WorldWideScience

Sample records for core body temperature

  1. Core body temperature in obesity.

    Science.gov (United States)

    Heikens, Marc J; Gorbach, Alexander M; Eden, Henry S; Savastano, David M; Chen, Kong Y; Skarulis, Monica C; Yanovski, Jack A

    2011-05-01

    A lower core body temperature set point has been suggested to be a factor that could potentially predispose humans to develop obesity. We tested the hypothesis that obese individuals have lower core temperatures than those in normal-weight individuals. In study 1, nonobese [body mass index (BMI; in kg/m(2)) temperature-sensing capsules, and we measured core temperatures continuously for 24 h. In study 2, normal-weight (BMI of 18-25) and obese subjects swallowed temperature-sensing capsules to measure core temperatures continuously for ≥48 h and kept activity logs. We constructed daily, 24-h core temperature profiles for analysis. Mean (±SE) daily core body temperature did not differ significantly between the 35 nonobese and 46 obese subjects (36.92 ± 0.03°C compared with 36.89 ± 0.03°C; P = 0.44). Core temperature 24-h profiles did not differ significantly between 11 normal-weight and 19 obese subjects (P = 0.274). Women had a mean core body temperature ≈0.23°C greater than that of men (36.99 ± 0.03°C compared with 36.76 ± 0.03°C; P body temperature. It may be necessary to study individuals with function-altering mutations in core temperature-regulating genes to determine whether differences in the core body temperature set point affect the regulation of human body weight. These trials were registered at clinicaltrials.gov as NCT00428987 and NCT00266500.

  2. Core body temperature in obesity123

    Science.gov (United States)

    Heikens, Marc J; Gorbach, Alexander M; Eden, Henry S; Savastano, David M; Chen, Kong Y; Skarulis, Monica C

    2011-01-01

    Background: A lower core body temperature set point has been suggested to be a factor that could potentially predispose humans to develop obesity. Objective: We tested the hypothesis that obese individuals have lower core temperatures than those in normal-weight individuals. Design: In study 1, nonobese [body mass index (BMI; in kg/m2) <30] and obese (BMI ≥30) adults swallowed wireless core temperature–sensing capsules, and we measured core temperatures continuously for 24 h. In study 2, normal-weight (BMI of 18–25) and obese subjects swallowed temperature-sensing capsules to measure core temperatures continuously for ≥48 h and kept activity logs. We constructed daily, 24-h core temperature profiles for analysis. Results: Mean (±SE) daily core body temperature did not differ significantly between the 35 nonobese and 46 obese subjects (36.92 ± 0.03°C compared with 36.89 ± 0.03°C; P = 0.44). Core temperature 24-h profiles did not differ significantly between 11 normal-weight and 19 obese subjects (P = 0.274). Women had a mean core body temperature ≈0.23°C greater than that of men (36.99 ± 0.03°C compared with 36.76 ± 0.03°C; P < 0.0001). Conclusions: Obesity is not generally associated with a reduced core body temperature. It may be necessary to study individuals with function-altering mutations in core temperature–regulating genes to determine whether differences in the core body temperature set point affect the regulation of human body weight. These trials were registered at clinicaltrials.gov as NCT00428987 and NCT00266500. PMID:21367952

  3. The Effects of the Heat and Moisture Exchanger on Humidity, Airway Temperature, and Core Body Temperature

    National Research Council Canada - National Science Library

    Delventhal, Mary

    1999-01-01

    Findings from several studies have demonstrated that the use of a heat and moisture exchanger increases airway humidity, which in turn increases mean airway temperature and prevents decreases in core body temperature...

  4. Systems Modeling for Crew Core Body Temperature Prediction Postlanding

    Science.gov (United States)

    Cross, Cynthia; Ochoa, Dustin

    2010-01-01

    The Orion Crew Exploration Vehicle, NASA s latest crewed spacecraft project, presents many challenges to its designers including ensuring crew survivability during nominal and off nominal landing conditions. With a nominal water landing planned off the coast of San Clemente, California, off nominal water landings could range from the far North Atlantic Ocean to the middle of the equatorial Pacific Ocean. For all of these conditions, the vehicle must provide sufficient life support resources to ensure that the crew member s core body temperatures are maintained at a safe level prior to crew rescue. This paper will examine the natural environments, environments created inside the cabin and constraints associated with post landing operations that affect the temperature of the crew member. Models of the capsule and the crew members are examined and analysis results are compared to the requirement for safe human exposure. Further, recommendations for updated modeling techniques and operational limits are included.

  5. Individualized estimation of human core body temperature using noninvasive measurements.

    Science.gov (United States)

    Laxminarayan, Srinivas; Rakesh, Vineet; Oyama, Tatsuya; Kazman, Josh B; Yanovich, Ran; Ketko, Itay; Epstein, Yoram; Morrison, Shawnda; Reifman, Jaques

    2018-06-01

    A rising core body temperature (T c ) during strenuous physical activity is a leading indicator of heat-injury risk. Hence, a system that can estimate T c in real time and provide early warning of an impending temperature rise may enable proactive interventions to reduce the risk of heat injuries. However, real-time field assessment of T c requires impractical invasive technologies. To address this problem, we developed a mathematical model that describes the relationships between T c and noninvasive measurements of an individual's physical activity, heart rate, and skin temperature, and two environmental variables (ambient temperature and relative humidity). A Kalman filter adapts the model parameters to each individual and provides real-time personalized T c estimates. Using data from three distinct studies, comprising 166 subjects who performed treadmill and cycle ergometer tasks under different experimental conditions, we assessed model performance via the root mean squared error (RMSE). The individualized model yielded an overall average RMSE of 0.33 (SD = 0.18)°C, allowing us to reach the same conclusions in each study as those obtained using the T c measurements. Furthermore, for 22 unique subjects whose T c exceeded 38.5°C, a potential lower T c limit of clinical relevance, the average RMSE decreased to 0.25 (SD = 0.20)°C. Importantly, these results remained robust in the presence of simulated real-world operational conditions, yielding no more than 16% worse RMSEs when measurements were missing (40%) or laden with added noise. Hence, the individualized model provides a practical means to develop an early warning system for reducing heat-injury risk. NEW & NOTEWORTHY A model that uses an individual's noninvasive measurements and environmental variables can continually "learn" the individual's heat-stress response by automatically adapting the model parameters on the fly to provide real-time individualized core body temperature estimates. This

  6. Core body temperature, skin temperature, and interface pressure. Relationship to skin integrity in nursing home residents.

    Science.gov (United States)

    Knox, D M

    1999-06-01

    To ascertain the effects of 1-, 1 1/2-, and 2-hour turning intervals on nursing home residents' skin over the sacrum and trochanters. (1) the higher the core body temperature, the higher the skin surface temperature; (2) the 2-hour turning interval would have significantly higher skin surface temperature; (3) there would be no relationship between skin surface temperature and interface pressure; and (4) the sacrum would have the lowest skin surface temperature. Modified Latin-square. For-profit nursing home. Convenience sample of 26 residents who scored bedridden. First Temp measured core temperature; a disposable thermistor temperature probe, skin temperature; and a digital interface pressure evaluator, the interface pressure. Negative correlation (r = -.33, P = .003) occurred between core body temperature and skin surface temperature. Skin surface temperature rose at the end of the 2-hour turning interval but was not significant (F = (2.68) = .73, P = .49). Weak negative relationship (r = -12, P = .29) occurred between skin surface temperature and interface pressure, and sacral skin surface temperature was significantly lower for the left trochanter only (F = (8.68) = 7.05, P = .002). Although hypotheses were not supported, more research is needed to understand how time in position and multiple chronic illnesses interact to affect skin pressure tolerance.

  7. The circadian rhythm of core body temperature (Part I: The use of modern telemetry systems to monitor core body temperature variability

    Directory of Open Access Journals (Sweden)

    Słomko Joanna

    2016-06-01

    Full Text Available The best known daily rhythms in humans include: the sleep-wake rhythm, the circadian core body temperature variability, daily fluctuations in arterial blood pressure and heartbeat frequency, and daily changes in hormone secretion: e.g. melatonin, cortisol, growth hormone, prolactin. The core body temperature in humans has a characteristic sinusoidal course, with the maximum value occurring between 3:00-5:00 pm and the minimum between 3:00-5:00 am. Analysis of literature indicates that the obtained results concerning core body temperature are to a large extent influenced by the type of method applied in the measurement. Depending on test protocols, we may apply various methodologies to measuring core body temperature. One of the newest methods of measuring internal and external body temperature consists in the utilisation of remote temperature sensors transmitting the obtained value via a radio signal. The advantages of this method includes the ability to perform: continuous core temperature measurement, observe dynamic changes in core body temperature occurring in circadian rhythm and the repeatability and credibility of the obtained results, which is presented in numerous scientific reports.

  8. Whole-body cryostimulation increases parasympathetic outflow and decreases core body temperature.

    Science.gov (United States)

    Zalewski, Pawel; Bitner, Anna; Słomko, Joanna; Szrajda, Justyna; Klawe, Jacek J; Tafil-Klawe, Malgorzata; Newton, Julia L

    2014-10-01

    The cardiovascular, autonomic and thermal response to whole-body cryostimulation exposure are not completely known. Thus the aim of this study was to evaluate objectively and noninvasively autonomic and thermal reactions observed after short exposure to very low temperatures. We examined 25 healthy men with mean age 30.1 ± 3.7 years and comparable anthropomorphical characteristic. Each subject was exposed to cryotherapeutic temperatures in a cryogenic chamber for 3 min (approx. -120 °C). The cardiovascular and autonomic parameters were measured noninvasively with Task Force Monitor. The changes in core body temperature were determined with the Vital Sense telemetric measurement system. Results show that 3 min to cryotherapeutic temperatures causes significant changes in autonomic balance which are induced by peripheral and central blood volume changes. Cryostimulation also induced changes in core body temperature, maximum drop of core temperature was observed 50-60 min after the stimulation. Autonomic and thermal reactions to cryostimulation were observed up to 6 h after the exposure and were not harmful for examined subjects. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Lower core body temperature and greater body fat are components of a human thrifty phenotype.

    Science.gov (United States)

    Reinhardt, M; Schlögl, M; Bonfiglio, S; Votruba, S B; Krakoff, J; Thearle, M S

    2016-05-01

    In small studies, a thrifty human phenotype, defined by a greater 24-hour energy expenditure (EE) decrease with fasting, is associated with less weight loss during caloric restriction. In rodents, models of diet-induced obesity often have a phenotype including a reduced EE and decreased core body temperature. We assessed whether a thrifty human phenotype associates with differences in core body temperature or body composition. Data for this cross-sectional analysis were obtained from 77 individuals participating in one of two normal physiology studies while housed on our clinical research unit. Twenty-four-hour EE using a whole-room indirect calorimeter and 24-h core body temperature were measured during 24 h each of fasting and 200% overfeeding with a diet consisting of 50% carbohydrates, 20% protein and 30% fat. Body composition was measured by dual X-ray absorptiometry. To account for the effects of body size on EE, changes in EE were expressed as a percentage change from 24-hour EE (%EE) during energy balance. A greater %EE decrease with fasting correlated with a smaller %EE increase with overfeeding (r=0.27, P=0.02). The %EE decrease with fasting was associated with both fat mass and abdominal fat mass, even after accounting for covariates (β=-0.16 (95% CI: -0.26, -0.06) %EE per kg fat mass, P=0.003; β=-0.0004 (-0.0007, -0.00004) %EE kg(-1) abdominal fat mass, P=0.03). In men, a greater %EE decrease in response to fasting was associated with a lower 24- h core body temperature, even after adjusting for covariates (β=1.43 (0.72, 2.15) %EE per 0.1 °C, P=0.0003). Thrifty individuals, as defined by a larger EE decrease with fasting, were more likely to have greater overall and abdominal adiposity as well as lower core body temperature consistent with a more efficient metabolism.

  10. The effect of stress on core and peripheral body temperature in humans.

    Science.gov (United States)

    Vinkers, Christiaan H; Penning, Renske; Hellhammer, Juliane; Verster, Joris C; Klaessens, John H G M; Olivier, Berend; Kalkman, Cor J

    2013-09-01

    Even though there are indications that stress influences body temperature in humans, no study has systematically investigated the effects of stress on core and peripheral body temperature. The present study therefore aimed to investigate the effects of acute psychosocial stress on body temperature using different readout measurements. In two independent studies, male and female participants were exposed to a standardized laboratory stress task (the Trier Social Stress Test, TSST) or a non-stressful control task. Core temperature (intestinal and temporal artery) and peripheral temperature (facial and body skin temperature) were measured. Compared to the control condition, stress exposure decreased intestinal temperature but did not affect temporal artery temperature. Stress exposure resulted in changes in skin temperature that followed a gradient-like pattern, with decreases at distal skin locations such as the fingertip and finger base and unchanged skin temperature at proximal regions such as the infra-clavicular area. Stress-induced effects on facial temperature displayed a sex-specific pattern, with decreased nasal skin temperature in females and increased cheek temperature in males. In conclusion, the amplitude and direction of stress-induced temperature changes depend on the site of temperature measurement in humans. This precludes a direct translation of the preclinical stress-induced hyperthermia paradigm, in which core temperature uniformly rises in response to stress to the human situation. Nevertheless, the effects of stress result in consistent temperature changes. Therefore, the present study supports the inclusion of body temperature as a physiological readout parameter of stress in future studies.

  11. Prediction of human core body temperature using non-invasive measurement methods.

    Science.gov (United States)

    Niedermann, Reto; Wyss, Eva; Annaheim, Simon; Psikuta, Agnes; Davey, Sarah; Rossi, René Michel

    2014-01-01

    The measurement of core body temperature is an efficient method for monitoring heat stress amongst workers in hot conditions. However, invasive measurement of core body temperature (e.g. rectal, intestinal, oesophageal temperature) is impractical for such applications. Therefore, the aim of this study was to define relevant non-invasive measures to predict core body temperature under various conditions. We conducted two human subject studies with different experimental protocols, different environmental temperatures (10 °C, 30 °C) and different subjects. In both studies the same non-invasive measurement methods (skin temperature, skin heat flux, heart rate) were applied. A principle component analysis was conducted to extract independent factors, which were then used in a linear regression model. We identified six parameters (three skin temperatures, two skin heat fluxes and heart rate), which were included for the calculation of two factors. The predictive value of these factors for core body temperature was evaluated by a multiple regression analysis. The calculated root mean square deviation (rmsd) was in the range from 0.28 °C to 0.34 °C for all environmental conditions. These errors are similar to previous models using non-invasive measures to predict core body temperature. The results from this study illustrate that multiple physiological parameters (e.g. skin temperature and skin heat fluxes) are needed to predict core body temperature. In addition, the physiological measurements chosen in this study and the algorithm defined in this work are potentially applicable as real-time core body temperature monitoring to assess health risk in broad range of working conditions.

  12. Telemetric measurement of body core temperature in exercising unconditioned Labrador retrievers.

    Science.gov (United States)

    Angle, T Craig; Gillette, Robert L

    2011-04-01

    This project evaluated the use of an ingestible temperature sensor to measure body core temperature (Tc) in exercising dogs. Twenty-five healthy, unconditioned Labrador retrievers participated in an outdoor 3.5-km run, completed in 20 min on a level, 400-m grass track. Core temperature was measured continuously with a telemetric monitoring system before, during, and after the run. Data were successfully collected with no missing data points during the exercise. Core temperature elevated in the dogs from 38.7 ± 0.3°C at pre-exercise to 40.4 ± 0.6°C post-exercise. While rectal temperatures are still the standard of measurement, telemetric core temperature monitors may offer an easier and more comfortable means of sampling core temperature with minimal human and mechanical interference with the exercising dog.

  13. 3D Printed "Earable" Smart Devices for Real-Time Detection of Core Body Temperature.

    Science.gov (United States)

    Ota, Hiroki; Chao, Minghan; Gao, Yuji; Wu, Eric; Tai, Li-Chia; Chen, Kevin; Matsuoka, Yasutomo; Iwai, Kosuke; Fahad, Hossain M; Gao, Wei; Nyein, Hnin Yin Yin; Lin, Liwei; Javey, Ali

    2017-07-28

    Real-time detection of basic physiological parameters such as blood pressure and heart rate is an important target in wearable smart devices for healthcare. Among these, the core body temperature is one of the most important basic medical indicators of fever, insomnia, fatigue, metabolic functionality, and depression. However, traditional wearable temperature sensors are based upon the measurement of skin temperature, which can vary dramatically from the true core body temperature. Here, we demonstrate a three-dimensional (3D) printed wearable "earable" smart device that is designed to be worn on the ear to track core body temperature from the tympanic membrane (i.e., ear drum) based on an infrared sensor. The device is fully integrated with data processing circuits and a wireless module for standalone functionality. Using this smart earable device, we demonstrate that the core body temperature can be accurately monitored regardless of the environment and activity of the user. In addition, a microphone and actuator are also integrated so that the device can also function as a bone conduction hearing aid. Using 3D printing as the fabrication method enables the device to be customized for the wearer for more personalized healthcare. This smart device provides an important advance in realizing personalized health care by enabling real-time monitoring of one of the most important medical parameters, core body temperature, employed in preliminary medical screening tests.

  14. Microchip transponder thermometry for monitoring core body temperature of antelope during capture.

    Science.gov (United States)

    Rey, Benjamin; Fuller, Andrea; Hetem, Robyn S; Lease, Hilary M; Mitchell, Duncan; Meyer, Leith C R

    2016-01-01

    Hyperthermia is described as the major cause of morbidity and mortality associated with capture, immobilization and restraint of wild animals. Therefore, accurately determining the core body temperature of wild animals during capture is crucial for monitoring hyperthermia and the efficacy of cooling procedures. We investigated if microchip thermometry can accurately reflect core body temperature changes during capture and cooling interventions in the springbok (Antidorcas marsupialis), a medium-sized antelope. Subcutaneous temperature measured with a temperature-sensitive microchip was a weak predictor of core body temperature measured by temperature-sensitive data loggers in the abdominal cavity (R(2)=0.32, bias >2 °C). Temperature-sensitive microchips in the gluteus muscle, however, provided an accurate estimate of core body temperature (R(2)=0.76, bias=0.012 °C). Microchips inserted into muscle therefore provide a convenient and accurate method to measure body temperature continuously in captured antelope, allowing detection of hyperthermia and the efficacy of cooling procedures. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. FDTD analysis of body-core temperature elevation in children and adults for whole-body exposure

    Energy Technology Data Exchange (ETDEWEB)

    Hirata, Akimasa; Asano, Takayuki; Fujiwara, Osamu [Department of Computer Science and Engineering, Nagoya Institute of Technology (Japan)], E-mail: ahirata@nitech.ac.jp

    2008-09-21

    The temperature elevations in anatomically based human phantoms of an adult and a 3-year-old child were calculated for radio-frequency whole-body exposure. Thermoregulation in children, however, has not yet been clarified. In the present study, we developed a computational thermal model of a child that is reasonable for simulating body-core temperature elevation. Comparison of measured and simulated temperatures revealed thermoregulation in children to be similar to that of adults. Based on this finding, we calculated the body-core temperature elevation in a 3-year-old child and an adult for plane-wave exposure at the basic restriction in the international guidelines. The body-core temperature elevation in the 3-year-old child phantom was 0.03 deg. C at a whole-body-averaged specific absorption rate of 0.08 W kg{sup -1}, which was 35% smaller than in the adult female. This difference is attributed to the child's higher body surface area-to-mass ratio.

  16. FDTD analysis of body-core temperature elevation in children and adults for whole-body exposure.

    Science.gov (United States)

    Hirata, Akimasa; Asano, Takayuki; Fujiwara, Osamu

    2008-09-21

    The temperature elevations in anatomically based human phantoms of an adult and a 3-year-old child were calculated for radio-frequency whole-body exposure. Thermoregulation in children, however, has not yet been clarified. In the present study, we developed a computational thermal model of a child that is reasonable for simulating body-core temperature elevation. Comparison of measured and simulated temperatures revealed thermoregulation in children to be similar to that of adults. Based on this finding, we calculated the body-core temperature elevation in a 3-year-old child and an adult for plane-wave exposure at the basic restriction in the international guidelines. The body-core temperature elevation in the 3-year-old child phantom was 0.03 degrees C at a whole-body-averaged specific absorption rate of 0.08 W kg(-1), which was 35% smaller than in the adult female. This difference is attributed to the child's higher body surface area-to-mass ratio.

  17. FDTD analysis of body-core temperature elevation in children and adults for whole-body exposure

    International Nuclear Information System (INIS)

    Hirata, Akimasa; Asano, Takayuki; Fujiwara, Osamu

    2008-01-01

    The temperature elevations in anatomically based human phantoms of an adult and a 3-year-old child were calculated for radio-frequency whole-body exposure. Thermoregulation in children, however, has not yet been clarified. In the present study, we developed a computational thermal model of a child that is reasonable for simulating body-core temperature elevation. Comparison of measured and simulated temperatures revealed thermoregulation in children to be similar to that of adults. Based on this finding, we calculated the body-core temperature elevation in a 3-year-old child and an adult for plane-wave exposure at the basic restriction in the international guidelines. The body-core temperature elevation in the 3-year-old child phantom was 0.03 deg. C at a whole-body-averaged specific absorption rate of 0.08 W kg -1 , which was 35% smaller than in the adult female. This difference is attributed to the child's higher body surface area-to-mass ratio

  18. Increased core body temperature in astronauts during long-duration space missions

    Czech Academy of Sciences Publication Activity Database

    Stahn, A. C.; Werner, A.; Opatz, O.; Maggioni, M. A.; Steinach, M.; von Ahlefeld, V. W.; Moore, A.; Crucian, B. E.; Smith, S. M.; Zwart, S. R.; Schlabs, T.; Mendt, S.; Trippel, T.; Koralewski, E.; Koch, J.; Chouker, A.; Reitz, Guenther; Shang, P.; Rocker, L.; Kirsch, K. A.; Gunga, H-C.

    2017-01-01

    Roč. 7, č. 11 (2017), č. článku 16180. ISSN 2045-2322 Institutional support: RVO:61389005 Keywords : core body temperature * astonauts' CBT * spaceflights Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering OBOR OECD: Electrical and electronic engineering Impact factor: 4.259, year: 2016

  19. Endogenous and exogenous components in the circadian variation of core body temperature in humans

    NARCIS (Netherlands)

    Hiddinga, AE; Beersma, DGM; VandenHoofdakker, RH

    Core body temperature is predominantly modulated by endogenous and exogenous components. In the present study we tested whether these two components can be reliably assessed in a protocol which lasts for only 120 h. In this so-called forced desynchrony protocol, 12 healthy male subjects (age 23.7

  20. Selective SWS suppression does not affect the time course of core body temperature in men

    NARCIS (Netherlands)

    Beersma, Domien G.M.; Dijk, Derk-Jan

    1992-01-01

    In eight healthy middle-aged men, sleep and core body temperature were recorded under baseline conditions, during all-night SWS suppression by acoustic stimulation, and during undisturbed recovery sleep. SWS suppression resulted in a marked reduction of sleep stages 3 and 4 but did not affect the

  1. An IR Sensor Based Smart System to Approximate Core Body Temperature.

    Science.gov (United States)

    Ray, Partha Pratim

    2017-08-01

    Herein demonstrated experiment studies two methods, namely convection and body resistance, to approximate human core body temperature. The proposed system is highly energy efficient that consumes only 165 mW power and runs on 5 VDC source. The implemented solution employs an IR thermographic sensor of industry grade along with AT Mega 328 breakout board. Ordinarily, the IR sensor is placed 1.5-30 cm away from human forehead (i.e., non-invasive) and measured the raw data in terms of skin and ambient temperature which is then converted using appropriate approximation formula to find out core body temperature. The raw data is plotted, visualized, and stored instantaneously in a local machine by means of two tools such as Makerplot, and JAVA-JAR. The test is performed when human object is in complete rest and after 10 min of walk. Achieved results are compared with the CoreTemp CM-210 sensor (by Terumo, Japan) which is calculated to be 0.7 °F different from the average value of BCT, obtained by the proposed IR sensor system. Upon a slight modification, the presented model can be connected with a remotely placed Internet of Things cloud service, which may be useful to inform and predict the user's core body temperature through a probabilistic view. It is also comprehended that such system can be useful as wearable device to be worn on at the hat attachable way.

  2. Cross-sectional area of the murine aorta linearly increases with increasing core body temperature.

    Science.gov (United States)

    Crouch, A Colleen; Manders, Adam B; Cao, Amos A; Scheven, Ulrich M; Greve, Joan M

    2017-11-06

    The cardiovascular (CV) system plays a vital role in thermoregulation. To date, the response of core vasculature to increasing core temperature has not been adequately studied in vivo. Our objective was to non-invasively quantify the arterial response in murine models due to increases in body temperature, with a focus on core vessels of the torso and investigate whether responses were dependent on sex or age. Male and female, adult and aged mice were anaesthetised and underwent magnetic resonance imaging (MRI). Data were acquired from the circle of Willis (CoW), heart, infrarenal aorta and peripheral arteries at core temperatures of 35, 36, 37 and 38 °C (±0.2 °C). Vessels in the CoW did not change. Ejection fraction decreased and cardiac output (CO) increased with increasing temperature in adult female mice. Cross-sectional area of the aorta increased significantly and linearly with temperature for all groups, but at a diminished rate for aged animals (p temperature are biologically important because they may affect conductive and convective heat transfer. Leveraging non-invasive methodology to quantify sex and age dependent vascular responses due to increasing core temperature could be combined with bioheat modelling in order to improve understanding of thermoregulation.

  3. Various anti-motion sickness drugs and core body temperature changes.

    Science.gov (United States)

    Cheung, Bob; Nakashima, Ann M; Hofer, Kevin D

    2011-04-01

    Blood flow changes and inactivity associated with motion sickness appear to exacerbate the rate of core temperature decrease during subsequent body cooling. We investigated the effects of various classes of anti-motion sickness drugs on core temperature changes. There were 12 healthy male and female subjects (20-35 yr old) who were given selected classes of anti-motion sickness drugs prior to vestibular Coriolis cross coupling induced by graded yaw rotation and periodic pitch-forward head movements in the sagittal plane. All subjects were then immersed in water at 18 degrees C for a maximum of 90 min or until their core temperature reached 35 degrees C. Double-blind randomized trials were administered, including a placebo, a non-immersion control with no drug, and six anti-motion sickness drugs: meclizine, dimenhydrinate, chlorpheniramine, promethazine + dexamphetamine, promethazine + caffeine, and scopolamine + dexamphetamine. A 7-d washout period was observed between trials. Core temperature and the severity of sickness were monitored throughout each trial. A repeated measures design was performed on the severity of sickness and core temperature changes prior to motion provocation, immediately after the motion sickness end point, and throughout the period of cold-water immersion. The most effective anti-motion sickness drugs, promethazine + dexamphetamine (with a sickness score/duration of 0.65 +/- 0.17) and scopolamine + dexamphetamine (with a sickness score/duration of 0.79 +/- 0.17), significantly attenuated the decrease in core temperature. The effect of this attenuation was lower in less effective drugs. Our results suggest that the two most effective anti-motion sickness drugs are also the most effective in attenuating the rate of core temperature decrease.

  4. Considerations for the measurement of core, skin and mean body temperatures.

    Science.gov (United States)

    Taylor, Nigel A S; Tipton, Michael J; Kenny, Glen P

    2014-12-01

    Despite previous reviews and commentaries, significant misconceptions remain concerning deep-body (core) and skin temperature measurement in humans. Therefore, the authors have assembled the pertinent Laws of Thermodynamics and other first principles that govern physical and physiological heat exchanges. The resulting review is aimed at providing theoretical and empirical justifications for collecting and interpreting these data. The primary emphasis is upon deep-body temperatures, with discussions of intramuscular, subcutaneous, transcutaneous and skin temperatures included. These are all turnover indices resulting from variations in local metabolism, tissue conduction and blood flow. Consequently, inter-site differences and similarities may have no mechanistic relationship unless those sites have similar metabolic rates, are in close proximity and are perfused by the same blood vessels. Therefore, it is proposed that a gold standard deep-body temperature does not exist. Instead, the validity of each measurement must be evaluated relative to one's research objectives, whilst satisfying equilibration and positioning requirements. When using thermometric computations of heat storage, the establishment of steady-state conditions is essential, but for clinically relevant states, targeted temperature monitoring becomes paramount. However, when investigating temperature regulation, the response characteristics of each temperature measurement must match the forcing function applied during experimentation. Thus, during dynamic phases, deep-body temperatures must be measured from sites that track temperature changes in the central blood volume. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Long-term calorie restriction, but not endurance exercise, lowers core body temperature in humans

    Science.gov (United States)

    Soare, Andreea; Cangemi, Roberto; Omodei, Daniela; Holloszy, John O.; Fontana, Luigi

    2011-01-01

    Reduction of body temperature has been proposed to contribute to the increased lifespan in calorie restricted animals and mice overexpressing the uncoupling protein-2 in hypocretin neurons. However, nothing is known regarding the long-term effects of calorie restriction (CR) with adequate nutrition on body temperature in humans. In this study, 24-hour core body temperature was measured every minute by using ingested telemetric capsules in 24 men and women (mean age 53.7±9.4 yrs) consuming a CR diet for an average of 6 years, 24 age- and sex-matched sedentary (WD) and 24 body fat-matched exercise-trained (EX) volunteers, who were eating Western diets. The CR and EX groups were significantly leaner than the WD group. Energy intake was lower in the CR group (1769±348 kcal/d) than in the WD (2302±668 kcal/d) and EX (2798±760 kcal/d) groups (Ptemperatures were all significantly lower in the CR group than in the WD and EX groups (P≤0.01). Long-term CR with adequate nutrition in lean and weight-stable healthy humans is associated with a sustained reduction in core body temperature, similar to that found in CR rodents and monkeys. This adaptation is likely due to CR itself, rather than to leanness, and may be involved in slowing the rate of aging. PMID:21483032

  6. Effects of peripheral cold application on core body temperature and haemodynamic parameters in febrile patients.

    Science.gov (United States)

    Asgar Pour, Hossein; Yavuz, Meryem

    2014-04-01

    This study designed to assess the effects of peripheral cold application (PCA) on core body temperature and haemodynamic parameters in febrile patients. This study was an experimental, repeated-measures performed in the neurosurgical intensive-care unit. The research sample included all patients with fever in postoperative period. PCA was performed for 20 min. During fever, systolic blood pressure, mean arterial blood pressure and arterial oxygen saturation (O2 Sat) decreased by 5.07 ± 7.89 mm Hg, 0.191 ± 6.00 mm Hg and 0.742% ± 0.97%, respectively, whereas the pulse rate and diastolic blood pressure increased by 8.528 ± 4.42 beats/ min and 1.842 ± 6.9 mmHg, respectively. Immediately after PCA, core body temperature and pulse rate decreased by 0.3°C, 3.3 beats/min, respectively, whereas systolic, diastolic, mean arterial blood pressure and O2 Sat increased by, 1.40 mm Hg, 1.87 mm Hg, 0.98 mmHg and 0.27%, respectively. Thirty minutes after the end of PCA, core body temperature, diastolic, mean arterial blood pressure and pulse rate decreased by 0.57°C, 0.34 mm Hg, 0.60 mm Hg and 4.5 beats/min, respectively, whereas systolic blood pressure and O2 Sat increased by 0.98 mm Hg and 0.04%, respectively. The present results showed that PCA increases systolic, diastolic, mean arterial blood pressure and O2 Sat, and decreases core body temperature and pulse rate. © 2013 Wiley Publishing Asia Pty Ltd.

  7. Relation between Wet-Bulb Globe Temperature and Thermal Work Limit Indices with Body Core Temperature

    Directory of Open Access Journals (Sweden)

    Mahdi Jalali

    2018-06-01

    Full Text Available Occupational exposure to heat stress in casting and smelting industries can cause adverse health effects on employees who working in such industries. The present study was set to assess the correlation and agreement of heat stress indices, including wet bulb globe temperature (WBGT, and thermal work limit (TWL, and the deep body temperature indices in workers of several casting and smelting industries located in the vicinity of Tehran, Iran. In This cross-sectional study 40 workers randomly selected and were examined. WBGT and TWL were the indices used for assessing heat stress, and the tympanic temperature and the oral temperature were measured as the heat strain indices. The correlation and agreement of indices were measured using SPSS vs.16. The results of the assessment of WBGT, TWL, the tympanic temperature, and oral temperature showed that 80, 17.5, 40, and 32.5 percent of workers exposed to heat stress higher than permissible limits proposed by standard bodies. Moreover, the present study showed that the significant correlation coefficient between heat stress and heat strain indices was in the range of 0.844- 0.869. Further, there was observed a good agreement between TWL and heat strain indices. The agreement between TWL and the oral temperature was 0.63 (P-value≤ 0.001 and between TWL and tympanic temperature was 0.612 (P-value≤ 0.001. However, the agreement between WBGT and heat strain indices was not satisfactory. These values were 0.154 (P-value ≥ 0.068 and 0.215 (P-value≥ 0.028 for the oral temperature and the tympanic temperature, respectively. The TWL index had a better agreement than WBGT with heat strain indices so TWL index is the better choice for assessing the heat stress in casting and metal smelting industries.

  8. The effect of lower body cooling on the changes in three core temperature indices

    International Nuclear Information System (INIS)

    Basset, F A; Cahill, F; Handrigan, G; DuCharme, M B; Cheung, S S

    2011-01-01

    Rectal (T re ), ear canal (T ear ) and esophageal (T es ) temperatures have been used in the literature as core temperature indices in humans. The aim of the study was to investigate if localized lower body cooling would have a different effect on each of these measurements. We hypothesized that prolonged lower body surface cooling will result in a localized cooling effect for the rectal temperature not reflected in the other core measurement sites. Twelve participants (mean ± SD; 26.8 ± 6.0 years; 82.6 ± 13.9 kg; 179 ± 10 cm, BSA = 2.00 ± 0.21 m 2 ) attended one experimental session consisting of sitting on a rubberized raft floor surface suspended in 5 °C water in a thermoneutral air environment (∼21.5 ± 0.5 °C). Experimental conditions were (a) a baseline phase during which participants were seated for 15 min in an upright position on an insulated pad (1.408 K . m 2 . W −1 ); (b) a cooling phase during which participants were exposed to the cooling surface for 2 h, and (c) an insulation phase during which the baseline condition was repeated for 1 h. Temperature data were collected at 1 Hz, reduced to 1 min averages, and transformed from absolute values to a change in temperature from baseline (15 min average). Metabolic data were collected breath-by-breath and integrated over the same temperature epoch. Within the baseline phase no significant change was found between the three indices of core temperature. By the end of the cooling phase, T re was significantly lower (Δ = −1.0 ± 0.4 °C) from baseline values than from T ear (Δ = −0.3 ± 0.3 °C) and T es (Δ = −0.1 ± 0.3 °C). T re continued to decrease during the insulation phase from Δ −1.0 ± 0.4 °C to as low as Δ −1.4 ± 0.5 °C. By the end of the insulation phase T re had slightly risen back to Δ −1.3 ± 0.4 °C but remained significantly different from baseline values and from the other two core measures. Metabolic data showed no variation throughout the experiment. In

  9. Insulated skin temperature as a measure of core body temperature for individuals wearing CBRN protective clothing

    International Nuclear Information System (INIS)

    Richmond, V L; Wilkinson, D M; Blacker, S D; Horner, F E; Carter, J; Rayson, M P; Havenith, G

    2013-01-01

    This study assessed the validity of insulated skin temperature (T is ) to predict rectal temperature (T re ) for use as a non-invasive measurement of thermal strain to reduce the risk of heat illness for emergency service personnel. Volunteers from the Police, Fire and Rescue, and Ambulance Services performed role-related tasks in hot (30 °C) and neutral (18 °C) conditions, wearing service specific personal protective equipment. Insulated skin temperature and micro climate temperature (T mc ) predicted T re with an adjusted r 2 = 0.87 and standard error of the estimate (SEE) of 0.19 °C. A bootstrap validation of the equation resulted in an adjusted r 2 = 0.85 and SEE = 0.20 °C. Taking into account the 0.20 °C error, the prediction of T re resulted in a sensitivity and specificity of 100% and 91%, respectively. Insulated skin temperature and T mc can be used in a model to predict T re in emergency service personnel wearing CBRN protective clothing with an SEE of 0.2 °C. However, the model is only valid for T is over 36.5 °C, above which thermal stability is reached between the core and the skin. (paper)

  10. Theoretical and Experimental Studies of Epidermal Heat Flux Sensors for Measurements of Core Body Temperature

    Science.gov (United States)

    Zhang, Yihui; Webb, Richard Chad; Luo, Hongying; Xue, Yeguang; Kurniawan, Jonas; Cho, Nam Heon; Krishnan, Siddharth; Li, Yuhang; Huang, Yonggang

    2016-01-01

    Long-term, continuous measurement of core body temperature is of high interest, due to the widespread use of this parameter as a key biomedical signal for clinical judgment and patient management. Traditional approaches rely on devices or instruments in rigid and planar forms, not readily amenable to intimate or conformable integration with soft, curvilinear, time-dynamic, surfaces of the skin. Here, materials and mechanics designs for differential temperature sensors are presented which can attach softly and reversibly onto the skin surface, and also sustain high levels of deformation (e.g., bending, twisting, and stretching). A theoretical approach, together with a modeling algorithm, yields core body temperature from multiple differential measurements from temperature sensors separated by different effective distances from the skin. The sensitivity, accuracy, and response time are analyzed by finite element analyses (FEA) to provide guidelines for relationships between sensor design and performance. Four sets of experiments on multiple devices with different dimensions and under different convection conditions illustrate the key features of the technology and the analysis approach. Finally, results indicate that thermally insulating materials with cellular structures offer advantages in reducing the response time and increasing the accuracy, while improving the mechanics and breathability. PMID:25953120

  11. Effect of a single 3-hour exposure to bright light on core body temperature and sleep in humans.

    Science.gov (United States)

    Dijk, D J; Cajochen, C; Borbély, A A

    1991-01-02

    Seven human subjects were exposed to bright light (BL, approx. 2500 lux) and dim light (DL, approx. 6 lux) during 3 h prior to nocturnal sleep, in a cross-over design. At the end of the BL exposure period core body temperature was significantly higher than at the end of the DL exposure period. The difference in core body temperature persisted during the first 4 h of sleep. The latency to sleep onset was increased after BL exposure. Rapid-eye movement sleep (REMS) and slow-wave sleep (SWS; stage 3 + 4 of non-REMS) were not significantly changed. Eight subjects were exposed to BL from 20.30 to 23.30 h while their eyes were covered or uncovered. During BL exposure with uncovered eyes, core body temperature decreased significantly less than during exposure with covered eyes. We conclude that bright light immediately affects core body temperature and that this effect is mediated via the eyes.

  12. Comparison of estimated core body temperature measured with the BioHarness and rectal temperature under several heat stress conditions.

    Science.gov (United States)

    Seo, Yongsuk; DiLeo, Travis; Powell, Jeffrey B; Kim, Jung-Hyun; Roberge, Raymond J; Coca, Aitor

    2016-08-01

    Monitoring and measuring core body temperature is important to prevent or minimize physiological strain and cognitive dysfunction for workers such as first responders (e.g., firefighters) and military personnel. The purpose of this study is to compare estimated core body temperature (Tco-est), determined by heart rate (HR) data from a wearable chest strap physiology monitor, to standard rectal thermometry (Tre) under different conditions.  Tco-est and Tre measurements were obtained in thermoneutral and heat stress conditions (high temperature and relative humidity) during four different experiments including treadmill exercise, cycling exercise, passive heat stress, and treadmill exercise while wearing personal protective equipment (PPE).  Overall, the mean Tco-est did not differ significantly from Tre across the four conditions. During exercise at low-moderate work rates under heat stress conditions, Tco-est was consistently higher than Tre at all-time points. Tco-est underestimated temperature compared to Tre at rest in heat stress conditions and at a low work rate under heat stress while wearing PPE. The mean differences between the two measurements ranged from -0.1 ± 0.4 to 0.3 ± 0.4°C and Tco-est correlated well with HR (r = 0.795 - 0.849) and mean body temperature (r = 0.637 - 0.861).  These results indicate that, the comparison of Tco-est to Tre may result in over- or underestimation which could possibly lead to heat-related illness during monitoring in certain conditions. Modifications to the current algorithm should be considered to address such issues.

  13. Simple and effective method to lower body core temperatures of hyperthermic patients.

    Science.gov (United States)

    O'Connor, John P

    2017-06-01

    Hyperthermia is a potentially life threatening scenario that may occur in patients due to accompanying morbidities, exertion, or exposure to dry and arid environmental conditions. In particular, heat stroke may result from environmental exposure combined with a lack of thermoregulation. Key clinical findings in the diagnosis of heatstroke are (1) a history of heat stress or exposure, (2) a rectal temperature greater than 40 °C, and (3) central nervous system dysfunction (altered mental state, disorientation, stupor, seizures, or coma) (Prendergast and Erickson, 2014 [1]). In these patients, it is important to bring the body's core temperature down to acceptable levels in a short period of time to avoid tissue/organ injury or death (Yoder, 2001; Casa et al., 2007 [2,3]). A number of potential approaches, both non-invasive and invasive, may be used to lower the temperature of these individuals. Non-invasive techniques generally include: evaporative cooling, ice water immersion, whole-body ice packing, strategic ice packing, and convective cooling. Invasive approaches may include gastric lavage or peritoneal lavage (Schraga and Kates [4]). The efficacy of these methods vary and select treatment approaches may be unsuitable for specific individuals (Schraga and Kates [4]). In this work, the effectiveness of radiation cooling of individuals as a stand-alone treatment and comparisons with existing noninvasive techniques are presented. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Re-visiting the tympanic membrane vicinity as core body temperature measurement site.

    Directory of Open Access Journals (Sweden)

    Wui Keat Yeoh

    Full Text Available Core body temperature (CBT is an important and commonly used indicator of human health and endurance performance. A rise in baseline CBT can be attributed to an onset of flu, infection or even thermoregulatory failure when it becomes excessive. Sites which have been used for measurement of CBT include the pulmonary artery, the esophagus, the rectum and the tympanic membrane. Among them, the tympanic membrane is an attractive measurement site for CBT due to its unobtrusive nature and ease of measurement facilitated, especially when continuous CBT measurements are needed for monitoring such as during military, occupational and sporting settings. However, to-date, there are still polarizing views on the suitability of tympanic membrane as a CBT site. This paper will revisit a number of key unresolved issues in the literature and also presents, for the first time, a benchmark of the middle ear temperature against temperature measurements from other sites. Results from experiments carried out on human and primate subjects will be presented to draw a fresh set of insights against the backdrop of hypotheses and controversies.

  15. Re-visiting the tympanic membrane vicinity as core body temperature measurement site

    Science.gov (United States)

    Gan, Chee Wee; Liang, Wenyu

    2017-01-01

    Core body temperature (CBT) is an important and commonly used indicator of human health and endurance performance. A rise in baseline CBT can be attributed to an onset of flu, infection or even thermoregulatory failure when it becomes excessive. Sites which have been used for measurement of CBT include the pulmonary artery, the esophagus, the rectum and the tympanic membrane. Among them, the tympanic membrane is an attractive measurement site for CBT due to its unobtrusive nature and ease of measurement facilitated, especially when continuous CBT measurements are needed for monitoring such as during military, occupational and sporting settings. However, to-date, there are still polarizing views on the suitability of tympanic membrane as a CBT site. This paper will revisit a number of key unresolved issues in the literature and also presents, for the first time, a benchmark of the middle ear temperature against temperature measurements from other sites. Results from experiments carried out on human and primate subjects will be presented to draw a fresh set of insights against the backdrop of hypotheses and controversies. PMID:28414722

  16. The Impact of Central and Peripheral Cyclooxygenase Enzyme Inhibition on Exercise-Induced Elevations in Core Body Temperature.

    NARCIS (Netherlands)

    Veltmeijer, M.T.W.; Veeneman, D.; Bongers, C.C.W.G.; Netea, M.G.; Meer, J.W.M. van der; Eijsvogels, T.M.H.; Hopman, M.T.E.

    2017-01-01

    PURPOSE: Exercise increases core body temperature (TC) due to metabolic heat production. However, the exercise-induced release of inflammatory cytokines including interleukin-6 (IL-6) may also contribute to the rise in TC by increasing the hypothalamic temperature set point. This study investigated

  17. Nonlinear mixed effects modelling for the analysis of longitudinal body core temperature data in healthy volunteers.

    Science.gov (United States)

    Seng, Kok-Yong; Chen, Ying; Wang, Ting; Ming Chai, Adam Kian; Yuen Fun, David Chiok; Teo, Ya Shi; Sze Tan, Pearl Min; Ang, Wee Hon; Wei Lee, Jason Kai

    2016-04-01

    Many longitudinal studies have collected serial body core temperature (T c) data to understand thermal work strain of workers under various environmental and operational heat stress environments. This provides the opportunity for the development of mathematical models to analyse and forecast temporal T c changes across populations of subjects. Such models can reduce the need for invasive methods that continuously measure T c. This current work sought to develop a nonlinear mixed effects modelling framework to delineate the dynamic changes of T c and its association with a set of covariates of interest (e.g. heart rate, chest skin temperature), and the structure of the variability of T c in various longitudinal studies. Data to train and evaluate the model were derived from two laboratory investigations involving male soldiers who participated in either a 12 (N  =  18) or 15 km (N  =  16) foot march with varied clothing, load and heat acclimatisation status. Model qualification was conducted using nonparametric bootstrap and cross validation procedures. For cross validation, the trajectory of a new subject's T c was simulated via Bayesian maximum a posteriori estimation when using only the baseline T c or using the baseline T c as well as measured T c at the end of every work (march) phase. The final model described T c versus time profiles using a parametric function with its main parameters modelled as a sigmoid hyperbolic function of the load and/or chest skin temperature. Overall, T c predictions corresponded well with the measured data (root mean square deviation: 0.16 °C), and compared favourably with those provided by two recently published Kalman filter models.

  18. Power Relative to Body Mass Best Predicts Change in Core Temperature During Exercise-Heat Stress.

    Science.gov (United States)

    Gibson, Oliver R; Willmott, Ashley G B; James, Carl A; Hayes, Mark; Maxwell, Neil S

    2017-02-01

    Gibson, OR, Willmott, AGB, James, CA, Hayes, M, and Maxwell, NS. Power relative to body mass best predicts change in core temperature during exercise-heat stress. J Strength Cond Res 31(2): 403-414, 2017-Controlling internal temperature is crucial when prescribing exercise-heat stress, particularly during interventions designed to induce thermoregulatory adaptations. This study aimed to determine the relationship between the rate of rectal temperature (Trec) increase, and various methods for prescribing exercise-heat stress, to identify the most efficient method of prescribing isothermic heat acclimation (HA) training. Thirty-five men cycled in hot conditions (40° C, 39% R.H.) for 29 ± 2 minutes. Subjects exercised at 60 ± 9% V[Combining Dot Above]O2peak, with methods for prescribing exercise retrospectively observed for each participant. Pearson product moment correlations were calculated for each prescriptive variable against the rate of change in Trec (° C·h), with stepwise multiple regressions performed on statistically significant variables (p ≤ 0.05). Linear regression identified the predicted intensity required to increase Trec by 1.0-2.0° C between 20- and 45-minute periods and the duration taken to increase Trec by 1.5° C in response to incremental intensities to guide prescription. Significant (p ≤ 0.05) relationships with the rate of change in Trec were observed for prescriptions based on relative power (W·kg; r = 0.764), power (%Powermax; r = 0.679), rating of perceived exertion (RPE) (r = 0.577), V[Combining Dot Above]O2 (%V[Combining Dot Above]O2peak; r = 0.562), heart rate (HR) (%HRmax; r = 0.534), and thermal sensation (r = 0.311). Stepwise multiple regressions observed relative power and RPE as variables to improve the model (r = 0.791), with no improvement after inclusion of any anthropometric variable. Prescription of exercise under heat stress using power (W·kg or %Powermax) has the strongest relationship with the rate of change in

  19. The effect of humidified heated breathing circuit on core body temperature in perioperative hypothermia during thyroid surgery.

    Science.gov (United States)

    Park, Hue Jung; Moon, Ho Sik; Moon, Se Ho; Do Jeong, Hyeon; Jeon, Young Jae; Do Han, Keung; Koh, Hyun Jung

    2017-01-01

    Purpose: During general anesthesia, human body easily reaches a hypothermic state, which is mainly caused by heat redistribution. Most studies suggested that humidified heated breathing circuits (HHBC) have little influence on maintenance of the core temperature during early phase of anesthesia. This study was aimed at examining heat preservation effect with HHBC in case of undergoing surgery with less exposure of surgical fields and short surgical duration. Methods: Patients aged 19 to 70 yr - old, ASA-PS I or II who were scheduled for elective thyroidectomy were assigned and divided to the group using HHBC (G1) and the group using conventional circuit (G2) by random allocation. During operation, core, skin, and room temperatures were measured every 5minutes by specific thermometer. Results: G1 was decreased by a lesser extent than G2 in core temperature, apparently higher at 30 and 60 minutes after induction. Skin and room temperatures showed no differences between the two groups (p>0.05). Consequently, we confirmed HHBC efficiently prevented a decrease in core temperature during early period in small operation which has difficulty in preparing warming devices or environments were not usually considered. Conclusions: This study showed that HHBC influences heat redistribution in early period of operation and can lessen the magnitude of the decrease in core body temperature. Therefore, it can be applied efficiently for other active warming devices in mild hypothermia.

  20. No effects of huddling on core body temperature in rock hyrax ...

    African Journals Online (AJOL)

    Huddling is a behavioural energy conservation mechanism that is widely used by many small endotherms at low ambient temperatures. Huddling has many benefits, including decreasing the metabolic cost of maintaining body temperature (Tb), reducing the amount of heat lost to the environment, and increasing the local ...

  1. Estimation of core body temperature from skin temperature, heat flux, and heart rate using a Kalman filter.

    Science.gov (United States)

    Welles, Alexander P; Xu, Xiaojiang; Santee, William R; Looney, David P; Buller, Mark J; Potter, Adam W; Hoyt, Reed W

    2018-05-18

    Core body temperature (T C ) is a key physiological metric of thermal heat-strain yet it remains difficult to measure non-invasively in the field. This work used combinations of observations of skin temperature (T S ), heat flux (HF), and heart rate (HR) to accurately estimate T C using a Kalman Filter (KF). Data were collected from eight volunteers (age 22 ± 4 yr, height 1.75 ± 0.10 m, body mass 76.4 ± 10.7 kg, and body fat 23.4 ± 5.8%, mean ± standard deviation) while walking at two different metabolic rates (∼350 and ∼550 W) under three conditions (warm: 25 °C, 50% relative humidity (RH); hot-humid: 35 °C, 70% RH; and hot-dry: 40 °C, 20% RH). Skin temperature and HF data were collected from six locations: pectoralis, inner thigh, scapula, sternum, rib cage, and forehead. Kalman filter variables were learned via linear regression and covariance calculations between T C and T S , HF, and HR. Root mean square error (RMSE) and bias were calculated to identify the best performing models. The pectoralis (RMSE 0.18 ± 0.04 °C; bias -0.01 ± 0.09 °C), rib (RMSE 0.18 ± 0.09 °C; bias -0.03 ± 0.09 °C), and sternum (RMSE 0.20 ± 0.10 °C; bias -0.04 ± 0.13 °C) were found to have the lowest error values when using T S , HF, and HR but, using only two of these measures provided similar accuracy. Copyright © 2018. Published by Elsevier Ltd.

  2. Acute dim light at night increases body mass, alters metabolism, and shifts core body temperature circadian rhythms.

    Science.gov (United States)

    Borniger, Jeremy C; Maurya, Santosh K; Periasamy, Muthu; Nelson, Randy J

    2014-10-01

    The circadian system is primarily entrained by the ambient light environment and is fundamentally linked to metabolism. Mounting evidence suggests a causal relationship among aberrant light exposure, shift work, and metabolic disease. Previous research has demonstrated deleterious metabolic phenotypes elicited by chronic (>4 weeks) exposure to dim light at night (DLAN) (∼ 5 lux). However, the metabolic effects of short-term (dim light would gain more body mass, alter whole body metabolism, and display altered body temperature (Tb) and activity rhythms compared to mice maintained in dark nights. Our data largely support these predictions; DLAN mice gained significantly more mass, reduced whole body energy expenditure, increased carbohydrate over fat oxidation, and altered temperature circadian rhythms. Importantly, these alterations occurred despite similar activity locomotor levels (and rhythms) and total food intake between groups. Peripheral clocks are potently entrained by body temperature rhythms, and the deregulation of body temperature we observed may contribute to metabolic problems due to "internal desynchrony" between the central circadian oscillator and temperature sensitive peripheral clocks. We conclude that even relatively short-term exposure to low levels of nighttime light can influence metabolism to increase mass gain.

  3. Temporal phasing of locomotor activity, heart rate rhythmicity, and core body temperature is disrupted in VIP receptor 2-deficient mice

    DEFF Research Database (Denmark)

    Hannibal, Jens; Hsiung, Hansen M; Fahrenkrug, Jan

    2011-01-01

    Neurons of the brain's biological clock located in the hypothalamic suprachiasmatic nucleus (SCN) generate circadian rhythms of physiology (core body temperature, hormone secretion, locomotor activity, sleep/wake, and heart rate) with distinct temporal phasing when entrained by the light/dark (LD......) cycle. The neuropeptide vasoactive intestinal polypetide (VIP) and its receptor (VPAC2) are highly expressed in the SCN. Recent studies indicate that VIPergic signaling plays an essential role in the maintenance of ongoing circadian rhythmicity by synchronizing SCN cells and by maintaining rhythmicity...... within individual neurons. To further increase the understanding of the role of VPAC2 signaling in circadian regulation, we implanted telemetric devices and simultaneously measured core body temperature, spontaneous activity, and heart rate in a strain of VPAC2-deficient mice and compared...

  4. Temporal phasing of locomotor activity, heart rate rhythmicity, and core body temperature is disrupted in VIP receptor 2-deficient mice

    DEFF Research Database (Denmark)

    Hannibal, Jens; Hsiung, Hansen M; Fahrenkrug, Jan

    2011-01-01

    these observations with observations made from mice examined by wheel-running activity. The study demonstrates that VPAC2 signaling is necessary for a functional circadian clock driving locomotor activity, core body temperature, and heart rate rhythmicity, since VPAC2-deficient mice lose the rhythms in all three...... to that of wild-type mice. The use of telemetric devices to measure circadian locomotor activity, temperature, and heart rate, together with the classical determination of circadian rhythms of wheel-running activity, raises questions about how representative wheel-running activity may be of other behavioral...

  5. A cross-species translational pharmacokinetic-pharmacodynamic evaluation of core body temperature reduction by the TRPM8 blocker PF-05105679.

    Science.gov (United States)

    Gosset, James R; Beaumont, Kevin; Matsuura, Tomomi; Winchester, Wendy; Attkins, Neil; Glatt, Sophie; Lightbown, Ian; Ulrich, Kristina; Roberts, Sonia; Harris, Jolie; Mesic, Emir; van Steeg, Tamara; Hijdra, Diana; van der Graaf, Piet H

    2017-11-15

    PF-05105679 is a moderately potent TRPM8 blocker which has been evaluated for the treatment of cold pain sensitivity. The TRPM8 channel is responsible for the sensation of cold environmental temperatures and has been implicated in regulation of core body temperature. Consequently, blockade of TRPM8 has been suggested to result in lowering of core body temperature. As part of the progression to human studies, the effect of PF-05105679 on core body temperature has been investigated in animals. Safety pharmacology studies showed that PF-05105679 reduced core body temperature in a manner that was inversely related to body weight of the species tested (greater exposure to PF-05105679 was required to lower temperature by 1°C in higher species). Based on an allometric (body weight) relationship, it was hypothesized that PF-05105679 would not lower core body temperature in humans at exposures that could exhibit pharmacological effects on cold pain sensation. On administration to humans, PF-05105679 was indeed effective at reversing the cold pain sensation associated with the cold pressor test in the absence of effects on core body temperature. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Non-invasive monitoring of core body temperature rhythms over 72 h in 10 bedridden elderly patients with disorders of consciousness in a Japanese hospital: a pilot study.

    Science.gov (United States)

    Matsumoto, Masaru; Sugama, Junko; Okuwa, Mayumi; Dai, Misako; Matsuo, Junko; Sanada, Hiromi

    2013-01-01

    The purpose of this study was to elucidate the body core temperature rhythms of bedridden elderly patients with disorders of consciousness (DOC) in a Japanese hospital using a simple, non-invasive, deep-body thermometer. We measured body core temperature on the surface of abdomen in 10 bedridden elderly patients with DOC continuously over 72 h. A non-heated core body temperature thermometer was used. The cycle of the body core temperature rhythm was initially derived by using the least squares method. Then, based on that rhythm, the mean, amplitude, and times of day of the highest and lowest body temperatures during the optimum cycle were determined using the cosinor method. We found a 24-h cycle in seven of the 10 patients. One patient had a 6-h, one a 12-h, and one a 63-h cycle. The mean value of the cosine curve in the respective optimum cycles was 36.48 ± 0.34 °C, and the amplitude was 0.22 ± 0.09 °C. Of the seven subjects with 24-h cycles, the highest body temperature occurred between 12:58 and 14:44 h in four. In addition to 24-h cycles of core temperature rhythm, short cycles of 12 and 6-h and a long cycle of 63-h were seen. In order to understand the temperature rhythms of bedridden elderly patients with DOC, it is necessary to monitor their core body temperatures, ideally using a simple, non-invasive device. In the future, it will be important to investigate the relationship of the core temperature rhythm to nursing care and living environment. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  7. Development of an improved wearable device for core body temperature monitoring based on the dual heat flux principle.

    Science.gov (United States)

    Feng, Jingjie; Zhou, Congcong; He, Cheng; Li, Yuan; Ye, Xuesong

    2017-04-01

    In this paper, a miniaturized wearable core body temperature (CBT) monitoring system based on the dual heat flux (DHF) principle was developed. By interspersing calcium carbonate powder in PolyDimethylsiloxane (PDMS), a reformative heat transfer medium was produced to reduce the thermal equilibrium time. Besides, a least mean square (LMS) algorithm based active noise cancellation (ANC) method was adopted to diminish the impact of ambient temperature fluctuations. Theoretical analyses, finite element simulation, experiments on a hot plate and human volunteers were performed. The results showed that the proposed system had the advantages of small size, reduced initial time (~23.5 min), and good immunity to fluctuations of the air temperature. For the range of 37-41 °C on the hot plate, the error compared with a Fluke high accuracy thermometer was 0.08  ±  0.20 °C. In the human experiments, the measured temperature in the rest trial (34 subjects) had a difference of 0.13  ±  0.22 °C compared with sublingual temperature, while a significant increase of 1.36  ±  0.44 °C from rest to jogging was found in the exercise trial (30 subjects). This system has the potential for reliable continuous CBT measurement in rest and can reflect CBT variations during exercise.

  8. Mathematical prediction of core body temperature from environment, activity, and clothing: The heat strain decision aid (HSDA).

    Science.gov (United States)

    Potter, Adam W; Blanchard, Laurie A; Friedl, Karl E; Cadarette, Bruce S; Hoyt, Reed W

    2017-02-01

    Physiological models provide useful summaries of complex interrelated regulatory functions. These can often be reduced to simple input requirements and simple predictions for pragmatic applications. This paper demonstrates this modeling efficiency by tracing the development of one such simple model, the Heat Strain Decision Aid (HSDA), originally developed to address Army needs. The HSDA, which derives from the Givoni-Goldman equilibrium body core temperature prediction model, uses 16 inputs from four elements: individual characteristics, physical activity, clothing biophysics, and environmental conditions. These inputs are used to mathematically predict core temperature (T c ) rise over time and can estimate water turnover from sweat loss. Based on a history of military applications such as derivation of training and mission planning tools, we conclude that the HSDA model is a robust integration of physiological rules that can guide a variety of useful predictions. The HSDA model is limited to generalized predictions of thermal strain and does not provide individualized predictions that could be obtained from physiological sensor data-driven predictive models. This fully transparent physiological model should be improved and extended with new findings and new challenging scenarios. Published by Elsevier Ltd.

  9. Core Temperature and Surface Heat Flux During Exercise in Heat While Wearing Body Armor

    Science.gov (United States)

    2015-10-26

    Adam W. Potter, MS, MBA Reed W. Hoyt, PhD Biophysics and Biomedical Modeling Division October 2015 U.S. Army Research Institute of...NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 6. AUTHOR(S) 7. PERFORMING ORGANIZATION...A relatively recent innovation is to ingest a telemetry temperature pill. Local temperature is transmitted to a receiver as the pill migrates

  10. The Impact of Central and Peripheral Cyclooxygenase Enzyme Inhibition on Exercise-Induced Elevations in Core Body Temperature.

    Science.gov (United States)

    Veltmeijer, Matthijs T W; Veeneman, Dineke; Bongers, Coen C C W; Netea, Mihai G; van der Meer, Jos W; Eijsvogels, Thijs M H; Hopman, Maria T E

    2017-05-01

    Exercise increases core body temperature (T C ) due to metabolic heat production. However, the exercise-induced release of inflammatory cytokines including interleukin-6 (IL-6) may also contribute to the rise in T C by increasing the hypothalamic temperature set point. This study investigated whether the exercise-induced increase in T C is partly caused by an altered hypothalamic temperature set point. Fifteen healthy, active men age 36 ± 14 y were recruited. Subjects performed submaximal treadmill exercise in 3 randomized test conditions: (1) 400 mg ibuprofen and 1000 mg acetaminophen (IBU/APAP), (2) 1000 mg acetaminophen (APAP), and (3) a control condition (CTRL). Acetaminophen and ibuprofen were used to block the effect of IL-6 at a central and peripheral level, respectively. T C , skin temperature, and heart rate were measured continuously during the submaximal exercise tests. Baseline values of T C , skin temperature, and heart rate did not differ across conditions. Serum IL-6 concentrations increased in all 3 conditions. A significantly lower peak T C was observed in IBU/APAP (38.8°C ± 0.4°C) vs CTRL (39.2°C ± 0.5°C, P = .02) but not in APAP (38.9°C ± 0.4°C) vs CTRL. Similarly, a lower ΔT C was observed in IBU/APAP (1.7°C ± 0.3°C) vs CTRL (2.0°C ± 0.5°C, P exercise compared with a CTRL. This observation suggests that a prostaglandin-E2-induced elevated hypothalamic temperature set point may contribute to the exercise-induced rise in T C .

  11. Core Body and Skin Temperature in Type 1 Narcolepsy in Daily Life; Effects of Sodium Oxybate and Prediction of Sleep Attacks

    NARCIS (Netherlands)

    van der Heide, Astrid; Werth, Esther; Donjacour, Claire E H M; Reijntjes, Robert H A M; Lammers, Gert Jan; Van Someren, Eus J W; Baumann, Christian R; Fronczek, Rolf

    2016-01-01

    STUDY OBJECTIVES: Previous laboratory studies in narcolepsy patients showed altered core body and skin temperatures, which are hypothesised to be related to a disturbed sleep wake regulation. In this ambulatory study we assessed temperature profiles in normal daily life, and whether sleep attacks

  12. Diet-induced obesity reduces core body temperature across the estrous cycle and pregnancy in the rat.

    Science.gov (United States)

    Crew, Rachael C; Waddell, Brendan J; Maloney, Shane K; Mark, Peter J

    2018-04-16

    Obesity during pregnancy causes adverse maternal and fetal health outcomes and programs offspring for adult-onset diseases, including cardiovascular disease. Obesity also disrupts core body temperature (T c ) regulation in nonpregnant rodents; however, it is unknown whether obesity alters normal maternal T c adaptations to pregnancy. Since T c is influenced by the circadian system, and both obesity and pregnancy alter circadian biology, it was hypothesized that obesity disrupts the normal rhythmic patterns of T c before and during gestation. Obesity was induced by cafeteria (CAF) feeding in female Wistar rats for 8 weeks prior to and during gestation, whereas control (CON) animals had free access to chow. Intraperitoneal temperature loggers measured daily T c profiles throughout the study, while maternal body composition and leptin levels were assessed near term. Daily temperature profiles were examined for rhythmic features (mesor, amplitude and acrophase) by cosine regression analysis. CAF animals exhibited increased fat mass (93%) and associated hyperleptinemia (3.2-fold increase) compared to CON animals. CAF consumption reduced the average T c (by up to 0.29°C) across the estrous cycle and most of pregnancy; however, T c for CAF and CON animals converged toward the end of gestation. Obesity reduced the amplitude of T c rhythms at estrus and proestrus and on day 8 of pregnancy, but increased the amplitude at day 20 of pregnancy. Photoperiod analysis revealed that obesity reduced T c exclusively in the light period during pre-pregnancy but only during the dark period in late gestation. In conclusion, obesity alters rhythmic T c profiles and reduces the magnitude of the T c decline late in rat gestation, which may have implications for maternal health and fetal development.

  13. The effects of heated and room-temperature abdominal lavage solutions on core body temperature in dogs undergoing celiotomy.

    Science.gov (United States)

    Nawrocki, Michael A; McLaughlin, Ron; Hendrix, P K

    2005-01-01

    To document the magnitude of temperature elevation obtained with heated lavage solutions during abdominal lavage, 18 dogs were lavaged with sterile isotonic saline intraoperatively (i.e., during a celiotomy). In nine dogs, room-temperature saline was used. In the remaining nine dogs, saline heated to 43+/-2 degrees C (110+/-4 degrees F) was used. Esophageal, rectal, and tympanic temperatures were recorded every 60 seconds for 15 minutes after initiation of the lavage. Temperature levels decreased in dogs lavaged with room-temperature saline. Temperature levels increased significantly in dogs lavaged with heated saline after 2 to 6 minutes of lavage, and temperatures continued to increase throughout the 15-minute lavage period.

  14. Effects of Re-heating Tissue Samples to Core Body Temperature on High-Velocity Ballistic Projectile-tissue Interactions.

    Science.gov (United States)

    Humphrey, Caitlin; Henneberg, Maciej; Wachsberger, Christian; Maiden, Nicholas; Kumaratilake, Jaliya

    2017-11-01

    Damage produced by high-speed projectiles on organic tissue will depend on the physical properties of the tissues. Conditioning organic tissue samples to human core body temperature (37°C) prior to conducting ballistic experiments enables their behavior to closely mimic that of living tissues. To minimize autolytic changes after death, the tissues are refrigerated soon after their removal from the body and re-heated to 37°C prior to testing. This research investigates whether heating 50-mm-cube samples of porcine liver, kidney, and heart to 37°C for varying durations (maximum 7 h) can affect the penetration response of a high-speed, steel sphere projectile. Longer conditioning times for heart and liver resulted in a slight loss of velocity/energy of the projectile, but the reverse effect occurred for the kidney. Possible reasons for these trends include autolytic changes causing softening (heart and liver) and dehydration causing an increase in density (kidney). © 2017 American Academy of Forensic Sciences.

  15. Issues in Continuous 24-h Core Body Temperature Monitoring in Humans Using an Ingestible Capsule Telemetric Sensor

    Directory of Open Access Journals (Sweden)

    Cathriona R. Monnard

    2017-06-01

    Full Text Available BackgroundThere is increasing interest in the use of pill-sized ingestible capsule telemetric sensors for assessing core body temperature (Tc as a potential indicator of variability in metabolic efficiency and thrifty metabolic traits. The aim of this study was to investigate the feasibility and accuracy of measuring Tc using the CorTemp® system.MethodsTc was measured over an average of 20 h in 27 human subjects, with measurements of energy expenditure made in the overnight fasted state at rest, during standardized low-intensity physical activity and after a 600 kcal mixed meal. Validation of accuracy of the capsule sensors was made ex vivo against mercury and electronic thermometers across the physiological range (35–40°C in morning and afternoon of 2 or 3 consecutive days. Comparisons between capsule sensors and thermometers were made using Bland–Altman analysis. Systematic bias, error, and temperature drift over time were assessed.ResultsThe circadian Tc profile classically reported in free-living humans was confirmed. Significant increases in Tc (+0.2°C were found in response to low-power cycling at 40–50 W (~3–4 METs, but no changes in Tc were detectable during low-level isometric leg press exercise (<2 METs or during the peak postprandial thermogenesis induced by the 600 kcal meal. Issues of particular interest include fast “turbo” gut transit with expulsion time of <15 h after capsule ingestion in one out of every five subjects and sudden erratic readings in teletransmission of Tc. Furthermore, ex vivo validation revealed a substantial mean bias (exceeding ±0.5°C between the Tc capsule readings and mercury or electronic thermometers in half of the capsules. When examined over 2 or 3 days, the initial bias (small or large drifted in excess of ±0.5°C in one out of every four capsules.ConclusionSince Tc is regulated within a very narrow range in the healthy homeotherm’s body (within 1°C, physiological

  16. Body temperature norms

    Science.gov (United States)

    Normal body temperature; Temperature - normal ... Morrison SF. Regulation of body temperature. In: Boron WF, Boulpaep EL, eds. Medical Physiology . 3rd ed. Philadelphia, PA: Elsevier; 2017:chap 59. Sajadi MM, Mackowiak ...

  17. 18F-FDG uptake in the colon is modulated by metformin but not associated with core body temperature and energy expenditure.

    Directory of Open Access Journals (Sweden)

    Lonneke Bahler

    Full Text Available Physiological colonic 18F-fluorodeoxyglucose (18F-FDG uptake is a frequent finding on 18F-FDG positron emission tomography computed tomography (PET-CT. Interestingly, metformin, a glucose lowering drug associated with moderate weight loss, is also associated with an increased colonic 18F-FDG uptake. Consequently, increased colonic glucose use might partly explain the weight losing effect of metformin when this results in an increased energy expenditure and/or core body temperature. Therefore, we aimed to determine whether metformin modifies the metabolic activity of the colon by increasing glucose uptake.In this open label, non-randomized, prospective mechanistic study, we included eight lean and eight overweight males. We measured colonic 18F-FDG uptake on PET-CT, energy expenditure and core body temperature before and after the use of metformin. The maximal colonic 18F-FDG uptake was measured in 5 separate segments (caecum, colon ascendens,-transversum,-descendens and sigmoid.The maximal colonic 18F-FDG uptake increased significantly in all separate segments after the use of metformin. There was no significant difference in energy expenditure or core body temperature after the use of metformin. There was no correlation between maximal colonic 18F-FDG uptake and energy expenditure or core body temperature.Metformin significantly increases colonic 18F-FDG uptake, but this increased uptake is not associated with an increase in energy expenditure or core body temperature. Although the colon might be an important site of the glucose plasma lowering actions of metformin, this mechanism of action does not explain directly any associated weight loss.

  18. 18F-FDG uptake in the colon is modulated by metformin but not associated with core body temperature and energy expenditure

    Science.gov (United States)

    Bahler, Lonneke; Holleman, Frits; Chan, Man-Wai; Booij, Jan; Hoekstra, Joost B.; Verberne, Hein J.

    2017-01-01

    Purpose Physiological colonic 18F-fluorodeoxyglucose (18F-FDG) uptake is a frequent finding on 18F-FDG positron emission tomography computed tomography (PET-CT). Interestingly, metformin, a glucose lowering drug associated with moderate weight loss, is also associated with an increased colonic 18F-FDG uptake. Consequently, increased colonic glucose use might partly explain the weight losing effect of metformin when this results in an increased energy expenditure and/or core body temperature. Therefore, we aimed to determine whether metformin modifies the metabolic activity of the colon by increasing glucose uptake. Methods In this open label, non-randomized, prospective mechanistic study, we included eight lean and eight overweight males. We measured colonic 18F-FDG uptake on PET-CT, energy expenditure and core body temperature before and after the use of metformin. The maximal colonic 18F-FDG uptake was measured in 5 separate segments (caecum, colon ascendens,—transversum,—descendens and sigmoid). Results The maximal colonic 18F-FDG uptake increased significantly in all separate segments after the use of metformin. There was no significant difference in energy expenditure or core body temperature after the use of metformin. There was no correlation between maximal colonic 18F-FDG uptake and energy expenditure or core body temperature. Conclusion Metformin significantly increases colonic 18F-FDG uptake, but this increased uptake is not associated with an increase in energy expenditure or core body temperature. Although the colon might be an important site of the glucose plasma lowering actions of metformin, this mechanism of action does not explain directly any associated weight loss. PMID:28464031

  19. Superficial cooling does not decrease core body temperature before, during, or after exercise in an American football uniform.

    Science.gov (United States)

    Lopez, Rebecca M; Eberman, Lindsey E; Cleary, Michelle A

    2012-12-01

    The purpose of this study was to identify the effects of superficial cooling on thermoregulatory responses while exercising in a hot humid environment while wearing an American football uniform. Nine male and female subjects wore a superficial cooling garment while in a cooling (CS) experimental condition or a no cooling (NCS) control condition during an exercise task consisting of warm-up (WU), exercise (EX), and recovery (R). The exercise task simulated an American football conditioning session with subjects wearing a full American football uniform and performing anaerobic and aerobic exercises in a hot humid environment. Subjects were allowed to drink water ad libitum during rest breaks. During the WU, EX, and R periods, core body temperature (T(c)) was measured to assess the effect of the cooling garment. Neither baseline resting before warm-up T(c) nor after warm-up T(c) was significantly different between trials. No significant differences in exercise T(c) between conditions were found. Time to return to baseline T(c) revealed no significant differences between the experimental and control conditions. The authors found that the volume of fluid consumed was 34% less in the experimental condition (711.1 ± 188.0 ml) compared with the control condition (1,077.8 ± 204.8 ml). The findings indicate that the cooling garment was not effective in blunting the rise in T(c) during warm-up, attenuating a rise in T(c) during intermittent exercise, or in increasing a return to baseline T(c) during a resting recovery period in a hot humid environment while wearing an American football uniform.

  20. FDTD analysis of human body-core temperature elevation due to RF far-field energy prescribed in the ICNIRP guidelines

    International Nuclear Information System (INIS)

    Hirata, Akimasa; Asano, Takayuki; Fujiwara, Osamu

    2007-01-01

    This study investigated the relationship between the specific absorption rate and temperature elevation in an anatomically-based model named NORMAN for exposure to radio-frequency far fields in the ICNIRP guidelines (1998 Health Phys. 74 494-522). The finite-difference time-domain method is used for analyzing the electromagnetic absorption and temperature elevation in NORMAN. In order to consider the variability of human thermoregulation, parameters for sweating are derived and incorporated into a conventional sweating formula. First, we investigated the effect of blood temperature variation modeling on body-core temperature. The computational results show that the modeling of blood temperature variation was the dominant factor influencing the body-core temperature. This is because the temperature in the inner tissues is elevated via the circulation of blood whose temperature was elevated due to EM absorption. Even at different frequencies, the body-core temperature elevation at an identical whole-body average specific absorption rate (SAR) was almost the same, suggesting the effectiveness of the whole-body average SAR as a measure in the ICNIRP guidelines. Next, we discussed the effect of sweating on the temperature elevation and thermal time constant of blood. The variability of temperature elevation caused by the sweating rate was found to be 30%. The blood temperature elevation at the basic restriction in the ICNIRP guidelines of 0.4 W kg -1 is 0.25 0 C even for a low sweating rate. The thermal time constant of blood temperature elevation was 23 min and 52 min for a man with a lower and a higher sweating rate, respectively, which is longer than the average time of the SAR in the ICNIRP guidelines. Thus, the whole-body average SAR required for blood temperature elevation of 1 0 C was 4.5 W kg -1 in the model of a human with the lower sweating coefficients for 60 min exposure. From a comparison of this value with the basic restriction in the ICNIRP guidelines of

  1. FDTD analysis of human body-core temperature elevation due to RF far-field energy prescribed in the ICNIRP guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Hirata, Akimasa; Asano, Takayuki; Fujiwara, Osamu [Department of Computer Science and Engineering, Nagoya Institute of Technology (Japan)

    2007-08-21

    This study investigated the relationship between the specific absorption rate and temperature elevation in an anatomically-based model named NORMAN for exposure to radio-frequency far fields in the ICNIRP guidelines (1998 Health Phys. 74 494-522). The finite-difference time-domain method is used for analyzing the electromagnetic absorption and temperature elevation in NORMAN. In order to consider the variability of human thermoregulation, parameters for sweating are derived and incorporated into a conventional sweating formula. First, we investigated the effect of blood temperature variation modeling on body-core temperature. The computational results show that the modeling of blood temperature variation was the dominant factor influencing the body-core temperature. This is because the temperature in the inner tissues is elevated via the circulation of blood whose temperature was elevated due to EM absorption. Even at different frequencies, the body-core temperature elevation at an identical whole-body average specific absorption rate (SAR) was almost the same, suggesting the effectiveness of the whole-body average SAR as a measure in the ICNIRP guidelines. Next, we discussed the effect of sweating on the temperature elevation and thermal time constant of blood. The variability of temperature elevation caused by the sweating rate was found to be 30%. The blood temperature elevation at the basic restriction in the ICNIRP guidelines of 0.4 W kg{sup -1} is 0.25 {sup 0}C even for a low sweating rate. The thermal time constant of blood temperature elevation was 23 min and 52 min for a man with a lower and a higher sweating rate, respectively, which is longer than the average time of the SAR in the ICNIRP guidelines. Thus, the whole-body average SAR required for blood temperature elevation of 1 {sup 0}C was 4.5 W kg{sup -1} in the model of a human with the lower sweating coefficients for 60 min exposure. From a comparison of this value with the basic restriction in the

  2. FDTD analysis of human body-core temperature elevation due to RF far-field energy prescribed in the ICNIRP guidelines.

    Science.gov (United States)

    Hirata, Akimasa; Asano, Takayuki; Fujiwara, Osamu

    2007-08-21

    This study investigated the relationship between the specific absorption rate and temperature elevation in an anatomically-based model named NORMAN for exposure to radio-frequency far fields in the ICNIRP guidelines (1998 Health Phys. 74 494-522). The finite-difference time-domain method is used for analyzing the electromagnetic absorption and temperature elevation in NORMAN. In order to consider the variability of human thermoregulation, parameters for sweating are derived and incorporated into a conventional sweating formula. First, we investigated the effect of blood temperature variation modeling on body-core temperature. The computational results show that the modeling of blood temperature variation was the dominant factor influencing the body-core temperature. This is because the temperature in the inner tissues is elevated via the circulation of blood whose temperature was elevated due to EM absorption. Even at different frequencies, the body-core temperature elevation at an identical whole-body average specific absorption rate (SAR) was almost the same, suggesting the effectiveness of the whole-body average SAR as a measure in the ICNIRP guidelines. Next, we discussed the effect of sweating on the temperature elevation and thermal time constant of blood. The variability of temperature elevation caused by the sweating rate was found to be 30%. The blood temperature elevation at the basic restriction in the ICNIRP guidelines of 0.4 W kg(-1) is 0.25 degrees C even for a low sweating rate. The thermal time constant of blood temperature elevation was 23 min and 52 min for a man with a lower and a higher sweating rate, respectively, which is longer than the average time of the SAR in the ICNIRP guidelines. Thus, the whole-body average SAR required for blood temperature elevation of 1 degrees C was 4.5 W kg(-1) in the model of a human with the lower sweating coefficients for 60 min exposure. From a comparison of this value with the basic restriction in the ICNIRP

  3. A Histological Analysis of Visceral Organs to Evaluate the Effect of Duration of Heating From Refrigeration to Core Body Temperature for Ballistics Investigations.

    Science.gov (United States)

    Humphrey, Caitlin; Kumaratilake, Jaliya

    2017-12-01

    Animal organs have been used in ballistics research to investigate the effects on human organs. Such organs are refrigerated until the investigation to minimize autolytic degradation and at times have been reheated to the human core body temperature to simulate the in situ environment. The aim of this investigation was to study the microstructural changes that may occur in fresh chilled visceral organs of the thorax and abdomen (ie, heart, lung, liver, and kidney) during the period of reheating to 37°C. Fifty-millimeter cubes of porcine heart, lung, liver, and kidney were taken rapidly after slaughter, chilled overnight, and the next morning were reheated to core body temperature (37°C). Histological changes occurring in the tissues during the reheating phase were investigated. The findings indicated that no cytoplasmic or nuclear changes occurred in any of the tissues during the period of reheating. Therefore, reheating of animal organs to the human core body temperature is not necessary, if the organs are refrigerated.

  4. Short communication: using infrared thermography as an in situ measure of core body temperature in lot-fed Angus steers

    Science.gov (United States)

    Lees, Angela M.; Lees, J. C.; Sejian, V.; Wallage, A. L.; Gaughan, J. B.

    2018-01-01

    Thirty-six Black Angus steers were used in a replicated study; three replicates of 12 steers/replicate. Steers had an initial non-fasted BW of 392.3 ± 5.1, 427.5 ± 6.3, and 392.7 ± 3.7 kg for each replicate, respectively. Steers were housed outside in individual animal pens (10 m × 3.4 m). Each replicate was conducted over a 6-day period where infrared thermography (IRT) images were collected at 3-h intervals, commencing at 0600 h on day 1 and concluding at 0600 h on day 6. Rumen temperatures ( T RUM) were measured at 10-min intervals for the duration of each replicate using a radio-frequency identification (RFID) rumen bolus. These data were used to determine the relationship with surface temperature of the cattle, which was determined using IRT. Individual T RUM were converted to an hourly average. The relationship between T RUM and surface temperature was determined using Pearson's correlation coefficient. There were no linear trends between mean hourly T RUM and mean surface temperature. Pearson's correlation coefficient indicated that there were weak associations ( r ≤ 0.1; P < 0.003) between T RUM and body surface temperature. These data suggest that there was little relationship between the surface temperature and T RUM.

  5. The effect of changes in core body temperature on the QT interval in beagle dogs: a previously ignored phenomenon, with a method for correction.

    Science.gov (United States)

    van der Linde, H J; Van Deuren, B; Teisman, A; Towart, R; Gallacher, D J

    2008-08-01

    Body core temperature (Tc) changes affect the QT interval, but correction for this has not been systematically investigated. It may be important to correct QT intervals for drug-induced changes in Tc. Anaesthetized beagle dogs were artificially cooled (34.2 degrees C) or warmed (42.1 degrees C). The relationship between corrected QT intervals (QTcV; QT interval corrected according to the Van de Water formula) and Tc was analysed. This relationship was also examined in conscious dogs where Tc was increased by exercise. When QTcV intervals were plotted against changes in Tc, linear correlations were observed in all individual dogs. The slopes did not significantly differ between cooling (-14.85+/-2.08) or heating (-13.12+/-3.46) protocols. We propose a correction formula to compensate for the influence of Tc changes and standardize the QTcV duration to 37.5 degrees C: QTcVcT (QTcV corrected for changes in core temperature)=QTcV-14 (37.5 - Tc). Furthermore, cooled dogs were re-warmed (from 34.2 to 40.0 degrees C) and marked QTcV shortening (-29%) was induced. After Tc correction, using the above formula, this decrease was abolished. In these re-warmed dogs, we observed significant increases in T-wave amplitude and in serum [K(+)] levels. No arrhythmias or increase in pro-arrhythmic biomarkers were observed. In exercising dogs, the above formula completely compensated QTcV for the temperature increase. This study shows the importance of correcting QTcV intervals for changes in Tc, to avoid misleading interpretations of apparent QTcV interval changes. We recommend that all ICH S7A, conscious animal safety studies should routinely measure core body temperature and correct QTcV appropriately, if body temperature and heart rate changes are observed.

  6. Age-related changes in core body temperature and activity in triple-transgenic Alzheimer’s disease (3xTgAD mice

    Directory of Open Access Journals (Sweden)

    Elysse M. Knight

    2013-01-01

    Alzheimer’s disease (AD is characterised, not only by cognitive deficits and neuropathological changes, but also by several non-cognitive behavioural symptoms that can lead to a poorer quality of life. Circadian disturbances in core body temperature and physical activity are reported in AD patients, although the cause and consequences of these changes are unknown. We therefore characterised circadian patterns of body temperature and activity in male triple transgenic AD mice (3xTgAD and non-transgenic (Non-Tg control mice by remote radiotelemetry. At 4 months of age, daily temperature rhythms were phase advanced and by 6 months of age an increase in mean core body temperature and amplitude of temperature rhythms were observed in 3xTgAD mice. No differences in daily activity rhythms were seen in 4- to 9-month-old 3xTgAD mice, but by 10 months of age an increase in mean daily activity and the amplitude of activity profiles for 3xTgAD mice were detected. At all ages (4–10 months, 3xTgAD mice exhibited greater food intake compared with Non-Tg mice. The changes in temperature did not appear to be solely due to increased food intake and were not cyclooxygenase dependent because the temperature rise was not abolished by chronic ibuprofen treatment. No β-amyloid (Aβ plaques or neurofibrillary tangles were noted in the hypothalamus of 3xTgAD mice, a key area involved in temperature regulation, although these pathological features were observed in the hippocampus and amygdala of 3xTgAD mice from 10 months of age. These data demonstrate age-dependent changes in core body temperature and activity in 3xTgAD mice that are present before significant AD-related neuropathology and are analogous to those observed in AD patients. The 3xTgAD mouse might therefore be an appropriate model for studying the underlying mechanisms involved in non-cognitive behavioural changes in AD.

  7. Age-related changes in core body temperature and activity in triple-transgenic Alzheimer’s disease (3xTgAD) mice

    Science.gov (United States)

    Knight, Elysse M.; Brown, Timothy M.; Gümüsgöz, Sarah; Smith, Jennifer C. M.; Waters, Elizabeth J.; Allan, Stuart M.; Lawrence, Catherine B.

    2013-01-01

    SUMMARY Alzheimer’s disease (AD) is characterised, not only by cognitive deficits and neuropathological changes, but also by several non-cognitive behavioural symptoms that can lead to a poorer quality of life. Circadian disturbances in core body temperature and physical activity are reported in AD patients, although the cause and consequences of these changes are unknown. We therefore characterised circadian patterns of body temperature and activity in male triple transgenic AD mice (3xTgAD) and non-transgenic (Non-Tg) control mice by remote radiotelemetry. At 4 months of age, daily temperature rhythms were phase advanced and by 6 months of age an increase in mean core body temperature and amplitude of temperature rhythms were observed in 3xTgAD mice. No differences in daily activity rhythms were seen in 4- to 9-month-old 3xTgAD mice, but by 10 months of age an increase in mean daily activity and the amplitude of activity profiles for 3xTgAD mice were detected. At all ages (4–10 months), 3xTgAD mice exhibited greater food intake compared with Non-Tg mice. The changes in temperature did not appear to be solely due to increased food intake and were not cyclooxygenase dependent because the temperature rise was not abolished by chronic ibuprofen treatment. No β-amyloid (Aβ) plaques or neurofibrillary tangles were noted in the hypothalamus of 3xTgAD mice, a key area involved in temperature regulation, although these pathological features were observed in the hippocampus and amygdala of 3xTgAD mice from 10 months of age. These data demonstrate age-dependent changes in core body temperature and activity in 3xTgAD mice that are present before significant AD-related neuropathology and are analogous to those observed in AD patients. The 3xTgAD mouse might therefore be an appropriate model for studying the underlying mechanisms involved in non-cognitive behavioural changes in AD. PMID:22864021

  8. Age-related changes in core body temperature and activity in triple-transgenic Alzheimer's disease (3xTgAD) mice.

    Science.gov (United States)

    Knight, Elysse M; Brown, Timothy M; Gümüsgöz, Sarah; Smith, Jennifer C M; Waters, Elizabeth J; Allan, Stuart M; Lawrence, Catherine B

    2013-01-01

    Alzheimer's disease (AD) is characterised, not only by cognitive deficits and neuropathological changes, but also by several non-cognitive behavioural symptoms that can lead to a poorer quality of life. Circadian disturbances in core body temperature and physical activity are reported in AD patients, although the cause and consequences of these changes are unknown. We therefore characterised circadian patterns of body temperature and activity in male triple transgenic AD mice (3xTgAD) and non-transgenic (Non-Tg) control mice by remote radiotelemetry. At 4 months of age, daily temperature rhythms were phase advanced and by 6 months of age an increase in mean core body temperature and amplitude of temperature rhythms were observed in 3xTgAD mice. No differences in daily activity rhythms were seen in 4- to 9-month-old 3xTgAD mice, but by 10 months of age an increase in mean daily activity and the amplitude of activity profiles for 3xTgAD mice were detected. At all ages (4-10 months), 3xTgAD mice exhibited greater food intake compared with Non-Tg mice. The changes in temperature did not appear to be solely due to increased food intake and were not cyclooxygenase dependent because the temperature rise was not abolished by chronic ibuprofen treatment. No β-amyloid (Aβ) plaques or neurofibrillary tangles were noted in the hypothalamus of 3xTgAD mice, a key area involved in temperature regulation, although these pathological features were observed in the hippocampus and amygdala of 3xTgAD mice from 10 months of age. These data demonstrate age-dependent changes in core body temperature and activity in 3xTgAD mice that are present before significant AD-related neuropathology and are analogous to those observed in AD patients. The 3xTgAD mouse might therefore be an appropriate model for studying the underlying mechanisms involved in non-cognitive behavioural changes in AD.

  9. Disorders of body temperature.

    Science.gov (United States)

    Gomez, Camilo R

    2014-01-01

    The human body generates heat capable of raising body temperature by approximately 1°C per hour. Normally, this heat is dissipated by means of a thermoregulatory system. Disorders resulting from abnormally high or low body temperature result in neurologic dysfunction and pose a threat to life. In response to thermal stress, maintenance of normal body temperature is primarily maintained by convection and evaporation. Hyperthermia results from abnormal temperature regulation, leading to extremely elevated body temperature while fever results from a normal thermoregulatory mechanism operating at a higher set point. The former leads to specific clinical syndromes with inability of the thermoregulatory mechanism to maintain a constant body temperature. Heat related illness encompasses heat rash, heat cramps, heat exhaustion and heat stroke, in order of severity. In addition, drugs can induce hyperthermia and produce one of several specific clinical syndromes. Hypothermia is the reduction of body temperature to levels below 35°C from environmental exposure, metabolic disorders, or therapeutic intervention. Management of disorders of body temperature should be carried out decisively and expeditiously, in order to avoid secondary neurologic injury. © 2014 Elsevier B.V. All rights reserved.

  10. The relationship between body and ambient temperature and corneal temperature

    DEFF Research Database (Denmark)

    Kessel, Line; Johnson, Leif; Arvidsson, Henrik Sven

    2010-01-01

    Exposure to elevated ambient temperatures has been mentioned as a risk factor for common eye diseases, primarily presbyopia and cataract. The aim of the present study was to examine the relationship among ambient, cornea, and body core temperature.......Exposure to elevated ambient temperatures has been mentioned as a risk factor for common eye diseases, primarily presbyopia and cataract. The aim of the present study was to examine the relationship among ambient, cornea, and body core temperature....

  11. The recommended Threshold Limit Values for heat exposure fail to maintain body core temperature within safe limits in older working adults.

    Science.gov (United States)

    Lamarche, Dallon T; Meade, Robert D; D'Souza, Andrew W; Flouris, Andreas D; Hardcastle, Stephen G; Sigal, Ronald J; Boulay, Pierre; Kenny, Glen P

    2017-09-01

    The American Conference of Governmental and Industrial Hygienists (ACGIH®) Threshold Limit Values (TLV® guidelines) for work in the heat consist of work-rest (WR) allocations designed to ensure a stable core temperature that does not exceed 38°C. However, the TLV® guidelines have not been validated in older workers. This is an important shortcoming given that adults as young as 40 years demonstrate impairments in their ability to dissipate heat. We therefore evaluated body temperature responses in older adults during work performed in accordance to the TLV® recommended guidelines. On three occasions, 9 healthy older (58 ± 5 years) males performed a 120-min work-simulated protocol in accordance with the TLV® guidelines for moderate-to-heavy intensity work (360 W fixed rate of heat production) in different wet-bulb globe temperatures (WBGT). The first was 120 min of continuous (CON) cycling at 28.0°C WBGT (CON[28°C]). The other two protocols were 15-min intermittent work bouts performed with different WR cycles and WBGT: (i) WR of 3:1 at 29.0°C (WR3:1[29°C]) and (ii) WR of 1:1 at 30.0°C (WR1:1[30°C]). Rectal temperature was measured continuously. The rate of change in mean body temperature was determined via thermometry (weighting coefficients: rectal, 0.9; mean skin temperature, 0.1) and direct calorimetry. Rectal temperature exceeded 38°C in all participants in CON[28°C] and WR3:1[29°C] whereas a statistically similar proportion of workers exceeded 38°C in WR1:1[30°C] (χ 2 ; P = 0.32). The average time for rectal temperature to reach 38°C was: CON[28°C], 53 ± 7; WR3:1[29°C], 79 ± 11; and WR1:1[30°C], 100 ± 29 min. Finally, while a stable mean body temperature was not achieved in any work condition as measured by thermometry (i.e., >0°C·min -1 ; all Pheat balance as determined by direct calorimetry was achieved in WR3:1[29°C] and WR1:1[30°C] (both P ≥ 0.08). Our findings indicate that the TLV® guidelines do not prevent body core

  12. Effect of core body temperature, time of day, and climate conditions on behavioral patterns of lactating dairy cows experiencing mild to moderate heat stress.

    Science.gov (United States)

    Allen, J D; Hall, L W; Collier, R J; Smith, J F

    2015-01-01

    Cattle show several responses to heat load, including spending more time standing. Little is known about what benefit this may provide for the animals. Data from 3 separate cooling management trials were analyzed to investigate the relationship between behavioral patterns in lactating dairy cows experiencing mild to moderate heat stress and their body temperature. Cows (n=157) were each fitted with a leg data logger that measured position and an intravaginal data logger that measures core body temperature (CBT). Ambient conditions were also collected. All data were standardized to 5-min intervals, and information was divided into several categories: when standing and lying bouts were initiated and the continuance of each bout (7,963 lying and 6,276 standing bouts). In one location, cows were continuously subjected to heat-stress levels according to temperature-humidity index (THI) range (THI≥72). The THI range for the other 2 locations was below and above a heat-stress threshold of 72 THI. Overall and regardless of period of day, cows stood up at greater CBT compared with continuing to stand or switching to a lying position. In contrast, cows lay down at lower CBT compared with continuing to lie or switching to a standing position, and lying bouts lasted longer when cows had lower CBT. Standing bouts also lasted longer when cattle had greater CBT, and they were less likely to lie down (less than 50% of lying bouts initiated) when their body temperature was over 38.8°C. Also, cow standing behavior was affected once THI reached 68. Increasing CBT decreased lying duration and increased standing duration. A CBT of 38.93°C marked a 50% likelihood a cow would be standing. This is the first physiological evidence that standing may help cool cows and provides insight into a communally observed behavioral response to heat. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  13. A wireless batteryless in vivo EKG and core body temperature sensing microsystem with 60 Hz suppression technique for untethered genetically engineered mice real-time monitoring.

    Science.gov (United States)

    Chaimanonart, Nattapon; Young, Darrin J

    2009-01-01

    A wireless, batteryless, and implantable EKG and core body temperature sensing microsystem with adaptive RF powering for untethered genetically engineered mice real-time monitoring is designed, implemented, and in vivo characterized. A packaged microsystem, exhibiting a total size of 9 mm x 7 mm x 3 mm with a weight of 400 mg including a pair of stainless-steel EKG electrodes, is implanted in a mouse abdomen for real-time monitoring. A low power 2 mm x 2 mm ASIC, consisting of an EKG amplifier, a proportional-to-absolute-temperature (PTAT)-based temperature sensor, an RF power sensing circuit, an RF-DC power converter, an 8-bit ADC, digital control circuitry, and a 433 MHz FSK transmitter, is powered by an adaptively controlled external RF energy source at 4 MHz to ensure a stable 2V supply with 156microA current driving capability for the overall microsystem. An electrical model for analyzing 60 Hz interference based on 2-electrode and 3-electrode configurations is proposed and compared with in vivo evaluation results. Due to the small laboratory animal chest area, a 60 Hz suppression technique by employing input termination resistors is chosen for two-EKG-electrode implant configuration.

  14. Evaluation of a novel noninvasive continuous core temperature measurement system with a zero heat flux sensor using a manikin of the human body.

    Science.gov (United States)

    Brandes, Ivo F; Perl, Thorsten; Bauer, Martin; Bräuer, Anselm

    2015-02-01

    Reliable continuous perioperative core temperature measurement is of major importance. The pulmonary artery catheter is currently the gold standard for measuring core temperature but is invasive and expensive. Using a manikin, we evaluated the new, noninvasive SpotOn™ temperature monitoring system (SOT). With a sensor placed on the lateral forehead, SOT uses zero heat flux technology to noninvasively measure core temperature; and because the forehead is devoid of thermoregulatory arteriovenous shunts, a piece of bone cement served as a model of the frontal bone in this study. Bias, limits of agreements, long-term measurement stability, and the lowest measurable temperature of the device were investigated. Bias and limits of agreement of the temperature data of two SOTs and of the thermistor placed on the manikin's surface were calculated. Measurements obtained from SOTs were similar to thermistor values. The bias and limits of agreement lay within a predefined clinically acceptable range. Repeat measurements differed only slightly, and stayed stable for hours. Because of its temperature range, the SOT cannot be used to monitor temperatures below 28°C. In conclusion, the new SOT could provide a reliable, less invasive and cheaper alternative for measuring perioperative core temperature in routine clinical practice. Further clinical trials are needed to evaluate these results.

  15. Diurnal changes in core body temperature, day/night locomotor activity patterns, and actigraphy-generated behavioral sleep in aged canines with varying levels of cognitive dysfunction

    Directory of Open Access Journals (Sweden)

    Brian M. Zanghi

    2016-10-01

    Full Text Available Core body temperature (CBT rhythm, locomotor activity, and actigraphy-sleep were evaluated in geriatric dogs with cognitive dysfunction. Dogs (n=33; 9–16 yrs performed a spatial working memory task and divided into three memory groups: Low, Moderate, and High, with subsequent evaluation of learning and attention. Rectal CBT was recorded 6 times over a 17.5 h period and Actiwatch® activity monitoring system for 5 days while housed indoors with 12 h light/dark schedule. Rhythm of daily activity data was evaluated using the traditional cosinor analysis and generation of non-parametric measures of interdaily stability, intradaily variability, and relative amplitude. CBT differed with time (F (5, 130=11.36, p<0.001, and was the highest at 19:00C. CBT at 19:00 was positively related (p<0.01 to memory (r(31=0.50 and 3-domain cognitive performance index (memory, learning, attention; r(31=0.39. Total daytime or night-time activity did not differ between memory groups, but hourly counts at 8:00 were positively related (p<0.05 to memory (r(31=0.52, learning (r(31=0.36, and 3-domain cognitive performance index (r(31=0.53. There were no significant differences between age or memory groups for any circadian rhythm measures. Daytime naps were inversely related to memory accuracy (r(31=−0.39; p<0.05 and BT at 15:00 (r(30=−0.51; p<0.01. Lower peak BT and increased napping may predict some aspects of cognitive performance of working memory, learning, and/or attention processes in these geriatric dogs, but minimal diurnal rhythm disruption of locomotor activity is observed when these cognitive processes decline.

  16. Rhythmic 24 h variation of core body temperature and locomotor activity in a subterranean rodent (Ctenomys aff. knighti, the tuco-tuco.

    Directory of Open Access Journals (Sweden)

    Patricia Tachinardi

    Full Text Available The tuco-tuco Ctenomys aff. knighti is a subterranean rodent which inhabits a semi-arid area in Northwestern Argentina. Although they live in underground burrows where environmental cycles are attenuated, they display robust, 24 h locomotor activity rhythms that are synchronized by light/dark cycles, both in laboratory and field conditions. The underground environment also poses energetic challenges (e.g. high-energy demands of digging, hypoxia, high humidity, low food availability that have motivated thermoregulation studies in several subterranean rodent species. By using chronobiological protocols, the present work aims to contribute towards these studies by exploring day-night variations of thermoregulatory functions in tuco-tucos, starting with body temperature and its temporal relationship to locomotor activity. Animals showed daily, 24 h body temperature rhythms that persisted even in constant darkness and temperature, synchronizing to a daily light/dark cycle, with highest values occurring during darkness hours. The range of oscillation of body temperature was slightly lower than those reported for similar-sized and dark-active rodents. Most rhythmic parameters, such as period and phase, did not change upon removal of the running wheel. Body temperature and locomotor activity rhythms were robustly associated in time. The former persisted even after removal of the acute effects of intense activity on body temperature by a statistical method. Finally, regression gradients between body temperature and activity were higher in the beginning of the night, suggesting day-night variation in thermal conductance and heat production. Consideration of these day-night variations in thermoregulatory processes is beneficial for further studies on thermoregulation and energetics of subterranean rodents.

  17. Dinosaur fossils predict body temperatures.

    Directory of Open Access Journals (Sweden)

    James F Gillooly

    2006-07-01

    Full Text Available Perhaps the greatest mystery surrounding dinosaurs concerns whether they were endotherms, ectotherms, or some unique intermediate form. Here we present a model that yields estimates of dinosaur body temperature based on ontogenetic growth trajectories obtained from fossil bones. The model predicts that dinosaur body temperatures increased with body mass from approximately 25 degrees C at 12 kg to approximately 41 degrees C at 13,000 kg. The model also successfully predicts observed increases in body temperature with body mass for extant crocodiles. These results provide direct evidence that dinosaurs were reptiles that exhibited inertial homeothermy.

  18. Assessment of body temperature measurement options.

    Science.gov (United States)

    Sund-Levander, Märtha; Grodzinsky, Ewa

    Assessment of body temperature is important for decisions in nursing care, medical diagnosis, treatment and the need of laboratory tests. The definition of normal body temperature as 37°C was established in the middle of the 19th century. Since then the technical design and the accuracy of thermometers has been much improved. Knowledge of physical influence on the individual body temperature, such as thermoregulation and hormones, are still not taken into consideration in body temperature assessment. It is time for a change; the unadjusted mode should be used, without adjusting to another site and the same site of measurement should be used as far as possible. Peripheral sites, such as the axillary and the forehead site, are not recommended as an assessment of core body temperature in adults. Frail elderly individuals might have a low normal body temperature and therefore be at risk of being assessed as non-febrile. As the ear site is close to the hypothalamus and quickly responds to changes in the set point temperature, it is a preferable and recommendable site for measurement of body temperature.

  19. Effects of adjustable and stationary fans with misters on core body temperature and lying behavior of lactating dairy cows in a semiarid climate.

    Science.gov (United States)

    Anderson, S D; Bradford, B J; Harner, J P; Tucker, C B; Choi, C Y; Allen, J D; Hall, L W; Rungruang, S; Collier, R J; Smith, J F

    2013-07-01

    Cows readily seek shade to reduce solar heat load during periods of high ambient temperature. Typically, auxiliary cooling systems are oriented to maximize cooling for shaded cows. However, when a shade structure is oriented north-south, stationary fan and mister cooling systems are unable to track shade as the sun's angle shifts throughout the day, and thus can become ineffective. The FlipFan Dairy Cooling System (Schaefer Ventilation Equipment, Sauk Rapids, MN) employs fans and misters that follow shade and compensate for wind speed by rotating on a horizontal axis. Multiparous, lactating Holstein cows (n=144) on a commercial dairy in Arizona were cooled by a fixed system comprised of stationary fans and misters acting as control or the adjustable FlipFan operated for 16.5 h/d (0830 to 0100 h). Core body temperatures (CBT) of 64 cows (4 pens/treatment; 8 cows/pen; 6d) and lying behavior of 144 cows (4 pens/treatment; 18 cows/pen; 5d) were collected by intravaginal and leg data loggers, respectively. Cows were balanced by milk production, blocked by days in milk, and randomly assigned to pen within block. Pen was the experimental unit. In a second experiment, isothermal maps were developed using a fixed system of thermal data loggers arranged in the shaded areas of the pens at different times of day and were analyzed for differences in the temperature-humidity index (THI) achieved by each cooling treatment. Ambient conditions consisted of a mean temperature of 33.0°C, mean relative humidity of 40.3%, and mean THI of 80.2. Mean 24-h CBT for FlipFan was lower than control (38.9 vs. 39.1±0.04°C). A treatment × time interaction was observed in which CBT of FlipFan was 0.4°C lower than control from 0600 to 0800h and 1500 to 1600h. Cows cooled by FlipFan spent more time lying down compared with those cooled by control (9.5 vs. 8.6 h/d). Cows under FlipFan had more frequent lying bouts than did those under control (12.8 vs. 10.7 bouts/d). Lower CBT and decreased

  20. Central control of body temperature.

    Science.gov (United States)

    Morrison, Shaun F

    2016-01-01

    Central neural circuits orchestrate the behavioral and autonomic repertoire that maintains body temperature during environmental temperature challenges and alters body temperature during the inflammatory response and behavioral states and in response to declining energy homeostasis. This review summarizes the central nervous system circuit mechanisms controlling the principal thermoeffectors for body temperature regulation: cutaneous vasoconstriction regulating heat loss and shivering and brown adipose tissue for thermogenesis. The activation of these thermoeffectors is regulated by parallel but distinct efferent pathways within the central nervous system that share a common peripheral thermal sensory input. The model for the neural circuit mechanism underlying central thermoregulatory control provides a useful platform for further understanding of the functional organization of central thermoregulation, for elucidating the hypothalamic circuitry and neurotransmitters involved in body temperature regulation, and for the discovery of novel therapeutic approaches to modulating body temperature and energy homeostasis.

  1. Portable Body Temperature Conditioner

    Science.gov (United States)

    2014-12-01

    temperature is 36.0o C. The patient complains of severe abdominal pain and intra- abdominal injury is suspected. In this scenario the patient is...hypothermia will shiver, experience pain , and on a whole be really uncomfortable. If they are sufficiently obtunded to require this therapy then they...Convective hyper- hypothermia water blankets/wraps Single-Use Blanket Maxi-Therm Adult Box 5 $127.00 Pediatric Box 5 $90.00 Infant Box 5 $72.00

  2. Effects of running time of a cattle-cooling system on core body temperature of cows on dairy farms in an arid environment.

    Science.gov (United States)

    Ortiz, X A; Smith, J F; Bradford, B J; Harner, J P; Oddy, A

    2010-10-01

    Two experiments were conducted on a commercial dairy farm to describe the effects of a reduction in Korral Kool (KK; Korral Kool Inc., Mesa, AZ) system operating time on core body temperature (CBT) of primiparous and multiparous cows. In the first experiment, KK systems were operated for 18, 21, or 24 h/d while CBT of 63 multiparous Holstein dairy cows was monitored. All treatments started at 0600 h, and KK systems were turned off at 0000 h and 0300 h for the 18-h and 21-h treatments, respectively. Animals were housed in 9 pens and assigned randomly to treatment sequences in a 3 × 3 Latin square design. In the second experiment, 21 multiparous and 21 primiparous cows were housed in 6 pens and assigned randomly to treatment sequences (KK operated for 21 or 24 h/d) in a switchback design. All treatments started at 0600 h, and KK systems were turned off at 0300 h for the 21-h treatments. In experiment 1, cows in the 24-h treatment had a lower mean CBT than cows in the 18- and 21-h treatments (38.97, 39.08, and 39.03±0.04°C, respectively). The significant treatment by time interaction showed that the greatest treatment effects occurred at 0600 h; treatment means at this time were 39.43, 39.37, and 38.88±0.18°C for 18-, 21-, and 24-h treatments, respectively. These results demonstrate that a reduction in KK system running time of ≥3 h/d will increase CBT. In experiment 2, a significant parity by treatment interaction was found. Multiparous cows on the 24-h treatment had lower mean CBT than cows on the 21-h treatment (39.23 and 39.45±0.17°C, respectively), but treatment had no effect on mean CBT of primiparous cows (39.50 and 39.63±0.20°C for 21- and 24-h treatments, respectively). A significant treatment by time interaction was observed, with the greatest treatment effects occurring at 0500 h; treatment means at this time were 39.57, 39.23, 39.89, and 39.04±0.24°C for 21-h primiparous, 24-h primiparous, 21-h multiparous, and 24-h multiparous cows

  3. Validation of Core Temperature Estimation Algorithm

    Science.gov (United States)

    2016-01-20

    based on an extended Kalman filter , which was developed using field data from 17 young male U.S. Army soldiers with core temperatures ranging from...CTstart, v) %KFMODEL estimate core temperature from heart rate with Kalman filter % This version supports both batch mode (operate on entire HR time...CTstart = 37.1; % degrees Celsius end if nargin < 3 v = 0; end %Extended Kalman Filter Parameters a = 1; gamma = 0.022^2; b_0 = -7887.1; b_1

  4. Experimental evidence of body centered cubic iron in Earth's core

    Science.gov (United States)

    Hrubiak, R.; Meng, Y.; Shen, G.

    2017-12-01

    The Earth's core is mainly composed of iron. While seismic evidence has shown a liquid outer core and a solid inner core, the crystalline nature of the solid iron at the core condition remains debated, largely due to the difficulties in experimental determination of exact polymorphs at corresponding pressure-temperature conditions. We have examined crystal structures of iron up to 220 GPa and 6000 K with x-ray diffraction using a double-sided laser heating system at HPCAT, Advanced Photon Source. The iron sample is confined in a small chamber surrounded by single crystal MgO. The laser power can be modulated together with temperature measurements. The modulated heating of iron in an MgO single crystal matrix allows for microstructure analysis during heating and after the sample is quenched. We present experimental evidence of a body-centered-cubic (BCC) iron from about 100 GPa and 3000 K to at least 220 GPa and 4000 K. The observed BCC phase may be consistent with a theoretically predicted BCC phase that is dynamically stable in similar pressure-temperature conditions [1]. We will discuss the stability region of the BCC phase and the melting curve of iron and their implications in the nature of the Earth's inner core. References: A. B. Belonoshko et al., Nat. Geosci., 1-6 (2017).

  5. The Role of Body Crystallization in Asteroidal Cores

    Science.gov (United States)

    Wasson, J. T.

    1993-07-01

    Large fractionations (factors of 2000-6000) in Ir/Ni and other ratios demonstrate that the magmatic groups of iron meteorites formed by fractional crystallization, and thus that the residual liquid remained well stirred during core crystallization. Past models have relied on solidification at the base or the top of the core, but body crystallization offers an attractive alternative. The simplest of the earlier models involved convective maxing induced by the liberation of heat and light elements (especially S) during upward crystallization from the center of the core. Other models involving downward crystallization from the core-mantle interface are based on the fact that temperatures at this location are slightly lower than those at the center; no whole-core stirring mechanism is provided by these models. Haack and Scott recently published a variant of the downward crystallization model involving the growth of giant (kilometer-scale) dendrites. Because crystallization creates a boundary layer enriched in S that does not participate in the convection, these models require several K of supercooling to induce crystallization (this undercooling is much greater than the temperature difference between the center of the core and the core-mantle interface). Buoyant forces will occasionally remove droplets of the basal boundary fluid; thus it was thinner and its degree of undercooling less than in that at the ceiling of the magma chamber. Homogeneous nucleation of metals is difficult to achieve; generally 200-300 K of undercooling is required, much more than could possibly occur in an asteroidal core. Crystals could, however, nucleate in the magma body on chromite, probably the first liquidus phase (A. Kracher, personal communication, notes that this is required to explain why Cr behaved like a compatible element despite having a solid/liquid D crystallize. The rate of core crystallization is limited by the rate of heat transport across the core-mantle interface. If

  6. Moderator temperature coefficient in BWR core

    International Nuclear Information System (INIS)

    Naito, Yoshitaka

    1977-01-01

    Temperature dependences of infinite multiplication factor k sub(infinity) and neutron leakage from the core must be examined for estimation of moderator temperature coefficient. Temperature dependence on k sub(infinity) has been investigated by many researchers, however, the dependence on neutron leakage of a BWR with cruciformed control rods has hardly been done. Because there are difficulties and necessity on calculations of three space dimensional and multi-energy groups neutron distribution in a BWR core. In this study, moderator temperature coefficients of JPDR-II (BWR) core were obtained by calculation with DIFFUSION-ACE, which is newly developed three-dimensional multi-group computer code. The results were compared with experimental data measured from 20 to 275 0 C of the moderator temperature and the good agreement was obtained between calculation and measurement. In order to evaluate neutron leakage from the core, the other two calculations were carried out, adjusting criticality by uniform absorption rate and by material buckling. The former underestimated neutron leakage and the latter overestimated it. Discussion on the results shows that in order to estimate the temperature coefficient of BWR, neutron leakage must be evaluated precisely, therefore the calculation at actual pattern of control rods is necessary. (auth.)

  7. Body Temperature Cycles Control Rhythmic Alternative Splicing in Mammals.

    Science.gov (United States)

    Preußner, Marco; Goldammer, Gesine; Neumann, Alexander; Haltenhof, Tom; Rautenstrauch, Pia; Müller-McNicoll, Michaela; Heyd, Florian

    2017-08-03

    The core body temperature of all mammals oscillates with the time of the day. However, direct molecular consequences of small, physiological changes in body temperature remain largely elusive. Here we show that body temperature cycles drive rhythmic SR protein phosphorylation to control an alternative splicing (AS) program. A temperature change of 1°C is sufficient to induce a concerted splicing switch in a large group of functionally related genes, rendering this splicing-based thermometer much more sensitive than previously described temperature-sensing mechanisms. AS of two exons in the 5' UTR of the TATA-box binding protein (Tbp) highlights the general impact of this mechanism, as it results in rhythmic TBP protein levels with implications for global gene expression in vivo. Together our data establish body temperature-driven AS as a core clock-independent oscillator in mammalian peripheral clocks. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Coping with heat: function of the natal coat of cape fur seal (Arctocephalus Pusillus Pusillus pups in maintaining core body temperature.

    Directory of Open Access Journals (Sweden)

    Nicola Erdsack

    Full Text Available Cape fur seal (Arctocephalus pusillus pups spend the first weeks of life exclusively or mainly ashore. They are exposed to intense solar radiation and high temperatures for long time periods, which results in temperatures up to at least 80°C on their black natal coat. To test the hypothesis that the natal coat has a crucial function in coping with these extreme conditions, we investigated the insulating properties of the natal coat in six captive newborn Cape fur seals during the first 50 days after birth. The natal fur differs from the adult fur not only in colour, but also in density, structure, and water repellence. We measured temperature on the fur surface and within the fur, as well as skin and rectal temperature under varying environmental conditions, comparable to the species' habitat. Experiments were designed to not influence the spontaneous behaviour of the pups. Rectal temperature was constant as long as the pups stayed dry, even during long-lasting intense solar radiation for up to 3 h. Skin temperature remained close to rectal temperature as long as the fur was dry, while with wet fur, skin temperature was significantly reduced as well. Our results show that the natal coat provides an effective insulation against overheating. The severely reduced insulation of wet natal fur against cold supports the assumption that the natal fur is an adaptation to the pups' terrestrial phase of life.

  9. Relationship between body temperature and air temperature in ...

    African Journals Online (AJOL)

    Body temperatures of singing male Gryllus bimaculatus were measured for the first time. Body temperatures were strongly correlated with ambient temperature. This indicates that, unlike some other orthopterans, larger crickets are not dependent on an elevated body temperature for efficient calling. Our results confirm that it ...

  10. Validation of Core Temperature Estimation Algorithm

    Science.gov (United States)

    2016-01-29

    going to heat production [6]. Second, heart rate increases to support the body’s heat dissipation. To dissipate heat, blood vessels near the skin ...vasodilate to increase blood perfusion. Thus, heart rate increases both to support the cardiac output needed both to perform work and to increase skin ...95%) were represented. The data sets also included various hydration states, clothing ensembles, and acclimatization states. Core temperature was

  11. Validation of temperature-sensitive radio transmitters for measurement of body temperature in small animals

    NARCIS (Netherlands)

    Williams, Joseph B.; Tieleman, B. I.; Shobrak, Mohammed

    2009-01-01

    As part of a study on the core body temperature (T(b)) of desert birds, we purposed to use temperature-sensitive implantable radio transmitters. Because of the difficulty in recapturing these birds, we needed to know if these electronic devices held their calibration over the duration of normal

  12. Daily rhythmicity of body temperature in the dog.

    Science.gov (United States)

    Refinetti, R; Piccione, G

    2003-08-01

    Research over the past 50 years has demonstrated the existence of circadian or daily rhythmicity in the body core temperature of a large number of mammalian species. However, previous studies have failed to identify daily rhythmicity of body temperature in dogs. We report here the successful recording of daily rhythms of rectal temperature in female Beagle dogs. The low robustness of the rhythms (41% of maximal robustness) and the small range of excursion (0.5 degrees C) are probably responsible for previous failures in detecting rhythmicity in dogs.

  13. Is Oral Temperature an Accurate Measurement of Deep Body Temperature? A Systematic Review

    Science.gov (United States)

    Mazerolle, Stephanie M.; Ganio, Matthew S.; Casa, Douglas J.; Vingren, Jakob; Klau, Jennifer

    2011-01-01

    Context: Oral temperature might not be a valid method to assess core body temperature. However, many clinicians, including athletic trainers, use it rather than criterion standard methods, such as rectal thermometry. Objective: To critically evaluate original research addressing the validity of using oral temperature as a measurement of core body temperature during periods of rest and changing core temperature. Data Sources: In July 2010, we searched the electronic databases PubMed, Scopus, Cumulative Index to Nursing and Allied Health Literature (CINAHL), SPORTDiscus, Academic Search Premier, and the Cochrane Library for the following concepts: core body temperature, oral, and thermometers. Controlled vocabulary was used, when available, as well as key words and variations of those key words. The search was limited to articles focusing on temperature readings and studies involving human participants. Data Synthesis: Original research was reviewed using the Physiotherapy Evidence Database (PEDro). Sixteen studies met the inclusion criteria and subsequently were evaluated by 2 independent reviewers. All 16 were included in the review because they met the minimal PEDro score of 4 points (of 10 possible points), with all but 2 scoring 5 points. A critical review of these studies indicated a disparity between oral and criterion standard temperature methods (eg, rectal and esophageal) specifically as the temperature increased. The difference was −0.50°C ± 0.31°C at rest and −0.58°C ± 0.75°C during a nonsteady state. Conclusions: Evidence suggests that, regardless of whether the assessment is recorded at rest or during periods of changing core temperature, oral temperature is an unsuitable diagnostic tool for determining body temperature because many measures demonstrated differences greater than the predetermined validity threshold of 0.27°C (0.5°F). In addition, the differences were greatest at the highest rectal temperatures. Oral temperature cannot

  14. Predicting body temperature of endotherms during shuttling

    NARCIS (Netherlands)

    Rodriguez-Girones, M.A.

    2002-01-01

    This paper presents two models that can be used to predict the temporal dynamics of body temperature in endotherms. A first-order model is based on the assumption that body temperature is uniform at all times, while a second-order model is based on the assumption that animals can be divided in a

  15. Astronaut James Lovell checks body temperature with oral temperature probe

    Science.gov (United States)

    1965-01-01

    Gemini 7 pilot Astronaut James A. Lovell Jr. has temperature check with oral temperature probe attached to his space suit during final preflight preparations for the Gemini 7 space mission. The temperature probe allows doctors to monitor astronauts body temperature at any time during the mission.

  16. Lunar Fluid Core and Solid-Body Tides

    Science.gov (United States)

    Williams, J. G.; Boggs, D. H.; Ratcliff, J. T.

    2005-01-01

    Variations in rotation and orientation of the Moon are sensitive to solid-body tidal dissipation, dissipation due to relative motion at the fluid-core/solid-mantle boundary, and tidal Love number k2 [1,2]. There is weaker sensitivity to flattening of the core-mantle boundary (CMB) [2-5] and fluid core moment of inertia [1]. Accurate Lunar Laser Ranging (LLR) measurements of the distance from observatories on the Earth to four retroreflector arrays on the Moon are sensitive to lunar rotation and orientation variations and tidal displacements. Past solutions using the LLR data have given results for dissipation due to solid-body tides and fluid core [1] plus Love number [1-5]. Detection of CMB flattening has been improving [3,5] and now seems significant. This strengthens the case for a fluid lunar core.

  17. Comparison between core temperatures measured telemetrically using the CorTemp® ingestible temperature sensor and rectal temperature in healthy Labrador retrievers.

    Science.gov (United States)

    Osinchuk, Stephanie; Taylor, Susan M; Shmon, Cindy L; Pharr, John; Campbell, John

    2014-10-01

    This study evaluated the CorTemp(®) ingestible telemetric core body temperature sensor in dogs, to establish the relationship between rectal temperature and telemetrically measured core body temperature at rest and during exercise, and to examine the effect of sensor location in the gastrointestinal (GI) tract on measured core temperature. CorTemp(®) sensors were administered orally to fasted Labrador retriever dogs and radiographs were taken to document sensor location. Core and rectal temperatures were monitored throughout the day in 6 resting dogs and during a 10-minute strenuous retrieving exercise in 6 dogs. Time required for the sensor to leave the stomach (120 to 610 min) was variable. Measured core temperature was consistently higher than rectal temperature across all GI locations but temperature differences based on GI location were not significant (P = 0.5218). Resting dogs had a core temperature that was on average 0.4°C above their rectal temperature with 95% limits of agreement (LoA) between 1.2°C and -0.5°C. Core temperature in exercising dogs was on average 0.3°C higher than their concurrent rectal temperature, with LoA of +1.6°C and -1.1°C.

  18. Modelling characteristics of ferromagnetic cores with the influence of temperature

    International Nuclear Information System (INIS)

    Górecki, K; Rogalska, M; Zarȩbski, J; Detka, K

    2014-01-01

    The paper is devoted to modelling characteristics of ferromagnetic cores with the use of SPICE software. Some disadvantages of the selected literature models of such cores are discussed. A modified model of ferromagnetic cores taking into account the influence of temperature on the magnetizing characteristics and the core losses is proposed. The form of the elaborated model is presented and discussed. The correctness of this model is verified by comparing the calculated and the measured characteristics of the selected ferromagnetic cores.

  19. Effect of body fat and gender on body temperature distribution.

    Science.gov (United States)

    Neves, Eduardo Borba; Salamunes, Ana Carla Chierighini; de Oliveira, Rafael Melo; Stadnik, Adriana Maria Wan

    2017-12-01

    It is well known that body composition can influence peripheral heat loss and skin temperature. That the distribution of body fat is affected by gender is well known; however, there is little information on how body composition and gender influences the measure of skin temperature. This study evaluated skin temperature distribution according to body fat percentage (BF%) and gender. A sample of 94 apparently healthy volunteers (47 women and 47 men) was assessed with Dual-Energy X-Ray Absorptiometry (DXA) and infrared thermography (mean, maximum and minimum temperatures - T Mean , T Max and T Min ). The sample was divided into groups, according to health risk classification, based on BF%, as proposed by the American College of Sports Medicine: Average (n = 58), Elevated (n = 16) or High (n = 20). Women had lower T Mean in most regions of interest (ROI). In both genders, group High had lower temperature values than Average and Elevated in the trunk, upper and lower limbs. In men, palms and posterior hands had a tendency (p temperature along with increased BF%. T Mean , T Max and T Min of trunk, upper and lower limbs were negatively correlated with BF% and the fat percentage of each segment (upper limbs, lower limbs and trunk). The highest correlations found in women were between posterior trunk and BF% (rho = -0.564, p temperature than men, which was related with higher BF%. Facial temperature seems not to be influenced by body fat. With the future collection of data on the relationship between BF% and skin temperature while taking into account factors such as body morphology, gender, and ethnicity, we conclude that measurement of BF may be reliably estimated with the use of thermal imaging technology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Association between obesity and reduced body temperature in dogs.

    Science.gov (United States)

    Piccione, G; Giudice, E; Fazio, F; Refinetti, R

    2011-08-01

    Industrialized nations are currently experiencing an obesity epidemic, the causes of which are not fully known. One possible mechanism of enhanced energy efficiency that has received almost no attention is a reduction in the metabolic cost of homeothermy, which could be achieved by a modest lowering of body core temperature. We evaluated the potential of this obesity-inducing mechanism in a canine model of the metabolic syndrome. We compared the rectal temperature of lean dogs and obese dogs by (a) conducting cross-sectional measurements in 287 dogs of many breeds varying greatly in body size, (b) conducting longitudinal measurements in individual dogs over 7-10 years and (c) tracking rectal temperature of lean and obese dogs at 3-h intervals for 48 consecutive hours in the laboratory. We found that larger dogs have lower rectal temperatures than smaller dogs and that, for the same body mass, obese dogs have lower rectal temperatures than lean dogs. The results were consistent in the cross-sectional, longitudinal and around-the-clock measurements. These findings document an association between obesity and reduced body temperature in dogs and support the hypothesis that obesity in this and other species of homeotherms may result from an increase in metabolic efficiency achieved by a regulated lowering of body temperature.

  1. Body temperature measurement in mice during acute illness: implantable temperature transponder versus surface infrared thermometry.

    Science.gov (United States)

    Mei, Jie; Riedel, Nico; Grittner, Ulrike; Endres, Matthias; Banneke, Stefanie; Emmrich, Julius Valentin

    2018-02-23

    Body temperature is a valuable parameter in determining the wellbeing of laboratory animals. However, using body temperature to refine humane endpoints during acute illness generally lacks comprehensiveness and exposes to inter-observer bias. Here we compared two methods to assess body temperature in mice, namely implanted radio frequency identification (RFID) temperature transponders (method 1) to non-contact infrared thermometry (method 2) in 435 mice for up to 7 days during normothermia and lipopolysaccharide (LPS) endotoxin-induced hypothermia. There was excellent agreement between core and surface temperature as determined by method 1 and 2, respectively, whereas the intra- and inter-subject variation was higher for method 2. Nevertheless, using machine learning algorithms to determine temperature-based endpoints both methods had excellent accuracy in predicting death as an outcome event. Therefore, less expensive and cumbersome non-contact infrared thermometry can serve as a reliable alternative for implantable transponder-based systems for hypothermic responses, although requiring standardization between experimenters.

  2. Effects of MDMA on body temperature in humans

    Science.gov (United States)

    Liechti, Matthias E

    2014-01-01

    Hyperthermia is a severe complication associated with the recreational use of 3,4-methylenedioxymethamphetamine (MDMA, Ecstasy). In this review, the clinical laboratory studies that tested the effects of MDMA on body temperature are summarized. The mechanisms that underlie the hyperthermic effects of MDMA in humans and treatment of severe hyperthermia are presented. The data show that MDMA produces an acute and dose-dependent rise in core body temperature in healthy subjects. The increase in body temperature is in the range of 0.2-0.8°C and does not result in hyperpyrexia (>40°C) in a controlled laboratory setting. However, moderately hyperthermic body temperatures >38.0°C occur frequently at higher doses, even in the absence of physical activity and at room temperature. MDMA primarily releases serotonin and norepinephrine. Mechanistic clinical studies indicate that the MDMA-induced elevations in body temperature in humans partially depend on the MDMA-induced release of norepinephrine and involve enhanced metabolic heat generation and cutaneous vasoconstriction, resulting in impaired heat dissipation. The mediating role of serotonin is unclear. The management of sympathomimetic toxicity and associated hyperthermia mainly includes sedation with benzodiazepines and intravenous fluid replacement. Severe hyperthermia should primarily be treated with additional cooling and mechanical ventilation. PMID:27626046

  3. The impact of morning light intensity and environmental temperature on body temperatures and alertness.

    Science.gov (United States)

    Te Kulve, Marije; Schlangen, Luc J M; Schellen, Lisje; Frijns, Arjan J H; van Marken Lichtenbelt, Wouter D

    2017-06-01

    Indoor temperature and light exposure are known to affect body temperature, productivity and alertness of building occupants. However, not much is known about the interaction between light and temperature exposure and the relationship between morning light induced alertness and its effect on body temperature. Light intensity and room temperature during morning office hours were investigated under strictly controlled conditions. In a randomized crossover study, two white light conditions (4000K, either bright 1200lx or dim 5lx) under three different room temperatures (26, 29 and 32°C) were investigated. A lower room temperature increased the core body temperature (CBT) and lowered skin temperature and the distal-proximal temperature gradient (DPG). Moreover, a lower room temperature reduced the subjective sleepiness and reaction time on an auditory psychomotor vigilance task (PVT), irrespective of the light condition. Interestingly, the morning bright light exposure did affect thermophysiological parameters, i.e. it decreased plasma cortisol, CBT and proximal skin temperature and increased the DPG, irrespective of the room temperature. During the bright light session, subjective sleepiness decreased irrespective of the room temperature. However, the change in sleepiness due to the light exposure was not related to these physiological changes. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Computer supervision of the core outlet sodium temperatures of FBTR

    International Nuclear Information System (INIS)

    Boopathy, C.

    1976-01-01

    Safety monitoring of the fast breeder test reactor at Kalpakkam (India) is achieved by a CDPS-on-line dual computer system which is dedicated to plant supervision. The on-line subsystem scans and supervises all the 170 core thermocouple signals every second. Organisation of the reactor core instruments, supervision of mean sodium outlet temperature and mean temperature drop across the core, detection of plugging of a fuel assembly are explained. (A.K.)

  5. Rhythms of mammalian body temperature can sustain peripheral circadian clocks.

    Science.gov (United States)

    Brown, Steven A; Zumbrunn, Gottlieb; Fleury-Olela, Fabienne; Preitner, Nicolas; Schibler, Ueli

    2002-09-17

    Low-amplitude temperature oscillations can entrain the phase of circadian rhythms in several unicellular and multicellular organisms, including Neurospora and Drosophila. Because mammalian body temperature is subject to circadian variations of 1 degrees C-4 degrees C, we wished to determine whether these temperature cycles could serve as a Zeitgeber for circadian gene expression in peripheral cell types. In RAT1 fibroblasts cultured in vitro, circadian gene expression could be established by a square wave temperature rhythm with a (Delta)T of 4 degrees C (12 hr 37 degrees C/12 hr 33 degrees C). To examine whether natural body temperature rhythms can also affect circadian gene expression, we first measured core body temperature cycles in the peritoneal cavities of mice by radiotelemetry. We then reproduced these rhythms with high precision in the liquid medium of cultured fibroblasts for several days by means of a homemade computer-driven incubator. While these "in vivo" temperature rhythms were incapable of establishing circadian gene expression de novo, they could maintain previously induced rhythms for multiple days; by contrast, the rhythms of control cells kept at constant temperature rapidly dampened. Moreover, circadian oscillations of environmental temperature could reentrain circadian clocks in the livers of mice, probably via the changes they imposed upon both body temperature and feeding behavior. Interestingly, these changes in ambient temperature did not affect the phase of the central circadian pacemaker in the suprachiasmatic nucleus (SCN) of the hypothalamus. We postulate that both endogenous and environmental temperature cycles can participate in the synchronization of peripheral clocks in mammals.

  6. Hanford coring bit temperature monitor development testing results report

    International Nuclear Information System (INIS)

    Rey, D.

    1995-05-01

    Instrumentation which directly monitors the temperature of a coring bit used to retrieve core samples of high level nuclear waste stored in tanks at Hanford was developed at Sandia National Laboratories. Monitoring the temperature of the coring bit is desired to enhance the safety of the coring operations. A unique application of mature technologies was used to accomplish the measurement. This report documents the results of development testing performed at Sandia to assure the instrumentation will withstand the severe environments present in the waste tanks

  7. Reflood behavior at low initial clad temperature in Slab Core Test Facility Core-II

    International Nuclear Information System (INIS)

    Akimoto, Hajime; Sobajima, Makoto; Abe, Yutaka; Iwamura, Takamichi; Ohnuki, Akira; Okubo, Tsutomu; Murao, Yoshio; Okabe, Kazuharu; Adachi, Hiromichi.

    1990-07-01

    In order to study the reflood behavior with low initial clad temperature, a reflood test was performed using the Slab Core Test Facility (SCTF) with initial clad temperature of 573 K. The test conditions of the test are identical with those of SCTF base case test S2-SH1 (initial clad temperature 1073 K) except the initial clad temperature. Through the comparison of results from these two tests, the following conclusions were obtained. (1) The low initial clad temperature resulted in the low differential pressures through the primary loops due to smaller steam generation in the core. (2) The low initial clad temperature caused the accumulated mass in the core to be increased and the accumulated mass in the downcomer to be decreased in the period of the lower plenum injection with accumulator (before 50s). In the later period of the cold leg injection with LPCI (after 100s), the water accumulation rates in the core and the downcomer were almost the same between both tests. (3) The low initial clad temperature resulted in the increase of the core inlet mass flow rate in the lower plenum injection period. However, the core inlet mass flow rate was almost the same regardless of the initial clad temperature in the later period of the cold leg injection period. (4) The low initial clad temperature resulted in the low turnaround temperature, high temperature rise and fast bottom quench front propagation. (5) In the region apart from the quench front, low initial clad temperature resulted in the lower heat transfer. In the region near the quench front, almost the same heat transfer coefficient was observed between both tests. (6) No flow oscillation with a long period was observed in the SCTF test with low initial clad temperature of 573 K, while it was remarkable in the Cylindrical Core Test Facility (CCTF) test which was performed with the same initial clad temperature. (J.P.N.)

  8. Temperature measurements at the LMFBR core outlet

    International Nuclear Information System (INIS)

    Argous, J.P.; Berger, R.; Casejuane, R.; Fournier, C.; Girard, J.P.

    1980-04-01

    Over the last few years the temperature sensors used to measure the subassembly outlet temperature in French designed LMFBRs have been modified, basically in an effort to reduce the dispersion of the chromel-alumel thermocouple time constant, and to extend the frequency spectrum of the measurement signals by adding a steel electrode to from a stainless steel-sodium thermocouple. The result of this evolution is the temperature probe immersed in sodium which will be used in the SUPER PHENIX reactor. This paper describes the tests already completed or in progress on this probe. It also presents measurement data on the two basic probe parameters: the thermoelectric power of the stainless steel-sodium thermocouple and the time constant of the chromel-alumel thermocouple

  9. Modelling guidelines for core exit temperature simulations with system codes

    Energy Technology Data Exchange (ETDEWEB)

    Freixa, J., E-mail: jordi.freixa-terradas@upc.edu [Department of Physics and Nuclear Engineering, Technical University of Catalonia (UPC) (Spain); Paul Scherrer Institut (PSI), 5232 Villigen (Switzerland); Martínez-Quiroga, V., E-mail: victor.martinez@nortuen.com [Department of Physics and Nuclear Engineering, Technical University of Catalonia (UPC) (Spain); Zerkak, O., E-mail: omar.zerkak@psi.ch [Paul Scherrer Institut (PSI), 5232 Villigen (Switzerland); Reventós, F., E-mail: francesc.reventos@upc.edu [Department of Physics and Nuclear Engineering, Technical University of Catalonia (UPC) (Spain)

    2015-05-15

    Highlights: • Core exit temperature is used in PWRs as an indication of core heat up. • Modelling guidelines of CET response with system codes. • Modelling of heat transfer processes in the core and UP regions. - Abstract: Core exit temperature (CET) measurements play an important role in the sequence of actions under accidental conditions in pressurized water reactors (PWR). Given the difficulties in placing measurements in the core region, CET readings are used as criterion for the initiation of accident management (AM) procedures because they can indicate a core heat up scenario. However, the CET responses have some limitation in detecting inadequate core cooling and core uncovery simply because the measurement is not placed inside the core. Therefore, it is of main importance in the field of nuclear safety for PWR power plants to assess the capabilities of system codes for simulating the relation between the CET and the peak cladding temperature (PCT). The work presented in this paper intends to address this open question by making use of experimental work at integral test facilities (ITF) where experiments related to the evolution of the CET and the PCT during transient conditions have been carried out. In particular, simulations of two experiments performed at the ROSA/LSTF and PKL facilities are presented. The two experiments are part of a counterpart exercise between the OECD/NEA ROSA-2 and OECD/NEA PKL-2 projects. The simulations are used to derive guidelines in how to correctly reproduce the CET response during a core heat up scenario. Three aspects have been identified to be of main importance: (1) the need for a 3-dimensional representation of the core and Upper Plenum (UP) regions in order to model the heterogeneity of the power zones and axial areas, (2) the detailed representation of the active and passive heat structures, and (3) the use of simulated thermocouples instead of steam temperatures to represent the CET readings.

  10. Estimation of Circadian Body Temperature Rhythm Based on Heart Rate in Healthy, Ambulatory Subjects.

    Science.gov (United States)

    Sim, Soo Young; Joo, Kwang Min; Kim, Han Byul; Jang, Seungjin; Kim, Beomoh; Hong, Seungbum; Kim, Sungwan; Park, Kwang Suk

    2017-03-01

    Core body temperature is a reliable marker for circadian rhythm. As characteristics of the circadian body temperature rhythm change during diverse health problems, such as sleep disorder and depression, body temperature monitoring is often used in clinical diagnosis and treatment. However, the use of current thermometers in circadian rhythm monitoring is impractical in daily life. As heart rate is a physiological signal relevant to thermoregulation, we investigated the feasibility of heart rate monitoring in estimating circadian body temperature rhythm. Various heart rate parameters and core body temperature were simultaneously acquired in 21 healthy, ambulatory subjects during their routine life. The performance of regression analysis and the extended Kalman filter on daily body temperature and circadian indicator (mesor, amplitude, and acrophase) estimation were evaluated. For daily body temperature estimation, mean R-R interval (RRI), mean heart rate (MHR), or normalized MHR provided a mean root mean square error of approximately 0.40 °C in both techniques. The mesor estimation regression analysis showed better performance than the extended Kalman filter. However, the extended Kalman filter, combined with RRI or MHR, provided better accuracy in terms of amplitude and acrophase estimation. We suggest that this noninvasive and convenient method for estimating the circadian body temperature rhythm could reduce discomfort during body temperature monitoring in daily life. This, in turn, could facilitate more clinical studies based on circadian body temperature rhythm.

  11. Comparison between auricular and standard rectal thermometers for the measurement of body temperature in dogs.

    Science.gov (United States)

    Sousa, Marlos G; Carareto, Roberta; Pereira-Junior, Valdo A; Aquino, Monally C C

    2011-04-01

    Although the rectal mucosa remains the traditional site for measuring body temperature in dogs, an increasing number of clinicians have been using auricular temperature to estimate core body temperature. In this study, 88 mature healthy dogs had body temperatures measured with auricular and rectal thermometers. The mean temperature and confidence intervals were similar for each method, but Bland-Altman plots showed high biases and limits of agreement unacceptable for clinical purposes. The results indicate that auricular and rectal temperatures should not be interpreted interchangeably.

  12. Clinical review: Brain-body temperature differences in adults with severe traumatic brain injury

    Science.gov (United States)

    2013-01-01

    Surrogate or 'proxy' measures of brain temperature are used in the routine management of patients with brain damage. The prevailing view is that the brain is 'hotter' than the body. The polarity and magnitude of temperature differences between brain and body, however, remains unclear after severe traumatic brain injury (TBI). The focus of this systematic review is on the adult patient admitted to intensive/neurocritical care with a diagnosis of severe TBI (Glasgow Coma Scale score of less than 8). The review considered studies that measured brain temperature and core body temperature. Articles published in English from the years 1980 to 2012 were searched in databases, CINAHL, PubMed, Scopus, Web of Science, Science Direct, Ovid SP, Mednar and ProQuest Dissertations & Theses Database. For the review, publications of randomised controlled trials, non-randomised controlled trials, before and after studies, cohort studies, case-control studies and descriptive studies were considered for inclusion. Of 2,391 records identified via the search strategies, 37 were retrieved for detailed examination (including two via hand searching). Fifteen were reviewed and assessed for methodological quality. Eleven studies were included in the systematic review providing 15 brain-core body temperature comparisons. The direction of mean brain-body temperature differences was positive (brain higher than body temperature) and negative (brain lower than body temperature). Hypothermia is associated with large brain-body temperature differences. Brain temperature cannot be predicted reliably from core body temperature. Concurrent monitoring of brain and body temperature is recommended in patients where risk of temperature-related neuronal damage is a cause for clinical concern and when deliberate induction of below-normal body temperature is instituted. PMID:23680353

  13. [The reaction of human surface and inside body temperature to extreme hypothermia].

    Science.gov (United States)

    Panchenko, O A; Onishchenko, V O; Liakh, Iu Ie

    2011-01-01

    The dynamics of changes in the parameters of the surface and core body temperature under the systematic impact of ultra-low temperature is described in this article. As a source of ultra-low temperature was used (Cryo Therapy Chamber) Zimmer Medizin Systeme firm Zimmer Electromedizin (Germany) (-110 degrees C). Surface and internal body temperature was measured by infrared thermometer immediately before visiting cryochamber and immediately after exiting. In the study conducted 47,464 measurements of body temperature. It was established that the internal temperature of the human body under the influence of ultra-low temperatures in the proposed mode of exposure remains constant, and the surface temperature of the body reduces by an average of 11.57 degrees C. The time frame stabilization of adaptive processes of thermoregulation under the systematic impact of ultra-low temperature was defined in the study.

  14. Relativistic many-body XMCD theory including core degenerate effects

    Science.gov (United States)

    Fujikawa, Takashi

    2009-11-01

    A many-body relativistic theory to analyze X-ray Magnetic Circular Dichroism (XMCD) spectra has been developed on the basis of relativistic quantum electrodynamic (QED) Keldysh Green's function approach. This theoretical framework enables us to handle relativistic many-body effects in terms of correlated nonrelativistic Green's function and relativistic correction operator Q, which naturally incorporates radiation field screening and other optical field effects in addition to electron-electron interactions. The former can describe the intensity ratio of L2/L3 which deviates from the statistical weight (branching ratio) 1/2. In addition to these effects, we consider the degenerate or nearly degenerate effects of core levels from which photoelectrons are excited. In XPS spectra, for example in Rh 3d sub level excitations, their peak shapes are quite different: This interesting behavior is explained by core-hole moving after the core excitation. We discuss similar problems in X-ray absorption spectra in particular excitation from deep 2p sub levels which are degenerate in each sub levels and nearly degenerate to each other in light elements: The hole left behind is not frozen there. We derive practical multiple scattering formulas which incorporate all those effects.

  15. Body temperatures in dinosaurs: what can growth curves tell us?

    Directory of Open Access Journals (Sweden)

    Eva Maria Griebeler

    Full Text Available To estimate the body temperature (BT of seven dinosaurs Gillooly, Alleen, and Charnov (2006 used an equation that predicts BT from the body mass and maximum growth rate (MGR with the latter preserved in ontogenetic growth trajectories (BT-equation. The results of these authors evidence inertial homeothermy in Dinosauria and suggest that, due to overheating, the maximum body size in Dinosauria was ultimately limited by BT. In this paper, I revisit this hypothesis of Gillooly, Alleen, and Charnov (2006. I first studied whether BTs derived from the BT-equation of today's crocodiles, birds and mammals are consistent with core temperatures of animals. Second, I applied the BT-equation to a larger number of dinosaurs than Gillooly, Alleen, and Charnov (2006 did. In particular, I estimated BT of Archaeopteryx (from two MGRs, ornithischians (two, theropods (three, prosauropods (three, and sauropods (nine. For extant species, the BT value estimated from the BT-equation was a poor estimate of an animal's core temperature. For birds, BT was always strongly overestimated and for crocodiles underestimated; for mammals the accuracy of BT was moderate. I argue that taxon-specific differences in the scaling of MGR (intercept and exponent of the regression line, log-log-transformed and in the parameterization of the Arrhenius model both used in the BT-equation as well as ecological and evolutionary adaptations of species cause these inaccuracies. Irrespective of the found inaccuracy of BTs estimated from the BT-equation and contrary to the results of Gillooly, Alleen, and Charnov (2006 I found no increase in BT with increasing body mass across all dinosaurs (Sauropodomorpha, Sauropoda studied. This observation questions that, due to overheating, the maximum size in Dinosauria was ultimately limited by BT. However, the general high inaccuracy of dinosaurian BTs derived from the BT-equation makes a reliable test of whether body size in dinosaurs was ultimately

  16. Body temperatures in dinosaurs: what can growth curves tell us?

    Science.gov (United States)

    Griebeler, Eva Maria

    2013-01-01

    To estimate the body temperature (BT) of seven dinosaurs Gillooly, Alleen, and Charnov (2006) used an equation that predicts BT from the body mass and maximum growth rate (MGR) with the latter preserved in ontogenetic growth trajectories (BT-equation). The results of these authors evidence inertial homeothermy in Dinosauria and suggest that, due to overheating, the maximum body size in Dinosauria was ultimately limited by BT. In this paper, I revisit this hypothesis of Gillooly, Alleen, and Charnov (2006). I first studied whether BTs derived from the BT-equation of today's crocodiles, birds and mammals are consistent with core temperatures of animals. Second, I applied the BT-equation to a larger number of dinosaurs than Gillooly, Alleen, and Charnov (2006) did. In particular, I estimated BT of Archaeopteryx (from two MGRs), ornithischians (two), theropods (three), prosauropods (three), and sauropods (nine). For extant species, the BT value estimated from the BT-equation was a poor estimate of an animal's core temperature. For birds, BT was always strongly overestimated and for crocodiles underestimated; for mammals the accuracy of BT was moderate. I argue that taxon-specific differences in the scaling of MGR (intercept and exponent of the regression line, log-log-transformed) and in the parameterization of the Arrhenius model both used in the BT-equation as well as ecological and evolutionary adaptations of species cause these inaccuracies. Irrespective of the found inaccuracy of BTs estimated from the BT-equation and contrary to the results of Gillooly, Alleen, and Charnov (2006) I found no increase in BT with increasing body mass across all dinosaurs (Sauropodomorpha, Sauropoda) studied. This observation questions that, due to overheating, the maximum size in Dinosauria was ultimately limited by BT. However, the general high inaccuracy of dinosaurian BTs derived from the BT-equation makes a reliable test of whether body size in dinosaurs was ultimately limited

  17. Core Problem: Does the CV Parent Body Magnetization require differentiation?

    Science.gov (United States)

    O'Brien, T.; Tarduno, J. A.; Smirnov, A. V.

    2016-12-01

    Evidence for the presence of past dynamos from magnetic studies of meteorites can provide key information on the nature and evolution of parent bodies. However, the suggestion of a past core dynamo for the CV parent body based on the study of the Allende meteorite has led to a paradox: a core dynamo requires differentiation, evidence for which is missing in the meteorite record. The key parameter used to distinguish core dynamo versus external field mechanisms is absolute field paleointensity, with high values (>>1 μT) favoring the former. Here we explore the fundamental requirements for absolute field intensity measurement in the Allende meteorite: single domain grains that are non-interacting. Magnetic hysteresis and directional data define strong magnetic interactions, negating a standard interpretation of paleointensity measurements in terms of absolute paleofield values. The Allende low field magnetic susceptibility is dominated by magnetite and FeNi grains, whereas the magnetic remanence is carried by an iron sulfide whose remanence-carrying capacity increases with laboratory cycling at constant field values, indicating reordering. The iron sulfide and FeNi grains are in close proximity, providing mineralogical context for interactions. We interpret the magnetization of Allende to record the intense early solar wind with metal-sulfide interactions amplifying the field, giving the false impression of a higher field value in some prior studies. An undifferentiated CV parent body is thus compatible with Allende's magnetization. Early solar wind magnetization should be the null hypothesis for evaluating the source of magnetization for chondrites and other meteorites.

  18. Temperature measurements inside nuclear reactor cores

    International Nuclear Information System (INIS)

    Tarassenko, Serge

    1969-11-01

    Non negligible errors may happen in nuclear reactor temperature measurements using magnesium oxide insulated and stainless steel sheathed micro-wire thermocouples, when these thermometric lines are placed under operational conditions typical of electrical power stations. The present work shows that this error is principally due to electrical hysteresis and polarization phenomena in the insulator subjected to the strong fields generated by common-mode voltages. These phenomena favour the unsymmetrical common-mode current flow and thus lead to the differential-mode voltage generation which is superposing on the thermoelectric hot junction potential. A calculation and an experimental approach make possible the importance of the magnesium oxide insulating characteristics, the hot junction insulation, the choice of the main circuits in the data processing equipment as well as the galvanic isolation performances and the common-mode rejection features of all the measurement circuits. A justification is thereby given for the severe conditions imposed for the acceptance of thermoelectric materials; some particular precautions to be taken are described, as well as the high performance characteristics which have to be taken into account in choosing measurement systems linked to thermometric circuits with sheathed micro-wire thermocouples. (author) [fr

  19. Test plan for core sampling drill bit temperature monitor

    International Nuclear Information System (INIS)

    Francis, P.M.

    1994-01-01

    At WHC, one of the functions of the Tank Waste Remediation System division is sampling waste tanks to characterize their contents. The push-mode core sampling truck is currently used to take samples of liquid and sludge. Sampling of tanks containing hard salt cake is to be performed with the rotary-mode core sampling system, consisting of the core sample truck, mobile exhauster unit, and ancillary subsystems. When drilling through the salt cake material, friction and heat can be generated in the drill bit. Based upon tank safety reviews, it has been determined that the drill bit temperature must not exceed 180 C, due to the potential reactivity of tank contents at this temperature. Consequently, a drill bit temperature limit of 150 C was established for operation of the core sample truck to have an adequate margin of safety. Unpredictable factors, such as localized heating, cause this buffer to be so great. The most desirable safeguard against exceeding this threshold is bit temperature monitoring . This document describes the recommended plan for testing the prototype of a drill bit temperature monitor developed for core sampling by Sandia National Labs. The device will be tested at their facilities. This test plan documents the tests that Westinghouse Hanford Company considers necessary for effective testing of the system

  20. Reconstruction of core inlet temperature distribution by cold leg temperature measurements

    International Nuclear Information System (INIS)

    Saarinen, S.; Antila, M.

    2010-01-01

    The reduced core of Loviisa NPP contains 33 thermocouple measurements measuring the core inlet temperature. Currently, these thermocouple measurements are not used in determining the inlet temperature distribution. The average of cold leg temperature measurements is used as inlet temperature for each fuel assembly. In practice, the inlet temperature distribution is not constant. Thus, using a constant inlet temperature distribution induces asymmetries in the measured core power distribution. Using a more realistic inlet temperature distribution would help us to reduce virtual asymmetries of the core power distribution and increase the thermal margins of the core. The thermocouples at the inlet cannot be used directly to measure the inlet temperature accurately because the calibration of the thermocouples that is done at hot zero power conditions is no longer valid at full power, when there is temperature change across the core region. This is due to the effect of neutron irradiation on the Seebeck coefficient of the thermocouple wires. Therefore, we investigate in this paper a method to determine the inlet temperature distribution based on the cold leg temperature measurements. With this method we rely on the assumption that although the core inlet thermocouple measurements do not measure the absolute temperature accurately they do measure temperature changes with sufficient accuracy particularly in big disturbances. During the yearly testing of steam generator safety valves we observe a large temperature increase up to 12 degrees in the cold leg temperature. The change in the temperature of one of the cold legs causes a local disturbance in the core inlet temperature distribution. Using the temperature changes observed in the inlet thermocouple measurements we are able to fit six core inlet temperature response functions, one for each cold leg. The value of a function at an assembly inlet is determined only by the corresponding cold leg temperature disturbance

  1. Stress-induced core temperature changes in pigeons (Columba livia).

    Science.gov (United States)

    Bittencourt, Myla de Aguiar; Melleu, Fernando Falkenburger; Marino-Neto, José

    2015-02-01

    Changes in body temperature are significant physiological consequences of stressful stimuli in mammals and birds. Pigeons (Columba livia) prosper in (potentially) stressful urban environments and are common subjects in neurobehavioral studies; however, the thermal responses to stress stimuli by pigeons are poorly known. Here, we describe acute changes in the telemetrically recorded celomatic (core) temperature (Tc) in pigeons given a variety of potentially stressful stimuli, including transfer to a novel cage (ExC) leading to visual isolation from conspecifics, the presence of the experimenter (ExpR), gentle handling (H), sham intracelomatic injections (SI), and the induction of the tonic immobility (TI) response. Transfer to the ExC cage provoked short-lived hyperthermia (10-20 min) followed by a long-lasting and substantial decrease in Tc, which returned to baseline levels 2 h after the start of the test. After a 2-hour stay in the ExC, the other potentially stressful stimuli evoked only weak, marginally significant hyperthermic (ExpR, IT) or hypothermic (SI) responses. Stimuli delivered 26 h after transfer to the ExC induced definite and intense increases in Tc (ExpR, H) or hypothermic responses (SI). These Tc changes appear to be unrelated to modifications in general activity (as measured via telemetrically recorded actimetric data). Repeated testing failed to affect the hypothermic responses to the transference to the ExC, even after nine trials and at 1- or 8-day intervals, suggesting that the social (visual) isolation from conspecifics may be a strong and poorly controllable stimulus in this species. The present data indicated that stress-induced changes in Tc may be a consistent and reliable physiological parameter of stress but that they may also show stressor type-, direction- and species-specific attributes. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Elevations in core and muscle temperature impairs repeated sprint performance

    DEFF Research Database (Denmark)

    Drust, B.; Rasmussen, P.; Mohr, Magni

    2005-01-01

    on a cycle ergometer in normal (approximately 20 degrees C, control) and hot (40 degrees C, hyperthermia) environments. RESULTS: Completion of the intermittent protocol in the heat elevated core and muscle temperatures (39.5 +/- 0.2 degrees C; 40.2 +/- 0.4 degrees C), heart rate (178 +/- 11 beats min(-1...... metabolic fatigue agents and we, therefore, suggest that it may relate to the influence of high core temperature on the function of the central nervous system.......)), rating of perceived exertion (RPE) (18 +/- 1) and noradrenaline (38.9 +/- 13.2 micromol l(-1)) (all P

  3. The temperature distribution in a gas core fission reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hoogenboom, J.E.; Dam, H. van; Kuijper, J.C. (Interuniversitair Reactor Inst., Delft (Netherlands)); Kistemaker, J.; Boersma-Klein, W.; Vitalis, F. (FOM-Instituut voor Atoom-en Molecuulfysica, Amsterdam (Netherlands))

    1991-01-01

    A model is proposed for the heat transport in a nuclear reactor with gaseous fuel at high temperatures taking into account radiative and kinetic heat transfer. A derivation is given of the equation determining the temperature distribution in a gas core reactor and different numerical solution methods are discussed in detail. Results are presented of the temperature distribution. The influence of the kinetic heat transport and of dissociation of the gas molecules is shown. Also discussed is the importance of the temperature gradient at the reactor wall and its dependence on system parameters. (author).

  4. The temperature distribution in a gas core fission reactor

    International Nuclear Information System (INIS)

    Hoogenboom, J.E.; Dam, H. van; Kuijper, J.C.; Kistemaker, J.; Boersma-Klein, W.; Vitalis, F.

    1991-01-01

    A model is proposed for the heat transport in a nuclear reactor with gaseous fuel at high temperatures taking into account radiative and kinetic heat transfer. A derivation is given of the equation determining the temperature distribution in a gas core reactor and different numerical solution methods are discussed in detail. Results are presented of the temperature distribution. The influence of the kinetic heat transport and of dissociation of the gas molecules is shown. Also discussed is the importance of the temperature gradient at the reactor wall and its dependence on system parameters. (author)

  5. Pengaruh Penggunaan Plastic Wrap Terhadap Core Temperature Pasien Pediatrik 1-3 Tahun Yang Menjalani Operasi Palatoplasty

    OpenAIRE

    Mikhail Averoes; Suwarman; Eri Surahman

    2013-01-01

    The decrease rate of body temperature can be reduced by passive insulation by covering the body with certain materials which have poor heat conductivity (insulator). Insulator material which is wrapped on the body can prevent the process of convection, conduction and evaporation so that the degree of heat loss was reduced on average 30%. One material that can be used as an insulator is the plastic. This study was conducted to assess the effect of plastic wrap on the core temperature of pediat...

  6. Core temperature rhythms in normal and tumor-bearing mice.

    Science.gov (United States)

    Griffith, D J; Busot, J C; Lee, W E; Djeu, D J

    1993-01-01

    The core temperature temporal behavior of DBA/2 mice (11 normal and 13 with an ascites tumor) was studied using surgically implanted radio telemetry transmitters. Normal mice continuously displayed a stable 24 hour temperature rhythm. Tumor-bearers displayed a progressive deterioration of the temperature rhythm following inoculation with tumor cells. While such disruptions have been noted by others, details on the dynamics of the changes have been mostly qualitative, often due to time-averaging or steady-state analysis of the data. The present study attempts to quantify the dynamics of the disruption of temperature rhythm (when present) by continuously monitoring temperatures over periods up to a month. Analysis indicated that temperature regulation in tumor-bearers was adversely affected during the active period only. Furthermore, it appears that the malignancy may be influencing temperature regulation via pathways not directly attributable to the energy needs of the growing tumor.

  7. Thermometry, calorimetry, and mean body temperature during heat stress.

    Science.gov (United States)

    Kenny, Glen P; Jay, Ollie

    2013-10-01

    Heat balance in humans is maintained at near constant levels through the adjustment of physiological mechanisms that attain a balance between the heat produced within the body and the heat lost to the environment. Heat balance is easily disturbed during changes in metabolic heat production due to physical activity and/or exposure to a warmer environment. Under such conditions, elevations of skin blood flow and sweating occur via a hypothalamic negative feedback loop to maintain an enhanced rate of dry and evaporative heat loss. Body heat storage and changes in core temperature are a direct result of a thermal imbalance between the rate of heat production and the rate of total heat dissipation to the surrounding environment. The derivation of the change in body heat content is of fundamental importance to the physiologist assessing the exposure of the human body to environmental conditions that result in thermal imbalance. It is generally accepted that the concurrent measurement of the total heat generated by the body and the total heat dissipated to the ambient environment is the most accurate means whereby the change in body heat content can be attained. However, in the absence of calorimetric methods, thermometry is often used to estimate the change in body heat content. This review examines heat exchange during challenges to heat balance associated with progressive elevations in environmental heat load and metabolic rate during exercise. Further, we evaluate the physiological responses associated with heat stress and discuss the thermal and nonthermal influences on the body's ability to dissipate heat from a heat balance perspective.

  8. Nuclear many-body problem with repulsive hard core interactions

    Energy Technology Data Exchange (ETDEWEB)

    Haddad, L M

    1965-07-01

    The nuclear many-body problem is considered using the perturbation-theoretic approach of Brueckner and collaborators. This approach is outlined with particular attention paid to the graphical representation of the terms in the perturbation expansion. The problem is transformed to centre-of-mass coordinates in configuration space and difficulties involved in ordinary methods of solution of the resulting equation are discussed. A new technique, the 'reference spectrum method', devised by Bethe, Brandow and Petschek in an attempt to simplify the numerical work in presented. The basic equations are derived in this approximation and considering the repulsive hard core part of the interaction only, the effective mass is calculated at high momentum (using the same energy spectrum for both 'particle' and 'hole' states). The result of 0.87m is in agreement with that of Bethe et al. A more complete treatment using the reference spectrum method in introduced and a self-consistent set of equations is established for the reference spectrum parameters again for the case of hard core repulsions. (author)

  9. A volatile-rich Earth's core inferred from melting temperature of core materials

    Science.gov (United States)

    Morard, G.; Andrault, D.; Antonangeli, D.; Nakajima, Y.; Auzende, A. L.; Boulard, E.; Clark, A. N.; Lord, O. T.; Cervera, S.; Siebert, J.; Garbarino, G.; Svitlyk, V.; Mezouar, M.

    2016-12-01

    Planetary cores are mainly constituted of iron and nickel, alloyed with lighter elements (Si, O, C, S or H). Understanding how these elements affect the physical and chemical properties of solid and liquid iron provides stringent constraints on the composition of the Earth's core. In particular, melting curves of iron alloys are key parameter to establish the temperature profile in the Earth's core, and to asses the potential occurrence of partial melting at the Core-Mantle Boundary. Core formation models based on metal-silicate equilibration suggest that Si and O are the major light element components1-4, while the abundance of other elements such as S, C and H is constrained by arguments based on their volatility during planetary accretion5,6. Each compositional model implies a specific thermal state for the core, due to the different effect that light elements have on the melting behaviour of Fe. We recently measured melting temperatures in Fe-C and Fe-O systems at high pressures, which complete the data sets available both for pure Fe7 and other binary alloys8. Compositional models with an O- and Si-rich outer core are suggested to be compatible with seismological constraints on density and sound velocity9. However, their crystallization temperatures of 3650-4050 K at the CMB pressure of 136 GPa are very close to, if not higher than the melting temperature of the silicate mantle and yet mantle melting above the CMB is not a ubiquitous feature. This observation requires significant amounts of volatile elements (S, C or H) in the outer core to further reduce the crystallisation temperature of the core alloy below that of the lower mantle. References 1. Wood, B. J., et al Nature 441, 825-833 (2006). 2. Siebert, J., et al Science 339, 1194-7 (2013). 3. Corgne, A., et al Earth Planet. Sc. Lett. 288, 108-114 (2009). 4. Fischer, R. a. et al. Geochim. Cosmochim. Acta 167, 177-194 (2015). 5. Dreibus, G. & Palme, H. Geochim. Cosmochim. Acta 60, 1125-1130 (1995). 6. Mc

  10. Energetic consequences of field body temperatures in the green iguana

    NARCIS (Netherlands)

    Lichtenbelt, WDVM; Wesselingh, RA

    We investigated body temperatures of free-ranging green iguanas (Iguana iguana) on Curacao (Netherlands Antilles), and how metabolic costs and benefits of food processing affect body temperatures. Body temperatures of free-living iguanas were measured by radio telemetry. We also used a model, with

  11. A fiber optic temperature sensor based on multi-core microstructured fiber with coupled cores for a high temperature environment

    Science.gov (United States)

    Makowska, A.; Markiewicz, K.; Szostkiewicz, L.; Kolakowska, A.; Fidelus, J.; Stanczyk, T.; Wysokinski, K.; Budnicki, D.; Ostrowski, L.; Szymanski, M.; Makara, M.; Poturaj, K.; Tenderenda, T.; Mergo, P.; Nasilowski, T.

    2018-02-01

    Sensors based on fiber optics are irreplaceable wherever immunity to strong electro-magnetic fields or safe operation in explosive atmospheres is needed. Furthermore, it is often essential to be able to monitor high temperatures of over 500°C in such environments (e.g. in cooling systems or equipment monitoring in power plants). In order to meet this demand, we have designed and manufactured a fiber optic sensor with which temperatures up to 900°C can be measured. The sensor utilizes multi-core fibers which are recognized as the dedicated medium for telecommunication or shape sensing, but as we show may be also deployed advantageously in new types of fiber optic temperature sensors. The sensor presented in this paper is based on a dual-core microstructured fiber Michelson interferometer. The fiber is characterized by strongly coupled cores, hence it acts as an all-fiber coupler, but with an outer diameter significantly wider than a standard fused biconical taper coupler, which significantly increases the coupling region's mechanical reliability. Owing to the proposed interferometer imbalance, effective operation and high-sensitivity can be achieved. The presented sensor is designed to be used at high temperatures as a result of the developed low temperature chemical process of metal (copper or gold) coating. The hermetic metal coating can be applied directly to the silica cladding of the fiber or the fiber component. This operation significantly reduces the degradation of sensors due to hydrolysis in uncontrolled atmospheres and high temperatures.

  12. Leptin actions on food intake and body temperature are mediated by IL-1

    OpenAIRE

    Luheshi, Giamal N.; Gardner, Jason D.; Rushforth, David A.; Loudon, Andrew S.; Rothwell, Nancy J.

    1999-01-01

    Leptin regulates energy balance through its actions in the brain on appetite and energy expenditure and also shares properties with cytokines such as IL-1. We report here that leptin, injected into rats intracerebroventricularly or peripherally, induces significant dose-dependent increases in core body temperature as well as suppression of appetite. Leptin failed to affect food intake or body temperature in obese (fa/fa) Zucker rats, which posses a defective leptin receptor. Furthermore, inje...

  13. Human body temperature and new approaches to constructing temperature-sensitive bacterial vaccines.

    Science.gov (United States)

    White, Matthew D; Bosio, Catharine M; Duplantis, Barry N; Nano, Francis E

    2011-09-01

    Many of the live human and animal vaccines that are currently in use are attenuated by virtue of their temperature-sensitive (TS) replication. These vaccines are able to function because they can take advantage of sites in mammalian bodies that are cooler than the core temperature, where TS vaccines fail to replicate. In this article, we discuss the distribution of temperature in the human body, and relate how the temperature differential can be exploited for designing and using TS vaccines. We also examine how one of the coolest organs of the body, the skin, contains antigen-processing cells that can be targeted to provoke the desired immune response from a TS vaccine. We describe traditional approaches to making TS vaccines, and highlight new information and technologies that are being used to create a new generation of engineered TS vaccines. We pay particular attention to the recently described technology of substituting essential genes from Arctic bacteria for their homologues in mammalian pathogens as a way of creating TS vaccines.

  14. The effect of warmed inspired gases on body temperature during arthroscopic shoulder surgery under general anesthesia.

    Science.gov (United States)

    Jo, Youn Yi; Kim, Hong Soon; Chang, Young Jin; Yun, Soon Young; Kwak, Hyun Jeong

    2013-07-01

    Perioperative hypothermia can develop easily during shoulder arthroscopy, because cold irrigation can directly influence core body temperature. The authors investigated whether active warming and humidification of inspired gases reduces falls in core body temperature and allows redistribution of body heat in patients undergoing arthroscopic shoulder surgery under general anesthesia. Patients scheduled for arthroscopic shoulder surgery were randomly assigned to receive either room temperature inspired gases using a conventional respiratory circuit (the control group, n = 20) or inspired gases humidified and heated using a humidified and electrically heated circuit (HHC) (the heated group, n = 20). Core temperatures were significantly lower in both groups from 30 min after anesthesia induction, but were significantly higher in the heated group than in the control group from 75 to 120 min after anesthesia induction. In this study the use of a humidified and electrically heated circuit did not prevent core temperature falling during arthroscopic shoulder surgery, but it was found to decrease reductions in core temperature from 75 min after anesthesia induction.

  15. Correlated colour temperature of morning light influences alertness and body temperature.

    Science.gov (United States)

    Te Kulve, Marije; Schlangen, Luc; Schellen, Lisje; Souman, Jan L; van Marken Lichtenbelt, Wouter

    2018-03-01

    Though several studies have reported human alertness to be affected by the intensity and spectral composition of ambient light, the mechanism behind this effect is still largely unclear, especially for daytime exposure. Alerting effects of nocturnal light exposure are correlated with melatonin suppression, but melatonin levels are generally low during the day. The aim of this study was to explore the alerting effect of light in the morning for different correlated colour temperature (CCT) values, as well as its interaction with ambient temperature. Body temperature and perceived comfort were included in the study as possible mediating factors. In a randomized crossover design, 16 healthy females participated in two sessions, once under 2700K and once under 6500K light (both 55lx). Each session consisted of a baseline, a cool, a neutral and a warm thermal environment. Alertness as measured in a reaction time task was lower for the 6500K exposure, while subjective sleepiness was not affected by CCT. Also, core body temperature was higher under 6500K. Skin temperature parameters and perceived comfort were positively correlated with subjective sleepiness. Reaction time correlated with heat loss, but this association did not explain why the reaction time was improved for 2700K. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Effect of operating temperature on LMFBR core performance

    International Nuclear Information System (INIS)

    Noyes, R.C.; Bergeron, R.J.; di Lauro, G.F.; Kulwich, M.R.; Stuteville, D.W.

    1977-01-01

    The purpose of the study is to provide an engineering evaluation of high and low temperature LMFBR core designs. The study was conducted by C-E supported by HEDL expertise in the areas of materials behavior, fuel performance and fabrication/fuel cycle cost. The evaluation is based primarily on designs and analyses prepared by AI, GE and WARD during Phase I of the PLBR studies

  17. TRACE analysis of Phenix core response to an increase of the core inlet sodium temperature

    Energy Technology Data Exchange (ETDEWEB)

    Chenu, A., E-mail: aurelia.chenu@psi.ch [Paul Scherrer Inst., Villigen PSI (Switzerland); Ecole Polytechnique Federale (Switzerland); Mikityuk, K., E-mail: konstantin.mikityuk@psi.ch [Paul Scherrer Inst., Villigen PSI (Switzerland); Adams, R., E-mail: robert.adams@psi.ch [Paul Scherrer Inst., Villigen PSI (Switzerland); Eidgenossische Technische Hochschule, Zurich (Switzerland); Chawla, R., E-mail: rakesh.chawla@epfl.ch [Paul Scherrer Inst., Villigen PSI (Switzerland); Ecole Polytechnique Federale (Switzerland)

    2011-07-01

    This work presents the analysis, using the TRACE code, of the Phenix core response to an inlet sodium temperature increase. The considered experiment was performed in the frame of the Phenix End-Of-Life (EOL) test program of the CEA, prior to the final shutdown of the reactor. It corresponds to a transient following a 40°C increase of the core inlet temperature, which leads to a power decrease of 60%. This work focuses on the first phase of the transient, prior to the reactor scram and pump trip. First, the thermal-hydraulic TRACE model of the core developed for the present analysis is described. The kinetic parameters and feedback coefficients for the point kinetic model were first derived from a 3D static neutronic ERANOS model developed in a former study. The calculated kinetic parameters were then optimized, before use, on the basis of the experimental reactivity in order to minimize the error on the power calculation. The different reactivity feedbacks taken into account include various expansion mechanisms that have been specifically implemented in TRACE for analysis of fast-neutron spectrum systems. The point kinetic model has been used to study the sensitivity of the core response to the different feedback effects. The comparison of the calculated results with the experimental data reveals the need to accurately calculate the reactivity feedback coefficients. This is because the reactor response is very sensitive to small reactivity changes. This study has enabled us to study the sensitivity of the power change to the different reactivity feedbacks and define the most important parameters. As such, it furthers the validation of the FAST code system, which is being used to gain a more in-depth understanding of SFR core behavior during accidental transients. (author)

  18. Physical performance and peak aerobic power at different body temperatures.

    Science.gov (United States)

    Bergh, U; Ekblom, B

    1979-05-01

    In eight male subjects we studied the effect of different core (esophageal, (Tes 34.9--38.4 degrees C) and muscle (Tm 35.1--39.3 degrees C) temperature on 1) physical performance (time to exhaustion at a standard maximal rate of work, WT), 2) aerobic power (VO2), 3) heart rate (HR), and 4) blood lactate (LA) concentration during exhaustive combined arm and leg exercise. In three subjects the effects at different mean skin temperatures (Tsk 27 and 31 degrees C, respectively) were also studied. Peak VO2 was positively correlated to both Tes (r = 0.88) and Tm (r = 0.91). None of the subjects attained control VO2max at Tes and Tm lower than 37.5 and 38.0 degrees C, respectively. HR was correlated to both Tes (r = 0.97) and Tm (r = 0.95). Different Tsk did not affect peak VO2 and HR at subnormal body temperatures. Pulmonary ventilation was independent of Tes and Tm in all experimental situations. LA was significantly higher at Tes 37.5 degrees C compared to both Tes 34.9 and 38.5 degrees C, respectively. At Tes less than 37.5 degrees C and Tm less than 38.0 degrees C, there was a linear reduction in WT (20%.degrees C-1), peak VO2 (5--6%.degrees C-1), and HR (8 beats.min-1.degrees C-1) with lowered Tes and Tm.

  19. Body Temperature Measurements for Metabolic Phenotyping in Mice

    Science.gov (United States)

    Meyer, Carola W.; Ootsuka, Youichirou; Romanovsky, Andrej A.

    2017-01-01

    Endothermic organisms rely on tightly balanced energy budgets to maintain a regulated body temperature and body mass. Metabolic phenotyping of mice, therefore, often includes the recording of body temperature. Thermometry in mice is conducted at various sites, using various devices and measurement practices, ranging from single-time probing to continuous temperature imaging. Whilst there is broad agreement that body temperature data is of value, procedural considerations of body temperature measurements in the context of metabolic phenotyping are missing. Here, we provide an overview of the various methods currently available for gathering body temperature data from mice. We explore the scope and limitations of thermometry in mice, with the hope of assisting researchers in the selection of appropriate approaches, and conditions, for comprehensive mouse phenotypic analyses. PMID:28824441

  20. Voluntary Running Aids to Maintain High Body Temperature in Rats Bred for High Aerobic Capacity

    Science.gov (United States)

    Karvinen, Sira M.; Silvennoinen, Mika; Ma, Hongqiang; Törmäkangas, Timo; Rantalainen, Timo; Rinnankoski-Tuikka, Rita; Lensu, Sanna; Koch, Lauren G.; Britton, Steven L.; Kainulainen, Heikki

    2016-01-01

    The production of heat, i.e., thermogenesis, is a significant component of the metabolic rate, which in turn affects weight gain and health. Thermogenesis is linked to physical activity (PA) level. However, it is not known whether intrinsic exercise capacity, aging, and long-term voluntary running affect core body temperature. Here we use rat models selectively bred to differ in maximal treadmill endurance running capacity (Low capacity runners, LCR and High capacity Runners, HCR), that as adults are divergent for aerobic exercise capacity, aging, and metabolic disease risk to study the connection between PA and body temperature. Ten high capacity runner (HCR) and ten low capacity runner (LCR) female rats were studied between 9 and 21 months of age. Rectal body temperature of HCR and LCR rats was measured before and after 1-year voluntary running/control intervention to explore the effects of aging and PA. Also, we determined whether injected glucose and spontaneous activity affect the body temperature differently between LCR and HCR rats at 9 vs. 21 months of age. HCRs had on average 1.3°C higher body temperature than LCRs (p temperature level of HCRs to similar levels with LCRs. The opportunity to run voluntarily had a significant impact on the body temperature of HCRs (p temperature at a similar level as when at younger age. Compared to LCRs, HCRs were spontaneously more active, had higher relative gastrocnemius muscle mass and higher UCP2, PGC-1α, cyt c, and OXPHOS levels in the skeletal muscle (p temperature of LCRs. However, glucose injection resulted in a lowering of the body temperature of LCRs (p temperature compared to rats born with low exercise capacity and disease risk. Voluntary running allowed HCRs to maintain high body temperature during aging, which suggests that high PA level was crucial in maintaining the high body temperature of HCRs. PMID:27504097

  1. Analysis on High Temperature Aging Property of Self-brazing Aluminum Honeycomb Core at Middle Temperature

    Directory of Open Access Journals (Sweden)

    ZHAO Huan

    2016-11-01

    Full Text Available Tension-shear test was carried out on middle temperature self-brazing aluminum honeycomb cores after high temperature aging by micro mechanical test system, and the microstructure and component of the joints were observed and analyzed using scanning electron microscopy and energy dispersive spectroscopy to study the relationship between brazing seam microstructure, component and high temperature aging properties. Results show that the tensile-shear strength of aluminum honeycomb core joints brazed by 1060 aluminum foil and aluminum composite brazing plate after high temperature aging(200℃/12h, 200℃/24h, 200℃/36h is similar to that of as-welded joints, and the weak part of the joint is the base metal which is near the brazing joint. The observation and analysis of the aluminum honeycomb core microstructure and component show that the component of Zn, Sn at brazing seam is not much affected and no compound phase formed after high temperature aging; therefore, the main reason for good high temperature aging performance of self-brazing aluminum honeycomb core is that no obvious change of brazing seam microstructure and component occurs.

  2. Determination of temperature distributions in fast reactor core coolants

    International Nuclear Information System (INIS)

    Tillman, M.

    1975-04-01

    An analytical method of determination of a temperature distribution in the coolant medium in a fuel assembly of a liquid-metal-fast-breeder-reactor (LMFBR) is presented. The temperature field obtained is applied for a constant velocity (slug flow) fluid flowing, parallel to the fuel pins of a square and hexagonal array assembly. The coolant subchannels contain irregular boundaries. The geometry of the channel due to the rod adjacent to the wall (edge rod) differs from the geometry of the other channels. The governing energy equation is solved analytically, assuming series solutions for the Poisson and diffusion equations, and the total solution is superposed by the two. The boundary conditions are specified by symmetry considerations, assembly wall insulation and a continuity of the temperature field and heat fluxes. The initial condition is arbitrary. The method satisfies the boundary conditions on the irregular boundaries and the initial condition by a least squares technique. Computed results are presented for various geometrical forms, with ratio of rod pitch-to-diameter typical for LMFBR cores. These results are applicable for various fast-reactors, and thus the influence of the transient solution (which solves the diffusion equation) on the total depends on the core parameters. (author)

  3. Simulation and Representation of Body, Emotion, and Core Consciousness

    NARCIS (Netherlands)

    Bosse, T.; Jonker, C.M.; Treur, J.; Henderson-Sellers, B.; Winikoff, M.

    2005-01-01

    This paper contributes an analysis and formalisation of Damasio's theory on core consciousness. Three important concepts in this theory are 'emotion', 'feeling', and 'feeling a feeling' (or core consciousness). In particular, a simulation model is described of the neural dynamics leading via emotion

  4. Microchip-based body temperature measurements in pigs

    DEFF Research Database (Denmark)

    Nielsen, Jens; Lohse, Louise

    In the present study, we tested whether an electronic identification and body temperature monitorring technology presently applied in small experimental animals could be transferred for use in pigs....

  5. Relationship between alertness, performance, and body temperature in humans

    Science.gov (United States)

    Wright, Kenneth P Jr; Hull, Joseph T.; Czeisler, Charles A.

    2002-01-01

    Body temperature has been reported to influence human performance. Performance is reported to be better when body temperature is high/near its circadian peak and worse when body temperature is low/near its circadian minimum. We assessed whether this relationship between performance and body temperature reflects the regulation of both the internal biological timekeeping system and/or the influence of body temperature on performance independent of circadian phase. Fourteen subjects participated in a forced desynchrony protocol allowing assessment of the relationship between body temperature and performance while controlling for circadian phase and hours awake. Most neurobehavioral measures varied as a function of internal biological time and duration of wakefulness. A number of performance measures were better when body temperature was elevated, including working memory, subjective alertness, visual attention, and the slowest 10% of reaction times. These findings demonstrate that an increased body temperature, associated with and independent of internal biological time, is correlated with improved performance and alertness. These results support the hypothesis that body temperature modulates neurobehavioral function in humans.

  6. Absence of positive eigenvalues for hard-core N-body systems

    DEFF Research Database (Denmark)

    Ito, K.; Skibsted, Erik

    We show absence of positive eigenvalues for generalized 2-body hard-core Schrödinger operators under the condition of bounded strictly convex obstacles. A scheme for showing absence of positive eigenvalues for generalized N-body hard-core Schrödinger operators, N≥ 2, is presented. This scheme inv...

  7. Telemetry pill versus rectal and esophageal temperature during extreme rates of exercise-induced core temperature change

    International Nuclear Information System (INIS)

    Teunissen, L P J; Daanen, H A M; De Haan, A; De Koning, J J

    2012-01-01

    Core temperature measurement with an ingestible telemetry pill has been scarcely investigated during extreme rates of temperature change, induced by short high-intensity exercise in the heat. Therefore, nine participants performed a protocol of rest, (sub)maximal cycling and recovery at 30 °C. The pill temperature (T pill ) was compared with the rectal temperature (T re ) and esophageal temperature (T es ). T pill corresponded well to T re during the entire trial, but deviated considerably from T es during the exercise and recovery periods. During maximal exercise, the average ΔT pill −T re and ΔT pill −T es were 0.13 ± 0.26 and −0.57 ± 0.53 °C, respectively. The response time from the start of exercise, the rate of change during exercise and the peak temperature were similar for T pill and T re. T es responded 5 min earlier, increased more than twice as fast and its peak value was 0.42 ± 0.46 °C higher than T pill . In conclusion, also during considerable temperature changes at a very high rate, T pill is still a representative of T re . The extent of the deviation in the pattern and peak values between T pill and T es (up to >1 °C) strengthens the assumption that T pill is unsuited to evaluate central blood temperature when body temperatures change rapidly. (paper)

  8. An Overnight Comparison of Core Temperature Using a Rectal Probe and a Radio Pill

    National Research Council Canada - National Science Library

    Paul, Michel

    1999-01-01

    Previous efforts to record core temperature with radio pills produced consistent results showing that core temperature provided by radio pill tended to be lower than that provided by rectal probe by about 0.5c to o...

  9. Agreement between auricular and rectal measurements of body temperature in healthy cats.

    Science.gov (United States)

    Sousa, Marlos G; Carareto, Roberta; Pereira-Junior, Valdo A; Aquino, Monally C C

    2013-04-01

    Measurement of body temperature is a routine part of the clinical assessment of a patient. However, this procedure may be time-consuming and stressful to most animals because the standard site of temperature acquisition remains the rectal mucosa. Although an increasing number of clinicians have been using auricular temperature to estimate core body temperature, evidence is still lacking regarding agreement between these two methods in cats. In this investigation, we evaluated the agreement between temperatures measured in the rectum and ear in 29 healthy cats over a 2-week period. Temperatures were measured in the rectum (using digital and mercury-in-glass thermometers) and ear once a day for 14 consecutive days, producing 406 temperature readings for each thermometer. Mean temperature and confidence intervals were similar between methods, and Bland-Altman plots showed small biases and narrow limits of agreement acceptable for clinical purposes. The interobserver variability was also checked, which indicated a strong correlation between two near-simultaneous temperature readings. Results are consistent with auricular thermometry being a reliable alternative to rectal thermometry for assessing core body temperature in healthy cats.

  10. Central control of body temperature [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Shaun F. Morrison

    2016-05-01

    Full Text Available Central neural circuits orchestrate the behavioral and autonomic repertoire that maintains body temperature during environmental temperature challenges and alters body temperature during the inflammatory response and behavioral states and in response to declining energy homeostasis. This review summarizes the central nervous system circuit mechanisms controlling the principal thermoeffectors for body temperature regulation: cutaneous vasoconstriction regulating heat loss and shivering and brown adipose tissue for thermogenesis. The activation of these thermoeffectors is regulated by parallel but distinct efferent pathways within the central nervous system that share a common peripheral thermal sensory input. The model for the neural circuit mechanism underlying central thermoregulatory control provides a useful platform for further understanding of the functional organization of central thermoregulation, for elucidating the hypothalamic circuitry and neurotransmitters involved in body temperature regulation, and for the discovery of novel therapeutic approaches to modulating body temperature and energy homeostasis.

  11. Body/bone-marrow differential-temperature sensor

    Science.gov (United States)

    Anselmo, V. J.; Berdahl, C. M.

    1978-01-01

    Differential-temperature sensor developed to compare bone-marrow and body temperature in leukemia patients uses single stable amplifier to monitor temperature difference recorded by thermocouples. Errors are reduced by referencing temperatures to each other, not to separate calibration points.

  12. Miniature ingestible telemeter devices to measure deep-body temperature

    Science.gov (United States)

    Pope, J. M.; Fryer, T. B. (Inventor)

    1976-01-01

    A telemetry device comprised of a pill-size ingestible transmitter developed to obtain deep body temperature measurements of a human is described. The device has particular utility in the medical field where deep body temperatures provide an indication of general health.

  13. Air temperature investigation in microenvironment around a human body

    DEFF Research Database (Denmark)

    Licina, Dusan; Melikov, Arsen Krikor; Sekhar, Chandra

    2015-01-01

    The aim of this study is to investigate the temperature boundary layer around a human body in a quiescent indoor environment. The air temperature, mean in time and standard deviation of the temperature fluctuations around a breathing thermal manikin are examined in relation to the room temperature......, body posture and human respiratory flow. To determine to what extent the experiments represent the realistic scenario, the additional experiments were performed with a real human subject. The results show that at a lower room air temperature (20°C), the fluctuations of air temperature increased close...... to the surface of the body. The large standard deviation of air temperature fluctuations, up to 1.2°C, was recorded in the region of the chest, and up to 2.9°C when the exhalation was applied. The manikin leaned backwards increased the air temperature in the breathing zone, which was opposite from the forward...

  14. Thermal conditions influence changes in body temperature induced by intragastric administration of capsaicin in mice.

    Science.gov (United States)

    Mori, Noriyuki; Urata, Tomomi; Fukuwatari, Tsutomu

    2016-08-01

    Capsaicin has been reported to have unique thermoregulatory actions. However, changes in core temperature after the administration of capsaicin are a controversial point. Therefore, we investigated the effects of environmental thermal conditions on changes in body temperature caused by capsaicin in mice. We showed that intragastric administration of 10 and 15 mg/kg capsaicin increased tail temperature and decreased colonic temperatures in the core temperature (CT)-constant and CT-decreasing conditions. In the CT-increasing condition, 15 mg/kg capsaicin increased tail temperature and decreased colonic temperature. However, 10 mg/kg capsaicin increased colonic temperature. Furthermore, the amount of increase in tail temperature was greater in the CT-decreasing condition and lower in the CT-increasing condition, compared with that of the CT-constant condition. These findings suggest that the changes in core temperature were affected by the environmental thermal conditions and that preliminary thermoregulation state might be more important than the constancy of temperature to evaluate the effects of heat diffusion and thermogensis.

  15. Implanted telemeter for electrocardiogram and body temperature

    Science.gov (United States)

    Barrows, W. F.

    1972-01-01

    Measuring system requiring one blocking oscillator to generate modulated pulse repetition rate is implantable in the bodies of small animals. Device has life of two years and transmission range of about three feet. EKG sensing unit also is used to sense electromyogram or electrooculogram of laboratory animals.

  16. Constant-Temperature Calorimetry for In-Core Power Measurement

    International Nuclear Information System (INIS)

    Radcliff, Thomas D.; Miller, Don W.; Kauffman, Andrew C.

    2000-01-01

    Reactor thermal limits are based on fuel energy deposition and cladding temperature. This paper presents a two-wire in-core instrument that directly measures fuel energy deposition. The instrument is based on the addition of heat through resistive dissipation of input electrical energy to a small mass of reactor fuel or fuel analogue. A feedback loop controls the input electrical energy needed to maintain the fuel mass at a nearly constant temperature regardless of the nuclear energy deposited in the mass. Energy addition to the fuel and fuel temperature feedback to the controller are provided by a resistive heating element embedded in the fuel mass. As long as the external heat transfer environment remains constant, the input electrical energy is inversely related to the actual nuclear energy deposition. To demonstrate this instrument, we first scaled the sensor and controller parameters and then used the results to guide fabrication of prototype instruments. In-reactor testing was performed to measure the instrument sensitivity, linearity, bandwidth, and long-term drift characteristics of the prototypes. The instrument is shown to be capable of high-sensitivity, linear measurement of fuel energy deposition with sufficient bandwidth for safety-related measurements. It is also clear that a means to compensate the sensor for changes in the external heat transfer environment is required. Means of actively measuring heat losses and performing this compensation are discussed

  17. Estimation of human core temperature from sequential heart rate observations

    International Nuclear Information System (INIS)

    Buller, Mark J; Tharion, William J; Cheuvront, Samuel N; Montain, Scott J; Kenefick, Robert W; Castellani, John; Latzka, William A; Hoyt, Reed W; Roberts, Warren S; Richter, Mark; Jenkins, Odest Chadwicke

    2013-01-01

    Core temperature (CT) in combination with heart rate (HR) can be a good indicator of impending heat exhaustion for occupations involving exposure to heat, heavy workloads, and wearing protective clothing. However, continuously measuring CT in an ambulatory environment is difficult. To address this problem we developed a model to estimate the time course of CT using a series of HR measurements as a leading indicator using a Kalman filter. The model was trained using data from 17 volunteers engaged in a 24 h military field exercise (air temperatures 24–36 °C, and 42%–97% relative humidity and CTs ranging from 36.0–40.0 °C). Validation data from laboratory and field studies (N = 83) encompassing various combinations of temperature, hydration, clothing, and acclimation state were examined using the Bland–Altman limits of agreement (LoA) method. We found our model had an overall bias of −0.03 ± 0.32 °C and that 95% of all CT estimates fall within ±0.63 °C (>52 000 total observations). While the model for estimating CT is not a replacement for direct measurement of CT (literature comparisons of esophageal and rectal methods average LoAs of ±0.58 °C) our results suggest it is accurate enough to provide practical indication of thermal work strain for use in the work place. (paper)

  18. Estimation of human core temperature from sequential heart rate observations.

    Science.gov (United States)

    Buller, Mark J; Tharion, William J; Cheuvront, Samuel N; Montain, Scott J; Kenefick, Robert W; Castellani, John; Latzka, William A; Roberts, Warren S; Richter, Mark; Jenkins, Odest Chadwicke; Hoyt, Reed W

    2013-07-01

    Core temperature (CT) in combination with heart rate (HR) can be a good indicator of impending heat exhaustion for occupations involving exposure to heat, heavy workloads, and wearing protective clothing. However, continuously measuring CT in an ambulatory environment is difficult. To address this problem we developed a model to estimate the time course of CT using a series of HR measurements as a leading indicator using a Kalman filter. The model was trained using data from 17 volunteers engaged in a 24 h military field exercise (air temperatures 24-36 °C, and 42%-97% relative humidity and CTs ranging from 36.0-40.0 °C). Validation data from laboratory and field studies (N = 83) encompassing various combinations of temperature, hydration, clothing, and acclimation state were examined using the Bland-Altman limits of agreement (LoA) method. We found our model had an overall bias of -0.03 ± 0.32 °C and that 95% of all CT estimates fall within ±0.63 °C (>52 000 total observations). While the model for estimating CT is not a replacement for direct measurement of CT (literature comparisons of esophageal and rectal methods average LoAs of ±0.58 °C) our results suggest it is accurate enough to provide practical indication of thermal work strain for use in the work place.

  19. Moderator temperature effects on reactivity of HEU core of MNSR

    International Nuclear Information System (INIS)

    Ahmad, Siraj-ul-Islam; Sahibzada, Tasveer Muhammad

    2012-01-01

    Highlights: ► The MNSR core was analyzed to see the cross section effects on moderator temperature coefficient of reactivity. ► WIMS-D code was used for cell calculations. ► The 3D diffusion theory code PRIDE was first validated using IAEA benchmark problem and then used for analysis of MNSR. ► The differences among results for various libraries were discussed. -- Abstract: In this article we report on analyses that were performed to investigate the influence of cross section differences among libraries released by various centers on reactivity of Miniature Neutron Source Reactors. The 3D model of the core was developed with WIMS-D and PRIDE codes and six cross section libraries were used including JENDL-3.2, JEF-2.2, JEFF-3.3, ENDF/B-VI and ENDF/B-VII, and IAEA library. It was observed that all the libraries predict the reactivity within 10%, with IAEA library giving minimum reactivity worth, and JEF-2.2 data library resulted in highest worth.

  20. Novel Zero-Heat-Flux Deep Body Temperature Measurement in Lower Extremity Vascular and Cardiac Surgery.

    Science.gov (United States)

    Mäkinen, Marja-Tellervo; Pesonen, Anne; Jousela, Irma; Päivärinta, Janne; Poikajärvi, Satu; Albäck, Anders; Salminen, Ulla-Stina; Pesonen, Eero

    2016-08-01

    The aim of this study was to compare deep body temperature obtained using a novel noninvasive continuous zero-heat-flux temperature measurement system with core temperatures obtained using conventional methods. A prospective, observational study. Operating room of a university hospital. The study comprised 15 patients undergoing vascular surgery of the lower extremities and 15 patients undergoing cardiac surgery with cardiopulmonary bypass. Zero-heat-flux thermometry on the forehead and standard core temperature measurements. Body temperature was measured using a new thermometry system (SpotOn; 3M, St. Paul, MN) on the forehead and with conventional methods in the esophagus during vascular surgery (n = 15), and in the nasopharynx and pulmonary artery during cardiac surgery (n = 15). The agreement between SpotOn and the conventional methods was assessed using the Bland-Altman random-effects approach for repeated measures. The mean difference between SpotOn and the esophageal temperature during vascular surgery was+0.08°C (95% limit of agreement -0.25 to+0.40°C). During cardiac surgery, during off CPB, the mean difference between SpotOn and the pulmonary arterial temperature was -0.05°C (95% limits of agreement -0.56 to+0.47°C). Throughout cardiac surgery (on and off CPB), the mean difference between SpotOn and the nasopharyngeal temperature was -0.12°C (95% limits of agreement -0.94 to+0.71°C). Poor agreement between the SpotOn and nasopharyngeal temperatures was detected in hypothermia below approximately 32°C. According to this preliminary study, the deep body temperature measured using the zero-heat-flux system was in good agreement with standard core temperatures during lower extremity vascular and cardiac surgery. However, agreement was questionable during hypothermia below 32°C. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Relationships between brain and body temperature, clinical and imaging outcomes after ischemic stroke

    Science.gov (United States)

    Karaszewski, Bartosz; Carpenter, Trevor K; Thomas, Ralph G R; Armitage, Paul A; Lymer, Georgina Katherine S; Marshall, Ian; Dennis, Martin S; Wardlaw, Joanna M

    2013-01-01

    Pyrexia soon after stroke is associated with severe stroke and poor functional outcome. Few studies have assessed brain temperature after stroke in patients, so little is known of its associations with body temperature, stroke severity, or outcome. We measured temperatures in ischemic and normal-appearing brain using 1H-magnetic resonance spectroscopy and its correlations with body (tympanic) temperature measured four-hourly, infarct growth by 5 days, early neurologic (National Institute of Health Stroke Scale, NIHSS) and late functional outcome (death or dependency). Among 40 patients (mean age 73 years, median NIHSS 7, imaged at median 17 hours), temperature in ischemic brain was higher than in normal-appearing brain on admission (38.6°C-core, 37.9°C-contralateral hemisphere, P=0.03) but both were equally elevated by 5 days; both were higher than tympanic temperature. Ischemic lesion temperature was not associated with NIHSS or 3-month functional outcome; in contrast, higher contralateral normal-appearing brain temperature was associated with worse NIHSS, infarct expansion and poor functional outcome, similar to associations for tympanic temperature. We conclude that brain temperature is higher than body temperature; that elevated temperature in ischemic brain reflects a local tissue response to ischemia, whereas pyrexia reflects the systemic response to stroke, occurs later, and is associated with adverse outcomes. PMID:23571281

  2. EXACT SOLUTION TO FINITE TEMPERATURE SFDM: NATURAL CORES WITHOUT FEEDBACK

    International Nuclear Information System (INIS)

    Robles, Victor H.; Matos, T.

    2013-01-01

    Recent high-quality observations of low surface brightness (LSB) galaxies have shown that their dark matter (DM) halos prefer flat central density profiles. However, the standard cold dark matter model simulations predict a more cuspy behavior. One mechanism used to reconcile the simulations with the observed data is the feedback from star formation. While this mechanism may be successful in isolated dwarf galaxies, its success in LSB galaxies remains unclear. Additionally, the inclusion of too much feedback in the simulations is a double-edged sword—in order to obtain a cored DM distribution from an initially cuspy one, the feedback recipes usually require one to remove a large quantity of baryons from the center of the galaxies; however, some feedback recipes produce twice the number of satellite galaxies of a given luminosity and with much smaller mass-to-light ratios from those that are observed. Therefore, one DM profile that produces cores naturally and that does not require large amounts of feedback would be preferable. We find both requirements to be satisfied in the scalar field dark matter model. Here, we consider that DM is an auto-interacting real scalar field in a thermal bath at temperature T with an initial Z 2 symmetric potential. As the universe expands, the temperature drops so that the Z 2 symmetry is spontaneously broken and the field rolls down to a new minimum. We give an exact analytic solution to the Newtonian limit of this system, showing that it can satisfy the two desired requirements and that the rotation curve profile is no longer universal.

  3. Shivering heat production and body fat protect the core from cooling during body immersion, but not during head submersion: a structural equation model.

    Science.gov (United States)

    Pretorius, Thea; Lix, Lisa; Giesbrecht, Gordon

    2011-03-01

    Previous studies showed that core cooling rates are similar when only the head or only the body is cooled. Structural equation modeling was used on data from two cold water studies involving body-only, or whole body (including head) cooling. Exposure of both the body and head increased core cooling, while only body cooling elicited shivering. Body fat attenuates shivering and core cooling. It is postulated that this protection occurs mainly during body cooling where fat acts as insulation against cold. This explains why head cooling increases surface heat loss with only 11% while increasing core cooling by 39%. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Relationship of core exit-temperature noise to thermal-hydraulic conditions in PWRs

    International Nuclear Information System (INIS)

    Sweeney, F.J.; Upadhyaya, B.R.

    1983-01-01

    Core exit thermocouple temperature noise and neutron detector noise measurements were performed at the Loss of Fluid Test Facility (LOFT) reactor and a Westinghouse, 1148 MW(e) PWR to relate temperature noise to core thermal-hydraulic conditions. The noise analysis results show that the RMS of the temperature noise increases linearly with increasing core δT at LOFT and the commercial PWR. Out-of-core test loop temperature noise has shown similar behavior. The phase angle between core exit temperature noise and in-core or ex-core neutron noise is directly related to the core coolant flow velocity. However, if the thermocouple response time is slow, compared to the coolant transit time between the sensors, velocities inferred from the phase angle are lower than measured coolant flow velocities

  5. Body temperature responses to handling stress in wintering Black-capped Chickadees (Poecile atricapillus L.).

    Science.gov (United States)

    Lewden, Agnès; Nord, Andreas; Petit, Magali; Vézina, François

    2017-10-01

    Body temperature variation in response to acute stress is typically characterized by peripheral vasoconstriction and a concomitant increase in core body temperature (stress-induced hyperthermia). It is poorly understood how this response differs between species and within individuals of the same species, and how it is affected by the environment. We therefore investigated stress-induced body temperature changes in a non-model species, the Black-capped Chickadee, in two environmental conditions: outdoors in low ambient temperature (mean: -6.6°C), and indoors, in milder ambient temperature close to thermoneutrality (mean: 18.7°C). Our results show that the change in body temperature in response to the same handling stressor differs in these conditions. In cold environments, we noted a significant decrease in core body temperature (-2.9°C), whereas the response in mild indoor conditions was weak and non-significant (-0.6°C). Heat loss in outdoor birds was exacerbated when birds were handled for longer time. This may highlight the role of behavioral thermoregulation and heat substitution from activity to body temperature maintenance in harsh condition. Importantly, our work also indicates that changes in the physical properties of the bird during handling (conductive cooling from cold hands, decreased insulation from compression of plumage and prevention of ptiloerection) may have large consequences for thermoregulation. This might explain why females, the smaller sex, lost more heat than males in the experiment. Because physiological and physical changes during handling may carry over to affect predation risk and maintenance of energy balance during short winter days, we advice caution when designing experimental protocols entailing prolonged handling of small birds in cold conditions. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. A nonintrusive temperature measuring system for estimating deep body temperature in bed.

    Science.gov (United States)

    Sim, S Y; Lee, W K; Baek, H J; Park, K S

    2012-01-01

    Deep body temperature is an important indicator that reflects human being's overall physiological states. Existing deep body temperature monitoring systems are too invasive to apply to awake patients for a long time. Therefore, we proposed a nonintrusive deep body temperature measuring system. To estimate deep body temperature nonintrusively, a dual-heat-flux probe and double-sensor probes were embedded in a neck pillow. When a patient uses the neck pillow to rest, the deep body temperature can be assessed using one of the thermometer probes embedded in the neck pillow. We could estimate deep body temperature in 3 different sleep positions. Also, to reduce the initial response time of dual-heat-flux thermometer which measures body temperature in supine position, we employed the curve-fitting method to one subject. And thereby, we could obtain the deep body temperature in a minute. This result shows the possibility that the system can be used as practical temperature monitoring system with appropriate curve-fitting model. In the next study, we would try to establish a general fitting model that can be applied to all of the subjects. In addition, we are planning to extract meaningful health information such as sleep structure analysis from deep body temperature data which are acquired from this system.

  7. EFFECT OF ACTIVE COOLING AND α-2 ADRENOCEPTOR ANTAGONISM ON CORE TEMPERATURE IN ANESTHETIZED BROWN BEARS (URSUS ARCTOS).

    Science.gov (United States)

    Ozeki, Larissa Mourad; Caulkett, Nigel; Stenhouse, Gordon; Arnemo, Jon M; Fahlman, Åsa

    2015-06-01

    Hyperthermia is a common complication during anesthesia of bears, and it can be life threatening. The objective of this study was to evaluate the effectiveness of active cooling on core body temperature for treatment of hyperthermia in anesthetized brown bears (Ursus arctos). In addition, body temperature after reversal with atipamezole was also evaluated. Twenty-five adult and subadult brown bears were captured with a combination of zolazepam-tiletamine and xylazine or medetomidine. A core temperature capsule was inserted into the bears' stomach or 15 cm into their rectum or a combination of both. In six bears with gastric temperatures≥40.0°C, an active cooling protocol was performed, and the temperature change over 30 min was analyzed. The cooling protocol consisted of enemas with 2 L of water at approximately 5°C/100 kg of body weight every 10 min, 1 L of intravenous fluids at ambient temperature, water or snow on the paws or the inguinal area, intranasal oxygen supplementation, and removing the bear from direct sunlight or providing shade. Nine bears with body temperature>39.0°C that were not cooled served as control for the treated animals. Their body temperatures were recorded for 30 min, prior to administration of reversal. At the end of the anesthetic procedure, all bears received an intramuscular dose of atipamezole. In 10 bears, deep rectal temperature change over 30 min after administration of atipamezole was evaluated. The active cooling protocol used in hyperthermic bears significantly decreased their body temperatures within 10 min, and it produced a significantly greater decrease in their temperature than that recorded in the control group.

  8. Body Temperatures in the Elderly: A National Study of Physiological, Social, and Environmental Conditions

    Science.gov (United States)

    Fox, R. H.; Woodward, Patricia M.; Exton-Smith, A. N.; Green, M. F.; Donnison, D. V.; Wicks, M. H.

    1973-01-01

    Two large-scale surveys of body temperatures in elderly people living at home were carried out in the winter of 1972. Most of the homes visited were cold with room temperatures below the minimum recommended by the Department of Health. Deep body temperatures below 35·5°C were found in 10% of those studied, and the difference between the skin temperature and the core temperature was also reduced in this group. Such individuals are at risk of developing hypothermia since they show evidence of some degree of thermoregulatory failure. Further research is needed, but meanwhile there are practical measures that could be taken to reduce the risk of hypothermia in the elderly. PMID:4686555

  9. Hypercoagulability in response to elevated body temperature and central hypovolemia

    DEFF Research Database (Denmark)

    Meyer, Martin; Ostrowski, Sisse R; Overgaard, Flemming Anders

    2013-01-01

    Coagulation abnormalities contribute to poor outcomes in critically ill patients. In trauma patients exposed to a hot environment, a systemic inflammatory response syndrome, elevated body temperature, and reduced central blood volume occur in parallel with changes in hemostasis and endothelial...... damage. The objective of this study was to evaluate whether experimentally elevated body temperature and reduced central blood volume (CBV) per se affects hemostasis and endothelial activation....

  10. Whole body cooling by immersion in water at moderate temperatures.

    Science.gov (United States)

    Marino, F; Booth, J

    1998-06-01

    This study investigated the potential use of whole body cooling by water immersion for lowering body temperatures prior to endurance exercise. Rectal temperature (Tre), mean skin temperature (Tsk), oxygen consumption (VO2), and ventilation (VE) were measured in 7 male and 3 female subjects who were immersed in a water bath for up to 60 min. Initial water temperature was 28.8+/-1.5 degrees C and decreased to 23.8+/-1.1 degrees C by the end of immersion. Pre-immersion Tre of 37.34+/-0.36 degrees C was not altered by 60 min water immersion but decreased to 36.64+/-0.34 degrees C at 3 min post immersion (p immersion. Reductions in Tre and Tsk resulted in reduced body heat content (Hc) of approximately 545 kJ (p immersion. VO2 and VE increased from pre-immersion values of 0.34+/-0.08 L x min(-1) and 6.2+/-1.4 L x min(-1) to 0.54+/-0.09 L x min(-) and 11.5+/-5.4 L x min(-1) at the end of immersion, respectively. Heart rate remained unchanged throughout immersion. These results indicate that whole body immersion in moderately cold water temperatures is an effective cooling maneuver for lowering body temperatures and body Hc in the absence of severe physiological responses generally associated with sudden cold stress.

  11. Elevated body temperature in ischemic stroke associated with neurological improvement.

    Science.gov (United States)

    Khanevski, A N; Naess, H; Thomassen, L; Waje-Andreassen, U; Nacu, A; Kvistad, C E

    2017-11-01

    Some studies suggest that high body temperature within the first few hours of ischemic stroke onset is associated with improved outcome. We hypothesized an association between high body temperature on admission and detectable improvement within 6-9 hours of stroke onset. Consecutive ischemic stroke patients with NIHSS scores obtained within 3 hours and in the interval 6-9 hours after stroke onset were included. Body temperature was measured on admission. A total of 315 patients with ischemic stroke were included. Median NIHSS score on admission was 6. Linear regression showed that NIHSS score 6-9 hours after stroke onset was inversely associated with body temperature on admission after adjusting for confounders including NIHSS score body temperature and neurological improvement within few hours after admission. This finding may be limited to patients with documented proximal middle cerebral artery occlusion on admission and suggests a beneficial effect of higher body temperature on clot lysis within the first three hours. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. High Pressure and Temperature Core Formation as an Alternative to the "Late Veneer" Hypothesis

    Science.gov (United States)

    Righter, Kevin; Pando, K.; Humayun, M.; Danielson, L.

    2011-01-01

    The highly siderophile elements (HSE; Re, Au and the Platinum Group Elements - Pd Pt, Rh, Ru, Ir, Os) are commonly utilized to constrain accretion processes in terrestrial differentiated bodies due to their affinity for FeNi metal [1]. These eight elements exhibit highly siderophile behavior, but nonetheless have highly diverse metal-silicate partition coefficients [2]. Therefore the near chondritic relative concentrations of HSEs in the terrestrial and lunar mantles, as well as some other bodies, are attributed to late accretion rather than core formation [1]. Evaluation of competing theories, such as high pressure metal-silicate partitioning or magma ocean hypotheses has been hindered by a lack of relevant partitioning data for this group of eight elements. In particular, systematic studies isolating the effect of one variable (e.g. temperature or melt compositions) are lacking. Here we undertake new experiments on all eight elements, using Fe metal and FeO-bearing silicate melts at fixed pressure, but variable temperatures. These experiments, as well as some additional planned experiments should allow partition coefficients to be more accurately calculated or estimated at the PT conditions and compositions at which core formation is thought to have occurred.

  13. The pupal body temperature and inner space temperature of cocoon under microwave irradiation

    International Nuclear Information System (INIS)

    Kagawa, T.

    1996-01-01

    The temperature of pupal surface,body and inner space of cocoon on cocoon drying of microwave irradiation was investigated to make clear the effect of temperature with pupa and cocoon shell. After pupal surface temperature and body temperature were risen rapidly in early irradiation and slowly thereafter, these were done fast again. Then these rising degrees fell. The variation of inner space temperature consists three terms: as the first stage of rapidly rising on early irradiation, the second stage of slowly doing and the third stage of fast doing again in temperature. In the first stage and the second stage, the higher the temperature of sending air during irradiation was, the shorter the term was and the higher the reached temperature was. The surface, pupal body and inner space have reached higher temperature than the sending air before cocoon drying was over

  14. Metabolic rate and body temperature of an African sun bird ...

    African Journals Online (AJOL)

    The oxygen consumption (VO2) of the lesser double-collared sunbird, Nectarinia chalybea, was measured at ambient temperatures (Ta) from 7 to 35°C. The diel variation in body temperature (Tb) and wet thermal conductance (C) was also determined. The sunbirds (mean mass 8.36 g ± S.E. 0.21 g) showed a pronounced ...

  15. Diagnostic accuracy of routine postoperative body temperature measurements

    NARCIS (Netherlands)

    Vermeulen, Hester; Storm-Versloot, Marja N.; Goossens, Astrid; Speelman, Peter; Legemate, Dink A.

    2005-01-01

    BACKGROUND: On surgical wards, body temperature is routinely measured, but there is no proof that this is useful for detecting postoperative infection. The aim of this study was to compare temperature measurements (the test) with the confirmed absence or presence of a postoperative infection (the

  16. Low-Temperature Crystal Structures of the Hard Core Square Shoulder Model

    Directory of Open Access Journals (Sweden)

    Alexander Gabriëlse

    2017-11-01

    Full Text Available In many cases, the stability of complex structures in colloidal systems is enhanced by a competition between different length scales. Inspired by recent experiments on nanoparticles coated with polymers, we use Monte Carlo simulations to explore the types of crystal structures that can form in a simple hard-core square shoulder model that explicitly incorporates two favored distances between the particles. To this end, we combine Monte Carlo-based crystal structure finding algorithms with free energies obtained using a mean-field cell theory approach, and draw phase diagrams for two different values of the square shoulder width as a function of the density and temperature. Moreover, we map out the zero-temperature phase diagram for a broad range of shoulder widths. Our results show the stability of a rich variety of crystal phases, such as body-centered orthogonal (BCO lattices not previously considered for the square shoulder model.

  17. Full body illusion is associated with widespread skin temperature reduction

    Directory of Open Access Journals (Sweden)

    Roy eSalomon

    2013-07-01

    Full Text Available A central feature of our consciousness is the experience of the self as a unified entity residing in a physical body, termed bodily self-consciousness. This phenomenon includes aspects such as the sense of owning a body (also known as body ownership and has been suggested to arise from the integration of sensory and motor signals from the body. Several studies have shown that temporally synchronous tactile stimulation of the real body and visual stimulation of a fake or virtual body can induce changes in bodily self-consciousness, typically resulting in a sense of illusory ownership over the fake body. The present study assessed the effect of anatomical congruency of visuo-tactile stimulation on bodily self-consciousness. A virtual body was presented and temporally synchronous visuo-tactile stroking was applied simultaneously the participants’ body and to the virtual body. We manipulated the anatomical locations of the visuo-tactile stroking (i.e. on the back, on the leg, resulting in congruent stroking (stroking was felt and seen on the back or the leg or incongruent stroking (i.e. stroking was felt on the leg and seen on the back. We measured self-identification with the virtual body and self-location as well as skin temperature. Illusory self-identification with the avatar as well as changes in self-localization were experienced in the congruent stroking conditions. Participants showed a decrease in skin temperature across several body locations during congruent stimulation. These data establish that the full-body illusion alters bodily self-consciousness and instigates widespread physiological changes in the participant’s body.

  18. Estimation of temperature change in human body using MRI

    International Nuclear Information System (INIS)

    Nikawa, Yoshio; Nakamura, Suguru

    2016-01-01

    In the field of traditional oriental medicine, two types of treatment style, which are an acupuncture treatment and a moxibustion treatment have been performed. These treatments are used and effected by doctor or acupuncturist in their clinic or hospital and are widely spread. In spite of such a general treatment, it is not deeply discussed about mechanism of heat transfer modality and about temperature distribution in the treatment of moxibustion. Also, it is not discussed about temperature distribution deep inside human tissue during acupuncture treatment. It comes from the difficulty of noninvasive measurement of temperature deep inside human body. In this study, a temperature distribution for acupuncture and moxibustion treatment is measured and analyzed using thermograph and MRI by measuring the phase of longitudinal relaxation time of protons. The experimental results of measured temperature distribution under the human legs have been demonstrated. The result of temperature analysis in the human body is also reported. (author)

  19. The relationship between virtual body ownership and temperature sensitivity

    Science.gov (United States)

    Llobera, Joan; Sanchez-Vives, M. V.; Slater, Mel

    2013-01-01

    In the rubber hand illusion, tactile stimulation seen on a rubber hand, that is synchronous with tactile stimulation felt on the hidden real hand, can lead to an illusion of ownership over the rubber hand. This illusion has been shown to produce a temperature decrease in the hidden hand, suggesting that such illusory ownership produces disownership of the real hand. Here, we apply immersive virtual reality (VR) to experimentally investigate this with respect to sensitivity to temperature change. Forty participants experienced immersion in a VR with a virtual body (VB) seen from a first-person perspective. For half the participants, the VB was consistent in posture and movement with their own body, and in the other half, there was inconsistency. Temperature sensitivity on the palm of the hand was measured before and during the virtual experience. The results show that temperature sensitivity decreased in the consistent compared with the inconsistent condition. Moreover, the change in sensitivity was significantly correlated with the subjective illusion of virtual arm ownership but modulated by the illusion of ownership over the full VB. This suggests that a full body ownership illusion results in a unification of the virtual and real bodies into one overall entity—with proprioception and tactile sensations on the real body integrated with the visual presence of the VB. The results are interpreted in the framework of a ‘body matrix’ recently introduced into the literature. PMID:23720537

  20. Modeling Snow Regime in Cores of Small Planetary Bodies

    Science.gov (United States)

    Boukaré, C. E.; Ricard, Y. R.; Parmentier, E.; Parman, S. W.

    2017-12-01

    Observations of present day magnetic field on small planetary bodies such as Ganymede or Mercury challenge our understanding of planetary dynamo. Several mechanisms have been proposed to explain the origin of magnetic fields. Among the proposed scenarios, one family of models relies on snow regime. Snow regime is supported by experimental studies showing that melting curves can first intersect adiabats in regions where the solidifying phase is not gravitationaly stable. First solids should thus remelt during their ascent or descent. The effect of the snow zone on magnetic field generation remains an open question. Could magnetic field be generated in the snow zone? If not, what is the depth extent of the snow zone? How remelting in the snow zone drive compositional convection in the liquid layer? Several authors have tackled this question with 1D-spherical models. Zhang and Schubert, 2012 model sinking of the dense phase as internally heated convection. However, to our knowledge, there is no study on the convection structure associated with sedimentation and phase change at planetary scale. We extend the numerical model developped in [Boukare et al., 2017] to model snow dynamics in 2D Cartesian geometry. We build a general approach for modeling double diffusive convection coupled with solid-liquid phase change and phase separation. We identify several aspects that may govern the convection structure of the solidifying system: viscosity contrast between the snow zone and the liquid layer, crystal size, rate of melting/solidification and partitioning of light components during phase change.

  1. Wall temperature control of low-speed body drag

    Science.gov (United States)

    Lin, J. C.; Ash, R. L.

    1986-01-01

    The use of thermal means to control drag under turbulent boundary layer conditions is examined. Numerical calculations are presented for both skin friction and (unseparated) pressure drag for turbulent boundary-layer flows over a fuselage-like body with wall heat transfer. In addition, thermal control of separation on a bluff body is investigated. It is shown that a total drag reduction of up to 20 percent can be achieved for wall heating with a wall-to-total-freestream temperature ratio of 2. For streamlined slender bodies, partial wall heating of the forebody can produce almost the same order of total drag reduction as the full body heating case. For bluff bodies, the separation delay from partial wall cooling of the afterbody is approximately the same as for the fully cooled body.

  2. Effect of the temperature-humidity index on body temperature and conception rate of lactating dairy cows in southwestern Japan.

    Science.gov (United States)

    Nabenishi, Hisashi; Ohta, Hiroshi; Nishimoto, Toshihumi; Morita, Tetsuo; Ashizawa, Koji; Tsuzuki, Yasuhiro

    2011-09-01

    In the present study, we investigated the relationship between the temperature-humidity index (THI) and the conception rate of lactating dairy cows in southwestern Japan, one of the hottest areas of the country. We also investigated the relationship between measurement of the vaginal temperature of lactating dairy cows as their core body temperature at one-hour intervals for 25 consecutive days in hot (August-September, n=6) and cool (January-February, n=5) periods and their THI. Furthermore, we discussed the above relationship using these vaginal temperatures, the conception rates and the THI. As a result, when the conception rates from day 2 to 0 before AI were classified into day 2, 1 and 0 groups by the six maximum THI values in each group (mTHI; 80), only the conception rate for the mTHI over 80 at 1 day before AI group was significantly lower (P80) was significantly lower (P80. There was a significant positive correlation (Ptemperature, but not during the cool period. When the mTHI reached 69, the vaginal temperature started to increase. As for the relationship between the conception rates and vaginal temperatures for all mTHI classes, in the mTHI>80 at 1 day before AI group, the vaginal temperature increased by 0.6 C from 38.7 C, resulting in a reduction of 11.6% in the conception rate from 40.5%. In conclusion, these results suggest that one of the causes of the fall in conception rate of lactating dairy cows during the summer season in southwestern Japan may be an increase in their core body temperature with a higher mTHI than the critical mTHI of 69 at 1 day before AI.

  3. Muscle, Skin and Core Temperature after −110°C Cold Air and 8°C Water Treatment

    Science.gov (United States)

    Costello, Joseph Thomas; Culligan, Kevin; Selfe, James; Donnelly, Alan Edward

    2012-01-01

    The aim of this investigation was to elucidate the reductions in muscle, skin and core temperature following exposure to −110°C whole body cryotherapy (WBC), and compare these to 8°C cold water immersion (CWI). Twenty active male subjects were randomly assigned to a 4-min exposure of WBC or CWI. A minimum of 7 days later subjects were exposed to the other treatment. Muscle temperature in the right vastus lateralis (n = 10); thigh skin (average, maximum and minimum) and rectal temperature (n = 10) were recorded before and 60 min after treatment. The greatest reduction (Psporting setting. PMID:23139763

  4. Body temperature change characteristics of Lake Michigan fishes

    International Nuclear Information System (INIS)

    Spigarelli, S.A.; Thommes, M.M.; Beitinger, T.L.

    1974-01-01

    Body temperature change rate experiments were conducted on alewife, brown trout, rainbow trout, brook trout, and carp collected from the discharge flumes and inshore areas near the Point Beach Nuclear Plant. Test fish were exposed to immediate water temperature changes of up to 10.6 0 C by transfer between ambient and discharge water holding tanks. Results showed that the temperature change rate was related to fish size, species, and direction of change, suggesting that rapid temperature changes would have a more pronounced effect on smaller fish

  5. Fibre Bragg grating encapted with no-core fibre sensors for SRI and temperature monitoring

    Directory of Open Access Journals (Sweden)

    S. Daud

    2018-06-01

    Full Text Available In this work, a Fibre Bragg grating (FBG encapted with no-core fibre (NCF as surrounding refractive index (SRI and temperature sensors are practically demonstrated. A FBG with 1550 nm wavelength was attached with 5 cm length of no-core fibre (NCF is used as SRI and temperature sensing probe. The change of temperature and SRI induced the wavelength shift in FBG. The wavelength shift in FBG reacts directly proportional to the temperature with a sensitivity of while the sensitivity of NCF was measured as 13.13 pm °C−1. Keywords: FBG, No-core fibre (NCF, Temperature, Sensor

  6. Regulation of body temperature by some Mesozoic marine reptiles.

    Science.gov (United States)

    Bernard, Aurélien; Lécuyer, Christophe; Vincent, Peggy; Amiot, Romain; Bardet, Nathalie; Buffetaut, Eric; Cuny, Gilles; Fourel, François; Martineau, François; Mazin, Jean-Michel; Prieur, Abel

    2010-06-11

    What the body temperature and thermoregulation processes of extinct vertebrates were are central questions for understanding their ecology and evolution. The thermophysiologic status of the great marine reptiles is still unknown, even though some studies have suggested that thermoregulation may have contributed to their exceptional evolutionary success as apex predators of Mesozoic aquatic ecosystems. We tested the thermal status of ichthyosaurs, plesiosaurs, and mosasaurs by comparing the oxygen isotope compositions of their tooth phosphate to those of coexisting fish. Data distribution reveals that these large marine reptiles were able to maintain a constant and high body temperature in oceanic environments ranging from tropical to cold temperate. Their estimated body temperatures, in the range from 35 degrees +/- 2 degrees C to 39 degrees +/- 2 degrees C, suggest high metabolic rates required for predation and fast swimming over large distances offshore.

  7. Non-invasive body temperature measurement of wild chimpanzees using fecal temperature decline.

    Science.gov (United States)

    Jensen, Siv Aina; Mundry, Roger; Nunn, Charles L; Boesch, Christophe; Leendertz, Fabian H

    2009-04-01

    New methods are required to increase our understanding of pathologic processes in wild mammals. We developed a noninvasive field method to estimate the body temperature of wild living chimpanzees habituated to humans, based on statistically fitting temperature decline of feces after defecation. The method was established with the use of control measures of human rectal temperature and subsequent changes in fecal temperature over time. The method was then applied to temperature data collected from wild chimpanzee feces. In humans, we found good correspondence between the temperature estimated by the method and the actual rectal temperature that was measured (maximum deviation 0.22 C). The method was successfully applied and the average estimated temperature of the chimpanzees was 37.2 C. This simple-to-use field method reliably estimates the body temperature of wild chimpanzees and probably also other large mammals.

  8. Aseismic study of high temperature gas-cooled reactor core with block-type fuel, 3

    International Nuclear Information System (INIS)

    Ikushima, Takeshi; Honma, Toshiaki.

    1985-01-01

    A two-dimensional horizontal seismic experiment with single axis and simultaneous two-axes excitations was performed to obtain the core seismic design data on the block-type high temperature gas-cooled reactor. Effects of excitation directions and core side support stiffness on characteristics of core displacements and reaction forces of support were revealed. The values of the side reaction forces are the largest in the excitation of flat-to-flat of hexagonal block. Preload from the core periphery to the core center are effective to decrease core displacements and side reaction forces. (author)

  9. Effects of Ambient Temperature and Forced-air Warming on Intraoperative Core Temperature: A Factorial Randomized Trial.

    Science.gov (United States)

    Pei, Lijian; Huang, Yuguang; Xu, Yiyao; Zheng, Yongchang; Sang, Xinting; Zhou, Xiaoyun; Li, Shanqing; Mao, Guangmei; Mascha, Edward J; Sessler, Daniel I

    2018-05-01

    The effect of ambient temperature, with and without active warming, on intraoperative core temperature remains poorly characterized. The authors determined the effect of ambient temperature on core temperature changes with and without forced-air warming. In this unblinded three-by-two factorial trial, 292 adults were randomized to ambient temperatures 19°, 21°, or 23°C, and to passive insulation or forced-air warming. The primary outcome was core temperature change between 1 and 3 h after induction. Linear mixed-effects models assessed the effects of ambient temperature, warming method, and their interaction. A 1°C increase in ambient temperature attenuated the negative slope of core temperature change 1 to 3 h after anesthesia induction by 0.03 (98.3% CI, 0.01 to 0.06) °Ccore/(h°Cambient) (P ambient temperature with passive insulation, but was unaffected by ambient temperature during forced-air warming (0.02 [98.3% CI, -0.04 to 0.09] °Ccore/°Cambient; P = 0.40). After an average of 3.4 h of surgery, core temperature was 36.3° ± 0.5°C in each of the forced-air groups, and ranged from 35.6° to 36.1°C in passively insulated patients. Ambient intraoperative temperature has a negligible effect on core temperature when patients are warmed with forced air. The effect is larger when patients are passively insulated, but the magnitude remains small. Ambient temperature can thus be set to comfortable levels for staff in patients who are actively warmed.

  10. Pengaruh Penggunaan Plastic Wrap Terhadap Core Temperature Pasien Pediatrik 1-3 Tahun Yang Menjalani Operasi Palatoplasty

    Directory of Open Access Journals (Sweden)

    Mikhail Averoes

    2013-04-01

    Full Text Available The decrease rate of body temperature can be reduced by passive insulation by covering the body with certain materials which have poor heat conductivity (insulator. Insulator material which is wrapped on the body can prevent the process of convection, conduction and evaporation so that the degree of heat loss was reduced on average 30%. One material that can be used as an insulator is the plastic. This study was conducted to assess the effect of plastic wrap on the core temperature of pediatric aged 1 to 3 years who underwent cleft palate surgery. The study was conducted on 30 pediatric patients, aged 1-3 years, with ASA I physical status who underwent cleft surgery with general anesthesia. Patients were divided into two groups. One group used plastic wrap to be wrapped on the body, and another is the control group. Rectal temperature was recorded during anesthesia. Research data was tested statistically by the Mann-Whitney test. The results of statistical calculation indicated that the average core temperature during anesthesia in plastic wrap group was higher than the control group with a significant result (p <0.001. The average core temperature in the plastic wrap is 36.17° C (0.31° C which is higher than the control group (35.88° C (0.43° C. It can be concluded that the use of plastic wrap causes temperature reduction degree to be lower than the control group. The degree in plastic wrap group is 0.8 °C while the degree in control group is 1.2°C in the control group (p <0.005.

  11. Ultrahigh temperature vapor core reactor-MHD system for space nuclear electric power

    Science.gov (United States)

    Maya, Isaac; Anghaie, Samim; Diaz, Nils J.; Dugan, Edward T.

    1991-01-01

    The conceptual design of a nuclear space power system based on the ultrahigh temperature vapor core reactor with MHD energy conversion is presented. This UF4 fueled gas core cavity reactor operates at 4000 K maximum core temperature and 40 atm. Materials experiments, conducted with UF4 up to 2200 K, demonstrate acceptable compatibility with tungsten-molybdenum-, and carbon-based materials. The supporting nuclear, heat transfer, fluid flow and MHD analysis, and fissioning plasma physics experiments are also discussed.

  12. Anisotropic structure of the Inner Core and its uncertainty from transdimensional body-wave tomography

    Science.gov (United States)

    Burdick, S.; Waszek, L.; Lekic, V.

    2017-12-01

    Studies of body waves and normal modes have revealed strong quasi-hemispheric variations in seismic velocity, anisotropy and attenuation in the inner core. A rigorous mapping of the hemispheric boundaries and smaller scale heterogeneity within the hemispheres is crucial for distinguishing between hypotheses about inner core formation and evolution. However, the relatively sparse and heterogeneous distribution of paths piercing the inner core creates difficulties in constraining the boundaries and sub-hemispheric variations with body wave tomography. Damped tomographic inversions tend to smooth out strong structural gradients and risk carrying the imprint of sparse path coverage, while under-parametrized models can miss pertinent small-scale variations. For these reasons, we apply a probabilistic and transdimensional (THB) tomography method on core-sensitive differential P-wave traveltimes. The THB approach is well-suited to the problem of inner core tomography since 1) it remains parsimonious by allowing the parametrization to be determined the requirements of the data and 2) it preserves sharp boundaries in seismic properties, allowing it to capture both short-wavelength structure and the strong hemispheric dichotomy. Furthermore, the approach yields estimates of uncertainty in isotropic and anisotropic velocity, hemispheric boundary geometry, anisotropy axis and the tradeoffs between these properties. We quantify the effects of mantle heterogeneity with inner core structure and place constraints on inner core dynamics and minerology.

  13. The effect of core configuration on temperature coefficient of reactivity in IRR-1

    Energy Technology Data Exchange (ETDEWEB)

    Bettan, M.; Silverman, I.; Shapira, M.; Nagler, A. [Soreq Nuclear Research Center, Yavne (Israel)

    1997-08-01

    Experiments designed to measure the effect of coolant moderator temperature on core reactivity in an HEU swimming pool type reactor were performed. The moderator temperature coefficient of reactivity ({alpha}{sub {omega}}) was obtained and found to be different in two core loadings. The measured {alpha}{sub {omega}} of one core loading was {minus}13 pcm/{degrees}C at the temperature range of 23-30{degrees}C. This value of {alpha}{sub {omega}} is comparable to the data published by the IAEA. The {alpha}{sub {omega}} measured in the second core loading was found to be {minus}8 pcm/{degrees}C at the same temperature range. Another phenomenon considered in this study is core behavior during reactivity insertion transient. The results were compared to a core simulation using the Dynamic Simulator for Nuclear Power Plants. It was found that in the second core loading factors other than the moderator temperature influence the core reactivity more than expected. These effects proved to be extremely dependent on core configuration and may in certain core loadings render the reactor`s reactivity coefficient undesirable.

  14. The validity of tympanic and exhaled breath temperatures for core temperature measurement

    International Nuclear Information System (INIS)

    Flouris, Andreas D; Cheung, Stephen S

    2010-01-01

    We examined the efficacy of tympanic (T ty ) and exhaled breath (T X ) temperatures as indices of rectal temperature (T re ) by applying heat (condition A) and cold (condition B) in a dynamic A-B-A-B sequence. Fifteen healthy adults (8 men; 7 women; 24.9 ± 4.6 years) volunteered. Following a 15 min baseline period, participants entered a water tank maintained at 42 °C water temperature and passively rested until their T re increased by 0.5 °C above baseline. Thereafter, they entered a different water tank maintained at 12 °C water temperature until their T re decreased by 0.5 °C below baseline. This procedure was repeated twice (i.e. A-B-A-B). T ty demonstrated moderate response delays to the repetitive changes in thermal balance, whereas T X and T re responded relatively fast. Both T ty and T X correlated significantly with T re (P < 0.05). Linear regression models were used to predict T re based on T ty and T X . The predicted values from both models correlated significantly with T re (P < 0.05) and followed the changes in T re during the A-B-A-B thermal protocol. While some mean differences with T re were observed (P < 0.05), the 95% limits of agreement were acceptable for both models. It is concluded that the calculated models based on tympanic and exhaled breath temperature are valid indicators of core temperature. (note)

  15. Determination of the core temperature of a Li-ion cell during thermal runaway

    Science.gov (United States)

    Parhizi, M.; Ahmed, M. B.; Jain, A.

    2017-12-01

    Safety and performance of Li-ion cells is severely affected by thermal runaway where exothermic processes within the cell cause uncontrolled temperature rise, eventually leading to catastrophic failure. Most past experimental papers on thermal runaway only report surface temperature measurement, while the core temperature of the cell remains largely unknown. This paper presents an experimentally validated method based on thermal conduction analysis to determine the core temperature of a Li-ion cell during thermal runaway using surface temperature and chemical kinetics data. Experiments conducted on a thermal test cell show that core temperature computed using this method is in good agreement with independent thermocouple-based measurements in a wide range of experimental conditions. The validated method is used to predict core temperature as a function of time for several previously reported thermal runaway tests. In each case, the predicted peak core temperature is found to be several hundreds of degrees Celsius higher than the measured surface temperature. This shows that surface temperature alone is not sufficient for thermally characterizing the cell during thermal runaway. Besides providing key insights into the fundamental nature of thermal runaway, the ability to determine the core temperature shown here may lead to practical tools for characterizing and mitigating thermal runaway.

  16. Measuring core temperature using the proprietary application and thermo-smartphone adapter.

    Science.gov (United States)

    Darocha, Tomasz; Majkowski, Jacek; Sanak, Tomasz; Podsiadło, Paweł; Kosiński, Sylweriusz; Sałapa, Kinga; Mazur, Piotr; Ziętkiewicz, Mirosław; Gałązkowski, Robert; Krzych, Łukasz; Drwiła, Rafał

    2017-12-01

    Fast and accurate measurement of core body temperature is crucial for accidental hypothermia treatment. We have developed a novel light and small adapter to the headset jack of a mobile phone based on Android. It has been applied to measure temperature and set up automatic notifications (e.g. Global Positioning System coordinates to emergency services dispatcher, ECMO coordinator). Its validity was confirmed in comparison with Vital Signs Monitor Spacelabs Healthcare Elance 93300 as a reference method, in a series of 260 measurements in the temperature range of 10-42 °C. Measurement repeatability was verified in a battery of 600 measurements (i.e. 100 readings at three points of 10, 25, 42 °C for both esophageal and tympanic catheters). Inter-method difference of ≤0.5 °C was found for 98.5% for esophageal catheter and 100% for tympanic catheter measurements, with concordance correlation coefficient of 0.99 for both. The readings were almost completely repeatable with water bath measurements (difference of ≤0.5 °C in 10 °C: 100% for both catheters; in 25 °C: 99% for esophageal catheter and 100% tympanic catheter; in 42 °C: 100% for both catheters). This lightweight adapter attached to smartphone and standard disposable probes is a promising tool to be applied on-site for temperature measurement in patients at risk of hypothermia.

  17. Urine temperature as an index for the core temperature of industrial workers in hot or cold environments

    Science.gov (United States)

    Kawanami, Shoko; Horie, Seichi; Inoue, Jinro; Yamashita, Makiko

    2012-11-01

    Workers working in hot or cold environments are at risk for heat stroke and hypothermia. In Japan, 1718 people including 47 workers died of heat stroke in 2010 (Ministry of Health Labour and Welfare, Japan 2011). While the American Conference of Governmental Industrial Hygienists (ACGIH) recommendation lists the abnormal core temperature of workers as a criterion for halting work, no method has been established for reliably measuring core temperatures at workplaces. ISO 9886 (Ergonomics-evaluation of thermal strain by physiological measurements. ISO copyright office, Geneva, pp 3-14; 2004) recognizes urine temperature as an index of core temperature only at normal temperature. In this study we ascertained whether or not urine temperature could serve as an index for core temperature at temperatures above and below the ISO range. We measured urine temperature of 31 subjects (29.8 ± 11.9 years) using a thermocouple sensor placed in the toilet bowl at ambient temperature settings of 40, 20, and 5˚C, and compared them with rectal temperature. At all ambient temperature settings, urine temperature correlated closely with rectal temperature exhibiting small mean bias. Urine temperature changed in a synchronized manner with rectal temperature at 40˚C. A Bland and Altman analysis showed that the limits of agreement (mean bias ± 2SD) between rectal and urine temperatures were -0.39 to +0.15˚C at 40˚C (95%CI -0.44 to +0.20˚C) and -0.79 to +0.29˚C at 5˚C (-0.89 to +0.39˚C). Hence, urine temperature as measured by the present method is a practical surrogate index for rectal temperature and represents a highly reliable biological monitoring index for assessing hot and cold stresses of workers at actual workplaces.

  18. A design method to isothermalize the core of high-temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    Takano, M.; Sawa, K.

    1987-01-01

    A practical design method is developed to isothermalize the core of block-type high-temperature gas-cooled reactors (HTGRs). Isothermalization plays an important role in increasing the design margin on fuel temperature. In this method, the fuel enrichment and the size and boron content of the burnable poison rod are determined over the core blockwise so that the axially exponential and radially flat power distribution are kept from the beginning to the end of core life. The method enables conventional HTGRs to raise the outlet gas temperature without increasing the maximum fuel temperature

  19. Environmental stressors during space flight: potential effects on body temperature

    Science.gov (United States)

    Jauchem, J. R.

    1988-01-01

    1. Organisms may be affected by many environmental factors during space flight, e.g., acceleration, weightlessness, decreased pressure, changes in oxygen tension, radiofrequency radiation and vibration. 2. Previous studies of change in body temperature--one response to these environmental factors--are reviewed. 3. Conditions leading to heat stress and hypothermia are discussed.

  20. Increase of body surface temperature and blood flow by theanine

    International Nuclear Information System (INIS)

    Hasegawa, Takeo; Noguchi, Kenichi; Ando, Satoshi

    2002-01-01

    Suntheanine (Taiyo Kagaku Co.: Theanine) is the trade name for L-theanine which is a unique amino acid found almost solely in tea plants, responsible for the exotictaste of green tea. We investigated the effects of relate to relaxation, improves the taste of processed foods, radiation sensitization, and increase of body surface temperature in vivo study. The results of the present study confirmed, (1) Suntheanine is incorporated into the brain and induces the emission of α -waves an induced of relaxation. (2) Body surface temperature and blood flow on skin were increased after administration of Suntheanine. (3) There was effects of radiation sensitization in whole body irradiation of X-rays after Suntheanine IP injection on C3H mice. (4) Acute toxicity, subacute toxicity and mutagen testconfirm the safety Suntheanine in this study

  1. Heart rates in hospitalized children by age and body temperature.

    Science.gov (United States)

    Daymont, Carrie; Bonafide, Christopher P; Brady, Patrick W

    2015-05-01

    Heart rate (HR) is frequently used by clinicians in the hospital to assess a patient's severity of illness and make treatment decisions. We sought to develop percentiles that characterize the relationship of expected HR by age and body temperature in hospitalized children and to compare these percentiles with published references in both primary care and emergency department (ED) settings. Vital sign data were extracted from electronic health records of inpatients temperature measurement pairs from each admission. Measurements from 60% of patients were used to derive the percentile curves, with the remainder used for validation. We compared our upper percentiles with published references in primary care and ED settings. We used 60,863 observations to derive the percentiles. Overall, an increase in body temperature of 1°C was associated with an increase of ∼ 10 beats per minute in HR, although there were variations across age and temperature ranges. For infants and young children, our upper percentiles were lower than in primary care and ED settings. For school-age children, our upper percentiles were higher. We characterized expected HR by age and body temperature in hospitalized children. These percentiles differed from references in primary care and ED settings. Additional research is needed to evaluate the performance of these percentiles for the identification of children who would benefit from further evaluation or intervention for tachycardia. Copyright © 2015 by the American Academy of Pediatrics.

  2. Regulation of Body Temperature by the Nervous System.

    Science.gov (United States)

    Tan, Chan Lek; Knight, Zachary A

    2018-04-04

    The regulation of body temperature is one of the most critical functions of the nervous system. Here we review our current understanding of thermoregulation in mammals. We outline the molecules and cells that measure body temperature in the periphery, the neural pathways that communicate this information to the brain, and the central circuits that coordinate the homeostatic response. We also discuss some of the key unresolved issues in this field, including the following: the role of temperature sensing in the brain, the molecular identity of the warm sensor, the central representation of the labeled line for cold, and the neural substrates of thermoregulatory behavior. We suggest that approaches for molecularly defined circuit analysis will provide new insight into these topics in the near future. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. [The effect of body temperature control on organ function and prognosis in patients with refractory septic shock].

    Science.gov (United States)

    Wang, Xiaoting; Liu, Dawei; Yang, Yanli; Zhou, Xiang; Chai, Wenzhao; Long, Yun; Zhang, Hongmin; Zhang, Qing; He, Huaiwu

    2014-04-01

    To investigate the effect of body temperature control on organ function and prognosis in patients with refractory septic shock. A total of 67 eligible patients with the body temperature over 38.5 °C were enrolled in the study and all patients were treated with a water-flow cooling blanket to control the body temperature below 38.3 °C for 72 hours. The core and peripheral temperature was tested at 1 hour interval. All patients were devised into the following two groups according to their mean core temperature within the 72 hours: the HT group with a mean core temperature ≥ 37.5 °C and the LT group with a mean core temperature temperature increased above 38.5 °C. Thirty-four patients (50.7%) were classified into the HT group, while thirty-three patients (49.3%) were in the LT group. Compared with the HT group, higher mortality rate at Day 28 was observed in the LT group (69.7% vs 35.3%, P = 0.005). Significant difference in the increase of sepsis-related organ failure assessment (SOFA) score was found between of the HT and the LT groups (1.30 ± 0.90 vs 2.30 ± 2.10, P = 0.02). Statistical differences were observed between the two groups in mean core temperature [(37.90 ± 0.30) °C vs (36.80 ± 0.60) °C, P peripheral temperature [(37.20 ± 0.30) °C vs (36.30 ± 0.60) °C, P temperature [(36.90 ± 0.30)°C vs (35.80 ± 0.60) °C, P peripheral temperature [(36.20 ± 0.40) °C vs (35.50 ± 0.60) °C, P peripheral temperature.Statistical difference was also shown in troponin I, fibrinogen, partial thromboplastin and activated partial thromboplastin between the two groups. Cox regression analysis revealed that the mean core temperature was the only independent predictor for the mortality rate at Day 28. Body temperature control within the normal range may exert potentially detrimental effect on organ function and prognosis in patients with refractory septic shock with fever.

  4. SMART core power control method by coolant temperature variation

    International Nuclear Information System (INIS)

    Lee, Chung Chan; Cho, Byung Oh

    2001-08-01

    SMART is a soluble boron-free integral type pressurized water reactor. Its moderator temperature coefficient (MTC) is strongly negative throughout the cycle. The purpose of this report is how to utilize the primary coolant temperature as a second reactivity control system using the strong negative MTC. The reactivity components associated with reactor power change are Doppler reactivity due to fuel temperature change, moderator temperature reactivity and xenon reactivity. Doppler reactivity and moderator temperature reactivity take effects almost as soon as reactor power changes. On the other hand, xenon reactivity change takes more than several hours to reach an equilibrium state. Therefore, coolant temperature at equilibrium state is chosen as the reference temperature. The power dependent reference temperature line is limited above 50% power not to affect adversely in reactor safety. To compensate transient xenon reactivity, coolant temperature operating range is expanded. The suggested coolant temperature operation range requires minimum control rod motion for 50% power change. For smaller power changes such as 25% power change, it is not necessary to move control rods to assure that fuel design limits are not exceeded

  5. Effects of non-uniform core flow on peak cladding temperature: MOXY/SCORE sensitivity calculations

    Energy Technology Data Exchange (ETDEWEB)

    Chang, S.C.

    1979-08-15

    The MOXY/SCORE computer program is used to evaluate the potential effect on peak cladding temperature of selective cooling that may result from a nonuniform mass flux at the core boundaries during the blowdown phase of the LOFT L2-4 test. The results of this study indicate that the effect of the flow nonuniformity at the core boundaries will be neutralized by a strong radial flow redistribution in the neighborhood of core boundaries. The implication is that the flow nonuniformity at the core boundaries has no significant effect on the thermal-hydraulic behavior and cladding temperature at the hot plane.

  6. Effects of non-uniform core flow on peak cladding temperature: MOXY/SCORE sensitivity calculations

    International Nuclear Information System (INIS)

    Chang, S.C.

    1979-01-01

    The MOXY/SCORE computer program is used to evaluate the potential effect on peak cladding temperature of selective cooling that may result from a nonuniform mass flux at the core boundaries during the blowdown phase of the LOFT L2-4 test. The results of this study indicate that the effect of the flow nonuniformity at the core boundaries will be neutralized by a strong radial flow redistribution in the neighborhood of core boundaries. The implication is that the flow nonuniformity at the core boundaries has no significant effect on the thermal-hydraulic behavior and cladding temperature at the hot plane

  7. Temperature dependence of three-body ion-molecule reactions

    International Nuclear Information System (INIS)

    Boehringer, H.; Arnold, F.

    1983-01-01

    The temperature dependence of the ion-molecule association reactions (i) N 2 + + N 2 + M → N 4 + + M (M=N 2 , He), (ii) O 2 + + O 2 + M → O 4 + + M (M=O 2 , He) and (iii) He + + 2He → He 2 + + He have been studied over an extended temperature range to temperatures as low as 30K with a recently constructed liquid helium-cooled ion drift tube. Over most of the temperature range the threebody reaction rate coefficients show an inverse temperature dependence proportional to Tsup(-n) with n in the range 0.6 to 2.9. This temperature dependence is quite consistent with current theories of ion molecule association. At low temperatures, however, a deviation from the Tsup(-n) dependence was observed for the association reactions (ii). For reactions (i) different temperature dependences were obtained for N 2 and He third bodies indicating an additional temperature dependence of the collisional stabilisation process. (Authors)

  8. Core temperature responses of military working dogs during training activities and exercise walks.

    Science.gov (United States)

    O'Brien, Catherine; Karis, Anthony J; Tharion, William J; Sullivan, Heather M; Hoyt, Reed W

    2017-01-01

    Heat strain is common in military working dogs (MWDs), but can be mitigated by limiting duration of activity to avoid overheating and allowing sufficient time for recovery. To determine work/rest times for MWDs, temperature responses during training must be characterized. This study measured body core temperature of 48 MWDs at Lackland Air Force Base, San Antonio, TX. Twenty-four MWDs in training for patrol and detection activities participated under a range of ambient temperatures in August (27°C-32°C), October (22°C-26°C) and March (approximately 13°C). These MWDs swallowed a telemetric thermometer pill to measure continuous gastrointestinal tract temperature (Tgi). Twenty-four kennel MWDs participated in July (25°C-29°C). In these dogs rectal temperature (Tre) was measured manually during a standard exercise walk. For the MWDs in training, Tgi before the first activity was 38.5±0.5°C (mean±SD) and final Tgi was 39.8±0.6°C after sessions that lasted 13.1±4.9 minutes (5.4 to 26.3 minutes). Peak Tgi, 0.4±0.4°C above final Tgi, occurred 8 to 12 minutes into recovery. Before beginning a second activity 40 to 165 minutes later, Tgi was within 0.5°C of initial values for 80% of dogs. For the kennel MWDs, Tre was 39.0±0.8°C (37.7°C to 40.7°C) at the start and 40.1±0.6°C at the end of the 21.3±2.8 minute walk. The continuous increase in core temperature during activity of both groups of MWDs indicates that limiting exercise duration is important for minimizing risk of overheating in MWDs. The observation of continued increase in Tgi to a peak after exercise ends suggests that for MWDs suspected of overheating temperature should be monitored for at least 15 minutes postexercise to ensure recovery.

  9. Warm Body Temperature Facilitates Energy Efficient Cortical Action Potentials

    Science.gov (United States)

    Yu, Yuguo; Hill, Adam P.; McCormick, David A.

    2012-01-01

    The energy efficiency of neural signal transmission is important not only as a limiting factor in brain architecture, but it also influences the interpretation of functional brain imaging signals. Action potential generation in mammalian, versus invertebrate, axons is remarkably energy efficient. Here we demonstrate that this increase in energy efficiency is due largely to a warmer body temperature. Increases in temperature result in an exponential increase in energy efficiency for single action potentials by increasing the rate of Na+ channel inactivation, resulting in a marked reduction in overlap of the inward Na+, and outward K+, currents and a shortening of action potential duration. This increase in single spike efficiency is, however, counterbalanced by a temperature-dependent decrease in the amplitude and duration of the spike afterhyperpolarization, resulting in a nonlinear increase in the spike firing rate, particularly at temperatures above approximately 35°C. Interestingly, the total energy cost, as measured by the multiplication of total Na+ entry per spike and average firing rate in response to a constant input, reaches a global minimum between 37–42°C. Our results indicate that increases in temperature result in an unexpected increase in energy efficiency, especially near normal body temperature, thus allowing the brain to utilize an energy efficient neural code. PMID:22511855

  10. Warm body temperature facilitates energy efficient cortical action potentials.

    Directory of Open Access Journals (Sweden)

    Yuguo Yu

    Full Text Available The energy efficiency of neural signal transmission is important not only as a limiting factor in brain architecture, but it also influences the interpretation of functional brain imaging signals. Action potential generation in mammalian, versus invertebrate, axons is remarkably energy efficient. Here we demonstrate that this increase in energy efficiency is due largely to a warmer body temperature. Increases in temperature result in an exponential increase in energy efficiency for single action potentials by increasing the rate of Na(+ channel inactivation, resulting in a marked reduction in overlap of the inward Na(+, and outward K(+, currents and a shortening of action potential duration. This increase in single spike efficiency is, however, counterbalanced by a temperature-dependent decrease in the amplitude and duration of the spike afterhyperpolarization, resulting in a nonlinear increase in the spike firing rate, particularly at temperatures above approximately 35°C. Interestingly, the total energy cost, as measured by the multiplication of total Na(+ entry per spike and average firing rate in response to a constant input, reaches a global minimum between 37-42°C. Our results indicate that increases in temperature result in an unexpected increase in energy efficiency, especially near normal body temperature, thus allowing the brain to utilize an energy efficient neural code.

  11. Heart rate and core temperature responses of elite pit crews during automobile races.

    Science.gov (United States)

    Ferguson, David P; Bowen, Robert S; Lightfoot, J Timothy

    2011-08-01

    There is limited information regarding the physiological and psychological demands of the racing environment, and the subsequent effect on the performance of pit crew athletes. The purpose of this study was to evaluate heart rates (HRs) and core body temperatures (CTs) of pit crew athletes in the race environment. The HR and CT of pit crew athletes (n = 7) and control subjects were measured during 6 National Association for Stock Car Automobile Racing Sprint Cup races using ingestible sensors (HQ Inc, Palmetto, FL, USA). The HR and CT were measured before each race, at 15-minute intervals during the race, and upon completion of each pit stop. Compared to the control subject at each race, the pit crew athletes had significantly (p = 0.014) lower core temperatures (CTs). The pit crew athletes displayed higher HRs on the asphalt tracks than on concrete tracks (p = 0.011), and HR responses of the crew members were significantly (p = 0.012) different between pit crew positions, with the tire changers and jackman exhibiting higher HRs than the tire carriers. Unexpectedly, the CTs of the pit crew athletes were not elevated in the race environment, despite high ambient temperatures and the extensive fire-protection equipment (e.g., helmet, suit, gloves) each pit crew athlete wore. The lack of CT change is possibly the result of the increased HR more efficiently shunting blood to the skin and dissipating heat as a consequence of the athletes' extensive training regimen and ensuing heat acclimation. Additionally, it is possible that psychological stress unique to several of the tracks provided an additive effect resulting in increased heart rates.

  12. Water temperature, body mass and fasting heat production of pacu (Piaractus mesopotamicus).

    Science.gov (United States)

    Aguilar, Fredy A A; Cruz, Thaline M P DA; Mourão, Gerson B; Cyrino, José Eurico P

    2017-01-01

    Knowledge on fasting heat production (HEf) of fish is key to develop bioenergetics models thus improving feeding management of farmed species. The core of knowledge on HEf of farmed, neotropical fish is scarce. This study assessed the effect of body mass and water temperature on standard metabolism and fasting heat production of pacu, Piaractus mesopotamicus, an omnivore, Neotropical fresh water characin important for farming and fisheries industries all through South American continent. An automated, intermittent flow respirometry system was used to measure standard metabolic rate (SMR) of pacu (17 - 1,050 g) at five water temperatures: 19, 23, 26, 29 and 33 °C. Mass specific SMR increased with increasing water temperature but decreased as function of body mass. The allometric exponent for scaling HEf was 0.788, and lied in the range recorded for all studied warm-water fish. The recorded van't Hoff factor (Q10) for pacu (2.06) shows the species low response to temperature increases. The model HEf = 0.04643×W0.7882×T1.837 allows to predict HEf (kJ d-1) from body mass (W, kg) and water temperature (T, °C), and can be used in bioenergetical models for the species.

  13. Water temperature, body mass and fasting heat production of pacu (Piaractus mesopotamicus

    Directory of Open Access Journals (Sweden)

    FREDY A.A. AGUILAR

    Full Text Available ABSTRACT Knowledge on fasting heat production (HEf of fish is key to develop bioenergetics models thus improving feeding management of farmed species. The core of knowledge on HEf of farmed, neotropical fish is scarce. This study assessed the effect of body mass and water temperature on standard metabolism and fasting heat production of pacu, Piaractus mesopotamicus, an omnivore, Neotropical fresh water characin important for farming and fisheries industries all through South American continent. An automated, intermittent flow respirometry system was used to measure standard metabolic rate (SMR of pacu (17 - 1,050 g at five water temperatures: 19, 23, 26, 29 and 33 °C. Mass specific SMR increased with increasing water temperature but decreased as function of body mass. The allometric exponent for scaling HEf was 0.788, and lied in the range recorded for all studied warm-water fish. The recorded van't Hoff factor (Q10 for pacu (2.06 shows the species low response to temperature increases. The model HEf = 0.04643×W0.7882×T1.837 allows to predict HEf (kJ d-1 from body mass (W, kg and water temperature (T, °C, and can be used in bioenergetical models for the species.

  14. 24-h core temperature in obese and lean men and women.

    Science.gov (United States)

    Hoffmann, Mindy E; Rodriguez, Sarah M; Zeiss, Dinah M; Wachsberg, Kelley N; Kushner, Robert F; Landsberg, Lewis; Linsenmeier, Robert A

    2012-08-01

    Maintenance of core temperature is a major component of 24-h energy expenditure, and its dysregulation could contribute to the pathophysiology of obesity. The relationship among temperature, sex, and BMI, however, has not been fully elucidated in humans. This study investigated core temperature in obese and lean individuals at rest, during 20-min exercise, during sleep, and after food consumption. Twelve lean (18.5-24.9 kg/m(2)) and twelve obese (30.0-39.9 kg/m(2)) healthy participants, ages 25-40 years old, were admitted overnight in a clinical research unit. Females were measured in the follicular menstrual phase. Core temperature was measured every minute for 24 h using the CorTemp system, a pill-sized sensor that measures core temperature while in the gastrointestinal tract and delivers the measurement via a radio signal to an external recorder. Core temperature did not differ significantly between the obese and lean individuals at rest, postmeals, during exercise, or during sleep (P > 0.5), but core temperature averaged over the entire study was significantly higher (0.1-0.2 °C) in the obese (P = 0.023). Each individual's temperature varied considerably during the study, but at all times, and across the entire study, women were ~0.4 °C warmer than men (P < 0.0001). These data indicate that obesity is not associated with a lower core temperature but that women have a higher core temperature than men at rest, during sleep, during exercise, and after meals.

  15. The Systematic Bias of Ingestible Core Temperature Sensors Requires a Correction by Linear Regression

    Directory of Open Access Journals (Sweden)

    Andrew P. Hunt

    2017-04-01

    Full Text Available An accurate measure of core body temperature is critical for monitoring individuals, groups and teams undertaking physical activity in situations of high heat stress or prolonged cold exposure. This study examined the range in systematic bias of ingestible temperature sensors compared to a certified and traceable reference thermometer. A total of 119 ingestible temperature sensors were immersed in a circulated water bath at five water temperatures (TEMP A: 35.12 ± 0.60°C, TEMP B: 37.33 ± 0.56°C, TEMP C: 39.48 ± 0.73°C, TEMP D: 41.58 ± 0.97°C, and TEMP E: 43.47 ± 1.07°C along with a certified traceable reference thermometer. Thirteen sensors (10.9% demonstrated a systematic bias > ±0.1°C, of which 4 (3.3% were > ± 0.5°C. Limits of agreement (95% indicated that systematic bias would likely fall in the range of −0.14 to 0.26°C, highlighting that it is possible for temperatures measured between sensors to differ by more than 0.4°C. The proportion of sensors with systematic bias > ±0.1°C (10.9% confirms that ingestible temperature sensors require correction to ensure their accuracy. An individualized linear correction achieved a mean systematic bias of 0.00°C, and limits of agreement (95% to 0.00–0.00°C, with 100% of sensors achieving ±0.1°C accuracy. Alternatively, a generalized linear function (Corrected Temperature (°C = 1.00375 × Sensor Temperature (°C − 0.205549, produced as the average slope and intercept of a sub-set of 51 sensors and excluding sensors with accuracy outside ±0.5°C, reduced the systematic bias to < ±0.1°C in 98.4% of the remaining sensors (n = 64. In conclusion, these data show that using an uncalibrated ingestible temperature sensor may provide inaccurate data that still appears to be statistically, physiologically, and clinically meaningful. Correction of sensor temperature to a reference thermometer by linear function eliminates this systematic bias (individualized functions or ensures

  16. Summer declines in activity and body temperature offer polar bears limited energy savings

    Science.gov (United States)

    Whiteman, J.P.; Harlow, H.J.; Durner, George M.; Anderson-Sprecher, R.; Albeke, Shannon E.; Regehr, Eric V.; Amstrup, Steven C.; Ben-David, M.

    2015-01-01

    Polar bears (Ursus maritimus) summer on the sea ice or, where it melts, on shore. Although the physiology of “ice” bears in summer is unknown, “shore” bears purportedly minimize energy losses by entering a hibernation-like state when deprived of food. Such a strategy could partially compensate for the loss of on-ice foraging opportunities caused by climate change. However, here we report gradual, moderate declines in activity and body temperature of both shore and ice bears in summer, resembling energy expenditures typical of fasting, nonhibernating mammals. Also, we found that to avoid unsustainable heat loss while swimming, bears employed unusual heterothermy of the body core. Thus, although well adapted to seasonal ice melt, polar bears appear susceptible to deleterious declines in body condition during the lengthening period of summer food deprivation.

  17. Animal physiology. Summer declines in activity and body temperature offer polar bears limited energy savings.

    Science.gov (United States)

    Whiteman, J P; Harlow, H J; Durner, G M; Anderson-Sprecher, R; Albeke, S E; Regehr, E V; Amstrup, S C; Ben-David, M

    2015-07-17

    Polar bears (Ursus maritimus) summer on the sea ice or, where it melts, on shore. Although the physiology of "ice" bears in summer is unknown, "shore" bears purportedly minimize energy losses by entering a hibernation-like state when deprived of food. Such a strategy could partially compensate for the loss of on-ice foraging opportunities caused by climate change. However, here we report gradual, moderate declines in activity and body temperature of both shore and ice bears in summer, resembling energy expenditures typical of fasting, nonhibernating mammals. Also, we found that to avoid unsustainable heat loss while swimming, bears employed unusual heterothermy of the body core. Thus, although well adapted to seasonal ice melt, polar bears appear susceptible to deleterious declines in body condition during the lengthening period of summer food deprivation. Copyright © 2015, American Association for the Advancement of Science.

  18. Effect of irrigation fluid temperature on body temperature during arthroscopic elbow surgery in dogs.

    Science.gov (United States)

    Thompson, K R; MacFarlane, P D

    2013-01-01

    This prospective randomised clinical trial evaluated the effect of warmed irrigation fluid on body temperature in anaesthetised dogs undergoing arthroscopic elbow surgery. Nineteen dogs undergoing elbow arthroscopy were included in the study and were randomly allocated to one of two groups. Group RT received irrigation fluid at room temperature (RT) while dogs in group W received warmed (W) irrigation fluid (36°C). A standardised patient management and anaesthetic protocol was used and body temperature was measured at four time points; (T1) pre-anaesthetic examination, (T2) arrival into theatre, (T3) end of surgery and (T4) arrival into recovery. There was no significant difference in body temperature at any time point between the groups. The mean overall decrease in body temperature between pre-anaesthetic examination (T1) and return to the recovery suite (T4) was significant in both groups, with a fall of 1.06±0.58°C (pdogs were hypothermic (temperature management protocol in dogs undergoing elbow arthroscopy during general anaesthesia did not lead to decreased temperature losses.

  19. Black-body anomaly: analysis of temperature offsets

    International Nuclear Information System (INIS)

    Szopa, M.; Hofmann, R.; Schwarz, M.; Giacosa, F.

    2008-01-01

    Based on the postulate that photon propagation is governed by a dynamically broken SU(2) gauge symmetry (scale ∝10 -4 eV) we make predictions for temperature offsets due to a low-temperature (a few times the present CMB temperature) spectral anomaly at low frequencies. Temperature offsets are extracted from least-square fits of the anomalous black-body spectra to their conventional counterparts. We discuss statistical errors, compare our results with those obtained from calibration data of the FIRAS instrument, and point out that our predicted offsets are screened by experimental errors given the frequency range used by FIRAS to perform their spectral fits. We also make contact with the WMAP observation by blueshifting their frequency bands. Although our results hint towards a strong dynamical component in the CMB dipole and an explanation of low-l suppression, it is important in view of its particle-physics implications that the above postulate be verified/falsified by an independent low-temperature black-body precision experiment. (orig.)

  20. Lateral temperature variations at the core-mantle boundary deduced from the magnetic field

    Science.gov (United States)

    Bloxham, Jeremy; Jackson, Andrew

    1990-01-01

    Recent studies of the secular variation of the earth's magnetic field over periods of a few centuries have suggested that the pattern of fluid motion near the surface of earth's outer core may be strongly influenced by lateral temperature variations in the lowermost mantle. This paper introduces a self-consistent method for finding the temperature variations near the core surface by assuming that the dynamical balance there is geostrophic and that lateral density variations there are thermal in origin. As expected, the lateral temperature variations are very small. Some agreement is found between this pattern and the pattern of topography of the core-mantle boundary, but this does not conclusively answer to what extent core surface motions are controlled by the mantle, rather than being determined by processes in the core.

  1. Utilization of local area network technology and decentralized structure for nuclear reactor core temperature monitoring

    International Nuclear Information System (INIS)

    Casella, M.; Peirano, F.

    1986-01-01

    The present system concerns Superphenix type reactors. It is a new version of system for monitoring the reactor core temperatures. It has been designed to minimize the cost and the wiring complexity because of the large number of channels (800). For this, equipments are arranged on the roof slab of the reactor with a single link to the control room; from which the name Integrated Treatment of Core Temperatures: TITC 1500 and the natural choice of a distributed system. This system monitors permanently the thermal state of the core a Superphenix type reactor. This monitoring system aims at detecting anomalies of core temperature rise, releasing automatic shutdown (safety), and providing to the monitoring systems not concerned safety the information concerning the core [fr

  2. Validity of Devices That Assess Body Temperature During Outdoor Exercise in the Heat

    Science.gov (United States)

    Casa, Douglas J; Becker, Shannon M; Ganio, Matthew S; Brown, Christopher M; Yeargin, Susan W; Roti, Melissa W; Siegler, Jason; Blowers, Julie A; Glaviano, Neal R; Huggins, Robert A; Armstrong, Lawrence E; Maresh, Carl M

    2007-01-01

    .65°F]), inexpensive axillary device (−2.07°C [−3.73°F]), aural method (−1.00°C [−1.80°F]), temporal method according to instruction manual (−1.46°C [−2.64°F]), modified temporal method (−1.36°C [−2.44°F]), and forehead temperature on the athletic field (0.60°C [1.08°F]). Mean bias for gastrointestinal temperature (−0.19°C [−0.34°F]) and forehead temperature in the pavillion (−0.14°C [−0.25°F]) was less than the allowed limit of ±0.27°C (±0.5°F). Forehead temperature depended on the setting in which it was measured and showed greater variation than other temperatures. Conclusions: Compared with rectal temperature (the criterion standard), gastrointestinal temperature was the only measurement that accurately assessed core body temperature. Oral, axillary, aural, temporal, and field forehead temperatures were significantly different from rectal temperature and, therefore, are considered invalid for assessing hyperthermia in individuals exercising outdoors in the heat. PMID:18059987

  3. Preventing Heat Injuries by Predicting Individualized Human Core Temperature

    Science.gov (United States)

    2015-10-14

    model Kalman filter Error feedback Real-time TC estimate • Activity • Heart rate • Skin temperature Non-invasive measurements • Ambient temperature ...model and 2) a Kalman filter [13]. First, the mathematical model uses the measured AC and environmental variables TA and RH to estimate the state...variables HR, TS, and TC. Then, the Kalman filter considers the error between the measured and model- estimated HR and TS to correct the state variables

  4. Genetic variablilities of body temperature and resting behaviour in ...

    African Journals Online (AJOL)

    This implies that neither progeny nor generation had effect on body temperature. The Alpha strain exhibited more resting behaviour than did the exotic and the pure native types. Majority of the birds rested in the afternoon at 2.00 pm. This could be attributed to the fact that at 2.00 pm the weather is hot and birds search for a ...

  5. Basal body temperature as a biomarker of healthy aging.

    Science.gov (United States)

    Simonsick, Eleanor M; Meier, Helen C S; Shaffer, Nancy Chiles; Studenski, Stephanie A; Ferrucci, Luigi

    2016-12-01

    Scattered evidence indicates that a lower basal body temperature may be associated with prolonged health span, yet few studies have directly evaluated this relationship. We examined cross-sectional and longitudinal associations between early morning oral temperature (95.0-98.6 °F) and usual gait speed, endurance walk performance, fatigability, and grip strength in 762 non-frail men (52 %) and women aged 65-89 years participating in the Baltimore Longitudinal Study of Aging. Since excessive adiposity (body mass index ≥35 kg/m 2 or waist-to-height ratio ≥0.62) may alter temperature set point, associations were also examined within adiposity strata. Overall, controlling for age, race, sex, height, exercise, and adiposity, lower temperature was associated with faster gait speed, less time to walk 400 m quickly, and lower perceived exertion following 5-min of walking at 0.67 m/s (all p ≤ 0.02). In the non-adipose (N = 662), these associations were more robust (all p ≤ 0.006). Direction of association was reversed in the adipose (N = 100), but none attained significance (all p > 0.22). Over 2.2 years, basal temperature was not associated with functional change in the overall population or non-adipose. Among the adipose, lower baseline temperature was associated with greater decline in endurance walking performance (p = 0.006). In longitudinal analyses predicting future functional performance, low temperature in the non-adipose was associated with faster gait speed (p = 0.021) and less time to walk 400 m quickly (p = 0.003), whereas in the adipose, lower temperature was associated with slower gait speed (p = 0.05) and more time to walk 400 m (p = 0.008). In older adults, lower basal body temperature appears to be associated with healthy aging in the absence of excessive adiposity.

  6. The Systematic Bias of Ingestible Core Temperature Sensors Requires a Correction by Linear Regression.

    Science.gov (United States)

    Hunt, Andrew P; Bach, Aaron J E; Borg, David N; Costello, Joseph T; Stewart, Ian B

    2017-01-01

    An accurate measure of core body temperature is critical for monitoring individuals, groups and teams undertaking physical activity in situations of high heat stress or prolonged cold exposure. This study examined the range in systematic bias of ingestible temperature sensors compared to a certified and traceable reference thermometer. A total of 119 ingestible temperature sensors were immersed in a circulated water bath at five water temperatures (TEMP A: 35.12 ± 0.60°C, TEMP B: 37.33 ± 0.56°C, TEMP C: 39.48 ± 0.73°C, TEMP D: 41.58 ± 0.97°C, and TEMP E: 43.47 ± 1.07°C) along with a certified traceable reference thermometer. Thirteen sensors (10.9%) demonstrated a systematic bias > ±0.1°C, of which 4 (3.3%) were > ± 0.5°C. Limits of agreement (95%) indicated that systematic bias would likely fall in the range of -0.14 to 0.26°C, highlighting that it is possible for temperatures measured between sensors to differ by more than 0.4°C. The proportion of sensors with systematic bias > ±0.1°C (10.9%) confirms that ingestible temperature sensors require correction to ensure their accuracy. An individualized linear correction achieved a mean systematic bias of 0.00°C, and limits of agreement (95%) to 0.00-0.00°C, with 100% of sensors achieving ±0.1°C accuracy. Alternatively, a generalized linear function (Corrected Temperature (°C) = 1.00375 × Sensor Temperature (°C) - 0.205549), produced as the average slope and intercept of a sub-set of 51 sensors and excluding sensors with accuracy outside ±0.5°C, reduced the systematic bias to Correction of sensor temperature to a reference thermometer by linear function eliminates this systematic bias (individualized functions) or ensures systematic bias is within ±0.1°C in 98% of the sensors (generalized function).

  7. Leptin actions on food intake and body temperature are mediated by IL-1.

    Science.gov (United States)

    Luheshi, G N; Gardner, J D; Rushforth, D A; Loudon, A S; Rothwell, N J

    1999-06-08

    Leptin regulates energy balance through its actions in the brain on appetite and energy expenditure and also shares properties with cytokines such as IL-1. We report here that leptin, injected into rats intracerebroventricularly or peripherally, induces significant dose-dependent increases in core body temperature as well as suppression of appetite. Leptin failed to affect food intake or body temperature in obese (fa/fa) Zucker rats, which posses a defective leptin receptor. Furthermore, injection of leptin increased levels of the proinflammatory cytokine IL-1beta in the hypothalamus of normal Sprague-Dawley rats. Central injection of IL-1 receptor antagonist (IL-1ra) inhibited the suppression of food intake caused by central or peripheral injection of leptin (60 and 84%, respectively) and abolished the leptin-induced increase in body temperature in both cases. Mice lacking (gene knockout) the main IL-1 receptor (80 kDa, R1) responsible for IL-1 actions showed no reduction in food intake in response to leptin. These data indicate that leptin actions in the brain depend on IL-1, and we show further that the effect of leptin on fever, but not food intake, is abolished by a cyclooxygenase inhibitor. Thus, we propose that in addition to its role in body weight regulation, leptin may mediate neuroimmune responses via actions in the brain dependent on release of IL-1 and prostaglandins.

  8. Surgical implantation of temperature-sensitive transmitters and data-loggers to record body temperature in koalas (Phascolarctos cinereus).

    Science.gov (United States)

    Adam, D; Johnston, S D; Beard, L; Nicholson, V; Lisle, A; Gaughan, J; Larkin, R; Theilemann, P; Mckinnon, A; Ellis, W

    2016-01-01

    Under predicted climate change scenarios, koala distribution in Australia is expected to be adversely affected. Recent studies have attempted to identify suitable habitat, based on models of bioclimatic regions, but to more accurately reflect the thermal tolerance and behavioural adaptations of the various regional populations, the koala's response to periods of heat stress will need to be investigated at the individual animal level. To explore the safety and suitability of temperature-sensitive intra-abdominal implants for monitoring core body temperature in the koala. A temperature-sensitive radio transmitter and thermal iButton data-logger, waxed together as a package, were surgically implanted into the abdominal cavity of four captive koalas. In one animal the implant was tethered and in the other three, it was left free-floating. After 3 months, the implants were removed and all four koalas recovered without complications. The tethering of the package in the one koala resulted in minor inflammation and adhesion, so this practice was subsequently abandoned. The free-floating deployments were complication-free and revealed a diurnal body temperature rhythm, with daily ranges of 0.4-2.8°C. The minimum recorded body temperature was 34.2°C and the maximum was 37.7°C. The difference in the readings obtained from the transmitters and iButtons never exceeded 0.3°C. The suitability of the surgical approach was confirmed, from both the animal welfare and data collection points of view. © 2016 Australian Veterinary Association.

  9. Hypothermia and acute alcohol intoxication in Dutch adolescents : The relationship between core and outdoor temperatures

    NARCIS (Netherlands)

    Schreurs, Claire J.; Van Hoof, Joris J.; van der Lely, Nico

    2017-01-01

    Purpose: To investigate hypothermia and its potential association with core and outdoor temperatures in adolescents suffering from acute alcohol intoxication. Methods: Data were derived from the Dutch Pediatric Surveillance System, which monitors alcohol intoxication among all Dutch adolescents.

  10. Fast reactor core monitoring by analysis of temperature noise

    International Nuclear Information System (INIS)

    Dubuisson, B.; Smolarz, A.

    1984-01-01

    The study shows, with the results obtained, how it is possible to approach the problem of diagnosis with a technique based on the use of algorithms for statistical pattern recognition was justifiable. The results presented here, with a view to their use for fast breeder reactor core surveillance, are very encouraging, the most important point being the data representation. For this study, it was difficult to find the most suitable parameters for characterizing the various simulated core states, however, despite this handicap, the classification algorithm provided quite acceptable results. The second point concerns the characterization of a system's evolution. The criterion defined was chosen for adaptation to our algorithm. One acertained that it was possible to characterize evolution on the basis of this criterion as long as the rejected points were not too far from the known learning sets. Under these circumstances, the advantage in characterizing evolution in that the changes in evolution occur when the rejected points have a tendency to agglomerate in a small area of space could be seen. This phenomenon thus makes it possible to forsee whether the creation of a new class is possible. Where the rejected points are far away from the known learning sets, the criterion used proved to be too sensitive and the characterization of evolution was less satisfactory

  11. Protein restriction does not affect body temperature pattern in female mice.

    Science.gov (United States)

    Kato, Goro A; Shichijo, Hiroki; Takahashi, Toshihiro; Shinohara, Akio; Morita, Tetsuo; Koshimoto, Chihiro

    2017-10-30

    Daily torpor is a physiological adaptation in mammals and birds characterized by a controlled reduction of metabolic rate and body temperature during the resting phase of circadian rhythms. In laboratory mice, daily torpor is induced by dietary caloric restriction. However, it is not known which nutrients are related to daily torpor expression. To determine whether dietary protein is a key factor in inducing daily torpor in mice, we fed mice a protein-restricted (PR) diet that included only one-quarter of the amount of protein but the same caloric level as a control (C) diet. We assigned six non-pregnant female ICR mice to each group and recorded their body weights and core body temperatures for 4 weeks. Body weights in the C group increased, but those in the PR group remained steady or decreased. Mice in both groups did not show daily torpor, but most mice in a food-restricted group (n=6) supplied with 80% of the calories given to the C group exhibited decreased body weights and frequently displayed daily torpor. This suggests that protein restriction is not a trigger of daily torpor; torpid animals can conserve their internal energy, but torpor may not play a significant role in conserving internal protein. Thus, opportunistic daily torpor in mice may function in energy conservation rather than protein saving.

  12. The Effects of Simulated Wildland Firefighting Tasks on Core Temperature and Cognitive Function under Very Hot Conditions

    Directory of Open Access Journals (Sweden)

    F. Michael Williams-Bell

    2017-10-01

    Full Text Available Background: The severity of wildland fires is increasing due to continually hotter and drier summers. Firefighters are required to make life altering decisions on the fireground, which requires analytical thinking, problem solving, and situational awareness. This study aimed to determine the effects of very hot (45°C; HOT conditions on cognitive function following periods of simulated wildfire suppression work when compared to a temperate environment (18°C; CON.Methods: Ten male volunteer firefighters intermittently performed a simulated fireground task for 3 h in both the CON and HOT environments, with cognitive function tests (paired associates learning and spatial span assessed at baseline (cog 1 and during the final 20-min of each hour (cog 2, 3, and 4. Reaction time was also assessed at cog 1 and cog 4. Pre- and post- body mass were recorded, and core and skin temperature were measured continuously throughout the protocol.Results: There were no differences between the CON and HOT trials for any of the cognitive assessments, regardless of complexity. While core temperature reached 38.7°C in the HOT (compared to only 37.5°C in the CON; p < 0.01, core temperature declined during the cognitive assessments in both conditions (at a rate of −0.15 ± 0.20°C·hr−1 and −0.63 ± 0.12°C·hr−1 in the HOT and CON trial respectively. Firefighters also maintained their pre-exercise body mass in both conditions, indicating euhydration.Conclusions: It is likely that this maintenance of euhydration and the relative drop in core temperature experienced between physical work bouts was responsible for the preservation of firefighters' cognitive function in the present study.

  13. Primate body temperature and sleep responses to lower body positive pressure

    Science.gov (United States)

    Edgar, D. M.; Fuller, C. A.

    1984-01-01

    Cephalic fluid shifts, induced by lower body positive pressure (LBPP) are known to influence various physiological systems (i.e., cardiovascular and renal). In earlier experiments, an apparent change in the arousal state of primates in such LBPP conditions was observed. This study was designed to examine the effects of LBPP on arousal state and body temperature level which is normally correlated with sleep. Chair-restrained male squirrel monkeys were exposed to 40 mmHg LBPP for 90-100 minutes between the daytime hours of 13:00-15:00. Each monkey was placed in a specially modified restraint chair to which they were highly trained. Deep body temperature (DBT) was collected from 10 animals. Sleep parameters were obtained from six animals chronically implanted for sleep recording. A video camera was used to observe each animal's apparent state of arousal. LBPP resulted in an approximate 0.9 C decrease in DBT. During video observation, some animals appeared drowsy during LBPP; however, sleep recording revealed no significant changes in the state of arousal. Thus, LBPP is capable of inducing a mild hyperthermia. Further, the mechanisms underlying the observed lowering of body temperature appear to be independent of arousal state.

  14. Influence of MR imaging on the central body temperature and peripheral temperature in humans

    International Nuclear Information System (INIS)

    Vogl, T.; Krimmel, K.; Dopmeier, D.; Seiderer, M.; Lissner, J.

    1986-01-01

    Thermal effects of in vitro and in vivo MR imaging were studied at different field strengths (0.35 T, 1.5 T) and radio frequency power, using a modified fluoroptical technique. A fiber optic probe that measures with an accuracy of up to 0.1 0 C was inserted via esophageal and rectal tubes in 20 test subjects to measure central body temperature. In another ten subjects the temperature was measured subcutaneously and by an intravenous catheter system. No significant temperature change was measurable in the central parts of the body (rectum, esophagus) within the static magnetic field and during MR imaging. Subcutaneous and intravenous measurements of the superficial temperature of the arm led to the same conclusions. Theoretical calculations of the absorbed energy confirm these findings

  15. Simulation tests for temperature mixing in a core bottom model of the HTR-module

    International Nuclear Information System (INIS)

    Damm, G.; Wehrlein, R.

    1992-01-01

    Interatom and Siemens are developing a helium-cooled Modular High Temperature Reactor. Under nominal operating conditions temperature differences of up to 120deg C will occur in the 700deg C hot helium flow leaving the core. In addition, cold gas leakages into the hot gas header can produce even higher temperature differences in the coolant flow. At the outlet of the reactor only a very low temperature difference of maximum ± 15deg C is allowed in order to avoid damages at the heat exchanging components due to alternating thermal loads. Since it is not possible to calculate the complex flow behaviour, experimental investigations of the temperature mixing in the core bottom had to be carried out in order to guarantee the necessary reduction of temperature differences in the helium. The presented air simulation tests in a 1:2.9 scaled plexiglas model of the core bottom showed an extremely high mixing rate of the hot gas header and the hot gas duct of the reactor. The temperature mixing of the simulated coolant flow as well as the leakage flows was larger than 95%. Transfered to reactor conditions this means a temperature difference of only ± 3deg C for the main flow at a quite resonable pressure drop. For the cold gas leakages temperature differences in the hot gas up to 400deg C proved to be permissible. The results of the simulation experiments in the Aerodynamic Test Facility of Interatom permitted to design a shorter bottom reflector of the core. (orig.)

  16. Numerical analysis of temperature fluctuation in core outlet region of China experimental fast reactor

    International Nuclear Information System (INIS)

    Zhu Huanjun; Xu Yijun

    2014-01-01

    The temperature fluctuation in core outlet region of China Experimental Fast Reactor (CEFR) was numerically simulated by the CFD software Star CCM+. With the core outlet temperatures, flows etc. under rated conditions given as boundary conditions, a 1/4 region model of the reactor core outlet region was established and calculated using LES method for this problem. The analysis results show that while CEFR operates under rated conditions, the temperature fluctuation in lower part of core outlet region is mainly concentrated in area over the edge components (steel components, control rod assembly), and one in upper part is remarkable in area above all the components. The largest fluctuation amplitude is 19 K and the remarkable frequency is below 5 Hz, and it belongs to typically low frequency fluctuation. The conclusion is useful for further experimental work. (authors)

  17. Nasal reaction to changes in whole body temperature.

    Science.gov (United States)

    Lundqvist, G R; Pedersen, O F; Hilberg, O; Nielsen, B

    1993-11-01

    The changes in nasal patency following a 1.5 degrees C decrease or increase in whole body temperature were measured in 8 healthy young males, during and after 30 min of immersion in a 15 degrees C cold or a 40 degrees C warm bath, breathing air at the same temperature, in a cross-over experimental design. The nasal reactions were traced by consecutive measurements of changes in nasal cavity volumes by acoustic rhinometry. Swelling of the mucosa during cooling and an almost maximal shrinkage of the mucosa during heating were indicated by respectively a decrease and an increase in nasal cavity volumes. The reactions were determined predominantly by the whole body thermal balance, but were also influenced by the temperature of the inhaled air, either enhanced, reduced or temporarily reversed. The greatest change occurred in the nasal cavity, left or right, which differed most from the final state at the beginning of exposure due to the actual state of nasal cycle.

  18. Implantable microchip transponders for body temperature measurements in pigs

    DEFF Research Database (Denmark)

    Lohse, Louise; Uttenthal, Åse; Enøe, Claes

    thermometer. This work, however, can be quite time consuming and laborious, and further compromising the immediate well-fare of the pig, when restraining of the individual animal is necessary. Therefore, an electronic body monitoring system using implantable microchip transponders for measuring peripheral...... body temperature was tested, in order to evaluate the utility and reliability of this tool, in domestic pigs. The system is presently used and well optimized in small laboratory animals [1, 2]. We tested the microchip transponders during experimental infection of pigs with classical swine fever virus...... microchip transponder was injected deep subcutaneously by the left ear base of each individual. The transponder was before insertion programmed with ID identical to the individual pig’s ear tag number. The pigs were randomly divided into 3 groups: one group placebo-infected and two groups virus...

  19. Alpha-MSH decreases core and brain temperature during global cerebral ischemia in rats

    DEFF Research Database (Denmark)

    Spulber, S.; Moldovan, Mihai; Oprica, M.

    2005-01-01

    -vessel occlusion forebrain ischemia on core temperature (CT) and brain temperature (BT), respectively. After 10 min cerebral ischemia, BT was lower in alpha-MSH- than in saline-injected animals. After 10 min reperfusion, both CT and BT were lower than the corresponding pre-ischemic levels after injection of alpha...

  20. Protein-energy malnutrition induces an aberrant acute-phase response and modifies the circadian rhythm of core temperature.

    Science.gov (United States)

    Smith, Shari E; Ramos, Rafaela Andrade; Refinetti, Roberto; Farthing, Jonathan P; Paterson, Phyllis G

    2013-08-01

    Protein-energy malnutrition (PEM), present in 12%-19% of stroke patients upon hospital admission, appears to be a detrimental comorbidity factor that impairs functional outcome, but the mechanisms are not fully elucidated. Because ischemic brain injury is highly temperature-sensitive, the objectives of this study were to investigate whether PEM causes sustained changes in temperature that are associated with an inflammatory response. Activity levels were recorded as a possible explanation for the immediate elevation in temperature upon introduction to a low protein diet. Male, Sprague-Dawley rats (7 weeks old) were fed a control diet (18% protein) or a low protein diet (PEM, 2% protein) for either 7 or 28 days. Continuous core temperature recordings from bioelectrical sensor transmitters demonstrated a rapid increase in temperature amplitude, sustained over 28 days, in response to a low protein diet. Daily mean temperature rose transiently by day 2 (p = 0.01), falling to normal by day 4 (p = 0.08), after which mean temperature continually declined as malnutrition progressed. There were no alterations in activity mean (p = 0.3) or amplitude (p = 0.2) that were associated with the early rise in mean temperature. Increased serum alpha-2-macroglobulin (p protein diet had no effect on the signaling pathway of the pro-inflammatory transcription factor, NFκB, in the hippocampus. In conclusion, PEM induces an aberrant and sustained acute-phase response coupled with long-lasting effects on body temperature.

  1. Regulatory body core competencies: when should a regulator contract a TSO?

    International Nuclear Information System (INIS)

    Wieland, Patricia; Salati de Almeida, Ivan P.; Almeida, Claudio U.; Costa, Eduardo M.

    2008-01-01

    The main nuclear regulatory functions are authorization, safety review and assessment, inspection and enforcement and development of regulations and guides. Additionally, the following supplementary functions may be executed by the regulatory body: research and development, emergency response and international cooperation. In order to function properly, the regulatory body should also have the following support functions: general management, logistics, training, communication and information, information technology support, institutional relationship, internal controls and audits, ombudsman and legal support. Technical Support Organizations (TSOs) may assist the regulatory body in meeting the challenges in a rapid growing and changing environment. Specially when there is a temporary need for a wider technical expertise diversity, short time to finish a project or when the cost of developing and maintaining infrastructure of their own laboratories for analysis and research is too high and may deviate the focus on the regulator's mission. Decision on the 'size' of the regulatory body and on what can be contracted to a Technical Support Organization (TSO) depends on the resources and capabilities needed to fulfil the regulatory functions efficiently. It is important to establish the core competencies that must be at the regulatory body, keeping the focus on the regulatory goals and define the real need to contract a TSO, weighting the benefits and disadvantages. As a contribution to the definition of the regulatory core competencies, the paper discusses what is essential to be kept at the regulatory body and what can be delegated to a TSO; how to manage and control the work of the TSO; the cost effectiveness of contracting, sharing of tacit knowledge; how to handle eventual conflicts between the parties involved in the licensing process; contract types and risk evaluation, concerning the dependence on a TSO, eventual change of partners and the intellectual capital

  2. Molecular dynamics study of dislocation cores in copper: structure and diffusion at high temperatures

    International Nuclear Information System (INIS)

    Huang, Jin

    1989-01-01

    The variation of the core structure of an easy glide dislocation with temperature and its influence on the stacking fault energy (γ) have been investigated for the first time by molecular-dynamics simulation in copper. The calculations have been performed at various temperatures, using an ab-initio pseudo-potential. Our results show that the core of the Shockley partials, into which the perfect edge dislocation dissociates, becomes increasingly extended as temperature increases. However their separation remains constant. The calculated energy values of the infinite extension stacking fault and the ribbon fault between the partials are quite different, but the evolution of the core structure does not affect the temperature dependence of the latter. We have found that a high disorder appears in the core region when temperature increases due to important anharmonicity effects of the atomic vibrations. The core structure remains solid-like for T m (T m : melting point of bulk) in spite of the high disorder. Above T m , the liquid nucleus germinates in the core region, and then propagates into the bulk. In addition we studied the mobility of vacancies and interstitials trapped on the partials. Although fast diffusion is thought to occur exclusively in a pipe surrounding the dislocation core, in the present study a quasi two-dimensional diffusion is observed for both defects not only in the cores but also in the stacking fault ribbon. On the opposite of current assumptions, the activation energy for diffusion is found to be identical for both defects, which may therefore comparably contribute to mass transport along the dislocations. (author) [fr

  3. Temporal and spatial dispersion of human body temperature during deep hypothermia.

    Science.gov (United States)

    Opatz, O; Trippel, T; Lochner, A; Werner, A; Stahn, A; Steinach, M; Lenk, J; Kuppe, H; Gunga, H C

    2013-11-01

    Clinical temperature management remains challenging. Choosing the right sensor location to determine the core body temperature is a particular matter of academic and clinical debate. This study aimed to investigate the relationship of measured temperatures at different sites during surgery in deep hypothermic patients. In this prospective single-centre study, we studied 24 patients undergoing cardiothoracic surgery: 12 in normothermia, 3 in mild, and 9 in deep hypothermia. Temperature recordings of a non-invasive heat flux sensor at the forehead were compared with the arterial outlet temperature of a heart-lung machine, with the temperature on a conventional vesical bladder thermistor and, for patients undergoing deep hypothermia, with oesophageal temperature. Using a linear model for sensor comparison, the arterial outlet sensor showed a difference among the other sensor positions between -0.54 and -1.12°C. The 95% confidence interval ranged between 7.06 and 8.82°C for the upper limit and -8.14 and -10.62°C for the lower limit. Because of the hysteretic shape, the curves were divided into phases and fitted into a non-linear model according to time and placement of the sensors. During cooling and warming phases, a quadratic relationship could be observed among arterial, oesophageal, vesical, and cranial temperature recordings, with coefficients of determination ranging between 0.95 and 0.98 (standard errors of the estimate 0.69-1.12°C). We suggest that measured surrogate temperatures as indices of the cerebral temperature (e.g. vesical bladder temperature) should be interpreted with respect to the temporal and spatial dispersion during cooling and rewarming phases.

  4. Color of hot soup modulates postprandial satiety, thermal sensation, and body temperature in young women.

    Science.gov (United States)

    Suzuki, Maki; Kimura, Rie; Kido, Yasue; Inoue, Tomoko; Moritani, Toshio; Nagai, Narumi

    2017-07-01

    The color of food is known to modulate not only consumers' motivation to eat, but also thermal perception. Here we investigated whether the colors of hot soup can influence thermal sensations and body temperature, in addition to the food acceptability and appetite. Twelve young female participants consumed commercial white potage soup, modified to yellow or blue by adding food dyes, at 9 a.m. on 3 separated days. During the test, visual impression (willingness to eat, palatability, comfort, warmth, and anxiety) and thermal sensations were self-reported using visual analog scales. Core (intra-aural) and peripheral (toe) temperatures were continuously recorded 10 min before and 60 min after ingestion. Blue soup significantly decreased willingness to eat, palatability, comfort, and warmth ratings, and significantly increased anxiety feelings compared to the white and yellow soups. After ingestion, the blue soup showed significantly smaller satiety ratings and the tendency of lower thermal sensation scores of the whole body compared to the white and yellow soups. Moreover, a significantly greater increase in toe temperature was found with the yellow soup than the white or blue soup. In conclusion, this study provides new evidence that the colors of hot food may modulate postprandial satiety, thermal sensations and peripheral temperature. Such effects of color may be useful for dietary strategies for individuals who need to control their appetite. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Estimating Past Temperature Change in Antarctica Based on Ice Core Stable Water Isotope Diffusion

    Science.gov (United States)

    Kahle, E. C.; Markle, B. R.; Holme, C.; Jones, T. R.; Steig, E. J.

    2017-12-01

    The magnitude of the last glacial-interglacial transition is a key target for constraining climate sensitivity on long timescales. Ice core proxy records and general circulation models (GCMs) both provide insight on the magnitude of climate change through the last glacial-interglacial transition, but appear to provide different answers. In particular, the magnitude of the glacial-interglacial temperature change reconstructed from East Antarctic ice-core water-isotope records is greater ( 9 degrees C) than that from most GCM simulations ( 6 degrees C). A possible source of this difference is error in the linear-scaling of water isotopes to temperature. We employ a novel, nonlinear temperature-reconstruction technique using the physics of water-isotope diffusion to infer past temperature. Based on new, ice-core data from the South Pole, this diffusion technique suggests East Antarctic temperature change was smaller than previously thought. We are able to confirm this result using a simple, water-isotope fractionation model to nonlinearly reconstruct temperature change at ice core locations across Antarctica based on combined oxygen and hydrogen isotope ratios. Both methods produce a temperature change of 6 degrees C for South Pole, agreeing with GCM results for East Antarctica. Furthermore, both produce much larger changes in West Antarctica, also in agreement with GCM results and independent borehole thermometry. These results support the fidelity of GCMs in simulating last glacial maximum climate, and contradict the idea, based on previous work, that the climate sensitivity of current GCMs is too low.

  6. Core Cross-linked Star Polymers for Temperature/pH Controlled Delivery of 5-Fluorouracil

    Directory of Open Access Journals (Sweden)

    Elizabeth Sánchez-Bustos

    2016-01-01

    Full Text Available RAFT polymerization with cross-linking was used to prepare core cross-linked star polymers bearing temperature sensitive arms. The arms consisted of a diblock copolymer containing N-isopropylacrylamide (NIPAAm and 4-methacryloyloxy benzoic acid (4MBA in the temperature sensitive block and poly(hexyl acrylate forming the second hydrophobic block, while ethyleneglycol dimethacrylate was used to form the core. The acid comonomer provides pH sensitivity to the arms and also increases the transition temperature of polyNIPAAm to values in the range of 40 to 46°C. Light scattering and atomic force microscopy studies suggest that loose core star polymers were obtained. The star polymers were loaded with 5-fluorouracil (5-FU, an anticancer agent, in values of up to 30 w/w%. In vitro release experiments were performed at different temperatures and pH values, as well as with heating and cooling temperature cycles. Faster drug release was obtained at 42°C or pH 6, compared to normal physiological conditions (37°C, pH 7.4. The drug carriers prepared acted as nanopumps changing the release kinetics of 5-FU when temperatures cycles were applied, in contrast with release rates at a constant temperature. The prepared core cross-linked star polymers represent advanced drug delivery vehicles optimized for 5-FU with potential application in cancer treatment.

  7. Effect of ion temperature gradient driven turbulence on the edge-core connection for transient edge temperature sink

    International Nuclear Information System (INIS)

    Miyato, Naoaki

    2014-01-01

    Ion temperature gradient (ITG) driven turbulence simulation for a transient edge temperature sink localized in the poloidal plane is performed using a global Landau-fluid code in the electrostatic limit. Pressure perturbations with (m, n) = (±1, 0) are induced by the edge sink, where m and n are poloidal and toroidal mode numbers, respectively. It was found in the previous simulation that the nonlinear dynamics of these perturbations are responsible for the nonlocal plasma response/transport connecting edge and core in a toroidal plasma. Present simulation shows, however, that the ITG turbulence in the core region dissipates the large-scale (m, n) = (±1, 0) perturbations and weakens the edge-core connection observed in the previous simulation. (author)

  8. Reconstruction and analysis of temperature and density spatial profiles inertial confinement fusion implosion cores

    International Nuclear Information System (INIS)

    Mancini, R. C.

    2007-01-01

    We discuss several methods for the extraction of temperature and density spatial profiles in inertial confinement fusion implosion cores based on the analysis of the x-ray emission from spectroscopic tracers added to the deuterium fuel. The ideas rely on (1) detailed spectral models that take into account collisional-radiative atomic kinetics, Stark broadened line shapes, and radiation transport calculations, (2) the availability of narrow-band, gated pinhole and slit x-ray images, and space-resolved line spectra of the core, and (3) several data analysis and reconstruction methods that include a multi-objective search and optimization technique based on a novel application of Pareto genetic algorithms to plasma spectroscopy. The spectroscopic analysis yields the spatial profiles of temperature and density in the core at the collapse of the implosion, and also the extent of shell material mixing into the core. Results are illustrated with data recorded in implosion experiments driven by the OMEGA and Z facilities

  9. Melting phase relations in the Fe-S and Fe-S-O systems at core conditions in small terrestrial bodies

    Science.gov (United States)

    Pommier, Anne; Laurenz, Vera; Davies, Christopher J.; Frost, Daniel J.

    2018-05-01

    We report an experimental investigation of phase equilibria in the Fe-S and Fe-S-O systems. Experiments were performed at high temperatures (1400-1850 °C) and high pressures (14 and 20 GPa) using a multi-anvil apparatus. The results of this study are used to understand the effect of sulfur and oxygen on core dynamics in small terrestrial bodies. We observe that the formation of solid FeO grains occurs at the Fe-S liquid - Fe solid interface at high temperature ( > 1400 °C at 20 GPa). Oxygen fugacities calculated for each O-bearing sample show that redox conditions vary from ΔIW = -0.65 to 0. Considering the relative density of each phase and existing evolutionary models of terrestrial cores, we apply our experimental results to the cores of Mars and Ganymede. We suggest that the presence of FeO in small terrestrial bodies tends to contribute to outer-core compositional stratification. Depending on the redox and thermal history of the planet, FeO may also help form a transitional redox zone at the core-mantle boundary.

  10. Effect of morning bright light on body temperature, plasma cortisol and wrist motility measured during 24 hour of constant conditions.

    Science.gov (United States)

    Foret, J; Aguirre, A; Touitou, Y; Clodoré, M; Benoit, O

    1993-06-11

    Using 24 h constant conditions, time course of body temperature, plasma cortisol and wrist motility was measured in response to a 3 day morning 2 h bright light pulse. This protocol demonstrated that a 2000 lux illumination was sufficient to elicit a shift of about 2 h of temperature minimum and cortisol peak. In reference session, actimetric recordings showed a circadian time course, closely in relation with core temperature. Bright light pulse resulted in a decrease of amplitude and a disappearance of circadian pattern of actimetry.

  11. KINETIC TEMPERATURES OF THE DENSE GAS CLUMPS IN THE ORION KL MOLECULAR CORE

    International Nuclear Information System (INIS)

    Wang, K.-S.; Kuan, Y.-J.; Liu, S.-Y.; Charnley, Steven B.

    2010-01-01

    High angular-resolution images of the J = 18 K -17 K emission of CH 3 CN in the Orion KL molecular core were observed with the Submillimeter Array (SMA). Our high-resolution observations clearly reveal that CH 3 CN emission originates mainly from the Orion Hot Core and the Compact Ridge, both within ∼15'' of the warm and dense part of Orion KL. The clumpy nature of the molecular gas in Orion KL can also be readily seen from our high-resolution SMA images. In addition, a semi-open cavity-like kinematic structure is evident at the location between the Hot Core and the Compact Ridge. We performed excitation analysis with the 'population diagram' method toward the Hot Core, IRc7, and the northern part of the Compact Ridge. Our results disclose a non-uniform temperature structure on small scales in Orion KL, with a range of temperatures from 190-620 K in the Hot Core. Near the Compact Ridge, the temperatures are found to be 170-280 K. Comparable CH 3 CN fractional abundances of 10 -8 to 10 -7 are found around both in the Hot Core and the Compact Ridge. Such high abundances require that a hot gas phase chemistry, probably involving ammonia released from grain mantles, plays an important role in forming these CH 3 CN molecules.

  12. Effect of annealing temperature on the stress and structural properties of Ge core fibre

    Science.gov (United States)

    Zhao, Ziwen; Cheng, Xueli; Xue, Fei; He, Ting; Wang, Tingyun

    2017-09-01

    Effect of annealing temperature on the stress and structural properties of a Ge core fibre via the molten core drawing (MCD) method is investigated using Raman spectroscopy, Scanning electronic microscopy (SEM), and X-ray diffraction. The experimental results showed that the Raman peak position of the Ge fibre shifted from 297.6 cm-1 to 300.5 cm-1, and the FWHM value decreased from 4.53 cm-1 to 4.31 cm-1, when the annealing is carried out at 700 °C, 800 °C, and 900 °C, respectively. For the Ge core annealed at 900 °C, an apparent crystal grain can be seen in the SEM image, and the diffraction peaks of the (3 3 1) plane are generated in the X-ray diffraction spectra. These results show that optimising the annealing temperature allows the release of the residual stress in the Ge core. When the Ge core fibre is annealed at 900 °C, it exhibits the lowest residual stress and the highest crystal quality, and the quality improvement relative to that of the sample annealed at 800 °C is significant. Hence, annealing at around 900 °C can greatly improve the quality of a Ge core fibre. Further performance improvement of the Ge core fibre by annealing techniques can be anticipated.

  13. The effect of cold water endurance swimming on core temperature in aspiring English Channel swimmers.

    Science.gov (United States)

    Diversi, Tara; Franks-Kardum, Vanessa; Climstein, Mike

    2016-01-01

    The purpose of this study was to determine if cold water swimmers (CWS) developed hypothermia over a 6-h cold water endurance swim and whether body composition, stroke rate (SR) or personal characteristics correlated with core temperature (TC) change. Nine experienced male and female CWS who were aspiring English Channel (EC) swimmers volunteered to participate. Subjects aimed to complete their 6-h EC qualifying swim (water 15-15.8 °C/air 15-25 °C) while researchers intermittently monitored TC and SR. Data obtained included anthropometry (height, mass, segmental body composition), training volume and EC completion. Of the nine swimmers who volunteered, all successfully completed their EC qualifying swim. Six CWS had complete data included in analysis. One CWS demonstrated hypothermia (34.8 °C) at 6-h. TC rate of decline was slower in the first 3 h (-0.06 °C/hr) compared to the last 3 h (-0.36 °C/hr) of the swim. Older age was significantly correlated to TC change (r = -0.901, p swim was 57.8 spm (range 48-73 spm), and a significant (p pool and open water (OW); however, they swam significantly [t (7) = -2.433, p swim (CWES) of 6-h duration at 15-16 °C resulted in TC reduction in the majority of swimmers regardless of anthropometry. More research is required to determine why some CWS are able to maintain their TC throughout a CWES. Our results indicate that older swimmers are at greater risk of developing hypothermia, and that SR decline is an indicator of TC decline. Our results also suggest that OW swimming training combined with pool training is important for EC swim success.

  14. Sex, season, and time of day interact to affect body temperatures of the Giant Gartersnake

    Science.gov (United States)

    Wylie, G.D.; Casazza, Michael L.; Halstead, B.J.; Gregory, C.J.

    2009-01-01

    1.We examined multiple hypotheses regarding differences in body temperatures of the Giant Gartersnake using temperature-sensitive radio telemetry and an information-theoretic analytical approach.2.Giant Gartersnakes selected body temperatures near 30 ??C, and males and females had similar body temperatures most of the year, except during the midsummer gestation period.3.Seasonal differences in the body temperatures of males and females may relate to both the costs associated with thermoregulatory behavior, such as predation, and the benefits associated with maintaining optimal body temperatures, such as successful incubation.

  15. The effects of core-reflected waves on finite fault inversions with teleseismic body wave data

    Science.gov (United States)

    Qian, Yunyi; Ni, Sidao; Wei, Shengji; Almeida, Rafael; Zhang, Han

    2017-11-01

    Teleseismic body waves are essential for imaging rupture processes of large earthquakes. Earthquake source parameters are usually characterized by waveform analyses such as finite fault inversions using only turning (direct) P and SH waves without considering the reflected phases from the core-mantle boundary (CMB). However, core-reflected waves such as ScS usually have amplitudes comparable to direct S waves due to the total reflection from the CMB and might interfere with the S waves used for inversion, especially at large epicentral distances for long duration earthquakes. In order to understand how core-reflected waves affect teleseismic body wave inversion results, we develop a procedure named Multitel3 to compute Green's functions that contain turning waves (direct P, pP, sP, direct S, sS and reverberations in the crust) and core-reflected waves (PcP, pPcP, sPcP, ScS, sScS and associated reflected phases from the CMB). This ray-based method can efficiently generate synthetic seismograms for turning and core-reflected waves independently, with the flexibility to take into account the 3-D Earth structure effect on the timing between these phases. The performance of this approach is assessed through a series of numerical inversion tests on synthetic waveforms of the 2008 Mw7.9 Wenchuan earthquake and the 2015 Mw7.8 Nepal earthquake. We also compare this improved method with the turning-wave only inversions and explore the stability of the new procedure when there are uncertainties in a priori information (such as fault geometry and epicentre location) or arrival time of core-reflected phases. Finally, a finite fault inversion of the 2005 Mw8.7 Nias-Simeulue earthquake is carried out using the improved Green's functions. Using enhanced Green's functions yields better inversion results as expected. While the finite source inversion with conventional P and SH waves is able to recover large-scale characteristics of the earthquake source, by adding PcP and ScS phases

  16. Approach to the HTGR core outlet temperature measurements in the United States

    International Nuclear Information System (INIS)

    Franklin, R.; Rodriguez, C.

    1982-06-01

    The High Temperature Gas-Cooled Reactor (HTGR) constructed at Fort St. Vrain Colorado (330 MWe) used Geminol thermocouples to measure the primary coolant temperature at the core outlet. The primary coolant (helium) is heated by the graphite core to temperatures in the range of 700 deg. to 750 deg. C. The combination of the high temperature, high flow rate and radiation at the core outlet area makes it difficult to obtain accurate temperature measurements. The Geminol thermocouples installed in the Fort St. Vrain reactor have provided accurate data for several years of power operation without any failures. The indicated temperature of the core outlet thermocouples agrees with a ''traversing'' thermocouple measurement to within +-2 deg. C. The Geminol thermocouple wire was provided by the Driver-Harris Company and is similar to the chromel versus alumel thermocouple. Geminol wire is no longer distributed and on future designs, chromel versus alumel wire will be used. The next large HTGR design, which is being performed with funding support from the United States Department of Energy, will incorporate replaceable thermocouples. The thermocouples used in the Fort St. Vrain reactor were permanently installed and large in diameter (6.35 mm) to insure good reliability. The replaceable thermocouples to be used in the next large reactor will be smaller in diameter (3.18 mm). These replaceable thermocouples will be inserted into the core outlet area through long curved guide tubes that are permanently installed. These guide tubes are as long as 18 meters and must be curved to reach the core outlet regions. Tests were conducted to prove that the thermocouples could be inserted and removed through the long curved guide tubes. (author)

  17. Body temperature increases during pediatric full mouth rehabilitation surgery under general anesthesia

    Directory of Open Access Journals (Sweden)

    Yi-Shan Chuang

    2015-12-01

    Conclusion: Body temperature transiently increased during pediatric full mouth rehabilitation surgery. The increase in body temperature was associated with operation duration. The etiology is uncertain. Continuous body temperature monitoring and the application of both heating and cooling devices during pediatric full mouth rehabilitation surgery should be mandatory.

  18. Axillary Temperature, as Recorded by the iThermonitor WT701, Well Represents Core Temperature in Adults Having Noncardiac Surgery.

    Science.gov (United States)

    Pei, Lijian; Huang, Yuguang; Mao, Guangmei; Sessler, Daniel I

    2018-03-01

    Core temperature can be accurately measured from the esophagus or nasopharynx during general anesthesia, but neither site is suitable for neuraxial anesthesia. We therefore determined the precision and accuracy of a novel wireless axillary thermometer, the iThermonitor, to determine its suitability for use during neuraxial anesthesia and in other patients who are not intubated. We enrolled 80 adults having upper abdominal surgery with endotracheal intubation. Intraoperative core temperature was measured in distal esophagus and was estimated at the axilla with a wireless iThermonitor WT701 (Raiing Medical, Boston MA) at 5-minute intervals. Pairs of axillary and reference distal esophageal temperatures were compared and summarized using linear regression and repeated-measured Bland-Altman methods. We a priori determined that the iThermonitor would have clinically acceptable accuracy if most estimates were within ±0.5°C of the esophageal reference, and suitable precision if the limits of agreement were within ±0.5°C. There were 3339 sets of paired temperatures. Axillary and esophageal temperatures were similar, with a mean difference (esophageal minus axillary) of only 0.14°C ± 0.26°C (standard deviation). The Bland-Altman 95% limits of agreement were reasonably narrow, with the estimated upper limit at 0.66°C and the lower limit at -0.38°C, thus ±0.52°C, indicating good agreement across the range of mean temperatures from 34.9°C to 38.1°C. The absolute difference was within 0.5°C in 91% of the measurements (95% confidence interval, 88%-93%). Axillary temperature, as recorded by the iThermonitor WT701, well represents core temperature in adults having noncardiac surgery and thus appears suitable for clinical use.

  19. Short communication: calf body temperature following chemical disbudding with sedation: effects of milk allowance and supplemental heat.

    Science.gov (United States)

    Vasseur, E; Rushen, J; de Passillé, A M

    2014-01-01

    The use of caustic paste combined with a sedative is one of the least painful methods for disbudding. It is recommended to disbud at as early as 5d of age. However, the sedative xylazine reportedly causes a decrease in core temperature. Furthermore, young calves do not thermoregulate efficiently. We investigated the effects of disbudding calves at 5d of age using caustic paste and xylazine sedation on body temperature, activity, and milk intake of 46 individually housed 5-d-old calves in a 2×2 factorial design, with milk fed at 4.5L/d (low-fed calves) versus 9L/d (high-fed calves), with or without a heat lamp. Body temperature, calf activity (standing time), and barn temperature were monitored continuously using automatic data loggers on the day of, before the day of, and the day after disbudding. All calves were injected intramuscularly with 0.25mL of 2mg/mL xylazine 20min before disbudding (dose: 0.12±0.003mL/kg of BW). We found that the body temperature of 5-d-old calves decreased immediately after the injection of the sedative xylazine. The body temperature of calves decreased 0.9±0.09°C and it took 3.8±0.32h to climb back to the preinjection body temperature. Calves that were fed the lower amount of milk, received a higher dose of xylazine (mL/kg BW), or were disbudded in a colder environment were more affected by body temperature variations (lower and longest decrease in body temperature and higher magnitude). Calf activity recovery followed the pattern of body temperature recovery. Milk allowance and supplemental heat did not help enhance recovery during the 6h following the procedure. The disbudding procedure did not affect milk intake but calves with less body temperature decrease or kept in a warmer environment drank more milk following disbudding. Low-fed calves were overall more affected by the procedure than high-fed calves during the disbudding day and the following day (greater decrease in body temperature and drank less in the colder

  20. Aminophylline partially prevents the decrease of body temperature during laparoscopic abdominal surgery.

    Science.gov (United States)

    Kim, Dae Woo; Lee, Jung Ah; Jung, Hong Soo; Joo, Jin Deok; In, Jang Hyeok; Jeon, Yeon Soo; Chun, Ga Young; Choi, Jin Woo

    2014-08-01

    Aminophylline can elicit thermogenesis in rats or increase metabolic rate during cold stress in lambs. We tested the hypothesis that aminophylline would reduce the change in core body temperature during laparoscopic abdominal surgery requiring pneumoperitoneum. Fifty patients were randomly divided into an aminophylline group (n=25) and a saline control group (n=25). Esophageal temperature, index finger temperature, and hemodynamic variables, such as mean blood pressure and heart rate, were measured every 15 min during sevoflurane anesthesia. In the aminophylline group, esophageal temperatures at T45 (36.1±0.38 vs. 35.7±0.29, P=0.024), T60 (36.0±0.39 vs. 35.6±0.28, P=0.053), T75 (35.9±0.34 vs. 35.5±0.28, P=0.025), T90 (35.8±0.35 vs. 35.3±0.33, P=0.011), and T105 (35.8±0.36 vs. 35.1±0.53, P=0.017) and index finger temperatures at T15 (35.8±0.46 vs. 34.9±0.33, Ptemperature through a thermogenic effect, despite reduced peripheral thermoregulatory vasoconstriction.

  1. High-temperature electrochemical characterization of Ru core Pt shell fuel cell catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Bokach, D.; Fuente, J.L.G. de la; Tsypkin, M.; Ochal, P.; Tunold, R.; Sunde, S.; Seland, F. [Department of Materials Science and Engineering, Norwegian University of Science and Technology (NTNU), Sem Saelands veg 12, N-7491 Trondheim (Norway); Endsjoe, I.C. [Washington Mills AS, NO-7300 Orkanger (Norway)

    2011-12-15

    The electrooxidation of methanol was studied at elevated temperature and pressure by cyclic voltammetry and constant potential experiments at real fuel cell electrocatalysts. Ruthenium core and platinum shell nanoparticles were synthesized by a sequential polyol route, and characterized electrochemically by CO stripping at room temperature to quickly confirm the structure of the synthesized core-shell structure as compared to pure commercial Pt/C and Pt-Ru/C alloy catalysts. A significant promotional effect of Pt decorated Ru cores in the methanol oxidation was found at elevated temperatures and rather high-electrode potentials. A negative potential shift of the methanol oxidation peak is observed for the Ru rate at Pt/C core-shell catalyst at moderate temperatures, while a significant shift to positive potentials of the methanol oxidation peak occurs for Pt/C catalysts. The onset potential for methanol oxidation is lowered some 200 mV from room temperature and up to 120 C for all electrocatalysts, indicating that it is the thermal activity of water adsorption that dictates the onset potential. Direct methanol fuel cell experiments showed only small performance differences between Ru rate at Pt/C and Pt/C anode electrocatalysts, suggesting the necessity of render possible the formation of surface oxygen species at lower electrode potentials. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. The Combined Strength of Thermodynamics and Comparative Planetology: Application of Activity Models to Core Formation in Terrestrial Bodies

    Science.gov (United States)

    Righter, K.; Pando, K. M.; Danielson, L. R.

    2015-01-01

    Recent models for accretion of terrestrial bodies involve metal-silicate equilibrium as the metallic core formed during growth. Most elements considered are either refractory or well studied elements for which effects of pressure, temperature, oxygen fugacity, and metallic liquid composition are well known. There are a large number of elements that are both siderophile and volatile, whose fate in such models is unknown, largely due to a lack of data at comparable conditions and com-positions (FeNi core with light elements such as S, C, Si, and O). We have focused on Ge, In, As, Sb and determined the effect of Si and C on metal-silicate partitioning, and developed a thermo-dynamic model that allows application of these new data to a wide range of planetary bodies. New experiments: We have previously carried out experiments with FeSi metallic liquid at C-saturated conditions at 1600 and 1800 C [4]. In a new series of experiments we investigate the effect of Si in carbon-free systems at 1600 C for comparison. Experiments were carried out at 1 GPa in MgO capsules using the same basaltic starting composition as in previous studies. The MgO capsule reacts with the silicate melt to form more MgO-rich liquids that have 22-26 wt% MgO. Experimental met-als and silicates were analyzed using a combination of electron microprobe analysis and laser ablation ICP-MS. Results: The new results can be interpreted by considering Ge as an example, in the simple exchange equilibrium Fe + GeO = FeO + Ge, where the equilibrium constant Kd can be examined as a function of Si content of the metal. The slope of lnKd vs. (1-XSi) for this new series allows derivation of the epsilon interaction parameter for each of these four elements and Si (both C-saturated and C-free).All four elements have positive epsilon values, indicating that Si causes a decrease in the partition coefficients; values are 6.6, 6.5, 27.8 and 25.2 for In, Ge, As, and Sb, respectively, at 1 GPa and 1600 C. As an example of

  3. Effect of peritoneal lavage solution temperature on body temperature in anaesthetised cats and small dogs.

    Science.gov (United States)

    Barnes, D C; Leece, E A; Trimble, T A; Demetriou, J L

    2017-05-20

    A prospective, randomised, non-blinded, clinical study to assess the effect of peritoneal lavage using warmed fluid on body temperature in anesthetised cats and dogs of less than 10 kg body mass undergoing coeliotomy. A standardised anaesthetic protocol was used. Oesophageal and rectal temperatures were measured at various time points. At the end of surgery, group 1 patients (n=10) were lavaged with 200 ml/kg sterile isotonic saline at 34±1°C and group 2 (n=10) at 40±1°C. Groups were similar with respect to age, mass, body condition and surgical incision length. Duration of anaesthesia, surgical procedures and peritoneal lavage was similar between groups. Linear regression showed no significant change in oesophageal temperature during the lavage period for group 1 (P=0.64), but a significant increase for group 2 patients (Ptemperature changes of -0.5°C (from (36.3°C to 35.9°C) and +0.9°C (from 35.4°C to 36.3°C), respectively. Similar results were found for rectal temperature, with mean changes of -0.5°C and +0.8°C (P=0.922 and 0.045), respectively. The use of isotonic crystalloid solution for peritoneal lavage at a temperature of 40±1°C significantly warms small animal patients, when applied in a clinical setting, compared with lavage solution at 34±1°C. British Veterinary Association.

  4. Analysis of fission product release from HTGR core during transient temperature excursion

    International Nuclear Information System (INIS)

    Saito, Takao; Yamatoya, Naotoshi; Onuma, Mamoru

    1978-01-01

    The computer program ''FRANC'' was developed to calculate the release activity of fission products from a high-temperature gas cooled reactor (HTGR) core during transient temperature excursions such as a hypothetical loss of forced circulation combined with design basis depressurization. The program utilizes a segmented cylindrical core spatial model with the associated values of the prior fuel irradiation history and temperature conditions. The fission product transport and decay chain behavior is expressed by a set of differential equations. This set of equations describes the entire core inventory of fission products by means of calculated parameters based on the detailed spatial core conditions. The program determines the time-dependent amounts of fission product nuclides escaping from the core into the coolant. Coded in Continuous System Simulation Language (CSSL) with double precision, FRANC showed appropriate results for both short- and long-lived fission product nuclides. The sample calculation conducted by applying the program to a large HTGR indicated that it would take about one hour for noble gases and volatile nuclides to be released to the coolant, and several hours for metalic nuclides. (auth.)

  5. Locomotor Activity and Body Temperature Patterns over a Temperature Gradient in the Highveld Mole-Rat (Cryptomys hottentotus pretoriae).

    Science.gov (United States)

    Haupt, Meghan; Bennett, Nigel C; Oosthuizen, Maria K

    2017-01-01

    African mole-rats are strictly subterranean mammals that live in extensive burrow systems. High humidity levels in the burrows prevent mole-rats from thermoregulating using evaporative cooling. However, the relatively stable environment of the burrows promotes moderate temperatures and small daily temperature fluctuations. Mole-rats therefore display a relatively wide range of thermoregulation abilities. Some species cannot maintain their body temperatures at a constant level, whereas others employ behavioural thermoregulation. Here we test the effect of ambient temperature on locomotor activity and body temperature, and the relationship between the two parameters, in the highveld mole-rat. We exposed mole-rats to a 12L:12D and a DD light cycle at ambient temperatures of 30°C, 25°C and 20°C while locomotor activity and body temperature were measured simultaneously. In addition, we investigated the endogenous rhythms of locomotor activity and body temperature at different ambient temperatures. Mole-rats displayed nocturnal activity at all three ambient temperatures and were most active at 20°C, but least active at 30°C. Body temperature was highest at 30°C and lowest at 20°C, and the daily cycle was highly correlated with locomotor activity. We show that the mole-rats have endogenous rhythms for both locomotor activity and body temperature. However, the endogenous body temperature rhythm appears to be less robust compared to the locomotor activity rhythm. Female mole-rats appear to be more sensitive to temperature changes than males, increased heterothermy is evident at lower ambient temperatures, whilst males show smaller variation in their body temperatures with changing ambient temperatures. Mole-rats may rely more heavily on behavioural thermoregulation as it is more energy efficient in an already challenging environment.

  6. Evaluation of advanced cooling therapy's esophageal cooling device for core temperature control.

    Science.gov (United States)

    Naiman, Melissa; Shanley, Patrick; Garrett, Frank; Kulstad, Erik

    2016-05-01

    Managing core temperature is critical to patient outcomes in a wide range of clinical scenarios. Previous devices designed to perform temperature management required a trade-off between invasiveness and temperature modulation efficiency. The Esophageal Cooling Device, made by Advanced Cooling Therapy (Chicago, IL), was developed to optimize warming and cooling efficiency through an easy and low risk procedure that leverages heat transfer through convection and conduction. Clinical data from cardiac arrest, fever, and critical burn patients indicate that the Esophageal Cooling Device performs very well both in terms of temperature modulation (cooling rates of approximately 1.3°C/hour, warming of up to 0.5°C/hour) and maintaining temperature stability (variation around goal temperature ± 0.3°C). Physicians have reported that device performance is comparable to the performance of intravascular temperature management techniques and superior to the performance of surface devices, while avoiding the downsides associated with both.

  7. Whole body immersion and hydromineral homeostasis: effect of water temperature.

    Science.gov (United States)

    Jimenez, Chantal; Regnard, Jacques; Robinet, Claude; Mourot, Laurent; Gomez-Merino, Danielle; Chennaoui, Mounir; Jammes, Yves; Dumoulin, Gilles; Desruelle, Anne-Virginie; Melin, Bruno

    2010-01-01

    This experiment was designed to assess the effects of prolonged whole body immersion (WBI) in thermoneutral and cold conditions on plasma volume and hydromineral homeostasis.10 navy "combat swimmers" performed three static 6-h immersions at 34 degrees C (T34), 18 degrees C (T18) and 10 degrees C (T10). Rectal temperature, plasma volume (PV) changes, plasma proteins, plasma and urine ions, plasma osmolality, renin, aldosterone and antidiuretic hormone (ADH) were measured. Results show that compared to pre-immersion levels, PV decreased throughout WBI sessions, the changes being markedly accentuated in cold conditions. At the end of WBI, maximal PV variations were -6.9% at T34, -14.3% at T18, and -16.3% at T10. Plasma osmolality did not change during and after T34 immersion, while hyperosmolality was present at the end of T18 immersion and began after only 1 h of T10 immersion. In the three temperature conditions, significant losses of water (1.6-1.7 l) and salt (6-8 g) occurred and were associated with similar increases in osmolar and free water clearances. Furthermore, T18 and T10 immersions increased the glomerular filtration rate. There was little or no change in plasma renin and ADH, while the plasma level of aldosterone decreased equally in the three temperature conditions. In conclusion, our data indicate that cold water hastened PV changes induced by immersion, and increased the glomerular filtration rate, causing larger accumulated water losses. The iso-osmotic hypovolemia may impede the resumption of baseline fluid balance. Results are very similar to those repeatedly described by various authors during head-out water immersion.

  8. SUPERPHENIX: Reactor core temperatures survey by minicomputers - original aspects related to safety

    International Nuclear Information System (INIS)

    Berlin, C.; Josue, M.; Pinoteau, J.

    1986-01-01

    The system for core temperatures fast processing (TRIC) utilized in SUPERPHENIX is part of the reactor protection system. Due to the number of temperature measurements taken into account, to the specific data processing and to the rapidity required in the treatment, the use of digital computing devices is justified. The present paper describes the conception of the system in order to satisfy the special requirements for the computers used in power reactors protection systems

  9. Shaping the solar wind electron temperature anisotropy by the interplay of core and suprathermal populations

    Science.gov (United States)

    Shaaban Hamd, S. M.; Lazar, M.; Poedts, S.; Pierrard, V.; Štverák

    2017-12-01

    We present the results of an advanced parametrization of the temperature anisotropy of electrons in the slow solar wind and the electromagnetic instabilities resulting from the interplay of their thermal core and suprathermal halo populations. A large set of observational data (from the Ulysses, Helios and Cluster missions) is used to parametrize these components and establish their correlations. Comparative analysis demonstrates for the first time a particular implication of the suprathermal electrons which are less dense but hotter than thermal electrons. The instabilities are significantly stimulated by the interplay of the core and halo populations, leading to lower thresholds which shape the observed limits of the temperature anisotropy for both the core and halo populations. This double agreement strongly suggests that the selfgenerated instabilities play the major role in constraining the electron anisotropy.

  10. Reliability of an infrared forehead skin thermometer for core temperature measurements

    NARCIS (Netherlands)

    Kistemaker, J.A.; Hartog, E.A. den; Daanen, H.A.M.

    2006-01-01

    The SensorTouch thermometer performs an infrared measurement of the skin temperature above the Superficial Temporal Artery (STA). This study evaluates the validity and the accuracy of the SensorTouch thermometer. Two experiments were performed in which the body temperature was measured with a rectal

  11. Core and Refueling Design Studies for the Advanced High Temperature Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, David Eugene [ORNL; Ilas, Dan [ORNL; Varma, Venugopal Koikal [ORNL; Cisneros, Anselmo T [ORNL; Kelly, Ryan P [ORNL; Gehin, Jess C [ORNL

    2011-09-01

    The Advanced High Temperature Reactor (AHTR) is a design concept for a central generating station type [3400 MW(t)] fluoride-salt-cooled high-temperature reactor (FHR). The overall goal of the AHTR development program is to demonstrate the technical feasibility of FHRs as low-cost, large-size power producers while maintaining full passive safety. This report presents the current status of ongoing design studies of the core, in-vessel structures, and refueling options for the AHTR. The AHTR design remains at the notional level of maturity as important material, structural, neutronic, and hydraulic issues remain to be addressed. The present design space exploration, however, indicates that reasonable options exist for the AHTR core, primary heat transport path, and fuel cycle provided that materials and systems technologies develop as anticipated. An illustration of the current AHTR core, reactor vessel, and nearby structures is shown in Fig. ES1. The AHTR core design concept is based upon 252 hexagonal, plate fuel assemblies configured to form a roughly cylindrical core. The core has a fueled height of 5.5 m with 25 cm of reflector above and below the core. The fuel assembly hexagons are {approx}45 cm across the flats. Each fuel assembly contains 18 plates that are 23.9 cm wide and 2.55 cm thick. The reactor vessel has an exterior diameter of 10.48 m and a height of 17.7 m. A row of replaceable graphite reflector prismatic blocks surrounds the core radially. A more complete reactor configuration description is provided in Section 2 of this report. The AHTR core design space exploration was performed under a set of constraints. Only low enrichment (<20%) uranium fuel was considered. The coated particle fuel and matrix materials were derived from those being developed and demonstrated under the Department of Energy Office of Nuclear Energy (DOE-NE) advanced gas reactor program. The coated particle volumetric packing fraction was restricted to at most 40%. The pressure

  12. Relationship between body temperature, weight, and hematological parameters of black tufted-ear marmosets (Callithrix penicillata).

    Science.gov (United States)

    Pereira, Lucas Cardoso; Barros, Marilia

    2016-06-01

    Basal thermal values of captive adult black tufted-ear marmosets (Callithrix penicillata) in a thermoneutral environment were measured via different methods, along with body weight and hematological parameters. Body temperatures were recorded with rectal (RC), subcutaneous (SC) microchip transponder and infrared (left and right) tympanic membrane (TM) thermometries. Thermal values were correlated with body mass and some hematological data. Similar RC and SC temperatures were observed, these being significantly higher than the left and right TM values. SC temperature was positively correlated and in close agreement with RC measurements. Although body temperatures were not influenced by gender, capture time, or body weight, they were correlated with hematological parameters. Thus, body temperatures in this species seem to reflect some of the characteristics of the assessments' location, with SC microchip transponders being a less invasive method to assess body temperature in these small-bodied non-human primates. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. CHANGES IN THE RAT EEG SPECTRA AND CORE TEMPERATURE AFTER EXPOSURE TO DIFFERENT DOSES OF CHLORPYRIFOS.

    Science.gov (United States)

    Our previous study showed that single exposure to 25 mg/kg (p.o.) of organophsphate pesticide chlorpyrifos (CHP) led to significant alterations in all EEG frequency bands within 0.1-50 Hz range, reduction in core temperature (Tc) and motor activity (MA). The alterations in EEG pe...

  14. Core temperature in super-Gaussian pumped air-clad photonic ...

    Indian Academy of Sciences (India)

    In this paper we investigate the core temperature of air-clad photonic crystal fiber (PCF) lasers pumped by a super-Gaussian (SG) source of order four. The results are compared with conventional double-clad fiber (DCF) lasers pumped by the same super-Gaussian and by top-hat pump profiles.

  15. Characteristic features of the core design of high-temperature reactors

    International Nuclear Information System (INIS)

    Brandes, S.; Lohnert, G.

    1975-01-01

    Following a survey on the possible applications of the HTGR depending on the height of the gas exiting temperatures, the core design for both of the fuel element concepts 'sphere' and 'block' is dealt with. The particularities arising from the multiple refueling and the one-way fueling in the design for spherical fuel elements are discussed. (UA/LH) [de

  16. Highly Sensitive Liquid Core Temperature Sensor Based on Multimode Interference Effects

    Directory of Open Access Journals (Sweden)

    Miguel A. Fuentes-Fuentes

    2015-10-01

    Full Text Available A novel fiber optic temperature sensor based on a liquid-core multimode interference device is demonstrated. The advantage of such structure is that the thermo-optic coefficient (TOC of the liquid is at least one order of magnitude larger than that of silica and this, combined with the fact that the TOC of silica and the liquid have opposite signs, provides a liquid-core multimode fiber (MMF highly sensitive to temperature. Since the refractive index of the liquid can be easily modified, this allows us to control the modal properties of the liquid-core MMF at will and the sensor sensitivity can be easily tuned by selecting the refractive index of the liquid in the core of the device. The maximum sensitivity measured in our experiments is 20 nm/°C in the low-temperature regime up to 60 °C. To the best of our knowledge, to date, this is the largest sensitivity reported for fiber-based MMI temperature sensors.

  17. Assessment of axillary temperature for the evaluation of normal body temperature of healthy young adults at rest in a thermoneutral environment.

    Science.gov (United States)

    Marui, Shuri; Misawa, Ayaka; Tanaka, Yuki; Nagashima, Kei

    2017-02-22

    The aims of this study were to (1) evaluate whether recently introduced methods of measuring axillary temperature are reliable, (2) examine if individuals know their baseline body temperature based on an actual measurement, and (3) assess the factors affecting axillary temperature and reevaluate the meaning of the axillary temperature. Subjects were healthy young men and women (n = 76 and n = 65, respectively). Three measurements were obtained: (1) axillary temperature using a digital thermometer in a predictive mode requiring 10 s (T ax-10 s ), (2) axillary temperature using a digital thermometer in a standard mode requiring 10 min (T ax-10 min ), and (3) tympanic membrane temperature continuously measured by infrared thermometry (T ty ). The subjects answered questions about eating and exercise habits, sleep and menstrual cycles, and thermoregulation and reported what they believed their regular body temperature to be (T reg ). T reg , T ax-10 s , T ax-10 min , and T ty were 36.2 ± 0.4, 36.4 ± 0.5, 36.5 ± 0.4, and 36.8 ± 0.3 °C (mean ± SD), respectively. There were correlations between T ty and T ax-10 min , T ty and T ax-10 s , and T ax-10 min and T ax-10 s (r = .62, r = .46, and r = .59, respectively, P body mass indices and irregular menstrual cycles. Modern devices for measuring axillary temperature may have changed the range of body temperature that is recognized as normal. Core body temperature variations estimated by tympanic measurements were smaller than those estimated by axillary measurements. This variation of axillary temperature may be due to changes in the measurement methods introduced by modern devices and techniques. However, axillary temperature values correlated well with those of tympanic measurements, suggesting that the technique may reliably report an individual's state of health. It is important for individuals to know their baseline axillary temperature to evaluate subsequent

  18. Past temperature reconstructions from deep ice cores: relevance for future climate change

    Directory of Open Access Journals (Sweden)

    V. Masson-Delmotte

    2006-01-01

    Full Text Available Ice cores provide unique archives of past climate and environmental changes based only on physical processes. Quantitative temperature reconstructions are essential for the comparison between ice core records and climate models. We give an overview of the methods that have been developed to reconstruct past local temperatures from deep ice cores and highlight several points that are relevant for future climate change. We first analyse the long term fluctuations of temperature as depicted in the long Antarctic record from EPICA Dome C. The long term imprint of obliquity changes in the EPICA Dome C record is highlighted and compared to simulations conducted with the ECBILT-CLIO intermediate complexity climate model. We discuss the comparison between the current interglacial period and the long interglacial corresponding to marine isotopic stage 11, ~400 kyr BP. Previous studies had focused on the role of precession and the thresholds required to induce glacial inceptions. We suggest that, due to the low eccentricity configuration of MIS 11 and the Holocene, the effect of precession on the incoming solar radiation is damped and that changes in obliquity must be taken into account. The EPICA Dome C alignment of terminations I and VI published in 2004 corresponds to a phasing of the obliquity signals. A conjunction of low obliquity and minimum northern hemisphere summer insolation is not found in the next tens of thousand years, supporting the idea of an unusually long interglacial ahead. As a second point relevant for future climate change, we discuss the magnitude and rate of change of past temperatures reconstructed from Greenland (NorthGRIP and Antarctic (Dome C ice cores. Past episodes of temperatures above the present-day values by up to 5°C are recorded at both locations during the penultimate interglacial period. The rate of polar warming simulated by coupled climate models forced by a CO2 increase of 1% per year is compared to ice-core

  19. Estimating core temperature in infants and children after cardiac surgery: a comparison of six methods.

    Science.gov (United States)

    Maxton, Fiona J C; Justin, Linda; Gillies, Donna

    2004-01-01

    Monitoring temperature in critically ill children is an important component of care, yet the accuracy of methods is often questioned. Temperature measured in the pulmonary artery is considered the 'gold standard', but this route is unsuitable for the majority of patients. An accurate, reliable and less invasive method is, however, yet to be established in paediatric intensive care work. To determine which site most closely reflects core temperature in babies and children following cardiac surgery, by comparing pulmonary artery temperature to the temperature measured at rectal, bladder, nasopharyngeal, axillary and tympanic sites. A convenience sample of 19 postoperative cardiac patients was studied. Temperature was recorded as a continuous measurement from pulmonary artery, rectal, nasopharyngeal and bladder sites. Axillary and tympanic temperatures were recorded at 30 minute intervals for 6 1/2 hours postoperatively. The small sample size of 19 infants and children limits the generalizability of the study. Repeated measures analysis of variance demonstrated no significant difference between pulmonary artery and bladder temperatures, and pulmonary artery and nasopharyngeal temperatures. Intraclass correlation showed that agreement was greatest between pulmonary artery temperature and temperature measured by bladder catheter. There was a significant difference between pulmonary artery temperature and temperature measured at rectal, tympanic and pulmonary artery and axillary sites. Repeated measures analysis showed a significant lag between pulmonary artery and rectal temperature of between 0 and 150 minutes after the 6-hour measurement period. In this study, bladder temperature was shown to be the best estimate of pulmonary artery temperature, closely followed by the temperature measured by nasopharyngeal probe. The results support the use of bladder or nasopharyngeal catheters to monitor temperature in critically ill children after cardiac surgery.

  20. Investigation on the Core Bypass Flow in a Very High Temperature Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Yassin

    2013-10-22

    Uncertainties associated with the core bypass flow are some of the key issues that directly influence the coolant mass flow distribution and magnitude, and thus the operational core temperature profiles, in the very high-temperature reactor (VHTR). Designers will attempt to configure the core geometry so the core cooling flow rate magnitude and distribution conform to the design values. The objective of this project is to study the bypass flow both experimentally and computationally. Researchers will develop experimental data using state-of-the-art particle image velocimetry in a small test facility. The team will attempt to obtain full field temperature distribution using racks of thermocouples. The experimental data are intended to benchmark computational fluid dynamics (CFD) codes by providing detailed information. These experimental data are urgently needed for validation of the CFD codes. The following are the project tasks: • Construct a small-scale bench-top experiment to resemble the bypass flow between the graphite blocks, varying parameters to address their impact on bypass flow. Wall roughness of the graphite block walls, spacing between the blocks, and temperature of the blocks are some of the parameters to be tested. • Perform CFD to evaluate pre- and post-test calculations and turbulence models, including sensitivity studies to achieve high accuracy. • Develop the state-of-the art large eddy simulation (LES) using appropriate subgrid modeling. • Develop models to be used in systems thermal hydraulics codes to account and estimate the bypass flows. These computer programs include, among others, RELAP3D, MELCOR, GAMMA, and GAS-NET. Actual core bypass flow rate may vary considerably from the design value. Although the uncertainty of the bypass flow rate is not known, some sources have stated that the bypass flow rates in the Fort St. Vrain reactor were between 8 and 25 percent of the total reactor mass flow rate. If bypass flow rates are on the

  1. Efficient approach for simulating response of multi-body structure in reactor core subjected to seismic loading

    International Nuclear Information System (INIS)

    Zhang Hongkun; Cen Song; Wang Haitao; Cheng Huanyu

    2012-01-01

    An efficient 3D approach is proposed for simulating the complicated responses of the multi-body structure in reactor core under seismic loading. By utilizing the rigid-body and connector functions of the software Abaqus, the multi-body structure of the reactor core is simplified as a mass-point system interlinked by spring-dashpot connectors. And reasonable schemes are used for determining various connector coefficients. Furthermore, a scripting program is also complied for the 3D parametric modeling. Numerical examples show that, the proposed method can not only produce the results which satisfy the engineering requirements, but also improve the computational efficiency more than 100 times. (authors)

  2. Analytical study on coolant temperature of several leak flows in the experimental VHTr core

    International Nuclear Information System (INIS)

    Fumizawa, Motoh; Arai, Taketoshi; Miyamoto, Yoshiaki

    1982-08-01

    This report describes heat transfer analysis of several leak flows which bypass main coolant flow path in the experimental VHTR core. The analysis contains the leak flow at permanent reflectors, replaceable reflectors and gaps between fuel columns. The summary of the results are as follows: (1) the temperature of the leak flow gas increases up to the surface temperature of permanent reflectors, (2) the gas temperature at replaceable reflectors increases at least 40 0 C in case of the worst analytical condition, (3) the gas temperature increases remarkably with decreasing equivalent diameter which is changed by the angle of bevel edge of the reflector, (4) while the gas temperature is low at the upper part of the fuel element, the temperature increases rapidly when it flow down along the gap of the fuel columns. (author)

  3. Measuring technique of super high temperature thermal properties of reactor core materials

    International Nuclear Information System (INIS)

    Ono, Akira; Baba, Tetsuya; Watanabe, Hideo; Matsumoto, Tsuyoshi

    1998-01-01

    In this study, thermal properties of reactor core materials used for water cooled reactors and FBR were tried to develop a technique to measure their melt states at less than 3,000degC in order to contribute more correct evaluation of the reactor core behavior at severe accident. Then, a thermal property measuring method of high temperature melt by using floating method was investigated and its fundamental design was begun to investigate under a base of optimum judgement on the air flow floating throw-down method. And, in order to measure emissivity of melt specimen surface essential for correct temperature measurement using the throw down method, a spectroscopic emissivity measuring unit using an ellipsometer was prepared and induced. On the thermal properties measurement using the holding method, a specimen container to measure thermal diffusiveness of the high temperature melts by using laser flashing method was tried to prepare. (G.K.)

  4. Body temperatures of fish feeding in the Point Beach thermal discharge

    International Nuclear Information System (INIS)

    Spigarelli, S.A.; Thommes, M.M.

    1974-01-01

    Between April and November, 1973, measurements of internal body temperature were made on 1310 fish caught by fishermen at the Point Beach Nuclear Plant. Records were also made of fish weight, length, and sex and intake and discharge temperatures. A table is presented to show mean monthly body temperatures and numbers of each species. Approximately 76 percent of the measurements were made on rainbow and brown trout, since these species accounted for 74 percent of the catch. Body temperatures of most fish were intermediate between intake and discharge temperatures. Results suggested that each species has rather specific seasonal temperature requirements and that the maximum discharge temperature was normally avoided by feeding fish

  5. Study on Characteristic of Temperature Coefficient of Reactivity for Plutonium Core of Pebbled Bed Reactor

    Science.gov (United States)

    Zuhair; Suwoto; Setiadipura, T.; Bakhri, S.; Sunaryo, G. R.

    2018-02-01

    As a part of the solution searching for possibility to control the plutonium, a current effort is focused on mechanisms to maximize consumption of plutonium. Plutonium core solution is a unique case in the high temperature reactor which is intended to reduce the accumulation of plutonium. However, the safety performance of the plutonium core which tends to produce a positive temperature coefficient of reactivity should be examined. The pebble bed inherent safety features which are characterized by a negative temperature coefficient of reactivity must be maintained under any circumstances. The purpose of this study is to investigate the characteristic of temperature coefficient of reactivity for plutonium core of pebble bed reactor. A series of calculations with plutonium loading varied from 0.5 g to 1.5 g per fuel pebble were performed by the MCNPX code and ENDF/B-VII library. The calculation results show that the k eff curve of 0.5 g Pu/pebble declines sharply with the increase in fuel burnup while the greater Pu loading per pebble yields k eff curve declines slighter. The fuel with high Pu content per pebble may reach long burnup cycle. From the temperature coefficient point of view, it is concluded that the reactor containing 0.5 g-1.25 g Pu/pebble at high burnup has less favorable safety features if it is operated at high temperature. The use of fuel with Pu content of 1.5 g/pebble at high burnup should be considered carefully from core safety aspect because it could affect transient behavior into a fatal accident situation.

  6. Analysis Of Temperature Effects On Reactivity Of The Rsg-Gas Core Using Silicide Fuels

    International Nuclear Information System (INIS)

    Surbakti, Tukiran; Pinem, Surian

    2001-01-01

    RSG-GAS has been operating using new silicide fuels so that it is necessary to estimate and to measure the effect of temperature on reactivity of the core. The parameters to be determined due to temperature effect are reactivity coefficient of moderator temperature, temperature coefficient of fuel element and power reactivity coefficient. By doing a couple compensation method, determination of reactivity coefficient as well as the reactivity coefficient of moderator temperature can be obtained. Furthermore, coefficient of the reactivity was successfully estimated using the combination of WIMS-D4 and Batan-2DIFF. The cell calculation was done by using WIMS-D4 code to get macroscopic cross section and Batan-2DIFF code is used for core calculation. The calculation and experimental results of reactivity coefficient do not show any deviation from RSG-GAS safety margin. The results are -2,84 sen/ o C, -1,29 sen/MW and -0,64 sen/ o C for reactivity coefficients of temperature, power, fuel element and moderator temperature, respectively. All of 3 parameters are absolutely met with safety criteria

  7. Validity of Devices That Assess Body Temperature During Outdoor Exercise in the Heat

    OpenAIRE

    Casa, Douglas J; Becker, Shannon M; Ganio, Matthew S; Brown, Christopher M; Yeargin, Susan W; Roti, Melissa W; Siegler, Jason; Blowers, Julie A; Glaviano, Neal R; Huggins, Robert A; Armstrong, Lawrence E; Maresh, Carl M

    2007-01-01

    Context: Rectal temperature is recommended by the National Athletic Trainers' Association as the criterion standard for recognizing exertional heat stroke, but other body sites commonly are used to measure temperature. Few authors have assessed the validity of the thermometers that measure body temperature at these sites in athletic settings.

  8. Influence of body temperature on the development of fatigue during prolonged exercise in the heat

    DEFF Research Database (Denmark)

    Hyldig, Tino Hoffmann

    1999-01-01

    We investigated whether fatigue during prolonged exercise in uncompensable hot environments occurred at the same critical level of hyperthermia when the initial value and the rate of increase in body temperature are altered. To examine the effect of initial body temperature [esophageal temperatur...

  9. Analysis of in-core coolant temperatures of FFTF instrumented fuels tests at full power

    International Nuclear Information System (INIS)

    Hoth, C.W.

    1981-01-01

    Two full size highly instrumented fuel assemblies were inserted into the core of the Fast Flux Test Facility in December of 1979. The major objectives of these instrumented tests are to provide verification of the FFTF core conditions and to characterize temperature patterns within FFTF driver fuel assemblies. A review is presented of the results obtained during the power ascents and during irradiation at a constant reactor power of 400 MWt. The results obtained from these instrumented tests verify the conservative nature of the design methods used to establish core conditions in FFTF. The success of these tests also demonstrates the ability to design, fabricate, install and irradiate complex, instrumented fuel tests in FFTF using commercially procured components

  10. Brain core temperature of patients with mild traumatic brain injury as assessed by DWI-thermometry

    Energy Technology Data Exchange (ETDEWEB)

    Tazoe, Jun; Yamada, Kei; Akazawa, Kentaro [Kyoto Prefectural University of Medicine, Department of Radiology, Graduate School of Medical Science, Kyoto City, Kyoto (Japan); Sakai, Koji [Kyoto University, Department of Human Health Science, Graduate School of Medicine, Kyoto (Japan); Mineura, Katsuyoshi [Kyoto Prefectural University of Medicine, Department of Neurosurgery, Graduate School of Medical Science, Kyoto City, Kyoto (Japan)

    2014-10-15

    The aim of this study was to assess the brain core temperature of patients with mild traumatic brain injury (mTBI) using a noninvasive temperature measurement technique based on the diffusion coefficient of the cerebrospinal fluid. This retrospective study used the data collected from April 2008 to June 2011. The patient group comprised 20 patients with a Glasgow Coma Scale score of 14 or 15 who underwent magnetic resonance imaging within 30 days after head trauma. The normal control group comprised 14 subjects who volunteered for a brain checkup (known in Japan as ''brain dock''). We compared lateral ventricular (LV) temperature between patient and control groups. Follow-up studies were performed for four patients. LV temperature measurements were successfully performed for both patients and controls. Mean (±standard deviation) measured LV temperature was 36.9 ± 1.5 C in patients, 38.7 ± 1.8 C in follow-ups, and 37.9 ± 1.2 C in controls, showing a significant difference between patients and controls (P = 0.017). However, no significant difference was evident between patients and follow-ups (P = 0.595) or between follow-ups and controls (P = 0.465). A reduction in brain core temperature was observed in patients with mTBI, possibly due to a global decrease in metabolism. (orig.)

  11. Brain core temperature of patients with mild traumatic brain injury as assessed by DWI-thermometry

    International Nuclear Information System (INIS)

    Tazoe, Jun; Yamada, Kei; Akazawa, Kentaro; Sakai, Koji; Mineura, Katsuyoshi

    2014-01-01

    The aim of this study was to assess the brain core temperature of patients with mild traumatic brain injury (mTBI) using a noninvasive temperature measurement technique based on the diffusion coefficient of the cerebrospinal fluid. This retrospective study used the data collected from April 2008 to June 2011. The patient group comprised 20 patients with a Glasgow Coma Scale score of 14 or 15 who underwent magnetic resonance imaging within 30 days after head trauma. The normal control group comprised 14 subjects who volunteered for a brain checkup (known in Japan as ''brain dock''). We compared lateral ventricular (LV) temperature between patient and control groups. Follow-up studies were performed for four patients. LV temperature measurements were successfully performed for both patients and controls. Mean (±standard deviation) measured LV temperature was 36.9 ± 1.5 C in patients, 38.7 ± 1.8 C in follow-ups, and 37.9 ± 1.2 C in controls, showing a significant difference between patients and controls (P = 0.017). However, no significant difference was evident between patients and follow-ups (P = 0.595) or between follow-ups and controls (P = 0.465). A reduction in brain core temperature was observed in patients with mTBI, possibly due to a global decrease in metabolism. (orig.)

  12. Body temperature and cold sensation during and following exercise under temperate room conditions in cold-sensitive young trained females.

    Science.gov (United States)

    Fujii, Naoto; Aoki-Murakami, Erii; Tsuji, Bun; Kenny, Glen P; Nagashima, Kei; Kondo, Narihiko; Nishiyasu, Takeshi

    2017-11-01

    We evaluated cold sensation at rest and in response to exercise-induced changes in core and skin temperatures in cold-sensitive exercise trained females. Fifty-eight trained young females were screened by a questionnaire, selecting cold-sensitive (Cold-sensitive, n  = 7) and non-cold-sensitive (Control, n  = 7) individuals. Participants rested in a room at 29.5°C for ~100 min after which ambient temperature was reduced to 23.5°C where they remained resting for 60 min. Participants then performed 30-min of moderate intensity cycling (50% peak oxygen uptake) followed by a 60-min recovery. Core and mean skin temperatures and cold sensation over the whole-body and extremities (fingers and toes) were assessed throughout. Resting core temperature was lower in the Cold-sensitive relative to Control group (36.4 ± 0.3 vs. 36.7 ± 0.2°C). Core temperature increased to similar levels at end-exercise (~37.2°C) and gradually returned to near preexercise rest levels at the end of recovery (>36.6°C). Whole-body cold sensation was greater in the Cold-sensitive relative to Control group during resting at a room temperature of 23.5°C only without a difference in mean skin temperature between groups. In contrast, cold sensation of the extremities was greater in the Cold-sensitive group prior to, during and following exercise albeit this was not paralleled by differences in mean extremity skin temperature. We show that young trained females who are sensitive to cold exhibit augmented whole-body cold sensation during rest under temperate ambient conditions. However, this response is diminished during and following exercise. In contrast, cold sensation of extremities is augmented during resting that persists during and following exercise. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  13. Relationship between misonidazole toxicity and core temperature in C3H mice

    International Nuclear Information System (INIS)

    Gomer, C.J.; Johnson, R.J.

    1979-01-01

    A single intraperitoneal injection of the radiation sensitizer misonidazole at doses greater than 0.5 mg/g was found to produce a transient hypothermic response in C3H mice. An increase in the acute toxicity of this drug was demonstrated when the animal core temperature was maintained at a normal 35 to 37 0 C by placing the mice in a warmed environment immediately following injection of the drug. The LD/sub 50/3 days/ dose of misonidazole was determined to be 1.48 mg/g for mice allowed to become hypothermic following injection but 0.77 mg/g for mice maintained at a normal core temperature following injection

  14. Article comprising a garment or other textile structure for use in controlling body temperature

    Science.gov (United States)

    Butzer, Melissa J.

    2000-01-01

    There is disclosed an article for use in cooling body temperature which comprises a garment having a coat and pant, with each having a body section adapted to receive a portion of the torso of the wearer and extensions from the body section to receive the wearer's limbs. The garment includes a system for circulating temperature controlling fluid from a suitable source through patches removably received in pockets in each of body section and extensions.

  15. Regional thermal specialisation in a mammal: temperature affects power output of core muscle more than that of peripheral muscle in adult mice (Mus musculus).

    Science.gov (United States)

    James, Rob S; Tallis, Jason; Angilletta, Michael J

    2015-01-01

    In endotherms, such as mammals and birds, internal organs can specialise to function within a narrow thermal range. Consequently, these organs should become more sensitive to changes in body temperature. Yet, organs at the periphery of the body still experience considerable fluctuations in temperature, which could select for lower thermal sensitivity. We hypothesised that the performance of soleus muscle taken from the leg would depend less on temperature than would the performance of diaphragm muscle taken from the body core. Soleus and diaphragm muscles were isolated from mice and subjected to isometric and work-loop studies to analyse mechanical performance at temperatures between 15 and 40 °C. Across this thermal range, soleus muscle took longer to generate isometric force and longer to relax, and tended to produce greater normalised maximal force (stress) than did diaphragm muscle. The time required to produce half of maximal force during isometric tetanus and the time required to relax half of maximal force were both more sensitive to temperature in soleus than they were in diaphragm. However, thermal sensitivities of maximal force during isometric tetani were similar for both muscles. Consistent with our hypothesis, power output (the product of speed and force) was greater in magnitude and more thermally sensitive in diaphragm than it was in soleus. Our findings, when combined with previous observations of muscles from regionally endothermic fish, suggest that endothermy influences the thermal sensitivities of power output in core and peripheral muscles.

  16. Novel automated inversion algorithm for temperature reconstruction using gas isotopes from ice cores

    Directory of Open Access Journals (Sweden)

    M. Döring

    2018-06-01

    Full Text Available Greenland past temperature history can be reconstructed by forcing the output of a firn-densification and heat-diffusion model to fit multiple gas-isotope data (δ15N or δ40Ar or δ15Nexcess extracted from ancient air in Greenland ice cores using published accumulation-rate (Acc datasets. We present here a novel methodology to solve this inverse problem, by designing a fully automated algorithm. To demonstrate the performance of this novel approach, we begin by intentionally constructing synthetic temperature histories and associated δ15N datasets, mimicking real Holocene data that we use as true values (targets to be compared to the output of the algorithm. This allows us to quantify uncertainties originating from the algorithm itself. The presented approach is completely automated and therefore minimizes the subjective impact of manual parameter tuning, leading to reproducible temperature estimates. In contrast to many other ice-core-based temperature reconstruction methods, the presented approach is completely independent from ice-core stable-water isotopes, providing the opportunity to validate water-isotope-based reconstructions or reconstructions where water isotopes are used together with δ15N or δ40Ar. We solve the inverse problem T(δ15N, Acc by using a combination of a Monte Carlo based iterative approach and the analysis of remaining mismatches between modelled and target data, based on cubic-spline filtering of random numbers and the laboratory-determined temperature sensitivity for nitrogen isotopes. Additionally, the presented reconstruction approach was tested by fitting measured δ40Ar and δ15Nexcess data, which led as well to a robust agreement between modelled and measured data. The obtained final mismatches follow a symmetric standard-distribution function. For the study on synthetic data, 95 % of the mismatches compared to the synthetic target data are in an envelope between 3.0 to 6.3 permeg for δ15N and 0.23 to 0

  17. THR-TH: a high-temperature gas-cooled nuclear reactor core thermal hydraulics code

    Energy Technology Data Exchange (ETDEWEB)

    Vondy, D.R.

    1984-07-01

    The ORNL version of PEBBLE, the (RZ) pebble bed thermal hydraulics code, has been extended for application to a prismatic gas cooled reactor core. The supplemental treatment is of one-dimensional coolant flow in up to a three-dimensional core description. Power density data from a neutronics and exposure calculation are used as the basic information for the thermal hydraulics calculation of heat removal. Two-dimensional neutronics results may be expanded for a three-dimensional hydraulics calculation. The geometric description for the hydraulics problem is the same as used by the neutronics code. A two-dimensional thermal cell model is used to predict temperatures in the fuel channel. The capability is available in the local BOLD VENTURE computation system for reactor core analysis with capability to account for the effect of temperature feedback by nuclear cross section correlation. Some enhancements have also been added to the original code to add pebble bed modeling flexibility and to generate useful auxiliary results. For example, an estimate is made of the distribution of fuel temperatures based on average and extreme conditions regularly calculated at a number of locations.

  18. Twin-Core Fiber-Based Mach Zehnder Interferometer for Simultaneous Measurement of Strain and Temperature

    Science.gov (United States)

    Kowal, Dominik; Urbanczyk, Waclaw; Mergo, Pawel

    2018-01-01

    In this paper we present an all-fiber interferometric sensor for the simultaneous measurement of strain and temperature. It is composed of a specially fabricated twin-core fiber spliced between two pieces of a single-mode fiber. Due to the refractive index difference between the two cores in a twin-core fiber, a differential interference pattern is produced at the sensor output. The phase response of the interferometer to strain and temperature is measured in the 850–1250 nm spectral range, showing zero sensitivity to strain at 1000 nm. Due to the significant difference in sensitivities to both parameters, our interferometer is suitable for two-parameter sensing. The simultaneous response of the interferometer to strain and temperature was studied using the two-wavelength interrogation method and a novel approach based on the spectral fitting of the differential phase response. As the latter technique uses all the gathered spectral information, it is more reliable and yields the results with better accuracy. PMID:29558386

  19. THR-TH: a high-temperature gas-cooled nuclear reactor core thermal hydraulics code

    International Nuclear Information System (INIS)

    Vondy, D.R.

    1984-07-01

    The ORNL version of PEBBLE, the (RZ) pebble bed thermal hydraulics code, has been extended for application to a prismatic gas cooled reactor core. The supplemental treatment is of one-dimensional coolant flow in up to a three-dimensional core description. Power density data from a neutronics and exposure calculation are used as the basic information for the thermal hydraulics calculation of heat removal. Two-dimensional neutronics results may be expanded for a three-dimensional hydraulics calculation. The geometric description for the hydraulics problem is the same as used by the neutronics code. A two-dimensional thermal cell model is used to predict temperatures in the fuel channel. The capability is available in the local BOLD VENTURE computation system for reactor core analysis with capability to account for the effect of temperature feedback by nuclear cross section correlation. Some enhancements have also been added to the original code to add pebble bed modeling flexibility and to generate useful auxiliary results. For example, an estimate is made of the distribution of fuel temperatures based on average and extreme conditions regularly calculated at a number of locations

  20. Orbital bleeding in rats while under diethylether anaesthesia does not influence telemetrically determined heart rate, body temperature, locomotor and eating activity when compared with anaesthesia alone

    NARCIS (Netherlands)

    vanHerck, H; DeBoer, SF; Hesp, APM; VanLith, HA; Baumans, [No Value; Beynen, AC; Herck, H. van; Lith, H.A. van

    The question addressed was whether orbital bleeding in rats, while under diethylether anaesthesia, affects their locomotor activity, body core temperature, heart rate rhythm and eating pattern. Roman High Avoidance (RHA) and Roman Low Avoidance (RLA) rats were used to enhance generalization of the

  1. The impact of high temperatures on foraging behaviour and body ...

    African Journals Online (AJOL)

    High temperatures can pose significant thermoregulation challenges for endotherms, and determining how individual species respond to high temperatures will be important for predicting the impact of global warming on wild populations. Animals can adjust their behaviour or physiology to cope with higher temperatures, ...

  2. Muscle, skin and core temperature after -110°c cold air and 8°c water treatment.

    Science.gov (United States)

    Costello, Joseph Thomas; Culligan, Kevin; Selfe, James; Donnelly, Alan Edward

    2012-01-01

    The aim of this investigation was to elucidate the reductions in muscle, skin and core temperature following exposure to -110°C whole body cryotherapy (WBC), and compare these to 8°C cold water immersion (CWI). Twenty active male subjects were randomly assigned to a 4-min exposure of WBC or CWI. A minimum of 7 days later subjects were exposed to the other treatment. Muscle temperature in the right vastus lateralis (n=10); thigh skin (average, maximum and minimum) and rectal temperature (n=10) were recorded before and 60 min after treatment. The greatest reduction (P<0.05) in muscle (mean ± SD; 1 cm: WBC, 1.6 ± 1.2°C; CWI, 2.0 ± 1.0°C; 2 cm: WBC, 1.2 ± 0.7°C; CWI, 1.7 ± 0.9°C; 3 cm: WBC, 1.6 ± 0.6°C; CWI, 1.7 ± 0.5°C) and rectal temperature (WBC, 0.3 ± 0.2°C; CWI, 0.4 ± 0.2°C) were observed 60 min after treatment. The largest reductions in average (WBC, 12.1 ± 1.0°C; CWI, 8.4 ± 0.7°C), minimum (WBC, 13.2 ± 1.4°C; CWI, 8.7 ± 0.7°C) and maximum (WBC, 8.8 ± 2.0°C; CWI, 7.2 ± 1.9°C) skin temperature occurred immediately after both CWI and WBC (P<0.05). Skin temperature was significantly lower (P<0.05) immediately after WBC compared to CWI. The present study demonstrates that a single WBC exposure decreases muscle and core temperature to a similar level of those experienced after CWI. Although both treatments significantly reduced skin temperature, WBC elicited a greater decrease compared to CWI. These data may provide information to clinicians and researchers attempting to optimise WBC and CWI protocols in a clinical or sporting setting.

  3. Muscle, skin and core temperature after -110°c cold air and 8°c water treatment.

    Directory of Open Access Journals (Sweden)

    Joseph Thomas Costello

    Full Text Available The aim of this investigation was to elucidate the reductions in muscle, skin and core temperature following exposure to -110°C whole body cryotherapy (WBC, and compare these to 8°C cold water immersion (CWI. Twenty active male subjects were randomly assigned to a 4-min exposure of WBC or CWI. A minimum of 7 days later subjects were exposed to the other treatment. Muscle temperature in the right vastus lateralis (n=10; thigh skin (average, maximum and minimum and rectal temperature (n=10 were recorded before and 60 min after treatment. The greatest reduction (P<0.05 in muscle (mean ± SD; 1 cm: WBC, 1.6 ± 1.2°C; CWI, 2.0 ± 1.0°C; 2 cm: WBC, 1.2 ± 0.7°C; CWI, 1.7 ± 0.9°C; 3 cm: WBC, 1.6 ± 0.6°C; CWI, 1.7 ± 0.5°C and rectal temperature (WBC, 0.3 ± 0.2°C; CWI, 0.4 ± 0.2°C were observed 60 min after treatment. The largest reductions in average (WBC, 12.1 ± 1.0°C; CWI, 8.4 ± 0.7°C, minimum (WBC, 13.2 ± 1.4°C; CWI, 8.7 ± 0.7°C and maximum (WBC, 8.8 ± 2.0°C; CWI, 7.2 ± 1.9°C skin temperature occurred immediately after both CWI and WBC (P<0.05. Skin temperature was significantly lower (P<0.05 immediately after WBC compared to CWI. The present study demonstrates that a single WBC exposure decreases muscle and core temperature to a similar level of those experienced after CWI. Although both treatments significantly reduced skin temperature, WBC elicited a greater decrease compared to CWI. These data may provide information to clinicians and researchers attempting to optimise WBC and CWI protocols in a clinical or sporting setting.

  4. Deviation from goal pace, body temperature and body mass loss as predictors of road race performance.

    Science.gov (United States)

    Adams, William M; Hosokawa, Yuri; Belval, Luke N; Huggins, Robert A; Stearns, Rebecca L; Casa, Douglas J

    2017-03-01

    The purpose of this study was to examine the relationship between pacing, gastrointestinal temperature (T GI ), and percent body mass loss (%BML) on relative race performance during a warm weather 11.3km road race. Observational study of a sample of active runners competing in the 2014 Falmouth Road Race. Participants ingested a T GI pill and donned a GPS enabled watch with heart rate monitoring capabilities prior to the start of the race. Percent off predicted pace (% OFF ) was calculated for seven segments of the race. Separate linear regression analyses were used to assess the relationship between pace, T ​GI , and %BML on relative race performance. One-way ANOVA was used to analyse post race T GI (≥40°C vs 0.05). There was a trend in a slower pace (p=0.055) and greater % OFF (p=0.056) in runners finishing the race with a T GI >40°C. Overall, finish time was influenced by greater variations in pace during the first two miles of the race. In addition, runners who minimized fluid losses and had lower T GI were associated with meeting self-predicted goals. Copyright © 2016 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  5. Influence of elevated body temperature on circulating immunoglobulin-secreting cells

    DEFF Research Database (Denmark)

    Kappel, M; Barington, T; Gyhrs, A

    1995-01-01

    This work was designed to investigate the effect of in vivo hyperthermia in man on circulating immunoglobulin-secreting cells. Eight healthy male volunteers were immersed into a hot waterbath (WI) (water temperature 39.5 degrees C) for 2 h, whereby their body temperature rose to 39.5 degrees C....... On another occasion they served as their own controls, being immersed into thermoneutral water (water temperature 34.5 degrees C) for 2 h. Blood samples were drawn before immersion, at body temperatures of 38, 39 and 39.5 degrees C, as well as 2 h after WI when their body temperatures were normalized...

  6. Microsatellite frequencies vary with body mass and body temperature in mammals, suggesting correlated variation in mutation rate

    Directory of Open Access Journals (Sweden)

    William Amos

    2014-11-01

    Full Text Available Substitution rate is often found to correlate with life history traits such as body mass, a predictor of population size and longevity, and body temperature. The underlying mechanism is unclear but most models invoke either natural selection or factors such as generation length that change the number of mutation opportunities per unit time. Here we use published genome sequences from 69 mammals to ask whether life history traits impact another form of genetic mutation, the high rates of predominantly neutral slippage in microsatellites. We find that the length-frequency distributions of three common dinucleotide motifs differ greatly between even closely related species. These frequency differences correlate with body mass and body temperature and can be used to predict the phenotype of an unknown species. Importantly, different length microsatellites show complicated patterns of excess and deficit that cannot be explained by a simple model where species with short generation lengths have experienced more mutations. Instead, the patterns probably require changes in mutation rate that impact alleles of different length to different extents. Body temperature plausibly influences mutation rate by modulating the propensity for slippage. Existing hypotheses struggle to account for a link between body mass and mutation rate. However, body mass correlates inversely with population size, which in turn predicts heterozygosity. We suggest that heterozygote instability, HI, the idea that heterozygous sites show increased mutability, could provide a plausible link between body mass and mutation rate.

  7. ΔN-TRPV1: A Molecular Co-detector of Body Temperature and Osmotic Stress

    Directory of Open Access Journals (Sweden)

    Cristian Zaelzer

    2015-10-01

    Full Text Available Thirst and antidiuretic hormone secretion occur during hyperthermia or hypertonicity to preserve body hydration. These vital responses are triggered when hypothalamic osmoregulatory neurons become depolarized by ion channels encoded by an unknown product of the transient receptor potential vanilloid-1 gene (Trpv1. Here, we show that rodent osmoregulatory neurons express a transcript of Trpv1 that mediates the selective translation of a TRPV1 variant that lacks a significant portion of the channel’s amino terminus (ΔN-TRPV1. The mRNA transcript encoding this variant (Trpv1dn is widely expressed in the brains of osmoregulating vertebrates, including the human hypothalamus. Transfection of Trpv1dn into heterologous cells induced the expression of ion channels that could be activated by either hypertonicity or by heating in the physiological range. Moreover, expression of Trpv1dn rescued the osmosensory and thermosensory responses of single hypothalamic neurons obtained from Trpv1 knockout mice. ΔN-TRPV1 is therefore a co-detector of core body temperature and fluid tonicity.

  8. Determination of the in-core power and the average core temperature of low power research reactors using gamma dose rate measurements

    International Nuclear Information System (INIS)

    Osei Poku, L.

    2012-01-01

    Most reactors incorporate out-of-core neutron detectors to monitor the reactor power. An accurate relationship between the powers indicated by these detectors and actual core thermal power is required. This relationship is established by calibrating the thermal power. The most common method used in calibrating the thermal power of low power reactors is neutron activation technique. To enhance the principle of multiplicity and diversity of measuring the thermal neutron flux and/or power and temperature difference and/or average core temperature of low power research reactors, an alternative and complimentary method has been developed, in addition to the current method. Thermal neutron flux/Power and temperature difference/average core temperature were correlated with measured gamma dose rate. The thermal neutron flux and power predicted using gamma dose rate measurement were in good agreement with the calibrated/indicated thermal neutron fluxes and powers. The predicted data was also good agreement with thermal neutron fluxes and powers obtained using the activation technique. At an indicated power of 30 kW, the gamma dose rate measured predicted thermal neutron flux of (1* 10 12 ± 0.00255 * 10 12 ) n/cm 2 s and (0.987* 10 12 ± 0.00243 * 10 12 ) which corresponded to powers of (30.06 ± 0.075) kW and (29.6 ± 0.073) for both normal level of the pool water and 40 cm below normal levels respectively. At an indicated power of 15 kW, the gamma dose rate measured predicted thermal neutron flux of (5.07* 10 11 ± 0.025* 10 11 ) n/cm 2 s and (5.12 * 10 11 ±0.024* 10 11 ) n/cm 2 s which corresponded to power of (15.21 ± 0.075) kW and (15.36 ± 0.073) kW for both normal levels of the pool water and 40 cm below normal levels respectively. The power predicted by this work also compared well with power obtained from a three-dimensional neutronic analysis for GHARR-1 core. The predicted power also compares well with calculated power using a correlation equation obtained from

  9. Elevated-Temperature Tests Under Static and Aerodynamic Conditions on Honeycomb-Core Sandwich Panels

    Science.gov (United States)

    Groen, Joseph M.; Johnson, Aldie E., Jr.

    1959-01-01

    Stainless-steel honeycomb-core sandwich panels which differed primarily in skin thicknesses were tested at elevated temperatures under static and aerodynamic conditions. The results of these tests were evaluated to determine the insulating effectiveness and structural integrity of the panels. The static radiant-heating tests were performed in front of a quartz-tube radiant heater at panel skin temperatures up to 1,5000 F. The aerodynamic tests were made in a Mach 1.4 heated blowdown wind tunnel. The tunnel temperature was augmented by additional heat supplied by a radiant heater which raised the panel surface temperature above 8000 F during air flow. Static radiant-heating tests of 2 minutes duration showed that all the panels protected the load-carrying structure about equally well. Thin-skin panels showed an advantage for this short-time test over thick-skin panels from a standpoint of weight against insulation. Permanent inelastic strains in the form of local buckles over each cell of the honeycomb core caused an increase in surface roughness. During the aero- dynamic tests all of the panels survived with little or no damage, and panel flutter did not occur.

  10. Core-shell microstructured nanocomposites for synergistic adjustment of environmental temperature and humidity

    Science.gov (United States)

    Zhang, Haiquan; Yuan, Yanping; Zhang, Nan; Sun, Qingrong; Cao, Xiaoling

    2016-11-01

    The adjustment of temperature and humidity is of great importance in a variety of fields. Composites that can perform both functions are prepared by mixing phase change materials (PCMs) with hygroscopic materials. However, the contact area between the adsorbent and humid air is inevitably decreased in such structures, which reduces the number of mass transfer channels for water vapor. An approach entailing the increase in the mass ratio of the adsorbent is presented here to improve the adsorption capacity. A core-shell CuSO4/polyethylene glycol (PEG) nanomaterial was developed to satisfy the conflicting requirements of temperature control and dehumidification. The results show that the equilibrium adsorption capacity of the PEG coating layer was enhanced by a factor of 188 compared with that of the pure PEG powder. The coating layer easily concentrates vapor, providing better adsorption properties for the composite. Furthermore, the volume modification of the CuSO4 matrix was reduced by 80% by the PEG coated layer, a factor that increases the stability of the composite. For the phase change process, the crystallization temperature of the coating layer was adjusted between 37.2 and 46.3 °C by interfacial tension. The core-shell CuSO4/PEG composite reported here provides a new general approach for the simultaneous control of temperature and humidity.

  11. Effect of Permanent Side Reflector on the Temperature Variation in the VHTR Core

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sung Nam; Tak, Nam-il; Kim, Min-Hwan [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The temperature and pressure conditions range from 490°C to 950°C, 7MPa. GAMMA+ was developed to predict the overall phenomena of the VHTR system. The GAMMA+ algorithms focused on the transient condition for the systems. Therefore, the computational control volumes are coarse for reducing the computational time. However, there are difficulties calculating the temperature gradient in the fuel blocks in detail. There is a demand to predict a hot spot and temperature distribution in the reactor core to apply a thermal stress and find the fuel temperature margin. Computational Fluid Dynamic (CFD) tools can be an option to model the VHTR. However, the fluid has to be solved in three dimensions. The long computational time and heavy burden of the memory size have called for an alternative option. The PSR blocks are considered in the prismatic VHTR calculation with the CORONA code. The temperatures of a single assembly with an arc shape reflector by the CORONA code were verified with the results by the CFX calculation. The temperature distributions of the PSR regions did not show significant differences depending on the fixed inlet temperature boundary condition and bypass flow condition.

  12. The time of day differently influences fatigue and locomotor activity: is body temperature a key factor?

    Science.gov (United States)

    Machado, Frederico Sander Mansur; Rodovalho, Gisele Vieira; Coimbra, Cândido Celso

    2015-03-01

    The aim of this study was to verify the possible interactions between exercise capacity and spontaneous locomotor activity (SLA) during the oscillation of core body temperature (Tb) that occurs during the light/dark cycle. Wistar rats (n=11) were kept at an animal facility under a light/dark cycle of 14/10h at an ambient temperature of 23°C and water and food ad libitum. Initially, in order to characterize the daily oscillation in SLA and Tb of the rats, these parameters were continuously recorded for 24h using an implantable telemetric sensor (G2 E-Mitter). The animals were randomly assigned to two progressive exercise test protocols until fatigue during the beginning of light and dark-phases. Fatigue was defined as the moment rats could not keep pace with the treadmill. We assessed the time to fatigue, workload and Tb changes induced by exercise. Each test was separated by 3days. Our results showed that exercise capacity and heat storage were higher during the light-phase (plocomotor physical activity have an important inherent component (r=0.864 and r=0.784, respectively, plocomotor activity are not directly associated, both are strongly influenced by daily cycles of light and dark. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Mice Lacking EGR1 Have Impaired Clock Gene (BMAL1) Oscillation, Locomotor Activity, and Body Temperature.

    Science.gov (United States)

    Riedel, Casper Schwartz; Georg, Birgitte; Jørgensen, Henrik L; Hannibal, Jens; Fahrenkrug, Jan

    2018-01-01

    Early growth response transcription factor 1 (EGR1) is expressed in the suprachiasmatic nucleus (SCN) after light stimulation. We used EGR1-deficient mice to address the role of EGR1 in the clock function and light-induced resetting of the clock. The diurnal rhythms of expression of the clock genes BMAL1 and PER1 in the SCN were evaluated by semi-quantitative in situ hybridization. We found no difference in the expression of PER1 mRNA between wildtype and EGR1-deficient mice; however, the daily rhythm of BMAL1 mRNA was completely abolished in the EGR1-deficient mice. In addition, we evaluated the circadian running wheel activity, telemetric locomotor activity, and core body temperature of the mice. Loss of EGR1 neither altered light-induced phase shifts at subjective night nor affected negative masking. Overall, circadian light entrainment was found in EGR1-deficient mice but they displayed a reduced locomotor activity and an altered temperature regulation compared to wild type mice. When placed in running wheels, a subpopulation of EGR1-deficient mice displayed a more disrupted activity rhythm with no measurable endogenous period length (tau). In conclusion, the present study provides the first evidence that the circadian clock in the SCN is disturbed in mice deficient of EGR1.

  14. Influence of the Environment on Body Temperature of Racing Greyhounds.

    Science.gov (United States)

    McNicholl, Jane; Howarth, Gordon S; Hazel, Susan J

    2016-01-01

    Heat strain is a potential risk factor for racing greyhounds in hot climates. However, there have been limited studies into the incidence of heat strain (when excess heat causes physiological or pathological effects) in racing greyhounds. The aim of this study was to determine if heat strain occurs in racing greyhounds, and, if so, whether environmental factors (e.g., ambient temperature and relative humidity) or dog-related factors (e.g., sex, bodyweight, color) are associated with the risk of heat strain. A total of 229 greyhounds were included in over 46 race meetings and seven different race venues in South Australia, Australia. Rectal temperatures of dogs were measured pre- and postrace and urine samples collected for analysis of myoglobinuria. Ambient temperature at race times ranged between 11.0 and 40.8°C and relative humidity ranged from 17 to 92%. There was a mean increase in greyhound rectal temperature of 2.1°C (range 1.1-3.1°C). A small but significant association was present between ambient temperature and increase in rectal temperature (r (2) = 0.033, P = 0.007). The mean ambient temperature at race time, of dogs with postrace rectal temperature of or exceeding 41.5°C, was significantly greater than at race time of dogs with a postrace rectal temperature ≤41.5°C (31.2 vs. 27.3°C, respectively, P = 0.004). When the ambient temperature reached 38(o)C, over one-third (39%) of dogs had a rectal temperature >41.5°C. Over half of postrace urine samples were positive by Dipstick reading for hemoglobin/myoglobin, and of 77 urine samples positive for Dipstick readings, 95% were positive for myoglobin. However, urinary myoglobin levels were not associated with ambient temperature or postrace rectal temperatures. The mean increase in rectal temperature was greater in dark (black, blue, brindle) than light (fawn and white) colored greyhounds. The results suggest heat strain occurs in racing greyhounds, evidenced by postrace rectal

  15. Isotopic ordering in eggshells reflects body temperatures and suggests differing thermophysiology in two Cretaceous dinosaurs

    Science.gov (United States)

    Eagle, Robert A.; Enriquez, Marcus; Grellet-Tinner, Gerald; Pérez-Huerta, Alberto; Hu, David; Tütken, Thomas; Montanari, Shaena; Loyd, Sean J.; Ramirez, Pedro; Tripati, Aradhna K.; Kohn, Matthew J.; Cerling, Thure E.; Chiappe, Luis M.; Eiler, John M.

    2015-10-01

    Our understanding of the evolutionary transitions leading to the modern endothermic state of birds and mammals is incomplete, partly because tools available to study the thermophysiology of extinct vertebrates are limited. Here we show that clumped isotope analysis of eggshells can be used to determine body temperatures of females during periods of ovulation. Late Cretaceous titanosaurid eggshells yield temperatures similar to large modern endotherms. In contrast, oviraptorid eggshells yield temperatures lower than most modern endotherms but ~6 °C higher than co-occurring abiogenic carbonates, implying that this taxon did not have thermoregulation comparable to modern birds, but was able to elevate its body temperature above environmental temperatures. Therefore, we observe no strong evidence for end-member ectothermy or endothermy in the species examined. Body temperatures for these two species indicate that variable thermoregulation likely existed among the non-avian dinosaurs and that not all dinosaurs had body temperatures in the range of that seen in modern birds.

  16. Model-based temperature noise monitoring methods for LMFBR core anomaly detection

    International Nuclear Information System (INIS)

    Tamaoki, Tetsuo; Sonoda, Yukio; Sato, Masuo; Takahashi, Ryoichi.

    1994-01-01

    Temperature noise, measured by thermocouples mounted at each core fuel subassembly, is considered to be the most useful signal for detecting and locating local cooling anomalies in an LMFBR core. However, the core outlet temperature noise contains background noise due to fluctuations in the operating parameters including reactor power. It is therefore necessary to reduce this background noise for highly sensitive anomaly detection by subtracting predictable components from the measured signal. In the present study, both a physical model and an autoregressive model were applied to noise data measured in the experimental fast reactor JOYO. The results indicate that the autoregressive model has a higher precision than the physical model in background noise prediction. Based on these results, an 'autoregressive model modification method' is proposed, in which a temporary autoregressive model is generated by interpolation or extrapolation of reference models identified under a small number of different operating conditions. The generated autoregressive model has shown sufficient precision over a wide range of reactor power in applications to artificial noise data produced by an LMFBR noise simulator even when the coolant flow rate was changed to keep a constant power-to-flow ratio. (author)

  17. Cutaneous vascular and core temperature responses to sustained cold exposure in hypoxia.

    Science.gov (United States)

    Simmons, Grant H; Barrett-O'Keefe, Zachary; Minson, Christopher T; Halliwill, John R

    2011-10-01

    We tested the effect of hypoxia on cutaneous vascular regulation and defense of core temperature during cold exposure. Twelve subjects had two microdialysis fibres placed in the ventral forearm and were immersed to the sternum in a bathtub on parallel study days (normoxia and poikilocapnic hypoxia with an arterial O(2) saturation of 80%). One fibre served as the control (1 mM propranolol) and the other received 5 mM yohimbine (plus 1 mM propranolol) to block adrenergic receptors. Skin blood flow was assessed at each site (laser Doppler flowmetry), divided by mean arterial pressure to calculate cutaneous vascular conductance (CVC), and scaled to baseline. Cold exposure was first induced by a progressive reduction in water temperature from 36 to 23°C over 30 min to assess cutaneous vascular regulation, then by clamping the water temperature at 10°C for 45 min to test defense of core temperature. During normoxia, cold stress reduced CVC in control (-44 ± 4%) and yohimbine sites (-13 ± 7%; both P cooling but resulted in greater reductions in CVC in control (-67 ± 7%) and yohimbine sites (-35 ± 11%) during cooling (both P cooling rate during the second phase of cold exposure was unaffected by hypoxia (-1.81 ± 0.23°C h(-1) in normoxia versus -1.97 ± 0.33°C h(-1) in hypoxia; P > 0.05). We conclude that hypoxia increases cutaneous (non-noradrenergic) vasoconstriction during prolonged cold exposure, while core cooling rate is not consistently affected.

  18. Is there an association between body temperature and serum lactate levels in hip fracture patients?

    Science.gov (United States)

    Murtuza, F; Farrier, A J; Venkatesan, M; Smith, R; Khan, A; Uzoigwe, C E; Chami, G

    2015-10-01

    Introduction Hyperlactataemia is associated with adverse outcomes in trauma cases. It is thought to be the result of anaerobic respiration during hypoperfusion. This produces much less energy than complete aerobic glycolysis. Low body temperature in the injured patient carries an equally poor prognosis. Significant amounts of energy are expended in maintaining euthermia. Consequently, there may be a link between lactate levels and dysthermia. Hyperlactataemia may be indicative of inefficient energy production and therefore insufficient energy to maintain euthermia. Alternatively, significant amounts of available oxygen may be sequestered in thermoregulation, resulting in anaerobic respiration and lactate production. Our study investigated whether there is an association between lactate levels and admission body temperature in hip fracture patients. Furthermore, it looked at whether there is a difference in the mean lactate levels between hip fracture patients with low (37.5°C) body temperature on admission, and for patients who have low body temperature, whether there is a progressive rise in serum lactate levels as body temperature falls. Methods The admission temperature and serum lactate of 1,162 patients presenting with hip fracture were recorded. Patients were divided into the euthermic (body temperature 36.5-37.5°C), the pyrexial (>37.5°C) and those with low body temperature (body temperature were compared. Results There was a significant difference in age between the three body temperature groups (p=0.007). The pyrexial cohort was younger than the low body temperature group (mean: 78 vs 82 years). Those with low body temperature had a higher mean lactate level than the euthermic (2.2mmol/l vs 2.0mmol/l, p=0.03). However, there was no progressive rise in serum lactate level as admission temperature fell. Conclusions The findings suggest that in hip fracture patients, the body attempts initially to maintain euthermia, incurring an oxygen debt. This would

  19. Decreases in beetle body size linked to climate change and warming temperatures.

    Science.gov (United States)

    Tseng, Michelle; Kaur, Katrina M; Soleimani Pari, Sina; Sarai, Karnjit; Chan, Denessa; Yao, Christine H; Porto, Paula; Toor, Anmol; Toor, Harpawantaj S; Fograscher, Katrina

    2018-05-01

    Body size is a fundamental ecological trait and is correlated with population dynamics, community structure and function, and ecosystem fluxes. Laboratory data from broad taxonomic groups suggest that a widespread response to a warming world may be an overall decrease in organism body size. However, given the myriad of biotic and abiotic factors that can also influence organism body size in the wild, it is unclear whether results from these laboratory assays hold in nature. Here we use datasets spanning 30 to 100 years to examine whether the body size of wild-caught beetles has changed over time, whether body size changes are correlated with increased temperatures, and we frame these results using predictions derived from a quantitative review of laboratory responses of 22 beetle species to temperature. We found that 95% of laboratory-reared beetles decreased in size with increased rearing temperature, with larger-bodied species shrinking disproportionately more than smaller-bodied beetles. In addition, the museum datasets revealed that larger-bodied beetle species have decreased in size over time, that mean beetle body size explains much of the interspecific variation in beetle responses to temperature, and that long-term beetle size changes are explained by increases in autumn temperature and decreases in spring temperature in this region. Our data demonstrate that the relationship between body size and temperature of wild-caught beetles matches relatively well with results from laboratory studies, and that variation in this relationship is largely explained by interspecific variation in mean beetle body size. This long-term beetle dataset is one of the most comprehensive arthropod body size datasets compiled to date, it improves predictions regarding the shrinking of organisms with global climate change, and together with the meta-analysis data, call for new hypotheses to explain why larger-bodied organisms may be more sensitive to temperature. © 2018 The

  20. Temperature and body weight affect fouling of pig pens.

    Science.gov (United States)

    Aarnink, A J A; Schrama, J W; Heetkamp, M J W; Stefanowska, J; Huynh, T T T

    2006-08-01

    Fouling of the solid lying area in pig housing is undesirable for reasons of animal welfare, animal health, environmental pollution, and labor costs. In this study the influence of temperature on the excreting and lying behavior of growing-finishing pigs of different BW (25, 45, 65, 85, or 105 kg) was studied. Ten groups of 5 pigs were placed in partially slatted pens (60% solid concrete, 40% metal-slatted) in climate respiration chambers. After an adaptation period, temperatures were raised daily for 9 d. Results showed that above certain inflection temperatures (IT; mean 22.6 degrees C, SE = 0.78) the number of excretions (relative to the total number of excretions) on the solid floor increased with temperature (mean increase 9.7%/ degrees C, SE = 1.41). Below the IT, the number of excretions on the solid floor was low and not influenced by temperature (mean 13.2%, SE = 3.5). On average, the IT for excretion on the solid floor decreased with increasing BW, from approximately 25 degrees C at 25 kg to 20 degrees C at 100 kg of BW (P temperature also affected the pattern and postural lying. The temperature at which a maximum number of pigs lay on the slatted floor (i.e., the IT for lying) decreased from approximately 27 degrees C at 25 kg to 23 degrees C at 100 kg of BW (P temperatures, pigs lay more on their sides and less against other pigs (P Temperature affects lying and excreting behavior of growing-finishing pigs in partially slatted pens. Above certain IT, pen fouling increases linearly with temperature. Inflection temperatures decrease at increasing BW.

  1. Chemical interactions of reactor core materials up to very high temperatures

    International Nuclear Information System (INIS)

    Hofmann, P.; Hagen, S.; Schanz, G.; Skokan, A.

    1989-01-01

    The paper describes which chemical interactions may occur in a LWR fuel rod bundle containing (Ag, In, Cd) absorber rods or (Al 2 O 3 /B 4 C) burnable poison rods with increasing temperature up to the complete melting of the components and the formed reaction products. The kinetics of the most important chemical interactions has been investigated and the results are described. In most cases the reaction products have lower melting points or ranges than the original components. This results in a relocation of liquefied components often far below their melting points. There exist three distinct temperature regimes in which liquid phases can form in the core in differently large quantities. These temperature regimes are described in detail. The phase relations in the important ternary (U, Zr, O) system have been extensively studied. The effect of steel constituents on the phase relations is given in addition. All the considerations are focused on PWR conditions only. (orig.) [de

  2. Denali Ice Core Record of North Pacific Sea Surface Temperatures and Marine Primary Productivity

    Science.gov (United States)

    Polashenski, D.; Osterberg, E. C.; Kreutz, K. J.; Winski, D.; Wake, C. P.; Ferris, D. G.; Introne, D.; Campbell, S. W.

    2016-12-01

    Chemical analyses of precipitation preserved in glacial ice cores provide a unique opportunity to study changes in atmospheric circulation patterns and ocean surface conditions through time. In this study, we aim to investigate changes in both the physical and biological parameters of the north-central Pacific Ocean and Bering Sea over the twentieth century using the deuterium excess (d-excess) and methanesulfonic acid (MSA) records from the Mt. Hunter ice cores drilled in Denali National Park, Alaska. These parallel, 208 m-long ice cores were drilled to bedrock during the 2013 field season on the Mt. Hunter plateau (63° N, 151° W, 3,900 m above sea level) by a collaborative research team consisting of members from Dartmouth College and the Universities of Maine and New Hampshire. The cores were sampled on a continuous melter system at Dartmouth College and analyzed for the concentrations major ions (Dionex IC) and trace metals (Element2 ICPMS), and for stable water isotope ratios (Picarro). The depth-age scale has been accurately dated to 400 AD using annual layer counting of several chemical species and further validated using known historical volcanic eruptions and the Cesium-137 spike associated with nuclear weapons testing in 1963. We use HYSPLIT back trajectory modeling to identify likely source areas of moisture and aerosol MSA being transported to the core site. Satellite imagery allows for a direct comparison between chlorophyll a concentrations in these source areas and MSA concentrations in the core record. Preliminary analysis of chlorophyll a and MSA concentrations, both derived almost exclusively from marine biota, suggest that the Mt. Hunter ice cores reflect changes in North Pacific and Bering Sea marine primary productivity. Analysis of the water isotope and MSA data in conjunction with climate reanalysis products shows significant correlations (psea surface temperatures in the Bering Sea and North Central Pacific. These findings, coupled with

  3. The effects of a tranquilizer on body temperature.

    Science.gov (United States)

    1963-10-01

    Four young adult mongrel dogs were exposed twice untranquilized to each of three environmental temperatures: 4.4C, 23.9C, and 37.8C and exposed twice tranquilized with 2.2 mg/Kg propiopromazine hydrochloride. Rectal temperatures were monitored ...

  4. Temporal profile of body temperature in acute ischemic stroke: Relation to infarct size and outcome

    NARCIS (Netherlands)

    M. Geurts (Marjolein); Scheijmans, F.E.V. (Féline E.V.); T. van Seeters (Tom); G.J. Biessels; L.J. Kappelle (Jaap); B.K. Velthuis (Birgitta K.); H.B. van der Worp (Bart); C.B. Majoie (Charles); Y.B.W.E.M. Roos (Yvo); L.E.M. Duijm (Lucien); K. Keizer (Koos); A. van der Lugt (Aad); D.W.J. Dippel (Diederik); Greve, D. (Droogh-de); H.P. Bienfait (Henri); M.A.A. van Walderveen (Marianne); M.J.H. Wermer (Marieke); G.J. Lycklama à Nijeholt (Geert); J. Boiten (Jelis); A. Duyndam (Anita); V.I.H. Kwa; F.J. Meijer (F.); E.J. van Dijk (Ewoud); A.M. Kesselring (Anouk); J. Hofmeijer; J.A. Vos (Jan Albert); W.J. Schonewille (Wouter); W.J. van Rooij (W.); P.L.M. de Kort (Paul); C.C. Pleiter (C.); S.L.M. Bakker (Stef); Bot, J.; M.C. Visser (Marieke); B.K. Velthuis (Birgitta); I.C. van der Schaaf (Irene); J.W. Dankbaar (Jan); W.P. Mali (Willem); van Seeters, T.; A.D. Horsch (Alexander D.); J.M. Niesten (Joris); G.J. Biessels (Geert Jan); L.J. Kappelle (Jaap); J.S.K. Luitse; Y. van der Graaf (Yolanda)

    2016-01-01

    textabstractBackground: High body temperatures after ischemic stroke have been associated with larger infarct size, but the temporal profile of this relation is unknown. We assess the relation between temporal profile of body temperature and infarct size and functional outcome in patients with acute

  5. Admission body temperature predicts long-term mortality after acute stroke

    DEFF Research Database (Denmark)

    Kammersgaard, L P; Jørgensen, H S; Rungby, Jørgen

    2002-01-01

    Body temperature is considered crucial in the management of acute stroke patients. Recently hypothermia applied as a therapy for stroke has been demonstrated to be feasible and safe in acute stroke patients. In the present study, we investigated the predictive role of admission body temperature...

  6. Importance-truncated no-core shell model for fermionic many-body systems

    Energy Technology Data Exchange (ETDEWEB)

    Spies, Helena

    2017-03-15

    The exact solution of quantum mechanical many-body problems is only possible for few particles. Therefore, numerical methods were developed in the fields of quantum physics and quantum chemistry for larger particle numbers. Configuration Interaction (CI) methods or the No-Core Shell Model (NCSM) allow ab initio calculations for light and intermediate-mass nuclei, without resorting to phenomenology. An extension of the NCSM is the Importance-Truncated No-Core Shell Model, which uses an a priori selection of the most important basis states. The importance truncation was first developed and applied in quantum chemistry in the 1970s and latter successfully applied to models of light and intermediate mass nuclei. Other numerical methods for calculations for ultra-cold fermionic many-body systems are the Fixed-Node Diffusion Monte Carlo method (FN-DMC) and the stochastic variational approach with Correlated Gaussian basis functions (CG). There are also such method as the Coupled-Cluster method, Green's Function Monte Carlo (GFMC) method, et cetera, used for calculation of many-body systems. In this thesis, we adopt the IT-NCSM for the calculation of ultra-cold Fermi gases at unitarity. Ultracold gases are dilute, strongly correlated systems, in which the average interparticle distance is much larger than the range of the interaction. Therefore, the detailed radial dependence of the potential is not resolved, and the potential can be replaced by an effective contact interaction. At low energy, s-wave scattering dominates and the interaction can be described by the s-wave scattering length. If the scattering length is small and negative, Cooper-pairs are formed in the Bardeen-Cooper-Schrieffer (BCS) regime. If the scattering length is small and positive, these Cooper-pairs become strongly bound molecules in a Bose-Einstein-Condensate (BEC). In between (for large scattering lengths) is the unitary limit with universal properties. Calculations of the energy spectra

  7. Effect of high temperature filtration on out-core corrosion product activity

    International Nuclear Information System (INIS)

    Horvath, G.L.; Bogancs, J.

    1983-01-01

    Investigation of the effect of high temperature filtration on corrosion product transport and out-core corrosion product activity has been carried out for VVER-440 plants. In the physico-chemical model applied particulate and dissolved corrosion products were taken into account. We supposed 100% effectivity for the particulate filter. It was found that about 0,5% 160 t/h/ of the main flow would result in an approx.50% reduction of the out-core corrosion product activity. Investigation of the details of the physico-chemical model in Nuclear Power Plant Paks showed a particle deposition rate measured during power transients fairly agreeing with other measurements and data used in the calculations. (author)

  8. Seismic response of high temperature gas-cooled reactor core with block-type fuel, (2)

    International Nuclear Information System (INIS)

    Ikushima, Takeshi; Honma, Toshiaki.

    1980-01-01

    For the aseismic design of a high temperature gas-cooled reactor (HTGR) with block-type fuel, it is necessary to predict the motion and force of core columns and blocks. To reveal column vibration characteristics in three-dimensional space and impact response, column vibration tests were carried out with a scale model of a one-region section (seven columns) of the HTGR core. The results are as follows: (1) the column has a soft spring characteristic based on stacked blocks connected with loose pins, (2) the column has whirling phenomena, (3) the compression spring force simulating the gas pressure has the effect of raising the column resonance frequency, and (4) the vibration behavior of the stacked block column and impact response of the surrounding columns show agreement between experiment and analysis. (author)

  9. Real time thermal hydraulic model for high temperature gas-cooled reactor core

    International Nuclear Information System (INIS)

    Sui Zhe; Sun Jun; Ma Yuanle; Zhang Ruipeng

    2013-01-01

    A real-time thermal hydraulic model of the reactor core was described and integrated into the simulation system for the high temperature gas-cooled pebble bed reactor nuclear power plant, which was developed in the vPower platform, a new simulation environment for nuclear and fossil power plants. In the thermal hydraulic model, the helium flow paths were established by the flow network tools in order to obtain the flow rates and pressure distributions. Meanwhile, the heat structures, representing all the solid heat transfer elements in the pebble bed, graphite reflectors and carbon bricks, were connected by the heat transfer network in order to solve the temperature distributions in the reactor core. The flow network and heat transfer network were coupled and calculated in real time. Two steady states (100% and 50% full power) and two transients (inlet temperature step and flow step) were tested that the quantitative comparisons of the steady results with design data and qualitative analysis of the transients showed the good applicability of the present thermal hydraulic model. (authors)

  10. Nonequilibrium dynamics of one-dimensional hard-core anyons following a quench: complete relaxation of one-body observables.

    Science.gov (United States)

    Wright, Tod M; Rigol, Marcos; Davis, Matthew J; Kheruntsyan, Karén V

    2014-08-01

    We demonstrate the role of interactions in driving the relaxation of an isolated integrable quantum system following a sudden quench. We consider a family of integrable hard-core lattice anyon models that continuously interpolates between noninteracting spinless fermions and strongly interacting hard-core bosons. A generalized Jordan-Wigner transformation maps the entire family to noninteracting fermions. We find that, aside from the singular free-fermion limit, the entire single-particle density matrix and, therefore, all one-body observables relax to the predictions of the generalized Gibbs ensemble (GGE). This demonstrates that, in the presence of interactions, correlations between particles in the many-body wave function provide the effective dissipation required to drive the relaxation of all one-body observables to the GGE. This relaxation does not depend on translational invariance or the tracing out of any spatial domain of the system.

  11. Extracellular hyperosmolality and body temperature during physical exercise in dogs

    Science.gov (United States)

    Kozlowski, S.; Greenleaf, J. E.; Turlejska, E.; Nazar, K.

    1980-01-01

    The purpose of this study was to test the hypothesis that thermoregulation during exercise can be affected by extracellular fluid hyperosmolality without changing the plasma Na(+) concentration. The effects of preexercise venous infusions of hypertonic mannitol and NaCl solutions on rectal temperature responses were compared in dogs running at moderate intensity for 60 min on a treadmill. Plasma Na(+) concentration was increased by 12 meq after NaCl infusion, and decreased by 9 meq after mannitol infusion. Both infusions increased plasma by 15 mosmol/kg. After both infusions, rectal temperature was essentially constant during 60 min rest. However, compared with the noninfusion exercise increase in osmolality of 1.3 C, rectal temperature increased by 1.9 C after both postinfusion exercise experiments. It was concluded that inducing extracellular hyperosmolality, without elevating plasma, can induce excessive increases in rectal temperature during exericse but not at rest.

  12. Effect of a warm footbath before bedtime on body temperature and sleep in older adults with good and poor sleep: an experimental crossover trial.

    Science.gov (United States)

    Liao, Wen-Chun; Wang, Lee; Kuo, Ching-Pyng; Lo, Chyi; Chiu, Ming-Jang; Ting, Hua

    2013-12-01

    The decrease in core body temperature before sleep onset and during sleep is associated with dilation of peripheral blood vessels, which permits heat dissipation from the body core to the periphery. A lower core temperature coupled with a higher distal (hands and feet) temperature before sleep are associated with shorter sleep latency and better sleep quality. A warm footbath is thought to facilitate heat dissipation to improve sleep outcomes. This study examined the effect of a warm footbath (40°C water temperature, 20-min duration) on body temperature and sleep in older adults (≥55 years) with good and poor sleep. Two groups and an experimental crossover design was used. Forty-three adults responded to our flyer and 25 participants aged 59.8±3.7 years (poor sleeper with a Pittsburgh Sleep Quality Index score≥5=17; good sleepers with a Pittsburgh Sleep Quality Index scoretemperatures (core, abdomen, and foot) and polysomnography recorded for 3 consecutive nights. The first night was for adaptation and sleep apnea screening. Participants were then randomly assigned to either the structured foot bathing first (second night) and non-bathing second (third night) condition or the non-bathing first (second night) and foot bathing second (third night) condition. A footbath before sleep significantly increased and retained foot temperatures in both good and poor sleepers. The pattern of core temperatures during foot bathing was gradually elevated (poor sleepers vs. good sleepers=+0.40±0.58°C vs. +0.66±0.17°C). There were no significant changes in polysomnographic sleep and perceived sleep quality between non-bathing and bathing nights for both groups. A footbath of 40°C water temperature and 20-min duration before sleep onset increases foot temperatures and distal-proximal skin temperature gradients to facilitate vessel dilatation and elevates core temperature to provide heat load to the body. This footbath does not alter sleep in older adults with good and

  13. Regulation of the peripheral body temperature by foods: a temperature decrease induced by the Japanese persimmon (kaki, Diospyros kaki).

    Science.gov (United States)

    Hibino, Gaku; Nadamoto, Tomonori; Fujisawa, Fumiko; Fushiki, Tohru

    2003-01-01

    We investigated whether the ingestion of the Japanese persimmon (kaki, Diospyros kaki) could lower the human peripheral body temperature. It was found that the temperatures recorded at the foot and wrist were depressed after kaki consumption compared to after the same amount of water consumption. The effects of ingesting freeze-dried kaki and eating a cookie (as its nutritional counterpart) containing the same amount of carbohydrate, protein, fat, and water were compared. A similar temperature-reducing effect of kaki was observed. The recovery of finger temperature after soaking the finger in ice-cooled water was also studied. The temperature recovery was delayed after kaki consumption. It was thus quantitatively demonstrated that ingesting kaki indeed had the effect of lowering (or repressing the rise) of the peripheral human body temperature, as has been traditionally believed in China for many hundreds of years.

  14. Low-temperature behavior of core-softened models: Water and silica behavior

    International Nuclear Information System (INIS)

    Jagla, E. A.

    2001-01-01

    A core-softened model of a glass forming fluid is numerically studied in the limit of very low temperatures. The model shows two qualitatively different behaviors depending on the strength of the attraction between particles. For no or low attraction, the changes of density as a function of pressure are smooth, although hysteretic due to mechanical metastabilities. For larger attraction, sudden changes of density upon compressing and decompressing occur. This global mechanical instability is correlated to the existence of a thermodynamic first-order amorphous-amorphous transition. The two different behaviors obtained correspond qualitatively to the different phenomenology observed in silica and water

  15. Cavity temperature and flow characteristics in a gas-core test reactor

    Science.gov (United States)

    Putre, H. A.

    1973-01-01

    A test reactor concept for conducting basic studies on a fissioning uranium plasma and for testing various gas-core reactor concepts is analyzed. The test reactor consists of a conventional fuel-element region surrounding a 61-cm-(2-ft-) diameter cavity region which contains the plasma experiment. The fuel elements provide the neutron flux for the cavity region. The design operating conditions include 60-MW reactor power, 2.7-MW cavity power, 200-atm cavity pressure, and an average uranium plasma temperature of 15,000 K. The analytical results are given for cavity radiant heat transfer, hydrogen transpiration cooling, and uranium wire or powder injection.

  16. Reduced one-body density matrix of Tonks–Girardeau gas at finite temperature

    International Nuclear Information System (INIS)

    Fu Xiao-Chen; Hao Ya-Jiang

    2015-01-01

    With thermal Bose–Fermi mapping method, we investigate the Tonks–Girardeau gas at finite temperature. It is shown that at low temperature, the Tonks gas displays the Fermi-like density profiles, and with the increase in temperature, the Tonks gas distributes in wider region. The reduced one-body density matrix is diagonal dominant in the whole temperature region, and the off-diagonal elements shall vanish rapidly with the deviation from the diagonal part at high temperature. (paper)

  17. The relationship between specific absorption rate and temperature elevation in anatomically based human body models for plane wave exposure from 30 MHz to 6 GHz.

    Science.gov (United States)

    Hirata, Akimasa; Laakso, Ilkka; Oizumi, Takuya; Hanatani, Ryuto; Chan, Kwok Hung; Wiart, Joe

    2013-02-21

    According to the international safety guidelines/standard, the whole-body-averaged specific absorption rate (Poljak et al 2003 IEEE Trans. Electromagn. Compat. 45 141-5) and the peak spatial average SAR are used as metrics for human protection from whole-body and localized exposures, respectively. The IEEE standard (IEEE 2006 IEEE C95.1) indicates that the upper boundary frequency, over which the whole-body-averaged SAR is deemed to be the basic restriction, has been reduced from 6 to 3 GHz, because radio-wave energy is absorbed around the body surface when the frequency is increased. However, no quantitative discussion has been provided to support this description especially from the standpoint of temperature elevation. It is of interest to investigate the maximum temperature elevation in addition to the core temperature even for a whole-body exposure. In the present study, using anatomically based human models, we computed the SAR and the temperature elevation for a plane-wave exposure from 30 MHz to 6 GHz, taking into account the thermoregulatory response. As the primary result, we found that the ratio of the core temperature elevation to the whole-body-averaged SAR is almost frequency independent for frequencies below a few gigahertz; the ratio decreases above this frequency. At frequencies higher than a few gigahertz, core temperature elevation for the same whole-body averaged SAR becomes lower due to heat convection from the skin to air. This lower core temperature elevation is attributable to skin temperature elevation caused by the power absorption around the body surface. Then, core temperature elevation even for whole-body averaged SAR of 4 W kg(-1) with the duration of 1 h was at most 0.8 °C, which is smaller than a threshold considered in the safety guidelines/standard. Further, the peak 10 g averaged SAR is correlated with the maximum body temperature elevations without extremities and pinna over the frequencies considered. These findings

  18. Integration of body temperature into the analysis of energy expenditure in the mouse.

    Science.gov (United States)

    Abreu-Vieira, Gustavo; Xiao, Cuiying; Gavrilova, Oksana; Reitman, Marc L

    2015-06-01

    We quantified the effect of environmental temperature on mouse energy homeostasis and body temperature. The effect of environmental temperature (4-33 °C) on body temperature, energy expenditure, physical activity, and food intake in various mice (chow diet, high-fat diet, Brs3 (-/y) , lipodystrophic) was measured using continuous monitoring. Body temperature depended most on circadian phase and physical activity, but also on environmental temperature. The amounts of energy expenditure due to basal metabolic rate (calculated via a novel method), thermic effect of food, physical activity, and cold-induced thermogenesis were determined as a function of environmental temperature. The measured resting defended body temperature matched that calculated from the energy expenditure using Fourier's law of heat conduction. Mice defended a higher body temperature during physical activity. The cost of the warmer body temperature during the active phase is 4-16% of total daily energy expenditure. Parameters measured in diet-induced obese and Brs3 (-/y) mice were similar to controls. The high post-mortem heat conductance demonstrates that most insulation in mice is via physiological mechanisms. At 22 °C, cold-induced thermogenesis is ∼120% of basal metabolic rate. The higher body temperature during physical activity is due to a higher set point, not simply increased heat generation during exercise. Most insulation in mice is via physiological mechanisms, with little from fur or fat. Our analysis suggests that the definition of the upper limit of the thermoneutral zone should be re-considered. Measuring body temperature informs interpretation of energy expenditure data and improves the predictiveness and utility of the mouse to model human energy homeostasis.

  19. Skin sites to predict deep-body temperature while wearing firefighters' personal protective equipment during periodical changes in air temperature.

    Science.gov (United States)

    Kim, Siyeon; Lee, Joo-Young

    2016-04-01

    The aim of this study was to investigate stable and valid measurement sites of skin temperatures as a non-invasive variable to predict deep-body temperature while wearing firefighters' personal protective equipment (PPE) during air temperature changes. Eight male firefighters participated in an experiment which consisted of 60-min exercise and 10-min recovery while wearing PPE without self-contained breathing apparatus (7.75 kg in total PPE mass). Air temperature was periodically fluctuated from 29.5 to 35.5 °C with an amplitude of 6 °C. Rectal temperature was chosen as a deep-body temperature, and 12 skin temperatures were recorded. The results showed that the forehead and chest were identified as the most valid sites to predict rectal temperature (R(2) = 0.826 and 0.824, respectively) in an environment with periodically fluctuated air temperatures. This study suggests that particular skin temperatures are valid as a non-invasive variable when predicting rectal temperature of an individual wearing PPE in changing ambient temperatures. Practitioner Summary: This study should offer assistance for developing a more reliable indirect indicating system of individual heat strain for firefighters in real time, which can be used practically as a precaution of firefighters' heat-related illness and utilised along with physiological monitoring.

  20. Room temperature nanojoining of Cu-Ag core-shell nanoparticles and nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jiaqi; Shin, Seungha, E-mail: sshin@utk.edu [The University of Tennessee, Department of Mechanical, Aerospace and Biomedical Engineering (United States)

    2017-02-15

    Room temperature (T{sub room}, 300 K) nanojoining of Ag has been widely employed in fabrication of microelectronic applications where the shapes and structures of microelectronic components must be maintained. In this research, the joining processes of pure Ag nanoparticles (NPs), Cu-Ag core-shell NPs, and nanowires (NWs) are studied using molecular dynamics simulations at T{sub room}. The evolution of densification, potential energy, and structural deformation during joining process are analyzed to identify joining mechanisms. Depending on geometry, different joining mechanisms including crystallization-amorphization, reorientation, Shockley partial dislocation are determined. A three-stage joining scenario is observed in both joining process of NPs and NWs. Besides, the Cu core does not participate in all joining processes, however, it enhances the mobility of Ag shell atoms, contributing to a higher densification and bonding strength at T{sub room}, compared with pure Ag nanomaterials. The tensile test shows that the nanojoint bears higher rupture strength than the core-shell NW itself. This study deepens understanding in the underlying joining mechanisms and thus nanojoint with desirable thermal, electrical, and mechanical properties could be potentially achieved.

  1. Room temperature nanojoining of Cu-Ag core-shell nanoparticles and nanowires

    International Nuclear Information System (INIS)

    Wang, Jiaqi; Shin, Seungha

    2017-01-01

    Room temperature (T room , 300 K) nanojoining of Ag has been widely employed in fabrication of microelectronic applications where the shapes and structures of microelectronic components must be maintained. In this research, the joining processes of pure Ag nanoparticles (NPs), Cu-Ag core-shell NPs, and nanowires (NWs) are studied using molecular dynamics simulations at T room . The evolution of densification, potential energy, and structural deformation during joining process are analyzed to identify joining mechanisms. Depending on geometry, different joining mechanisms including crystallization-amorphization, reorientation, Shockley partial dislocation are determined. A three-stage joining scenario is observed in both joining process of NPs and NWs. Besides, the Cu core does not participate in all joining processes, however, it enhances the mobility of Ag shell atoms, contributing to a higher densification and bonding strength at T room , compared with pure Ag nanomaterials. The tensile test shows that the nanojoint bears higher rupture strength than the core-shell NW itself. This study deepens understanding in the underlying joining mechanisms and thus nanojoint with desirable thermal, electrical, and mechanical properties could be potentially achieved.

  2. Spatially resolved electronic structure inside and outside the vortex cores of a high-temperature superconductor

    Science.gov (United States)

    Mitrović, V. F.; Sigmund, E. E.; Eschrig, M.; Bachman, H. N.; Halperin, W. P.; Reyes, A. P.; Kuhns, P.; Moulton, W. G.

    2001-10-01

    Puzzling aspects of high-transition-temperature (high-Tc) superconductors include the prevalence of magnetism in the normal state and the persistence of superconductivity in high magnetic fields. Superconductivity and magnetism generally are thought to be incompatible, based on what is known about conventional superconductors. Recent results, however, indicate that antiferromagnetism can appear in the superconducting state of a high-Tc superconductor in the presence of an applied magnetic field. Magnetic fields penetrate a superconductor in the form of quantized flux lines, each of which represents a vortex of supercurrents. Superconductivity is suppressed in the core of the vortex and it has been suggested that antiferromagnetism might develop there. Here we report the results of a high-field nuclear-magnetic-resonance (NMR) imaging experiment in which we spatially resolve the electronic structure of near-optimally doped YBa2Cu3O7-δ inside and outside vortex cores. Outside the cores, we find strong antiferromagnetic fluctuations, whereas inside we detect electronic states that are rather different from those found in conventional superconductors.

  3. UV-assisted room temperature gas sensing of GaN-core/ZnO-shell nanowires

    International Nuclear Information System (INIS)

    Park, Sunghoon; Ko, Hyunsung; Kim, Soohyun; Lee, Chongmu

    2014-01-01

    GaN is highly sensitive to low concentrations of H 2 in ambient air and is almost insensitive to most other common gases. However, enhancing the sensing performance and the detection limit of GaN is a challenge. This study examined the H 2 -gas-sensing properties of GaN nanowires encapsulated with ZnO. GaN-core/ZnO-shell nanowires were fabricated by using a two-step process comprising the thermal evaporation of GaN powders and the atomic layer deposition of ZnO. The core-shell nanowires ranged from 80 to 120 nm in diameter and from a few tens to a few hundreds of micrometers in length, with a mean shell layer thickness of ∼8 nm. Multiple-networked pristine GaN nanowire and ZnO-encapsulated GaN (or GaN-core/ZnO-shell) nanowire sensors showed responses of 120 - 147% and 179 - 389%, respectively, to 500 - 2,500 ppm of H 2 at room temperature under UV (254 nm) illumination. The underlying mechanism of the enhanced response of the GaN nanowire to H 2 gas when using ZnO encapsulation and UV irradiation is discussed.

  4. Temperature-Insensitive Bend Sensor Using Entirely Centered Erbium Doping in the Fiber Core

    Directory of Open Access Journals (Sweden)

    Sulaiman Wadi Harun

    2013-07-01

    Full Text Available A fiber based bend sensor using a uniquely designed Bend-Sensitive Erbium Doped Fiber (BSEDF is proposed and demonstrated. The BSEDF has two core regions, namely an undoped outer region with a diameter of about 9.38 μm encompassing a doped, inner core region with a diameter of 4.00 μm. The doped core region has about 400 ppm of an Er2O3 dopant. Pumping the BSEDF with a conventional 980 nm laser diode gives an Amplified Spontaneous Emission (ASE spectrum spanning from 1,510 nm to over 1,560 nm at the output power level of about −58 dBm. The ASE spectrum has a peak power of −52 dBm at a central wavelength of 1,533 nm when not spooled. Spooling the BSEDF with diameters of 10 cm to 2 cm yields decreasing peak powers from −57.0 dBm to −61.8 dBm, while the central wavelength remains unchanged. The output is highly stable over time, with a low temperature sensitivity of around ~0.005 dBm/°C, thus allowing for the development of a highly stable sensor system based in the change of the peak power alone.

  5. Oxidation of graphites for core support post in air at high temperatures

    International Nuclear Information System (INIS)

    Imai, Hisashi; Fujii, Kimio; Kurosawa, Takeshi

    1982-07-01

    Oxidation reactions of candidate graphites for core support post with atmospheric air were studied in a temperature range between 550 0 C and 1000 0 C. The reaction rates, temperature dependence of the rates and distribution of bulk density in the oxidized graphites were measured and the characters obtained were compared between the brand of graphites. On the basis of the experimental results, dimension and strength of the post after corrosion with air, which might be introduced in rupture accident of primary coolant tube, were discussed. In the case of IG-11 graphite, it was proved that the strength of post is still sufficient even 100 hours after the beginning of the accident and that, however, it is necessary to insert more deeply the post against graphite blocks. (author)

  6. Effect of Temperature and Vibration on Electrical Connectors with Different Number of Contact Cores

    Directory of Open Access Journals (Sweden)

    Song W. L.

    2016-01-01

    Full Text Available In this paper, we presented the results from three related analysis performed by adopting the failure models, which provided an explanation of performance influencing factors caused by different number of contact cores, for the purpose of measuring the temperature change and deformation value, which were the factors causing contact failure. The failures were localized in contact parts of the connectors. Performed investigations included thermal analysis, modal analysis, harmonic response analysis and contact failure analysis. From the results of these simulations, related temperature and vibration analysis nephograms were got respectively. And the correctness of results of thermal analysis was verified by Fourier law. The research results of this paper provide a reference for thermal analysis and vibration analysis of electrical connectors, which is important for ensuring the reliability and safety of electrical connectors.

  7. TRANSENERGY S: computer codes for coolant temperature prediction in LMFBR cores during transient events

    International Nuclear Information System (INIS)

    Glazer, S.; Todreas, N.; Rohsenow, W.; Sonin, A.

    1981-02-01

    This document is intended as a user/programmer manual for the TRANSENERGY-S computer code. The code represents an extension of the steady state ENERGY model, originally developed by E. Khan, to predict coolant and fuel pin temperatures in a single LMFBR core assembly during transient events. Effects which may be modelled in the analysis include temporal variation in gamma heating in the coolant and duct wall, rod power production, coolant inlet temperature, coolant flow rate, and thermal boundary conditions around the single assembly. Numerical formulations of energy equations in the fuel and coolant are presented, and the solution schemes and stability criteria are discussed. A detailed description of the input deck preparation is presented, as well as code logic flowcharts, and a complete program listing. TRANSENERGY-S code predictions are compared with those of two different versions of COBRA, and partial results of a 61 pin bundle test case are presented

  8. Temperature and body weight affect fouling of pig pens

    NARCIS (Netherlands)

    Aarnink, A.J.A.; Schrama, J.W.; Heetkamp, M.J.W.; Stefanowska, J.; Huynh, T.T.T.

    2006-01-01

    Fouling of the solid lying area in pig housing is undesirable for reasons of animal welfare, animal health, environmental pollution, and labor costs. In this study the influence of temperature on the excreting and lying behavior of growing-finishing pigs of different BW (25, 45, 65, 85, or 105 kg)

  9. P2X(3) receptor gating near normal body temperature

    Czech Academy of Sciences Publication Activity Database

    Kmyhz, V.; Maximyuk, O.; Teslenko, V.; Verkhratsky, Alexei; Krishtal, O.

    2008-01-01

    Roč. 456, č. 12 (2008), s. 339-347 ISSN 0031-6768 Institutional research plan: CEZ:AV0Z50390703 Keywords : P2X3 receptors * Temperature-sensitivity * Gating Subject RIV: FH - Neurology Impact factor: 3.526, year: 2008

  10. Effect of heat stress on body temperature in healthy early postpartum dairy cows.

    Science.gov (United States)

    Burfeind, O; Suthar, V S; Heuwieser, W

    2012-12-01

    Measurement of body temperature is the most common method for an early diagnosis of sick cows in fresh cow protocols currently used on dairy farms. Thresholds for fever range from 39.4 °C to 39.7 °C. Several studies attempted to describe normal temperature ranges for healthy dairy cows in the early puerperium. However, the definition of a healthy cow is variable within these studies. It is challenging to determine normal temperature ranges for healthy cows because body temperature is usually included in the definition. Therefore, the objectives of this study were to identify factors that influence body temperature in healthy dairy cows early postpartum and to determine normal temperature ranges for healthy cows that calved in a moderate (temperature humidity index: 59.8 ± 3.8) and a hot period (temperature humidity index: 74.1 ± 4.4), respectively, excluding body temperature from the definition of the health status. Furthermore, the prevalence of fever was calculated for both periods separately. A subset of 17 (moderate period) and 15 cows (hot period) were used for analysis. To ensure their uterine health only cows with a serum haptoglobin concentration ≤ 1.1 g/L were included in the analysis. Therefore, body temperature could be excluded from the definition. A vaginal temperature logger that measured vaginal temperature every 10 min was inserted from Day 2 to 10 after parturition. Additionally rectal temperature was measured twice daily. Day in milk (2 to 10), period (moderate and hot), and time of day had an effect on rectal and vaginal temperature. The prevalence of fever (≥ 39.5 °C) was 7.4% and 28.1% for rectal temperature in the moderate and hot period, respectively. For vaginal temperature (07.00 to 11.00 h) it was 10% and 33%, respectively, considering the same threshold and period. This study demonstrates that body temperature in the early puerperium is influenced by several factors (day in milk, climate, time of day). Therefore, these factors

  11. In-core fuel element temperature and flow measurment of HFETR

    International Nuclear Information System (INIS)

    Chen Daolong; Jiang Pei

    1988-02-01

    The HFETR in-core fuel element temperature-flow measurement facility and its measurement system are expounded. The applications of the instrumented fuel element to stationary and transient states measurements during the lift of power, the operation test of all lifetime at first load, and the deepening burn-up test at second load are described. The method of determination of the hot point temperature under the fin is discussed. The error analysis is made. The fuel element out-of-pile water deprivation test is described. The development of this measurement facility and succesful application have made important contribution to high power and deep burn-up safe operation at two load, in-core fuel element irradiation, and varied investigation of HFETR. After operation at two loads, the integrated power of this instrumented fuel element arrives at 90.88 MWd, its maximum point burn-up is about 64.9%, so that the economy of fuel use of HFETR is raised very much

  12. Monitoring changes in body surface temperature associated with treadmill exercise in dogs by use of infrared methodology.

    Science.gov (United States)

    Rizzo, Maria; Arfuso, Francesca; Alberghina, Daniela; Giudice, Elisabetta; Gianesella, Matteo; Piccione, Giuseppe

    2017-10-01

    The aim of this study was to evaluate the influence of moderate treadmill exercise session on body surface and core temperature in dog measured by means of two infrared instruments. Ten Jack Russell Terrier/Miniature Pinscher mixed-breed dogs were subjected to 15min of walking, 10min of trotting and 10min of gallop. At every step, body surface temperature (T surface ) was measured on seven regions (neck, shoulder, ribs, flank, back, internal thigh and eye) using two different methods, a digital infrared camera (ThermaCam P25) and a non-contact infrared thermometer (Infrared Thermometer THM010-VT001). Rectal temperature (T rectal ) and blood samples were collected before (T0) and after exercise (T3). Blood samples were tested for red blood cell (RBC), hemoglobin concentration (Hb) and hematocrit (Hct). A significant effect of exercise in all body surface regions was found, as measured by both infrared methods. The temperature obtained in the eye and the thigh area were higher with respect to the other studied regions throughout the experimental period (Ptemperature values measured by infrared thermometer was found in neck, shoulder, ribs, flank, back regions respect to the values obtained by digital infrared camera (Ptemperatures are influenced by physical exercise probably due to muscle activity and changes in blood flow in dogs. Both infrared instruments used in this study have proven to be useful in detecting surface temperature variations of specific body regions, however factors including type and color of animal hair coat must be taken into account in the interpretation of data obtained by thermography methodology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Wireless Low-Power Integrated Basal-Body-Temperature Detection Systems Using Teeth Antennas in the MedRadio Band.

    Science.gov (United States)

    Yang, Chin-Lung; Zheng, Gou-Tsun

    2015-11-20

    This study proposes using wireless low power thermal sensors for basal-body-temperature detection using frequency modulated telemetry devices. A long-term monitoring sensor requires low-power circuits including a sampling circuit and oscillator. Moreover, temperature compensated technologies are necessary because the modulated frequency might have additional frequency deviations caused by the varying temperature. The temperature compensated oscillator is composed of a ring oscillator and a controlled-steering current source with temperature compensation, so the output frequency of the oscillator does not drift with temperature variations. The chip is fabricated in a standard Taiwan Semiconductor Manufacturing Company (TSMC) 0.18-μm complementary metal oxide semiconductor (CMOS) process, and the chip area is 0.9 mm². The power consumption of the sampling amplifier is 128 µW. The power consumption of the voltage controlled oscillator (VCO) core is less than 40 µW, and the output is -3.04 dBm with a buffer stage. The output voltage of the bandgap reference circuit is 1 V. For temperature measurements, the maximum error is 0.18 °C with a standard deviation of ±0.061 °C, which is superior to the required specification of 0.1 °C.

  14. Wireless Low-Power Integrated Basal-Body-Temperature Detection Systems Using Teeth Antennas in the MedRadio Band

    Directory of Open Access Journals (Sweden)

    Chin-Lung Yang

    2015-11-01

    Full Text Available This study proposes using wireless low power thermal sensors for basal-body-temperature detection using frequency modulated telemetry devices. A long-term monitoring sensor requires low-power circuits including a sampling circuit and oscillator. Moreover, temperature compensated technologies are necessary because the modulated frequency might have additional frequency deviations caused by the varying temperature. The temperature compensated oscillator is composed of a ring oscillator and a controlled-steering current source with temperature compensation, so the output frequency of the oscillator does not drift with temperature variations. The chip is fabricated in a standard Taiwan Semiconductor Manufacturing Company (TSMC 0.18-μm complementary metal oxide semiconductor (CMOS process, and the chip area is 0.9 mm2. The power consumption of the sampling amplifier is 128 µW. The power consumption of the voltage controlled oscillator (VCO core is less than 40 µW, and the output is −3.04 dBm with a buffer stage. The output voltage of the bandgap reference circuit is 1 V. For temperature measurements, the maximum error is 0.18 °C with a standard deviation of ±0.061 °C, which is superior to the required specification of 0.1 °C.

  15. An explication of the Graphite Structural Design Code of core components for the High Temperature Engineering Test Reactor

    International Nuclear Information System (INIS)

    Iyoku, Tatsuo; Ishihara, Masahiro; Toyota, Junji; Shiozawa, Shusaku

    1991-05-01

    The integrity evaluation of the core graphite components for the High Temperature Engineering Test Reactor (HTTR) will be carried out based upon the Graphite Structural Design Code for core components. In the application of this design code, it is necessary to make clear the basic concept to evaluate the integrity of core components of HTTR. Therefore, considering the detailed design of core graphite structures such as fuel graphite blocks, etc. of HTTR, this report explicates the design code in detail about the concepts of stress and fatigue limits, integrity evaluation method of oxidized graphite components and thermal irradiation stress analysis method etc. (author)

  16. Low body temperature in long-lived Ames dwarf mice at rest and during stress.

    Science.gov (United States)

    Hunter, W S; Croson, W B; Bartke, A; Gentry, M V; Meliska, C J

    1999-09-01

    Among homeothermic animals, larger species generally have lower metabolic rates and live longer than do smaller species. Because Ames dwarf mice (dwarfs) live approximately 1 year longer than their larger normal sex- and age-matched siblings (normals), we hypothesized that they would have lower body core temperature (Tco). We, therefore, measured Tco of six dwarfs and six normals during 24-h periods of ad lib feeding, 24-h food deprivation, and emotional stress induced by cage switching. With ad lib feeding, Tco of dwarfs averaged 1.6 degrees C lower than normals; during food deprivation, Tco of both dwarfs and controls was significantly lower than when food was available ad lib; and following cage switch, Tco was elevated in both groups. However, during all three experiments, Tco was significantly lower in dwarfs than in normals. These data support the hypothesis that Ames dwarf mice, which live longer than normal size controls, maintain lower Tco than normals. Because dwarfs are deficient in thyroid stimulating hormone (TSH) and growth hormone (GH), their low Tco may be a result of reduced thermogenesis due to lack of those hormones. However, whether low Tco per se is related to the increased longevity of the dwarf mice remains an interesting possibility to be investigated.

  17. Psychogenic fever: how psychological stress affects body temperature in the clinical population.

    Science.gov (United States)

    Oka, Takakazu

    2015-01-01

    Psychogenic fever is a stress-related, psychosomatic disease especially seen in young women. Some patients develop extremely high core body temperature (Tc) (up to 41°C) when they are exposed to emotional events, whereas others show persistent low-grade high Tc (37-38°C) during situations of chronic stress. The mechanism for psychogenic fever is not yet fully understood. However, clinical case reports demonstrate that psychogenic fever is not attenuated by antipyretic drugs, but by psychotropic drugs that display anxiolytic and sedative properties, or by resolving patients' difficulties via natural means or psychotherapy. Animal studies have demonstrated that psychological stress increases Tc via mechanisms distinct from infectious fever (which requires proinflammatory mediators) and that the sympathetic nervous system, particularly β3-adrenoceptor-mediated non-shivering thermogenesis in brown adipose tissue, plays an important role in the development of psychological stress-induced hyperthermia. Acute psychological stress induces a transient, monophasic increase in Tc. In contrast, repeated stress induces anticipatory hyperthermia, reduces diurnal changes in Tc, or slightly increases Tc throughout the day. Chronically stressed animals also display an enhanced hyperthermic response to a novel stress, while past fearful experiences induce conditioned hyperthermia to the fear context. The high Tc that psychogenic fever patients develop may be a complex of these diverse kinds of hyperthermic responses.

  18. Temperature and velocity field of coolant at inlet to WWER-440 core - evaluation of experimental data

    International Nuclear Information System (INIS)

    Jirous, F.; Klik, F.; Janeba, B.; Daliba, J.; Delis, J.

    1989-01-01

    Experimentally determined were coolant temperature and velocity fields at the inlet of the WWER-440 reactor core. The accuracy estimate is presented of temperature measurements and the relation is given for determining the resulting measurement error. An estimate is also made of the accuracy of solution of the system of equations for determining coefficients B kn using the method of the least square fit. Coefficients B kn represent the relative contribution of the mass flow of the k-th fuel assembly from the n-th loop and allow the calculation of coolant temperatures at the inlet of the k-th fuel assembly, when coolant temperatures in loops at reactor inlet are known. A comparison is made of the results of measurements on a hydrodynamic model of a WWER-440 reactor with results of measurements made at unit 4 of the Dukovany nuclear power plant. Full agreement was found for 32 model measurements and 6 reactor measurements. It may be assumed that the results of other model measurements obtained for other operating variants will also apply for an actual reactor. Their applicability may, however, only be confirmed by repeating the experiment on other WWER-440 reactors. (Z.M.). 5 figs., 7 refs

  19. Heart rate reveals torpor at high body temperatures in lowland tropical free-tailed bats.

    Science.gov (United States)

    O'Mara, M Teague; Rikker, Sebastian; Wikelski, Martin; Ter Maat, Andries; Pollock, Henry S; Dechmann, Dina K N

    2017-12-01

    Reduction in metabolic rate and body temperature is a common strategy for small endotherms to save energy. The daily reduction in metabolic rate and heterothermy, or torpor, is particularly pronounced in regions with a large variation in daily ambient temperature. This applies most strongly in temperate bat species (order Chiroptera), but it is less clear how tropical bats save energy if ambient temperatures remain high. However, many subtropical and tropical species use some daily heterothermy on cool days. We recorded the heart rate and the body temperature of free-ranging Pallas' mastiff bats ( Molossus molossus ) in Gamboa, Panamá, and showed that these individuals have low field metabolic rates across a wide range of body temperatures that conform to high ambient temperature. Importantly, low metabolic rates in controlled respirometry trials were best predicted by heart rate, and not body temperature . Molossus molossus enter torpor-like states characterized by low metabolic rate and heart rates at body temperatures of 32°C, and thermoconform across a range of temperatures. Flexible metabolic strategies may be far more common in tropical endotherms than currently known.

  20. Pulmonary asbestos body counts and electron probe analysis of asbestos body cores in patients with mesothelioma: a study of 25 cases

    International Nuclear Information System (INIS)

    Roggli, V.L.; McGavran, M.H.; Subach, J.; Sybers, H.D.; Greenberg, S.D.

    1982-01-01

    Malignant mesotheliomas of the pleura and peritoneum are well-recognized risks of asbestos exposure. We determined the asbestos body content of the lungs from 24 cases of malignant mesothelioma (19 pleural, five peritoneal) and compared such to the content of lungs from 50 consecutive adult autopsies and four cases of overt asbestosis using a Clorox-digestion concentration technique. The cores of 90 asbestos bodies were examined by energy dispersive x-ray analysis and compared with similar data from 120 standard asbestos fibers and 20 fiberglass fibers. The malignant mesothelioma patients had asbestos body counts intermediate between those of the general population and those of patients with asbestosis, although some of the mesothelioma cases overlapped with the general population. These latter cases often lacked an identifiable occupational exposure to asbestos. EDXA studies demonstrated an amphibole core in 88 of the 90 asbestos bodies (amosite or crocidolite in 80 of 88, anthophyllite or tremolite in eight of 88), and chrysotile in two instances

  1. Deeply torpid bats can change position without elevation of body temperature.

    Science.gov (United States)

    Bartonička, Tomáš; Bandouchova, Hana; Berková, Hana; Blažek, Ján; Lučan, Radek; Horáček, Ivan; Martínková, Natália; Pikula, Jiri; Řehák, Zdeněk; Zukal, Jan

    2017-01-01

    Because body temperature is tightly coupled to physiological function, hibernating animals entering deep torpor are typically immobile. We analysed thermal behaviour and locomotory activity of hibernating greater mouse-eared bats Myotis myotis and found two types of movement behaviour related to body temperature, i.e. movement at high fur temperature and at low fur temperatures (Tflow; body temperature. Distance travelled, flight duration and speed of locomotion during Tflow events was lower than in high fur temperature events. Such behaviour could allow bats to save energy long-term and prolong torpor bouts. Tflow movement in torpid bats significantly changes our understanding of basic hibernation principles and we strongly recommend further studies on the subject. Copyright © 2016. Published by Elsevier Ltd.

  2. Profound and Rapid Reduction in Body Temperature Induced by the Melanocortin Receptor Agonists

    Science.gov (United States)

    Xu, Yuanzhong; Kim, Eun Ran; Fan, Shengjie; Xia, Yan; Xu, Yong; Huang, Cheng; Tong, Qingchun

    2014-01-01

    The melanocortin receptor 4 (MC4R) plays a major role in body weight regulation and its agonist MTII has been widely used to study the role of MC4Rs in energy expenditure promotion and feeding reduction. Unexpectedly, we observed that intraperitoneal (i.p.) administration of MTII induced a rapid reduction in both body temperature and energy expenditure, which was independent of its effect on feeding and followed by a prolonged increase in energy expenditure. The rapid reduction was at least partly mediated by brain neurons since intracerebroventricular (icv) administration of alpha melanocyte-stimulating hormone, an endogenous melanocortin receptor agonist, produced a similar response. In addition, the body temperature-lowering effect of MTII was independent of the presence of MC4Rs, but in a similar fashion to the previously shown effect on body temperature by 5′AMP. Moreover, β-adrenergic receptors (β-ARs) were required for the recovery from low body temperature induced by MTII and further pharmacological studies showed that the MTII’s effect on body temperature may be partially mediated by the vasopressin V1a receptors. Collectively, our results reveal a previously unappreciated role for the melanocortin pathway in rapidly lowering body temperature. PMID:25065745

  3. Profound and rapid reduction in body temperature induced by the melanocortin receptor agonists.

    Science.gov (United States)

    Xu, Yuanzhong; Kim, Eun Ran; Fan, Shengjie; Xia, Yan; Xu, Yong; Huang, Cheng; Tong, Qingchun

    2014-08-22

    The melanocortin receptor 4 (MC4R) plays a major role in body weight regulation and its agonist MTII has been widely used to study the role of MC4Rs in energy expenditure promotion and feeding reduction. Unexpectedly, we observed that intraperitoneal (i.p.) administration of MTII induced a rapid reduction in both body temperature and energy expenditure, which was independent of its effect on feeding and followed by a prolonged increase in energy expenditure. The rapid reduction was at least partly mediated by brain neurons since intracerebroventricular (icv) administration of alpha melanocyte-stimulating hormone, an endogenous melanocortin receptor agonist, produced a similar response. In addition, the body temperature-lowering effect of MTII was independent of the presence of MC4Rs, but in a similar fashion to the previously shown effect on body temperature by 5'AMP. Moreover, β-adrenergic receptors (β-ARs) were required for the recovery from low body temperature induced by MTII and further pharmacological studies showed that the MTII's effect on body temperature may be partially mediated by the vasopressin V1a receptors. Collectively, our results reveal a previously unappreciated role for the melanocortin pathway in rapidly lowering body temperature. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Influence of composition and rate heating on formation of black core in bodies obtained with red ceramic

    International Nuclear Information System (INIS)

    Santana, L.N.L.; Goncalves, W.P.; Silva, B.J. da; Macedo, R.S.; Santos, R.C.; Lisboa, D.

    2011-01-01

    In the heating of pieces of red pottery can the defect known as black core, this may deteriorate the technical and aesthetic characteristics of the final product. This study evaluated the influence of chemical composition and heating rate on the formation of black core in bodies red ceramic. The masses were treated and samples were extruded, dried, sintered at 900 °C, with heating rates of 5, 10, 15, 20 and 30 °C / min. and determined the following properties: water absorption, linear shrinkage and flexural strength. The pieces made with the mass containing lower content of iron oxide showed better resistance to bending when subjected to rapid heating. The presence of the black core was identified through visual analysis of the pieces after the break, being more apparent in parts subject to rates above 5 °C / min. (author)

  5. Highly temperature responsive core-shell magnetic particles: synthesis, characterization and colloidal properties.

    Science.gov (United States)

    Rahman, Md Mahbubor; Chehimi, Mohamed M; Fessi, Hatem; Elaissari, Abdelhamid

    2011-08-15

    Temperature responsive magnetic polymer submicron particles were prepared by two step seed emulsion polymerization process. First, magnetic seed polymer particles were obtained by emulsion polymerization of styrene using potassium persulfate (KPS) as an initiator and divinylbenzne (DVB) as a cross-linker in the presence of oil-in-water magnetic emulsion (organic ferrofluid droplets). Thereafter, DVB cross-linked magnetic polymer particles were used as seed in the precipitation polymerization of N-isopropylacrylamide (NIPAM) to induce thermosensitive PNIPAM shell onto the hydrophobic polymer surface of the cross-linked magnetic polymer particles. To impart cationic functional groups in the thermosensitive PNIPAM backbone, the functional monomer aminoethylmethacrylate hydrochloride (AEMH) was used to polymerize with NIPAM while N,N'-methylenebisacrylamide (MBA) and 2, 2'-azobis (2-methylpropionamidine) dihydrochloride (V-50) were used as a cross-linker and as an initiator respectively. The effect of seed to monomer (w/w) ratio along with seed nature on the final particle morphology was investigated. Dynamic light scattering (DLS) results demonstrated particles swelling at below volume phase transition temperature (VPTT) and deswelling above the VPTT. The perfect core (magnetic) shell (polymer) structure of the particles prepared was confirmed by Transmission Electron Microscopy (TEM). The chemical composition of the particles were determined by thermogravimetric analysis (TGA). The effect of temperature, pH, ionic strength on the colloidal properties such as size and zeta potential of the micron sized thermo-sensitive magnetic particles were also studied. In addition, a short mechanistic discussion on the formation of core-shell morphology of magnetic polymer particles has also been discussed. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Temporal profile of body temperature in acute ischemic stroke: relation to infarct size and outcome.

    Science.gov (United States)

    Geurts, Marjolein; Scheijmans, Féline E V; van Seeters, Tom; Biessels, Geert J; Kappelle, L Jaap; Velthuis, Birgitta K; van der Worp, H Bart

    2016-11-21

    High body temperatures after ischemic stroke have been associated with larger infarct size, but the temporal profile of this relation is unknown. We assess the relation between temporal profile of body temperature and infarct size and functional outcome in patients with acute ischemic stroke. In 419 patients with acute ischemic stroke we assessed the relation between body temperature on admission and during the first 3 days with both infarct size and functional outcome. Infarct size was measured in milliliters on CT or MRI after 3 days. Poor functional outcome was defined as a modified Rankin Scale score ≥3 at 3 months. Body temperature on admission was not associated with infarct size or poor outcome in adjusted analyses. By contrast, each additional 1.0 °C in body temperature on day 1 was associated with 0.31 ml larger infarct size (95% confidence interval (CI) 0.04-0.59), on day 2 with 1.13 ml larger infarct size(95% CI, 0.83-1.43), and on day 3 with 0.80 ml larger infarct size (95% CI, 0.48-1.12), in adjusted linear regression analyses. Higher peak body temperatures on days two and three were also associated with poor outcome (adjusted relative risks per additional 1.0 °C in body temperature, 1.52 (95% CI, 1.17-1.99) and 1.47 (95% CI, 1.22-1.77), respectively). Higher peak body temperatures during the first days after ischemic stroke, rather than on admission, are associated with larger infarct size and poor functional outcome. This suggests that prevention of high temperatures may improve outcome if continued for at least 3 days.

  7. What are the advantages of a three body model with core excitation for 21Ne and 21Na?

    International Nuclear Information System (INIS)

    Nunes, F.M.; Thompson, I.J.

    2004-01-01

    21 Ne and 21 Na are well bound nuclei and there is a large amount of data available up to considerable excitation energy, and this imposes a severe test on the structure models. Preliminary results for the structure of these nuclei based on three body models ( 21 Ne= 16 O+α+n and 21 Na= 16 O+α+p) are presented. Three-body calculations without core excitation produce the positive parity states in fair agreement with experiment, while slightly overbinding the systems. As expected, these models fail to reproduce the low lying negative parity states, which are predicted by shell model to have mainly core excited configurations. As a first step we have included the 3 - state of 16 O in our model. Convergence issues will be discussed. Results suggest that more excited states may be required to describe the system

  8. FaCE: a tool for Three Body Faddeev calculations with core excitation

    OpenAIRE

    Thompson, I. J.; Nunes, F. M.; Danilin, B. V.

    2004-01-01

    FaCE is a self contained programme, with namelist input, that solves the three body Faddeev equations. It enables the inclusion of excitation of one of the three bodies, whilst the other two remain inert. It is particularly useful for obtaining the binding energies and bound state structure compositions of light exotic nuclei treated as three-body systems, given the three effective two body interactions. A large variety of forms for these interactions may be defined, and supersymmetric transf...

  9. Intraoperative body temperature control: esophageal thermometer versus infrared tympanic thermometer.

    Science.gov (United States)

    Poveda, Vanessa de Brito; Nascimento, Ariane de Souza

    2016-01-01

    To verify the correlation between temperature measurements performed using an infrared tympanic thermometer and an esophageal thermometer during the intraoperative period. A longitudinal study of repeated measures was performed including subjects aged 18 years or older undergoing elective oncologic surgery of the digestive system, with anesthesia duration of at least 1 hour. Temperature measurements were performed simultaneously by a calibrated esophageal thermometer and by a calibrated infrared tympanic thermometer, with laboratory reading precision of ±0.2ºC. The operating room temperature remained between 19 and 21ºC. The study included 51 patients, mostly men (51%), white (80.4%). All patients were kept warm by a forced-air heating system, for an average of 264.14 minutes (SD = 87.7). The two temperature measurements showed no different behavior over time (p = 0.2205), however, tympanic measurements were consistently 1.24°C lower (ptemperatura realizadas por meio de um termômetro timpânico por infravermelho e por um termômetro esofágico, durante o período intraoperatório. Realizou-se um estudo longitudinal, de medidas repetidas, incluindo sujeitos com idade igual ou superior a 18 anos, submetidos à cirurgia oncológica eletiva do sistema digestório, com duração da anestesia de, no mínimo, 1 hora. As medidas de temperatura eram realizadas, ao mesmo tempo, por meio de um termômetro esofágico calibrado e por termômetro timpânico por infravermelho calibrado, com precisão de leitura em laboratório de ±0,2ºC. A temperatura da sala operatória permaneceu entre 19 e 21ºC. Foram incluídos 51 pacientes, em sua maioria homens (51%), brancos (80,4%). Todos os pacientes foram aquecidos com o sistema de ar forçado aquecido, em média por 264,14 minutos (DP = 87,7). As duas medidas de temperatura não tiveram comportamento diferente ao longo do tempo (p = 0,2205), mas a medida timpânica foi consistentemente menor em 1,24°C (p temperaturas mais

  10. Using Three-Body Recombination to Extract Electron Temperatures of Ultracold Plasmas

    International Nuclear Information System (INIS)

    Fletcher, R. S.; Zhang, X. L.; Rolston, S. L.

    2007-01-01

    Three-body recombination, an important collisional process in plasmas, increases dramatically at low electron temperatures, with an accepted scaling of T e -9/2 . We measure three-body recombination in an ultracold neutral xenon plasma by detecting recombination-created Rydberg atoms using a microwave-ionization technique. With the accepted theory (expected to be applicable for weakly coupled plasmas) and our measured rates, we extract the plasma temperatures, which are in reasonable agreement with previous measurements early in the plasma lifetime. The resulting electron temperatures indicate that the plasma continues to cool to temperatures below 1 K

  11. A study on the applicability of implantable microchip transponders for body temperature measurements in pigs

    Directory of Open Access Journals (Sweden)

    Enøe Claes

    2010-05-01

    Full Text Available Abstract Background The applicability of an electronic monitoring system using microchip transponders for measurement of body temperatures was tested in 6-week-old conventional Danish weaners infected with classical swine fever virus (CSFV. Subcutaneous tissue temperatures obtained by the implantable transponders were compared with rectal temperatures, recorded by a conventional digital thermometer. Methods In a preliminary study, transponders were inserted subcutaneously at 6 different positions of the body of 5 pigs. The transponders positioned by the ear base provided the best correlation to rectal temperature. To test the stability of the monitoring system in a larger group of pigs, transponders were therefore inserted by the left ear base in a subsequent infection experiment with 30 pigs. Results Generally, the microchip transponders measured a subcutaneous tissue temperature, which was about 1°C lower than the rectal temperature. However, a simple linear relationship between the measures of the two methods was found. Conclusions Our study showed that the tested body monitoring system may represent a promising tool to obtain an approximate correlate of body temperatures in groups of pigs. In contrast, however, the tested system did not constitute a suitable tool to measure body temperatures of individual animals in the present pig infection experiment.

  12. Hibernation in black bears: independence of metabolic suppression from body temperature.

    Science.gov (United States)

    Tøien, Øivind; Blake, John; Edgar, Dale M; Grahn, Dennis A; Heller, H Craig; Barnes, Brian M

    2011-02-18

    Black bears hibernate for 5 to 7 months a year and, during this time, do not eat, drink, urinate, or defecate. We measured metabolic rate and body temperature in hibernating black bears and found that they suppress metabolism to 25% of basal rates while regulating body temperature from 30° to 36°C, in multiday cycles. Heart rates were reduced from 55 to as few as 9 beats per minute, with profound sinus arrhythmia. After returning to normal body temperature and emerging from dens, bears maintained a reduced metabolic rate for up to 3 weeks. The pronounced reduction and delayed recovery of metabolic rate in hibernating bears suggest that the majority of metabolic suppression during hibernation is independent of lowered body temperature.

  13. Dogs with macroadenomas have lower body temperature and heart rate than dogs with microadenomas.

    Science.gov (United States)

    Benchekroun, Ghita; Desquilbet, Loic; Herrtage, Michael E; Jeffery, Nick D; Rosenberg, Dan; Granger, Nicolas

    2017-09-01

    Pituitary macroadenomas compress the hypothalamus, which partly regulates heart rate and body temperature. The aim of this study was to investigate whether heart rate and/or body temperature could aid in clinically differentiating dogs with macroadenomas from dogs with microadenomas (i.e. small non-compressive pituitary mass). Two groups of dogs diagnosed with pituitary-dependent hyperadrenocorticism (i.e. Cushing's disease) were included. Heart rate and body temperature were collected on initial presentation before any procedure. Dogs with macroadenoma had a significantly lower heart rate and body temperature (Pdogs with microadenoma. We suggest that the combined cut-off values of 84 beats per minutes and 38.3°C in dogs with Cushing's disease, especially with vague neurological signs (nine of 12 dogs=75%), might help to suspect the presence of a macroadenoma. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. The sympathetic nervous system is controlled by transient receptor potential vanilloid 1 in the regulation of body temperature

    Science.gov (United States)

    Alawi, Khadija M.; Aubdool, Aisah A.; Liang, Lihuan; Wilde, Elena; Vepa, Abhinav; Psefteli, Maria-Paraskevi; Brain, Susan D.; Keeble, Julie E.

    2015-01-01

    Transient receptor potential vanilloid 1 (TRPV1) is involved in sensory nerve nociceptive signaling. Recently, it has been discovered that TRPV1 receptors also regulate basal body temperature in multiple species from mice to humans. In the present study, we investigated whether TRPV1 modulates basal sympathetic nervous system (SNS) activity. C57BL6/J wild-type (WT) mice and TRPV1 knockout (KO) mice were implanted with radiotelemetry probes for measurement of core body temperature. AMG9810 (50 mg/kg) or vehicle (2% DMSO/5% Tween 80/10 ml/kg saline) was injected intraperitoneally. Adrenoceptor antagonists or vehicle (5 ml/kg saline) was injected subcutaneously. In WT mice, the TRPV1 antagonist, AMG9810, caused significant hyperthermia, associated with increased noradrenaline concentrations in brown adipose tissue. The hyperthermia was significantly attenuated by the β-adrenoceptor antagonist propranolol, the mixed α-/β-adrenoceptor antagonist labetalol, and the α1-adrenoceptor antagonist prazosin. TRPV1 KO mice have a normal basal body temperature, indicative of developmental compensation. d-Amphetamine (potent sympathomimetic) caused hyperthermia in WT mice, which was reduced in TRPV1 KO mice, suggesting a decreased sympathetic drive in KOs. This study provides new evidence that TRPV1 controls thermoregulation upstream of the SNS, providing a potential therapeutic target for sympathetic hyperactivity thermoregulatory disorders.—Alawi, K. M., Aubdool, A. A., Liang, L., Wilde, E., Vepa, A., Psefteli, M.-P., Brain, S. D., Keeble, J. E. The sympathetic nervous system is controlled by transient receptor potential vanilloid 1 in the regulation of body temperature. PMID:26136480

  15. Effects of positive end-expiratory pressure on intraoperative core temperature in patients undergoing posterior spine surgery: prospective randomised trial.

    Science.gov (United States)

    Seo, Hyungseok; Do Son, Je; Lee, Hyung-Chul; Oh, Hyung-Min; Jung, Chul-Woo; Park, Hee-Pyoung

    2018-03-01

    Objective Positive end-expiratory pressure (PEEP) causes carotid baroreceptor unloading, which leads to thermoregulatory peripheral vasoconstriction. However, the effects of PEEP on intraoperative thermoregulation in the prone position remain unknown. Methods Thirty-seven patients undergoing spine surgery in the prone position were assigned at random to receive either 10 cmH 2 O PEEP (Group P) or no PEEP (Group Z). The primary endpoint was core temperature 180 minutes after intubation. Secondary endpoints were delta core temperature (difference in core temperature between 180 minutes and immediately after tracheal intubation), incidence of intraoperative hypothermia (core temperature of peripheral vasoconstriction-related data. Results The median [interquartile range] core temperature 180 minutes after intubation was 36.1°C [35.9°C-36.2°C] and 36.0°C [35.9°C-36.4°C] in Groups Z and P, respectively. The delta core temperature and incidences of intraoperative hypothermia and peripheral vasoconstriction were not significantly different between the two groups. The peripheral vasoconstriction threshold (36.2°C±0.5°C vs. 36.7°C±0.6°C) was lower and the onset of peripheral vasoconstriction (66 [60-129] vs. 38 [28-70] minutes) was slower in Group Z than in Group P. Conclusions Intraoperative PEEP did not reduce the core temperature decrease in the prone position, although it resulted in an earlier onset and higher threshold of peripheral vasoconstriction.

  16. Wearable sensors in intelligent clothing for measuring human body temperature based on optical fiber Bragg grating.

    Science.gov (United States)

    Li, Hongqiang; Yang, Haijing; Li, Enbang; Liu, Zhihui; Wei, Kejia

    2012-05-21

    Measuring body temperature is considerably important to physiological studies as well as clinical investigations. In recent years, numerous observations have been reported and various methods of measurement have been employed. The present paper introduces a novel wearable sensor in intelligent clothing for human body temperature measurement. The objective is the integration of optical fiber Bragg grating (FBG)-based sensors into functional textiles to extend the capabilities of wearable solutions for body temperature monitoring. In addition, the temperature sensitivity is 150 pm/°C, which is almost 15 times higher than that of a bare FBG. This study combines large and small pipes during fabrication to implant FBG sensors into the fabric. The law of energy conservation of the human body is considered in determining heat transfer between the body and its clothing. The mathematical model of heat transmission between the body and clothed FBG sensors is studied, and the steady-state thermal analysis is presented. The simulation results show the capability of the material to correct the actual body temperature. Based on the skin temperature obtained by the weighted average method, this paper presents the five points weighted coefficients model using both sides of the chest, armpits, and the upper back for the intelligent clothing. The weighted coefficients of 0.0826 for the left chest, 0.3706 for the left armpit, 0.3706 for the right armpit, 0.0936 for the upper back, and 0.0826 for the right chest were obtained using Cramer's Rule. Using the weighting coefficient, the deviation of the experimental result was ± 0.18 °C, which favors the use for clinical armpit temperature monitoring. Moreover, in special cases when several FBG sensors are broken, the weighted coefficients of the other sensors could be changed to obtain accurate body temperature.

  17. Body temperature change and outcomes in patients undergoing long-distance air medical transport.

    Science.gov (United States)

    Nakajima, Mikio; Aso, Shotaro; Yasunaga, Hideo; Shirokawa, Masamitsu; Nakano, Tomotsugu; Miyakuni, Yasuhiko; Goto, Hideaki; Yamaguchi, Yoshihiro

    2018-04-30

    Short-distance air medical transport for adult emergency patients does not significantly affect patients' body temperature and outcomes. This study aimed to examine the influence of long-distance air medical transport on patients' body temperatures and the relationship between body temperature change and mortality. We retrospectively enrolled consecutive patients transferred via helicopter or plane from isolated islands to an emergency medical center in Tokyo, Japan between April 2010 and December 2016. Patients' average body temperature was compared before and after air transport using a paired t-test, and corrections between body temperature change and flight duration were calculated using Pearson's correlation coefficient. Multivariable logistic regression models were then used to examine the association between body temperature change and in-hospital mortality. Of 1253 patients, the median age was 72 years (interquartile range, 60-82 years) and median flight duration was 71 min (interquartile range, 54-93 min). In-hospital mortality was 8.5%, and average body temperature was significantly different before and after air transport (36.7 °C versus 36.3 °C; difference: -0.36 °C; 95% confidence interval, -0.30 to -0.42; p 38.0 °C) or normothermia (36.0-37.9 °C) before air transport and hypothermia after air transport (odds ratio, 2.08; 95% confidence interval, 1.20-3.63; p = 0.009), and (ii) winter season (odds ratio, 2.15; 95% confidence interval, 1.08-4.27; p = 0.030). Physicians should consider body temperature change during long-distance air transport in patients with not only hypothermia but also normothermia or hyperthermia before air transport, especially in winter. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Draft of standard for graphite core components in high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Shibata, Taiju; Sawa, Kazuhiro; Eto, Motokuni; Kunimoto, Eiji; Shiozawa, Shusaku; Oku, Tatsuo; Maruyama, Tadashi

    2010-01-01

    For the design of the graphite components in the High Temperature Engineering Test Reactor (HTTR), the graphite structural design code for the HTTR etc. were applied. However, general standard systems for the High Temperature Gas-cooled Reactor (HTGR) have not been established yet. The authors had studied on the technical issues which is necessary for the establishment of a general standard system for the graphite components in the HTGR. The results of the study were documented and discussed at a 'Special committee on research on preparation for codes for graphite components in HTGR' at Atomic Energy Society of Japan (AESJ). As a result, 'Draft of Standard for Graphite Core Components in High Temperature Gas-cooled Reactor.' was established. In the draft standard, the graphite components are classified three categories (A, B and C) in the standpoints of safety functions and possibility of replacement. For the components in the each class, design standard, material and product standards, and in-service inspection and maintenance standard are determined. As an appendix of the design standard, the graphical expressions of material property data of 1G-110 graphite as a function of fast neutron fluence are expressed. The graphical expressions were determined through the interpolation and extrapolation of the irradiated data. (author)

  19. Consensus on core phenomena and statements describing Basic Body Awareness Therapy within the movement awareness domain in physiotherapy.

    Science.gov (United States)

    Skjaerven, L H; Mattsson, M; Catalan-Matamoros, D; Parker, A; Gard, G; Gyllensten, A Lundvik

    2018-02-26

    Physiotherapists are facing complex health challenges in the treatment of persons suffering from long-lasting musculoskeletal disorders and mental health problems. Basic Body Awareness Therapy (BBAT) is a physiotherapy approach within the movement awareness domain developed to bridge physical, mental, and relational health challenges. The purpose of this study was to reach a consensus on core phenomena and statements describing BBAT. A consensus-building process was conducted using the nominal group technique (NGT). Twenty-one BBAT experts from 10 European countries participated in a concentrated weekend workshop of 20 hours. All participants signed informed consent. Participants reached a consensus on 138 core phenomena, clustered in three overarching categories: clinical core, historical roots, and research and evaluation phenomena. Of the 106 clinical core phenomena, the participants agreed on three categories of phenomena: movement quality, movement awareness practice, and movement awareness therapy and pedagogy. Furthermore, the participants reached 100 percent consensus on 16 of 30 statements describing BBAT. This study provides a consensus on core phenomena and statements describing BBAT. The data reveal phenomena implemented when promoting movement quality through movement awareness. Data provide clarity in some aspects of the vocabulary as fundamental theory. Further reearch will be developed.

  20. Effect of body temperature on peripheral venous pressure measurements and its agreement with central venous pressure in neurosurgical patients.

    Science.gov (United States)

    Sahin, Altan; Salman, M Alper; Salman, A Ebru; Aypar, Ulka

    2005-04-01

    Previous studies suggest a correlation of central venous pressure (CVP) with peripheral venous pressure (PVP) in different clinical settings. The effect of body temperature on PVP and its agreement with CVP in patients under general anesthesia are investigated in this study. Fifteen American Society of Anesthesiologists I-II patients undergoing elective craniotomy were included in the study. CVP, PVP, and core (Tc) and peripheral (Tp) temperatures were monitored throughout the study. A total of 950 simultaneous measurements of CVP, PVP, Tc, and Tp from 15 subjects were recorded at 5-minute intervals. The measurements were divided into low- and high-Tc and -Tp groups by medians as cutoff points. Bland-Altman assessment for agreement was used for CVP and PVP in all groups. PVP measurements were within range of +/-2 mm Hg of CVP values in 94% of the measurements. Considering all measurements, mean bias was 0.064 mm Hg (95% confidence interval -0.018-0.146). Corrected bias for repeated measurements was 0.173 +/- 3.567 mm Hg (mean +/- SD(corrected)). All of the measurements were within mean +/- 2 SD of bias, which means that PVP and CVP are interchangeable in our setting. As all the measurements were within 1 SD of bias when Tc was > or = 35.8 degrees C, even a better agreement of PVP and CVP was evident. The effect of peripheral hypothermia was not as prominent as core hypothermia. PVP measurement may be a noninvasive alternative for estimating CVP. Body temperature affects the agreement of CVP and PVP, which deteriorates at lower temperatures.

  1. Effect of paracetamol (acetaminophen) on body temperature in acute stroke: A meta-analysis.

    Science.gov (United States)

    Fang, Junjie; Chen, Chensong; Cheng, Hongsen; Wang, Ren; Ma, Linhao

    2017-10-01

    The objective of this study was to assess the efficacy of paracetamol (acetaminophen) on body temperature in acute stroke. Medline, Cochrane Central Register of Controlled Trials, EMBASE, Chinese BioMedical Literature Database, China National Knowledge Infrastructure, and the World Health Organization (WHO) International Clinical Trials Registry Platform were searched electronically. Relevant journals and references of studies included were hand-searched for randomized controlled trials (RCT) and controlled clinical trials (CCT) regarding the efficacy of paracetamol (acetaminophen) on body temperature in acute stroke. Two reviewers independently performed data extraction and quality assessment. Data were analyzed using RevMan 5.3 software by the Cochrane Collaboration. Five studies were included. To compare the efficacy of paracetamol (acetaminophen) in acute stroke, the pooled RR (Risk Ratio) and its 95% CI of body temperature reduction at 24h from the start of treatment were -0.3 (95% CI: -0.52 to -0.08), with statistical significance (P=0.007). Consistently, the pooled RR (Risk Ratio) and its 95% CI of body temperature at 24h from the start of treatment were -0.22 (-0.29, -0.15), with statistical significance (PParacetamol (acetaminophen) is one of the most commonly used antipyretic drugs and has some capability to reduce body temperature through acting on central nervous system. Acetaminophen showed some capability to decrease body temperature for acute stroke. Acetaminophen could not improve functional outcome and reduce adverse events of patients with acute stroke. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Effect of prewarming on the body temperature of small dogs undergoing inhalation anesthesia.

    Science.gov (United States)

    Rigotti, Clara F; Jolliffe, Colette T; Leece, Elizabeth A

    2015-10-01

    To investigate whether prewarming affects body temperature of small dogs (weighing dogs weighing temperature was recorded. Before IM administration of buprenorphine hydrochloride and acepromazine maleate, dogs were randomly assigned to be placed in a pediatric incubator at 33°C (91.4°F) for approximately 30 to 60 minutes (prewarming group) or to receive no prewarming (control group); subsequently, dogs underwent inhalation anesthesia with isoflurane in oxygen. Rectal, esophageal, and ambient temperatures were measured every 5 minutes from induction of anesthesia (IOA) for > 1 hour by an observer who was unaware of treatment. If a dog became hypothermic (esophageal temperature dogs, anesthesia, temperatures, hypothermia, and study withdrawal were compared between groups. 1 dog was excluded from the prewarming group after becoming excessively excited in the incubator. Between groups, age, weight, body condition score, degree of preanesthesia sedation, interval from sedation to IOA, duration of anesthesia, baseline rectal temperature, rectal temperatures immediately prior to IOA, esophageal temperature following IOA, ambient temperature during the first 70 minutes of anesthesia, esophageal or rectal temperature during the first 90 minutes of anesthesia, and incidence of hypothermia and study withdrawal (5 dogs/group) did not differ significantly. Prewarming in an incubator prior to IOA failed to improve or maintain body temperature of dogs weighing < 10 kg during inhalation anesthesia.

  3. Refractive index and temperature-sensing characteristics of a cladding-etched thin core fiber interferometer

    Science.gov (United States)

    Wang, Weiying; Dong, Xinran; Chu, Dongkai; Hu, Youwang; Sun, Xiaoyan; Duan, Ji-An

    2018-05-01

    A high refractive index (RI) sensor based on an in-line Mach-Zehnder mode interferometer (MZI) is proposed. The sensor was realized by splicing a 2-cm length of cladding-etched thin core fiber (TCF) between two single mode fibers (SMFs). The TCF-structured MZI exhibited good fringe visibility as high as 15 dB in air and the high RI sensitivity attained a value of 1143.89 nm/RIU at a RI of 1.447. The experimental data revealed that the MZI has high RI sensitivity after HF etching realizing 2599.66 nm/RIU. Studies were performed on the temperature characteristics of the device. It is anticipated that this high RI sensor will be deployed in new and diverse applications in the chemical and biological fields.

  4. Studies of Behavior Melting Temperature Characteristics for Multi Thermocouple In-Core Instrument Assembly

    International Nuclear Information System (INIS)

    Shin, Donghyup; Chae, Myoungeun; Kim, Sungjin; Lee, Kyulim

    2015-01-01

    Bottom-up type in-core instruments (ICIs) are used for the pressurized water reactors of OPR-1000, APR- 1400 in order to measure neutron flux and temperature in the reactor. It is a well-known technique and a proven design using years in the nuclear field. ICI consists of one pair of K-type thermocouple, five self-powered neutron detectors (SPNDs) and one back ground detector. K-type thermocouple's purpose is to measure the core exit temperature (CET) in the reactor. The CET is a very important factor for operating nuclear power plants and it is 327 .deg. C when generally operating the reactor in the nuclear power plant(NPP) in case of OPR- 1000. If the CET will exceed 650 .deg. C, Operators in the main control room should be considered to be an accident situation in accordance with a severe accident management guidance(SAMG). The Multi Thermocouple ICI is a new designed ICI assuming severe accident conditions. It consists of four more thermocouples than the existing design, so it has five Ktype thermocouples besides the thermocouple measuring CET is located in the same elevation as the ICI. Each thermocouple is able to be located in the desired location as required. The Multi Thermocouple ICI helps to measure the temperature distribution of the entire reactor. In addition, it will measure certain point of melted core because of the in-vessel debris of nuclear fuel when an accident occurs more seriously. In this paper, to simulate a circumstance such as a nuclear reactor severe accident was examined. In this study, the K-type thermocouples of Multi Thermocouple ICI was confirmed experimentally to be able to measure up to 1370 .deg. C before the thermocouples have been melted. And after the thermocouples were melted by debris, it was able to be monitored that the signal of EMF directed the infinite value of voltage. Therefore through the results of the test, it can be assumed that if any EMF data among the Multi Thermocouple ICI will direct the infinite value

  5. Studies of Behavior Melting Temperature Characteristics for Multi Thermocouple In-Core Instrument Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Donghyup; Chae, Myoungeun; Kim, Sungjin; Lee, Kyulim [Woojin inc, Hwasung (Korea, Republic of)

    2015-05-15

    Bottom-up type in-core instruments (ICIs) are used for the pressurized water reactors of OPR-1000, APR- 1400 in order to measure neutron flux and temperature in the reactor. It is a well-known technique and a proven design using years in the nuclear field. ICI consists of one pair of K-type thermocouple, five self-powered neutron detectors (SPNDs) and one back ground detector. K-type thermocouple's purpose is to measure the core exit temperature (CET) in the reactor. The CET is a very important factor for operating nuclear power plants and it is 327 .deg. C when generally operating the reactor in the nuclear power plant(NPP) in case of OPR- 1000. If the CET will exceed 650 .deg. C, Operators in the main control room should be considered to be an accident situation in accordance with a severe accident management guidance(SAMG). The Multi Thermocouple ICI is a new designed ICI assuming severe accident conditions. It consists of four more thermocouples than the existing design, so it has five Ktype thermocouples besides the thermocouple measuring CET is located in the same elevation as the ICI. Each thermocouple is able to be located in the desired location as required. The Multi Thermocouple ICI helps to measure the temperature distribution of the entire reactor. In addition, it will measure certain point of melted core because of the in-vessel debris of nuclear fuel when an accident occurs more seriously. In this paper, to simulate a circumstance such as a nuclear reactor severe accident was examined. In this study, the K-type thermocouples of Multi Thermocouple ICI was confirmed experimentally to be able to measure up to 1370 .deg. C before the thermocouples have been melted. And after the thermocouples were melted by debris, it was able to be monitored that the signal of EMF directed the infinite value of voltage. Therefore through the results of the test, it can be assumed that if any EMF data among the Multi Thermocouple ICI will direct the infinite value

  6. Manipulations of core temperatures in ischemia-reperfusion lung injury in rabbits.

    Science.gov (United States)

    Chang, Hung; Huang, Kun-Lun; Li, Min-Hui; Hsu, Ching-Wang; Tsai, Shih-Hung; Chu, Shi-Jye

    2008-01-01

    The present study was designed to determine the effect of various core temperatures on acute lung injury induced by ischemia-reperfusion (I/R) in our isolated rabbit lung model. Typical acute lung injury was successfully induced by 30 min of ischemia followed by 90 min of reperfusion observation. The I/R elicited a significant increase in pulmonary arterial pressure, microvascular permeability (measured by using the capillary filtration coefficient, Kfc), Delta Kfc ratio, lung weight gain and the protein concentration of the bronchoalveolar lavage fluid. Mild hypothermia significantly attenuated acute lung injury induced by I/R, all parameters having decreased significantly (p<0.05); conversely, mild hyperthermia did not further exacerbate acute lung injury. These experimental data suggest that mild hypothermia significantly ameliorated acute lung injury induced by ischemia-reperfusion in rabbits.

  7. Etching twin core fiber for the temperature-independent refractive index sensing

    Science.gov (United States)

    Zhang, Chuanbiao; Ning, Tigang; Li, Jing; Zheng, Jingjing; Gao, Xuekai; Lin, Heng; Pei, Li

    2018-04-01

    We proposed an ultra-compact chemically etched twin core fiber (TCF) based optic refractive index (RI) sensor, in which the etched fiber was fabricated by immersing in an aqueous solution of hydrofluoric acid (HF) to etch the cladding. Due to the multipath evolutions of light during the TCF, the mode induced interference pattern can be used for measurement. Numerical simulations were performed, demonstrating that only the cladding mode strongly interacts with the surrounding media, and the higher cladding modes will be more sensitive to external medium. In the experiment demonstration, the RI response characteristics of the sensor were investigated, which shows a relatively high RI sensitivity and a much low temperature cross-sensitivity with about 1.06 × 10-6 RIU °C-1. Due to low cost and easy fabrication, the sensor can be a suitable candidate in the biochemical field.

  8. Effects of the TRPV1 antagonist ABT-102 on body temperature in healthy volunteers: pharmacokinetic/pharmacodynamic analysis of three phase 1 trials

    Science.gov (United States)

    Othman, Ahmed A; Nothaft, Wolfram; Awni, Walid M; Dutta, Sandeep

    2013-01-01

    Aim To characterize quantitatively the relationship between ABT-102, a potent and selective TRPV1 antagonist, exposure and its effects on body temperature in humans using a population pharmacokinetic/pharmacodynamic modelling approach. Methods Serial pharmacokinetic and body temperature (oral or core) measurements from three double-blind, randomized, placebo-controlled studies [single dose (2, 6, 18, 30 and 40 mg, solution formulation), multiple dose (2, 4 and 8 mg twice daily for 7 days, solution formulation) and multiple-dose (1, 2 and 4 mg twice daily for 7 days, solid dispersion formulation)] were analyzed. nonmem was used for model development and the model building steps were guided by pre-specified diagnostic and statistical criteria. The final model was qualified using non-parametric bootstrap and visual predictive check. Results The developed body temperature model included additive components of baseline, circadian rhythm (cosine function of time) and ABT-102 effect (Emax function of plasma concentration) with tolerance development (decrease in ABT-102 Emax over time). Type of body temperature measurement (oral vs. core) was included as a fixed effect on baseline, amplitude of circadian rhythm and residual error. The model estimates (95% bootstrap confidence interval) were: baseline oral body temperature, 36.3 (36.3, 36.4)°C; baseline core body temperature, 37.0 (37.0, 37.1)°C; oral circadian amplitude, 0.25 (0.22, 0.28)°C; core circadian amplitude, 0.31 (0.28, 0.34)°C; circadian phase shift, 7.6 (7.3, 7.9) h; ABT-102 Emax, 2.2 (1.9, 2.7)°C; ABT-102 EC50, 20 (15, 28) ng ml−1; tolerance T50, 28 (20, 43) h. Conclusions At exposures predicted to exert analgesic activity in humans, the effect of ABT-102 on body temperature is estimated to be 0.6 to 0.8°C. This effect attenuates within 2 to 3 days of dosing. PMID:22966986

  9. Effects of the TRPV1 antagonist ABT-102 on body temperature in healthy volunteers: pharmacokinetic/ pharmacodynamic analysis of three phase 1 trials.

    Science.gov (United States)

    Othman, Ahmed A; Nothaft, Wolfram; Awni, Walid M; Dutta, Sandeep

    2013-04-01

    To characterize quantitatively the relationship between ABT-102, a potent and selective TRPV1 antagonist, exposure and its effects on body temperature in humans using a population pharmacokinetic/pharmacodynamic modelling approach. Serial pharmacokinetic and body temperature (oral or core) measurements from three double-blind, randomized, placebo-controlled studies [single dose (2, 6, 18, 30 and 40 mg, solution formulation), multiple dose (2, 4 and 8 mg twice daily for 7 days, solution formulation) and multiple-dose (1, 2 and 4 mg twice daily for 7 days, solid dispersion formulation)] were analyzed. NONMEM was used for model development and the model building steps were guided by pre-specified diagnostic and statistical criteria. The final model was qualified using non-parametric bootstrap and visual predictive check. The developed body temperature model included additive components of baseline, circadian rhythm (cosine function of time) and ABT-102 effect (Emax function of plasma concentration) with tolerance development (decrease in ABT-102 Emax over time). Type of body temperature measurement (oral vs. core) was included as a fixed effect on baseline, amplitude of circadian rhythm and residual error. The model estimates (95% bootstrap confidence interval) were: baseline oral body temperature, 36.3 (36.3, 36.4)°C; baseline core body temperature, 37.0 (37.0, 37.1)°C; oral circadian amplitude, 0.25 (0.22, 0.28)°C; core circadian amplitude, 0.31 (0.28, 0.34)°C; circadian phase shift, 7.6 (7.3, 7.9) h; ABT-102 Emax , 2.2 (1.9, 2.7)°C; ABT-102 EC50 , 20 (15, 28) ng ml(-1) ; tolerance T50 , 28 (20, 43) h. At exposures predicted to exert analgesic activity in humans, the effect of ABT-102 on body temperature is estimated to be 0.6 to 0.8°C. This effect attenuates within 2 to 3 days of dosing. © 2012 Abbott Laboratories. British Journal of Clinical Pharmacology © 2012 The British Pharmacological Society.

  10. Use of extremity insulation during whole body hyperthermia to reduce temperature nonuniformity

    International Nuclear Information System (INIS)

    Thrall, D.E.; Page, R.L.

    1987-01-01

    The author previously documented during whole body hyperthermia in dogs using a radiant heating device that temperature at superficial sites, including tibial bone marrow, falls below systemic arterial temperature during the plateau phase of heating. This may be due to direct heat loss to the environment. Sites where temperature is lower than systemic arterial temperature during the plateau phase may become sanctuary sites where tumor deposits are spared because they do not receive the prescribed thermal dose. In an attempt to decrease temperature nonuniformity and increase thermal dose delivered to such superficial sites, extremity insulation has been employed during whole body hyperthermia in dogs. The author measured temperature at cutaneous and subcutaneous sites and within tibial bone marrow in insulated and noninsulated extremities of dogs undergoing whole body hyperthermia in the radiant heating device. The author found that extremity insulation is effective in reducing extremity temperature nonuniformity. Specific results are presented. Extremity insulation may be necessary during whole body hyperthermia to assure that extremity tumor deposits receive a thermal dose similar to that prescribed for the entire body

  11. Stable isotopes and their relationship to temperature and precipitation as recorded in low latitude ice cores

    International Nuclear Information System (INIS)

    Thompson, L.G.; Davis, M.E.; Pin-Nan, Lin

    2002-01-01

    The potential of stable isotopic ratios ( 18 O/ 16 O and 2 H/ 1 H) in mid to low latitude glaciers as modern tools for paleoclimate reconstruction is reviewed. The isotopic composition of precipitation should be viewed not only as a powerful proxy indicator of climate, but also as an additional parameter for understanding climate-induced changes in the water cycle, on both regional and global scales. To interpret quantitatively the ice core isotopic records, the response of the isotopic composition of precipitation to long-term fluctuations of key climatic parameters (temperature, precipitation amount, relative humidity) over a given area should be known. Furthermore, it is important to establish the transfer functions that relate the climate-induced changes of the isotopic composition of precipitation to the isotope record preserved in the glacier. The factors that govern the values of stable isotopes in snowfall are enigmatic and as yet no satisfactory model has been developed to link them directly with any one meteorological or oceanographic factor. This is particularly problematic in the high altitude glaciers in the tropics, where complications are present due not only to continental effects, but also to altitude effects and convective air mass instability, particularly in the monsoon climates of the tropics. This paper presents long and short-term perspectives of isotopic composition variations in ice cores spanning the last 25,000 years from the mid- to low-latitude glaciers. The isotopic records will also be examined as a function of the altitude of the individual coring sites which ranges from 5325 meters to 7200 meters. On the short, term isotopic records from ice cores from the Andes of South America, the Tibetan Plateau and Kilimanjaro in Africa through the year 2000 will be presented. All the tropical glaciers for which data exist are disappearing, and these sites show isotopic enrichment in the 20th century that suggests that large scale low latitude

  12. A novel core 1 O-linked glycan-specific binding lectin from the fruiting body of Hericium erinaceus.

    Science.gov (United States)

    Kim, Seonghun

    2018-02-01

    Mucin-type O-glycans are involved in biological functions on the cell surface as well as the glycoproteins and can also be used as specific carbohydrate biomarkers of many diseases. In this study, I purified a novel core 1 O-linked glycan specific lectin, Hericium erinaceus lecin (HeL), from the fruiting body of the mushroom Hericium erinaceus, which is known as the natural source for a sialic acid-binding lectin. Upon optimization of the purification conditions, a sequence of ion exchange, affinity, ion exchange, and size-exclusion chromatography resulted in the highest yield and best quality of lectin without protease activity. The resulting purified HeL is an apparent hexameric protein with a subunit molecular weight of 15kDa, and a pI of 4.3. In hemagglutination inhibition assay, the purified lectin was only inhibited by glycoproteins containing mucin-type O-glycans and reacted weakly with Galβ(1,3)GalNAc. Glycan array analyses showed that HeL specifically interacts with core 1 O-linked glycans as well as extended O-glycan structures containing sialylation or fucosylation. The glycan binding specificity of HeL is comparable to that of peanut agglutinin for detection of a broader range of extended core 1 O-glycan structures. Taken together, these results provide an efficient and optimized procedure for the purification of HeL from the fruiting body of the mushroom Hericium erinaceus. Moreover, HeL represents a powerful tool for analyzing core 1 and extended core 1 O- glycan structures in diagnosis assays. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Investigation on multilayer failure mechanism of RPV with a high temperature gradient from core meltdown scenario

    Energy Technology Data Exchange (ETDEWEB)

    Jianfeng, Mao, E-mail: jianfeng-mao@163.com [Institute of Process Equipment and Control Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310032 (China); Engineering Research Center of Process Equipment and Remanufacturing, Ministry of Education (China); Xiangqing, Li [Institute of Process Equipment and Control Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310032 (China); Shiyi, Bao, E-mail: bsy@zjut.edu.cn [Institute of Process Equipment and Control Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310032 (China); Engineering Research Center of Process Equipment and Remanufacturing, Ministry of Education (China); Lijia, Luo [Institute of Process Equipment and Control Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310032 (China); Zengliang, Gao [Institute of Process Equipment and Control Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310032 (China); Engineering Research Center of Process Equipment and Remanufacturing, Ministry of Education (China)

    2016-12-15

    Highlights: • The multilayer failure mechanism is investigated for RPV under CHF. • Failure time and location of RPV are predicted under various SA scenarios. • The structural behaviors are analyzed in depth for creep and plasticity. • The effect of internal pressure and temperature gradient is considered. • The structural integrity of RPV is secured within the required 72 creep hours. - Abstract: The Fukushima accident shows that in-vessel retention (IVR) of molten core debris has not been appropriately assessed, and a certain pressure (up to 8.0 MPa) still exists inside the reactor pressure vessel (RPV). In the traditional concept of IVR, the pressure is supposed to successfully be released, and the temperature distributed among the wall thickness is assumed to be uniform. However, this concept is seriously challenged by reality of Fukushima accident with regard to the existence of both internal pressure and high temperature gradient. Therefore, in order to make the IVR mitigation strategy succeed, the numerical investigation of the lower head behavior and its failure has been performed for several internal pressures under high temperature gradient. According to some requirements in severe accident (SA) management of RPV, it should be ensured that the IVR mitigation takes effect in preventing the failure of the structure within a period of 72 h. Subsequently, the failure time and location have to be predicted under the critical heat flux (CHF) loading condition for lower head, since the CHF is limit thermal boundary before the melt-through of RPV. In illustrating the so called ‘multilayer failure mechanism’, the structural behaviors of RPV are analyzed in terms of the stress, creep strain, deformation, damage on selected paths.

  14. Investigation on multilayer failure mechanism of RPV with a high temperature gradient from core meltdown scenario

    International Nuclear Information System (INIS)

    Jianfeng, Mao; Xiangqing, Li; Shiyi, Bao; Lijia, Luo; Zengliang, Gao

    2016-01-01

    Highlights: • The multilayer failure mechanism is investigated for RPV under CHF. • Failure time and location of RPV are predicted under various SA scenarios. • The structural behaviors are analyzed in depth for creep and plasticity. • The effect of internal pressure and temperature gradient is considered. • The structural integrity of RPV is secured within the required 72 creep hours. - Abstract: The Fukushima accident shows that in-vessel retention (IVR) of molten core debris has not been appropriately assessed, and a certain pressure (up to 8.0 MPa) still exists inside the reactor pressure vessel (RPV). In the traditional concept of IVR, the pressure is supposed to successfully be released, and the temperature distributed among the wall thickness is assumed to be uniform. However, this concept is seriously challenged by reality of Fukushima accident with regard to the existence of both internal pressure and high temperature gradient. Therefore, in order to make the IVR mitigation strategy succeed, the numerical investigation of the lower head behavior and its failure has been performed for several internal pressures under high temperature gradient. According to some requirements in severe accident (SA) management of RPV, it should be ensured that the IVR mitigation takes effect in preventing the failure of the structure within a period of 72 h. Subsequently, the failure time and location have to be predicted under the critical heat flux (CHF) loading condition for lower head, since the CHF is limit thermal boundary before the melt-through of RPV. In illustrating the so called ‘multilayer failure mechanism’, the structural behaviors of RPV are analyzed in terms of the stress, creep strain, deformation, damage on selected paths.

  15. Measurements of the isothermal temperature reactivity coefficient of KUCA C-Core with a D{sub 2}O tank

    Energy Technology Data Exchange (ETDEWEB)

    Pyeon, Cheol Ho [Research Reactor Institute, Kyoto Univ., Osaka (Japan); Shim, Hyung Jin; Choi, Sung Hoon; Jeon, Byoung Kyu [Seoul National Univ., Seoul (Korea, Republic of); Ryu, Eun Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-10-15

    The Kyoto University Critical Assembly (KUCA) is a multi-core type critical assembly consisting of three independent cores in the Kyoto University Research Reactor Institute. The light-water-moderated core (Ccore) is a tank type reactor, and the experiments of the isothermal temperature reactivity coefficient (ITRC) of C-core with a D{sub 2}O tank were carried out with the use of six 10 kW heaters and a radiator system in a dump tank, one 10 kW heater in a core tank, and one 5 kW heater in the D{sub 2}O tank. The ITRCs of the C-core with the D{sub 2}O tank immersed in the core tank are considered important to investigate the mechanism of moderation and reflection effects of H{sub 2}O and D{sub 2}O in the core on the evaluation by numerical simulations. The objectives of this paper are to report the ITRC measurements for C-core with D{sub 2}O tank ranging between 26.7 .deg. C and 58.5 .deg. C, and to examine the accuracy of the numerical simulations by the Seoul National University Monte Carlo code, McCARD, through the comparison between measured and calculated results.

  16. Effects of whole body cryotherapy and cold water immersion on knee skin temperature

    OpenAIRE

    Costello, J. T.; Donnelly, A. E.; Karki, A.; Selfe, J.

    2014-01-01

    This study sought to a) compare and contrast the effect of 2 commonly used cryotherapy treatments, 4 min of −110°C whole body cryotherapy and 8°C cold water immersion, on knee skin temperature and b) establish whether either protocol was capable of achieving a skin temperature (

  17. Improvements in X-band transmitter phase stability through Klystron body temperature regulation

    Science.gov (United States)

    Perez, R. M.

    1992-01-01

    This article describes the techniques used and experimental results obtained in improving transmitter stability by control of the klystron body temperature. Related work in the measurement of klystron phase control parameters (pushing factors) is also discussed. The contribution of wave guide temperature excursions to uplink phase stability is presented. Suggestions are made as to the direction of future work in this area.

  18. Speed over efficiency: locusts select body temperatures that favour growth rate over efficient nutrient utilization

    DEFF Research Database (Denmark)

    Miller, Gabriel A; Clissold, Fiona J; Mayntz, David

    2009-01-01

    to investigate relationships between growth/development and macronutrient utilization (conversion of ingesta to body mass) as a function of temperature. A range of macronutrient intake values for insects at 26, 32 and 38°C was achieved by offering individuals high-protein diets, high-carbohydrate diets......, but once digested both macronutrients were converted to growth most efficiently at the intermediate temperature (32°C). Body temperature preference thus yielded maximal growth rates at the expense of efficient nutrient utilization...

  19. Novel energy-saving strategies to multiple stressors in birds: the ultradian regulation of body temperature.

    Science.gov (United States)

    Tattersall, Glenn J; Roussel, Damien; Voituron, Yann; Teulier, Loïc

    2016-09-28

    This study aimed to examine thermoregulatory responses in birds facing two commonly experienced stressors, cold and fasting. Logging devices allowing long-term and precise access to internal body temperature were placed within the gizzards of ducklings acclimated to cold (CA) (5°C) or thermoneutrality (TN) (25°C). The animals were then examined under three equal 4-day periods: ad libitum feeding, fasting and re-feeding. Through the analysis of daily as well as short-term, or ultradian, variations of body temperature, we showed that while ducklings at TN show only a modest decline in daily thermoregulatory parameters when fasted, they exhibit reduced surface temperatures from key sites of vascular heat exchange during fasting. The CA birds, on the other hand, significantly reduced their short-term variations of body temperature while increasing long-term variability when fasting. This phenomenon would allow the CA birds to reduce the energetic cost of body temperature maintenance under fasting. By analysing ultradian regulation of body temperature, we describe a means by which an endotherm appears to lower thermoregulatory costs in response to the combined stressors of cold and fasting. © 2016 The Author(s).

  20. Dedicated tool to assess the impact of a rhetorical task on human body temperature.

    Science.gov (United States)

    Koprowski, Robert; Wilczyński, Sławomir; Martowska, Katarzyna; Gołuch, Dominik; Wrocławska-Warchala, Emilia

    2017-10-01

    Functional infrared thermal imaging is a method widely used in medicine, including analysis of the mechanisms related to the effect of emotions on physiological processes. The article shows how the body temperature may change during stress associated with performing a rhetorical task and proposes new parameters useful for dynamic thermal imaging measurements MATERIALS AND METHODS: 29 healthy male subjects were examined. They were given a rhetorical task that induced stress. Analysis and processing of collected body temperature data in a spatial resolution of 256×512pixels and a temperature resolution of 0.1°C enabled to show the dynamics of temperature changes. This analysis was preceded by dedicated image analysis and processing methods RESULTS: The presented dedicated algorithm for image analysis and processing allows for fully automated, reproducible and quantitative assessment of temperature changes and time constants in a sequence of thermal images of the patient. When performing the rhetorical task, the temperature rose by 0.47±0.19°C in 72.41% of the subjects, including 20.69% in whom the temperature decreased by 0.49±0.14°C after 237±141s. For 20.69% of the subjects only a drop in temperature was registered. For the remaining 6.89% of the cases, no temperature changes were registered CONCLUSIONS: The performance of the rhetorical task by the subjects causes body temperature changes. The ambiguous temperature response to the given stress factor indicates the complex mechanisms responsible for regulating stressful situations. Stress associated with the examination itself induces body temperature changes. These changes should always be taken into account in the analysis of infrared data. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. A global bioheat model with self-tuning optimal regulation of body temperature using Hebbian feedback covariance learning.

    Science.gov (United States)

    Ong, M L; Ng, E Y K

    2005-12-01

    In the lower brain, body temperature is continually being regulated almost flawlessly despite huge fluctuations in ambient and physiological conditions that constantly threaten the well-being of the body. The underlying control problem defining thermal homeostasis is one of great enormity: Many systems and sub-systems are involved in temperature regulation and physiological processes are intrinsically complex and intertwined. Thus the defining control system has to take into account the complications of nonlinearities, system uncertainties, delayed feedback loops as well as internal and external disturbances. In this paper, we propose a self-tuning adaptive thermal controller based upon Hebbian feedback covariance learning where the system is to be regulated continually to best suit its environment. This hypothesis is supported in part by postulations of the presence of adaptive optimization behavior in biological systems of certain organisms which face limited resources vital for survival. We demonstrate the use of Hebbian feedback covariance learning as a possible self-adaptive controller in body temperature regulation. The model postulates an important role of Hebbian covariance adaptation as a means of reinforcement learning in the thermal controller. The passive system is based on a simplified 2-node core and shell representation of the body, where global responses are captured. Model predictions are consistent with observed thermoregulatory responses to conditions of exercise and rest, and heat and cold stress. An important implication of the model is that optimal physiological behaviors arising from self-tuning adaptive regulation in the thermal controller may be responsible for the departure from homeostasis in abnormal states, e.g., fever. This was previously unexplained using the conventional "set-point" control theory.

  2. Steady-State Core Temperature Prediction Based on GAMMA+/CAPP Coupling

    International Nuclear Information System (INIS)

    Tak, Nam-il; Lee, Hyun-Chul; Lim, Hong-Sik

    2015-01-01

    In spite of sizable applications of the GAMMA+ code for the thermo-fluid analysis and design of a prismatic VHTR, the existing works are limited to stand-alone calculations. In the stand-alone calculations, information from the neutronic analysis (e.g., reactor power density profile) was considered only once i.e., when the calculations get started. For the neutronic analysis and design of a VHTR, the CAPP code, which is also under development at KAERI, is used. The main objective of this paper is to investigate the capability of GAMMA+ and CAPP coupling and to examine the results of the coupled analysis. Based on the coupling of GAMMA+ and CAPP, the steady-state core temperature was investigated in this work. It is found that the communication of data was successful. And the results of the GAMMA+ and CAPP coupling are found to be reasonable. The design modification of PMR200 is required to satisfy the design limit for the hot spot fuel temperature

  3. High Temperature Test Possibility at the HANARO Out-core Region through a Thermal Analysis

    International Nuclear Information System (INIS)

    Kang, Young-Hwan; Choi, Myung-Hwan; Cho, Man-Soon; Choo, Kee-Nam; Kim, Bong-Goo

    2007-01-01

    The development of an advanced reactor system such as a next generation nuclear plant and other generation IV systems require new fuels, claddings, and structural materials. To characterize the performance of these new materials, it is necessary for us to have a leading-edge technology to satisfy the specific test requirements such as the conditions of high neutron exposures and high operating temperatures. Thus, nuclear data on HANARO's vertical test holes have been gathered and reviewed to evaluate the usability of the test holes located at the out-core zone of HANARO. In 2007, neutron flux levels of the concerned test holes and the gamma heat of the specimens and two different specimen holder materials of Al and Mo at the concerned test hole were obtained to enhance the utilization of the HANARO reactor and to develop new design concepts for high temperature irradiation tests. Based on the data, a series of thermal analyses was implemented to provide a reasonable demonstration and guidance on limitations or application

  4. Analysis of Moderator Temperature Reactivity Coefficient of the PWR Core Using WIMS-ANL

    International Nuclear Information System (INIS)

    Tukiran; Rokhmadi

    2007-01-01

    The Moderator Temperature Reactivity Coefficient (MTRC) is an important parameter in design, control and safety, particularly in PWR reactor. It is then very important to validate any new processed library for an accurate prediction of this parameter. The objective of this work is to validate the newly WIMS library based on ENDF/B-VI nuclear data files, especially for the prediction of the MTRC parameter. For this purpose, it is used a set of light water moderated lattice experiments as the NORA experiment and R1-100H critical reactors, both of reactors using UO 2 fuel pellet. Analysis is used with WIMSD/4 lattice code with original cross section libraries and WIMS-ANL with ENDF/B-VI cross section libraries. The results showed that the moderator temperatures reactivity coefficients for the NORA reactor using original libraries is - 5.039E-04 %Δk/k/℃ but for ENDF/B-VI libraries is - 2.925E-03 %Δk/k/℃. Compared to the designed value of the reactor core, the difference is in the range of 1.8 - 3.8 % for ENDF/B-IV libraries. It can be concluded that for reactor safety and control analysis, it has to be used ENDF/B- VI libraries because the original libraries is not accurate any more. (author)

  5. Investigation of Factors Affecting Body Temperature Changes During Routine Clinical Head Magnetic Resonance Imaging

    Science.gov (United States)

    Kim, Myeong Seong

    2016-01-01

    Background Pulsed radiofrequency (RF) magnetic fields, required to produce magnetic resonance imaging (MRI) signals from tissue during the MRI procedure have been shown to heat tissues. Objectives To investigate the relationship between body temperature rise and the RF power deposited during routine clinical MRI procedures, and to determine the correlation between this effect and the body’s physiological response. Patients and Methods We investigated 69 patients from the Korean national cancer center to identify the main factors that contribute to an increase in body temperature (external factors and the body’s response) during a clinical brain MRI. A routine protocol sequence of MRI scans (1.5 T and 3.0 T) was performed. The patient’s tympanic temperature was recorded before and immediately after the MRI procedure and compared with changes in variables related to the body’s physiological response to heat. Results Our investigation of the physiological response to RF heating indicated a link between increasing age and body temperature. A higher increase in body temperature was observed in older patients after a 3.0-T MRI (r = 0.07, P = 0.29 for 1.5-T MRI; r = 0.45, P = 0.002 for 3.0-T MRI). The relationship between age and body heat was related to the heart rate (HR) and changes in HR during the MRI procedure; a higher RF power combined with a reduction in HR resulted in an increase in body temperature. Conclusion A higher magnetic field strength and a decrease in the HR resulted in an increase in body temperature during the MRI procedure. PMID:27895872

  6. Impacts of exhalation flow on the microenvironment around the human body under different room temperatures

    Science.gov (United States)

    Jafari, Mohammad Javad; Gharari, Noradin; Azari, Mansour Rezazade; Ashrafi, Khosro

    2018-04-01

    Exhalation flow and room temperature can have a considerable effect on the microenvironment in the vicinity of human body. In this study, impacts of exhalation flow and room temperature on the microenvironment around a human body were investigated using a numerical simulation. For this purpose, a computational fluid dynamic program was applied to study thermal plume around a sitting human body at different room temperatures of a calm indoor room by considering the exhalation flow. The simulation was supported by some experimental measurements. Six different room temperatures (18 to 28 °C) with two nose exhalation modes (exhalation and non-exhalation) were investigated. Overhead and breathing zone velocities and temperatures were simulated in different scenarios. This study finds out that the exhalation through the nose has a significant impact on both quantitative and qualitative features of the human microenvironment in different room temperatures. At a given temperature, the exhalation through the nose can change the location and size of maximum velocity at the top of the head. In the breathing zone, the effect of exhalation through the nose on velocity and temperature distribution was pronounced for the point close to mouth. Also, the exhalation through the nose strongly influences the thermal boundary layer on the breathing zone while it only minimally influences the convective boundary layer on the breathing zone. Overall results demonstrate that it is important to take the exhalation flow into consideration in all areas, especially at a quiescent flow condition with low temperature.

  7. Simulated body temperature rhythms reveal the phase-shifting behavior and plasticity of mammalian circadian oscillators

    Science.gov (United States)

    Saini, Camille; Morf, Jörg; Stratmann, Markus; Gos, Pascal; Schibler, Ueli

    2012-01-01

    The circadian pacemaker in the suprachiasmatic nuclei (SCN) of the hypothalamus maintains phase coherence in peripheral cells through metabolic, neuronal, and humoral signaling pathways. Here, we investigated the role of daily body temperature fluctuations as possible systemic cues in the resetting of peripheral oscillators. Using precise temperature devices in conjunction with real-time monitoring of the bioluminescence produced by circadian luciferase reporter genes, we showed that simulated body temperature cycles of mice and even humans, with daily temperature differences of only 3°C and 1°C, respectively, could gradually synchronize circadian gene expression in cultured fibroblasts. The time required for establishing the new steady-state phase depended on the reporter gene, but after a few days, the expression of each gene oscillated with a precise phase relative to that of the temperature cycles. Smooth temperature oscillations with a very small amplitude could synchronize fibroblast clocks over a wide temperature range, and such temperature rhythms were also capable of entraining gene expression cycles to periods significantly longer or shorter than 24 h. As revealed by genetic loss-of-function experiments, heat-shock factor 1 (HSF1), but not HSF2, was required for the efficient synchronization of fibroblast oscillators to simulated body temperature cycles. PMID:22379191

  8. Simulated body temperature rhythms reveal the phase-shifting behavior and plasticity of mammalian circadian oscillators.

    Science.gov (United States)

    Saini, Camille; Morf, Jörg; Stratmann, Markus; Gos, Pascal; Schibler, Ueli

    2012-03-15

    The circadian pacemaker in the suprachiasmatic nuclei (SCN) of the hypothalamus maintains phase coherence in peripheral cells through metabolic, neuronal, and humoral signaling pathways. Here, we investigated the role of daily body temperature fluctuations as possible systemic cues in the resetting of peripheral oscillators. Using precise temperature devices in conjunction with real-time monitoring of the bioluminescence produced by circadian luciferase reporter genes, we showed that simulated body temperature cycles of mice and even humans, with daily temperature differences of only 3°C and 1°C, respectively, could gradually synchronize circadian gene expression in cultured fibroblasts. The time required for establishing the new steady-state phase depended on the reporter gene, but after a few days, the expression of each gene oscillated with a precise phase relative to that of the temperature cycles. Smooth temperature oscillations with a very small amplitude could synchronize fibroblast clocks over a wide temperature range, and such temperature rhythms were also capable of entraining gene expression cycles to periods significantly longer or shorter than 24 h. As revealed by genetic loss-of-function experiments, heat-shock factor 1 (HSF1), but not HSF2, was required for the efficient synchronization of fibroblast oscillators to simulated body temperature cycles.

  9. Isotopic ordering in eggshells reflects body temperatures and suggests differing thermophysiology in two Cretaceous dinosaurs.

    Science.gov (United States)

    Eagle, Robert A; Enriquez, Marcus; Grellet-Tinner, Gerald; Pérez-Huerta, Alberto; Hu, David; Tütken, Thomas; Montanari, Shaena; Loyd, Sean J; Ramirez, Pedro; Tripati, Aradhna K; Kohn, Matthew J; Cerling, Thure E; Chiappe, Luis M; Eiler, John M

    2015-10-13

    Our understanding of the evolutionary transitions leading to the modern endothermic state of birds and mammals is incomplete, partly because tools available to study the thermophysiology of extinct vertebrates are limited. Here we show that clumped isotope analysis of eggshells can be used to determine body temperatures of females during periods of ovulation. Late Cretaceous titanosaurid eggshells yield temperatures similar to large modern endotherms. In contrast, oviraptorid eggshells yield temperatures lower than most modern endotherms but ∼ 6 °C higher than co-occurring abiogenic carbonates, implying that this taxon did not have thermoregulation comparable to modern birds, but was able to elevate its body temperature above environmental temperatures. Therefore, we observe no strong evidence for end-member ectothermy or endothermy in the species examined. Body temperatures for these two species indicate that variable thermoregulation likely existed among the non-avian dinosaurs and that not all dinosaurs had body temperatures in the range of that seen in modern birds.

  10. Theoretical study on the inverse modeling of deep body temperature measurement

    International Nuclear Information System (INIS)

    Huang, Ming; Chen, Wenxi

    2012-01-01

    We evaluated the theoretical aspects of monitoring the deep body temperature distribution with the inverse modeling method. A two-dimensional model was built based on anatomical structure to simulate the human abdomen. By integrating biophysical and physiological information, the deep body temperature distribution was estimated from cutaneous surface temperature measurements using an inverse quasilinear method. Simulations were conducted with and without the heat effect of blood perfusion in the muscle and skin layers. The results of the simulations showed consistently that the noise characteristics and arrangement of the temperature sensors were the major factors affecting the accuracy of the inverse solution. With temperature sensors of 0.05 °C systematic error and an optimized 16-sensor arrangement, the inverse method could estimate the deep body temperature distribution with an average absolute error of less than 0.20 °C. The results of this theoretical study suggest that it is possible to reconstruct the deep body temperature distribution with the inverse method and that this approach merits further investigation. (paper)

  11. INCREASES IN CORE TEMPERATURE COUNTERBALANCE EFFECTS OF HEMOCONCENTRATION ON BLOOD VISCOSITY DURING PROLONGED EXERCISE IN THE HEAT

    Science.gov (United States)

    Buono, Michael J.; Krippes, Taylor; Kolkhorst, Fred W.; Williams, Alexander T.; Cabrales, Pedro

    2015-01-01

    Previous studies have reported that blood viscosity is significantly increased following exercise. However, these studies measured both pre- and post-exercise blood viscosity at 37 °C even though core and blood temperatures would be expected to have increased during the exercise. Consequently, the effect of exercise-induced hyperthermia on mitigating change in blood viscosity may have been missed. The purpose of this study was to isolate the effects of exercise-induced hemoconcentration and hyperthermia, as well as determine their combined effects, on blood viscosity. Nine subjects performed 2 h of moderate-intensity exercise in the heat (37 °C, 40% rH), which resulted in significant increases from pre-exercise values for rectal temperature (37.11 ± 0.35 °C to 38.76 ± 0.13 °C), hemoconcentration (hematocrit = 43.6 ± 3.6% to 45.6 ± 3.5%), and dehydration (Δbody weight = −3.6 ± 0.7%). Exercise-induced hemoconcentration significantly (P viscosity by 9% (3.97 to 4.30 cP at 300 s−1) while exercise-induced hyperthermia significantly decreased blood viscosity by 7% (3.97 to 3.70 cP at 300 s−1). However, when both factors were considered together, there was no overall change in blood viscosity (3.97 to 4.03 cP at 300 s−1). The effects of exercise-induced hemoconcentration, increased plasma viscosity, and increased red blood cell aggregation, all of which increased blood viscosity, were counterbalanced by increased RBC deformability (e.g., RBC membrane shear elastic modulus and elongation index) caused by the hyperthermia. Thus, blood viscosity remained unchanged following prolonged moderate-intensity exercise in the heat. PMID:26682653

  12. Evaluating infant core temperature response in a hot car using a heat balance model.

    Science.gov (United States)

    Grundstein, Andrew J; Duzinski, Sarah V; Dolinak, David; Null, Jan; Iyer, Sujit S

    2015-03-01

    Using a 1-year old male infant as the model subject, the objectives of this study were to measure increased body temperature of an infant inside an enclosed vehicle during the work day (8:00 am-4:00 pm) during four seasons and model the time to un-compensable heating, heat stroke [>40 °C (>104 °F)], and critical thermal maximum [>42 °C (>107.6 °F)]. A human heat balance model was used to simulate a child's physiological response to extreme heat exposure within an enclosed vehicle. Environmental variables were obtained from the nearest National Weather Service automated surface observing weather station and from an observational vehicular temperature study conducted in Austin, Texas in 2012. In all four seasons, despite differences in starting temperature and solar radiation, the model infant reached heat stroke and demise before 2:00 pm. Time to heat stroke and demise occurred most rapidly in summer, at intermediate durations in fall and spring, and most slowly in the winter. In August, the model infant reached un-compensable heat within 20 min, heat stroke within 105 min, and demise within 125 min. The average rate of heating from un-compensable heat to heat stroke was 1.7 °C/h (3.0 °F/h) and from heat stroke to demise was 4.8 °C/h (8.5 °F/h). Infants left in vehicles during the workday can reach hazardous thermal thresholds quickly even with mild environmental temperatures. These results provide a seasonal analogue of infant heat stroke time course. Further effort is required to create a universally available forensic tool to predict vehicular hyperthermia time course to demise.

  13. Locatable-body temperature monitoring based on semi-active UHF RFID tags.

    Science.gov (United States)

    Liu, Guangwei; Mao, Luhong; Chen, Liying; Xie, Sheng

    2014-03-26

    This paper presents the use of radio-frequency identification (RFID) technology for the real-time remote monitoring of body temperature, while an associated program can determine the location of the body carrying the respective sensor. The RFID chip's internal integrated temperature sensor is used for both the human-body temperature detection and as a measurement device, while using radio-frequency communication to broadcast the temperature information. The adopted RFID location technology makes use of reference tags together with a nearest neighbor localization algorithm and a multiple-antenna time-division multiplexing location system. A graphical user interface (GUI) was developed for collecting temperature and location data for the data fusion by using RFID protocols. With a puppy as test object, temperature detection and localization experiments were carried out. The measured results show that the applied method, when using a mercury thermometer for comparison in terms of measuring the temperature of the dog, has a good consistency, with an average temperature error of 0.283 °C. When using the associated program over the area of 12.25 m2, the average location error is of 0.461 m, which verifies the feasibility of the sensor-carrier location by using the proposed program.

  14. Locatable-Body Temperature Monitoring Based on Semi-Active UHF RFID Tags

    Directory of Open Access Journals (Sweden)

    Guangwei Liu

    2014-03-01

    Full Text Available This paper presents the use of radio-frequency identification (RFID technology for the real-time remote monitoring of body temperature, while an associated program can determine the location of the body carrying the respective sensor. The RFID chip’s internal integrated temperature sensor is used for both the human-body temperature detection and as a measurement device, while using radio-frequency communication to broadcast the temperature information. The adopted RFID location technology makes use of reference tags together with a nearest neighbor localization algorithm and a multiple-antenna time-division multiplexing location system. A graphical user interface (GUI was developed for collecting temperature and location data for the data fusion by using RFID protocols. With a puppy as test object, temperature detection and localization experiments were carried out. The measured results show that the applied method, when using a mercury thermometer for comparison in terms of measuring the temperature of the dog, has a good consistency, with an average temperature error of 0.283 °C. When using the associated program over the area of 12.25 m2, the average location error is of 0.461 m, which verifies the feasibility of the sensor-carrier location by using the proposed program.

  15. What do foraging wasps optimize in a variable environment, energy investment or body temperature?

    Science.gov (United States)

    Kovac, Helmut; Stabentheiner, Anton; Brodschneider, Robert

    2015-11-01

    Vespine wasps (Vespula sp.) are endowed with a pronounced ability of endothermic heat production. To show how they balance energetics and thermoregulation under variable environmental conditions, we measured the body temperature and respiration of sucrose foragers (1.5 M, unlimited flow) under variable ambient temperature (T a = 20-35 °C) and solar radiation (20-570 W m(-2)). Results revealed a graduated balancing of metabolic efforts with thermoregulatory needs. The thoracic temperature in the shade depended on ambient temperature, increasing from ~37 to 39 °C. However, wasps used solar heat gain to regulate their thorax temperature at a rather high level at low T a (mean T thorax ~ 39 °C). Only at high T a they used solar heat to reduce their metabolic rate remarkably. A high body temperature accelerated the suction speed and shortened foraging time. As the costs of foraging strongly depended on duration, the efficiency could be significantly increased with a high body temperature. Heat gain from solar radiation enabled the wasps to enhance foraging efficiency at high ambient temperature (T a = 30 °C) by up to 63 %. The well-balanced change of economic strategies in response to environmental conditions minimized costs of foraging and optimized energetic efficiency.

  16. Temperature and mineral dust variability recorded in two low-accumulation Alpine ice cores over the last millennium

    Science.gov (United States)

    Bohleber, Pascal; Erhardt, Tobias; Spaulding, Nicole; Hoffmann, Helene; Fischer, Hubertus; Mayewski, Paul

    2018-01-01

    Among ice core drilling sites in the European Alps, Colle Gnifetti (CG) is the only non-temperate glacier to offer climate records dating back at least 1000 years. This unique long-term archive is the result of an exceptionally low net accumulation driven by wind erosion and rapid annual layer thinning. However, the full exploitation of the CG time series has been hampered by considerable dating uncertainties and the seasonal summer bias in snow preservation. Using a new core drilled in 2013 we extend annual layer counting, for the first time at CG, over the last 1000 years and add additional constraints to the resulting age scale from radiocarbon dating. Based on this improved age scale, and using a multi-core approach with a neighbouring ice core, we explore the time series of stable water isotopes and the mineral dust proxies Ca2+ and insoluble particles. Also in our latest ice core we face the already known limitation to the quantitative use of the stable isotope variability based on a high and potentially non-stationary isotope/temperature sensitivity at CG. Decadal trends in Ca2+ reveal substantial agreement with instrumental temperature and are explored here as a potential site-specific supplement to the isotope-based temperature reconstruction. The observed coupling between temperature and Ca2+ trends likely results from snow preservation effects and the advection of dust-rich air masses coinciding with warm temperatures. We find that if calibrated against instrumental data, the Ca2+-based temperature reconstruction is in robust agreement with the latest proxy-based summer temperature reconstruction, including a Little Ice Age cold period as well as a medieval climate anomaly. Part of the medieval climate period around AD 1100-1200 clearly stands out through an increased occurrence of dust events, potentially resulting from a relative increase in meridional flow and/or dry conditions over the Mediterranean.

  17. Temperature and mineral dust variability recorded in two low-accumulation Alpine ice cores over the last millennium

    Directory of Open Access Journals (Sweden)

    P. Bohleber

    2018-01-01

    Full Text Available Among ice core drilling sites in the European Alps, Colle Gnifetti (CG is the only non-temperate glacier to offer climate records dating back at least 1000 years. This unique long-term archive is the result of an exceptionally low net accumulation driven by wind erosion and rapid annual layer thinning. However, the full exploitation of the CG time series has been hampered by considerable dating uncertainties and the seasonal summer bias in snow preservation. Using a new core drilled in 2013 we extend annual layer counting, for the first time at CG, over the last 1000 years and add additional constraints to the resulting age scale from radiocarbon dating. Based on this improved age scale, and using a multi-core approach with a neighbouring ice core, we explore the time series of stable water isotopes and the mineral dust proxies Ca2+ and insoluble particles. Also in our latest ice core we face the already known limitation to the quantitative use of the stable isotope variability based on a high and potentially non-stationary isotope/temperature sensitivity at CG. Decadal trends in Ca2+ reveal substantial agreement with instrumental temperature and are explored here as a potential site-specific supplement to the isotope-based temperature reconstruction. The observed coupling between temperature and Ca2+ trends likely results from snow preservation effects and the advection of dust-rich air masses coinciding with warm temperatures. We find that if calibrated against instrumental data, the Ca2+-based temperature reconstruction is in robust agreement with the latest proxy-based summer temperature reconstruction, including a Little Ice Age cold period as well as a medieval climate anomaly. Part of the medieval climate period around AD 1100–1200 clearly stands out through an increased occurrence of dust events, potentially resulting from a relative increase in meridional flow and/or dry conditions over the Mediterranean.

  18. Dynamics and complexity of body temperature in preterm infants nursed in incubators.

    Science.gov (United States)

    Jost, Kerstin; Pramana, Isabelle; Delgado-Eckert, Edgar; Kumar, Nitin; Datta, Alexandre N; Frey, Urs; Schulzke, Sven M

    2017-01-01

    Poor control of body temperature is associated with mortality and major morbidity in preterm infants. We aimed to quantify its dynamics and complexity to evaluate whether indices from fluctuation analyses of temperature time series obtained within the first five days of life are associated with gestational age (GA) and body size at birth, and presence and severity of typical comorbidities of preterm birth. We recorded 3h-time series of body temperature using a skin electrode in incubator-nursed preterm infants. We calculated mean and coefficient of variation of body temperature, scaling exponent alpha (Talpha) derived from detrended fluctuation analysis, and sample entropy (TSampEn) of temperature fluctuations. Data were analysed by multilevel multivariable linear regression. Data of satisfactory technical quality were obtained from 285/357 measurements (80%) in 73/90 infants (81%) with a mean (range) GA of 30.1 (24.0-34.0) weeks. We found a positive association of Talpha with increasing levels of respiratory support after adjusting for GA and birth weight z-score (pbody temperature in incubator-nursed preterm infants show considerable associations with GA and respiratory morbidity. Talpha may be a useful marker of autonomic maturity and severity of disease in preterm infants.

  19. Headset Bluetooth and cell phone based continuous central body temperature measurement system.

    Science.gov (United States)

    Sanches, J Miguel; Pereira, Bruno; Paiva, Teresa

    2010-01-01

    The accurate measure of the central temperature is a very important physiologic indicator in several clinical applications, namely, in the characterization and diagnosis of sleep disorders. In this paper a simple system is described to continuously measure the body temperature at the ear. An electronic temperature sensor is coupled to the microphone of a common commercial auricular Bluetooth device that sends the temperature measurements to a mobile phone to which is paired. The measurements are stored at the mobile phone and periodically sent to a medical facility by email or SMS (short messaging service).

  20. Individual differences in normal body temperature: longitudinal big data analysis of patient records

    Science.gov (United States)

    Samra, Jasmeet K; Mullainathan, Sendhil

    2017-01-01

    Abstract Objective To estimate individual level body temperature and to correlate it with other measures of physiology and health. Design Observational cohort study. Setting Outpatient clinics of a large academic hospital, 2009-14. Participants 35 488 patients who neither received a diagnosis for infections nor were prescribed antibiotics, in whom temperature was expected to be within normal limits. Main outcome measures Baseline temperatures at individual level, estimated using random effects regression and controlling for ambient conditions at the time of measurement, body site, and time factors. Baseline temperatures were correlated with demographics, medical comorbidities, vital signs, and subsequent one year mortality. Results In a diverse cohort of 35 488 patients (mean age 52.9 years, 64% women, 41% non-white race) with 243 506 temperature measurements, mean temperature was 36.6°C (95% range 35.7-37.3°C, 99% range 35.3-37.7°C). Several demographic factors were linked to individual level temperature, with older people the coolest (–0.021°C for every decade, Ptemperature (eg, hypothyroidism: –0.013°C, P=0.01) or higher temperature (eg, cancer: 0.020, Pbody mass index: 0.002 per m/kg2, Ptemperature variation. Despite this, unexplained temperature variation was a significant predictor of subsequent mortality: controlling for all measured factors, an increase of 0.149°C (1 SD of individual temperature in the data) was linked to 8.4% higher one year mortality (P=0.014). Conclusions Individuals’ baseline temperatures showed meaningful variation that was not due solely to measurement error or environmental factors. Baseline temperatures correlated with demographics, comorbid conditions, and physiology, but these factors explained only a small part of individual temperature variation. Unexplained variation in baseline temperature, however, strongly predicted mortality. PMID:29237616

  1. Deep-body temperature changes in rats exposed to chronic centrifugation.

    Science.gov (United States)

    Oyama, J.; Platt, W. T.; Holland, V. B.

    1971-01-01

    Deep-body temperature was monitored continuously by implant biotelemetry in unrestrained rats before, during, and after exposure to prolonged and almost continuous centrifugation. Rats subjected to centrifugation for the first time at various G loads ranging up to 2.5 G show a rapid and significant fall in temperature which is sustained below normal levels for periods as long as 3 days. The magnitude of the temperature fall and the recovery time were generally proportional to the G load imposed. The initial fall and recovery of body temperature closely parallels the decrease in food consumption and to a lesser degree the decrease in body mass experienced by centrifuged rats. After exposure to 2 weeks of centrifugation, rats show either no change or only a small transient increase in temperature when decelerated to a lower G level or when returned to normal gravity. Rats repeatedly exposed to centrifugation consistently showed a smaller temperature response compared to the initial exposure. Implant temperature biotelemetry has been found to be a sensitive, reliable, and extremely useful technique for assessing the initial stress of centrifugation and in monitoring the time course of recovery and acclimation of rats to increase as well as*decrease G.

  2. Disruption of the circadian period of body temperature by the anesthetic propofol.

    Science.gov (United States)

    Touitou, Yvan; Mauvieux, Benoit; Reinberg, Alain; Dispersyn, Garance

    2016-01-01

    The circadian time structure of an organism can be desynchronized in a large number of instances, including the intake of specific drugs. We have previously found that propofol, which is a general anesthetic, induces a desynchronization of the circadian time structure in rats, with a 60-80 min significant phase advance of body temperature circadian rhythm. We thus deemed it worthwhile to examine whether this phase shift of body temperature was related to a modification of the circadian period Tau. Propofol was administered at three different Zeitgeber Times (ZTs): ZT6 (middle of the rest period), ZT10 (2 h prior to the beginning of activity period), ZT16 (4 h after the beginning of the activity period), with ZT0 being the beginning of the rest period (light onset) and ZT12 being the beginning of the activity period (light offset). Control rats (n = 20) were injected at the same ZTs with 10% intralipid, which is a control lipidic solution. Whereas no modification of the circadian period of body temperature was observed in the control rats, propofol administration resulted in a significant shortening of the period by 96 and 180 min at ZT6 and ZT10, respectively. By contrast, the period was significantly lengthened by 90 min at ZT16. We also found differences in the time it took for the rats to readjust their body temperature to the original 24-h rhythm. At ZT16, the speed of readjustment was more rapid than at the two other ZTs that we investigated. This study hence shows (i) the disruptive effects of the anesthetic propofol on the body temperature circadian rhythm, and it points out that (ii) the period Tau for body temperature responds to this anesthetic drug according to a Tau-response curve. By sustaining postoperative sleep-wake disorders, the disruptive effects of propofol on circadian time structure might have important implications for the use of this drug in humans.

  3. Chemical and physical analysis of core materials for advanced high temperature reactors with process heat applications

    International Nuclear Information System (INIS)

    Nickel, H.

    1985-08-01

    Various chemical and physical methods for the analysis of structural materials have been developed in the research programmes for advanced high temperature reactors. These methods are discussed using as examples the structural materials of the reactor core - the fuel elements consisting of coated particles in a graphite matrix and the structural graphite. Emphasis is given to the methods of chemical analysis. The composition of fuel kernels is investigated using chemical analysis methods to determine the heavy metals content (uranium, plutonium, thorium and metallic impurity elements) and the amount of non-metallic constituents. The properties of the pyrocarbon and silicon carbide coatings of fuel elements are investigated using specially developed physiochemical methods. Regarding the irradiation behaviour of coated particles and fuel elements, methods have been developed for examining specimens in hot cells following exposures under reactor operating conditions, to supplement the measurements of in-reactor performance. For the structural graphite, the determination of impurities is important because certain impurities may cause pitting corrosion during irradiation. The localized analysis of very low impurity concentrations is carried out using spectrochemical d.c. arc excitation, local laser and inductively coupled plasma methods. (orig.)

  4. Design of Monitoring Tool Heartbeat Rate and Human Body Temperature Based on WEB

    Directory of Open Access Journals (Sweden)

    Jalinas

    2018-01-01

    Full Text Available The heart is one of the most important organs in the human body. One way to know heart health is to measure the number of heart beats per minute and body temperature also shows health, many heart rate and body temperature devices but can only be accessed offline. This research aims to design a heart rate detector and human body temperature that the measurement results can be accessed via web pages anywhere and anytime. This device can be used by many users by entering different ID numbers. The design consists of input blocks: pulse sensor, DS18B20 sensor and 3x4 keypad button. Process blocks: Arduino Mega 2560 Microcontroller, Ethernet Shield, router and USB modem. And output block: 16x2 LCD and mobile phone or PC to access web page. Based on the test results, this tool successfully measures the heart rate with an average error percentage of 2.702 % when compared with the oxymeter tool. On the measurement of body temperature get the result of the average error percentage of 2.18 %.

  5. Tattoos, body piercings, and self-injury: is there a connection? Investigations on a core group of participants practicing body modification.

    Science.gov (United States)

    Stirn, Aglaja; Hinz, Andreas

    2008-05-01

    Reliable psychosocial data about practitioners of body piercing and tattooing are few and controversial. The goal of this study was to reinvestigate the issue by studying a large sample of individuals with body modifications (BMs), focusing on the motives and relations to biographical events. A 55-item anonymous self-report questionnaire was distributed among volunteers of what is considered to be a core group of individuals wearing BMs (N=432). Results show that BMs changed the participants' attitude toward their body considerably, and 34% of all participants reported BM practices in conjunction with decisive biographical events. Twenty-seven percent of the participants admitted self-cutting during childhood. This group differed from the group without self-cutting with respect to several features before, during, and after BM. The rate of medical complications of BM was 16% in the total sample, with a remarkably higher rate (26%) among participants with a history of self-cutting. The data suggest that the significance of BMs ranges from simple peer group imitations to highly informative symptoms of possibly severe psychopathological conditions. In the latter case, BMs sometimes serve as therapeutic substitutes.

  6. Centrifugal Deposited Au-Pd Core-Shell Nanoparticle Film for Room-Temperature Optical Detection of Hydrogen Gas.

    Science.gov (United States)

    Song, Han; Luo, Zhijie; Liu, Mingyao; Zhang, Gang; Peng, Wang; Wang, Boyi; Zhu, Yong

    2018-05-06

    In the present work, centrifugal deposited Au-Pd core-shell nanoparticle (NP) film was proposed for the room-temperature optical detection of hydrogen gas. The size dimension of 44, 48, 54, and 62 nm Au-Pd core-shell nanocubes with 40 nm Au core were synthesized following a solution-based seed-mediated growth method. Compared to a pure Pd NP, this core-shell structure with an inert Au core could decrease the H diffusion length in the Pd shell. Through a modified centrifugal deposition process, continues film samples with different core-shell NPs were deposited on 10 mm diameter quartz substrates. Under various hydrogen concentration conditions, the optical response properties of these samples were characterized by an intensity-based optical fiber bundle sensor. Experimental results show that the continues film that was composed of 62 nm Au-Pd core-shell NPs has achieved a stable and repeatable reflectance response with low zero drift in the range of 4 to 0.1% hydrogen after a stress relaxation mechanism at first few loading/unloading cycles. Because of the short H diffusion length due to the thinner Pd shell, the film sample composed of 44 nm Au-Pd NPs has achieved a dramatically decreased response/recovery time to 4 s/30 s. The experiments present the promising prospect of this simple method to fabricate optical hydrogen sensors with controllable high sensitivity and response rate at low cost.

  7. Integration of body temperature into the analysis of energy expenditure in the mouse

    Directory of Open Access Journals (Sweden)

    Gustavo Abreu-Vieira

    2015-06-01

    Conclusions: At 22 °C, cold-induced thermogenesis is ∼120% of basal metabolic rate. The higher body temperature during physical activity is due to a higher set point, not simply increased heat generation during exercise. Most insulation in mice is via physiological mechanisms, with little from fur or fat. Our analysis suggests that the definition of the upper limit of the thermoneutral zone should be re-considered. Measuring body temperature informs interpretation of energy expenditure data and improves the predictiveness and utility of the mouse to model human energy homeostasis.

  8. Histamine influences body temperature by acting at H1 and H3 receptors on distinct populations of preoptic neurons.

    Science.gov (United States)

    Lundius, Ebba Gregorsson; Sanchez-Alavez, Manuel; Ghochani, Yasmin; Klaus, Joseph; Tabarean, Iustin V

    2010-03-24

    The preoptic area/anterior hypothalamus, a region that contains neurons that control thermoregulation, is the main locus at which histamine affects body temperature. Here we report that histamine reduced the spontaneous firing rate of GABAergic preoptic neurons by activating H3 subtype histamine receptors. This effect involved a decrease in the level of phosphorylation of the extracellular signal-regulated kinase and was not dependent on synaptic activity. Furthermore, a population of non-GABAergic neurons was depolarized, and their firing rate was enhanced by histamine acting at H1 subtype receptors. In our experiments, activation of the H1R receptors was linked to the PLC pathway and Ca(2+) release from intracellular stores. This depolarization persisted in TTX or when fast synaptic potentials were blocked, indicating that it represents a postsynaptic effect. Single-cell reverse transcription-PCR analysis revealed expression of H3 receptors in a population of GABAergic neurons, while H1 receptors were expressed in non-GABAergic cells. Histamine applied in the median preoptic nucleus induced a robust, long-lasting hyperthermia effect that was mimicked by either H1 or H3 histamine receptor subtype-specific agonists. Our data indicate that histamine modulates the core body temperature by acting at two distinct populations of preoptic neurons that express H1 and H3 receptor subtypes, respectively.

  9. MORECA: A computer code for simulating modular high-temperature gas-cooled reactor core heatup accidents

    International Nuclear Information System (INIS)

    Ball, S.J.

    1991-10-01

    The design features of the modular high-temperature gas-cooled reactor (MHTGR) have the potential to make it essentially invulnerable to damage from postulated core heatup accidents. This report describes the ORNL MORECA code, which was developed for analyzing postulated long-term core heatup scenarios for which active cooling systems used to remove afterheat following the accidents can be assumed to the unavailable. Simulations of long-term loss-of-forced-convection accidents, both with and without depressurization of the primary coolant, have shown that maximum core temperatures stay below the point at which any significant fuel failures and fission product releases are expected. Sensitivity studies also have been done to determine the effects of errors in the predictions due both to uncertainties in the modeling and to the assumptions about operational parameters. MORECA models the US Department of Energy reference design of a standard MHTGR

  10. Fuel assembly outlet temperature profile influence on core by-pass flow and power distribution determination in WWER -440 reactors

    International Nuclear Information System (INIS)

    Petenyi, V.; Klucarova, K.; Remis, J.

    2003-01-01

    The in core instrumentation of the WWER-440 reactors consists of the thermocouple system and the system of self powered detectors (SPD). The thermocouple systems are positioned about 50 cm above the fuel bundle upper flow-mixing grid. The usual assumption is that, the coolant is well mixed in the Tc location, i.e. the temperature is constant through the flow cross-section area. The present evaluations by using the FLUENT 5.5.14 code reveal that, this assumption is not fulfilled. There exists a temperature profile that depends on fuel assembly geometry and on inner power profile of the fuel assembly. The paper presents the estimation of this effect and its influence on the core power distribution and the core by-pass flow determination. Comparison with measurements in Mochovce NPP will also be a part of this presentation (Authors)

  11. Performance test of ex-core high temperature and high pressure water loop test equipment (Contract research)

    International Nuclear Information System (INIS)

    Nakano, Hiroko; Uehara, Toshiaki; Takeuchi, Tomoaki; Shibata, Hiroshi; Nakamura, Jinichi; Matsui, Yoshinori; Tsuchiya, Kunihiko

    2016-03-01

    In Japan Atomic Energy Agency, we started research and development so as to monitor the situations in the Nuclear Plant Facilities during a severe accident, such as a radiation-resistant monitoring camera, a radiation-resistant transmission system for conveying the in-core information, and a heat-resistant signal cable. As a part of developments of the heat-resistant signal cable, we prepared ex-core high-temperature and high-pressure water loop test equipment, which can simulate the conditions of BWRs and PWRs, for evaluating reliability and properties of sheath materials of the cable. This equipment consists of autoclave, water conditioning tank, high-pressure metering pump, preheater, heat exchanger and water purification equipment, etc. This report describes the basic design and the performance test results of ex-core high-temperature and high-pressure water loop test equipment. (author)

  12. Ab initio translationally invariant nonlocal one-body densities from no-core shell-model theory

    Science.gov (United States)

    Burrows, M.; Elster, Ch.; Popa, G.; Launey, K. D.; Nogga, A.; Maris, P.

    2018-02-01

    Background: It is well known that effective nuclear interactions are in general nonlocal. Thus if nuclear densities obtained from ab initio no-core shell-model (NCSM) calculations are to be used in reaction calculations, translationally invariant nonlocal densities must be available. Purpose: Though it is standard to extract translationally invariant one-body local densities from NCSM calculations to calculate local nuclear observables like radii and transition amplitudes, the corresponding nonlocal one-body densities have not been considered so far. A major reason for this is that the procedure for removing the center-of-mass component from NCSM wave functions up to now has only been developed for local densities. Results: A formulation for removing center-of-mass contributions from nonlocal one-body densities obtained from NCSM and symmetry-adapted NCSM (SA-NCSM) calculations is derived, and applied to the ground state densities of 4He, 6Li, 12C, and 16O. The nonlocality is studied as a function of angular momentum components in momentum as well as coordinate space. Conclusions: We find that the nonlocality for the ground state densities of the nuclei under consideration increases as a function of the angular momentum. The relative magnitude of those contributions decreases with increasing angular momentum. In general, the nonlocal structure of the one-body density matrices we studied is given by the shell structure of the nucleus, and cannot be described with simple functional forms.

  13. [Wireless Passive Body Sensor for Temperature Monitoring Using Near Field Communication Technology].

    Science.gov (United States)

    Shi, Bo; Zhang, Li; Zhang, Genxuan; Tsau, Young; Zhang, Sai; Li, Lei

    2017-01-01

    In this study, we designed a wireless body temperature sensor (WBTS) based on near field communication (NFC) technology. Just attaching the WBTS to a mobile phone with NFC function, the real-time body temperature of human subjects can be acquired by an application program without seperate power supply. The WBTS is mainly composed of a digital body temperature probe (d-BTP), a NFC unit and an antenna. The d-BTP acquires and processes body temperature data through a micro control er, and the NFC unit and antenna are used for wireless energy transmission and data communication between the mobile phone and WBTS. UART communication protocol is used in the communication between the d-BTP and NFC unit, and data compression technique is adopted for improving transmission efficiency and decreasing power loss. In tests, the error of WBTS is ±0.1 oC, in range of 32 oC to 42 oC. The WBTS has advantages of high accuracy, low power loss, strong anti-interference ability, dispensation with independent power supply etc., and it can be integrated into wearable apparatuses for temperature monitoring and health management.

  14. A pilot study to examine maturation of body temperature control in preterm infants.

    Science.gov (United States)

    Knobel, Robin B; Levy, Janet; Katz, Laurence; Guenther, Bob; Holditch-Davis, Diane

    2013-01-01

    To test instrumentation and develop analytic models to use in a larger study to examine developmental trajectories of body temperature and peripheral perfusion from birth in extremely low-birth-weight (EBLW) infants. A case study design. The study took place in a Level 4 neonatal intensive care unit (NICU) in North Carolina. Four ELBW infants, fewer than 29 weeks gestational age at birth. Physiologic data were measured every minute for the first 5 days of life: peripheral perfusion using perfusion index by Masimo and body temperature using thermistors. Body temperature was also measured using infrared thermal imaging. Stimulation and care events were recorded over the first 5 days using video which was coded with Noldus Observer software. Novel analytical models using the state space approach to time-series analysis were developed to explore maturation of neural control over central and peripheral body temperature. Results from this pilot study confirmed the feasibility of using multiple instruments to measure temperature and perfusion in ELBW infants. This approach added rich data to our case study design and set a clinical context with which to interpret longitudinal physiological data. © 2013 AWHONN, the Association of Women's Health, Obstetric and Neonatal Nurses.

  15. Study on the seismic verification test program on the experimental multi-purpose high-temperature gas cooled reactor core

    International Nuclear Information System (INIS)

    Taketani, K.; Aochi, T.; Yasuno, T.; Ikushima, T.; Shiraki, K.; Honma, T.; Kawamura, N.

    1978-01-01

    The paper describes a program of experimental research necessary for qualitative and quantitative determination of vibration characteristics and aseismic safety on structure of reactor core in the multipurpose high temperature gas-cooled experimental reactor (VHTR Experimental Reactor) by the Japan Atomic Energy Research Institute

  16. Heated wire humidification circuit attenuates the decrease of core temperature during general anesthesia in patients undergoing arthroscopic hip surgery.

    Science.gov (United States)

    Park, Sooyong; Yoon, Seok-Hwa; Youn, Ann Misun; Song, Seung Hyun; Hwang, Ja Gyung

    2017-12-01

    Intraoperative hypothermia is common in patients undergoing general anesthesia during arthroscopic hip surgery. In the present study, we assessed the effect of heating and humidifying the airway with a heated wire humidification circuit (HHC) to attenuate the decrease of core temperature and prevent hypothermia in patients undergoing arthroscopic hip surgery under general anesthesia. Fifty-six patients scheduled for arthroscopic hip surgery were randomly assigned to either a control group using a breathing circuit connected with a heat and moisture exchanger (HME) (n = 28) or an HHC group using a heated wire humidification circuit (n = 28). The decrease in core temperature was measured from anesthetic induction and every 15 minutes thereafter using an esophageal stethoscope. Decrease in core temperature from anesthetic induction to 120 minutes after induction was lower in the HHC group (-0.60 ± 0.27℃) compared to the control group (-0.86 ± 0.29℃) (P = 0.001). However, there was no statistically significant difference in the incidence of intraoperative hypothermia or the incidence of shivering in the postanesthetic care unit. The use of HHC may be considered as a method to attenuate intraoperative decrease in core temperature during arthroscopic hip surgery performed under general anesthesia and exceeding 2 hours in duration.

  17. QT interval correction for drug-induced changes in body temperature during integrated cardiovascular safety assessment in regulatory toxicology studies in dogs: A case study.

    Science.gov (United States)

    El Amrani, Abdel-Ilah; El Amrani-Callens, Francine; Loriot, Stéphane; Singh, Pramila; Forster, Roy

    2016-01-01

    Cardiovascular safety assessment requires accurate evaluation of QT interval, which depends on the length of the cardiac cycle and also on core body temperature (BT). Increases in QT interval duration have been shown to be associated with decreases in BT in dogs. An example of altered QT interval duration associated with changes in body temperature observed during a 4-week regulatory toxicology study in dogs is presented. Four groups of Beagle dogs received the vehicle or test item once on Day 1, followed by a 4-week observation period. Electrocardiogram (ECG) parameters were continuously recorded on Days 1 and 26 by jacketed external telemetry (JET). Core body temperature (BT) was measured with a conventional rectal thermometer at appropriate time-points during the Day 1 recording period. Decreased BT was observed approximately 2h after treatment on Day 1, along with increased QT interval duration corrected according to the Van de Water formula (QTcV), but the effect was no longer observed after correction for changes in BT [QTcVcT=QTcV-14(37.5-BT)] according to the Van der Linde formula. No significant changes in QTcV were reported at the end of the observation period, on Day 26. The present study demonstrates that core body (rectal) temperature can easily be monitored at appropriate time-points during JET recording in regulatory toxicology studies in dogs, in order to correct QT interval duration values for treatment-related changes in BT. The successful application of the Van der Linde formula to correct QTc prolongation for changes in BT was demonstrated. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Permeability analysis of Asbuton material used as core layers of water resistance in the body of dam

    Science.gov (United States)

    Rahim, H.; Tjaronge, M. W.; Thaha, A.; Djamaluddin, R.

    2017-11-01

    In order to increase consumption of the local materials and national products, large reserves of Asbuton material about 662.960 million tons in the Buton Islands became an alternative as a waterproof core layer in the body of dam. The Asbuton material was used in this research is Lawele Granular Asphalt (LGA). This study was an experimental study conducted in the laboratory by conducting density testing (content weight) and permeability on Asbuton material. Testing of the Asbuton material used Falling Head method to find out the permeability value of Asbuton material. The data of test result to be analyzed are the relation between compaction energy and density value also relation between density value and permeability value of Asbuton material. The result shows that increases the number of blow apply to the Asbuton material at each layer will increase the density of the Asbuton material. The density value of Asbuton material that satisfies the requirements for use as an impermeable core layer in the dam body is 1.53 grams/cm3. The increase the density value (the weight of the contents) of the Asbuton material will reduce its permeability value of the Asbuton material.

  19. The validity, reliability, and utility of the iButton® for measurement of body temperature circadian rhythms in sleep/wake research.

    Science.gov (United States)

    Hasselberg, Michael J; McMahon, James; Parker, Kathy

    2013-01-01

    Changes in core body temperature due to heat transfer through the skin have a major influence on sleep regulation. Traditional measures of skin temperature are often complicated by extensive wiring and are not practical for use in normal living conditions. This review describes studies examining the reliability, validity and utility of the iButton®, a wireless peripheral thermometry device, in sleep/wake research. A review was conducted of English language literature on the iButton as a measure of circadian body temperature rhythms associated with the sleep/wake cycle. Seven studies of the iButtton as a measure of human body temperature were included. The iButton was found to be a reliable and valid measure of body temperature. Its application to human skin was shown to be comfortable and tolerable with no significant adverse reactions. Distal skin temperatures were negatively correlated with sleep/wake activity, and the temperature gradient between the distal and proximal skin (DPG) was identified as an accurate physiological correlate of sleep propensity. Methodological issues included site of data logger placement, temperature masking factors, and temperature data analysis. The iButton is an inexpensive, wireless data logger that can be used to obtain a valid measurement of human skin temperature. It is a practical alternative to traditional measures of circadian rhythms in sleep/wake research. Further research is needed to determine the utility of the iButton in vulnerable populations, including those with neurodegenerative disorders and memory impairment and pediatric populations. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Method for solving the problem of nonlinear heating a cylindrical body with unknown initial temperature

    Science.gov (United States)

    Yaparova, N.

    2017-10-01

    We consider the problem of heating a cylindrical body with an internal thermal source when the main characteristics of the material such as specific heat, thermal conductivity and material density depend on the temperature at each point of the body. We can control the surface temperature and the heat flow from the surface inside the cylinder, but it is impossible to measure the temperature on axis and the initial temperature in the entire body. This problem is associated with the temperature measurement challenge and appears in non-destructive testing, in thermal monitoring of heat treatment and technical diagnostics of operating equipment. The mathematical model of heating is represented as nonlinear parabolic PDE with the unknown initial condition. In this problem, both the Dirichlet and Neumann boundary conditions are given and it is required to calculate the temperature values at the internal points of the body. To solve this problem, we propose the numerical method based on using of finite-difference equations and a regularization technique. The computational scheme involves solving the problem at each spatial step. As a result, we obtain the temperature function at each internal point of the cylinder beginning from the surface down to the axis. The application of the regularization technique ensures the stability of the scheme and allows us to significantly simplify the computational procedure. We investigate the stability of the computational scheme and prove the dependence of the stability on the discretization steps and error level of the measurement results. To obtain the experimental temperature error estimates, computational experiments were carried out. The computational results are consistent with the theoretical error estimates and confirm the efficiency and reliability of the proposed computational scheme.

  1. Effects of body temperature on post-anoxic oxidative stress from the perspective of postnatal physiological adaptive processes in rats.

    Science.gov (United States)

    Kletkiewicz, H; Rogalska, J; Nowakowska, A; Wozniak, A; Mila-Kierzenkowska, C; Caputa, M

    2016-04-01

    It is well known that decrease in body temperature provides protection to newborns subjected to anoxia/ischemia. We hypothesized that the normal body temperature of 33°C in neonatal rats (4°C below normal body temperature in adults) is in fact a preadaptation to protect CNS from anoxia and further reductions as well as elevations in temperature may be counterproductive. Our experiments aimed to examine the effect of changes in body temperature on oxidative stress development in newborn rats exposed to anoxia. Two-day-old Wistar rats were divided into 4 temperature groups: i. hypothermic at body temperature of 31°C, ii. maintaining physiological neonatal body temperature of 33°C, iii. forced to maintain hyperthermic temperature of 37°C, and i.v. forced to maintain hyperthermic temperature of 39°C. The temperature was controlled starting 15 minutes before and afterword during 10 minutes of anoxia as well as for 2 hours post-anoxia. Cerebral concentrations of lipid peroxidation products malondialdehyde (MDA) and conjugated dienes (CD) and the activities of antioxidant enzymes had been determined post mortem: immediately after anoxia was finished and 3, 7, and 14 days later. There were no post-anoxic changes in the concentration of MDA, CD and in antioxidant enzymes activity in newborn rats kept at their physiological body temperature of 33°C. In contrast, perinatal anoxia at body temperature elevated to 37°C or 39°C as well as under hypothermic conditions (31°C) intensified post-anoxic oxidative stress and depleted the antioxidant pool. Overall, these findings suggest that elevated body temperature (hyperthermia or fever), as well as exceeding cooling beyond the physiological level of body temperature of newborn rats, may extend perinatal anoxia-induced brain lesions. Our findings provide new insights into the role of body temperature in anoxic insult in vivo.

  2. Use of an Esophageal Heat Exchanger to Maintain Core Temperature during Burn Excisions and to Attenuate Pyrexia on the Burns Intensive Care Unit

    Directory of Open Access Journals (Sweden)

    David Williams

    2016-01-01

    Full Text Available Introduction. Burns patients are vulnerable to hyperthermia due to sepsis and SIRS and to hypothermia due to heat loss during excision surgery. Both states are associated with increased morbidity and mortality. We describe the first use of a novel esophageal heat exchange device in combination with a heater/cooler unit to manage perioperative hypothermia and postoperative pyrexia. Material and Methods. The device was used in three patients with full thickness burns of 51%, 49%, and 45% body surface area to reduce perioperative hypothermia during surgeries of >6 h duration and subsequently to control hyperthermia in one of the patients who developed pyrexia of 40°C on the 22nd postoperative day due to E. coli/Candida septicaemia which was unresponsive to conventional cooling strategies. Results. Perioperative core temperature was maintained at 37°C for all three patients, and it was possible to reduce ambient temperature to 26°C to increase comfort levels for the operating team. The core temperature of the pyrexial patient was reduced to 38.5°C within 2.5 h of instituting the device and maintained around this value thereafter. Conclusion. The device was easy to use with no adverse incidents and helped maintain normothermia in all cases.

  3. Mechanically Enhanced Liquid Interfaces at Human Body Temperature Using Thermosensitive Methylated Nanocrystalline Cellulose.

    Science.gov (United States)

    Scheuble, N; Geue, T; Kuster, S; Adamcik, J; Mezzenga, R; Windhab, E J; Fischer, P

    2016-02-09

    The mechanical performance of materials at oil/water interfaces after consumption is a key factor affecting hydrophobic drug release. In this study, we methylated the surface of nanocrystalline cellulose (NCC) by mercerization and dimethyl sulfate exposure to produce thermosensitive biopolymers. These methylated NCC (metNCC) were used to investigate interfacial thermogelation at air/water and medium-chain triglyceride (MCT)/water interfaces at body temperature. In contrast to bulk fluid dynamics, elastic layers were formed at room temperature, and elasticity increased significantly at body temperature, which was measured by interfacial shear and dilatational rheology in situ. This unique phenomenon depends on solvent quality, temperature, and polymer concentration at interfaces. Thus, by adjusting the degree of hydrophobicity of metNCC, the interfacial elasticity and thermogelation of the interfaces could be varied. In general, these new materials (metNCC) formed more brittle interfacial layers compared to commercial methylcellulose (MC A15). Thermogelation of methylcellulose promotes attractive intermolecular forces, which were reflected in a change in self-assembly of metNCC at the interface. As a consequence, layer thickness and density increased as a function of temperature. These effects were measured by atomic force microscopy (AFM) images of the displaced interface and confirmed by neutron reflection. The substantial structural and mechanical change of methylcellulose interfaces at body temperature represents a controllable encapsulation parameter allowing optimization of lipid-based drug formulations.

  4. Theoretical simulation of the dual-heat-flux method in deep body temperature measurements.

    Science.gov (United States)

    Huang, Ming; Chen, Wenxi

    2010-01-01

    Deep body temperature reveals individual physiological states, and is important in patient monitoring and chronobiological studies. An innovative dual-heat-flux method has been shown experimentally to be competitive with the conventional zero-heat-flow method in its performance, in terms of measurement accuracy and step response to changes in the deep temperature. We have utilized a finite element method to model and simulate the dynamic process of a dual-heat-flux probe in deep body temperature measurements to validate the fundamental principles of the dual-heat-flux method theoretically, and to acquire a detailed quantitative description of the thermal profile of the dual-heat-flux probe. The simulation results show that the estimated deep body temperature is influenced by the ambient temperature (linearly, at a maximum rate of 0.03 °C/°C) and the blood perfusion rate. The corresponding depth of the estimated temperature in the skin and subcutaneous tissue layer is consistent when using the dual-heat-flux probe. Insights in improving the performance of the dual-heat-flux method were discussed for further studies of dual-heat-flux probes, taking into account structural and geometric considerations.

  5. Kangen-karyu raises surface body temperature through oxidative stress modification.

    Science.gov (United States)

    Hirayama, Aki; Okamoto, Takuya; Kimura, Satomi; Nagano, Yumiko; Matsui, Hirofumi; Tomita, Tsutomu; Oowada, Shigeru; Aoyagi, Kazumasa

    2016-05-01

    Kangen-karyu, a prescription containing six herbs, has been shown to achieve its pharmacological effect through oxidative stress-dependent pathways in animal models. The aim of this study is to investigate the relationship between the antioxidative effect and pharmacological mechanisms of Kangen-karyu, specifically its body temperature elevating effect in humans. Healthy human volunteers, age 35 ± 15 years old, were enrolled in this study. Surface body temperature, serum nitrite, reactive oxygen species (ROS) scavenging activities, and inflammatory cytokines were investigated before and 120 min after Kangen-karyu oral intake. Kangen-karyu significantly increased the surface-body temperature of the entire body; this effect was more remarkable in the upper body and continued for more than 120 min. Accompanying this therapeutic effect, serum nitrite levels were increased 120 min after oral administration. Serum ROS scavenging activities were enhanced against singlet oxygen and were concomitantly decreased against the alkoxyl radical. Serum nitrite levels and superoxide scavenging activities were positively correlated, suggesting that Kangen-karyu affects the O2 (•-)-NO balance in vivo. Kangen-karyu had no effect on IL-6, TNF-α and adiponectin levels. These results indicate that the therapeutic effect of Kangen-karyu is achieved through NO- and ROS-dependent mechanisms. Further, this mechanism is not limited to ROS production, but includes ROS-ROS or ROS-NO interactions.

  6. Seasonal migrations, body temperature fluctuations, and infection dynamics in adult amphibians

    Directory of Open Access Journals (Sweden)

    David R. Daversa

    2018-05-01

    Full Text Available Risks of parasitism vary over time, with infection prevalence often fluctuating with seasonal changes in the annual cycle. Identifying the biological mechanisms underlying seasonality in infection can enable better prediction and prevention of future infection peaks. Obtaining longitudinal data on individual infections and traits across seasons throughout the annual cycle is perhaps the most effective means of achieving this aim, yet few studies have obtained such information for wildlife. Here, we tracked spiny common toads (Bufo spinosus within and across annual cycles to assess seasonal variation in movement, body temperatures and infection from the fungal parasite, Batrachochytrium dendrobatidis (Bd. Across annual cycles, toads did not consistently sustain infections but instead gained and lost infections from year to year. Radio-tracking showed that infected toads lose infections during post-breeding migrations, and no toads contracted infection following migration, which may be one explanation for the inter-annual variability in Bd infections. We also found pronounced seasonal variation in toad body temperatures. Body temperatures approached 0 °C during winter hibernation but remained largely within the thermal tolerance range of Bd. These findings provide direct documentation of migratory recovery (i.e., loss of infection during migration and escape in a wild population. The body temperature reductions that we observed during hibernation warrant further consideration into the role that this period plays in seasonal Bd dynamics.

  7. Long-term adherence to a local guideline on postoperative body temperature measurement: mixed methods analysis

    NARCIS (Netherlands)

    Storm-Versloot, Marja N.; Knops, Anouk M.; Ubbink, Dirk T.; Goossens, Astrid; Legemate, Dink A.; Vermeulen, Hester

    2012-01-01

    Aim To find out whether a successful multifaceted implementation approach of a local evidence-based guideline on postoperative body temperature measurements (BTM) was persistent over time, and which factors influenced long-term adherence. Methods Mixed methods analysis. Patient records were

  8. Differences in oral temperature and body shape in two populations with different propensities for obesity

    DEFF Research Database (Denmark)

    Vozarova, B; Weyer, C; Bogardus, C

    2002-01-01

    Body temperature is a function of heat production and heat dissipation. Substantial interindividual variability has been reported in healthy humans. We hypothesized that Pima Indians, a population with a high prevalence of abdominal obesity, may have a lower surface area relative to volume, that is...

  9. Software tools for data modelling and processing of human body temperature circadian dynamics.

    Science.gov (United States)

    Petrova, Elena S; Afanasova, Anastasia I

    2015-01-01

    This paper is presenting a software development for simulating and processing thermometry data. The motivation of this research is the miniaturization of actuators attached to human body which allow frequent temperature measurements and improve the medical diagnosis procedures related to circadian dynamics.

  10. A body temperature model for lizards as estimated from the thermal environment

    NARCIS (Netherlands)

    Fei, T.; Skidmore, A.K.; Venus, V.; Wang, T.; Schlerf, M.; Toxopeus, A.G.; Overjijk, van S.; Bian, B.M.; Liu, Y.

    2012-01-01

    A physically based model was built to predict the transient body temperature of lizards in a thermally heterogeneous environment. Six heat transfer terms were taken into account in this model: solar radiation, convective heat flow, longwave radiation, conductive heat flow, metabolic heat gain and

  11. Postmortem time estimation using body temperature and a finite-element computer model

    NARCIS (Netherlands)

    Hartog, E.A. den; Lotens, W.A.

    2004-01-01

    In the Netherlands most murder victims are found 2-24 h after the crime. During this period, body temperature decrease is the most reliable method to estimate the postmortem time (PMT). Recently, two murder cases were analysed in which currently available methods did not provide a su.ciently

  12. Deeply torpid bats can change position without elevation of body temperature

    Czech Academy of Sciences Publication Activity Database

    Bartonička, T.; Banďouchová, H.; Berková, Hana; Blažek, J.; Lučan, R.; Horáček, I.; Martínková, Natália; Pikula, J.; Řehák, Z.; Zukal, Jan

    2017-01-01

    Roč. 63, January (2017), s. 119-123 ISSN 0306-4565 R&D Projects: GA ČR(CZ) GAP506/12/1064 Institutional support: RVO:68081766 Keywords : Body temperature * Hibernation * Locomotor performance * Chiroptera * Flight Subject RIV: EG - Zoology OBOR OECD: Zoology Impact factor: 2.157, year: 2016

  13. Environmental light and suprachiasmatic nucleus interact in the regulation of body temperature.

    NARCIS (Netherlands)

    Scheer, F.A.J.L.; Pirovano, C.; Someren, E.J.W. van; Buijs, R.M.

    2005-01-01

    The mammalian biological clock, located in the suprachiasmatic nucleus (SCN), is crucial for circadian rhythms in physiology and behavior. However, equivocal findings have been reported on its role in the circadian regulation of body temperature. The goal of the present studies was to investigate

  14. Effects of pregnancy on body temperature and locomotor performance of velvet geckos.

    Science.gov (United States)

    Dayananda, Buddhi; Ibargüengoytía, Nora; Whiting, Martin J; Webb, Jonathan K

    2017-04-01

    Pregnancy is a challenging period for egg laying squamates. Carrying eggs can encumber females and decrease their locomotor performance, potentially increasing their risk of predation. Pregnant females can potentially reduce this handicap by selecting higher temperatures to increase their sprint speed and ability to escape from predators, or to speed up embryonic development and reduce the period during which they are burdened with eggs ('selfish mother' hypothesis). Alternatively, females might select more stable body temperatures during pregnancy to enhance offspring fitness ('maternal manipulation hypothesis'), even if the maintenance of such temperatures compromises a female's locomotor performance. We investigated whether pregnancy affects the preferred body temperatures and locomotor performance of female velvet geckos Amalosia lesueurii. We measured running speed of females during late pregnancy, and one week after they laid eggs at four temperatures (20°, 25°, 30° and 35°C). Preferred body temperatures of females were measured in a cost-free thermal gradient during late pregnancy and one week after egg-laying. Females selected higher and more stable set-point temperatures when they were pregnant (mean =29.0°C, T set =27.8-30.5°C) than when they were non-pregnant (mean =26.2°C, T set =23.7-28.7°C). Pregnancy was also associated with impaired performance; females sprinted more slowly at all four test temperatures when burdened with eggs. Although females selected higher body temperatures during late pregnancy, this increase in temperature did not compensate for their impaired running performance. Hence, our results suggest that females select higher temperatures during pregnancy to speed up embryogenesis and reduce the period during which they have reduced performance. This strategy may decrease a female's probability of encountering predatory snakes that use the same microhabitats for thermoregulation. Selection of stable temperatures by pregnant

  15. Using pairs of physiological models to estimate temporal variation in amphibian body temperature.

    Science.gov (United States)

    Roznik, Elizabeth A; Alford, Ross A

    2014-10-01

    Physical models are often used to estimate ectotherm body temperatures, but designing accurate models for amphibians is difficult because they can vary in cutaneous resistance to evaporative water loss. To account for this variability, a recently published technique requires a pair of agar models that mimic amphibians with 0% and 100% resistance to evaporative water loss; the temperatures of these models define the lower and upper boundaries of possible amphibian body temperatures for the location in which they are placed. The goal of our study was to develop a method for using these pairs of models to estimate parameters describing the distributions of body temperatures of frogs under field conditions. We radiotracked green-eyed treefrogs (Litoria serrata) and collected semi-continuous thermal data using both temperature-sensitive radiotransmitters with an automated datalogging receiver, and pairs of agar models placed in frog locations, and we collected discrete thermal data using a non-contact infrared thermometer when frogs were located. We first examined the accuracy of temperature-sensitive transmitters in estimating frog body temperatures by comparing transmitter data with direct temperature measurements taken simultaneously for the same individuals. We then compared parameters (mean, minimum, maximum, standard deviation) characterizing the distributions of temperatures of individual frogs estimated from data collected using each of the three methods. We found strong relationships between thermal parameters estimated from data collected using automated radiotelemetry and both types of thermal models. These relationships were stronger for data collected using automated radiotelemetry and impermeable thermal models, suggesting that in the field, L. serrata has a relatively high resistance to evaporative water loss. Our results demonstrate that placing pairs of thermal models in frog locations can provide accurate estimates of the distributions of temperatures

  16. Quantitative Proteomic Analysis of Optimal Cutting Temperature (OCT) Embedded Core-Needle Biopsy of Lung Cancer

    Science.gov (United States)

    Zhao, Xiaozheng; Huffman, Kenneth E.; Fujimoto, Junya; Canales, Jamie Rodriguez; Girard, Luc; Nie, Guangjun; Heymach, John V.; Wistuba, Igacio I.; Minna, John D.; Yu, Yonghao

    2017-10-01

    With recent advances in understanding the genomic underpinnings and oncogenic drivers of pathogenesis in different subtypes, it is increasingly clear that proper pretreatment diagnostics are essential for the choice of appropriate treatment options for non-small cell lung cancer (NSCLC). Tumor tissue preservation in optimal cutting temperature (OCT) compound is commonly used in the surgical suite. However, proteins recovered from OCT-embedded specimens pose a challenge for LC-MS/MS experiments, due to the large amounts of polymers present in OCT. Here we present a simple workflow for whole proteome analysis of OCT-embedded NSCLC tissue samples, which involves a simple trichloroacetic acid precipitation step. Comparisons of protein recovery between frozen versus OCT-embedded tissue showed excellent consistency with more than 9200 proteins identified. Using an isobaric labeling strategy, we quantified more than 5400 proteins in tumor versus normal OCT-embedded core needle biopsy samples. Gene ontology analysis indicated that a number of proliferative as well as squamous cell carcinoma (SqCC) marker proteins were overexpressed in the tumor, consistent with the patient's pathology based diagnosis of "poorly differentiated SqCC". Among the most downregulated proteins in the tumor sample, we noted a number of proteins with potential immunomodulatory functions. Finally, interrogation of the aberrantly expressed proteins using a candidate approach and cross-referencing with publicly available databases led to the identification of potential druggable targets in DNA replication and DNA damage repair pathways. We conclude that our approach allows LC-MS/MS proteomic analyses on OCT-embedded lung cancer specimens, opening the way to bring powerful proteomics into the clinic. [Figure not available: see fulltext.

  17. An active homopolar magnetic bearing with high temperature superconductor (HTS) coils and ferromagnetic cores

    Science.gov (United States)

    Brown, G. V.; Dirusso, E.; Provenza, A. J.

    1995-01-01

    A proof-of-feasibility demonstration showed that high temperature superconductor (HTS) coils can be used in a high-load, active magnetic bearing in liquid nitrogen. A homopolar radial bearing with commercially wound HTS (Bi 2223) bias and control coils produced over 200 lb (890 N) radial load capacity (measured non-rotating) and supported a shaft to 14000 rpm. The goal was to show that HTS coils can operate stably with ferromagnetic cores in a feedback controlled system at a current density similar to that in Cu in liquid nitrogen. Design compromises permitted use of circular coils with rectangular cross section. Conductor improvements will eventually permit coil shape optimization, higher current density and higher bearing load capacity. The bias coil, wound with non-twisted, multifilament HTS conductor, required negligible power to carry its direct current. The control coils were wound with monofilament HTS sheathed in Ag. These dissipated negligible power for direct current (i.e. for steady radial load components). When an alternating current (AC) was added, the AC component dissipated power which increased rapidly with frequency and quadratically with AC amplitude. In fact at frequencies above about 2 hz, the effective resistance of the control coil conductor actually exceeds that of the silver which is in electrical parallel with the oxide superconductor. This is at least qualitatively understandable in the context of a Bean-type model of flux and current penetration into a Type II superconductor. Fortunately the dynamic currents required for bearing stability are of small amplitude. These results show that while twisted multifilament conductor is not needed for stable levitation, twisted multifilaments will be required to reduce control power for sizable dynamic loads, such as those due to unbalance.

  18. Individual differences in normal body temperature: longitudinal big data analysis of patient records.

    Science.gov (United States)

    Obermeyer, Ziad; Samra, Jasmeet K; Mullainathan, Sendhil

    2017-12-13

    To estimate individual level body temperature and to correlate it with other measures of physiology and health. Observational cohort study. Outpatient clinics of a large academic hospital, 2009-14. 35 488 patients who neither received a diagnosis for infections nor were prescribed antibiotics, in whom temperature was expected to be within normal limits. Baseline temperatures at individual level, estimated using random effects regression and controlling for ambient conditions at the time of measurement, body site, and time factors. Baseline temperatures were correlated with demographics, medical comorbidities, vital signs, and subsequent one year mortality. In a diverse cohort of 35 488 patients (mean age 52.9 years, 64% women, 41% non-white race) with 243 506 temperature measurements, mean temperature was 36.6°C (95% range 35.7-37.3°C, 99% range 35.3-37.7°C). Several demographic factors were linked to individual level temperature, with older people the coolest (-0.021°C for every decade, Pdata) was linked to 8.4% higher one year mortality (P=0.014). Individuals' baseline temperatures showed meaningful variation that was not due solely to measurement error or environmental factors. Baseline temperatures correlated with demographics, comorbid conditions, and physiology, but these factors explained only a small part of individual temperature variation. Unexplained variation in baseline temperature, however, strongly predicted mortality. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  19. A Survey on Temperature-Aware Routing Protocols in Wireless Body Sensor Networks

    Directory of Open Access Journals (Sweden)

    Sangman Moh

    2013-08-01

    Full Text Available The rapid growth of the elderly population in the world and the rising cost of healthcare impose big issues for healthcare and medical monitoring. A Wireless Body Sensor Network (WBSN is comprised of small sensor nodes attached inside, on or around a human body, the main purpose of which is to monitor the functions and surroundings of the human body. However, the heat generated by the node’s circuitry and antenna could cause damage to the human tissue. Therefore, in designing a routing protocol for WBSNs, it is important to reduce the heat by incorporating temperature into the routing metric. The main contribution of this paper is to survey existing temperature-aware routing protocols that have been proposed for WBSNs. In this paper, we present a brief overview of WBSNs, review the existing routing protocols comparatively and discuss challenging open issues in the design of routing protocols.

  20. The relationship of normal body temperature, end-expired breath temperature, and BAC/BrAC ratio in 98 physically fit human test subjects.

    Science.gov (United States)

    Cowan, J Mack; Burris, James M; Hughes, James R; Cunningham, Margaret P

    2010-06-01

    The relationship between normal body temperature, end-expired breath temperature, and blood alcohol concentration (BAC)/breath alcohol concentration (BrAC) ratio was studied in 98 subjects (84 men, 14 women). Subjects consumed alcohol sufficient to produce a BrAC of at least 0.06 g/210 L 45-75 min after drinking. Breath samples were analyzed using an Intoxilyzer 8000 specially equipped to measure breath temperature. Venous blood samples and body temperatures were then taken. The mean body temperature of the men (36.6 degrees C) was lower than the women (37.0 degrees C); however, their mean breath temperatures were virtually identical (men: 34.5 degrees C; women: 34.6 degrees C). The BAC exceeded the BrAC for every subject. BAC/BrAC ratios were calculated from the BAC and BrAC analytical results. There was no difference in the BAC/BrAC ratios for men (1:2379) and women (1:2385). The correlation between BAC and BrAC was high (r = 0.938, p body temperature and end-expired breath temperature, body temperature and BAC/BrAC ratio, and breath temperature and BAC/BrAC ratio were much lower. Neither normal body temperature nor end-expired breath temperature was strongly associated with BAC/BrAC ratio.

  1. Measurement of body temperature in normothermic and febrile rats: Limitations of using rectal thermometry.

    Science.gov (United States)

    Dangarembizi, Rachael; Erlwanger, Kennedy H; Mitchell, Duncan; Hetem, Robyn S; Madziva, Michael T; Harden, Lois M

    2017-10-01

    Stress-induced hyperthermia following rectal thermometry is reported in normothermic rats, but appears to be muted or even absent in febrile rats. We therefore investigated whether the use of rectal thermometry affects the accuracy of temperature responses recorded in normothermic and febrile rats. Using intra-abdominally implanted temperature-sensitive radiotelemeters we measured the temperature response to rectal temperature measurement in male Sprague Dawley rats (~200g) injected subcutaneously with Brewer's yeast (20ml/kg of a 20% Brewer's yeast solution=4000mg/kg) or saline (20ml/kg of 0.9% saline). Rats had been pre-exposed to, or were naive to rectal temperature measurement before the injection. The first rectal temperature measurement was taken in the plateau phase of the fever (18h after injection) and at hourly intervals thereafter. In normothermic rats, rectal temperature measurement was associated with an increase in abdominal temperature (0.66±0.27°C) that had a rapid onset (5-10min), peaked at 15-20min and lasted for 35-50min. The hyperthermic response to rectal temperature measurement was absent in febrile rats. Exposure to rectal temperature measurement on two previous occasions did not reduce the hyperthermia. There was a significant positive linear association between temperatures recorded using the two methods, but the agreement interval identified that rectal temperature measured with a thermocouple probe could either be 0.7°C greater or 0.5°C lower than abdominal temperature measured with radiotelemeter. Thus, due to stress-induced hyperthermia, rectal thermometry does not ensure accurate recording of body temperature in short-spaced, intermittent intervals in normothermic and febrile rats. Copyright © 2017 Elsevier Inc. All rights reserved.