Cheng Kung University, Tainan, Taiwan (China); Lui, Truan-Sheng [Department of Materials Science and Engineering, National Cheng Kung University, Tainan, Taiwan (China)

    2010-10-22

    Research highlights: The dental implant of titanium could be modified by anodic oxidation. It was found that incorporation of strontium ions into the matrix increase the bone formation. In this study, we try to investigate the effect of corrosion property and bioactivity on coatings containing strontium by anodic oxidation. The results suggest that coatings containing strontium on titanium by anodic oxidation has the potential to show the stability and bioactivity in the clinical use. - Abstract: Pure titanium (Ti) and titanium alloys are considered as bio-inert materials in clinical use. Bioactivity is the ability to induce bone-like apatite on the material surface. The micro-arc oxidation (MAO) technique is an effective method for improving the surface properties of titanium. The aim of this study was to investigate the bioactivity and corrosion behavior of MAO coatings containing strontium, which is beneficial for biological performance. The bioactivity of materials was evaluated based on the ability to induce a bond-like apatite layer on the surface in simulated body fluid (SBF), as proposed by Kokubo et al. After the materials were soaked in SBF for 1 day, precipitates formed on the surface of MAO coating. The surface of MAO coatings was completely covered with precipitates after 7 days. The precipitates, which were found to be composed of fiber structures, were identified as the apatite phase using thin film X-ray diffraction (TF-XRD). The results show that MAO coatings containing strontium can induce the formation of an apatite layer on their surface. In the potentiodynamic test, MAO coatings exhibited a more noble corrosion potential (E{sub corr}) than that of titanium in SBF. In the passive region, the current density of MAO coatings was lower than that of titanium. All findings in this study indicated that MAO coatings containing strontium have good bioactivity and corrosion resistance for clinical applications.

  7. Bioactivity and corrosion properties of novel coatings containing strontium by micro-arc oxidation

    International Nuclear Information System (INIS)

    Kung, Kuan-Chen; Lee, Tzer-Min; Lui, Truan-Sheng

    2010-01-01

    Research highlights: The dental implant of titanium could be modified by anodic oxidation. It was found that incorporation of strontium ions into the matrix increase the bone formation. In this study, we try to investigate the effect of corrosion property and bioactivity on coatings containing strontium by anodic oxidation. The results suggest that coatings containing strontium on titanium by anodic oxidation has the potential to show the stability and bioactivity in the clinical use. - Abstract: Pure titanium (Ti) and titanium alloys are considered as bio-inert materials in clinical use. Bioactivity is the ability to induce bone-like apatite on the material surface. The micro-arc oxidation (MAO) technique is an effective method for improving the surface properties of titanium. The aim of this study was to investigate the bioactivity and corrosion behavior of MAO coatings containing strontium, which is beneficial for biological performance. The bioactivity of materials was evaluated based on the ability to induce a bond-like apatite layer on the surface in simulated body fluid (SBF), as proposed by Kokubo et al. After the materials were soaked in SBF for 1 day, precipitates formed on the surface of MAO coating. The surface of MAO coatings was completely covered with precipitates after 7 days. The precipitates, which were found to be composed of fiber structures, were identified as the apatite phase using thin film X-ray diffraction (TF-XRD). The results show that MAO coatings containing strontium can induce the formation of an apatite layer on their surface. In the potentiodynamic test, MAO coatings exhibited a more noble corrosion potential (E corr ) than that of titanium in SBF. In the passive region, the current density of MAO coatings was lower than that of titanium. All findings in this study indicated that MAO coatings containing strontium have good bioactivity and corrosion resistance for clinical applications.

  8. Study on corrosion resistance of high - entropy alloy in medium acid liquid and chemical properties

    International Nuclear Information System (INIS)

    Florea, I; Buluc, G; Florea, R M; Carcea, I; Soare, V

    2015-01-01

    High-entropy alloy is a new alloy which is different from traditional alloys. The high entropy alloys were started in Tsing Hua University of Taiwan since 1995 by Yeh et al. Consisting of a variety of elements, each element occupying a similar compared with other alloy elements to form a high entropy. We could define high entropy alloys as having approximately equal concentrations, made up of a group of 5 to 11 major elements. In general, the content of each element is not more than 35% by weight of the alloy. During the investigation it turned out that this alloy has a high hardness and is also corrosion proof and also strength and good thermal stability. In the experimental area, scientists used different tools, including traditional casting, mechanical alloying, sputtering, splat-quenching to obtain the high entropy alloys with different alloying elements and then to investigate the corresponding microstructures and mechanical, chemical, thermal, and electronic performances. The present study is aimed to investigate the corrosion resistance in a different medium acid and try to put in evidence the mechanical properties. Forasmuch of the wide composition range and the enormous number of alloy systems in high entropy alloys, the mechanical properties of high entropy alloys can vary significantly. In terms of hardness, the most critical factors are: hardness/strength of each composing phase in the alloy, distribution of the composing phases. The corrosion resistance of an high entropy alloy was made in acid liquid such as 10%HNO 3 -3%HF, 10%H 2 SO 4 , 5%HCl and then was investigated, respectively with weight loss experiment. Weight loss test was carried out by put the samples into the acid solution for corrosion. The solution was maintained at a constant room temperature. The liquid formulations used for tests were 3% hydrofluoric acid with 10% nitric acid, 10% sulphuric acid, 5% hydrochloric acid. Weight loss of the samples was measured by electronic scale. (paper)

  9. Erosion-corrosion resistance properties of 316L austenitic stainless steels after low-temperature liquid nitriding

    Science.gov (United States)

    Zhang, Xiangfeng; Wang, Jun; Fan, Hongyuan; Pan, Dong

    2018-05-01

    The low-temperature liquid nitriding of stainless steels can result in the formation of a surface zone of so-called expanded austenite (S-phase) by the dissolution of large amounts of nitrogen in the solid solution and formation of a precipitate-free layer supersaturated with high hardness. Erosion-corrosion measurements were performed on low-temperature nitrided and non-nitrided 316L stainless steels. The total erosion-corrosion, erosion-only, and corrosion-only wastages were measured directly. As expected, it was shown that low-temperature nitriding dramatically reduces the degree of erosion-corrosion in stainless steels, caused by the impingement of particles in a corrosive medium. The nitrided 316L stainless steels exhibited an improvement of almost 84% in the erosion-corrosion resistance compared to their non-nitrided counterparts. The erosion-only rates and synergistic levels showed a general decline after low-temperature nitriding. Low-temperature liquid nitriding can not only reduce the weight loss due to erosion but also significantly reduce the weight loss rate of interactions, so that the total loss of material decreased evidently. Therefore, 316L stainless steels displayed excellent erosion-corrosion behaviors as a consequence of their highly favorable corrosion resistances and superior wear properties.

  10. Corrosion Resistance Properties of Aluminum Coating Applied by Arc Thermal Metal Spray in SAE J2334 Solution with Exposure Periods

    Directory of Open Access Journals (Sweden)

    Han-Seung Lee

    2016-03-01

    Full Text Available Arc thermal metal spray coating provides excellent corrosion, erosion and wear resistance to steel substrates. This paper incorporates some results of aluminum coating applied by this method on plain carbon steel. Thereafter, coated panels were exposed to an environment known to form stable corrosion products with aluminum. The coated panels were immersed in Society of Automotive Engineers (SAE J2334 for different periods of time. This solution consists of an aqueous solution of NaCl, CaCl2 and NaHCO3. Various electrochemical techniques, i.e., corrosion potential-time, electrochemical impedance spectroscopy (EIS and the potentiodynamic were used to determine the performance of stimulants in improving the properties of the coating. EIS studies revealed the kinetics and mechanism of corrosion and potentiodynamic attributed the formation of a passive film, which stifles the penetration of aggressive ions towards the substrate. The corrosion products that formed on the coating surface, identified using Raman spectroscopy, were Dawsonite (NaAlCO3(OH2 and Al(OH3. These compounds of aluminum are very sparingly soluble in aqueous solution and protect the substrate from pitting and uniform corrosion. The morphology and composition of corrosion products determined by scanning electron microscopy and energy dispersive X-ray analyses indicated that the environment plays a decisive role in improving the corrosion resistance of aluminum coating.

  11. Influence of ageing treatment on microstructure, mechanical and bio-corrosion properties of Mg-Dy alloys.

    Science.gov (United States)

    Yang, Lei; Huang, Yuanding; Feyerabend, Frank; Willumeit, Regine; Kainer, Karl Ulrich; Hort, Norbert

    2012-09-01

    Mg-Dy alloys have shown to be promising for medical applications. In order to investigate the influence of ageing treatment on their mechanical and corrosion properties, three Mg-xDy alloys (x=10, 15, 20 wt%) were prepared. Their microstructure, mechanical and corrosion behavior were investigated. The results indicate that ageing at 250 °C has little influence on the mechanical and corrosion properties. In contrast, ageing at 200 °C significantly increases the yield strength, and reduces the ductility. After ageing at 200 °C, the corrosion rate of Mg-20Dy alloy increases largely in 0.9 wt% NaCl solution, but remains unchanged in cell culture medium. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Effects of electrodeposition potential on the corrosion properties of bis-1,2-[triethoxysilyl] ethane films on aluminum alloy

    International Nuclear Information System (INIS)

    Hu Jiming; Liu Liang; Zhang Jianqing; Cao Chunan

    2006-01-01

    Bis-1,2-[triethoxysilyl] ethane (BTSE) films were prepared on 2024-T3 alloys by using potentiostatic method for corrosion protection. This work mainly investigated the effects of electrodeposition potential on the corrosion properties of silane films. Films prepared at cathodic potentials display an improvement in corrosion inhibition properties, while those prepared at anodic potentials present the deterioration of protectiveness. In the case of cathodic deposition, when the potential shifts negatively from the open-circuit potential (OCP), corrosion protection of the obtained films initially increases and then decreases, with the optimal deposition potential at -0.8 V/SCE. As indicated in scanning electron microscopy (SEM) images, films deposited at the optimum potential present the most uniform and compact morphologies. In addition, steady-state polarization and current-time curves have been also recorded on Al alloys in BTSE solutions during the deposition, respectively

  13. Influence of molecular packing on the corrosion inhibition properties of self-assembled octadecyltrichlorosilane monolayers on silicon

    International Nuclear Information System (INIS)

    Hsieh, Shuchen; Chao, Wei-Jay; Lin, Pei-Ying; Hsieh, Chiung-Wen

    2014-01-01

    Highlights: •Molecular packing plays an important role in determining SAM film properties. •Loose-packed OTS monolayers on silicon were corroded by exposure to KMnO 4 . •Dense-packed OTS SAM films exhibited excellent corrosion protection efficacy. -- Abstract: The corrosion inhibition properties of octadecyltrichlorosilane (OTS) self-assembled monolayers (SAMs) on silicon were investigated. Atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), contact angle (CA), and lateral force microscopy (LFM) were used to determine the OTS film formation time, packing density, and corrosion protection efficacy. The OTS films reached adsorption saturation after 15 s; however, the molecular density continued to increase up to 24 h. The films were exposed to the strong oxidant KMnO 4 , and while 15-s film samples exhibited corrosion after a 1 min exposure, samples with films grown for 24 h were protected even after 24 h

  14. Microstructure, Mechanical and Corrosion Properties of Friction Stir-Processed AISI D2 Tool Steel

    Science.gov (United States)

    Yasavol, Noushin; Jafari, Hassan

    2015-05-01

    In this study, AISI D2 tool steel underwent friction stir processing (FSP). The microstructure, mechanical properties, and corrosion resistance of the FSPed materials were then evaluated. A flat WC-Co tool was used; the rotation rate of the tool varied from 400 to 800 rpm, and the travel speed was maintained constant at 385 mm/s during the process. FSP improved mechanical properties and produced ultrafine-grained surface layers in the tool steel. Mechanical properties improvement is attributed to the homogenous distribution of two types of fine (0.2-0.3 μm) and coarse (1.6 μm) carbides in duplex ferrite-martensite matrix. In addition to the refinement of the carbides, the homogenous dispersion of the particles was found to be more effective in enhancing mechanical properties at 500 rpm tool rotation rate. The improved corrosion resistance was observed and is attributed to the volume fraction of low-angle grain boundaries produced after friction stir process of the AISI D2 steel.

  15. Microstructure and corrosion properties of CrMnFeCoNi high entropy alloy coating

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Qingfeng [Shanghai Key laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai, 200240 (China); Feng, Kai, E-mail: fengkai@sjtu.edu.cn [Shanghai Key laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai, 200240 (China); Li, Zhuguo, E-mail: lizg@sjtu.edu.cn [Shanghai Key laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai, 200240 (China); Lu, Fenggui [Shanghai Key laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai, 200240 (China); Li, Ruifeng [School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212003 (China); Huang, Jian; Wu, Yixiong [Shanghai Key laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai, 200240 (China)

    2017-02-28

    Highlights: • Equimolar CrMnFeCoNi high entropy alloy coating are prepared by laser cladding. • The cladding layer forms a simple FCC phase solid solution with identical dendritic structure. • The cladding layer exhibits a noble corrosion resistance in both 3.5 wt.% NaCl and 0.5 M sulfuric acid. • Element segregation makes Cr-depleted interdendrites the starting point of corrosion reaction. - Abstract: Equimolar CrMnFeCoNi high entropy alloy (HEA) is one of the most notable single phase multi-component alloys up-to-date with promising mechanical properties at cryogenic temperatures. However, the study on the corrosion behavior of CrMnFeCoNi HEA coating has still been lacking. In this paper, HEA coating with a nominal composition of CrMnFeCoNi is fabricated by laser surface alloying and studied in detail. Microstructure and chemical composition are determined by X-ray diffraction (XRD), optical microscope (OM), scanning electron microscope (SEM) and energy dispersive spectrometer (EDS). Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) are used to investigate the corrosion behavior. The coating forms a simple FCC phase with an identical dendritic structure composed of Fe/Co/Ni-rich dendrites and Mn/Ni-rich interdendrites. Both in 3.5 wt.% NaCl solution and 0.5 M sulfuric acid the coating exhibits nobler corrosion resistance than A36 steel substrate and even lower i{sub corr} than 304 stainless steel (304SS). EIS plots coupled with fitted parameters reveal that a spontaneous protective film is formed and developed during immersion in 0.5 M sulfuric acid. The fitted R{sub t} value reaches its maximum at 24 h during a 48 h’ immersion test, indicating the passive film starts to break down after that. EDS analysis conducted on a corroded surface immersed in 0.5 M H{sub 2}SO{sub 4} reveals that corrosion starts from Cr-depleted interdendrites.

  16. Use of stainless steel as structural materials in reactor cores

    International Nuclear Information System (INIS)

    Teodoro, C.A.

    1990-01-01

    Austenitic stainless steels are used as structural materials in reactor cores, due to their good mechanical properties at working temperatures and high generalized corrosion resistance in aqueous medium. The objective of this paper is to compare several 300 series austenitic stainless steels related to mechanical properties, localized corrosion resistance (SCC and intergranular) and content of delta ferrite. (author)

  17. Effect of surface treatment on the corrosion properties of magnesium-based fibre metal laminate

    Science.gov (United States)

    Zhang, X.; Zhang, Y.; Ma, Q. Y.; Dai, Y.; Hu, F. P.; Wei, G. B.; Xu, T. C.; Zeng, Q. W.; Wang, S. Z.; Xie, W. D.

    2017-02-01

    The surface roughness, weight of phosphating film and wettability of magnesium alloy substrates after abrasion and phosphating treatment were investigated in this work. The interfacial bonding and corrosion properties of a magnesium-based fibre metal laminate (MgFML) were analysed. The results showed that the wettability of the magnesium alloy was greatly influenced by the surface roughness, and the rough surface possessed a larger surface energy and better wettability. The surface energy and wettability of the magnesium alloy were significantly improved by the phosphating treatment. After phosphating for 5 min, a phosphating film with a double-layer structure was formed on the magnesium substrate, and the weight of the phosphating film and the surface energy reached their maximum values. The surface energies of the phosphated substrate after abrasion with #120 and #3000 grit abrasive papers were 84.31 mJ/m2 and 83.65 mJ/m2, respectively. The wettability of the phosphated magnesium was significantly better than the abraded magnesium. The phosphated AZ31B sheet had a better corrosion resistance than the abraded AZ31B sheet within short times. The corrosion resistance of the magnesium alloy was greatly increased by being composited with glass fibre/epoxy prepregs.

  18. Mechanical properties and corrosion behavior of Mg-Gd-Ca-Zr alloys for medical applications.

    Science.gov (United States)

    Shi, Ling-Ling; Huang, Yuanding; Yang, Lei; Feyerabend, Frank; Mendis, Chamini; Willumeit, Regine; Ulrich Kainer, Karl; Hort, Norbert

    2015-07-01

    Magnesium alloys are promising candidates for biomedical applications. In this work, influences of composition and heat treatment on the microstructure, the mechanical properties and the corrosion behavior of Mg-Gd-Ca-Zr alloys as potential biomedical implant candidates were investigated. Mg5Gd phase was observed at the grain boundaries of Mg-10Gd-xCa-0.5Zr (x=0, 0.3, 1.2wt%) alloys. Increase in the Ca content led to the formation of additional Mg2Ca phase. The Ca additions increased both the compressive and the tensile yield strengths, but reduced the ductility and the corrosion resistance in cell culture medium. After solution heat treatment, the Mg5Gd particles dissolved in the Mg matrix. The compressive strength decreased, while the corrosion resistance improved in the solution treated alloys. After ageing at 200°C, metastable β' phase formed on prismatic planes and a new type of basal precipitates have been observed, which improved the compressive and tensile ultimate strength, but decreased the ductility. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Microstructure, mechanical property, corrosion behavior, and in vitro biocompatibility of Zr-Mo alloys.

    Science.gov (United States)

    Zhou, F Y; Wang, B L; Qiu, K J; Li, L; Lin, J P; Li, H F; Zheng, Y F

    2013-02-01

    In this study, the microstructure, mechanical properties, corrosion behaviors, and in vitro biocompatibility of Zr-Mo alloys as a function of Mo content after solution treatment were systemically investigated to assess their potential use in biomedical application. The experimental results indicated that Zr-1Mo alloy mainly consisted of an acicular structure of α' phase, while ω phase formed in Zr-3Mo alloy. In Zr-5Mo alloy, retained β phase and a small amount of precipitated α phase were observed. Only the retained β phase was obtained in Zr-10Mo alloy. Zr-1Mo alloy exhibited the greatest hardness, bending strength, and modulus among all experimental Zr-Mo alloys, while β phase Zr-10Mo alloy had a low modulus. The results of electrochemical corrosion indicated that adding Mo into Zr improved its corrosion resistance which resulted in increasing the thermodynamic stability and passivity of zirconium. The cytotoxicity test suggested that the extracts of the studied Zr-Mo alloys produced no significant deleterious effect to fibroblast cells (L-929) and osteoblast cells (MG 63), indicating an excellent in vitro biocompatibility. Based on these facts, certain Zr-Mo alloys potentially suitable for different biomedical applications were proposed. Copyright © 2012 Wiley Periodicals, Inc.

  20. Microstructures, mechanical properties and corrosion resistances of extruded Mg-Zn-Ca-xCe/La alloys.

    Science.gov (United States)

    Tong, L B; Zhang, Q X; Jiang, Z H; Zhang, J B; Meng, J; Cheng, L R; Zhang, H J

    2016-09-01

    Magnesium alloys are considered as good candidates for biomedical applications, the influence of Ce/La microalloying on the microstructure, mechanical property and corrosion performance of extruded Mg-5.3Zn-0.6Ca (wt%) alloy has been investigated in the current study. After Ce/La addition, the conventional Ca2Mg6Zn3 phases are gradually replaced by new Mg-Zn-Ce/La-(Ca) phases (T1'), which can effectively divide the Ca2Mg6Zn3 phase. The Ca2Mg6Zn3/T1' structure in Mg-Zn-Ca-0.5Ce/La alloy is favorably broken into small particles during the extrusion, resulting in an obvious refinement of secondary phase. The dynamic recrystallized grain size is dramatically decreased after 0.5Ce/La addition, and the tensile yield strength is improved, while further addition reverses the effect, due to the grain coarsening. However, the corrosion resistance of extruded Mg-Zn-Ca alloy deteriorates after Ce/La addition, because the diameter of secondary phase particle is remarkably decreased, which increases the amount of cathodic sites and accelerates the galvanic corrosion process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Mechanical Properties Variation of B500SD High Ductility Reinforcement Regarding its Corrosion Degree

    Directory of Open Access Journals (Sweden)

    Cobo, A.

    2011-12-01

    Full Text Available Corrosion effects on reinforcement become evident in the bar section reduction and in the variation of mechanical properties related to ductility. In this research work, 96 B500SD steel bars, previously subjected to different corrosion variables, have been tested. Results show that the elongation of the bars diminishes and the ratio between the maximum tensile stress and the elastic limit increases as the corrosion degree advances. These phenomena can be explained by studying the necking effect and the different steel composition through the manufacture process.

    Los efectos de la corrosión sobre las armaduras se manifiestan por la pérdida de sección y la variación de las propiedades mecánicas relacionadas con la ductilidad. En este trabajo se han ensayado a tracción 96 barras de acero B500SD que previamente se han sometido a niveles variables de corrosión. Los resultados muestran que los alargamientos de las barras disminuyen y el cociente entre la tensión máxima y el límite elástico aumenta conforme el nivel de corrosión avanza. A partir del estudio del efecto de entalla y de la distinta constitución metalográfica del acero a nivel de sección debido a su procedimiento de fabricación, se pueden explicar los fenómenos anteriores.

  2. Influence of core sand properties on flow dynamics of core shooting process based on experiment and multiphase simulation

    Directory of Open Access Journals (Sweden)

    Chang-jiang Ni

    2017-03-01

    Full Text Available The influence of core sand properties on flow dynamics was investigated synchronously with various core sands, transparent core-box and high-speed camera. To confirm whether the core shooting process has significant turbulence, the flow pattern of sand particles in the shooting head and core box was reproduced with colored core sands. By incorporating the kinetic theory of granular flow (KTGF, kinetic-frictional constitutive correlation and turbulence model, a two-fluid model (TFM was established to study the flow dynamics of the core shooting process. Two-fluid model (TFM simulations were then performed and a areasonable agreement was achieved between the simulation and experimental results. Based on the experimental and simulation results, the effects of turbulence, sand density, sand diameter and binder ratio were analyzed in terms of filling process, sand volume fraction (αs and sand velocity (Vs.

  3. Fabrication of biodegradable Zn-Al-Mg alloy: Mechanical properties, corrosion behavior, cytotoxicity and antibacterial activities.

    Science.gov (United States)

    Bakhsheshi-Rad, H R; Hamzah, E; Low, H T; Kasiri-Asgarani, M; Farahany, S; Akbari, E; Cho, M H

    2017-04-01

    In this work, binary Zn-0.5Al and ternary Zn-0.5Al-xMg alloys with various Mg contents were investigated as biodegradable materials for implant applications. Compared with Zn-0.5Al (single phase), Zn-0.5Al-xMg alloys consisted of the α-Zn and Mg 2 (Zn, Al) 11 with a fine lamellar structure. The results also revealed that ternary Zn-Al-Mg alloys presented higher micro-hardness value, tensile strength and corrosion resistance compared to the binary Zn-Al alloy. In addition, the tensile strength and corrosion resistance increased with increasing the Mg content in ternary alloys. The immersion tests also indicated that the corrosion rates in the following order Zn-0.5Al-0.5MgAl-0.3MgAl-0.1MgAl. The cytotoxicity tests exhibited that the Zn-0.5Al-0.5Mg alloy presents higher viability of MC3T3-E1 cell compared to the Zn-0.5Al alloy, which suggested good biocompatibility. The antibacterial activity result of both Zn-0.5Al and Zn-0.5Al-Mg alloys against Escherichia coli presented some antibacterial activity, while the Zn-0.5Al-0.5Mg significantly prohibited the growth of Escherichia coli. Thus, Zn-0.5Al-0.5Mg alloy with appropriate mechanical properties, low corrosion rate, good biocompatibility and antibacterial activities was believed to be a good candidate as a biodegradable implant material. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Protection of Petroleum Pipeline Carbon Steel Alloys with New Modified Core-Shell Magnetite Nanogel against Corrosion in Acidic Medium

    Directory of Open Access Journals (Sweden)

    Gamal A. El Mahdy

    2013-01-01

    Full Text Available New method was used to prepare magnetite nanoparticle based on reduction of Fe(III ions with potassium iodide to produce Fe3O4 nanoparticle. The prepared magnetite was stabilized with cross-linked polymer based on 2-acrylamido-2-methylpropane sulfonic acid (AMPS to prepare novel core-shell nanogel. In this respect, Fe3O4/poly(2-acrylamido-2-methylpropane sulfonic acid (PAMPS magnetic nanogels with controllable particle size produced via free aqueous polymerization at 65°C have been developed for the first time. The polymer was crosslinked in the presence of N,N-methylenebisacrylamide (MBA as a crosslinker and potassium peroxydisulfate (KPS as redox initiator system. The structure and morphology of the magnetic nanogel were characterized by Fourier transform infrared spectroscopy (FTIR and transmission and scanning electron microscopy (TEM and SEM. The effectiveness of the synthesized compounds as corrosion inhibitors for carbon steel in 1 M HCl was investigated by various electrochemical techniques such as potentiodynamic polarization and electrochemical impedance spectroscopy (EIS. The results showed enhancement in inhibition efficiencies with increasing the inhibitor concentrations. The results showed that the nanogel particles act as mixed inhibitors. EIS data revealed that Rct increases with increasing inhibitor concentration.

  5. The effect of carbon content on mechanical properties, failure and corrosion resistance of deposited chromium metal

    Directory of Open Access Journals (Sweden)

    Леонід Кімович Лещинськiй

    2017-06-01

    Full Text Available It has been shown that if choosing a metal composition for surfacing rolls and rollers of continuous casting machines, both the carbon impact on the mechanical and functional properties and the critical values of the chromium concentration, which determine the corrosion resistance of the metal with regard to electrochemical corrosion theory, should be considered as well. The paper studied the effect of chromium and carbon steel the X5-X12 type on the structure, technological strength, mechanical properties, fracturing resistance and corrosion resistance of the weld metal. The composition of chromium tool steels (deposited metal (X5-used for the rolls of hot rolling mills and (X12-used for continuous casting machines rollers correspond to these values. The impact of carbon on the properties of the deposited metal containing chromium was considered by comparing the data for both types of the deposited metal. It was found that for both types of the deposited metal (X5 and X12, the limiting value of the carbon content, providing an optimal combination of strength, ductility, failure resistance is the same. If the carbon content is more than the limiting value – (0,25% the technological strength and failure resistance of the deposited metal significantly reduce. With increasing carbon content from 0,18 to 0,25% the martensite structure has a mixed morphology – lath and plate. The strength and toughness of the deposited metal grow. Of particular interest is simultaneous increase in the specific work of failure resulted from crack inhibition at the boundary with far less solid and more ductile ferrite. As for the 5% chromium metal, the X12 type composition with 0,25% C, is borderline. With a further increase in the carbon content of the metal both ductility and failure resistance sharply decrease and with 0,40% C the growth rate of fatigue crack increases by almost 1,5 times

  6. Effect of pulse current parameters on the mechanical and corrosion properties of anodized nanoporous aluminum coatings

    International Nuclear Information System (INIS)

    Mohammadi, Iman; Ahmadi, Shahab; Afshar, Abdollah

    2016-01-01

    In this study, the effects of pulse current parameters on corrosion resistance and mechanical properties of anodized coatings were evaluated. Hardness measurements, polarization and electrochemical impedance spectroscopy tests were employed to investigate the mechanical properties and corrosion behavior of these coatings. Also, field emission scanning electron microscopy (FE-SEM) was used to analyze the surface morphology and microstructure of the coatings. It was found that the properties of anodized coatings were dependent on various parameters, among which, time, temperature and pulse current parameters (current density limit, frequency and duty cycle) were optimized. Analysis of Variance (ANOVA) was conducted in order to optimize the results of designed experiments for predicting the hardness of anodic Al_2O_3 coatings. Experimental results showed that the temperature and the interaction of quadratic behavior of minimum current density with frequency and duty cycle were the most important factors influencing the hardness of these coatings. It was indicated that the highest hardness value of 642 HV was attained at the maximum and minimum current densities of 4.4, 1.27 A/dm"2, respectively, a frequency of 82 Hz, procedure time of 27.2 min, duty cycle of 80.2% and the bath temperature of 13.5 °C. In addition, the FE-SEM micrographs showed that the highest density is obtained through the mentioned optimum conditions. Moreover, the electrochemical tests revealed that the highest polarization resistance obtained at optimum conditions was more than 20 times greater than the other samples. - Highlights: • Electrolyte temperature undesirably influences the hardness of anodized coatings. • Maximum hardness of coatings was evaluated by optimization of effective parameters. • The diameter of alumina nanotube considerably affects hardness of anodized coating. • R_P of the sample formed at optimum condition was at least 20 times more than others. • Porosity is the

  7. Effect of pulse current parameters on the mechanical and corrosion properties of anodized nanoporous aluminum coatings

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadi, Iman, E-mail: imanmohammadi68@gmail.com; Ahmadi, Shahab; Afshar, Abdollah

    2016-11-01

    In this study, the effects of pulse current parameters on corrosion resistance and mechanical properties of anodized coatings were evaluated. Hardness measurements, polarization and electrochemical impedance spectroscopy tests were employed to investigate the mechanical properties and corrosion behavior of these coatings. Also, field emission scanning electron microscopy (FE-SEM) was used to analyze the surface morphology and microstructure of the coatings. It was found that the properties of anodized coatings were dependent on various parameters, among which, time, temperature and pulse current parameters (current density limit, frequency and duty cycle) were optimized. Analysis of Variance (ANOVA) was conducted in order to optimize the results of designed experiments for predicting the hardness of anodic Al{sub 2}O{sub 3} coatings. Experimental results showed that the temperature and the interaction of quadratic behavior of minimum current density with frequency and duty cycle were the most important factors influencing the hardness of these coatings. It was indicated that the highest hardness value of 642 HV was attained at the maximum and minimum current densities of 4.4, 1.27 A/dm{sup 2}, respectively, a frequency of 82 Hz, procedure time of 27.2 min, duty cycle of 80.2% and the bath temperature of 13.5 °C. In addition, the FE-SEM micrographs showed that the highest density is obtained through the mentioned optimum conditions. Moreover, the electrochemical tests revealed that the highest polarization resistance obtained at optimum conditions was more than 20 times greater than the other samples. - Highlights: • Electrolyte temperature undesirably influences the hardness of anodized coatings. • Maximum hardness of coatings was evaluated by optimization of effective parameters. • The diameter of alumina nanotube considerably affects hardness of anodized coating. • R{sub P} of the sample formed at optimum condition was at least 20 times more than others

  8. Thermal properties and corrosion resistance of organoclay/epoxy resin film

    Science.gov (United States)

    Baiquni, M.; Soegijono, B.

    2018-03-01

    Hybrid materials organoclay/epoxy resin films were prepared by varying organoclay content in epoxy resin as a matrix. The film were investigated by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and thermal conductivity. TGA and FT-IR results confirmed that the melting temperature shifted to a lower point. The thermal conductivity and corrosion resistant generally increase with increasing organoclay content. The changes on these properties may due to cross link between organoclay and epoxy.

  9. Alpha prime effect on mechanical properties and corrosion resistance of UR 52N+ duplex stainless steel

    International Nuclear Information System (INIS)

    Fontes, Talita Filier

    2009-01-01

    Alpha prime phase leads to decreased corrosion resistance and mechanical properties losses of duplex stainless steels. In this work mechanical and electrochemical tests were performed in duplex stainless steel UR 52N+ aged at 475 degree C for various periods in order to determine the sensibility of these tests to alpha prime presence. Hardness tests showed a gradual increase in its values; on the other hand, impact tests revealed that the material aged for 12h losses about 80% of energy absorption capacity of the solution annealed sample. Notwithstanding cyclic polarization tests showed that significant changes are only noted for aging times greater than 96h. (author)

  10. Microstructure and Tensile/Corrosion Properties Relationships of Directionally Solidified Al-Cu-Ni Alloys

    Science.gov (United States)

    Rodrigues, Adilson V.; Lima, Thiago S.; Vida, Talita A.; Brito, Crystopher; Garcia, Amauri; Cheung, Noé

    2018-03-01

    Al-Cu-Ni alloys are of scientific and technological interest due to high strength/high temperature applications, based on the reinforcement originated from the interaction between the Al-rich phase and intermetallic composites. The nature, morphology, size, volume fraction and dispersion of IMCs particles throughout the Al-rich matrix are important factors determining the resulting mechanical and chemical properties. The present work aims to evaluate the effect of the addition of 1wt%Ni into Al-5wt%Cu and Al-15wt%Cu alloys on the solidification rate, macrosegregation, microstructure features and the interrelations of such characteristics on tensile and corrosion properties. A directional solidification technique is used permitting a wide range of microstructural scales to be examined. Experimental growth laws relating the primary and secondary dendritic spacings to growth rate and solidification cooling rate are proposed, and Hall-Petch type equations are derived relating the ultimate tensile strength and elongation to the primary dendritic spacing. Considering a compromise between ultimate tensile strength and corrosion resistance of the examined alloys samples from both alloys castings it is shown that the samples having more refined microstructures are associated with the highest values of such properties.

  11. Enhanced mechanical properties and increased corrosion resistance of a biodegradable magnesium alloy by plasma electrolytic oxidation (PEO).

    Science.gov (United States)

    White, Leon; Koo, Youngmi; Neralla, Sudheer; Sankar, Jagannathan; Yun, Yeoheung

    2016-06-01

    We report the enhanced mechanical properties of AZ31 magnesium alloys by plasma electrolytic oxidation (PEO) coating in NaOH, Na 2 SiO 3 , KF and NaH 2 PO 4 ·2H 2 O containing electrolytes. Mechanical properties including wear resistance, surface hardness and elastic modulus were increased for PEO-coated AZ31 Mg alloys (PEO-AZ31). DC polarization in Hank's solution indicating that the corrosion resistance significantly increased for PEO-coating in KF-contained electrolyte. Based on these results, the PEO coating method shows promising potential for use in biodegradable implant applications where tunable corrosion and mechanical properties are needed.

  12. Application of calculated NMR parameters, aromaticity indices and wavefunction properties for evaluation of corrosion inhibition efficiency of pyrazine inhibitors

    Science.gov (United States)

    Behzadi, Hadi; Manzetti, Sergio; Dargahi, Maryam; Roonasi, Payman; Khalilnia, Zahra

    2018-01-01

    In light of the importance of developing novel corrosion inhibitors, a series of quantum chemical calculations were carried out to evaluate 15N chemical shielding CS tensors as well as aromaticity indexes including NICS, HOMA, FLU, and PDI of three pyrazine derivatives, 2-methylpyrazine (MP), 2-aminopyrazine (AP) and 2-amino-5-bromopyrazine (ABP). The NICS parameters have been shown in previous studies to be paramount to the prediction of anti-corrosion properties, and have been combined here with HOMA, FLU and PDI and detailed wavefunction analysis to determine the effects from bromination and methylation on pyrazine. The results show that the electron density around the nitrogens, represented by CS tensors, can be good indicators of anti-corrosion efficiency. Additionally, the NICS, FLU and PDI, as aromaticity indicators of molecule, are well correlated with experimental corrosion inhibition efficiencies of the studied inhibitors. Bader sampling and detailed wavefunction analysis shows that the major effects from bromination on the pyrazine derivatives affect the Laplacian of the electron density of the ring, delocalizing the aromatic electrons of the carbon atoms into lone pairs and increasing polarization of the Laplacian values. This feature is well agreement with empirical studies, which show that ABP is the most efficient anti-corrosion compound followed by AP and MP, a property which can be attributed and predicted by derivation of the Laplacian of the electron density of the ring nuclei. This study shows the importance of devising DFT methods for development of new corrosion inhibitors, and the strength of electronic and nuclear analysis, and depicts most importantly how corrosion inhibitors composed of aromatic moieties may be modified to increase anti-corrosive properties.

  13. Synthesis, mechanical properties and corrosion behavior of powder metallurgy processed Fe/Mg2Si composites for biodegradable implant applications.

    Science.gov (United States)

    Sikora-Jasinska, M; Paternoster, C; Mostaed, E; Tolouei, R; Casati, R; Vedani, M; Mantovani, D

    2017-12-01

    Recently, Fe and Fe-based alloys have shown their potential as degradable materials for biomedical applications. Nevertheless, the slow corrosion rate limits their performance in certain situations. The shift to iron matrix composites represents a possible approach, not only to improve the mechanical properties, but also to accelerate and tune the corrosion rate in a physiological environment. In this work, Fe-based composites reinforced by Mg 2 Si particles were proposed. The initial powders were prepared by different combinations of mixing and milling processes, and finally consolidated by hot rolling. The influence of the microstructure on mechanical properties and corrosion behavior of Fe/Mg 2 Si was investigated. Scanning electron microscopy and X-ray diffraction were used for the assessment of the composite structure. Tensile and hardness tests were performed to characterize the mechanical properties. Potentiodynamic and static corrosion tests were carried out to investigate the corrosion behavior in a pseudo-physiological environment. Samples with smaller Mg 2 Si particles showed a more homogenous distribution of the reinforcement. Yield and ultimate tensile strength increased when compared to those of pure Fe (from 400MPa and 416MPa to 523MPa and 630MPa, respectively). Electrochemical measurements and immersion tests indicated that the addition of Mg 2 Si could increase the corrosion rate of Fe even twice (from 0.14 to 0.28mm·year -1 ). It was found that the preparation method of the initial composite powders played a major role in the corrosion process as well as in the corrosion mechanism of the final composite. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Microstructure, mechanical properties and bio-corrosion properties of Mg-Zn-Mn-Ca alloy for biomedical application

    International Nuclear Information System (INIS)

    Zhang Erlin; Yang Lei

    2008-01-01

    Microstructure, mechanical properties and bio-corrosion properties of as-cast Mg-Zn-Mn-Ca alloys were investigated for biomedical application in detail by optical microscopy, scanning electronic microscopy (SEM), mechanical properties testing and electrochemical measurement. SEM and optical microscopy observation indicated that the grain size of the as-cast alloys significantly decreased with the increasing of Ca content up to 0.5 wt.%. Further increasing of Ca content did not refine the grain more. The phase constitute was mainly controlled by the atomic ratio of Zn to Ca. When the ratio was more than 1.0-1.2, the alloy was mainly composed of primary Mg and lamellar eutectic (α-Mg + Ca 2 Mg 6 Zn 3 ), while the alloy was composed of primary Mg and divorced eutectic (α-Mg + Mg 2 Ca + Ca 2 Mg 6 Zn 3 ) when the atomic ratio was less than 1.0-1.2. The yield strength of the as-cast alloy increased but the elongation and the tensile strength increased first and then decreased with the increasing of Ca content. It was thought that Mg 2 Ca phase deteriorated the tensile strength and ductility. Electrochemical measurements indicated that Mg 2 Ca phase improved the corrosion resistance of the as-cast alloy

  15. Investigation into the stress corrosion cracking properties of AA2099, an aluminum-lithium-copper alloy

    Science.gov (United States)

    Padgett, Barbara Nicole

    Recently developed Al-Li-Cu alloys show great potential for implementation in the aerospace industry because of the attractive mix of good mechanical properties and low density. AA2099 is an Al-Li-Cu alloy with the following composition Al-2.69wt%Cu-1.8wt%Li-0.6wt%Zn-0.3wt%Mg-0.3wt%Mn-0.08wt%Zr. The environmental assisted cracking and localized corrosion behavior of the AA2099 was investigated in this thesis. The consequences of uncontrolled grain boundary precipitation via friction stir welding on the stress corrosion cracking (SCC) behavior of AA2099 was investigated first. Using constant extension rate testing, intergranular corrosion immersion experiments, and potentiodynamic scans, the heat-affected zone on the trailing edge of the weld (HTS) was determined to be most susceptible of the weld zones. The observed SCC behavior for the HTS was linked to the dissolution of an active phase (Al2CuLi, T1) populating the grain boundary. It should be stated that the SCC properties of AA2099 in the as-received condition were determined to be good. Focus was then given to the electrochemical behavior of precipitate phases that may occupy grain and sub-grain boundaries in AA2099. The grain boundary micro-chemistry and micro-electrochemistry have been alluded to within the literature as having significant influence on the SCC behavior of Al-Li-Cu alloys. Major precipitates found in this alloy system are T1 (Al 2CuLi), T2 (Al7.5Cu4Li), T B (Al6CuLi3), and theta (Al2 Cu). These phases were produced in bulk form so that the electrochemical nature of each phase could be characterized. It was determined T1 was most active electrochemically and theta was least. When present on grain boundaries in the alloy, electrochemical behavior of the individual precipitates aligned with the observed corrosion behavior of the alloy (e.g. TB was accompanied by general pitting corrosion and T 1 was accompanied by intergranular corrosion attack). In addition to the electrochemical behavior of

  16. Investigation of duty cycle effect on corrosion properties of electrodeposited calcium phosphate coatings

    Energy Technology Data Exchange (ETDEWEB)

    Azem, Funda Ak, E-mail: funda.ak@deu.edu.tr [Dokuz Eylul University, Faculty of Engineering, Department of Metallurgical and Materials Engineering, Buca, 35390 Izmir (Turkey); Delice, Tulay Koc, E-mail: tulaykocdelice@gmail.com [Dokuz Eylul University, The Graduate School of Natural and Applied Sciences, Buca, 35390 Izmir (Turkey); Ungan, Guler, E-mail: gulerungan@hotmail.com [Es Group, Izmir (Turkey); Cakir, Ahmet, E-mail: ahmet.cakir@deu.edu.tr [Dokuz Eylul University, Faculty of Engineering, Department of Metallurgical and Materials Engineering, Buca, 35390 Izmir (Turkey)

    2016-11-01

    The bioceramic calcium phosphate (CaP) is frequently used for improving bone fixation in titanium medical implants and thus increasing lifetime of the implant. It is known that the application of CaP coatings on metallic implant devices offers the possibility of combining the strength of the metals and the bioactivity of the ceramic materials. Many different techniques are available for producing CaP coatings. Electrochemical deposition method is widely used because of its ease of operation parameters, low temperature requirement, reproducibility and suitability for coating complex structures. This technique allows obtaining CaP coatings which promote bone in growth during the first healing period leading to permanent fixation. Electrochemical pulse technique is an alternative to calcium phosphate deposition techniques usually employed to cover orthopedic or dental titanium implant surfaces. Additionally, pulse electrodeposition technique can produce more uniform and denser CaP coatings on metallic implants. In this study, CaP based coatings were produced by electrochemical pulse technique on Ti6Al4V substrates. The resulting CaP deposits were investigated by means of X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). Corrosion properties of the CaP coatings were also investigated. The results showed that various duty cycle ranges have remarkably effect on morphology, crystallinity and corrosion properties of the produced CaP coatings. - Highlights: • Electrodeposited CaP based coating were produced by pulse deposition technique. • The pulsed electrodeposited coatings produced under 30% and 50% duty cycles were exhibited better corrosion resistance. • Produced coatings consist of irregular flake-like structure and compact network with fine needles.

  17. Low cycle corrosion fatigue properties of F316Ti in simulated LWR primary environment

    International Nuclear Information System (INIS)

    Xu Xuelian; Ding Yaping; Katada, Y.; Sato, S.

    1998-11-01

    Environment effect on fatigue performance of materials used for Pressurized boundary, including fatigue life and crack growth rate, are of importance to nuclear safety. To predict the fatigue life of nuclear materials and to improve the design of nuclear materials, it is necessary to investigated the material fatigue performances in corrosive environment and to get the fatigue data under its environment to be used in. Low cycle corrosion fatigue (CF) performance investigation of domestic F316Ti in simulated BWR and PWR primary environment was carried out. The result shows that the high temperature water environment is one of the most important factors on CF properties. For the same material, the low cycle fatigue life in high temperature air is longer than that in simulated BWR and PWR primary environments. In high temperature water, domestic F316Ti has almost the same low cycle corrosion fatigue performance as F316 (made in Japan). All of the fatigue data are scattered within ASME best-fit curve and ASME design fatigue curve. In high strain range, there is no significant difference of the CF performance for F316Ti in both of BWR and PWR primary environments. With the decrease of strain amplitude, the difference appears gradually. The data is located at the short life side of the fatigue data in simulated BWR primary environment. Titanium is distributed uniformly in F316Ti manufactured in Fushun Steel Factory. Ni, Cr, Mo in this material are located at the high side of the alloy chemical composition range. So, F316Ti has a better CF property in high temperature water

  18. Enhancement of mechanical properties and corrosion resistance of friction stir welded joint of AA2014 using water cooling

    Energy Technology Data Exchange (ETDEWEB)

    Sinhmar, S., E-mail: sinhmarsunil88@gmail.com; Dwivedi, D.K.

    2017-01-27

    An investigation on the microstructure, mechanical properties, and corrosion behavior of friction stir welded joint of AA2014 in natural cooled (NC) and water cooled (WC) conditions have been reported. Optical microscopy, field emission scanning electron microscopy (FESEM) with Energy dispersive X-ray spectroscopy (EDS), Vicker's microhardness, tensile testing, X-ray diffraction (XRD), and electrochemical potentiodynamic polarization corrosion test (Tafel curve) were carried out to characterize the friction stir weld joints in both the cooling conditions. Water cooling resulted in higher strength and microhardness of friction stir weld joint compared to the natural cooling. The width of heat affected zone was reduced by the use of water cooling during friction stir welding (FSW) and minimum hardness zone was shifted towards weld center. The corrosion test was performed in 3.5% NaCl solution. Corrosion resistance of water cooled joint was found higher than natural cooled FSW joint. The precipitation behavior of weld nugget and heat affected zone impacts the corrosion resistance of FSW joint of AA 2014. Hardness, tensile, and corrosion properties of FSW joints produced under NC and WC conditions have been discussed in the light of microstructure.

  19. Enhancement of mechanical properties and corrosion resistance of friction stir welded joint of AA2014 using water cooling

    International Nuclear Information System (INIS)

    Sinhmar, S.; Dwivedi, D.K.

    2017-01-01

    An investigation on the microstructure, mechanical properties, and corrosion behavior of friction stir welded joint of AA2014 in natural cooled (NC) and water cooled (WC) conditions have been reported. Optical microscopy, field emission scanning electron microscopy (FESEM) with Energy dispersive X-ray spectroscopy (EDS), Vicker's microhardness, tensile testing, X-ray diffraction (XRD), and electrochemical potentiodynamic polarization corrosion test (Tafel curve) were carried out to characterize the friction stir weld joints in both the cooling conditions. Water cooling resulted in higher strength and microhardness of friction stir weld joint compared to the natural cooling. The width of heat affected zone was reduced by the use of water cooling during friction stir welding (FSW) and minimum hardness zone was shifted towards weld center. The corrosion test was performed in 3.5% NaCl solution. Corrosion resistance of water cooled joint was found higher than natural cooled FSW joint. The precipitation behavior of weld nugget and heat affected zone impacts the corrosion resistance of FSW joint of AA 2014. Hardness, tensile, and corrosion properties of FSW joints produced under NC and WC conditions have been discussed in the light of microstructure.

  20. Effects of Ca on microstructure, mechanical and corrosion properties and biocompatibility of Mg-Zn-Ca alloys.

    Science.gov (United States)

    Yin, Ping; Li, Nian Feng; Lei, Ting; Liu, Lin; Ouyang, Chun

    2013-06-01

    Zn and Ca were selected as alloying elements to develop an Mg-Zn-Ca alloy system for biomedical application due to their good biocompatibility. The effects of Ca on the microstructure, mechanical and corrosion properties as well as the biocompatibility of the as-cast Mg-Zn-Ca alloys were studied. Results indicate that the microstructure of Mg-Zn-Ca alloys typically consists of primary α-Mg matrix and Ca₂Mg₆Zn₃/Mg₂Ca intermetallic phase mainly distributed along grain boundary. The yield strength of Mg-Zn-Ca alloy increased slightly with the increase of Ca content, whilst its tensile strength increased at first and then decreased. Corrosion tests in the simulated body fluid revealed that the addition of Ca is detrimental to corrosion resistance due to the micro-galvanic corrosion acceleration. In vitro hemolysis and cytotoxicity assessment disclose that Mg-5Zn-1.0Ca alloy has suitable biocompatibility.

  1. Corrosion Characteristics of the SMART Materials

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Jong Hyuk; Jeong, Y. H.; Choi, B. K.; Soh, J. R.; Lee, D. J.; Choi, B. S

    2000-05-01

    This report summarized the corrosion characteristics of the candidate steam generator tubes (PT-7M, ASTM Gr.2, Inconel-600), which are considering as the core materials in SMART. Also, this evaluated the waterchemstry conditions of commercial power plant including the PWR, BWR, WWER, PHWR, RBMK plants in comparison with that of SMART. And this report described that the microstructures of as-received PT-7M, ASTM Gr.2, and Inconel-600 as the candidate materials of fuel cladding and steam generator tubes and characterized the corrosion properties of the materials, which were tested systematically in the conditions of standard, ammonia solution and ammonia nodular to evaluate the corrosion resistance.

  2. Corrosion Characteristics of the SMART Materials

    International Nuclear Information System (INIS)

    Baek, Jong Hyuk; Jeong, Y. H.; Choi, B. K.; Soh, J. R.; Lee, D. J.; Choi, B. S.

    2000-05-01

    This report summarized the corrosion characteristics of the candidate steam generator tubes (PT-7M, ASTM Gr.2, Inconel-600), which are considering as the core materials in SMART. Also, this evaluated the waterchemstry conditions of commercial power plant including the PWR, BWR, WWER, PHWR, RBMK plants in comparison with that of SMART. And this report described that the microstructures of as-received PT-7M, ASTM Gr.2, and Inconel-600 as the candidate materials of fuel cladding and steam generator tubes and characterized the corrosion properties of the materials, which were tested systematically in the conditions of standard, ammonia solution and ammonia nodular to evaluate the corrosion resistance

  3. The capability of graphene on improving the electrical conductivity and anti-corrosion properties of Polyurethane coatings

    Science.gov (United States)

    Tong, Yao; Bohm, Siva; Song, Mo

    2017-12-01

    Graphite and graphene particles were used to reinforce the electrical conductivity and anti-corrosion properties of polyurethane (PU) coatings. The effect of graphite and graphene were compared. Hybrid filler using carbon nanotube was adopted as well and the performance in electrical conductivity was much superior to single filler system. At the same filler loading, the electrical conductivity of hybrid filler system was significantly higher than single filler system (0.77 S/m at 5 wt% while single filler system was not conductive). The conductive mechanism was revealed. In terms of anti-corrosion properties, the coatings with low filler loading had better anti-corrosion properties. The resistance values obtained from EIS (Electrochemical Impedance Spectroscopy) and four point probe method were compared and discussed.

  4. Electrochemical and corrosion properties of carbon steel in simulated geological disposal environments

    International Nuclear Information System (INIS)

    Sugimoto, Katsuhisa

    2011-01-01

    This paper reviews electrochemical and corrosion studies on the application of carbon steel to an overpack container, which is used for the geological disposal of radioactive wastes. Deaerated alkaline Na 2 SO 4 -NaHCO 3 - NaCl solutions and bentonite soaked with the solutions are used as simulated geological disposal environments. Electrochemical studies show the corrosion of the steel in an early stage is the activation control. Corrosion rates are controlled by the composition of the solutions, alloying elements, and the structure of the steel. The rates decrease with time due to the formation of FeCO 3 (siderite) film on the steel. Immersion corrosion tests show general corrosion morphology. Average corrosion rates of long duration have been evaluated. Clear proofs of the initiation of localized corrosion, such as pitting, crevice corrosion, hydrogen embrittlement and stress-corrosion cracking, have not been reported. (author)

  5. Effects of Dy and Nb on the magnetic properties and corrosion resistance of sintered NdFeB

    International Nuclear Information System (INIS)

    Yu, L.Q.; Wen, Y.H.; Yan, M.

    2004-01-01

    Dy and Nb were added into the sintered NdFeB magnets with the aim of improving their magnetic properties and corrosion resistance. It was found that intrinsic coercivity of magnets is promoted whilst remanence is reduced as a result of Dy addition. Simultaneous addition of Dy and Nb not only gives rise to greatly improved coercivity, but also suppresses the undesirable effect of Dy on the remanence. The optimum magnetic properties were achieved when 1.0% Dy and 1.5% Nb were incorporated. Moreover, corrosion resistance of NdFeB magnets improves with the increase in the content of Dy and Nb

  6. Properties of colloidal corrosion products and their effects on nuclear plants. Volume 1. Executive summary. Final report

    International Nuclear Information System (INIS)

    Matijevic, E.

    1982-10-01

    The properties of aqueous dispersions of finely divided oxides of iron, nickel, cobalt, chromium, and copper are described in overview fashion. More detailed aspects of this work will be found in a separate, larger report, NP-2606, Volume 2. The properties of these oxide corrosion products of importance to nuclear reactor water system technology are emphasized: adhesion, desorption, dissolution, transformation, and adsorption of dissolved species such as Co 60 ions. The work is fundamental to many LWR problems - radiation transport to piping surfaces, avoidance of crud buildup on nuclear fuel rods, decontamination and chemical cleaning of heat exchangers, and control of corrosion of piping

  7. Enhanced mechanical properties and increased corrosion resistance of a biodegradable magnesium alloy by plasma electrolytic oxidation (PEO)

    Energy Technology Data Exchange (ETDEWEB)

    White, Leon; Koo, Youngmi [FIT BEST Laboratory, Engineering Research Center, Department of Chemical, Biological, and Bio Engineering, North Carolina A& T State University, Greensboro, NC 27411 (United States); Neralla, Sudheer [Jet-Hot LLC, Burlington, NC 27215 (United States); Sankar, Jagannathan [FIT BEST Laboratory, Engineering Research Center, Department of Chemical, Biological, and Bio Engineering, North Carolina A& T State University, Greensboro, NC 27411 (United States); Yun, Yeoheung, E-mail: yyun@ncat.edu [FIT BEST Laboratory, Engineering Research Center, Department of Chemical, Biological, and Bio Engineering, North Carolina A& T State University, Greensboro, NC 27411 (United States)

    2016-06-15

    Highlights: • Plasma electrolytic oxidation (PEO) method was developed to control corrosion, porosity, and mechanical property. • Mechanical properties of PEO-coated AZ31 alloys were affected by the different electrolyte. • Mechanical properties and corrosion resistance of PEO-coated AZ31 alloys were compared with uncoated one. - Abstract: We report the enhanced mechanical properties of AZ31 magnesium alloys by plasma electrolytic oxidation (PEO) coating in NaOH, Na{sub 2}SiO{sub 3}, KF and NaH{sub 2}PO{sub 4}·2H{sub 2}O containing electrolytes. Mechanical properties including wear resistance, surface hardness and elastic modulus were increased for PEO-coated AZ31 Mg alloys (PEO-AZ31). DC polarization in Hank's solution indicating that the corrosion resistance significantly increased for PEO-coating in KF-contained electrolyte. Based on these results, the PEO coating method shows promising potential for use in biodegradable implant applications where tunable corrosion and mechanical properties are needed.

  8. Transmission properties of hollow-core photonic bandgap fibers

    DEFF Research Database (Denmark)

    Falk, Charlotte Ijeoma; Hald, Jan; Petersen, Jan C.

    2010-01-01

    Variations in optical transmission of four types of hollow-core photonic bandgap fibers are measured as a function of laser frequency. These variations influence the potential accuracy of gas sensors based on molecular spectroscopy in hollow-core fibers.......Variations in optical transmission of four types of hollow-core photonic bandgap fibers are measured as a function of laser frequency. These variations influence the potential accuracy of gas sensors based on molecular spectroscopy in hollow-core fibers....

  9. Influence of stripping and cooling atmospheres on surface properties and corrosion of zinc galvanizing coatings

    Energy Technology Data Exchange (ETDEWEB)

    Yasakau, K.A., E-mail: kyasakau@ua.pt [Department of Materials and Ceramic Engineering, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro (Portugal); Giner, I. [Universität Paderborn, Fakultät NW—Department Chemie, Technische und Makromolekulare Chemie, Warburger Strasse 100, D-33098 Paderborn (Germany); Vree, C. [Salzgitter Mannesmann Forschung, GmbH Division Surface Technology, Eisenhüttenstrasse 99, 38239 Salzgitter (Germany); Ozcan, O.; Grothe, R. [Universität Paderborn, Fakultät NW—Department Chemie, Technische und Makromolekulare Chemie, Warburger Strasse 100, D-33098 Paderborn (Germany); Oliveira, A. [Department of Materials and Ceramic Engineering, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro (Portugal); Grundmeier, G. [Universität Paderborn, Fakultät NW—Department Chemie, Technische und Makromolekulare Chemie, Warburger Strasse 100, D-33098 Paderborn (Germany); Ferreira, M.G.S. [Department of Materials and Ceramic Engineering, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro (Portugal); Zheludkevich, M.L. [Department of Materials and Ceramic Engineering, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro (Portugal); Department of Corrosion and Surface Technology, Institute of Materials Research Helmholtz-Zentrum Geesthacht, Max-Planck Str. 1, 21502 Geesthacht (Germany)

    2016-12-15

    Highlights: • Stripping/cooling atmosphere affects surfaces chemical composition of Zn and Zn-Al-Mg galvanized coatings. • Higher peel forces of model adhesive films were obtained on zinc alloys samples prepared under nitrogen atmosphere. • Localized corrosion attack originates at grain boundaries on Zn galvanized coating. • Visible dissolution of MgZn{sub 2} phase was observed by in situ AFM only at binary eutectics and not at ternary ones. - Abstract: In this work the influence of stripping/cooling atmospheres used after withdrawal of steel sheet from Zn or Zn-alloy melt on surface properties of Zn (Z) and Zn-Al-Mg (ZM) hot-dip galvanizing coatings has been studied. The aim was to understand how the atmosphere (composed by nitrogen (N{sub 2}) or air) affects adhesion strength to model adhesive and corrosive behaviour of the galvanized substrates. It was shown that the surface chemical composition and Volta potential of the galvanizing coatings prepared under the air or nitrogen atmosphere are strongly influenced by the atmosphere. The surface chemistry Z and ZM surfaces prepared under N{sub 2} contained a higher content of metal atoms and a richer hydroxide density than the specimens prepared under air atmosphere as assessed by X-ray photoelectron spectroscopy (XPS). The induced differences on the microstructure of the galvanized coatings played a key role on the local corrosion induced defects as observed by means of in situ Atomic force microscopy (AFM). Peel force tests performed on the substrates coated by model adhesive films indicate a higher adhesive strength to the surfaces prepared under nitrogen atmosphere. The obtained results have been discussed in terms of the microstructure and surface chemical composition of the galvanizing coatings.

  10. Influence of stripping and cooling atmospheres on surface properties and corrosion of zinc galvanizing coatings

    International Nuclear Information System (INIS)

    Yasakau, K.A.; Giner, I.; Vree, C.; Ozcan, O.; Grothe, R.; Oliveira, A.; Grundmeier, G.; Ferreira, M.G.S.; Zheludkevich, M.L.

    2016-01-01

    Highlights: • Stripping/cooling atmosphere affects surfaces chemical composition of Zn and Zn-Al-Mg galvanized coatings. • Higher peel forces of model adhesive films were obtained on zinc alloys samples prepared under nitrogen atmosphere. • Localized corrosion attack originates at grain boundaries on Zn galvanized coating. • Visible dissolution of MgZn_2 phase was observed by in situ AFM only at binary eutectics and not at ternary ones. - Abstract: In this work the influence of stripping/cooling atmospheres used after withdrawal of steel sheet from Zn or Zn-alloy melt on surface properties of Zn (Z) and Zn-Al-Mg (ZM) hot-dip galvanizing coatings has been studied. The aim was to understand how the atmosphere (composed by nitrogen (N_2) or air) affects adhesion strength to model adhesive and corrosive behaviour of the galvanized substrates. It was shown that the surface chemical composition and Volta potential of the galvanizing coatings prepared under the air or nitrogen atmosphere are strongly influenced by the atmosphere. The surface chemistry Z and ZM surfaces prepared under N_2 contained a higher content of metal atoms and a richer hydroxide density than the specimens prepared under air atmosphere as assessed by X-ray photoelectron spectroscopy (XPS). The induced differences on the microstructure of the galvanized coatings played a key role on the local corrosion induced defects as observed by means of in situ Atomic force microscopy (AFM). Peel force tests performed on the substrates coated by model adhesive films indicate a higher adhesive strength to the surfaces prepared under nitrogen atmosphere. The obtained results have been discussed in terms of the microstructure and surface chemical composition of the galvanizing coatings.

  11. Corrosion Inhibition and Adsorption Properties of Ethanolic Extract of Calotropis for Corrosion of Aluminium in Acidic Media

    OpenAIRE

    Sudesh Kumar; Suraj Prakash Mathur

    2013-01-01

    The corrosion inhibition of aluminium in sulfuric acid solution in the presence of different plant parts, namely, leaves, latex, and fruit was studied using weight loss method and thermometric method. The ethanolic extracts of Calotropis procera and Calotropis gigantea act as an inhibitor in the acid environment. The inhibition efficiency increases with increase in inhibitor concentration. The plant parts inhibit aluminium, and inhibition is attributed, due to the adsorption of the plant part...

  12. Effects of the Solid Solution Heat Treatment on the Corrosion Resistance Property of SSC13 Cast Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kuk-Jin [Hi-Sten Co., Ltd., Gimhae (Korea, Republic of); Lim, Su Gun [Gyeongsang National University, Jinju (Korea, Republic of); Pak, S. J. [Gachon BioNano Research Institute, Gachon University, Sungnam (Korea, Republic of)

    2015-04-15

    Recently, Stainless steels have been increasingly selected as the fitting or the valve materials of water pipes as the human health issue is getting higher and higher. Therefore, the connectors attached at pipes to deliver water are exposed to more severe environments than the pipes because crevice or galvanic corrosion is apt to occur at the fittings or the valves. Effects of the solid solution annealing, cooling rate after this heat treatment, and passivation on the corrosion properties of the shell mold casted SSC13 (STS304 alloy equivalent) were studied. The heating and quenching treatment more or less reduced hardness but effectively improved corrosion resistance. It was explained by the reduction of delta ferrite contents. Independent of heat treatment, the chemical passivation treatment also lowered corrosion rate but the improvement of corrosion resistance depended on temperature and time for passivation treatment indicating that the optimum conditions for passivation treatment were the bath temperature of 34 .deg. C and operating time of 10 minutes. Therefore it is suggested that the corrosion resistance of SSC13 can be effectively improved with the heat treatment, where SSC13 is heated for 10 minutes at 1120 °C and quenched and passivation treatment, where SSC13 is passivated for at least 10 seconds at 34 °C nitric acid solution.

  13. Wear and Corrosion Properties of 316L-SiC Composite Coating Deposited by Cold Spray on Magnesium Alloy

    Science.gov (United States)

    Chen, Jie; Ma, Bing; Liu, Guang; Song, Hui; Wu, Jinming; Cui, Lang; Zheng, Ziyun

    2017-08-01

    In order to improve the wear and corrosion resistance of commonly used magnesium alloys, 316L stainless steel coating and 316L-SiC composite coating have been deposited directly on commercial AZ80 magnesium alloy using cold spraying technology (CS). The microstructure, hardness and bonding strength of as-sprayed coatings were studied. Their tribological properties sliding against Si3N4 and GCr15 steel under unlubricated conditions were evaluated by a ball-on-disk tribometer. Corrosion behaviors of coated samples were also evaluated and compared to that of uncoated magnesium alloy substrate in 3.5 wt.% NaCl solution by electrochemical measurements. Scanning electron microscopy was used to characterize the corresponding wear tracks and corroded surfaces to determine wear and corrosion mechanisms. The results showed that the as-sprayed coatings possessed higher microhardness and more excellent wear resistance than magnesium alloy substrate. Meanwhile, 316L and 316L-SiC coating also reduced the corrosion current density of magnesium alloy and the galvanic corrosion of the substrates was not observed after 200-h neutral salt spray exposure, which demonstrated that corrosion resistance of a magnesium alloy substrate could be greatly improved by cold-sprayed stainless steel-based coatings.

  14. Investigation of Corrosion and Cathodic Protection in Reinforced Concrete. II : Properties of Steel Surface Layers

    NARCIS (Netherlands)

    Koleva, D.A.; De Wit, J.H.W.; Van Breugel, K.; Lodhi, Z.F.; Ye, G.

    2007-01-01

    The present study explores the formation of corrosion products on the steel surface (using as-received low carbon construction steel) in reinforced concrete in conditions of corrosion and subsequent transformation of these layers in conditions of cathodic protection (CP).

  15. [The effect of epigallocatechin gallate (EGCG) on the surface properties of nickel-chromium dental casting alloys after electrochemical corrosion].

    Science.gov (United States)

    Qiao, Guang-yan; Zhang, Li-xia; Wang, Jue; Shen, Qing-ping; Su, Jian-sheng

    2014-08-01

    To investigate the effect of epigallocatechin gallate (EGCG) on the surface properties of nickel-chromium dental alloys after electrochemical corrosion. The surface morphology and surface structure of nickel-chromium dental alloys were examined by stereomicroscope and scanning electron microscopy before and after electrochemical tests in 0 g/L and 1.0 g/L EGCG artificial saliva. The surface element component and chemical states of nickel-chromium dental alloys were analyzed by X-ray photoelectron spectrograph after electrochemical tests in 0 g/L and 1.0 g/L EGCG artificial saliva. More serious corrosion happened on the surface of nickel-chromium alloy in 1.0 g/L EGCG artificial saliva than in 0 g/L EGCG. The diameters of corrosion pits were smaller, and the dendrite structure of the alloy surface was not affected in 0 g/L EGCG. While the diameters of corrosion pits were larger, the dendritic interval of the alloy surface began to merge, and the dendrite structure was fuzzy in 1.0 g/L EGCG. In addition, the O, Ni, Cr, Be, C and Mo elements were detected on the surface of nickel-chromium alloys after sputtered for 120 s in 0 g/L EGCG and 1.0 g/L EGCG artificial saliva after electrochemical corrosion, and the surface oxides were mainly NiO and Cr(2)O(3). Compared with 0 g/L EGCG artificial saliva, the content of O, NiO and Cr(2)O(3) were lower in 1.0 g/L EGCG. The results of surface morphology and the corrosion products both show that the corrosion resistance of nickel-chromium alloys become worse and the oxide content of corrosion products on the surface reduce in 1.0 g/L EGCG artificial saliva.

  16. Alteration of corrosion and nanomechanical properties of pulse electrodeposited Ni/SiC nanocomposite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Zarghami, V. [Department of Materials Science and Engineering, Sharif University of Technology, Azadi Street, Tehran (Iran, Islamic Republic of); Ghorbani, M., E-mail: Ghorbani@sharif.edu [Department of Materials Science and Engineering, Sharif University of Technology, Azadi Street, Tehran (Iran, Islamic Republic of); Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Azadi Street, Tehran (Iran, Islamic Republic of)

    2014-06-15

    Highlights: • Preparing Ni/SiC coatings on the Cu substrate by using of rotating disk electrode. • Optimizing of pulse current density parameters. • Optimizing of SiC content in the bath. • Investigation the effect of codeposited SiC amount on the properties of coatings. - Abstract: Nickel/silicon carbide composite electrodeposits were prepared on a rotating disk electrode (RDE), under pulse current condition. The effect of pulse parameters, current density, SiC content in the electrolyte on the codeposition of SiC were studied. Afterwards, the effect of codeposited SiC amount was investigated on electrochemical behavior and nanomechanical properties of coatings. The coatings were analyzed with Scanning Electron Microscopy (SEM), linear polarization, nanoindentation and Atomic Force Microscopy (AFM). The Ni–SiC electrocomposites, prepared at optimum conditions, exhibited improved nanomechanical properties in comparison to pure nickel electrodeposits. With increasing current density the morphology changed from flat surface to cauliflower structure. The Ni–SiC electrocomposites exhibited improved nanomechanical properties and corrosion resistances in comparison to pure nickel electrodeposits and these properties were improving with increasing codeposited SiC particles in electrocomposites.

  17. Improvement in the corrosion protection and bactericidal properties of AZ91D magnesium alloy coated with a microstructured polypyrrole film

    Directory of Open Access Journals (Sweden)

    A.D. Forero López

    2018-03-01

    Full Text Available In this work hollow rectangular microtubes of polypyrrole (PPy films were potentiostatically electrodeposited on magnesium alloy AZ91D in salicylate solution. The substrate was previously anodized under potentiostatic conditions in a molybdate solution in order to improve the adherence of polymer. Finally the duplex film was modified by the incorporation of silver species. The obtained coatings were characterized by scanning electron microscopy (SEM, X-ray diffraction (XRD and X-ray photoelectron spectroscopies (XPS and the antimicrobial activity against the bacteria Escherichia coli was evaluated. The corrosion protection properties of the coatings were examined in Ringer solution by monitoring the open circuit potential, polarization techniques and electrochemical spectroscopy (EIS. The duplex coating presents an improved anticorrosive performance with respect to the PPy film. The best results concerning corrosion protection and antibacterial activity were obtained for the silver-modified composite coating. Keywords: Polypyrrole, Duplex coating, AZ91D alloy, Corrosion resistance, Antibacterial properties

  18. Synthesis, characterization, and corrosion protection properties of poly(N-(methacryloyloxymethyl) benzotriazole-co-methyl methacrylate) on mild steel

    Energy Technology Data Exchange (ETDEWEB)

    Srikanth, A.P. [Department of Applied Sciences and Humanities, MIT Campus, Anna University, Chennai 600044 (India); Lavanya, A. [Department of Chemistry, CEG Campus, Anna University, Chennai 600025 (India); Nanjundan, S. [Department of Chemistry, CEG Campus, Anna University, Chennai 600025 (India); Rajendran, N. [Department of Applied Sciences and Humanities, MIT Campus, Anna University, Chennai 600044 (India)]. E-mail: nrajendran@annauniv.edu

    2006-12-15

    The copolymers from different feed ratios of N-(methacryloyloxymethyl) benzotriazole (MMBT) and methyl methacrylate (MMA) has been synthesised using free radical solution polymerization technique and characterized using FT-IR and {sup 13}C NMR spectroscopy. The thermal stability of the polymers was studied using theremogravimetrtic analysis (TGA). The corrosion behaviors of mild steel specimens dip coated with different composition of copolymers have been evaluated by potentiodynamic polarization and electrochemical impedance spectroscopic (EIS) method. These electrochemical properties were observed in 0.1 M HCl medium. The polarization and impedance measurements showed different corrosion protection efficiency with change in composition of the copolymers. It was found that the corrosion protection properties are owing to the barrier effect of the polymer layer covered on the mild steel surfaces. However, it was observed that the copolymer obtained from 1:1 mole ratio of MMBT and MMA exhibited better protection efficiency than other combinations.

  19. Synthesis, characterization, and corrosion protection properties of poly( N-(methacryloyloxymethyl) benzotriazole- co-methyl methacrylate) on mild steel

    Science.gov (United States)

    Srikanth, A. P.; Lavanya, A.; Nanjundan, S.; Rajendran, N.

    2006-12-01

    The copolymers from different feed ratios of N-(methacryloyloxymethyl) benzotriazole (MMBT) and methyl methacrylate (MMA) has been synthesised using free radical solution polymerization technique and characterized using FT-IR and 13C NMR spectroscopy. The thermal stability of the polymers was studied using theremogravimetrtic analysis (TGA). The corrosion behaviors of mild steel specimens dip coated with different composition of copolymers have been evaluated by potentiodynamic polarization and electrochemical impedance spectroscopic (EIS) method. These electrochemical properties were observed in 0.1 M HCl medium. The polarization and impedance measurements showed different corrosion protection efficiency with change in composition of the copolymers. It was found that the corrosion protection properties are owing to the barrier effect of the polymer layer covered on the mild steel surfaces. However, it was observed that the copolymer obtained from 1:1 mole ratio of MMBT and MMA exhibited better protection efficiency than other combinations.

  20. Influence of Simulated Acid Rain Corrosion on the Uniaxial Tensile Mechanical Properties of Concrete

    Directory of Open Access Journals (Sweden)

    Ying-zi Zhang

    2012-01-01

    Full Text Available An experimental study on the uniaxial tensile property of concrete exposed to the acid rain environment was carried out. Acid rain with pH level of 1.0 was deposed by the mixture of sulfate and nitric acid solution in the laboratory. Dumbbell-shaped concrete specimens were immersed in the simulated acid rain completely. After being exposed to the deposed mixture for a certain period, uniaxial tensile test was performed on the concrete specimens. The results indicate that elastic modulus, tensile strength, and peak strain have a slight increase at the initial corrosion stage, and with the extension of corrosion process, elastic modulus and tensile strength decrease gradually, while the peak strain still increases. It is found that the compressive strength is more sensitive than the tensile strength in aggressive environment. Based on the experimental results, an equation was proposed to describe the ascending branch of the stress-strain curve of the concrete corroded by acid rain.

  1. Influence of stripping and cooling atmospheres on surface properties and corrosion of zinc galvanizing coatings

    Science.gov (United States)

    Yasakau, K. A.; Giner, I.; Vree, C.; Ozcan, O.; Grothe, R.; Oliveira, A.; Grundmeier, G.; Ferreira, M. G. S.; Zheludkevich, M. L.

    2016-12-01

    In this work the influence of stripping/cooling atmospheres used after withdrawal of steel sheet from Zn or Zn-alloy melt on surface properties of Zn (Z) and Zn-Al-Mg (ZM) hot-dip galvanizing coatings has been studied. The aim was to understand how the atmosphere (composed by nitrogen (N2) or air) affects adhesion strength to model adhesive and corrosive behaviour of the galvanized substrates. It was shown that the surface chemical composition and Volta potential of the galvanizing coatings prepared under the air or nitrogen atmosphere are strongly influenced by the atmosphere. The surface chemistry Z and ZM surfaces prepared under N2 contained a higher content of metal atoms and a richer hydroxide density than the specimens prepared under air atmosphere as assessed by X-ray photoelectron spectroscopy (XPS). The induced differences on the microstructure of the galvanized coatings played a key role on the local corrosion induced defects as observed by means of in situ Atomic force microscopy (AFM). Peel force tests performed on the substrates coated by model adhesive films indicate a higher adhesive strength to the surfaces prepared under nitrogen atmosphere. The obtained results have been discussed in terms of the microstructure and surface chemical composition of the galvanizing coatings.

  2. Microstructure Characterization and Corrosion Properties of Nitrocarburized AISI 4140 Low Alloy Steel

    Science.gov (United States)

    Fattah, M.; Mahboubi, F.

    2012-04-01

    Plasma nitrocarburizing treatments of AISI 4140 low alloy steel have been carried out in a gas mixture of 85% N2-12% H2-3% CO2. All treatments were performed for 5 h at a chamber pressure of 4 mbar. Different treatment temperatures varying from 520 to 620 °C have been used to investigate the effect of treatment temperature on the corrosion and hardness properties and also microstructure of the plasma nitrocarburized steel. Scanning electron and optical microscopy, x-ray diffraction, microhardness measurement, and potentiodynamic polarization technique in 3.5% NaCl solution were used to study the treated surfaces. The results revealed that plasma nitrocarburizing at temperatures below 570 °C can readily produce a monophase ɛ compound layer. The compound layer formed at 620 °C is composed of two sub-layers and is supported by an austenite zone followed by the diffusion layer. The thickest diffusion layer was related to the sample treated at 620 °C. Microhardness results showed a reduction of surface hardness with increasing the treatment temperature from 520 to 620 °C. It has also been found that with increasing treatment temperature from 520 to 545 °C the corrosion resistance increases up to a maximum and then decreases with further increasing treatment temperature from 545 to 620 °C.

  3. Low temperature tensile properties and stress corrosion cracking resistance in the super duplex stainless steels weldments

    International Nuclear Information System (INIS)

    Lee, Jeung Woo; Sung, Jang Hyun; Lee, Sung Keun

    1998-01-01

    Low temperature tensile properties and SCC resistances of super duplex stainless steels and their weldments are investigated. Tensile strengths increase remarkably with decreasing test temperature, while elongations decrease steeply at -196 .deg. C after showing peak or constant value down to -100 .deg. C. Owing to the low tensile deformation of weld region, elongations of welded specimen decrease in comparison to those of unwelded specimen. The welded tensile specimen is fractured through weld region at -196 .deg. C due to the fact that the finely dispersed ferrite phase in the austenite matrix increases an opportunity to supply the crack propagation path through the brittle ferrite phase at low temperature. The stress corrosion cracking initiates preferentially at the surface ferrite phase of base metal region and propagates through ferrite phase. When the corrosion crack meets with the fibrously aligned austenite phase to the tensile direction, the ferrite phase around austenite continues to corrode. Eventually, fracture of the austenite phase begins without enduring the tensile load. The addition of Cu+W to the super duplex stainless steel deteriorates the SCC resistance in boiling MgCl 2 solution, possibly due to the increment of pits in the ferrite phase and reduction of N content in the austenite phase

  4. Microstructures, mechanical properties and corrosion resistance of the Zr−xTi (Ag) alloys for dental implant application

    Energy Technology Data Exchange (ETDEWEB)

    Cui, W.F., E-mail: cuiwf@atm.neu.edu.cn; Liu, N.; Qin, G.W.

    2016-06-15

    The Zr−xTi (Ag) alloys were designed for the application of dental implants. The microstructures of Zr−20Ti and Zr−40Ti alloy were observed using optical microscope and transmission electronic microscope. The hardness and compressive tests were performed to evaluate the mechanical properties of the Zr−xTi alloys. The electrochemical behavior of the Zr−xTi alloys with and without 6% Ag was investigated in the acidified artificial saliva containing 0.1% NaF (pH = 4). For comparison, the electrochemical behavior of cp Ti was examined in the same condition. The results show that the quenched Zr−20Ti and Zr−40Ti alloy exhibit acicular martensite microstructures containing twin substructure. They display good mechanical properties with the hardness of ∼330HV, the yield strength of ∼1000 MPa and the strain to fracture of ∼25% at room temperature. Adding 6% Ag to Zr−20Ti alloy enhances the passivity breakdown potential and the self-corrosion potential, but hardly affects the corrosion current density and the impedance modulus. 6% Ag in Zr−40Ti alloy distinctly increases pitting corrosion resistance, which is attributed the formation of thick, dense and stable passive film under the joint action of titanium and silver. In comparison with cp Ti, Zr−40Ti−6Ag alloy possesses the same good corrosion resistance in the rigorous oral environment as well as the superior mechanical properties. - Highlights: • The quenched Zr20Ti and Zr40Ti obtain acicular martensite microstructure. • Zr20Ti and Zr40Ti possess high hardness, strength and strain to fracture. • Increasing Ti content decreases corrosion current density. • Adding Ag enhances passivation breakdown potentials of Zr20Ti and Zr40Ti. • Zr40Ti6Ag has optimum mechanical properties and pitting corrosion resistance.

  5. Effect of pulsed duty cycle control on tribological and corrosion properties of AISI-316 in cathodic cage plasma nitriding

    Science.gov (United States)

    Naeem, M.; Raza, H. A.; Shafiq, M.; Zaka-ul-Islam, M.; Iqbal, Javed; Díaz-Guillén, J. C.; Zakaullah, M.

    2017-11-01

    Austenitic stainless steels are of prime importance in many industrial sectors because of their excellent corrosion resistance; however, their poor mechanical and tribological features lead to their reduced applicability. In this regard, low-temperature cathodic cage plasma nitriding (CCPN) can be used to improve surface properties of steels without scarifying the inherent corrosion resistance. In this study, AISI-316 samples are processed in CCPN reactor at a temperature of 400 °C, for the treatment time of 4 h, at a pressure of 150 Pa and variable pulsed duty cycle (15-75%). The microstructure and mechanical features are analyzed using x-ray diffraction, scanning electron microscopy, microhardness tester and ball-on-disc wear tester. The anodic polarization test in 3.5% NaCl is conducted to examine the corrosion properties. The results show that hardness is enhanced up to 1327 HV at low duty cycle, which is considerably higher than base material (278 HV). The wear rate is found to be reduced up to 90% over base material by processing at low duty cycle. The base material exhibits severe abrasive wear, and the nitrided sample has dominant adhesive wear. The corrosion rate is found to be reduced up to 95% over base material for the sample nitrided at low duty cycle. This study shows that wear and corrosion resistance in CCPN can be significantly boosted by reducing the pulsed duty cycle.

  6. Robust Superhydrophobic Graphene-Based Composite Coatings with Self-Cleaning and Corrosion Barrier Properties.

    Science.gov (United States)

    Nine, Md J; Cole, Martin A; Johnson, Lucas; Tran, Diana N H; Losic, Dusan

    2015-12-30

    Superhydrophobic surfaces for self-cleaning applications often suffer from mechanical instability and do not function well after abrasion/scratching. To address this problem, we present a method to prepare graphene-based superhydrophobic composite coatings with robust mechanical strength, self-cleaning, and barrier properties. A suspension has been formulated that contains a mixture of reduced graphene oxide (rGO) and diatomaceous earth (DE) modified with polydimethylsiloxane (PDMS) that can be applied on any surface using common coating methods such as spraying, brush painting, and dip coating. Inclusion of TiO2 nanoparticles to the formulation shows further increase in water contact angle (WCA) from 159 ± 2° to 170 ± 2° due to the structural improvement with hierarchical surface roughness. Mechanical stability and durability of the coatings has been achieved by using a commercial adhesive to bond the superhydrophobic "paint" to various substrates. Excellent retention of superhydrophobicity was observed even after sandpaper abrasion and crosscut scratching. A potentiodynamic polarization study revealed excellent corrosion resistance (96.78%) properties, and an acid was used to provide further insight into coating barrier properties. The ease of application and remarkable properties of this graphene-based composite coating show considerable potential for broad application as a self-cleaning and protective layer.

  7. Geotechnical properties of two siliceous cores from the central Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Khadge, N.H.

    Physical properties of the siliceous sediments from the Central Indian Basin are measured on two short cores. The properties such as water content, Atterberg limits, porosity specific gravity, wet density show the medium to high plastic sediment...

  8. Aluminum alloy for cladding excellent in sacrificial anode property and erosion-corrosion resistance

    International Nuclear Information System (INIS)

    Imaizumi, S.; Mikami, K.; Yamada, K.

    1980-01-01

    An aluminum alloy for cladding excellent in sacrificial anode property and erosion-corrosion resistance, which consists essentially of, in weight percentage: zinc - 0.3 to 3.0%, magnesium - 0.2 to 4.0%, manganese - 0.3 to 2.0%, and, the balance aluminum and incidental impurities; said alloy including an aluminum alloy also containing at least one element selected from the group consisting of, in weight percentage: indium - 0.005 to 0.2%, tin - 0.01 to 0.3%, and, bismuth - 0.01 to 0.3%; provided that the total content of indium, tin and bismuth being up to 0.3%

  9. Effect of Nb on the Microstructure, Mechanical Properties, Corrosion Behavior, and Cytotoxicity of Ti-Nb Alloys.

    Science.gov (United States)

    Han, Mi-Kyung; Kim, Jai-Youl; Hwang, Moon-Jin; Song, Ho-Jun; Park, Yeong-Joon

    2015-09-09

    In this paper, the effects of Nb addition (5-20 wt %) on the microstructure, mechanical properties, corrosion behavior, and cytotoxicity of Ti-Nb alloys were investigated with the aim of understanding the relationship between phase/microstructure and various properties of Ti-xNb alloys. Phase/microstructure was analyzed using X-ray diffraction (XRD), SEM, and TEM. The results indicated that the Ti-xNb alloys (x = 10, 15, and 20 wt %) were mainly composed of α + β phases with precipitation of the isothermal ω phase. The volume percentage of the ω phase increased with increasing Nb content. We also investigated the effects of the alloying element Nb on the mechanical properties (including Vickers hardness and elastic modulus), oxidation protection ability, and corrosion behavior of Ti-xNb binary alloys. The mechanical properties and corrosion behavior of Ti-xNb alloys were found to be sensitive to Nb content. These experimental results indicated that the addition of Nb contributed to the hardening of cp-Ti and to the improvement of its oxidation resistance. Electrochemical experiments showed that the Ti-xNb alloys exhibited superior corrosion resistance to that of cp-Ti. The cytotoxicities of the Ti-xNb alloys were similar to that of pure titanium.

  10. Effects of Alloying Elements (Cr, Mn) on Corrosion Properties of Carbon Steel in Synthetic Seawater

    International Nuclear Information System (INIS)

    Hyun, Youngmin; Kim, Heesan

    2016-01-01

    Effects of alloying elements, manganese and chromium, on corrosion resistance of carbon steel were examined using weight loss test and electrochemical tests (polarization test and electrochemical impedance spectroscopy (EIS)) in synthetic seawater at 60 ℃. The results from the weight loss test showed that chromium effectively improved corrosion resistance of carbon steel during the entire immersion time, but manganese improved corrosion resistance after the lowered corrosion resistance at the beginnings of immersion. Unlike the weight loss test, the electrochemical tests showed that the corrosion resistance did not increase with immersion time, in all the specimens. This disagreement is explained by the presence of rust involved in electrochemical reaction during electrochemical tests. The analysis of rust with transmission electron microscopy (TEM)−energy dispersive spectroscopy (EDS) showed that the amorphous-like rust layer located at the metal/rust interface with enriched alloying element (Cr, Mn) prevents diffusion of corrosive species into a metal/rust interface effectively, which leads to increased corrosion resistance. The initial corrosion behaviour is also affected by the rust types. In other words, manganese accelerated the formation of spinel oxides, negatively affecting corrosion resistance. Meanwhile, chromium accelerated the formation of goethite but impeded the formation of spinel oxides, positively affecting the corrosion resistance. From the above results, the corrosion resistance of steel is closely related with a rust type.

  11. Effects of Alloying Elements (Cr, Mn) on Corrosion Properties of Carbon Steel in Synthetic Seawater

    Energy Technology Data Exchange (ETDEWEB)

    Hyun, Youngmin; Kim, Heesan [Hongik University, Sejong (Korea, Republic of)

    2016-02-15

    Effects of alloying elements, manganese and chromium, on corrosion resistance of carbon steel were examined using weight loss test and electrochemical tests (polarization test and electrochemical impedance spectroscopy (EIS)) in synthetic seawater at 60 ℃. The results from the weight loss test showed that chromium effectively improved corrosion resistance of carbon steel during the entire immersion time, but manganese improved corrosion resistance after the lowered corrosion resistance at the beginnings of immersion. Unlike the weight loss test, the electrochemical tests showed that the corrosion resistance did not increase with immersion time, in all the specimens. This disagreement is explained by the presence of rust involved in electrochemical reaction during electrochemical tests. The analysis of rust with transmission electron microscopy (TEM)−energy dispersive spectroscopy (EDS) showed that the amorphous-like rust layer located at the metal/rust interface with enriched alloying element (Cr, Mn) prevents diffusion of corrosive species into a metal/rust interface effectively, which leads to increased corrosion resistance. The initial corrosion behaviour is also affected by the rust types. In other words, manganese accelerated the formation of spinel oxides, negatively affecting corrosion resistance. Meanwhile, chromium accelerated the formation of goethite but impeded the formation of spinel oxides, positively affecting the corrosion resistance. From the above results, the corrosion resistance of steel is closely related with a rust type.

  12. Corrosion properties of modified PNC1520 austenitic stainless steel in supercritical water as a fuel cladding candidate material for supercritical water reactor

    International Nuclear Information System (INIS)

    Nakazono, Yoshihisa; Iwai, Takeo; Abe, Hiroaki

    2009-01-01

    The supercritical water-cooled reactor (SCWR) has been designed and investigated because of its high thermal efficiency and plant simplification. There are some advantages including the use of a single phase coolant with high enthalpy. Supercritical Water (SCW) has never been used in nuclear power applications. There are numerous potential problems, particularly with materials. As the operating temperature of SCWR will be between 553 K and 893 K with a pressure of 25 MPa, the selection of materials is difficult and important. The PNC1520 austenitic stainless steel has been developed by Japan Atomic Energy Agency (JAEA) as a nuclear fuel cladding material for a Na-cooled fast breeder reactor. Austenitic Fe-base steels were selected for possible use in supercritical water systems because of their corrosion resistance and radiation resistance. The PNC1520 austenitic stainless steel was selected for possible use in supercritical water systems. The corrosion data of PNC1520 in SCW is required but does not exist. The purpose of the present study is to research the corrosion properties for PNC1520 austenitic stainless steel in SCW. The SCW corrosion test was performed for the standard PNC1520 (1520S) and the Ti-additional type of PNC1520 (1520T) by using a SCW autoclave. The 1520S and 1520T are the first trial production materials of SCWR cladding candidate material in our group. Corrosion and compatibility tests on the austenitic 1520S and 1520T steels in supercritical water were performed at 673, 773 and 600degC with exposures up to 1000 h. We have evaluated the amount of weight gain, weight loss and weight of scale after the corrosion test in SCW for 1520S and 1520T austenitic steels. After 1000 h corrosion test performed, the weight gains of both austenitic stainless steels were less than 2 g/m 2 at 400degC and 500degC. But 1520T weight increases more and weight loss than 1520S at 600degC. The SEM observation result of the surface after 1000 h corrosion of an test

  13. Adsorption properties and inhibition of mild steel corrosion in sulphuric acid solution by ketoconazole: Experimental and theoretical investigation

    Energy Technology Data Exchange (ETDEWEB)

    Obot, I.B. [Department of Chemistry, Faculty of Science, University of Uyo, P.M.B. 1017, Uyo, Akwa Ibom State (Nigeria)], E-mail: proffoime@yahoo.com; Obi-Egbedi, N.O. [Department of Chemistry, University of Ibadan, Ibadan (Nigeria)

    2010-01-15

    Ketoconazole (KCZ) has been evaluated as a corrosion inhibitor for mild steel in aerated 0.1 M H{sub 2}SO{sub 4} by gravimetric method. The effect of KCZ on the corrosion rate was determined at various temperatures and concentrations. The inhibition efficiency increases with increase in inhibitor concentration but decrease with rise in temperature. Adsorption followed the Langmuir isotherm with negative values of {delta}G{sub ads}{sup 0}, suggesting a stable and a spontaneous inhibition process. Quantum chemical approach was further used to calculate some electronic properties of the molecule in order to ascertain any correlation between the inhibitive effect and molecular structure of ketoconazole.

  14. Plasma electrolytic oxidation treatment mode influence on corrosion properties of coatings obtained on Zr-1Nb alloy in silicate-phosphate electrolyte

    Science.gov (United States)

    Farrakhov, R. G.; Mukaeva, V. R.; Fatkullin, A. R.; Gorbatkov, M. V.; Tarasov, P. V.; Lazarev, D. M.; Babu, N. Ramesh; Parfenov, E. V.

    2018-01-01

    This research is aimed at improvement of corrosion properties for Zr-1Nb alloy via plasma electrolytic oxidation (PEO). The coatings obtained in DC, pulsed unipolar and pulsed bipolar modes were assessed using SEM, XRD, PDP and EIS techniques. It was shown that pulsed unipolar mode provides the PEO coatings having promising combination of the coating thickness, surface roughness, porosity, corrosion potential and current density, and charge transfer resistance, all contributing to corrosion protection of the zirconium alloy for advanced fuel cladding applications.

  15. [The effect of bacteria reaction time on corrosion properties of Ni-Cr alloys pretreated with different proteins].

    Science.gov (United States)

    Qi, Han-quan; Zhang, Song-mei; Qian, Chao; Yuan-Li, Zheng

    2015-12-01

    To evaluate the corrosion properties of absorbed protein on the surface of NiCr alloys, and provide experimental base for corrosion resistance of dental casting alloys. NiCr alloy specimens were divided into 3 groups: one group was exposed to the artificial saliva(control group), and the other 2 groups were exposed to the artificial saliva with 1% bovine serum albumin(BSA), or 0.22% lysozyme(LSZ). Group of BSA and group of LSZ were the experimental group. Specimens in 3 groups were cultured in solution of Streptococcus mutans for 12 h, 24 h, 36 h and 48h, and investigated with electrochemical impedance spectroscopy measurement(EIS) and potentiodynamic polarization measurement(POT) to determine the corrosion resistance of the alloys. The data was analyzed with SPSS 17.0 software package. The results indicated that the corrosion resistance of both BSA group and LSZ group were higher than that of the control group (Pcorrosion resistance of BSA group and LSZ group had no significant difference (P>0.05), but was still higher than that of the control group. After 36 h culture time, the control group and the BSA group had no statistical difference in corrosion resistance (P>0.05), while the LSZ group had the poorest corrosion resistance. When the culture time extended to 48 h, the control group had a better corrosion resistance compared with the BAS group and the LSZ group(Pcorrosion properties than LSZ group. The potentiodynamic polarization curve and electrochemical impedance spectroscopy had similar results. The adhesion of BSA and LSZ on the surface of the NiCr alloys in the early time could effectively inhibit the corrosive effect of Streptococcus mutans. The LSZ had better effect than BSA. With the continuing role of bacteria and the consumption of the absorb protein, the corrosion resistance of NiCr alloys toward Streptococcus mutans becomes lower than the alloys without absorb protein, which demonstrated that the adhesion of protein would change the surface

  16. Corrosion-electrochemical and mechanical properties of aluminium-berylium alloys alloyed by rare-earth metals

    International Nuclear Information System (INIS)

    Safarov, A.M.; Odinaev, Kh.E.; Shukroev, M.Sh.; Saidov, R.Kh.

    1997-01-01

    In order to study influence of rare earth metals on corrosion-electrochemical and mechanical properties of aluminium-berylium alloys the alloys contain 1 mass % beryllium and different amount of rare earth metals were obtained.-electrochemical and mechanical properties of aluminium-berylium alloys. The electrochemical characteristics of obtained alloys, including stationary potential, potentials of passivation beginning and full passivation, potentials of pitting formation and re passivation were defined.

  17. Effect of Carbon Nanotubes on Corrosion and Tribological Properties of Pulse-Electrodeposited Co-W Composite Coatings

    Science.gov (United States)

    Edward Anand, E.; Natarajan, S.

    2015-01-01

    Cobalt-Tungsten (Co-W) alloy coatings possessing high hardness and wear/corrosion resistance, due to their ecofriendly processing, have been of interest to the researchers owing to its various industrial applications in automobile, aerospace, and machine parts. This technical paper reports Co-W alloy coatings dispersed with multiwalled carbon nanotubes (MWCNTs) produced by pulse electrodeposition from aqueous bath involving cobalt sulfate, sodium tungstate, and citric acid on stainless steel substrate (SS316). Studies on surface morphology through SEM, microhardness by Vickers method, microwear by pin-on-disk method, and corrosion behavior through potentiodynamic polarization method for the Co-W-CNT coatings were reported. Characterization studies were done by SEM and EDX analysis. The results showed that the corrosion and tribological properties of the pulse-electrodeposited Co-W-CNT alloy coatings were greatly influenced by its morphology, microhardness, %W, and MWCNT content in the coatings.

  18. Athabasca tar sand reservoir properties derived from cores and logs

    International Nuclear Information System (INIS)

    Woodhouse, R.

    1976-01-01

    Log interpretation parameters for the Athabasca Tar Sand Lease No. 24 have been determined by careful correlation with Dean and Stark core analysis data. Significant expansion of Athabasca cores occurs as overburden pressure is removed. In the more shaly sands the core analysis procedures remove adsorbed water from the clays leading to further overestimation of porosity and free water volume. Log interpretation parameters (R/sub w/ = 0.5 ohm . m and m = n = 1.5) were defined by correlation with the weight of tar as a fraction of the weight of rock solids (grain or dry weight fraction of tar). This quantity is independent of the water content of the cores, whereas porosity and the weight of tar as a fraction of the bulk weight of fluids plus solids (bulk weight fraction) are both dependent on water content. Charts are provided for the conversion of bulk weight fraction of fluids to porosity; grain weight fraction of fluids to porosity; log derived porosity and core grain weight tar to water saturation. Example results show that the core analysis grain weight fraction of tar is adequately matched by the log analyses. The log results provide a better representation of the reservoir fluid volumes than the core analysis data

  19. Nanostructure and Properties of Corrosion Resistance in C+Ti Multi-Ion-Implanted Steel

    Institute of Scientific and Technical Information of China (English)

    张通和; 吴瑜光; 刘安东; 张旭; 王晓妍

    2003-01-01

    The corrosion and pitting corrosion resistance of C+ Ti dual and C+Ti+C ternary implanted H13 steel were studied by using a multi-sweep cyclic voltammetry and a scanning electron microscope. The effects of phase formation on corrosion and pitting corrosion resistance were explored. The x-ray diffraction analysis shows that the nanometer-sized precipitate phases consist of compounds of Fe2 Ti, TiC, Fe2C and Fe3 C in dual implanted layer and even in ternary implanted layer. The passivation layer consists of these nanometer phases. It has been found that the corrosion and pitting corrosion resistance of dual and ternary implanted H13 steel are improved extremely. The corrosion resistance of ternary implanted layer is better than that of dual implantations and is enhanced with the increasing ion dose. When the ion dose of Ti is 6 × 1017/cm2 in the ternary implantation sample, the anodic peak current density is 95 times less than that of the H13 steel. The pitting corrosion potential of dual and ternary implantation samples is in the range from 55mV to 160mV which is much higher than that of the H13 steel. The phases against the corrosion and pitting corrosion are nanometer silkiness phases.

  20. Mechanical, tribological and corrosion properties of CrBN films deposited by combined direct current and radio frequency magnetron sputtering

    International Nuclear Information System (INIS)

    Jahodova, Vera; Ding, Xing-zhao; Seng, Debbie H.L.; Gulbinski, W.; Louda, P.

    2013-01-01

    Cr–B–N films were deposited on stainless steel substrates by a combined direct current and radio frequency (RF) reactive unbalanced magnetron sputtering process using two elemental Cr and one compound BN targets. Boron content in the as-deposited films was qualitatively analyzed by time-of-flight secondary ion mass spectroscopy. Films' microstructure, mechanical and tribological properties were characterized by X-ray diffraction, nanoindentation and pin-on-disk tribometer experiments. Corrosion behavior of the Cr–B–N films was evaluated by electrochemical potentiodynamic polarization method in a 3 wt.% NaCl solution. All the films were crystallized into a NaCl-type cubic structure. At lower RF power applied on the BN target (≤ 600 W), films are relatively randomly oriented, and films' crystallinity increased with increasing RF power. With increasing RF power further (≥ 800 W), films became (200) preferentially oriented, and films' crystallinity decreased gradually. With incorporation of a small amount of boron atoms into the CrN films, hardness, wear- and corrosion-resistance were all improved evidently. The best wear and corrosion resistance was obtained for the film deposited with 600 W RF power applied on the BN target. - Highlights: • CrBN films deposited by direct current and radio frequency magnetron sputtering. • CrBN exhibited higher hardness, wear- and corrosion-resistance than pure CrN. • The best wear- and corrosion-resistant film was deposited with 600 W RF power

  1. Effect of Precipitate State on Mechanical Properties, Corrosion Behavior, and Microstructures of Al-Zn-Mg-Cu Alloy

    Science.gov (United States)

    Peng, Xiaoyan; Li, Yao; Xu, Guofu; Huang, Jiwu; Yin, Zhimin

    2018-03-01

    The mechanical properties, corrosion behavior and microstructures of the Al-Zn-Mg-Cu alloy under various ageing treatments were investigated comparatively. The results show that the tensile strength and corrosion resistance are strongly affected by the precipitate state. Massive fine intragranular precipitates contribute to high strength. Discontinuous coarse grain boundary precipitates containing high Cu content, as well as the narrow precipitate free zone, result in low corrosion susceptibility. After the non-isothermal ageing (NIA) treatment, the tensile strength of 577 MPa is equivalent to that of 579 MPa for the T6 temper. Meanwhile, the stress corrosion susceptibility r tf and the maximum corrosion depth are 97.8% and 23.5 μm, which are comparable to those of 92.8% and 26.7 μm for the T73 temper. Moreover, the total ageing time of the NIA treatment is only 7.25 h, which is much less than that of 48.67 h for the retrogression and re-ageing condition.

  2. An Effective Acid Combination for Enhanced Properties and Corrosion Control of Acidizing Sandstone Formation

    International Nuclear Information System (INIS)

    Shafiq, Mian Umer; Mahmud, Hisham Khaled Ben

    2016-01-01

    To fulfill the demand of the world energy, more technologies to enhance the recovery of oil production are being developed. Sandstone acidizing has been introduced and it acts as one of the important means to increase oil and gas production. Sandstone acidizing operation generally uses acids, which create or enlarge the flow channels of formation around the wellbore. In sandstone matrix acidizing, acids are injected into the formation at a pressure below the formation fracturing pressure, in which the injected acids react with mineral particles that may restrict the flow of hydrocarbons. Most common combination is Hydrofluoric Acid - Hydrochloric with concentration (3% HF - 12% HCl) known as mud acid. But there are some problems associated with the use of mud acid i.e., corrosion, precipitation. In this paper several new combinations of acids were experimentally screened to identify the most effective combination. The combinations used consist of fluoboric, phosphoric, formic and hydrofluoric acids. Cores were allowed to react with these combinations and results are compared with the mud acid. The parameters, which are analyzed, are Improved Permeability Ratio, strength and mineralogy. The analysis showed that the new acid combination has the potential to be used in sandstone acidizing. (paper)

  3. In vitro and in vivo corrosion properties of new iron-manganese alloys designed for cardiovascular applications.

    Science.gov (United States)

    Drynda, Andreas; Hassel, Thomas; Bach, Friedrich Wilhelm; Peuster, Matthias

    2015-04-01

    The principle of biodegradation for the production of temporary implant materials (e.g. stents) plays an important role in the treatment of congenital heart defects. In the last decade several attempts have been made with different alloy materials-mainly based on iron and magnesium. None of the currently available materials in this field have demonstrated satisfying results and have therefore not found entry into broad clinical practice. While magnesium or magnesium alloy systems corrode too fast, the corrosion rate of pure iron-stents is too slow for cardiovascular applications. In the last years FeMn alloy systems were developed with the idea that galvanic effects, caused by different electrochemical properties of Fe and Mn, would increase the corrosion rate. In vitro tests with alloys containing up to 30% Mn showed promising results in terms of biocompatibility. This study deals with the development of new FeMn alloy systems with lower Mn concentrations (FeMn 0.5 wt %, FeMn 2.7 wt %, FeMn 6.9 wt %) to avoid Mn toxicity. Our results show, that these alloys exhibit good mechanical features as well as suitable in vitro biocompatibility and corrosion properties. In contrast, the evaluation of these alloys in a mouse model led to unexpected results-even after 9 months no significant corrosion was detectable. Preliminary SEM investigations showed that passivation layers (FeMn phosphates) might be the reason for corrosion resistance. If this can be proved in further experiments, strategies to prevent or dissolve those layers need to be developed to expedite the in vivo corrosion of FeMn alloys. © 2014 Wiley Periodicals, Inc.

  4. Improvement of mechanical properties and corrosion resistance of biodegradable Mg-Nd-Zn-Zr alloys by double extrusion

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaobo, E-mail: xbxbzhang2003@163.com [School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing, 211167 (China); Wang, Zhangzhong [School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing, 211167 (China); Yuan, Guangyin [National Engineering Research Center of Light Alloy Net Forming, Shanghai Jiao Tong University, Shanghai, 200240 (China); Xue, Yajun [School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing, 211167 (China)

    2012-08-01

    Highlights: Black-Right-Pointing-Pointer Microstructure of Mg-Nd-Zn-Zr alloys was refined and homogenized by double extrusion process. Black-Right-Pointing-Pointer The mechanical properties of the alloys were significantly enhanced by double extrusion. Black-Right-Pointing-Pointer The biocorrosion resistance of the alloys was improved by double extrusion. - Abstract: Mg-Nd-Zn-Zr alloy is a novel and promising biodegradable magnesium alloy due to good biocompatibility, desired uniform corrosion mode and outstanding corrosion resistance in simulated body fluid (SBF). However, the corrosion resistance and mechanical properties should be improved to meet the requirement of the biodegradable implants, such as plates, screws and cardiovascular stents. In the present study, double extrusion process was adopted to refine microstructure and improve mechanical properties of Mg-2.25Nd-0.11Zn-0.43Zr and Mg-2.70Nd-0.20Zn-0.41Zr alloys. The corrosion resistance of the alloys after double extrusion was also studied. The results show that the microstructure of the alloys under double extrusion becomes much finer and more homogeneous than those under once extrusion. The yield strength, ultimate tensile strength and elongation of the alloys under double extrusion are over 270 MPa, 300 MPa and 32%, respectively, indicating that outstanding mechanical properties of Mg-Nd-Zn-Zr alloy can be obtained by double extrusion. The results of immersion experiment and electrochemical measurements in SBF show that the corrosion resistance of Alloy 1 and Alloy 2 under double extrusion was increased by 7% and 8% respectively compared with those under just once extrusion.

  5. Improvement of mechanical properties and corrosion resistance of biodegradable Mg–Nd–Zn–Zr alloys by double extrusion

    International Nuclear Information System (INIS)

    Zhang, Xiaobo; Wang, Zhangzhong; Yuan, Guangyin; Xue, Yajun

    2012-01-01

    Highlights: ► Microstructure of Mg–Nd–Zn–Zr alloys was refined and homogenized by double extrusion process. ► The mechanical properties of the alloys were significantly enhanced by double extrusion. ► The biocorrosion resistance of the alloys was improved by double extrusion. - Abstract: Mg–Nd–Zn–Zr alloy is a novel and promising biodegradable magnesium alloy due to good biocompatibility, desired uniform corrosion mode and outstanding corrosion resistance in simulated body fluid (SBF). However, the corrosion resistance and mechanical properties should be improved to meet the requirement of the biodegradable implants, such as plates, screws and cardiovascular stents. In the present study, double extrusion process was adopted to refine microstructure and improve mechanical properties of Mg–2.25Nd–0.11Zn–0.43Zr and Mg–2.70Nd–0.20Zn–0.41Zr alloys. The corrosion resistance of the alloys after double extrusion was also studied. The results show that the microstructure of the alloys under double extrusion becomes much finer and more homogeneous than those under once extrusion. The yield strength, ultimate tensile strength and elongation of the alloys under double extrusion are over 270 MPa, 300 MPa and 32%, respectively, indicating that outstanding mechanical properties of Mg–Nd–Zn–Zr alloy can be obtained by double extrusion. The results of immersion experiment and electrochemical measurements in SBF show that the corrosion resistance of Alloy 1 and Alloy 2 under double extrusion was increased by 7% and 8% respectively compared with those under just once extrusion.

  6. The effect of conditioning agents on the corrosive properties of molten urea

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, D E; Nguyen, D T; Norton, M M; Parker, B R; Daniels, L E

    1991-01-01

    From the process case histories of the failure of several heat exchanger tube bundles, it was revealed that molten urea containing lignosulfonate as a granulation conditioning-hardening agent (Urea LS[trademark]) is corrosive to Types 304 and 316 stainless steel. The results of field and laboratory immersion corrosion tests indicated that the corrosivity of molten urea is strongly dependent on the process temperature rather than the conditioner composition. At temperatures below 295F, molten Urea LS[trademark] is not aggressive to these stainless steels. However, at temperatures above 300F, the corrosion of these stainless steels is extremely severe. The corrosion rate of Types 304, 304L, 316, and 316L is as high as hundreds of mils per year. The corrosion mechanism tends to be more general than localized. The results of the laboratory corrosion test also revealed that among alloying elements, copper is detrimental to corrosion resistance of stainless steel exposed to molten Urea LS[trademark], chromium is the most beneficial, and nickel has only a minor effect. Thus, copper-free and chromium stainless steels have superior corrosion resistance to the molten Urea LS[trademark] at a wide range of temperatures up to 345F.

  7. Corrosion Protection of Al Alloys for Aircraft by Coatings With Advanced Properties and Enhanced Performance

    National Research Council Canada - National Science Library

    Bierwagen, Gordon; Croll, Stuart; Webster, Dean; Tallman, Dennis; Huo, Qun; Allahar, Brian; Su, Quan; Bonitz, Verena; Fernando, Dilhan; Wang, Duhua

    2007-01-01

    The report presents research that addresses research performed at NDSU for environmentally compliant corrosion protection in coatings systems of greatly extended lifetimes for present and future aircraft...

  8. Development of Semi-Stochastic Algorithm for Optimizing Alloy Composition of High-Temperature Austenitic Stainless Steels (H-Series) for Desired Mechanical and Corrosion Properties.

    Energy Technology Data Exchange (ETDEWEB)

    Dulikravich, George S.; Sikka, Vinod K.; Muralidharan, G.

    2006-06-01

    The goal of this project was to adapt and use an advanced semi-stochastic algorithm for constrained multiobjective optimization and combine it with experimental testing and verification to determine optimum concentrations of alloying elements in heat-resistant and corrosion-resistant H-series stainless steel alloys that will simultaneously maximize a number of alloy's mechanical and corrosion properties.

  9. Electrochemical properties of corrosion products formed on Zn-Mg, Zn-Al and Zn-Al-Mg coatings in model atmospheric conditions

    Czech Academy of Sciences Publication Activity Database

    Stoulil, J.; Prošek, T.; Nazarov, A.; Oswald, Jiří; Kříž, P.; Thierry, D.

    2015-01-01

    Roč. 66, č. 8 (2015), s. 777-782 ISSN 0947-5117 Institutional support: RVO:68378271 Keywords : corrosion products * electrochemical properties * zinc coating Subject RIV: JK - Corrosion ; Surface Treatment of Materials Impact factor: 1.450, year: 2015

  10. Mechanical, Corrosion and Biological Properties of Room-Temperature Sputtered Aluminum Nitride Films with Dissimilar Nanostructure

    Directory of Open Access Journals (Sweden)

    Cristina Besleaga

    2017-11-01

    Full Text Available Aluminum Nitride (AlN has been long time being regarded as highly interesting material for developing sensing applications (including biosensors and implantable sensors. AlN, due to its appealing electronic properties, is envisaged lately to serve as a multi-functional biosensing platform. Although generally exploited for its intrinsic piezoelectricity, its surface morphology and mechanical performance (elastic modulus, hardness, wear, scratch and tensile resistance to delamination, adherence to the substrate, corrosion resistance and cytocompatibility are also essential features for high performance sustainable biosensor devices. However, information about AlN suitability for such applications is rather scarce or at best scattered and incomplete. Here, we aim to deliver a comprehensive evaluation of the morpho-structural, compositional, mechanical, electrochemical and biological properties of reactive radio-frequency magnetron sputtered AlN nanostructured thin films with various degrees of c-axis texturing, deposited at a low temperature (~50 °C on Si (100 substrates. The inter-conditionality elicited between the base pressure level attained in the reactor chamber and crystalline quality of AlN films is highlighted. The potential suitability of nanostructured AlN (in form of thin films for the realization of various type of sensors (with emphasis on bio-sensors is thoroughly probed, thus unveiling its advantages and limitations, as well as suggesting paths to safely exploit the remarkable prospects of this type of materials.

  11. Mechanical, Corrosion and Biological Properties of Room-Temperature Sputtered Aluminum Nitride Films with Dissimilar Nanostructure.

    Science.gov (United States)

    Besleaga, Cristina; Dumitru, Viorel; Trinca, Liliana Marinela; Popa, Adrian-Claudiu; Negrila, Constantin-Catalin; Kołodziejczyk, Łukasz; Luculescu, Catalin-Romeo; Ionescu, Gabriela-Cristina; Ripeanu, Razvan-George; Vladescu, Alina; Stan, George E

    2017-11-17

    Aluminum Nitride (AlN) has been long time being regarded as highly interesting material for developing sensing applications (including biosensors and implantable sensors). AlN, due to its appealing electronic properties, is envisaged lately to serve as a multi-functional biosensing platform. Although generally exploited for its intrinsic piezoelectricity, its surface morphology and mechanical performance (elastic modulus, hardness, wear, scratch and tensile resistance to delamination, adherence to the substrate), corrosion resistance and cytocompatibility are also essential features for high performance sustainable biosensor devices. However, information about AlN suitability for such applications is rather scarce or at best scattered and incomplete. Here, we aim to deliver a comprehensive evaluation of the morpho-structural, compositional, mechanical, electrochemical and biological properties of reactive radio-frequency magnetron sputtered AlN nanostructured thin films with various degrees of c -axis texturing, deposited at a low temperature (~50 °C) on Si (100) substrates. The inter-conditionality elicited between the base pressure level attained in the reactor chamber and crystalline quality of AlN films is highlighted. The potential suitability of nanostructured AlN (in form of thin films) for the realization of various type of sensors (with emphasis on bio-sensors) is thoroughly probed, thus unveiling its advantages and limitations, as well as suggesting paths to safely exploit the remarkable prospects of this type of materials.

  12. Evaluation of Microstructure, Mechanical Properties and Corrosion Resistance of Friction Stir-Welded Aluminum and Magnesium Dissimilar Alloys

    Science.gov (United States)

    Verma, Jagesvar; Taiwade, Ravindra V.; Sapate, Sanjay G.; Patil, Awanikumar P.; Dhoble, Ashwinkumar S.

    2017-10-01

    Microstructure, mechanical properties and corrosion resistance of dissimilar friction stir-welded aluminum and magnesium alloys were investigated by applying three different rotational speeds at two different travel speeds. Sound joints were obtained in all the conditions. The microstructure was examined by an optical and scanning electron microscope, whereas localized chemical information was studied by energy-dispersive spectroscopy. Stir zone microstructure showed mixed bands of Al and Mg with coarse and fine equiaxed grains. Grain size of stir zone reduced compared to base metals, indicated by dynamic recrystallization. More Al patches were observed in the stir zone as rotational speed increased. X-ray diffraction showed the presence of intermetallics in the stir zone. Higher tensile strength and hardness were obtained at a high rotational speed corresponding to low travel speed. Tensile fractured surface indicated brittle nature of joints. Dissimilar friction stir weld joints showed different behaviors in different corrosive environments, and better corrosion resistance was observed at a high rotational speed corresponding to low travel speed (FW3) in a sulfuric and chloride environments. Increasing travel speed did not significantly affect on microstructure, mechanical properties and corrosion resistance as much as the rotational speed.

  13. Effect of coating mild steel with CNTs on its mechanical properties and corrosion behaviour in acidic medium

    Science.gov (United States)

    Abdulmalik Abdulrahaman, Mahmud; Kamaldeeen Abubakre, Oladiran; Ambali Abdulkareem, Saka; Oladejo Tijani, Jimoh; Aliyu, Ahmed; Afolabi, Ayo Samuel

    2017-03-01

    The study investigated the mechanical properties and corrosion behaviour of mild steel coated with carbon nanotubes at different coating conditions. Multi-walled carbon nanotubes (MWCNTs) were synthesized via the conventional chemical vapour deposition reaction using bimetallic Fe-Ni catalyst supported on kaolin, with acetylene gas as a carbon source. The HRSEM/HRTEM analysis of the purified carbon materials revealed significant reduction in the diameters of the purified MWCNT bundles from 50 nm to 2 nm and was attributed to the ultrasonication assisted dispersion with surfactant (gum arabic) employed in purification process. The network of the dispersed MWCNTs was coated onto the surfaces of mild steel samples, and as the coating temperature and holding time increased, the coating thickness reduced. The mechanical properties (tensile strength, yield strength, hardness value) of the coated steel samples increased with increase in coating temperature and holding time. Comparing the different coating conditions, coated mild steels at the temperature of 950 °C for 90 min holding time exhibited high hardness, yield strength and tensile strength values compared to others. The corrosion current and corrosion rate of the coated mild steel samples decreased with increase in holding time and coating temperature. The lowest corrosion rate was observed on sample coated at 950 °C for 90 min.

  14. Structural and corrosive properties of ZrO2 thin films on zircaloy-4 by RF reactive magnetron sputtering

    International Nuclear Information System (INIS)

    Kim, Soo Ho; Lee, Kwang Hoon; Ko, Jae Hwan; Yoon, Young Soo; Baek, Jong Hyuk; Lee, Sang Jin

    2006-01-01

    Zirconium-oxide (ZrO 2 ) thin films as protective layers were grown on a Zircaloy-4 (Z-4) cladding material as a substrate by RF reactive magnetron sputtering at room temperature. To investigate the effect of plasma immersion on the structural and the corrosive properties of the as-grown ZrO 2 thin film, we immersed Z-4 in plasma during the deposition process. X-ray diffraction (XRD) measurements showed that the as-grown ZrO 2 thin films immersed in plasma had cubic, well as monoclinic and tetragonal, phases whereas those immersed in the plasma had monoclinic and tetragonal phases only. Atomic force microscopy (AFM) measurements of the surface morphology showed that the surface roughness of the as-grown ZrO 2 thin films immersed in plasma was larger than that of the films not immersed in plasma. In addition, the corrosive property of the as-grown ZrO 2 thin films immersed in the plasma was characterized using the weight gains of Z-4 after the corrosion test. Compared with the non-immersed films, the weight gains of the immersed films were larger. These results indicate that the ZrO 2 films immersed in plasma cannot protect Z-4 from corrosive phenomena.

  15. Study on the Microstructure, Mechanical Properties and Corrosion Behavior of Mg-Zn-Ca Alloy Wire for Biomaterial Application

    Science.gov (United States)

    Zheng, Maobo; Xu, Guangquan; Liu, Debao; Zhao, Yue; Ning, Baoqun; Chen, Minfang

    2018-03-01

    Due to their excellent biocompatibility and biodegradability, magnesium alloy wires have attracted much attention for biomaterial applications including orthopedic K-wires and sutures in wound closure. In this study, Mg-3Zn-0.2Ca alloy wires were prepared by cold drawing combined with proper intermediate annealing process. Microstructures, texture, mechanical properties and corrosion behavior of Mg-3Zn-0.2Ca alloy wire in a simulated body fluid were investigated. The results showed that the secondary phase and average grain size of the Mg-3Zn-0.2Ca alloy were refined in comparison with the as-extruded alloy and a strong (0002)//DD basal fiber texture system was formed after multi-pass cold drawing. After the annealing, most of the basal planes were tilted to the drawing direction (DD) by about 35°, presenting the characteristics of random texture, and the texture intensity decreased. The as-annealed wire shows good mechanical properties with the ultimate tensile strength (UTS), yield strength (YS) and elongation of 253 ± 8.5 MPa, 212 ± 11.3 MPa and 9.2 ± 0.9%, respectively. Electrochemical and hydrogen evolution measurements showed that the corrosion resistance of the Mg-3Zn-0.2Ca alloy wire was improved after the annealing. The immersion test indicated that the Mg-3Zn-0.2Ca wire exhibited uniform corrosion behavior during the initial period of immersion, but then exhibited local corrosion behavior.

  16. Improvement of the corrosion and tribological properties of CSS-42L aerospace bearing steel using carbon ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Fangfang; Zhou, Chungen; Zheng, Lijing, E-mail: zhenglijing@buaa.edu.cn; Zhang, Hu

    2017-01-15

    Highlights: • The corrosion and tribological properties of an aerospace bearing steel CSS-42L was investigated. • Carbon ion implantation was conducted and an amorphous layer formed at the near surface of CSS-42L steel. • The enhanced Cr diffusion and the decreased free electrons are contributed to the improvement of corrosion properties. • The external hard layer has positive effect on the wear resistance. - Abstract: The aerospace bearings steel CSS-42L was ion implanted by carbon with implantation fluxes of 5 × 10{sup 16} ions cm{sup −2}. The composition, microstructure and hardness of the carbon implanted samples were characterized using X-ray photoelectron spectroscopy, Auger electron spectroscopy, X-ray diffraction, and nanoindentation tests. The corrosion and tribological properties were also evaluated in the present work. The results shown that carbon implantation produced an amorphous layer and graphitic bounds formed at the near surface of CSS-42L steel. In the electrochemical test, the carbon implanted samples suggested lower current densities and corrosion rates. Carbon ion implanted samples shown a relative Cr-enrichment at the surface as compared with nonimplanted samples. The improved corrosion resistance is believed to be related to the formed amorphous layer, the enhancement of Cr diffusion in the carbon implantation layer which contributed the formation of passive film on the surface, the decrease of free electrons which caused by the increase of carbon fraction. The external hard layer had positive effect on the wear resistance, reducing strongly the friction coefficient about 30% and the abrasive-adhesive mechanism present in the unimplanted samples was not modified by the implantation process.

  17. MATHEMATICAL MODELING AND NUMERICAL SOLUTION OF IRON CORROSION PROBLEM BASED ON CONDENSATION CHEMICAL PROPERTIES

    Directory of Open Access Journals (Sweden)

    Basuki Widodo

    2012-02-01

    Full Text Available Corrosion process is a natural case that happened at the various metals, where the corrosion process in electrochemical can be explained by using galvanic cell. The iron corrosion process is based on the acidity degree (pH of a condensation, iron concentration and condensation temperature of electrolyte. Those are applied at electrochemistry cell. The iron corrosion process at this electrochemical cell also able to generate electrical potential and electric current during the process takes place. This paper considers how to build a mathematical model of iron corrosion, electrical potential and electric current. The mathematical model further is solved using the finite element method. This iron corrosion model is built based on the iron concentration, condensation temperature, and iteration time applied. In the electric current density model, the current based on electric current that is happened at cathode and anode pole and the iteration time applied. Whereas on the potential  electric model, it is based on the beginning of electric potential and the iteration time applied. The numerical results show that the part of iron metal, that is gristle caused by corrosion, is the part of metal that has function as anode and it has some influences, such as time depth difference, iron concentration and condensation temperature on the iron corrosion process and the sum of reduced mass during corrosion process. Moreover, difference influence of time and beginning electric potential has an effect on the electric potential, which emerges during corrosion process at the electrochemical cell. Whereas, at the electrical current is also influenced by difference of depth time and condensation temperature applied.Keywords: Iron Corrosion, Concentration of iron, Electrochemical Cell and Finite Element Method

  18. Kenaf Core Particleboard and Its Sound Absorbing Properties

    OpenAIRE

    Mohamad Jani Saad; Izran Kamal

    2012-01-01

    In this study, kenaf (Hibiscus cannabinus) core particleboards as insulation boards were manufactured. The boards were fabricated with three different densities i.e. 350 kg/m3, 450 kg/m3 and 550 kg/m3 at urea formaldehyde resin (UF) loadings of 8%, 10% and 12% (w/w) based on the dry weight of the kenaf core particles. The fabricated boards were evaluated for its noise acoustical coefficients (NAC) by following the ASTM E1050-98 standard requirements. The study revealed that boards with higher...

  19. Electrical properties of spherical dipole antennas with lossy material cores

    DEFF Research Database (Denmark)

    Hansen, Troels Vejle; Kim, Oleksiy S.; Breinbjerg, Olav

    2012-01-01

    A spherical magnetic dipole antenna with a linear, isotropic, homogenous, passive, and lossy material core is modeled analytically, and closed form expressions are given for the internally stored magnetic and electric energies, the radiation efficiency, and radiation quality factor. This model...... and all the provided expressions are exact and valid for arbitrary core sizes, permeability, permittivity, electric and magnetic loss tangents. Arbitrary dispersion models for both permeability and permittivity can be applied. In addition, we present an investigation for an antenna of fixed electrical...

  20. Corrosion inhibitors

    International Nuclear Information System (INIS)

    El Ashry, El Sayed H.; El Nemr, Ahmed; Esawy, Sami A.; Ragab, Safaa

    2006-01-01

    The corrosion inhibition efficiencies of some triazole, oxadiazole and thiadiazole derivatives for steel in presence of acidic medium have been studied by using AM1, PM3, MINDO/3 and MNDO semi-empirical SCF molecular orbital methods. Geometric structures, total negative charge on the molecule (TNC), highest occupied molecular energy level (E HOMO ), lowest unoccupied molecular energy level (E LUMO ), core-core repulsion (CCR), dipole moment (μ) and linear solvation energy terms, molecular volume (V i ) and dipolar-polarization (π *), were correlated to corrosion inhibition efficiency. Four equations were proposed to calculate corrosion inhibition efficiency. The agreement with the experimental data was found to be satisfactory; the standard deviations between the calculated and experimental results ranged between ±0.03 and ±4.18. The inhibition efficiency was closely related to orbital energies (E HOMO and E LUMO ) and μ. The correlation between quantum parameters and experimental inhibition efficiency has been validated by single point calculations for the semi-empirical AM1 structures using B3LYP/6-31G** as a higher level of theory. The proposed equations were applied to predict the corrosion inhibition efficiency of some related structures to select molecules of possible activity from a presumable library of compounds

  1. Effect of alloy elements on the anti-corrosion properties of low alloy ...

    Indian Academy of Sciences (India)

    Unknown

    2.2b Specimens installation: The specimens were installed vertically facing southward in plastic frames, as shown in figure 1, and were connected to each other with lead wires in order to simulate well the practical corrosion conditions in the open sea. The welding point was covered with epoxy resin to prevent corrosion due ...

  2. Release Properties and Electrochemical Characterization of Encapsulated Corrosion Inhibitors for Environmentally Friendly Smart Coatings

    Science.gov (United States)

    Pearman, B. P.; Calle, L. M.; Zhang, X.; Li, W.; Buhrow, J. W.; Johnsey, M. N.; Montgomery, E. L.; Fitzpatrick, L.; Surma, J. M.

    2015-01-01

    The NASA Kennedy Space Center's Corrosion Technology Lab at the Kennedy Space Center in Florida, U.S.A. has been developing multifunctional smart coatings based on the microencapsulation of environmentally friendly corrosion indicators, inhibitors and self-healing agents. This allows for the incorporation of autonomous corrosion control functionalities, such as corrosion detection and inhibition as well as the self-healing of mechanical damage, into coatings. This paper presents technical details on the characterization of inhibitor-containing particles and their corrosion inhibitive effects using electrochemical and mass loss methods. Three organic environmentally friendly corrosion inhibitors were encapsulated in organic microparticles that are compatible with desired coatings. The total inhibitor content and the release of one of the inhibitors from the microparticles in basic solution was measured. Particles with inhibitor contents of up 60 wt% were synthesized. Fast release, for immediate corrosion protection, as well as long-term release for continued protection, was observed. The inhibition efficacy of the inhibitors, both as the pure materials and in microparticles, on carbon steel was evaluated. Polarization curves and mass loss measurements showed that, in the case of 2MBT, its corrosion inhibition effectiveness was greater when it was delivered from microparticles.

  3. Anti-corrosion and Anti-bacteria Property of Modified Pomegranate Peel Extract

    Science.gov (United States)

    Gu, Xue-Fan; Chang, Xiao-Feng; Cheng, Chao; Zhang, Li; Zhang, Yong-Ming; Zhang, Jie; Chen, Gang

    2018-03-01

    Using weight loss method, the pomegranate peel extract (PPE), that is a green corrosion inhibitors, have been studied in the corrosion inhibition of Q235A steel in 1M hydrochloric acid solution at 30°C, 45°C, 60°C, respectively. The inhibition rate of extract varies with the extraction concentration in the range of 10 ∼ 1000mg / L, up to 92.7%. Extract inhibits corrosion through adsorption mechanisms. Besides polyphenols hydroxyl and ether groups can slow down corrosion by capturing H+. Polyphenols can remove the dissolved O2, and curb oxygen reducing corrosion. PPE is antifungal active against TGB and FB, but not so active against SRB.

  4. Electrochemical and Corrosion Properties of Aluminum Brass in Seawater Desalination Environments

    Directory of Open Access Journals (Sweden)

    Hong JU

    2017-11-01

    Full Text Available The corrosion behavior and mechanism of aluminum brass (HAl77-2 in seawater desalination plant were investigated using electrochemical measurement, Scanning Electronic Microscope (SEM and Energy Dispersive X-ray spectroscopy (EDX analysis. The electrochemical results revealed that the corrosion of HAl77-2 in the desalination artificial seawater depended on chloride ion concentrations, displaying a maximum with a chloride ion concentration of 2.3 wt.%. Corrosion rate of HAl77-2 initial increased and subsequently decreased with the increasing of chloride ion concentration. Moreover, corrosion of HAl77-2 becomes more severe when temperature rises. The above results obtained by electrochemical impedance spectroscopy and potentiodynamic polarization tests were in a good agreement. The results of SEM and EDX methods showed selective localized corrosion appeared remarkably on the surface of HAl77-2.DOI: http://dx.doi.org/10.5755/j01.ms.23.4.17170

  5. Microstructural, phase evolution and corrosion properties of silicon carbide reinforced pulse electrodeposited nickel-tungsten composite coatings

    Science.gov (United States)

    Singh, Swarnima; Sribalaji, M.; Wasekar, Nitin P.; Joshi, Srikant; Sundararajan, G.; Singh, Raghuvir; Keshri, Anup Kumar

    2016-02-01

    Silicon carbide (SiC) reinforced nickel-tungsten (Ni-W) coatings were successfully fabricated on steel substrate by pulse electrodeposition method (PED) and the amount of SiC was varied as 0 g/l, 2 g/l, and 5 g/l in Ni-W coating. Effect of subsequent addition of SiC on microstructures, phases and on corrosion property of the coating was investigated. Field emission scanning electron microscopy (FE-SEM) image of the surface morphology of the coating showed the transformation from the dome like structure to turtle shell like structure. X-ray diffraction (XRD) of Ni-W-5 g/l SiC showed the disappearance of (220) plane of Ni(W), peak splitting in major peak of Ni(W) and formation of distinct peak of W(Ni) solid solution. Absence of (220) plane, peak splitting and presence of W(Ni) solid solution was explained by the high resolution transmission electron microscopy (HR-TEM) images. Tafel polarization plot was used to study the corrosion property of the coatings in 0.5 M NaCl solution. Ni-W-5 g/l SiC coating was showed higher corrosion resistance (i.e. ∼21% increase in corrosion potential, Ecorr) compared to Ni-W coating. Two simultaneous phenomena have been identified for the enhanced corrosion resistance of Ni-W-5 g/l SiC coating. (a) Presence of crystallographic texture (b) formation of continuous double barrier layer of NiWO4 and SiO2.

  6. The characteristics of TiC and oxidation resistance and mechanical properties of TiC coated graphite under corrosive environment

    International Nuclear Information System (INIS)

    Yoda, Shinichi; Oku, Tatsuo; Ioka, Ikuo; Umekawa, Shokichi.

    1982-07-01

    Core region of the Very High Temperature Gas Cooled Reactor (VHTR) consists mainly of polycrystalline graphite whose mechanical properties degradated by corrosion resulting from such impurities as O 2 , H 2 O, and CO 2 in coolant He gas. Mechanical properties and oxidation resistance of TiC coated graphite under corrosive condition were examined in order to evaluate the effects of TiC coating on preventing the graphite from its degradation in service condition of the VHTR. Characteristics of TiC coating was also examined using EPMA. Holding the specimen at 1373 K for 6 hr produced strong interface between TiC coating and the graphite, however, microcracks on TiC coating was observed, the origin of which is ascribed to mismatch in thermal expansion between TiC coating and the graphite. Oxidation rate of TiC coated graphite was one-thirds of that of uncoated graphite, which demonstrated that TiC coating on the graphite improved the oxidation resistance of the graphite. However, debonding of TiC coating layer at the interface was observed after heating for 3 to 4 hr in the oxidation condition. Changes in Young's modulus of TiC coated graphite were a half of that of uncoated graphite. Flexural strength of TiC coated graphite remained at the original value up to about 4 hr oxidation, therafter it decreased abruptly as was the trend of uncoated graphite. It is concluded that TiC coating on graphite materials is very effective in improving oxidation resistance and suppressing degradation of mechanical properties of the graphite. (author)

  7. Mechanical properties of zirconia core-shell rods with porous core and dense shell prepared by thermoplastic co-extrusion

    Czech Academy of Sciences Publication Activity Database

    Kaštyl, J.; Chlup, Zdeněk; Clemen, F.; Trunec, M.

    2017-01-01

    Roč. 37, č. 6 (2017), s. 2439-2447 ISSN 0955-2219 R&D Projects: GA MŠk(CZ) LQ1601 Institutional support: RVO:68081723 Keywords : ceramic injection moldings * oxide fuel -cells * electrophoretic deposition * large pores * alumina * fabrication * behavior * tubes * bioceramics * composites * Zirconia * Co-extrusion * Core-shell * Porous structure * Mechanical properties Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass OBOR OECD: Ceramics Impact factor: 3.411, year: 2016

  8. Spent nuclear fuel. A review of properties of possible relevance to corrosion processes

    International Nuclear Information System (INIS)

    Forsyth, R.

    1995-04-01

    The report reviews the properties of spent fuel which are considered to be of most importance in determining the corrosion behaviour in groundwaters. Pellet cracking and fragment size distribution are discussed, together with the available results of specific surface area measurements on spent fuel. With respect to the importance of fuel microstructure, emphasis is placed on recent work on the so called structural rim effect, which consists of the formation of a zone of high porosity, and the polygonization of fuel grains to form many sub-grains, at the pellet rim, and appears to be initiated when the average pellet burnup exceeds a threshold of about 40 MWd/kgU. Due to neutron spectrum effects, the pellet rim is also associated with the buildup of plutonium and other actinides, which results in an enhanced local burnup and specific activity of both beta-gamma and alpha radiation, thus representing a greater potential for radiolysis effects in ingressed groundwater. The report presents and discusses the results of quantitative determination of the radial profiles of burnup and alpha activity on spent fuel with average burnups from 21.2 to 49 MWd/kgU. In addition to the radial variation of fission product and actinide inventories due to the effects mentioned above, migration, redistribution and release of some fission products can occur during reactor irradiation and the report concludes with a short review of these processes

  9. Microstructural, phase evolution and corrosion properties of silicon carbide reinforced pulse electrodeposited nickel–tungsten composite coatings

    International Nuclear Information System (INIS)

    Singh, Swarnima; Sribalaji, M.; Wasekar, Nitin P.; Joshi, Srikant; Sundararajan, G.; Singh, Raghuvir; Keshri, Anup Kumar

    2016-01-01

    Graphical abstract: - Highlights: • Pulse electrodeposited Ni–W–SiC coating has been synthesized successfully. • Dome to turtle like structure has been observed on addition of SiC in Ni–W coating. • Formation of W(Ni) solid solution was observed on adding 5 g/l SiC in Ni–W coating. • Corrosion resistance improved for Ni–W–5 g/l SiC coating. • Texture formation and continuous barrier layer enhanced the corrosion resistance. - Abstract: Silicon carbide (SiC) reinforced nickel–tungsten (Ni–W) coatings were successfully fabricated on steel substrate by pulse electrodeposition method (PED) and the amount of SiC was varied as 0 g/l, 2 g/l, and 5 g/l in Ni–W coating. Effect of subsequent addition of SiC on microstructures, phases and on corrosion property of the coating was investigated. Field emission scanning electron microscopy (FE-SEM) image of the surface morphology of the coating showed the transformation from the dome like structure to turtle shell like structure. X-ray diffraction (XRD) of Ni–W–5 g/l SiC showed the disappearance of (220) plane of Ni(W), peak splitting in major peak of Ni(W) and formation of distinct peak of W(Ni) solid solution. Absence of (220) plane, peak splitting and presence of W(Ni) solid solution was explained by the high resolution transmission electron microscopy (HR-TEM) images. Tafel polarization plot was used to study the corrosion property of the coatings in 0.5 M NaCl solution. Ni–W–5 g/l SiC coating was showed higher corrosion resistance (i.e. ∼21% increase in corrosion potential, E_c_o_r_r) compared to Ni–W coating. Two simultaneous phenomena have been identified for the enhanced corrosion resistance of Ni–W–5 g/l SiC coating. (a) Presence of crystallographic texture (b) formation of continuous double barrier layer of NiWO_4 and SiO_2.

  10. Microstructural, phase evolution and corrosion properties of silicon carbide reinforced pulse electrodeposited nickel–tungsten composite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Swarnima; Sribalaji, M. [Materials Science and Engineering, Indian Institute of Technology Patna, Navin Government Polytechnic Campus, Patliputra Colony, Patna, Bihar 800013 (India); Wasekar, Nitin P.; Joshi, Srikant; Sundararajan, G. [International Advanced Research Centre for Powder Metallurgy & New Materials (ARCI) Hyderabad, Balapur P.O., Hyderabad, Andhra Pradesh 500005 (India); Singh, Raghuvir [CSIR-National Metallurgical Laboratory, Jamshedpur, Jharkhand 831007 (India); Keshri, Anup Kumar, E-mail: anup@iitp.ac.in [Materials Science and Engineering, Indian Institute of Technology Patna, Navin Government Polytechnic Campus, Patliputra Colony, Patna, Bihar 800013 (India)

    2016-02-28

    Graphical abstract: - Highlights: • Pulse electrodeposited Ni–W–SiC coating has been synthesized successfully. • Dome to turtle like structure has been observed on addition of SiC in Ni–W coating. • Formation of W(Ni) solid solution was observed on adding 5 g/l SiC in Ni–W coating. • Corrosion resistance improved for Ni–W–5 g/l SiC coating. • Texture formation and continuous barrier layer enhanced the corrosion resistance. - Abstract: Silicon carbide (SiC) reinforced nickel–tungsten (Ni–W) coatings were successfully fabricated on steel substrate by pulse electrodeposition method (PED) and the amount of SiC was varied as 0 g/l, 2 g/l, and 5 g/l in Ni–W coating. Effect of subsequent addition of SiC on microstructures, phases and on corrosion property of the coating was investigated. Field emission scanning electron microscopy (FE-SEM) image of the surface morphology of the coating showed the transformation from the dome like structure to turtle shell like structure. X-ray diffraction (XRD) of Ni–W–5 g/l SiC showed the disappearance of (220) plane of Ni(W), peak splitting in major peak of Ni(W) and formation of distinct peak of W(Ni) solid solution. Absence of (220) plane, peak splitting and presence of W(Ni) solid solution was explained by the high resolution transmission electron microscopy (HR-TEM) images. Tafel polarization plot was used to study the corrosion property of the coatings in 0.5 M NaCl solution. Ni–W–5 g/l SiC coating was showed higher corrosion resistance (i.e. ∼21% increase in corrosion potential, E{sub corr}) compared to Ni–W coating. Two simultaneous phenomena have been identified for the enhanced corrosion resistance of Ni–W–5 g/l SiC coating. (a) Presence of crystallographic texture (b) formation of continuous double barrier layer of NiWO{sub 4} and SiO{sub 2}.

  11. Effects of microstructure transformation on mechanical properties, corrosion behaviors of Mg-Zn-Mn-Ca alloys in simulated body fluid.

    Science.gov (United States)

    Zhang, Yuan; Li, Jianxing; Li, Jingyuan

    2018-04-01

    Magnesium and its alloys have unique advantages to act as resorbable bone fixation materials, due to their moderate mechanical properties and biocompatibility, which are similar to those of human tissue. However, early resorption and insufficient mechanical strength are the main problems that hinder their application. Herein, the effects of microstructure transformation on the mechanical properties and corrosion performance of Mg-Zn-Mn-Ca were investigated with electrochemical and immersion measurements at 37 °C in a simulated body fluid (SBF). The results showed that the number density of Ca 2 Mg 6 Zn 3 /Mg 2 Ca precipitates was remarkably reduced and grain sizes were gradually increased as the temperature increased. The alloy that received the 420 °C/24 h treatment demonstrated the best mechanical properties and lowest corrosion rate (5.94 mm/a) as well as presented a compact and denser film than the others. The improvement in mechanical properties could be explained by the eutectic compounds and phases (Mg 2 Ca/Ca 2 Mg 6 Zn 3 ) gradually dissolving into a matrix, which caused severely lattice distortion and facilitated structural re-arrangement of the increased Ca solute. Moreover, the difference in potential between the precipitates and the matrix is the main essence for micro-galvanic corrosion formation as well as accelerated the dissolution activity and current exchange density at the Mg/electrolyte interface. As a result, the best Mg alloys corrosion resistance must be matched with a moderate grain size and phase volume fractions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. MECHANICAL PROPERTIES AND CORROSION PROTECTION OF CARBON STEEL COATED WITH AN EPOXY BASED POWDER COATING CONTAINING MONTMORILONITE FUNCTIONALIZED WITH SILANE

    OpenAIRE

    Paula Tibola Bertuoli; Veronica Perozzo Frizzo; Diego Piazza; Lisete Cristine Scienza; Ademir José Zattera

    2014-01-01

    In the present work the MMT-Na+ clay was functionalized with 3-aminopropyltriethoxysilane (γ-APS) and incorporated in a commercial formulation epoxy-based powder coating in a proportion of 8 wt% and applied on 1008 carbon steel panels by electrostatic spray. Adhesion, flexibility, impact and corrosion performance in salt spray chamber tests were performed to evaluate the coatings. The presence of clay did not affect the mechanical properties of the film, however greater subcutaneo...

  13. Normal Mode Derived Models of the Physical Properties of Earth's Outer Core

    Science.gov (United States)

    Irving, J. C. E.; Cottaar, S.; Lekic, V.; Wu, W.

    2017-12-01

    Earth's outer core, the largest reservoir of metal in our planet, is comprised of an iron alloy of an uncertain composition. Its dynamical behaviour is responsible for the generation of Earth's magnetic field, with convection driven both by thermal and chemical buoyancy fluxes. Existing models of the seismic velocity and density of the outer core exhibit some variation, and there are only a small number of models which aim to represent the outer core's density.It is therefore important that we develop a better understanding of the physical properties of the outer core. Though most of the outer core is likely to be well mixed, it is possible that the uppermost outer core is stably stratified: it may be enriched in light elements released during the growth of the solid, iron enriched, inner core; by elements dissolved from the mantle into the outer core; or by exsolution of compounds previously dissolved in the liquid metal which will eventually be swept into the mantle. The stratified layer may host MAC or Rossby waves and it could impede communication between the chemically differentiated mantle and outer core, including screening out some of the geodynamo's signal. We use normal mode center frequencies to estimate the physical properties of the outer core in a Bayesian framework. We estimate the mineral physical parameters needed to best produce velocity and density models of the outer core which are consistent with the normal mode observations. We require that our models satisfy realistic physical constraints. We create models of the outer core with and without a distinct uppermost layer and assess the importance of this region.Our normal mode-derived models are compared with observations of body waves which travel through the outer core. In particular, we consider SmKS waves which are especially sensitive to the uppermost outer core and are therefore an important way to understand the robustness of our models.

  14. Neural evidence that human emotions share core affective properties.

    Science.gov (United States)

    Wilson-Mendenhall, Christine D; Barrett, Lisa Feldman; Barsalou, Lawrence W

    2013-06-01

    Research on the "emotional brain" remains centered around the idea that emotions like fear, happiness, and sadness result from specialized and distinct neural circuitry. Accumulating behavioral and physiological evidence suggests, instead, that emotions are grounded in core affect--a person's fluctuating level of pleasant or unpleasant arousal. A neuroimaging study revealed that participants' subjective ratings of valence (i.e., pleasure/displeasure) and of arousal evoked by various fear, happiness, and sadness experiences correlated with neural activity in specific brain regions (orbitofrontal cortex and amygdala, respectively). We observed these correlations across diverse instances within each emotion category, as well as across instances from all three categories. Consistent with a psychological construction approach to emotion, the results suggest that neural circuitry realizes more basic processes across discrete emotions. The implicated brain regions regulate the body to deal with the world, producing the affective changes at the core of emotions and many other psychological phenomena.

  15. Influence of Cr and Y Addition on Microstructure, Mechanical Properties, and Corrosion Resistance of SPSed Fe-Based Alloys

    Science.gov (United States)

    Muthaiah, V. M. Suntharavel; Mula, Suhrit

    2018-03-01

    Present work investigates the microstructural stability during spark plasma sintering (SPS) of Fe-Cr-Y alloys, its mechanical properties and corrosion behavior for its possible applications in nuclear power plant and petrochemical industries. The SPS was carried out for the Fe-7Cr-1Y and Fe-15Cr-1Y alloys at 800 °C, 900 °C, and 1000 °C due to their superior thermal stability as reported in Muthaiah et al. [Mater Charact 114:43-53, 2016]. Microstructural analysis through TEM and electron back scattered diffraction confirmed that the grain sizes of the sintered samples depicted a dual size grain distribution with >50 pct grains within a range of 200 nm and remaining grains in the range 200 nm to 2 µm. The best combination of hardness, wear resistance, and corrosion behavior was achieved for the samples sintered at 1000 °C. The high hardness (9.6 GPa), minimum coefficient of friction (0.25), and extremely low wear volume (0.00277 × 10-2 mm3) and low corrosion rate (3.43 mpy) are discussed in the light of solid solution strengthening, grain size strengthening, grain boundary segregation, excellent densification due to diffusion bonding, and precipitation hardening due to uniformly distributed nanosize Fe17Y2 phase in the alloy matrix. The SEM analysis of the worn surface and corroded features corroborated well with the wear resistance and corrosion behavior of the corresponding samples.

  16. Improving the tribological and corrosive properties of MoS2-based coatings by dual-doping and multilayer construction

    Science.gov (United States)

    Shang, Kedong; Zheng, Shaoxian; Ren, Siming; Pu, Jibin; He, Dongqing; Liu, Shuan

    2018-04-01

    The pure MoS2 coating always performs high friction coefficient and short service life when used in high humidity or after long-time storage in humid atmospheric environment. In this study, the MoS2/Pb-Ti composite and MoS2/Pb-Ti multilayer coatings are deposited to improve the corrosion resistance in 3.5 wt% NaCl solution and tribological performance in high humidity condition. The electrochemical impedance spectra and salt spray test shown that the MoS2/Pb-Ti composite and multilayer coatings can inhibit the permeation of oxygen and other corrosive elements, thus resulting a high corrosion resistance. Furthermore, compared with pure MoS2 coating, the tribological performance of the MoS2/Pb-Ti composite and multilayer coatings is also improved significantly owing to the high mechanical properties and compact structure. Moreover, the heterogenous interfaces in MoS2/Pb-Ti multilayer coating play an important role to improve the corrosion resistance and tribological performance of coatings. Overall, the dual-doping and multilayer construction are promising approaches to design the MoS2 coatings as the environmentally adaptive lubricants.

  17. Comparative study on structure, corrosion properties and tribological behavior of pure Zn and different Zn-Ni alloy coatings

    Energy Technology Data Exchange (ETDEWEB)

    Tafreshi, M. [Department of Metallurgy and Materials Engineering, South Tehran Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Allahkaram, S.R., E-mail: akaram@ut.ac.ir [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O.Box: 11155-4563, Tehran (Iran, Islamic Republic of); Farhangi, H. [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O.Box: 11155-4563, Tehran (Iran, Islamic Republic of)

    2016-11-01

    Zn and Zn-Ni alloy coatings were electrodeposited from sulfate based electrolytes. The effect of alloys Ni content on morphology, microstructure, corrosion properties, microhardness and tribological behavior of these coatings were investigated and the results were compared with Zn film. According to X-ray diffraction patterns, different intermediate phases (η-Ni{sub 3}Zn{sub 22}, γ-Ni{sub 5}Zn{sub 21}, β-Zn-Ni) were formed by increasing the coatings Ni content from 11 to 17 wt%. Polarization and EIS results revealed that all the alloy coatings had better corrosion resistance than the Zn film. Zn-14 wt%Ni coating had the least corrosion current density and maximum polarization resistance between all the samples. Microhardness of the coatings was improved by increasing their Ni percentage to 17%. However, Zn-14 wt%Ni coating had the lowest wear loss and friction coefficient, while Zn film had the worst wear resistance between all the coatings. - Highlights: • Effect of Ni alloying element on morphology and structure of Zn electrodeposits. • Comparing corrosion behavior of Zn and Zn-Ni coatings. • Influence of Ni content on hardness of Zn-Ni films. • A comparison of tribological behavior of Zn and different Zn-Ni electrodeposits.

  18. The interface microstructure, mechanical properties and corrosion resistance of dissimilar joints during multipass laser welding for nuclear power plants

    Science.gov (United States)

    Li, Gang; Lu, Xiaofeng; Zhu, Xiaolei; Huang, Jian; Liu, Luwei; Wu, Yixiong

    2018-05-01

    This study presents the interface microstructure, mechanical properties and corrosion resistance of dissimilar joints between Inconel 52M overlays and 316L stainless steel during multipass laser welding for nuclear power plants. The results indicate that the microstructure at the interface beside 316L stainless steel consists of cellular with the width of 30-40 μm, which also exhibits numerous Cr and Mo-rich precipitates like flocculent structure and in chains along grain boundaries as a mixed chemical solution for etching. Many dendritic structure with local melting characteristics and Nb-rich precipitates are exhibited at the interface beside Inconel 52M overlays. Such Nb-rich precipitates at the interface beside Inconel 52M overlays deteriorate the tensile strength and toughness of dissimilar joints at room temperature. The tensile strength of 316L stainless steel at 350 °C significantly decreases with the result that dissimilar joints are fractured in 316L stainless steel. The correlation between corrosion behavior and microstructure of weld metals is also discussed. The difference in high corrosion potential between Nb-rich precipitates and the matrix could result in establishing effective galvanic couples, and thus accelerating the corrosion of weld metals.

  19. Physical properties of a sediment core from the Central Indian Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Khadge, N.H.

    A box core of 7.5 m was collected from the Central Indian Basin for the purpose of geotechnical studies and depthwise variation of physical properties and clay mineralogy. Water content, Atterberg limits, specific gravity are measured at regular...

  20. Corrosion Properties of Cryorolled AA2219 Friction Stir Welded Joints Using Different Tool Pin Profiles

    Science.gov (United States)

    Kamal Babu, K.; Panneerselvam, K.; Sathiya, P.; Noorul Haq, A.; Sundarrajan, S.; Mastanaiah, P.; Srinivasa Murthy, C. V.

    The purpose of this paper is to present the corrosion behavior of the Cryorolled (CR) material and its Friction Stir Welded joints. Due to the thermal cycles of Friction Stir Welding (FSW) process, the corrosion behavior of the material gets affected. Here, the cryorolling process was carried out on AA2219 alloy and CR material was joined by FSW process using four different pin tool profiles such as cylindrical, threaded cylindrical, square and hexagonal pin. The FSW joints were analyzed by corrosion resistance with the help of potentiodynamic polarization test with 3.5% NaCl solution. From the analysis, it is found that CR AA2219 material exhibits good corrosion resistance compared to the base AA2219 material, and also a hexagonal pin profile FSW joint exhibits high corrosion resistance. Among the weld joints created by four different tools, the lowest corrosion resistance was found in the cylindrical pin tool FSW welds. Further, the corroded samples were investigated through metallurgical investigations like OM, Transmission Electron Microscopy (TEM), Energy-Dispersive X-ray Spectroscopy (EDX) and X-Ray Diffraction (XRD). It was found that the amount of dissolution of Al2Cu precipitate was present in the weld nugget. The amount of dissolution of Al2Cu precipitate is higher in the weld nugget produced by hexagonal pin tool. This is due to the enhancement of the corrosion resistance.

  1. Corrosive and cytotoxic properties of compact specimens and microparticles of Ni-Cr dental alloy.

    Science.gov (United States)

    Ristic, Ljubisa; Vucevic, Dragana; Radovic, Ljubica; Djordjevic, Snezana; Nikacevic, Milutin; Colic, Miodrag

    2014-04-01

    Nickel-chromium (Ni-Cr) dental alloys have been widely used in prosthodontic practice, but there is a permanent concern about their biocompatibility due to the release of metal ions. This is especially important when Ni-Cr metal microparticles are incorporated into gingival tissue during prosthodontic procedures. Therefore, the aim of this study was to examine and compare the corrosion and cytotoxic properties of compact specimens and microparticles of Ni-Cr dental alloy. Ni-Cr alloy, Remanium CSe bars (4 mm diameter), were made by the standard casting method and then cut into 0.5-mm-thick disks. Metal particles were obtained by scraping the bars using a diamond instrument for crown preparation. The microstructure was observed by an optical microscope. Quantitative determination and morphological and dimensional characterization of metal particles were carried out by a scanning electron microscope and Leica Application Suite software for image analysis. Corrosion was studied by conditioning the alloy specimens in the RPMI 1640 medium, containing 10% fetal calf serum in an incubator with 5% CO2 for 72 hours at 37°C. Inductively coupled plasma-optical emission spectrometry was used to assess metal ion release. The cytotoxity of conditioning medium (CM) was investigated on L929 cells using an MTT test. One-way ANOVA was used for statistical analysis. After casting, the microstructure of the Remanium CSe compact specimen composed of Ni, Cr, Mo, Si, Fe, Al, and Co had a typical dendritic structure. Alloy microparticles had an irregular shape with a wide size range: from less than 1 μm to more than 100 μm. The release of metal ions, especially Ni and Mo from microparticles, was significantly higher, compared to the compact alloy specimen. The CM prepared from compact alloy was not cytotoxic at any tested dilutions, whereas CM from alloy microparticles showed dose-dependent cytotoxicity (90% CM and 45% CM versus control; p alloy. This could affect health on long

  2. Microstructure, Tensile Properties, and Corrosion Behavior of Die-Cast Mg-7Al-1Ca- xSn Alloys

    Science.gov (United States)

    Wang, Feng; Dong, Haikuo; Sun, Shijie; Wang, Zhi; Mao, Pingli; Liu, Zheng

    2018-02-01

    The microstructure, tensile properties, and corrosion behavior of die-cast Mg-7Al-1Ca- xSn ( x = 0, 0.5, 1.0, and 2.0 wt.%) alloys were studied using OM, SEM/EDS, tensile test, weight loss test, and electrochemical test. The experimental results showed that Sn addition effectively refined grains and intermetallic phases and increased the amount of intermetallic phases. Meanwhile, Sn addition to the alloys suppressed the formation of the (Mg,Al)2Ca phase and resulted in the formation of the ternary CaMgSn phase and the binary Mg2Sn phase. The Mg-7Al-1Ca-0.5Sn alloy exhibited best tensile properties at room temperature, while Mg-7Al-1Ca-1.0Sn alloy exhibited best tensile properties at elevated temperature. The corrosion resistance of studied alloys was improved by the Sn addition, and the Mg-7Al-1Ca-0.5Sn alloy presented the best corrosion resistance.

  3. Corrosion and magnetic properties of encapsulated carbonyl iron particles in aqueous suspension by inorganic thin films for magnetorheological finishing application

    Science.gov (United States)

    Esmaeilzare, Amir; Rezaei, Seyed Mehdi; Ramezanzadeh, Bahram

    2018-04-01

    Magnetorheological fluid is composed of micro-size carbonyl iron (CI) particles for polishing of optical substrates. In this paper, the corrosion resistance of carbonyl iron (CI) particles modified with three inorganic thin films based on rare earth elements, including cerium oxide (CeO2), lanthanum oxide (La2O3) and praseodymium oxide (Pr2O3), was investigated. The morphology and chemistry of the CI-Ce, CI-Pr and CI-La particles were examined by high resolution Field Emission-Scanning Electron Microscopy (FE-SEM), X-ray energy dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). The electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization tests were carried out to investigate the corrosion behavior of CI particles in aquatic environment. In addition, the Vibrating Sample Magnetometer (VSM) technique was utilized for determination of magnetic saturation properties of the coated particles. Afterwards, gas pycnometry and contact angle measurement methods were implemented to evaluate the density and hydrophilic properties of these particles. The results showed that deposition of all thin films increased the hydrophilic nature of these particles. In addition, it was observed that the amount of magnetic saturation properties attenuation for Pr2O3 and La2O3 films is greater than the CeO2 film. The EIS and polarization tests results confirmed that the CI-Ce had the maximum corrosion resistant among other samples. In addition, the thermogravimetric analysis (TGA) showed that the ceria coating provided particles with enhanced surface oxidation resistance.

  4. Fe and Fe-P Foam for Biodegradable Bone Replacement Material: Morphology, Corrosion Behaviour, and Mechanical Properties

    Directory of Open Access Journals (Sweden)

    Monika Hrubovčáková

    2016-01-01

    Full Text Available Iron and iron-phosphorus open-cell foams were manufactured by a replica method based on a powder metallurgical approach to serve as a temporary biodegradable bone replacement material. Iron foams alloyed with phosphorus were prepared with the aim of enhancing the mechanical properties and manipulating the corrosion rate. Two different types of Fe-P foams containing 0.5 wt.% of P were prepared: Fe-P(I foams from a phosphated carbonyl iron powder and Fe-P(II foams from a mixture of carbonyl iron and commercial Fe3P. The microstructure of foams was analyzed using scanning electron microscopy. The mechanical properties and the corrosion behaviour were studied by compression tests and potentiodynamic polarization in Hank’s solution and a physiological saline solution. The results showed that the manufactured foams exhibited an open, interconnected, microstructure similar to that of a cancellous bone. The presence of phosphorus improved the mechanical properties of the foams and decreased the corrosion rate as compared to pure iron foams.

  5. Program of assessment of mechanical and corrosion mechanical properties of reactor internals materials due to operation conditions in WWERs

    International Nuclear Information System (INIS)

    Ruscak, M.; Zamboch, M.

    1998-01-01

    Reactor internals are subject to three principle operation influences: neutron and gamma irradiation, mechanical stresses, both static and dynamic, and coolant chemistry. Several cases of damage have been reported in previous years in both boiling and pressure water reactors. They are linked with the term of irradiation assisted stress corrosion cracking as a possible damage mechanism. In WWERs, the principal material used for reactor internals is austenitic titanium stabilized stainless steel 08Kh18N10T, however high strength steels are used as well. To assess the changes of mechanical properties and to determine whether sensitivity to intergranular cracking can be increased by high neutron fluences, the experimental program has been started. The goal is to assure safe operation of the internals as well as life management for all planned operation period. The program consists of tests of material properties, both mechanical and corrosion-mechanical. Detailed neutron fluxes calculation as well as stress and deformation calculations are part of the assessment. Model of change will be proposed in order to plan inspections of the facility. In situ measurements of internals will be used to monitor exact status of structure during operation. Tensile specimens manufactured from both base metal and model weld joint have been irradiated to the total fluences of 3-20 dpa. Changes of mechanical properties are tested by the tensile test, stress corrosion cracking tests are performed in the autoclave with water loop and active loading. Operation temperature, pressure and water chemistry are chosen for the tests. (author)

  6. Influence of the silicon content on the core corrosion properties of dispersion type fuel plates

    International Nuclear Information System (INIS)

    Calvo, C.; Saenz de Tejada, L. M.; Diaz Diaz, J.

    1969-01-01

    A new process to produce aluminium base dispersion type fuel plates has been developed at the Spanish JEN (Junta de Energia Nuclear). The dispersed fuel material is obtained by an aluminothermic process to render a stoichiometric cermet of UAI 3 and AI 2 O 3 according to the reaction. (Author)

  7. Microstructures, mechanical and corrosion properties and biocompatibility of as extruded Mg-Mn-Zn-Nd alloys for biomedical applications.

    Science.gov (United States)

    Zhou, Ying-Long; Li, Yuncang; Luo, Dong-Mei; Ding, Yunfei; Hodgson, Peter

    2015-04-01

    Extruded Mg-1Mn-2Zn-xNd alloys (x=0.5, 1.0, 1.5 mass %) have been developed for their potential use as biomaterials. The extrusion on the alloys was performed at temperature of 623K with an extrusion ratio of 14.7 under an average extrusion speed of 4mm/s. The microstructure, mechanical property, corrosion behavior and biocompatibility of the extruded Mg-Mn-Zn-Nd alloys have been investigated in this study. The microstructure was examined using X-ray diffraction analysis and optical microscopy. The mechanical properties were determined from uniaxial tensile and compressive tests. The corrosion behavior was investigated using electrochemical measurement. The biocompatibility was evaluated using osteoblast-like SaOS2 cells. The experimental results indicate that all extruded Mg-1Mn-2Zn-xNd alloys are composed of both α phase of Mg and a compound of Mg7Zn3 with very fine microstructures, and show good ductility and much higher mechanical strength than that of cast pure Mg and natural bone. The tensile strength and elongation of the extruded alloys increase with an increase in neodymium content. Their compressive strength does not change significantly with an increase in neodymium content. The extruded alloys show good biocompatibility and much higher corrosion resistance than that of cast pure Mg. The extruded Mg-1Mn-2Zn-1.0Nd alloy shows a great potential for biomedical applications due to the combination of enhanced mechanical properties, high corrosion resistance and good biocompatibility. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Corrosion-electrochemical behaviour and mechanical properties ofaluminium alloy-321, alloyed by barium

    International Nuclear Information System (INIS)

    Ganiev, I.; Mukhiddinov, G.N.; Kargapolova, T.V.; Mirsaidov, U.

    1995-01-01

    The purpose of present work is studying of influence of barium additionson electrochemical corrosion of casting aluminium-copper alloy Al-321,containing as base alloying components copper, chromium, manganese, titanium,zirconium, cadmium

  9. Effect of Pre-Ageing Thermal Conditions on the Corrosion Properties ...

    African Journals Online (AJOL)

    Nigerian Journal of Technology ... The alloy was subjected to a Single Thermal Ageing Treatment; STAT (T6 temper-solution heat ... showed an excellent improvement in corrosion resistance than the as-cast and conventional STAT alloy.

  10. CORROSION AND WEAR PROPERTIES OF MATERIALS USED FOR MINCED MEAT PRODUCTION

    DEFF Research Database (Denmark)

    Jellesen, Morten Stendahl; Hansen, Martin Otto Laver; Hilbert, Lisbeth Rischel

    2009-01-01

    measurements. Combined sliding wear and corrosion conditions have been simulated in laboratory using a block-on-ring setup allowing for electrochemical measurements. Detailed information concerning the mechanism of possible material degradation is provided by these results, together with microstructural...

  11. Eelectrochemical properties and corrosion resistance of carbon-ion-implanted magnesium

    International Nuclear Information System (INIS)

    Xu, Ruizhen; Yang, Xiongbo; Li, Penghui; Suen, Kai Wong; Wu, Guosong; Chu, Paul K.

    2014-01-01

    Highlights: • Carbon, as a biocompatible benign element, was implanted into Mg. • A protective amorphous carbon layer was formed after implantation. • Treated sample exhibits good corrosion resistance in two solutions. - Abstract: The corrosion resistance of magnesium-based biomaterials is critical to clinical applications. In this work, carbon as a biocompatible and benign nonmetallic element with high chemical inertness is implanted into pure magnesium to improve the corrosion behavior. X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HR-TEM), and Raman scattering reveal the formation of an amorphous carbon layer after ion implantation. Electrochemical studies demonstrate remarkable improvement in the corrosion resistance of magnesium in simulated body fluids (SBF) and Dulbecco’s Modified Eagle Medium (DMEM)

  12. Characterization and corrosion property of nano-rod-like HA on fluoride coating supported on Mg-Zn-Ca alloy.

    Science.gov (United States)

    Feng, Yashan; Zhu, Shijie; Wang, Liguo; Chang, Lei; Yan, Bingbing; Song, Xiaozhe; Guan, Shaokang

    2017-06-01

    The poor corrosion resistance of biodegradable magnesium alloys is the dominant factor that limits their clinical application. In this study, to deal with this challenge, fluoride coating was prepared on Mg-Zn-Ca alloy as the inner coating and then hydroxyapatite (HA) coating as the outer coating was deposited on fluoride coating by pulse reverse current electrodeposition (PRC-HA/MgF 2 ). As a comparative study, the microstructure and corrosion properties of the composite coating with the outer coating fabricated by traditional constant current electrodeposition (TED-HA/MgF 2 ) were also investigated. Scanning electron microscopy (SEM) images of the coatings show that the morphology of PRC-HA/MgF 2 coating is dense and uniform, and presents nano-rod-like structure. Compared with that of TED-HA/MgF 2 , the corrosion current density of Mg alloy coated with PRC-HA/MgF 2 coatings decreases from 5.72 × 10 -5 A/cm 2 to 4.32 × 10 -7 A/cm 2 , and the corrosion resistance increases by almost two orders of magnitude. In immersion tests, samples coated with PRC-HA/MgF 2 coating always show the lowest hydrogen evolution amount, and could induce deposition of the hexagonal structure-apatite on the surface rapidly. The results show that the corrosion resistance and the bioactivity of the coatings have been improved by adopting double-pulse current mode in the process of preparing HA on fluoride coating, and the PRC-HA/MgF 2 coating is worth of further investigation.

  13. Effects of gaseous nitriding AISI4140 alloy steel on corrosion and hardness properties

    Science.gov (United States)

    Tamil Moli, L.; Wahab, N.; Gopinathan, M.; Karmegam, K.; Maniyarasi, M.

    2016-10-01

    Corrosion is one of the major problems in the industry especially on machinery since it weakens the structure of the machinery part and causes the mechanical failure. This will stop the production and increase the maintenance cost. In this study, the corrosion behaviour of gas nitriding on a screw press machine shaft made from AISI 4140 steel was investigated. Pitting corrosion was identified as a major cause of the shaft failure and this study was conducted to improve the corrosion resistance on the AISI 4140 alloy steel shaft by gas nitriding as a surface hardening treatment. Gas nitriding was performed with composition of 15% ammonia and 85% nitrogen at temperatures of 525 °C, 550 °C and 575 °C and with the soaking time of 30, 45 and 60 minutes, respectively. The samples were prepared as rectangular sized of 30mm x 12mm x 3mm for immersion testing. The results showed that corrosion rate of untreated samples was 77% higher compared to the nitrided samples. It was also found that hardness of the nitrided samples was higher than untreated sample. All in all, it can be concluded that gaseous nitriding can significantly improve the surface hardness and the corrosion resistance of the shaft made of AISI 4140 alloy steel, hence reduces the pitting that is the root cause of failure.

  14. Correlation between corrosion resistance properties and thermal cycles experienced by gas tungsten arc welding and laser beam welding Alloy 690 butt weldments

    International Nuclear Information System (INIS)

    Lee, H T; Wu, J L

    2009-01-01

    This study investigates the correlation between the thermal cycles experienced by Alloy 690 weldments fabricated using gas tungsten arc welding (GTAW) and laser beam welding (LBW) processes, and their corresponding corrosion resistance properties. The corrosion resistance of the weldments is evaluated using a U-bend stress corrosion test in which the specimens are immersed in a boiling, acid solution for 240 h. The experimental results reveal that the LBW inputs significantly less heat to the weldment than the GTAW, and therefore yields a far faster cooling rate. Moreover, the corrosion tests show that in the GTAW specimen, intergranular corrosion (IGC) occurs in both the fusion zone (FZ) and the heat affected zone (HAZ). By contrast, the LBW specimen shows no obvious signs of IGC.

  15. Launch Pad Coatings for Smart Corrosion Control

    Science.gov (United States)

    Calle, Luz M.; Hintze, Paul E.; Bucherl, Cori N.; Li, Wenyan; Buhrow, Jerry W.; Curran, Jerome P.; Whitten, Mary C.

    2010-01-01

    . Researchers at NASA's Corrosion Technology Laboratory at KSC are developing a smart, environmentally friendly coating system for early corrosion detection, inhibition, and self healing of mechanical damage without external intervention. This smart coating will detect and respond actively to corrosion and mechanical damage such as abrasion and scratches, in a functional and predictable manner, and will be capable of adapting its properties dynamically. This coating is being developed using corrosion sensitive microcapsules that deliver the contents of their core (corrosion inhibiting compounds, corrosion indicators, and self healing agents) on demand when corrosion or mechanical damage to the coating occurs.

  16. Properties and performance of spin-on-glass coatings for the corrosion protection of stainless steels in chloride media

    DEFF Research Database (Denmark)

    Lampert, Felix; Jensen, Annemette H.; Din, Rameez U.

    2018-01-01

    Spin-on-glass deposition was investigated as viable alternative to increase the durability and performance of 316L steel in chloride environment. The buildup of a detrimental interface oxide was prevented by non-oxidative thermal curing of the coatings, which leads to a transformation...... silica. Electrochemical analysis by cyclic polarization indicated that the coatings behave as imperfect barrier coatings, which may enhance the passive properties of the substrates; however, there is still some statistical scatter in the quality of the coatings. While there is a tendency for an increase...... of the upper limit of the breakdown potential, there is also a decrease of the lower limit. It was found that such lower quality coatings showed, in association with substrate defects, unevenly distributed coating flaws, which may act as initiation points of pitting corrosion and decrease the corrosion...

  17. Corrosion and Mechanical Properties of Al-5 At. Pct Cr Produced by Cryomilling and Subsequent Consolidation at Various Temperatures

    Science.gov (United States)

    Esquivel, J.; Darling, K. A.; Murdoch, H. A.; Gupta, R. K.

    2018-04-01

    An Al-5 at. pct Cr alloy was produced by high-energy ball milling at liquid nitrogen temperature followed by consolidation using equal-channel axial extrusion at 200 °C, 300 °C and 450 °C. The microstructure and corrosion response were compared with a cast alloy of the same composition. Rather than the intermetallics expected by the phase diagram and seen in the cast alloy, consolidated HEBM alloys exhibited extended solid solubility of Cr in the aluminum matrix in addition to a finely dispersed Cr-rich phase. This led to improvement in the corrosion behavior as investigated via potentiodynamic polarization and constant immersion tests in NaCl solution. Hardness and tensile tests were performed to evaluate the mechanical properties. The highest consolidation temperature (450 °C) contributed to significant grain growth and Cr diffusion, lessening the beneficial effects of processing with HEBM.

  18. PROPERTIES OF THE MOLECULAR CORES OF LOW LUMINOSITY OBJECTS

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Tien-Hao; Lai, Shih-Ping [Institute of Astronomy, National Tsing Hua University (NTHU), Hsinchu 30013, Taiwan (China); Belloche, Arnaud; Wyrowski, Friedrich [Max-Planck-Institut für Radioastronomie (MPIfR), Bonn (Germany); Hung, Chao-Ling, E-mail: slai@phys.nthu.edu.tw, E-mail: shawinchone@gmail.com [Institute for Astronomy, University of Hawaii, Honolulu, HI 96822 (United States)

    2015-04-01

    We present a survey toward 16 low luminosity objects (LLOs with an internal luminosity, L{sub int}, lower than 0.2 L{sub ⊙}) with N{sub 2}H{sup +} (1–0), N{sub 2}H{sup +} (3–2), N{sub 2}D{sup +} (3–2), HCO{sup +} (3–2), and HCN (3–2) using the Arizona Radio Observatory Kitt Peak 12 m Telescope and Submillimeter Telescope. Our goal is to probe the nature of these faint protostars which are believed to be either very low mass or extremely young protostars. We find that the N{sub 2}D{sup +}/N{sub 2}H{sup +} column density ratios of LLOs are similar to those of typical starless cores and Class 0 objects. The N{sub 2}D{sup +}/N{sub 2}H{sup +} column density ratios are relatively high (>0.05) for LLOs with kinetic temperatures less than 10 K in our sample. The distribution of N{sub 2}H{sup +} (1–0) line widths spreads between that of starless cores and young Class 0 objects. If we use the line width as a dynamic evolutionary indicator, LLOs are likely young Class 0 protostellar sources. We further use the optically thick tracers, HCO{sup +} (3–2) and HCN (3–2), to probe the infall signatures of our targets. We derive the asymmetry parameters from both lines and estimate the infall velocities by fitting the HCO{sup +} (3–2) spectra with two-layer models. As a result, we identify eight infall candidates based on the infall velocities and seven candidates have infall signatures supported by asymmetry parameters from at least one of HCO{sup +} (3–2) and HCN (3–2)

  19. Loop capabilities in Rez for water chemistry and corrosion control of cladding and in-core components

    International Nuclear Information System (INIS)

    Kysela, J.; Zmitko, M.; Srank, J.; Vsolak, R.

    1999-01-01

    Main characteristics of LVR-15 research reactor and its irradiation facilities are presented. For testing of cladding, internals and RPV materials specialised loop are used. There are now five high pressure loops modelling PWR, WWER or BWR water environment and chemistry. Loops can be connected with instrumented in-pile channels enable slow strain rate testing, 1CT or 2CT specimens loading and electrically heated rods exposition. Reactor dosimetry including neutronic parameters measurements and calculations and mock-up experiments are used. Water chemistry control involves gas (O 2 , H 2 ) dosing system, Orbisphere H 2 /O 2 measurement, electrochemical potential (ECP) measurements and specialised analytical chemistry laboratory. For cladding corrosion studies in-pile channels with four electrically heated rods with heat flux up to 100 W/cm 2 , void fraction 5 % at the outlet, inlet temperature 320 deg. C and flow velocity 3 m/s were development and tested. For corrosion layer investigation there is eddy current measurements and PIE techniques which use crud thickness measurement, chemical analyses of the crud, optical metallography, hydrogen analysis, SEM and TEM. (author)

  20. Effect of the existing form of Cu element on the mechanical properties, bio-corrosion and antibacterial properties of Ti-Cu alloys for biomedical application.

    Science.gov (United States)

    Zhang, Erlin; Wang, Xiaoyan; Chen, Mian; Hou, Bing

    2016-12-01

    Ti-Cu alloys have exhibited strong antibacterial ability, but Ti-Cu alloys prepared by different processes showed different antibacterial ability. In order to reveal the controlling mechanism, Ti-Cu alloys with different existing forms of Cu element were prepared in this paper. The effects of the Cu existing form on the microstructure, mechanical, corrosion and antibacterial properties of Ti-Cu alloys have been systematically investigated. Results have shown that the as-cast Ti-Cu alloys showed a higher hardness and mechanical strength as well as a higher antibacterial rate (51-64%) but a relatively lower corrosion resistance than pure titanium. Treatment at 900°C/2h (T4) significantly increased the hardness and the strength, improved the corrosion resistance but had little effect on the antibacterial property. Treatment at 900°C/2h+400°C/12h (T6) increased further the hardness and the mechanical strength, improved the corrosion resistance and but also enhanced the antibacterial rate (>90%) significantly. It was demonstrated that the Cu element in solid solution state showed high strengthening ability but low antibacterial property while Cu element in Ti2Cu phase exhibited strong strengthening ability and strong antibacterial property. Ti2Cu phase played a key role in the antibacterial mechanism. The antibacterial ability of Ti-Cu alloy was strongly proportional to the Cu content and the surface area of Ti2Cu phase. High Cu content and fine Ti2Cu phase would contribute to a high strength and a strong antibacterial ability. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Properties and Corrosion Performance of Self-reinforced Composite PEEK for Proposed Use as a Modular Taper Gasket.

    Science.gov (United States)

    Ouellette, Eric S; Gilbert, Jeremy L

    2016-11-01

    Fretting corrosion in medical alloys is a persistent problem, and the need for biomaterials that can effectively suppress mechanically assisted crevice corrosion in modular taper junctions or otherwise insulate metal-on-metal interfaces in mechanically demanding environments is as yet unmet. The purpose of this study is to characterize a novel material, self-reinforced composite polyetheretherketone (SRC-PEEK) and to evaluate its ability to inhibit fretting corrosion in a pin-on-disk metal-on-metal interface test. SRC-PEEK was fabricated by hot compaction of in-house-made PEEK fibers by compacting uniaxial layups at 344°C under a load of 18,000 N for 10 minutes. SRC-PEEK, bulk isotropic PEEK, and the in-house-made PEEK fibers were analyzed for thermal transitions (T g , T m ) through differential scanning calorimetry, crystallinity, crystal size, crystalline orientation (Hermanns orientation parameter) through wide-angle x-ray scattering, and modulus, tensile strength, yield stress, and strain to failure through monotonic tensile testing. SRC-insulated pin-on-disk samples were compared with metal-on-metal control samples in pin-on-disk fretting corrosion experiments using fretting current and fretting mechanics measurements. Fifty-micron cyclic motion at 2.5 Hz was applied to the interface, first over a range of loads (0.5-35 N) while held at -0.05 V versus Ag/AgCl and then over a range of voltages (-0.5 to 0.5 V) at a constant contact stress of 73 ± 19 MPa for SRC-PEEK and 209 ± 41 MPa for metal-on-metal, which were different for each group as a result of changes in true contact area due to variations in modulus between sample groups. Pins, disks, and SRC samples were imaged for damage (on alloy and SRC surfaces) and evidence of corrosion (on alloy pin and disk surfaces). SRC specimens were analyzed for traces of alloy transferred to the surface using energy dispersive spectroscopy after pin-on-disk testing. SRC-PEEK showed improved mechanical properties to

  2. Structure, mechanical properties, corrosion behavior and cytotoxicity of biodegradable Mg–X (X = Sn, Ga, In) alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kubásek, J., E-mail: Jiri.Kubasek@vscht.cz [Department of Metals and Corrosion Engineering, Institute of Chemical Technology, Prague, Technická 5, 166 28 Prague 6 (Czech Republic); Vojtěch, D. [Department of Metals and Corrosion Engineering, Institute of Chemical Technology, Prague, Technická 5, 166 28 Prague 6 (Czech Republic); Lipov, J.; Ruml, T. [Department of Biochemistry and Microbiology, Institute of Chemical Technology, Prague, Technická 5, 166 28 Prague 6 (Czech Republic)

    2013-05-01

    As-cast Mg–Sn, Mg–Ga and Mg–In alloys containing 1–7 wt.% of alloying elements were studied in this work. Structural and chemical analysis of the alloys was performed by using light and scanning electron microscopy, energy dispersive spectrometry, x-ray diffraction, x-ray photoelectron spectroscopy and glow discharge spectrometry. Mechanical properties were determined by Vickers hardness measurements and tensile testing. Corrosion behavior in a simulated physiological solution (9 g/l NaCl) was studied by immersion tests and potentiodynamic measurements. The cytotoxicity effect of the alloys on human osteosarcoma cells (U-2 OS) was determined by an indirect contact assay. Structural investigation revealed the dendritic morphology of the as-cast alloys with the presence of secondary eutectic phases in the Mg–Sn and Mg–Ga alloys. All the alloying elements showed hardening and strengthening effects on magnesium. This effect was the most pronounced in the case of Ga. All the alloying elements at low concentrations of approximately 1 wt.% were also shown to positively affect the corrosion resistance of Mg. But at higher concentrations of Ga and Sn the corrosion resistance worsened due to galvanic effects of secondary phases. Cytotoxicity tests indicated that Ga had the lowest toxicity, followed by Sn. The most severe toxicity was observed in the case of In. - Highlights: ► Gallium addition (up to 7 wt.%) improves the strength and toughness of as-cast Mg. ► The effect of indium addition (up to 7 wt.%) on mechanical properties is small. ► Gallium, Tin and Indium addition improves the corrosion resistance of as-cast Mg. ► Gallium shows no toxic effect on osteosarcoma cells. ► Tin and indium show serious toxic effect on osteosarcoma cells.

  3. Corrosion and corrosion control

    International Nuclear Information System (INIS)

    Khanna, A.S.; Totlani, M.K.

    1995-01-01

    Corrosion has always been associated with structures, plants, installations and equipment exposed to aggressive environments. It effects economy, safety and product reliability. Monitoring of component corrosion has thus become an essential requirement for the plant health and safety. Protection methods such as appropriate coatings, cathodic protection and use of inhibitors have become essential design parameters. High temperature corrosion, especially hot corrosion, is still a difficult concept to accommodate in corrosion allowance; there is a lack of harmonized system of performance testing of materials at high temperatures. In order to discuss and deliberate on these aspects, National Association for Corrosion Engineers International organised a National Conference on Corrosion and its Control in Bombay during November 28-30, 1995. This volume contains papers presented at the symposium. Paper relevant to INIS is indexed separately. refs., figs., tabs

  4. Dictionary corrosion and corrosion control

    International Nuclear Information System (INIS)

    1985-01-01

    This dictionary has 13000 entries in both languages. Keywords and extensive accompanying information simplify the choice of word for the user. The following topics are covered: Theoretical principles of corrosion; Corrosion of the metals and alloys most frequently used in engineering. Types of corrosion - (chemical-, electro-chemical, biological corrosion); forms of corrosion (superficial, pitting, selective, intercrystalline and stress corrosion; vibrational corrosion cracking); erosion and cavitation. Methods of corrosion control (material selection, temporary corrosion protection media, paint and plastics coatings, electro-chemical coatings, corrosion prevention by treatment of the corrosive media); Corrosion testing methods. (orig./HP) [de

  5. Evolution and Photoevaporation of Protoplanetary Disks in Clusters: The Role of Pre-stellar Core Properties

    Science.gov (United States)

    Xiao, Lin; Chang, Qiang

    2018-01-01

    We explore the effects of progenitor pre-stellar core properties on the evolution of disks with external photoevaporation in clusters. Since the strength of external photoevaporation is largely determined by the depth of the gravitational potential well of the disk, the external photoevaporation rate is the function of star mass and disk size. The properties of a core collapse set up the initial conditions of protoplanetary disks, so they influence the evolutions of star mass and disk size. Our calculations show that the core properties can dramatically influence the efficiency of external photoevaporation. For the core with low angular velocity, most core mass directly falls onto the central star or onto the disk near the star. External photoevaporation is suppressed even if external radiation from nearby massive stars are strong. In this case, the disk evolution in clusters is primarily driven by its own internal viscosity. However, if the core angular velocity is high, most core mass falls onto the disk far from the central star. External photoevaporation is so strong that the disk mass is severely evaporated. Finally, the star mass is very low and the disk lifetime is very short. Our calculations could interpret some observational features of disks in clusters, such as the diameter distribution of disks in the Trapezium cluster and the correlation between mass accretion rate and star mass. We suggest that the disk mass determined by (sub)millimeter wavelength observations may be underestimated.

  6. Parameter studies to determine sensitivity of slug impact loads to properties of core surrounding structures

    International Nuclear Information System (INIS)

    Gvildys, J.

    1985-01-01

    A sensitivity study of the HCDA slug impact response of fast reactor primary containment to properties of core surrounding structures was performed. Parameters such as the strength of the radial shield material, mass, void, and compressibility properties of the gas plenum material, mass of core material, and mass and compressibility properties of the coolant were used as variables to determine the magnitude of the slug impact loads. The response of the reactor primary containment and the partition of energy were also given. A study was also performed using water as coolant to study the difference in slug impact loads

  7. Depth-Dependent Temporal Response Properties in Core Auditory Cortex

    OpenAIRE

    Christianson, G. Björn; Sahani, Maneesh; Linden, Jennifer F.

    2011-01-01

    The computational role of cortical layers within auditory cortex has proven difficult to establish. One hypothesis is that interlaminar cortical processing might be dedicated to analyzing temporal properties of sounds; if so, then there should be systematic depth-dependent changes in cortical sensitivity to the temporal context in which a stimulus occurs. We recorded neural responses simultaneously across cortical depth in primary auditory cortex and anterior auditory field of CBA/Ca mice, an...

  8. The corrosion properties of Zr-Cr-NM alloy metallic waste form for longterm disposal

    Energy Technology Data Exchange (ETDEWEB)

    Han, Seung Youb; Jang, Seon Ah; Eun, Hee Chul; Choi, Jung Hoon; Lee, Ki Rak; Park, Hwan Seo; Ahn, Do Hee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2017-06-15

    KAERI is conducting research on spent cladding hulls and additive metals to generate a solidifcation host matrix for the noble metal fssion product waste in anode sludge from the electro-refning process to minimize the volume of waste that needs to be disposed of. In this study, alloy compositions Zr-17Cr, Zr-22Cr, and Zr-27Cr were prepared with or without eight noble metals representing fuel waste using induction melting. The microstructures of the resulting alloys were characterized and electrochemical corrosion tests were conducted to evaluate their corrosion characteristics. All the compositions had better corrosion characteristics than other Zr-based alloys that were evaluated for comparison. Analysis of the leach solution after the corrosion test of the Zr-22Cr-8NM specimen indicated that the noble metals were not leached during corrosion under 500 mV imposed voltage, which simulates a highly oxidizing disposal environment. The results of this study confrm that Zr-Cr based compositions will likely serve as chemically stable waste forms.

  9. Properties, weldability and corrosion behavior of supermartensitic stainless steels for on- and offshore applications

    Energy Technology Data Exchange (ETDEWEB)

    Taban, Emel; Kaluc, Erdinc; Ojo, Olatunji Oladimeji [Kocaeli Univ. (Turkey). Welding Research, Education and Training Center

    2016-08-01

    Stimulated material-environment interactions inside and around flowlines of deep or ultra deep wells during oil and gas exploration, and fabrication economy of pipelines have been the major challenges facing the oil and gas industries. Presumably, an extensive focus on high integrity, performance and material economy of flowlines have realistically made supermartensitic stainless steels (SMSS) efficient and effective material choices for fabricating onshore and offshore pipelines. Supermartensitic stainless steels exhibit high strength, good low temperature toughness, sufficient corrosion resistance in sweet and mildly sour environments, and good quality weldability with both conventional welding processes and modern welding methods such as laser beam welding, electron beam welding and hybrid welding approaches. In terms of economy, supermartensitic stainless steels are cheaper and they are major replacements for more expensive duplex stainless steels required for tubing applications in the oil and gas industry. However, weld areas of SMSS pipes are exposed to sulphide stress cracking (SSC), so intergranular stress corrosion cracking (IGSCC) or stress corrosion cracking can occur. In order to circumvent this risk of cracking, a post-weld heat treatment (PWHT) for 5 minutes at about 650 C is recommended. This paper provides detailed literature perusal on supermartensitic stainless steels, their weldability and corrosion behaviors. It also highlights a major research area that has not been thoroughly expounded in literature; fatigue loading behaviors of welded SMSS under different corrosive environments have not been thoroughly detailed in literature.

  10. Effect of aluminum coatings on corrosion properties of AZ31 magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Chiu Liuho; Lin Hsingan; Chen Chunchin; Yang Chihfu [Dept. of materials engineering, Tatung Univ., Taipei (Taiwan); Chang Chiahua; Wu Jenchin [Physical chemistry section, chemical systems research div., Chung-Shan Inst. of Science and Technology, Tao-Yuan (Taiwan)

    2003-07-01

    This investigation aimed to increase the corrosion resistance of an AZ31 magnesium alloy by an aluminum arc spray coating and a post-treatment consisted of hot pressing and anodizing. It was found that the aluminum arc spraying alone was incapable of protection against corrosion due to the high amount of pores present in the coating layer. In order to solve the problem, densification of the Al arc-sprayed layer was carried out by hot pressing the coated AZ31 Mg alloy plate under an appropriate range of temperature, time and pressure. After hot pressing the Al coated AZ31 Mg alloy plate exhibited a much improved corrosion resistance. A final anodizing treatment applied to the AZ31 alloy with the dense Al coating further improved its resisting to corrosion. The results showed that, by adopting the Al arc spraying, hot pressing and anodizing process, the corrosion current density of the AZ31 alloy in a 3.5 wt% NaCl solution was from 2.1 x 10{sup -6} A/cm{sup 2} (original AZ31) to 3.7 x 10{sup -7} A/cm{sup 2} (after the surface treatment), which value is close to that of an anodized aluminum plate. (orig.)

  11. Properties, weldability and corrosion behavior of supermartensitic stainless steels for on- and offshore applications

    International Nuclear Information System (INIS)

    Taban, Emel; Kaluc, Erdinc; Ojo, Olatunji Oladimeji

    2016-01-01

    Stimulated material-environment interactions inside and around flowlines of deep or ultra deep wells during oil and gas exploration, and fabrication economy of pipelines have been the major challenges facing the oil and gas industries. Presumably, an extensive focus on high integrity, performance and material economy of flowlines have realistically made supermartensitic stainless steels (SMSS) efficient and effective material choices for fabricating onshore and offshore pipelines. Supermartensitic stainless steels exhibit high strength, good low temperature toughness, sufficient corrosion resistance in sweet and mildly sour environments, and good quality weldability with both conventional welding processes and modern welding methods such as laser beam welding, electron beam welding and hybrid welding approaches. In terms of economy, supermartensitic stainless steels are cheaper and they are major replacements for more expensive duplex stainless steels required for tubing applications in the oil and gas industry. However, weld areas of SMSS pipes are exposed to sulphide stress cracking (SSC), so intergranular stress corrosion cracking (IGSCC) or stress corrosion cracking can occur. In order to circumvent this risk of cracking, a post-weld heat treatment (PWHT) for 5 minutes at about 650 C is recommended. This paper provides detailed literature perusal on supermartensitic stainless steels, their weldability and corrosion behaviors. It also highlights a major research area that has not been thoroughly expounded in literature; fatigue loading behaviors of welded SMSS under different corrosive environments have not been thoroughly detailed in literature.

  12. Influence of Short-time Oxidation on Corrosion Properties of Directionally Solidified Superalloys with Different Orientations

    Directory of Open Access Journals (Sweden)

    MA Luo-ning

    2016-07-01

    Full Text Available In order to investigate the corrosion performance on intersecting and longitudinal surfaces of unoxidized and oxidized directionally solidified superalloys, Ni-base directionally solidified superalloy DZ125 and Co-base directionally solidified superalloy DZ40M were selected. Oxidation behavior on both alloys with different orientations was investigated at 1050℃ at different times, simulating the oxidation process of vanes or blades in service; subsequent electrochemical performance in 3.5%NaCl aqueous solution was studied on two orientations of unoxidized and oxidized alloys, simulating the corrosion process of superalloy during downtime. The results show that grain boundaries and sub-boundaries of directionally solidified superalloys are susceptible to corrosion and thus longitudinal surface with lower area fraction of grain boundaries has higher corrosion resistance. Compared to intersecting surface of alloys, the structure of grain boundaries of longitudinal surface is less conducive to diffusion and thus the oxidation rate on longitudinal surface is lower. Formation of oxide layers on alloys after short-time oxidation provides protective effect and enhances the corrosion resistance.

  13. [Corrosion property and oxide film of dental casting alloys before and after porcelain firing].

    Science.gov (United States)

    Ma, Qian; Wu, Feng-ming

    2011-03-01

    To evaluate the types and compositions of oxide films formed during porcelain-fused-to-metal (PFM) firing on three kinds of dental casting alloys, and to investigate the corrosion property of these alloys in Dulbecco's modification of Eagle's medium (DMEM) cell culture fluid, before and after PFM firing. Specimens of three dental casting alloys (Ni-Cr, Co-Cr and Ni-Ti) before and after PFM firing were prepared, and were immersed in DMEM cell culture fluid. After 30 days, the type and concentration of released metal ions were measured using inductively coupled plasma atomic emission spectroscopy (ICP-AES). X-ray photoelectron spectroscopy (XPS) and scanning electron microscope (SEM) were used for analysis of oxide film on the alloys. One way-ANOVA was adopted in data analysis. The total amount of metal ions released from the three dental alloys was found to be highest in Ni-Cr alloy [(2.829 ± 0.694) mg/L], followed by Co-Cr [(2.120 ± 0.418) mg/L] and Ni-Ti alloy [(1.211 ± 0.101) mg/L]. The amount of Ni ions released from Ni-Cr alloys [(1.531 ± 0.392) mg/L] was higher than that from Ni-Ti alloys [(0.830 ± 0.052) mg/L]. The amount of Cr, Mo ions released from Co-Cr alloy [Cr: (0.048 ± 0.011) mg/L, Mo: (1.562 ± 0.333) mg/L] was higher than that from Ni-Cr alloy [Cr: (0.034 ± 0.002) mg/L, Mo: (1.264 ± 0.302) mg/L] and Ni-Ti alloy [Cr: (0.013 ± 0.006) mg/L, Mo: (0.151 ± 0.026) mg/L] (P < 0.05). After PFM firing, the total amount of metal irons released from the three dental alloys decreased [Ni-Cr: (0.861 ± 0.054) mg/L, Co-Cr: (0.695 ± 0.327) mg/L, Ni-Ti: (0.892 ± 0.115) mg/L] (P < 0.05). In addition, XPS showed increase of Cr(2)O(3) and Mo-Ni oxide on the surface of all the alloys after PFM firing. The amount of ions released from Ni-Cr alloy was the highest among the three dental casting alloys, this means Ni-Cr alloy is prone to corrode. The PFM firing process changed the alloys' surface composition. Increased Ni, Cr and Mo were found in oxide film, and

  14. Microstructure characteristic and excellent corrosion protection properties of sealed Zn-TiO{sub 2} composite coating for sintered NdFeB magnet

    Energy Technology Data Exchange (ETDEWEB)

    Yang Xiaokui [School of Materials Science and Engineering, Southwest University, Chongqing 400715 (China); Li Qing, E-mail: liqingd@swu.edu.c [School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Zhang Shiyan; Liu Fang; Wang Shaoyin; Zhang Haixiao [School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China)

    2010-04-09

    In this paper, a protective sealed Zn-TiO{sub 2} composite coating (SCC) was prepared on sintered NdFeB magnet by electrodeposition and sol-gel combined technique. For a comparison, unsealed Zn-TiO{sub 2} composite coating (UCC) was also studied. The surface morphologies of composite coating were studied using scanning electron microscope (SEM). The microstructure of composite coatings and structure of sealing layer were studied by X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) spectrum, respectively. The anticorrosive properties of composite coatings in neutral 3.5 wt.% NaCl solutions were evaluated by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) technique. The results of corrosion tests showed that due to the blocking effect of sealing layer, SCC could suppress the corrosion process by holding back the transfer or diffusion of corrosive medium, and therefore showed the excellent corrosion protection properties for sintered NdFeB magnet.

  15. Adsorption and inhibitive properties of Tryptophan on low alloy steel corrosion in acidic media

    Directory of Open Access Journals (Sweden)

    Hesham T.M. Abdel-Fatah

    2017-02-01

    Corrosion inhibition was studied using electrochemical methods (electrochemical impedance spectroscopy; EIS and the new technique electrochemical frequency modulation; EFM and weight loss measurements. The influence of inhibitor concentration, solution temperature, and immersion time on the corrosion resistance of low alloy steel (LAS has been investigated. Trp proved to be a very good inhibitor for low alloy steel acid corrosion. EFM measurements showed that Trp is a mixed type inhibitor. Trp behaved better in 0.6 M HCl than in 0.6 M HSO3NH2. Moreover, it was found that the inhibition efficiency increased with increasing inhibitor concentration, while a decrease was detected with the rise of temperature and immersion time. The associated activation energy (Ea has been determined. The values of Ea indicate that the type of adsorption of Trp on the steel surface in both acids belongs to physical adsorption. The adsorption process was tested using Temkin adsorption isotherm.

  16. Boron effect on fabrication properties and service behaviour of complex corrosion-resistant steels

    International Nuclear Information System (INIS)

    Gol'dshtejn, Ya.E.; Piskunova, A.I.; Shmatko, M.N.

    1978-01-01

    In order to determine the optimum boron admixtures for the improvement of the technological plasticity without the considerable reduction in the corrosion resistance of the complex alloy Cr-Ni-Mo steels, industrial heats of the 03KH16N15M3, 03KH17N14M3 and other steels, containing 0.0005-0.003% boron, have been researched. The plasticity, corrosion resistance and microstructure of certain steels have been determined. It is shown that small additions of boron enhance the technological plasticity during the ingot rolling. In order to prevent a sharp reduction in the corrosion resistance, the boron content should be confined to 0.0015% and the quenching temperature raised to 1,120-1,150 deg C. The positive effect of the quenching temperature increase is accounted for by the solution of the excess phases and by the reduction of the dislocation density in the near-the-boundary zones

  17. Aluminium-nickel-iron alloys resistant to corrosion by water at high temperature. Their basic properties - their improvement

    International Nuclear Information System (INIS)

    Coriou, H.; Fournier, R.; Grall, L.; Hure, J.

    1959-01-01

    The development of the investigations carried out on these alloys is reviewed, showing the establishment of their fundamental, particularly structural, properties. This is followed by studies on: 1 - The penetration process in corrosion. The results of micrographic studies of the metal oxide interface are given for a series of alloys treated in water and steam between 350 and 395 deg. C. The hypothesis of attack by pockets of gas pressure is corroborated, and a second process of deep penetration by islands of intergranular-type corrosion is shown to take place. These patches, distinct from the surface corrosion layer and sometimes forming at a considerable depth inside the metal, would be due to heterogeneities in composition of the solid solution making up the matrix of these alloys. 2 - The role of titanium and zirconium additions on rolled metal. Systematic studies are carried out on a series of alloys with titanium and zirconium contents between 0.05 and 0.15 per cent. The favourable effect of titanium in particular has been demonstrated. Zirconium acts in the same way, but less efficiently. The improvement due to these additions can be compared to their action on the distribution of the second phases, which tend to become more pronounced and more homogeneously distributed. The influence of solder on these alloys has been studied, showing up the part played by the structure gradients introduced by fission. (author) [fr

  18. The Effect of Vibration during Friction Stir Welding on Corrosion Behavior, Mechanical Properties, and Machining Characteristics of Stir Zone

    Directory of Open Access Journals (Sweden)

    Sajad Fouladi

    2017-10-01

    Full Text Available Different methods have been applied to refine various characteristics of the zone (or nugget obtained by friction stir welding (FSW. In the current research, joining components are vibrated normal to the weld line during FSW to refine the zone microstructure. This process is described as friction stir vibration welding (FSVW. The effect of FSVW on mechanical properties, corrosion behavior, and machining characteristics of the zone are investigated. Al5052 alloy specimens are welded using FSW and FSVW processes and their different characteristics are compared and discussed. The results show that the strength and ductility of the welded parts increase when the vibration is applied. The outcomes also show that corrosion resistance of the nugget for FSV-welded specimens is lower than FS welded samples, and machining force of the former specimens is higher than the latter ones. These are related to smaller grain size in the zone of FSV-welded specimens compared to FS welded parts. Smaller grain size leads to a greater volume fraction of grain boundaries and, correspondingly, higher strength and hardness, as well as lower corrosion resistance.

  19. Improvement of the corrosion property of Cr4Mo4V bearing steel using plasma immersion ion implantation

    International Nuclear Information System (INIS)

    Wang, S.Y.; Chu, P.K.

    1997-01-01

    The working conditions of aerospace bearings such as engine bearings are quite harsh and prolonging the life span of these components is thus very important to the aerospace industry. Previous results have shown that the main failure mechanism of aerospace bearings is corrosion, and enhancing their corrosion resistance is a key. Cr4Mo4V, which is equivalent to AISI M50 bearing steel, is usually used in aerospace bearings in China. In this study, Cr4Mo4V components are treated in a new generation plasma immersion ion implanter in which ion implantation and sputter deposition can be carried out in the same chamber without breaking vacuum. Three treatment processes involving Cr, Mo, and N are evaluated. Our test results indicate that Cr is the main element enhancing the corrosion resistance and the addition of nitrogen improves the properties further. The non line-of-sight advantage of PIII is important to the processing of complex-shaped samples such as engine bearings. (orig.)

  20. Microstructure, Mechanical and Corrosion Properties of Friction Stir Welding High Nitrogen Martensitic Stainless Steel 30Cr15Mo1N

    Directory of Open Access Journals (Sweden)

    Xin Geng

    2016-11-01

    Full Text Available High nitrogen martensitic stainless steel 30Cr15Mo1N plates were successfully welded by friction stir welding (FSW at a tool rotation speed of 300 rpm with a welding speed of 100 mm/min, using W-Re tool. The sound joint with no significant nitrogen loss was successfully produced. Microstructure, mechanical and corrosion properties of an FSW joint were investigated. The results suggest that the grain size of the stir zone (SZ is larger than the base metal (BM and is much larger the case in SZ-top. Some carbides and nitrides rich in chromium were found in BM while not observed in SZ. The martensitic phase in SZ could transform to austenite phase during the FSW process and the higher peak temperature, the greater degree of transformation. The hardness of SZ is significantly lower than that of the BM. An abrupt change of hardness defined as hard zone (HZ was found in the thermo-mechanically affected zone (TMAZ on the advancing side (AS, and the HZ is attributed to a combination result of temperature, deformation, and material flow behavior. The corrosion resistance of SZ is superior to that of BM, which can be attributed to less precipitation and lower angle boundaries (LABs. The corrosion resistance of SZ-bottom is slight higher than that of SZ-top because of the finer grained structure.

  1. Microstructure, texture evolution, mechanical properties and corrosion behavior of ECAP processed ZK60 magnesium alloy for biodegradable applications.

    Science.gov (United States)

    Mostaed, Ehsan; Hashempour, Mazdak; Fabrizi, Alberto; Dellasega, David; Bestetti, Massimiliano; Bonollo, Franco; Vedani, Maurizio

    2014-09-01

    Ultra-fine grained ZK60 Mg alloy was obtained by multi-pass equal-channel angular pressing at different temperatures of 250°C, 200°C and 150°C. Microstructural observations showed a significant grain refinement after ECAP, leading to an equiaxed and ultrafine grain (UFG) structure with average size of 600nm. The original extrusion fiber texture with planes oriented parallel to extrusion direction was gradually undermined during ECAP process and eventually it was substituted by a newly stronger texture component with considerably higher intensity, coinciding with ECAP shear plane. A combination of texture modification and grain refinement in UFG samples led to a marked reduction in mechanical asymmetric behavior compared to the as-received alloy, as well as adequate mechanical properties with about 100% improvement in elongation to failure while keeping relatively high tensile strength. Open circuit potential, potentiodynamic and weight loss measurements in a phosphate buffer solution electrolyte revealed an improved corrosion resistance of UFG alloy compared to the extruded one, stemming from a shift of corrosion regime from localized pitting in the as-received sample to a more uniform corrosion mode with reduced localized attack in ECAP processed alloy. Compression tests on immersed samples showed that the rate of loss of mechanical integrity in the UFG sample was lower than that in the as-received sample. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. The electrochemical synthesis of poly(pyrrole-co-o-anisidine) on 3102 aluminum alloy and its corrosion protection properties

    International Nuclear Information System (INIS)

    Mert, B. Dogru; Yazici, B.

    2011-01-01

    Research highlights: → The electrochemical synthesis of strongly adherent, uniform polypyrrole (PPy) and poly(pyrrole-co-o-anisidine) coatings were successfully achieved on 3102 aluminum alloy from 0.1 M monomer (pyrrole and pyrrole:o-anisidine, 8:2) containing oxalic acid by means of the cyclic voltammetry technique. → The results were showed that the water permeation of copolymer coating is lower than PPy. → This study was showed that copolymer is suitable coating for protection of 3102 Al alloy against corrosion. - Abstract: The electrochemical syntheses of polypyrrole (PPy) and poly(pyrrole-co-o-anisidine) were achieved on 3102 aluminum alloy (Al) from 0.1 M monomer (pyrrole:o-anisidine, 8:2) containing 0.4 M oxalic acid solution using the cyclic voltammetry technique. The synthesized films were characterized by FT-IR spectroscopy. The thermal stability of films was determined by thermogravimetric analysis (TGA) technique. Surface morphologies were characterized by scanning electron microscope (SEM) images. The potential of zero charge (pzc) of Al was determined using electrochemical impedance spectroscopy (EIS). The corrosion behavior of samples was investigated with open circuit potential (E ocp )-time, EIS, and anodic polarization techniques. It was found that copolymer coated Al provides better barrier property against of corrosion in 3.5% NaCl solution.

  3. Structure, mechanical properties, corrosion behavior and cytotoxicity of biodegradable Mg-X (X=Sn, Ga, In) alloys.

    Science.gov (United States)

    Kubásek, J; Vojtěch, D; Lipov, J; Ruml, T

    2013-05-01

    As-cast Mg-Sn, Mg-Ga and Mg-In alloys containing 1-7 wt.% of alloying elements were studied in this work. Structural and chemical analysis of the alloys was performed by using light and scanning electron microscopy, energy dispersive spectrometry, x-ray diffraction, x-ray photoelectron spectroscopy and glow discharge spectrometry. Mechanical properties were determined by Vickers hardness measurements and tensile testing. Corrosion behavior in a simulated physiological solution (9 g/l NaCl) was studied by immersion tests and potentiodynamic measurements. The cytotoxicity effect of the alloys on human osteosarcoma cells (U-2 OS) was determined by an indirect contact assay. Structural investigation revealed the dendritic morphology of the as-cast alloys with the presence of secondary eutectic phases in the Mg-Sn and Mg-Ga alloys. All the alloying elements showed hardening and strengthening effects on magnesium. This effect was the most pronounced in the case of Ga. All the alloying elements at low concentrations of approximately 1 wt.% were also shown to positively affect the corrosion resistance of Mg. But at higher concentrations of Ga and Sn the corrosion resistance worsened due to galvanic effects of secondary phases. Cytotoxicity tests indicated that Ga had the lowest toxicity, followed by Sn. The most severe toxicity was observed in the case of In. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Thermal behaviour properties and corrosion resistance of organoclay/polyurethane film

    Science.gov (United States)

    Kurniawan, O.; Soegijono, B.

    2018-03-01

    Organoclay/polyurethane film composite was prepared by adding organoclay with different content (1, 3, and 5 wt.%) in polyurethane as a matrix. TGA and DSC showed decomposition temperature shifted to a lower point as organoclay content change. FT-IR spectra showed chemical bonding of organoclay and polyurethane as a matrix, which means that the bonding between filler and matrix occured and the composite was stronger but less bonding occur in composite with 5 wt.% organoclay. The corrosion resistance overall increased with the increasing organoclay content. Composite with 5 wt.% organoclay had more thermal stability and corrosion resistance may probably due to exfoliation of organoclay.

  5. Experimental investigation on corrosion properties of LDS MID for Hearing Aid applications

    DEFF Research Database (Denmark)

    Islam, Aminul; Hansen, Hans Nørgaard; Risager, Flemming

    2014-01-01

    The trend towards miniaturization is ever going in the hearing aid industry. The Moulded Interconnect Device (MID) technology can offer the unique possibility to reduce the size of the hearing aids by combining electrical and mechanical functions in the same components. On the other hand, one...... of the main concerns for MIDs in hearing aids is the corrosion of metal tracks. This paper investigates the corrosion of the MID parts based on different base materials, layer thickness and mechanical wear of the MIDs. The results presented in the paper will be useful for designing MIDs in hearing aids...

  6. Guiding Properties of Silica/Air Hollow-Core Bragg Fibers

    DEFF Research Database (Denmark)

    Foroni, Matteo; Passaro, Davide; Poli, Federica

    2008-01-01

    The guiding properties of realistic silica/air hollow-core Bragg fibers have been investigated by calculating the dispersion curves, the confinement loss spectrum and the field distribution of the guided modes through a full-vector modal solver based on the finite element method. In particular, t...... the different possible applications, the feasibility of a DNA bio-sensor based on a hollow-core Bragg fiber has been demonstrated....

  7. Inhibition properties of self-assembled corrosion inhibitor talloil diethylenetriamine imidazoline for mild steel corrosion in chloride solution saturated with carbon dioxide

    International Nuclear Information System (INIS)

    Jevremović, Ivana; Singer, Marc; Nešić, Srđan; Mišković-Stanković, Vesna

    2013-01-01

    Highlights: •Corrosion inhibitor talloil diethylenetriamine imidazoline effectively protects mild steel from CO 2 corrosion. •Quartz crystal microbalance measurements were used to the investigate kinetics of corrosion inhibitor adsorption. •Adsorption of talloil diethylenetriamine imidazoline can be described by Langmuir adsorption isotherm. -- Abstract: The inhibition effect of talloil diethylenetriamine imidazoline (TOFA/DETA imidazoline) on corrosion of mild steel in chloride solutions saturated with CO 2 was investigated by weight loss measurements (WL) and atomic force microscopy (AFM). Adsorption mechanism and kinetics of self-assembled (TOFA/DETA imidazoline) monolayers formation on gold were studied using the quartz crystal microbalance measurements (QCM). WL and AFM results demonstrated that TOFA/DETA imidazoline can effectively protect mild steel surface from corrosion. QCM measurements shown that the adsorption of TOFA/DETA imidazoline onto gold follows Langmuir adsorption isotherm and further investigation of the adsorption process will be carried out on a corroding metal surface

  8. Radioimmunoassay and some properties of human antibodies to hepatitis B core antigen

    Energy Technology Data Exchange (ETDEWEB)

    Neurath, A R; Szmuness, W; Stevens, C E; Strick, N; Harley, E J [New York Blood Center, N.Y. (USA)

    1978-03-01

    A solid-phase radioimmunoassay for antibodies to hepatitis B core antigen (anti-HBsub(c)) is described. Polystyrene beads coated with anti-HBsub(c), hepatitis B core antigen prepared from pooled sera of humans infected with hepatitis B virus (HBV) and /sup 125/I-labelled anti-HBsub(c) were used for the test. Distinct patterns of development and changes of anti-HBsub(c) and their immunological properties are all related to variations of other markers specific for HBV infections. Knowledge concerning the detailed features of the immune response to hepatitis B core antigen may provide deeper insight into the pathogenesis of HBV infections.

  9. Tensile and stress corrosion cracking properties of type 304 stainless steel irradiated to a very high dose

    International Nuclear Information System (INIS)

    Chung, H.M.; Strain, R.V.; Shack, W.J.

    2001-01-01

    Certain safety-related core internal structural components of light water reactors, usually fabricated from Type 304 or 316 austenitic stainless steels (SSs), accumulate very high levels of irradiation damage (20-100 displacement per atom or dpa) by the end of life. Our databases and mechanistic understanding of the degradation of such highly irradiated components, however, are not well established. A key question is the nature of irradiation-assisted intergranular cracking at very high doses, i.e. is it purely mechanical failure or is it stress-corrosion cracking? In this work, hot-cell tests and microstructural characterization were performed on Type 304 SS from the hexagonal fuel can of the decommissioned EBR-II reactor after irradiation to ∼50 dpa at ∼370 deg. C. Slow-strain-rate tensile tests were conducted at 289 degree sign C in air and in water at several levels of electrochemical potential (ECP), and microstructural characteristics were analyzed by scanning and transmission electron microscopies. The material deformed significantly by twinning and exhibited surprisingly high ductility in air, but was susceptible to severe intergranular stress corrosion cracking (IGSCC) at high ECP. Low levels of dissolved O and ECP were effective in suppressing the susceptibility of the heavily irradiated material to IGSCC, indicating that the stress corrosion process associated with irradiation-induced grain-boundary Cr depletion, rather than purely mechanical separation of grain boundaries, plays the dominant role. However, although IGSCC was suppressed, the material was susceptible to dislocation channeling at a low ECP, and this susceptibility led to a poor work-hardening capability and low ductility

  10. MECHANICAL PROPERTIES AND CORROSION PROTECTION OF CARBON STEEL COATED WITH AN EPOXY BASED POWDER COATING CONTAINING MONTMORILONITE FUNCTIONALIZED WITH SILANE

    Directory of Open Access Journals (Sweden)

    Paula Tibola Bertuoli

    2014-06-01

    Full Text Available In the present work the MMT-Na+ clay was functionalized with 3-aminopropyltriethoxysilane (γ-APS and incorporated in a commercial formulation epoxy-based powder coating in a proportion of 8 wt% and applied on 1008 carbon steel panels by electrostatic spray. Adhesion, flexibility, impact and corrosion performance in salt spray chamber tests were performed to evaluate the coatings. The presence of clay did not affect the mechanical properties of the film, however greater subcutaneous migration was assessed after the completion of salt spray testing, which can compromise the use of paints obtained as primers.

  11. In vitro corrosion and cytocompatibility properties of nano-whisker hydroxyapatite coating on magnesium alloy for bone tissue engineering applications.

    Science.gov (United States)

    Yang, Huawei; Yan, Xueyu; Ling, Min; Xiong, Zuquan; Ou, Caiwen; Lu, Wei

    2015-03-17

    We report here the successful fabrication of nano-whisker hydroxyapatite (nHA) coatings on Mg alloy by using a simple one-step hydrothermal process in aqueous solution. The nHA coating shows uniform structure and high crystallinity. Results indicate that nHA coating is promising for improving the in vitro corrosion and cytocompatibility properties of Mg-based implants and devices for bone tissue engineering. In addition, the simple hydrothermal deposition method used in the current study is also applicable to substrates with complex shapes or surface geometries.

  12. In Vitro Corrosion and Cytocompatibility Properties of Nano-Whisker Hydroxyapatite Coating on Magnesium Alloy for Bone Tissue Engineering Applications

    Directory of Open Access Journals (Sweden)

    Huawei Yang

    2015-03-01

    Full Text Available We report here the successful fabrication of nano-whisker hydroxyapatite (nHA coatings on Mg alloy by using a simple one-step hydrothermal process in aqueous solution. The nHA coating shows uniform structure and high crystallinity. Results indicate that nHA coating is promising for improving the in vitro corrosion and cytocompatibility properties of Mg-based implants and devices for bone tissue engineering. In addition, the simple hydrothermal deposition method used in the current study is also applicable to substrates with complex shapes or surface geometries.

  13. Comparative studies of microstructural, tribological and corrosion properties of Zn-TiO2 and Zn-TiO2-WO3 nano-composite coatings

    Directory of Open Access Journals (Sweden)

    A.A. Daniyan

    Full Text Available Nano sized composites of Zn-TiO2 and Zn-TiO2-WO3 were produced via electrocodeposition on plain carbon steel. The effect of input current on the microstructure, mechanical strengthening and corrosion properties were compared. The morphological features of the composite coatings were characterized by scanning electron microscope (SEM equipped with energy dispersive spectrometer (EDS; mechanical properties were carried out using a diamond base Dura Scan hardness tester and CERT UMT-2 multi-functional tribological tester. The corrosion properties were investigated by potentiodynamic studies in 3.5% NaCl. The result showed that the coatings exhibited good stability and the particle loading of WO3 greatly enhanced the microstructural properties, hardness behaviour and corrosion resistance of the coatings. Keywords: Zn-TiO2, Zn-TiO2-WO3, Electrocodeposition, Microstructure, Composite, Stability and coatings

  14. The interrelation between mechanical properties, corrosion resistance and microstructure of Pb-Sn casting alloys for lead-acid battery components

    Energy Technology Data Exchange (ETDEWEB)

    Peixoto, Leandro C.; Osorio, Wislei R.; Garcia, Amauri [Department of Materials Engineering, University of Campinas - UNICAMP, PO Box 6122, 13083-970, Campinas - SP (Brazil)

    2010-01-15

    It is well known that there is a strong influence of thermal processing variables on the solidification structure and as a direct consequence on the casting final properties. The morphological microstructural parameters such as grain size and cellular or dendritic spacings will depend on the heat transfer conditions imposed by the metal/mould system. There is a need to improve the understanding of the interrelation between the microstructure, mechanical properties and corrosion resistance of dilute Pb-Sn casting alloys which are widely used in the manufacture of battery components. The present study has established correlations between cellular microstructure, ultimate tensile strength and corrosion resistance of Pb-1 wt% Sn and Pb-2.5 wt% Sn alloys by providing a combined plot of these properties as a function of cell spacing. It was found that a compromise between good corrosion resistance and good mechanical properties can be attained by choosing an appropriate cell spacing range. (author)

  15. Corrosion properties of plasma deposited nickel and nickel-based alloys

    Czech Academy of Sciences Publication Activity Database

    Voleník, Karel; Pražák, M.; Kalabisová, E.; Kreislová, K.; Had, J.; Neufuss, Karel

    2003-01-01

    Roč. 48, č. 3 (2003), s. 215-226 ISSN 0001-7043 R&D Projects: GA ČR GA106/99/0298 Institutional research plan: CEZ:AV0Z2043910 Keywords : plasma deposits, nickel, nickel-based alloys Subject RIV: JK - Corrosion ; Surface Treatment of Materials

  16. Corrosion inhibition properties of pyrazolylindolenine compounds on copper surface in acidic media

    Directory of Open Access Journals (Sweden)

    Ebadi Mehdi

    2012-12-01

    Full Text Available Abstract Background The corrosion inhibition performance of pyrazolylindolenine compounds, namely 4-(3,3-dimethyl-3H-indol-2-yl-pyrazole-1-carbothioamide (InPzTAm, 4-(3,3-dimethyl-3H-indol-2-yl-1H-pyrazole-1-carbothiohydrazide (InPzTH and 3,3-dimethyl-2-(1-phenyl-1H-pyrazol-4-yl-3H-indole (InPzPh, on copper in 1M HCl solution is investigated by electrochemical impedance spectroscopy (EIS, open circuit potential (OCP and linear scan voltammetry (LSV techniques. Results The results show that the corrosion rate of copper is diminished by the compounds with the inhibition strength in the order of: InPzTAm> InPzTH > InPzPh. The corrosion inhibition efficiencies for the three inhibitors are 94.0, 91.4 and 79.3, for InPzTAm, InPzTH and InPzPh respectively with the same inhibitor concentration (2 mM. Conclusion From the EIS, OCP and LSV results it was concluded that pyrazolylindolenine compounds with S-atom (with an amine group have illustrated better corrosion inhibition performance compared to hydrazine and phenyl group.

  17. Nd: YAG laser treatment of aluminium-TiB2 coated: optimization of corrosion properties

    CSIR Research Space (South Africa)

    Popoola, PAI

    2011-06-01

    Full Text Available . Eutectics of TiB2/Al and TiB2/Ti were observed. The results of the tests indicate that TiB2 reinforcement does not give significant increase in microhardness of aluminium. The corrosion resistance of a single laser trackline MMC in a 3.65 % NaCl solution...

  18. Synthesis and corrosion protection properties of poly(o-phenylenediamine nanofibers

    Directory of Open Access Journals (Sweden)

    P. Muthirulan

    2013-07-01

    Full Text Available The present study shows a novel method for the synthesis of uniformly-shaped poly(othophenylediamine (PoPD nanofibers by chemical oxidative polymerization method for application towards smart corrosion resistance coatings. Transmission Electron Microscopy (TEM and Scanning Electron Microscopy (SEM studies confirm morphology of PoPD with three dimensional (3D networked dendritic superstructures having average diameter of 50–70 nm and several hundred meters of length. UV–vis and FTIR spectral results shows the formation of PoPD nanofibers containing phenazine ring ladder-structure with benzenoid and quinoid imine units. Thermogravimetric analyses (TGA of PoPD nanofibers possess good thermal stability. The anti-corrosion behavior of PoPD nanofibers on 316L SS was investigated in 3.5% NaCl solution using potentiodynamic polarization and electrochemical impedance spectroscopic (EIS measurements. The PoPD coated 316L SS exhibits higher corrosion potential when compared to uncoated specimen. EIS studies, clearly ascertain that PoPD nanofiber coatings exhibits excellent potential barrier to protect the 316L SS against corrosion in 3.5% NaCl.

  19. The Effect of Phosphate on the Morphological and Spectroscopic Properties of Copper Pipes Experiencing Localized Corrosion

    Science.gov (United States)

    Extensive localized or pitting corrosion of copper pipes used in household drinking-water plumbing can eventually lead to pinhole water leaks that may result in water damage, mold growth, and costly repairs. A growing number of problems have been associated with high pH and low ...

  20. Electrodeposition and corrosion properties of zn-co and zn-co-fe alloy coatings

    NARCIS (Netherlands)

    Mol, J.M.C.; Lodhi, Z.F.; Hovestad, A.; Hoen-Velterop, L. 't; Terryn, H.; Wit, J.H.W. de

    2010-01-01

    Cadmium (Cd) has been extensively used as an excellent corrosion protective coating for steel components in aerospace, automotive, electrical and fasteners industries. However, Cd is banned due to its toxic nature and strict environmental regulations. In this study, the electrodeposition mechanism

  1. Electrodeposition and corrosion properties of Zn-Co and Zn-Co-Fe alloy coatings

    NARCIS (Netherlands)

    Mol, J.M.C.; Lodhi, Z.F.; Hovestad, A.; Hoen-Velterop, L. 't; Terryn, H.; Wit, J.H.W. de

    2011-01-01

    Cadmium (Cd) has been extensively used as an excellent corrosion protective coating for steel components in aerospace, automotive, electrical and fasteners industries. However, Cd is banned due to its toxic nature and strict environmental regulations. In this study, the electrodeposition mechanism

  2. Corrosion properties of chromia based eco-friendly coatings on mild steel

    Czech Academy of Sciences Publication Activity Database

    Brožek, Vlastimil; Pokorný, P.; Bouška, P.; Stoulil, J.; Mastný, L.

    2016-01-01

    Roč. 55, č. 4 (2016), s. 675-678 ISSN 0543-5846 Institutional support: RVO:61389021 Keywords : Ceramic * steel coating * corrosion * plasma spraying Subject RIV: JG - Metallurgy Impact factor: 0.959, year: 2014 http://hrcak.srce.hr/157395

  3. Microstructure, Mechanical Properties and Corrosion Behavior of Porous Mg-6 wt.% Zn Scaffolds for Bone Tissue Engineering

    Science.gov (United States)

    Yan, Yang; Kang, Yijun; Li, Ding; Yu, Kun; Xiao, Tao; Wang, Qiyuan; Deng, Youwen; Fang, Hongjie; Jiang, Dayue; Zhang, Yu

    2018-03-01

    Porous Mg-based scaffolds have been extensively researched as biodegradable implants due to their attractive biological and excellent mechanical properties. In this study, porous Mg-6 wt.% Zn scaffolds were prepared by powder metallurgy using ammonium bicarbonate particles as space-holder particles. The effects of space-holder particle content on the microstructure, mechanical properties and corrosion resistance of the Mg-6 wt.% Zn scaffolds were studied. The mean porosity and pore size of the open-cellular scaffolds were within the range 6.7-52.2% and 32.3-384.2 µm, respectively. Slight oxidation was observed at the grain boundaries and on the pore walls. The Mg-6 wt.% Zn scaffolds were shown to possess mechanical properties comparable with those of natural bone and had variable in vitro degradation rates. Increased content of space-holder particles negatively affected the mechanical behavior and corrosion resistance of the Mg-6 wt.% Zn scaffolds, especially when higher than 20%. These results suggest that porous Mg-6 wt.% Zn scaffolds are promising materials for application in bone tissue engineering.

  4. Improvement of the magnetic property, thermal stability and corrosion resistance of the sintered Nd-Fe-B magnets with Dy{sub 80}Al{sub 20} addition

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Beibei; Li, Xiangbin; Liang, Xiaolin [School of Physics and Technology, Wuhan University, Wuhan, Hubei (China); Yan, Gaolin, E-mail: gaolinyan@whu.edu.cn [School of Physics and Technology, Wuhan University, Wuhan, Hubei (China); Chen, Kan; Yan, Aru [Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang (China)

    2017-05-01

    To improve the coercivity and thermal stability of the Nd-Fe-B sintered magnets simultaneously, the Dy{sub 80}Al{sub 20} (at%) powders with low melting point were introduced into the Nd-Fe-B magnets. Additionally, the magnetic properties, microstructure and thermal stability of the sintered magnets with different amounts of Dy{sub 80}Al{sub 20} were investigated. By adding a small amount of Dy{sub 80}Al{sub 20}, the coercivity was significantly increased from 12.72 to 21.75 kOe. As indicated by the microstructure analysis, a well-developed core-shell structure was formed in the magnets with the addition of Dy{sub 80}Al{sub 20}. The improvement of magnetic properties could be attributed to the refined and uniform matrix phase, continuous grain boundaries and a (Nd, Dy){sub 2}Fe{sub 14}B hardening shell surrounding the matrix phase grains. With the addition of 0–4 wt% Dy{sub 80}Al{sub 20} powder, the reversible temperature coefficients of remanence (α) and coercivity (β) of the magnets could be improved from −0.117 to −0.108%/°C and −0.74 to −0.66%/°C in the range of 20–100 °C, respectively. Additionally, the irreversible loss of magnetic flux (hirr) decreased sharply as Dy{sub 80}Al{sub 20} powder was added. The results of temperature-dependent magnetic properties suggest that, the thermal stability of the magnets was effectively improved with the intergranular addition of Dy{sub 80}Al{sub 20} alloy. Also, the corrosion resistance was found to be improved through small addition of Dy{sub 80}Al{sub 20} powders This was partly due to the stability enhancement of the (Pr, Nd)-rich intergranular phase by Dy{sub 80}Al{sub 20}. - Highlights: • We successfully introduced the Dy{sub 80}Al{sub 20} alloy into the Nd-Fe-B magnets. • The magnetic properties and thermal stability of the Nd-Fe-B magnets were improved. • The corrosion resistance of the Nd-Fe-B magnets were improved.

  5. Properties of 5052 Aluminum For Use as Honeycomb Core in Manned Spaceflight

    Science.gov (United States)

    Lerch, Bradley A.

    2018-01-01

    This work explains that the properties of Al 5052 material used commonly for honeycomb cores in sandwich panels are highly dependent on the tempering condition. It has not been common to specify the temper when ordering HC material nor is it common for the supplier to state what the temper is. For aerospace uses, a temper of H38 or H39 is probably recommended. This temper should be stated in the bill of material and should be verified upon receipt of the core. To this end some properties provided herein can aid as benchmark values.

  6. Structural and magnetic properties of core-shell iron-iron oxide nanoparticles

    DEFF Research Database (Denmark)

    Kuhn, Luise Theil; Bojesen, A.; Timmermann, L.

    2002-01-01

    We present studies of the structural and magnetic properties of core-shell iron-iron oxide nanoparticles. alpha-Fe nanoparticles were fabricated by sputtering and subsequently covered with a protective nanocrystalline oxide shell consisting of either maghaemite (gamma-Fe2O3) or partially oxidized...... magnetite (Fe3O4). We observed that the nanoparticles were stable against further oxidation, and Mossbauer spectroscopy at high applied magnetic fields and low temperatures revealed a stable form of partly oxidized magnetite. The nanocrystalline structure of the oxide shell results in strong canting...... of the spin structure in the oxide shell, which thereby modifies the magnetic properties of the core-shell nanoparticles....

  7. Corrosion of metallic materials. Dry corrosion, aqueous corrosion and corrosion by liquid metal, methods of protection

    International Nuclear Information System (INIS)

    Helie, Max

    2015-01-01

    This book is based on a course on materials given in an engineering school. The author first gives an overview of metallurgy issues: metallic materials (pure metals, metallic alloys), defects of crystal lattices (point defects, linear defects or dislocations), equilibrium diagrams, steels and cast, thermal processing of steels, stainless steels, aluminium and its alloys, copper and its alloys. The second part addresses the properties and characterization of surfaces and interfaces: singularity of a metal surface, surface energy of a metal, energy of grain boundaries, adsorption at a material surface, metal-electrolyte interface, surface oxide-electrolyte interface, techniques of surface analysis. The third chapter addresses the electrochemical aspects of corrosion: description of the corrosion phenomenon, free enthalpy of a compound and free enthalpy of a reaction, case of dry corrosion (thermodynamic aspect, Ellingham diagram, oxidation mechanisms, experimental study, macroscopic modelling), case of aqueous corrosion (electrochemical thermodynamics and kinetics, experimental determination of corrosion rate). The fourth part addresses the different forms of aqueous corrosion: generalized corrosion (atmospheric corrosion, mechanisms and tests), localized corrosion (galvanic, pitting, cracking, intergranular, erosion and cavitation), particular cases of stress cracking (stress corrosion, fatigue-corrosion, embrittlement by hydrogen), and bi-corrosion (of non alloyed steels, of stainless steels, and of aluminium and copper alloys). The sixth chapter addresses the struggle and the protection against aqueous corrosion: methods of prevention, scope of use of main alloys, geometry-based protection of pieces, use of corrosion inhibitors, use of organic or metallic coatings, electrochemical protection. The last chapter proposes an overview of corrosion types in industrial practices: in the automotive industry, in the oil industry, in the aircraft industry, and in the

  8. Corrosion protection of metals by phosphate coatings and ecologically beneficial alternatives. Properties and mechanisms

    International Nuclear Information System (INIS)

    Weng Duan.

    1995-01-01

    The corrosion and protection characteristics of inorganic zinc and manganese phosphate coatings in aqueous solution have been examined by physical methods, accelerated corrosion tests and electrochemical polarization and impedance measurements. Some water-soluble organic films have been evaluated for the temporary protection of metal parts as the ecologically beneficial alternatives to phosphate coatings. The results show that zinc phosphate is a better insulator than manganese phosphate, but the porosity of the former is inferior to that of the latter. In neutral and alkaline solutions the anodic current of both zinc and manganese phosphates decreases and their open potential moves in a positive direction. In acidic medium both the polarization current and the open potential are close to those of the substrate. Confirmed by the impedance measurements, the corrosion of phosphated steel in acidic solution is controlled by a dissolution reaction, in neutral medium is first reaction controlled then diffusion controlled, and in alkaline environment only diffusion controlled. The insulation of acrylate+copolymer, epoxy and inhibitor+bonding materials is superior to that of zinc or manganese phosphates. In general, most of the alternatives can afford a better temporary protection for metal parts compared to inorganic phosphate coatings. The corrosion failure of inorganic phosphate coatings is mainly induced by the electrochemical dissolution of the substrate. This electrochemical process initiates at the bottom of the pores within the coating. In neutral solution, the hydrolysis of corrosion products decrease the pH value of the solution in the anodic zone, resulting in an acidic dissolution of phosphate coatings. At the same time, the depolarization of oxygen increases the pH value in the cathodic zone, causing an alkaline hydrolysis of phosphates. (author) figs., tabs., 149 refs

  9. Theoretical Investigation of Inter-core Crosstalk Properties in Homogeneous Trench-Assisted Multi-Core Fibers

    DEFF Research Database (Denmark)

    Ye, Feihong; Morioka, Toshio; Tu, Jiajing

    2014-01-01

    We derive analytical expressions for inter-core crosstalk, its dependence on core pitch and wavelength in homogeneous trench-assisted multi-core fibers. They are in excellent agreement with numerical simulation results.......We derive analytical expressions for inter-core crosstalk, its dependence on core pitch and wavelength in homogeneous trench-assisted multi-core fibers. They are in excellent agreement with numerical simulation results....

  10. Effects of Starch on Properties of Alumina-based Ceramic Cores

    Directory of Open Access Journals (Sweden)

    LI Fengguang

    2016-12-01

    Full Text Available In order to improve the poor leachability of alumina-based ceramic cores, different amount of starch was added to the specimens as pore former. Alumina-based ceramic cores were prepared by hot injection technology using corundum powder as base material, paraffin wax and beeswax as plasticizer, silica powder and magnesium oxide powder as mineralizing agent, wherein the parameters of the hot injection process were as follows:temperature of the slurry was 90℃, hot injection pressure was 0.5 MPa and holding time was 25 s. The effects of starch content on the properties of alumina-based ceramic cores were studied and discussed. The results indicate that during sintering period, the loss of starch in the specimens makes porosity of the alumina-based ceramic cores increase. When starch content increases, the room-temperature flexural strength of the ceramic cores reduces and the apparent porosity increases; the volatile solvent increases and the bulk density decreases. After being sintered at 1560℃ for 2.5 h, room-temperature flexural strength of the alumina-based ceramic cores with starch content of 8%(mass fraction is 24.8 MPa, apparent porosity is 47.98% when the volatile solvent is 1.92 g/h and bulk density is 1.88 g/cm3, the complex properties are optimal.

  11. Mechanical properties of kenaf bast and core fibre reinforced unsaturated polyester composites

    Energy Technology Data Exchange (ETDEWEB)

    Ishak, M R; Leman, Z; Sapuan, S M [Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Edeerozey, A M M; Othman, I S, E-mail: zleman@eng.upm.edu.my [Faculty of Manufacturing Engineering, Universiti Teknikal Malaysia Melaka, 76109 Durian Tunggal, Melaka (Malaysia)

    2010-05-15

    Kenaf fibre has high potential to be used for composite reinforcement in biocomposite material. It is made up of an inner woody core and an outer fibrous bark surrounding the core. The aim of this study was to compare the mechanical properties of short kenaf bast and core fibre reinforced unsaturated polyester composites with varying fibre weight fraction i.e. 0%, 5%, 10%, 20%, 30% and 40%. The compression moulding technique was used to prepare the composite specimens for tensile, flexural and impact tests in accordance to the ASTM D5083, ASTM D790 and ASTM D256 respectively. The overall results showed that the composites reinforced with kenaf bast fibre had higher mechanical properties than kenaf core fibre composites. The results also showed that the optimum fibre content for achieving highest tensile strength for both bast and core fibre composites was 20%wt. It was also observed that the elongation at break for both composites decreased as the fibre content increased. For the flexural strength, the optimum fibre content for both composites was 10%wt while for impact strength, it was at 10%wt and 5%wt for bast and core fibre composites respectively.

  12. Mechanical properties of kenaf bast and core fibre reinforced unsaturated polyester composites

    International Nuclear Information System (INIS)

    Ishak, M R; Leman, Z; Sapuan, S M; Edeerozey, A M M; Othman, I S

    2010-01-01

    Kenaf fibre has high potential to be used for composite reinforcement in biocomposite material. It is made up of an inner woody core and an outer fibrous bark surrounding the core. The aim of this study was to compare the mechanical properties of short kenaf bast and core fibre reinforced unsaturated polyester composites with varying fibre weight fraction i.e. 0%, 5%, 10%, 20%, 30% and 40%. The compression moulding technique was used to prepare the composite specimens for tensile, flexural and impact tests in accordance to the ASTM D5083, ASTM D790 and ASTM D256 respectively. The overall results showed that the composites reinforced with kenaf bast fibre had higher mechanical properties than kenaf core fibre composites. The results also showed that the optimum fibre content for achieving highest tensile strength for both bast and core fibre composites was 20%wt. It was also observed that the elongation at break for both composites decreased as the fibre content increased. For the flexural strength, the optimum fibre content for both composites was 10%wt while for impact strength, it was at 10%wt and 5%wt for bast and core fibre composites respectively.

  13. Corrosion and drug release properties of EN-plating/PLGA composite coating on MAO film

    International Nuclear Information System (INIS)

    Lu Ping; Liu Yin; Guo Meiqing; Fang Haidong; Xu Xinhua

    2011-01-01

    The electroless nickel plating/poly(DL-lactide-co-glycolide) composite coating (EN-plating/PLGA composite coating) was fabricated on the surface of the micro-arc oxidation (MAO) film of the magnesium alloy AZ81 to double control the corrosion and drug release in the hanks' solution. The EN-plating was fabricated on the MAO coating to improve the corrosion resistance by overlaying most pores and micro-cracks on the surface of the MAO film. Meanwhile, a double layered organic poly(DL-lactide-co-glycolide)/paclitaxel (PLGA/PTX) drug releasing coating with a top layered PLGA drug controlled releasing coating on EN plating was prepared to control the drug release rate by adjusting the different lactide: glycolide (LA:GA) ratio of PLGA. Scanning electron microscopy (SEM) and the X-ray powder diffraction (XRD) were used to analyze the morphology and the composition of the EN-plating. The corrosion behavior of the magnesium alloy substrate and the status of the drug in the PLGA matrix were respectively evaluated by Potentiodynamic polarization and Differential scanning calorimetry (DSC). The drug release was determined by ultraviolet-visible (UV-visible) spectrophotometer. EN-plating coating which was composed of compact cauliflower nodules was uniform in size and defect free with no pores or cracks. EN-plating could seal the microcracks and microholes on the outer layer of the MAO coating effectively. The corrosion resistance was improved by preventing the corrosive ions from diffusing to the magnesium alloy substrate. The drug release rate of PTX exhibited a nearly linear sustained-release profile with no significant burst releases. - Research highlights: → An organic and in organic EN-plating/PLGA composite coating was first fabricated on the surface of the MAO film. → This composite coating the magnesium alloy AZ81could double control the corrosion and drug release in the hanks' solution. → The drug release rate could be controlled by LG:GA ratio and the PTX

  14. Corrosion and drug release properties of EN-plating/PLGA composite coating on MAO film

    Energy Technology Data Exchange (ETDEWEB)

    Lu Ping [School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072 (China); Liu Yin [Department of Cardiology, Tianjin Chest Hospital, Tianjin 300051 (China); Guo Meiqing; Fang Haidong [School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072 (China); Xu Xinhua, E-mail: xhxu_tju@eyou.com [School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072 (China)

    2011-10-10

    The electroless nickel plating/poly(DL-lactide-co-glycolide) composite coating (EN-plating/PLGA composite coating) was fabricated on the surface of the micro-arc oxidation (MAO) film of the magnesium alloy AZ81 to double control the corrosion and drug release in the hanks' solution. The EN-plating was fabricated on the MAO coating to improve the corrosion resistance by overlaying most pores and micro-cracks on the surface of the MAO film. Meanwhile, a double layered organic poly(DL-lactide-co-glycolide)/paclitaxel (PLGA/PTX) drug releasing coating with a top layered PLGA drug controlled releasing coating on EN plating was prepared to control the drug release rate by adjusting the different lactide: glycolide (LA:GA) ratio of PLGA. Scanning electron microscopy (SEM) and the X-ray powder diffraction (XRD) were used to analyze the morphology and the composition of the EN-plating. The corrosion behavior of the magnesium alloy substrate and the status of the drug in the PLGA matrix were respectively evaluated by Potentiodynamic polarization and Differential scanning calorimetry (DSC). The drug release was determined by ultraviolet-visible (UV-visible) spectrophotometer. EN-plating coating which was composed of compact cauliflower nodules was uniform in size and defect free with no pores or cracks. EN-plating could seal the microcracks and microholes on the outer layer of the MAO coating effectively. The corrosion resistance was improved by preventing the corrosive ions from diffusing to the magnesium alloy substrate. The drug release rate of PTX exhibited a nearly linear sustained-release profile with no significant burst releases. - Research highlights: {yields} An organic and in organic EN-plating/PLGA composite coating was first fabricated on the surface of the MAO film. {yields} This composite coating the magnesium alloy AZ81could double control the corrosion and drug release in the hanks' solution. {yields} The drug release rate could be controlled by LG

  15. Recent progress to understand stress corrosion cracking in sodium borosilicate glasses: linking the chemical composition to structural, physical and fracture properties

    Science.gov (United States)

    Rountree, Cindy L.

    2017-08-01

    This topical review is dedicated to understanding stress corrosion cracking in oxide glasses and specifically the SiO_2{\\text-B_2O_3{\\text-}Na_2O} (SBN) ternary glass systems. Many review papers already exist on the topic of stress corrosion cracking in complex oxide glasses or overly simplified glasses (pure silica). These papers look at how systematically controlling environmental factors (pH, temperature...) alter stress corrosion cracking, while maintaining the same type of glass sample. Many questions still exist, including: What sets the environmental limit? What sets the velocity versus stress intensity factor in the slow stress corrosion regime (Region I)? Can researchers optimize these two effects to enhance a glass’ resistance to failure? To help answer these questions, this review takes a different approach. It looks at how systemically controlling the glass’ chemical composition alters the structure and physical properties. These changes are then compared and contrasted to the fracture toughness and the stress corrosion cracking properties. By taking this holistic approach, researchers can begin to understand the controlling factors in stress corrosion cracking and how to optimize glasses via the initial chemical composition.

  16. Influence of localized plasticity on Stress Corrosion Cracking of austenitic stainless steel. Application to IASCC of internals reactor core vessels

    International Nuclear Information System (INIS)

    Cisse, Sarata

    2012-01-01

    The surface conditions of the 316L screw connecting vessel internals of the primary circuit of PWR (pressurized water reactor) corresponds to a grinding condition. These screws are affected by the IASCC (Irradiation Assisted Stress Corrosion Cracking). Initiation of cracking depends on the surface condition but also on the external oxidation and interactions of oxide layer with the deformation bands. The first objective of this study is to point the influence of surface condition on the growth kinetic of oxide layer, and the surface reactivity of 304, 316 stainless steel grade exposed to PWR primary water at 340 C. The second objective is to determine influence of strain localization on the SCC of austenitic stainless steels in PWR primary water. Indeed, the microstructure of irradiated 304, 316 grades correspond to a localized deformation in deformation bands free of radiation defects. In order to reproduce that microstructure without conducting irradiations, low cycle fatigue tests at controlled stain amplitude are implemented for the model material of the study (A286 austenitic stainless steel hardened by the precipitation of phase γ'Ni3(Ti, Al)). During the mechanical cycling (after the first hardening cycles), the precipitates are dissolved in slip bands leading to the localization of the deformation. Once the right experimental conditions in low cycle fatigue obtained (for localized microstructure), interactions oxidation / deformation bands are studied by oxidizing pre deformed samples containing deformation bands and non deformed samples. The tensile tests at a slow strain rate of 8 x 10 -8 /s are also carried out on pre deformed samples and undeformed samples. The results showed that surface treatment induces microstructural modifications of the metal just under the oxide layer, leading to slower growth kinetics of the oxide layer. However, surface treatment accelerates development of oxides penetrations in metal under the oxide layer. As example, for

  17. In Situ Formation of Decavanadate-Intercalated Layered Double Hydroxide Films on AA2024 and their Anti-Corrosive Properties when Combined with Hybrid Sol Gel Films

    Directory of Open Access Journals (Sweden)

    Junsheng Wu

    2017-04-01

    Full Text Available A layered double hydroxide (LDH film was formed in situ on aluminum alloy 2024 through a urea hydrolysis method, and a decavanadate-intercalated LDH (LDH-V film fabricated through the dip coating method. The microstructural and morphological characteristics were investigated by scanning electron microscopy (SEM. The corrosion-resistant performance was analyzed by electrochemical impedance spectroscopy (EIS, scanning electrochemical microscopy (SECM, and a salt-spray test (SST.The SEM results showed that a complete and defect-free surface was formed on the LDH-VS film. The anticorrosion results revealed that the LDH-VS film had better corrosion-resistant properties than the LDH-S film, especially long-term corrosion resistance. The mechanism of corrosion protection was proposed to consist of the self-healing effect of the decavanadate intercalation and the shielding effect of the sol-gel film.

  18. The effects of zirconium and beryllium on microstructure evolution, mechanical properties and corrosion behaviour of as-cast AZ63 alloy

    International Nuclear Information System (INIS)

    Jafari, Hassan; Amiryavari, Peyman

    2016-01-01

    Alloying elements are able to strongly modify the microstructure characteristics of Mg–Al–Zn alloys which dominate mechanical and corrosion properties of the alloys. In this research, the individual effects of Zr and Be additions on the microstructure, mechanical and corrosion properties of as-cast AZ63 alloy were explored. The results revealed that the addition of Zr leads to microstructure refinement in as-cast AZ63 alloy, resulting in improved tensile and hardness properties. 0.0001 and 0.001 wt% Be containing cast AZ63 alloy exhibited microstructure coarsening, while morphological alteration from sixford symmetrical to irregular shape grain was observed for the alloy containing 0.01 and 0.1 wt% Be. No specific Be compound was detected. In addition, mechanical properties of AZ63 alloy containing Zr was improved due to the microstructure modification, while Be containing alloy responded reverse behaviour. The corrosion resistance of AZ63 alloy was improved after the addition of Zr and Be due to the grain refinement and passivation effects, respectively. However, when the Zr content exceeds 0.5 wt%, the formation of Al 2 Zr affected the corrosion resistance. In other words, AZ63–0.5Zr alloy provided the lowest corrosion rate.

  19. Earth's Outer Core Properties Estimated Using Bayesian Inversion of Normal Mode Eigenfrequencies

    Science.gov (United States)

    Irving, J. C. E.; Cottaar, S.; Lekic, V.

    2016-12-01

    The outer core is arguably Earth's most dynamic region, and consists of an iron-nickel liquid with an unknown combination of lighter alloying elements. Frequencies of Earth's normal modes provide the strongest constraints on the radial profiles of compressional wavespeed, VΦ, and density, ρ, in the outer core. Recent great earthquakes have yielded new normal mode measurements; however, mineral physics experiments and calculations are often compared to the Preliminary reference Earth model (PREM), which is 35 years old and does not provide uncertainties. Here we investigate the thermo-elastic properties of the outer core using Earth's free oscillations and a Bayesian framework. To estimate radial structure of the outer core and its uncertainties, we choose to exploit recent datasets of normal mode centre frequencies. Under the self-coupling approximation, centre frequencies are unaffected by lateral heterogeneities in the Earth, for example in the mantle. Normal modes are sensitive to both VΦ and ρ in the outer core, with each mode's specific sensitivity depending on its eigenfunctions. We include a priori bounds on outer core models that ensure compatibility with measurements of mass and moment of inertia. We use Bayesian Monte Carlo Markov Chain techniques to explore different choices in parameterizing the outer core, each of which represents different a priori constraints. We test how results vary (1) assuming a smooth polynomial parametrization, (2) allowing for structure close to the outer core's boundaries, (3) assuming an Equation-of-State and adiabaticity and inverting directly for thermo-elastic parameters. In the second approach we recognize that the outer core may have distinct regions close to the core-mantle and inner core boundaries and investigate models which parameterize the well mixed outer core separately from these two layers. In the last approach we seek to map the uncertainties directly into thermo-elastic parameters including the bulk

  20. Effect of annealing temperature on the stress and structural properties of Ge core fibre

    Science.gov (United States)

    Zhao, Ziwen; Cheng, Xueli; Xue, Fei; He, Ting; Wang, Tingyun

    2017-09-01

    Effect of annealing temperature on the stress and structural properties of a Ge core fibre via the molten core drawing (MCD) method is investigated using Raman spectroscopy, Scanning electronic microscopy (SEM), and X-ray diffraction. The experimental results showed that the Raman peak position of the Ge fibre shifted from 297.6 cm-1 to 300.5 cm-1, and the FWHM value decreased from 4.53 cm-1 to 4.31 cm-1, when the annealing is carried out at 700 °C, 800 °C, and 900 °C, respectively. For the Ge core annealed at 900 °C, an apparent crystal grain can be seen in the SEM image, and the diffraction peaks of the (3 3 1) plane are generated in the X-ray diffraction spectra. These results show that optimising the annealing temperature allows the release of the residual stress in the Ge core. When the Ge core fibre is annealed at 900 °C, it exhibits the lowest residual stress and the highest crystal quality, and the quality improvement relative to that of the sample annealed at 800 °C is significant. Hence, annealing at around 900 °C can greatly improve the quality of a Ge core fibre. Further performance improvement of the Ge core fibre by annealing techniques can be anticipated.

  1. Effect of perfluorodecyltrichlorosilane on the surface properties and anti-corrosion behavior of poly(dimethylsiloxane)-ZnO coatings

    Science.gov (United States)

    Arukalam, Innocent O.; Meng, Meijiang; Xiao, Haigang; Ma, Yuantai; Oguzie, Emeka E.; Li, Ying

    2018-03-01

    Poly(dimethylsiloxane)-ZnO coatings modified with different amounts of perfluorodecyltrichlorosilane (FDTS) were prepared using sol-gel technique. The results of field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM) examinations showed that the surface structures and roughness of the coatings were respectively influenced by the increasing addition of FDTS. The water contact angle measurements showed maximum value of 130.52° with the 0.10 g FDTS-modified coating sample. The X-ray photoelectron spectroscopy (XPS) results indicated the coatings' hydrophobicity was also influenced by surface chemistry. The FTIR-ATR characterization results showed there was remarkable increase in the crystallinity of 0.10 g FDTS-modified coating after modification, and was confirmed by differential scanning calorimetry (DSC) analysis of crystallization temperature and the X-ray diffraction (XRD) results with an estimation of 71.29% percent crystallinity. The mechanical properties of the coatings were also conducted. The EIS measurements for anti-corrosion behavior showed that 0.10 g FDTS-modified coating had the highest barrier performance and lowest rate of degradation. Indeed, the obtained data have demonstrated that 0.10 g (≈ 0.18%) FDTS produced the most significantly effect on the surface and barrier properties of the coatings and thus, can effectively be used for anti-corrosion application in the marine environments.

  2. Superior corrosion resistance properties of TiN-based coatings on Zircaloy tubes in supercritical water

    Energy Technology Data Exchange (ETDEWEB)

    Khatkhatay, Fauzia [Department of Electrical and Computer Engineering, Texas A and M University, College Station, TX 77843-3128 (United States); Jiao, Liang [Materials Science and Engineering Program, Texas A and M University, College Station, TX 77843-3003 (United States); Jian, Jie [Department of Electrical and Computer Engineering, Texas A and M University, College Station, TX 77843-3128 (United States); Zhang, Wenrui [Materials Science and Engineering Program, Texas A and M University, College Station, TX 77843-3003 (United States); Jiao, Zhijie [Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109-2104 (United States); Gan, Jian; Zhang, Hongbin [Idaho National Laboratory, Idaho Falls, ID 83415-6188 (United States); Zhang, Xinghang [Materials Science and Engineering Program, Texas A and M University, College Station, TX 77843-3003 (United States); Department of Mechanical Engineering, Texas A and M University, College Station, TX 77843-3123 (United States); Wang, Haiyan, E-mail: wangh@ece.tamu.edu [Department of Electrical and Computer Engineering, Texas A and M University, College Station, TX 77843-3128 (United States); Materials Science and Engineering Program, Texas A and M University, College Station, TX 77843-3003 (United States)

    2014-08-01

    Thin films of TiN and Ti{sub 0.35}Al{sub 0.65}N nanocomposite were deposited on polished Zircaloy-4 tubes. After exposure to supercritical water for 48 h, the coated tubes are remarkably intact, while the bare uncoated tube shows severe oxidation and breakaway corrosion. X-ray diffraction patterns, secondary electron images, backscattered electron images, and energy dispersive X-ray spectroscopy data from the tube surfaces and cross-sections show that a protective oxide, formed on the film surface, effectively prevents further oxidation and corrosion to the Zircaloy-4 tubes. This result demonstrates the effectiveness of thin film ceramics as protective coatings under extreme environments.

  3. Effects of Laser Re-melting on the Corrosion Properties of HVOF Coatings

    Science.gov (United States)

    Yilbas, B. S.; Toor, I. H.; Patel, F.; Baig, M. A.

    2013-05-01

    HVOF coating of Inconel 625 powder on carbon steel is carried out. Laser melting of the resulting coating is realized to improve coating structural integrity. Morphological and microstructural changes are examined in the coating prior and after laser treatment process using scanning electron microscopy, energy dispersive spectroscopy, and x-ray diffraction (XRD). The residual stress developed is measured on the surface vicinity of the laser-treated coating using the XRD technique. The corrosion resistance of the laser-treated and untreated coating surfaces is measured, incorporating the potentiodynamic tests in 0.5 M NaCl aqueous solution. It is found that laser treatment reduces the pores and produces cellular structures with different sizes and orientations in the coating. Laser-controlled melting improves the corrosion resistance of the coating surface.

  4. Composition and corrosion properties of high-temperature oxide films on steel type 18-10

    International Nuclear Information System (INIS)

    Vakulenko, B.F.; Morozov, O.N.; Chernysheva, M.V.

    1985-01-01

    The composition and propeties of oxide films, formed in the process of tube production of steel type 18-10, as well as the behaviour of the steels coated with oxide films under operating conditions of NPP heat-exchange equipment at the 20-300 deg C temperatures are determined. It is found, that the films have a good adhesion to the steel surface and repeat the metal structure without interfering with, the surface defect determination. Introduction of the NaNO 2 corrosion inhibitor decreases the film destruction rate to the level of the base metal corrosion. It is found acceptable to use tubes of steel 18-10 coated with dense oxide films in the heat-exchange and water supply systems of NPP

  5. 3DII implantation effect on corrosion properties of the AISI/SAE 1020 steel

    Energy Technology Data Exchange (ETDEWEB)

    Dulce M., H.J.; Rueda V., Alejandro [Universidad Francisco de Paula Santander, A.A. 1055, Cucuta (Colombia); Dougar-Jabon, Valeri [Universidad Industrial de Santander, A.A. 678, Bucaramanga (Colombia)

    2005-08-01

    The three dimensional ion implantation technology (3DII) is one of the methods of improving the tribological characteristics and resistance to hydrogen embrittlement processes in metals. In this report, some results concerning the resistance effect of nitrogen ion implantation to oxidation of the sample, made of AISI/SAE 1020 steel, are given. The nitrogen ions were implanted in the discharge chamber of the JUPITER reactor. Both the treated and untreated samples were tested through potential-static measurements, which permitted to determine the corrosion current, the slopes that characterise the braking level of anode and cathode reactions. The polarization resistance near the corrosion potential is calculated. The results of the study encourage to consider the nitrogen ion implantation in high voltage and low pressure discharges as one of the methods of anticorrosive protection which do not change the geometric configuration of the treated steel pieces. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Relationship between microstructure, cytotoxicity and corrosion properties of a Cu-Al-Ni shape memory alloy.

    Science.gov (United States)

    Colić, Miodrag; Rudolf, Rebeka; Stamenković, Dragoslav; Anzel, Ivan; Vucević, Dragana; Jenko, Monika; Lazić, Vojkan; Lojen, Gorazd

    2010-01-01

    Cu-Al-Ni shape memory alloys (SMAs) have been investigated as materials for medical devices, but their biomedical application is still limited. The aim of this work was to compare the microstructure, corrosion and cytotoxicity in vitro of a Cu-Al-Ni SMA. Rapidly solidified (RS) thin ribbons, manufactured via melt spinning, were used for the tests. The control alloy was a permanent mould casting of the same composition, but without shape memory effect. The results show that RS ribbons are significantly more resistant to corrosion compared with the control alloy, as judged by the lesser release of Cu and Ni into the conditioning medium. These results correlate with the finding that RS ribbons were not cytotoxic to L929 mouse fibroblasts and rat thymocytes. In addition, the RS ribbon conditioning medium inhibited cellular proliferation and IL-2 production by activated rat splenocytes to a much lesser extent. The inhibitory effects were almost completely abolished by conditioning the RS ribbons in culture medium for 4 weeks. Microstructural analysis showed that RS ribbons are martensitic, with boron particles as a minor phase. In contrast, the control Cu-Al-Ni alloy had a complex multiphase microstructure. Examination of the alloy surfaces after conditioning by energy dispersive X-ray and Auger electron spectroscopy showed the formation of Cu and Al oxide layers and confirmed that the metals in RS ribbons are less susceptible to oxidation and corrosion compared with the control alloy. In conclusion, these results suggest that rapid solidification significantly improves the corrosion stability and biocompatibility in vitro of Cu-Al-Ni SMA ribbons.

  7. Humidity Effects on Soluble Core Mechanical and Thermal Properties (Polyvinyl Alcohol/Microballoon Composite)

    Science.gov (United States)

    1993-01-01

    This document constitutes the final report for the study of humidity effects and loading rate on soluble core (PVA/MB composite material) mechanical and thermal properties. This report describes test results, procedures employed, and any unusual occurrences or specific observations associated with this test program.

  8. Transmission properties of hollow-core photonic bandgap fibers in relation to molecular spectroscopy

    DEFF Research Database (Denmark)

    Falk, Charlotte Ijeoma; Hald, Jan; Petersen, Jan C.

    2010-01-01

    The transmission properties of five types of hollow-core photonic bandgap fibers (HC-PBFs) are characterized in the telecom wavelength range around 1:5 μm. The variations in optical transmission are measured as a function of laser frequency over a 2GHz scan range as well as a function of time over...

  9. Silica Bridge Impact on Hollow-core Bragg Fiber Transmission Properties

    DEFF Research Database (Denmark)

    Poli, F.; Foroni, M.; Giovanelli, D.

    2007-01-01

    The silica bridges impact on the hollow-core Bragg fiber guiding properties is investigated. Results demonstrate that silica nanosupports are responsible for the surface mode presence, which causes the peaks experimentally measured in the transmission spectrum. © 2006 Optical Society of America....

  10. A contact method of determination of thermophysical properties of rocks from core samples

    International Nuclear Information System (INIS)

    Gavril'ev, R.I.

    1995-01-01

    The zone of the action of thermal disturbances around a circular heat source on the surface of a semi-infinite body is estimated with the aim of using contact methods of determination of thermophysical properties of materials from core samples

  11. Improved mechanical and corrosion properties of nickel composite coatings by incorporation of layered silicates

    Energy Technology Data Exchange (ETDEWEB)

    Tientong, J. [University of North Texas, Department of Chemistry, 1155 Union Circle #305070, Denton, TX 76203 (United States); Ahmad, Y.H. [Center for Advanced Materials, P.O. Box 2713, Qatar University, Doha (Qatar); Nar, M.; D' Souza, N. [University of North Texas, Department of Mechanical and Energy Engineering, Denton, TX 76207 (United States); Mohamed, A.M.A. [Center for Advanced Materials, P.O. Box 2713, Qatar University, Doha (Qatar); Golden, T.D., E-mail: tgolden@unt.edu [University of North Texas, Department of Chemistry, 1155 Union Circle #305070, Denton, TX 76203 (United States)

    2014-05-01

    Layered silicates as exfoliated montmorillonite are incorporated into nickel films by electrodeposition, enhancing both corrosion resistance and hardness. Films were deposited onto stainless steel from a plating solution adjusted to pH 9 containing nickel sulfate, sodium citrate, and various concentrations of exfoliated montmorillonite. The presence of the incorporated layered silicate was confirmed by scanning electron microscopy and energy-dispersive X-ray spectroscopy. The composite films were also compact and smooth like the pure nickel films deposited under the same conditions as shown by scanning electron microscopy. X-ray diffraction results showed that incorporation of layered silicates into the film do not affect the nickel crystalline fcc structure. The nanocomposite films exhibited improved stability and adhesion. Pure nickel films cracked and peeled from the substrate when immersed in 3.5% NaCl solution within 5 days, while the nanocomposite films remained attached even after 25 days. The corrosion resistance of the nickel nanocomposites was also improved compared to nickel films. Nickel-layered silicate composites showed a 25% increase in Young's modulus and a 20% increase in hardness over pure nickel films. - Highlights: • 0.05–2% of layered silicates are incorporated into crystalline nickel films. • Resulting composite films had improved stability and adhesion. • Corrosion resistance improved for the composite films. • Hardness improved 20% and young's modulus improved 25% for the composite films.

  12. Tribological and Corrosion Properties of Coatings Produced by Plasma Electrolytic Oxidation on the ZA27 Alloy

    Science.gov (United States)

    Li, Guangyin; Mao, Yifan; Li, Zhijian; Wang, Linlin; DaCosta, Herbert

    2018-05-01

    In this paper, a continuous and dense coating was deposited on samples of the ZA27 alloy through the plasma electrolytic oxidation (PEO) process to improve its wear and corrosion performance. A nontoxic and environmentally friendly inorganic salt, Na2SiO3, is chosen as electrolytes with different concentrations. The effect of the concentration of Na2SiO3 aqueous solutions on the coating performances was investigated. The coatings with 3Al2O3·2SiO2 (mullite), Zn2SiO4 and Al2O3 (either crystal phase or with some amorphous SiO2 phases) were formed by the PEO processes. It was found that the coating thickness increased with the increase in electrolyte concentration. However, the wear and corrosion resistance performance of the coatings did not improve as the coating's thickness increased. This was due to the fact that the coating produced with electrolytes of 10 g/L has a porous structure with large pore size. Among all the samples, coating produced by 15 g/L Na2SiO3 has the best wear and corrosion resistance, which is attributed to its continuous and dense structure with thickness of about 47 μm.

  13. Tribological and Corrosion Properties of Coatings Produced by Plasma Electrolytic Oxidation on the ZA27 Alloy

    Science.gov (United States)

    Li, Guangyin; Mao, Yifan; Li, Zhijian; Wang, Linlin; DaCosta, Herbert

    2018-04-01

    In this paper, a continuous and dense coating was deposited on samples of the ZA27 alloy through the plasma electrolytic oxidation (PEO) process to improve its wear and corrosion performance. A nontoxic and environmentally friendly inorganic salt, Na2SiO3, is chosen as electrolytes with different concentrations. The effect of the concentration of Na2SiO3 aqueous solutions on the coating performances was investigated. The coatings with 3Al2O3·2SiO2 (mullite), Zn2SiO4 and Al2O3 (either crystal phase or with some amorphous SiO2 phases) were formed by the PEO processes. It was found that the coating thickness increased with the increase in electrolyte concentration. However, the wear and corrosion resistance performance of the coatings did not improve as the coating's thickness increased. This was due to the fact that the coating produced with electrolytes of 10 g/L has a porous structure with large pore size. Among all the samples, coating produced by 15 g/L Na2SiO3 has the best wear and corrosion resistance, which is attributed to its continuous and dense structure with thickness of about 47 μm.

  14. Synthesis and corrosion properties of silicon nitride films by ion beam assisted deposition

    Science.gov (United States)

    Baba, K.; Hatada, R.; Emmerich, R.; Enders, B.; Wolf, G. K.

    1995-12-01

    Silicon nitride films SiN x were deposited on 316L austenitic stainless steel substrates by silicon evaporation and simultaneous nitrogen ion irradiation with an acceleration voltage of 2 kV. In order to study the influence of the nitrogen content on changes in stoichiometry, structure, morphology, thermal oxidation behaviour and corrosion behaviour, the atom to ion transport ratio was systematically varied. The changes of binding states and the stoichiometry were evaluated with XPS and AES analysis. A maximum nitrogen content was reached with a {Si}/{N} transport ratio lower than 2. The films are chemically inert when exposed to laboratory atmosphere up to a temperature of more than 1000°C. XRD and SEM measurements show amorphous and featureless films for transport ratios {Si}/{N} from 1 up to 10. The variation of the corrosion behaviour of coated stainless steel substrates in sulphuric acid and hydrochloric acid shows a minimum at medium transport ratios. This goes parallel with changes in porosity and adhesion. Additional investigations showed that titanium implantation as an intermediate step improves the corrosion resistance considerably.

  15. Corrosion and anticorrosion. Industrial practice

    International Nuclear Information System (INIS)

    Beranger, G.; Mazille, H.

    2002-01-01

    This book comprises 14 chapters written with the collaboration of about 50 French experts of corrosion. It is complementary to another volume entitled 'corrosion of metals and alloys' and published by the same editor. This volume comprises two parts: part 1 presents the basic notions of corrosion phenomena, the properties of surfaces, the electrochemical properties of corrosion etc.. Part 2 describes the most frequent forms of corrosion encountered in industrial environments and corresponding to specific problems of protection: marine environment, atmospheric corrosion, galvanic corrosion, tribo-corrosion, stress corrosion etc.. The first 8 chapters (part 1) treat of the corrosion problems encountered in different industries and processes: oil and gas production, chemical industry, phosphoric acid industry, PWR-type power plants, corrosion of automobile vehicles, civil engineering and buildings, corrosion of biomaterials, non-destructive testing for the monitoring of corrosion. The other chapters (part 2) deal with anticorrosion and protective coatings and means: choice of materials, coatings and surface treatments, thick organic coatings and enamels, paints, corrosion inhibitors and cathodic protection. (J.S.)

  16. The effect of corrosion product CrF3 on thermo-physical properties of FLiNaK

    International Nuclear Information System (INIS)

    Yin Huiqin; Zhang Peng; An Xuehui; Zhao Sufang; Xie Leidong; Wang Wenfeng

    2016-01-01

    FLiNaK (LiF–NaF–KF: 46.5–11.5–42 mol%) is a promising candidate as the secondary loop coolant in molten salt reactor. The thermo-physical properties of pure FLiNaK and FLiNaK containing up to 6000 ppm (equivalent to mg/kg) corrosion product CrF 3 were measured. The results indicate that the effects of CrF 3 on melting point, enthalpy, specific heat capacity, density and thermal diffusivity of FLiNaK in liquid state are negligible within the allowable error range, meanwhile the change of thermal diffusivity is significant for FLiNaK in solid state. This work provides fundamental knowledge for the thermo-physical properties of coolant in molten salt reactor. (author)

  17. Effect of flowing sodium on corrosion and tensile properties of AISI type 316LN stainless steel at 823 K

    Science.gov (United States)

    Sivai Bharasi, N.; Thyagarajan, K.; Shaikh, H.; Balamurugan, A. K.; Bera, Santanu; Kalavathy, S.; Gurumurthy, K.; Tyagi, A. K.; Dayal, R. K.; Rajan, K. K.; Khatak, H. S.

    2008-07-01

    AISI type 316LN stainless steel was exposed to flowing sodium in mass transfer loop (MTL) at 823 K for 16 000 h and then examined for changes in the tensile properties due to the mass transfer and corrosion effects. Comparisons in microstructural and mechanical properties were made between annealed, thermally aged and sodium exposed materials. Microstructural examination of thermally aged and sodium exposed materials revealed precipitation of carbides at the grain boundaries. The sodium exposed samples contained a degraded layer at the surface up to a depth of around 10 μm and a surface carburized layer of about 30 μm. There was about 15% increase in yield strength and a decrease of about 20% in ductility for the sodium exposed material vis-a-vis thermally aged material and this was attributed to carburization effects and microstructural changes.

  18. Effect of flowing sodium on corrosion and tensile properties of AISI type 316LN stainless steel at 823 K

    International Nuclear Information System (INIS)

    Sivai Bharasi, N.; Thyagarajan, K.; Shaikh, H.; Balamurugan, A.K.; Bera, Santanu; Kalavathy, S.; Gurumurthy, K.; Tyagi, A.K.; Dayal, R.K.; Rajan, K.K.; Khatak, H.S.

    2008-01-01

    AISI type 316LN stainless steel was exposed to flowing sodium in mass transfer loop (MTL) at 823 K for 16 000 h and then examined for changes in the tensile properties due to the mass transfer and corrosion effects. Comparisons in microstructural and mechanical properties were made between annealed, thermally aged and sodium exposed materials. Microstructural examination of thermally aged and sodium exposed materials revealed precipitation of carbides at the grain boundaries. The sodium exposed samples contained a degraded layer at the surface up to a depth of around 10 μm and a surface carburized layer of about 30 μm. There was about 15% increase in yield strength and a decrease of about 20% in ductility for the sodium exposed material vis-a-vis thermally aged material and this was attributed to carburization effects and microstructural changes

  19. The Structure and Dark Halo Core Properties of Dwarf Spheroidal Galaxies

    Science.gov (United States)

    Burkert, A.

    2015-08-01

    The structure and dark matter halo core properties of dwarf spheroidal galaxies (dSphs) are investigated. A double-isothermal (DIS) model of an isothermal, non-self-gravitating stellar system embedded in an isothermal dark halo core provides an excellent fit to the various observed stellar surface density distributions. The stellar core scale length a* is sensitive to the central dark matter density ρ0,d. The maximum stellar radius traces the dark halo core radius {r}c,d. The concentration c* of the stellar system, determined by a King profile fit, depends on the ratio of the stellar-to-dark-matter velocity dispersion {σ }*/{σ }d. Simple empirical relationships are derived that allow us to calculate the dark halo core parameters ρ0,d, {r}c,d, and σd given the observable stellar quantities σ*, a*, and c*. The DIS model is applied to the Milky Way’s dSphs. All dSphs closely follow the same universal dark halo scaling relations {ρ }0,d× {r}c,d={75}-45+85 M⊙ pc-2 that characterize the cores of more massive galaxies over a large range in masses. The dark halo core mass is a strong function of core radius, {M}c,d˜ {r}c,d2. Inside a fixed radius of ˜400 pc the total dark matter mass is, however, roughly constant with {M}d=2.6+/- 1.4× {10}7 M⊙, although outliers are expected. The dark halo core densities of the Galaxy’s dSphs are very high, with {ρ }0,d ≈ 0.2 M⊙ pc-3. dSphs should therefore be tidally undisturbed. Evidence for tidal effects might then provide a serious challenge for the CDM scenario.

  20. Mechanical and bio-corrosion properties of quaternary Mg–Ca–Mn–Zn alloys compared with binary Mg–Ca alloys

    International Nuclear Information System (INIS)

    Bakhsheshi-Rad, H.R.; Idris, M.H.; Abdul-Kadir, M.R.; Ourdjini, A.; Medraj, M.; Daroonparvar, M.; Hamzah, E.

    2014-01-01

    Highlights: • Quaternary alloy show better mechanical and corrosion properties than binary alloy. • Mg–2Ca–0.5Mn–2Zn alloy showed suitable mechanical properties for bone application. • The improved corrosion resistance with addition of Mn and Zn into the Mg–Ca alloy. • Formation of protective surface film Mn-containing magnesium on quaternary alloy. • Secondary phases have strong effect on micro-galvanic corrosion of Mg alloys. - Abstract: Binary Mg–xCa alloys and the quaternary Mg–Ca–Mn–xZn were studied to investigate their bio-corrosion and mechanical properties. The surface morphology of specimens was characterized by X-ray diffraction (XRD), Fourier-transformed infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The results of mechanical properties show that the yield strength (YS), ultimate tensile strength (UTS) and elongation of quaternary alloy increased significantly with the addition of zinc (Zn) up to 4 wt.%. However, further addition of Zn content beyond 4 wt.% did not improve yield strength and ultimate tensile strength. In contrast, increasing calcium (Ca) content has a deleterious effect on binary Mg–Ca alloys. Compression tests of the magnesium (Mg) alloys revealed that the compression strength of quaternary alloy was higher than that of binary alloy. However, binary Mg–Ca alloy showed higher reduction in compression strength after immersion in simulated body fluid. The bio-corrosion behaviour of the binary and quaternary Mg alloys were investigated using immersion tests and electrochemical tests. Electrochemical tests shows that the corrosion potential (E corr ) of binary Mg–2Ca significantly shifted toward nobeler direction from −1996.8 to −1616.6 mV SCE with the addition of 0.5 wt.% manganese (Mn) and 2 wt.% Zn content. However, further addition of Zn to 7 wt.% into quaternary alloy has the reverse effect. Immersion tests show that the quaternary

  1. Structural and magnetic properties of multi-core nanoparticles analysed using a generalised numerical inversion method

    Science.gov (United States)

    Bender, P.; Bogart, L. K.; Posth, O.; Szczerba, W.; Rogers, S. E.; Castro, A.; Nilsson, L.; Zeng, L. J.; Sugunan, A.; Sommertune, J.; Fornara, A.; González-Alonso, D.; Barquín, L. Fernández; Johansson, C.

    2017-01-01

    The structural and magnetic properties of magnetic multi-core particles were determined by numerical inversion of small angle scattering and isothermal magnetisation data. The investigated particles consist of iron oxide nanoparticle cores (9 nm) embedded in poly(styrene) spheres (160 nm). A thorough physical characterisation of the particles included transmission electron microscopy, X-ray diffraction and asymmetrical flow field-flow fractionation. Their structure was ultimately disclosed by an indirect Fourier transform of static light scattering, small angle X-ray scattering and small angle neutron scattering data of the colloidal dispersion. The extracted pair distance distribution functions clearly indicated that the cores were mostly accumulated in the outer surface layers of the poly(styrene) spheres. To investigate the magnetic properties, the isothermal magnetisation curves of the multi-core particles (immobilised and dispersed in water) were analysed. The study stands out by applying the same numerical approach to extract the apparent moment distributions of the particles as for the indirect Fourier transform. It could be shown that the main peak of the apparent moment distributions correlated to the expected intrinsic moment distribution of the cores. Additional peaks were observed which signaled deviations of the isothermal magnetisation behavior from the non-interacting case, indicating weak dipolar interactions. PMID:28397851

  2. Strengthening mechanisms and mechanical properties of high interstitial stainless steel for drill collar and its corrosion resistance

    Science.gov (United States)

    Lee, Eunkyung

    corrosion resistance properties of HISSs and shows that the alloys developed in the present study effectively resist attack by sour acid gas and salt water by immersion tests using sour-brine environment and salt water. In addition, electrochemical polarization tests show that the corrosion pitting potential of the heat treated HISSs in sodium chloride solution is the highest among the benchmark alloys. This result shows that this alloy resists corrosion well under the high temperature and high pressure conditions in the presence of high-pressure H2S and CO 2 sour gas well environments.

  3. Measuring technique of super high temperature thermal properties of reactor core materials

    International Nuclear Information System (INIS)

    Ono, Akira; Baba, Tetsuya; Watanabe, Hideo; Matsumoto, Tsuyoshi

    1998-01-01

    In this study, thermal properties of reactor core materials used for water cooled reactors and FBR were tried to develop a technique to measure their melt states at less than 3,000degC in order to contribute more correct evaluation of the reactor core behavior at severe accident. Then, a thermal property measuring method of high temperature melt by using floating method was investigated and its fundamental design was begun to investigate under a base of optimum judgement on the air flow floating throw-down method. And, in order to measure emissivity of melt specimen surface essential for correct temperature measurement using the throw down method, a spectroscopic emissivity measuring unit using an ellipsometer was prepared and induced. On the thermal properties measurement using the holding method, a specimen container to measure thermal diffusiveness of the high temperature melts by using laser flashing method was tried to prepare. (G.K.)

  4. Enhanced thermoelectric properties of polycrystalline Bi2Te3 core fibers with preferentially oriented nanosheets

    Directory of Open Access Journals (Sweden)

    Min Sun

    2018-03-01

    Full Text Available Bi2Te3-based materials have been reported to be one of the best room-temperature thermoelectric materials, and it is a challenge to substantially improve their thermoelectric properties. Here novel Bi2Te3 core fibers with borosilicate glass cladding were fabricated utilizing a modified molten core drawing method. The Bi2Te3 core of the fiber was found to consist of hexagonal polycrystalline nanosheets, and polycrystalline nanosheets had a preferential orientation; in other words, the hexagonal Bi2Te3 lamellar cleavage more tended to be parallel to the symmetry axis of the fibers. Compared with a homemade 3-mm-diameter Bi2Te3 rod, the polycrystalline nanosheets’ preferential orientation in the 89-μm-diameter Bi2Te3 core increased its electrical conductivity, but deduced its Seebeck coefficient. The Bi2Te3 core exhibits an ultrahigh ZT of 0.73 at 300 K, which is 232% higher than that of the Bi2Te3 rod. The demonstration of fibers with oriented nano-polycrystalline core and the integration with an efficient fabrication technique will pave the way for the fabrication of high-performance thermoelectric fibers.

  5. Comparative study of mechanical properties of direct core build-up materials

    Directory of Open Access Journals (Sweden)

    Girish Kumar

    2015-01-01

    Full Text Available Background and Objectives: The strength greatly influences the selection of core material because core must withstand forces due to mastication and para-function for many years. This study was conducted to evaluate certain mechanical properties of commonly used materials for direct core build-up, including visible light cured composite, polyacid modified composite, resin modified glass ionomer, high copper amalgam, and silver cermet cement. Materials and Methods: All the materials were manipulated according to the manufacturer′s recommendations and standard test specimens were prepared. A universal testing machine at different cross-head speed was used to determine all the four mechanical properties. Mean compressive strength, diametral tensile strength, flexural strength, and elastic modulus with standard deviations were calculated. Multiple comparisons of the materials were also done. Results: Considerable differences in compressive strength, diametral tensile strength, and flexural strength were observed. Visible light cured composite showed relatively high compressive strength, diametral tensile strength, and flexural strength compared with the other tested materials. Amalgam showed the highest value for elastic modulus. Silver cermet showed less value for all the properties except for elastic modulus. Conclusions: Strength is one of the most important criteria for selection of a core material. Stronger materials better resist deformation and fracture provide more equitable stress distribution, greater stability, and greater probability of clinical success.

  6. The effect of thermal treatment on corrosion properties of 0Kh15N16M3B stainless steel tested in the N2O4 boiling medium

    International Nuclear Information System (INIS)

    Kamenev, A.Ya.; Kopets, Z.V.; Mel'nikova, N.N.; Dergaj, A.M.; Fedyushin, E.E.

    1985-01-01

    The experimental data on the effect of thermal treatment on corrosion properties of stainless steel 00Kh16n15m3b tested in the N 2 O 4 boiling medium at 8.0 MPa and 433 K are presented. The electron microscope data on steel microstructure after different heat treatments and phase composition of oxide films emerging at corrosion test are given. It is shown, that the rise of the heat treatment temperature from 823 up to 1023 K increases total corrosion of 00Kh16n15m3b steel under given test conditions and practically does't affect intercrystalline corrosion. Developed oxide layers are of deposited nature and doesn't affect markedly the rate of progress of the corrosive processes. Taking into account high chromium volatility in vacuum one can assume that at the initial stages of the coolant effect, the process of depletion of steel surface by chromium durng heat treatment affects markedly steel corrosion stability

  7. Evaluation of the optoelectronic properties and corrosion behavior of Al2O3-doped ZnO films prepared by dc pulsed magnetron sputtering

    International Nuclear Information System (INIS)

    Zubizarreta, C; Berasategui, E G; Bayón, R; Barriga, J; Escobar Galindo, R; Barros, R; Gaspar, D; Nunes, D; Calmeiro, T; Martins, R; Fortunato, E

    2014-01-01

    The main requirements for transparent conducting oxide (TCO) films acting as electrodes are a high transmission rate in the visible spectral region and low resistivity. However, in many cases, tolerance to temperature and humidity exposure is also an important requirement to be fulfilled by the TCOs to assure proper operation and durability. Besides improving current encapsulation methods, the corrosion resistance of the developed TCOs must also be enhanced to warrant the performance of optoelectronic devices. In this paper the performance of aluminum-doped zinc oxide (AZO) films deposited by pulsed dc magnetron sputtering has been studied. Structure, optical transmittance/reflectance, electrical properties (resistivity, carrier concentration and mobility) and corrosion resistance of the developed coatings have been analyzed as a function of the doping of the target and the coating thickness. Films grown from a 2.0 wt% Al 2 O 3 target with a thickness of approximately 1 µm showed a very low resistivity of 6.54  ×  10 –4  Ωcm and a high optical transmittance in the visible range of 84%. Corrosion studies of the developed samples have shown very low corrosion currents (nanoamperes), very high corrosion resistances (in the order of 10 7  Ω) and very high electrochemical stability, indicating no tendency for electrochemical corrosion degradation. (paper)

  8. Evaluation of the optoelectronic properties and corrosion behavior of Al2O3-doped ZnO films prepared by dc pulsed magnetron sputtering

    Science.gov (United States)

    Zubizarreta, C.; Berasategui, E. G.; Bayón, R.; Escobar Galindo, R.; Barros, R.; Gaspar, D.; Nunes, D.; Calmeiro, T.; Martins, R.; Fortunato, E.; Barriga, J.

    2014-12-01

    The main requirements for transparent conducting oxide (TCO) films acting as electrodes are a high transmission rate in the visible spectral region and low resistivity. However, in many cases, tolerance to temperature and humidity exposure is also an important requirement to be fulfilled by the TCOs to assure proper operation and durability. Besides improving current encapsulation methods, the corrosion resistance of the developed TCOs must also be enhanced to warrant the performance of optoelectronic devices. In this paper the performance of aluminum-doped zinc oxide (AZO) films deposited by pulsed dc magnetron sputtering has been studied. Structure, optical transmittance/reflectance, electrical properties (resistivity, carrier concentration and mobility) and corrosion resistance of the developed coatings have been analyzed as a function of the doping of the target and the coating thickness. Films grown from a 2.0 wt% Al2O3 target with a thickness of approximately 1 µm showed a very low resistivity of 6.54  ×  10-4 Ωcm and a high optical transmittance in the visible range of 84%. Corrosion studies of the developed samples have shown very low corrosion currents (nanoamperes), very high corrosion resistances (in the order of 107 Ω) and very high electrochemical stability, indicating no tendency for electrochemical corrosion degradation.

  9. Magnetic properties of Ni/Au core/shell studied by Monte Carlo simulations

    Energy Technology Data Exchange (ETDEWEB)

    Masrour, R., E-mail: rachidmasrour@hotmail.com [Laboratory of Materials, Processes, Environment and Quality, Cady Ayyed University, National School of Applied Sciences, Sidi Bouzid, Safi, 63 4600 (Morocco); LMPHE (URAC 12), Faculté des Sciences, Université Mohammed V-Agdal, Av. Ibn Batouta, B.P. 1014, Rabat (Morocco); Bahmad, L. [LMPHE (URAC 12), Faculté des Sciences, Université Mohammed V-Agdal, Av. Ibn Batouta, B.P. 1014, Rabat (Morocco); Hamedoun, M. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Benyoussef, A. [LMPHE (URAC 12), Faculté des Sciences, Université Mohammed V-Agdal, Av. Ibn Batouta, B.P. 1014, Rabat (Morocco); Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Hassan II Academy of Science and Technology, Rabat (Morocco); Hlil, E.K. [Institut Néel, CNRS et Université Joseph Fourier, BP 166, F-38042 Grenoble cedex 9 (France)

    2014-01-10

    The magnetic properties of ferromagnetic Ni/Au core/shell have been studied using Monte Carlo simulations within the Ising model framework. The considered Hamiltonian includes the exchange interactions between Ni–Ni, Au–Au and Ni–Au and the external magnetic field. The thermal total magnetizations and total magnetic susceptibilities of core/shell Ni/Au are computed. The critical temperature is deduced. The exchange interaction between Ni and Au atoms is obtained. In addition, the total magnetizations versus the external magnetic field and crystal filed for different temperature are also established.

  10. Evaluation of corrosive behavior of SAE 5155 by corrosion environment

    International Nuclear Information System (INIS)

    An, Jae Pil; Park, Keyung Dong

    2005-01-01

    In this study, the influence of shot peening and corrosive condition for corrosion property was investigated on immersed in 3.5% NaCl, 10% HNO 3 + 3% HF, 6% FeCl 3 . The immersion test was performed on two kinds of specimen. The immersion periods was performed 30days. Corrosion potential, weight loss were investigated from experimental results. From test results, the effect of shot peening on the corrosion was evaluated

  11. The use of electrochemical measurement techniques towards quality control and optimisation of corrosion properties of thermal spray coatings

    NARCIS (Netherlands)

    Vreijling, M.P.W.; Hofman, R.; Westing, E.P.M. van; Ferrari, G.M.; Wit, J.H.W. de

    1998-01-01

    Metal spray coatings are ever more recognised as a possible superior means of corrosion protection in many environments. Extended service life combined with little or no maintenance provides interesting opportunities for both environmentalists and corrosion engineers. Although many successful

  12. Crystallization kinetics and magnetic properties of FeSiCr amorphous alloy powder cores

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Hu-ping [School of Logistics Engineering, Wuhan University of Technology, Wuhan 430063 (China); Wang, Ru-wu, E-mail: ruwuwang@hotmail.com [National Engineering Research Center For Silicon Steel, Wuhan 430080 (China); College of Materials Science and Metallurgical Engineering, Wuhan University of Science and Technology, Wuhan 430081 (China); Wei, Ding [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074 (China); Zeng, Chun [National Engineering Research Center For Silicon Steel, Wuhan 430080 (China)

    2015-07-01

    The crystallization kinetics of FeSiCr amorphous alloy, characterized by the crystallization activation energy, Avrami exponent and frequency factor, was studied by non-isothermal differential scanning calorimetric (DSC) measurements. The crystallization activation energy and frequency factor of amorphous alloy calculated from Augis–Bennett model were 476 kJ/mol and 5.5×10{sup 18} s{sup −1}, respectively. The Avrami exponent n was calculated to be 2.2 from the Johnson–Mehl–Avrami (JMA) equation. Toroid-shaped Fe-base amorphous powder cores were prepared from the commercial FeSiCr amorphous alloy powder and subsequent cold pressing using binder and insulation. The characteristics of FeSiCr amorphous alloy powder and the effects of compaction pressure and insulation content on the magnetic properties, i.e., effective permeability μ{sub e}, quality factor Q and DC-bias properties of FeSiCr amorphous alloy powder cores, were investigated. The FeSiCr amorphous alloy powder cores exhibit a high value of quality factor and a stable permeability in the frequency range up to 1 MHz, showing superior DC-bias properties with a “percent permeability” of more than 82% at H=100 Oe. - Highlights: • The crystallization kinetics of FeSiCr amorphous alloy was investigated. • The FeSiCr powder cores exhibit a high value of Q and a stable permeability. • The FeSiCr powder cores exhibit superior DC-bias properties.

  13. Study on the Mechanical Properties and Corrosion Behaviors of Fe-(20, 45) wt%Gd Intermetallics

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Bo Kyeong; Baik, Youl; Choi, Yong [Dankook University, Chungnam (Korea, Republic of); Moon, Byung Moon [Korea Institute of Industrial Technology, Incheon (Korea, Republic of)

    2017-02-15

    Fe-(20, 45 wt%) Gd intermetallics were vacuum arc melted as the mother alloy of a neutron shielding and absorbing material. The structure of the cast Fe-20 wt%Gd intermetallics had primary dendrites with a short width of about 2 μm, which became coarse with increasing Gd content. The final compositions of the Fe-20 wt%Gd and Fe-45 wt%Gd intermetallics determined by Rietveld refinement were mainly Fe{sub 3}Gd with 26.6 at%Fe{sub 2}Gd, and Fe{sub 3}Gd with various intermetallics like 13.9 at%Fe{sub 2}Gd, 7.3 at%Fe{sub 9}Gd and 3.9 at%Fe{sub 17}Gd{sub 2}, respectively. The micro-hardnesses, yield strength, ultimate compressive strength and elongation of the Fe-20 wt%Gd intermetallics were 629±12 Hv, 753 MPa, 785 MPa and 4%, respectively, and those of the Fe-45 wt%Gd intermetallics were 741±13 Hv, 772 MPa, 823 MPa and 3%. Passivity was not present in artificial sea water at room temperature. The corrosion potentials and the corrosion rates of the Fe-20 wt%Gd and Fe-45 wt%Gd intermetallics were –624 mV{sub SHE}, 2.771 mA/cm{sup 2} , and –804 mV{sub SHE}, 3.397 mA/cm{sup 2} , respectively. The corroded surface of the Fe-Gd intermetallics contained corrosion products like gadolinium with iron, which detached to leave a trail of pits.

  14. Influence of powder and spray parameters on erosion and corrosion properties of HVOF sprayed WC-Co-Cr coatings

    Energy Technology Data Exchange (ETDEWEB)

    Berget, John

    1998-07-01

    Thermal spraying is a generic term including various processes used to deposit coatings on surfaces. The coating material is in the form of powder or a wire and is melted or softened by means of a heat source. A gas stream accelerates the material towards a prepared surface and deposits it there to form the coating. Examples of components being maintained by application of thermal spray coatings are gate valves and ball valves for the offshore industry and turbine blades in power generations installations. Recent investigation has shown that the commonly used coating material WC-Co is not corrosion resistant. But it can be improved by the addition of Cr. The main objective of this thesis is to study the influence of spray process control variables and powder characteristics on the erosion and erosion-corrosion properties of the coatings. Spray process variables investigated include energy input, powder feed rate and spray distance. Powder characteristics studied are average size of the WC particles, relative proportions of Co and Cr in the metal phase and powder grain size distribution.

  15. On the development of polypyrrole coatings with self-healing properties for iron corrosion protection

    International Nuclear Information System (INIS)

    Paliwoda-Porebska, G.; Stratmann, M.; Rohwerder, M.; Potje-Kamloth, K.; Lu, Y.; Pich, A.Z.; Adler, H.-J.

    2005-01-01

    This paper presents studies on the efficacy and on the limits of polypyrrole (Ppy) doped with either MoO 4 2- or [PMo 12 O 40 ] 3- as self-healing corrosion protecting coatings. The kinetics of the cathodic delamination were studied by means of the Scanning Kelvin Probe (SKP). This method, in combination with cyclic voltammetry, UV-visible spectroscopy (UV-vis) and X-ray photoelectron spectroscopy (XPS), shows a potential driven anion release from the Ppy coating that results in an inhibition of the corrosion process taking place in the defect. Thus, an intelligent release of inhibitor occurs only when the potential at the interface decreases. Inhibitor anions are released only due to an active defect. However, the release mechanism can be easily negatively affected by the presence of small cations and/or by too high pH values at the buried interface. Hence, such a self-healing coating has to be carefully designed in order to ensure an effective performance

  16. Ion beam analysis, corrosion resistance and nanomechanical properties of TiAlCN/CN{sub x} multilayer grown by reactive magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Alemón, B.; Flores, M. [Departamento de Ingeniería de Proyectos, CUCEI, Universidad de Guadalajara, J. Guadalupe Zuno 48, Los Belenes, Zapopan, Jal. 45101 (Mexico); Canto, C. [Instituto de Física, UNAM, Avenida de la Investigación S/N, Coyoacán, Mexico, DF 04510 (Mexico); Andrade, E., E-mail: andrade@fisica.unam.mx [Instituto de Física, UNAM, Avenida de la Investigación S/N, Coyoacán, Mexico, DF 04510 (Mexico); Lucio, O.G. de [Instituto de Física, UNAM, Avenida de la Investigación S/N, Coyoacán, Mexico, DF 04510 (Mexico); Rocha, M.F. [ESIME-Z, Instituto Politécnico Nacional, ALM Zacatenco, Mexico, DF 07738 (Mexico); Broitman, E. [Thin Films Physics Division, IFM, Linköping University, SE-58183 Linköping (Sweden)

    2014-07-15

    A novel TiAlCN/CN{sub x} multilayer coating, consisting of nine TiAlCN/CN{sub x} periods with a top layer 0.5 μm of CN{sub x}, was designed to enhance the corrosion resistance of CoCrMo biomedical alloy. The multilayers were deposited by dc and RF reactive magnetron sputtering from Ti{sub 0.5}Al{sub 0.5} and C targets respectively in a N{sub 2}/Ar plasma. The corrosion resistance and mechanical properties of the multilayer coatings were analyzed and compared to CoCrMo bulk alloy. Ion beam analysis (IBA) and X-ray diffraction tests were used to measure the element composition profiles and crystalline structure of the films. Corrosion resistance was evaluated by means of potentiodynamic polarization measurements using simulated body fluid (SBF) at typical body temperature and the nanomechanical properties of the multilayer evaluated by nanoindentation tests were analyzed and compared to CoCrMo bulk alloy. It was found that the multilayer hardness and the elastic recovery are higher than the substrate of CoCrMo. Furthermore the coated substrate shows a better general corrosion resistance than that of the CoCrMo alloy alone with no observation of pitting corrosion.

  17. Effect of Si, Mn, Sn on Tensile and Corrosion Properties of Mg-4Zn-0.5Ca Alloys for Biodegradable Implant Materials

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Dae Hyun; Nam, Ji Hoon; Lee, Byeong Woo; Park, Ji Yong; Shin, Hyun Jung; Park, Ik Min [Pusan National University, Busan (Korea, Republic of)

    2015-03-15

    Effect of elements Si, Mn, Sn on tensile and corrosion properties of Mg-4Zn-0.5Ca alloys were investigated. The results of tensile properties show that the yield strength, ultimate tensile strength and elongation of Mg-4Zn-0.5Ca alloy increased significantly with the addition of 0.6 wt% Mn. This is considered the grain refinement effect due to addition of Mn. However addition of 0.6 wt% Si decreased yield strength, ultimate tensile strength and elongation. The bio-corrosion behavior of Mg-4Zn-0.5Ca-X alloys were investigated using immersion tests and potentiodynamic polarization test in Hank's solution. Immersion test showed that corrosion rate of Mg-4Zn-0.5Ca-0.6Mn alloy was the lowest rate and addition of 1.0 wt% Sn accelerated corrosion rate due to micro-galvanic effect in α-Mg/CaMgSn phases interface. And corrosion potential (E{sub c}orr) of Mg-4Zn-0.5Ca-0.6Mn alloy was the most noble among Mg-4Zn-0.5Ca-X alloys.

  18. Photo-physical properties enhancement of bare and core-shell quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Mumin, Md Abdul, E-mail: pcharpentier@eng.uwo.ca; Akhter, Kazi Farida, E-mail: pcharpentier@eng.uwo.ca; Charpentier, Paul A., E-mail: pcharpentier@eng.uwo.ca [Chemical and Biochemical Engineering, Western University, London Ontario (Canada)

    2014-03-31

    Semiconductor nanocrystals (NCs) (also known as quantum dots, QDs) have attracted immense attention for their size-tunable optical properties that makes them impressive candidates for solar cells, light emitting devices, lasers, as well as biomedical imaging. However monodispersity, high and consistent photoluminescence, photostability, and biocompatibility are still major challenges. This work focuses on optimizing the photophysical properties and biocompatibility of QDs by forming core-shell nanostructures and their encapsulation by a carrier. Highly luminescent CdS and CdS-ZnS core-shell QDs with 5 nm sizes were synthesized using a facile approach based on pyrolysis of the single molecule precursors. After capping the CdS QDs with a thin layer of ZnS to reduce toxicity, the photoluminescence and photostability of the core-shell QDs was significantly enhanced. To make both the bare and core/shell structure QDs more resistant against photochemical reactions, a mesoporous silica layer was grown on the QDs through a reverse microemulsion technique based on hydrophobic interaction. This encapsulation enhanced the quantum yield and photostability compared to the bare QDs by providing much stronger resistance to oxidation and Oswald ripening of QDs. Encapsulation also improved biocompatibility of QDs that was evaluated with human umbilical vein endothelial cell lines (HUVEC)

  19. Physical property control in core/shell inorganic nanostructures for fluorescence and magnetic targeting applications

    Science.gov (United States)

    Roberts, Stephen K.

    Nanomaterials show immense promise for the future in numerous areas of application. Properties that are unique from the bulk material and are tunable allow for innovation in material design. This thesis will focus on controlling the physical properties of core/shell nanostructures to enhance the utility of the materials. The first focus is on the impact of different solvent mixtures during the shell growth phase of SILAR based core/shell quantum dot synthesis is studied. Gaining insight into the mechanism for SILAR growth of core/shell nanoparticles allows improved synthetic yields and precursor binding, providing enhanced control to synthesis of core/shell nanoparticles. The second focus of this thesis is exploring the use of magnetic nanoparticles for magnetic drug targeting for cardiovascular conditions. Magnetic targeting for drug delivery enables increased local drug concentration, while minimizing non-specific interactions. In order to be effective for magnetic targeting, it must be shown that low magnetic strength is sufficient to capture flowing nanoparticles. By demonstrating the binding of a therapeutic agent to the surface at medicinal levels, the viability for use as a nanoparticle drug delivery system is improved.

  20. New method to evaluate optical properties of core-shell nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Renteria-Tapia, V. [Universidad de Guadalajara, Ameca, Departamento de Ciencias Naturales y Exactas, Centro Universitario de Los Valles (Mexico); Franco, A., E-mail: alfredofranco@fisica.unam.mx; Garcia-Macedo, J. [Universidad Nacional Autonoma de Mexico, Departamento de Estado Solido, Instituto de Fisica (Mexico)

    2012-06-15

    A new method is presented to calculate, for metallic core-dielectric shell nanostructures, the local refractive index, resonance condition, maximum spectral shift, plasma wavelength, and the sensitivity of the wavelength maximum to variations in the refractive index of the environment. The equations that describe these properties are directly related to the surface plasmon peak position, refractive index of the shell, and to the surrounding medium. The method is based on the approach that a layered core dispersed in a dielectric environment (core-shell model) can be figured out as an uncoated sphere dispersed in a medium with a local refractive index (local refractive index model). Thus, in the Mie theory, the same spectral position of the surface plasmon resonance peak can be obtained by varying the volume fraction of the shell or by varying the local refractive index. The assumed equivalence between plasmon resonance wavelengths enable us to show that the local refractive index depends geometrically on the shell volume fraction. Hence, simple relationships between optical and geometrical properties of these core-shell nanostructures are obtained. Furthermore, good agreement is observed between the new relationships and experimental data corresponding to gold nanoparticles (radius = 7.5 nm) covered with silica shells (with thicknesses up to 29.19 nm), which insured that the equivalence hypothesis is correct.

  1. Corrosion resistance properties of enamels with high B2O3-P2O5 content to molten aluminum

    International Nuclear Information System (INIS)

    Zhou, M.; Li, K.; Shu, D.; Sun, B.D.; Wang, J.

    2003-01-01

    Anticorrosive properties of borophosphate and boron-free enamels to molten aluminum were investigated using SEM and electron probe. Carbonates of alkali metal and alkaline earth metal were added in an appropriate weight ratio to achieve desired melting temperature of the enamels. SEM examination on the solidified interface between the enamels and aluminum alloy show that the enamels can spread slightly on aluminum alloy. For anticorrosive sample of borophosphate enamel, phosphorus was not detected by electron probe at the side of aluminum alloy near the interface, but silicon was detected in the silica-free enamels side. For the sample of boron-free enamels, however, phosphorus was found at the side of aluminum alloy near the interface. It was revealed that the enamels with high B 2 O 3 -P 2 O 5 content have high corrosion resistance to molten aluminum

  2. Influence of laser treatment of beta phase on texture, mechanical properties and water corrosion of zircaloy 4

    International Nuclear Information System (INIS)

    Darchis, L.; Brun, G.; Baron, J.L.

    1987-06-01

    Two heat treatments by laser of zircaloy 4 cladding tubes are compared: one is superficial (1/1Oth of the thickness) and the other full thickness. In the full thickness treatment a global attenuation of preferential orientations is induced without marked gradient with the same texture found in a classical heat treatment. A peculiar texture is observed when beta transformation affects only 1/10. Mechanical properties measured by elongation and burst tests at 20 and 400 0 C are decreased by 40 to 60% for full thickness treatment and only 1 to 5% for superficial treatment. Water corrosion resistance at 360 0 C in conditions found for PWR is slightly increased by treatment on full thickness. No decrease of behavior is observed after 6 months on the martensitic structure obtained by superficial treatment [fr

  3. Effect of sintering processing on microstructure, mechanical properties and corrosion resistance of Ti–24Nb–4Zr–7.9Sn alloy for biomedical applications

    International Nuclear Information System (INIS)

    Guo, Shibo; Chu, Aimin; Wu, Haijiang; Cai, Chunbo; Qu, Xuanhui

    2014-01-01

    Highlights: • Ti–24Nb–4Zr–7.9Sn alloy is prepared by powder metallurgy method. • The alloy prepared at 1250 °C for 2 h has more β-matrix and tiny α-precipitation. • The alloy prepared at 1250 °C for 2 h possesses good mechanical properties. • The alloy prepared at 1250 °C for 2 h exhibits better corrosion resistance. - Abstract: Ti–24Nb–4Zr–7.9Sn alloy was prepared by Powder Metallurgy (PM) method using titanium hydride powder, niobium powder, zirconium powder, and tin powder as raw materials. The effect of sintering processing on microstructure, mechanical properties, and corrosion resistance was investigated in details. The alloy possessed dominant β-matrix and a little α-precipitation. The mechanical properties of the alloy sintered at 1250 °C for 2 h were better than those of the alloys with other sintering processing, which would avoid stress shielding and thus prevent bone resorption in orthopedic implants applications. As long-term stability in biological environment is required, the electrochemical behaviors in a simulated body fluid (Hank’s solution and simulated saliva solution) were also evaluated. Potentiodynamic polarization curves exhibited that the sample sintered at 1250 °C for 2 h had better corrosion properties than those of other sintering processing. The good corrosion resistance combined with better mechanical biocompatibility made the Ti–24Nb–4Zr–7.9Sn alloy suitable for use as orthopedic implants

  4. Structure and optical properties of cored wurtzite (Zn,Mg)O heteroepitaxial nanowires

    International Nuclear Information System (INIS)

    Heo, Y.W.; Abernathy, C.; Pruessner, K.; Sigmund, W.; Norton, D.P.; Overberg, M.; Ren, F.; Chisholm, M.F.

    2004-01-01

    The synthesis, structure, and optical properties of one-dimensional heteroepitaxial cored (Zn,Mg)O semiconductor nanowires grown by a catalyst-driven molecular beam epitaxy technique are discussed. The structures form spontaneously in a Zn, Mg and O 2 /O 3 flux, consisting of a single crystal, Zn-rich Zn 1-x Mg x O(x 1-y Mg y O(y>>0.02) sheath. High resolution Z-contrast scanning transmission electron microscopy shows core diameters as small as 4 nm. The cored structure forms spontaneously under constant flux due to a bimodal growth mechanism in which the core forms via bulk like vapor-liquid-solid growth, while the outer sheath grows as a heteroepitaxial layer. Temperature-dependent photoluminescence shows a slight blueshift in the near band edge peak, which is attributed to a few percent Mg doping in the nanoscale ZnO core. The catalyst-driven molecular beam epitaxy technique provides for site-specific nanorod growth on arbitrary substrates

  5. Facile synthesis and excellent microwave absorption properties of FeCo-C core-shell nanoparticles

    Science.gov (United States)

    Liang, Bingbing; Wang, Shiliang; Kuang, Daitao; Hou, Lizhen; Yu, Bowen; Lin, Liangwu; Deng, Lianwen; Huang, Han; He, Jun

    2018-02-01

    FeCo-C core-shell nanoparticles (NPs) with diameters of 10-50 nm have been fabricated on a large scale by one-step metal-organic chemical vapor deposition using the mixture of cobalt acetylacetonate and iron acetylacetonate as the precursor. The Fe/Co molar ratio of the alloy nanocores and graphitization degree of C shells, and thus the magnetic and electric properties of the core-shell NPs, can be tuned by the deposition temperature ranging from 700 °C to 900 °C. Comparative tests reveal that a relatively high Fe/Co molar ratio and low graphitization degree benefit the microwave absorption (MA) performance of the core-shell NPs. The composite with 20 wt% core-shell NP obtained at 800 °C and 80 wt% paraffin exhibits an optimal reflection loss ({{R}}{{L}}) of -60.4 dB at 7.5 GHz with a thickness of 3.3 mm, and an effective absorption bandwidth (frequency range for RL ≤10 dB) of 9.2 GHz (8.8-18.0 GHz) under an absorber thickness of 2.5 mm. Our study provides a facile route for the fabrication of alloy-C core-shell nanostructures with high MA performance.

  6. Electrochemical corrosion behavior and elasticity properties of Ti-6Al-xFe alloys for biomedical applications.

    Science.gov (United States)

    Lu, Jinwen; Zhao, Yongqing; Niu, Hongzhi; Zhang, Yusheng; Du, Yuzhou; Zhang, Wei; Huo, Wangtu

    2016-05-01

    The present study is to investigate the microstructural characteristics, electrochemical corrosion behavior and elasticity properties of Ti-6Al-xFe alloys with Fe addition for biomedical application, and Ti-6Al-4V alloy with two-phase (α+β) microstructure is also studied as a comparison. Microstructural characterization reveals that the phase and crystal structure are sensitive to the Fe content. Ti-6Al alloy displays feather-like hexagonal α phase, and Ti-6Al-1Fe exhibits coarse lath structure of hexagonal α phase and a small amount of β phase. Ti-6Al-2Fe and Ti-6Al-4Fe alloys are dominated by elongated, equiaxed α phase and retained β phase, but the size of α phase particle in Ti-6Al-4Fe alloy is much smaller than that in Ti-6Al-2Fe alloy. The corrosion resistance of these alloys is determined in SBF solution at 37 °C. It is found that the alloys spontaneously form a passive oxide film on their surface after immersion for 500 s, and then they are stable for polarizations up to 0 VSCE. In comparison with Ti-6Al and Ti-6Al-4V alloys, Ti-6Al-xFe alloys exhibit better corrosion resistance with lower anodic current densities, larger polarization resistances and higher open-circuit potentials. The passive layers show stable characteristics, and the wide frequency ranges displaying capacitive characteristics occur for high iron contents. Elasticity experiments are performed to evaluate the elasticity property at room temperature. Ti-6Al-4Fe alloy has the lowest Young's modulus (112 GPa) and exhibits the highest strength/modulus ratios as large as 8.6, which is similar to that of c.p. Ti (8.5). These characteristics of Ti-6Al-xFe alloys form the basis of a great potential to be used as biomedical implantation materials. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Laser Nitriding of the Newly Developed Ti-20Nb-13Zr at.% Biomaterial Alloy to Enhance Its Mechanical and Corrosion Properties in Simulated Body Fluid

    Science.gov (United States)

    Hussein, M. A.; Kumar, A. Madhan; Yilbas, Bekir S.; Al-Aqeeli, N.

    2017-11-01

    Despite the widespread application of Ti alloy in the biomedical field, surface treatments are typically applied to improve its resistance to corrosion and wear. A newly developed biomedical Ti-20Nb-13Zr at.% alloy (TNZ) was laser-treated in nitrogen environment to improve its surface characteristics with corrosion protection performance. Surface modification of the alloy by laser was performed through a Nd:YAG laser. The structural and surface morphological alterations in the laser nitrided layer were investigated by XRD and a FE-SEM. The mechanical properties have been evaluated using nanoindentation for laser nitride and as-received samples. The corrosion protection behavior was estimated using electrochemical corrosion analysis in a physiological medium (SBF). The obtained results revealed the production of a dense and compact film of TiN fine grains (micro-/nanosize) with 9.1 µm below the surface. The mechanical assessment results indicated an improvement in the modulus of elasticity, hardness, and resistance of the formed TiN layer to plastic deformation. The electrochemical analysis exhibited that the surface protection performance of the laser nitrided TNZ substrates in the SBF could be considerably enhanced compared to that of the as-received alloy due to the presence of fine grains in the TiN layer resulting from laser nitriding. Furthermore, the untreated and treated Ti-20Nb-13Zr alloy exhibited higher corrosion resistance than the CpTi and Ti6Al4V commercial alloys. The improvements in the surface hardness and corrosion properties of Ti alloy in a simulated body obtained using laser nitriding make this approach a suitable candidate for enhancing the properties of biomaterials.

  8. Design, synthesis and photochemical properties of the first examples of iminosugar clusters based on fluorescent cores

    Directory of Open Access Journals (Sweden)

    Mathieu L. Lepage

    2015-05-01

    Full Text Available The synthesis and photophysical properties of the first examples of iminosugar clusters based on a BODIPY or a pyrene core are reported. The tri- and tetravalent systems designed as molecular probes and synthesized by way of Cu(I-catalysed azide–alkyne cycloadditions are fluorescent analogues of potent pharmacological chaperones/correctors recently reported in the field of Gaucher disease and cystic fibrosis, two rare genetic diseases caused by protein misfolding.

  9. Relationship between atomically related core levels and ground state properties of solids: first-principles calculations

    Czech Academy of Sciences Publication Activity Database

    Vackář, Jiří; Šipr, Ondřej; Šimůnek, Antonín

    2008-01-01

    Roč. 77, č. 4 (2008), 045112/1-045112/6 ISSN 1098-0121 R&D Projects: GA AV ČR IAA100100514; GA AV ČR(CZ) IAA100100637 Institutional research plan: CEZ:AV0Z10100520; CEZ:AV0Z10100521 Keywords : core levels * ab-initio calculations * electronic states * ground state properties Subject RIV: BE - Theoretical Physics Impact factor: 3.322, year: 2008

  10. Corrosion Compatibility Studies on Inconel-600 in NP Decontamination Solution

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang Yoon; Jung, Jun Young; Won, Huijun; Choi, Wangkyu; Moon, Jeikwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    It is well known that corrosion and contamination process in the primary cooling circuit of nuclear reactors are essentially interrelated: the contaminant isotopes are mostly corrosion products activated in the reactor core, and the contamination takes place on the out-core of Inconel-600 surface. This radionuclide uptake takes place up to the inner oxide layer and oxide/metal interface. So, it is necessary to remove inner oxide layer as well as outer oxide layer for excellent decontamination effects. The outer oxide layers are composed of Fe{sub 3}O{sub 4} and NiFe{sub 2}O{sub 4}. On the other hand, the inner oxide layers are composed of Cr{sub 2}O{sub 3}, (Ni{sub 1-x}Ni{sub x})(Cr{sub 1-y}Fe{sub y}){sub 2}O{sub 4}, and FeCr{sub 2}O{sub 4}. Because of chromium in the trivalent oxidation state which is difficult to dissolve, the oxide layer has an excellent protectiveness and become hard to be decontaminated. Alkaline permanganate (AP) or nitric permanganate (NP) oxidative phase has been used to dissolve the chromium-rich oxide. A disadvantage of AP process is the generation of a large volume of secondary waste. On the other hand, that of NP process is the high corrosion rate for Ni-base alloys. Therefore, for the safe use of oxidative phase in PWR system decontamination, it is necessary to reformulate the NP chemicals for decrease of corrosion rate. This study describes the corrosion compatibility on Inconel-600 and type 304 stainless steel in NP decontamination solution for PWR applications. To evaluate the general corrosion properties, weight change of NP treated specimens was measured. NP treated specimen surface was observed using optical microscope (OM) and scanning electron microscopy (SEM) for the evaluation of the localized corrosion. The effect of additives on the corrosion of the specimens was also evaluated. This study describes the corrosion compatibility on Inconel-600 and type 304 stainless steel in NP decontamination solution for PWR applications

  11. Corrosion Compatibility Studies on Inconel-600 in NP Decontamination Solution

    International Nuclear Information System (INIS)

    Park, Sang Yoon; Jung, Jun Young; Won, Huijun; Choi, Wangkyu; Moon, Jeikwon

    2013-01-01

    It is well known that corrosion and contamination process in the primary cooling circuit of nuclear reactors are essentially interrelated: the contaminant isotopes are mostly corrosion products activated in the reactor core, and the contamination takes place on the out-core of Inconel-600 surface. This radionuclide uptake takes place up to the inner oxide layer and oxide/metal interface. So, it is necessary to remove inner oxide layer as well as outer oxide layer for excellent decontamination effects. The outer oxide layers are composed of Fe 3 O 4 and NiFe 2 O 4 . On the other hand, the inner oxide layers are composed of Cr 2 O 3 , (Ni 1-x Ni x )(Cr 1-y Fe y ) 2 O 4 , and FeCr 2 O 4 . Because of chromium in the trivalent oxidation state which is difficult to dissolve, the oxide layer has an excellent protectiveness and become hard to be decontaminated. Alkaline permanganate (AP) or nitric permanganate (NP) oxidative phase has been used to dissolve the chromium-rich oxide. A disadvantage of AP process is the generation of a large volume of secondary waste. On the other hand, that of NP process is the high corrosion rate for Ni-base alloys. Therefore, for the safe use of oxidative phase in PWR system decontamination, it is necessary to reformulate the NP chemicals for decrease of corrosion rate. This study describes the corrosion compatibility on Inconel-600 and type 304 stainless steel in NP decontamination solution for PWR applications. To evaluate the general corrosion properties, weight change of NP treated specimens was measured. NP treated specimen surface was observed using optical microscope (OM) and scanning electron microscopy (SEM) for the evaluation of the localized corrosion. The effect of additives on the corrosion of the specimens was also evaluated. This study describes the corrosion compatibility on Inconel-600 and type 304 stainless steel in NP decontamination solution for PWR applications. It is revealed that Inconel-600 specimen is more

  12. Alkaline corrosion properties of laser-clad aluminum/titanium coatings

    DEFF Research Database (Denmark)

    Aggerbeck, Martin; Herbreteau, Alexis; Rombouts, Marleen

    2015-01-01

    Purpose - The purpose of this paper is to study the use of titanium as a protecting element for aluminum in alkaline conditions. Design/methodology/approach - Aluminum coatings containing up to 20 weight per cent Ti6Al4V were produced using laser cladding and were investigated using light optical...... microscope, scanning electron microscope - energy-dispersive X-ray spectroscopy and X-Ray Diffraction, together with alkaline exposure tests and potentiodynamic measurements at pH 13.5. Findings - Cladding resulted in a heterogeneous solidification microstructure containing an aluminum matrix...... with supersaturated titanium ( (1 weight per cent), Al3Ti intermetallics and large partially undissolved Ti6Al4V particles. Heat treatment lowered the titanium concentration in the aluminum matrix, changed the shape of the Al3Ti precipitates and increased the degree of dissolution of the Ti6Al4V particles. Corrosion...

  13. Corrosion resistant properties and weldabilities of ASTM Grade 12 titanium alloy

    International Nuclear Information System (INIS)

    Tsumori, Yoshikatsu; Itoh, Hideo

    1988-01-01

    Plates, sheets, bars, wires and thinner seam-welded tubings were manufactured from large-scaled ingot of ASTM Grade 12 alloy (Ti-0.8Ni-0.3Mo). The processability of G-12 alloy has proved almost similar to that of conventional commercially pure titanium grades. It has been clarified that the G-12 alloy showed several advantageous features: Chlorides-Crevice corrosion resistance of the alloy was almost equals to G-7 and Pd0/TiO 2 coated titanium, and the maximum allowable stress was able to be designed higher than that of commercially pure titanium. This alloy has been in applications also offers where such environments as seawater, brines and moist chlorine, various oil refinery and chemical industries, and others. (author)

  14. CORROSION INHIBITIVE PROPERTIES OF EXTRACT OF JATROPHA CURCAS LEAVES ON MILD STEEL IN HYDROCHLORIC ACID ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    J. Odusote

    2016-09-01

    Full Text Available Jatropha curcas leaves extract was tested as a green corrosion inhibitor for mild steel in aqueous hydrochloric acid solution using gravimetric and thermometric techniques. The results reveal that the inhibition efficiency vary with concentration of the leaf extract and the time of immersion. Maximum inhibition efficiency was found to be 95.92% in 2M HCl with 0.5 g/l concentration of the extract in gravimetric method, while 87.04% was obtained in thermometric method. The inhibiting effect was attributed to the presence of alkaloids, flavonoids, saponins, tannins and phenol in the extract. The adsorption processes of the Jatropha curcas leaves extract onto the mild steel is consistent with the assumptions of Langmuir isotherm model and also found to be spontaneous. From the results, a physical adsorption mechanism is proposed for the adsorption of Jatropha curcas leaves extract onto mild steel surface.

  15. Effect of fission product interactions on the corrosion and mechanical properties of HTGR alloys

    International Nuclear Information System (INIS)

    Aronson, S.; Chow, J.G.Y.; Soo, P.; Friedlander, M.

    1978-01-01

    Preliminary experiments have been carried out to determine how fission product interactions may influence the mechanical integrity of reference HTGR structural metals. In this work Type 304 stainless steel, Incoloy 800 and Hastelloy X were heated to 550 to 650 0 C in the presence of CsI. It was found that no corrosion of the alloys occurred unless air or oxygen was also present. A mechanism for the observed behavior is proposed. A description is also given of some long term exposures of HTGR materials to more prototypic, low concentrations of I 2 , Te 2 and CsI in the presence of low partial pressures of O 2 . These samples are scheduled for mechanical bend tests after exposure to determine the degree of embrittlement

  16. Mechanical properties and wear and corrosion resistance of electrodeposited Ni-Co/SiC nanocomposite coating

    International Nuclear Information System (INIS)

    Shi Lei; Sun Chufeng; Gao Ping; Zhou Feng; Liu Weimin

    2006-01-01

    Ni-Co/SiC nanocomposite coatings with various contents of SiC nano-particulates were prepared by electrodeposition in a Ni-Co plating bath containing SiC nano-particulates to be co-deposited. The influences of the nanoparticulates concentration, current density, stirring rate and temperature of the plating bath on the composition of the coatings were investigated. The shape and size of the SiC nano-particulates were observed and determined using a transmission electron microscope. The polarization behavior of the composite plating bath was examined on a PAR-273A potentiostat/galvanostat device. The wear behavior of the Ni-Co/SiC nanocomposite coatings was evaluated on a ball-on-disk UMT-2MT test rig. The worn surface morphologies of the Ni-Co/SiC nanocomposite coatings were observed using a scanning electron microscope. The corrosion behavior of the nanocomposite coatings was evaluated by charting the Tafel curves of the solution of 0.5 mol L -1 NaCl at room temperature. It was found that the cathodic polarization potential of the composite electrolyte increased with increasing SiC concentration in the plating bath. The microhardness and wear and corrosion resistance of the nanocomposite coatings also increased with increasing content of the nano-SiC in the plating bath, and the morphologies of the nanocomposite coatings varied with varying SiC concentration in the plating bath as well. Moreover, the co-deposited SiC nano-particulates were uniformly distributed in the Ni-Co matrix and contributed to greatly increase the microhardness and wear resistance of the Ni-Co alloy coating

  17. Comparative analysis of adsorption and corrosion inhibitive properties of ethanol extract of Dialium Guineense leaves for mild steel in 0.5 M HCl

    OpenAIRE

    Shola Elijah Adeniji; Bamigbola Abiola Akindehinde

    2018-01-01

    Adsorption and corrosion inhibitive properties of ethanol extract of Dialium guineense leaves for mild steel in 0.5M HCl was studied using the gravimetric method. The results showed that the ethanol extract of Dialium guineense leaves is a good corrosion inhibitor for mild steel in 0.5 M HCl. The inhibition efficiency was found to increase with increase in the concentration of ethanol extract of Dialium guineense leaves up to the maximum of 92 %, but at the same time it decreased as the tempe...

  18. Corrosion cracking

    International Nuclear Information System (INIS)

    Goel, V.S.

    1985-01-01

    This book presents the papers given at a conference on alloy corrosion cracking. Topics considered at the conference included the effect of niobium addition on intergranular stress corrosion cracking, corrosion-fatigue cracking in fossil-fueled-boilers, fracture toughness, fracture modes, hydrogen-induced thresholds, electrochemical and hydrogen permeation studies, the effect of seawater on fatigue crack propagation of wells for offshore structures, the corrosion fatigue of carbon steels in seawater, and stress corrosion cracking and the mechanical strength of alloy 600

  19. A systematic study of mechanical properties, corrosion behavior and biocompatibility of AZ31B Mg alloy after ultrasonic nanocrystal surface modification.

    Science.gov (United States)

    Hou, Xiaoning; Qin, Haifeng; Gao, Hongyu; Mankoci, Steven; Zhang, Ruixia; Zhou, Xianfeng; Ren, Zhencheng; Doll, Gary L; Martini, Ashlie; Sahai, Nita; Dong, Yalin; Ye, Chang

    2017-09-01

    Magnesium alloys have tremendous potential for biomedical applications due to their good biocompatibility, osteoconductivity, and degradability, but can be limited by their poor mechanical properties and fast corrosion in the physiological environment. In this study, ultrasonic nanocrystal surface modification (UNSM), a recently developed surface processing technique that utilizes ultrasonic impacts to induce plastic strain on metal surfaces, was applied to an AZ31B magnesium (Mg) alloy. The mechanical properties, corrosion resistance, and biocompatibility of the alloy after UNSM treatment were studied systematically. Significant improvement in hardness, yield stress and wear resistance was achieved after the UNSM treatment. In addition, the corrosion behavior of UNSM-treated AZ31B was not compromised compared with the untreated samples, as demonstrated by the weight loss and released element concentrations of Mg and Al after immersion in alpha-minimum essential medium (α-MEM) for 24h. The in vitro biocompatibility of the AZ31B Mg alloys toward adipose-derived stem cells (ADSCs) before and after UNSM processing was also evaluated using a cell culture study. Comparable cell attachments were achieved between the two groups. These studies showed that UNSM could significantly improve the mechanical properties of Mg alloys without compromising their corrosion rate and biocompatibility in vitro. These findings suggest that UNSM is a promising method to treat biodegradable Mg alloys for orthopaedic applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Synthesis and properties MFe2O4 (M = Fe, Co) nanoparticles and core-shell structures

    Science.gov (United States)

    Yelenich, O. V.; Solopan, S. O.; Greneche, J. M.; Belous, A. G.

    2015-08-01

    Individual Fe3-xO4 and CoFe2O4 nanoparticles, as well as Fe3-xO4/CoFe2O4 core/shell structures were synthesized by the method of co-precipitation from diethylene glycol solutions. Core/shell structure were synthesized with CoFe2O4-shell thickness of 1.0, 2.5 and 3.5 nm. X-ray diffraction patterns of individual nanoparticles and core/shell are similar and indicate that all synthesized samples have a cubic spinel structure. Compares Mössbauer studies of CoFe2O4, Fe3-xO4 nanoparticles indicate superparamagnetic properties at 300 K. It was shown that individual magnetite nanoparticles are transformed into maghemite through oxidation during the synthesis procedure, wherein the smallest nanoparticles are completely oxidized while a magnetite core does occur in the case of the largest nanoparticles. The Mössbauer spectra of core/shell nanoparticles with increasing CoFe2O4-shell thickness show a gradual decrease in the relative intensity of the quadrupole doublet and significant decrease of the mean isomer shift value at both RT and 77 K indicating a decrease of the superparamagnetic relaxation phenomena. Specific loss power for the prepared ferrofluids was experimentally calculated and it was determined that under influence of ac-magnetic field magnetic fluid based on individual CoFe2O4 and Fe3-xO4 particles are characterized by very low heating temperature, when magnetic fluids based on core/shell nanoparticles demonstrate higher heating effect.

  1. Comparative study on Ti/Zr/V and chromate conversion treated aluminum alloys: Anti-corrosion performance and epoxy coating adhesion properties

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Wen; Li, Wenfang, E-mail: mewfli@163.com; Mu, Songlin; Fu, Nianqing; Liao, Zhongmiao

    2017-05-31

    Highlights: • The surface roughness and surface free energy of the AA6063 are significantly increased after TZVCC treatment. • The anti-corrosion performance of the AA6063 is effectively enhanced after TZVCC treatment. • Both the corrosion resistance and wet adhesion properties of the epoxy coating on the AA6063 are noticeably improved after TZVCC treatment. - Abstract: In this study, a Ti/Zr/V conversion coating (TZVCC) was deposited on the surface of aluminum alloy 6063 (AA6063) as an alternative of the chromate conversion coating (CCC). Both the TZVCC treated AA6063 (TZVCC/AA6063) and CCC treated AA6063 (CCC/AA6063) were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), atomic force microscope (AFM) and contact angle measuring device. The anti-corrosion performance of the TZVCC/AA6063 and CCC/AA6063 was evaluated by electrochemical measurements and neutral salt spray tests. It showed that both the surface roughness and surface free energy of the AA6063 were significantly increased after TZVCC treatment. The anti-corrosion performance of TZVCC/AA6063 was superior to that of CCC/AA6063. In addition, the effects of the TZVCC and CCC on the adhesion properties and anti-corrosion performance of epoxy coating applied on samples were examined by pull-off tests and electrochemical impedance spectroscopy (EIS). The dry, wet and recovery adhesive strengths of the epoxy coating on TZVCC treated samples (epoxy coated TZVCC/AA6063) were very close to those of epoxy coating on CCC treated ones (epoxy coated CCC/AA6063). The epoxy coated TZVCC/AA6063 showed better corrosion resistance than the epoxy coated CCC/AA6063 and epoxy coated AA6063.

  2. Laboratory ultrasonic pulse velocity logging for determination of elastic properties from rock core

    Science.gov (United States)

    Blacklock, Natalie Erin

    During the development of deep underground excavations spalling and rockbursting have been recognized as significant mechanisms of violent brittle failure. In order to predict whether violent brittle failure will occur, it is important to identify the location of stiffness transitions that are associated with geologic structure. One approach to identify the effect of geologic structures is to apply borehole geophysical tools ahead of the tunnel advance. Stiffness transitions can be identified using mechanical property analysis surveys that combine acoustic velocity and density data to calculate acoustic estimates of elastic moduli. However, logistical concerns arise since the approach must be conducted at the advancing tunnel face. As a result, borehole mechanical property analyses are rarely used. Within this context, laboratory ultrasonic pulse velocity testing has been proposed as a potential alternative to borehole mechanical property analysis since moving the analysis to the laboratory would remove logistical constraints and improve safety for the evaluators. In addition to the traditional method of conducting velocity testing along the core axis, two new methodologies for point-focused testing were developed across the core diameter, and indirectly along intact lengths of drill core. The indirect test procedure was implemented in a continuous ultrasonic velocity test program along 573m of drill core to identify key geologic structures that generated transitions in ultrasonic elastic moduli. The test program was successful at identifying the location of geologic contacts, igneous intrusions, faults and shear structures. Ultrasonic values of Young's modulus and bulk modulus were determined at locations of significant velocity transitions to examine the potential for energy storage and energy release. Comparison of results from different ultrasonic velocity test configurations determined that the indirect test configuration provided underestimates for values of

  3. Crosshole investigations - physical properties of core samples from boreholes F1 and F2

    International Nuclear Information System (INIS)

    Magnusson, K.A.; Carlsten, S.; Olsson, O.

    1987-06-01

    The geology and physical properties have been studied of roughly 100 core samples from the boreholes F1 and F2 drilled at the Crosshole site, located at the 360 m level in the Stripa mine. The granitic rock has been divided into two classes: Fracture zones (also called major units) and a rock mass which is relatively undeformed. Samples from the major units have lower resistivity, higher porosity and dielectric constant than the samples from the less deformed rock mass. The electrical properties of the core samples have been measured over a frequency interval ranging from 1 Hz to 70 MHz. The conductivity of the samples increases with frequency, approximately with the frequency raised to the power 0.38. The dielectric constant decreases with frequency but is essentially constant above 3 MHz. These results show that the Hanai-Bruggeman equation can be used to describe the electrical bulk properties of the Stripa granite. The electrical conductivity of the samples is well correlated to the water content of the samples. The granite has a small contents of electrically conductive minerals which could influence the electrical bulk properties. (orig.)

  4. Analysis on High Temperature Aging Property of Self-brazing Aluminum Honeycomb Core at Middle Temperature

    Directory of Open Access Journals (Sweden)

    ZHAO Huan

    2016-11-01

    Full Text Available Tension-shear test was carried out on middle temperature self-brazing aluminum honeycomb cores after high temperature aging by micro mechanical test system, and the microstructure and component of the joints were observed and analyzed using scanning electron microscopy and energy dispersive spectroscopy to study the relationship between brazing seam microstructure, component and high temperature aging properties. Results show that the tensile-shear strength of aluminum honeycomb core joints brazed by 1060 aluminum foil and aluminum composite brazing plate after high temperature aging(200℃/12h, 200℃/24h, 200℃/36h is similar to that of as-welded joints, and the weak part of the joint is the base metal which is near the brazing joint. The observation and analysis of the aluminum honeycomb core microstructure and component show that the component of Zn, Sn at brazing seam is not much affected and no compound phase formed after high temperature aging; therefore, the main reason for good high temperature aging performance of self-brazing aluminum honeycomb core is that no obvious change of brazing seam microstructure and component occurs.

  5. Dependence of core heating properties on heating pulse duration and intensity

    Science.gov (United States)

    Johzaki, Tomoyuki; Nagatomo, Hideo; Sunahara, Atsushi; Cai, Hongbo; Sakagami, Hitoshi; Mima, Kunioki

    2009-11-01

    In the cone-guiding fast ignition, an imploded core is heated by the energy transport of fast electrons generated by the ultra-intense short-pulse laser at the cone inner surface. The fast core heating (˜800eV) has been demonstrated at integrated experiments with GEKKO-XII+ PW laser systems. As the next step, experiments using more powerful heating laser, FIREX, have been started at ILE, Osaka university. In FIREX-I (phase-I of FIREX), our goal is the demonstration of efficient core heating (Ti ˜ 5keV) using a newly developed 10kJ LFEX laser. In the first integrated experiments, the LFEX laser is operated with low energy mode (˜0.5kJ/4ps) to validate the previous GEKKO+PW experiments. Between the two experiments, though the laser energy is similar (˜0.5kJ), the duration is different; ˜0.5ps in the PW laser and ˜ 4ps in the LFEX laser. In this paper, we evaluate the dependence of core heating properties on the heating pulse duration on the basis of integrated simulations with FI^3 (Fast Ignition Integrated Interconnecting) code system.

  6. Fabrication and micro-photoluminescence property of CdSe/CdS core/shell nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Guozhang; Gou, Guangyang; Wu, Zeming; Chen, Yu; Li, Hongjian [Central South University, Hunan Key Laboratory for Super-microstructure and Ultrafast Process, School of Physics and Electronics, Changsha, Hunan (China); Wan, Qiang [Hunan University, School of Physics and Electronics, Changsha (China); Zou, Bingsuo [Beijing Institute of Technology, Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing (China)

    2015-04-01

    Hetero-epitaxial CdSe/CdS core/shell nanowires (NWs) were prepared by a source-controllable chemical vapor deposition method. A two-stage growth mechanism was proposed to the growth process of the core/shell NWs. Micro-photoluminescence (μ-PL) property of individual NW was studied by a confocal microscopy system. The pure CdSe NW emits a red light with peak at 712.3 nm, which is inconsistent with the CdSe band-edge emission. The CdSe/CdS core/shell NW emits two apparent peaks, one is an intensive red emission peak centered at 715.2 nm and the other is a weak green emission peak located at 516.2 nm. The room temperature μ-PL spectrum shows that the PL intensity of CdSe NW was evidently promoted by coating the CdS shell, and this is because CdS improves the surface state optimizing the energy band structure of CdSe NW. The as-synthesized CdSe/CdS core/shell NW has more efficient PL quantum yields than pure CdSe NW and may find potential applications in nanoscale photonic devices. (orig.)

  7. Fabrication and micro-photoluminescence property of CdSe/CdS core/shell nanowires

    International Nuclear Information System (INIS)

    Dai, Guozhang; Gou, Guangyang; Wu, Zeming; Chen, Yu; Li, Hongjian; Wan, Qiang; Zou, Bingsuo

    2015-01-01

    Hetero-epitaxial CdSe/CdS core/shell nanowires (NWs) were prepared by a source-controllable chemical vapor deposition method. A two-stage growth mechanism was proposed to the growth process of the core/shell NWs. Micro-photoluminescence (μ-PL) property of individual NW was studied by a confocal microscopy system. The pure CdSe NW emits a red light with peak at 712.3 nm, which is inconsistent with the CdSe band-edge emission. The CdSe/CdS core/shell NW emits two apparent peaks, one is an intensive red emission peak centered at 715.2 nm and the other is a weak green emission peak located at 516.2 nm. The room temperature μ-PL spectrum shows that the PL intensity of CdSe NW was evidently promoted by coating the CdS shell, and this is because CdS improves the surface state optimizing the energy band structure of CdSe NW. The as-synthesized CdSe/CdS core/shell NW has more efficient PL quantum yields than pure CdSe NW and may find potential applications in nanoscale photonic devices. (orig.)

  8. Martensitic Transformations and Mechanical and Corrosion Properties of Fe-Mn-Si Alloys for Biodegradable Medical Implants

    Science.gov (United States)

    Drevet, Richard; Zhukova, Yulia; Malikova, Polina; Dubinskiy, Sergey; Korotitskiy, Andrey; Pustov, Yury; Prokoshkin, Sergey

    2018-03-01

    The Fe-Mn-Si alloys are promising materials for biodegradable metallic implants for temporary healing process in the human body. In this study, three different compositions are considered (Fe23Mn5Si, Fe26Mn5Si, and Fe30Mn5Si, all in wt pct). The phase composition analysis by XRD reveals ɛ-martensite, α-martensite, and γ-austenite in various proportions depending on the manganese amount. The DSC study shows that the starting temperature of the martensitic transformation ( M s) of the alloys decreases when the manganese content increases (416 K, 401 K, and 323 K (143 °C, 128 °C, and 50 °C) for the Fe23Mn5Si, Fe26Mn5Si, and Fe30Mn5Si alloys, respectively). Moreover, mechanical compression tests indicate that these alloys have a much lower Young's modulus ( E) than pure iron (220 GPa), i.e., 145, 133, and 118 GPa for the Fe23Mn5Si, Fe26Mn5Si, and Fe30Mn5Si alloys, respectively. The corrosion behavior of the alloys is studied in Hank's solution at 310 K (37 °C) using electrochemical experiments and weight loss measurements. The corrosion kinetics of the Fe-Mn-Si increases with the manganese content (0.48, 0.59, and 0.80 mm/year for the Fe23Mn5Si, Fe26Mn5Si, and Fe30Mn5Si alloys, respectively). The alloy with the highest manganese content shows the most promising properties for biomedical applications as a biodegradable and biomechanically compatible implant material.

  9. Synthesis, characterization and corrosion inhibition properties of benzamide-2-chloro-4-nitrobenzoic acid and anthranilic acid-2-chloro-4-nitrobenzoic acid for mild steel corrosion in acidic medium

    Science.gov (United States)

    Pandey, Archana; Verma, Chandrabhan; Singh, B.; Ebenso, Eno E.

    2018-03-01

    The present study deals with the synthesis of two new compounds namely, benzamide - 2-chloro-4-nitrobenzoic acid (BENCNBA) and anthranilic acid-2-chloro-4-nitrobenzoic acid (AACNBA) using solid phase reactions. The phase diagram studies revealed that formation of the investigated compounds occurs in 1:1 molar ratio. The synthesized compounds were characterized using several spectral techniques such as FT-IR, 1H and 13C NMR, UV-Vis, powder X-ray diffraction (PXRD). Single crystal XRD (SCXRD) study showed that both BENCNBA and AACNBA compounds crystallize in triclinic crystal system with P-1 space group. Further, the presence of intermolecular hydrogen bonding between the constituent components was also supported by single crystal X-ray diffraction (SCXRD) method. Heat of mixing, entropy of fusion, roughness parameter, interfacial energy and excess thermodynamic functions have also been computed using the enthalpy of fusion values derived from differential scanning calorimeter (DSC) study. The inhibition effect of BENCNBA and AACNBA on the mild steel corrosion in hydrochloric acid solution was tested using electrochemical methods. Electrochemical impedance spectroscopy (EIS) study revealed that both BENCNBA and AACNBA behaved as interface corrosion inhibitors and showed maximum inhibition efficiencies of 95.71% and 96.42%, respectively at 400 ppm (1.23 × 10-3 M) concentration. Potentiodynamic polarization (PDP) measurements suggested that BENCNBA and AACNBA acted as mixed type corrosion inhibitors. EIS and PDP results showed that BENCNBA and AACNBA act as efficient corrosion inhibitors for mild steel and their inhibition efficiencies enhances on increasing their concentrations.

  10. Simulations of the Light Scattering Properties of Metal/Oxide Core/Shell Nanospheres

    International Nuclear Information System (INIS)

    Ruffino, F.; Piccitto, G.; Grimaldi, M.G.; Ruffino, F.; Grimaldi, M.G.

    2014-01-01

    Given the importance of the optical properties of metal/dielectric core/shell nanoparticles, in this work we focus our attention on the light scattering properties, within the Mie framework, of some specific categories of these noteworthy nano structures. In particular, we report theoretical results of angle-dependent light scattering intensity and scattering efficiency for Ag/Ag 2 O, Al/Al 2 O 2 , Cu/Cu 2 O, Pd/PdO, and Ti/TiO 2 core/shell nanoparticles as a function of the core radius/shell thickness ratio and on a relative comparison. The results highlight the light scattering characteristics of these systems as a function of the radius/shell thickness ratio, helping in the choice of the more suitable materials and sizes for specific applications (i.e., dynamic light scattering for biological and molecular recognition, increasing light trapping in thin-film silicon, organic solar cells for achieving a higher photocurrent).

  11. Comparison of anti-corrosive properties between hot alkaline nitrate blackening and hydrothermal blackening routes

    Energy Technology Data Exchange (ETDEWEB)

    Fattah-alhosseini, A. [Department of Materials Engineering, Bu-Ali Sina University, Hamedan 65178-38695 (Iran, Islamic Republic of); Yazdani Khan, H., E-mail: hamid.yazdanikhan@gmail.com [Department of Materials Engineering, Bu-Ali Sina University, Hamedan 65178-38695 (Iran, Islamic Republic of); Heidarpour, A. [Department of Metallurgy and Materials Engineering, Hamedan University of Technology, Hamedan, 65155-579 (Iran, Islamic Republic of)

    2016-08-15

    In this study, the oxide films were formed on carbon steel by using hot alkaline nitrate and hydrothermal treatments. A dense and protective oxide film was obtained by hydrothermal method due to application of high pressure and by increasing solution temperature from boiling temperature (155 °C) to 250 °C. Oxide films were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), and electrochemical tests including potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). These analyses showed that the magnetite film which was formed on carbon steel surface by hydrothermal treatment offers the best resistance in 3.5 wt.% NaCl solution. Although thicker oxide film could be obtained via hot alkaline nitrate black oxidizing, corrosion resistance was lower as a result of being highly porous and the presence of hematite. - Highlights: • Oxide films have been formed on steel by using of hot alkaline nitrate and hydrothermal treatments. • A dense and protective oxide film was obtained by hydrothermal treatment. • SEM micrographs showed that a dense and protective oxide film was obtained by hydrothermal treatment. • Film formed by hydrothermal treatment could have the best resistance in 3.5 wt.% NaCl solution.

  12. Effects of material property changes on irradiation assisted stress corrosion cracking

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, Morihito; Fukuya, Koji; Fujii, Katsuhiko [Inst. of Nuclear Safety System Inc., Mihama, Fukui (Japan)

    2002-09-01

    Irradiation assisted stress corrosion cracking (IASCC) susceptibility and radiation-induced material changes in microstructure and microchemistry under pressurized water reactor (PWR) environment were examined on irradiated stainless steels (SSs), post-irradiation annealed SSs and post-irradiation deformed SS. The yield stress and grain boundary segregation were considerably high in SSs highly irradiated to 1-8 x 10{sup 26}n/m{sup 2} (E > 0.1 MeV) in PWR at 290-320degC, resulting in a high IASCC susceptibility. Following post-irradiation annealing of highly irradiated SSs, IASCC susceptibility showed significant recovery from 89% (as-irradiated) to 8% (550degC) of %IGSCC, while the hardness recovered from Hv375 (400degC) to Hv315 (550degC). Apparent recovery of segregation at grain boundaries was not observed. The SSs irradiated to 5.3 x 10{sup 24}n/m{sup 2} (E>1MeV) in the Japan Materials Testing Reactor (JMTR) at < 400degC, which had grain boundary segregation and low hardness, showed no IASCC susceptibility. Due to post-irradiation deforming for JMTR irradiated SS, the hardness increased but IASCC did not occur. These results suggested that the hardening would be a key factor for IASCC initiation under PWR hydrogenated water and that a yield stress threshold for IASCC initiation under slow strain rate tensile (SSRT) testing would the about 600MPa. (author)

  13. Effects of material property changes on irradiation assisted stress corrosion cracking

    International Nuclear Information System (INIS)

    Nakano, Morihito; Fukuya, Koji; Fujii, Katsuhiko

    2002-01-01

    Irradiation assisted stress corrosion cracking (IASCC) susceptibility and radiation-induced material changes in microstructure and microchemistry under pressurized water reactor (PWR) environment were examined on irradiated stainless steels (SSs), post-irradiation annealed SSs and post-irradiation deformed SS. The yield stress and grain boundary segregation were considerably high in SSs highly irradiated to 1-8 x 10 26 n/m 2 (E > 0.1 MeV) in PWR at 290-320degC, resulting in a high IASCC susceptibility. Following post-irradiation annealing of highly irradiated SSs, IASCC susceptibility showed significant recovery from 89% (as-irradiated) to 8% (550degC) of %IGSCC, while the hardness recovered from Hv375 (400degC) to Hv315 (550degC). Apparent recovery of segregation at grain boundaries was not observed. The SSs irradiated to 5.3 x 10 24 n/m 2 (E>1MeV) in the Japan Materials Testing Reactor (JMTR) at < 400degC, which had grain boundary segregation and low hardness, showed no IASCC susceptibility. Due to post-irradiation deforming for JMTR irradiated SS, the hardness increased but IASCC did not occur. These results suggested that the hardening would be a key factor for IASCC initiation under PWR hydrogenated water and that a yield stress threshold for IASCC initiation under slow strain rate tensile (SSRT) testing would the about 600MPa. (author)

  14. Electrochemical Methods for the Intergranular Corrosion Property Evaluation of Stainless Steels

    International Nuclear Information System (INIS)

    Lee, Jung Bok

    1987-01-01

    For the last fifteen years, the Electrochemical Potentiokinetic Reactivation (EPR) method, an electrochemical method, has been actively investigated for use in determining the degree of sensitization (DOS) in stainless steels (a metallurgical structure susceptible to intergranular corrosion). One of the reasons for this active investigation was due to the fact that the technique may be usable for field nondestructive measurements of DOS in stainless steels. In this paper, a brief overview of the technique, including the advantages and limitations, is discussed. Then, a new test method which is able to detect the sensitized metallurgical structures nondestructively after field welding is introduced. This new nondestructive method is a modification of the ASTM A262-A (the oxalic acid etch test). The improved test method employs a 30 second etching in a 10% oxalic acid solution under an anodic current density of 1 ampere per square centimeter at the temperatures above 60 .deg. C. Between 50 and 60 .deg. C the thirty second etching test should be used first. When the thirty second etching shows an under etched grain boundary, the etching time should be increased to ninety seconds. At temperatures below 50 .deg. C the ninety second etching, as described in ASTM A 262-A, should be employed. This improved test method can be used in the temperature range of 0 and 100 .deg. C

  15. Specification for corrosion-resisting chromium and chromium-nickel steel bare and composite metal cored and stranded arc welding electrodes and welding rods

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    This specification prescribes requirements for corrosion or heat resisting chromium and chromium-nickel steel electrodes and welding rods. These electrodes and welding rods are normally used for arc welding and include those alloy steels designated as corrosion or heat-resisting chromium and chromium-nickel steels, in which chromium exceeds 4.0 percent and nickel does not exceed 50.0 percent

  16. Effect of the Heat Treatment on the Mechanical Property and Corrosion Resistance of CU - 7Al - 2.5Si Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Syung-Yul; Won, Jong-Pil; Park, Dong-Hyun; Moon, Kyung-Man; Lee, Myeong-Hoon; Jeong, Jin-A [Korea Maritime and Ocean Univ., Busan (Korea, Republic of); Baek, Tae-Sil [Pohang College, Pohang (Korea, Republic of)

    2014-02-15

    Recently, the fuel oil of diesel engines of marine ships has been increasingly changed to heavy oil of low quality as the oil price is getting higher and higher. Therefore, the spiral gear attached at the motor of the oil purifier which plays an important role to purify the heavy oil is also easy to expose at severe environmental condition due to the purification of the heavy oil in higher temperature. Thus, the material of the spiral gear requires a better mechanical strength, wear and corrosion resistance. In this study, the heat treatment(tempering) with various holding time at temperature of 500 .deg. C was carried out to the alloy of Cu-7Al-2.5Si as centrifugal casting, and the properties of both hardness and corrosion resistance with and without heat treatment were investigated with observation of the microstructure and with electrochemical methods, such as measurement of corrosion potential, cathodic and anodic polarization curves, cyclic voltammogram, and a.c. impedance. in natural seawater solution. The α, β and γ{sub 2} phases were observed in the material in spite of no heat treatment due to quenching effect of a spin mold. However, their phases, that is, β and γ{sub 2} phases decreased gradually with increasing the holding time at a constant temperature of 500 .deg. C. The hardness more or less decreased with heat treatment, however its corrosion resistance was improved with the heat treatment. Furthermore, the longer holding time, the better corrosion resistance. In addition, when the holding time was 48hrs, its corrosion current density showed the lowest value. The pattern of corroded surface was nearly similar to that of the pitting corrosion, and this morphology was greatly observed in the case of no heat treatment. It is considered that γ{sub 2} phase at the grain boundary was corroded preferentially as an anode. However, the pattern of general corrosion exhibited increasingly due to decreasing the γ{sub 2} phase with heat treatment

  17. Influence of Concrete Properties on Molten Core-Concrete Interaction: A Simulation Study

    Directory of Open Access Journals (Sweden)

    Jin-yang Jiang

    2016-01-01

    Full Text Available In a severe nuclear power plant accident, the molten core can be released into the reactor pit and interact with sacrificial concrete. In this paper, a simulation study is presented that aims to address the influence of sacrificial concrete properties on molten core-concrete interaction (MCCI. In particular, based on the MELCOR Code, the ferrosiliceous concrete used in European Pressurized Water Reactor (EPR is taken into account with respect to the different ablation enthalpy and Fe2O3 and H2O contents. Results indicate that the concrete ablation rate as well as the hydrogen generation rate depends much on the concrete ablation enthalpy and Fe2O3 and H2O contents. In practice, the ablation enthalpy of sacrificial concrete is the higher the better, while the Fe2O3 and H2O content of sacrificial concrete is the lower the better.

  18. Insights into Mercury's Core Evolution from the Thermodynamic Properties of Fe-S-Si

    Science.gov (United States)

    Edgington, A.; Vocadlo, L.; Stixrude, L. P.; Wood, I. G.; Lord, O. T.

    2015-12-01

    The structure, composition and evolution of Mercury, the innermost planet, are puzzling, as its high uncompressed density implies a body highly enriched in metallic iron, whilst the existence of Mercury's magnetic field and observations of its longitude librations [1] suggest at least a partially molten core. This study uses a combination of experimental and ab-initio computer simulation techniques to determine the properties of Fe-S-Si (relative atomic percentages, 80:10:10) throughout the conditions of the interior of the planet Mercury, and evaluates the implications of this material for the structure and evolution of the planet's core. Previous studies have considered the addition of sulphur to the pure iron system, as this can significantly depress the melting curve of iron, and so may possibly allow Mercury's core to remain molten to the present day [2]. However, important constraints placed by the MESSENGER spacecraft on Mercury's surface abundance of iron [3] suggest that the planet formed in highly reduced conditions, in which significant amounts of silicon could have also dissolved into the core [4]. First-principles molecular dynamics simulations of the thermodynamic properties of liquid Fe-S-Si, alongside laser-heated diamond-anvil-cell experiments to determine the melting behaviour of the same composition, reveal the slopes of the adiabatic gradient and melting curve respectively, which together may allow insight into the evolution of our solar system's smallest planet. [1] Margot, J. L. et al. (2007) Science, 316: 710-714[2] Schubert, G. et al. (1988) in 'Mercury' 429-460[3] Nittler, L. R. et al. (2011) Science, 333, 1847-1850[4] Malavergne, V. et al. (2010) Icarus, 206:199-209

  19. Insights on the Role of Copper Addition in the Corrosion and Mechanical Properties of Binary Zr-Cu Metallic Glass Coatings

    Directory of Open Access Journals (Sweden)

    Junlei Tang

    2017-12-01

    Full Text Available The effect of copper addition on the corrosion resistance and mechanical properties of binary Zr100–xCux (x = 30, 50, 80, 90 at.% glassy coatings was investigated by means of electrochemical measurements, scanning electron microscopy (SEM, energy dispersive analysis spectroscopy (EDS, X-ray photoelectron spectroscopy (XPS and nano-indentation techniques. The corrosion resistance in 0.01 M deaerated H2SO4 solution and the mechanical properties of the Zr-Cu glassy coatings depend considerably upon the copper content in the glassy matrix. The top surfaces of the Zr-Cu coatings with lower Cu content were covered by a compact protective ZrO2 passive film. The competition between the oxidation of Zr atoms (ZrO2 film formation and the oxidation–dissolution of Cu atoms assumed the most important role in the electrochemical behavior of the Zr-Cu glassy coatings. The generation of ZrO2 on the surface benefited the formation of passive film; and the corrosion resistance of the metallic glass coatings depended on the coverage degree of ZrO2 passive film. The evolution of free volume affected both the mechanical and corrosion behaviors of the Zr-Cu glassy coatings.

  20. Effect of Anodizing Time and Annealing Temperature on Photoelectrochemical Properties of Anodized TiO2 Nanotube for Corrosion Prevention Application

    Directory of Open Access Journals (Sweden)

    Misriyani Misriyani

    2017-07-01

    Full Text Available A study on the influence of anodizing time, annealing temperature and photoelectrochemical properties of TiO2 nanotube (TiO2 NT has been investigated. The crystallinity was investigated using X-Ray Diffraction and the anti-corrosion performance of stainless steel 304 (SS 304 coupled with TiO2 NT was evaluated using electrochemical techniques under ultraviolet exposure. The optimum anodizing condition occurs at a voltage of 20 V for 3 h. After anodizing, the TiO2 NT amorf was calcined at 500 °C to obtain anatase crystalline phase. For the photoelectrochemical property, the effects of pH and NaCl concentration on corrosion prevention have been examined. The result showed that the corrosion rate of stainless steel 304 coupled with TiO2 NT can be reduced up to 1.7 times compared to the uncoupled stainless steel 304 (3.05×10-6 to 1.78×10-6 mpy under ultraviolet exposure by shifted the photopotential to the more negative value (-0.302 V to -0.354 V at a pH of 8 and 3% NaCl concentration (-0.264 V to -0.291 V. In conclusion, the TiO2 NT films, which was prepared by anodization and followed by annealing can prevent the corrosion of stainless steel 304.

  1. Effects of Aging and W Addition on the Corrosion Resistance and Mechanical Properties of Fe-Cr-Mn-N Stainless Steels

    International Nuclear Information System (INIS)

    Jeon, Yu Taek; Joo, Uk Hyon; Park, Yong Soo; Kim, Young Sik

    2000-01-01

    The characteristics of the mechanical properties and sensitization behaviors in Fe-Cr-Mn stainless steels by W addition and aging treatment were studied. Yield strength, tensile strength, elongation and impact energy decreased, and hardness increased slightly by aging treatment. W-containing alloys showed especially a larger degree of brittle characteristics due to the hard chi(χ) phase formed from the decomposition of ferrite. Carbides precipitated in grain boundary had a bad effect on impact energy rather than on strength and hardness. Ni addition suppressed the formation of ferrite and resulted in some improvement of mechanical properties. Anodic polarization tests showed that the corrosion resistance of aged alloys decreased by the formation of carbides and secondary austenite. It was observed that W addition made no improvement of the pitting potential and passive current density of aged alloys in the HCI solution. But Ni and W decreased critical current density in the sulfuric acid and made easier formation of passive film, contributing to corrosion resistance. From the results of EPR (Electrochemical Potentiokinetic Reactivation). DOS (Degree of Sensitization) increased with aging time and carbides and ferrite were preferentially attacked. It was observed that Ni delayed the sensitization. It can be concluded from the previous results that the selective dissolution of ferrite is due to the ferrite decomposition to chi (χ) phase and secondary austenite. In the secondary austenite. Cr and W which are known to improve the corrosion resistance were depleted. Therefore, it seems that ferrite phase became sensitive to corrosion

  2. Effect of cerium on structure modifications of a hybrid sol–gel coating, its mechanical properties and anti-corrosion behavior

    International Nuclear Information System (INIS)

    Cambon, Jean-Baptiste; Esteban, Julien; Ansart, Florence; Bonino, Jean-Pierre; Turq, Viviane; Santagneli, S.H.; Santilli, C.V.; Pulcinelli, S.H.

    2012-01-01

    Highlights: ► New sol–gel routes to replace chromates for corrosion protection of aluminum. ► Effect of cerium concentration on the microstructure of xerogel. ► Electrochemical and mechanical performances of hybrid coating with different cerium contents. ► Good correlation between the different results with an optimal cerium content of 0.01 M. -- Abstract: An organic–inorganic hybrid coating was developed to improve the corrosion resistance of the aluminum alloy AA 2024-T3. Organic and inorganic coatings derived from glycidoxypropyl-trimethoxysilane (GPTMS) and aluminum tri-sec-butoxide Al(O s Bu) 3 , with different cerium contents, were deposited onto aluminum by dip-coating process. Corrosion resistance and mechanical properties were investigated by electrochemical impedance measurements and nano-indentation respectively. An optimal cerium concentration of 0.01 M was evidenced. To correlate and explain the hybrid coating performances in relation to the cerium content, NMR experiments were performed. It has been shown that when the cerium concentration in the hybrid is higher than 0.01 M there are important modifications in the hybrid structure that account for the mechanical properties and anti-corrosion behavior of the sol–gel coating.

  3. Influence of minor combined addition of Cr and Pr on microstructure, mechanical properties and corrosion behaviors of an ultrahigh strength Al-Zn-Mg-Cu-Zr alloy.

    Science.gov (United States)

    Wang, Ming; Huang, Lanping; Chen, Kanghua; Liu, Wensheng

    2018-01-01

    This work focuses on controlling grain boundary structure in an ultra-high strength Al-8.6Zn-2.5Mg-2.2Cu-0.16Zr (wt.%) alloy by the combined addition of trace Cr (0.1wt.%) and Pr (0.14wt.%), and evaluating mechanical properties and localized corrosion behaviors of the alloy in the peak aged condition. The introduction of trace Cr and Pr leads to the formation of nanoscale Cr, Pr-containing Al 3 Zr and Zr-containing PrCr 2 Al 20 dispersoids which can obviously inhibit the recrystallization and sub-grain growth of the super-high strength Al-Zn-Mg-Cu alloys, and retain the deformation-recovery microstructure dominated by low-angle grain boundaries. The nearly ellipsoidal dispersoids with a size of 10-35nm are discretely distributed and precipitate free zones are hardly formed in low-angle grain boundaries. This new alloy composition exhibits better combined properties, higher resistance to stress corrosion, exfoliation corrosion and inter-granular corrosion with the undamaged strength, ductility and fracture toughness. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Effect of liquid phase sintering on the mechanical properties and corrosion resistance of infiltrated austenitic stainless steel; Efeito da sinterizacao com fase liquida sobre as propriedades mecanicas e resistencia a corrosao do aco inoxidavel austenitico infiltrado

    Energy Technology Data Exchange (ETDEWEB)

    Machado, Cristine F. [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Programa de Pos-graduacao em Engenharia Metalurgica e dos Materiais; Matos Dias, Arao de; Schaeffer, Lirio [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Centro de Tecnologia. Lab. de Metalurgia do Po

    1996-12-31

    First, this work presents some considerations on the properties and corrosion resistance of the stainless steels and its relation with porosity. The infiltration technique of copper into compacted steels is presented as an efficacy alternative to improve both mechanical properties and corrosion resistance. In experimental development, it was carried out mechanical tests with stainless steel AISI 316 L to ratify the copper infiltration effects on the yield stress of the material, and corrosion tests in salt spray. The results confirm a considerable improvement in properties on the whole to infiltrated stainless steel. (author) 18 refs., 8 figs., 4 tabs.

  5. Microstructure, mechanical properties and stress corrosion cracking of Al–Zn–Mg–Zr alloy sheet with trace amount of Sc

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xing [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Pan, Qinglin, E-mail: pql1964@126.com [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Li, Bo [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Liu, Zhiming; Huang, Zhiqi [Guangdong Fenglu Aluminum Co., Ltd, Foshan 528133 (China); Yin, Zhimin [School of Materials Science and Engineering, Central South University, Changsha 410083 (China)

    2015-11-25

    Microstructural and property evolution of the Al–Zn–Mg–0.10%Sc–0.10%Zr alloy sheet during its preparation were investigated in detail by means of optical microscopy (OM), scanning electron microscope (SEM), energy dispersive X-ray (EDX), transmission electron microscopy (TEM), Vickers micro-hardness test and room temperature tensile test. Stress corrosion cracking (SCC) behavior of the Al–Zn–Mg–0.10%Sc–0.10%Zr alloy under different heat treatments was studied using slow strain rate test. The results showed that serious dendritic segregation existed in as-cast condition. The suitable homogenization treatment for Al–Zn–Mg–0.10%Sc–0.10%Zr alloy was 470 °C/24 h. After homogenization treatment, dissoluble Zn and Mg enriched non-equilibrium phases dissolved into α-Al matrix completely. The suitable solid solution-aging treatment for Al–Zn–Mg–0.10%Sc–0.10%Zr alloy was solution treated at 470 °C for 60 min, followed by water quenching and then aged at 120 °C for 24 h. Under this aging temper, the grain structures were composed of sub-grains, η′ phases and nanometer-sized, spherical Al{sub 3}(Sc, Zr) particles. Grain boundary precipitates (GBPs) area fraction was found to be an important parameter to evaluate the SCC susceptibility. The improved corrosion resistance from increasing aging temperature or prolonging aging time was due to the discontinuous η precipitates along the grain boundary and the high area fraction of GBPs. The main strengthening mechanisms of Al–Zn–Mg–0.10%Sc–0.10%Zr alloy are precipitation strengthening derived from η′ precipitates, dispersion strengthening, sub-grain strengthening and grain refinement caused by coherent Al{sub 3}(Sc, Zr) particles. - Highlights: • The suitable homogenization treatment of the alloy has been identified. • Evolution of microstructure and mechanical properties is investigated. • Strengthening mechanisms of the alloy has been established. • The basic mechanism has

  6. Effect of Alloying Element and Heat Treatment on Mechanical and Corrosion Property of Ni-Cr-Co-Mo Alloy at 950 .deg. C

    International Nuclear Information System (INIS)

    Kim, Dong Jin; Jung, Su Jin; Moon, Byung Hak; Kim, Sung Woo; Lim, Yun Soo; Kim, Hong Pyo

    2013-01-01

    Helium is used as a coolant in a VHTR owing to its high thermal conductivity, inertness, and low neutron absorption. However, helium inevitably includes impurities that create an imbalance in the surface reactivity at the interface of the coolant and the exposed materials. The carbon monoxide, methane, hydrogen, and water that are formed by the reaction with the graphite in the core induce various surface reactions that lead to material property changes over time. According to previous reports it was predicted that the outer oxide layer thickness, internal oxide depth, and carbidedepleted zone depth increase to 116 μm, 600 μm, and 1000 μm, respectively, when Alloy 617 is exposed to a plausible impure helium environment at 950 .deg. C for 20 years, based on the reaction rate constant determined from the short time experiment. These values are large enough to pay attention to the material degradation at high temperature, i. e., the life of the IHX. Therefore, finding the range of impurity concentration at which the material is stable, based on the thermodynamics and kinetics determined by a long-term experiment, is very important to the optimum chemistry control for a life extension. Another countermeasure is to improve the material performance through alloy development. Commercial nickel-based wrought alloy is strengthened by a solid solution and precipitation hardening mechanism in a wide temperature range of 500 to 900 .deg. C. The γ' significantly contributes to the strengthening by forming an anti-phase boundary and preventing a dislocation motion at an intermediate temperature range of 700 to 800 .deg. C, but is no longer stable above this temperature range. However, the material for an IHX needs to fulfill the mechanical property requirements in a narrow, very high temperature range of 850 to 950 .deg. C rather than in a wide temperature range. Therefore, it is worth making the effort to find an optimum combination of alloying elements and processing

  7. Effect of Alloying Element and Heat Treatment on Mechanical and Corrosion Property of Ni-Cr-Co-Mo Alloy at 950 .deg. C

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Jin; Jung, Su Jin; Moon, Byung Hak; Kim, Sung Woo; Lim, Yun Soo; Kim, Hong Pyo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    Helium is used as a coolant in a VHTR owing to its high thermal conductivity, inertness, and low neutron absorption. However, helium inevitably includes impurities that create an imbalance in the surface reactivity at the interface of the coolant and the exposed materials. The carbon monoxide, methane, hydrogen, and water that are formed by the reaction with the graphite in the core induce various surface reactions that lead to material property changes over time. According to previous reports it was predicted that the outer oxide layer thickness, internal oxide depth, and carbidedepleted zone depth increase to 116 μm, 600 μm, and 1000 μm, respectively, when Alloy 617 is exposed to a plausible impure helium environment at 950 .deg. C for 20 years, based on the reaction rate constant determined from the short time experiment. These values are large enough to pay attention to the material degradation at high temperature, i. e., the life of the IHX. Therefore, finding the range of impurity concentration at which the material is stable, based on the thermodynamics and kinetics determined by a long-term experiment, is very important to the optimum chemistry control for a life extension. Another countermeasure is to improve the material performance through alloy development. Commercial nickel-based wrought alloy is strengthened by a solid solution and precipitation hardening mechanism in a wide temperature range of 500 to 900 .deg. C. The γ' significantly contributes to the strengthening by forming an anti-phase boundary and preventing a dislocation motion at an intermediate temperature range of 700 to 800 .deg. C, but is no longer stable above this temperature range. However, the material for an IHX needs to fulfill the mechanical property requirements in a narrow, very high temperature range of 850 to 950 .deg. C rather than in a wide temperature range. Therefore, it is worth making the effort to find an optimum combination of alloying elements and processing

  8. Effect of Surface Pretreatment on Quality and Electrochemical Corrosion Properties of Manganese Phosphate on S355J2 HSLA Steel

    Czech Academy of Sciences Publication Activity Database

    Pastorek, F.; Borko, K.; Fintová, Stanislava; Kajánek, D.; Hadzima, B.

    2016-01-01

    Roč. 6, č. 4 (2016), s. 1-9 ISSN 2079-6412 R&D Projects: GA MŠk(CZ) LQ1601 Institutional support: RVO:68081723 Keywords : corrosion * steel * sandblasting * manganese phosphate Subject RIV: JK - Corrosion ; Surface Treatment of Materials Impact factor: 2.175, year: 2016 http://www.mdpi.com/2079-6412/6/4/46

  9. Microstructure and mechanical properties of friction welded AISI 1040/AISI 304L steels before and after electrochemical corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Sarsilmaz, Furkan [Firat Univ., Elazig (Turkey). Dept. of Mechatronics Engineering; Kirik, Ihsan [Batman Univ. (Turkey); Ozdemir, Niyazi [Firat Univ., Elazig (Turkey)

    2018-03-01

    The aim of the present study is to investigate the effect of welding parameters both on the electrochemical corrosion behavior and tensile strength of pre- and post-electrochemical corrosion of friction welded dissimilar steels. The microstructural changes of AISI 1040/AISI 304L friction welded couples and also parent materials were analyzed by using scanning electron microscopy. The electrochemical behaviors of AISI1040/AISI304L joints were comparatively investigated by potentiodynamic polarization curve test and by electrochemical impedance spectra. Moreover, tensile strength experiments were carried out determining the behavior of friction welded joints of pre- and post-electrochemical corrosion and results indicated that the maximum tensile test value of the dissimilar welded pre-electrochemical corrosion was higher than those of post-electrochemical corrosion and was also very close to AISI 1040 parent material value.

  10. Effect of Thermal Shock During Legionella Bacteria Removal on the Corrosion Properties of Zinc-Coated Steel Pipes

    Science.gov (United States)

    Orlikowski, Juliusz; Ryl, Jacek; Jazdzewska, Agata; Krakowiak, Stefan

    2016-07-01

    The purpose of this investigation was to conduct the failure analysis of a water-supply system made from zinc-coated steel. The observed corrosion process had an intense and complex character. The brownish deposits and perforations were present after 2-3 years of exploitation. The electrochemical study based on the Tafel polarization, corrosion potential monitoring, and electrochemical impedance spectroscopy together with microscopic analysis via SEM and EDX were performed in order to identify the cause of such intense corrosion. The performed measurements allowed us to determine that thermal shock was the source of polarity-reversal phenomenon. This process had begun the corrosion of steel which later led to the formation of deposits and perforations in the pipes. The work includes appropriate action in order to efficiently identify the described corrosion threat.

  11. Modelling mechanical properties of the multilayer composite materials with the polyamide core

    Directory of Open Access Journals (Sweden)

    Talaśka Krzysztof

    2018-01-01

    Full Text Available Due to the wide range of application for belt conveyors, engineers look for many different combinations of mechanical properties of conveyor and transmission belts. It can be made by creating multilayer or fibre reinforced composite materials from base thermoplastic or thermosetting polymers. In order to gain high strength with proper elasticity and friction coefficient, the core of the composite conveyor belt is made of polyamide film core, which can be combined with various types of polymer fabrics, films or even rubbers. In this paper authors show the complex model of multilayer composite belt with the polyamide core, which can be used in simulation analyses. The following model was derived based on the experimental research, which consisted of tensile, compression and shearing tests. In order to achieve the most accurate model, proper simulations in ABAQUS were made and then the results were compared with empirical mechanical characteristics of a conveyor belt. The main goal of this research is to fully describe the perforation process of conveyor and transmission belts for vacuum belt conveyors. The following model will help to develop design briefs for machines used for mechanical perforation.

  12. Corrosive effect of environmental change on selected properties of polymer composites

    Science.gov (United States)

    Markovičová, L.; Zatkalíková, V.

    2017-11-01

    The development of composite materials and the related design and manufacturing technologies is one of the most important advances in the history of materials. Composites are multifunctional materials having unprecedented mechanical and physical properties that can be tailored to meet the requirements of a particular application. Ageing is also important and it is defined as the process of deterioration of engineering materials resulting from the combined effects of atmospheric radiation, heat, oxygen, water, micro-organisms and other atmospheric factors. The present article deals with monitoring the changes in the mechanical properties of composites with polymer matrix. The composite was formed from the PA matrix and glass fibers (GF). The composite contains 10, 20 and 30 % of glass fibers. The mechanical properties were evaluated on samples of the composite before and after UV radiation on the sample. Light microscopy was evaluated distribution of glass fibers in the polymer matrix and the presence of cracks caused by UV radiation.

  13. Synthesis and magnetic properties of inverted core-shell polyaniline-ferrite composite

    Energy Technology Data Exchange (ETDEWEB)

    Donescu, Dan [National Institute for Research & Development in Chemistry and Petrochemistry - ICECHIM, 202 Spl. Independentei, 060021, Bucharest (Romania); Fierascu, Radu Claudiu, E-mail: radu_claudiu_fierascu@yahoo.com [National Institute for Research & Development in Chemistry and Petrochemistry - ICECHIM, 202 Spl. Independentei, 060021, Bucharest (Romania); Ghiurea, Marius [National Institute for Research & Development in Chemistry and Petrochemistry - ICECHIM, 202 Spl. Independentei, 060021, Bucharest (Romania); Manaila-Maximean, Doina [University Politehnica of Bucharest, Department of Physics, 313 Spl. Independentei, 060042, Bucharest (Romania); Nicolae, Cristian Andi; Somoghi, Raluca; Spataru, Catalin Ilie [National Institute for Research & Development in Chemistry and Petrochemistry - ICECHIM, 202 Spl. Independentei, 060021, Bucharest (Romania); Stanica, Nicolae [Institute of Physical Chemistry “Ilie Murgulescu”, 202 Spl. Independentei, 060021, Bucharest (Romania); Raditoiu, Valentin [National Institute for Research & Development in Chemistry and Petrochemistry - ICECHIM, 202 Spl. Independentei, 060021, Bucharest (Romania); Vasile, Eugeniu [SC METAV – CD SA, 31 C. A. Rosetti Str., 021051, Bucharest (Romania)

    2017-08-31

    The present paper studies the effect of polyaniline grafting on magnetite functionalized with aminopropyltrimethoxysilane. All the compounds were characterized by analytical techniques (X-ray fluorescence, X-ray diffraction, Fourier transform infrared spectroscopy, thermal analysis, Transmission electron microscopy), as well as by determining their magnetic properties. The electron microscopy analysis of the hybrids shows similar morphologies for all the samples. The presence of the iron atoms on the surface of the final product supports the idea of the existence of an inverted core-shell type structure, the more polar ferrite orienting itself towards water. The correlation between the maximum grafting probability and the maximum magnetization is evidenced, demonstrating the importance of the polymer grafting method on the magnetic properties.

  14. Effect of neutron radiation on mechanical properties of permanent near core structures

    International Nuclear Information System (INIS)

    Tavassoli, A.A.

    1988-01-01

    Several hundred specimens have been tested in order to assess the effects of low dose neutron radiation ( 0 C and ductility and toughness are primary design concerns, the changes provoked, by doses up to 1.3 dpa, in overall mechanical properties of welded joints are small. For upper core structure, where the operating temperature is about 550 0 C and fatigue and creep resistance are major design needs, the changes induced, through formation of up to about 2 appm helium, in conventional fatigue properties or fatigue with short hold times are negligible. With increasing hold time, intergranular rupture in irradiated specimens is enhanced but the limited number of tests does not allow definite conclusions to be drawn. 53 refs, 3 tabs, 9 figs

  15. Engineered Barrier System - Assessment of the Corrosion Properties of Copper Canisters. Report from a Workshop. Synthesis and extended abstract

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Peter (ed.) [Quintessa Ltd., Henley-on-Thames (GB)] (and others)

    2006-03-15

    A general impression from literature studies, presentations by workshop participants and the informal hearing with SKB is that there is in general a strong basis for the handling of copper corrosion in safety assessment. Work has been ongoing in the area for many decades and there appears to be a consensus on several key aspects of corrosion, such as the existence of a threshold potential for localised corrosion. This is of key importance for the assessment of corrosion under repository conditions. Localised corrosion has to be evaluated for the initial oxygenated phase. There is a need to demonstrate that the corrosion profile in reality will be similar to those of small scale experiments, i.e. roughening without real pitting. There is also a need to develop a better and more transparent basis for assessing how much oxygen can be available during the early oxygenated phase. Regarding stress corrosion cracking, there is a need for a consistent and possibly more detailed explanation either why it can be completely disregarded, or accounted for by probabilistic methods. Copper is normally assumed to be resistant to corrosion in oxygen free environments. However, this is not correct for the extremely long time period of one million years covered by SKB's safety assessment. Copper will react with sulphide by reduction of water. This reaction is the basis for SKB's performance assessment model for copper corrosion. The key aspect of this model is the availability of sulphide. SKB may need to address in more detail the availability of sulphide from the groundwater and the buffer bentonite and its speciation and solubility behaviour. However, the most sensitive assumption in SKB's modelling appears to be the assumption of zero microbial activity in the buffer throughout the assessment time scale of 10{sup 6} years. A detailed justification of this assumption is needed and possibly also 'what-if' calculations to illustrate consequences if this

  16. Engineered Barrier System - Assessment of the Corrosion Properties of Copper Canisters. Report from a Workshop. Synthesis and extended abstract

    International Nuclear Information System (INIS)

    Robinson, Peter

    2006-03-01

    A general impression from literature studies, presentations by workshop participants and the informal hearing with SKB is that there is in general a strong basis for the handling of copper corrosion in safety assessment. Work has been ongoing in the area for many decades and there appears to be a consensus on several key aspects of corrosion, such as the existence of a threshold potential for localised corrosion. This is of key importance for the assessment of corrosion under repository conditions. Localised corrosion has to be evaluated for the initial oxygenated phase. There is a need to demonstrate that the corrosion profile in reality will be similar to those of small scale experiments, i.e. roughening without real pitting. There is also a need to develop a better and more transparent basis for assessing how much oxygen can be available during the early oxygenated phase. Regarding stress corrosion cracking, there is a need for a consistent and possibly more detailed explanation either why it can be completely disregarded, or accounted for by probabilistic methods. Copper is normally assumed to be resistant to corrosion in oxygen free environments. However, this is not correct for the extremely long time period of one million years covered by SKB's safety assessment. Copper will react with sulphide by reduction of water. This reaction is the basis for SKB's performance assessment model for copper corrosion. The key aspect of this model is the availability of sulphide. SKB may need to address in more detail the availability of sulphide from the groundwater and the buffer bentonite and its speciation and solubility behaviour. However, the most sensitive assumption in SKB's modelling appears to be the assumption of zero microbial activity in the buffer throughout the assessment time scale of 10 6 years. A detailed justification of this assumption is needed and possibly also 'what-if' calculations to illustrate consequences if this assumption turns out not to be

  17. Experience manufacturing and properties of the high-strength corrosion-resistant magnetic 03Kh12K12D2 steel

    International Nuclear Information System (INIS)

    Fel'dgandler, Eh.G.; Moshkevich, E.I.; Bakuma, S.F.; Bulat, S.I.; Tikhonenko, V.D.

    1976-01-01

    In industrial conditions, steel 03Kh12K12D2 (DI48-VD) was melted in a 7-tinduction furnace with subsequent vacuum arc remelting. Ingots of dia 500 and 630 mm were forged into slabs and forgings. The slabs were rolled into sheets, 40 mm thick, and the forgings were rolled into sectional shapes. To obtain the optimum mechanical, corrosion, and magnetic properties, the metal was annealed at 600 deg C (10 hr) and 650 deg C (5 and 10 hr). The developed melting and remelting process enabled to obtain steel meeting all the requirements as for the chemical composition, workability, and mechanical magnetic properties. On testing in water with high parameters (200 deg C, 16 kgf/cm 2 ) and in synthetic sea water (70-90 deg C) the corrosion rate did not exceed 1 μm per year

  18. DETAILED INTERSTELLAR POLARIMETRIC PROPERTIES OF THE PIPE NEBULA AT CORE SCALES

    International Nuclear Information System (INIS)

    Franco, G. A. P.; Alves, F. O.; Girart, J. M.

    2010-01-01

    We use R-band CCD linear polarimetry collected for about 12,000 background field stars in 46 fields of view toward the Pipe nebula to investigate the properties of the polarization across this dark cloud. Based on archival Two Micron All Sky Survey data, we estimate that the surveyed areas present total visual extinctions in the range 0.6 mag ≤ A V ≤ 4.6 mag. While the observed polarizations show a well-ordered large-scale pattern, with polarization vectors almost perpendicularly aligned to the cloud's long axis, at core scales one sees details that are characteristics of each core. Although many observed stars present degrees of polarization that are unusual for the common interstellar medium (ISM), our analysis suggests that the dust grains constituting the diffuse parts of the Pipe nebula seem to have the same properties as the normal Galactic ISM. Estimates of the second-order structure function of the polarization angles suggest that most of the Pipe nebula is magnetically dominated and that turbulence is sub-Alvenic. The Pipe nebula is certainly an interesting region to investigate the processes that prevailed during the initial phases of low-mass stellar formation.

  19. Magnetic properties of Co-ferrite-doped hydroxyapatite nanoparticles having a core/shell structure

    International Nuclear Information System (INIS)

    Petchsang, N.; Pon-On, W.; Hodak, J.H.; Tang, I.M.

    2009-01-01

    The magnetic properties of Co-ferrite-doped hydroxyapatite (HAP) nanoparticles of composition Ca 10-3x Fe 2x Co x (PO 4 ) 6 (OH) 2 (where x=0, 0.1, 0.2, 0.3, 0.4 and 0.5% mole) are studied. Transmission electron microscope micrograms show that the 90 nm size nanoparticles annealed at 1250 o C have a core/shell structure. Their electron diffraction patterns show that the shell is composed of the hydroxyapatite and the core is composed of the Co-ferrite, CoFe 2 O 4 . Electron spin resonance measurements indicate that the Co 2+ ions are being substituted into the Ca(1) sites in HAP lattice. X-ray diffraction studies show the formation of impurity phases as higher amounts of the Fe 3+ /Co 2+ ions which are substituted into the HAP host matrix. The presence of two sextets (one for the A-site Fe 3+ and the other for the B-site Fe 3+ ) in the Moessbauer spectrum for all the doped samples clearly indicates that the CoFe 2 O 4 .cores are in the ferromagnetic state. Evidence of the impurity phases is seen in the appearance of doublet patterns in the Moessbauer spectrums for the heavier-doped (x=0.4 and 0.5) specimens. The decrease in the saturation magnetizations and other magnetic properties of the nanoparticles at the higher doping levels is consistent with some of the Fe 3+ and Co 2+ which being used to form the CoO and Fe 2 O 3 impurity phase seen in the XRD patterns.

  20. The effect of 3 wt.% Cu addition on the microstructure, tribological property and corrosion resistance of CoCrW alloys fabricated by selective laser melting.

    Science.gov (United States)

    Luo, Jiasi; Wu, Songquan; Lu, Yanjin; Guo, Sai; Yang, Yang; Zhao, Chaoqian; Lin, Junjie; Huang, Tingting; Lin, Jinxin

    2018-03-19

    Microstructure, tribological property and corrosion resistance of orthopedic implant materials CoCrW-3 wt.% Cu fabricated by selective laser melting (SLM) process were systematically investigated with CoCrW as control. Equaxied γ-phase together with the inside {111}  type twin and platelet ε-phase was found in both the Cu-bearing and Cu-free alloys. Compared to the Cu-free alloy, the introduction of 3 wt.% Cu significantly increased the volume fraction of the ε-phase. In both alloys, the hardness of ε-phase zone was rather higher (~4 times) than that of γ-phase zone. The wear factor of 3 wt.% Cu-bearing alloy possessed smaller wear factor, although it had higher friction coefficient compared with Cu-free alloys. The ε-phase in the CoCr alloy would account for reducing both abrasive and fatigue wear. Moreover, the Cu-bearing alloy presented relatively higher corrosion potential E corr and lower corrosion current density I corr compared to the Cu-free alloy. Accordingly, 3 wt.% Cu addition plays a key role in enhancing the wear resistance and corrosion resistance of CoCrW alloys, which indicates that the SLM CoCrW-3Cu alloy is a promising personalized alternative for traditional biomedical implant materials.

  1. Influence of ECAP process on mechanical and corrosion properties of pure Mg and ZK60 magnesium alloy for biodegradable stent applications

    Science.gov (United States)

    Mostaed, Ehsan; Vedani, Maurizio; Hashempour, Mazdak; Bestetti, Massimiliano

    2014-01-01

    Equal channel angular pressing (ECAP) was performed on ZK60 alloy and pure Mg in the temperature range 150–250 °C. A significant grain refinement was detected after ECAP, leading to an ultrafine grain size (UFG) and enhanced formability during extrusion process. Comparing to conventional coarse grained samples, fracture elongation of pure Mg and ZK60 alloy were significantly improved by 130% and 100%, respectively, while the tensile strength remained at high level. Extrusion was performed on ECAP processed billets to produce small tubes (with outer/inner diameter of 4/2.5 mm) as precursors for biodegradable stents. Studies on extruded tubes revealed that even after extrusion the microstructure and microhardness of the UFG ZK60 alloy were almost stable. Furthermore, pure Mg tubes showed an additional improvement in terms of grain refining and mechanical properties after extrusion. Electrochemical analyses and microstructural assessments after corrosion tests demonstrated two major influential factors in corrosion behavior of the investigated materials. The presence of Zn and Zr as alloying elements simultaneously increases the nobility by formation of a protective film and increase the local corrosion damage by amplifying the pitting development. ECAP treatment decreases the size of the second phase particles thus improving microstructure homogeneity, thereby decreasing the localized corrosion effects. PMID:25482411

  2. Comparative analysis of adsorption and corrosion inhibitive properties of ethanol extract of Dialium Guineense leaves for mild steel in 0.5 M HCl

    Directory of Open Access Journals (Sweden)

    Shola Elijah Adeniji

    2018-05-01

    Full Text Available Adsorption and corrosion inhibitive properties of ethanol extract of Dialium guineense leaves for mild steel in 0.5M HCl was studied using the gravimetric method. The results showed that the ethanol extract of Dialium guineense leaves is a good corrosion inhibitor for mild steel in 0.5 M HCl. The inhibition efficiency was found to increase with increase in the concentration of ethanol extract of Dialium guineense leaves up to the maximum of 92 %, but at the same time it decreased as the temperature was increased. Corrosion inhibition by the extract of Dialium guineense leaves is carried out by adsorption mechanism with the kinetics of corrosion following the pseudo first order reaction with high correlation. Thermodynamic consideration revealed that adsorption of the ethanol extract of Dialium guineense leaves on mild steel surface is an exothermic and spontaneous process that fitted the Langmuir adsorption isotherm. The values of activation energy and Gibb’s free energy were found within the range of limits expected for the mechanism of physical adsorption.

  3. Properties of polyurethane foam/coconut coir fiber as a core material and as a sandwich composites component

    Science.gov (United States)

    Azmi, M. A.; Abdullah, H. Z.; Idris, M. I.

    2013-12-01

    This research focuses on the fabrication and characterization of sandwich composite panels using glass fiber composite skin and polyurethane foam reinforced coconut coir fiber core. The main objectives are to characterize the physical and mechanical properties and to elucidate the effect of coconut coir fibers in polyurethane foam cores and sandwich composite panels. Coconut coir fibers were used as reinforcement in polyurethane foams in which later were applied as the core in sandwich composites ranged from 5 wt% to 20 wt%. The physical and mechanical properties found to be significant at 5 wt% coconut coir fiber in polyurethane foam cores as well as in sandwich composites. It was found that composites properties serve better in sandwich composites construction.

  4. Properties of polyurethane foam/coconut coir fiber as a core material and as a sandwich composites component

    International Nuclear Information System (INIS)

    Azmi, M A; Abdullah, H Z; Idris, M I

    2013-01-01

    This research focuses on the fabrication and characterization of sandwich composite panels using glass fiber composite skin and polyurethane foam reinforced coconut coir fiber core. The main objectives are to characterize the physical and mechanical properties and to elucidate the effect of coconut coir fibers in polyurethane foam cores and sandwich composite panels. Coconut coir fibers were used as reinforcement in polyurethane foams in which later were applied as the core in sandwich composites ranged from 5 wt% to 20 wt%. The physical and mechanical properties found to be significant at 5 wt% coconut coir fiber in polyurethane foam cores as well as in sandwich composites. It was found that composites properties serve better in sandwich composites construction

  5. Sensitivity analysis on the effective stiffness properties of 3-D orthotropic honeycomb cores

    Science.gov (United States)

    Karakoç, Alp

    2018-01-01

    The present study investigates the influences of representative volume element RVE mesh and material parameters, here cell wall elastic moduli, on the effective stiffness properties of three dimensional orthotropic honeycomb cores through strain driven computational homogenization in the finite element framework. For this purpose, case studies were carried out, for which hexagonal cellular RVEs were generated, meshed with eight node linear brick finite elements of varying numbers. Periodic boundary conditions were then implemented on the RVE boundaries by using one-to-one nodal match for the corresponding corners, edges and surfaces for the imposed macroscopic strains. As a novelty, orthotropic material properties were assigned for each cell wall by means of the transformation matrices following the cell wall orientations. Thereafter, simulations were conducted and volume averaged macroscopic stresses were obtained. Eventually, effective stiffness properties were obtained, through which RVE sensitivity analysis was carried out. The investigations indicate that there is a strong relation between number of finite elements and most of the effective stiffness parameters. In addition to this, cell wall elastic moduli also play critical role on the effective properties of the investigated materials.

  6. A Multifunctional Coating for Autonomous Corrosion Control

    Science.gov (United States)

    Calle, Luz M.; Li, Wenyan; Buhrow, Jerry W.; Jolley, Scott t.

    2011-01-01

    Nearly all metals and their alloys are subject to corrosion that causes them to lose their structural integrity or other critical functionality. Protective coatings are the most commonly used method of corrosion control. However, progressively stricter environmental regulations have resulted in the ban of many commercially available corrosion protective coatings due to the harmful effects of their solvents or corrosion inhibitors. This work concerns the development of a multifunctional smart coating for the autonomous control of corrosion. This coating is being developed to have the inherent ability to detect the chemical changes associated with the onset of corrosion and respond autonomously to indicate it and control it. The multi-functionality of the coating is based on microencapsulation technology specifically designed for corrosion control applications. This design has, in addition to all the advantages of existing microcapsulation designs, the corrosion controlled release function that triggers the delivery of corrosion indicators and inhibitors on demand, only when and where needed. Microencapsulation of self-healing agents for autonomous repair of mechanical damage to the coating is also being pursued. Corrosion indicators, corrosion inhibitors, as well as self-healing agents, have been encapsulated and dispersed into several paint systems to test the corrosion detection, inhibition, and self-healing properties of the coating. Key words: Corrosion, coating, autonomous corrosion control, corrosion indication, corrosion inhibition, self-healing coating, smart coating, multifunctional coating, microencapsulation.

  7. Properties of experimental copper-aluminium-nickel alloys for dental post-and-core applications.

    Science.gov (United States)

    Rittapai, Apiwat; Urapepon, Somchai; Kajornchaiyakul, Julathep; Harniratisai, Choltacha

    2014-06-01

    This study aimed to develop a copper-aluminium-nickel alloy which has properties comparable to that of dental alloys used for dental post and core applications with the reasonable cost. Sixteen groups of experimental copper alloys with variants of 3, 6, 9, 12 wt% Al and 0, 2, 4, 6 wt% Ni were prepared and casted. Their properties were tested and evaluated. The data of thermal, physical, and mechanical properties were analyzed using the two-way ANOVA and Tukey's test (α=0.05). The alloy toxicity was evaluated according to the ISO standard. The solidus and liquidus points of experimental alloys ranged from 1023℃ to 1113℃ and increased as the nickel content increased. The highest ultimate tensile strength (595.9 ± 14.2 MPa) was shown in the Cu-12Al-4Ni alloy. The tensile strength was increased as the both elements increased. Alloys with 3-6 wt% Al exhibited a small amount of 0.2% proof strength. Accordingly, the Cu-9Al-2Ni and Cu-9Al-4Ni alloys not only demonstrated an appropriate modulus of elasticity (113.9 ± 8.0 and 122.8 ± 11.3 GPa, respectively), but also had a value of 0.2% proof strength (190.8 ± 4.8 and 198.2 ± 3.4 MPa, respectively), which complied with the ISO standard requirement (>180 MPa). Alloys with the highest contents of nickel (6 wt% Ni) revealed a widespread decolourisation zone (5.0-5.9 mm), which correspondingly produced the largest cell response, equating positive control. The copper alloys fused with 9 wt% Al and 2-4 wt% Ni can be considered for a potential use as dental post and core applications.

  8. The effect of quench rate on the microstructure, mechanical properties, and corrosion behavior of U-6 Wt Pct Nb

    International Nuclear Information System (INIS)

    Eckelmeyer, K.H.; Romiy, A.D.; Weirick, L.J.

    1984-01-01

    The effect of cooling rate on microstructure, mechanical behavior, corrosion resistance, and subsequent age hardenability is discussed. Cooling rates in excess of 20 Ks -1 cause the parent γ-phase to transform martensitically to a niobium supersaturated variant of the α-phase. This phase exhibits low hardness and strength, high ductility, good corrosion resistance, and age hardenability. As cooling rate decreases from 10 Ks -1 to 0.2 Ks -1 , microstructural changes (consistent with spinodal decomposition) occur to an increasing extent. These changes produce increases in hardness and strength and decreases in ductility, corrosion resistance, and age hardenability. At cooling rates less than 0.2 Ks -1 the parent phase undergoes cellular decomposition to a coarse two-phase lamellar microstructure which exhibits intermediate strength and ductility, reduced corrosion resistance, and no age hardenability. An analysis of the cooling rates indicates that fully martensitic microstructures can be obtained in plates as thick as 50 mm

  9. Corrosion properties of aluminium coatings deposited on sintered NdFeB by ion-beam-assisted deposition

    Energy Technology Data Exchange (ETDEWEB)

    Mao Shoudong; Yang Hengxiu; Li Jinlong; Huang Feng [Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 519 Zhuangshi Road, Ningbo 315201 (China); Song Zhenlun, E-mail: songzhenlun@nimte.ac.cn [Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 519 Zhuangshi Road, Ningbo 315201 (China)

    2011-04-15

    Pure Al coatings were deposited by direct current (DC) magnetron sputtering to protect sintered NdFeB magnets. The effects of Ar{sup +} ion-beam-assisted deposition (IBAD) on the structure and the corrosion behaviour of Al coatings were investigated. The Al coating prepared by DC magnetron sputtering with IBAD (IBAD-Al-coating) had fewer voids than the coating without IBAD (Al-coating). The corrosion behaviour of the Al-coated NdFeB specimens was investigated by potentiodynamic polarisation, a neutral salt spray (NSS) test, and electrochemical impedance spectroscopy (EIS). The pitting corrosion of the Al coatings always began at the voids of the grain boundaries. Bombardment by the Ar{sup +} ion-beams effectively improved the corrosion resistance of the IBAD-Al-coating.

  10. Shadow Corrosion Mechanism of Zircaloy

    International Nuclear Information System (INIS)

    Ullberg, Mats; Lysell, Gunnar; Nystrand, Ann-Charlotte

    2004-02-01

    Local corrosion enhancement appears on zirconium-base alloys in-core in boiling water reactors when the zirconium alloy is in close proximity to another metal. The visual appearance often resembles a shadow of the other component. The phenomenon is therefore referred to as 'shadow corrosion'. Shadow corrosion has been known for more than 25 years. Mechanisms based on either galvanic corrosion or local radiolysis effects have been proposed as explanations. Both types of mechanism have seemed to explain some facets of the phenomenon. Normally, shadow corrosion is of no practical significance. However, an enhanced and potentially serious form of shadow corrosion was discovered in 1996. This discovery stimulated new experiments that fully supported neither of the longstanding theories. Thus, there is till now no generally accepted understanding of the shadow corrosion phenomenon. The aim of the present investigation was to analyse the available data and to identify, if possible, a plausible mechanism of shadow corrosion. It was found that the experimental evidence is, with a few exceptions, remarkably consistent with a galvanic mechanism. The main exception is that shadow corrosion may occur also when the two metals are nominally electrically insulated. One way to account for the main exception could be to invoke the effect of photoconductivity. Photoconductivity results when a semiconductor or an insulator is irradiated with photons of UV or higher energy. The photons elevate electrons from the valence band to the conduction band, thereby raising the electron conductivity of the solid. In particular, photoconductivity lowers the electrical resistance of the normally insulating oxide on zirconium base alloys. Photoconductivity therefore also has the potential to explain why shadow corrosion is only seen in, or in proximity to, a nuclear reactor core. The suggested mechanism of shadow corrosion can be tested in a reasonably simple experiment in a research reactor

  11. Synergetic effects of Sc and Zr microalloying and heat treatment on mechanical properties and exfoliation corrosion behavior of Al-Mg-Mn alloys

    International Nuclear Information System (INIS)

    Peng, Yongyi; Li, Shu; Deng, Ying; Zhou, Hua; Xu, Guofu; Yin, Zhimin

    2016-01-01

    Mechanical properties, exfoliation corrosion behavior and microstructure of Al-5.98Mg-0.47Mn and Al-6.01Mg-0.45Mn-0.25Sc-0.10Zr (wt%) alloy sheets under various homogenizing and annealing processes were investigated comparatively by tensile tests, electrochemical measurements, X-ray diffraction technique and microscopy methods. The as-cast alloys mainly consist of Fe and Mn enriched impurity phases, Mg and Mn enriched non-equilibrium aluminides and Mg 3 Al 2 phases. During homogenization treatment, solvable intermetallics firstly precipitate and then dissolve into matrix. The optimized homogenization processes for removing micro-segregation and obtaining maximum precipitation strengthening of secondary Al 3 (Sc, Zr) particles are 440 °C×8 h and 300 °C×8 h, respectively. Sc and Zr additions can make the yield strength of Al-Mg-Mn alloy increase by 21 MPa (6.9%), 120 MPa (61.2%) and 127 MPa (68.3%), when annealed at 270 °C, 300 °C and 330 °C, respectively, indicating that Orowan precipitation strengthening caused by secondary Al 3 (Sc, Zr) nano-particles is much greater than grain boundary strengthening from primary Al 3 (Sc, Zr) micro-particles. Increasing homogenization and annealing degrees and adding Sc and Zr all can decrease corrosion current density and improve exfoliation corrosion resistance. The exfoliation corrosion behavior is dominant by anodic dissolution occurring at the interface between intermetallics and α(Al) matrix. After homogenizing at 440 °C for 8 h and annealing at 300 °C for 1 h, yield strength, ultimate strength, elongation to failure and exfoliation corrosion rank are 196 MPa, 360 MPa, 20.2% and PA (slight pitting corrosion) in Al-Mg-Mn alloy, and reach to 316 MPa, 440 MPa, 17.0% and PA in Al-Mg-Mn-Sc-Zr alloy, respectively, revealing that high strength, high ductility and admirable corrosion resistance of Al-Mg-Mn alloys can be achieved by the synergetic effects of Sc and Zr microalloying and heat treatment.

  12. Corrosion Behavior and Oxide Properties of Zr-Nb-Cu and Zr-Nb-Sn Alloy in High Dissolved Hydrogen Primary Water Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yun Ju; Kim, Tae Ho; Kim, Ji Hyun [UNIST, Ulsan (Korea, Republic of)

    2016-05-15

    The water-metal interface is regarded as rate-controlling site governing the rapid oxidation transition in high burn-up fuel. And the zirconium oxide is made in water-metal interface and its structure and phase do an important role in terms of oxide properties. During oxidation process, the protective tetragonal oxide layer develops at the interface due to accumulated high stress during oxide growth, and it turns into non-protective monoclinic oxide with increasing oxide thickness, thus decreasing the stress. It has been reported that Nb addition was proven to be very beneficial for increasing the corrosion resistance of the zirconium alloys. From a more recent study, Cu addition in Nb containing Zirconium alloy was reported to be effective for increasing corrosion resistance in water containing B and Li. According to the previous research conducted, Zr-Nb-Cu shows better corrosion resistance than Zircaloy-4. The dissolved hydrogen (DH) concentration is the key issue of primary water chemistry, and the effect of DH concentration on the corrosion rate of nickel based alloy has been researched. However, the effect of DH on the zirconium alloy corrosion mechanism was not fully investigated. In this study, the weight gain measurement, FIB-SEM analysis, and Raman spectroscopic measurement were conducted to investigate the effects of dissolved hydrogen concentration and the chemical composition on the corrosion resistance and oxide phase of Zr-Nb-Cu alloy and Zr-Nb-Sn alloy after oxidizing in a primary water environment for 20 d. The corrosion rate of Zr-Nb-Cu alloy is slow, when it is compared to Zr-Nb-Sn alloy. In SEM images, the oxide thickness of Zr-Nb-Cu alloy is measured to be around 1.06 μm it of Zr-Nb-Sn alloy is measured to be 1.15 μm. It is because of the Segregation made by Sn solute element when Sn solute element oxidized. And according to ex situ Raman spectra, Zr-Nb-Cu alloy oxide has more tetragonal zirconium oxide fraction than Zr-Nb-Sn alloy oxide.

  13. Coolant compatibility studies. The effect of irradiation on tensile properties and stress corrosion cracking sensitivity of martensitic steels. MANET 4 - complementary studies

    International Nuclear Information System (INIS)

    Nystrand, A.C.

    1994-02-01

    Tensile and stress corrosion cracking tests have been carried out on MANET-type (1.4914 and FV448) and reduced activation (LA12TaLC) high-chromium martensitic steels. The materials had previously been exposed up to 5000 h at ∼275 degrees C in the core, above the core and remote from the core of a high pressure water loop in the Studsvik R2 reactor. After the mechanical testing the materials were examined visually and metallographically. The steel samples exposed in the core section showed large increases in tensile yield strengths when tested at 250 degrees C. However, the magnitude of the radiation hardening was considerably smaller in the reduced activation steel compared to the commercial steels; this observation is consistent with published data on other high-chromium martensitic steels and is associated with the lower chromium content of the LA12TaLC steel (8.9%) compared with those of the commercial steels (10.6 and 11.3%). Irradiation assisted stress corrosion cracking (IASCC) was not detected in any of the stressed steel samples after autoclave testing for times up to 1500 h at 250 degrees C in air-saturated high purity water. This apparent resistance to IASCC may be due to the high chromium martensitic steels not being sensitized by the irradiation in a comparable manner to that shown by the austenitic steels. However, additional studies are required to clarify some of the existing uncertainties with respect to IASCC of these martensitic steels

  14. The research of anti corrosive properties of various compositions on samples of standard metals

    Directory of Open Access Journals (Sweden)

    Aghazada Y.J.

    2017-12-01

    Full Text Available In this proceeding. the compositions of the T-30 turbine oil with liquid rubber. Co. Ni. Zn. Mg and Ba salts of the natural petroleum acids (NPA boiling in the range 220–340°C and nitro compounds which are produced on the basis of C14H28 α-olefins have been investigated in different ratio and contents as metalworking fluids (MWF. The physical and chemical properties of the produced compositions have been studied. and the morphology of inhibited carbon steel surface was analyzed and characterized by using Fourier transform infrared (FTIR and scanning electron microscopy (SEM techniques. The effect of the temperature on the inhibition efficiency and thermodynamic parameters have also been reported. The thermal analyzer was used for the thermogravimetric analysis (TG/DTA of the prepared MWF. The experiments have been operated with different concentrations of the inhibitor on the steel plates in condensation and environment phases in the experiment chamber.

  15. Thin film properties of triphenylamine-cored dendrimers: A molecular approach to control aggregation

    Energy Technology Data Exchange (ETDEWEB)

    Vamvounis, George, E-mail: g.vamvounis@uq.edu.au; Pivrikas, Almantas; Shaw, Paul E.; Burn, Paul L.

    2013-12-02

    The solid-state photophysical and charge transport properties of two first-generation dendrimers are presented. The dendrimers are comprised of a triphenylamine core, dendrons containing a phenyl branching unit with thiophene (Dendrimer 1) or bithiophene (Dendrimer 2) moieties, and dodecyl surface groups. For Dendrimer 1, the excited state is located within the center of the dendrimer giving rise to a moderate solid-state photoluminescence quantum yield (Φ{sub pl}) (0.13) and significant charge trapping, with both observations due to the degree of overlap of the main electroactive chromophores on adjacent dendrimers. For Dendrimer 2, the excited state is located within the dendron and in the solid-state this leads to a strongly red-shifted and weakened emission (Φ{sub pl} ∼ 0.02) due to strong intermolecular chromophore interactions. For films of Dendrimer 2 the charge mobility was higher than Dendrimer 1 but was still limited by a low density of strongly interacting electroactive chromophores. The pronounced difference between the solid-state properties of the two dendrimers is simply engineered by the addition of an extra thiophene in each of the dendrons. - Highlights: • Photophysical and charge-transport properties of two dendrimers are investigated. • Excited-state is on the center for Dendrimer 1 and on the dendron for Dendrimer 2. • Film quantum yield of luminescence is higher for Dendrimer 1. • Dendrimer 1 displays greater charge trapping at high fields.

  16. Thin film properties of triphenylamine-cored dendrimers: A molecular approach to control aggregation

    International Nuclear Information System (INIS)

    Vamvounis, George; Pivrikas, Almantas; Shaw, Paul E.; Burn, Paul L.

    2013-01-01

    The solid-state photophysical and charge transport properties of two first-generation dendrimers are presented. The dendrimers are comprised of a triphenylamine core, dendrons containing a phenyl branching unit with thiophene (Dendrimer 1) or bithiophene (Dendrimer 2) moieties, and dodecyl surface groups. For Dendrimer 1, the excited state is located within the center of the dendrimer giving rise to a moderate solid-state photoluminescence quantum yield (Φ pl ) (0.13) and significant charge trapping, with both observations due to the degree of overlap of the main electroactive chromophores on adjacent dendrimers. For Dendrimer 2, the excited state is located within the dendron and in the solid-state this leads to a strongly red-shifted and weakened emission (Φ pl ∼ 0.02) due to strong intermolecular chromophore interactions. For films of Dendrimer 2 the charge mobility was higher than Dendrimer 1 but was still limited by a low density of strongly interacting electroactive chromophores. The pronounced difference between the solid-state properties of the two dendrimers is simply engineered by the addition of an extra thiophene in each of the dendrons. - Highlights: • Photophysical and charge-transport properties of two dendrimers are investigated. • Excited-state is on the center for Dendrimer 1 and on the dendron for Dendrimer 2. • Film quantum yield of luminescence is higher for Dendrimer 1. • Dendrimer 1 displays greater charge trapping at high fields

  17. Investigation of the main chemical properties of water-magnesium chloride solutions. Application to the understanding of stress corrosion phenomena in 17.12 Mo stainless steel

    International Nuclear Information System (INIS)

    Hasni, Abdellatif

    1988-01-01

    This research thesis reports the investigation of the main chemical properties of concentrated aqueous solutions of MgCl 2 and of their influence of stress corrosion of 17Cr-12Ni-2Mo stainless steel. It shows that the most important chemical properties are the equilibrium pH and the acidity range of MgCl 2 aqueous solutions, and that they strongly depend on solution temperature and concentration. The medium pH is governed by the increased acidity of water in presence of Mg ++ ions, while the acidity range is determined by a hydrolysis reaction of these ions which results in a precipitation of magnesium hydroxyl-chlorides. The investigation of stress corrosion behaviour of the steel in MgCl 2 solutions with varying temperature and concentration shows that this behaviour comes down to a prevailing pH effect which results from the variation of these both parameters, with a not negligible but less important effect of temperature. A study of cracking surfaces indicates that it is possible to pass from a transgranular to an intergranular mode by a variation of either media aggressiveness (pH, temperature, voltage) or strain rate. These results are explained by a concept of kinetic factor which limits stress corrosion [fr

  18. An assessment of microstructure, mechanical properties and corrosion resistance of dissimilar welds between Inconel 718 and 310S austenitic stainless steel

    International Nuclear Information System (INIS)

    Mortezaie, A.; Shamanian, M.

    2014-01-01

    In the present study, dissimilar welding between Inconel 718 nickel-base superalloy and 310S austenitic stainless steel using gas tungsten arc welding process was performed to determine the relationship between the microstructure of the welds and the resultant mechanical and corrosion properties. For this purpose, three filler metals including Inconel 625, Inconel 82 and 310 stainless steel were used. Microstructural observations showed that weld microstructures for all filler metals were fully austenitic. In tension tests, welds produced by Inconel 625 and 310 filler metals displayed the highest and the lowest ultimate tensile strength, respectively. The results of Charpy impact tests indicated that the maximum fracture energy was related to Inconel 82 weld metal. According to the potentiodynamic polarization test results, Inconel 82 exhibited the highest corrosion resistance among all tested filler metals. Finally, it was concluded that for the dissimilar welding between Inconel 718 and 310S, Inconel 82 filler metal offers the optimum properties at room temperature. - Highlights: • Three filler metals including Inconel 625, Inconel 82 and 310 SS were used. • A columnar to equiaxed dendritic structure was seen for IN-625 weld metal. • A granular austenitic microstructure obtained for Inconel 82 weld metal. • Microstructure of 310 weld metal includes solidification cracks along SSGB. • IN-82 weld metal showed the highest corrosion potential

  19. A Comparative Study of the Microstructure, Mechanical Properties and Corrosion Resistance of Ni- or Fe- Based Composite Coatings by Laser Cladding

    Science.gov (United States)

    Wan, M. Q.; Shi, J.; Lei, L.; Cui, Z. Y.; Wang, H. L.; Wang, X.

    2018-04-01

    Ni- and Fe-based composite coatings were laser cladded on 40Cr steel to improve the surface mechanical property and corrosion resistance, respectively. The microstructure and phase composition were analyzed by x-ray diffraction (XRD) and field emission scanning electron microscope (FESEM) equipped with an energy-dispersive spectrometer (EDS). The micro-hardness, tribological properties and electrochemical corrosion behavior of the coatings were evaluated. The results show that the thickness of both the coatings is around 0.7 mm, the Ni-based coating is mainly composed of γ-(Ni, Fe), FeNi3, Ni31Si12, Ni3B, CrB and Cr7C3, and the Fe-based coating is mainly composed of austenite and (Fe, Cr)7C3. Micro-hardness of the Ni-based composite coating is about 960 HV0.3, much higher than that of Fe-based coating (357.4 HV0.3) and the 40Cr substrate (251 HV0.3). Meanwhile, the Ni-based composite coating possesses better wear resistance than the Fe-based coating validated by the worn appearance and the wear loss. Electrochemical results suggested that Ni-based coating exhibited better corrosion resistance than the Fe-based coating. The 40Cr substrate could be well protected by the Ni-based coating.

  20. Effect of nano/micro-Ag compound particles on the bio-corrosion, antibacterial properties and cell biocompatibility of Ti-Ag alloys.

    Science.gov (United States)

    Chen, Mian; Yang, Lei; Zhang, Lan; Han, Yong; Lu, Zheng; Qin, Gaowu; Zhang, Erlin

    2017-06-01

    In this research, Ti-Ag alloys were prepared by powder metallurgy, casting and heat treatment method in order to investigate the effect of Ag compound particles on the bio-corrosion, the antibacterial property and the cell biocompatibility. Ti-Ag alloys with different sizes of Ag or Ag-compounds particles were successfully prepared: small amount of submicro-scale (100nm) Ti 2 Ag precipitates with solid solution state of Ag, large amount of nano-scale (20-30nm) Ti 2 Ag precipitates with small amount of solid solution state of Ag and micro-scale lamellar Ti 2 Ag phases, and complete solid solution state of Ag. The mechanical tests indicated that both nano/micro-scale Ti 2 Ag phases had a strong dispersion strengthening ability and Ag had a high solid solution strengthening ability. Electrochemical results shown the Ag content and the size of Ag particles had a limited influence on the bio-corrosion resistance although nano-scale Ti 2 Ag precipitates slightly improved corrosion resistance. It was demonstrated that the nano Ag compounds precipitates have a significant influence on the antibacterial properties of Ti-Ag alloys but no effect on the cell biocompatibility. It was thought that both Ag ions release and Ti 2 Ag precipitates contributed to the antibacterial ability, in which nano-scale and homogeneously distributed Ti 2 Ag phases would play a key role in antibacterial process. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Enhanced photocatalytic activity of C@ZnO core-shell nanostructures and its photoluminescence property

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Tao; Yu, Shanwen; Fang, Xiaoxin; Huang, Honghong; Li, Lun [School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan (China); Wang, Xiuyuan [College of Plant Science and Technology, Huazhong Agricultural University, Wuhan (China); Wang, Huihu, E-mail: wanghuihu@mail.hbut.edu.cn [School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan (China); Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan (China)

    2016-12-15

    Highlights: • C@ZnO nanostructures were synthesized by a facile hydrothermal carbonization method. • Glucose content has a great influence on the microstructure of C@ZnO nanostructures. • An ultrathin amorphous carbon layer enhances the adsorption capacity of C@ZnO. • C@ZnO nanostructures exhibit the improved photocatalytic activity and stability. - Abstract: An ultrathin layer of amorphous carbon coated C@ZnO core-shell nanostructures were synthesized via a facile hydrothermal carbonization process using glucose as precursor in this work. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and diffuse reflectance UV–vis spectroscopy (DRS) were used for the characterization of as-prepared samples. Photoluminescence (PL) properties of C@ZnO samples were investigated using PL spectroscopy. The microstructure analysis results show that the glucose content has a great influence on the size, morphology, crystallinity and surface chemical states of C@ZnO nanostructures. Moreover, the as-prepared C@ZnO core-shell nanostructures exhibit the enhanced photocatalytic activity and good photostability for methyl orange dye degradation due to its high adsorption ability and its improved optical characteristics.

  2. Dislocations in AlGaN: Core Structure, Atom Segregation, and Optical Properties.

    Science.gov (United States)

    Massabuau, Fabien C-P; Rhode, Sneha L; Horton, Matthew K; O'Hanlon, Thomas J; Kovács, András; Zielinski, Marcin S; Kappers, Menno J; Dunin-Borkowski, Rafal E; Humphreys, Colin J; Oliver, Rachel A

    2017-08-09

    We conducted a comprehensive investigation of dislocations in Al 0.46 Ga 0.54 N. Using aberration-corrected scanning transmission electron microscopy and energy dispersive X-ray spectroscopy, the atomic structure and atom distribution at the dislocation core have been examined. We report that the core configuration of dislocations in AlGaN is consistent with that of other materials in the III-Nitride system. However, we observed that the dissociation of mixed-type dislocations is impeded by alloying GaN with AlN, which is confirmed by our experimental observation of Ga and Al atom segregation in the tensile and compressive parts of the dislocations, respectively. Investigation of the optical properties of the dislocations shows that the atom segregation at dislocations has no significant effect on the intensity recorded by cathodoluminescence in the vicinity of the dislocations. These results are in contrast with the case of dislocations in In 0.09 Ga 0.91 N where segregation of In and Ga atoms also occurs but results in carrier localization limiting non-radiative recombination at the dislocation. This study therefore sheds light on why InGaN-based devices are generally more resilient to dislocations than their AlGaN-based counterparts.

  3. Synthesis and electrochemical properties of tetrathienyl-linked branched polymers with various aromatic cores

    International Nuclear Information System (INIS)

    Idzik, Krzysztof R.; Frydel, Jaroslaw; Beckert, Rainer; Ledwon, Przemyslaw; Lapkowski, Mieczyslaw; Fasting, Carlo; Müller, Carsten; Licha, Tobias

    2012-01-01

    A series of various tris(2,2′-bithiophen-5-yl)-aromatic derivatives were synthesized by Stille cross-coupling procedure. Their structures were characterized by 1 H NMR, 13 C NMR, and elemental analysis. DFT calculations for monomers were also performed. The optical properties of the synthesized materials as well as their energy levels were investigated by UV–vis absorption supported by fluorescence spectra and CV analysis. Oligomers obtained in the process of electropolymerization, possess a tetrathienyl bond with various aromatic and heteroaromatic cores. Electrochemical results confirm that the gained materials can apply successfully for a diversity of organic–electronic devices like organic light-emitting diodes (OLEDs), organic field-effect transistors (OFETs), and organic solar cells.

  4. Trichloroethylene (TCE) in tree cores to complement a subsurface investigation on residential property near a former electroplating facility.

    Science.gov (United States)

    Wilcox, Jeffrey D; Johnson, Kathy M

    2016-10-01

    Tree cores were collected and analyzed for trichloroethylene (TCE) on a private property between a former electroplating facility in Asheville, North Carolina (USA), and a contaminated wetland/spring complex. TCE was detected in 16 of 31 trees, the locations of which were largely consistent with a "plume core" delineated by a more detailed subsurface investigation nearly 2 years later. Concentrations in tree cores and nearby soil borings were not correlated, perhaps due to heterogeneities in both geologic and tree root structure, spatial and temporal variability in transpiration rates, or interferences caused by other contaminants at the site. Several tree cores without TCE provided evidence for significantly lower TCE concentrations in shallow groundwater along the margins of the contaminated spring complex in an area with limited accessibility. This study demonstrates that tree core analyses can complement a more extensive subsurface investigation, particularly in residential or ecologically sensitive areas.

  5. Mechanical properties and corrosion resistance of nitrided or oxinitrided, and powder painted regular and interstitial free (IF) drawing steel sheet

    Energy Technology Data Exchange (ETDEWEB)

    Rogalski, Z.; Latas, Z. [Instytut Mechaniki Precyzyjnej, ul. Duchnicka 3, 01-796 Warszawa (Poland)

    2004-06-01

    Specimens of 0.8 mm thick regular and interstitial free (IF) drawing steel sheet have been nitrided in fluidised bed for 2 hours at 620 C and 560 C with and without a post-oxidation, and slow and accelerated cooling. As a result, surface hardness, yield and tensile strength of the sheets increased considerably without a critical loss of ductility. Resistance welds between the sheets did not lose their original strength after nitriding-oxinitriding. Nitrided-oxinitrided at 620 C and then powder painted sheets, as compared with powder painted raw sheets, were more corrosion resistant in neutral salt spray and climatic tests. Some mechanical and anticorrosion properties of the IF steel sheet that had undergone the nitriding-oxinitriding processes were definitely better than those of equally processed regular steel sheet. (Abstract Copyright [2004], Wiley Periodicals, Inc.) [German] Proben aus 0,8 mm dickem Blech aus Ziehmassenstahl sowie aus Ziehstahl ohne interstitiel geloeste Legierungsanteile (IF), werden im Wirbelbett in 2 Stunden bei 620 und 560 {sup o}C nitriert mit nachfolgenden Oxidierung sowie alternativ ohne Oxidierung und mit langsamer und beschleunigter Abkuehlung. Infolge dessen nehmen die Haerte, die Dehngrenze und die Zugfestigkeit der Bleche zu, ohne kritischen Zaehigkeitsverlust. Die Widerstandsschweisswulste zwischen den Blechen nach dem Nitrieren-Oxinitrieren haben nicht an Festigkeit verloren. Die bei 620 {sup o}C nitrierten-oxinitrierten und nachfolgend mit Pulverlack beschichteten Bleche sind bei den Versuchen in Salznebel und bei klimatischen Versuchen korrosionbestaendiger im Vergleich mit den mit nur Pulverlack beschichteten Rohblechen. Manche der mechanischen und korrosionsverhalten betreffenden Eigenschaften der Bleche aus IF-Staehle sind entscheidend besser als fuer das ebenso behandelte Blech aus Ziehmassenstahl. (Abstract Copyright [2004], Wiley Periodicals, Inc.)

  6. Thermodynamic and Microstructural Mechanisms in the Corrosion of Advanced Ceramic Tc-bearing Waste Forms and Thermophysical Properties

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, Thomas [Univ. of Nevada, Las Vegas, NV (United States). Dept. of Mechanical Engineering

    2017-09-01

    Technetium-99 (Tc, t1/2 = 2.13x105 years) is a challenge from a nuclear waste perspective and is one of the most abundant, long-lived radioisotopes found in used nuclear fuel (UNF). Within the Hanford Tank Waste Treatment and Immobilization Plant, technetium volatilizes at typical glass melting temperature, is captured in the off-gas treatment system and recycled back into the feed to eventually increase Tc-loadings of the glass. The aim of this NEUP project was to provide an alternative strategy to immobilize fission technetium as durable ceramic waste form and also to avoid the accumulation of volatile technetium within the off gas melter system in the course of vitrifying radioactive effluents in a ceramic melter. During this project our major attention was turned to the fabrication of chemical durable mineral phases where technetium is structurally bond entirely as tetravalent cation. These mineral phases will act as the primary waste form with optimal waste loading and superior resistance against leaching and corrosion. We have been very successful in fabricating phase-pure micro-gram amounts of lanthanide-technetium pyrochlores by dry-chemical synthesis. However, upscaling to a gram-size synthesis route using either dry- or wet-chemical processing was not always successful, but progress can be reported on a variety of aspects. During the course of this 5-year NEUP project (including a 2-year no-cost extension) we have significantly enhanced the existing knowledge on the fabrication and properties of ceramic technetium waste forms.

  7. Investigation on microstructural, anti-corrosion and mechanical properties of doped Zn–Al–SnO2 metal matrix composite coating on mild steel

    International Nuclear Information System (INIS)

    Fayomi, O.S.I.; Popoola, A.P.I.; Aigbodion, V.S.

    2015-01-01

    Highlights: • Properties of nanocomposite Zn–Al coating containing SnO 2 nanoparticles. • The morphology and structure of the coating were analysed. • The anticorrosion activities of the coating prepared. • The mechanical properties were found to improve with the amount of the SnO 2 embedded. - Abstract: In this study, the microstructural, mechanical and anti-corrosion properties of nanocomposite Zn–Al coating containing SnO 2 nanoparticles prepared from sulphates electrolyte by electrodeposition on mild steel substrate was investigated. The morphologies of the coating were analysed using SEM/EDS, AFM Raman and X-ray diffraction. The anticorrosion behaviour of the coating prepared with different concentrations of SnO 2 (7 and 13 g/L) and potential of (0.3 and 0.5 V) was examined in 3.65% NaCl solution by using linear polarization techniques. The wear and hardness properties of the coatings were performed under accelerated reciprocating dry sliding wear tests and diamond micro-hardness tester respectively. The results obtained showed that the incorporation of SnO 2 in the plating bath brings an increase in corrosion resistance and mechanical properties of Zn–Al–SnO 2 composite coatings. The SEM images showed a homogeneous grain structure and finer morphology of the coatings. The hardness values was found to improve with the amount of the SnO 2 embedded into the Zn–Al metal deposit and effective deposition parameters

  8. Corrosion Evaluation and Corrosion Control of Steam Generators

    International Nuclear Information System (INIS)

    Maeng, W. Y.; Kim, U. C.; Sung, K. W.; Na, J. W.; Lee, Y. H.; Lee, D. H.; Kim, K. M.

    2008-06-01

    Corrosion damage significantly influences the integrity and efficiency of steam generator. Corrosion problems of steam generator are unsolved issues until now even though much effort is made around world. Especially the stress corrosion cracking of heat exchange materials is the first issue to be solved. The corrosion protection method of steam generator is important and urgent for the guarantee of nuclear plant's integrity. The objectives of this study are 1) to evaluate the corrosion properties of steam generator materials, 2) to optimize the water chemistry of steam generator and 3) to develop the corrosion protection method of primary and secondary sides of steam generator. The results will be reflected to the water chemistry guideline for improving the integrity and efficiency of steam generator in domestic power plants

  9. Corrosion Evaluation and Corrosion Control of Steam Generators

    Energy Technology Data Exchange (ETDEWEB)

    Maeng, W. Y.; Kim, U. C.; Sung, K. W.; Na, J. W.; Lee, Y. H.; Lee, D. H.; Kim, K. M

    2008-06-15

    Corrosion damage significantly influences the integrity and efficiency of steam generator. Corrosion problems of steam generator are unsolved issues until now even though much effort is made around world. Especially the stress corrosion cracking of heat exchange materials is the first issue to be solved. The corrosion protection method of steam generator is important and urgent for the guarantee of nuclear plant's integrity. The objectives of this study are 1) to evaluate the corrosion properties of steam generator materials, 2) to optimize the water chemistry of steam generator and 3) to develop the corrosion protection method of primary and secondary sides of steam generator. The results will be reflected to the water chemistry guideline for improving the integrity and efficiency of steam generator in domestic power plants.

  10. Effect of Cu on microstructure, mechanical properties, corrosion resistance and cytotoxicity of CoCrW alloy fabricated by selective laser melting.

    Science.gov (United States)

    Lu, Yanjin; Ren, Ling; Xu, Xiongcheng; Yang, Yang; Wu, Songquan; Luo, Jiasi; Yang, Mingyu; Liu, Lingling; Zhuang, Danhong; Yang, Ke; Lin, Jinxin

    2018-05-01

    In the study, CoCrWCu alloys with differing Cu content (2, 3, 4 wt%) were prepared by selective laser melting using mixture powders consisting of CoCrW and Cu, aiming at investigating the effect of Cu on the microstructures, mechanical properties, corrosion behavior and cytotoxicity. The SEM observations indicated that the Cu content up to 3 wt% caused the Si-rich precipitates to segregate along grain boundaries and in the grains, and EBSD analysis suggested that the Cu addition decreased the recrystallization degree and increased the grain diameter and fraction of big grains. The tensile tests found that the increasing Cu content led to a decrease of mechanical properties compared with Cu-free CoCrW alloy. The electrochemical tests revealed that the addition of Cu shifted the corrosion potential toward nobler positive, but increased the corrosion current density. Also, a more protective passive film was formed when 2 wt% Cu content was added, but the higher Cu content up to 3 wt% was detrimental to the corrosion resistance. It was noted that there was no cytotoxicity for Cu-bearing CoCrW alloys to MG-63 cell and the cells could spread well on the surfaces of studied alloys. Meanwhile, the Cu-bearing CoCrW alloy exhibited an excellent antibacterial performance against E.coli when Cu content was up to 3 wt%. It is suggested that the feasible fabrication of Cu-bearing CoCrW alloy by SLM using mixed CoCrW and Cu powders is a promising candidate for use in antibacterial oral repair products. This current study also can aid in the further design of antibacterial Cu-containing CoCrW alloying powders. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. In vitro and in vivo corrosion, cytocompatibility and mechanical properties of biodegradable Mg-Y-Ca-Zr alloys as implant materials.

    Science.gov (United States)

    Chou, Da-Tren; Hong, Daeho; Saha, Partha; Ferrero, Jordan; Lee, Boeun; Tan, Zongqing; Dong, Zhongyun; Kumta, Prashant N

    2013-11-01

    This study introduces a class of biodegradable Mg-Y-Ca-Zr alloys novel to biological applications and presents evaluations for orthopedic and craniofacial implant applications. Mg-Y-Ca-Zr alloys were processed using conventional melting and casting techniques. The effects of increasing Y content from 1 to 4 wt.% as well as the effects of T4 solution treatment were assessed. Basic material phase characterization was conducted using X-ray diffraction, optical microscopy and scanning electron microscopy. Compressive and tensile tests allowed for the comparison of mechanical properties of the as-cast and T4-treated Mg-Y-Ca-Zr alloys to pure Mg and as-drawn AZ31. Potentiodynamic polarization tests and mass loss immersion tests were used to evaluate the corrosion behavior of the alloys. In vitro cytocompatibility tests on MC3T3-E1 pre-osteoblast cells were also conducted. Finally, alloy pellets were implanted into murine subcutaneous tissue to observe in vivo corrosion as well as local host response through H&E staining. SEM/EDS analysis showed that secondary phase intermetallics rich in yttrium were observed along the grain boundaries, with the T4 solution treatment diffusing the secondary phases into the matrix while increasing the grain size. The alloys demonstrated marked improvement in mechanical properties over pure Mg. Increasing the Y content contributed to improved corrosion resistance, while solution-treated alloys resulted in lower strength and compressive strain compared to as-cast alloys. The Mg-Y-Ca-Zr alloys demonstrated excellent in vitro cytocompatibility and normal in vivo host response. The mechanical, corrosion and biological evaluations performed in this study demonstrated that Mg-Y-Ca-Zr alloys, especially with the 4 wt.% Y content, would perform well as orthopedic and craniofacial implant biomaterials. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. CONSTRAINING SATURN'S CORE PROPERTIES BY A MEASUREMENT OF ITS MOMENT OF INERTIA-IMPLICATIONS TO THE CASSINI SOLSTICE MISSION

    International Nuclear Information System (INIS)

    Helled, R.

    2011-01-01

    Knowledge of Saturn's axial moment of inertia can provide valuable information on its internal structure. We suggest that Saturn's angular momentum may be determined by the Solstice Mission (Cassini XXM) by measuring Saturn's pole precession rate and the Lense-Thirring acceleration on the spacecraft, and therefore put constraints on Saturn's moment of inertia. It is shown that Saturn's moment of inertia can change up to ∼2% due to different core properties. However, a determination of Saturn's rotation rate is required to constrain its axial moment of inertia. A change of about seven minutes in rotation period leads to a similar uncertainty in the moment of inertia value as different core properties (mass, radius). A determination of Saturn's angular momentum and rotation period by the Solstice Mission could reveal important information on Saturn's internal structure, in particular, its core properties.

  13. [The effect of hydrogen peroxide on the electrochemical corrosion properties and metal ions release of nickel-chromium dental alloys].

    Science.gov (United States)

    Wang, Jue; Qiao, Guang-yan

    2013-04-01

    To investigate the effect of hydrogen peroxide on the electrochemical corrosion and metal ions release of nickel-chromium dental alloys. The corrosion resistance of nickel-chromium dental alloys was compared by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization curve (PD) methods in artificial saliva after immersed in different concentrations of hydrogen peroxide for 112 h. The metal ions released from nickel-chromium dental alloys to the artificial saliva were detected after electrochemical measurements using inductively coupled plasma mass spectrometry (ICP-MS). The data was statistically analyzed by analysis of variance (ANOVA) using SPSS 13.0 software package. The electrochemical experiment showed that the sequence of polarization resistance in equivalent circuit (Rct), corrosion potential (Ecorr), pitting breakdown potential (Eb), and the difference between Ecorr and Eb representing the "pseudo-passivation" (δE) of nickel-chromium alloys in artificial saliva was 30% alloys to the artificial saliva, and the order of the concentrations of metal ions was 0% corrosion resistance of nickel-chromium dental alloys decrease after immersed in different concentrations of hydrogen peroxide for 112 h. Nickel-chromium dental alloys are more prone to corrosion in the artificial saliva with the concentration of hydrogen peroxide increased, and more metal ions are released in the artificial saliva.

  14. Ag@ZnO core-shell nanoparticles study by first principle: The structural, magnetic and optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Hai-Xia [Department of Physics, University of Science and Technology Beijing, Beijing 100083 (China); Wang, Xiao-Xu [Department of Physics, University of Science and Technology Beijing, Beijing 100083 (China); Beijing Computing Center, Beijing 100094 (China); Hu, Yao-Wen [Department of Physics, Tsinghua University, Beijing 100084 (China); Song, Hong-Quan; Huo, Jin-Rong; Li, Lu [Department of Physics, University of Science and Technology Beijing, Beijing 100083 (China); Qian, Ping, E-mail: ustbqianp@163.com [Department of Physics, University of Science and Technology Beijing, Beijing 100083 (China); Song, Yu-Jun [Department of Physics, University of Science and Technology Beijing, Beijing 100083 (China)

    2016-12-15

    Ag@ZnO core-shell nanoparticles of around 72 atoms have been investigated by the density functional theory, revealing proving for the first time that the core-shell structure exhibits a shrinkage phenomenon from outer shell in agreement with the other studies in literatures. Our calculations predict that the Ag@ZnO core-shell structure is a ferromagnetic spin polarized state, and the magnetism mainly stems from the spin splitting of 2p electrons of O atoms. In addition, the total and partial DOS of Ag@ZnO indicate that the nanostructure is a half-metallic nanoparticle and has the characters of the p-type semiconductor. Furthermore, the optical properties calculations show that the absorption edge of Ag@ZnO have a red shift and good photocatalysis compare to that of the bulk ZnO. These results of the Ag@ZnO core-shell structure obtain a well agreement with the experimental measurement. - Graphical abstract: Geometric structure of (a) Ag@ZnO core-shell nanostructure; (b) the core of Ag; (c) the shell of ZnO The core-shell nanoparticle Ag@ZnO contains Ag inner core of radius of 4 Å and ZnO outer shell with thickness of 2 Å. Ag@ZnO core-shell nanoparticles of around 72 atoms have been proved for the first time that the core-shell structure exhibit a shrinkage phenomenon from outer shell. Our calculations predict that the Ag@ZnO core-shell structure is a half-metallic nanoparticle and has the characters of the p-type semiconductor. The absorption edge of Ag@ZnO have a red shift and get good photo-catalysis compare to that of the bulk ZnO.

  15. Effects of fabrication practices and techniques on the corrosion and mechanical properties of Ni-Cr-Mo nickel based alloys UNS N10276, N06022, N06686, and N06625

    International Nuclear Information System (INIS)

    Hinshaw, E.B.; Crum, J.R.

    1996-01-01

    Ni-Cr-Mo alloys have excellent resistance to both oxidizing and reducing type environments; however, heat treating, surface condition, welding, and type of welding consumable can have a significant affect on the corrosion resistance and mechanical properties of these alloys. It is also important when performing standard ASTM intergranular corrosion tests on welded test coupons to make an accurate comparison of alloys being tested. A standard weld procedure and consistent post-weld sample conditioning method should be incorporated into the comparison test program. An evaluation of the effect of various fabrication practices on the corrosion resistance of the alloy was performed using accelerated corrosion tests ASTM G28B. The fabrication conditions examined were as-welded, welded-pickled, welded-annealed-pickled, welded annealed ground, welded-ground, using over matching filler metals, and various levels of heat input. In addition to fabrication techniques, the effect of ASTM G28B test duration on corrosion rates of UNS N10276, N06022, N06686, and N06625 was evaluated. ASTM G28A intergranular corrosion and mechanical testing using welded coupons of UNS N06625 were also performed to determine the affect of post-weld annealing and aging heat treatments on the corrosion resistance and mechanical properties of UNS N06625

  16. Multistimuli-responsive benzothiadiazole-cored phenylene vinylene derivative with nanoassembly properties.

    Science.gov (United States)

    Dou, Chuandong; Chen, Dong; Iqbal, Javed; Yuan, Yang; Zhang, Hongyu; Wang, Yue

    2011-05-17

    A trifluoromethyl-substituted benzothiadiazole-cored phenylene vinylene fluorophore (1) was synthesized and displayed piezo- and vapochromism and thermo-induced fluorescence variation in solid phase. Grinding could disrupt the crystalline compound 1 with orange emission into amorphous compound 1 with green emission, and heating treatment could change the amorphous compound 1 into crystalline compound 1. Ultraviolet-visible (UV-vis) absorption spectra, (13)C nuclear magnetic resonance (NMR), and powder X-ray diffraction (PXRD) characterizations demonstrated that crystalline and amorphous compound 1 possess different molecular packing. A differential scanning calorimetry (DSC) measurement revealed that the emission switching was due to the exchange between the thermodynamic-stable crystalline and metastable amorphous states. The ground sample exhibited vapochromic fluorescence property. Furthermore, compound 1 showed interesting supramolecular assembly characteristics in solution. Slowly cooling the hot N,N-dimethylformamide (DMF) solution of compound 1 resulted in the formation of orange fluorescent fibers, whereas sonication treatment of the cooling solution led to the generation of organic molecular gel. The field emission scanning electronic microscope (FESEM) and fluorescent microscopy images revealed smooth nano- or microfiber and network morphology properties. The PXRD spectra confirmed that these nano- or microstructures had a similar molecular-packing model with the crystalline state of compound 1. Slow evaporation of the toluene solution of compound 1 could produce green emissive microrods, which exhibited interesting thermo-induced fluorescence variation.

  17. Towards the development of rapid screening techniques for shale gas core properties

    Science.gov (United States)

    Cave, Mark R.; Vane, Christopher; Kemp, Simon; Harrington, Jon; Cuss, Robert

    2013-04-01

    Shale gas has been produced for many years in the U.S.A. and forms around 8% of total their natural gas production. Recent testing for gas on the Fylde Coast in Lancashire UK suggests there are potentially large reserves which could be exploited. The increasing significance of shale gas has lead to the need for deeper understanding of shale behaviour. There are many factors which govern whether a particular shale will become a shale gas resource and these include: i) Organic matter abundance, type and thermal maturity; ii) Porosity-permeability relationships and pore size distribution; iii) Brittleness and its relationship to mineralogy and rock fabric. Measurements of these properties require sophisticated and time consuming laboratory techniques (Josh et al 2012), whereas rapid screening techniques could provide timely results which could improve the efficiency and cost effectiveness of exploration. In this study, techniques which are portable and provide rapid on-site measurements (X-ray Fluorescence (XRF) and Infra-red (IR) spectroscopy) have been calibrated against standard laboratory techniques (Rock-Eval 6 analyser-Vinci Technologies) and Powder whole-rock XRD analysis was carried out using a PANalytical X'Pert Pro series diffractometer equipped with a cobalt-target tube, X'Celerator detector and operated at 45kV and 40mA, to predict properties of potential shale gas material from core material from the Bowland shale Roosecote, south Cumbria. Preliminary work showed that, amongst various mineralogical and organic matter properties of the core, regression models could be used so that the total organic carbon content could be predicted from the IR spectra with a 95 percentile confidence prediction error of 0.6% organic carbon, the free hydrocarbons could be predicted with a 95 percentile confidence prediction error of 0.6 mgHC/g rock, the bound hydrocarbons could be predicted with a 95 percentile confidence prediction error of 2.4 mgHC/g rock, mica content

  18. Alteration of properties of rock during their selection by shooting core lifter

    Energy Technology Data Exchange (ETDEWEB)

    Malinin, V F

    1969-01-01

    During the process of intrusion of the core lifter into rock, splitting and dislocation of the granules and crystals which compose it occur. In the core lifters, single small nondisintegrated fragments are sometimes encountered. Data on comparison of porosity of crushed cores and rock from which they were selected indicate increase in porosity and penetration of the filtrate of the drilling solution during the process of coring. The determined residual oil saturation of the core is different from the residual oil saturation of the rock from which they were selected. The permeability of cores of rock with high porosity is altered.

  19. Dependences of optical properties of spherical two-layered nanoparticles on parameters of gold core and material shell

    International Nuclear Information System (INIS)

    Pustovalov, V.K.; Astafyeva, L.G.; Zharov, V.P.

    2013-01-01

    Modeling of nonlinear dependences of optical properties of spherical two-layered gold core and some material shell nanoparticles (NPs) placed in water on parameters of core and shell was carried out on the basis of the extended Mie theory. Efficiency cross-sections of absorption, scattering and extinction of radiation with wavelength 532 nm by core–shell NPs in the ranges of core radii r 00 =5–40 nm and of relative NP radii r 1 /r 00 =1–8 were calculated (r 1 —radius of two-layered nanoparticle). Shell materials were used with optical indexes in the ranges of refraction n 1 =0.2–1.5 and absorption k 1 =0–3.5 for the presentation of optical properties of wide classes of shell materials (including dielectrics, metals, polymers, vapor shell around gold core). Results show nonlinear dependences of optical properties of two-layered NPs on optical indexes of shell material, core r 00 and relative NP r 1 /r 00 radii. Regions with sharp decrease and increase of absorption, scattering and extinction efficiency cross-sections with changing of core and shell parameters were investigated. These dependences should be taken into account for applications of two-layered NPs in laser nanomedicine and optical diagnostics of tissues. The results can be used for experimental investigation of shell formation on NP core and optical determination of geometrical parameters of core and shell of two-layered NPs. -- Highlights: • Absorption, scattering and extinction of two-layered nanoparticles are studied. • Shell materials change in wide regions of materials (metals, dielectrics, vapor). • Effect of sharp decrease and increase of optical characteristics is established. • Explanation of sharp decreasing and increasing optical characteristics is presented

  20. Magnetic properties, microstructure and corrosion behavior of (Pr,nd)12.6Fe81.3B6.1-type sintered magnets doped with (Pr,nd)30Fe62Ga8

    Science.gov (United States)

    Ni, Junjie; Zhang, Zhenyu; Liu, Ying; Jia, Zhengfeng; Huang, Baoxu; Yin, Yibin

    2016-10-01

    NdFeB sintered magnets with (Pr,Nd)30Fe62Ga8 were prepared by a binary powder blending method and their magnetic properties, microstructure and corrosion behavior were investigated. Addition of 3 wt% (Pr,Nd)30Fe62Ga8 was found to be the most effective for improving (BH)max and iHc of the magnets. The increase in both magnetic parameters was related to the alteration in microstructure. However, in other samples the occurrence of micropore and the aggregation of intergranular phases harmed the magnetic properties. Such disadvantageous microstructure features also caused higher corrosion current density, thus decreasing the corrosion resistance of the sample with higher additive content. In addition, the Ga-containing intergranular phases that are more stable than the (Pr,Nd)-rich phase formed in the additive doped magnets, leading to better corrosion resistance of the 3 wt% additives doped sample in comparison with the contrastive sample.

<