WorldWideScience

Sample records for core body temperature

  1. Core body temperature in obesity.

    Science.gov (United States)

    Heikens, Marc J; Gorbach, Alexander M; Eden, Henry S; Savastano, David M; Chen, Kong Y; Skarulis, Monica C; Yanovski, Jack A

    2011-05-01

    A lower core body temperature set point has been suggested to be a factor that could potentially predispose humans to develop obesity. We tested the hypothesis that obese individuals have lower core temperatures than those in normal-weight individuals. In study 1, nonobese [body mass index (BMI; in kg/m(2)) temperature-sensing capsules, and we measured core temperatures continuously for 24 h. In study 2, normal-weight (BMI of 18-25) and obese subjects swallowed temperature-sensing capsules to measure core temperatures continuously for ≥48 h and kept activity logs. We constructed daily, 24-h core temperature profiles for analysis. Mean (±SE) daily core body temperature did not differ significantly between the 35 nonobese and 46 obese subjects (36.92 ± 0.03°C compared with 36.89 ± 0.03°C; P = 0.44). Core temperature 24-h profiles did not differ significantly between 11 normal-weight and 19 obese subjects (P = 0.274). Women had a mean core body temperature ≈0.23°C greater than that of men (36.99 ± 0.03°C compared with 36.76 ± 0.03°C; P body temperature. It may be necessary to study individuals with function-altering mutations in core temperature-regulating genes to determine whether differences in the core body temperature set point affect the regulation of human body weight. These trials were registered at clinicaltrials.gov as NCT00428987 and NCT00266500.

  2. Core body temperature in obesity123

    Science.gov (United States)

    Heikens, Marc J; Gorbach, Alexander M; Eden, Henry S; Savastano, David M; Chen, Kong Y; Skarulis, Monica C

    2011-01-01

    Background: A lower core body temperature set point has been suggested to be a factor that could potentially predispose humans to develop obesity. Objective: We tested the hypothesis that obese individuals have lower core temperatures than those in normal-weight individuals. Design: In study 1, nonobese [body mass index (BMI; in kg/m2) temperature–sensing capsules, and we measured core temperatures continuously for 24 h. In study 2, normal-weight (BMI of 18–25) and obese subjects swallowed temperature-sensing capsules to measure core temperatures continuously for ≥48 h and kept activity logs. We constructed daily, 24-h core temperature profiles for analysis. Results: Mean (±SE) daily core body temperature did not differ significantly between the 35 nonobese and 46 obese subjects (36.92 ± 0.03°C compared with 36.89 ± 0.03°C; P = 0.44). Core temperature 24-h profiles did not differ significantly between 11 normal-weight and 19 obese subjects (P = 0.274). Women had a mean core body temperature ≈0.23°C greater than that of men (36.99 ± 0.03°C compared with 36.76 ± 0.03°C; P body temperature. It may be necessary to study individuals with function-altering mutations in core temperature–regulating genes to determine whether differences in the core body temperature set point affect the regulation of human body weight. These trials were registered at clinicaltrials.gov as NCT00428987 and NCT00266500. PMID:21367952

  3. Assessment of the use of temperature-sensitive microchips to determine core body temperature in goats.

    Science.gov (United States)

    Torrao, N A; Hetem, R S; Meyer, L C R; Fick, L G

    2011-03-26

    Body temperature was measured at five different body sites (retroperitoneum, groin, semimembranosus muscle, flank and shoulder) using temperature-sensitive microchips implanted in five female goats, and compared with the core body and rectal temperatures. Body temperature was measured while the goats were kept in different ambient temperatures, with and without radiant heat, as well as during a fever induced experimentally by injection of bacterial lipopolysaccharide. Bland-Altman limit of agreement analysis was used to compare the temperature measurements at the different body sites during the different interventions. Temperatures measured by the microchip implanted in the retroperitoneum showed the closest agreement (mean 0.2 °C lower) with core and rectal temperatures during all interventions, whereas temperatures measured by the microchips implanted in the groin, muscle, flank and shoulder differed from core body temperature by up to 3.5 °C during the various interventions.

  4. Perioperative core body temperatures effect on outcome after colorectal resections.

    Science.gov (United States)

    Geiger, Timothy M; Horst, Sara; Muldoon, Roberta; Wise, Paul E; Enrenfeld, Jesse; Poulose, Ben; Herline, Alan J

    2012-05-01

    The World Health Organization has set a standard of maintaining a core body temperature above 36°C in the perioperative period. The purpose of this study was to examine the relationship between both intraoperative temperature (IOT) and immediate postop core body temperature as it relates to postop complications. A retrospective analysis of a prospective database of patients who underwent an elective segmental colectomy without a stoma, for 3 diagnoses was performed. Six postoperative outcomes were examined: length of stay (LOS), placement of a nasogastric tube, return to the operating room, placement of an interventional drain, diagnosed leak, and surgical site infection (SSI). Statistics were calculated using a two-sample Wilcoxon rank-sum (Mann-Whitney) test. Seventy-nine patients met the inclusion criteria and there were no preoperative differences between the groups (those with a postop complication vs without). LOS > 9 days (36.64°C vs 35.98°C; P = 0.011) and clinical leak (37.06°C vs 35.99°C; P = 0.005) both had a statistically higher average IOT than those who did not. Patients with SSI trended to a higher IOT (36.44°C vs 35.99°C; P = 0.062). When the last IOT recorded was compared with the six outcomes, again length of stay and leak both were statistically significant (P = 0.018, P = 0.012) showing a higher temperature related to a higher complication rate. No other complications were related to IOT, nor did postop temperature relate to complication. In our data, relatively lower IOTs were protective for LOS and clinical leaks, with a trend of lower SSI rates. Further research is needed to fully endorse or refute the absolute recommendations for core body temperature.

  5. Prediction of Core Body Temperature from Multiple Variables.

    Science.gov (United States)

    Richmond, Victoria L; Davey, Sarah; Griggs, Katy; Havenith, George

    2015-11-01

    This paper aims to improve the prediction of rectal temperature (T re) from insulated skin temperature (T is) and micro-climate temperature (T mc) previously reported (Richmond et al., Insulated skin temperature as a measure of core body temperature for individuals wearing CBRN protective clothing. Physiol Meas 2013; 34:1531-43.) using additional physiological and/or environmental variables, under several clothing and climatic conditions. Twelve male (25.8±5.1 years; 73.6±11.5kg; 178±6cm) and nine female (24.2±5.1 years; 62.4±11.5kg; 169±3cm) volunteers completed six trials, each consisting of two 40-min periods of treadmill walking separated by a 20-min rest, wearing permeable or impermeable clothing, under neutral (25°C, 50%), moderate (35°C, 35%), and hot (40°C, 25%) conditions, with and without solar radiation (600W m(-2)). Participants were measured for heart rate (HR) (Polar, Finland), skin temperature (T s) at 11 sites, T is (Grant, Cambridge, UK), and breathing rate (f) (Hidalgo, Cambridge, UK). T mc and relative humidity were measured within the clothing. T re was monitored as the 'gold standard' measure of T c for industrial or military applications using a 10cm flexible probe (Grant, Cambridge, UK). A stepwise multiple regression analysis was run to determine which of 30 variables (T is, T s at 11 sites, HR, f, T mc, temperature, and humidity inside the clothing front and back, body mass, age, body fat, sex, clothing, Thermal comfort, sensation and perception, and sweat rate) were the strongest on which to base the model. Using a bootstrap methodology to develop the equation, the best model in terms of practicality and validity included T is, T mc, HR, and 'work' (0 = rest; 1 = exercise), predicting T re with a standard error of the estimate of 0.27°C and adjusted r (2) of 0.86. The sensitivity and specificity for predicting individuals who reached 39°C was 97 and 85%, respectively. Insulated skin temperature was the most important individual

  6. The circadian rhythm of core body temperature (Part I: The use of modern telemetry systems to monitor core body temperature variability

    Directory of Open Access Journals (Sweden)

    Słomko Joanna

    2016-06-01

    Full Text Available The best known daily rhythms in humans include: the sleep-wake rhythm, the circadian core body temperature variability, daily fluctuations in arterial blood pressure and heartbeat frequency, and daily changes in hormone secretion: e.g. melatonin, cortisol, growth hormone, prolactin. The core body temperature in humans has a characteristic sinusoidal course, with the maximum value occurring between 3:00-5:00 pm and the minimum between 3:00-5:00 am. Analysis of literature indicates that the obtained results concerning core body temperature are to a large extent influenced by the type of method applied in the measurement. Depending on test protocols, we may apply various methodologies to measuring core body temperature. One of the newest methods of measuring internal and external body temperature consists in the utilisation of remote temperature sensors transmitting the obtained value via a radio signal. The advantages of this method includes the ability to perform: continuous core temperature measurement, observe dynamic changes in core body temperature occurring in circadian rhythm and the repeatability and credibility of the obtained results, which is presented in numerous scientific reports.

  7. The effect of stress on core and peripheral body temperature in humans

    NARCIS (Netherlands)

    Vinkers, Christiaan H.; Penning, Renske; Hellhammer, Juliane; Verster, Joris C.; Klaessens, John H. G. M.; Olivier, Berend; Kalkman, Cor J.

    2013-01-01

    Even though there are indications that stress influences body temperature in humans, no study has systematically investigated the effects of stress on core and peripheral body temperature. The present study therefore aimed to investigate the effects of acute psychosocial stress on body temperature u

  8. Non-invasive, transient determination of the core temperature of a heat-generating solid body

    Science.gov (United States)

    Anthony, Dean; Sarkar, Daipayan; Jain, Ankur

    2016-11-01

    While temperature on the surface of a heat-generating solid body can be easily measured using a variety of methods, very few techniques exist for non-invasively measuring the temperature inside the solid body as a function of time. Measurement of internal temperature is very desirable since measurement of just the surface temperature gives no indication of temperature inside the body, and system performance and safety is governed primarily by the highest temperature, encountered usually at the core of the body. This paper presents a technique to non-invasively determine the internal temperature based on the theoretical relationship between the core temperature and surface temperature distribution on the outside of a heat-generating solid body as functions of time. Experiments using infrared thermography of the outside surface of a thermal test cell in a variety of heating and cooling conditions demonstrate good agreement of the predicted core temperature as a function of time with actual core temperature measurement using an embedded thermocouple. This paper demonstrates a capability to thermally probe inside solid bodies in a non-invasive fashion. This directly benefits the accurate performance prediction and control of a variety of engineering systems where the time-varying core temperature plays a key role.

  9. Non-invasive, transient determination of the core temperature of a heat-generating solid body.

    Science.gov (United States)

    Anthony, Dean; Sarkar, Daipayan; Jain, Ankur

    2016-11-02

    While temperature on the surface of a heat-generating solid body can be easily measured using a variety of methods, very few techniques exist for non-invasively measuring the temperature inside the solid body as a function of time. Measurement of internal temperature is very desirable since measurement of just the surface temperature gives no indication of temperature inside the body, and system performance and safety is governed primarily by the highest temperature, encountered usually at the core of the body. This paper presents a technique to non-invasively determine the internal temperature based on the theoretical relationship between the core temperature and surface temperature distribution on the outside of a heat-generating solid body as functions of time. Experiments using infrared thermography of the outside surface of a thermal test cell in a variety of heating and cooling conditions demonstrate good agreement of the predicted core temperature as a function of time with actual core temperature measurement using an embedded thermocouple. This paper demonstrates a capability to thermally probe inside solid bodies in a non-invasive fashion. This directly benefits the accurate performance prediction and control of a variety of engineering systems where the time-varying core temperature plays a key role.

  10. The effect of stress on core and peripheral body temperature in humans.

    Science.gov (United States)

    Vinkers, Christiaan H; Penning, Renske; Hellhammer, Juliane; Verster, Joris C; Klaessens, John H G M; Olivier, Berend; Kalkman, Cor J

    2013-09-01

    Even though there are indications that stress influences body temperature in humans, no study has systematically investigated the effects of stress on core and peripheral body temperature. The present study therefore aimed to investigate the effects of acute psychosocial stress on body temperature using different readout measurements. In two independent studies, male and female participants were exposed to a standardized laboratory stress task (the Trier Social Stress Test, TSST) or a non-stressful control task. Core temperature (intestinal and temporal artery) and peripheral temperature (facial and body skin temperature) were measured. Compared to the control condition, stress exposure decreased intestinal temperature but did not affect temporal artery temperature. Stress exposure resulted in changes in skin temperature that followed a gradient-like pattern, with decreases at distal skin locations such as the fingertip and finger base and unchanged skin temperature at proximal regions such as the infra-clavicular area. Stress-induced effects on facial temperature displayed a sex-specific pattern, with decreased nasal skin temperature in females and increased cheek temperature in males. In conclusion, the amplitude and direction of stress-induced temperature changes depend on the site of temperature measurement in humans. This precludes a direct translation of the preclinical stress-induced hyperthermia paradigm, in which core temperature uniformly rises in response to stress to the human situation. Nevertheless, the effects of stress result in consistent temperature changes. Therefore, the present study supports the inclusion of body temperature as a physiological readout parameter of stress in future studies.

  11. Effect of irrigation fluid temperature on core body temperature and inflammatory response during arthroscopic shoulder surgery.

    Science.gov (United States)

    Pan, Xiaoyun; Ye, Luyou; Liu, Zhongtang; Wen, Hong; Hu, Yuezheng; Xu, Xinxian

    2015-08-01

    This study was designed to evaluate the influence of irrigation fluid on the patients' physiological response to arthroscopic shoulder surgery. Patients who were scheduled for arthroscopic shoulder surgery were prospectively included in this study. They were randomly assigned to receive warm arthroscopic irrigation fluid (Group W, n = 33) or room temperature irrigation fluid (Group RT, n = 33) intraoperatively. Core body temperature was measured at regular intervals. The proinflammatory cytokines TNF-α, IL-1, IL-6, and IL-10 were measured in drainage fluid and serum. The changes of core body temperatures in Group RT were similar with those in Group W within 15 min after induction of anesthesia, but the decreases in Group RT were significantly greater after then. The lowest temperature was 35.1 ± 0.4 °C in Group RT and 35.9 ± 0.3 °C in Group W, the difference was statistically different (P irrigation fluid compared with warm irrigation fluid. And local inflammatory response is significantly reduced by using warm irrigation fluid. It seems that warm irrigation fluid is more recommendable for arthroscopic shoulder surgery.

  12. Prediction of human core body temperature using non-invasive measurement methods

    Science.gov (United States)

    Niedermann, Reto; Wyss, Eva; Annaheim, Simon; Psikuta, Agnes; Davey, Sarah; Rossi, René Michel

    2014-01-01

    The measurement of core body temperature is an efficient method for monitoring heat stress amongst workers in hot conditions. However, invasive measurement of core body temperature (e.g. rectal, intestinal, oesophageal temperature) is impractical for such applications. Therefore, the aim of this study was to define relevant non-invasive measures to predict core body temperature under various conditions. We conducted two human subject studies with different experimental protocols, different environmental temperatures (10 °C, 30 °C) and different subjects. In both studies the same non-invasive measurement methods (skin temperature, skin heat flux, heart rate) were applied. A principle component analysis was conducted to extract independent factors, which were then used in a linear regression model. We identified six parameters (three skin temperatures, two skin heat fluxes and heart rate), which were included for the calculation of two factors. The predictive value of these factors for core body temperature was evaluated by a multiple regression analysis. The calculated root mean square deviation (rmsd) was in the range from 0.28 °C to 0.34 °C for all environmental conditions. These errors are similar to previous models using non-invasive measures to predict core body temperature. The results from this study illustrate that multiple physiological parameters (e.g. skin temperature and skin heat fluxes) are needed to predict core body temperature. In addition, the physiological measurements chosen in this study and the algorithm defined in this work are potentially applicable as real-time core body temperature monitoring to assess health risk in broad range of working conditions.

  13. Long-term calorie restriction, but not endurance exercise, lowers core body temperature in humans.

    Science.gov (United States)

    Soare, Andreea; Cangemi, Roberto; Omodei, Daniela; Holloszy, John O; Fontana, Luigi

    2011-04-01

    Reduction of body temperature has been proposed to contribute to the increased lifespan in calorie restricted animals and mice overexpressing the uncoupling protein-2 in hypocretin neurons. However, nothing is known regarding the long-term effects of calorie restriction (CR) with adequate nutrition on body temperature in humans. In this study, 24-hour core body temperature was measured every minute by using ingested telemetric capsules in 24 men and women (mean age 53.7 ± 9.4 yrs) consuming a CR diet for an average of 6 years, 24 age- and sex-matched sedentary (WD) and 24 body fat-matched exercise-trained (EX) volunteers, who were eating Western diets. The CR and EX groups were significantly leaner than the WD group. Energy intake was lower in the CR group (1769 ± 348 kcal/d) than in the WD (2302 ± 668 kcal/d) and EX (2798 ± 760 kcal/d) groups (P < 0.0001). Mean 24-hour, day-time and night-time core body temperatures were all significantly lower in the CR group than in the WD and EX groups (P ≤ 0.01). Long-term CR with adequate nutrition in lean and weight-stable healthy humans is associated with a sustained reduction in core body temperature, similar to that found in CR rodents and monkeys. This adaptation is likely due to CR itself, rather than to leanness, and may be involved in slowing the rate of aging.

  14. FDTD analysis of body-core temperature elevation in children and adults for whole-body exposure

    Energy Technology Data Exchange (ETDEWEB)

    Hirata, Akimasa; Asano, Takayuki; Fujiwara, Osamu [Department of Computer Science and Engineering, Nagoya Institute of Technology (Japan)], E-mail: ahirata@nitech.ac.jp

    2008-09-21

    The temperature elevations in anatomically based human phantoms of an adult and a 3-year-old child were calculated for radio-frequency whole-body exposure. Thermoregulation in children, however, has not yet been clarified. In the present study, we developed a computational thermal model of a child that is reasonable for simulating body-core temperature elevation. Comparison of measured and simulated temperatures revealed thermoregulation in children to be similar to that of adults. Based on this finding, we calculated the body-core temperature elevation in a 3-year-old child and an adult for plane-wave exposure at the basic restriction in the international guidelines. The body-core temperature elevation in the 3-year-old child phantom was 0.03 deg. C at a whole-body-averaged specific absorption rate of 0.08 W kg{sup -1}, which was 35% smaller than in the adult female. This difference is attributed to the child's higher body surface area-to-mass ratio.

  15. Selective SWS suppression does not affect the time course of core body temperature in men

    NARCIS (Netherlands)

    Beersma, Domien G.M.; Dijk, Derk-Jan

    1992-01-01

    In eight healthy middle-aged men, sleep and core body temperature were recorded under baseline conditions, during all-night SWS suppression by acoustic stimulation, and during undisturbed recovery sleep. SWS suppression resulted in a marked reduction of sleep stages 3 and 4 but did not affect the

  16. Endogenous and exogenous components in the circadian variation of core body temperature in humans

    NARCIS (Netherlands)

    Hiddinga, AE; Beersma, DGM; VandenHoofdakker, RH

    1997-01-01

    Core body temperature is predominantly modulated by endogenous and exogenous components. In the present study we tested whether these two components can be reliably assessed in a protocol which lasts for only 120 h. In this so-called forced desynchrony protocol, 12 healthy male subjects (age 23.7 +/

  17. Considerations for the measurement of core, skin and mean body temperatures.

    Science.gov (United States)

    Taylor, Nigel A S; Tipton, Michael J; Kenny, Glen P

    2014-12-01

    Despite previous reviews and commentaries, significant misconceptions remain concerning deep-body (core) and skin temperature measurement in humans. Therefore, the authors have assembled the pertinent Laws of Thermodynamics and other first principles that govern physical and physiological heat exchanges. The resulting review is aimed at providing theoretical and empirical justifications for collecting and interpreting these data. The primary emphasis is upon deep-body temperatures, with discussions of intramuscular, subcutaneous, transcutaneous and skin temperatures included. These are all turnover indices resulting from variations in local metabolism, tissue conduction and blood flow. Consequently, inter-site differences and similarities may have no mechanistic relationship unless those sites have similar metabolic rates, are in close proximity and are perfused by the same blood vessels. Therefore, it is proposed that a gold standard deep-body temperature does not exist. Instead, the validity of each measurement must be evaluated relative to one's research objectives, whilst satisfying equilibration and positioning requirements. When using thermometric computations of heat storage, the establishment of steady-state conditions is essential, but for clinically relevant states, targeted temperature monitoring becomes paramount. However, when investigating temperature regulation, the response characteristics of each temperature measurement must match the forcing function applied during experimentation. Thus, during dynamic phases, deep-body temperatures must be measured from sites that track temperature changes in the central blood volume. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. The effects of sodium oxybate on core body and skin temperature regulation in narcolepsy.

    Science.gov (United States)

    van der Heide, Astrid; Donjacour, Claire E H M; Pijl, Hanno; Reijntjes, Robert H A M; Overeem, Sebastiaan; Lammers, Gert J; Van Someren, Eus J W; Fronczek, Rolf

    2015-10-01

    Patients suffering from narcolepsy type 1 show altered skin temperatures, resembling the profile that is related to sleep onset in healthy controls. The aim of the present study is to investigate the effects of sodium oxybate, a widely used drug to treat narcolepsy, on the 24-h profiles of temperature and sleep-wakefulness in patients with narcolepsy and controls. Eight hypocretin-deficient male narcolepsy type 1 patients and eight healthy matched controls underwent temperature measurement of core body and proximal and distal skin twice, and the sleep-wake state for 24 h. After the baseline assessment, 2 × 3 g of sodium oxybate was administered for 5 nights, immediately followed by the second assessment. At baseline, daytime core body temperature and proximal skin temperature were significantly lower in patients with narcolepsy (core: 36.8 ± 0.05 °C versus 37.0 ± 0.05 °C, F = 8.31, P = 0.01; proximal: 33.4 ± 0.26 °C versus 34.3 ± 0.26 °C, F = 5.66, P = 0.03). In patients, sodium oxybate administration increased proximal skin temperature during the day (F = 6.46, P = 0.04) to a level similar as in controls, but did not affect core body temperature, distal temperature or distal-proximal temperature gradient. Sodium oxybate administration normalised the predictive value of distal skin temperature and distal-proximal temperature gradient for the onset of daytime naps (P < 0.01). In conclusion, sodium oxybate administration resulted in a partial normalisation of the skin temperature profile, by increasing daytime proximal skin temperature, and by strengthening the known relationship between skin temperature and daytime sleep propensity. These changes seem to be related to the clinical improvement induced by sodium oxybate treatment. A causal relationship is not proven.

  19. Theoretical and Experimental Studies of Epidermal Heat Flux Sensors for Measurements of Core Body Temperature.

    Science.gov (United States)

    Zhang, Yihui; Webb, Richard Chad; Luo, Hongying; Xue, Yeguang; Kurniawan, Jonas; Cho, Nam Heon; Krishnan, Siddharth; Li, Yuhang; Huang, Yonggang; Rogers, John A

    2016-01-07

    Long-term, continuous measurement of core body temperature is of high interest, due to the widespread use of this parameter as a key biomedical signal for clinical judgment and patient management. Traditional approaches rely on devices or instruments in rigid and planar forms, not readily amenable to intimate or conformable integration with soft, curvilinear, time-dynamic, surfaces of the skin. Here, materials and mechanics designs for differential temperature sensors are presented which can attach softly and reversibly onto the skin surface, and also sustain high levels of deformation (e.g., bending, twisting, and stretching). A theoretical approach, together with a modeling algorithm, yields core body temperature from multiple differential measurements from temperature sensors separated by different effective distances from the skin. The sensitivity, accuracy, and response time are analyzed by finite element analyses (FEA) to provide guidelines for relationships between sensor design and performance. Four sets of experiments on multiple devices with different dimensions and under different convection conditions illustrate the key features of the technology and the analysis approach. Finally, results indicate that thermally insulating materials with cellular structures offer advantages in reducing the response time and increasing the accuracy, while improving the mechanics and breathability.

  20. Novel Analytic Methods Needed for Real-Time Continuous Core Body Temperature Data.

    Science.gov (United States)

    Hertzberg, Vicki; Mac, Valerie; Elon, Lisa; Mutic, Nathan; Mutic, Abby; Peterman, Katherine; Tovar-Aguilar, J Antonio; Economos, Eugenia; Flocks, Joan; McCauley, Linda

    2016-10-18

    Affordable measurement of core body temperature (Tc) in a continuous, real-time fashion is now possible. With this advance comes a new data analysis paradigm for occupational epidemiology. We characterize issues arising after obtaining Tc data over 188 workdays for 83 participating farmworkers, a population vulnerable to effects of rising temperatures due to climate change. We describe a novel approach to these data using smoothing and functional data analysis. This approach highlights different data aspects compared with describing Tc at a single time point or summaries of the time course into an indicator function (e.g., did Tc ever exceed 38 °C, the threshold limit value for occupational heat exposure). Participants working in ferneries had significantly higher Tc at some point during the workday compared with those working in nurseries, despite a shorter workday for fernery participants. Our results typify the challenges and opportunities in analyzing big data streams from real-time physiologic monitoring.

  1. In utero heat stress increases postnatal core body temperature in pigs.

    Science.gov (United States)

    Johnson, J S; Sanz Fernandez, M V; Seibert, J T; Ross, J W; Lucy, M C; Safranski, T J; Elsasser, T H; Kahl, S; Rhoads, R P; Baumgard, L H

    2015-09-01

    In utero heat stress (IUHS) negatively impacts postnatal development, but how it alters future body temperature parameters and energetic metabolism is not well understood. Future body temperature indices and bioenergetic markers were characterized in pigs from differing in utero thermal environments during postnatal thermoneutral (TN) and cyclical heat stress (HS) exposure. First-parity pregnant gilts ( = 13) were exposed to 1 of 4 ambient temperature (T) treatments (HS [cyclic 28°C to 34°C] or TN [cyclic 18°C to 22°C]) applied for the entire gestation (HSHS, TNTN), HS for the first half of gestation (HSTN), or HS for the second half of gestation (TNHS). Twenty-four offspring (23.1 ± 1.2 kg BW; = 6 HSHS, = 6 TNTN, = 6 HSTN, = 6 TNHS) were housed in TN (21.7°C ± 0.7°C) conditions and then exposed to 2 separate but similar HS periods (HS1 = 6 d; HS2 = 6 d; cycling 28°C to 36°C). Core body temperature (T) was assessed every 15 min with implanted temperature recorders. Regardless of in utero treatment, T increased during both HS periods ( = 0.01; 0.58°C). During TN, HS1, and HS2, all IUHS pigs combined had increased T ( = 0.01; 0.36°C, 0.20°C, and 0.16°C, respectively) compared to TNTN controls. Although unaffected by in utero environment, the total plasma thyroxine to triiodothyronine ratio was reduced ( = 0.01) during HS1 and HS2 (39% and 29%, respectively) compared with TN. In summary, pigs from IUHS maintained an increased T compared with TNTN controls regardless of external T, and this thermal differential may have practical implications to developmental biology and animal bioenergetics.

  2. Comparison of estimated core body temperature measured with the BioHarness and rectal temperature under several heat stress conditions.

    Science.gov (United States)

    Seo, Yongsuk; DiLeo, Travis; Powell, Jeffrey B; Kim, Jung-Hyun; Roberge, Raymond J; Coca, Aitor

    2016-08-01

    Monitoring and measuring core body temperature is important to prevent or minimize physiological strain and cognitive dysfunction for workers such as first responders (e.g., firefighters) and military personnel. The purpose of this study is to compare estimated core body temperature (Tco-est), determined by heart rate (HR) data from a wearable chest strap physiology monitor, to standard rectal thermometry (Tre) under different conditions.  Tco-est and Tre measurements were obtained in thermoneutral and heat stress conditions (high temperature and relative humidity) during four different experiments including treadmill exercise, cycling exercise, passive heat stress, and treadmill exercise while wearing personal protective equipment (PPE).  Overall, the mean Tco-est did not differ significantly from Tre across the four conditions. During exercise at low-moderate work rates under heat stress conditions, Tco-est was consistently higher than Tre at all-time points. Tco-est underestimated temperature compared to Tre at rest in heat stress conditions and at a low work rate under heat stress while wearing PPE. The mean differences between the two measurements ranged from -0.1 ± 0.4 to 0.3 ± 0.4°C and Tco-est correlated well with HR (r = 0.795 - 0.849) and mean body temperature (r = 0.637 - 0.861).  These results indicate that, the comparison of Tco-est to Tre may result in over- or underestimation which could possibly lead to heat-related illness during monitoring in certain conditions. Modifications to the current algorithm should be considered to address such issues.

  3. Zero-Heat-Flux Thermometry for Non-Invasive Measurement of Core Body Temperature in Pigs.

    Directory of Open Access Journals (Sweden)

    Maria Guschlbauer

    Full Text Available Hypothermia is a severe, unpleasant side effect during general anesthesia. Thus, temperature surveillance is a prerequisite in general anesthesia settings during experimental surgeries. The gold standard to measure the core body temperature (Tcore is placement of a Swan-Ganz catheter in the pulmonary artery, which is a highly invasive procedure. Therefore, Tcore is commonly examined in the urine bladder and rectum. However, these procedures are known for their inaccuracy and delayed record of temperatures. Zero-heat-flux (ZHF thermometry is an alternative, non-invasive method quantifying Tcore in human patients by applying a thermosensoric patch to the lateral forehead. Since the porcine cranial anatomy is different to the human's, the optimal location of the patch remains unclear to date. The aim was to compare three different patch locations of ZHF thermometry in a porcine hypothermia model. Hypothermia (33.0 °C Tcore was conducted in 11 anesthetized female pigs (26-30 kg. Tcore was measured continuously by an invasive Swan-Ganz catheter in the pulmonary artery (Tpulm. A ZHF thermometry device was mounted on three different defined locations. The smallest average difference between Tpulm and TZHF during stable temperatures was 0.21 ± 0.16 °C at location A, where the patch was placed directly behind the eye. Also during rapidly changing temperatures location A showed the smallest bias with 0.48 ± 0.29 °C. Location A provided the most reliable data for Tcore. Therefore, the ZHF thermometry patch should be placed directly behind the left temporal corner of the eye to provide a non-invasive method for accurate measurement of Tcore in pigs.

  4. Temporal phasing of locomotor activity, heart rate rhythmicity, and core body temperature is disrupted in VIP receptor 2-deficient mice

    DEFF Research Database (Denmark)

    Hannibal, Jens; Hsiung, Hansen M; Fahrenkrug, Jan

    2011-01-01

    Neurons of the brain's biological clock located in the hypothalamic suprachiasmatic nucleus (SCN) generate circadian rhythms of physiology (core body temperature, hormone secretion, locomotor activity, sleep/wake, and heart rate) with distinct temporal phasing when entrained by the light/dark (LD...... within individual neurons. To further increase the understanding of the role of VPAC2 signaling in circadian regulation, we implanted telemetric devices and simultaneously measured core body temperature, spontaneous activity, and heart rate in a strain of VPAC2-deficient mice and compared...... these observations with observations made from mice examined by wheel-running activity. The study demonstrates that VPAC2 signaling is necessary for a functional circadian clock driving locomotor activity, core body temperature, and heart rate rhythmicity, since VPAC2-deficient mice lose the rhythms in all three...

  5. Power Relative to Body Mass Best Predicts Change in Core Temperature During Exercise-Heat Stress.

    Science.gov (United States)

    Gibson, Oliver R; Willmott, Ashley G B; James, Carl A; Hayes, Mark; Maxwell, Neil S

    2017-02-01

    Gibson, OR, Willmott, AGB, James, CA, Hayes, M, and Maxwell, NS. Power relative to body mass best predicts change in core temperature during exercise-heat stress. J Strength Cond Res 31(2): 403-414, 2017-Controlling internal temperature is crucial when prescribing exercise-heat stress, particularly during interventions designed to induce thermoregulatory adaptations. This study aimed to determine the relationship between the rate of rectal temperature (Trec) increase, and various methods for prescribing exercise-heat stress, to identify the most efficient method of prescribing isothermic heat acclimation (HA) training. Thirty-five men cycled in hot conditions (40° C, 39% R.H.) for 29 ± 2 minutes. Subjects exercised at 60 ± 9% V[Combining Dot Above]O2peak, with methods for prescribing exercise retrospectively observed for each participant. Pearson product moment correlations were calculated for each prescriptive variable against the rate of change in Trec (° C·h), with stepwise multiple regressions performed on statistically significant variables (p ≤ 0.05). Linear regression identified the predicted intensity required to increase Trec by 1.0-2.0° C between 20- and 45-minute periods and the duration taken to increase Trec by 1.5° C in response to incremental intensities to guide prescription. Significant (p ≤ 0.05) relationships with the rate of change in Trec were observed for prescriptions based on relative power (W·kg; r = 0.764), power (%Powermax; r = 0.679), rating of perceived exertion (RPE) (r = 0.577), V[Combining Dot Above]O2 (%V[Combining Dot Above]O2peak; r = 0.562), heart rate (HR) (%HRmax; r = 0.534), and thermal sensation (r = 0.311). Stepwise multiple regressions observed relative power and RPE as variables to improve the model (r = 0.791), with no improvement after inclusion of any anthropometric variable. Prescription of exercise under heat stress using power (W·kg or %Powermax) has the strongest relationship with the rate of change in

  6. Core body temperature and the thermoneutral zone: a longitudinal study of normal human pregnancy.

    Science.gov (United States)

    Hartgill, T W; Bergersen, T K; Pirhonen, J

    2011-04-01

    Using a longitudinal study design, we investigated changes in maternal core temperature and ambient temperatures before and after a localized cooling procedure to the right hand. Fifteen pregnant women participated. The experiments were sequentially performed for 21 month periods on each subject: from the 8th week of gestation to 1 year after delivery on seven separate occasions (gestational weeks 8, 16, 26, 36 and 12, 24, 52 weeks post-partum). The experiments were conducted in a climactic chamber, allowing ambient temperature adjustment to each subjects' thermoneutral zone determined using Doppler ultrasound of the digital artery. Maternal core temperature decreased from 37.1 °C (week 8) towards term, reaching a nadir (36.4 °C) at 12 weeks post-partum (P temperature required to reach the thermoneutral zone changed significantly from 26.5 °C (week 8) falling to its lowest point: 23.0 °C (week 36) (P temperature is highest in the first trimester but falls during pregnancy to a nadir 3 months post-partum. The ambient temperature required to reach the thermoneutral zone was 4 °C lower at 36 weeks of gestation compared with early pregnancy and late post-partum. Human temperature regulation is altered in pregnancy and for at least 3 months post-partum.

  7. Effects of IV Acetaminophen on Core Body Temperature and Hemodynamic Responses in Febrile Critically Ill Adults: A Randomized Controlled Trial.

    Science.gov (United States)

    Schell-Chaple, Hildy M; Liu, Kathleen D; Matthay, Michael A; Sessler, Daniel I; Puntillo, Kathleen A

    2017-07-01

    To determine the effects of IV acetaminophen on core body temperature, blood pressure, and heart rate in febrile critically ill patients. Randomized, double-blind, placebo-controlled clinical trial. Three adult ICUs at a large, urban, academic medical center. Forty critically ill adults with fever (core temperature, ≥ 38.3°C). An infusion of acetaminophen 1 g or saline placebo over 15 minutes. Core temperature and vital signs were measured at baseline and at 5-15-minute intervals for 4 hours after infusion of study drug. The primary outcome was time-weighted average core temperature adjusted for baseline temperature. Secondary outcomes included adjusted time-weighted average heart rate, blood pressure, and respiratory rate, along with changes-over-time for each. Baseline patient characteristics were similar in those given acetaminophen and placebo. Patients given acetaminophen had an adjusted time-weighted average temperature that was 0.47°C less than those given placebo (95% CI, -0.76 to -0.18; p = 0.002). The acetaminophen group had significantly lower adjusted time-weighted average systolic blood pressure (-17 mm Hg; 95% CI, -25 to -8; p acetaminophen decreased temperature, blood pressure, and heart rate. IV acetaminophen thus produces modest fever reduction in critical care patients, along with clinically important reductions in blood pressure.

  8. Effect of shortened sleep on energy expenditure, core body temperature, and appetite: a human randomised crossover trial

    OpenAIRE

    Masanobu Hibi; Chie Kubota; Tomohito Mizuno; Sayaka Aritake; Yuki Mitsui; Mitsuhiro Katashima; Sunao Uchida

    2017-01-01

    The effects of sleep restriction on energy metabolism and appetite remain controversial. We examined the effects of shortened sleep duration on energy metabolism, core body temperature (CBT), and appetite profiles. Nine healthy men were evaluated in a randomised crossover study under two conditions: a 3.5-h sleep duration and a 7-h sleep duration for three consecutive nights followed by one 7-h recovery sleep night. The subjects’ energy expenditure (EE), substrate utilisation, and CBT were co...

  9. Temporal phasing of locomotor activity, heart rate rhythmicity, and core body temperature is disrupted in VIP receptor 2-deficient mice

    DEFF Research Database (Denmark)

    Hannibal, Jens; Hsiung, Hansen M; Fahrenkrug, Jan

    2011-01-01

    these observations with observations made from mice examined by wheel-running activity. The study demonstrates that VPAC2 signaling is necessary for a functional circadian clock driving locomotor activity, core body temperature, and heart rate rhythmicity, since VPAC2-deficient mice lose the rhythms in all three...... to that of wild-type mice. The use of telemetric devices to measure circadian locomotor activity, temperature, and heart rate, together with the classical determination of circadian rhythms of wheel-running activity, raises questions about how representative wheel-running activity may be of other behavioral...

  10. A cross-species translational pharmacokinetic-pharmacodynamic evaluation of core body temperature reduction by the TRPM8 blocker PF-05105679.

    Science.gov (United States)

    Gosset, James R; Beaumont, Kevin; Matsuura, Tomomi; Winchester, Wendy; Attkins, Neil; Glatt, Sophie; Lightbown, Ian; Ulrich, Kristina; Roberts, Sonia; Harris, Jolie; Mesic, Emir; van Steeg, Tamara; Hijdra, Diana; van der Graaf, Piet H

    2017-06-07

    PF-05105679 is a moderately potent TRPM8 blocker which has been evaluated for the treatment of cold pain sensitivity. The TRPM8 channel is responsible for the sensation of cold environmental temperatures and has been implicated in regulation of core body temperature. Consequently, blockade of TRPM8 has been suggested to result in lowering of core body temperature. As part of the progression to human studies, the effect of PF-05105679 on core body temperature has been investigated in animals. Safety pharmacology studies showed that PF-05105679 reduced core body temperature in a manner that was inversely related to body weight of the species tested (greater exposure to PF-05105679 was required to lower temperature by 1°C in higher species). Based on an allometric (body weight) relationship, it was hypothesized that PF-05105679 would not lower core body temperature in humans at exposures that could exhibit pharmacological effects on cold pain sensation. On administration to humans, PF-05105679 was indeed effective at reversing the cold pain sensation associated with the cold pressor test in the absence of effects on core body temperature. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Temporal phasing of locomotor activity, heart rate rhythmicity, and core body temperature is disrupted in VIP receptor 2-deficient mice.

    Science.gov (United States)

    Hannibal, Jens; Hsiung, Hansen M; Fahrenkrug, Jan

    2011-03-01

    Neurons of the brain's biological clock located in the hypothalamic suprachiasmatic nucleus (SCN) generate circadian rhythms of physiology (core body temperature, hormone secretion, locomotor activity, sleep/wake, and heart rate) with distinct temporal phasing when entrained by the light/dark (LD) cycle. The neuropeptide vasoactive intestinal polypetide (VIP) and its receptor (VPAC2) are highly expressed in the SCN. Recent studies indicate that VIPergic signaling plays an essential role in the maintenance of ongoing circadian rhythmicity by synchronizing SCN cells and by maintaining rhythmicity within individual neurons. To further increase the understanding of the role of VPAC2 signaling in circadian regulation, we implanted telemetric devices and simultaneously measured core body temperature, spontaneous activity, and heart rate in a strain of VPAC2-deficient mice and compared these observations with observations made from mice examined by wheel-running activity. The study demonstrates that VPAC2 signaling is necessary for a functional circadian clock driving locomotor activity, core body temperature, and heart rate rhythmicity, since VPAC2-deficient mice lose the rhythms in all three parameters when placed under constant conditions (of either light or darkness). Furthermore, although 24-h rhythms for three parameters are retained in VPAC2-deficient mice during the LD cycle, the temperature rhythm displays markedly altered time course and profile, rising earlier and peaking ∼4-6 h prior to that of wild-type mice. The use of telemetric devices to measure circadian locomotor activity, temperature, and heart rate, together with the classical determination of circadian rhythms of wheel-running activity, raises questions about how representative wheel-running activity may be of other behavioral parameters, especially when animals have altered circadian phenotype.

  12. Core formation in silicate bodies

    Science.gov (United States)

    Nimmo, F.; O'Brien, D. P.; Kleine, T.

    2008-12-01

    Differentiation of a body into a metallic core and silicate mantle occurs most efficiently if temperatures are high enough to allow at least the metal to melt [1], and is enhanced if matrix deformation occurs [2]. Elevated temperatures may occur due to either decay of short-lived radio-isotopes, or gravitational energy release during accretion [3]. For bodies smaller than the Moon, core formation happens primarily due to radioactive decay. The Hf-W isotopic system may be used to date core formation; cores in some iron meteorites and the eucrite parent body (probably Vesta) formed within 1 My and 1-4~My of solar system formation, respectively [4]. These formation times are early enough to ensure widespread melting and differentiation by 26Al decay. Incorporation of Fe60 into the core, together with rapid early mantle solidification and cooling, may have driven early dynamo activity on some bodies [5]. Iron meteorites are typically depleted in sulphur relative to chondrites, for unknown reasons [6]. This depletion contrasts with the apparently higher sulphur contents of cores in larger planetary bodies, such as Mars [7], and also has a significant effect on the timing of core solidification. For bodies of Moon-size and larger, gravitational energy released during accretion is probably the primary cause of core formation [3]. The final stages of accretion involve large, stochastic collisions [8] between objects which are already differentiated. During each collision, the metallic cores of the colliding objects merge on timescales of a few hours [9]. Each collision will reset the Hf-W isotopic signature of both mantle and core, depending on the degree to which the impactor core re-equilibrates with the mantle of the target [10]. The re-equilibration efficiency depends mainly on the degree to which the impactor emulsifies [11], which is very uncertain. Results from N-body simulations [8,12] suggest that significant degrees of re- equilibration are required [4,10]. Re

  13. Contribution of core body temperature, prior wake time, and sleep stages to cognitive throughput performance during forced desynchrony.

    Science.gov (United States)

    Darwent, David; Ferguson, Sally A; Sargent, Charli; Paech, Gemma M; Williams, Louise; Zhou, Xuan; Matthews, Raymond W; Dawson, Drew; Kennaway, David J; Roach, Greg D

    2010-07-01

    Shiftworkers are often required to sleep at inappropriate phases of their circadian timekeeping system, with implications for the dynamics of ultradian sleep stages. The independent effects of these changes on cognitive throughput performance are not well understood. This is because the effects of sleep on performance are usually confounded with circadian factors that cannot be controlled under normal day/night conditions. The aim of this study was to assess the contribution of prior wake, core body temperature, and sleep stages to cognitive throughput performance under conditions of forced desynchrony (FD). A total of 11 healthy young adult males resided in a sleep laboratory in which day/night zeitgebers were eliminated and ambient room temperature, lighting levels, and behavior were controlled. The protocol included 2 training days, a baseline day, and 7 x 28-h FD periods. Each FD period consisted of an 18.7-h wake period followed by a 9.3-h rest period. Sleep was assessed using standard polysomnography. Core body temperature and physical activity were assessed continuously in 1-min epochs. Cognitive throughput was measured by a 5-min serial addition and subtraction (SAS) task and a 90-s digit symbol substitution (DSS) task. These were administered in test sessions scheduled every 2.5 h across the wake periods of each FD period. On average, sleep periods had a mean (+/- standard deviation) duration of 8.5 (+/-1.2) h in which participants obtained 7.6 (+/-1.4) h of total sleep time. This included 4.2 (+/-1.2) h of stage 1 and stage 2 sleep (S1-S2 sleep), 1.6 (+/-0.6) h of slow-wave sleep (SWS), and 1.8 (+/-0.6) h of rapid eye movement (REM) sleep. A mixed-model analysis with five covariates indicated significant fixed effects on cognitive throughput for circadian phase, prior wake time, and amount of REM sleep. Significant effects for S1-S2 sleep and SWS were not found. The results demonstrate that variations in core body temperature, time awake, and amount of

  14. Physical exercise-induced changes in the core body temperature of mice depend more on ambient temperature than on exercise protocol or intensity

    Science.gov (United States)

    Wanner, Samuel Penna; Costa, Kátia Anunciação; Soares, Anne Danieli Nascimento; Cardoso, Valbert Nascimento; Coimbra, Cândido Celso

    2014-08-01

    The mechanisms underlying physical exercise-induced hyperthermia may be species specific. Therefore, the present study aimed to investigate the effects of exercise intensity and ambient temperature on the core body temperature ( T core) of running mice, which provide an important experimental model for advancing the understanding of thermal physiology. We evaluated the influence of different protocols (constant- or incremental-speed exercises), treadmill speeds and ambient temperatures ( T a) on the magnitude of exercise-induced hyperthermia. To measure T core, a telemetric sensor was implanted in the abdominal cavity of male adult Swiss mice under anesthesia. After recovering from the surgery, the animals were familiarized to running on a treadmill and then subjected to the different running protocols and speeds at two T a: 24 °C or 34 °C. All of the experimental trials resulted in marked increases in T core. As expected, the higher-temperature environment increased the magnitude of running-induced hyperthermia. For example, during incremental exercise at 34 °C, the maximal T core achieved was increased by 1.2 °C relative to the value reached at 24 °C. However, at the same T a, neither treadmill speed nor exercise protocol altered the magnitude of exercise-induced hyperthermia. We conclude that T core of running mice is influenced greatly by T a, but not by the exercise protocols or intensities examined in the present report. These findings suggest that the magnitude of hyperthermia in running mice may be regulated centrally, independently of exercise intensity.

  15. Development of an improved wearable device for core body temperature monitoring based on the dual heat flux principle.

    Science.gov (United States)

    Feng, Jingjie; Zhou, Congcong; He, Cheng; Li, Yuan; Ye, Xuesong

    2017-04-01

    In this paper, a miniaturized wearable core body temperature (CBT) monitoring system based on the dual heat flux (DHF) principle was developed. By interspersing calcium carbonate powder in PolyDimethylsiloxane (PDMS), a reformative heat transfer medium was produced to reduce the thermal equilibrium time. Besides, a least mean square (LMS) algorithm based active noise cancellation (ANC) method was adopted to diminish the impact of ambient temperature fluctuations. Theoretical analyses, finite element simulation, experiments on a hot plate and human volunteers were performed. The results showed that the proposed system had the advantages of small size, reduced initial time (~23.5 min), and good immunity to fluctuations of the air temperature. For the range of 37-41 °C on the hot plate, the error compared with a Fluke high accuracy thermometer was 0.08  ±  0.20 °C. In the human experiments, the measured temperature in the rest trial (34 subjects) had a difference of 0.13  ±  0.22 °C compared with sublingual temperature, while a significant increase of 1.36  ±  0.44 °C from rest to jogging was found in the exercise trial (30 subjects). This system has the potential for reliable continuous CBT measurement in rest and can reflect CBT variations during exercise.

  16. Mathematical prediction of core body temperature from environment, activity, and clothing: The heat strain decision aid (HSDA).

    Science.gov (United States)

    Potter, Adam W; Blanchard, Laurie A; Friedl, Karl E; Cadarette, Bruce S; Hoyt, Reed W

    2017-02-01

    Physiological models provide useful summaries of complex interrelated regulatory functions. These can often be reduced to simple input requirements and simple predictions for pragmatic applications. This paper demonstrates this modeling efficiency by tracing the development of one such simple model, the Heat Strain Decision Aid (HSDA), originally developed to address Army needs. The HSDA, which derives from the Givoni-Goldman equilibrium body core temperature prediction model, uses 16 inputs from four elements: individual characteristics, physical activity, clothing biophysics, and environmental conditions. These inputs are used to mathematically predict core temperature (Tc) rise over time and can estimate water turnover from sweat loss. Based on a history of military applications such as derivation of training and mission planning tools, we conclude that the HSDA model is a robust integration of physiological rules that can guide a variety of useful predictions. The HSDA model is limited to generalized predictions of thermal strain and does not provide individualized predictions that could be obtained from physiological sensor data-driven predictive models. This fully transparent physiological model should be improved and extended with new findings and new challenging scenarios. Published by Elsevier Ltd.

  17. Core Body and Skin Temperature in Type 1 Narcolepsy in Daily Life; Effects of Sodium Oxybate and Prediction of Sleep Attacks

    NARCIS (Netherlands)

    van der Heide, Astrid; Werth, Esther; Donjacour, Claire E H M; Reijntjes, Robert H A M; Lammers, Gert Jan; Van Someren, Eus J W; Baumann, Christian R; Fronczek, Rolf

    2016-01-01

    STUDY OBJECTIVES: Previous laboratory studies in narcolepsy patients showed altered core body and skin temperatures, which are hypothesised to be related to a disturbed sleep wake regulation. In this ambulatory study we assessed temperature profiles in normal daily life, and whether sleep attacks

  18. Effects of Re-heating Tissue Samples to Core Body Temperature on High-Velocity Ballistic Projectile-tissue Interactions.

    Science.gov (United States)

    Humphrey, Caitlin; Henneberg, Maciej; Wachsberger, Christian; Maiden, Nicholas; Kumaratilake, Jaliya

    2017-02-23

    Damage produced by high-speed projectiles on organic tissue will depend on the physical properties of the tissues. Conditioning organic tissue samples to human core body temperature (37°C) prior to conducting ballistic experiments enables their behavior to closely mimic that of living tissues. To minimize autolytic changes after death, the tissues are refrigerated soon after their removal from the body and re-heated to 37°C prior to testing. This research investigates whether heating 50-mm-cube samples of porcine liver, kidney, and heart to 37°C for varying durations (maximum 7 h) can affect the penetration response of a high-speed, steel sphere projectile. Longer conditioning times for heart and liver resulted in a slight loss of velocity/energy of the projectile, but the reverse effect occurred for the kidney. Possible reasons for these trends include autolytic changes causing softening (heart and liver) and dehydration causing an increase in density (kidney).

  19. Flexible Electronics: Theoretical and Experimental Studies of Epidermal Heat Flux Sensors for Measurements of Core Body Temperature (Adv. Healthcare Mater. 1/2016).

    Science.gov (United States)

    Zhang, Yihui; Chad Webb, Richard; Luo, Hongying; Xue, Yeguang; Kurniawan, Jonas; Cho, Nam Heon; Krishnan, Siddharth; Li, Yuhang; Huang, Yonggang; Rogers, John A

    2016-01-01

    On page 119, J. A. Rogers and co-workers present theoretical approaches, modeling algorithms, materials, and device designs for the noninvasive measurement of core body temperature by using multiple differential temperature sensors that attach softly and intimately onto the surface of the skin. The image shows the construction of differential temperature sensors using thermally insulating foam as the separation material. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Issues in Continuous 24-h Core Body Temperature Monitoring in Humans Using an Ingestible Capsule Telemetric Sensor.

    Science.gov (United States)

    Monnard, Cathriona R; Fares, Elie-Jacques; Calonne, Julie; Miles-Chan, Jennifer L; Montani, Jean-Pierre; Durrer, Dominique; Schutz, Yves; Dulloo, Abdul G

    2017-01-01

    There is increasing interest in the use of pill-sized ingestible capsule telemetric sensors for assessing core body temperature (Tc) as a potential indicator of variability in metabolic efficiency and thrifty metabolic traits. The aim of this study was to investigate the feasibility and accuracy of measuring Tc using the CorTemp(®) system. Tc was measured over an average of 20 h in 27 human subjects, with measurements of energy expenditure made in the overnight fasted state at rest, during standardized low-intensity physical activity and after a 600 kcal mixed meal. Validation of accuracy of the capsule sensors was made ex vivo against mercury and electronic thermometers across the physiological range (35-40°C) in morning and afternoon of 2 or 3 consecutive days. Comparisons between capsule sensors and thermometers were made using Bland-Altman analysis. Systematic bias, error, and temperature drift over time were assessed. The circadian Tc profile classically reported in free-living humans was confirmed. Significant increases in Tc (+0.2°C) were found in response to low-power cycling at 40-50 W (~3-4 METs), but no changes in Tc were detectable during low-level isometric leg press exercise (meal. Issues of particular interest include fast "turbo" gut transit with expulsion time of <15 h after capsule ingestion in one out of every five subjects and sudden erratic readings in teletransmission of Tc. Furthermore, ex vivo validation revealed a substantial mean bias (exceeding ±0.5°C) between the Tc capsule readings and mercury or electronic thermometers in half of the capsules. When examined over 2 or 3 days, the initial bias (small or large) drifted in excess of ±0.5°C in one out of every four capsules. Since Tc is regulated within a very narrow range in the healthy homeotherm's body (within 1°C), physiological investigations of Tc require great accuracy and precision (better than 0.1°C). Although ingestible capsule methodology appears of great

  1. Issues in Continuous 24-h Core Body Temperature Monitoring in Humans Using an Ingestible Capsule Telemetric Sensor

    Directory of Open Access Journals (Sweden)

    Cathriona R. Monnard

    2017-06-01

    Full Text Available BackgroundThere is increasing interest in the use of pill-sized ingestible capsule telemetric sensors for assessing core body temperature (Tc as a potential indicator of variability in metabolic efficiency and thrifty metabolic traits. The aim of this study was to investigate the feasibility and accuracy of measuring Tc using the CorTemp® system.MethodsTc was measured over an average of 20 h in 27 human subjects, with measurements of energy expenditure made in the overnight fasted state at rest, during standardized low-intensity physical activity and after a 600 kcal mixed meal. Validation of accuracy of the capsule sensors was made ex vivo against mercury and electronic thermometers across the physiological range (35–40°C in morning and afternoon of 2 or 3 consecutive days. Comparisons between capsule sensors and thermometers were made using Bland–Altman analysis. Systematic bias, error, and temperature drift over time were assessed.ResultsThe circadian Tc profile classically reported in free-living humans was confirmed. Significant increases in Tc (+0.2°C were found in response to low-power cycling at 40–50 W (~3–4 METs, but no changes in Tc were detectable during low-level isometric leg press exercise (<2 METs or during the peak postprandial thermogenesis induced by the 600 kcal meal. Issues of particular interest include fast “turbo” gut transit with expulsion time of <15 h after capsule ingestion in one out of every five subjects and sudden erratic readings in teletransmission of Tc. Furthermore, ex vivo validation revealed a substantial mean bias (exceeding ±0.5°C between the Tc capsule readings and mercury or electronic thermometers in half of the capsules. When examined over 2 or 3 days, the initial bias (small or large drifted in excess of ±0.5°C in one out of every four capsules.ConclusionSince Tc is regulated within a very narrow range in the healthy homeotherm’s body (within 1°C, physiological

  2. Core Outlet Temperature Study

    Energy Technology Data Exchange (ETDEWEB)

    Moisseytsev, A. [Argonne National Laboratory (ANL), Argonne, IL (United States); Hoffman, E. [Argonne National Laboratory (ANL), Argonne, IL (United States); Majumdar, S. [Argonne National Laboratory (ANL), Argonne, IL (United States)

    2008-07-28

    It is a known fact that the power conversion plant efficiency increases with elevation of the heat addition temperature. The higher efficiency means better utilization of the available resources such that higher output in terms of electricity production can be achieved for the same size and power of the reactor core or, alternatively, a lower power core could be used to produce the same electrical output. Since any nuclear power plant, such as the Advanced Burner Reactor, is ultimately built to produce electricity, a higher electrical output is always desirable. However, the benefits of the higher efficiency and electricity production usually come at a price. Both the benefits and the disadvantages of higher reactor outlet temperatures are analyzed in this work.

  3. FDTD analysis of human body-core temperature elevation due to RF far-field energy prescribed in the ICNIRP guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Hirata, Akimasa; Asano, Takayuki; Fujiwara, Osamu [Department of Computer Science and Engineering, Nagoya Institute of Technology (Japan)

    2007-08-21

    This study investigated the relationship between the specific absorption rate and temperature elevation in an anatomically-based model named NORMAN for exposure to radio-frequency far fields in the ICNIRP guidelines (1998 Health Phys. 74 494-522). The finite-difference time-domain method is used for analyzing the electromagnetic absorption and temperature elevation in NORMAN. In order to consider the variability of human thermoregulation, parameters for sweating are derived and incorporated into a conventional sweating formula. First, we investigated the effect of blood temperature variation modeling on body-core temperature. The computational results show that the modeling of blood temperature variation was the dominant factor influencing the body-core temperature. This is because the temperature in the inner tissues is elevated via the circulation of blood whose temperature was elevated due to EM absorption. Even at different frequencies, the body-core temperature elevation at an identical whole-body average specific absorption rate (SAR) was almost the same, suggesting the effectiveness of the whole-body average SAR as a measure in the ICNIRP guidelines. Next, we discussed the effect of sweating on the temperature elevation and thermal time constant of blood. The variability of temperature elevation caused by the sweating rate was found to be 30%. The blood temperature elevation at the basic restriction in the ICNIRP guidelines of 0.4 W kg{sup -1} is 0.25 {sup 0}C even for a low sweating rate. The thermal time constant of blood temperature elevation was 23 min and 52 min for a man with a lower and a higher sweating rate, respectively, which is longer than the average time of the SAR in the ICNIRP guidelines. Thus, the whole-body average SAR required for blood temperature elevation of 1 {sup 0}C was 4.5 W kg{sup -1} in the model of a human with the lower sweating coefficients for 60 min exposure. From a comparison of this value with the basic restriction in the

  4. FDTD analysis of human body-core temperature elevation due to RF far-field energy prescribed in the ICNIRP guidelines

    Science.gov (United States)

    Hirata, Akimasa; Asano, Takayuki; Fujiwara, Osamu

    2007-08-01

    This study investigated the relationship between the specific absorption rate and temperature elevation in an anatomically-based model named NORMAN for exposure to radio-frequency far fields in the ICNIRP guidelines (1998 Health Phys. 74 494-522). The finite-difference time-domain method is used for analyzing the electromagnetic absorption and temperature elevation in NORMAN. In order to consider the variability of human thermoregulation, parameters for sweating are derived and incorporated into a conventional sweating formula. First, we investigated the effect of blood temperature variation modeling on body-core temperature. The computational results show that the modeling of blood temperature variation was the dominant factor influencing the body-core temperature. This is because the temperature in the inner tissues is elevated via the circulation of blood whose temperature was elevated due to EM absorption. Even at different frequencies, the body-core temperature elevation at an identical whole-body average specific absorption rate (SAR) was almost the same, suggesting the effectiveness of the whole-body average SAR as a measure in the ICNIRP guidelines. Next, we discussed the effect of sweating on the temperature elevation and thermal time constant of blood. The variability of temperature elevation caused by the sweating rate was found to be 30%. The blood temperature elevation at the basic restriction in the ICNIRP guidelines of 0.4 W kg-1 is 0.25 °C even for a low sweating rate. The thermal time constant of blood temperature elevation was 23 min and 52 min for a man with a lower and a higher sweating rate, respectively, which is longer than the average time of the SAR in the ICNIRP guidelines. Thus, the whole-body average SAR required for blood temperature elevation of 1 °C was 4.5 W kg-1 in the model of a human with the lower sweating coefficients for 60 min exposure. From a comparison of this value with the basic restriction in the ICNIRP guidelines of 0

  5. Body temperature norms

    Science.gov (United States)

    Morrison SF. Regulation of body temperature. In: Boron WF, Boulpaep EL, eds. Medical Physiology . 3rd ed. Philadelphia, PA: Elsevier; 2017:chap 59. Sajadi MM, Mackowiak PA. Temperature regulation and the pathogenesis of fever. In: Bennett JE, Dolin ...

  6. Short communication: using infrared thermography as an in situ measure of core body temperature in lot-fed Angus steers

    Science.gov (United States)

    Lees, Angela M.; Lees, J. C.; Sejian, V.; Wallage, A. L.; Gaughan, J. B.

    2017-09-01

    Thirty-six Black Angus steers were used in a replicated study; three replicates of 12 steers/replicate. Steers had an initial non-fasted BW of 392.3 ± 5.1, 427.5 ± 6.3, and 392.7 ± 3.7 kg for each replicate, respectively. Steers were housed outside in individual animal pens (10 m × 3.4 m). Each replicate was conducted over a 6-day period where infrared thermography (IRT) images were collected at 3-h intervals, commencing at 0600 h on day 1 and concluding at 0600 h on day 6. Rumen temperatures (T RUM) were measured at 10-min intervals for the duration of each replicate using a radio-frequency identification (RFID) rumen bolus. These data were used to determine the relationship with surface temperature of the cattle, which was determined using IRT. Individual T RUM were converted to an hourly average. The relationship between T RUM and surface temperature was determined using Pearson's correlation coefficient. There were no linear trends between mean hourly T RUM and mean surface temperature. Pearson's correlation coefficient indicated that there were weak associations (r ≤ 0.1; P < 0.003) between T RUM and body surface temperature. These data suggest that there was little relationship between the surface temperature and T RUM.

  7. Disorders of body temperature.

    Science.gov (United States)

    Gomez, Camilo R

    2014-01-01

    The human body generates heat capable of raising body temperature by approximately 1°C per hour. Normally, this heat is dissipated by means of a thermoregulatory system. Disorders resulting from abnormally high or low body temperature result in neurologic dysfunction and pose a threat to life. In response to thermal stress, maintenance of normal body temperature is primarily maintained by convection and evaporation. Hyperthermia results from abnormal temperature regulation, leading to extremely elevated body temperature while fever results from a normal thermoregulatory mechanism operating at a higher set point. The former leads to specific clinical syndromes with inability of the thermoregulatory mechanism to maintain a constant body temperature. Heat related illness encompasses heat rash, heat cramps, heat exhaustion and heat stroke, in order of severity. In addition, drugs can induce hyperthermia and produce one of several specific clinical syndromes. Hypothermia is the reduction of body temperature to levels below 35°C from environmental exposure, metabolic disorders, or therapeutic intervention. Management of disorders of body temperature should be carried out decisively and expeditiously, in order to avoid secondary neurologic injury. © 2014 Elsevier B.V. All rights reserved.

  8. The relationship between body and ambient temperature and corneal temperature

    DEFF Research Database (Denmark)

    Kessel, Line; Johnson, Leif; Arvidsson, Henrik Sven

    2010-01-01

    Exposure to elevated ambient temperatures has been mentioned as a risk factor for common eye diseases, primarily presbyopia and cataract. The aim of the present study was to examine the relationship among ambient, cornea, and body core temperature.......Exposure to elevated ambient temperatures has been mentioned as a risk factor for common eye diseases, primarily presbyopia and cataract. The aim of the present study was to examine the relationship among ambient, cornea, and body core temperature....

  9. The relationship between body and ambient temperature and corneal temperature

    DEFF Research Database (Denmark)

    Kessel, Line; Johnson, Leif; Arvidsson, Henrik Sven

    2010-01-01

    Exposure to elevated ambient temperatures has been mentioned as a risk factor for common eye diseases, primarily presbyopia and cataract. The aim of the present study was to examine the relationship among ambient, cornea, and body core temperature.......Exposure to elevated ambient temperatures has been mentioned as a risk factor for common eye diseases, primarily presbyopia and cataract. The aim of the present study was to examine the relationship among ambient, cornea, and body core temperature....

  10. The Effects of Cardiovascular Fitness and Body Composition on Maximal Core Temperature in Collegiate Football Players During Pre-season.

    Science.gov (United States)

    McClelland, JoAnna M; Godek, Sandra Fowkes; Chlad, Pamela S; Feairheller, Deborah L; Morrison, Katherine E

    2017-07-14

    This study evaluated the effects of BMI and aerobic fitness (VO2max) on maximal core temperature values (Tcmax) in 17 NCAA Division III football players during pre-season. The subjects included nine backs (BKs) and eight linemen (LM). VO2max testing was performed one week prior to pre-season. Core temperature was monitored via ingestible sensor every 10 min during practices on day 4(D1), day 5(D2), day 7(D3), and post-acclimatization on day 14(D4). Wet bulb globe temperature (WBGT) was recorded on each collection day. Independent, paired t-tests and Pearson's correlations were performed (α=0.05). There were no significant correlations between VO2max and Tcmax on D1 (WBGT=29.07°C) or D2 (WBGT=30.93°C), but on D3 (WBGT=31.39 °C) there was a non-significant moderate negative correlation (r=-0.564, P=0.090). There were no significant correlations between BMI and Tcmax on D1or D2, but on D3 there was a non-significant moderate positive correlation (r=0.596, P=0.069). Paired t-tests revealed that overall Tcmax (D1-3) (38.56±0.32°C) was statistically higher (P=0.002) than D4 (38.16±0.30 °C). Independent t-tests between groups showed the Tcmax values during pre-acclimatization (D1-D3) were significantly higher in LM (38.50±0.37°C) than BKs (38.16±0.35°C) (P=0.007). VO2max was significantly lower (P=0.006) in LM [36.89±6.40 ml/kg•min] than BKs [47.44±7.09 ml/kg•min] and BMI was significantly higher (P=0.019) in LM (35.59±4.00 kg/m) than BKs (28.68±3.38 kg/m). The results of this study demonstrate that LM are significantly less fit than BKs and have a greater BMI. When WBGT was the highest on D3, the results suggest that those with lower VO2max and higher BMI experienced a higher Tcmax.

  11. Body Temperature and Mood

    Institute of Scientific and Technical Information of China (English)

    李冬

    2007-01-01

    Body temperature can affect how happy or unhappy we are when we wake up in the morning.During a day,our body temperature rises and falls at regular times.Although we don’t notice the change,it does affect our sleeping patterns.We grow tired and,in the end,we sleep.As a result,anyone who has a fast-rising temperature cycle is a"morning person"and can get out of bed quickly.And an"evening person", on the other hand,has a body temperature that rises slowly.It doesn’t reach its high point until mid-afternoon,when this person feels best.

  12. Respiratory failure and spontaneous hypoglycemia during noninvasive rewarming from 24.7°C (76.5°F) core body temperature after prolonged avalanche burial.

    Science.gov (United States)

    Strapazzon, Giacomo; Nardin, Michele; Zanon, Peter; Kaufmann, Marc; Kritzinger, Meinhard; Brugger, Hermann

    2012-08-01

    Clinical reports on management and rewarming complications after prolonged avalanche burial are not common. We present a case of an unreported combination of respiratory failure and unexpected spontaneous hypoglycemia during noninvasive rewarming from severe hypothermia. We collected anecdotal observations in a 42-year-old, previously healthy, male backcountry skier admitted to the ICU at a tertiary care center after 2 hours 7 minutes of complete avalanche burial, who presented with a patent airway and a core body temperature of 25.0°C (77.0°F) on extrication. There was no decrease in core body temperature during transport (from 25.0°C [77.0°F] to 24.7°C [76.5°F]). Atrial fibrillation occurred during active noninvasive external rewarming (to 37.0°C [98.6°F] during 5 hours), followed by pulmonary edema and respiratory failure (SaO(2) 73% and PaO(2)/FIO(2) 161 mm Hg), which resolved with endotracheal intubation and continuous positive end-respiratory pressure. Moreover, a marked spontaneous glycemic imbalance (from 22.2 to 1.4 mmol/L) was observed. Despite a possible favorable outcome, clinicians should be prepared to identify and treat severe respiratory problems and spontaneous hypoglycemia during noninvasive rewarming of severely hypothermic avalanche victims.

  13. The recommended Threshold Limit Values for heat exposure fail to maintain body core temperature within safe limits in older working adults.

    Science.gov (United States)

    Lamarche, Dallon T; Meade, Robert D; D'Souza, Andrew W; Flouris, Andreas D; Hardcastle, Stephen G; Sigal, Ronald J; Boulay, Pierre; Kenny, Glen P

    2017-09-01

    The American Conference of Governmental and Industrial Hygienists (ACGIH®) Threshold Limit Values (TLV® guidelines) for work in the heat consist of work-rest (WR) allocations designed to ensure a stable core temperature that does not exceed 38°C. However, the TLV® guidelines have not been validated in older workers. This is an important shortcoming given that adults as young as 40 years demonstrate impairments in their ability to dissipate heat. We therefore evaluated body temperature responses in older adults during work performed in accordance to the TLV® recommended guidelines. On three occasions, 9 healthy older (58 ± 5 years) males performed a 120-min work-simulated protocol in accordance with the TLV® guidelines for moderate-to-heavy intensity work (360 W fixed rate of heat production) in different wet-bulb globe temperatures (WBGT). The first was 120 min of continuous (CON) cycling at 28.0°C WBGT (CON[28°C]). The other two protocols were 15-min intermittent work bouts performed with different WR cycles and WBGT: (i) WR of 3:1 at 29.0°C (WR3:1[29°C]) and (ii) WR of 1:1 at 30.0°C (WR1:1[30°C]). Rectal temperature was measured continuously. The rate of change in mean body temperature was determined via thermometry (weighting coefficients: rectal, 0.9; mean skin temperature, 0.1) and direct calorimetry. Rectal temperature exceeded 38°C in all participants in CON[28°C] and WR3:1[29°C] whereas a statistically similar proportion of workers exceeded 38°C in WR1:1[30°C] (χ(2); P = 0.32). The average time for rectal temperature to reach 38°C was: CON[28°C], 53 ± 7; WR3:1[29°C], 79 ± 11; and WR1:1[30°C], 100 ± 29 min. Finally, while a stable mean body temperature was not achieved in any work condition as measured by thermometry (i.e., >0°C·min(-1); all Pheat balance as determined by direct calorimetry was achieved in WR3:1[29°C] and WR1:1[30°C] (both P ≥ 0.08). Our findings indicate that the TLV® guidelines do not prevent body core

  14. Portable Body Temperature Conditioner

    Science.gov (United States)

    2014-12-01

    of Vendors & Contract Facilities SOP  Internal Audits SOP  Laboratory Notebook Entry & Review Guide SOP  Significant Figures and Rounding SOP...Investigating Out of Specifications (OOS) Test Results SOP  Personal Hygiene SOP  Central Documentation SOP  Equipment Validation Procedure SOP...core temperature in hyperthermia subjects. Medicine and Science in Sports and Exercise 2009 March; 1984-1990. 13. Tsuei BJ, Kearney PA

  15. Effect of core body temperature, time of day, and climate conditions on behavioral patterns of lactating dairy cows experiencing mild to moderate heat stress.

    Science.gov (United States)

    Allen, J D; Hall, L W; Collier, R J; Smith, J F

    2015-01-01

    Cattle show several responses to heat load, including spending more time standing. Little is known about what benefit this may provide for the animals. Data from 3 separate cooling management trials were analyzed to investigate the relationship between behavioral patterns in lactating dairy cows experiencing mild to moderate heat stress and their body temperature. Cows (n=157) were each fitted with a leg data logger that measured position and an intravaginal data logger that measures core body temperature (CBT). Ambient conditions were also collected. All data were standardized to 5-min intervals, and information was divided into several categories: when standing and lying bouts were initiated and the continuance of each bout (7,963 lying and 6,276 standing bouts). In one location, cows were continuously subjected to heat-stress levels according to temperature-humidity index (THI) range (THI≥72). The THI range for the other 2 locations was below and above a heat-stress threshold of 72 THI. Overall and regardless of period of day, cows stood up at greater CBT compared with continuing to stand or switching to a lying position. In contrast, cows lay down at lower CBT compared with continuing to lie or switching to a standing position, and lying bouts lasted longer when cows had lower CBT. Standing bouts also lasted longer when cattle had greater CBT, and they were less likely to lie down (less than 50% of lying bouts initiated) when their body temperature was over 38.8°C. Also, cow standing behavior was affected once THI reached 68. Increasing CBT decreased lying duration and increased standing duration. A CBT of 38.93°C marked a 50% likelihood a cow would be standing. This is the first physiological evidence that standing may help cool cows and provides insight into a communally observed behavioral response to heat.

  16. Repeated sensory contact with aggressive mice rapidly leads to an anticipatory increase in core body temperature and physical activity that precedes the onset of aversive responding.

    Science.gov (United States)

    Pardon, Marie-Christine; Kendall, David A; Pérez-Diaz, Fernando; Duxon, Mark S; Marsden, Charles A

    2004-08-01

    The present study investigated whether the 'psychological threat' induced by sensory contact with an aggressive conspecific would be a sufficient factor in inducing behavioural and physiological disturbances. Repeated sensory contact with an aggressive mouse (social threat) in a partitioned cage was compared with repeated exposure to a novel partitioned cage in male NMRI mice. We first examined parameters of stress responsiveness (body weight, plasma corticosterone levels, frequency of self-grooming and defecation). The temperature and physical activity responses to stress were also recorded during and after the 4 weeks of stress using radiotelemetry. Finally, cognitivo-emotional performance was assessed after acute stress and 2 and 4 weeks of stress by measuring decision making, sequential alternation performance and behaviour in the elevated T-maze. Social threat had a greater impact than novel cage exposure on most parameters of stress responsiveness, although mice did not habituate to either stressor. Social threat rapidly led to an anticipatory rise in core body temperature and physical activity before the scheduled stress sessions. Such anticipation developed within the first week and persisted for 9 days after ending the stress procedure. Some memory impairment in the sequential alternation test was found in stressed mice, independent of the stressor. After 4 weeks of stress, inhibitory avoidance in the elevated T-maze was enhanced in socially stressed mice and reduced in novel cage mice. The sustained anticipation of stress in the social threat group preceded aversive responding. It remains to be established whether anticipation contributes to the development of aversive responses.

  17. Implantation of radiotelemetry transmitters yielding data on ECG, heart rate, core body temperature and activity in free-moving laboratory mice.

    Science.gov (United States)

    Cesarovic, Nikola; Jirkof, Paulin; Rettich, Andreas; Arras, Margarete

    2011-11-21

    The laboratory mouse is the animal species of choice for most biomedical research, in both the academic sphere and the pharmaceutical industry. Mice are a manageable size and relatively easy to house. These factors, together with the availability of a wealth of spontaneous and experimentally induced mutants, make laboratory mice ideally suited to a wide variety of research areas. In cardiovascular, pharmacological and toxicological research, accurate measurement of parameters relating to the circulatory system of laboratory animals is often required. Determination of heart rate, heart rate variability, and duration of PQ and QT intervals are based on electrocardiogram (ECG) recordings. However, obtaining reliable ECG curves as well as physiological data such as core body temperature in mice can be difficult using conventional measurement techniques, which require connecting sensors and lead wires to a restrained, tethered, or even anaesthetized animal. Data obtained in this fashion must be interpreted with caution, as it is well known that restraining and anesthesia can have a major artifactual influence on physiological parameters. Radiotelemetry enables data to be collected from conscious and untethered animals. Measurements can be conducted even in freely moving animals, and without requiring the investigator to be in the proximity of the animal. Thus, known sources of artifacts are avoided, and accurate and reliable measurements are assured. This methodology also reduces interanimal variability, thus reducing the number of animals used, rendering this technology the most humane method of monitoring physiological parameters in laboratory animals. Constant advancements in data acquisition technology and implant miniaturization mean that it is now possible to record physiological parameters and locomotor activity continuously and in realtime over longer periods such as hours, days or even weeks. Here, we describe a surgical technique for implantation of a

  18. Hypoxia-induced changes in recovery sleep, core body temperature, urinary 6-sulphatoxymelatonin and free cortisol after a simulated long-duration flight.

    Science.gov (United States)

    Coste, Olivier; Van Beers, Pascal; Touitou, Yvan

    2009-12-01

    Fatigue and sleep disorders often occur after long-haul flights, even when no time zones are crossed. In this controlled study, we assessed the effects of two levels of hypoxia (at 8000 ft and 12 000 ft) on recovery sleep. Core body temperature (CBT), a circadian marker, urinary 6-sulphatoxymelatonin and free cortisol were studied in 20 young healthy male volunteers exposed for 8 h (08:00-16:00 hours) in a hypobaric chamber to a simulated cabin altitude of 8000 ft and, 4 weeks later, 12 000 ft. Each subject served as his own control. Sleep was recorded by polysomnography for three consecutive nights for each exposure. CBT was monitored by telemetry during the three 24-h cycles (control, hypoxic exposure and recovery). Free urinary cortisol and 6-sulphatoxymelatonin levels were assayed twice daily between 08:00 and 20:00 hours (day) and between 20:00 and 08:00 hours (night). We showed significant changes in circadian patterns of CBT at both altitudes, suggesting a phase delay, and changes in recovery sleep but only at 12 000 ft. We observed an increase in sleep onset latency which correlated positively with the increase in CBT levels during the first recovery night and a decrease in the duration of stage N(2) (formerly S(2)), which correlated negatively with the mid-range crossing time, a reliable phase marker of CBT rhythm. This study shows clearly the impact of hypobaric hypoxia on circadian time structure during air flights leading to a phase delay of CBT, independent of jet lag and consequences on sleep during recovery.

  19. Dinosaur fossils predict body temperatures.

    Directory of Open Access Journals (Sweden)

    James F Gillooly

    2006-07-01

    Full Text Available Perhaps the greatest mystery surrounding dinosaurs concerns whether they were endotherms, ectotherms, or some unique intermediate form. Here we present a model that yields estimates of dinosaur body temperature based on ontogenetic growth trajectories obtained from fossil bones. The model predicts that dinosaur body temperatures increased with body mass from approximately 25 degrees C at 12 kg to approximately 41 degrees C at 13,000 kg. The model also successfully predicts observed increases in body temperature with body mass for extant crocodiles. These results provide direct evidence that dinosaurs were reptiles that exhibited inertial homeothermy.

  20. Rapid phase adjustment of melatonin and core body temperature rhythms following a 6-h advance of the light/dark cycle in the horse

    Directory of Open Access Journals (Sweden)

    Kennedy Erin L

    2007-08-01

    Full Text Available Abstract Background Rapid displacement across multiple time zones results in a conflict between the new cycle of light and dark and the previously entrained program of the internal circadian clock, a phenomenon known as jet lag. In humans, jet lag is often characterized by malaise, appetite loss, fatigue, disturbed sleep and performance deficit, the consequences of which are of particular concern to athletes hoping to perform optimally at an international destination. As a species renowned for its capacity for athletic performance, the consequences of jet lag are also relevant for the horse. However, the duration and severity of jet lag related circadian disruption is presently unknown in this species. We investigated the rates of re-entrainment of serum melatonin and core body temperature (BT rhythms following an abrupt 6-h phase advance of the LD cycle in the horse. Methods Six healthy, 2 yr old mares entrained to a 12 h light/12 h dark (LD 12:12 natural photoperiod were housed in a light-proofed barn under a lighting schedule that mimicked the external LD cycle. Following baseline sampling on Day 0, an advance shift of the LD cycle was accomplished by ending the subsequent dark period 6 h early. Blood sampling for serum melatonin analysis and BT readings were taken at 3-h intervals for 24 h on alternate days for 11 days. Disturbances to the subsequent melatonin and BT 24-h rhythms were assessed using repeated measures ANOVA and analysis of Cosine curve fitting parameters. Results We demonstrate that the equine melatonin rhythm re-entrains rapidly to a 6-h phase advance of an LD12:12 photocycle. The phase shift in melatonin was fully complete on the first day of the new schedule and rhythm phase and waveform were stable thereafter. In comparison, the advance in the BT rhythm was achieved by the third day, however BT rhythm waveform, especially its mesor, was altered for many days following the LD shift. Conclusion Aside from the temperature

  1. The timing of the human circadian clock is accurately represented by the core body temperature rhythm following phase shifts to a three-cycle light stimulus near the critical zone

    Science.gov (United States)

    Jewett, M. E.; Duffy, J. F.; Czeisler, C. A.

    2000-01-01

    A double-stimulus experiment was conducted to evaluate the phase of the underlying circadian clock following light-induced phase shifts of the human circadian system. Circadian phase was assayed by constant routine from the rhythm in core body temperature before and after a three-cycle bright-light stimulus applied near the estimated minimum of the core body temperature rhythm. An identical, consecutive three-cycle light stimulus was then applied, and phase was reassessed. Phase shifts to these consecutive stimuli were no different from those obtained in a previous study following light stimuli applied under steady-state conditions over a range of circadian phases similar to those at which the consecutive stimuli were applied. These data suggest that circadian phase shifts of the core body temperature rhythm in response to a three-cycle stimulus occur within 24 h following the end of the 3-day light stimulus and that this poststimulus temperature rhythm accurately reflects the timing of the underlying circadian clock.

  2. Body temperatures of selected amphibian and reptile species.

    Science.gov (United States)

    Raske, Matthew; Lewbart, Gregory A; Dombrowski, Daniel S; Hale, Peyton; Correa, Maria; Christian, Larry S

    2012-09-01

    Ectothermic vertebrates are a diverse group of animals that rely on external sources to maintain a preferred body temperature. Amphibians and reptiles have a preferred optimal temperature zone that allows for optimal biological function. Physiologic processes in ectotherms are influenced by temperature; these animals have capabilities in which they make use of behavioral and physiologic mechanisms to thermoregulate. Core body, ambient air, body surface, and surface/water temperatures were obtained from six ectothermic species including one anuran, two snakes, two turtles, and one alligator. Clinically significant differences between core body temperature and ambient temperature were noted in the black rat snake, corn snake, and eastern box turtle. No significant differences were found between core body and ambient temperature for the American alligator, bullfrog, mata mata turtle, dead spotted turtle, or dead mole king snake. This study indicates some ectotherms are able to regulate their body temperatures independent of their environment. Body temperature of ectotherms is an important component that clinicians should consider when selecting and providing therapeutic care. Investigation of basic physiologic parameters (heart rate, respiratory rate, and body temperature) from a diverse population of healthy ectothermic vertebrates may provide baseline data for a systematic health care approach.

  3. [Circadian rhythms in body temperature and sleep].

    Science.gov (United States)

    Honma, Ken-ichi

    2013-12-01

    A 24 hour variation of core body temperature in humans is primarily regulated by the endogenous circadian pacemaker located in the suprachiasmatic nucleus. And the expression of circadian rhythm is modified by the thermoregulatory mechanism controlling heat production and heat loss, which also show circadian rhythms. On the other hand, circadian rhythms in sleep-wakefulness are expressed by two independent but mutually coupled oscillators, the circadian pacemaker and the oscillator specific to sleep-wakefulness. However, neither the mechanism nor the site of oscillation of the latter is known. The time cues for these two oscillators are different. They are usually but frequently uncoupled under free-running conditions. Body temperature and sleep-wakefulness influence the counterpart in various extents, exerting masking effects on either circadian rhythm.

  4. Crystallization in Earth's Core after High-Temperature Core Formation

    Science.gov (United States)

    Hirose, K.; Morard, G.; Hernlund, J. W.; Helffrich, G. R.; Ozawa, H.

    2015-12-01

    Recent core formation models based on the metal-silicate partitioning of siderophile elements suggest that the Earth's core was formed by metal segregation at high pressure and high temperature in a deep magma ocean. It is also thought that the simultaneous solubility of silicon and oxygen in liquid iron are strongly enhanced at high pressure and high temperature, such that at the end of accretion the core was rich in both silicon and oxygen. Here we performed crystallization experiments on the Fe-Si binary and Fe-Si-O ternary systems up to core pressure in a laser-heated diamond-anvil cell. The starting material for the latter was a homogeneous mixture of fine-grain Fe-Si and SiO2 (sustain without extreme degrees of secular cooling. However, even for modest degrees of joint Si-O incorporation into the early core, the buoyancy released by crystallization of SiO2 is sufficient to overcome thermal stratification and sustain the geodynamo.

  5. [Measurement and management of body temperature].

    Science.gov (United States)

    Iwashita, Hironobu; Matsukawa, Takashi

    2012-01-01

    Body temperature regulation is at the basis of life maintenance and for humans to maintain the central body temperature within the range of 37 +/- 0.2 degrees Celsius. In the case of anesthesia, a patient would have a high possibility of lower body temperature and also could have more complications with low body temperature. In addition, it would generate more complications and extend a period of hospitalization. For that reason, anesthetists must pay full attention to body temperature management during surgery. Measurement for central body temperature is necessary as a monitor for body temperature measurement and the measurement for nasopharyngeal temperature, tympanic temperature, and lung artery temperature is effective for this purpose. Therapeutic hypothermia for brain injury is receiving attention recently as a preventive method for brain disorder and the method is utilized in hospital facilities. In future, it is expected to attain the most suitable treatment method by clinical studies on low body temperature.

  6. Body Temperature Measurements for Metabolic Phenotyping in Mice.

    Science.gov (United States)

    Meyer, Carola W; Ootsuka, Youichirou; Romanovsky, Andrej A

    2017-01-01

    Key Points Rectal probing is subject to procedural bias. This method is suitable for first-line phenotyping, provided probe depth and measurement duration are standardized. It is also useful for detecting individuals with out-of-range body temperatures (during hypothermia, torpor).The colonic temperature attained by inserting the probe >2 cm deep is a measure of deep (core) body temperature.IR imaging of the skin is useful for detecting heat leaks and autonomous thermoregulatory alterations, but it does not measure body temperature.Temperature of the hairy or shaved skin covering the inter-scapular brown adipose tissue can be used as a measure of BAT thermogenesis. However, obtaining such measurements of sufficient quality is very difficult, and interpreting them can be tricky. Temperature differences between the inter-scapular and lumbar areas can be a better measure of the thermogenic activity of inter-scapular brown adipose tissue.Implanted probes for precise determination of BAT temperature (changes) should be fixed close to the Sulzer's vein. For measurement of BAT thermogenesis, core body temperature and BAT temperature should be recorded simultaneously.Tail temperature is suitable to compare the presence or absence of vasoconstriction or vasodilation.Continuous, longitudinal monitoring of core body temperature is preferred over single probing, as the readings are taken in a non-invasive, physiological context.Combining core body temperature measurements with metabolic rate measurements yields insights into the interplay between heat production and heat loss (thermal conductance), potentially revealing novel thermoregulatory phenotypes. Endothermic organisms rely on tightly balanced energy budgets to maintain a regulated body temperature and body mass. Metabolic phenotyping of mice, therefore, often includes the recording of body temperature. Thermometry in mice is conducted at various sites, using various devices and measurement practices, ranging from

  7. Coping with heat: function of the natal coat of cape fur seal (Arctocephalus Pusillus Pusillus pups in maintaining core body temperature.

    Directory of Open Access Journals (Sweden)

    Nicola Erdsack

    Full Text Available Cape fur seal (Arctocephalus pusillus pups spend the first weeks of life exclusively or mainly ashore. They are exposed to intense solar radiation and high temperatures for long time periods, which results in temperatures up to at least 80°C on their black natal coat. To test the hypothesis that the natal coat has a crucial function in coping with these extreme conditions, we investigated the insulating properties of the natal coat in six captive newborn Cape fur seals during the first 50 days after birth. The natal fur differs from the adult fur not only in colour, but also in density, structure, and water repellence. We measured temperature on the fur surface and within the fur, as well as skin and rectal temperature under varying environmental conditions, comparable to the species' habitat. Experiments were designed to not influence the spontaneous behaviour of the pups. Rectal temperature was constant as long as the pups stayed dry, even during long-lasting intense solar radiation for up to 3 h. Skin temperature remained close to rectal temperature as long as the fur was dry, while with wet fur, skin temperature was significantly reduced as well. Our results show that the natal coat provides an effective insulation against overheating. The severely reduced insulation of wet natal fur against cold supports the assumption that the natal fur is an adaptation to the pups' terrestrial phase of life.

  8. Water turnover and core temperature on Mount Rainier.

    Science.gov (United States)

    Hailes, Walter S; Cuddy, John S; Slivka, Dustin S; Hansen, Kent; Ruby, Brent C

    2012-09-01

    Hydration is an important logistical consideration for persons performing in austere environments because water demands must be balanced with the burden of carrying water. Seven novice climbers participated in a study to determine the hydration kinetics and core temperatures associated with a successful summit of Mount Rainier. Ingestible radio-equipped thermometer capsules were swallowed to monitor core temperature, and an oral dose of deuterium (0.12 ± 0.02 g·kg⁻¹ body weight) was administered to determine hydration kinetics. Mean core temperature throughout the 5.5-hour climb to Camp Muir (3000 m) was 37.6 ± 0.3°C. Water turnover was 95.0 ± 17.5 mL·kg⁻¹·24 h⁻¹ over the duration of the 43-hour study. There was a trend for reduced body mass from before (75.9 ± 13.0 kg) to after (74.8 ± 12.5 kg) the climb (P = .06), and urine specific gravity increased from before (1.013 ± 0.002) to after (1.022 ± 0.006) the climb (P = .004). Hydration demands of climbing Mount Rainier are highly elevated despite modest fluctuations in core temperature. Participants experienced hypohydration but were able to maintain sufficient hydration to successfully summit Mount Rainier and return home safely. Copyright © 2012 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  9. Implantable microchip transponders for body temperature measurements in pigs

    DEFF Research Database (Denmark)

    Lohse, Louise; Uttenthal, Åse; Enøe, Claes

    Objective Body temperature is a simple, but clinically important parameter in monitoring the health status of pigs, both at individual level and herd level. The standard procedure for obtaining such data is normally performed by recording of the core body temperature, using a rectal digital...... with CSFV, as determined by virus detection. So, the transponder system was tested in both clinically healthy and clinically ill pigs with physiologically normal body temperature or fever, respectively. The data obtained in this study, showed a correlation between the two methods for monitoring body...... body temperature was tested, in order to evaluate the utility and reliability of this tool, in domestic pigs. The system is presently used and well optimized in small laboratory animals [1, 2]. We tested the microchip transponders during experimental infection of pigs with classical swine fever virus...

  10. Ferromagnetic vortex core switching at elevated temperatures

    Science.gov (United States)

    Lebecki, Kristof M.; Nowak, Ulrich

    2014-01-01

    An approach for the investigation of vortex core switching is presented. Thermal effects up to the Curie point are included in a micromagnetic framework based on the recently developed Landau-Lifshitz-Bloch equation. In this approach it is easier to avoid numerical discretization artifacts, commonly present when a Bloch point is mediating the switching process. Switching in thin circular permalloy disks caused by the application of a slowly increasing magnetic field oriented orthogonally to the disk is considered. An energy barrier which can be overcome by thermal fluctuations is taken into account, leading to a strong influence of the temperature on the switching field. In particular, the switching field goes to zero at a significantly smaller temperature than the Curie temperature. The deduced nucleation volume is smaller than the typical grain size in permalloy.

  11. Body temperature stability achieved by the large body mass of sea turtles.

    Science.gov (United States)

    Sato, Katsufumi

    2014-10-15

    To investigate the thermal characteristics of large reptiles living in water, temperature data were continuously recorded from 16 free-ranging loggerhead turtles, Caretta caretta, during internesting periods using data loggers. Core body temperatures were 0.7-1.7°C higher than ambient water temperatures and were kept relatively constant. Unsteady numerical simulations using a spherical thermodynamic model provided mechanistic explanations for these phenomena, and the body temperature responses to fluctuating water temperature can be simply explained by a large body mass with a constant thermal diffusivity and a heat production rate rather than physiological thermoregulation. By contrast, body temperatures increased 2.6-5.1°C in 107-152 min during their emergences to nest on land. The estimated heat production rates on land were 7.4-10.5 times the calculated values in the sea. The theoretical prediction that temperature difference between body and water temperatures would increase according to the body size was confirmed by empirical data recorded from several species of sea turtles. Comparing previously reported data, the internesting intervals of leatherback, green and loggerhead turtles were shorter when the body temperatures were higher. Sea turtles seem to benefit from a passive thermoregulatory strategy, which depends primarily on the physical attributes of their large body masses.

  12. Validation of temperature-sensitive radio transmitters for measurement of body temperature in small animals

    NARCIS (Netherlands)

    Williams, Joseph B.; Tieleman, B. I.; Shobrak, Mohammed

    2009-01-01

    As part of a study on the core body temperature (T(b)) of desert birds, we purposed to use temperature-sensitive implantable radio transmitters. Because of the difficulty in recapturing these birds, we needed to know if these electronic devices held their calibration over the duration of normal batt

  13. Comparison between core temperatures measured telemetrically using the CorTemp® ingestible temperature sensor and rectal temperature in healthy Labrador retrievers.

    Science.gov (United States)

    Osinchuk, Stephanie; Taylor, Susan M; Shmon, Cindy L; Pharr, John; Campbell, John

    2014-10-01

    This study evaluated the CorTemp(®) ingestible telemetric core body temperature sensor in dogs, to establish the relationship between rectal temperature and telemetrically measured core body temperature at rest and during exercise, and to examine the effect of sensor location in the gastrointestinal (GI) tract on measured core temperature. CorTemp(®) sensors were administered orally to fasted Labrador retriever dogs and radiographs were taken to document sensor location. Core and rectal temperatures were monitored throughout the day in 6 resting dogs and during a 10-minute strenuous retrieving exercise in 6 dogs. Time required for the sensor to leave the stomach (120 to 610 min) was variable. Measured core temperature was consistently higher than rectal temperature across all GI locations but temperature differences based on GI location were not significant (P = 0.5218). Resting dogs had a core temperature that was on average 0.4°C above their rectal temperature with 95% limits of agreement (LoA) between 1.2°C and -0.5°C. Core temperature in exercising dogs was on average 0.3°C higher than their concurrent rectal temperature, with LoA of +1.6°C and -1.1°C.

  14. Evaluation of Ceramic Honeycomb Core Compression Behavior at Room Temperature

    Science.gov (United States)

    Bird, Richard K.; Lapointe, Thomas S.

    2013-01-01

    Room temperature flatwise compression tests were conducted on two varieties of ceramic honeycomb core specimens that have potential for high-temperature structural applications. One set of specimens was fabricated using strips of a commercially-available thin-gage "ceramic paper" sheet molded into a hexagonal core configuration. The other set was fabricated by machining honeycomb core directly from a commercially available rigid insulation tile material. This paper summarizes the results from these tests.

  15. Stability of body-centered cubic iron-magnesium alloys in the Earth's inner core.

    Science.gov (United States)

    Kádas, Krisztina; Vitos, Levente; Johansson, Börje; Ahuja, Rajeev

    2009-09-15

    The composition and the structure of the Earth's solid inner core are still unknown. Iron is accepted to be the main component of the core. Lately, the body-centered cubic (bcc) phase of iron was suggested to be present in the inner core, although its stability at core conditions is still in discussion. The higher density of pure iron compared with that of the Earth's core indicates the presence of light element(s) in this region, which could be responsible for the stability of the bcc phase. However, so far, none of the proposed composition models were in full agreement with seismic observations. The solubility of magnesium in hexagonal Fe has been found to increase significantly with increasing pressure, suggesting that Mg can also be an important element in the core. Here, we report a first-principles density functional study of bcc Fe-Mg alloys at core pressures and temperatures. We show that at core conditions, 5-10 atomic percent Mg stabilizes the bcc Fe both dynamically and thermodynamically. Our calculated density, elastic moduli, and sound velocities of bcc Fe-Mg alloys are consistent with those obtained from seismology, indicating that the bcc-structured Fe-Mg alloy is a possible model for the Earth's inner core.

  16. Hanford coring bit temperature monitor development testing results report

    Energy Technology Data Exchange (ETDEWEB)

    Rey, D.

    1995-05-01

    Instrumentation which directly monitors the temperature of a coring bit used to retrieve core samples of high level nuclear waste stored in tanks at Hanford was developed at Sandia National Laboratories. Monitoring the temperature of the coring bit is desired to enhance the safety of the coring operations. A unique application of mature technologies was used to accomplish the measurement. This report documents the results of development testing performed at Sandia to assure the instrumentation will withstand the severe environments present in the waste tanks.

  17. The gradient heat stress impact on the convalescent core body temperature and prognosis in heatstroke rats%梯度热应激对大鼠核心体温调节及预后的影响

    Institute of Scientific and Technical Information of China (English)

    付炜; 刘亚楠; 耿焱; 彭娜; 雷玉梅; 苏磊; 唐忠志

    2014-01-01

    目的:构建梯度热应激大鼠模型,探讨不同程度热应激对大鼠核心体温(Tc)调节以及预后的影响。方法雄性SPF级SD大鼠随机分为正常对照组、41℃组、42℃组、43℃组、44℃组。除正常对照组置于室温环境下外,其余各组大鼠于39℃进行热打击,直肠热电偶测量直肠温度,代表Tc。监测各组大鼠Tc 的变化,频率为10 min/次。41℃、42℃、43℃、44℃组分别达到对应的预设温度41、42、43、44℃时取出大鼠,将大鼠放入环境温度25℃的室温环境下,恢复自由进食、水,并继续监测8 h内Tc 变化,观察72 h内大鼠的生存情况。结果随热应激的程度不同,大鼠T c 呈现不同的特征性改变。热应激期间,41℃和42℃组大鼠表现为双相式T c 上升,而43℃和44℃组大鼠表现为三相式Tc上升。脱离热应激后,41℃和42℃组大鼠Tc 在1 h内恢复正常水平,而43℃和44℃组均出现低Tc ,以44℃组为明显。41℃和42℃组大鼠72 h内未出现死亡,43℃和44℃组出现不同比例的大鼠死亡,生存分析显示,44℃组大鼠预后显著差于43℃组大鼠( P<0.01)。结论不同程度热应激对于大鼠Tc 调节特征有显著影响,热应激程度越高,恢复期低Tc 程度越深,预后越差。%Objective To construct the gradient heat stress rat model and thus to study its influence on core body temperature ( Tc ) during heat stress and prognosis .Methods Male SPF SD rats were randomly divided into normal con-trol group, 41℃group, the 42℃group, 43℃group and 44℃group.Except for normal control group , the rats were ex-posed 39℃heat stress .The rectal thermocouple was used to measure rectal temperature as Tc , which was monitored every 10 min.When the corresponding preset temperatures were reached , the rats in the 41℃, 42℃, 43℃ and 44℃ groups were placed in ambient temperature of 25℃.The Tc was monitored within 8 h, and

  18. Temperature effect on vortex-core reversals in magnetic nanodots

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bosung; Yoo, Myoung-Woo; Lee, Jehyun; Kim, Sang-Koog, E-mail: sangkoog@snu.ac.kr [Department of Materials Science and Engineering, National Creative Research Initiative Center for Spin Dynamics and Spin-Wave Devices, Nanospinics Laboratory, Research Institute of Advanced Materials, Seoul National University, Seoul 151-744 (Korea, Republic of)

    2015-05-07

    We studied the temperature effect on vortex-core reversals in soft magnetic nanodots by micromagnetic numerical calculations within a framework of the stochastic Landau-Lifshitz-Gilbert scheme. It was determined that vortex-core-switching events at non-zero temperatures occur stochastically, and that the threshold field strength increases with temperature for a given field frequency. The mechanism of core reversals at elevated temperatures is the same as that of vortex-antivortex-pair-mediated core reversals found at the zero temperature. The reversal criterion is also the out-of-plane component of a magnetization dip that should reach −p, which is to say, m{sub z,dip} = −p, where p is the original polarization, p = +1 (−1), for the upward (downward) core. By this criterion, the creation of a vortex-antivortex pair accompanies complete vortex-antivortex-annihilation-mediated core reversals, resulting in the maximum excess of the exchange energy density, ΔE{sub ex}{sup cri} ≈ 15.4 ± 0.2 mJ/cm{sup 3}. This work provides the underlying physics of vortex-core reversals at non-zero temperatures, and potentiates the real application of vortex random access memory operating at elevated temperatures.

  19. Body temperatures in dinosaurs: what can growth curves tell us?

    Science.gov (United States)

    Griebeler, Eva Maria

    2013-01-01

    To estimate the body temperature (BT) of seven dinosaurs Gillooly, Alleen, and Charnov (2006) used an equation that predicts BT from the body mass and maximum growth rate (MGR) with the latter preserved in ontogenetic growth trajectories (BT-equation). The results of these authors evidence inertial homeothermy in Dinosauria and suggest that, due to overheating, the maximum body size in Dinosauria was ultimately limited by BT. In this paper, I revisit this hypothesis of Gillooly, Alleen, and Charnov (2006). I first studied whether BTs derived from the BT-equation of today's crocodiles, birds and mammals are consistent with core temperatures of animals. Second, I applied the BT-equation to a larger number of dinosaurs than Gillooly, Alleen, and Charnov (2006) did. In particular, I estimated BT of Archaeopteryx (from two MGRs), ornithischians (two), theropods (three), prosauropods (three), and sauropods (nine). For extant species, the BT value estimated from the BT-equation was a poor estimate of an animal's core temperature. For birds, BT was always strongly overestimated and for crocodiles underestimated; for mammals the accuracy of BT was moderate. I argue that taxon-specific differences in the scaling of MGR (intercept and exponent of the regression line, log-log-transformed) and in the parameterization of the Arrhenius model both used in the BT-equation as well as ecological and evolutionary adaptations of species cause these inaccuracies. Irrespective of the found inaccuracy of BTs estimated from the BT-equation and contrary to the results of Gillooly, Alleen, and Charnov (2006) I found no increase in BT with increasing body mass across all dinosaurs (Sauropodomorpha, Sauropoda) studied. This observation questions that, due to overheating, the maximum size in Dinosauria was ultimately limited by BT. However, the general high inaccuracy of dinosaurian BTs derived from the BT-equation makes a reliable test of whether body size in dinosaurs was ultimately limited

  20. Body temperatures in dinosaurs: what can growth curves tell us?

    Directory of Open Access Journals (Sweden)

    Eva Maria Griebeler

    Full Text Available To estimate the body temperature (BT of seven dinosaurs Gillooly, Alleen, and Charnov (2006 used an equation that predicts BT from the body mass and maximum growth rate (MGR with the latter preserved in ontogenetic growth trajectories (BT-equation. The results of these authors evidence inertial homeothermy in Dinosauria and suggest that, due to overheating, the maximum body size in Dinosauria was ultimately limited by BT. In this paper, I revisit this hypothesis of Gillooly, Alleen, and Charnov (2006. I first studied whether BTs derived from the BT-equation of today's crocodiles, birds and mammals are consistent with core temperatures of animals. Second, I applied the BT-equation to a larger number of dinosaurs than Gillooly, Alleen, and Charnov (2006 did. In particular, I estimated BT of Archaeopteryx (from two MGRs, ornithischians (two, theropods (three, prosauropods (three, and sauropods (nine. For extant species, the BT value estimated from the BT-equation was a poor estimate of an animal's core temperature. For birds, BT was always strongly overestimated and for crocodiles underestimated; for mammals the accuracy of BT was moderate. I argue that taxon-specific differences in the scaling of MGR (intercept and exponent of the regression line, log-log-transformed and in the parameterization of the Arrhenius model both used in the BT-equation as well as ecological and evolutionary adaptations of species cause these inaccuracies. Irrespective of the found inaccuracy of BTs estimated from the BT-equation and contrary to the results of Gillooly, Alleen, and Charnov (2006 I found no increase in BT with increasing body mass across all dinosaurs (Sauropodomorpha, Sauropoda studied. This observation questions that, due to overheating, the maximum size in Dinosauria was ultimately limited by BT. However, the general high inaccuracy of dinosaurian BTs derived from the BT-equation makes a reliable test of whether body size in dinosaurs was ultimately

  1. On The Gas Temperature of Molecular Cloud Cores

    CERN Document Server

    Juvela, M

    2011-01-01

    We investigate the uncertainties affecting the temperature profiles of dense cores of interstellar clouds. In regions shielded from external ultraviolet radiation, the problem is reduced to the balance between cosmic ray heating, line cooling, and the coupling between gas and dust. We show that variations in the gas phase abundances, the grain size distribution, and the velocity field can each change the predicted core temperatures by one or two degrees. We emphasize the role of non-local radiative transfer effects that often are not taken into account, for example, when modelling the core chemistry. These include the radiative coupling between regions of different temperature and the enhanced line cooling near the cloud surface. The uncertainty of the temperature profiles does not necessarily translate to a significant error in the column density derived from observations. However, depletion processes are very temperature sensitive and a two degree difference can mean that a given molecule no longer traces t...

  2. [Physical methods used to control body temperature].

    Science.gov (United States)

    Ezquerro Rodríguez, Esther; Montes García, Yolanda; Marín Fernández, Blanca

    2012-10-01

    The physical methods to control body temperature, either to induce hypothermia, or to increase body temperature, can be of two types: physical methods of external heating or cooling and invasive methods that require complex procedures and technology. There are many strategies for the induction of hypothermia, all based on three of the four basic mechanisms of heat transfer, evaporation, convection and conduction. In the hospital environment the external cooling methods or surface (blankets of cold air or water circulation, plates of hydrogel Artic Sun, methods of cooling helmet) are the most widely used for the induction of therapeutic hypothermia. The most non-invasive devices used are blades of hydrogel, which use water conduction high speed between the layers of pads. But there are quicker methods to induce hypothermia; i.e., invasive methods of internal cooling: infusion of intravenous crystalloid; endovascular catheters located in a central vein through which flows saline pumped by a closed circuit; By-pass cardio-pulmonary with extracorporeal circulation; and By-pass percutaneous venous system for continuous hemofiltration. The average physical external heating is based on the patient's ability to produce and retain heat or in the application of heat to the body surface of the patient (hot spring baths with hot water, air blankets, blankets of water). But when the answer to these methods are not sufficient or hypothermia is moderate or severe, other methods of internal heat are suggested: inhalation of oxygen or warm to 40-45 degrees C and wet by facial mask or endotracheal tube; intravenous (IV) infusion with hot solutions; Irrigation of body cavities with warm saline solution to 40-42 degrees C; peritoneal dialysis, haemodialysis and hemofiltration; Continuous reheating arterio-venous or venous-venous; extracorporeal circulation with cardiopulmonary bypass. In this article each of the methods listed above will be described for the induction of hypothermia

  3. Core Physics of Pebble Bed High Temperature Nuclear Reactors

    NARCIS (Netherlands)

    Auwerda, G.J.

    2014-01-01

    To more accurately predict the temperature distribution inside the reactor core of pebble bed type high temperature reactors, in this thesis we investigated the stochastic properties of randomly stacked beds and the effects of the non-homogeneity of these beds on the neutronics and thermal-hydraulic

  4. Studying the effects of dynamical parameters on reactor core temperature

    Directory of Open Access Journals (Sweden)

    R Khodabakhsh

    2015-01-01

    Full Text Available In order to increase productivity, reduce depreciation, and avoid possible accidents in a system such as fuel rods' melting and overpressure, control of temperature changes in the reactor core is an important factor. There are several methods for solving and analysing the stability of point kinetics equations. In most previous analyses, the effects of various factors on the temperature of the reactor core have been ignored. In this work, the effects of various dynamical parameters on the temperature of the reactor core and stability of the system in the presence of temperature feedback reactivity with external reactivity step, ramp and sinusoidal for six groups of delayed neutrons were studied using the method of Lyapunov exponent. The results proved to be in good agreement with other works

  5. Basal body temperature recordings in spontaneous abortion.

    Science.gov (United States)

    Cohen, J; Iffy, L; Keyser, H H

    1976-01-01

    Basal body temperature (BBT) charts taken during the cycle of conception in cases that resulted in spontaneous abortion appear to provide the best available information concerning events associated with time of fertilization in doomed gestations. This study is based on a series of 227 patients who had early spontaneous abortion occurring between January 1967 and December 1974. A diagnosis of pregnancy initiated regular assays of urinary estrogen and pregnanediol excretion. Patients were instructed to report any bleeding episode which might occur, and to preserve all tissues that might be expelled. A total of 11 basal body temperature charts were obtained from patients who had subsequent early spontaneous abortion. Chromosome studies and histologic investigations were conducted. Another group of 11 consecutive BBT records were obtained from patients who had normal deliveries. The study shows that women with normal cycles experience a midcycle temperature rise requiring 1 to 3 days. In subsequent patients, this time limit was exceeded in 7 out of 11 cases of early abortion, and in 4 of 11 fertilization that resulted in an apparently normal gestation and infant. As temperature rise resulted from vigorous progesterone secretion by the corpus luteum, subnormal levels indicate inadequate steroidogenesis in the early luteal phase, and falling estrogen and progesterone levels predicted fetal demise in all cases. These findings are useful in the management of early pregnancy that follows repeated spontaneous first trimester abortions or a prolonged period of infertility. They also confirm experimental and clinical evidence regarding the role of ovulation defects in the occurrence of various types of reproductive wastage, including early abortion, anatomic and chromosome defects of the embryo and others. Prospective studies of cycles of conception through BBT recordings/hormone assays may shed light in the understanding of defects of human reproduction.

  6. Plasticity of Performance Curves Can Buffer Reaction Rates from Body Temperature Variation in Active Endotherms

    Directory of Open Access Journals (Sweden)

    Frank Seebacher

    2017-08-01

    Full Text Available Endotherms regulate their core body temperature by adjusting metabolic heat production and insulation. Endothermic body temperatures are therefore relatively stable compared to external temperatures. The thermal sensitivity of biochemical reaction rates is thought to have co-evolved with body temperature regulation so that optimal reaction rates occur at the regulated body temperature. However, recent data show that core body temperatures even of non-torpid endotherms fluctuate considerably. Additionally, peripheral temperatures can be considerably lower and more variable than core body temperatures. Here we discuss whether published data support the hypothesis that thermal performance curves of physiological reaction rates are plastic so that performance is maintained despite variable body temperatures within active (non-torpid endotherms, and we explore mechanisms that confer plasticity. There is evidence that thermal performance curves in tissues that experience thermal fluctuations can be plastic, although this question remains relatively unexplored for endotherms. Mechanisms that alter thermal responses locally at the tissue level include transient potential receptor ion channels (TRPV and TRPM and the AMP-activated protein kinase (AMPK both of which can influence metabolism and energy expenditure. Additionally, the thermal sensitivity of processes that cause post-transcriptional RNA degradation can promote the relative expression of cold-responsive genes. Endotherms can respond to environmental fluctuations similarly to ectotherms, and thermal plasticity complements core body temperature regulation to increase whole-organism performance. Thermal plasticity is ancestral to endothermic thermoregulation, but it has not lost its selective advantage so that modern endotherms are a physiological composite of ancestral ectothermic and derived endothermic traits.

  7. Influence of body temperature on the evoked activity in mouse visual cortex.

    Science.gov (United States)

    Tang, Bin; Kalatsky, Valery A

    2013-06-01

    Optical imaging of intrinsic signals and conventional electrophysiological methods were used to investigate the correlation between the evoked activity in mouse visual cortex and core body temperature. The results show that hypothermia (25-36 °C) decreases the intensity of optical imaging in the visual cortex and the imaging signal reversibly disappears at 25 °C. Hyperthermia (39-41 °C) increases the intensity but decreases the quality of cortical imaging when body temperature is above 40 °C. The change of optical imaging was in line with that of neuronal activities and local field potentials (LFPs) directly recorded from the visual cortex at 25-39 °C. Hypothermia decreases neuron firing rate and LFPs amplitude. Most of the recorded neurons ceased firing to visual stimulation at 25 °C. Hyperthermia increases neuronal firing rate and LFPs amplitude. Both are reduced when body temperature is above 40 °C, though neither change was statistically significant. These results suggest: (1) Body temperature has an important impact on the visual cortical evoked activities and optical imaging generally reflects these effects when body temperature is between 25 and 39 °C; (2) Optical imaging may not properly reflect the neuronal activity when body temperature is over 40 °C. It is important to maintain core body temperature within 3 °C of the normal body temperature to obtain verifiable results.

  8. Analysis of High Temperature Reactor Control Rod Worth for the Initial and Full Core

    Science.gov (United States)

    Oktajianto, Hammam; Setiawati, Evi; Anam, Khoirul; Sugito, Heri

    2017-01-01

    Control rod is one important component in a nuclear reactor. In nuclear reactor operations the control rod functions to shut down the reactor. This research analyses ten control rods worth of HTR (High Temperature Reactor) at initial and full core. The HTR in this research adopts HTR-10 China and HTR- of pebble bed. Core calculations are performed by using MCNPX code after modelling the entire parts of core in condition of ten control rods fully withdrawn, all control rods in with 20 cm ranges of depth and the use of one control rod. Pebble bed and moderator balls are distributed in the core zone using a Body Centred Cubic (BCC) lattice by ratio of 57:43. The research results are obtained that the use of one control rod will decrease the reactor criticality of 2.04±0.12 %Δk/k at initial core and 1.57±0.10 %Δk/k at full core. The deeper control rods are in, the lesser criticality of reactor is with reactivity of ten control rods of 16.41±0.11 %Δk/k at initial core and 15.43±0.11 %Δk/k at full core. The results show that the use of ten control rods at full core will keep achieving subcritical condition even though the reactivity is smaller than reactivity at initial core.

  9. Body-centered cubic iron-nickel alloy in Earth's core.

    Science.gov (United States)

    Dubrovinsky, L; Dubrovinskaia, N; Narygina, O; Kantor, I; Kuznetzov, A; Prakapenka, V B; Vitos, L; Johansson, B; Mikhaylushkin, A S; Simak, S I; Abrikosov, I A

    2007-06-29

    Cosmochemical, geochemical, and geophysical studies provide evidence that Earth's core contains iron with substantial (5 to 15%) amounts of nickel. The iron-nickel alloy Fe(0.9)Ni(0.1) has been studied in situ by means of angle-dispersive x-ray diffraction in internally heated diamond anvil cells (DACs), and its resistance has been measured as a function of pressure and temperature. At pressures above 225 gigapascals and temperatures over 3400 kelvin, Fe(0.9)Ni(0.1) adopts a body-centered cubic structure. Our experimental and theoretical results not only support the interpretation of shockwave data on pure iron as showing a solid-solid phase transition above about 200 gigapascals, but also suggest that iron alloys with geochemically reasonable compositions (that is, with substantial nickel, sulfur, or silicon content) adopt the bcc structure in Earth's inner core.

  10. Stress-induced core temperature changes in pigeons (Columba livia).

    Science.gov (United States)

    Bittencourt, Myla de Aguiar; Melleu, Fernando Falkenburger; Marino-Neto, José

    2015-02-01

    Changes in body temperature are significant physiological consequences of stressful stimuli in mammals and birds. Pigeons (Columba livia) prosper in (potentially) stressful urban environments and are common subjects in neurobehavioral studies; however, the thermal responses to stress stimuli by pigeons are poorly known. Here, we describe acute changes in the telemetrically recorded celomatic (core) temperature (Tc) in pigeons given a variety of potentially stressful stimuli, including transfer to a novel cage (ExC) leading to visual isolation from conspecifics, the presence of the experimenter (ExpR), gentle handling (H), sham intracelomatic injections (SI), and the induction of the tonic immobility (TI) response. Transfer to the ExC cage provoked short-lived hyperthermia (10-20 min) followed by a long-lasting and substantial decrease in Tc, which returned to baseline levels 2 h after the start of the test. After a 2-hour stay in the ExC, the other potentially stressful stimuli evoked only weak, marginally significant hyperthermic (ExpR, IT) or hypothermic (SI) responses. Stimuli delivered 26 h after transfer to the ExC induced definite and intense increases in Tc (ExpR, H) or hypothermic responses (SI). These Tc changes appear to be unrelated to modifications in general activity (as measured via telemetrically recorded actimetric data). Repeated testing failed to affect the hypothermic responses to the transference to the ExC, even after nine trials and at 1- or 8-day intervals, suggesting that the social (visual) isolation from conspecifics may be a strong and poorly controllable stimulus in this species. The present data indicated that stress-induced changes in Tc may be a consistent and reliable physiological parameter of stress but that they may also show stressor type-, direction- and species-specific attributes.

  11. Energetic consequences of field body temperatures in the green iguana

    NARCIS (Netherlands)

    Lichtenbelt, WDVM; Wesselingh, RA

    1997-01-01

    We investigated body temperatures of free-ranging green iguanas (Iguana iguana) on Curacao (Netherlands Antilles), and how metabolic costs and benefits of food processing affect body temperatures. Body temperatures of free-living iguanas were measured by radio telemetry. We also used a model, with a

  12. Energetic consequences of field body temperatures in the green iguana

    NARCIS (Netherlands)

    Lichtenbelt, WDVM; Wesselingh, RA

    1997-01-01

    We investigated body temperatures of free-ranging green iguanas (Iguana iguana) on Curacao (Netherlands Antilles), and how metabolic costs and benefits of food processing affect body temperatures. Body temperatures of free-living iguanas were measured by radio telemetry. We also used a model, with a

  13. Accuracy of the Estimated Core Temperature (ECTemp) Algorithm in Estimating Circadian Rhythm Indicators

    Science.gov (United States)

    2017-04-12

    p. 48- 152. 10. Lim, C.L., C. Byrne, and J.K. Lee, Human thermoregulation and measurement of body temperature in exercise and clinical settings. Ann...Acad Med Singapore, 2008. 37(4): p. 347-53. 11. Krauchi, K., How is the circadian rhythm of core body temperature regulated ? Clin Auton Res, 2002...The investigators have adhered to the policies for protection of human subjects as prescribed in Army Regulation 70-25 and SECNAVINST 3900.39D, and

  14. Individual variability in the core interthreshold zone as related to body physique, somatotype, and physical constitution.

    Science.gov (United States)

    Kakitsuba, Naoshi; Mekjavic, Igor B; Katsuura, Tetsuo

    2009-11-01

    For evaluating the effect of body physique, somatotype, and physical constitution on individual variability in the core interthreshold zone (CIZ), data from 22 healthy young Japanese male subjects were examined. The experiment was carried out in a climatic chamber in which air temperature was maintained at 20-24 degrees C. The subjects' body physique and the maximum work load were measured. Somatotype was predicted from the Heath-Carter Somatotype method. In addition, factors reflecting physical constitution, for example, susceptibility to heat and cold, and quality of sleep were obtained by questionnaire. The subjects wore a water-perfused suit which was perfused with water at a temperature of 25 degrees C and at a rate of 600 cc/min, and exercised on an ergometer at 50% of their maximum work rate for 10-15 min until their sweating rate increased. They then remained continuously seated without exercise until shivering increased. Rectal temperature (T(re)) and skin temperatures at four sites were monitored by thermistors, and sweating rate was measured at the forehead with a sweat rate monitor. Oxygen uptake was monitored with a gas analyzer. The results showed individual variability in the CIZ. According to the reciprocal cross-inhibition (RCI) theory, thermoafferent information from peripheral and core sensors is activated by T(re), mean skin temperature (T(sk)), and their changes. Since T(sk) was relatively unchanged, the data were selected to eliminate the influence of the core cooling rate on the sensor-to-effector pathway before RCI, and the relationship between the CIZ and the various factors was then analyzed. The results revealed that susceptibility to heat showed a good correlation with the CIZ, indicating that individual awareness of heat may change the CIZ due to thermoregulatory behavior.

  15. A NEW NON-INVASIVE DEVICE TO MONITOR CORE TEMPERATURE ON EARTH AND IN SPACE

    Directory of Open Access Journals (Sweden)

    Hanns-Christian Gunga

    2012-06-01

    Full Text Available Accurate measurement of the core body temperature (cbt is fundamental to the study of human temperature regulation. As standard sites for the placement of cbt measurement sensors have been used: the rectum, the bladder, the esophagus, the nasopharynx and the acoustic meatus. Nevertheless those measurement sites exhibit limited applicability under field conditions, in rescue operations or during peri- and postoperative long-term core temperature monitoring. There is, indeed, a high demand for a reliable, non-invasive, easy to handle telemetric device. But the ideal non-invasive measurement of core temperature has to meet requirements such as i a convenient measurement site, ii no bias through environmental conditions, and iii a high sensitivity of the sensor regarding time shift and absolute temperature value. Recently, together with the Draegerwerke AG we have developed a new heat flux measurement device (so-called "Double Sensor" as a non-invasive cbt sensor aiming to meet the requirements described above. Four recent studies in humans will be summarized and discussed to show the applicability of this new non-invasive method to monitor core temperature under different environmental and clinical settings on Earth and in space.

  16. Effect of irrigation fluid temperature on core temperature and hemodynamic changes in transurethral resection of prostate under spinal anesthesia

    Science.gov (United States)

    Singh, Rajeev; Asthana, Veena; Sharma, Jagdish P.; Lal, Shobha

    2014-01-01

    Background: Hypothermia is a frequent observation in elderly males undergoing transurethral resection of prostate (TURP) under spinal anesthesia. The use of irrigating fluids at room temperature results in a decrease body temperature. Warmed irrigating solutions have shown to reduce heat loss and the resultant shivering. Such investigation was not much tried in low resource settings. Aim: To compare the resultant change in core temperature and hemodynamic changes among patients undergoing TURP surgery under spinal anesthesia using warm and room temperature irrigation fluids. Settings and Design: Randomized prospective study at a tertiary care center. Methods: This study was conducted on 40 male patients aged 50-85 years undergoing TURP under spinal anesthesia. Of which, 20 patients received irrigation fluid at room temperature 21°C and 20 patients received irrigation fluid at 37°C after random allocation. Core temperatures and hemodynamic parameters were assessed in all patients at preoperative, intra-operative, and postoperative periods. Intra-operative shivering was also noted in both groups. Statistical Analysis: Unpaired and Paired Student's t-test. Results: For patients who underwent irrigation with fluid at room temperature Core temperature drop from 36.97°C in preoperative to 34.54°C in postoperative period with an effective difference of 2.38°C. Among patients who received warmed irrigation fluid at 37°C had core temperature drop from 36.97°C to 36.17°C and the effect of fall was 0.8°C. This difference was statistically significant (P < 0.001). Shivering of Grades 1 and 2 was observed in nine patients, of Group 1 while only three patients had Grades 1 and 2 shivering in Group 2. The hemodynamic parameters were similar in the two groups and did not reach significant difference. Conclusion: Use of warm irrigation fluid during TURP reduces the risk of perioperative hypothermia and shivering. PMID:25886228

  17. Regional heterothermy and conservation of core temperature in emperor penguins diving under sea ice.

    Science.gov (United States)

    Ponganis, P J; Van Dam, R P; Levenson, D H; Knower, T; Ponganis, K V; Marshall, G

    2003-07-01

    Temperatures were recorded at several body sites in emperor penguins (Aptenodytes forsteri) diving at an isolated dive hole in order to document temperature profiles during diving and to evaluate the role of hypothermia in this well-studied model of penguin diving physiology. Grand mean temperatures (+/-S.E.) in central body sites during dives were: stomach: 37.1+/-0.2 degrees C (n=101 dives in five birds), pectoral muscle: 37.8+/-0.1 degrees C (n=71 dives in three birds) and axillary/brachial veins: 37.9+/-0.1 degrees C (n=97 dives in three birds). Mean diving temperature and duration correlated negatively at only one site in one bird (femoral vein, r=-0.59, Pemperors. Although prey ingestion can result in cooling in the stomach, these findings and the lack of negative correlations between internal temperatures and diving duration do not support a role for hypothermia-induced metabolic suppression of the abdominal organs as a mechanism of extension of aerobic dive time in emperor penguins diving at the isolated dive hole. Such high temperatures within the body and the observed decreases in limb, anterior abdomen, subcutaneous and sub-feather temperatures are consistent with preservation of core temperature and cooling of an outer body shell secondary to peripheral vasoconstriction, decreased insulation of the feather layer, and conductive/convective heat loss to the water environment during the diving of these emperor penguins.

  18. Effect of MRI strength and propofol sedation on pediatric core temperature change.

    Science.gov (United States)

    Isaacson, Diane L; Yanosky, Daniel J; Jones, Richard A; Dennehy, Nancy; Spandorfer, Philip; Baxter, Amy L

    2011-04-01

    To determine core body temperature variations in children undergoing MRI exams on 1.5 Tesla (T) and 3T magnetic field strengths and with and without propofol sedation. Temporal artery temperatures were prospectively collected on 400 consecutive patients undergoing 1.5 Tesla (T) or 3.0T MRI scans. A cumulative logistic regression model was created using age, weight, MRI protocol, sedation status, pre-MRI temperature and MRI strength to assess risk of temperature change. For patients with complete pre- and post-MRI temperature data, mean temperatures did not significantly change (-0.0155°C, 95%CI, -0.035, 0.064; n = 385). Temperature changes differed significantly between propofol-sedated and nonsedated patients (-0.26°C ± .44 versus 0.24°C ± 0.42; P 1°C; 12 were on the 1.5T. All 7 patients (1.8%) who increased >1°C were non-sedates. Clinically significant core body temperature change is uncommon in children undergoing MRI with different magnetic field strengths, and with and without propofol sedation. Copyright © 2011 Wiley-Liss, Inc.

  19. Elevated skin and core temperatures both contribute to reductions in tolerance to a simulated haemorrhagic challenge.

    Science.gov (United States)

    Pearson, James; Lucas, Rebekah A I; Schlader, Zachary J; Gagnon, Daniel; Crandall, Craig G

    2017-02-01

    What is the central question of this study? Combined increases in skin and core temperatures reduce tolerance to a simulated haemorrhagic challenge. The aim of this study was to examine the separate and combined influences of increased skin and core temperatures upon tolerance to a simulated haemorrhagic challenge. What is the main finding and its importance? Skin and core temperatures increase during many occupational settings, including military procedures, in hot environments. The study findings demonstrate that both increased skin temperature and increased core temperature can impair tolerance to a simulated haemorrhagic challenge; therefore, a soldier's tolerance to haemorrhagic injury is likely to be impaired during any military activity that results in increased skin and/or core temperatures. Tolerance to a simulated haemorrhagic insult, such as lower-body negative pressure (LBNP), is profoundly reduced when accompanied by whole-body heat stress. The aim of this study was to investigate the separate and combined influence of elevated skin (Tskin ) and core temperatures (Tcore ) on LBNP tolerance. We hypothesized that elevations in Tskin as well as Tcore would both contribute to reductions in LBNP tolerance and that the reduction in LBNP tolerance would be greatest when both Tskin and Tcore were elevated. Nine participants underwent progressive LBNP to presyncope on four occasions, as follows: (i) control, with neutral Tskin (34.3 ± 0.5°C) and Tcore (36.8 ± 0.2°C); (ii) primarily skin hyperthermia, with high Tskin (37.6 ± 0.2°C) and neutral Tcore (37.1 ± 0.2°C); (iii) primarily core hyperthermia, with neutral Tskin (35.0 ± 0.5°C) and high Tcore (38.3 ± 0.2°C); and (iv) combined skin and core hyperthermia, with high Tskin (38.8 ± 0.6°C) and high Tcore (38.1 ± 0.2°C). The LBNP tolerance was quantified via the cumulative stress index (in millimetres of mercury × minutes). The LBNP tolerance was reduced during the skin

  20. Voluntary Running Aids to Maintain High Body Temperature in Rats Bred for High Aerobic Capacity.

    Science.gov (United States)

    Karvinen, Sira M; Silvennoinen, Mika; Ma, Hongqiang; Törmäkangas, Timo; Rantalainen, Timo; Rinnankoski-Tuikka, Rita; Lensu, Sanna; Koch, Lauren G; Britton, Steven L; Kainulainen, Heikki

    2016-01-01

    The production of heat, i.e., thermogenesis, is a significant component of the metabolic rate, which in turn affects weight gain and health. Thermogenesis is linked to physical activity (PA) level. However, it is not known whether intrinsic exercise capacity, aging, and long-term voluntary running affect core body temperature. Here we use rat models selectively bred to differ in maximal treadmill endurance running capacity (Low capacity runners, LCR and High capacity Runners, HCR), that as adults are divergent for aerobic exercise capacity, aging, and metabolic disease risk to study the connection between PA and body temperature. Ten high capacity runner (HCR) and ten low capacity runner (LCR) female rats were studied between 9 and 21 months of age. Rectal body temperature of HCR and LCR rats was measured before and after 1-year voluntary running/control intervention to explore the effects of aging and PA. Also, we determined whether injected glucose and spontaneous activity affect the body temperature differently between LCR and HCR rats at 9 vs. 21 months of age. HCRs had on average 1.3°C higher body temperature than LCRs (p temperature level of HCRs to similar levels with LCRs. The opportunity to run voluntarily had a significant impact on the body temperature of HCRs (p temperature at a similar level as when at younger age. Compared to LCRs, HCRs were spontaneously more active, had higher relative gastrocnemius muscle mass and higher UCP2, PGC-1α, cyt c, and OXPHOS levels in the skeletal muscle (p temperature of LCRs. However, glucose injection resulted in a lowering of the body temperature of LCRs (p temperature compared to rats born with low exercise capacity and disease risk. Voluntary running allowed HCRs to maintain high body temperature during aging, which suggests that high PA level was crucial in maintaining the high body temperature of HCRs.

  1. Effect of operating temperature on LMFBR core performance

    Energy Technology Data Exchange (ETDEWEB)

    Noyes, R.C.; Bergeron, R.J.; di Lauro, G.F.; Kulwich, M.R.; Stuteville, D.W.

    1977-04-11

    The purpose of the study is to provide an engineering evaluation of high and low temperature LMFBR core designs. The study was conducted by C-E supported by HEDL expertise in the areas of materials behavior, fuel performance and fabrication/fuel cycle cost. The evaluation is based primarily on designs and analyses prepared by AI, GE and WARD during Phase I of the PLBR studies.

  2. Diet and body temperature in mammals and birds

    OpenAIRE

    Clarke, Andrew; O'Connor, Mary I.

    2014-01-01

    Aim We test the hypothesis that endotherm body temperature varies with diet. Location Global terrestrial ecosystems. Methods We compile data from the literature on diet and body temperature in mammals and birds. We analyse these and demonstrate global macrophysiological patterns. Results In mammals, carnivores overall have a lower mean body temperature (Tb) than either herbivores or omnivores. However, within carnivores, those taking vertebrate prey have a h...

  3. Central circuitries for body temperature regulation and fever.

    Science.gov (United States)

    Nakamura, Kazuhiro

    2011-11-01

    Body temperature regulation is a fundamental homeostatic function that is governed by the central nervous system in homeothermic animals, including humans. The central thermoregulatory system also functions for host defense from invading pathogens by elevating body core temperature, a response known as fever. Thermoregulation and fever involve a variety of involuntary effector responses, and this review summarizes the current understandings of the central circuitry mechanisms that underlie nonshivering thermogenesis in brown adipose tissue, shivering thermogenesis in skeletal muscles, thermoregulatory cardiac regulation, heat-loss regulation through cutaneous vasomotion, and ACTH release. To defend thermal homeostasis from environmental thermal challenges, feedforward thermosensory information on environmental temperature sensed by skin thermoreceptors ascends through the spinal cord and lateral parabrachial nucleus to the preoptic area (POA). The POA also receives feedback signals from local thermosensitive neurons, as well as pyrogenic signals of prostaglandin E(2) produced in response to infection. These afferent signals are integrated and affect the activity of GABAergic inhibitory projection neurons descending from the POA to the dorsomedial hypothalamus (DMH) or to the rostral medullary raphe region (rMR). Attenuation of the descending inhibition by cooling or pyrogenic signals leads to disinhibition of thermogenic neurons in the DMH and sympathetic and somatic premotor neurons in the rMR, which then drive spinal motor output mechanisms to elicit thermogenesis, tachycardia, and cutaneous vasoconstriction. Warming signals enhance the descending inhibition from the POA to inhibit the motor outputs, resulting in cutaneous vasodilation and inhibited thermogenesis. This central thermoregulatory mechanism also functions for metabolic regulation and stress-induced hyperthermia.

  4. Relationship between alertness, performance, and body temperature in humans

    Science.gov (United States)

    Wright, Kenneth P Jr; Hull, Joseph T.; Czeisler, Charles A.

    2002-01-01

    Body temperature has been reported to influence human performance. Performance is reported to be better when body temperature is high/near its circadian peak and worse when body temperature is low/near its circadian minimum. We assessed whether this relationship between performance and body temperature reflects the regulation of both the internal biological timekeeping system and/or the influence of body temperature on performance independent of circadian phase. Fourteen subjects participated in a forced desynchrony protocol allowing assessment of the relationship between body temperature and performance while controlling for circadian phase and hours awake. Most neurobehavioral measures varied as a function of internal biological time and duration of wakefulness. A number of performance measures were better when body temperature was elevated, including working memory, subjective alertness, visual attention, and the slowest 10% of reaction times. These findings demonstrate that an increased body temperature, associated with and independent of internal biological time, is correlated with improved performance and alertness. These results support the hypothesis that body temperature modulates neurobehavioral function in humans.

  5. Microchip-based body temperature measurements in pigs

    DEFF Research Database (Denmark)

    Nielsen, Jens; Lohse, Louise

    In the present study, we tested whether an electronic identification and body temperature monitorring technology presently applied in small experimental animals could be transferred for use in pigs....

  6. Absence of positive eigenvalues for hard-core N-body systems

    DEFF Research Database (Denmark)

    Ito, K.; Skibsted, Erik

    We show absence of positive eigenvalues for generalized 2-body hard-core Schrödinger operators under the condition of bounded strictly convex obstacles. A scheme for showing absence of positive eigenvalues for generalized N-body hard-core Schrödinger operators, N≥ 2, is presented. This scheme inv...

  7. Body temperature changes induced by huddling in breeding male emperor penguins.

    Science.gov (United States)

    Gilbert, Caroline; Maho, Yvon Le; Perret, Martine; Ancel, André

    2007-01-01

    Huddling is the key energy-saving mechanism for emperor penguins to endure their 4-mo incubation fast during the Antarctic winter, but the underlying physiological mechanisms of this energy saving have remained elusive. The question is whether their deep body (core) temperature may drop in association with energy sparing, taking into account that successful egg incubation requires a temperature of about 36 degrees C and that ambient temperatures of up to 37.5 degrees C may be reached within tight huddles. Using data loggers implanted into five unrestrained breeding males, we present here the first data on body temperature changes throughout the breeding cycle of emperor penguins, with particular emphasis on huddling bouts. During the pairing period, core temperature decreased progressively from 37.5 +/- 0.4 degrees C to 36.5 +/- 0.3 degrees C, associated with a significant temperature drop of 0.5 +/- 0.3 degrees C during huddling. In case of egg loss, body temperature continued to decrease to 35.5 +/- 0.4 degrees C, with a further 0.9 degrees C decrease during huddling. By contrast, a constant core temperature of 36.9 +/- 0.2 degrees C was maintained during successful incubation, even during huddling, suggesting a trade-off between the demands for successful egg incubation and energy saving. However, such a limited drop in body temperature cannot explain the observed energy savings of breeding emperor penguins. Furthermore, we never observed any signs of hyperthermia in huddling birds that were exposed to ambient temperatures as high as above 35 degrees C. We suggest that the energy savings of huddling birds is due to a metabolic depression, the extent of which depends on a reduction of body surface areas exposed to cold.

  8. Sauna, shower, and ice water immersion. Physiological responses to brief exposures to heat, cool, and cold. Part III. Body temperatures.

    Science.gov (United States)

    Kauppinen, K

    1989-04-01

    Nine active winter swimmer men were subjected to four exposures each imitating a form of hot or cold exposures or their combination practiced among the Finns: (A) sauna and head-out ice water immersion; (B) sauna and 15 degrees C shower; (C) sauna and room temperature; (D) head-out ice water immersion and room temperature. All exposures were repeated and ended with recovery at room temperature. Body core and surface temperatures were recorded. One surface probe was placed between the scapulae to detect any signs of thermogenic activity by brown adipose tissue upon cold exposures. In the sauna control of core temperature was lost at esophageal temperature Tes 38 degrees C where the mean skin temperature exceeded the Tes. The brief ice water immersions did not disturb the thermal balance of the body core. The interscapular surface temperature recording provided circumstantial evidence of functioning thermogenic tissue in the area.

  9. Agreement between auricular and rectal measurements of body temperature in healthy cats.

    Science.gov (United States)

    Sousa, Marlos G; Carareto, Roberta; Pereira-Junior, Valdo A; Aquino, Monally C C

    2013-04-01

    Measurement of body temperature is a routine part of the clinical assessment of a patient. However, this procedure may be time-consuming and stressful to most animals because the standard site of temperature acquisition remains the rectal mucosa. Although an increasing number of clinicians have been using auricular temperature to estimate core body temperature, evidence is still lacking regarding agreement between these two methods in cats. In this investigation, we evaluated the agreement between temperatures measured in the rectum and ear in 29 healthy cats over a 2-week period. Temperatures were measured in the rectum (using digital and mercury-in-glass thermometers) and ear once a day for 14 consecutive days, producing 406 temperature readings for each thermometer. Mean temperature and confidence intervals were similar between methods, and Bland-Altman plots showed small biases and narrow limits of agreement acceptable for clinical purposes. The interobserver variability was also checked, which indicated a strong correlation between two near-simultaneous temperature readings. Results are consistent with auricular thermometry being a reliable alternative to rectal thermometry for assessing core body temperature in healthy cats.

  10. Sticking to core values : The case of the Body Shop

    NARCIS (Netherlands)

    Ven, van de B.; Nijhof, A.H.J.; Jeurissen, R.J.M.

    2009-01-01

    In this chapter, the authors detail the development of The Body Shop and the importance to it of the social projects it has undertaken. They then discuss the implications of The Body Shop's reorganization, brand repositioning and the L'Oréal takeover, and what the future might hold for The Body Shop

  11. Miniature temperature sensor with germania-core optical fiber.

    Science.gov (United States)

    Yang, Jingyi; Zheng, Yangzi; Chen, Li Han; Chan, Chi Chiu; Dong, Xinyong; Shum, Perry Ping; Su, Haibin

    2015-07-13

    A miniature all-fiber temperature sensor is demonstrated by using a Michelson interferometer formed with a short length of Germania-core, silica-cladding optical fiber (Ge-fiber) fusion-spliced to a conventional single-mode fiber (SMF). Thanks to the large differential refractive index of the Ge-fiber sensing element, a reasonably small free spectral range (FSR) of 18.6 nm is achieved even with an as short as 0.9 mm Ge-fiber that may help us increase the measurement accuracy especially in point sensing applications and, at the same time, keep large measurement temperature range without overlapping reading problem. Experimental results show that high sensitivity of 89.0 pm/°C is achieved and the highest measurement temperature is up to 500°C.

  12. Air temperature investigation in microenvironment around a human body

    DEFF Research Database (Denmark)

    Licina, Dusan; Melikov, Arsen Krikor; Sekhar, Chandra;

    2015-01-01

    The aim of this study is to investigate the temperature boundary layer around a human body in a quiescent indoor environment. The air temperature, mean in time and standard deviation of the temperature fluctuations around a breathing thermal manikin are examined in relation to the room temperature......, body posture and human respiratory flow. To determine to what extent the experiments represent the realistic scenario, the additional experiments were performed with a real human subject. The results show that at a lower room air temperature (20°C), the fluctuations of air temperature increased close...... to the surface of the body. The large standard deviation of air temperature fluctuations, up to 1.2°C, was recorded in the region of the chest, and up to 2.9°C when the exhalation was applied. The manikin leaned backwards increased the air temperature in the breathing zone, which was opposite from the forward...

  13. Apparatus and method for controlling the temperature of the core of a super-conducting transformer

    Science.gov (United States)

    Golner, Thomas; Pleva, Edward; Mehta, Shirish

    2006-10-10

    An apparatus for controlling the temperature of a core of a transformer is provided that includes a core, a shield surrounding the core, a cast formed between the core and the shield, and tubing positioned on the shield. The cast directs heat from the core to the shield and cooling fluid is directed through the tubing to cool the shield.

  14. Thermal conditions influence changes in body temperature induced by intragastric administration of capsaicin in mice.

    Science.gov (United States)

    Mori, Noriyuki; Urata, Tomomi; Fukuwatari, Tsutomu

    2016-08-01

    Capsaicin has been reported to have unique thermoregulatory actions. However, changes in core temperature after the administration of capsaicin are a controversial point. Therefore, we investigated the effects of environmental thermal conditions on changes in body temperature caused by capsaicin in mice. We showed that intragastric administration of 10 and 15 mg/kg capsaicin increased tail temperature and decreased colonic temperatures in the core temperature (CT)-constant and CT-decreasing conditions. In the CT-increasing condition, 15 mg/kg capsaicin increased tail temperature and decreased colonic temperature. However, 10 mg/kg capsaicin increased colonic temperature. Furthermore, the amount of increase in tail temperature was greater in the CT-decreasing condition and lower in the CT-increasing condition, compared with that of the CT-constant condition. These findings suggest that the changes in core temperature were affected by the environmental thermal conditions and that preliminary thermoregulation state might be more important than the constancy of temperature to evaluate the effects of heat diffusion and thermogensis.

  15. Mapping the body surface temperature of cattle by infrared thermography.

    Science.gov (United States)

    Salles, Marcia Saladini Vieira; da Silva, Suelen Corrêa; Salles, Fernando André; Roma, Luiz Carlos; El Faro, Lenira; Bustos Mac Lean, Priscilla Ayleen; Lins de Oliveira, Celso Eduardo; Martello, Luciane Silva

    2016-12-01

    Infrared thermography (IRT) is an alternative non-invasive method that has been studied as a tool for identifying many physiological and pathological processes related to changes in body temperature. The objective of the present study was to evaluate the body surface temperature of Jersey dairy cattle in a thermoneutral environment in order to contribute to the determination of a body surface temperature pattern for animals of this breed in a situation of thermal comfort. Twenty-four Jersey heifers were used over a period of 35 days at APTA Brazil. Measurements were performed on all animals, starting with the physiological parameters. Body surface temperature was measured by IRT collecting images in different body regions: left and right eye area, right and left eye, caudal left foreleg, cranial left foreleg, right and left flank, and forehead. High correlations were observed between temperature and humidity index (THI) and right flank, left flank and forehead temperatures (0.85, 0.81, and 0.81, respectively). The IRT variables that exhibited the five highest correlation coefficients in principal component 1 were, in decreasing order: forehead (0.90), right flank (0.87), left flank (0.84), marker 1 caudal left foreleg (0.83), marker 2 caudal left foreleg (0.74). The THI showed a high correlation coefficient (0.88) and moderate to low correlations were observed for the physiological variables rectal temperature (0.43), and respiratory frequency (0.42). The thermal profile obtained indicates a surface temperature pattern for each region studied in a situation of thermal comfort and may contribute to studies investigating body surface temperature. Among the body regions studied, IRT forehead temperature showed the highest association with rectal temperature, and forehead and right and left flank temperatures are strongly associated with THI and may be adopted in future studies on thermoregulation and body heat production.

  16. Elevations in core and muscle temperature impairs repeated sprint performance

    DEFF Research Database (Denmark)

    Drust, B.; Rasmussen, P.; Mohr, Magni

    2005-01-01

    following the hyperthermic sprints compared to control. CONCLUSION: Although an elevated muscle temperature is expected to promote sprint performance, power output during the repeated sprints was reduced by hyperthermia. The impaired performance does not seem to relate to the accumulation of recognized...... on a cycle ergometer in normal (approximately 20 degrees C, control) and hot (40 degrees C, hyperthermia) environments. RESULTS: Completion of the intermittent protocol in the heat elevated core and muscle temperatures (39.5 +/- 0.2 degrees C; 40.2 +/- 0.4 degrees C), heart rate (178 +/- 11 beats min(-1......)), rating of perceived exertion (RPE) (18 +/- 1) and noradrenaline (38.9 +/- 13.2 micromol l(-1)) (all P power output were similar across the environmental conditions. However, mean power over the last four sprints declined to a larger extent...

  17. Voluntary Running Aids to Maintain High Body Temperature in Rats Bred for High Aerobic Capacity

    Directory of Open Access Journals (Sweden)

    Sira Maria Karvinen

    2016-07-01

    Full Text Available The production of heat , i.e. thermogenesis, is a significant component of the metabolic rate, which in turn affects weight gain and health. Thermogenesis is linked to physical activity (PA level. However, it is not known whether intrinsic exercise capacity, aging, and long-term voluntary running affect body temperature. Here we use rat models that differ for maximal running capacity (Low capacity runners, LCR and High capacity Runners, HCR to study the connection between PA and body temperature. Ten HCR and ten LCR female rats were studied between 9 and 21 months of age. Rectal temperature of HCR and LCR rats was measured before and after one year voluntary running/control intervention to explore the effects of aging and PA. Also, we determined whether injected glucose and spontaneous activity affect the body temperature differently between LCR and HCR rats at 9 vs 21 months of age. HCRs had on average 1.3C higher body temperature than LCRs (p < 0.001. Aging decreased the body temperature level of HCRs to similar levels with LCRs. The opportunity to run voluntarily had a marked impact on the body temperature of HCRs (p < 0.001 allowing them to maintain body temperature at a similar level as when at younger age. Compared to LCRs, HCRs were spontaneously more active, had higher relative gastrocnemius muscle mass and higher UCP2, PGC-1α, cyt c and OXPHOS contents in the skeletal muscle (p < 0.050. These results suggest that higher PA level together with greater relative muscle mass and higher mitochondrial content/function contribute to the accumulation of heat in the HCRs. Interestingly, neither aging nor voluntary training had a significant impact on core body temperature of LCRs. However, glucose injection resulted in a lowering of the body temperature of LCRs (p < 0.050, but not that of HCRs. In conclusion, rats born with high intrinsic aerobic capacity and better health have higher body temperature compared to rats born with low aerobic

  18. Assessment of body composition by air-displacement plethysmography: influence of body temperature and moisture.

    Science.gov (United States)

    Fields, David A; Higgins, Paul B; Hunter, Gary R

    2004-04-01

    BACKGROUND: To investigate the effect of body temperature and moisture on body fat (%fat), volume and density by air-displacement plethysmography (BOD POD). METHODS: %fat, body volume and density by the BOD POD before (BOD PODBH) and immediately following hydrostatic weighing (BOD PODFH) were performed in 32 healthy females (age (yr) 33 +/- 11, weight (kg) 64 +/- 14, height (cm) 167 +/- 7). Body temperature and moisture were measured prior to BOD PODBH and prior to BOD PODFH with body moisture defined as the difference in body weight (kg) between the BOD PODBH and BOD PODFH measurements. RESULTS: BOD PODFH %fat (27.1%) and body volume (61.5 L) were significantly lower (P BOD PODBH %fat (28.9%), body volume (61.7 L), and body density (1.0341 g/cm3). A significant increase in body temperature (~0.6 degrees C; P BOD PODBH and BOD PODFH. Body surface area was positively associated with the difference in %fat independent of changes in body temperature and moisture, r = 0.30, P BOD POD, however, the precise mechanism remains unidentified.

  19. A design study of sodium cooled metal fuel core for high outlet-temperature

    Energy Technology Data Exchange (ETDEWEB)

    Yamadate, Megumi; Mizuno, Tomoyasu; Sugino, Kazuteru [Japan Nuclear Cycle Development Inst., Oarai, Ibaraki (Japan). Oarai Engineering Center

    2003-03-01

    A design study of sodium cooled metal fuel core was performed. The new core concept studied here has low radial power peaking by applying three regions core configuration with different diameters of fuel pins and the same enrichment of plutonium. The core reveals constant radial power distribution during nominal power operation, which gives the advantage of low cladding maximum temperature or high core outlet temperature with a cladding limit temperature. The core thermal hydraulic design shows that a core outlet temperature as high as that of the oxide fuel core is feasible even in the application of metal fuel pins, which have a lower cladding limit temperature than oxide fuel pins. The core concept is possible to have additional attractiveness such as high breeding ratio, high burnup, and long-term operation cycle due to its high internal conversion ratio. (author)

  20. Hypercoagulability in response to elevated body temperature and central hypovolemia

    DEFF Research Database (Denmark)

    Meyer, Martin; Ostrowski, Sisse R; Overgaard, Flemming Anders;

    2013-01-01

    Coagulation abnormalities contribute to poor outcomes in critically ill patients. In trauma patients exposed to a hot environment, a systemic inflammatory response syndrome, elevated body temperature, and reduced central blood volume occur in parallel with changes in hemostasis and endothelial...... damage. The objective of this study was to evaluate whether experimentally elevated body temperature and reduced central blood volume (CBV) per se affects hemostasis and endothelial activation....

  1. In-Core-Instrumentation Methods for 3-Dimensional Distribution Information of Reactor Core Temperatures and Melt-down

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Yeong Cheol [KHNP, Daejeon (Korea, Republic of); Eun, Myoung; Kim, Sung Jun [Woojin Inc., Hwaseong (Korea, Republic of)

    2014-08-15

    The tsunami-induced nuclear accident at Japanese Fukushima power plants in March 2011 has revealed some weaknesses in the severe accident monitoring system. The plant instrumentation did not provide utility, safety experts, and government officials with adequate and reliable information. The information on the reactor core damage and coolability is critical for making decisions correctly as well as in a timely manner during the course of the mitigation of severe accidents. Current Pressurized Water Reactor (PWR)s have an In-Core-Instrumentation (ICI) system that measures the temperature distribution of the top surface (i.e. Core Exit Temperatures) of the reactor core mainly to indicate when to begin Severe Accident Mitigation Guidelines (SAMG). This design concept giving only the core exit temperature has limitations in terms of sufficiency as well as availability of the information necessary for diagnosis on the status of the degraded core and the effectiveness of the measures taken as mitigation strategies. The reactor core exit temperatures are not sufficient to support the assessment of the degree of the core damage and the location of the molten core debris and recognition whether the core damage progresses on or it is mitigated. The ICI location being at the top of the reactor core also makes the ICI thermocouples vulnerable to melt-down because the upper part of the reactor core uncovers first, thereby melt down at the early stage of the accident. This means that direct indication of reactor core temperature will be lost and unavailable during the later stages of severe accident. To address the aforementioned weaknesses of the current ICIs, it is necessary to develop a new ICI system that provides information that is more expanded and more reliable for accident mitigation. With the enhanced information available, the SAMG can be prepared in more refined and effective way based on the direct and suitable indication of status of damages and the 3-dimensional

  2. Concordance of Brain and Core Temperature in Comatose Patients After Cardiac Arrest.

    Science.gov (United States)

    Coppler, Patrick J; Marill, Keith A; Okonkwo, David O; Shutter, Lori A; Dezfulian, Cameron; Rittenberger, Jon C; Callaway, Clifton W; Elmer, Jonathan

    2016-12-01

    Comatose patients after cardiac arrest should receive active targeted temperature management (TTM), with a goal core temperature of 32-36°C for at least 24 hours. Small variations in brain temperature may confer or mitigate a substantial degree of neuroprotection, which may be lost at temperatures near 37°C. The purpose of this study was to define the relationship between brain and core temperature after cardiac arrest through direct, simultaneous measurement of both. We placed intracranial monitors in a series of consecutive patients hospitalized for cardiac arrest at a single tertiary care facility within 12 hours of return of spontaneous circulation to guide postcardiac arrest care. We compared the absolute difference between brain and core (esophageal or rectal) temperature measurements every hour for the duration of intracranial monitoring and tested for a lag between brain and core temperature using the average square difference method. Overall, 11 patients underwent simultaneous brain and core temperature monitoring for a total of 906 hours of data (Median 95; IQR: 15-118 hours per subject). On average, brain temperature was 0.34C° (95% confidence interval [CI] 0.31-0.37) higher than core temperature. In 7% of observations, brain temperature exceeded the measured core temperature ≥1°C. Brain temperature lagged behind core temperature by 0.45 hours (95% CI = -0.27-1.27 hours). Brain temperature averages 0.34°C higher than core temperature after cardiac arrest, and is more than 1°C higher than core temperature 7% of the time. This phenomenon must be considered when carrying out TTM to a goal core temperature of <36°C.

  3. Effect of methergoline on body temperature in mice.

    Science.gov (United States)

    Cardano, C; Strocchi, P; Gonni, D; Walsh, M; Agnati, L F

    1977-03-01

    Serotonin (5-HT) involvement in body temperature regulation has been studied in mice by means of a 5-HT-selective blocking agent (methergoline). This drug causes an effect on body temperature which is dependent on environmental temperature. At environmental temperatures of 25 degrees C and 11 degrees C methergoline has a hypothermic effect, while at 36 degrees C environmental temperature, methergoline has a hyperthermic effect. At 25 degrees C environmental temperature, the hypothermic effect induced by 125 mug/kg i.p. of methergoline could be antagonized by low doses of LAE-32 (80 mug/kg s.c.), while there was not such an antagonism using higher doses of LAE-32 (100 and 300 mug/kg s.c.). This has been explained using Jalfre's hypothesis of the existence of 5-HT inhibitory and excitatory receptors.

  4. Control of skin blood flow, sweating, and heart rate - Role of skin vs. core temperature

    Science.gov (United States)

    Wyss, C. R.; Brengelmann, G. L.; Johnson, J. M.; Rowell, L. B.; Niederberger, M.

    1974-01-01

    A study was conducted to generate quantitative expressions for the influence of core temperature, skin temperature, and the rate of change of skin temperature on sweat rate, skin blood flow, and heart rate. A second goal of the study was to determine whether the use of esophageal temperature rather than the right atrial temperature as a measure of core temperature would lead to different conclusions about the control of measured effector variables.

  5. Performance of High-frequency High-flux Magnetic Cores at Cryogenic Temperatures

    Science.gov (United States)

    Gerber, Scott S.; Hammoud, Ahmad; Elbuluk, Malik E.; Patterson, Richard L.

    2002-01-01

    Three magnetic powder cores and one ferrite core, which are commonly used in inductor and transformer design for switch mode power supplies, were selected for investigation at cryogenic temperatures. The powder cores are Molypermalloy Core (MPC), High Flux Core (HFC), and Kool Mu Core (KMC). The performance of four inductors utilizing these cores has been evaluated as a function of temperature from 20 C to -180 C. All cores were wound with the same wire type and gauge to obtain equal values of inductance at room temperature. Each inductor was evaluated in terms of its inductance, quality (Q) factor, resistance, and dynamic hysteresis characteristics (B-H loop) as a function of temperature and frequency. Both sinusoidal and square wave excitations were used in these investigations. Measured data obtained on the inductance showed that both the MPC and the HFC cores maintain a constant inductance value, whereas with the KMC and ferrite core hold a steady value in inductance with frequency but decrease as temperature is decreased. All cores exhibited dependency, with varying degrees, in their quality factor and resistance on test frequency and temperature. Except for the ferrite, all cores exhibited good stability in the investigated properties with temperature as well as frequency. Details of the experimental procedures and test results are presented and discussed in the paper.

  6. Regulation of body temperature by some Mesozoic marine reptiles.

    Science.gov (United States)

    Bernard, Aurélien; Lécuyer, Christophe; Vincent, Peggy; Amiot, Romain; Bardet, Nathalie; Buffetaut, Eric; Cuny, Gilles; Fourel, François; Martineau, François; Mazin, Jean-Michel; Prieur, Abel

    2010-06-11

    What the body temperature and thermoregulation processes of extinct vertebrates were are central questions for understanding their ecology and evolution. The thermophysiologic status of the great marine reptiles is still unknown, even though some studies have suggested that thermoregulation may have contributed to their exceptional evolutionary success as apex predators of Mesozoic aquatic ecosystems. We tested the thermal status of ichthyosaurs, plesiosaurs, and mosasaurs by comparing the oxygen isotope compositions of their tooth phosphate to those of coexisting fish. Data distribution reveals that these large marine reptiles were able to maintain a constant and high body temperature in oceanic environments ranging from tropical to cold temperate. Their estimated body temperatures, in the range from 35 degrees +/- 2 degrees C to 39 degrees +/- 2 degrees C, suggest high metabolic rates required for predation and fast swimming over large distances offshore.

  7. Non-invasive body temperature measurement of wild chimpanzees using fecal temperature decline.

    Science.gov (United States)

    Jensen, Siv Aina; Mundry, Roger; Nunn, Charles L; Boesch, Christophe; Leendertz, Fabian H

    2009-04-01

    New methods are required to increase our understanding of pathologic processes in wild mammals. We developed a noninvasive field method to estimate the body temperature of wild living chimpanzees habituated to humans, based on statistically fitting temperature decline of feces after defecation. The method was established with the use of control measures of human rectal temperature and subsequent changes in fecal temperature over time. The method was then applied to temperature data collected from wild chimpanzee feces. In humans, we found good correspondence between the temperature estimated by the method and the actual rectal temperature that was measured (maximum deviation 0.22 C). The method was successfully applied and the average estimated temperature of the chimpanzees was 37.2 C. This simple-to-use field method reliably estimates the body temperature of wild chimpanzees and probably also other large mammals.

  8. Body temperature null distributions in reptiles with nonzero heat capacity: seasonal thermoregulation in the American alligator (Alligator mississippiensis).

    Science.gov (United States)

    Seebacher, Frank; Elsey, Ruth M; Trosclair, Phillip L

    2003-01-01

    Regulation of body temperature may increase fitness of animals by ensuring that biochemical and physiological processes proceed at an optimal rate. The validity of current methods of testing whether or not thermoregulation in reptiles occurs is often limited to very small species that have near zero heat capacity. The aim of this study was to develop a method that allows estimation of body temperature null distributions of large reptiles and to investigate seasonal thermoregulation in the American alligator (Alligator mississippiensis). Continuous body temperature records of wild alligators were obtained from implanted dataloggers in winter (n=7, mass range: 1.6-53.6 kg) and summer (n=7, mass range: 1.9-54.5 kg). Body temperature null distributions were calculated by randomising behavioural postures, thereby randomly altering relative animal surface areas exposed to different avenues of heat transfer. Core body temperatures were predicted by calculations of transient heat transfer by conduction and blood flow. Alligator body temperatures follow regular oscillations during the day. Occasionally, body temperature steadied during the day to fall within a relatively narrow range. Rather than indicating shuttling thermoregulation, however, this pattern could be predicted from random movements. Average daily body temperature increases with body mass in winter but not in summer. Daily amplitudes of body temperature decrease with increasing body mass in summer but not in winter. These patterns result from differential exposure to heat transfer mechanisms at different seasons. In summer, alligators are significantly cooler than predictions for a randomly moving animal, and the reverse is the case in winter. Theoretical predictions show, however, that alligators can be warmer in winter if they maximised their sun exposure. We concluded that alligators may not rely exclusively on regulation of body temperature but that they may also acclimatise biochemically to seasonally

  9. Effects of caffeine on skin and core temperatures, alertness, and recovery sleep during circadian misalignment.

    Science.gov (United States)

    McHill, Andrew W; Smith, Benjamin J; Wright, Kenneth P

    2014-04-01

    Caffeine promotes wakefulness during night shift work, although it also disturbs subsequent daytime sleep. Increased alertness by caffeine is associated with a higher core body temperature (CBT). A lower CBT and a narrow distal-to-proximal skin temperature gradient (DPG) have been reported to be associated with improved sleep, yet whether caffeine influences the DPG is unknown. We tested the hypothesis that the use caffeine during nighttime total sleep deprivation would reduce the DPG, increase CBT and alertness, and disturb subsequent daytime recovery sleep. We also expected that a greater widening of the DPG prior to sleep would be associated with a greater degree of sleep disturbance. Thirty healthy adults (9 females) aged 21.6 ± 3.5 years participated in a double-blind, 28-h modified constant routine protocol. At 23 h of wakefulness, participants in the treatment condition (n = 10) were given 2.9 mg/kg caffeine, equivalent to ~200 mg (or 2 espressos) for a 70-kg adult, 5 h before a daytime recovery sleep episode. Throughout the protocol, core and skin body temperatures, DPG, sleep architecture, and subjective alertness and mood were measured. Prior to sleep, caffeine significantly widened the DPG and increased CBT, alertness, and clear-headedness (p sleep (p CBT and a wider DPG prior to sleep were associated with a longer latency to sleep, and a wider DPG was associated with disturbed recovery sleep (i.e., increased wakefulness after sleep onset, increased stage 1 sleep, decreased sleep efficiency, and decreased slow wave sleep) (p sleep. Furthermore, our findings highlight that sleep disturbances associated with caffeine consumed near the circadian trough of alertness are still present when daytime recovery sleep occurs 5 h or approximately 1 half-life later.

  10. Pengaruh Penggunaan Plastic Wrap Terhadap Core Temperature Pasien Pediatrik 1-3 Tahun Yang Menjalani Operasi Palatoplasty

    Directory of Open Access Journals (Sweden)

    Mikhail Averoes

    2013-04-01

    Full Text Available The decrease rate of body temperature can be reduced by passive insulation by covering the body with certain materials which have poor heat conductivity (insulator. Insulator material which is wrapped on the body can prevent the process of convection, conduction and evaporation so that the degree of heat loss was reduced on average 30%. One material that can be used as an insulator is the plastic. This study was conducted to assess the effect of plastic wrap on the core temperature of pediatric aged 1 to 3 years who underwent cleft palate surgery. The study was conducted on 30 pediatric patients, aged 1-3 years, with ASA I physical status who underwent cleft surgery with general anesthesia. Patients were divided into two groups. One group used plastic wrap to be wrapped on the body, and another is the control group. Rectal temperature was recorded during anesthesia. Research data was tested statistically by the Mann-Whitney test. The results of statistical calculation indicated that the average core temperature during anesthesia in plastic wrap group was higher than the control group with a significant result (p <0.001. The average core temperature in the plastic wrap is 36.17° C (0.31° C which is higher than the control group (35.88° C (0.43° C. It can be concluded that the use of plastic wrap causes temperature reduction degree to be lower than the control group. The degree in plastic wrap group is 0.8 °C while the degree in control group is 1.2°C in the control group (p <0.005.

  11. Ultrahigh temperature vapor core reactor-MHD system for space nuclear electric power

    Science.gov (United States)

    Maya, Isaac; Anghaie, Samim; Diaz, Nils J.; Dugan, Edward T.

    1991-01-01

    The conceptual design of a nuclear space power system based on the ultrahigh temperature vapor core reactor with MHD energy conversion is presented. This UF4 fueled gas core cavity reactor operates at 4000 K maximum core temperature and 40 atm. Materials experiments, conducted with UF4 up to 2200 K, demonstrate acceptable compatibility with tungsten-molybdenum-, and carbon-based materials. The supporting nuclear, heat transfer, fluid flow and MHD analysis, and fissioning plasma physics experiments are also discussed.

  12. The effect of core configuration on temperature coefficient of reactivity in IRR-1

    Energy Technology Data Exchange (ETDEWEB)

    Bettan, M.; Silverman, I.; Shapira, M.; Nagler, A. [Soreq Nuclear Research Center, Yavne (Israel)

    1997-08-01

    Experiments designed to measure the effect of coolant moderator temperature on core reactivity in an HEU swimming pool type reactor were performed. The moderator temperature coefficient of reactivity ({alpha}{sub {omega}}) was obtained and found to be different in two core loadings. The measured {alpha}{sub {omega}} of one core loading was {minus}13 pcm/{degrees}C at the temperature range of 23-30{degrees}C. This value of {alpha}{sub {omega}} is comparable to the data published by the IAEA. The {alpha}{sub {omega}} measured in the second core loading was found to be {minus}8 pcm/{degrees}C at the same temperature range. Another phenomenon considered in this study is core behavior during reactivity insertion transient. The results were compared to a core simulation using the Dynamic Simulator for Nuclear Power Plants. It was found that in the second core loading factors other than the moderator temperature influence the core reactivity more than expected. These effects proved to be extremely dependent on core configuration and may in certain core loadings render the reactor`s reactivity coefficient undesirable.

  13. Human thermoregulation and measurement of body temperature in exercise and clinical settings.

    Science.gov (United States)

    Lim, Chin Leong; Byrne, Chris; Lee, Jason Kw

    2008-04-01

    This review discusses human thermoregulation during exercise and the measurement of body temperature in clinical and exercise settings. The thermoregulatory mechanisms play important roles in maintaining physiological homeostasis during rest and physical exercise. Physical exertion poses a challenge to thermoregulation by causing a substantial increase in metabolic heat production. However, within a non-thermolytic range, the thermoregulatory mechanisms are capable of adapting to sustain physiological functions under these conditions. The central nervous system may also rely on hyperthermia to protect the body from "overheating." Hyperthermia may serve as a self-limiting signal that triggers central inhibition of exercise performance when a temperature threshold is achieved. Exposure to sub-lethal heat stress may also confer tolerance against higher doses of heat stress by inducing the production of heat shock proteins, which protect cells against the thermolytic effects of heat. Advances in body temperature measurement also contribute to research in thermoregulation. Current evidence supports the use of oral temperature measurement in the clinical setting, although it may not be as convenient as tympanic temperature measurement using the infrared temperature scanner. Rectal and oesophagus temperatures are widely accepted surrogate measurements of core temperature (Tc), but they cause discomfort and are less likely to be accepted by users. Gastrointestinal temperature measurement using the ingestible temperature sensor provides an acceptable level of accuracy as a surrogate measure of Tc without causing discomfort to the user. This form of Tc measurement also allows Tc to be measured continuously in the field and has gained wider acceptance in the last decade.

  14. Warm body temperature facilitates energy efficient cortical action potentials.

    Directory of Open Access Journals (Sweden)

    Yuguo Yu

    Full Text Available The energy efficiency of neural signal transmission is important not only as a limiting factor in brain architecture, but it also influences the interpretation of functional brain imaging signals. Action potential generation in mammalian, versus invertebrate, axons is remarkably energy efficient. Here we demonstrate that this increase in energy efficiency is due largely to a warmer body temperature. Increases in temperature result in an exponential increase in energy efficiency for single action potentials by increasing the rate of Na(+ channel inactivation, resulting in a marked reduction in overlap of the inward Na(+, and outward K(+, currents and a shortening of action potential duration. This increase in single spike efficiency is, however, counterbalanced by a temperature-dependent decrease in the amplitude and duration of the spike afterhyperpolarization, resulting in a nonlinear increase in the spike firing rate, particularly at temperatures above approximately 35°C. Interestingly, the total energy cost, as measured by the multiplication of total Na(+ entry per spike and average firing rate in response to a constant input, reaches a global minimum between 37-42°C. Our results indicate that increases in temperature result in an unexpected increase in energy efficiency, especially near normal body temperature, thus allowing the brain to utilize an energy efficient neural code.

  15. Animal physiology. Summer declines in activity and body temperature offer polar bears limited energy savings.

    Science.gov (United States)

    Whiteman, J P; Harlow, H J; Durner, G M; Anderson-Sprecher, R; Albeke, S E; Regehr, E V; Amstrup, S C; Ben-David, M

    2015-07-17

    Polar bears (Ursus maritimus) summer on the sea ice or, where it melts, on shore. Although the physiology of "ice" bears in summer is unknown, "shore" bears purportedly minimize energy losses by entering a hibernation-like state when deprived of food. Such a strategy could partially compensate for the loss of on-ice foraging opportunities caused by climate change. However, here we report gradual, moderate declines in activity and body temperature of both shore and ice bears in summer, resembling energy expenditures typical of fasting, nonhibernating mammals. Also, we found that to avoid unsustainable heat loss while swimming, bears employed unusual heterothermy of the body core. Thus, although well adapted to seasonal ice melt, polar bears appear susceptible to deleterious declines in body condition during the lengthening period of summer food deprivation.

  16. Urine temperature as an index for the core temperature of industrial workers in hot or cold environments

    Science.gov (United States)

    Kawanami, Shoko; Horie, Seichi; Inoue, Jinro; Yamashita, Makiko

    2012-11-01

    Workers working in hot or cold environments are at risk for heat stroke and hypothermia. In Japan, 1718 people including 47 workers died of heat stroke in 2010 (Ministry of Health Labour and Welfare, Japan 2011). While the American Conference of Governmental Industrial Hygienists (ACGIH) recommendation lists the abnormal core temperature of workers as a criterion for halting work, no method has been established for reliably measuring core temperatures at workplaces. ISO 9886 (Ergonomics-evaluation of thermal strain by physiological measurements. ISO copyright office, Geneva, pp 3-14; 2004) recognizes urine temperature as an index of core temperature only at normal temperature. In this study we ascertained whether or not urine temperature could serve as an index for core temperature at temperatures above and below the ISO range. We measured urine temperature of 31 subjects (29.8 ± 11.9 years) using a thermocouple sensor placed in the toilet bowl at ambient temperature settings of 40, 20, and 5˚C, and compared them with rectal temperature. At all ambient temperature settings, urine temperature correlated closely with rectal temperature exhibiting small mean bias. Urine temperature changed in a synchronized manner with rectal temperature at 40˚C. A Bland and Altman analysis showed that the limits of agreement (mean bias ± 2SD) between rectal and urine temperatures were -0.39 to +0.15˚C at 40˚C (95%CI -0.44 to +0.20˚C) and -0.79 to +0.29˚C at 5˚C (-0.89 to +0.39˚C). Hence, urine temperature as measured by the present method is a practical surrogate index for rectal temperature and represents a highly reliable biological monitoring index for assessing hot and cold stresses of workers at actual workplaces.

  17. A Microwave Radiometer for Internal Body Temperature Measurement

    Science.gov (United States)

    Scheeler, Robert Patterson

    This thesis presents the analysis and design of a microwave radiometer for internal body temperature measurements. There is currently no available method for non-invasive temperature measurement inside the human body. However, knowledge of both relative and absolute temperature variations over time is important to a number of medical applications. The research presented in this thesis details a proof-of-concept near-field microwave radiometer demonstrating relative thermometry of a multi-layer phantom. There are a number of technical challenges addressed in this thesis for radiometric determination of sub-degree temperature variations in the human body. A theoretical approach is developed for determining sensing depth from known complex layered tissues, which is defined as a figure of merit, and is shown to be dependent on frequency, electrical properties of the tissues, and the near-field probe. In order to obtain depth resolution, multiple frequency operation can be used, so multi-frequency probes are designed and demonstrated in this work. The choice of frequencies is determined not only by the tissue material properties, but also by the ever increasing radio interference in the environment. In this work, quiet bands allocated to radio astronomy are investigated. The radiometer and probe need to be compact to be wearable, and several advancements are made towards a fully wearable device: multi-frequency low-profile probes are designed and fabricated on a flexible substrate and the process of on-chip integration is demonstrated by a GaAs MMIC cold noise source for radiometer calibration. The implemented proof-of-concept device consists of two radiometers at 1.4 GHz and 2.7 GHz, designed with commercial inexpensive devices that can enable sufficient sensitivity. The device is tested on a phantom with two water layers whose temperatures are varied in a controlled manner, and focused on the human body temperature range. Measured results are discussed qualitatively

  18. Temperature control of thermal radiation from composite bodies

    Science.gov (United States)

    Jin, Weiliang; Polimeridis, Athanasios G.; Rodriguez, Alejandro W.

    2016-03-01

    We demonstrate that recent advances in nanoscale thermal transport and temperature manipulation can be brought to bear on the problem of tailoring thermal radiation from wavelength-scale composite bodies. We show that such objects—complicated arrangements of phase-change chalcogenide (Ge2Sb2Te5 ) glasses and metals or semiconductors—can be designed to exhibit strong resonances and large temperature gradients, which in turn lead to large and highly directional emission at midinfrared wavelengths. We find that partial directivity depends sensitively on a complicated interplay between shape, material dispersion, and temperature localization within the objects, requiring simultaneous design of the electromagnetic scattering and thermal properties of these structures. Our calculations exploit a recently developed fluctuating-volume current formulation of electromagnetic fluctuations that rigorously captures radiation phenomena in structures with strong temperature and dielectric inhomogeneities, such as those studied here.

  19. Numerical simulation of temperature and strength distributions of mold(core) on heating

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    By using Visual C+ +, a model with post-processing was carried out to simulate the temperature and strength distributions of the mold(core). The results are shown in 256-color graphic mode. With this model, the temperature and strength distributions of the mold(core) both in case of heating process for core in the furnace and solidification process for a thin-wall aluminum alloy casting in the mold(core) are numerically simulated. The results show that the temperature and strength distributions of the mold(core) were uneven because the thermal conductivity of the resin sand was much small. This study laid a basis for the optimum design of the mold(core) properties.

  20. Black-body anomaly: analysis of temperature offsets

    Science.gov (United States)

    Szopa, M.; Hofmann, R.; Giacosa, F.; Schwarz, M.

    2008-04-01

    Based on the postulate that photon propagation is governed by a dynamically broken SU(2) gauge symmetry (scale ˜10-4 eV) we make predictions for temperature offsets due to a low-temperature (a few times the present CMB temperature) spectral anomaly at low frequencies. Temperature offsets are extracted from least-square fits of the anomalous black-body spectra to their conventional counterparts. We discuss statistical errors, compare our results with those obtained from calibration data of the FIRAS instrument, and point out that our predicted offsets are screened by experimental errors given the frequency range used by FIRAS to perform their spectral fits. We also make contact with the WMAP observation by blueshifting their frequency bands. Although our results hint towards a strong dynamical component in the CMB dipole and an explanation of low-l suppression, it is important in view of its particle-physics implications that the above postulate be verified/falsified by an independent low-temperature black-body precision experiment.

  1. Black Body Detector Temperature from Gall and Planck Perspectives

    Science.gov (United States)

    Gall, Clarence A.

    2009-05-01

    The laws of Gall (http://sites.google.com/site/purefieldphysics) and Planck are generally defined with zero intensity at 0 K. However actual measurements involve detectors above absolute zero. These detectors must also be treated as approximate black body radiators. The zero intensity reference point is thus defined by the radiated intensity at the detector temperature. Planck's law thus becomes ( IP=c1λ^51e^c2λT;-1-c1λ^51e^c2λTd;-1) where Td is the detector temperature. Provided that T>Td;;;IP;is;always>0. Thus from a Planck perspective, wavelength increase should not be a factor in defining detector temperature. The corresponding expression for Gall's law is ( IG=σT^6b^2λe^-λTb-σTd^6b^2λe^-λTdb) . Above the crossover wavelength (http://absimage.aps.org/image/MWSMAR09-2008-000004.pdf), even though T>Td;;;IG<0. From a Gall perspective, this sets a limit on the long wavelength range for a given detector temperature. Longer wavelength measurements require lower detector temperatures. For a 6000 K black body radiator, the long wavelength crossover limits for detectors at 300 K, 100 K and 4 K are 9.138, 12.066 and 21.206 microns respectively.

  2. Study on multidimensional temperature and flow field in pebble core

    Energy Technology Data Exchange (ETDEWEB)

    Park, Goon Cherl; Lee, J. J.; Cho, Y. J.; Kim, J. W. [Seoul Nat. Univ., Seoul (Korea, Republic of); Kim, Kwang Yong; Choi, J. Y.; Lee, Y. M.; Cheong, S. H. [Inha Univ., Incheon (Korea, Republic of)

    2006-02-15

    This project intends to contribute to the national PBR technology development by improving the system code and investigating the applicability of CFD code to pebble core. This project consists of five research tasks below to consequently contribute to the assessment of reactor types for hydrogen production by producing a set of experimental data and the results of CFD code model assessment. Turbulent flow experiment and model assessment. CFD analysis for local flow field and heat transfer in pebble core. Experiment on accident flow and assessment of CFD applicability. Sensitivity analysis for geometrical parameters of inlet plenum. Experiment on effective thermal conductivity and model improvement.

  3. Identification of Bodies Exposed to High Temperatures Based on Macroscopic...

    OpenAIRE

    Barraza Salcedo, María del Socorro; Universidad Metropolitana de Barranquilla. Barranquilla; Rebolledo Cobos, Martha Leonor; Universidad Metropolitana de Barranquilla

    2016-01-01

    ABSTRACT. Background: Forensic dentistry in cases of incineration provides scientific elements that allow the identification of bodies, by analyzing dental organs, through the isolation of DNA obtained from the pulp as an alternative to confirm the identity of the victim. When the degree of temperature is highly elevated, dental tissues are vulnerable and therefore the DNA pulp is not salvageable, wasting resources and time by lack of standards to identify macroscopic characteristics that ind...

  4. Effects of non-uniform core flow on peak cladding temperature: MOXY/SCORE sensitivity calculations

    Energy Technology Data Exchange (ETDEWEB)

    Chang, S.C.

    1979-08-15

    The MOXY/SCORE computer program is used to evaluate the potential effect on peak cladding temperature of selective cooling that may result from a nonuniform mass flux at the core boundaries during the blowdown phase of the LOFT L2-4 test. The results of this study indicate that the effect of the flow nonuniformity at the core boundaries will be neutralized by a strong radial flow redistribution in the neighborhood of core boundaries. The implication is that the flow nonuniformity at the core boundaries has no significant effect on the thermal-hydraulic behavior and cladding temperature at the hot plane.

  5. Contribution of thermal and nonthermal factors to the regulation of body temperature in humans.

    Science.gov (United States)

    Mekjavic, Igor B; Eiken, Ola

    2006-06-01

    The set point has been used to define the regulated level of body temperature, suggesting that displacements of core temperature from the set point initiate heat production (HP) and heat loss (HL) responses. Human and animal experiments have demonstrated that the responses of sweating and shivering do not coincide at a set point but rather establish a thermoeffector threshold zone. Neurophysiological studies have demonstrated that the sensor-to-effector pathways for HP and HL overlap and, in fact, mutually inhibit each other. This reciprocal inhibition theory, presumably reflecting the manner in which thermal factors contribute to homeothermy in humans, does not incorporate the effect of nonthermal factors on temperature regulation. The present review examines the actions of these nonthermal factors within the context of neuronal models of temperature regulation, suggesting that examination of these factors may provide further insights into the nature of temperature regulation. It is concluded that, although there is no evidence to doubt the existence of the HP and HL pathways reciprocally inhibiting one another, it appears that such a mechanism is of little consequence when comparing the effects of nonthermal factors on the thermoregulatory system, since most of these factors seem to exert their influence in the region after the reciprocal cross-inhibition. At any given moment, both thermal and several nonthermal factors will be acting on the thermoregulatory system. It may, therefore, not be appropriate to dismiss the contribution of either when discussing the regulation of body temperature in humans.

  6. Nocturnal body temperature in wintering blue tits is affected by roost-site temperature and body reserves.

    Science.gov (United States)

    Nord, Andreas; Nilsson, Johan F; Nilsson, J-Å

    2011-09-01

    Birds commonly use rest-phase hypothermia, a controlled reduction of body temperature (T(b)), to conserve energy during times of high metabolic demands. We assessed the flexibility of this heterothermic strategy by increasing roost-site temperature and recording the subsequent T(b) changes in wintering blue tits (Cyanistes caeruleus L.), assuming that blue tits would respond to treatment by increasing T(b). We found that birds increased T(b) when roost-site temperature was increased, but only at low ambient temperatures. Moreover, birds with larger fat reserves regulated T(b) at higher levels than birds carrying less fat. This result implies that a roosting blue tit maintains its T(b) at the highest affordable level, as determined by the interacting effect of ecophysiological costs associated with rest-phase hypothermia and energy reserves, in order to minimize potential fitness costs associated with a low T(b).

  7. Surgical implantation of temperature-sensitive transmitters and data-loggers to record body temperature in koalas (Phascolarctos cinereus).

    Science.gov (United States)

    Adam, D; Johnston, S D; Beard, L; Nicholson, V; Lisle, A; Gaughan, J; Larkin, R; Theilemann, P; Mckinnon, A; Ellis, W

    2016-01-01

    Under predicted climate change scenarios, koala distribution in Australia is expected to be adversely affected. Recent studies have attempted to identify suitable habitat, based on models of bioclimatic regions, but to more accurately reflect the thermal tolerance and behavioural adaptations of the various regional populations, the koala's response to periods of heat stress will need to be investigated at the individual animal level. To explore the safety and suitability of temperature-sensitive intra-abdominal implants for monitoring core body temperature in the koala. A temperature-sensitive radio transmitter and thermal iButton data-logger, waxed together as a package, were surgically implanted into the abdominal cavity of four captive koalas. In one animal the implant was tethered and in the other three, it was left free-floating. After 3 months, the implants were removed and all four koalas recovered without complications. The tethering of the package in the one koala resulted in minor inflammation and adhesion, so this practice was subsequently abandoned. The free-floating deployments were complication-free and revealed a diurnal body temperature rhythm, with daily ranges of 0.4-2.8°C. The minimum recorded body temperature was 34.2°C and the maximum was 37.7°C. The difference in the readings obtained from the transmitters and iButtons never exceeded 0.3°C. The suitability of the surgical approach was confirmed, from both the animal welfare and data collection points of view. © 2016 Australian Veterinary Association.

  8. Heart rate and core temperature responses of elite pit crews during automobile races.

    Science.gov (United States)

    Ferguson, David P; Bowen, Robert S; Lightfoot, J Timothy

    2011-08-01

    There is limited information regarding the physiological and psychological demands of the racing environment, and the subsequent effect on the performance of pit crew athletes. The purpose of this study was to evaluate heart rates (HRs) and core body temperatures (CTs) of pit crew athletes in the race environment. The HR and CT of pit crew athletes (n = 7) and control subjects were measured during 6 National Association for Stock Car Automobile Racing Sprint Cup races using ingestible sensors (HQ Inc, Palmetto, FL, USA). The HR and CT were measured before each race, at 15-minute intervals during the race, and upon completion of each pit stop. Compared to the control subject at each race, the pit crew athletes had significantly (p = 0.014) lower core temperatures (CTs). The pit crew athletes displayed higher HRs on the asphalt tracks than on concrete tracks (p = 0.011), and HR responses of the crew members were significantly (p = 0.012) different between pit crew positions, with the tire changers and jackman exhibiting higher HRs than the tire carriers. Unexpectedly, the CTs of the pit crew athletes were not elevated in the race environment, despite high ambient temperatures and the extensive fire-protection equipment (e.g., helmet, suit, gloves) each pit crew athlete wore. The lack of CT change is possibly the result of the increased HR more efficiently shunting blood to the skin and dissipating heat as a consequence of the athletes' extensive training regimen and ensuing heat acclimation. Additionally, it is possible that psychological stress unique to several of the tracks provided an additive effect resulting in increased heart rates.

  9. Do fentanyl and morphine influence body temperature after severe burn injury?

    Science.gov (United States)

    Kahn, Steven Alexander; Beers, Ryan J; Lentz, Christopher W

    2011-01-01

    Fentanyl lacks the antiinflammatory properties of morphine. Morphine attenuates the inflammatory response through differential stimulation of μ-receptor subtypes. Patients who receive morphine during coronary artery bypass graft have been shown to experience less postoperative fever than those who receive fentanyl. Patients who receive continuous fentanyl infusions in increased room temperatures after thermal injury may be at increased risk to experience higher body temperature than those who receive morphine. The records of 28 patients with >20%TBSA burn in 30 intensive care unit rooms (13 received fentanyl and 15 received morphine or hydromorphone) and 12 trauma patients who received fentanyl in 22°C intensive care unit rooms were reviewed. Mean maximum core temperature and percentage of temperature recordings > 39°C in the first 48 hours of admission were compared between burn patients who received fentanyl, those who did not, and with trauma patients. Burn patients exposed to fentanyl experienced significantly higher temperatures (40.1 ± 0.9°C) compared with those given morphine (38.7 ± 0.8°C) and compared with trauma patients (37.5 ± 2.4°C), P Burn patients on fentanyl had temperatures > 39°C for a higher percentage of time (33 ± 27%) than those without fentanyl (7.2 ± 13%) and trauma patients (1 ± 2.8%), P Burn patients who receive fentanyl in 30°C rooms experience higher body temperatures and are febrile for a higher percentage of time than those receiving morphine only. Morphine has well-established antiinflammatory properties and likely attenuates the postburn inflammatory response more than fentanyl, resulting in lower body temperatures. This phenomenon needs to be further investigated in additional studies.

  10. Earliest phases of star formation (EPoS): Dust temperature distributions in isolated starless cores

    CERN Document Server

    Lippok, N; Henning, Th; Beuther, Z Balog H; Kainulainen, J; Krause, O; Linz, H; Nielbock, M; Ragan, S E; Robitaille, T P; Sadavoy, S I; Schmiedeke, A

    2016-01-01

    Constraining the temperature and density structure of dense molecular cloud cores is fundamental for understanding the initial conditions of star formation. We use Herschel observations of the thermal FIR dust emission from nearby isolated molecular cloud cores and combine them with ground-based submillimeter continuum data to derive observational constraints on their temperature and density structure. The aim of this study is to verify the validity of a ray-tracing inversion technique developed to derive the dust temperature and density structure of isolated starless cores directly from the dust emission maps and to test if the resulting temperature and density profiles are consistent with physical models. Using this ray-tracing inversion technique, we derive the dust temperature and density structure of six isolated starless cloud cores. We employ self-consistent radiative transfer modeling to the derived density profiles, treating the ISRF as the only heating source. The best-fit values of local strength o...

  11. 24-h core temperature in obese and lean men and women.

    Science.gov (United States)

    Hoffmann, Mindy E; Rodriguez, Sarah M; Zeiss, Dinah M; Wachsberg, Kelley N; Kushner, Robert F; Landsberg, Lewis; Linsenmeier, Robert A

    2012-08-01

    Maintenance of core temperature is a major component of 24-h energy expenditure, and its dysregulation could contribute to the pathophysiology of obesity. The relationship among temperature, sex, and BMI, however, has not been fully elucidated in humans. This study investigated core temperature in obese and lean individuals at rest, during 20-min exercise, during sleep, and after food consumption. Twelve lean (18.5-24.9 kg/m(2)) and twelve obese (30.0-39.9 kg/m(2)) healthy participants, ages 25-40 years old, were admitted overnight in a clinical research unit. Females were measured in the follicular menstrual phase. Core temperature was measured every minute for 24 h using the CorTemp system, a pill-sized sensor that measures core temperature while in the gastrointestinal tract and delivers the measurement via a radio signal to an external recorder. Core temperature did not differ significantly between the obese and lean individuals at rest, postmeals, during exercise, or during sleep (P > 0.5), but core temperature averaged over the entire study was significantly higher (0.1-0.2 °C) in the obese (P = 0.023). Each individual's temperature varied considerably during the study, but at all times, and across the entire study, women were ~0.4 °C warmer than men (P meals.

  12. SAPHIR: a physiome core model of body fluid homeostasis and blood pressure regulation.

    Science.gov (United States)

    Thomas, S Randall; Baconnier, Pierre; Fontecave, Julie; Françoise, Jean-Pierre; Guillaud, François; Hannaert, Patrick; Hernández, Alfredo; Le Rolle, Virginie; Mazière, Pierre; Tahi, Fariza; White, Ronald J

    2008-09-13

    We present the current state of the development of the SAPHIR project (a Systems Approach for PHysiological Integration of Renal, cardiac and respiratory function). The aim is to provide an open-source multi-resolution modelling environment that will permit, at a practical level, a plug-and-play construction of integrated systems models using lumped-parameter components at the organ/tissue level while also allowing focus on cellular- or molecular-level detailed sub-models embedded in the larger core model. Thus, an in silico exploration of gene-to-organ-to-organism scenarios will be possible, while keeping computation time manageable. As a first prototype implementation in this environment, we describe a core model of human physiology targeting the short- and long-term regulation of blood pressure, body fluids and homeostasis of the major solutes. In tandem with the development of the core models, the project involves database implementation and ontology development.

  13. Human Core Temperature Prediction for Heat-Injury Prevention

    Science.gov (United States)

    2015-05-01

    injuries across the services, including 311 cases of heat stroke . The risk of heat injury is modulated by both intrinsic factors (such as genetics... Biotechnology High Performance Computing Software Applications Insti- tute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research...stress (beyond 37 °C), progressing to hyperthermia and heat exhaustion (beyond 39 °C), and then to heat stroke (beyond 40 °C) [2]. The rising core

  14. Telemetry pill versus rectal and esophageal temperature during extreme rates of exercise-induced core temperature change

    NARCIS (Netherlands)

    Teunissen, L.P.J.; Haan, A. de; Koning, J.J. de; Daanen, H.A.M.

    2012-01-01

    Core temperature measurement with an ingestible telemetry pill has been scarcely investigated during extreme rates of temperature change, induced by short high-intensity exercise in the heat. Therefore, nine participants performed a protocol of rest, (sub)maximal cycling and recovery at 30 °C. The p

  15. Alkaline Earth Core Level Photoemission Spectroscopy of High-Temperature Superconductors

    Science.gov (United States)

    Vasquez, R.

    1993-01-01

    This paper examines photoemission measurements of the alkaline Earth core levels of high-temperature superconductors and related materials, models that seek to explain the large negative shifts observed relative to the corresponding alkaline Earth metals, and the effect of lattice site disorder on the core level spectra and the presence or absence of intrinsic surface peaks.

  16. Alkaline Earth Core Level Photoemission Spectroscopy of High-Temperature Superconductors

    Science.gov (United States)

    Vasquez, R.

    1993-01-01

    This paper examines photoemission measurements of the alkaline Earth core levels of high-temperature superconductors and related materials, models that seek to explain the large negative shifts observed relative to the corresponding alkaline Earth metals, and the effect of lattice site disorder on the core level spectra and the presence or absence of intrinsic surface peaks.

  17. Black-Body Anomaly: Analysis of Temperature Offsets

    CERN Document Server

    Szopa, Michal; Giacosa, Francesco; Schwarz, Markus

    2007-01-01

    Based on the postulate that photon propagation is governed by a dynamically broken SU(2) gauge symmetry (scale $\\sim 10^{-4} $eV) we make predictions for temperature offsets due to a low-temperature (a few times the present CMB temperature) spectral anomaly at low frequencies. Temperature offsets are extracted from least-square fits of the anomalous black-body spectra to their conventional counterparts. We discuss statistical errors, compare our results with those obtained from calibration data of the FIRAS instrument, and point out that our predicted offsets are screened by experimental errors given the frequency range used by FIRAS to perform their spectral fits. We also make contact with the WMAP observation by blueshifting their frequency bands. Although our results hint towards a strong dynamical component in the CMB dipole and an explanation of low-$l$ suppression it is important in view of its particle-physics implications that the above postulate be verified/falsified by an independent low-temperature...

  18. Temperature Evaluation of Heat Transferring Body while Preparing Temperature Chart of Heating Technologies and Metal Thermal Treatment

    Directory of Open Access Journals (Sweden)

    A. P. Nesenchuk

    2011-01-01

    Full Text Available The paper considers problems pertaining to temperature evaluation of a heat transferring body in the operational space of high temperature installations. A formula for evaluation of this temperature has been written down in the paper. Calculation of a heating transferring body (furnace makes it possible to realize temperature chart parameters in the plant heating technologies and steel thermal treatment.

  19. Exact Solution to Finite Temperature SFDM: Natural Cores without Feedback

    CERN Document Server

    Robles, Victor H

    2012-01-01

    Recent high-quality observations of low surface brightness (LSB) galaxies have shown that their dark matter (DM) halos prefer flat central density profiles. On the other hand the standard cold dark matter model simulations predict a more cuspy behavior. One mechanism to reconcile the simulations with the observed data is the feedback from star formation, this might be successful in isolated dwarf galaxies but its success in LSB galaxies remains unclear. Additionally, including too much feedback in the simulations is a double-edged sword, in order to obtain a cored DM distribution from an initially cuspy one, the feedback recipes usually require to remove a large quantity of baryons from the center of galaxies, unfortunately they also produce twice more satellite galaxies of a given luminosity than what is observed. Therefore, one DM profile that produces cores naturally and that does not require large amounts of feedback would be preferable. We find both requirements to be satisfied in the scalar field dark m...

  20. Temperature and methane records over the last 2 ka in Dasuopu ice core

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    High resolution δ18O and methane records over the last 2ka have been reconstructed from Dasuopu ice core recovered from the Himalayas. Analysis shows that the δ18O record correlates well with the Northern Hemispheric temperature, Dunde ice core record, and with temperature record in eastern China. The warming trend detected in δ18O record from the last century is similar to that during the Medieval warm period. There is a dramatic increasing in methane concentration in the Dasuopu ice core, which reached 1031 nmol@mol-1 in 1997. Moreover, methane concentration in the Dasuopu ice core is about 15%-20% higher than that in Antarctica and Greenland. There is a positive correlation between methane concentration and δ18O in Dasuopu ice core.

  1. Dust Ejection from Planetary Bodies by Temperature Gradients: Laboratory Experiments

    CERN Document Server

    Kelling, Thorben; Kocifaj, Miroslav; Klacka, Jozef; Reiss, Dennis

    2011-01-01

    Laboratory experiments show that dusty bodies in a gaseous environment eject dust particles if they are illuminated. We find that even more intense dust eruptions occur when the light source is turned off. We attribute this to a compression of gas by thermal creep in response to the changing temperature gradients in the top dust layers. The effect is studied at a light flux of 13 kW/(m*m) and 1 mbar ambient pressure. The effect is applicable to protoplanetary disks and Mars. In the inner part of protoplanetary disks, planetesimals can be eroded especially at the terminator of a rotating body. This leads to the production of dust which can then be transported towards the disk edges or the outer disk regions. The generated dust might constitute a significant fraction of the warm dust observed in extrasolar protoplanetary disks. We estimate erosion rates of about 1 kg/s for 100 m parent bodies. The dust might also contribute to subsequent planetary growth in different locations or on existing protoplanets which ...

  2. Getting the temperature right: Understanding thermal emission from airless bodies

    Science.gov (United States)

    Bandfield, J.; Greenhagen, B. T.; Hayne, P. O.; Williams, J. P.; Paige, D. A.

    2016-12-01

    Thermal infrared measurements are crucial for understanding a wide variety of processes present on airless bodies throughout the solar system. Although these data can be complex, they also contain an enormous amount of useful information. By building a framework for understanding thermal infrared datasets, significant advances are possible in the understanding of regolith development, detection of H2O and OH-, characterizing the nature and magnitude of Yarkovsky and YORP effects, and determination of the properties of newly identified asteroids via telescopic measurements. Airless bodies can have both extremely rough and insulating surfaces. For example, these two properties allow for sunlit and shaded or buried lunar materials separated by just a few centimeters to vary by 200K. In this sense, there is no "correct" temperature interpretable from orbital, or even in-situ, measurements. The surface contains a wide mixture of temperatures in the field of view, and rougher surfaces greatly enhance this anisothermality. We have used the Lunar Reconnaissance Orbiter Diviner Radiometer to characterize these effects by developing new targeting and analysis methods, including extended off-nadir observations and combined surface roughness and thermal modeling (Fig. 1). These measurements and models have shown up to 100K brightness temperature differences from measurements that differ only in the viewing angle of the observation. In addition, the thermal emission near 3 μm can be highly dependent on the surface roughness, resulting in more extensive and prominent lunar 3 μm H2O and OH-absorptions than indicated in data corrected by isothermal models. The datasets serve as a foundation for the derivation and understanding of surface spectral and thermophysical properties. Roughness and anisothermality effects are likely to dominate infrared measurements from many spacecraft, including LRO, Dawn, BepiColombo, OSIRIS-REx, Hayabusa-2, and Europa Clipper.

  3. [A new method for the transcutaneous measurement of deep body temperature during anaesthesia and intensive care (author's transl)].

    Science.gov (United States)

    Jost, U; Hanf, K; Köhler, C O; Just, O H

    1978-04-01

    A new method for monitoring deep body temperature is described. It is based on the establishment, by means of electronic appliances, of a zone without heatflow from the deep tissues. The method is simple and the results compare favourably with those obtained by other procedures for measuring core temperature. The uses of this transcutaneous mehtod are discussed and its advantages and reliability in the operating theatre and intensive care unit are emphasized. It becomes less reliable if it is employed during and after extracorporeal circulation in hypothermia on account of the temperature gradient.

  4. Acute normobaric hypoxia reduces body temperature in humans.

    Science.gov (United States)

    DiPasquale, Dana M; Kolkhorst, Fred W; Buono, Michael J

    2015-03-01

    Anapyrexia is the regulated decrease in body temperature during acute exposure to hypoxia. This study examined resting rectal temperature (Trec) in adult humans during acute normobaric hypoxia (NH). Ten subjects breathed air consisting of 21% (NN), 14% (NH14), and 12% oxygen (NH12) for 30 min each in thermoneutral conditions while Trec and blood oxygen saturation (Spo2) were measured. Linear regression indicated that Spo2 was progressively lower in NH14 (p=0.0001) and NH12 (p=0.0001) compared to NN, and that Spo2 in NH14 was different than NH12 (p=0.00001). Trec was progressively lower during NH14 (p=0.014) and in NH12 (p=0.0001) compared to NN. The difference in Trec between NH14 and NH12 was also significant (p=0.0287). Spo2 was a significant predictor of Trec such that for every 1% decrease in Spo2, Trec decreased by 0.15°C (p=0.0001). The present study confirmed that, similar to many other species, human adults respond to acute hypoxia exposure by lowering rectal temperature.

  5. Type I collagen is thermally unstable at body temperature.

    Science.gov (United States)

    Leikina, E; Mertts, M V; Kuznetsova, N; Leikin, S

    2002-02-05

    Measured by ultra-slow scanning calorimetry and isothermal circular dichroism, human lung collagen monomers denature at 37 degrees C within a couple of days. Their unfolding rate decreases exponentially at lower temperature, but complete unfolding is observed even below 36 degrees C. Refolding of full-length, native collagen triple helices does occur, but only below 30 degrees C. Thus, contrary to the widely held belief, the energetically preferred conformation of the main protein of bone and skin in physiological solution is a random coil rather than a triple helix. These observations suggest that once secreted from cells collagen helices would begin to unfold. We argue that initial microunfolding of their least stable domains would trigger self-assembly of fibers where the helices are protected from complete unfolding. Our data support an earlier hypothesis that in fibers collagen helices may melt and refold locally when needed, giving fibers their strength and elasticity. Apparently, Nature adjusts collagen hydroxyproline content to ensure that the melting temperature of triple helical monomers is several degrees below rather than above body temperature.

  6. Phase Diagram of Iron, Revised-Core Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Ahrens, T.J.; Chen, G.Q.; Holland, K.G.

    1999-01-27

    Shock-wave experiments on iron preheated to 1,573 K conducted from 14 to 73 GPa, yield new data for sound velocities of the {gamma}- and liquid-phases. Melting was observed in the highest pressure ({approximately} 71 {+-} 2 GPa) experiments at calculated shock temperatures of 2,775 {+-} 160 K. This single crossing of the {gamma}-liquid boundary measured here agrees closely with the {gamma}-iron melting line determined by Boehler [1993], Saxena et al. [1993], and Jephcoat and Besedin [1997]. This {gamma}-iron melting curve is {approximately} 300 C lower than that of Shen et al. [1998b] at 80 GPa.

  7. Contribution of a Membrane Estrogen Receptor to the Estrogenic Regulation of Body Temperature and Energy Homeostasis

    Science.gov (United States)

    Roepke, Troy A.; Bosch, Martha A.; Rick, Elizabeth A.; Lee, Benjamin; Wagner, Edward J.; Seidlova-Wuttke, Dana; Wuttke, Wolfgang; Scanlan, Thomas S.; Rønnekleiv, Oline K.; Kelly, Martin J.

    2010-01-01

    The hypothalamus is a key region of the central nervous system involved in the control of homeostasis, including energy and core body temperature (Tc). 17β-Estradiol (E2) regulates Tc, in part, via actions in the basal hypothalamus and preoptic area. E2 primarily controls hypothalamic functions via the nuclear steroid receptors, estrogen receptor α/β. However, we have previously described an E2-responsive, Gq-coupled membrane receptor that reduces the postsynaptic inhibitory γ-aminobutyric acid-ergic tone and attenuates postovariectomy body weight gain in female guinea pigs through the administration of a selective Gq-mER ligand, STX. To determine the role of Gq-mER in regulating Tc, energy and bone homeostasis, ovariectomized female guinea pigs, implanted ip with temperature probes, were treated with STX or E2 for 7–8 wk. Tc was recorded for 4 wk, whereas food intake and body weight were monitored daily. Bone density and fat accumulation were determined postmortem. Both E2 and STX significantly reduced Tc in the females compared with controls. STX, similar to E2, reduced food intake and fat accumulation and increased tibial bone density. Therefore, a Gq-mER-coupled signaling pathway appears to be involved in maintaining homeostatic functions and may constitute a novel therapeutic target for treatment of hypoestrogenic symptoms. PMID:20685867

  8. Body temperature increases during pediatric full mouth rehabilitation surgery under general anesthesia

    Directory of Open Access Journals (Sweden)

    Yi-Shan Chuang

    2015-12-01

    Conclusion: Body temperature transiently increased during pediatric full mouth rehabilitation surgery. The increase in body temperature was associated with operation duration. The etiology is uncertain. Continuous body temperature monitoring and the application of both heating and cooling devices during pediatric full mouth rehabilitation surgery should be mandatory.

  9. Experimental and Analytic Study on the Core Bypass Flow in a Very High Temperature Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Richard Schultz

    2012-04-01

    Core bypass flow has been one of key issues in the very high temperature reactor (VHTR) design for securing core thermal margins and achieving target temperatures at the core exit. The bypass flow in a prismatic VHTR core occurs through the control element holes and the radial and axial gaps between the graphite blocks for manufacturing and refueling tolerances. These gaps vary with the core life cycles because of the irradiation swelling/shrinkage characteristic of the graphite blocks such as fuel and reflector blocks, which are main components of a core's structure. Thus, the core bypass flow occurs in a complicated multidimensional way. The accurate prediction of this bypass flow and counter-measures to minimize it are thus of major importance in assuring core thermal margins and securing higher core efficiency. Even with this importance, there has not been much effort in quantifying and accurately modeling the effect of the core bypass flow. The main objectives of this project were to generate experimental data for validating the software to be used to calculate the bypass flow in a prismatic VHTR core, validate thermofluid analysis tools and their model improvements, and identify and assess measures for reducing the bypass flow. To achieve these objectives, tasks were defined to (1) design and construct experiments to generate validation data for software analysis tools, (2) determine the experimental conditions and define the measurement requirements and techniques, (3) generate and analyze the experimental data, (4) validate and improve the thermofluid analysis tools, and (5) identify measures to control the bypass flow and assess its performance in the experiment.

  10. Body temperature regulation: Sasang typology-based perspective

    Directory of Open Access Journals (Sweden)

    Duong Duc Pham

    2015-12-01

    Full Text Available Global warming induces a dramatic elevation of heat-related morbidity and mortality worldwide. Individual variation of heat stress vulnerability depends on various factors such as age, gender, living area and conditions, health status, and individual innate characteristics. Sasang typology is a unique form of Korean traditional medicine, which is based on the hypothesis that constitution-specific traits of an individual determine the particular distinctive tendency in various aspects, including responses to the external environment. Recent scientific evidence shows that Sasang types differ in body composition, metabolic profile, susceptibility to certain disease patterns, and perspiration. This review aims to interpret these findings under the context of heat balance consisting of heat production (Hprod, heat loss (Hloss, and heat load (Hload. Based on the published data, at a given body mass, the TaeEum type tended to have a lower Hprod at rest and at the exhaustion state, which may indicate the lower metabolic efficiency of this type. Meanwhile, the surface-to-mass ratio and heat capacity of the TaeEum type appear to be lower, implying a lower heat dissipation capacity and heat storage tolerance. Thus, because of these characteristics, the TaeEum type seems to be more vulnerable to heat stress than the other constitutions. Differences in temperature regulation across constitutional types should be taken into account in daily physical activity, health management, and medical research.

  11. High-temperature photoluminescence of CdSe/CdS core/shell nanoheterostructures.

    Science.gov (United States)

    Diroll, Benjamin T; Murray, Christopher B

    2014-06-24

    The steady-state and time-resolved photoluminescence properties of CdSe/CdS heterostructures are studied as a function of temperature from 300 to 600 K. The emission properties of samples are found to behave similarly to bulk CdSe, with the samples maintaining high color purity and a slightly contracting band gap at elevated temperature. Photoluminescence from CdSe/CdS samples is maintained with high stability over prolonged illumination and multiple heating and cooling cycles. Structures synthesized with variation in the core and the shell dimensions show that the preservation of emission intensity at high temperature depends strongly on the microscopic structure of the samples. For samples synthesized by seeded growth, the size of the CdSe core is highly correlated with the fraction of preserved sample photoluminescence intensity at high temperature. Temperature-dependent lifetime data suggest that the core structure predicts the stability of photoluminescence at elevated temperatures by controlling the radiative rate. The rate of electron capture, for which the volume fraction of the core is a structural proxy, underpins the ability for radiative processes to compete with thermally induced nonradiative decay pathways. Heterostructures synthesized below 200 °C using highly reactive organometallic precursors show markedly lower thermal stability than samples prepared by seeded growth at 360 °C, suggesting that the temperature of nanocrystal synthesis has direct consequences for the thermal stability of photoluminescence.

  12. Core Cross-linked Star Polymers for Temperature/pH Controlled Delivery of 5-Fluorouracil

    Directory of Open Access Journals (Sweden)

    Elizabeth Sánchez-Bustos

    2016-01-01

    Full Text Available RAFT polymerization with cross-linking was used to prepare core cross-linked star polymers bearing temperature sensitive arms. The arms consisted of a diblock copolymer containing N-isopropylacrylamide (NIPAAm and 4-methacryloyloxy benzoic acid (4MBA in the temperature sensitive block and poly(hexyl acrylate forming the second hydrophobic block, while ethyleneglycol dimethacrylate was used to form the core. The acid comonomer provides pH sensitivity to the arms and also increases the transition temperature of polyNIPAAm to values in the range of 40 to 46°C. Light scattering and atomic force microscopy studies suggest that loose core star polymers were obtained. The star polymers were loaded with 5-fluorouracil (5-FU, an anticancer agent, in values of up to 30 w/w%. In vitro release experiments were performed at different temperatures and pH values, as well as with heating and cooling temperature cycles. Faster drug release was obtained at 42°C or pH 6, compared to normal physiological conditions (37°C, pH 7.4. The drug carriers prepared acted as nanopumps changing the release kinetics of 5-FU when temperatures cycles were applied, in contrast with release rates at a constant temperature. The prepared core cross-linked star polymers represent advanced drug delivery vehicles optimized for 5-FU with potential application in cancer treatment.

  13. The Combined Strength of Thermodynamics and Comparative Planetology: Application of Activity Models to Core Formation in Terrestrial Bodies

    Science.gov (United States)

    Righter, K.; Pando, K. M.; Danielson, L. R.

    2015-01-01

    Recent models for accretion of terrestrial bodies involve metal-silicate equilibrium as the metallic core formed during growth. Most elements considered are either refractory or well studied elements for which effects of pressure, temperature, oxygen fugacity, and metallic liquid composition are well known. There are a large number of elements that are both siderophile and volatile, whose fate in such models is unknown, largely due to a lack of data at comparable conditions and com-positions (FeNi core with light elements such as S, C, Si, and O). We have focused on Ge, In, As, Sb and determined the effect of Si and C on metal-silicate partitioning, and developed a thermo-dynamic model that allows application of these new data to a wide range of planetary bodies. New experiments: We have previously carried out experiments with FeSi metallic liquid at C-saturated conditions at 1600 and 1800 C [4]. In a new series of experiments we investigate the effect of Si in carbon-free systems at 1600 C for comparison. Experiments were carried out at 1 GPa in MgO capsules using the same basaltic starting composition as in previous studies. The MgO capsule reacts with the silicate melt to form more MgO-rich liquids that have 22-26 wt% MgO. Experimental met-als and silicates were analyzed using a combination of electron microprobe analysis and laser ablation ICP-MS. Results: The new results can be interpreted by considering Ge as an example, in the simple exchange equilibrium Fe + GeO = FeO + Ge, where the equilibrium constant Kd can be examined as a function of Si content of the metal. The slope of lnKd vs. (1-XSi) for this new series allows derivation of the epsilon interaction parameter for each of these four elements and Si (both C-saturated and C-free).All four elements have positive epsilon values, indicating that Si causes a decrease in the partition coefficients; values are 6.6, 6.5, 27.8 and 25.2 for In, Ge, As, and Sb, respectively, at 1 GPa and 1600 C. As an example of

  14. Annular core for Modular High-Temperature Gas-Cooled Reactor (MHTGR)

    Energy Technology Data Exchange (ETDEWEB)

    Turner, R.F.; Baxter, A.M.; Stansfield, O.M.; Vollman, R.E.

    1987-08-01

    The active core of the 350 MW(t) MHTGR is annular in configuration, shaped to provide a large external surface-to-volume ratio for the transport of heat radially to the reactor vessel in case of a loss of coolant flow. For a given fuel temperature limit, the annular core provides approximately 40% greater power output over a typical cylindrical configuration. The reactor core is made up of columns of hexagonal blocks, each 793-mm high and 360-mm wide. The active core is 3.5 m in o.d., 1.65 m in i.d., and 7.93-m tall. Fuel elements contain TRISO-coated microspheres of 19.8% enriched uranium oxycarbide and of fertile thorium oxide. The core is controlled by 30 control rods which enter the inner and outer side reflectors from above.

  15. Annular core for the Modular High-Temperature Gas-cooled Reactor (MHTGR)

    Energy Technology Data Exchange (ETDEWEB)

    Turner, R.F.; Baxter, A.M.; Stansfield, O.M.; Vollman, R.E.

    The active core of the 350 MW(t) MHTGR is annular in configuration, shaped to provide a large external surface-to-volume ratio for the transport of heat radially to the reactor vessel in case of a loss of coolant flow. For a given fuel temperature limit, the annular core provides approximately 40% greater power output over a typical cylindrical configuration. The reactor core is made up to columns of hexagonal blocks, each 793 mm high and 360 mm wide. The active core is 3.5 m in outside diameter, 1.65 m in inside diameter, and 7.93 m tall. Fuel elements contain TRISO-coated microspheres of 19.8% enriched uranium oxycarbide and of fertile thorium oxide. The core is controlled by 30 control rods which enter the inner and outer side reflectors from above.

  16. Core Temperature Monitoring in Obstetric Spinal Anesthesia Using an Ingestible Telemetric Sensor.

    Science.gov (United States)

    du Toit, Leon; van Dyk, Dominique; Hofmeyr, Ross; Lombard, Carl J; Dyer, Robert A

    2017-08-09

    Perioperative hypothermia may affect maternal and neonatal outcomes after obstetric spinal anesthesia. Core temperature is often poorly monitored during spinal anesthesia, due to the lack of an accurate noninvasive core temperature monitor. The aim of this study was to describe core temperature changes and temperature recovery during spinal anesthesia for elective cesarean delivery. We expected that obstetric spinal anesthesia would be associated with a clinically relevant thermoregulatory insult (core temperature decrease >1.0°C). A descriptive study was conducted in 28 women. An ingestible telemetric temperature sensor was used to record core temperature over time (measured every 10 seconds). The primary outcome was the maximum core temperature decrease after spinal anesthetic injection. The secondary outcomes were lowest absolute core temperature, time to lowest temperature, time to recovery of core temperature, hypothermic exposure (degree-hours below 37.0°C), and the time-weighted hypothermic exposure (median number of degrees below 37.0°C per hour). Basic descriptive statistics, median spline smooth, and integration of the area below the 37.0°C line of the temperature-over-time curve were utilized to analyze the data. Intestinal temperature decreased by a mean (standard deviation) of 1.30°C (0.31); 99% confidence interval (CI), 1.14 to 1.46 after spinal anesthetic injection. The median (interquartile range [IQR]) time to temperature nadir was 0.96 (0.73-1.32) hours (95% CI, 0.88-1.22). Fourteen of the 28 participants experienced intestinal temperatures below 36.0°C after spinal injection. Temperature was monitored for a minimum of 8 hours after spinal injection. In 8 of 28 participants, intestinal temperature did not recover to baseline during the monitored period. A median (IQR) of 4.59 (3.38-5.92) hours (95% CI, 3.45-5.90) was required for recovery to baseline intestinal temperature in the remaining 20 patients. Participants experienced a median (IQR

  17. Effect of annealing temperature on the stress and structural properties of Ge core fibre

    Science.gov (United States)

    Zhao, Ziwen; Cheng, Xueli; Xue, Fei; He, Ting; Wang, Tingyun

    2017-09-01

    Effect of annealing temperature on the stress and structural properties of a Ge core fibre via the molten core drawing (MCD) method is investigated using Raman spectroscopy, Scanning electronic microscopy (SEM), and X-ray diffraction. The experimental results showed that the Raman peak position of the Ge fibre shifted from 297.6 cm-1 to 300.5 cm-1, and the FWHM value decreased from 4.53 cm-1 to 4.31 cm-1, when the annealing is carried out at 700 °C, 800 °C, and 900 °C, respectively. For the Ge core annealed at 900 °C, an apparent crystal grain can be seen in the SEM image, and the diffraction peaks of the (3 3 1) plane are generated in the X-ray diffraction spectra. These results show that optimising the annealing temperature allows the release of the residual stress in the Ge core. When the Ge core fibre is annealed at 900 °C, it exhibits the lowest residual stress and the highest crystal quality, and the quality improvement relative to that of the sample annealed at 800 °C is significant. Hence, annealing at around 900 °C can greatly improve the quality of a Ge core fibre. Further performance improvement of the Ge core fibre by annealing techniques can be anticipated.

  18. Temperature dependence of core loss in cobalt substituted Ni-Zn-Cu ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Lucas, A., E-mail: ant50_lucas@yahoo.f [THALES R and T, Campus Polytechnique, 1 Avenue Augustin Fresnel, 91767 Palaiseau (France); SATIE, ENS de Cachan, 61 Avenue du President Wilson, 94235 Cachan (France); Lebourgeois, R. [THALES R and T, Campus Polytechnique, 1 Avenue Augustin Fresnel, 91767 Palaiseau (France); Mazaleyrat, F. [SATIE, ENS de Cachan, 61 Avenue du President Wilson, 94235 Cachan (France); Laboure, E. [SATIE, ENS de Cachan, 61 Avenue du President Wilson, 94235 Cachan (France); LGEP, SUPELEC, Plateau de Moulon, 11 rue Joliot-Curie, 91192 Gif Sur Yvette (France)

    2011-03-15

    The temperature dependence of core loss in cobalt substituted Ni-Zn-Cu ferrites was investigated. Co{sup 2+} ions are known to lead to a compensation of the magneto-crystalline anisotropy in Ni-Zn ferrites, at a temperature depending on the cobalt content and the Ni/Zn ratio. We observed similar behaviour in Ni-Zn-Cu and it was found that the core loss goes through a minimum around this magneto-crystalline anisotropy compensation. Moreover, the anisotropy induced by the cobalt allowed a strong decrease of core loss, a ferrite having a core loss of 350 mW/cm{sup 3} at 80 {sup o}C was then developed (measured at 1.5 MHz and 25 mT). This result represents an improvement of a factor 4 compared to the state of art Ni-Zn ferrites. - Research highlights: > Low temperature sintering ferrite. > Improvement of the core loss of high frequency ferrites. > Power ferrites working at high temperature.

  19. Prevention of core cell damage in isolated islets of Langerhans by low temperature preconditioning

    Institute of Scientific and Technical Information of China (English)

    Yun-Fu Cui; Ming Ma; Gui-Yu Wang; De-En Han; Brigitte Vollmar; Michael D. Menger

    2005-01-01

    AIM: To study the core cell damage in isolated islets of Langerhans and its prevention by low temperature preconditioning (26 ℃).METHODS: Islets were cultured at 37 ℃ for 7-14 d after isolation, and then at 26 ℃ for 2, 4 and 7 d before additional culture at 37 ℃ for another 7 d. Core cell damage in the isolated islets was monitored by video-microscopy and analyzed quantitatively by use of a computer-assisted image analysis system. The analysis included daily measurement of the diameter and the area of the isolated islets and the area of the core cell damage that developed in those islets over time during culture. Histology and TdT-mediated dUTP-biotin nick end labeling (TUNEL) assay were used to characterize the cell damage and to monitor islet function.RESULTS: Microscopic analysis showed that during the 7 to 14 d of culture at 37 ℃, core cell damage occurred in the larger islets with diameters >200 μm, which included both necrotic and apoptotic cell death. Low temperature (26 ℃) culture could prevent core cell damage of isolated islets. The 7-d culture procedure at 26 ℃ could inhibit most of the core cell (excluding diameters>300 μm) damages when the islets were re-warmed at 37 ℃.CONCLUSION: Our results indicate that core cell damage within isolated islets of Langerhans correlates with the size of islets. Low temperature (26 ℃) culture can prevent core cell damage in isolated islets, and successfully precondition these islets for incubation at 37 ℃. These novel findings may help to understand the pathophysiology of early loss of islet tissue after transplantation, and may provide a new strategy to improve graft function in the clinical setting of islet transplantation.

  20. A multi-core fiber based interferometer for high temperature sensing

    Science.gov (United States)

    Zhou, Song; Huang, Bo; Shu, Xuewen

    2017-04-01

    In this paper, we have verified and implemented a Mach–Zehnder interferometer based on seven-core fiber for high temperature sensing application. This proposed structure is based on a multi-mode-multi-core-multi-mode fiber structure sandwiched by a single mode fiber. Between the single-mode and multi-core fiber, a 3 mm long multi-mode fiber is formed for lead-in and lead-out light. The basic operation principle of this device is the use of multi-core modes, single-mode and multi-mode interference coupling is also utilized. Experimental results indicate that this interferometer sensor is capable of accurate measurements of temperatures up to 800 °C, and the temperature sensitivity of the proposed sensor is as high as 170.2 pm/°C, which is much higher than the current existing MZI based temperature sensors (109 pm/°C). This type of sensor is promising for practical high temperature applications due to its advantages including high sensitivity, simple fabrication process, low cost and compactness.

  1. A Burst Mode, Ultrahigh Temperature UF4 Vapor Core Reactor Rankine Cycle Space Power System Concept

    Science.gov (United States)

    Dugan, E. T.; Kahook, S. D.; Diaz, N. J.

    1996-01-01

    Static and dynamic neutronic analyses have been performed on an innovative burst mode (100's of MW output for a few thousand seconds) Ulvahigh Temperature Vapor Core Reactor (UTVR) space nuclear power system. The NVTR employs multiple, neutronically-coupled fissioning cores and operates on a direct, closed Rankine cycle using a disk Magnetohydrodynamic (MHD) generater for energy conversion. The UTVR includes two types of fissioning core regions: (1) the central Ultrahigh Temperature Vapor Core (UTVC) which contains a vapor mixture of highly enriched UF4 fuel and a metal fluoride working fluid and (2) the UF4 boiler column cores located in the BeO moderator/reflector region. The gaseous nature of the fuel the fact that the fuel is circulating, the multiple coupled fissioning cores, and the use of a two phase fissioning fuel lead to unique static and dynamic neutronic characteristics. Static neutronic analysis was conducted using two-dimensional S sub n, transport theory calculations and three-dimensional Monte Carlo transport theory calculations. Circulating-fuel, coupled-core point reactor kinetics equations were used for analyzing the dynamic behavior of the UTVR. In addition to including reactivity feedback phenomena associated with the individual fissioning cores, the effects of core-to-core neutronic and mass flow coupling between the UTVC and the surrounding boiler cores were also included in the dynamic model The dynamic analysis of the UTVR reveals the existence of some very effectlve inherent reactivity feedback effects that are capable of quickly stabilizing this system, within a few seconds, even when large positive reactivity insertions are imposed. If the UTVC vapor fuel density feedback is suppressed, the UTVR is still inherently stable because of the boiler core liquid-fuel volume feedback; in contrast, suppression of the vapor fuel density feedback in 'conventional" gas core cavity reactors causes them to become inherently unstable. Due to the

  2. Body temperature control in patients with refractory septic shock:too much may be harmful

    Institute of Scientific and Technical Information of China (English)

    YANG Yan-li; LIU Da-wei; WANG Xiao-ting; LONG Yun; ZHOU Xiang; CHAI Wen-zao

    2013-01-01

    Background The lowering of body temperature is a common,almost reflexive step in the daily care of septic shock patient.However,the effect of different magnitudes of fever control on the outcome of refractory septic patients with a very poor outcome is controversial and has yet to be explored.Methods This prospective trial examined sixty-five refractory septic shock patients with a core temperature higher than 38.5℃.Patients were randomly assigned to a group achieving a "low temperature" range (LT group:36.0-37.5 ℃) or to a group achieving a "high temperature" range (HT group:37.5-38.3 ℃C) by physical methods including a water-flow cooling blanket and ice packs.A target core temperature was achieved in 1-2 hours post-treatment,and maintained for 72 hours.Averaged values of core temperature as well as hemodynamic,respiratory,and laboratory variables were analyzed at baseline and during the first 72 hours after fever control.Results Thirty-four (52.31%) patients were assigned to the LT group and thirty-one (47.69%) patients were assigned to the HT group.The mean core temperature was significantly lower in the LT group than in the HT group (36.61 vs.37.85 ℃,respectively; P < 0.0001).The average heart rate (HR) (75.5 vs.91.9 beats/min,respectively; P < 0.0001) and the mean cardiac output (CO) (5.35 vs.6.45 L/min,respectively; P =0.002) were also statistically significant lower in the LT group than in the HT group.The averaged serum lactate level was significantly higher in the LT group compared to the HT group (5.59 vs.2.82 mmol/L,respectively; P=-0.008).Fibrinogen and activated partial thromboplatin time were also different between the two groups.The 28 days mortality was significantly higher in the LT group than in the HT group (61.8vs.25.8%,respectively; P=0.003).A Cox-regression model analysis showed that mean core temperature during the 72 h period was an independent predictor of 28 days mortality (odds ratio (OR) =0.42,95%Cl 0

  3. Critical body temperature profile as indicator of heat stress vulnerability.

    Science.gov (United States)

    Nag, P K; Dutta, Priya; Nag, Anjali

    2013-01-01

    Extreme climatic heat is a major health concern among workers in different occupational pursuits. People in the regions of western India confront frequent heat emergencies, with great risk of mortality and morbidity. Taking account of informal occupational groups (foundry and sheet metal, FSM, N=587; ceramic and pottery, CP, N=426; stone quarry, SQ, N=934) in different seasons, the study examined the body temperature profiling as indicator of vulnerability to environmental warmth. About 3/4th of 1947 workers had habitual exposure at 30.1-35.5°C WBGT and ~10% of them were exposed to 38.2-41.6°C WBGT. The responses of FSM, CP and SQ workers indicated prevailing high heat load during summer and post-monsoon months. Local skin temperatures (T(sk)) varied significantly in different seasons, with consistently high level in summer, followed by post-monsoon and winter months. The mean difference of T(cr) and T(sk) was ~5.2°C up to 26.7°C WBGT, and ~2.5°C beyond 30°C WBGT. Nearly 90% of the workers had T(cr) within 38°C, suggesting their self-adjustment strategy in pacing work and regulating T(cr). In extreme heat, the limit of peripheral adjustability (35-36°C T(sk)) and the narrowing down of the difference between T(cr) and T(sk) might indicate the limit of one's ability to withstand heat exposure.

  4. Investigating the warming and cooling rates of human cadavers by development of a gel-filled model to validate core temperature.

    Science.gov (United States)

    Eagle, M J; Rooney, P; Kearney, J N

    2007-01-01

    Tissue Services (within NHS Blood and Transplant) plans to bring deceased donors to its state of the art retrieval suite at its new centre in Speke, Liverpool in air-conditioned transport at circa 20 degrees C but without dedicated active cooling. The aim of this study was to determine how quickly a refrigerated body would warm at different ambient temperatures using a gel-filled model. Two models of a human body were prepared consisting of neoprene wetsuits filled with approximately 7 or 18 l of a viscous solution, which once set has similar properties to ballistics gel. This gel consisted of 47.5% distilled water, 47.5% glycerol and 5% agar. Final "dummy" weights were 7.4 and 18.6 kg respectively, representing "virtual" weights of approximately 40 kg and 70 kg. A K-class thermocouple probe was then inserted into a "rectal" position within each model and the models were cooled to a series of different core temperatures: 5 degrees C, 10 degrees C and 15 degrees C and then were placed in an orbital incubator set at 20 degrees C or 30 degrees C ambient temperature. The rate of temperature increase, in the dummy, was measured, until the model's core temperature was close to the ambient temperature. This was done in triplicate for each size model and ambient temperature. Data indicate that increase in core temperature depends on the size of the model and the initial core temperature. For an equivalent donor weight of 70 kg and background temperature of 20 degrees C, core temperature rises from 5 degrees C to 9.2 degrees C; 10 degrees C to 13.3 degrees C and 15 degrees C to 15.5 degrees C after 2 h. The final core temperatures after 2 h are likely to retard bacterial growth, movement or contamination during transport. Cooling rate data indicated that a 70 kg donor equivalent cooled from 37 degrees C to 15 degrees C within 6 h in a cold room at 4 degrees C. This work has shown that a body can be transported without refrigeration and not cause further tissue deterioration

  5. [Central regulation of body temperature by RANKL/RANK pathway].

    Science.gov (United States)

    Hanada, Reiko; Penninger, Josef M

    2011-08-01

    Receptor-activator of NF-κB ligand (RANKL) and its specific receptor RANK are key regulators of bone remodeling, lymph node formation, establishment of the thymic microenviroment, mammary gland development during pregnancy, bone metastasis in cancer and sex-hormone, progestin, -driven breast cancer. RANKL and RANK are also expressed in the central nervous systems (CNS) especially existed in the main region of thermoregulation. Central RANKL injection to the rodents induces fever via PGE(2)/EP3R pathway. This pathway is related with inflammation related fever. On the other hand, female mice with RANK gene deletion in neuron and astrocytes show increased their basal body temperature at the dark phase, which suggests RANKL/RANK system also regulates physiological thremoregulation in female. Not only in rodents but also in human, two children with a homozygous RANK mutation exhibit an abrogated fever response in pneumonia compare with the age-matched children with pneumonia. Thus, the central RANKL/RANK pathway has an important role for thermoregulation.

  6. Leptin Raises Defended Body Temperature without Activating Thermogenesis.

    Science.gov (United States)

    Fischer, Alexander W; Hoefig, Carolin S; Abreu-Vieira, Gustavo; de Jong, Jasper M A; Petrovic, Natasa; Mittag, Jens; Cannon, Barbara; Nedergaard, Jan

    2016-02-23

    Leptin has been believed to exert its weight-reducing action not only by inducing hypophagia but also by increasing energy expenditure/thermogenesis. Leptin-deficient ob/ob mice have correspondingly been thought to be thermogenically limited and to show hypothermia, mainly due to atrophied brown adipose tissue (BAT). In contrast to these established views, we found that BAT is fully functional and that leptin treatment did not increase thermogenesis in wild-type or in ob/ob mice. Rather, ob/ob mice showed a decreased but defended body temperature (i.e., were anapyrexic, not hypothermic) that was normalized to wild-type levels after leptin treatment. This was not accompanied by increased energy expenditure or BAT recruitment but, instead, was mediated by decreased tail heat loss. The weight-reducing hypophagic effects of leptin are, therefore, not augmented through a thermogenic effect of leptin; leptin is, however, pyrexic, i.e., it alters centrally regulated thresholds of thermoregulatory mechanisms, in parallel to effects of other cytokines. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Light matter in the core of the Earth: its identity, quantity and temperature using tricritical phenomena

    CERN Document Server

    Aitta, A

    2008-01-01

    Light elements in the iron-rich core of the Earth are important indicators for the evolution of our planet. Their amount and distribution, and the temperature in the core, are essential for understanding how the core and the mantle interact and for modelling the geodynamo which generates the planetary magnetic field. However, there is a longstanding controversy surrounding the identity and quantity of the light elements. Here, the theory of tricritical phenomena is employed as a precise theoretical framework to study solidification at the high pressures and temperatures where both experimental and numerical methods are complicated to implement and have large uncertainties in their results. Combining the theory with the most reliable iron melting data and the Preliminary Reference Earth Model (PREM) seismic data, one obtains the solidification temperature at the inner core boundary (ICB) for both pure iron and for the alloy of iron and light elements in the actual core melt. One also finds a value of about 2.5...

  8. Relationship between critical temperature and core orbital coupling in cuprate superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Bo; Chen, Ning, E-mail: nchen@sina.com

    2016-04-15

    Highlights: • In this paper we found a new relationship between critical temperature and core orbital coupling in cuprate superconductors. In other words, we studied the core orbital couplings which few scientists paid attention to in cuprate superconductors and obtained a new T{sub c} relationship. • The binding energy differences between the valence couplings and the core couplings are positively related with the systemic T{sub c} values for all cuprate superconductors. This new relationship tells us that we should focus on not only the valence couplings but also the core couplings. • The new relationship seems very important and helpful for us to study the pairing nature of high- T{sub c} superconductivity and seek superconductors with higher T{sub c}. - Abstract: Because superconductivity and several relevant phenomena of high-temperature superconductors (HTSCs) arise from interactions of valence electrons near the Fermi surface, the valence orbital coupling has usually been thought to be critical to understanding the electronic pairing mechanism which seems work without the core coupling orbitals. But, as strong electronic correlations are believed to be essential for a comprehensive understanding of the cuprate superconductors, the Fermi surface is influenced directly or indirectly by all orbital couplings in the entire energy band. In this paper, we focused on the core orbital coupling which arises from the overlap between the Oxygen's 2 s core orbital and the core p orbital of neighboring ion of CuO{sub 2} layers as they have a similar energy level ranging from –12 ∼ –23 eV below the Fermi level. The characters of this core coupling are varied with different kinds of neighboring ions or from the crystal structures. Based on the experimental superconducting critical temperature (T{sub c}) data, we found that the binding energy differences between the valence couplings and the core couplings are positively related with the systemic T{sub c

  9. Evaluation of advanced cooling therapy's esophageal cooling device for core temperature control.

    Science.gov (United States)

    Naiman, Melissa; Shanley, Patrick; Garrett, Frank; Kulstad, Erik

    2016-05-01

    Managing core temperature is critical to patient outcomes in a wide range of clinical scenarios. Previous devices designed to perform temperature management required a trade-off between invasiveness and temperature modulation efficiency. The Esophageal Cooling Device, made by Advanced Cooling Therapy (Chicago, IL), was developed to optimize warming and cooling efficiency through an easy and low risk procedure that leverages heat transfer through convection and conduction. Clinical data from cardiac arrest, fever, and critical burn patients indicate that the Esophageal Cooling Device performs very well both in terms of temperature modulation (cooling rates of approximately 1.3°C/hour, warming of up to 0.5°C/hour) and maintaining temperature stability (variation around goal temperature ± 0.3°C). Physicians have reported that device performance is comparable to the performance of intravascular temperature management techniques and superior to the performance of surface devices, while avoiding the downsides associated with both.

  10. Revisiting twin-core fiber sensors for high-temperature measurements.

    Science.gov (United States)

    Rugeland, Patrik; Margulis, Walter

    2012-09-01

    A twin-core fiber Michelson interferometer is evaluated as a high-temperature sensor. Although linear and reproducible operation up to 300°C is obtained, at higher temperatures (700°C) the refractive index shifts plastically and hysteresis is observed, rendering an untreated sensor head unusable. The shift is shown to be greatly reduced by an annealing process of the fiber for 10 h at 900°C, with which the linear response is preserved.

  11. Core and Refueling Design Studies for the Advanced High Temperature Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, David Eugene [ORNL; Ilas, Dan [ORNL; Varma, Venugopal Koikal [ORNL; Cisneros, Anselmo T [ORNL; Kelly, Ryan P [ORNL; Gehin, Jess C [ORNL

    2011-09-01

    The Advanced High Temperature Reactor (AHTR) is a design concept for a central generating station type [3400 MW(t)] fluoride-salt-cooled high-temperature reactor (FHR). The overall goal of the AHTR development program is to demonstrate the technical feasibility of FHRs as low-cost, large-size power producers while maintaining full passive safety. This report presents the current status of ongoing design studies of the core, in-vessel structures, and refueling options for the AHTR. The AHTR design remains at the notional level of maturity as important material, structural, neutronic, and hydraulic issues remain to be addressed. The present design space exploration, however, indicates that reasonable options exist for the AHTR core, primary heat transport path, and fuel cycle provided that materials and systems technologies develop as anticipated. An illustration of the current AHTR core, reactor vessel, and nearby structures is shown in Fig. ES1. The AHTR core design concept is based upon 252 hexagonal, plate fuel assemblies configured to form a roughly cylindrical core. The core has a fueled height of 5.5 m with 25 cm of reflector above and below the core. The fuel assembly hexagons are {approx}45 cm across the flats. Each fuel assembly contains 18 plates that are 23.9 cm wide and 2.55 cm thick. The reactor vessel has an exterior diameter of 10.48 m and a height of 17.7 m. A row of replaceable graphite reflector prismatic blocks surrounds the core radially. A more complete reactor configuration description is provided in Section 2 of this report. The AHTR core design space exploration was performed under a set of constraints. Only low enrichment (<20%) uranium fuel was considered. The coated particle fuel and matrix materials were derived from those being developed and demonstrated under the Department of Energy Office of Nuclear Energy (DOE-NE) advanced gas reactor program. The coated particle volumetric packing fraction was restricted to at most 40%. The pressure

  12. Core formation in the earth and shergottite parent body (SPB) - Chemical evidence from basalts

    Science.gov (United States)

    Treiman, A. H.; Drake, M. J.; Janssens, M.-J.; Wolf, R.; Ebihara, M.

    1986-01-01

    Abundances of siderophile and chalcophile elements in the shergottite parental body (SPB) have been compared with those of the earth. To this end, new INAA and RNAA analyses of non-Antarctic meteorites have been performed, and the composition of the shergottite SPB mantle has been inferred from the compositions of the SNC meteorites. The composition of the earth's mantle has been inferred from the compositions of terrestrial basalt. Finally, the effects of volatile depletion, core formation, and mineral/melt fractionation on the abundances of siderophile and chalcophile elements in the SPB and the earth have been taken into consideration. Compared to the earth, the SPB mantle is richer in moderately siderophile elements and more depleted with respect to chalcophile elements. The observed relative abundances of siderophile and chalcophile elements in the SPB and the earth mantles indicate that the SPB underwent accretion and/or differentiation processes which differ from those in the earth.

  13. Reliability of an infrared forehead skin thermometer for core temperature measurements

    NARCIS (Netherlands)

    Kistemaker, J.A.; Hartog, E.A. den; Daanen, H.A.M.

    2006-01-01

    The SensorTouch thermometer performs an infrared measurement of the skin temperature above the Superficial Temporal Artery (STA). This study evaluates the validity and the accuracy of the SensorTouch thermometer. Two experiments were performed in which the body temperature was measured with a rectal

  14. The Electron Temperature and Anisotropy in the Solar Wind. Comparison of the Core and Halo Populations

    Science.gov (United States)

    Pierrard, V.; Lazar, M.; Poedts, S.; Štverák, Š.; Maksimovic, M.; Trávníček, P. M.

    2016-08-01

    Estimating the temperature of solar wind particles and their anisotropies is particularly important for understanding the origin of their deviations from thermal equilibrium and the effects this has. In the absence of energetic events, the velocity distribution of electrons reveals a dual structure with a thermal (Maxwellian) core and a suprathermal (kappa) halo. This article presents a detailed observational analysis of these two components, providing estimations of their temperatures and temperature anisotropies, and decoding any potential interdependence that their properties may indicate. The dataset used in this study includes more than 120 000 of the distributions measured by three missions in the ecliptic within an extended range of heliocentric distances from 0.3 to over 4 AU. The core temperature is found to decrease with the radial distance, while the halo temperature slightly increases, clarifying an apparent contradiction in previous observational analyses and providing valuable clues about the temperature of the kappa-distributed populations. For low values of the power-index kappa, these two components manifest a clear tendency to deviate from isotropy in the same direction, which seems to confirm the existence of mechanisms with similar effects on both components, e.g., the solar wind expansion, or the particle heating by the fluctuations. However, the existence of plasma states with anticorrelated anisotropies of the core and halo populations and the increase in their number for high values of the power-index kappa suggest a dynamic interplay of these components, mediated, most probably, by the anisotropy-driven instabilities.

  15. Highly Sensitive Liquid Core Temperature Sensor Based on Multimode Interference Effects

    Directory of Open Access Journals (Sweden)

    Miguel A. Fuentes-Fuentes

    2015-10-01

    Full Text Available A novel fiber optic temperature sensor based on a liquid-core multimode interference device is demonstrated. The advantage of such structure is that the thermo-optic coefficient (TOC of the liquid is at least one order of magnitude larger than that of silica and this, combined with the fact that the TOC of silica and the liquid have opposite signs, provides a liquid-core multimode fiber (MMF highly sensitive to temperature. Since the refractive index of the liquid can be easily modified, this allows us to control the modal properties of the liquid-core MMF at will and the sensor sensitivity can be easily tuned by selecting the refractive index of the liquid in the core of the device. The maximum sensitivity measured in our experiments is 20 nm/°C in the low-temperature regime up to 60 °C. To the best of our knowledge, to date, this is the largest sensitivity reported for fiber-based MMI temperature sensors.

  16. Thermally Stable Nanocatalyst for High Temperature Reactions: Pt-Mesoporous Silica Core-Shell Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Sang Hoon; Park, J.Y.; Tsung, C.-K.; Yamada, Y.; Yang, P.; Somorjai, G.A.

    2008-10-25

    Recent advances in colloidal synthesis enabled the precise control of size, shape and composition of catalytic metal nanoparticles, allowing their use as model catalysts for systematic investigations of the atomic-scale properties affecting catalytic activity and selectivity. The organic capping agents stabilizing colloidal nanoparticles, however, often limit their application in high-temperature catalytic reactions. Here we report the design of a high-temperature stable model catalytic system that consists of Pt metal core coated with a mesoporous silica shell (Pt{at}mSiO{sub 2}). While inorganic silica shells encaged the Pt cores up to 750 C in air, the mesopores directly accessible to Pt cores made the Pt{at}mSiO{sub 2} nanoparticles as catalytically active as bare Pt metal for ethylene hydrogenation and CO oxidation. The high thermal stability of Pt{at}mSiO{sub 2} nanoparticles permitted high-temperature CO oxidation studies, including ignition behavior, which was not possible for bare Pt nanoparticles because of their deformation or aggregation. The results suggest that the Pt{at}mSiO{sub 2} nanoparticles are excellent nanocatalytic systems for high-temperature catalytic reactions or surface chemical processes, and the design concept employed in the Pt{at}mSiO{sub 2} core-shell catalyst can be extended to other metal-metal oxide compositions.

  17. Non-invasive continuous core temperature measurement by zero heat flux

    NARCIS (Netherlands)

    Teunissen, L.P.J.; Klewer, J.; Haan, A. de; Koning, J.J. de; Daanen, H.A.M.

    2011-01-01

    Reliable continuous core temperature measurement is of major importance for monitoring patients. The zero heat flux method (ZHF) can potentially fulfil the requirements of non-invasiveness, reliability and short delay time that current measurement methods lack. The purpose of this study was to deter

  18. CHANGES IN THE RAT EEG SPECTRA AND CORE TEMPERATURE AFTER EXPOSURE TO DIFFERENT DOSES OF CHLORPYRIFOS.

    Science.gov (United States)

    Our previous study showed that single exposure to 25 mg/kg (p.o.) of organophsphate pesticide chlorpyrifos (CHP) led to significant alterations in all EEG frequency bands within 0.1-50 Hz range, reduction in core temperature (Tc) and motor activity (MA). The alterations in EEG pe...

  19. The effect of myostatin genotype on body temperature during extreme temperature events.

    Science.gov (United States)

    Howard, J T; Kachman, S D; Nielsen, M K; Mader, T L; Spangler, M L

    2013-07-01

    Extreme heat and cold events can create deleterious physiological changes in cattle as they attempt to cope. The genetic background of animals can influence their response to these events. The objective of the current study was to determine the impact of myostatin genotype (MG) on body temperature during periods of heat and cold stress. Two groups of crossbred steers and heifers of unknown pedigree and breed fraction with varying percentages of Angus, Simmental, and Piedmontese were placed in a feedlot over 2 summers and 2 winters. Before arrival, animals were genotyped for the Piedmontese-derived myostatin mutation (C313Y) to determine their MG as either homozygous normal (0 copy; n = 84), heterozygous (1 copy; n = 96), or homozygous for inactive myostatin (2 copy; n = 59). Hourly tympanic and vaginal temperature measurements were collected for steers and heifers, respectively, for 5 d during times of anticipated heat and cold stress. Mean (±SD) ambient temperature for summer and winter stress events were 24.4 (±4.64) and -1.80 (±11.71), respectively. A trigonometric function (sine + cosine) with periods of 12 and 24 h was used to describe the diurnal cyclical pattern. Hourly body temperature was analyzed within a season, and fixed effects included MG, group, trigonometric functions nested within group, and interaction of MG with trigonometric functions nested within group; random effects were animal and residual (Model [I]). A combined analysis of season and group was also investigated with the inclusion of season as a main effect and the nesting of effects within both group and season (Model [C]). In both models, the residual was fitted using an autoregressive covariance structure. A 3-way interaction of MG, season, and trigonometric function periodicities of 24 h (P 0.05). The current study illustrated that a genotype × environment interaction exists for MG and 1-copy animals were more robust to environmental extremes in comparison with 0- or 2-copy animals.

  20. CORE

    DEFF Research Database (Denmark)

    Krigslund, Jeppe; Hansen, Jonas; Hundebøll, Martin

    2013-01-01

    different flows. Instead of maintaining these approaches separate, we propose a protocol (CORE) that brings together these coding mechanisms. Our protocol uses random linear network coding (RLNC) for intra- session coding but allows nodes in the network to setup inter- session coding regions where flows...... intersect. Routes for unicast sessions are agnostic to other sessions and setup beforehand, CORE will then discover and exploit intersecting routes. Our approach allows the inter-session regions to leverage RLNC to compensate for losses or failures in the overhearing or transmitting process. Thus, we...... increase the benefits of XORing by exploiting the underlying RLNC structure of individual flows. This goes beyond providing additional reliability to each individual session and beyond exploiting coding opportunistically. Our numerical results show that CORE outperforms both forwarding and COPE...

  1. CORE

    DEFF Research Database (Denmark)

    Krigslund, Jeppe; Hansen, Jonas; Hundebøll, Martin

    2013-01-01

    different flows. Instead of maintaining these approaches separate, we propose a protocol (CORE) that brings together these coding mechanisms. Our protocol uses random linear network coding (RLNC) for intra- session coding but allows nodes in the network to setup inter- session coding regions where flows...... intersect. Routes for unicast sessions are agnostic to other sessions and setup beforehand, CORE will then discover and exploit intersecting routes. Our approach allows the inter-session regions to leverage RLNC to compensate for losses or failures in the overhearing or transmitting process. Thus, we...... increase the benefits of XORing by exploiting the underlying RLNC structure of individual flows. This goes beyond providing additional reliability to each individual session and beyond exploiting coding opportunistically. Our numerical results show that CORE outperforms both forwarding and COPE...

  2. Past temperature reconstructions from deep ice cores: relevance for future climate change

    Directory of Open Access Journals (Sweden)

    V. Masson-Delmotte

    2006-01-01

    Full Text Available Ice cores provide unique archives of past climate and environmental changes based only on physical processes. Quantitative temperature reconstructions are essential for the comparison between ice core records and climate models. We give an overview of the methods that have been developed to reconstruct past local temperatures from deep ice cores and highlight several points that are relevant for future climate change. We first analyse the long term fluctuations of temperature as depicted in the long Antarctic record from EPICA Dome C. The long term imprint of obliquity changes in the EPICA Dome C record is highlighted and compared to simulations conducted with the ECBILT-CLIO intermediate complexity climate model. We discuss the comparison between the current interglacial period and the long interglacial corresponding to marine isotopic stage 11, ~400 kyr BP. Previous studies had focused on the role of precession and the thresholds required to induce glacial inceptions. We suggest that, due to the low eccentricity configuration of MIS 11 and the Holocene, the effect of precession on the incoming solar radiation is damped and that changes in obliquity must be taken into account. The EPICA Dome C alignment of terminations I and VI published in 2004 corresponds to a phasing of the obliquity signals. A conjunction of low obliquity and minimum northern hemisphere summer insolation is not found in the next tens of thousand years, supporting the idea of an unusually long interglacial ahead. As a second point relevant for future climate change, we discuss the magnitude and rate of change of past temperatures reconstructed from Greenland (NorthGRIP and Antarctic (Dome C ice cores. Past episodes of temperatures above the present-day values by up to 5°C are recorded at both locations during the penultimate interglacial period. The rate of polar warming simulated by coupled climate models forced by a CO2 increase of 1% per year is compared to ice-core

  3. Effects of Temperature on Structure and Mobility of the <100> Edge Dislocation in Body-Centred Cubic Iron

    Energy Technology Data Exchange (ETDEWEB)

    Terentyev, Dmitry [Belgian Nuclear Research Centre, SCK-CEN; Osetskiy, Yury N [ORNL; Bacon, David J [University of Liverpool

    2010-01-01

    Dislocation segments with Burgers vector b = <1 0 0> are formed during deformation of body-centred-cubic (bcc) metals by the interaction between dislocations with b = 1/2<1 1 1>. Such segments are also created by reactions between dislocations and dislocation loops in irradiated bcc metals. The obstacle resistance produced by these segments on gliding dislocations is controlled by their mobility, which is determined in turn by the atomic structure of their cores. The core structure of a straight <1 0 0> edge dislocation is investigated here by atomic-scale computer simulation for {alpha}-iron using three different interatomic potentials. At low temperature the dislocation has a non-planar core consisting of two 1/2<1 1 1> fractional dislocations with atomic disregistry spread on planes inclined to the main glide plane. Increasing temperature modifies this core structure and so reduces the critical applied shear stress for glide of the <1 0 0> dislocation. It is concluded that the response of the <1 0 0> edge dislocation to temperature or applied stress determines specific reaction pathways occurring between a moving dislocation and 1/2<1 1 1> dislocation loops. The implications of this for plastic flow in unirradiated and irradiated ferritic materials are discussed and demonstrated by examples.

  4. Effects of temperature on structure and mobility of the <1 0 0> edge dislocation in body-centred cubic iron

    Energy Technology Data Exchange (ETDEWEB)

    Terentyev, D.A., E-mail: dterenty@sckcen.be [Nuclear Materials Science Institute, SCK CEN, Boeretang 200, B-2400, Mol (Belgium); Osetsky, Yu. N. [Materials Sciences and Technology, ORNL, Oak Ridge, TN 37831 (United States); Bacon, D.J. [Department of Engineering, University of Liverpool, Brownlow Hill, Liverpool L69 3GH (United Kingdom)

    2010-04-15

    Dislocation segments with Burgers vector b = <1 0 0> are formed during deformation of body-centred-cubic (bcc) metals by the interaction between dislocations with b = 1/2<1 1 1>. Such segments are also created by reactions between dislocations and dislocation loops in irradiated bcc metals. The obstacle resistance produced by these segments on gliding dislocations is controlled by their mobility, which is determined in turn by the atomic structure of their cores. The core structure of a straight <1 0 0> edge dislocation is investigated here by atomic-scale computer simulation for {alpha}-iron using three different interatomic potentials. At low temperature the dislocation has a non-planar core consisting of two 1/2<1 1 1> fractional dislocations with atomic disregistry spread on planes inclined to the main glide plane. Increasing temperature modifies this core structure and so reduces the critical applied shear stress for glide of the <1 0 0> dislocation. It is concluded that the response of the <1 0 0> edge dislocation to temperature or applied stress determines specific reaction pathways occurring between a moving dislocation and 1/2<1 1 1> dislocation loops. The implications of this for plastic flow in unirradiated and irradiated ferritic materials are discussed and demonstrated by examples.

  5. Investigation on the Core Bypass Flow in a Very High Temperature Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Yassin

    2013-10-22

    Uncertainties associated with the core bypass flow are some of the key issues that directly influence the coolant mass flow distribution and magnitude, and thus the operational core temperature profiles, in the very high-temperature reactor (VHTR). Designers will attempt to configure the core geometry so the core cooling flow rate magnitude and distribution conform to the design values. The objective of this project is to study the bypass flow both experimentally and computationally. Researchers will develop experimental data using state-of-the-art particle image velocimetry in a small test facility. The team will attempt to obtain full field temperature distribution using racks of thermocouples. The experimental data are intended to benchmark computational fluid dynamics (CFD) codes by providing detailed information. These experimental data are urgently needed for validation of the CFD codes. The following are the project tasks: • Construct a small-scale bench-top experiment to resemble the bypass flow between the graphite blocks, varying parameters to address their impact on bypass flow. Wall roughness of the graphite block walls, spacing between the blocks, and temperature of the blocks are some of the parameters to be tested. • Perform CFD to evaluate pre- and post-test calculations and turbulence models, including sensitivity studies to achieve high accuracy. • Develop the state-of-the art large eddy simulation (LES) using appropriate subgrid modeling. • Develop models to be used in systems thermal hydraulics codes to account and estimate the bypass flows. These computer programs include, among others, RELAP3D, MELCOR, GAMMA, and GAS-NET. Actual core bypass flow rate may vary considerably from the design value. Although the uncertainty of the bypass flow rate is not known, some sources have stated that the bypass flow rates in the Fort St. Vrain reactor were between 8 and 25 percent of the total reactor mass flow rate. If bypass flow rates are on the

  6. Effects of interactions on dynamic correlations of hard-core bosons at finite temperatures

    Science.gov (United States)

    Fauseweh, Benedikt; Uhrig, Götz S.

    2017-09-01

    We investigate how dynamic correlations of hard-core bosonic excitation at finite temperature are affected by additional interactions besides the hard-core repulsion which prevents them from occupying the same site. We focus especially on dimerized spin systems, where these additional interactions between the elementary excitations, triplons, lead to the formation of bound states, relevant for the correct description of scattering processes. In order to include these effects quantitatively, we extend the previously developed Brückner approach to include also nearest-neighbor (NN) and next-nearest neighbor (NNN) interactions correctly in a low-temperature expansion. This leads to the extension of the scalar Bethe-Salpeter equation to a matrix-valued equation. As an example, we consider the Heisenberg spin ladder to illustrate the significance of the additional interactions on the spectral functions at finite temperature, which are proportional to inelastic neutron scattering rates.

  7. Decreases in body temperature and body mass constitute pre-hibernation remodelling in the Syrian golden hamster, a facultative mammalian hibernator.

    Science.gov (United States)

    Chayama, Yuichi; Ando, Lisa; Tamura, Yutaka; Miura, Masayuki; Yamaguchi, Yoshifumi

    2016-04-01

    Hibernation is an adaptive strategy for surviving during periods with little or no food availability, by profoundly reducing the metabolic rate and the core body temperature (T b). Obligate hibernators (e.g. bears, ground squirrels, etc.) hibernate every winter under the strict regulation of endogenous circannual rhythms, and they are assumed to undergo adaptive remodelling in autumn, the pre-hibernation period, prior to hibernation. However, little is known about the nature of pre-hibernation remodelling. Syrian hamsters (Mesocricetus auratus) are facultative hibernators that can hibernate irrespective of seasons when exposed to prolonged short photoperiod and cold ambient temperature (SD-Cold) conditions. Their T b set point reduced by the first deep torpor (DT) and then increased gradually after repeated cycles of DT and periodic arousal (PA), and finally recovered to the level observed before the prolonged SD-Cold in the post-hibernation period. We also found that, before the initiation of hibernation, the body mass of animals decreased below a threshold, indicating that hibernation in this species depends on body condition. These observations suggest that Syrian hamsters undergo pre-hibernation remodelling and that T b and body mass can be useful physiological markers to monitor the remodelling process during the pre-hibernation period.

  8. Denali Ice Core Record of North Pacific Hydroclimate, Temperature and Atmospheric Circulation over the Past Millennium

    Science.gov (United States)

    Osterberg, E. C.; Wake, C. P.; Kreutz, K. J.; Winski, D.; Ferris, D. G.; Introne, D.; Campbell, S.; Birkel, S. D.

    2015-12-01

    While tree ring and lake sediment core studies have revealed a great deal about North Pacific (e.g. Alaska) surface temperature variability over the past millennium, we do not have an equivalent understanding of North Pacific hydroclimate variability or temperatures at high elevations. A millennial-length precipitation proxy record is needed to place late 20th century Alaskan precipitation increases into longer context, and to evaluate hydroclimate changes during the Little Ice Age and Medieval Climate Anomaly. High-elevation summer temperature records would be valuable for understanding the sensitivity of Alaskan glaciers to past warm and cool periods. Here we present an overview of the new Denali Ice Core record collected from the summit plateau (4000 m a.s.l.) of Mt. Hunter (63° N, 151° W) in Denali National Park, Alaska. Two parallel ice cores were collected to bedrock (208 m in length) in May-June 2013, sampled using the Dartmouth continuous melter system, and analyzed for major ions, trace elements, particle concentration and size distribution, and stable isotope ratios at Dartmouth and the Universities of Maine and New Hampshire. The cores are dated using robust annual oscillations in dust elements, methanesulfonate, ammonium, and stable isotopes, and validated using major volcanic eruptions recorded as sulfate, chloride and heavy metal spikes, and the 1963 nuclear weapons testing 137Cs spike. Preliminary analyses indicate a significant increase in both summer temperature and annual accumulation over the 20th century, and significant relationships with major ocean-atmospheric modes including the Pacific Decadal Oscillation. We compare the new Denali record to the Eclipse Icefield and Mt. Logan ice core records and develop composite records of North Pacific hydroclimate and atmospheric circulation variability over the past millennium.

  9. Core Temperature Measurement During Submaximal Exercise: Esophageal, Rectal, and Intestinal Temperatures

    Science.gov (United States)

    Lee, Stuart M. C.; Williams, W. Jon; Schneider, Suzanne M.

    2000-01-01

    The purpose of this study was to determine if intestinal temperature (Tin) might be in acceptable alternative to esophageal (Tes) and rectal temperature (Trec) to assess thermoregulation during supine exercise. We hypothesized that Tin would have values similar to Tes and a response time similar to Trec, but the rate of temperature change across time would not be different between measurement sites. Seven subjects completed a continuous supine protocol of 20 min of rest, 20 min of cycle exercise at 40% peak oxygen consumption (VO2pk), 20 min of cycle exercise at 65% V02pk, and 20 min of recovery. Tes, Trec, and Tin were recorded each min throughout the test. Temperatures were not different after 20 min of rest, but Trec was less than the Tes and Tin at the end of the 40% and 65% VO2pk stages. After 20 min of recovery, Tes was less than either Trec or Tin, which were not different from each other. Time to threshold for increased temperature from rest was greater for Trec than Tes but not different from Tin. Time to reach peak temperature was greater for Tin and Trec than Tes. Similarly, time to a decrease in temperature after exercise was greater for Trec than Tes, but not different from Tin. The rate of temperature change from threshold to the end of the 40% VO2pk stage was not different between measurement sites. However, the rate of change during recovery was more negative for Tes than Tin and Trec, which were different from each other. Measurement of Tin may he an acceptable alternative to Tes and Trec with an understanding of its limitations.

  10. Microsatellite frequencies vary with body mass and body temperature in mammals, suggesting correlated variation in mutation rate

    Directory of Open Access Journals (Sweden)

    William Amos

    2014-11-01

    Full Text Available Substitution rate is often found to correlate with life history traits such as body mass, a predictor of population size and longevity, and body temperature. The underlying mechanism is unclear but most models invoke either natural selection or factors such as generation length that change the number of mutation opportunities per unit time. Here we use published genome sequences from 69 mammals to ask whether life history traits impact another form of genetic mutation, the high rates of predominantly neutral slippage in microsatellites. We find that the length-frequency distributions of three common dinucleotide motifs differ greatly between even closely related species. These frequency differences correlate with body mass and body temperature and can be used to predict the phenotype of an unknown species. Importantly, different length microsatellites show complicated patterns of excess and deficit that cannot be explained by a simple model where species with short generation lengths have experienced more mutations. Instead, the patterns probably require changes in mutation rate that impact alleles of different length to different extents. Body temperature plausibly influences mutation rate by modulating the propensity for slippage. Existing hypotheses struggle to account for a link between body mass and mutation rate. However, body mass correlates inversely with population size, which in turn predicts heterozygosity. We suggest that heterozygote instability, HI, the idea that heterozygous sites show increased mutability, could provide a plausible link between body mass and mutation rate.

  11. Deviation from goal pace, body temperature and body mass loss as predictors of road race performance.

    Science.gov (United States)

    Adams, William M; Hosokawa, Yuri; Belval, Luke N; Huggins, Robert A; Stearns, Rebecca L; Casa, Douglas J

    2017-03-01

    The purpose of this study was to examine the relationship between pacing, gastrointestinal temperature (TGI), and percent body mass loss (%BML) on relative race performance during a warm weather 11.3km road race. Observational study of a sample of active runners competing in the 2014 Falmouth Road Race. Participants ingested a TGI pill and donned a GPS enabled watch with heart rate monitoring capabilities prior to the start of the race. Percent off predicted pace (%OFF) was calculated for seven segments of the race. Separate linear regression analyses were used to assess the relationship between pace, T​GI, and %BML on relative race performance. One-way ANOVA was used to analyse post race TGI (≥40°C vs 0.05). There was a trend in a slower pace (p=0.055) and greater %OFF (p=0.056) in runners finishing the race with a TGI>40°C. Overall, finish time was influenced by greater variations in pace during the first two miles of the race. In addition, runners who minimized fluid losses and had lower TGI were associated with meeting self-predicted goals. Copyright © 2016 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  12. Pharmacology of modality-specific transient receptor potential vanilloid-1 antagonists that do not alter body temperature.

    Science.gov (United States)

    Reilly, Regina M; McDonald, Heath A; Puttfarcken, Pamela S; Joshi, Shailen K; Lewis, LaGeisha; Pai, Madhavi; Franklin, Pamela H; Segreti, Jason A; Neelands, Torben R; Han, Ping; Chen, Jun; Mantyh, Patrick W; Ghilardi, Joseph R; Turner, Teresa M; Voight, Eric A; Daanen, Jerome F; Schmidt, Robert G; Gomtsyan, Arthur; Kort, Michael E; Faltynek, Connie R; Kym, Philip R

    2012-08-01

    The transient receptor potential vanilloid-1 (TRPV1) channel is involved in the development and maintenance of pain and participates in the regulation of temperature. The channel is activated by diverse agents, including capsaicin, noxious heat (≥ 43°C), acidic pH (temperature antagonists representing multiple TRPV1 pharmacophores were evaluated at recombinant rat and human TRPV1 channels with Ca(2+) flux assays, and two classes of antagonists were identified based on their differential ability to inhibit acid activation. Although both classes of antagonists completely blocked capsaicin- and NADA-induced activation of TRPV1, select compounds only partially inhibited activation of the channel by protons. Electrophysiology and calcitonin gene-related peptide release studies confirmed the differential pharmacology of these antagonists at native TRPV1 channels in the rat. Comparison of the in vitro pharmacological properties of these TRPV1 antagonists with their in vivo effects on core body temperature confirms and expands earlier observations that acid-sparing TRPV1 antagonists do not significantly increase core body temperature. Although both classes of compounds elicit equivalent analgesia in a rat model of knee joint pain, the acid-sparing antagonist tested is not effective in a mouse model of bone cancer pain.

  13. A study on the applicability of implantable microchip transponders for body temperature measurements in pigs

    DEFF Research Database (Denmark)

    Lohse, Louise; Uttenthal, Åse; Enøe, Claes

    2010-01-01

    Background The applicability of an electronic monitoring system using microchip transponders for measurement of body temperatures was tested in 6-week-old conventional Danish weaners infected with classical swine fever virus (CSFV). Subcutaneous tissue temperatures obtained by the implantable...

  14. Low-temperature softening in body-centered cubic alloys

    Science.gov (United States)

    Pink, E.; Arsenault, R. J.

    1979-01-01

    In the low-temperature range, bcc alloys exhibit a lower stress-temperature dependence than the pure base metals. This effect often leads to a phenomenon that is called 'alloy softening': at low temperatures, the yield stress of an alloy may be lower than that of the base metal. Various theories are reviewed; the most promising are based either on extrinsic or intrinsic models of low-temperature deformation. Some other aspects of alloy softening are discussed, among them the effects on the ductile-brittle transition temperature.

  15. Influence of elevated body temperature on circulating immunoglobulin-secreting cells

    DEFF Research Database (Denmark)

    Kappel, M; Barington, T; Gyhrs, A

    1995-01-01

    This work was designed to investigate the effect of in vivo hyperthermia in man on circulating immunoglobulin-secreting cells. Eight healthy male volunteers were immersed into a hot waterbath (WI) (water temperature 39.5 degrees C) for 2 h, whereby their body temperature rose to 39.5 degrees C....... On another occasion they served as their own controls, being immersed into thermoneutral water (water temperature 34.5 degrees C) for 2 h. Blood samples were drawn before immersion, at body temperatures of 38, 39 and 39.5 degrees C, as well as 2 h after WI when their body temperatures were normalized...

  16. Temperature distribution in the human body under various conditions of induced hyperthermia

    Science.gov (United States)

    Korobko, O. V.; Perelman, T. L.; Fradkin, S. Z.

    1977-01-01

    A mathematical model based on heat balance equations was developed for studying temperature distribution in the human body under deep hyperthermia which is often induced in the treatment of malignant tumors. The model yields results which are in satisfactory agreement with experimental data. The distribution of temperature under various conditions of induced hyperthermia, i.e. as a function of water temperature and supply rate, is examined on the basis of temperature distribution curves in various body zones.

  17. Brain core temperature of patients with mild traumatic brain injury as assessed by DWI-thermometry

    Energy Technology Data Exchange (ETDEWEB)

    Tazoe, Jun; Yamada, Kei; Akazawa, Kentaro [Kyoto Prefectural University of Medicine, Department of Radiology, Graduate School of Medical Science, Kyoto City, Kyoto (Japan); Sakai, Koji [Kyoto University, Department of Human Health Science, Graduate School of Medicine, Kyoto (Japan); Mineura, Katsuyoshi [Kyoto Prefectural University of Medicine, Department of Neurosurgery, Graduate School of Medical Science, Kyoto City, Kyoto (Japan)

    2014-10-15

    The aim of this study was to assess the brain core temperature of patients with mild traumatic brain injury (mTBI) using a noninvasive temperature measurement technique based on the diffusion coefficient of the cerebrospinal fluid. This retrospective study used the data collected from April 2008 to June 2011. The patient group comprised 20 patients with a Glasgow Coma Scale score of 14 or 15 who underwent magnetic resonance imaging within 30 days after head trauma. The normal control group comprised 14 subjects who volunteered for a brain checkup (known in Japan as ''brain dock''). We compared lateral ventricular (LV) temperature between patient and control groups. Follow-up studies were performed for four patients. LV temperature measurements were successfully performed for both patients and controls. Mean (±standard deviation) measured LV temperature was 36.9 ± 1.5 C in patients, 38.7 ± 1.8 C in follow-ups, and 37.9 ± 1.2 C in controls, showing a significant difference between patients and controls (P = 0.017). However, no significant difference was evident between patients and follow-ups (P = 0.595) or between follow-ups and controls (P = 0.465). A reduction in brain core temperature was observed in patients with mTBI, possibly due to a global decrease in metabolism. (orig.)

  18. Identification of Bodies Exposed to High Temperatures Based on Macroscopic

    National Research Council Canada - National Science Library

    María Del Socorro Barraza Salcedo; Martha Leonor Rebolledo Cobos

    2016-01-01

      ABSTRACT. Background: Forensic dentistry in cases of incineration provides scientific elements that allow the identification of bodies, by analyzing dental organs, through the isolation of DNA obtained from the pulp...

  19. Pilot study to monitor body temperature of dairy cows with a rumen bolus

    NARCIS (Netherlands)

    Ipema, A.H.; Goense, D.; Hogewerf, P.H.; Houwers, H.W.J.; Roest, H.I.J.

    2008-01-01

    A bolus containing a mote (temperature sensor, processor and radio) was placed in the rumen of a fistulated cow to monitor body temperature. Rumen temperature was measured every minute and stored in the internal buffer of the mote. The measured temperature was also transmitted to a base station by

  20. Regional thermal specialisation in a mammal: temperature affects power output of core muscle more than that of peripheral muscle in adult mice (Mus musculus).

    Science.gov (United States)

    James, Rob S; Tallis, Jason; Angilletta, Michael J

    2015-01-01

    In endotherms, such as mammals and birds, internal organs can specialise to function within a narrow thermal range. Consequently, these organs should become more sensitive to changes in body temperature. Yet, organs at the periphery of the body still experience considerable fluctuations in temperature, which could select for lower thermal sensitivity. We hypothesised that the performance of soleus muscle taken from the leg would depend less on temperature than would the performance of diaphragm muscle taken from the body core. Soleus and diaphragm muscles were isolated from mice and subjected to isometric and work-loop studies to analyse mechanical performance at temperatures between 15 and 40 °C. Across this thermal range, soleus muscle took longer to generate isometric force and longer to relax, and tended to produce greater normalised maximal force (stress) than did diaphragm muscle. The time required to produce half of maximal force during isometric tetanus and the time required to relax half of maximal force were both more sensitive to temperature in soleus than they were in diaphragm. However, thermal sensitivities of maximal force during isometric tetani were similar for both muscles. Consistent with our hypothesis, power output (the product of speed and force) was greater in magnitude and more thermally sensitive in diaphragm than it was in soleus. Our findings, when combined with previous observations of muscles from regionally endothermic fish, suggest that endothermy influences the thermal sensitivities of power output in core and peripheral muscles.

  1. Alpine ice cores and ground penetrating radar: combined investigations for glaciological and climatic interpretations of a cold Alpine ice body

    Energy Technology Data Exchange (ETDEWEB)

    Eisen, Olaf; Nixdorf, Uwe [Alfred-Wegener-Inst. fuer Polar- und Meeresforschung, Bremerhaven (Germany); Keck, Lothar; Wagenbach, Dietmar [Univ. Heidelberg (Germany). Inst. fuer Umweltphysik

    2003-11-01

    Accurate interpretation of ice cores as climate archives requires detailed knowledge of their past and present geophysical environment. Different techniques facilitate the determination and reconstruction of glaciological settings surrounding the drilling location. During the ALPCLIM1 project, two ice cores containing long-term climate information were retrieved from Colle Gnifetti, Swiss-Italian Alps. Here, we investigate the potential of ground penetrating radar (GPR) surveys, in conjunction with ice core data, to obtain information about the internal structure of the cold Alpine ice body to improve climatic interpretations. Three drill sites are connected by GPR profiles, running parallel and perpendicular to the flow line, thus yielding a three-dimensional picture of the subsurface and enabling the tracking of internal reflection horizons between the locations. As the observed reflections are of isochronic origin, they permit the transfer of age-depth relations between the ice cores. The accuracy of the GPR results is estimated by comparison of transferred timescales with original core datings, independent information from an older ice core, and, based on glaciological surface data, findings from flow modeling. Our study demonstrates that GPR is a mandatory tool for Alpine ice core studies, as it permits mapping of major transitions in physical-chemical properties, transfer of age-depth relations between sites, correlate signals in core records for interpretation, and establish a detailed picture of the flow regime surrounding the climate archive.

  2. Body temperature daily rhythm adaptations in African savanna elephants (Loxodonta africana).

    Science.gov (United States)

    Kinahan, A A; Inge-moller, R; Bateman, P W; Kotze, A; Scantlebury, M

    2007-11-23

    The savanna elephant is the largest extant mammal and often inhabits hot and arid environments. Due to their large size, it might be expected that elephants have particular physiological adaptations, such as adjustments to the rhythms of their core body temperature (T(b)) to deal with environmental challenges. This study describes for the first time the T(b) daily rhythms in savanna elephants. Our results showed that elephants had lower mean T(b) values (36.2 +/- 0.49 degrees C) than smaller ungulates inhabiting similar environments but did not have larger or smaller amplitudes of T(b) variation (0.40 +/- 0.12 degrees C), as would be predicted by their exposure to large fluctuations in ambient temperature or their large size. No difference was found between the daily T(b) rhythms measured under different conditions of water stress. Peak T(b)'s occurred late in the evening (22:10) which is generally later than in other large mammals ranging in similar environmental conditions.

  3. V-groove all-fiber core-cladding intermodal interferometer for high-temperature sensing.

    Science.gov (United States)

    Yin, Zhen; Geng, Youfu; Li, Xuejin; Tan, Xiaoling; Gao, Rong

    2015-01-10

    Novel V-groove all-fiber core-cladding intermodal interferometers fabricated by CO2 laser irradiation on a standard single-mode fiber are described. The high-order cladding modes are excited due to the special V-groove structure. The interferometers are classified as Mach-Zehnder and Michelson type based on the way they are structured. Benefiting from the large difference of thermal coefficients of the core and high-order cladding modes, both types receive high temperature sensitivity by monitoring the wavelength shift of the interference spectrum, and their responses to temperature are similar. Compared with the Mach-Zehnder interferometer, the Michelson interferometer is more compact and more flexible in application.

  4. Isotopic ordering in eggshells reflects body temperatures and suggests differing thermophysiology in two Cretaceous dinosaurs

    Science.gov (United States)

    Eagle, Robert A.; Enriquez, Marcus; Grellet-Tinner, Gerald; Pérez-Huerta, Alberto; Hu, David; Tütken, Thomas; Montanari, Shaena; Loyd, Sean J.; Ramirez, Pedro; Tripati, Aradhna K.; Kohn, Matthew J.; Cerling, Thure E.; Chiappe, Luis M.; Eiler, John M.

    2015-10-01

    Our understanding of the evolutionary transitions leading to the modern endothermic state of birds and mammals is incomplete, partly because tools available to study the thermophysiology of extinct vertebrates are limited. Here we show that clumped isotope analysis of eggshells can be used to determine body temperatures of females during periods of ovulation. Late Cretaceous titanosaurid eggshells yield temperatures similar to large modern endotherms. In contrast, oviraptorid eggshells yield temperatures lower than most modern endotherms but ~6 °C higher than co-occurring abiogenic carbonates, implying that this taxon did not have thermoregulation comparable to modern birds, but was able to elevate its body temperature above environmental temperatures. Therefore, we observe no strong evidence for end-member ectothermy or endothermy in the species examined. Body temperatures for these two species indicate that variable thermoregulation likely existed among the non-avian dinosaurs and that not all dinosaurs had body temperatures in the range of that seen in modern birds.

  5. Influence of the Environment on Body Temperature of Racing Greyhounds.

    Science.gov (United States)

    McNicholl, Jane; Howarth, Gordon S; Hazel, Susan J

    2016-01-01

    Heat strain is a potential risk factor for racing greyhounds in hot climates. However, there have been limited studies into the incidence of heat strain (when excess heat causes physiological or pathological effects) in racing greyhounds. The aim of this study was to determine if heat strain occurs in racing greyhounds, and, if so, whether environmental factors (e.g., ambient temperature and relative humidity) or dog-related factors (e.g., sex, bodyweight, color) are associated with the risk of heat strain. A total of 229 greyhounds were included in over 46 race meetings and seven different race venues in South Australia, Australia. Rectal temperatures of dogs were measured pre- and postrace and urine samples collected for analysis of myoglobinuria. Ambient temperature at race times ranged between 11.0 and 40.8°C and relative humidity ranged from 17 to 92%. There was a mean increase in greyhound rectal temperature of 2.1°C (range 1.1-3.1°C). A small but significant association was present between ambient temperature and increase in rectal temperature (r (2) = 0.033, P = 0.007). The mean ambient temperature at race time, of dogs with postrace rectal temperature of or exceeding 41.5°C, was significantly greater than at race time of dogs with a postrace rectal temperature ≤41.5°C (31.2 vs. 27.3°C, respectively, P = 0.004). When the ambient temperature reached 38(o)C, over one-third (39%) of dogs had a rectal temperature >41.5°C. Over half of postrace urine samples were positive by Dipstick reading for hemoglobin/myoglobin, and of 77 urine samples positive for Dipstick readings, 95% were positive for myoglobin. However, urinary myoglobin levels were not associated with ambient temperature or postrace rectal temperatures. The mean increase in rectal temperature was greater in dark (black, blue, brindle) than light (fawn and white) colored greyhounds. The results suggest heat strain occurs in racing greyhounds, evidenced by postrace rectal

  6. Highly siderophile element (HSE) abundances in the mantle of Mars are due to core formation at high pressure and temperature

    Science.gov (United States)

    Righter, K.; Danielson, L. R.; Pando, K. M.; Williams, J.; Humayun, M.; Hervig, R. L.; Sharp, T. G.

    2015-04-01

    Highly siderophile elements (HSEs) can be used to understand accretion and core formation in differentiated bodies, due to their strong affinity for FeNi metal and sulfides. Coupling experimental studies of metal-silicate partitioning with analyses of HSE contents of Martian meteorites can thus offer important constraints on the early history of Mars. Here, we report new metal-silicate partitioning data for the PGEs and Au and Re across a wide range of pressure and temperature space, with three series designed to complement existing experimental data sets for HSE. The first series examines temperature effects for D(HSE) in two metallic liquid compositions—C-bearing and C-free. The second series examines temperature effects for D(Re) in FeO-bearing silicate melts and FeNi-rich alloys. The third series presents the first systematic study of high pressure and temperature effects for D(Au). We then combine our data with previously published partitioning data to derive predictive expressions for metal-silicate partitioning of the HSE, which are subsequently used to calculate HSE concentrations of the Martian mantle during continuous accretion of Mars. Our results show that at midmantle depths in an early magma ocean (equivalent to approximately 14 GPa, 2100 °C), the HSE contents of the silicate fraction are similar to those observed in the Martian meteorite suite. This is in concert with previous studies on moderately siderophile elements. We then consider model calculations that examine the role of melting, fractional crystallization, and sulfide saturation/undersaturation in establishing the range of HSE contents in Martian meteorites derived from melting of the postcore formation mantle. The core formation modeling indicates that the HSE contents can be established by metal-silicate equilibrium early in the history of Mars, thus obviating the need for a late veneer for HSE, and by extension volatile siderophile elements, or volatiles in general.

  7. X-ray observations of complex temperature structure in the cool-core cluster A85

    Energy Technology Data Exchange (ETDEWEB)

    Schenck, David E.; Datta, Abhirup; Burns, Jack O. [Center for Astrophysics and Space Astronomy, Department of Astrophysical and Planetary Science, University of Colorado, Boulder, CO 80309 (United States); Skillman, Sam [Kavli Fellow, Kavli Institute for Particle Astrophysics and Cosmology, SLAC, CA 94025 (United States)

    2014-07-01

    X-ray observations were used to examine the complex temperature structure of A85, a cool-core galaxy cluster. Temperature features can provide evidence of merging events which shock heat the intracluster gas. Temperature maps were made from both Chandra and XMM-Newton observations. The combination of a new, long-exposure XMM observation and an improved temperature map binning technique produced the highest fidelity temperature maps of A85 to date. Hot regions were detected near the subclusters to the south and southwest in both the Chandra and XMM temperature maps. The presence of these structures implies A85 is not relaxed. The hot regions may indicate the presence of shocks. The Mach numbers were estimated to be ∼1.9 at the locations of the hot spots. Observational effects will tend to systematically reduce temperature jumps, so the measured Mach numbers are likely underestimated. Neither temperature map showed evidence for a shock in the vicinity of the presumed radio relic near the southwest subcluster. However, the presence of a weak shock cannot be ruled out. There was tension between the temperatures measured by the two instruments.

  8. A real-time algorithm for predicting core temperature in humans.

    Science.gov (United States)

    Gribok, Andrei V; Buller, Mark J; Hoyt, Reed W; Reifman, Jaques

    2010-07-01

    In this paper, we present a real-time implementation of a previously developed offline algorithm for predicting core temperature in humans. The real-time algorithm uses a zero-phase Butterworth digital filter to smooth the data and an autoregressive (AR) model to predict core temperature. The performance of the algorithm is assessed in terms of its prediction accuracy, quantified by the root mean squared error (RMSE), and in terms of prediction uncertainty, quantified by statistically based prediction intervals (PIs). To evaluate the performance of the algorithm, we simulated real-time implementation using core-temperature data collected during two different field studies, involving ten different individuals. One of the studies includes a case of heat illness suffered by one of the participants. The results indicate that although the real-time predictions yielded RMSEs that are larger than those of the offline algorithm, the real-time algorithm does produce sufficiently accurate predictions for practically meaningful prediction horizons (approximately 20 min). The algorithm reached alert (39 degrees C) and alarm (39.5 degrees C) thresholds for the heat-ill individual but did not even attain the alert threshold for the other individuals, demonstrating the algorithm's good sensitivity and specificity. The PIs reflected, in an intuitively expected manner, the uncertainty associated with real-time forecast as a function of prediction horizon and core-temperature variability. The results also corroborate the feasibility of "universal" AR models, where an offline-developed model based on one individual's data could be used to predict any other individual in real time. We conclude that the real-time implementation of the algorithm confirms the attributes observed in the offline version and, hence, could be considered as a warning tool for impending heat illnesses.

  9. Body mass index is associated with biological CSF markers of core brain pathology of Alzheimer's disease.

    Science.gov (United States)

    Ewers, Michael; Schmitz, Susanne; Hansson, Oskar; Walsh, Cathal; Fitzpatrick, Annette; Bennett, David; Minthon, Lennart; Trojanowski, John Q; Shaw, Leslie M; Faluyi, Yetunde O; Vellas, Bruno; Dubois, Bruno; Blennow, Kaj; Buerger, Katharina; Teipel, Stefan J; Weiner, Michael; Hampel, Harald

    2012-08-01

    Weight changes are common in aging and Alzheimer's disease (AD) and postmortem findings suggest a relation between lower body mass index (BMI) and increased AD brain pathology. In the current multicenter study, we tested whether lower BMI is associated with higher core AD brain pathology as assessed by cerebrospinal fluid (CSF)-based biological markers of AD in 751 living subjects: 308 patients with AD, 296 subjects with amnestic mild cognitive impairment (MCI), and 147 elderly healthy controls (HC). Based upon a priori cutoff values on CSF concentration of total tau and beta-amyloid (Aβ(1-42)), subjects were binarized into a group with abnormal CSF biomarker signature (CSF+) and those without (CSF-). Results showed that BMI was significantly lower in the CSF+ when compared with the CSF- group (F = 27.7, df = 746, p < 0.001). There was no interaction between CSF signature and diagnosis or apolipoprotein E (ApoE) genotype. In conclusion, lower BMI is indicative of AD pathology as assessed with CSF-based biomarkers in demented and nondemented elderly subjects.

  10. The molecular architecture of the yeast spindle pole body core determined by Bayesian integrative modeling.

    Science.gov (United States)

    Viswanath, Shruthi; Bonomi, Massimiliano; Kim, Seung Joong; Klenchin, Vadim A; Taylor, Keenan C; Yabut, King C; Umbreit, Neil T; Van Epps, Heather A; Meehl, Janet; Jones, Michele H; Russel, Daniel; Velazquez-Muriel, Javier A; Winey, Mark; Rayment, Ivan; Davis, Trisha N; Sali, Andrej; Muller, Eric G

    2017-08-16

    Microtubule organizing centers (MTOCs) form, anchor and stabilize the polarized network of microtubules in a cell. The central MTOC is the centrosome that duplicates during the cell cycle and during mitosis assembles a bipolar spindle to capture and segregate sister chromatids. Yet, despite their importance in cell biology, the physical structure of MTOCs is poorly understood. Here we determine the molecular architecture of the core of the yeast spindle pole body (SPB) by Bayesian integrative structure modeling based on in vivo FRET, small-angle X-ray scattering (SAXS), X-ray crystallography, electron microscopy and two-hybrid analysis. The model is validated by several methods that include a genetic analysis of the conserved PACT domain that recruits Spc110, a protein related to pericentrin, to the SPB. The model suggests that calmodulin can act as a protein cross-linker and Spc29 is an extended, flexible protein. The model led to the identification of a single, essential heptad in the coiled coil of Spc110 and a minimal PACT domain. It also led to a proposed pathway for the integration of Spc110 into the SPB. © 2017 by The American Society for Cell Biology.

  11. Temporal profile of body temperature in acute ischemic stroke: Relation to infarct size and outcome

    NARCIS (Netherlands)

    M. Geurts (Marjolein); Scheijmans, F.E.V. (Féline E.V.); T. van Seeters (Tom); G.J. Biessels; L.J. Kappelle (Jaap); B.K. Velthuis (Birgitta K.); H.B. van der Worp (Bart); C.B. Majoie (Charles); Y.B.W.E.M. Roos (Y. B W E M); L.E.M. Duijm (Lucien); K. Keizer (Koos); A. van der Lugt (Aad); D.W.J. Dippel (Diederik); Greve, D. (Droogh-de); H.P. Bienfait; M.A. van Walderveen (M.); M.J.H. Wermer (Marieke); G.J. Lycklama à Nijeholt (Geert); J. Boiten (Jelis); A. Duyndam (Anita); V.I.H. Kwa; F.J. Meijer (F.); E.J. van Dijk (Ewoud); A.M. Kesselring (Anouk); J. Hofmeijer; J.A. Vos (Jan Albert); W.J. Schonewille (W.); W.J. van Rooij (W.); P.L.M. de Kort (Paul); C.C. Pleiter (C.); S.L.M. Bakker (Stef); Bot, J.; M.C. Visser (Marieke); B.K. Velthuis (Birgitta); I.C. van der Schaaf (Irene); J.W. Dankbaar (Jan); W.P. Mali (Willem); van Seeters, T.; A.D. Horsch (Alexander D.); J.M. Niesten (Joris); G.J. Biessels (Geert Jan); L.J. Kappelle (Jaap); J.S.K. Luitse; Y. van der Graaf (Yolanda)

    2016-01-01

    textabstractBackground: High body temperatures after ischemic stroke have been associated with larger infarct size, but the temporal profile of this relation is unknown. We assess the relation between temporal profile of body temperature and infarct size and functional outcome in patients with acute

  12. Warming temperatures and smaller body sizes: synchronous changes in grwoth of North Sea fishes

    NARCIS (Netherlands)

    Baudron, A.; Needle, C.; Rijnsdorp, A.D.; Marshall, C.T.

    2014-01-01

    Decreasing body size has been proposed as a universal response to increasing temperatures. The physiology behind the response is well established for ectotherms inhabiting aquatic environments: as higher temperatures decrease the aerobic capacity, individuals with smaller body sizes have a reduced r

  13. Temporal profile of body temperature in acute ischemic stroke: Relation to infarct size and outcome

    NARCIS (Netherlands)

    M. Geurts (Marjolein); Scheijmans, F.E.V. (Féline E.V.); T. van Seeters (Tom); G.J. Biessels; L.J. Kappelle (Jaap); B.K. Velthuis (Birgitta K.); H.B. van der Worp (Bart); C.B. Majoie (Charles); Y.B.W.E.M. Roos (Yvo); L.E.M. Duijm (Lucien); K. Keizer (Koos); A. van der Lugt (Aad); D.W.J. Dippel (Diederik); Greve, D. (Droogh-de); H.P. Bienfait; M.A. van Walderveen (M.); M.J.H. Wermer (Marieke); G.J. Lycklama à Nijeholt (Geert); J. Boiten (Jelis); A. Duyndam (Anita); V.I.H. Kwa; F.J. Meijer (F.); E.J. van Dijk (Ewoud); A.M. Kesselring (Anouk); J. Hofmeijer; J.A. Vos (Jan Albert); W.J. Schonewille (W.); W.J. van Rooij (W.); P.L.M. de Kort (Paul); C.C. Pleiter (C.); S.L.M. Bakker (Stef); Bot, J.; M.C. Visser (Marieke); B.K. Velthuis (Birgitta); I.C. van der Schaaf (Irene); J.W. Dankbaar (Jan); W.P. Mali (Willem); van Seeters, T.; A.D. Horsch (Alexander D.); J.M. Niesten (Joris); G.J. Biessels (Geert Jan); L.J. Kappelle (Jaap); J.S.K. Luitse; Y. van der Graaf (Yolanda)

    2016-01-01

    textabstractBackground: High body temperatures after ischemic stroke have been associated with larger infarct size, but the temporal profile of this relation is unknown. We assess the relation between temporal profile of body temperature and infarct size and functional outcome in patients with acute

  14. Turtles (Chelodina longicollis) regulate muscle metabolic enzyme activity in response to seasonal variation in body temperature.

    Science.gov (United States)

    Seebacher, F; Sparrow, J; Thompson, M B

    2004-04-01

    Fluctuations in the thermal environment may elicit different responses in animals: migration to climatically different areas, regulation of body temperature, modification of biochemical reaction rates, or assuming a state of dormancy. Many ectothermic reptiles are active over a range of body temperatures that vary seasonally. Here we test the hypothesis that metabolic enzyme activity acclimatises seasonally in freshwater turtles (Chelodina longicollis) in addition to, or instead of, behavioural regulation of body temperatures. We measured body temperatures in free-ranging turtles (n = 3) by radiotelemetry, and we assayed phosphofructokinase (PFK), lactate dehydrogenase (LDH), citrate synthase (CS) and cytochrome c oxidase (CCO) activities in early autumn (March, n = 10 turtles), late autumn (May, n = 7) and mid-winter (July, n = 7) over a range of assay temperatures (10 degrees C, 15 degrees C, 20 degrees C, 25 degrees C). Body temperatures were either not different from, or higher than expected from a theoretical null-distribution of a randomly moving animal. Field body temperatures at any season were lower, however, than expected from animals that maximised their sun exposure. Turtles maintained constant PFK, LDH and CCO activities in different months, despite body temperature differences of nearly 13.0 degrees C between March (average daily body temperature = 24.4 degrees C) and July (average = 11.4 degrees C). CS activity did not vary between March and May (average daily body temperature = 20.2 degrees C), but it decreased in July. Thus C. longicollis use a combination of behavioural thermoregulation and biochemical acclimatisation in response to seasonally changing thermal conditions. Ectothermic reptiles were often thought not to acclimatise biochemically, and our results show that behavioural attainment of a preferred body temperature is not mandatory for activity or physiological performance in turtles.

  15. Ductile strain rate recorded in the Symvolon syn-extensional plutonic body (Rhodope core complex, Greece)

    Science.gov (United States)

    Cirrincione, Rosolino; Fazio, Eugenio; Ortolano, Gaetano; Fiannacca, Patrizia; Kern, Hartmut; Mengel, Kurt; Pezzino, Antonino; Punturo, Rosalda

    2016-04-01

    The present contribution deals with quantitative microstructural analysis, which was performed on granodiorites of the syn-tectonic Symvolon pluton (Punturo et al., 2014) at the south-western boundary of the Rhodope Core Complex (Greece). Our purpose is the quantification of ductile strain rate achieved across the pluton, by considering its cooling gradient from the centre to the periphery, using the combination of a paleopiezometer (Shimizu, 2008) and a quartz flow law (Hirth et al., 2001). Obtained results, associated with a detailed cooling history (Dinter et al., 1995), allowed us to reconstruct the joined cooling and strain gradient evolution of the pluton from its emplacement during early Miocene (ca. 700°C at 22 Ma) to its following cooling stage (ca. 500-300°C at 15 Ma). Shearing temperature values were constrained by means of a thermodynamic approach based on the recognition of syn-shear assemblages at incremental strain; to this aim, statistical handling of mineral chemistry X-Ray maps was carried out on microdomains detected at the tails of porphyroclasts. Results indicate that the strain/cooling gradients evolve "arm in arm" across the pluton, as also testified by the progressive development of mylonitic fabric over the magmatic microstructures approaching the host rock. References • Dinter, D. A., Macfarlane, A., Hames, W., Isachsen, C., Bowring, S., and Royden, L. (1995). U-Pb and 40Ar/39Ar geochronology of the Symvolon granodiorite: Implications for the thermal and structural evolution of the Rhodope metamorphic core complex, northeastern Greece. Tectonics, 14 (4), 886-908. • Shimizu, I. (2008). Theories and applicability of grain size piezometers: The role of dynamic recrystallization mechanisms. Journal of Structural Geology, 30 (7), 899-917. • Hirth, G., Teyssier, C., and Dunlap, J. W. (2001). An evaluation of quartzite flow laws based on comparisons between experimentally and naturally deformed rocks. International Journal of Earth

  16. Power-law Magnetic Field Decay and Constant Core Temperatures of Magnetars, Normal and Millisecond Pulsars

    CERN Document Server

    Xie, Yi

    2011-01-01

    The observed correlations, between the characteristic ages and dipole surface magnetic field strengths of all pulsars, can be well explained by magnetic field decay with core temperatures of $~2\\times10^{8}$ K, $\\sim2\\times10^{7}$ K, and $\\sim10^{5}$ K, for magnetars, normal radio pulsars, and millisecond pulsars, respectively; assuming that their characteristic ages are about two orders of magnitude larger than their true ages, the required core temperatures may be reduced by about a factor of 10. The magnetic decay follows a power-law and is dominated by the solenoidal component of the ambipolar diffusion mode. In this model, all NSs are assumed to have the same initial magnetic field strength, but different core temperature which do not change as the magnetic field decays. This suggests that the key distinguishing property between magnetars and normal pulsars is that magnetars were born much hotter than normal pulsars, and thus have much longer magnetic field decay time scales, resulting in higher surface ...

  17. THR-TH: a high-temperature gas-cooled nuclear reactor core thermal hydraulics code

    Energy Technology Data Exchange (ETDEWEB)

    Vondy, D.R.

    1984-07-01

    The ORNL version of PEBBLE, the (RZ) pebble bed thermal hydraulics code, has been extended for application to a prismatic gas cooled reactor core. The supplemental treatment is of one-dimensional coolant flow in up to a three-dimensional core description. Power density data from a neutronics and exposure calculation are used as the basic information for the thermal hydraulics calculation of heat removal. Two-dimensional neutronics results may be expanded for a three-dimensional hydraulics calculation. The geometric description for the hydraulics problem is the same as used by the neutronics code. A two-dimensional thermal cell model is used to predict temperatures in the fuel channel. The capability is available in the local BOLD VENTURE computation system for reactor core analysis with capability to account for the effect of temperature feedback by nuclear cross section correlation. Some enhancements have also been added to the original code to add pebble bed modeling flexibility and to generate useful auxiliary results. For example, an estimate is made of the distribution of fuel temperatures based on average and extreme conditions regularly calculated at a number of locations.

  18. Aging performances for resisting low-temperature of three dental yttria-stabilized zirconia ceramic core materials

    Institute of Scientific and Technical Information of China (English)

    XIAO Rui; CHU Bing-feng; ZHANG Lan; CAO Jun-kai

    2012-01-01

    Background The low-temperature resistance aging performance of Yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) is the key effective factor that influences the long-term success rate of prosthesis.The objective of this study was to test and compare the aging performances for resisting low temperature of Lava Frame,Cercon Smart,and Upcera Yttria-stabilized zirconia core materials,via analyzing the micro and the crystal phases of the materials,and measure the three-point bending strength and the fracture toughness.Methods The three zirconia green bodies were prepared as 60 test samples for three-point bending strength and as 60 test samples for fracture toughness.The test samples for three-point bending strength and fracture toughness were assigned to five groups and were treated respectively for 0,5,10,15,and 20 hours to observe the micro and the crystal phases of the test samples.Then the three-point bending strength and fracture toughness were tested by X-ray diffraction (XRD).Results The m phase content of Lava Frame was raised from 7.70% to 13.01%; the m phase content of Cercon Smart was raised from 4.95% to 8.53%; and Lava Frame is raised from 10.84% to 35.18%.The three-point bending strengths of the three zirconia core materials were higher than 1100 MPa and the fracture toughness was higher than 3 MPa·m1/2.The three-point bending strength and the fracture toughness of Upcra zirconia decreased the most,followed by Lava Frame,and then by Cercon Smart.Conclusion The aging resistance sequences of the three zirconia core materials are,from strong to weak,Cercon Smart,Lava Frame,and Upcera.

  19. Body temperatures and behavior of American alligators during cold winter weather

    Energy Technology Data Exchange (ETDEWEB)

    Brisbin, I.L., Jr.; Standora, E.A.; Vargo, M.J.

    1982-04-01

    Data from two large (188 and 135 kg) male alligators (Alligator mississippiensis) indicated that 4-5 C seemed to be the lowest body temperatures that they could endure with subsequent recovery. Although one animal in shallow water managed to keep a breathing hole open for several days, in ice that was 1.5 cm thick, it later died following a decrease of its body temperature to 4.0 C. The second alligator which was located in a deeper portion of the reservoir used both terrestrial and aquatic basking behavior to raise its body temperature and level of activity. Except in the case of basking events, there was not clear evidence of significant evaluations of the body temperatures of either the live or dead alligators above those of their adjacent water. When located side-by-side, diurnal cycles of deep body temperatures exceeding adjacent water temperatures to a maximum extent near dawn and usually falling below water temperatures during the afternoon and early evening hours. The physical properties and thermal inertia of the bodies of such large alligators, when placed in appropriate microclimates, may be sufficient in themselves to explain the general patterns and levels of body temperature changes observed at these low temperatures.

  20. Effect of a Single Musical Cakra Activation Manoeuvre on Body Temperature: An Exploratory Study.

    Science.gov (United States)

    Sumathy, Sundar; Parmar, Parin N

    2016-01-01

    Cakra activation/balancing and music therapy are part of the traditional Indian healing system. Little is known about effect of musical (vocal) technique of cakra activation on body temperature. We conducted a single-session exploratory study to evaluate effects of a single musical (vocal) cakra activation manoeuvre on body temperature in controlled settings. Seven healthy adults performed a single musical (vocal) cakra activation manoeuvre for approximately 12 minutes in controlled environmental conditions. Pre- and post-manoeuvre body temperatures were recorded with a clinical mercury thermometer. After a single manoeuvre, increase in body temperature was recorded in all seven subjects. The range of increase in body temperature was from 0.2°F to 1.4°F; with mean temperature rise being 0.5°F and median temperature rise being 0.4°F. We conclude that a single session of musical (vocal) technique of cakra activation elevated body temperatures in all 7 subjects. Further research is required to study effects of various cakra activation techniques on body temperature and other physiological parameters.

  1. Effect of a Single Musical Cakra Activation Manoeuvre on Body Temperature: An Exploratory Study

    Directory of Open Access Journals (Sweden)

    Sundar Sumathy

    2016-01-01

    Full Text Available Cakra activation/balancing and music therapy are part of the traditional Indian healing system. Little is known about effect of musical (vocal technique of cakra activation on body temperature. We conducted a single-session exploratory study to evaluate effects of a single musical (vocal cakra activation manoeuvre on body temperature in controlled settings. Seven healthy adults performed a single musical (vocal cakra activation manoeuvre for approximately 12 minutes in controlled environmental conditions. Pre- and post-manoeuvre body temperatures were recorded with a clinical mercury thermometer. After a single manoeuvre, increase in body temperature was recorded in all seven subjects. The range of increase in body temperature was from 0.2×F to 1.4×F; with mean temperature rise being 0.5×F and median temperature rise being 0.4×F. We conclude that a single session of musical (vocal technique of cakra activation elevated body temperatures in all 7 subjects. Further research is required to study effects of various cakra activation techniques on body temperature and other physiological parameters.

  2. Importance-truncated no-core shell model for fermionic many-body systems

    Energy Technology Data Exchange (ETDEWEB)

    Spies, Helena

    2017-03-15

    The exact solution of quantum mechanical many-body problems is only possible for few particles. Therefore, numerical methods were developed in the fields of quantum physics and quantum chemistry for larger particle numbers. Configuration Interaction (CI) methods or the No-Core Shell Model (NCSM) allow ab initio calculations for light and intermediate-mass nuclei, without resorting to phenomenology. An extension of the NCSM is the Importance-Truncated No-Core Shell Model, which uses an a priori selection of the most important basis states. The importance truncation was first developed and applied in quantum chemistry in the 1970s and latter successfully applied to models of light and intermediate mass nuclei. Other numerical methods for calculations for ultra-cold fermionic many-body systems are the Fixed-Node Diffusion Monte Carlo method (FN-DMC) and the stochastic variational approach with Correlated Gaussian basis functions (CG). There are also such method as the Coupled-Cluster method, Green's Function Monte Carlo (GFMC) method, et cetera, used for calculation of many-body systems. In this thesis, we adopt the IT-NCSM for the calculation of ultra-cold Fermi gases at unitarity. Ultracold gases are dilute, strongly correlated systems, in which the average interparticle distance is much larger than the range of the interaction. Therefore, the detailed radial dependence of the potential is not resolved, and the potential can be replaced by an effective contact interaction. At low energy, s-wave scattering dominates and the interaction can be described by the s-wave scattering length. If the scattering length is small and negative, Cooper-pairs are formed in the Bardeen-Cooper-Schrieffer (BCS) regime. If the scattering length is small and positive, these Cooper-pairs become strongly bound molecules in a Bose-Einstein-Condensate (BEC). In between (for large scattering lengths) is the unitary limit with universal properties. Calculations of the energy spectra

  3. Body temperature measurements in pigs during general anaesthesia.

    Science.gov (United States)

    Musk, G C; Costa, R S; Tuke, J

    2016-04-01

    The aim was to compare rectal, pharyngeal and oesophageal temperature measurements in anaesthetized pigs. Data were compared using the Bland-Altman method, and correlation coefficients and error measures were calculated. Sixty-six sets of data were collected from 16 pigs weighing 16.2 ± 4.2 kg. The bias (and 95% limit of agreement) for rectal and pharyngeal compared with oesophageal temperature were 0.69 (-1.18 to 2.57) ℃ and 0.22 (-0.84 to 1.28) ℃, respectively. The correlation coefficients for rectal and pharyngeal compared with oesophageal temperature were 0.47 and 0.87, respectively. The absolute error for rectal and pharyngeal compared with oesophageal temperature was 0.7 ± 0.9℃ and 0.2 ± 0.5℃, respectively. Pharyngeal temperature measurement may be more suitable than rectal temperature measurement for estimation of oesophageal temperature during general anaesthesia of pigs.

  4. Three-dimensional cryoEM reconstruction of native LDL particles to 16A resolution at physiological body temperature.

    Directory of Open Access Journals (Sweden)

    Vibhor Kumar

    Full Text Available BACKGROUND: Low-density lipoprotein (LDL particles, the major carriers of cholesterol in the human circulation, have a key role in cholesterol physiology and in the development of atherosclerosis. The most prominent structural components in LDL are the core-forming cholesteryl esters (CE and the particle-encircling single copy of a huge, non-exchangeable protein, the apolipoprotein B-100 (apoB-100. The shape of native LDL particles and the conformation of native apoB-100 on the particles remain incompletely characterized at the physiological human body temperature (37 °C. METHODOLOGY/PRINCIPAL FINDINGS: To study native LDL particles, we applied cryo-electron microscopy to calculate 3D reconstructions of LDL particles in their hydrated state. Images of the particles vitrified at 6 °C and 37 °C resulted in reconstructions at ~16 Å resolution at both temperatures. 3D variance map analysis revealed rigid and flexible domains of lipids and apoB-100 at both temperatures. The reconstructions showed less variability at 6 °C than at 37 °C, which reflected increased order of the core CE molecules, rather than decreased mobility of the apoB-100. Compact molecular packing of the core and order in a lipid-binding domain of apoB-100 were observed at 6 °C, but not at 37 °C. At 37 °C we were able to highlight features in the LDL particles that are not clearly separable in 3D maps at 6 °C. Segmentation of apoB-100 density, fitting of lipovitellin X-ray structure, and antibody mapping, jointly revealed the approximate locations of the individual domains of apoB-100 on the surface of native LDL particles. CONCLUSIONS/SIGNIFICANCE: Our study provides molecular background for further understanding of the link between structure and function of native LDL particles at physiological body temperature.

  5. X-ray Observations of Complex Temperature Structure in the Cool-core cluster Abell 85

    CERN Document Server

    Schenck, David; Burns, Jack; Skillman, Sam

    2014-01-01

    X-ray observations were used to examine the complex temperature structure of Abell 85, a cool-core galaxy cluster. Temperature features can provide evidence of merging events which shock heat the intracluster gas. Temperature maps were made from both \\textit{Chandra} and \\textit{XMM-Newton} obervations. The combination of a new, long-exposure \\textit{XMM} observation and an improved temperature map binning technique produced the highest fidelity temperature maps of A85 to date. Hot regions were detected near the subclusters to the South and Southwest in both the \\textit{Chandra} and \\textit{XMM} temperature maps. The presence of these structures implies A85 is not relaxed. The hot regions may indicate the presence of shocks. The Mach numbers were estimated to be $\\sim$1.9 at the locations of the hot spots. Observational effects will tend to systematically reduce temperature jumps, so the measured Mach numbers are likely underestimated. Neither temperature map showed evidence for a shock in the vicinity of the...

  6. Recent temperature increase recorded in an ice core in the source region of Yangtze River

    Institute of Scientific and Technical Information of China (English)

    KANG ShiChang; ZHANG YongJun; QIN DaHe; REN JiaWen; ZHANG QiangGong; Bjorn GRIGHOLM; Paul A. MAYEWSKI

    2007-01-01

    Interests on climate change in the source region of Yangtze River have been raised since it is a region with the greatest warming over the Tibetan Plateau (TP). A 70-year history of precipitation δ18O has been recovered using an ice core record retrieved in a plat portion of the firn area in the Guoqu Glacier (33°34′37.8″N, 91°10′35.32″E, 5720 m a.s.l.), Mt. Geladaindong (the source region of Yangtze River), in November, 2005. By using a significant positive relationship between ice core δ18O record and summer air temperature (July to September) from the nearby meteorological stations, a history of summer air temperature has been reconstructed for the last 70 years. Summer temperature was relatively low in 1940s and high in 1950s to the middle of 1960s. The lowest temperature occurred in the middle of 1970s.Temperature was low in 1980s and dramatically increased since 1990s, keeping the trend to the beginning of the 21st century. The warming rate recorded in the ice core with 0.5°C/10 a since 1970s is much higher that that in the central TP and the Northern Hemisphere (NH), and it becomes 1.1°C/10 a since 1990s which is also higher than these from the central TP and the NH, reflecting an accelerated warming and a more sensitive response to global warming in the high elevation region.

  7. The Double Sensor-A non-invasive device to continuously monitor core temperature in humans on earth and in space.

    Science.gov (United States)

    Gunga, H-C; Werner, A; Stahn, A; Steinach, M; Schlabs, T; Koralewski, E; Kunz, D; Belavý, D L; Felsenberg, D; Sattler, F; Koch, J

    2009-10-01

    The objective of our study was to establish whether rectal temperature recordings in humans could be replaced by a non-invasive skin temperature sensor combined with a heat flux sensor (Double Sensor) located at the forehead to monitor core body temperature changes due to circadian rhythms. Rectal and Double Sensor data were collected continuously for 24h in seven men undertaking strict head-down tilt bed-rest. Individual differences between the two techniques varied between -0.72 and +0.55 degrees C. Nonetheless, when temperature data were approximated by cosinor analysis in order to compare circadian rhythm profiles between methods, it was observed that there were no significant differences between mesor, amplitude, and acrophase (P>0.310). It was therefore concluded that the Double Sensor technology is presently not accurate enough for performing single individual core body temperature measurements under resting conditions at normal ambient room temperature. Yet, it seems to be a valid, non-invasive alternative for monitoring circadian rhythm profiles.

  8. Seasonal patterns of body temperature and microhabitat selection in a lacertid lizard

    Science.gov (United States)

    Ortega, Zaida; Pérez-Mellado, Valentín

    2016-11-01

    In temperate areas, seasonal changes entail a source of environmental variation potentially important for organisms. Temperate ectotherms may be adapted to the seasonal fluctuations in environmental traits. For lizards, behavioural adaptations regarding microhabitat selection could arise to improve thermoregulation during the different seasons. However, little is still known about which traits influence microhabitat selection of lizards and their adaptation to seasonality. Here we used Podarcis guadarramae to study the role of potential intrinsic (body size, sex, age) and environmental traits (air and substrate temperatures, wind speed, and sunlight) in the seasonal changes of body temperatures and microhabitat selection of lizards. We measured body temperatures of lizards in the same habitat during the four seasons and compared the climatic variables of the microhabitats selected by lizards with the mean climatic conditions available in their habitat. Body temperatures were similar for adult males, adult females, and juveniles within each season, being significantly higher in summer than in the other seasons, and in spring than in winter. The same pattern was found regarding substrate and air temperatures of the selected microhabitats. Wind speed and air temperature did not affect body temperatures, while body length was marginally significant and substrate temperatures and season did affect the body temperatures of lizards. Our results during the whole year support the idea that the seasonality could be the most important factor affecting body temperatures of these temperate species. Regarding microhabitat selection, environmental constraints, as environmental temperatures and wind speed, affected the seasonal changes on behavioural thermoregulation of lizards. This effect was similar between sexes and age classes, and was independent of body size. In addition, importance of sunlight exposure of the selected microhabitats (full sun, filtered sun, or shade) also

  9. Effect of Ambient Temperature on Body Temperature and Rest Metabolic Rate in Apodemus chevrieri During Postnatal Development

    Directory of Open Access Journals (Sweden)

    Zhu Wan-long

    2014-05-01

    Full Text Available In order to investigate the ability of constant temperature and thermoregulation in Apodemus chevrieri, body temperature and rest metabolic rate (RMR were measured during postnatal development (1~42 day when the A. chevrieri exposed different ambient temperature. The result showed that: body temperature and RMR of pups in A. chevrieri increased according to the increase of ambient temperature during 1 day to 7 day, showed character of poikilotherms; body temperature of pups were lower in low temperature(5oC and 10oC, relatively and RMR significant increased when day age is 14 day, it indicated that the pups showed a certain degree of thermoregulation in this phase. Its thermoregulation ability developed quickly during 7 day to 14 day. RMR of pups was extreme significantly higher in low temperature than that in other temperature when day age was 21 day, it showed that the pups had some thermoregulation to low temperature stimulation. The RMR of pups was showed increasing trend in high temperature(35oC when 28 day; when day age was 35 day and 42 day, the thermal neutral zone were 22.5 to 30oC and approaching its adult level. All of these results indicated that pups of A. chevrieri in the different growing period had different thermogenesis and energy allocation to maintain stable to body temperature, thermogenesis was weaker in the early phase of postnatal development, most of energy is used to its growth. After pups were weaned, the ability of constant temperature and thermoregulation developed quickly to adjust variations of environment during postnatal development.

  10. Thermal equilibrium and temperature differences among body regions in European plethodontid salamanders.

    Science.gov (United States)

    Lunghi, Enrico; Manenti, Raoul; Canciani, Giancarlo; Scarì, Giorgio; Pennati, Roberta; Ficetola, Gentile Francesco

    2016-08-01

    Information on species thermal physiology is extremely important to understand species responses to environmental heterogeneity and changes. Thermography is an emerging technology that allows high resolution and accurate measurement of body temperature, but until now it has not been used to study thermal physiology of amphibians in the wild. Hydromantes terrestrial salamanders are strongly depending on ambient temperature for their activity and gas exchanges, but information on their body temperature is extremely limited. In this study we tested if Hydromantes salamanders are thermoconform, we assessed whether there are temperature differences among body regions, and evaluated the time required to reach the thermal equilibrium. During summers of 2014 and 2015 we analysed 56 salamanders (Hydromantes ambrosii and Hydromantes italicus) using infrared thermocamera. We photographed salamanders at the moment in which we found them and 1, 2, 3, 4, 5 and 15min after having kept them in the hands. Body temperature was equal to air temperature; salamanders attained the equilibrium with air temperature in about 8min, the time required to reach equilibrium was longer in individuals with large body size. We detected small temperature differences between body parts, the head being slightly warmer than the body and the tail (mean difference: 0.05°C). These salamanders quickly reach the equilibrium with the environment, thus microhabitat measurement allows obtaining accurate information on their tolerance limits.

  11. Core-shell microstructured nanocomposites for synergistic adjustment of environmental temperature and humidity

    Science.gov (United States)

    Zhang, Haiquan; Yuan, Yanping; Zhang, Nan; Sun, Qingrong; Cao, Xiaoling

    2016-11-01

    The adjustment of temperature and humidity is of great importance in a variety of fields. Composites that can perform both functions are prepared by mixing phase change materials (PCMs) with hygroscopic materials. However, the contact area between the adsorbent and humid air is inevitably decreased in such structures, which reduces the number of mass transfer channels for water vapor. An approach entailing the increase in the mass ratio of the adsorbent is presented here to improve the adsorption capacity. A core-shell CuSO4/polyethylene glycol (PEG) nanomaterial was developed to satisfy the conflicting requirements of temperature control and dehumidification. The results show that the equilibrium adsorption capacity of the PEG coating layer was enhanced by a factor of 188 compared with that of the pure PEG powder. The coating layer easily concentrates vapor, providing better adsorption properties for the composite. Furthermore, the volume modification of the CuSO4 matrix was reduced by 80% by the PEG coated layer, a factor that increases the stability of the composite. For the phase change process, the crystallization temperature of the coating layer was adjusted between 37.2 and 46.3 °C by interfacial tension. The core-shell CuSO4/PEG composite reported here provides a new general approach for the simultaneous control of temperature and humidity.

  12. Experimental research of temperature sensor based on twin-core fiber

    Institute of Scientific and Technical Information of China (English)

    Ruifeng Zhao; Li Pei; Zhuoxuan Li; Tigang Ning; Linyong Fan; Weiwei Jiang

    2011-01-01

    @@ A low-cost, compact, and lossless temperature sensor based on a twin-core fiber (TCF) is demonstrated and manufactured by splicing two single-mode fibers to the ends of a TCF.The extinction ratio of the comb transmission spectrum is bigger than 15 dB, and the temperature sensitivity of the coupling angle is -0.02 rad/(℃· m) at -30-90 ℃ and -0.032 rad/(℃· m) at 90-175 ℃.Finite element method is used to calculate the supermodes of the TCF, and the result agrees well with the experiment.%A low-cost, compact, and lossless temperature sensor based on a twin-core fiber (TCF) is demonstrated and manufactured by splicing two single-mode fibers to the ends of a TCF. The extinction ratio of the comb transmission spectrum is bigger than 15 dB, and the temperature sensitivity of the coupling angle is -0.02 rad/(℃· m) at -30-90 ℃ and -0.032 rad/(℃· m) at 90-175 ℃. Finite element method is used to calculate the supermodes of the TCF, and the result agrees well with the experiment.

  13. Muscle, skin and core temperature after -110°c cold air and 8°c water treatment.

    Science.gov (United States)

    Costello, Joseph Thomas; Culligan, Kevin; Selfe, James; Donnelly, Alan Edward

    2012-01-01

    The aim of this investigation was to elucidate the reductions in muscle, skin and core temperature following exposure to -110°C whole body cryotherapy (WBC), and compare these to 8°C cold water immersion (CWI). Twenty active male subjects were randomly assigned to a 4-min exposure of WBC or CWI. A minimum of 7 days later subjects were exposed to the other treatment. Muscle temperature in the right vastus lateralis (n=10); thigh skin (average, maximum and minimum) and rectal temperature (n=10) were recorded before and 60 min after treatment. The greatest reduction (Pmuscle (mean ± SD; 1 cm: WBC, 1.6 ± 1.2°C; CWI, 2.0 ± 1.0°C; 2 cm: WBC, 1.2 ± 0.7°C; CWI, 1.7 ± 0.9°C; 3 cm: WBC, 1.6 ± 0.6°C; CWI, 1.7 ± 0.5°C) and rectal temperature (WBC, 0.3 ± 0.2°C; CWI, 0.4 ± 0.2°C) were observed 60 min after treatment. The largest reductions in average (WBC, 12.1 ± 1.0°C; CWI, 8.4 ± 0.7°C), minimum (WBC, 13.2 ± 1.4°C; CWI, 8.7 ± 0.7°C) and maximum (WBC, 8.8 ± 2.0°C; CWI, 7.2 ± 1.9°C) skin temperature occurred immediately after both CWI and WBC (Pmuscle and core temperature to a similar level of those experienced after CWI. Although both treatments significantly reduced skin temperature, WBC elicited a greater decrease compared to CWI. These data may provide information to clinicians and researchers attempting to optimise WBC and CWI protocols in a clinical or sporting setting.

  14. Muscle, Skin and Core Temperature after −110°C Cold Air and 8°C Water Treatment

    Science.gov (United States)

    Costello, Joseph Thomas; Culligan, Kevin; Selfe, James; Donnelly, Alan Edward

    2012-01-01

    The aim of this investigation was to elucidate the reductions in muscle, skin and core temperature following exposure to −110°C whole body cryotherapy (WBC), and compare these to 8°C cold water immersion (CWI). Twenty active male subjects were randomly assigned to a 4-min exposure of WBC or CWI. A minimum of 7 days later subjects were exposed to the other treatment. Muscle temperature in the right vastus lateralis (n = 10); thigh skin (average, maximum and minimum) and rectal temperature (n = 10) were recorded before and 60 min after treatment. The greatest reduction (Pmuscle (mean ± SD; 1 cm: WBC, 1.6±1.2°C; CWI, 2.0±1.0°C; 2 cm: WBC, 1.2±0.7°C; CWI, 1.7±0.9°C; 3 cm: WBC, 1.6±0.6°C; CWI, 1.7±0.5°C) and rectal temperature (WBC, 0.3±0.2°C; CWI, 0.4±0.2°C) were observed 60 min after treatment. The largest reductions in average (WBC, 12.1±1.0°C; CWI, 8.4±0.7°C), minimum (WBC, 13.2±1.4°C; CWI, 8.7±0.7°C) and maximum (WBC, 8.8±2.0°C; CWI, 7.2±1.9°C) skin temperature occurred immediately after both CWI and WBC (Pmuscle and core temperature to a similar level of those experienced after CWI. Although both treatments significantly reduced skin temperature, WBC elicited a greater decrease compared to CWI. These data may provide information to clinicians and researchers attempting to optimise WBC and CWI protocols in a clinical or sporting setting. PMID:23139763

  15. Nuclear design of the burst power ultrahigh temperature UF4 vapor core reactor system

    Science.gov (United States)

    Kahook, Samer D.; Dugan, Edward T.

    1991-01-01

    Static and dynamic neutronic analyses are being performed, as part of an integrated series of studies, on an innovative burst power UF4 Ultrahigh Temperature Vapor Core Reactor (UTVR)/Disk Magnetohydrodynamic (MHD) generator for space nuclear power applications. This novel reactor concept operates on a direct, closed Rankine cycle in the burst power mode (hundreds of MWe for thousands of seconds). The fuel/working fluid is a mixture of UF4 and metal fluoride. Preliminary calculations indicate high overall system efficiencies (≊20%), small radiator size (≊5 m2/MWe), and high specific power (≊5 kWe/kg). Neutronic analysis has revealed a number of attractive features for this novel reactor concept. These include some unique and very effective inherent negative reactivity control mechanisms such as the vapor-fuel density power coefficient of reactivity, the direct neutronic coupling among the multiple fissioning core regions (the central vapor core and the surrounding boiler columns), and the mass flow coupling feedback between the fissioning cores.

  16. CO2 sensing at room temperature using carbon nanotubes coated core fiber Bragg grating

    Science.gov (United States)

    Shivananju, B. N.; Yamdagni, S.; Fazuldeen, R.; Sarin Kumar, A. K.; Hegde, G. M.; Varma, M. M.; Asokan, S.

    2013-06-01

    The sensing of carbon dioxide (CO2) at room temperature, which has potential applications in environmental monitoring, healthcare, mining, biotechnology, food industry, etc., is a challenge for the scientific community due to the relative inertness of CO2. Here, we propose a novel gas sensor based on clad-etched Fiber Bragg Grating (FBG) with polyallylamine-amino-carbon nanotube coated on the surface of the core for detecting the concentrations of CO2 gas at room temperature, in ppm levels over a wide range (1000 ppm-4000 ppm). The limit of detection observed in polyallylamine-amino-carbon nanotube coated core-FBG has been found to be about 75 ppm. In this approach, when CO2 gas molecules interact with the polyallylamine-amino-carbon nanotube coated FBG, the effective refractive index of the fiber core changes, resulting in a shift in Bragg wavelength. The experimental data show a linear response of Bragg wavelength shift for increase in concentration of CO2 gas. Besides being reproducible and repeatable, the technique is fast, compact, and highly sensitive.

  17. Unexpected High Brightness Temperature 140 PC from the Core in the Jet of 3C 120

    CERN Document Server

    Roca-Sogorb, Mar; Agudo, Ivan; Marscher, Alan P; Jorstad, Svetlana G

    2009-01-01

    We present 1.7, 5, 15, 22 and 43 GHz polarimetric multi--epoch VLBA observations of the radio galaxy 3C 120. The higher frequency observations reveal a new component, not visible before April 2007, located 80 mas from the core (which corresponds to a deprojected distance of 140 pc), with a brightness temperature about 600 times higher than expected at such distances. This component (hereafter C80) is observed to remain stationary and to undergo small changes in its brightness temperature during more than two years of observations. A combination of jet bending, significant flow acceleration, and a very strong shock --for such large distance from the core-- may explain the unusually high Tb of C80, but it seems very unlikely that this corresponds to the usual shock that emerges from the core and travels downstream to the location of C80. It appears that some other intrinsic process in the jet, capable of providing a local burst in particle and/or magnetic field energy, may be responsible for the enhanced bright...

  18. Model-based temperature noise monitoring methods for LMFBR core anomaly detection

    Energy Technology Data Exchange (ETDEWEB)

    Tamaoki, Tetsuo; Sonoda, Yukio; Sato, Masuo (Toshiba Corp., Kawasaki, Kanagawa (Japan)); Takahashi, Ryoichi

    1994-03-01

    Temperature noise, measured by thermocouples mounted at each core fuel subassembly, is considered to be the most useful signal for detecting and locating local cooling anomalies in an LMFBR core. However, the core outlet temperature noise contains background noise due to fluctuations in the operating parameters including reactor power. It is therefore necessary to reduce this background noise for highly sensitive anomaly detection by subtracting predictable components from the measured signal. In the present study, both a physical model and an autoregressive model were applied to noise data measured in the experimental fast reactor JOYO. The results indicate that the autoregressive model has a higher precision than the physical model in background noise prediction. Based on these results, an 'autoregressive model modification method' is proposed, in which a temporary autoregressive model is generated by interpolation or extrapolation of reference models identified under a small number of different operating conditions. The generated autoregressive model has shown sufficient precision over a wide range of reactor power in applications to artificial noise data produced by an LMFBR noise simulator even when the coolant flow rate was changed to keep a constant power-to-flow ratio. (author).

  19. CO2 sensing at room temperature using carbon nanotubes coated core fiber Bragg grating.

    Science.gov (United States)

    Shivananju, B N; Yamdagni, S; Fazuldeen, R; Sarin Kumar, A K; Hegde, G M; Varma, M M; Asokan, S

    2013-06-01

    The sensing of carbon dioxide (CO2) at room temperature, which has potential applications in environmental monitoring, healthcare, mining, biotechnology, food industry, etc., is a challenge for the scientific community due to the relative inertness of CO2. Here, we propose a novel gas sensor based on clad-etched Fiber Bragg Grating (FBG) with polyallylamine-amino-carbon nanotube coated on the surface of the core for detecting the concentrations of CO2 gas at room temperature, in ppm levels over a wide range (1000 ppm-4000 ppm). The limit of detection observed in polyallylamine-amino-carbon nanotube coated core-FBG has been found to be about 75 ppm. In this approach, when CO2 gas molecules interact with the polyallylamine-amino-carbon nanotube coated FBG, the effective refractive index of the fiber core changes, resulting in a shift in Bragg wavelength. The experimental data show a linear response of Bragg wavelength shift for increase in concentration of CO2 gas. Besides being reproducible and repeatable, the technique is fast, compact, and highly sensitive.

  20. Skin sites to predict deep-body temperature while wearing firefighters' personal protective equipment during periodical changes in air temperature.

    Science.gov (United States)

    Kim, Siyeon; Lee, Joo-Young

    2016-04-01

    The aim of this study was to investigate stable and valid measurement sites of skin temperatures as a non-invasive variable to predict deep-body temperature while wearing firefighters' personal protective equipment (PPE) during air temperature changes. Eight male firefighters participated in an experiment which consisted of 60-min exercise and 10-min recovery while wearing PPE without self-contained breathing apparatus (7.75 kg in total PPE mass). Air temperature was periodically fluctuated from 29.5 to 35.5 °C with an amplitude of 6 °C. Rectal temperature was chosen as a deep-body temperature, and 12 skin temperatures were recorded. The results showed that the forehead and chest were identified as the most valid sites to predict rectal temperature (R(2) = 0.826 and 0.824, respectively) in an environment with periodically fluctuated air temperatures. This study suggests that particular skin temperatures are valid as a non-invasive variable when predicting rectal temperature of an individual wearing PPE in changing ambient temperatures. Practitioner Summary: This study should offer assistance for developing a more reliable indirect indicating system of individual heat strain for firefighters in real time, which can be used practically as a precaution of firefighters' heat-related illness and utilised along with physiological monitoring.

  1. Validity of Core Temperature Measurements at 3 Rectal Depths During Rest, Exercise, Cold-Water Immersion, and Recovery.

    Science.gov (United States)

    Miller, Kevin C; Hughes, Lexie E; Long, Blaine C; Adams, William M; Casa, Douglas J

    2017-04-01

      No evidence-based recommendation exists regarding how far clinicians should insert a rectal thermistor to obtain the most valid estimate of core temperature. Knowing the validity of temperatures at different rectal depths has implications for exertional heat-stroke (EHS) management.   To determine whether rectal temperature (Trec) taken at 4 cm, 10 cm, or 15 cm from the anal sphincter provides the most valid estimate of core temperature (as determined by esophageal temperature [Teso]) during similar stressors an athlete with EHS may experience.   Cross-sectional study.   Laboratory.   Seventeen individuals (14 men, 3 women: age = 23 ± 2 years, mass = 79.7 ± 12.4 kg, height = 177.8 ± 9.8 cm, body fat = 9.4% ± 4.1%, body surface area = 1.97 ± 0.19 m(2)).   Rectal temperatures taken at 4 cm, 10 cm, and 15 cm from the anal sphincter were compared with Teso during a 10-minute rest period; exercise until the participant's Teso reached 39.5°C; cold-water immersion (∼10°C) until all temperatures were ≤38°C; and a 30-minute postimmersion recovery period. The Teso and Trec were compared every minute during rest and recovery. Because exercise and cooling times varied, we compared temperatures at 10% intervals of total exercise and cooling durations for these periods.   The Teso and Trec were used to calculate bias (ie, the difference in temperatures between sites).   Rectal depth affected bias (F2,24 = 6.8, P = .008). Bias at 4 cm (0.85°C ± 0.78°C) was higher than at 15 cm (0.65°C ± 0.68°C, P .05). Bias varied over time (F2,34 = 79.5, P < .001). Bias during rest (0.42°C ± 0.27°C), exercise (0.23°C ± 0.53°C), and recovery (0.65°C ± 0.35°C) was less than during cooling (1.72°C ± 0.65°C, P < .05). Bias during exercise was less than during postimmersion recovery (0.65°C ± 0.35°C, P < .05).   When EHS is suspected, clinicians should insert the flexible rectal thermistor to 15 cm (6 in) because it is the most valid depth. The low

  2. Core-shell nanowire based electrical surface fastener used for room-temperature electronic packaging bonding

    Science.gov (United States)

    Wang, Peng; Ju, Yang; Hosoi, Atsushi

    2014-03-01

    With the ongoing miniaturization in electronic packaging, the traditional solders suffer from severe performance degradation. In addition, the high temperature required in the traditional solder reflow process may damage electronic elements. Therefore, there is an increasing urgent need for a new kind of nontoxic solder that can afford good mechanical stress and electrical contact at low temperature. This paper presents a method of fabricating nanowire surface fastener for the application of microelectronic packaging bonding at room temperature. This surface fastener consists of copper core and polystyrene shell nanowire arrays. It showed an adhesive strength of ˜24 N/cm2 and an electrical resistance of ˜0.41 × 10-2 Ω·cm2. This kind of nanowire surface fastener may enable the exploration of wide range applications, involving assembly of components in the electronic packaging.

  3. Derivation of temperature dependent mechanical properties of polymer foam core materials using optical extensometry

    Directory of Open Access Journals (Sweden)

    Fruehmann R.K.

    2010-06-01

    Full Text Available A methodology for determining the temperature dependence of Young’s modulus and Poisson’s ratio of polymer foams core materials is presented. The design of the test specimen is described in detail, covering the parasitic effects resulting from departures from the uniform strain condition. The measurement approach is based on a non-contact technique so that the behaviour of the complaint foam is not modified by the attachment of strain gauges or extensometers. Firstly experiments are conducted at room temperature and then at elevated temperatures in a thermal chamber. Readings are taken through an optical window using a standard digital camera. Digital image correlation is used to obtain the strains.

  4. Selection does not favor larger body size at lower temperature in a seed-feeding beetle.

    Science.gov (United States)

    Stillwell, R Craig; Moya-Laraño, Jordi; Fox, Charles W

    2008-10-01

    Body size of many animals increases with increasing latitude, a phenomenon known as Bergmann's rule (Bergmann clines). Latitudinal gradients in mean temperature are frequently assumed to be the underlying cause of this pattern because temperature covaries systematically with latitude, but whether and how temperature mediates selection on body size is unclear. To test the hypothesis that the "relative" advantage of being larger is greatest at cooler temperatures we compare the fitness of replicate lines of the seed beetle, Stator limbatus, for which body size was manipulated via artificial selection ("Large,"Control," and "Small" lines), when raised at low (22 degrees C) and high (34 degrees C) temperatures. Large-bodied beetles (Large lines) took the longest to develop but had the highest lifetime fecundity, and highest fitness (r(C)), at both low and high temperatures. However, the relative difference between the Large and Small lines did not change with temperature (replicate 2) or was greatest at high temperature (replicate 1), contrary to the prediction that the fitness advantage of being large relative to being small will decline with increasing temperature. Our results are consistent with two previous studies of this seed beetle, but inconsistent with prior studies that suggest that temperature-mediated selection on body size is a major contributor to the production of Bergmann clines. We conclude that other environmental and ecological variables that covary with latitude are more likely to produce the gradient in natural selection responsible for generating Bergmann clines.

  5. High frequency, high temperature specific core loss and dynamic B-H hysteresis loop characteristics of soft magnetic alloys

    Science.gov (United States)

    Wieserman, W. R.; Schwarze, G. E.; Niedra, J. M.

    1990-01-01

    Limited experimental data exists for the specific core loss and dynamic B-H loops for soft magnetic materials for the combined conditions of high frequency and high temperature. This experimental study investigates the specific core loss and dynamic B-H loop characteristics of Supermalloy and Metglas 2605SC over the frequency range of 1 to 50 kHz and temperature range of 23 to 300 C under sinusoidal voltage excitation. The experimental setup used to conduct the investigation is described. The effects of the maximum magnetic flux density, frequency, and temperature on the specific core loss and on the size and shape of the B-H loops are examined.

  6. Temperature and body weight affect fouling of pig pens

    NARCIS (Netherlands)

    Aarnink, A.J.A.; Schrama, J.W.; Heetkamp, M.J.W.; Stefanowska, J.; Huynh, T.T.T.

    2006-01-01

    Fouling of the solid lying area in pig housing is undesirable for reasons of animal welfare, animal health, environmental pollution, and labor costs. In this study the influence of temperature on the excreting and lying behavior of growing-finishing pigs of different BW (25, 45, 65, 85, or 105 kg) w

  7. Scattering of emission lines in galaxy cluster cores: measuring electron temperature

    CERN Document Server

    Khedekar, S; Sazonov, S; Sunyaev, R; Emsellem, E

    2014-01-01

    The central galaxies of some clusters can be strong emitters in the Ly$\\alpha$ and H$\\alpha$ lines. This emission may arise either from the cool/warm gas located in the cool core of the cluster or from the bright AGN within the central galaxy. The luminosities of such lines can be as high as $10^{42} - 10^{44}$ erg/s. This emission originating from the core of the cluster will get Thomson scattered by hot electrons of the intra-cluster medium (ICM) with an optical depth $\\sim$ 0.01 giving rise to very broad ($\\Delta \\lambda / \\lambda \\sim$ 15%) features in the scattered spectrum. We discuss the possibility of measuring the electron density and temperature using information on the flux and width of the highly broadened line features.

  8. Effect of heat stress on body temperature in healthy early postpartum dairy cows.

    Science.gov (United States)

    Burfeind, O; Suthar, V S; Heuwieser, W

    2012-12-01

    Measurement of body temperature is the most common method for an early diagnosis of sick cows in fresh cow protocols currently used on dairy farms. Thresholds for fever range from 39.4 °C to 39.7 °C. Several studies attempted to describe normal temperature ranges for healthy dairy cows in the early puerperium. However, the definition of a healthy cow is variable within these studies. It is challenging to determine normal temperature ranges for healthy cows because body temperature is usually included in the definition. Therefore, the objectives of this study were to identify factors that influence body temperature in healthy dairy cows early postpartum and to determine normal temperature ranges for healthy cows that calved in a moderate (temperature humidity index: 59.8 ± 3.8) and a hot period (temperature humidity index: 74.1 ± 4.4), respectively, excluding body temperature from the definition of the health status. Furthermore, the prevalence of fever was calculated for both periods separately. A subset of 17 (moderate period) and 15 cows (hot period) were used for analysis. To ensure their uterine health only cows with a serum haptoglobin concentration ≤ 1.1 g/L were included in the analysis. Therefore, body temperature could be excluded from the definition. A vaginal temperature logger that measured vaginal temperature every 10 min was inserted from Day 2 to 10 after parturition. Additionally rectal temperature was measured twice daily. Day in milk (2 to 10), period (moderate and hot), and time of day had an effect on rectal and vaginal temperature. The prevalence of fever (≥ 39.5 °C) was 7.4% and 28.1% for rectal temperature in the moderate and hot period, respectively. For vaginal temperature (07.00 to 11.00 h) it was 10% and 33%, respectively, considering the same threshold and period. This study demonstrates that body temperature in the early puerperium is influenced by several factors (day in milk, climate, time of day). Therefore, these factors

  9. Evaluation of the Start-Up Core Physics Tests at Japan's High Temperature Engineering Test Reactor (Annular Core Loadings)

    Energy Technology Data Exchange (ETDEWEB)

    John D. Bess; Nozomu Fujimoto; James W. Sterbentz; Luka Snoj; Atsushi Zukeran

    2010-03-01

    The High Temperature Engineering Test Reactor (HTTR) of the Japan Atomic Energy Agency (JAEA) is a 30 MWth, graphite-moderated, helium-cooled reactor that was constructed with the objectives to establish and upgrade the technological basis for advanced high-temperature gas-cooled reactors (HTGRs) as well as to conduct various irradiation tests for innovative high-temperature research. The core size of the HTTR represents about one-half of that of future HTGRs, and the high excess reactivity of the HTTR, necessary for compensation of temperature, xenon, and burnup effects during power operations, is similar to that of future HTGRs. During the start-up core physics tests of the HTTR, various annular cores were formed to provide experimental data for verification of design codes for future HTGRs. The Japanese government approved construction of the HTTR in the 1989 fiscal year budget; construction began at the Oarai Research and Development Center in March 1991 and was completed May 1996. Fuel loading began July 1, 1998, from the core periphery. The first criticality was attained with an annular core on November 10, 1998 at 14:18, followed by a series of start-up core physics tests until a fully-loaded core was developed on December 16, 1998. Criticality tests were carried out into January 1999. The first full power operation with an average core outlet temperature of 850ºC was completed on December 7, 2001, and operational licensing of the HTTR was approved on March 6, 2002. The HTTR attained high temperature operation at 950 ºC in April 19, 2004. After a series of safety demonstration tests, it will be used as the heat source in a hydrogen production system by 2015. Hot zero-power critical, rise-to-power, irradiation, and safety demonstration testing , have also been performed with the HTTR, representing additional means for computational validation efforts. Power tests were performed in steps from 0 to 30 MW, with various tests performed at each step to confirm

  10. The sympathetic nervous system is controlled by transient receptor potential vanilloid 1 in the regulation of body temperature.

    Science.gov (United States)

    Alawi, Khadija M; Aubdool, Aisah A; Liang, Lihuan; Wilde, Elena; Vepa, Abhinav; Psefteli, Maria-Paraskevi; Brain, Susan D; Keeble, Julie E

    2015-10-01

    Transient receptor potential vanilloid 1 (TRPV1) is involved in sensory nerve nociceptive signaling. Recently, it has been discovered that TRPV1 receptors also regulate basal body temperature in multiple species from mice to humans. In the present study, we investigated whether TRPV1 modulates basal sympathetic nervous system (SNS) activity. C57BL6/J wild-type (WT) mice and TRPV1 knockout (KO) mice were implanted with radiotelemetry probes for measurement of core body temperature. AMG9810 (50 mg/kg) or vehicle (2% DMSO/5% Tween 80/10 ml/kg saline) was injected intraperitoneally. Adrenoceptor antagonists or vehicle (5 ml/kg saline) was injected subcutaneously. In WT mice, the TRPV1 antagonist, AMG9810, caused significant hyperthermia, associated with increased noradrenaline concentrations in brown adipose tissue. The hyperthermia was significantly attenuated by the β-adrenoceptor antagonist propranolol, the mixed α-/β-adrenoceptor antagonist labetalol, and the α1-adrenoceptor antagonist prazosin. TRPV1 KO mice have a normal basal body temperature, indicative of developmental compensation. d-Amphetamine (potent sympathomimetic) caused hyperthermia in WT mice, which was reduced in TRPV1 KO mice, suggesting a decreased sympathetic drive in KOs. This study provides new evidence that TRPV1 controls thermoregulation upstream of the SNS, providing a potential therapeutic target for sympathetic hyperactivity thermoregulatory disorders. © FASEB.

  11. Post-warmup strategies to maintain body temperature and physical performance in professional rugby union players.

    Science.gov (United States)

    West, Daniel J; Russell, Mark; Bracken, Richard M; Cook, Christian J; Giroud, Tibault; Kilduff, Liam P

    2016-01-01

    We compared the effects of using passive-heat maintenance, explosive activity or a combination of both strategies during the post-warmup recovery time on physical performance. After a standardised warmup, 16 professional rugby union players, in a randomised design, completed a counter-movement jump (peak power output) before resting for 20 min and wearing normal-training attire (CON), wearing a passive heat maintenance (PHM) jacket, wearing normal attire and performing 3 × 5 CMJ (with a 20% body mass load) after 12 min of recovery (neuromuscular function, NMF), or combining PHM and NMF (COMB). After 20 min, participants completed further counter-movement jump and a repeated sprint protocol. Core temperature (Tcore) was measured at baseline, post-warmup and post-20 min. After 20 min of recovery, Tcore was significantly lower under CON and NMF, when compared with both PHM and COMB (P union players.

  12. Body temperatures and associated postures of the zebra-tailed lizard, Callisaurus draconoides

    Energy Technology Data Exchange (ETDEWEB)

    Muth, A.

    1977-01-01

    Body temperature and associated postures of the zebra-tailed lizard, Callisaurus draconoides, were examined in the field and laboratory. Three distinct postures are described: prostrate, tail-down and elevated. The mean body temperatures of the respective postures in the field were: 33.9, 40.5 and 42.7 C. In the laboratory, heating rates were greatest for the prostrate posture and least for the elevated posture. Body temperatures and heating rates are significantly correlated with posture. These correlations suggest that the postures are associated with behavioral thermoregulation in the field.

  13. Wireless Low-Power Integrated Basal-Body-Temperature Detection Systems Using Teeth Antennas in the MedRadio Band.

    Science.gov (United States)

    Yang, Chin-Lung; Zheng, Gou-Tsun

    2015-11-20

    This study proposes using wireless low power thermal sensors for basal-body-temperature detection using frequency modulated telemetry devices. A long-term monitoring sensor requires low-power circuits including a sampling circuit and oscillator. Moreover, temperature compensated technologies are necessary because the modulated frequency might have additional frequency deviations caused by the varying temperature. The temperature compensated oscillator is composed of a ring oscillator and a controlled-steering current source with temperature compensation, so the output frequency of the oscillator does not drift with temperature variations. The chip is fabricated in a standard Taiwan Semiconductor Manufacturing Company (TSMC) 0.18-μm complementary metal oxide semiconductor (CMOS) process, and the chip area is 0.9 mm². The power consumption of the sampling amplifier is 128 µW. The power consumption of the voltage controlled oscillator (VCO) core is less than 40 µW, and the output is -3.04 dBm with a buffer stage. The output voltage of the bandgap reference circuit is 1 V. For temperature measurements, the maximum error is 0.18 °C with a standard deviation of ±0.061 °C, which is superior to the required specification of 0.1 °C.

  14. Wireless Low-Power Integrated Basal-Body-Temperature Detection Systems Using Teeth Antennas in the MedRadio Band

    Directory of Open Access Journals (Sweden)

    Chin-Lung Yang

    2015-11-01

    Full Text Available This study proposes using wireless low power thermal sensors for basal-body-temperature detection using frequency modulated telemetry devices. A long-term monitoring sensor requires low-power circuits including a sampling circuit and oscillator. Moreover, temperature compensated technologies are necessary because the modulated frequency might have additional frequency deviations caused by the varying temperature. The temperature compensated oscillator is composed of a ring oscillator and a controlled-steering current source with temperature compensation, so the output frequency of the oscillator does not drift with temperature variations. The chip is fabricated in a standard Taiwan Semiconductor Manufacturing Company (TSMC 0.18-μm complementary metal oxide semiconductor (CMOS process, and the chip area is 0.9 mm2. The power consumption of the sampling amplifier is 128 µW. The power consumption of the voltage controlled oscillator (VCO core is less than 40 µW, and the output is −3.04 dBm with a buffer stage. The output voltage of the bandgap reference circuit is 1 V. For temperature measurements, the maximum error is 0.18 °C with a standard deviation of ±0.061 °C, which is superior to the required specification of 0.1 °C.

  15. Pulmonary asbestos body counts and electron probe analysis of asbestos body cores in patients with mesothelioma: a study of 25 cases

    Energy Technology Data Exchange (ETDEWEB)

    Roggli, V.L.; McGavran, M.H.; Subach, J.; Sybers, H.D.; Greenberg, S.D.

    1982-12-01

    Malignant mesotheliomas of the pleura and peritoneum are well-recognized risks of asbestos exposure. We determined the asbestos body content of the lungs from 24 cases of malignant mesothelioma (19 pleural, five peritoneal) and compared such to the content of lungs from 50 consecutive adult autopsies and four cases of overt asbestosis using a Clorox-digestion concentration technique. The cores of 90 asbestos bodies were examined by energy dispersive x-ray analysis and compared with similar data from 120 standard asbestos fibers and 20 fiberglass fibers. The malignant mesothelioma patients had asbestos body counts intermediate between those of the general population and those of patients with asbestosis, although some of the mesothelioma cases overlapped with the general population. These latter cases often lacked an identifiable occupational exposure to asbestos. EDXA studies demonstrated an amphibole core in 88 of the 90 asbestos bodies (amosite or crocidolite in 80 of 88, anthophyllite or tremolite in eight of 88), and chrysotile in two instances.

  16. Temperature oscillations near natural nuclear reactor cores and the potential for prebiotic oligomer synthesis.

    Science.gov (United States)

    Adam, Zachary R

    2016-06-01

    Geologic settings capable of driving prebiotic oligomer synthesis reactions remain a relatively unexplored aspect of origins of life research. Natural nuclear reactors are an example of Precambrian energy sources that produced unique temperature fluctuations. Heat transfer models indicate that water-moderated, convectively-cooled natural fission reactors in porous host rocks create temperature oscillations that resemble those employed in polymerase chain reaction (PCR) devices to artificially amplify oligonucleotides. This temperature profile is characterized by short-duration pulses up to 70-100 °C, followed by a sustained period of temperatures in the range of 30-70 °C, and finally a period of relaxation to ambient temperatures until the cycle is restarted by a fresh influx of pore water. For a given reactor configuration, temperature maxima and the time required to relax to ambient temperatures depend most strongly on the aggregate effect of host rock permeability in decreasing the thermal expansion and increasing the viscosity and evaporation temperature of the pore fluids. Once formed, fission-fueled reactors can sustain multi-kilowatt-level power production for 10(5)-10(6) years, ensuring microenvironmental longevity and chemical output. The model outputs indicate that organic synthesis on young planetary bodies with a sizeable reservoir of fissile material can involve more sophisticated energy dissipation pathways than modern terrestrial analog settings alone would suggest.

  17. Temperature oscillations near natural nuclear reactor cores and the potential for prebiotic oligomer synthesis

    Science.gov (United States)

    Adam, Zachary R.

    2016-06-01

    Geologic settings capable of driving prebiotic oligomer synthesis reactions remain a relatively unexplored aspect of origins of life research. Natural nuclear reactors are an example of Precambrian energy sources that produced unique temperature fluctuations. Heat transfer models indicate that water-moderated, convectively-cooled natural fission reactors in porous host rocks create temperature oscillations that resemble those employed in polymerase chain reaction (PCR) devices to artificially amplify oligonucleotides. This temperature profile is characterized by short-duration pulses up to 70-100 °C, followed by a sustained period of temperatures in the range of 30-70 °C, and finally a period of relaxation to ambient temperatures until the cycle is restarted by a fresh influx of pore water. For a given reactor configuration, temperature maxima and the time required to relax to ambient temperatures depend most strongly on the aggregate effect of host rock permeability in decreasing the thermal expansion and increasing the viscosity and evaporation temperature of the pore fluids. Once formed, fission-fueled reactors can sustain multi-kilowatt-level power production for 105-106 years, ensuring microenvironmental longevity and chemical output. The model outputs indicate that organic synthesis on young planetary bodies with a sizeable reservoir of fissile material can involve more sophisticated energy dissipation pathways than modern terrestrial analog settings alone would suggest.

  18. Effects of Cryogenic Temperature on Fracture Toughness of Core-Shell Rubber (CSR) Toughened Epoxy Nanocomposites

    Science.gov (United States)

    Wang, J.; Cannon, S. A.; Magee, D.; Schneider, J. A.

    2008-01-01

    This study investigated the effects of core-shell rubber (CSR) nanoparticles on the mechanical properties and fracture toughness of an epoxy resin at ambient and liquid nitrogen (LN2) temperatures. Varying amounts of Kane Ace MX130 toughening agent were added to a commercially available EPON 862/Epikure W epoxy resin. Elastic modulus was calculated using quasi-static tensile data. Fracture toughness was evaluated by the resulting breaking energy measured in Charpy impact tests conducted on an instrumented drop tower. The size and distribution of the CSR nanoparticles were characterized using Transmission Electron Microscopy (TEM) and Small Angle X-ray Scattering (SAXS). Scanning Electron Microscopy (SEM) was used to study the fracture surface morphology. The addition of the CSR nanoparticles increased the breaking energy with negligible change in elastic modulus and ultimate tensile stress (UTS). At ambient temperature the breaking energy increased with increasing additions of the CSR nanoparticles, while at LN2 temperatures, it reached a maximum at 5 wt% CSR concentration. KEY WORDS: liquid nitrogen (LN2) properties, fracture toughness, core-shell rubber (CSR).

  19. Effects of Cryogenic Temperature on Fracture Toughness of Core-Shell Rubber (CSR) Toughened Epoxy Nanocomposites

    Science.gov (United States)

    Wang, J.; Cannon, S. A.; Magee, D.; Schneider, J. A.

    2008-01-01

    This study investigated the effects of core-shell rubber (CSR) nanoparticles on the mechanical properties and fracture toughness of an epoxy resin at ambient and liquid nitrogen (LN2) temperatures. Varying amounts of Kane Ace MX130 toughening agent were added to a commercially available EPON 862/Epikure W epoxy resin. Elastic modulus was calculated using quasi-static tensile data. Fracture toughness was evaluated by the resulting breaking energy measured in Charpy impact tests conducted on an instrumented drop tower. The size and distribution of the CSR nanoparticles were characterized using Transmission Electron Microscopy (TEM) and Small Angle X-ray Scattering (SAXS). Scanning Electron Microscopy (SEM) was used to study the fracture surface morphology. The addition of the CSR nanoparticles increased the breaking energy with negligible change in elastic modulus and ultimate tensile stress (UTS). At ambient temperature the breaking energy increased with increasing additions of the CSR nanoparticles, while at LN2 temperatures, it reached a maximum at 5 wt% CSR concentration. KEY WORDS: liquid nitrogen (LN2) properties, fracture toughness, core-shell rubber (CSR).

  20. Temperature responsive complex coacervate core micelles with a PEO and PNIPAAm corona.

    Science.gov (United States)

    Voets, Ilja K; Moll, Puck M; Aqil, Abdelhafid; Jérôme, Christine; Detrembleur, Christophe; Waard, Pieter de; Keizer, Arie de; Stuart, Martien A Cohen

    2008-09-01

    In aqueous solutions at room temperature, poly( N-methyl-2-vinyl pyridinium iodide)- block-poly(ethylene oxide), P2MVP 38- b-PEO 211 and poly(acrylic acid)- block-poly(isopropyl acrylamide), PAA 55- b-PNIPAAm 88 spontaneously coassemble into micelles, consisting of a mixed P2MVP/PAA polyelectrolyte core and a PEO/PNIPAAm corona. These so-called complex coacervate core micelles (C3Ms), also known as polyion complex (PIC) micelles, block ionomer complexes (BIC), and interpolyelectrolyte complexes (IPEC), respond to changes in solution pH and ionic strength as their micellization is electrostatically driven. Furthermore, the PNIPAAm segments ensure temperature responsiveness as they exhibit lower critical solution temperature (LCST) behavior. Light scattering, two-dimensional 1H NMR nuclear Overhauser effect spectrometry, and cryogenic transmission electron microscopy experiments were carried out to investigate micellar structure and solution behavior at 1 mM NaNO 3, T = 25, and 60 degrees C, that is, below and above the LCST of approximately 32 degrees C. At T = 25 degrees C, C3Ms were observed for 7 coacervate shell, and a PEO corona.

  1. Investigation of the deformation mechanisms of core-shell rubber-modified epoxy at cryogenic temperatures

    Science.gov (United States)

    Brown, Hayley Rebecca

    The industrial demand for high strength-to-weight ratio materials is increasing due to the need for high performance components. Epoxy polymers, although often used in fiber-reinforced polymeric composites, have an inherent low toughness that further decreases with decreasing temperatures. Second-phase additives have been effective in increasing the toughness of epoxies at room temperature; however, the mechanisms at low temperatures are still not understood. In this study, the deformation mechanisms of a DGEBA epoxy modified with MX960 core-shell rubber (CSR) particles were investigated under quasi-static tensile and impact loads at room temperature (RT) and liquid nitrogen (LN 2) temperature. Overall, the CSR had little effect on the tensile properties at RT and LN2 temperature. The impact strength decreased from neat to 3 wt% but increased from neat to 5 wt% at RT and LN2 temperature, with a higher impact strength at RT at all CSR loadings. The CSR particles debonded in front of the crack tip, inducing voids into the matrix. It was found that an increase in shear deformation and void growth likely accounted for the higher impact strength at 5 wt% CSR loading at RT while the thermal stress fields due to the coefficient of thermal expansion mismatch between rubber and epoxy and an increase in secondary cracking is likely responsible for the higher impact strength at 5 wt% tested at LN2 temperature. While a large toughening effect was not seen in this study, the mechanisms analyzed herein will likely be of use for further material investigations at cryogenic temperatures.

  2. Cathinone increases body temperature, enhances locomotor activity, and induces striatal c-fos expression in the Siberian hamster.

    Science.gov (United States)

    Jones, S; Fileccia, E L; Murphy, M; Fowler, M J; King, M V; Shortall, S E; Wigmore, P M; Green, A R; Fone, K C F; Ebling, F J P

    2014-01-24

    Cathinone is a β-keto alkaloid that is the major active constituent of khat, the leaf of the Catha edulis plant that is chewed recreationally in East Africa and the Middle East. Related compounds, such as methcathinone and mephedrone have been increasing in popularity as recreational drugs, resulting in the recent proposal to classify khat as a Class C drug in the UK. There is still limited knowledge of the pharmacological effects of cathinone. This study examined the acute effects of cathinone on core body temperature, locomotor and other behaviors, and neuronal activity in Siberian hamsters. Adult male hamsters, previously implanted with radio telemetry devices, were treated with cathinone (2 or 5mg/kg i.p.), the behavioral profile scored and core body temperature and locomotor activity recorded by radio telemetry. At the end of the study, hamsters received vehicle or cathinone (5mg/kg) and neuronal activation in the brain was determined using immunohistochemical evaluation of c-fos expression. Cathinone dose-dependently induced significant (phamster.

  3. Effects of Body Weight and Water Temperature on Maximum Food Consumption of Juvenile Sebastodes fuscescens (Houttuyn)

    Institute of Scientific and Technical Information of China (English)

    谢松光; 杨红生; 周毅; 张福绥

    2004-01-01

    Maximum rate of food consumption (Cmax) was determined for juvenile Sebastodes fuscescens (Houttuyn) at water temperature of 10, 15, 20 and 25℃. The relationships of Cmax to the body weight (W) at each temperature were described by a power equation: lnCmax = a + b lnW. Covariance analysis revealed significant interaction of the temperature and body weight. The relationship of adjusted Cmax to water temperature (T) was described by a quadratic equation: Cmax =-0.369 + 0.456T - 0.0117T2. The optimal feeding temperature calculated from this equation was 19.5℃. The coefficients of the multiple regression estimation relating Cmax to body weight (W) and water temperature (T) were given in the Table 2.

  4. Bond strength between fiber posts and composite resin core: influence of temperature on silane coupling agents.

    Science.gov (United States)

    Novais, Veridiana Resende; Simamotos Júnior, Paulo Cézar; Rontani, Regina Maria Puppin; Correr-Sobrinho, Lourenço; Soares, Carlos José

    2012-01-01

    This study evaluated the effect of air drying temperature and different silane coupling agents on the bond strength between glass fiber posts and composite resin core. The post surface was cleaned with alcohol and treated with different silane coupling agents, being three prehydrolyzed silanes [Silano (Angelus), Prosil (FGM), RelyX Ceramic Primer (3M ESPE)] and one two-component silane [Silane Coupling Agent (Dentsply)]. Two post-silanization air drying temperatures, 23ºC and 60ºC, were applied. A cylindrical plastic matrix was placed around the silanized post and filled with composite resin. Each bonded post provided 7 slices for push-out testing. Each slice was loaded to failure under compression at a cross-head speed of 0.5 mm/min. Data were analyzed by two-way ANOVA and Scott-Knott tests (α=0.05). Dunnett's test was used to compare the mean of the control group with that of each experimental group. Scanning electron microscopy (SEM) was used to evaluate the interface of the fractured slices. For the 23ºC air drying temperature, the use of RelyX Ceramic Primer resulted in significantly lower bond strength than the other silane coupling agents, while the bond strength with Silane Coupling Agent was the highest of all groups. Only with Silane Coupling Agent, the bond strength for the 23ºC air drying temperature was significantly higher than that for 60ºC air drying. In conclusion, the use of warm air drying after silane application produced no increase in the bond strength between the fiber-reinforced composite post and the composite core. The two-component silane produced higher bond strength than all prehydrolyzed silanes when it was used with air drying at room temperature.

  5. Using core-shell metamaterial engineering to triple the critical temperature of a superconductor

    CERN Document Server

    Smolyaninova, Vera N; Gresock, Thomas; Jensen, Christopher; Prestigiacomo, Joseph C; Osofsky, M S; Smolyaninov, Igor I

    2015-01-01

    Recent experiments have shown the viability of the metamaterial approach to dielectric response engineering for moderately enhancing the transition temperature, Tc, of a superconductor. In this report, we demonstrate the use of Al2O3-coated aluminium nanoparticles to form the recently proposed epsilon near zero (ENZ) core-shell metamaterial superconductor with a Tc that is three times that of pure aluminium. IR reflectivity measurements confirm the predicted metamaterial modification of the dielectric function thus demonstrating the efficacy of the ENZ metamaterial approach to Tc engineering. These results provide an explanation for the long known, but not understood, enhancement of the Tc of granular aluminum films.

  6. Emperor penguin body surfaces cool below air temperature.

    Science.gov (United States)

    McCafferty, D J; Gilbert, C; Thierry, A-M; Currie, J; Le Maho, Y; Ancel, A

    2013-06-23

    Emperor penguins Aptenodytes forsteri are able to survive the harsh Antarctic climate because of specialized anatomical, physiological and behavioural adaptations for minimizing heat loss. Heat transfer theory predicts that metabolic heat loss in this species will mostly depend on radiative and convective cooling. To examine this, thermal imaging of emperor penguins was undertaken at the breeding colony of Pointe Géologie in Terre Adélie (66°40' S 140° 01' E), Antarctica in June 2008. During clear sky conditions, most outer surfaces of the body were colder than surrounding sub-zero air owing to radiative cooling. In these conditions, the feather surface will paradoxically gain heat by convection from surrounding air. However, owing to the low thermal conductivity of plumage any heat transfer to the skin surface will be negligible. Future thermal imaging studies are likely to yield further insights into the adaptations of this species to the Antarctic climate.

  7. Intraoperative body temperature control: esophageal thermometer versus infrared tympanic thermometer.

    Science.gov (United States)

    Poveda, Vanessa de Brito; Nascimento, Ariane de Souza

    2016-01-01

    To verify the correlation between temperature measurements performed using an infrared tympanic thermometer and an esophageal thermometer during the intraoperative period. A longitudinal study of repeated measures was performed including subjects aged 18 years or older undergoing elective oncologic surgery of the digestive system, with anesthesia duration of at least 1 hour. Temperature measurements were performed simultaneously by a calibrated esophageal thermometer and by a calibrated infrared tympanic thermometer, with laboratory reading precision of ±0.2ºC. The operating room temperature remained between 19 and 21ºC. The study included 51 patients, mostly men (51%), white (80.4%). All patients were kept warm by a forced-air heating system, for an average of 264.14 minutes (SD = 87.7). The two temperature measurements showed no different behavior over time (p = 0.2205), however, tympanic measurements were consistently 1.24°C lower (ptemperatura realizadas por meio de um termômetro timpânico por infravermelho e por um termômetro esofágico, durante o período intraoperatório. Realizou-se um estudo longitudinal, de medidas repetidas, incluindo sujeitos com idade igual ou superior a 18 anos, submetidos à cirurgia oncológica eletiva do sistema digestório, com duração da anestesia de, no mínimo, 1 hora. As medidas de temperatura eram realizadas, ao mesmo tempo, por meio de um termômetro esofágico calibrado e por termômetro timpânico por infravermelho calibrado, com precisão de leitura em laboratório de ±0,2ºC. A temperatura da sala operatória permaneceu entre 19 e 21ºC. Foram incluídos 51 pacientes, em sua maioria homens (51%), brancos (80,4%). Todos os pacientes foram aquecidos com o sistema de ar forçado aquecido, em média por 264,14 minutos (DP = 87,7). As duas medidas de temperatura não tiveram comportamento diferente ao longo do tempo (p = 0,2205), mas a medida timpânica foi consistentemente menor em 1,24°C (p temperaturas mais

  8. Differences in oral temperature and body shape in two populations with different propensities for obesity.

    Science.gov (United States)

    Vozarova, B; Weyer, C; Bogardus, C; Ravussin, E; Tataranni, P A

    2002-06-01

    Body temperature is a function of heat production and heat dissipation. Substantial interindividual variability has been reported in healthy humans. We hypothesized that Pima Indians, a population with a high prevalence of abdominal obesity, may have a lower surface area relative to volume, that is, lower radiating area, and therefore a higher body temperature compared to Caucasians. Body composition, including volume (hydrodensitometry), and oral temperature were assessed in 69 nondiabetic Caucasian [age, 30 +/- 7 years; body fat, 21 +/- 8% (mean +/- SD)] and 115 Pima Indian males [age, 27 +/- 6 years; body fat, 28 +/- 6%]. Surface area was estimated from height, weight, and waist circumference (Bouchard's equation). In 47 Pima Indians, measures of insulin sensitivity (M, hyperinsulinemic euglycemic clamp) were available. Compared to Caucasians, Pima Indians had a higher oral temperature [36.4 +/- 0.3 degrees C vs. 36.3 +/- 0.3 degrees C (mean +/- SD), p < 0.04] and lower surface area relative to volume (2.19 +/- 0.05 vs. 2.23 +/- 0.26 m(2), p < 0.0001). Surface area relative to volume was negatively correlated with oral temperature (r = -0.14, p < 0.05), but in a multiple linear regression model it did not entirely explain the ethnic difference in oral temperature. Oral temperature was inversely correlated with M (r = -0.28, p < 0.05). Conclusions-Pima Indians have higher oral temperature and lower surface area relative to volume than Caucasians. The ethnic difference in temperature does not seem to be entirely explained by differences in body composition and body shape. Interestingly, higher oral temperature was associated with insulin resistance, a risk factor for type 2 diabetes.

  9. Aquareovirus NS80 Initiates Efficient Viral Replication by Retaining Core Proteins within Replication-Associated Viral Inclusion Bodies

    OpenAIRE

    Liming Yan; Jie Zhang; Hong Guo; Shicui Yan; Qingxiu Chen; Fuxian Zhang; Qin Fang

    2015-01-01

    Viral inclusion bodies (VIBs) are specific intracellular compartments for reoviruses replication and assembly. Aquareovirus nonstructural protein NS80 has been identified to be the major constituent for forming globular VIBs in our previous study. In this study, we investigated the role of NS80 in viral structural proteins expression and viral replication. Immunofluorescence assays showed that NS80 could retain five core proteins or inner-capsid proteins (VP1-VP4 and VP6), but not outer-capsi...

  10. Temperature reconstruction from 10 to 120 kyr b2k from the NGRIP ice core

    Science.gov (United States)

    Kindler, P.; Guillevic, M.; Baumgartner, M.; Schwander, J.; Landais, A.; Leuenberger, M.; Spahni, R.; Capron, E.; Chappellaz, J.

    2014-04-01

    In order to reconstruct the temperature of the North Greenland Ice Core Project (NGRIP) site, new measurements of δ15N have been performed covering the time period from the beginning of the Holocene to Dansgaard-Oeschger (DO) event 8. Together with previously measured and mostly published δ15N data, we present for the first time a NGRIP temperature reconstruction for the whole last glacial period from 10 to 120 kyr b2k (thousand years before 2000 AD) including every DO event based on δ15N isotope measurements combined with a firn densification and heat diffusion model. The detected temperature rises at the onset of DO events range from 5 °C (DO 25) up to 16.5 °C (DO 11) with an uncertainty of ±3 °C. To bring measured and modelled data into agreement, we had to reduce the accumulation rate given by the NGRIP ss09sea06bm timescale in some periods by 30 to 35%, especially during the last glacial maximum. A comparison between reconstructed temperature and δ18Oice data confirms that the isotopic composition of the stadial was strongly influenced by seasonality. We evidence an anticorrelation between the variations of the δ18Oice sensitivity to temperature (referred to as α) and obliquity in agreement with a simple Rayleigh distillation model. Finally, we suggest that α might be influenced by the Northern Hemisphere ice sheet volume.

  11. Thermoregulation and energetics in hibernating black bears: metabolic rate and the mystery of multi-day body temperature cycles.

    Science.gov (United States)

    Tøien, Øivind; Blake, John; Barnes, Brian M

    2015-05-01

    Black bears overwintering in outdoor hibernacula in Alaska decrease metabolism to as low as 25 % basal rates, while core body temperature (T(b)) decreases from 37 to 38 °C to a mid-hibernation average of 33 °C. T b develops cycles of 1.6-7.3 days length within a 30-36 °C range, with no circadian component. We do not know the mechanism or function underlying behind the T(b) cycles, although bears avoid T(b) of thermoregulation. More intense shivering in the rising phase of cycles may contribute to the prevention of muscle disuse atrophy. Bears hibernating in cold conditions use more energy during hibernation than in warmer conditions. At T den below lower critical temperature, no extra energy expenditure results from T b cycling compared to keeping a stable T(b.)

  12. Temperature-Insensitive Bend Sensor Using Entirely Centered Erbium Doping in the Fiber Core

    Directory of Open Access Journals (Sweden)

    Sulaiman Wadi Harun

    2013-07-01

    Full Text Available A fiber based bend sensor using a uniquely designed Bend-Sensitive Erbium Doped Fiber (BSEDF is proposed and demonstrated. The BSEDF has two core regions, namely an undoped outer region with a diameter of about 9.38 μm encompassing a doped, inner core region with a diameter of 4.00 μm. The doped core region has about 400 ppm of an Er2O3 dopant. Pumping the BSEDF with a conventional 980 nm laser diode gives an Amplified Spontaneous Emission (ASE spectrum spanning from 1,510 nm to over 1,560 nm at the output power level of about −58 dBm. The ASE spectrum has a peak power of −52 dBm at a central wavelength of 1,533 nm when not spooled. Spooling the BSEDF with diameters of 10 cm to 2 cm yields decreasing peak powers from −57.0 dBm to −61.8 dBm, while the central wavelength remains unchanged. The output is highly stable over time, with a low temperature sensitivity of around ~0.005 dBm/°C, thus allowing for the development of a highly stable sensor system based in the change of the peak power alone.

  13. UV-assisted room temperature gas sensing of GaN-core/ZnO-shell nanowires

    Science.gov (United States)

    Park, Sunghoon; Ko, Hyunsung; Kim, Soohyun; Lee, Chongmu

    2014-11-01

    GaN is highly sensitive to low concentrations of H2 in ambient air and is almost insensitive to most other common gases. However, enhancing the sensing performance and the detection limit of GaN is a challenge. This study examined the H2-gas-sensing properties of GaN nanowires encapsulated with ZnO. GaN-core/ZnO-shell nanowires were fabricated by using a two-step process comprising the thermal evaporation of GaN powders and the atomic layer deposition of ZnO. The core-shell nanowires ranged from 80 to 120 nm in diameter and from a few tens to a few hundreds of micrometers in length, with a mean shell layer thickness of ~8 nm. Multiple-networked pristine GaN nanowire and ZnO-encapsulated GaN (or GaN-core/ZnO-shell) nanowire sensors showed responses of 120-147% and 179-389%, respectively, to 500-2,500 ppm of H2 at room temperature under UV (254 nm) illumination. The underlying mechanism of the enhanced response of the GaN nanowire to H2 gas when using ZnO encapsulation and UV irradiation is discussed.

  14. Room temperature nanojoining of Cu-Ag core-shell nanoparticles and nanowires

    Science.gov (United States)

    Wang, Jiaqi; Shin, Seungha

    2017-02-01

    Room temperature ( T room, 300 K) nanojoining of Ag has been widely employed in fabrication of microelectronic applications where the shapes and structures of microelectronic components must be maintained. In this research, the joining processes of pure Ag nanoparticles (NPs), Cu-Ag core-shell NPs, and nanowires (NWs) are studied using molecular dynamics simulations at T room. The evolution of densification, potential energy, and structural deformation during joining process are analyzed to identify joining mechanisms. Depending on geometry, different joining mechanisms including crystallization-amorphization, reorientation, Shockley partial dislocation are determined. A three-stage joining scenario is observed in both joining process of NPs and NWs. Besides, the Cu core does not participate in all joining processes, however, it enhances the mobility of Ag shell atoms, contributing to a higher densification and bonding strength at T room, compared with pure Ag nanomaterials. The tensile test shows that the nanojoint bears higher rupture strength than the core-shell NW itself. This study deepens understanding in the underlying joining mechanisms and thus nanojoint with desirable thermal, electrical, and mechanical properties could be potentially achieved.

  15. Earth's core-mantle boundary - Results of experiments at high pressures and temperatures

    Science.gov (United States)

    Knittle, Elise; Jeanloz, Raymond

    1991-01-01

    Laboratory experiments document that liquid iron reacts chemically with silicates at high pressures (above 2.4 x 10 to the 10th Pa) and temperatures. In particular, (Mg,Fe)SiO3 perovskite, the most abundant mineral of earth's lower mantle, is expected to react with liquid iron to produce metallic alloys (FeO and FeSi) and nonmetallic silicates (SiO2 stishovite and MgSiO3 perovskite) at the pressures of the core-mantle boundary, 14 x 10 to the 10th Pa. The experimental observations, in conjunction with seismological data, suggest that the lowermost 200 to 300 km of earth's mantle, the D-double-prime layer, may be an extremely heterogeneous region as a result of chemical reactions between the silicate mantle and the liquid iron alloy of earth's core. The combined thermal-chemical-electrical boundary layer resulting from such reactions offers a plausible explanation for the complex behavior of seismic waves near the core-mantle boundary and could influence earth's magnetic field observed at the surface.

  16. Temperature-Insensitive Bend Sensor Using Entirely Centered Erbium Doping in the Fiber Core

    Science.gov (United States)

    Ahmad, Harith; Zulkifli, Mohd Zamani; Muhammad, Farah Diana; Samangun, Julian Md; Abdul-Rashid, Hairul Azhar; Harun, Sulaiman Wadi

    2013-01-01

    A fiber based bend sensor using a uniquely designed Bend-Sensitive Erbium Doped Fiber (BSEDF) is proposed and demonstrated. The BSEDF has two core regions, namely an undoped outer region with a diameter of about 9.38 μm encompassing a doped, inner core region with a diameter of 4.00 μm. The doped core region has about 400 ppm of an Er2O3 dopant. Pumping the BSEDF with a conventional 980 nm laser diode gives an Amplified Spontaneous Emission (ASE) spectrum spanning from 1,510 nm to over 1,560 nm at the output power level of about −58 dBm. The ASE spectrum has a peak power of −52 dBm at a central wavelength of 1,533 nm when not spooled. Spooling the BSEDF with diameters of 10 cm to 2 cm yields decreasing peak powers from −57.0 dBm to −61.8 dBm, while the central wavelength remains unchanged. The output is highly stable over time, with a low temperature sensitivity of around ∼0.005 dBm/°C, thus allowing for the development of a highly stable sensor system based in the change of the peak power alone. PMID:23881146

  17. Effect of Temperature and Vibration on Electrical Connectors with Different Number of Contact Cores

    Directory of Open Access Journals (Sweden)

    Song W. L.

    2016-01-01

    Full Text Available In this paper, we presented the results from three related analysis performed by adopting the failure models, which provided an explanation of performance influencing factors caused by different number of contact cores, for the purpose of measuring the temperature change and deformation value, which were the factors causing contact failure. The failures were localized in contact parts of the connectors. Performed investigations included thermal analysis, modal analysis, harmonic response analysis and contact failure analysis. From the results of these simulations, related temperature and vibration analysis nephograms were got respectively. And the correctness of results of thermal analysis was verified by Fourier law. The research results of this paper provide a reference for thermal analysis and vibration analysis of electrical connectors, which is important for ensuring the reliability and safety of electrical connectors.

  18. Low-cost compact thermal imaging sensors for body temperature measurement

    Science.gov (United States)

    Han, Myung-Soo; Han, Seok Man; Kim, Hyo Jin; Shin, Jae Chul; Ahn, Mi Sook; Kim, Hyung Won; Han, Yong Hee

    2013-06-01

    This paper presents a 32x32 microbolometer thermal imaging sensor for human body temperature measurement. Waferlevel vacuum packaging technology allows us to get a low cost and compact imaging sensor chip. The microbolometer uses V-W-O film as sensing material and ROIC has been designed 0.35-um CMOS process in UMC. A thermal image of a human face and a hand using f/1 lens convinces that it has a potential of human body temperature for commercial use.

  19. Temperature effects on body size of freshwater crustacean zooplankton from Greenland to the tropics

    NARCIS (Netherlands)

    Havens, K.E.; Motta Pinto- Coelho, R.; Beklioglu, M.; Christoffersen, K.S.; Jeppesen, E.; Lauridsen, T.; Mazumder, A.; Méthot, G.; Pinel Alloul, B.; Tavşanoğlu, U.N.; Erdoğan, S.; Vijverberg, J.

    2015-01-01

    The body size of zooplankton has many substantive effects on the function of aquatic food webs. A variety of factors may affect size, and earlier studies indicate that water temperature may be a particularly important variable. Here we tested the hypothesis that the body size of cladocerans,

  20. High temperature UF6 RF plasma experiments applicable to uranium plasma core reactors

    Science.gov (United States)

    Roman, W. C.

    1979-01-01

    An investigation was conducted using a 1.2 MW RF induction heater facility to aid in developing the technology necessary for designing a self critical fissioning uranium plasma core reactor. Pure, high temperature uranium hexafluoride (UF6) was injected into an argon fluid mechanically confined, steady state, RF heated plasma while employing different exhaust systems and diagnostic techniques to simulate and investigate some potential characteristics of uranium plasma core nuclear reactors. The development of techniques and equipment for fluid mechanical confinement of RF heated uranium plasmas with a high density of uranium vapor within the plasma, while simultaneously minimizing deposition of uranium and uranium compounds on the test chamber peripheral wall, endwall surfaces, and primary exhaust ducts, is discussed. The material tests and handling techniques suitable for use with high temperature, high pressure, gaseous UF6 are described and the development of complementary diagnostic instrumentation and measurement techniques to characterize the uranium plasma, effluent exhaust gases, and residue deposited on the test chamber and exhaust system components is reported.

  1. SHTV, as a technique for core calculation using spatial homogenization and temperature variation

    Energy Technology Data Exchange (ETDEWEB)

    Moghaddam, Nader Maleki, E-mail: nader.moghaddam@gmail.co [Department of Nuclear Engineering and Physics, Amir Kabir University of Technology (Tehran polytechnique), Hafez Street, Tehran (Iran, Islamic Republic of); Zahedinejad, Ehsan, E-mail: ehsanzahedinejad@gmail.co [Department of Energy Engineering, Sharif University of Technology, Azadi Street, Tehran (Iran, Islamic Republic of); Kashi, Samira, E-mail: smr.kashi@gmail.co [Department of Nuclear Engineering, Shahid Beheshti University, Evin Street, Tehran (Iran, Islamic Republic of); Davilu, Hadi, E-mail: Davilu@aut.ac.i [Department of Nuclear Engineering and Physics, Amir Kabir University of Technology (Tehran polytechnique), Hafez Street, Tehran (Iran, Islamic Republic of)

    2010-09-15

    The accuracy of static neutronic parameters in the nuclear reactors depends upon the determination of group constants of the diffusion equation in the desired geometry. Although several methods have been proposed for calculating these parameters, there is still the need for more reliable methods. In this paper a powerful and innovative method based on Spatial Homogenization and Temperature Variation (SHTV) of physical properties of a WWER-1000 nuclear reactor core for calculating the relative power distribution of Fuel Assemblies (FA) and the hot fuel rod, is presented. The method is based on replacing the heterogeneous lattices of materials with different properties by an equivalent homogeneous mixture of these material for determining the few group constants, while the effect of temperature variation in the fuel and coolant density along the axial core direction is considered. All calculations are performed using WIMS and CITATION codes. The obtained results are compared with the results of Final Safety Analysis Report (FSAR) prepared by the designer, and good agreement between the two results is shown.

  2. Effect of paracetamol (acetaminophen) on body temperature in acute ischemic stroke: a double-blind, randomized phase II clinical trial

    NARCIS (Netherlands)

    D.W.J. Dippel (Diederik); E.J. van Breda (Eric); H.M.A. van Gemert (Maarten); H.B. van der Worp (Bart); R.J. Meijer (Ron); L.J. Kappelle (Jaap); P.J. Koudstaal (Peter Jan)

    2001-01-01

    textabstractBACKGROUND AND PURPOSE: Body temperature is a strong predictor of outcome in acute stroke. However, it is unknown whether antipyretic treatment leads to early and clinically worthwhile reduction of body temperature in patients with acute stroke, especially w

  3. Multibeam Interferometer Using a Photonic Crystal Fiber with Two Asymmetric Cores for Torsion, Strain and Temperature Sensing

    Science.gov (United States)

    Naeem, Khurram; Kwon, Il-Bum; Chung, Youngjoo

    2017-01-01

    We present a fiber-optic multibeam Mach-Zehnder interferometer (m-MZI) for simultaneous multi-parameter measurement. The m-MZI is comprised of a section of photonic crystal fiber integrated with two independent cores of distinct construction and birefringence properties characterized for torsion, strain and temperature sensing. Due to the presence of small core geometry and use of a short fiber length, the sensing device demonstrates inter-modal interference in the small core alongside the dominant inter-core interference between the cores for each of the orthogonal polarizations. The output spectrum of the device is characterized by the three-beam interference model and is polarization-dependent. The two types of interferometers present in the fiber m-MZI exhibit distinct sensitivities to torsion, strain and temperature for different polarizations, and matrix coefficients allowing simultaneous measurement of the three sensing parameters are proposed in experiment. PMID:28085046

  4. BENCHMARK EVALUATION OF THE START-UP CORE REACTOR PHYSICS MEASUREMENTS OF THE HIGH TEMPERATURE ENGINEERING TEST REACTOR

    Energy Technology Data Exchange (ETDEWEB)

    John Darrell Bess

    2010-05-01

    The benchmark evaluation of the start-up core reactor physics measurements performed with Japan’s High Temperature Engineering Test Reactor, in support of the Next Generation Nuclear Plant Project and Very High Temperature Reactor Program activities at the Idaho National Laboratory, has been completed. The evaluation was performed using MCNP5 with ENDF/B-VII.0 nuclear data libraries and according to guidelines provided for inclusion in the International Reactor Physics Experiment Evaluation Project Handbook. Results provided include updated evaluation of the initial six critical core configurations (five annular and one fully-loaded). The calculated keff eigenvalues agree within 1s of the benchmark values. Reactor physics measurements that were evaluated include reactivity effects measurements such as excess reactivity during the core loading process and shutdown margins for the fully-loaded core, four isothermal temperature reactivity coefficient measurements for the fully-loaded core, and axial reaction rate measurements in the instrumentation columns of three core configurations. The calculated values agree well with the benchmark experiment measurements. Fully subcritical and warm critical configurations of the fully-loaded core were also assessed. The calculated keff eigenvalues for these two configurations also agree within 1s of the benchmark values. The reactor physics measurement data can be used in the validation and design development of future High Temperature Gas-cooled Reactor systems.

  5. [Hyperthermia. Modification of body temperature as clinical therapeutics].

    Science.gov (United States)

    Vicuña Urtasun, Berta; Villalgordo Ortin, Paola; Montes García, Yolanda; Marín, Fernández Blanca

    2011-04-01

    The application of heat or cold therapy is called thermotherapy Thermotherapy has been used since ancient times, Egyptians, Greeks and Romans used solar radiation or submersion in springs to apply heat and ice and snow for cold application. The first scientific references related to thermotherapy appear in late eighteenth century but the twentieth century when the introduction of new forms of deep heat therapy have expanded their capabilities and their operation with media surface more comfortable and effective. Thermotherapy although they require more experimentation to obtain a solid scientific proof that their use is raising great expectations in various fields such as oncology treatment, surgery neurology etc. In the surgical field thermal ablation has been used successfully in the treatment of various diseases, benign prostatic hyperplasia, liver and gynecological tumors, among others. In the field of oncology has been shown to improve outcomes diathermy applied in conjunction with chemo and radiation therapy Based on the literature review describing the main uses of the change in temperature as a therapeutic, the main indications for these techniques, as applicable, evidence of its benefits and complications arising from their use.

  6. X-Ray cavities and temperature jumps in strong cool core cluster Abell 2390

    CERN Document Server

    Sonkamble, S S; Pawar, P K; Patil, M K

    2014-01-01

    We present results based on the systematic analysis of high resolution 95\\,ks \\textit{Chandra} observations of the strong cool core cluster Abell 2390 at the redshift of z = 0.228, which hosts an energetic radio AGN. This analysis has enabled us to investigate five X-ray deficient cavities in the hot atmosphere of Abell 2390 within central 30\\arcsec, three of which are newly detected. Presence of these cavities have been confirmed through a various image processing techniques like, the surface brightness profiles, unsharp masked image, as well as 2D elliptical model subtracted residual map. Temperature profile as well as 2D temperature map revealed structures in the distribution of ICM, in the sense that ICM in NW direction is relatively cooler than that on the SE direction. Two temperature jumps, one from 6\\,keV to 9.25\\,keV at 72 kpc on the north direction, and the other from 6\\,keV to 10.27\\,keV at 108 kpc in the east direction have been observed. These temperature jumps are associated with the shocks with...

  7. Porosity Effect in the Core Thermal Hydraulics for Ultra High Temperature Gas-cooled Reactor

    Directory of Open Access Journals (Sweden)

    Motoo Fumizawa

    2008-12-01

    Full Text Available This study presents an experimental method of porosity evaluation and a predictive thermal-hydraulic analysis with packed spheres in a nuclear reactor core. The porosity experiments were carried out in both a fully shaken state with the closest possible packing and in a state of non-vibration. The predictive analysis considering the fixed porosity value was applied as a design condition for an Ultra High Temperature Reactor Experiment (UHTREX. The thermal-hydraulic computer code was developed and identified as PEBTEMP. The highest outlet coolant temperature of 1316 oC was achieved in the case of an UHTREX at Los Alamos Scientific Laboratory, which was a small scale UHTR. In the present study, the fuel was changed to a pebble type, a porous media. In order to compare the present pebble bed reactor and UHTREX, a calculation based on HTGR-GT300 was carried out in similar conditions with UHTREX; in other words, with an inlet coolant temperature of 871oC, system pressure of 3.45 MPa and power density of 1.3 w/cm3. As a result, the fuel temperature in the present pebble bed reactor showed an extremely lower value compared to that of UHTREX.

  8. Temperature and methane records over the last 2 ka in Dasuopu ice core

    Institute of Scientific and Technical Information of China (English)

    PU; Jianchen; (

    2002-01-01

    [1]Johnsen, S. J., Clauson, H. B., Dansyard, W. et al., Irregular glacial interstadials recoded in a new Greenland ice core, Nature, 1992, 359: 311-312.[2]Grootes, P. M., Stuiver, M., White, J. W. C. et al., Comparison of osygen isotope records from the GISP2 and GRIP Greenland ice cores, Nature, 1993, 366: 552-554.[3]Muller, F., Glaciers and their fluctuations, Nature and Resources, 1980, 16(2): 5-12.[4]Meier, M. F., The contribution of small glaciers to global sea level, Science, 1984, 226: 1418-1421.[5]Kukla, G ., Gavin, J., Summer ice and carbon dioxide, Science, 1981, 214: 497-503.[6]Gornitz, V., Global sea level trend in the past century, Science, 1982, 215: 1611-1614.[7]Rasmusen, R. A., Khalil, M. A. K., Atmospheric methane in the recent and ancient atmospheres: Concentrations, trends and interhemispheric gradient, J. Geophys. Res., 1984, 89(D7): 11599-11605.[8]Blunier, T., Chappellaz, J., Schwander, J. et al., Atmospheric methane record from a Greenland ice core over the last 1000 years, Geoph. Res. Lett., 1993, 20(20): 2219-2222.[9]Zhu, K. Z., Climatic changes in the past 5000 years in China, Science in China, 1973, 26: 1-5.[10]Wu Xiangding, Lin Zhenyao, Some characteristics of the climatic changes during the historical time of Qinghai-Xizang Plateau, Acta Meteorologica Sinica (in Chinese), 1981, 39(1): 90-96.[11]Yao Tangdong, Qin Dahe, Tian Lide et al., Variations in temperature and precipitation in the past 2000a on the Xizang (Tibet) Plateau: Guliya ice core record, Science in China, Ser. D, 1996, 39: 426-433.[12]Yao Tandong, Thompson, L. G ., Trends and features of climatic changes in the past 5000 years recorded by Dunde ice core, Annals of Glaciology, 1992, 16: 470-473.[13]Yao, T. D., Xie Zichu, Climatic Change since the Little Ice Age as recorded in the Dunde Ice Cap, Science in China, Ser. B, 1991, 34(6): 760-767.[14]Yao Tandong, One of the ten science and technology achievements 1997 in China

  9. Body temperature variation of South African antelopes in two climatically contrasting environments

    NARCIS (Netherlands)

    Shrestha, A.K.; Wieren, van S.E.; Langevelde, van F.; Fuller, A.; Hetem, R.S.; Meyer, L.C.R.; Bie, de S.; Prins, H.H.T.

    2012-01-01

    To understand the adaptive capacity of a species in response to rapid habitat destruction and climate change, we investigated variation in body temperature (Tb) of three species of antelope, namely eland, blue wildebeest and impala, using abdominally-implanted temperature data loggers. The study was

  10. Thermal insulation and body temperature wearing a thermal swimsuit during water immersion.

    Science.gov (United States)

    Wakabayashi, Hitoshi; Hanai, Atsuko; Yokoyama, Shintaro; Nomura, Takeo

    2006-09-01

    This study evaluated the effects of a thermal swimsuit on body temperatures, thermoregulatory responses and thermal insulation during 60 min water immersion at rest. Ten healthy male subjects wearing either thermal swimsuits or normal swimsuits were immersed in water (26 degrees C or 29 degrees C). Esophageal temperature, skin temperatures and oxygen consumption were measured during the experiments. Metabolic heat production was calculated from oxygen consumption. Heat loss from skin to the water was calculated from the metabolic heat production and the change in mean body temperature during water immersion. Total insulation and tissue insulation were estimated by dividing the temperature difference between the esophagus and the water or the esophagus and the skin with heat loss from the skin. Esophageal temperature with a thermal swimsuit was higher than that with a normal swimsuit at the end of immersion in both water temperature conditions (pinsulation with the thermal swimsuit was higher than that with a normal swimsuit due to insulation of the suit at both water temperatures (pinsulation was similar in all four conditions, but significantly higher with the thermal swimsuit in both water temperature conditions (pinsulation and reduce heat loss from the skin. Therefore, subjects with thermal swimsuits can maintain higher body temperatures than with a normal swimsuit and reduce shivering thermo-genesis.

  11. Validity of the Temperature Reconstruction from Water Isotopes in Ice Cores

    Science.gov (United States)

    Jouzel, J.; Alley, R. B.; Cuffey, K. M.; Dansgaard, W.; Grootes, P.; Hoffmann, G.; Johnsen, S. J.; Koster, R. D.; Peel, D.; Shuman, C. A.; Stievenard, M.; Stuiver, M.; White, J.

    1997-01-01

    Well-documented present-day distributions of stable water isotopes (HDO and others) show the existence, in middle and high latitudes, of a linear relationship between the mean annual isotope content of precipitation (SD and 51"0) and the mean annual temperature at the precipitation site. Paleoclimatologists have used this relationship, which is particularly well obeyed over Greenland and Antarctica, to infer paleotemperatures from ice core data. There is, however, growing evidence that spatial and temporal isotope/ surface temperature slopes differ, thus complicating the use of stable water isotopes as paleothermometers. In this paper we review empirical estimates of temporal slopes in polar regions and relevant information that can be inferred from isotope models: simple, Rayleigh-type distillation models and (particularly over Greenland) general circulation models (GCMS) fitted with isotope tracer diagnostics. Empirical estimates of temporal slopes appear consistently lower than present-day spatial slopes and are dependent on the timescale considered. This difference is most probably due to changes in the evaporative origins of moisture, changes in the seasonality of the precipitation, changes in the strength of the inversion layer, or some combination of these changes. Isotope models have not yet been used to evaluate the relative influences of these different factors. The apparent disagreement in the temporal and spatial slopes clearly makes calibrating the isotope paleothermometer difficult. Nevertheless, the use of a (calibrated) isotope paleothermometer appears justified; empirical estimates and most (though not all) GCM results support the practice of interpreting ice core isotope records in terms of local temperature changes.

  12. Novel energy-saving strategies to multiple stressors in birds: the ultradian regulation of body temperature.

    Science.gov (United States)

    Tattersall, Glenn J; Roussel, Damien; Voituron, Yann; Teulier, Loïc

    2016-09-28

    This study aimed to examine thermoregulatory responses in birds facing two commonly experienced stressors, cold and fasting. Logging devices allowing long-term and precise access to internal body temperature were placed within the gizzards of ducklings acclimated to cold (CA) (5°C) or thermoneutrality (TN) (25°C). The animals were then examined under three equal 4-day periods: ad libitum feeding, fasting and re-feeding. Through the analysis of daily as well as short-term, or ultradian, variations of body temperature, we showed that while ducklings at TN show only a modest decline in daily thermoregulatory parameters when fasted, they exhibit reduced surface temperatures from key sites of vascular heat exchange during fasting. The CA birds, on the other hand, significantly reduced their short-term variations of body temperature while increasing long-term variability when fasting. This phenomenon would allow the CA birds to reduce the energetic cost of body temperature maintenance under fasting. By analysing ultradian regulation of body temperature, we describe a means by which an endotherm appears to lower thermoregulatory costs in response to the combined stressors of cold and fasting.

  13. On fast solid-body rotation of the solar core and differential (liquid-like) rotation of the solar surface

    Science.gov (United States)

    Pashitskii, E. A.

    2017-07-01

    On the basis of a two-component (two-fluid) hydrodynamic model, it is shown that the probable phenomenon of solar core rotation with a velocity higher than the average velocity of global rotation of the Sun, discovered by the SOHO mission, can be related to fast solid-body rotation of the light hydrogen component of the solar plasma, which is caused by thermonuclear fusion of hydrogen into helium inside the hot dense solar core. Thermonuclear fusion of four protons into a helium nucleus (α-particle) creates a large free specific volume per unit particle due to the large difference between the densities of the solar plasma and nuclear matter. As a result, an efficient volumetric sink of one of the components of the solar substance—hydrogen—forms inside the solar core. Therefore, a steady-state radial proton flux converging to the center should exist inside the Sun, which maintains a constant concentration of hydrogen as it burns out in the solar core. It is demonstrated that such a converging flux of hydrogen plasma with the radial velocity v r ( r) = -β r creates a convective, v r ∂ v φ/∂ r, and a local Coriolis, v r v φ/ r,φ nonlinear hydrodynamic forces in the solar plasma, rotating with the azimuthal velocity v φ. In the absence of dissipation, these forces should cause an exponential growth of the solid-body rotation velocity of the hydrogen component inside the solar core. However, friction between the hydrogen and helium components of the solar plasma due to Coulomb collisions of protons with α-particles results in a steady-state regime of rotation of the hydrogen component in the solar core with an angular velocity substantially exceeding the global rotational velocity of the Sun. It is suggested that the observed differential (liquid-like) rotation of the visible surface of the Sun (photosphere) with the maximum angular velocity at the equator is caused by sold-body rotation of the solar plasma in the radiation zone and strong turbulence in

  14. Thermogenic alterations in the woman. II. Basal body, afternoon, and bedtime temperatures.

    Science.gov (United States)

    Zuspan, K J; Zuspan, F P

    1974-10-15

    19 female college students aged 17-20 years volunteered to participate in an experiment whereby they took their temperatures on 1st rising, at 5 p.m., and at bedtime for a minimum of 1 complete ovulation cycle. 3 parallel curves were found with the afternoon temperature being .7 degrees Farenheit higher than the basal and .3 degrees higher than the bedtime temperature. Several graphs illustrate the curve patterns. It is concluded that either the afternoon or the evening temperature can be used instead of the rising (or basal body) temperature, with an adjustment of the correct amount.

  15. Dedicated tool to assess the impact of a rhetorical task on human body temperature.

    Science.gov (United States)

    Koprowski, Robert; Wilczyński, Sławomir; Martowska, Katarzyna; Gołuch, Dominik; Wrocławska-Warchala, Emilia

    2017-07-19

    Functional infrared thermal imaging is a method widely used in medicine, including analysis of the mechanisms related to the effect of emotions on physiological processes. The article shows how the body temperature may change during stress associated with performing a rhetorical task and proposes new parameters useful for dynamic thermal imaging measurements MATERIALS AND METHODS: 29 healthy male subjects were examined. They were given a rhetorical task that induced stress. Analysis and processing of collected body temperature data in a spatial resolution of 256×512pixels and a temperature resolution of 0.1°C enabled to show the dynamics of temperature changes. This analysis was preceded by dedicated image analysis and processing methods RESULTS: The presented dedicated algorithm for image analysis and processing allows for fully automated, reproducible and quantitative assessment of temperature changes and time constants in a sequence of thermal images of the patient. When performing the rhetorical task, the temperature rose by 0.47±0.19°C in 72.41% of the subjects, including 20.69% in whom the temperature decreased by 0.49±0.14°C after 237±141s. For 20.69% of the subjects only a drop in temperature was registered. For the remaining 6.89% of the cases, no temperature changes were registered CONCLUSIONS: The performance of the rhetorical task by the subjects causes body temperature changes. The ambiguous temperature response to the given stress factor indicates the complex mechanisms responsible for regulating stressful situations. Stress associated with the examination itself induces body temperature changes. These changes should always be taken into account in the analysis of infrared data. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Effect of paracetamol (acetaminophen) on body temperature in acute stroke: A meta-analysis.

    Science.gov (United States)

    Fang, Junjie; Chen, Chensong; Cheng, Hongsen; Wang, Ren; Ma, Linhao

    2017-03-18

    The objective of this study was to assess the efficacy of paracetamol (acetaminophen) on body temperature in acute stroke. Medline, Cochrane Central Register of Controlled Trials, EMBASE, Chinese BioMedical Literature Database, China National Knowledge Infrastructure, and the World Health Organization (WHO) International Clinical Trials Registry Platform were searched electronically. Relevant journals and references of studies included were hand-searched for randomized controlled trials (RCT) and controlled clinical trials (CCT) regarding the efficacy of paracetamol (acetaminophen) on body temperature in acute stroke. Two reviewers independently performed data extraction and quality assessment. Data were analyzed using RevMan 5.3 software by the Cochrane Collaboration. Five studies were included. To compare the efficacy of paracetamol (acetaminophen) in acute stroke, the pooled RR (Risk Ratio) and its 95% CI of body temperature reduction at 24h from the start of treatment were -0.3 (95% CI: -0.52 to -0.08), with statistical significance (P=0.007). Consistently, the pooled RR (Risk Ratio) and its 95% CI of body temperature at 24h from the start of treatment were -0.22 (-0.29, -0.15), with statistical significance (Pacetaminophen and placebo was 0.86 (95% CI: 0.62 to 1.2), with no statistical significance (P=0.27). Acetaminophen was revealed to have some favorable influence in body temperature reduction in acute stroke, but showed no important effect on improving functional outcome and reducing adverse events of patients. What is already known on this subject? Paracetamol (acetaminophen) is one of the most commonly used antipyretic drugs and has some capability to reduce body temperature through acting on central nervous system. Acetaminophen showed some capability to decrease body temperature for acute stroke. Acetaminophen could not improve functional outcome and reduce adverse events of patients with acute stroke. Copyright © 2017 Elsevier Inc. All rights

  17. [Study on the skin-core evolvement of carbon fibers as a function of heat treatment temperature by Raman spectroscopy].

    Science.gov (United States)

    Liu, Fu-jie; Fan, Li-dong; Wang, Hao-jing; Zhu, Zhen-ping

    2008-08-01

    The skin-core evolvement of the carbon fibers was studied as a function of heat-treatment temperature though the analysis of Raman spectroscopy of the carbon fibers surface and core. It was found that the change of the Raman spectra of the carbon fibers core was similar to that on the surface with the increase in heat-treatment temperature. At 1600 degrees C, the Rs and Rc values were almost equal, indicating that the degrees of the graphitization of the carbon fibers surface and core were almost uniform. The Rs and Rc values decreased dramatically with the increase in heat-treatment temperature, and Rs decreased more. At 2800 degrees C, the Rs value came to 0.429, lowered 77.2%, while the Rc value then came to 1.101, lowered 38.7% only. It implied that the graphitization degree of the carbon fibers was enhanced with increasing the heat treatment temperature, and that of carbon fibers surface was enhanced more. The graphite characters of the carbon of the carbon fibers surface were different from that of the carbon fibers core. The former is close to soft carbon, which is easy to graphitize, while the latter is close to hard carbon, which is difficult to graphitize, and it may be resin carbon Skin-core structure gene Rsc (= Rs/Rc) which denoted the skin-core degree of the carbon fibers was first brought forward and adopted. The Rsc value is between 0 and 1. When the Rsc value is equal to 1, the carbon fibers are homogenous. When the Rsc value is close to zero, there are serious skin-core structures in the carbon fibers. The Rsc value reduced linearly with the increase in heat-treatment temperature, indicating that the homogeneous degrees of the carbon fibers decreased and the skin-core degrees of the carbon fibers increased. The crystallite size of the carbon fibers surface and core increased gradually with the increase in heat-treatment temperature, but the surface's increased more quickly, indicating that the carbon of the carbon fibers surface was easier to

  18. Low Temperature Limit of the Vortex Core Radius and the Kramer-Pesch Effect in NbSe2

    Science.gov (United States)

    Miller, R. I.; Kiefl, R. F.; Brewer, J. H.; Chakhalian, J.; Dunsiger, S.; Morris, G. D.; Sonier, J. E.; Macfarlane, W. A.

    2000-08-01

    Muon spin rotation ( μSR) has been used to measure the magnetic field distribution in the vortex state of the type-II superconductor NbSe2 ( Tc = 7.0 K) below T = 2 K. The distribution is consistent with a highly ordered hexagonal vortex lattice with a well resolved high-field cutoff associated with the finite size of the vortex cores. The temperature dependence of the core radius is much weaker than the temperature dependence predicted from the Bogoliubov-de Gennes theory. Furthermore, the vortex radius measured by μSR near the low temperature quantum limit is about an order of magnitude larger than predicted.

  19. The effect of water temperature on the human body and the swimming effort

    Directory of Open Access Journals (Sweden)

    SERAFEIM ALEXIOU

    2014-10-01

    Full Text Available Although many research papers have dealt with the influence of environmental temperature on the various Human body functions during exercise in land, a few only informations exist for the equivalent alterations in water temperatures during immersion and swimming. The present preview research paper is referred on this subject. During swimming in the normal water temperature 26° ± 1° C (63, the functions of the human body respond regularly and the performance of swimmers tends to be improved. However, during swimming in cold water critical differences appear in human functions, such as bradycardia, angiospasm, hyperventilation and adaptations of thermoregulatory mechanism which influence the swimming performance and the life itself. Especially in very cold water temperature the disturbances of the cardiovascular system may lead in critical arrhythmia or sudden death. The cold water temperature, however, influences the kinetic and energy behavior related to the reduction of swimmers performance because of its possible influence on the neuromuscular function. In the increased water temperature up to 28° C appears tachycardia, vasodilation and other alternations which aim to better thermoregulation. The swimmers records are possibly equivalent with a tendency to be improved, to the records in normal temperature of championships 26° C and the increased temperature mainly in the speed events (3. Therefore, there is a differentiation on swimmers performances due to water temperature declination from normal. Also, body functions change during water immersion.

  20. Investigation of high-temperature materials for uranium-fluoride-based gas core reactor systems

    Energy Technology Data Exchange (ETDEWEB)

    Collins, C.; Wang, S.C.P.; Anghaie, S.

    1988-01-01

    The development of the uranium-fluoride-based gas core reactor (GCR) systems will depend on the availability of wall materials that can survive the severe thermal, chemical, and nuclear environments of these systems. In the GCR system, the fuel/working fluid chemical constituents include enriched uranium fluorides UF{sub n} (n = 1 to 4) and fluorides operating at gas pressures of {approx}1 to 100 atm. The peak temperature of the fissioning gas/working fluid in the system can be 4000 K or higher, and the temperatures of the inner surface of the construction wall may exceed 1500 K. Wall materials that can be compatible in this environment must possess high melting points, good resistance to creep and thermal shock, and high resistance to fluorination. Compatible materials that feature high fluorination resistance are those that either do not react with fluorine/fluoride gases or those that can form a protective fluoride scale, which prevents or reduces further attack by the corrosive gas. Because fluorine and fluoride gases are strong oxidizing agents, formation of high melting point protective scales on substrate materials is more likely to be expected. This paper summarizes results of corrosion testing for evaluation of materials compatibility with uranium fluoride. These tests have been carried out by exposing different materials to UF{sub 6} gas in a closed capsule at temperatures up to 1500 K. Past exposure examinations were conducted to determine the morphology and composition of scales that were formed.

  1. δ18O record and temperature change over the past 100 years in ice cores on the Tibetan Plateau

    Institute of Scientific and Technical Information of China (English)

    YAO; Tandong; GUO; Xuejun; Lonnie; Thompson; DUAN; Keqin; WANG; Ninglian; PU; Jianchen; XU; Baiqing; YANG; Xiaoxin; SUN; Weizhen

    2006-01-01

    The 213 m ice core from the Puruogangri Ice Field on the Tibetan Plateau facilitates the study of the regional temperature changes with its δ18O record of the past 100 years. Here we combine information from this core with that from the Dasuopu ice core (from the southern Tibetan Plateau), the Guliya ice core (from the northwestern Plateau) and the Dunde ice core (from the northeastern Plateau) to learn about the regional differences in temperature change across the Tibetan Plateau. The δ18O changes vary with region on the Plateau, the variations being especially large between South and North and between East and West. Moreover, these four ice cores present increasing δ18O trends, indicating warming on the Tibetan Plateau over the past 100 years. A comparative study of Northern Hemisphere (NH) temperature changes, the δ18O-reflected temperature changes on the Plateau, and available meteorological records show consistent trends in overall warming during the past 100 years.

  2. Studies of Behavior Melting Temperature Characteristics for Multi Thermocouple In-Core Instrument Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Donghyup; Chae, Myoungeun; Kim, Sungjin; Lee, Kyulim [Woojin inc, Hwasung (Korea, Republic of)

    2015-05-15

    Bottom-up type in-core instruments (ICIs) are used for the pressurized water reactors of OPR-1000, APR- 1400 in order to measure neutron flux and temperature in the reactor. It is a well-known technique and a proven design using years in the nuclear field. ICI consists of one pair of K-type thermocouple, five self-powered neutron detectors (SPNDs) and one back ground detector. K-type thermocouple's purpose is to measure the core exit temperature (CET) in the reactor. The CET is a very important factor for operating nuclear power plants and it is 327 .deg. C when generally operating the reactor in the nuclear power plant(NPP) in case of OPR- 1000. If the CET will exceed 650 .deg. C, Operators in the main control room should be considered to be an accident situation in accordance with a severe accident management guidance(SAMG). The Multi Thermocouple ICI is a new designed ICI assuming severe accident conditions. It consists of four more thermocouples than the existing design, so it has five Ktype thermocouples besides the thermocouple measuring CET is located in the same elevation as the ICI. Each thermocouple is able to be located in the desired location as required. The Multi Thermocouple ICI helps to measure the temperature distribution of the entire reactor. In addition, it will measure certain point of melted core because of the in-vessel debris of nuclear fuel when an accident occurs more seriously. In this paper, to simulate a circumstance such as a nuclear reactor severe accident was examined. In this study, the K-type thermocouples of Multi Thermocouple ICI was confirmed experimentally to be able to measure up to 1370 .deg. C before the thermocouples have been melted. And after the thermocouples were melted by debris, it was able to be monitored that the signal of EMF directed the infinite value of voltage. Therefore through the results of the test, it can be assumed that if any EMF data among the Multi Thermocouple ICI will direct the infinite value

  3. Assessing the reliability of thermography to infer internal body temperatures of lizards.

    Science.gov (United States)

    Barroso, Frederico M; Carretero, Miguel A; Silva, Francisco; Sannolo, Marco

    2016-12-01

    For many years lizard thermal ecology studies have relied on the use of contact thermometry to obtain internal body temperature (Tb) of the animals. However, with progressing technology, an interest grew in using new, less invasive methods, such as InfraRed (IR) pyrometry and thermography, to infer Tb of reptiles. Nonetheless few studies have tested the reliability of these new tools. The present study tested the use of IR cameras as a non-invasive tool to infer Tb of lizards, using three differently body-sized lacertid species (Podarcis virescens, Lacerta schreiberi and Timon lepidus). Given the occurrence of regional heterothermy, we pairwise compared thermography readings of six body parts (snout, eye, head, dorsal, hind limb, tail base) to cloacal temperature (measured by a thermometer-associated thermocouple probe) commonly employed to measure Tb in field and lab studies. The results showed moderate to strong correlations (R(2)=0.84-0.99) between all body parts and cloacal temperature. However, despite the readings on the tail base showed the strongest correlation in all three species, it was the eye where the absolute values and pattern of temperature change most consistently followed the cloacal measurements. Hence, we concluded that the eye would be the body location whose IR camera readings more closely approximate that of the animal's internal environment. Alternatively, other body parts can be used, provided that a careful calibration is carried out. We provide guidelines for future research using thermography to infer Tb of lizards.

  4. Masking of the circadian rhythms of heart rate and core temperature by the rest-activity cycle in man

    Science.gov (United States)

    Gander, Philippa H.; Connell, Linda J.; Graeber, R. Curtis

    1986-01-01

    Experiments were conducted to estimate the magnitude of the masking effect produced in humans by alternate periods of physical activity and rest or sleep on the circadian rhythms of heart rate and core temperature. The heart rate, rectal temperature, and nondominant wrist activity were monitored in 12 male subjects during 6 days of normal routine at home and during 6 days of controlled bed-rest regimen. The comparisons of averaged waveforms for the activity, heart rate, and temperature indicated that about 45 percent of the range of the circadian heart rate rhythm during normal routine and about 14 percent of the range of the circadian temperature rhythm were attributable to the effects of activity. The smaller effect of activity on the temperature rhythm may be partially attributable to the fact that core temperature is being more rigorously conserved than heart rate, at least during moderate exercise.

  5. Implications for Core Formation of the Earth from High Pressure-Temperature Au Partitioning Experiments

    Science.gov (United States)

    Danielson, L. R.; Sharp, T. G.; Hervig, R. L.

    2005-01-01

    Siderophile elements in the Earth.s mantle are depleted relative to chondrites. This is most pronounced for the highly siderophile elements (HSEs), which are approximately 400x lower than chondrites. Also remarkable is the relative chondritic abundances of the HSEs. This signature has been interpreted as representing their sequestration into an iron-rich core during the separation of metal from silicate liquids early in the Earth's history, followed by a late addition of chondritic material. Alternative efforts to explain this trace element signature have centered on element partitioning experiments at varying pressures, temperatures, and compositions (P-T-X). However, first results from experiments conducted at 1 bar did not match the observed mantle abundances, which motivated the model described above, a "late veneer" of chondritic material deposited on the earth and mixed into the upper mantle. Alternatively, the mantle trace element signature could be the result of equilibrium partitioning between metal and silicate in the deep mantle, under P-T-X conditions which are not yet completely identified. An earlier model determined that equilibrium between metal and silicate liquids could occur at a depth of approximately 700 km, 27(plus or minus 6) GPa and approximately 2000 (plus or minus 200) C, based on an extrapolation of partitioning data for a variety of moderately siderophile elements obtained at lower pressures and temperatures. Based on Ni-Co partitioning, the magma ocean may have been as deep as 1450 km. At present, only a small range of possible P-T-X trace element partitioning conditions has been explored, necessitating large extrapolations from experimental to mantle conditions for tests of equilibrium models. Our primary objective was to reduce or remove the additional uncertainty introduced by extrapolation by testing the equilibrium core formation hypothesis at P-T-X conditions appropriate to the mantle.

  6. Metabolism of polychaete Neanthes japonica Izuka: relations to temperature, salinity and body weight

    Institute of Scientific and Technical Information of China (English)

    LIU Yong; XIAN Weiwei; SUN Shichun

    2009-01-01

    Polychaete Neanthesjaponica is a species geographically specific in China and Japan with important scientific implication and commercial value. In this study, the relations of body weight, salinity and temperature to oxygen consumption and ammonia excretion of N. japonica were determined. Threedifferent groups in body weight (large: 2.34±0.36 g, middle: 1.50±0.21 g and small: 0.62±0.12 g) were set for all experiments. Results show that the body weight is negatively related to the rates of oxygen consumption and ammonia excretion; and the relationship is significant. The oxygen consumption and ammonia excretion at 24℃ decreased at salinity from 5 to 30 and increased above 30, indicating that both lower and higher salinity are adverse and certain degree of salinity stress is necessary for enhancing the energy demand. At salinity 30, rising temperature from 18℃ to 30℃, the oxygen consumption increased before 27℃ and then decreased. However, the relation of ammonia excretion and temperature seems more complex. Two-way ANOVA shows that salinity, temperature and body weight all have a significant effect on the oxygen consumption and ammonia excretion of the worm. Moreover, interaction between salinity/temperature and body weight is also significant. O:N (oxygen/nitrogen) ratio varies greatly in this case from 5.97 to 463.22, indicating that N. japonica can regulate the type of metabolic substrate against environment changes.

  7. Speed over efficiency: locusts select body temperatures that favour growth rate over efficient nutrient utilization

    DEFF Research Database (Denmark)

    Miller, Gabriel A; Clissold, Fiona J; Mayntz, David

    2009-01-01

    to investigate relationships between growth/development and macronutrient utilization (conversion of ingesta to body mass) as a function of temperature. A range of macronutrient intake values for insects at 26, 32 and 38°C was achieved by offering individuals high-protein diets, high-carbohydrate diets......Ectotherms have evolved preferences for particular body temperatures, but the nutritional and life-history consequences of such temperature preferences are not well understood. We measured thermal preferences in Locusta migratoria (migratory locusts) and used a multi-factorial experimental design...... or a choice between both. Locusts placed in a thermal gradient selected temperatures near 38°C, maximizing rates of weight gain; however, this enhanced growth rate came at the cost of poor protein and carbohydrate utilization. Protein and carbohydrate were equally digested across temperature treatments...

  8. Locatable-body temperature monitoring based on semi-active UHF RFID tags.

    Science.gov (United States)

    Liu, Guangwei; Mao, Luhong; Chen, Liying; Xie, Sheng

    2014-03-26

    This paper presents the use of radio-frequency identification (RFID) technology for the real-time remote monitoring of body temperature, while an associated program can determine the location of the body carrying the respective sensor. The RFID chip's internal integrated temperature sensor is used for both the human-body temperature detection and as a measurement device, while using radio-frequency communication to broadcast the temperature information. The adopted RFID location technology makes use of reference tags together with a nearest neighbor localization algorithm and a multiple-antenna time-division multiplexing location system. A graphical user interface (GUI) was developed for collecting temperature and location data for the data fusion by using RFID protocols. With a puppy as test object, temperature detection and localization experiments were carried out. The measured results show that the applied method, when using a mercury thermometer for comparison in terms of measuring the temperature of the dog, has a good consistency, with an average temperature error of 0.283 °C. When using the associated program over the area of 12.25 m2, the average location error is of 0.461 m, which verifies the feasibility of the sensor-carrier location by using the proposed program.

  9. An efficient room temperature core-shell AgPd@MOF catalyst for hydrogen production from formic acid

    Science.gov (United States)

    Ke, Fei; Wang, Luhuan; Zhu, Junfa

    2015-04-01

    Novel core-shell AgPd@MIL-100(Fe) NPs were fabricated by a facile one-pot method. Significantly, the as-prepared core-shell NPs exhibit much higher catalytic activity than the pure AgPd NPs toward hydrogen production from formic acid without using any additive at room temperature.Novel core-shell AgPd@MIL-100(Fe) NPs were fabricated by a facile one-pot method. Significantly, the as-prepared core-shell NPs exhibit much higher catalytic activity than the pure AgPd NPs toward hydrogen production from formic acid without using any additive at room temperature. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr07582j

  10. Investigation on multilayer failure mechanism of RPV with a high temperature gradient from core meltdown scenario

    Energy Technology Data Exchange (ETDEWEB)

    Jianfeng, Mao, E-mail: jianfeng-mao@163.com [Institute of Process Equipment and Control Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310032 (China); Engineering Research Center of Process Equipment and Remanufacturing, Ministry of Education (China); Xiangqing, Li [Institute of Process Equipment and Control Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310032 (China); Shiyi, Bao, E-mail: bsy@zjut.edu.cn [Institute of Process Equipment and Control Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310032 (China); Engineering Research Center of Process Equipment and Remanufacturing, Ministry of Education (China); Lijia, Luo [Institute of Process Equipment and Control Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310032 (China); Zengliang, Gao [Institute of Process Equipment and Control Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310032 (China); Engineering Research Center of Process Equipment and Remanufacturing, Ministry of Education (China)

    2016-12-15

    Highlights: • The multilayer failure mechanism is investigated for RPV under CHF. • Failure time and location of RPV are predicted under various SA scenarios. • The structural behaviors are analyzed in depth for creep and plasticity. • The effect of internal pressure and temperature gradient is considered. • The structural integrity of RPV is secured within the required 72 creep hours. - Abstract: The Fukushima accident shows that in-vessel retention (IVR) of molten core debris has not been appropriately assessed, and a certain pressure (up to 8.0 MPa) still exists inside the reactor pressure vessel (RPV). In the traditional concept of IVR, the pressure is supposed to successfully be released, and the temperature distributed among the wall thickness is assumed to be uniform. However, this concept is seriously challenged by reality of Fukushima accident with regard to the existence of both internal pressure and high temperature gradient. Therefore, in order to make the IVR mitigation strategy succeed, the numerical investigation of the lower head behavior and its failure has been performed for several internal pressures under high temperature gradient. According to some requirements in severe accident (SA) management of RPV, it should be ensured that the IVR mitigation takes effect in preventing the failure of the structure within a period of 72 h. Subsequently, the failure time and location have to be predicted under the critical heat flux (CHF) loading condition for lower head, since the CHF is limit thermal boundary before the melt-through of RPV. In illustrating the so called ‘multilayer failure mechanism’, the structural behaviors of RPV are analyzed in terms of the stress, creep strain, deformation, damage on selected paths.

  11. A study on the applicability of implantable microchip transponders for body temperature measurements in pigs

    DEFF Research Database (Denmark)

    Lohse, Louise; Uttenthal, Åse; Enøe, Claes

    2010-01-01

    Background The applicability of an electronic monitoring system using microchip transponders for measurement of body temperatures was tested in 6-week-old conventional Danish weaners infected with classical swine fever virus (CSFV). Subcutaneous tissue temperatures obtained by the implantable...... temperature. To test the stability of the monitoring system in a larger group of pigs, transponders were therefore inserted by the left ear base in a subsequent infection experiment with 30 pigs. Results Generally, the microchip transponders measured a subcutaneous tissue temperature, which was about 1º...

  12. Headset Bluetooth and cell phone based continuous central body temperature measurement system.

    Science.gov (United States)

    Sanches, J Miguel; Pereira, Bruno; Paiva, Teresa

    2010-01-01

    The accurate measure of the central temperature is a very important physiologic indicator in several clinical applications, namely, in the characterization and diagnosis of sleep disorders. In this paper a simple system is described to continuously measure the body temperature at the ear. An electronic temperature sensor is coupled to the microphone of a common commercial auricular Bluetooth device that sends the temperature measurements to a mobile phone to which is paired. The measurements are stored at the mobile phone and periodically sent to a medical facility by email or SMS (short messaging service).

  13. Sepsis-induced morbidity in mice: effects on body temperature, body weight, cage activity, social behavior and cytokines in brain.

    Science.gov (United States)

    Granger, Jill I; Ratti, Pietro-Luca; Datta, Subhash C; Raymond, Richard M; Opp, Mark R

    2013-07-01

    Infection negatively impacts mental health, as evidenced by the lethargy, malaise, and cognitive deficits experienced during illness. These changes in central nervous system processes, collectively termed sickness behavior, have been shown in animal models to be mediated primarily by the actions of cytokines in brain. Most studies of sickness behavior to date have used bolus injection of bacterial lipopolysaccharide (LPS) or selective administration of the proinflammatory cytokines interleukin-1β (IL-1β) or IL-6 as the immune challenge. Such models, although useful for determining mechanisms responsible for acute changes in physiology and behavior, do not adequately represent the more complex effects on central nervous system (CNS) processes of a true infection with replicating pathogens. In the present study, we used the cecal ligation and puncture (CLP) model to quantify sepsis-induced alterations in several facets of physiology and behavior of mice. We determined the impact of sepsis on cage activity, body temperature, food and water consumption and body weights of mice. Because cytokines are critical mediators of changes in behavior and temperature regulation during immune challenge, we also quantified sepsis-induced alterations in cytokine mRNA and protein in brain during the acute period of sepsis onset. We now report that cage activity and temperature regulation in mice that survive are altered for up to 23 days after sepsis induction. Food and water consumption are transiently reduced, and body weight is lost during sepsis. Furthermore, sepsis decreases social interactions for 24-48 h. Finally, mRNA and protein for IL-1β, IL-6, and tumor necrosis factor-α (TNFα) are upregulated in the hypothalamus, hippocampus, and brain stem during sepsis onset, from 6h to 72 h post sepsis induction. Collectively, these data indicate that sepsis not only acutely alters physiology, behavior and cytokine profiles in brain, but that some brain functions are impaired for

  14. Integration of body temperature into the analysis of energy expenditure in the mouse

    Directory of Open Access Journals (Sweden)

    Gustavo Abreu-Vieira

    2015-06-01

    Conclusions: At 22 °C, cold-induced thermogenesis is ∼120% of basal metabolic rate. The higher body temperature during physical activity is due to a higher set point, not simply increased heat generation during exercise. Most insulation in mice is via physiological mechanisms, with little from fur or fat. Our analysis suggests that the definition of the upper limit of the thermoneutral zone should be re-considered. Measuring body temperature informs interpretation of energy expenditure data and improves the predictiveness and utility of the mouse to model human energy homeostasis.

  15. The effects of the β1 antagonist, metoprolol, on methamphetamine-induced changes in core temperature in the rat.

    Science.gov (United States)

    Harrell, Ricki; Speaker, H Anton; Mitchell, Scott L; Sabol, Karen E

    2015-11-16

    Methamphetamine (METH) results in hyperthermia or hypothermia depending on environmental conditions. Here we studied the role of the β1 adrenergic receptor in mediating METH's temperature effects. Core temperature measurements were made telemetrically over a 7.5h session, two days/week, in test chambers regulated at either 18°C, 24°C, or 30°C ambient temperature. Rats were treated with the β1 antagonist metoprolol (5.0, 10.0, and 15.0mg/kg) alone (Experiment 1), or in combination with 5.0mg/kg METH (Experiment 2). In experiment 3, we combined a lower dose range of metoprolol (0.75, 1.5, and 3.0mg/kg) with 5.0mg/kg METH at 18°C and 30°C. Confirming prior findings, METH alone resulted in hyperthermia in warm (30°) and hypothermia in cool environments (18°C). Metoprolol alone induced small but significant increases in core temperature. In combination, however, metoprolol reduced METH-induced changes in core temperature. Specifically, at 30°C, 3.0, 5.0, 10.0, and 15.0mg/kg metoprolol decreased METH-induced hyperthermia; at 18°C, all six doses of metoprolol enhanced METH-induced hypothermia. Our metoprolol findings suggest that one component of METH's temperature effects involves increasing core temperature at all ambient conditions via β1 receptors. Since β receptors are involved in brown adipose tissue (BAT)-mediated thermogenesis, skeletal muscle-mediated thermogenesis, heart rate, and the metabolism of glucose and lipids, we discuss each of these as possible mechanisms for metoprolol's effects on METH-induced changes in core temperature.

  16. The Inability to Screen Exhibition Swine for Influenza A Virus Using Body Temperature.

    Science.gov (United States)

    Bowman, A S; Nolting, J M; Workman, J D; Cooper, M; Fisher, A E; Marsh, B; Forshey, T

    2016-02-01

    Agricultural fairs create an unconventional animal-human interface that has been associated with swine-to-human transmission of influenza A virus (IAV) in recent years. Early detection of IAV-infected pigs at agricultural fairs would allow veterinarians to better protect swine and human health during these swine exhibitions. This study assessed the use of swine body temperature measurement, recorded by infrared and rectal thermometers, as a practical method to detect IAV-infected swine at agricultural fairs. In our first objective, infrared thermometers were used to record the body surface temperature of 1,092 pigs at the time of IAV nasal swab collection at the end of the exhibition period of 55 agricultural fairs. IAV was recovered from 212 (19.4%) pigs, and the difference in mean infrared body temperature measurement of IAV-positive and IAV-negative pigs was 0.83°C. In a second objective, snout wipes were collected from 1,948 pigs immediately prior to the unloading of the animals at a single large swine exhibition. Concurrent to the snout wipe collection, owners took the rectal temperatures of his/her pigs. In this case, 47 (2.4%) pigs tested positive for IAV before they entered the swine barn. The mean rectal temperatures differed by only 0.19°C between IAV-positive and IAV-negative pigs. The low prevalence of IAV among the pigs upon entry to the fair in the second objective provides evidence that limiting intraspecies spread of IAV during the fairs will likely have significant impacts on the zoonotic transmission. However, in both objectives, the high degree of similarity in the body temperature measurements between the IAV-positive and IAV-negative pigs made it impossible to set a diagnostically meaningful cut point to differentiate IAV status of the individual animals. Unfortunately, body temperature measurement cannot be used to accurately screen exhibition swine for IAV.

  17. Effects of body mass index on foot posture alignment and core stability in a healthy adult population.

    Science.gov (United States)

    AlAbdulwahab, Sami S; Kachanathu, Shaji John

    2016-06-01

    Foot biomechanics and core stability (CS) play significant roles in the quality of standing and walking. Minor alterations in body composition may influence base support or CS strategies. The aim of this study was to investigate the effect of the body mass index (BMI) on the foot posture index (FPI) and CS in a healthy adult population. A total of 39 healthy adult subjects with a mean age of 24.3±6.4 years and over-weight BMI values between 25 and 29.9 kg/m2 (27.43±6.1 kg/m2) participated in this study. Foot biomechanics were analyzed using the FPI. CS was assessed using a plank test with a time-to-failure trial. The Spearman correlation coefficient indicated a significant correlation between BMI and both the FPI (r=0.504, P=0.001) and CS (r= -0.34, P=0.036). Present study concluded that an overweight BMI influences foot posture alignment and body stability. Consequently, BMI should be considered during rehabilitation management for lower extremity injuries and body balance.

  18. Role of many body shake-up in core-valence-valence electron emission from single wall carbon nanotubes.

    Science.gov (United States)

    Sindona, A; Pisarra, M; Maletta, S; Commisso, M; Riccardi, P; Bonanno, A; Barone, P; Falcone, G

    2011-10-01

    Auger core-valence-valence transitions from single wall Carbon nanotubes are studied using a tight-binding calculational scheme with nearest neighbor overlap, hopping interactions, and a double-zeta basis set. The resulting Hamiltonian approximates the unperturbed pi and sigma bands of the nanomaterials coupled with the free electron states outside the solid and the core-hole. As a first step, the Fermi's golden rule is applied to determine the so called one-electron spectrum of emitted electrons from different tubes, in which either the neutralizing or the ejected electrons, in the initial state, lie within nearest neighboring atomic sites to the core-hole. Many-body corrections are effectively modeled using a broadening function, which accounts for dynamic screening effects involving the initial and final states. Particular attention is paid to the asymmetric component of the broadening function, responsible for the shake-up of pi electrons. Finally, the Cini-Sawatzky distortion function is used to describe the final state effect of the hole-hole interaction. A quantitative estimation of the interplay of shake-up processes is proposed by adjusting the asymmetric parameters of the broadening function to reproduce measurements of Auger electrons ejected from bundles of single wall Carbon nanotubes.

  19. High temperature oxidation of iron-iron oxide core-shell nanowires composed of iron nanoparticles.

    Science.gov (United States)

    Krajewski, M; Brzozka, K; Lin, W S; Lin, H M; Tokarczyk, M; Borysiuk, J; Kowalski, G; Wasik, D

    2016-02-07

    This work describes an oxidation process of iron-iron oxide core-shell nanowires at temperatures between 100 °C and 800 °C. The studied nanomaterial was synthesized through a simple chemical reduction of iron trichloride in an external magnetic field under a constant flow of argon. The electron microscopy investigations allowed determining that the as-prepared nanowires were composed of self-assembled iron nanoparticles which were covered by a 3 nm thick oxide shell and separated from each other by a thin interface layer. Both these layers exhibited an amorphous or highly-disordered character which was traced by means of transmission electron microscopy and Mössbauer spectroscopy. The thermal oxidation was carried out under a constant flow of argon which contained the traces of oxygen. The first stage of process was related to slow transformations of amorphous Fe and amorphous iron oxides into crystalline phases and disappearance of interfaces between iron nanoparticles forming the studied nanomaterial (range: 25-300 °C). After that, the crystalline iron core and iron oxide shell became oxidized and signals for different compositions of iron oxide sheath were observed (range: 300-800 °C) using X-ray diffraction, Raman spectroscopy and Mössbauer spectroscopy. According to the thermal gravimetric analysis, the nanowires heated up to 800 °C under argon atmosphere gained 37% of mass with respect to their initial weight. The structure of the studied nanomaterial oxidized at 800 °C was mainly composed of α-Fe2O3 (∼ 93%). Moreover, iron nanowires treated above 600 °C lost their wire-like shape due to their shrinkage and collapse caused by the void coalescence.

  20. Influence of body temperature on bacterial growth rates in experimental pneumococcal meningitis in rabbits.

    OpenAIRE

    Small, P M; Täuber, M G; Hackbarth, C J; Sande, M A

    1986-01-01

    We examined the role of fever as a host defense in experimental pneumococcal meningitis in rabbits. Twelve hours after intracisternal inoculation of an encapsulated type 3 Streptococcus pneumoniae strain, body temperature was manipulated by using two different anesthetic drugs: pentobarbital, which did not affect temperature, and urethane, which mitigated the febrile response to infection. Growth rates of pneumococci in cerebrospinal fluid were dramatically influenced by modification of the f...

  1. The validity, reliability, and utility of the iButton® for measurement of body temperature circadian rhythms in sleep/wake research.

    Science.gov (United States)

    Hasselberg, Michael J; McMahon, James; Parker, Kathy

    2013-01-01

    Changes in core body temperature due to heat transfer through the skin have a major influence on sleep regulation. Traditional measures of skin temperature are often complicated by extensive wiring and are not practical for use in normal living conditions. This review describes studies examining the reliability, validity and utility of the iButton®, a wireless peripheral thermometry device, in sleep/wake research. A review was conducted of English language literature on the iButton as a measure of circadian body temperature rhythms associated with the sleep/wake cycle. Seven studies of the iButtton as a measure of human body temperature were included. The iButton was found to be a reliable and valid measure of body temperature. Its application to human skin was shown to be comfortable and tolerable with no significant adverse reactions. Distal skin temperatures were negatively correlated with sleep/wake activity, and the temperature gradient between the distal and proximal skin (DPG) was identified as an accurate physiological correlate of sleep propensity. Methodological issues included site of data logger placement, temperature masking factors, and temperature data analysis. The iButton is an inexpensive, wireless data logger that can be used to obtain a valid measurement of human skin temperature. It is a practical alternative to traditional measures of circadian rhythms in sleep/wake research. Further research is needed to determine the utility of the iButton in vulnerable populations, including those with neurodegenerative disorders and memory impairment and pediatric populations. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Change in the body temperature of healthy term infant over the first 72 hours of life

    Institute of Scientific and Technical Information of China (English)

    李萌霞; 孙革; NEUBAUERHenning

    2004-01-01

    Objective:To determine the range of body temperature in a group of healthy Chinese term neonates over the first 72 hours of life and to assess the influence of body weight, gestational age and route of delivery.Method: All 200 consecutive cases of neonates delivered at our hospital from March to August 2001 were included in this retrospective study.Temperatures were measured immediately after delivery, after 30 minutes, 1 hour, 2 hours, 8 hours and 15 hours and on the 2nd and 3rd day. Axillary temperatures ranging from 36.5℃ to 37℃ were regarded as normal. No cases of maternal fever or systemic infection of the newborns were discovered. All infants were discharged in good general condition. Results:The mean rectal temperature at birth was 37.19℃. The lowest average temperature was reached at 1 hour after delivery (36.54℃) with a significant difference between natural delivery (36.48℃) and section (36.59℃) (P<0.05).Temperature subsequently rose to 36.70℃ at 8 hours and 36.78℃ at 15 hours (P<0.05).Hypothermia was seen in 51.8% and hypothermia in 42.5% of the patients.On the 3rd day after delivery, 96% of all temperatures were in the normal range. A significant relation was found between hypothermia and both low birth weight (P<0.001) and low gestational age (P<0.05).Conclusion: The reference range presently used did not include all physiological temperatures in the first 72 hours of life. Considering other factors,such as birth weight, route of delivery,gestational age and body temperature on the 2nd and 3rd day of life, may help to correctly assess the significance of temperatures beyond the reference range.

  3. Change in the body temperature of healthy term infant over the first 72 hours of life

    Institute of Scientific and Technical Information of China (English)

    LI Meng-xia (李萌霞); SUN Ge (孙革); NEUBAUER Henning

    2004-01-01

    Objective: To determine the range of body temperature in a group of healthy Chinese term neonates over the first 72 hours of life and to assess the influence of body weight, gestational age and route of delivery. Method: All 200 consecutive cases of neonates delivered at our hospital from March to August 2001 were included in this retrospective study. Temperatures were measured immediately after delivery, after 30 minutes, 1 hour, 2 hours, 8 hours and 15 hours and on the 2nd and 3rd day. Axillary temperatures ranging from 36.5 oC to 37 oC were regarded as normal. No cases of maternal fever or systemic infection of the newborns were discovered. All infants were discharged in good general condition. Results: The mean rectal temperature at birth was 37.19 ℃. The lowest average temperature was reached at 1 hour after delivery (36.54 ℃) with a significant difference between natural delivery (36.48 ℃) and section (36.59 ℃) (P<0.05). Temperature subsequently rose to 36.70 ℃ at 8 hours and 36.78 ℃ at 15 hours (P<0.05). Hypothermia was seen in 51.8% and hypothermia in 42.5% of the patients. On the 3rd day after delivery, 96% of all temperatures were in the normal range. A significant relation was found between hypothermia and both low birth weight (P<0.001) and low gestational age (P<0.05). Conclusion: The reference range presently used did not include all physiological temperatures in the first 72 hours of life. Considering other factors, such as birth weight, route of delivery, gestational age and body temperature on the 2nd and 3rd day of life, may help to correctly assess the significance of temperatures beyond the reference range.

  4. Mechanically Enhanced Liquid Interfaces at Human Body Temperature Using Thermosensitive Methylated Nanocrystalline Cellulose.

    Science.gov (United States)

    Scheuble, N; Geue, T; Kuster, S; Adamcik, J; Mezzenga, R; Windhab, E J; Fischer, P

    2016-02-09

    The mechanical performance of materials at oil/water interfaces after consumption is a key factor affecting hydrophobic drug release. In this study, we methylated the surface of nanocrystalline cellulose (NCC) by mercerization and dimethyl sulfate exposure to produce thermosensitive biopolymers. These methylated NCC (metNCC) were used to investigate interfacial thermogelation at air/water and medium-chain triglyceride (MCT)/water interfaces at body temperature. In contrast to bulk fluid dynamics, elastic layers were formed at room temperature, and elasticity increased significantly at body temperature, which was measured by interfacial shear and dilatational rheology in situ. This unique phenomenon depends on solvent quality, temperature, and polymer concentration at interfaces. Thus, by adjusting the degree of hydrophobicity of metNCC, the interfacial elasticity and thermogelation of the interfaces could be varied. In general, these new materials (metNCC) formed more brittle interfacial layers compared to commercial methylcellulose (MC A15). Thermogelation of methylcellulose promotes attractive intermolecular forces, which were reflected in a change in self-assembly of metNCC at the interface. As a consequence, layer thickness and density increased as a function of temperature. These effects were measured by atomic force microscopy (AFM) images of the displaced interface and confirmed by neutron reflection. The substantial structural and mechanical change of methylcellulose interfaces at body temperature represents a controllable encapsulation parameter allowing optimization of lipid-based drug formulations.

  5. Relationship between functional movement screen scores, core strength, posture, and body mass index in school children in Moldova.

    Science.gov (United States)

    Mitchell, Ulrike H; Johnson, A Wayne; Adamson, Brynn

    2015-05-01

    The assessment of functionality should include parameters that consider postural control, limb asymmetries, range of motion limitations, proprioceptive deficits, and pain. An increasingly popular battery of tests, the Functional Movement Screen (FMS), is purported to assess the above named parameters. The purpose of our study was twofold: (a) to report differences in total FMS scores in children, provide preliminary normative reference values of each of the 7 individual FMS scores for both genders and report on asymmetries and (b) to evaluate the relationship between total FMS scores, age, body mass index (BMI), core strength/stability, and postural angles to explore the possibility of using the FMS in the assessment of children's functional fitness. Descriptive data on 77 children aged 8-11 years were collected. The children performed core strength/stability exercises. Photographs were taken from a lateral view for later calculation of postural angles. The children performed the FMS while being videotaped for later review. The average total FMS score (of 21) was 14.9 (+1.9), and BMI was 16.4 (+2.2). Static posture is not related to results of the FMS. Core strength was positively correlated to the total FMS score (r = 0.31; p = 0.006). Over 60% demonstrated at least 1 asymmetry. The individual test scores indicate that none of the test items is too difficult for the children. Based on the screen's correlation to core strength, and the fact that it identifies areas of asymmetry, we suggest to further investigate its possible use in the assessment of children's functional fitness.

  6. A body temperature model for lizards as estimated from the thermal environment

    NARCIS (Netherlands)

    Fei, T.; Skidmore, A.K.; Venus, V.; Wang, T.; Schlerf, M.; Toxopeus, A.G.; Overjijk, van S.; Bian, B.M.; Liu, Y.

    2012-01-01

    A physically based model was built to predict the transient body temperature of lizards in a thermally heterogeneous environment. Six heat transfer terms were taken into account in this model: solar radiation, convective heat flow, longwave radiation, conductive heat flow, metabolic heat gain and re

  7. Differences in oral temperature and body shape in two populations with different propensities for obesity

    DEFF Research Database (Denmark)

    Vozarova, B; Weyer, C; Bogardus, C;

    2002-01-01

    Body temperature is a function of heat production and heat dissipation. Substantial interindividual variability has been reported in healthy humans. We hypothesized that Pima Indians, a population with a high prevalence of abdominal obesity, may have a lower surface area relative to volume, that is...

  8. Orexin-a regulates body temperature in coordination with control of arousal state

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Orexins, hypothalamic neuropeptieds, are involved in modulation of food intake and arousal state. To examine further physiological roles of orexin in brain function, the effects of centrally administered orexin- A on body temperature was investigated in rats. Assessed by a telemetry-sensor system implanted into the abdominal cavity, infusion of orexin-A into the third cerebroventricle increased body temperature in a dose-responsive manner. Cumulative ambulatory activity was concomitantly increased during 6 h but not 12 h after administration of orexin-A. Expression of uncoupling protein 1 (UCP1) mRNA in brown adipose tissue, as a marker for peripheal thermogenesis which affects body temperature, failed to increase after orexin-A administration. Expression of UCP3 mRNA in skeletal muscle but not UCP 2 in white adipose tissue was upregulated by infusion of orexin-A. The resulting information indicates that orexin neuron regulates body temperature in coordination with control of arousal system independently of peripheral thermogenesis through the BAT UCP1.

  9. A body temperature model for lizards as estimated from the thermal environment

    NARCIS (Netherlands)

    Fei, T.; Skidmore, A.K.; Venus, V.; Wang, T.; Schlerf, M.; Toxopeus, A.G.; Overjijk, van S.; Bian, B.M.; Liu, Y.

    2012-01-01

    A physically based model was built to predict the transient body temperature of lizards in a thermally heterogeneous environment. Six heat transfer terms were taken into account in this model: solar radiation, convective heat flow, longwave radiation, conductive heat flow, metabolic heat gain and re

  10. Simultaneous collection of body temperature and activity data in burrowing mammals : a new technique

    NARCIS (Netherlands)

    Long, Ryan A.; Hut, Roelof A.; Barnes, Brian M.

    Integrating physiological and behavioral observations into ecological field studies of animals can provide novel insights into relationships among animal behavior, physiology, and ecology. We describe and evaluate a new technique for simultaneously collecting body temperature (T-b) and burrow use

  11. Timing of REM sleep is coupled to the circadian rhythm of body temperature in man.

    Science.gov (United States)

    Czeisler, C A; Zimmerman, J C; Ronda, J M; Moore-Ede, M C; Weitzman, E D

    1980-01-01

    Ten male subjects were studied for a total of 306 days on self-selected schedules. Four of them developed bedrest-activity cycle period lengths very different from 24 hr (mean = 36.8 hr) despite the persistence of near-24-hr oscillations in other physiologic functions, including that of body temperature (mean = 24.6 hr). The percentage of sleep time spent in REM sleep varied significantly with the phase of that near-24-hr body temperature cycle. The peak in REM sleep propensity (RSP) occurred on the rising slope of the average body temperature curve, coincident with the phase of peak sleep tendency. This was associated with a significantly increased REM episode duration and shortened REM latency (including sleep-onset REM episodes), but without a significant change in the REM-NREM cycle length. We conclude that there is an endogenous circadian rhythm of REM sleep propensity which is closely coupled to the body temperature rhythm and is capable of free-running with a period different from both 24 hr and the average period of the sleep-wake cycle.

  12. Reduction of body temperature governs neutrophil retention in hibernating and nonhibernating animals by margination

    NARCIS (Netherlands)

    Bouma, Hjalmar R.; Dugbartey, George J.; Boerema, Ate S.; Talaei, Fatemeh; Herwig, Annika; Goris, Maaike; van Buiten, Azuwerus; Strijkstra, Arjen M.; Carey, Hannah V.; Henning, Robert H.; Kroese, Frans G. M.

    2013-01-01

    Low body temperature leads to decrease of circulating neutrophils due to margination in hibernating and nonhibernating animals. Hibernation consists of periods of low metabolism, called torpor, interspersed by euthermic arousal periods. During deep and daily (shallow) torpor, the number of circulati

  13. Simultaneous collection of body temperature and activity data in burrowing mammals : a new technique

    NARCIS (Netherlands)

    Long, Ryan A.; Hut, Roelof A.; Barnes, Brian M.

    2007-01-01

    Integrating physiological and behavioral observations into ecological field studies of animals can provide novel insights into relationships among animal behavior, physiology, and ecology. We describe and evaluate a new technique for simultaneously collecting body temperature (T-b) and burrow use da

  14. Intracerebral implantation of carbachol in the rat: Its effect on water intake and body temperature

    NARCIS (Netherlands)

    Hulst, S.G.Th.

    1972-01-01

    Intracerebral carbachol produces a fall in body temperature as well as drinking in the rat when implanted in various subcortical structures, related to the emotion-motivation limbic circuit. These effects are due to a central cholinergic stimulation since they can be prevented by the systemic admini

  15. Software tools for data modelling and processing of human body temperature circadian dynamics.

    Science.gov (United States)

    Petrova, Elena S; Afanasova, Anastasia I

    2015-01-01

    This paper is presenting a software development for simulating and processing thermometry data. The motivation of this research is the miniaturization of actuators attached to human body which allow frequent temperature measurements and improve the medical diagnosis procedures related to circadian dynamics.

  16. Changes in daily rhythms of body temperature and activity after a single social defeat in rats

    NARCIS (Netherlands)

    Meerlo, P; DeBoer, SF; Koolhaas, JM; Daan, S; VandenHoofdakker, RH

    1996-01-01

    The long-term consequences of social stress on daily rhythms of body temperature and activity in rats were studied by means of radiotelemetry with intraperitoneally implanted transmitters. Rats were subjected to a single social defeat by placing them into the territory of a male conspecific for 1 h.

  17. Postmortem time estimation using body temperature and a finite-element computer model

    NARCIS (Netherlands)

    Hartog, E.A. den; Lotens, W.A.

    2004-01-01

    In the Netherlands most murder victims are found 2-24 h after the crime. During this period, body temperature decrease is the most reliable method to estimate the postmortem time (PMT). Recently, two murder cases were analysed in which currently available methods did not provide a su.ciently reliabl

  18. Forced desynchrony of circadian rhythms of body temperature and activity in rats

    NARCIS (Netherlands)

    Strijkstra, AM; Meerlo, P; Beersma, DGM

    1999-01-01

    The daily rhythm in body temperature is thought to be the result of the direct effects of activity and the effects of an endogenous circadian clock. Forced desynchrony (FD) is a tool used in human circadian rhythm research to disentangle endogenous and activity-related effects on daily rhythms. In t

  19. Development of an Anti-Theft Device using Motion Detection and Body Temperature

    Directory of Open Access Journals (Sweden)

    Rhowel Dellosa

    2014-12-01

    Full Text Available –The researcher aimed to design, assemble and determine the performance of the anti-theft device using motion detection and body temperature. The study utilized developmental design to observe the functionality of the device. Study showed that the anti-theft device can detect motion from a moving object for those with body temperature like human being, animals. A signal from the sensor circuits will trigger the receiver circuit to produce an audible sound that served as alarm. It was also found out that the output of the study is accurate in terms of detecting moving objects with body temperature during day and night times. The researchers formulated an evaluation instrument to determine its performance. Results showed that the device had a good performance and acceptable in terms of functionality. It is strongly recommended that further studies be conducted to enrich the anti-theft device using motion detection and body temperature in a controlled environment like museum and banks to determine the effectiveness of the integration of the anti-theft device.

  20. Ab Initio No-Core Shell Model Calculations Using Realistic Two- and Three-Body Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Navratil, P; Ormand, W E; Forssen, C; Caurier, E

    2004-11-30

    There has been significant progress in the ab initio approaches to the structure of light nuclei. One such method is the ab initio no-core shell model (NCSM). Starting from realistic two- and three-nucleon interactions this method can predict low-lying levels in p-shell nuclei. In this contribution, we present a brief overview of the NCSM with examples of recent applications. We highlight our study of the parity inversion in {sup 11}Be, for which calculations were performed in basis spaces up to 9{Dirac_h}{Omega} (dimensions reaching 7 x 10{sup 8}). We also present our latest results for the p-shell nuclei using the Tucson-Melbourne TM three-nucleon interaction with several proposed parameter sets.

  1. The Electron Temperature and Anisotropy in the Solar Wind. I. Comparison of the Core and Halo Populations

    CERN Document Server

    Pierrard, V; Poedts, S; Stverak, S; Maksimovic, M; Travnicek, P M

    2016-01-01

    Estimating the temperature of the solar wind particles and their anisotropies is particularly important for understanding the origin of these deviations from thermal equilibrium as well as their effects. In the absence of energetic events the velocity distribution of electrons reveal a dual structure with a thermal (Maxwellian) core and a suprathermal (Kappa) halo. This paper presents a detailed observational analysis of these two components, providing estimations of their temperatures and temperature anisotropies and decoding any potential interdependence that their properties may indicate. The data set used in this study includes more than 120$\\,$000 the events detected by three missions in the ecliptic within an extended range of heliocentric distances from 0.3 to over 4~AU. The anti-correlation found for the core and halo temperatures is consistent with the radial evolution of the Kappa model, clarifying an apparent contradiction in previous observational analysis and providing valuable clues about the te...

  2. Grain-scale thermoelastic stresses and spatiotemporal temperature gradients on airless bodies, implications for rock breakdown

    CERN Document Server

    Molaro, Jamie L; Langer, Steve A

    2015-01-01

    Thermomechanical processes such as fatigue and shock have been suggested to cause and contribute to rock breakdown on Earth, and on other planetary bodies, particularly airless bodies in the inner solar system. In this study, we modeled grain-scale stresses induced by diurnal temperature variations on simple microstructures made of pyroxene and plagioclase on various solar system bodies. We found that a heterogeneous microstructure on the Moon experiences peak tensile stresses on the order of 100 MPa. The stresses induced are controlled by the coefficient of thermal expansion and Young's modulus of the mineral constituents, and the average stress within the microstructure is determined by relative volume of each mineral. Amplification of stresses occurs at surface-parallel boundaries between adjacent mineral grains and at the tips of pore spaces. We also found that microscopic spatial and temporal surface temperature gradients do not correlate with high stresses, making them inappropriate proxies for investig...

  3. A Survey on Temperature-Aware Routing Protocols in Wireless Body Sensor Networks

    Directory of Open Access Journals (Sweden)

    Sangman Moh

    2013-08-01

    Full Text Available The rapid growth of the elderly population in the world and the rising cost of healthcare impose big issues for healthcare and medical monitoring. A Wireless Body Sensor Network (WBSN is comprised of small sensor nodes attached inside, on or around a human body, the main purpose of which is to monitor the functions and surroundings of the human body. However, the heat generated by the node’s circuitry and antenna could cause damage to the human tissue. Therefore, in designing a routing protocol for WBSNs, it is important to reduce the heat by incorporating temperature into the routing metric. The main contribution of this paper is to survey existing temperature-aware routing protocols that have been proposed for WBSNs. In this paper, we present a brief overview of WBSNs, review the existing routing protocols comparatively and discuss challenging open issues in the design of routing protocols.

  4. Dynamical Temperature of a One- Dimensional Many-Body Systerm in the Lennard-Jones Model

    Institute of Scientific and Technical Information of China (English)

    刘觉平; 袁保仑

    2001-01-01

    A new way to derive the formula of the dynamical temperature by using the invariance of the Liouville measure and the ergodicity hypothesis is presented, based on the invariance of the functional under the transformation of the measure. The obtained dynamical temperature is intrinsic to the underlying dynamics of the system. A molecular dynamical simulation of a one-dimensional many-body system in the Lennard-Jones model has been performed. The temperature calculated from the Hamiltonian for the stationary state of the system coincides with that determined with the thermodynamical method.

  5. Infrared thermoimages display of body surface temperature reaction in experimental cholecystitis

    Institute of Scientific and Technical Information of China (English)

    Dong Zhang; Yuan-Gen Zhu; Shu-You Wang; Hui-Min Ma; Yan-Yan Ye; Wei-Xing Fu; Wei-Guo Hu

    2002-01-01

    AIM: To display the thermoirnages of the body surface inexperimental cholecystitis, to observe the body surfacetemperature reaction in visceral disorders, and to study if the theory of body surface-viscera correlation is true and the mechanism of temperature changes along the meridians. METHODS: By injecting bacteria ssuspension into the stricturebile duct and gallbladder, 21 rabbits were prepared as acutepyogenic cholangiocholecystitis models, with another 8rabbits prepared by the same process except withoutinjection of bacteria suspension as control. The body surfaceinfrared thermoimages were continuously observed on thehair shaven rabbit skin with AGA-782 thermovision 24 hbefore, 1-11 d after and (2,3 wk) 4 wk after the operation witha total of over 10 records of thermoimages.RESULTS: Twelve cases out of 21 rabbits with cholecystitisrevealed bi-lsteral longitudinal high temperature lines in itstrunk; with negative findings in the control group. The high-temperature line appeared on d l-d2, first in the right trunk,after the preparation of the model, about 7 d after the modelpreparation, the lines appeared at the left side too,persisting for 4 wk. The hyper-temperature line revealed 1.1-2.7 ℃ higher than before the model preparation, 0.7-2.5 ℃higher than the surrounding skin. The length of the hightemperature line might reach a half length of the body trunk,or as long as the whole body itself.CONCLUSION: The appearance of the longitudinal hightemperature lines st the lateral aspects of the trunk in theexperimental group is directly bound up with theexperimental animals pyogenic cholecystitis, with itsrunning course quite similar to that of the GallbladderChannel of Foot Shaoyang, but different to the zones ofhyperalgesia and site of referred pain in cholecystitis.

  6. Core Temperature and Surface Heat Flux During Exercise in Heat While Wearing Body Armor

    Science.gov (United States)

    2015-10-26

    values for walking speed and load, the metabolic cost of patrolling was estimated to be less than 300 W. Despite the relatively low metabolic cost...was essentially equivalent. The lowest values for Ts x Tcore were for the HEAD location. 20 For the more selective, energy-intensive WALK DATA...values and estimated VO2max 12 4 Summary of treadmill settings for all environments 13 5 Duration of second walk (D-WLK2) and total walk time (T-WLK

  7. Circadian characteristics of spontaneous physical activity and body temperature in narcoleptic patients

    Directory of Open Access Journals (Sweden)

    Xing XU

    2016-08-01

    Full Text Available Objective To assess circadian characteristics of spontaneous physical activity and deep body temperature in narcoleptic patients.  Methods Fourteen narcoleptic patients and 14 healthy age- and sex-matched control subjects were enrolled. Nocturnal polysomnography (PSG was recorded, followed by standard multiple sleep latency test (MSLT. Then all subjects were required to wear the actigraphy (actiwatch at home with continuous monitoring of spontaneous physical activity for 1-2 weeks and complete the daily sleep record. All subjects' deep body temperatures were measured at 20 time points.  Results In comparison with control subjects, PSG data suggested narcoleptic patients had significantly longer time in bed at night (P = 0.008, decreased sleep efficiency (P = 0.001, increased awakenings (P = 0.000, extended wake time after sleep onset (P = 0.000 and sleep onset rapid eye movement period (SOREMP, P = 0.002. MSLT data suggested decreased average sleep latency (P = 0.000 and increased SOREMPs (P = 0.000. Actigraphy data suggested increased nocturnal activity and nocturnal activity per hour (P = 0.000, for all, decreased daytime activity and daytime activity per hour (P = 0.000, for all and increased nocturnal activity per hour/daytime activity per hour (P = 0.000, for all. The deep body temperature in both groups showed significant circadian rhythms. The differences in mesor, amplitude and peak phase of deep body temperature between 2 groups had no statistical significance (P = 0.177, 0.730, 0.488.  Conclusions Narcoleptic patients are characterized by impaired circadian rhythm of sleep-wake and spontaneous physical activity. The limited effects on deep body temperature suggest the relative conservation of thermoregulation in narcolepsy. DOI: 10.3969/j.issn.1672-6731.2016.07.010

  8. Influence of ambient temperature on whole body and segmental bioimpedance spectroscopy measurements

    Science.gov (United States)

    Medrano, G.; Bausch, R.; Ismail, A. H.; Cordes, A.; Pikkemaat, R.; Leonhardt, S.

    2010-04-01

    Bioimpedance spectroscopy (BIS) measurements are easy to implement and could be used for continuous monitoring. However, several factors (e.g. environment temperature) influence the measurements limiting the accuracy of the technology. Changes in skin temperature produced by changes in ambient temperature are related with changes in skin blood flow and skin impedance. It is assumed that skin impedance change is responsible for the error observed in whole body and segmental measurements. Measurements including body parts more distant from the torso seem to be more affected. In the present article skin and segment impedance have been performed on healthy subjects under extreme changes in environment temperature (13-39 °C). A commercial BIS device with a range between 5 kHz and 1 MHz has been used for the measurements. The results indicate that not only skin impedance, but also impedance of deeper tissue (e.g. muscle) may be responsible for the influence of environment temperature on BIS measurements. Segmental (knee-to-knee) BIS measurements show a relative change of only 2 %, while forearm and whole body impedance changed 14 % and 8 % respectively.

  9. Pharmacological properties of traditional medicines. XXV. Effects of ephedrine, amygdalin, glycyrrhizin, gypsum and their combinations on body temperature and body fluid.

    Science.gov (United States)

    Yuan, D; Komatsu, K; Cui, Z; Kano, Y

    1999-02-01

    Effects of ephedrine, amygdalin, glycyrrhizin, gypsum and their combinations on body temperature and body fluid were studied in rats using the method developed in our previous reports. Ephedrine significantly increased respiratory evaporative water loss and heat loss in response to a marked elevation of body temperature. There was a small but significant increase in body temperature when amygdalin was orally given rats at a dose of 46.32 mg/kg. Glycyrrhizin and gypsum were unable to affect body temperature. However, gypsum was able to prevent the increased action of ephedrine on body temperature, amygdalin exhibited a preventive tendency to it, and glycyrrhizin did not affect it. The results are in good agreement with classical claims of Makyo-kanseki-to and the related crude drugs in traditional medicine. Moreover, a combination of the four components reproduced the effects of Makyo-kanseki-to on body temperature and body fluid. This report suggests that the co-administration of ephedrine and gypsum is physiologically more desirable than ephedrine alone for dry-type asthmatic patients with a fever. Also, it experimentally supports the clinical efficacy of Makyo-kanseki-to.

  10. Use of an Esophageal Heat Exchanger to Maintain Core Temperature during Burn Excisions and to Attenuate Pyrexia on the Burns Intensive Care Unit

    Directory of Open Access Journals (Sweden)

    David Williams

    2016-01-01

    Full Text Available Introduction. Burns patients are vulnerable to hyperthermia due to sepsis and SIRS and to hypothermia due to heat loss during excision surgery. Both states are associated with increased morbidity and mortality. We describe the first use of a novel esophageal heat exchange device in combination with a heater/cooler unit to manage perioperative hypothermia and postoperative pyrexia. Material and Methods. The device was used in three patients with full thickness burns of 51%, 49%, and 45% body surface area to reduce perioperative hypothermia during surgeries of >6 h duration and subsequently to control hyperthermia in one of the patients who developed pyrexia of 40°C on the 22nd postoperative day due to E. coli/Candida septicaemia which was unresponsive to conventional cooling strategies. Results. Perioperative core temperature was maintained at 37°C for all three patients, and it was possible to reduce ambient temperature to 26°C to increase comfort levels for the operating team. The core temperature of the pyrexial patient was reduced to 38.5°C within 2.5 h of instituting the device and maintained around this value thereafter. Conclusion. The device was easy to use with no adverse incidents and helped maintain normothermia in all cases.

  11. Deferoxamine prevents cerebral glutathione and vitamin E depletions in asphyxiated neonatal rats: role of body temperature.

    Science.gov (United States)

    Kletkiewicz, Hanna; Nowakowska, Anna; Siejka, Agnieszka; Mila-Kierzenkowska, Celestyna; Woźniak, Alina; Caputa, Michał; Rogalska, Justyna

    2016-01-01

    Hypoxic-ischaemic brain injury involves increased oxidative stress. In asphyxiated newborns iron deposited in the brain catalyses formation of reactive oxygen species. Glutathione (GSH) and vitamin E are key factors protecting cells against such agents. Our previous investigation has demonstrated that newborn rats, showing physiological low body temperature as well as their hyperthermic counterparts injected with deferoxamine (DF) are protected against iron-mediated, delayed neurotoxicity of perinatal asphyxia. Therefore, we decided to study the effects of body temperature and DF on the antioxidant status of the brain in rats exposed neonatally to critical anoxia. Two-day-old newborn rats were exposed to anoxia in 100% nitrogen atmosphere for 10 min. Rectal temperature was kept at 33 °C (physiological to rat neonates), or elevated to the level typical of healthy adult rats (37 °C), or of febrile adult rats (39 °C). Half of the rats exposed to anoxia under extremely hyperthermic conditions (39 °C) were injected with DF. Cerebral concentrations of malondialdehyde (MDA, lipid peroxidation marker) and the levels of GSH and vitamin E were determined post-mortem, (1) immediately after anoxia, (2) 3 days, (3) 7 days, and (4) 2 weeks after anoxia. There were no post-anoxic changes in MDA, GSH and vitamin E concentrations in newborn rats kept at body temperature of 33 °C. In contrast, perinatal anoxia at elevated body temperatures intensified oxidative stress and depleted the antioxidant pool in a temperature-dependent manner. Both the depletion of antioxidants and lipid peroxidation were prevented by post-anoxic DF injection. The data support the idea that hyperthermia may extend perinatal anoxia-induced brain lesions.

  12. Performance limitation and the role of core temperature when wearing light-weight workwear under moderate thermal conditions.

    Science.gov (United States)

    Kofler, Philipp; Burtscher, Martin; Heinrich, Dieter; Bottoni, Giuliamarta; Caven, Barnaby; Bechtold, Thomas; Teresa Herten, Anne; Hasler, Michael; Faulhaber, Martin; Nachbauer, Werner

    2015-01-01

    The objective of this investigation was to achieve an understanding about the relationship between heat stress and performance limitation when wearing a two-layerfire-resistant light-weight workwear (full-clothed ensemble) compared to an one-layer short sports gear (semi-clothed ensemble) in an exhaustive, stressful situation under moderate thermal condition (25°C). Ten well trained male subjects performed a strenuous walking protocol with both clothing ensembles until exhaustion occurred in a climatic chamber. Wearing workwear reduced the endurance performance by 10% (p=0.007) and the evaporation by 21% (p=0.003), caused a more pronounced rise in core temperature during submaximal walking (0.7±0.3 vs. 1.2±0.4°C; p≤0.001) and from start till exhaustion (1.4±0.3 vs. 1.8±0.5°C; p=0.008), accelerated sweat loss (13±2 vs. 15±3gmin(-1); p=0.007), and led to a significant higher heart rate at the end of cool down (103±6 vs. 111±7bpm; p=0.004). Correlation analysis revealed that core temperature development during submaximal walking and evaporation may play important roles for endurance performance. However, a critical core temperature of 40°C, which is stated to be a crucial factor for central fatigue and performance limitation, was not reached either with the semi-clothed or the full-clothed ensemble (38.3±0.4 vs. 38.4±0.5°C). Additionally, perceived exertion did not increase to a higher extent parallel with the rising core temperature with workwear which would substantiate the critical core temperature theory. In conclusion, increased heat stress led to cardiovascular exercise limitation rather than central fatigue. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Body temperatures of modern and extinct vertebrates from 13C-18O bond abundances in bioapatite

    Science.gov (United States)

    Eagle, Robert A.; Schauble, Edwin A.; Tripati, Aradhna K.; Tütken, Thomas; Hulbert, Richard C.; Eiler, John M.

    2010-01-01

    The stable isotope compositions of biologically precipitated apatite in bone, teeth, and scales are widely used to obtain information on the diet, behavior, and physiology of extinct organisms and to reconstruct past climate. Here we report the application of a new type of geochemical measurement to bioapatite, a “clumped-isotope” paleothermometer, based on the thermodynamically driven preference for 13C and 18O to bond with each other within carbonate ions in the bioapatite crystal lattice. This effect is dependent on temperature but, unlike conventional stable isotope paleothermometers, is independent from the isotopic composition of water from which the mineral formed. We show that the abundance of 13C-18O bonds in the carbonate component of tooth bioapatite from modern specimens decreases with increasing body temperature of the animal, following a relationship between isotope “clumping” and temperature that is statistically indistinguishable from inorganic calcite. This result is in agreement with a theoretical model of isotopic ordering in carbonate ion groups in apatite and calcite. This thermometer constrains body temperatures of bioapatite-producing organisms with an accuracy of 1–2 °C. Analyses of fossilized tooth enamel of both Pleistocene and Miocene age yielded temperatures within error of those derived from similar modern taxa. Clumped-isotope analysis of bioapatite represents a new approach in the study of the thermophysiology of extinct species, allowing the first direct measurement of their body temperatures. It will also open new avenues in the study of paleoclimate, as the measurement of clumped isotopes in phosphorites and fossils has the potential to reconstruct environmental temperatures. PMID:20498092

  14. Exoskeleton may influence the internal body temperatures of Neotropical dung beetles (Col. Scarabaeinae).

    Science.gov (United States)

    Amore, Valentina; Hernández, Malva I M; Carrascal, Luis M; Lobo, Jorge M

    2017-01-01

    The insect exoskeleton is a multifunctional coat with a continuum of mechanical and structural properties constituting the barrier between electromagnetic waves and the internal body parts. This paper examines the ability of beetle exoskeleton to regulate internal body temperature considering its thermal permeability or isolation to simulated solar irradiance and infrared radiation. Seven Neotropical species of dung beetles (Coleoptera, Scarabaeinae) differing in colour, surface sculptures, size, sexual dimorphism, period of activity, guild category and altitudinal distribution were studied. Specimens were repeatedly subjected to heating trials under simulated solar irradiance and infrared radiation using a halogen neodymium bulb light with a balanced daylight spectrum and a ceramic infrared heat emitter. The volume of exoskeleton and its weight per volume unit were significantly more important for the heating rate at the beginning of the heating process than for the asymptotic maximum temperature reached at the end of the trials: larger beetles with relatively thicker exoskeletons heated more slowly. The source of radiation greatly influences the asymptotic temperature reached, but has a negligible effect in determining the rate of heat gain by beetles: they reached higher temperatures under artificial sunlight than under infrared radiation. Interspecific differences were negligible in the heating rate but had a large magnitude effect on the asymptotic temperature, only detectable under simulated sun irradiance. The fact that sun irradiance is differentially absorbed dorsally and transformed into heat among species opens the possibility that differences in dorsal exoskeleton would facilitate the heat gain under restrictive environmental temperatures below the preferred ones. The findings provided by this study support the important role played by the exoskeleton in the heating process of beetles, a cuticle able to act passively in the thermal control of body

  15. No relation between body temperature and arterial recanalization at three days in patients with acute ischaemic stroke

    NARCIS (Netherlands)

    M. Geurts (Marjolein); H.B. Van Der Worp (H. Bart); A.D. Horsch (Alexander D.); L.J. Kappelle (Jaap); G.J. Biessels (Geert Jan); B.K. Velthuis (Birgitta); C.B. Majoie (Charles); Y.B.W.E.M. Roos; L.E.M. Duijm (Lucien); K. Keizer (Koos); A. van der Lugt (Aad); D.W.J. Dippel (Diederik); K.E. Droogh-De Greve; H.P. Bienfait; M.A. van Walderveen (M.); M.J.H. Wermer (Marieke); G.J. Lycklama à Nijeholt (Geert); J. Boiten (Jelis); A. Duyndam (Anita); V.I.H. Kwa; F.J. Meijer (F.); E.J. van Dijk (Ewoud); A.M. Kesselring (Anouk); J. Hofmeijer; J.A. Vos (Jan Albert); W.J. Schonewille (W.); W.J. van Rooij (W.); P.L.M. de Kort (Paul); C.C. Pleiter (C.); S.L.M. Bakker (Stef); J. Bot (Joseph); M.C. Visser (Marieke); I.C. van der Schaaf (Irene); J.W. Dankbaar (Jan); W.P. Mali (Willem); T. van Seeters (Tom); A.D. Horsch (Alexander D.); J.M. Niesten (Joris); G.J. Biessels; L.J. Kappelle; J.S.K. Luitse; Y. van der Graaf (Yolanda)

    2015-01-01

    textabstractBackground: Recanalization of an occluded intracranial artery is influenced by temperature-dependent enzymes, including alteplase. We assessed the relation between body temperature on admission and recanalization. Methods: We included 278 patients with acute ischaemic stroke within nine

  16. No relation between body temperature and arterial recanalization at three days in patients with acute ischaemic stroke

    NARCIS (Netherlands)

    M. Geurts (Marjolein); H.B. Van Der Worp (H. Bart); A.D. Horsch (Alexander D.); L.J. Kappelle (Jaap); G.J. Biessels (Geert Jan); B.K. Velthuis (Birgitta); C.B. Majoie (Charles); Y.B.W.E.M. Roos; L.E.M. Duijm (Lucien); K. Keizer (Koos); A. van der Lugt (Aad); D.W.J. Dippel (Diederik); K.E. Droogh-De Greve; H.P. Bienfait; M.A. van Walderveen (M.); M.J.H. Wermer (Marieke); G.J. Lycklama à Nijeholt (Geert); J. Boiten (Jelis); A. Duyndam (Anita); V.I.H. Kwa; F.J. Meijer (F.); E.J. van Dijk (Ewoud); A.M. Kesselring (Anouk); J. Hofmeijer; J.A. Vos (Jan Albert); W.J. Schonewille (W.); W.J. van Rooij (W.); P.L.M. de Kort (Paul); C.C. Pleiter (C.); S.L.M. Bakker (Stef); J. Bot (Joseph); M.C. Visser (Marieke); I.C. van der Schaaf (Irene); J.W. Dankbaar (Jan); W.P. Mali (Willem); T. van Seeters (Tom); A.D. Horsch (Alexander D.); J.M. Niesten (Joris); G.J. Biessels; L.J. Kappelle; J.S.K. Luitse; Y. van der Graaf (Yolanda)

    2015-01-01

    textabstractBackground: Recanalization of an occluded intracranial artery is influenced by temperature-dependent enzymes, including alteplase. We assessed the relation between body temperature on admission and recanalization. Methods: We included 278 patients with acute ischaemic stroke within nine

  17. Effect of temperature on the compressive behavior of carbon fiber composite pyramidal truss cores sandwich panels with reinforced frames

    Directory of Open Access Journals (Sweden)

    Xiaodong Li

    2016-03-01

    Full Text Available This paper focuses on the effect of temperature on the out-of-plane compressive properties and failure mechanism of carbon fiber/epoxy composite pyramidal truss cores sandwich panels (CF/CPTSP. CF/CPTSP with novel reinforced frames are manufactured by the water jet cutting and interlocking assembly method in this paper. The theoretical analysis is presented to predict the out-of-plane compressive stiffness and strength of CF/CPTSP at different ambient temperatures. The tests of composite sandwich panels are performed throughout the temperature range from −90∘C to 180∘C. Good agreement is found between theoretical predictions and experimental measurements. Experimental results indicate that the low temperature increases the compressive stiffness and strength of CF/CPTSP. However, the high temperature causes the degradation of the compressive stiffness and strength. Meanwhile, the effects of temperature on the failure mode of composite sandwich panels are also observed.

  18. Experimental investigations of heat transfer and temperature fields in models simulating fuel assemblies used in the core of a nuclear reactor with a liquid heavy-metal coolant

    Science.gov (United States)

    Belyaev, I. A.; Genin, L. G.; Krylov, S. G.; Novikov, A. O.; Razuvanov, N. G.; Sviridov, V. G.

    2015-09-01

    The aim of this experimental investigation is to obtain information on the temperature fields and heat transfer coefficients during flow of liquid-metal coolant in models simulating an elementary cell in the core of a liquid heavy metal cooled fast-neutron reactor. Two design versions for spacing fuel rods in the reactor core were considered. In the first version, the fuel rods were spaced apart from one another using helical wire wound on the fuel rod external surface, and in the second version spacer grids were used for the same purpose. The experiments were carried out on the mercury loop available at the Moscow Power Engineering Institute National Research University's Chair of Engineering Thermal Physics. Two experimental sections simulating an elementary cell for each of the fuel rod spacing versions were fabricated. The temperature fields were investigated using a dedicated hinged probe that allows temperature to be measured at any point of the studied channel cross section. The heat-transfer coefficients were determined using the wall temperature values obtained at the moment when the probe thermocouple tail end touched the channel wall. Such method of determining the wall temperature makes it possible to alleviate errors that are unavoidable in case of measuring the wall temperature using thermocouples placed in slots milled in the wall. In carrying out the experiments, an automated system of scientific research was applied, which allows a large body of data to be obtained within a short period of time. The experimental investigations in the first test section were carried out at Re = 8700, and in the second one, at five values of Reynolds number. Information about temperature fields was obtained by statistically processing the array of sampled probe thermocouple indications at 300 points in the experimental channel cross section. Reach material has been obtained for verifying the codes used for calculating velocity and temperature fields in channels with

  19. Biphasic changes in body temperature produced by intracerebroventricular injections of histamine in the cat.

    Science.gov (United States)

    Clark, W G; Cumby, H R

    1976-09-01

    1. Intracerebroventricular administration of histamine to cats caused hypothermia followed by a rise in body temperature. 2-Methylhistamine caused a similar biphasic response, while 3-methylhistamine had no effect on body temperature and 4-methylhistamine produced a delayed hyperthermia. Some tolerance to the hypothermic activity developed when a series of closely spaced injections of histamine was given. 2. Doses of histamine and 2-methylhistamine which altered body temperature when given centrally were ineffective when infused or injected I.V. 3. Pyrilamine, an H1-receptor antagonist, prevented the hypothermic response to histamine. 4. Hypothermic responses to histamine at an environmental temperature of 22 degrees C were comparable to responses in a cold room at 4 degrees C in both resting animals and animals acting to depress a lever to escape an external heat load. A change in error signal from the thermostat could account for these results. However, lesser degrees of hypothermia developed when histamine was given to animals in a hot environment. In some, but not all animals, this smaller response could be attributed to inadequate heat loss in spite of maximal activation of heat-loss mechanisms. 5. The hyperthermic response to histamine was antagonized by central, but not peripheral, injection of metiamide, an H2-receptor antagonist. 6. The results indicate that histamine and related agents can act centrally to cause both hypothermia, mediated by H1-receptors, and hyperthermia, mediated by H2-receptors.

  20. Three-body recombination in heteronuclear systems at finite temperature with a large positive scattering length

    Science.gov (United States)

    Emmons, Samuel; Acharya, Bijaya; Platter, Lucas

    2017-01-01

    For an ultracold heteronuclear mixture with a large positive interspecies scattering length and negligible intraspecies scattering length, we determine the three-body recombination rate as a function of collision energy using universal functions of a single scaling variable. We use the zero-range approximation and the Skorniakov -Ter-Martirosian equation to calculate these scaling functions for a range of collision energies. Further, we explore the effects that a nonzero temperature has on three-body recombination, as well as the effects of the formation of deep dimers, for experimentally relevant heteronuclear gases such as the 6Li-133Cs mixture. NSF Grant Nos. PHY-1516077 and PHY-1555030.

  1. High performance of SDC and GDC core shell type composite electrolytes using methane as a fuel for low temperature SOFC

    Directory of Open Access Journals (Sweden)

    Muneeb Irshad

    2016-02-01

    Full Text Available Nanocomposites Samarium doped Ceria (SDC, Gadolinium doped Ceria (GDC, core shell SDC amorphous Na2CO3 (SDCC and GDC amorphous Na2CO3 (GDCC were synthesized using co-precipitation method and then compared to obtain better solid oxide electrolytes materials for low temperature Solid Oxide Fuel Cell (SOFCs. The comparison is done in terms of structure, crystallanity, thermal stability, conductivity and cell performance. In present work, XRD analysis confirmed proper doping of Sm and Gd in both single phase (SDC, GDC and dual phase core shell (SDCC, GDCC electrolyte materials. EDX analysis validated the presence of Sm and Gd in both single and dual phase electrolyte materials; also confirming the presence of amorphous Na2CO3 in SDCC and GDCC. From TGA analysis a steep weight loss is observed in case of SDCC and GDCC when temperature rises above 725 °C while SDC and GDC do not show any loss. The ionic conductivity and cell performance of single phase SDC and GDC nanocomposite were compared with core shell GDC/amorphous Na2CO3 and SDC/ amorphous Na2CO3 nanocomposites using methane fuel. It is observed that dual phase core shell electrolytes materials (SDCC, GDCC show better performance in low temperature range than their corresponding single phase electrolyte materials (SDC, GDC with methane fuel.

  2. High performance of SDC and GDC core shell type composite electrolytes using methane as a fuel for low temperature SOFC

    Energy Technology Data Exchange (ETDEWEB)

    Irshad, Muneeb; Siraj, Khurram, E-mail: razahussaini786@gmail.com, E-mail: khurram.uet@gmail.com; Javed, Fayyaz; Ahsan, Muhammad; Rafique, Muhammad Shahid [Department of Physics, University of Engineering and Technology, Lahore (Pakistan); Raza, Rizwan, E-mail: razahussaini786@gmail.com, E-mail: khurram.uet@gmail.com [Department of Physics, COMSATS Institute of Information Technology, Lahore (Pakistan); Shakir, Imran [Deanship of scientific research, College of Engineering, PO Box 800, King Saud University, Riyadh 11421 (Saudi Arabia)

    2016-02-15

    Nanocomposites Samarium doped Ceria (SDC), Gadolinium doped Ceria (GDC), core shell SDC amorphous Na{sub 2}CO{sub 3} (SDCC) and GDC amorphous Na{sub 2}CO{sub 3} (GDCC) were synthesized using co-precipitation method and then compared to obtain better solid oxide electrolytes materials for low temperature Solid Oxide Fuel Cell (SOFCs). The comparison is done in terms of structure, crystallanity, thermal stability, conductivity and cell performance. In present work, XRD analysis confirmed proper doping of Sm and Gd in both single phase (SDC, GDC) and dual phase core shell (SDCC, GDCC) electrolyte materials. EDX analysis validated the presence of Sm and Gd in both single and dual phase electrolyte materials; also confirming the presence of amorphous Na{sub 2}CO{sub 3} in SDCC and GDCC. From TGA analysis a steep weight loss is observed in case of SDCC and GDCC when temperature rises above 725 °C while SDC and GDC do not show any loss. The ionic conductivity and cell performance of single phase SDC and GDC nanocomposite were compared with core shell GDC/amorphous Na{sub 2}CO{sub 3} and SDC/ amorphous Na{sub 2}CO{sub 3} nanocomposites using methane fuel. It is observed that dual phase core shell electrolytes materials (SDCC, GDCC) show better performance in low temperature range than their corresponding single phase electrolyte materials (SDC, GDC) with methane fuel.

  3. Data logging of body temperatures provides precise information on phenology of reproductive events in a free-living arctic hibernator

    Science.gov (United States)

    Williams, C.T.; Sheriff, M.J.; Schmutz, J.A.; Kohl, F.; Toien, O.; Buck, C.L.; Barnes, B.M.

    2011-01-01

    Precise measures of phenology are critical to understanding how animals organize their annual cycles and how individuals and populations respond to climate-induced changes in physical and ecological stressors. We show that patterns of core body temperature (T b) can be used to precisely determine the timing of key seasonal events including hibernation, mating and parturition, and immergence and emergence from the hibernacula in free-living arctic ground squirrels (Urocitellus parryii). Using temperature loggers that recorded T b every 20 min for up to 18 months, we monitored core T b from three females that subsequently gave birth in captivity and from 66 female and 57 male ground squirrels free-living in the northern foothills of the Brooks Range Alaska. In addition, dates of emergence from hibernation were visually confirmed for four free-living male squirrels. Average T b in captive females decreased by 0.5–1.0°C during gestation and abruptly increased by 1–1.5°C on the day of parturition. In free-living females, similar shifts in T b were observed in 78% (n = 9) of yearlings and 94% (n = 31) of adults; females without the shift are assumed not to have given birth. Three of four ground squirrels for which dates of emergence from hibernation were visually confirmed did not exhibit obvious diurnal rhythms in T b until they first emerged onto the surface when T b patterns became diurnal. In free-living males undergoing reproductive maturation, this pre-emergence euthermic interval averaged 20.4 days (n = 56). T b-loggers represent a cost-effective and logistically feasible method to precisely investigate the phenology of reproduction and hibernation in ground squirrels.

  4. Conventional and novel body temperature measurement during rest and exercise induced hyperthermia.

    Science.gov (United States)

    Towey, Colin; Easton, Chris; Simpson, Robert; Pedlar, Charles

    2017-01-01

    Despite technological advances in thermal sensory equipment, few core temperature (TCORE) measurement techniques have met the established validity criteria in exercise science. Additionally, there is debate as to what method serves as the most practically viable, yet upholds the proposed measurement accuracy. This study assessed the accuracy of current and novel TCORE measurement techniques in comparison to rectal temperature (TREC) as a reference standard. Fifteen well-trained subjects (11 male, 4 female) completed 60min of exercise at an intensity equating to the lactate threshold; measured via a discontinuous exercise test. TREC was significantly elevated from resting values (37.2±0.3°C) at the end of moderate intensity exercise (39.6±0.04°C; P=0.001). Intestinal telemetric pill (TPILL) temperature and temporal artery temperature (TTEM) did not differ significantly from TREC at rest or during exercise (P>0.05). However, aural canal temperature (TAUR) and thermal imaging temperature (TIMA) were both significantly lower than TREC (P0.27°C). Against TREC, these results support the use of TPILL over all other techniques as a valid measure of TCORE at rest and during exercise induced hyperthermia. Novel findings illustrate that TIMA (when measured at the inner eye canthus) shows poor agreement to TREC during rest and exercise, which is similar to other 'surface' measures. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  5. An active homopolar magnetic bearing with high temperature superconductor (HTS) coils and ferromagnetic cores

    Science.gov (United States)

    Brown, G. V.; Dirusso, E.; Provenza, A. J.

    1995-01-01

    A proof-of-feasibility demonstration showed that high temperature superconductor (HTS) coils can be used in a high-load, active magnetic bearing in liquid nitrogen. A homopolar radial bearing with commercially wound HTS (Bi 2223) bias and control coils produced over 200 lb (890 N) radial load capacity (measured non-rotating) and supported a shaft to 14000 rpm. The goal was to show that HTS coils can operate stably with ferromagnetic cores in a feedback controlled system at a current density similar to that in Cu in liquid nitrogen. Design compromises permitted use of circular coils with rectangular cross section. Conductor improvements will eventually permit coil shape optimization, higher current density and higher bearing load capacity. The bias coil, wound with non-twisted, multifilament HTS conductor, required negligible power to carry its direct current. The control coils were wound with monofilament HTS sheathed in Ag. These dissipated negligible power for direct current (i.e. for steady radial load components). When an alternating current (AC) was added, the AC component dissipated power which increased rapidly with frequency and quadratically with AC amplitude. In fact at frequencies above about 2 hz, the effective resistance of the control coil conductor actually exceeds that of the silver which is in electrical parallel with the oxide superconductor. This is at least qualitatively understandable in the context of a Bean-type model of flux and current penetration into a Type II superconductor. Fortunately the dynamic currents required for bearing stability are of small amplitude. These results show that while twisted multifilament conductor is not needed for stable levitation, twisted multifilaments will be required to reduce control power for sizable dynamic loads, such as those due to unbalance.

  6. Quantitative Proteomic Analysis of Optimal Cutting Temperature (OCT) Embedded Core-Needle Biopsy of Lung Cancer

    Science.gov (United States)

    Zhao, Xiaozheng; Huffman, Kenneth E.; Fujimoto, Junya; Canales, Jamie Rodriguez; Girard, Luc; Nie, Guangjun; Heymach, John V.; Wistuba, Igacio I.; Minna, John D.; Yu, Yonghao

    2017-07-01

    With recent advances in understanding the genomic underpinnings and oncogenic drivers of pathogenesis in different subtypes, it is increasingly clear that proper pretreatment diagnostics are essential for the choice of appropriate treatment options for non-small cell lung cancer (NSCLC). Tumor tissue preservation in optimal cutting temperature (OCT) compound is commonly used in the surgical suite. However, proteins recovered from OCT-embedded specimens pose a challenge for LC-MS/MS experiments, due to the large amounts of polymers present in OCT. Here we present a simple workflow for whole proteome analysis of OCT-embedded NSCLC tissue samples, which involves a simple trichloroacetic acid precipitation step. Comparisons of protein recovery between frozen versus OCT-embedded tissue showed excellent consistency with more than 9200 proteins identified. Using an isobaric labeling strategy, we quantified more than 5400 proteins in tumor versus normal OCT-embedded core needle biopsy samples. Gene ontology analysis indicated that a number of proliferative as well as squamous cell carcinoma (SqCC) marker proteins were overexpressed in the tumor, consistent with the patient's pathology based diagnosis of "poorly differentiated SqCC". Among the most downregulated proteins in the tumor sample, we noted a number of proteins with potential immunomodulatory functions. Finally, interrogation of the aberrantly expressed proteins using a candidate approach and cross-referencing with publicly available databases led to the identification of potential druggable targets in DNA replication and DNA damage repair pathways. We conclude that our approach allows LC-MS/MS proteomic analyses on OCT-embedded lung cancer specimens, opening the way to bring powerful proteomics into the clinic. [Figure not available: see fulltext.

  7. Quantitative Proteomic Analysis of Optimal Cutting Temperature (OCT) Embedded Core-Needle Biopsy of Lung Cancer

    Science.gov (United States)

    Zhao, Xiaozheng; Huffman, Kenneth E.; Fujimoto, Junya; Canales, Jamie Rodriguez; Girard, Luc; Nie, Guangjun; Heymach, John V.; Wistuba, Igacio I.; Minna, John D.; Yu, Yonghao

    2017-10-01

    With recent advances in understanding the genomic underpinnings and oncogenic drivers of pathogenesis in different subtypes, it is increasingly clear that proper pretreatment diagnostics are essential for the choice of appropriate treatment options for non-small cell lung cancer (NSCLC). Tumor tissue preservation in optimal cutting temperature (OCT) compound is commonly used in the surgical suite. However, proteins recovered from OCT-embedded specimens pose a challenge for LC-MS/MS experiments, due to the large amounts of polymers present in OCT. Here we present a simple workflow for whole proteome analysis of OCT-embedded NSCLC tissue samples, which involves a simple trichloroacetic acid precipitation step. Comparisons of protein recovery between frozen versus OCT-embedded tissue showed excellent consistency with more than 9200 proteins identified. Using an isobaric labeling strategy, we quantified more than 5400 proteins in tumor versus normal OCT-embedded core needle biopsy samples. Gene ontology analysis indicated that a number of proliferative as well as squamous cell carcinoma (SqCC) marker proteins were overexpressed in the tumor, consistent with the patient's pathology based diagnosis of "poorly differentiated SqCC". Among the most downregulated proteins in the tumor sample, we noted a number of proteins with potential immunomodulatory functions. Finally, interrogation of the aberrantly expressed proteins using a candidate approach and cross-referencing with publicly available databases led to the identification of potential druggable targets in DNA replication and DNA damage repair pathways. We conclude that our approach allows LC-MS/MS proteomic analyses on OCT-embedded lung cancer specimens, opening the way to bring powerful proteomics into the clinic. [Figure not available: see fulltext.

  8. Artificial quantum thermal bath: Engineering temperature for a many-body quantum system

    Science.gov (United States)

    Shabani, Alireza; Neven, Hartmut

    2016-11-01

    Temperature determines the relative probability of observing a physical system in an energy state when that system is energetically in equilibrium with its environment. In this paper we present a theory for engineering the temperature of a quantum system different from its ambient temperature. We define criteria for an engineered quantum bath that, when coupled to a quantum system with Hamiltonian H , drives the system to the equilibrium state e/-H/TTr (e-H /T) with a tunable parameter T . This is basically an analog counterpart of the digital quantum metropolis algorithm. For a system of superconducting qubits, we propose a circuit-QED approximate realization of such an engineered thermal bath consisting of driven lossy resonators. Our proposal opens the path to simulate thermodynamical properties of many-body quantum systems of size not accessible to classical simulations. Also we discuss how an artificial thermal bath can serve as a temperature knob for a hybrid quantum-thermal annealer.

  9. Daily scheduled high fat meals moderately entrain behavioral anticipatory activity, body temperature, and hypothalamic c-Fos activation.

    Directory of Open Access Journals (Sweden)

    Christian M Gallardo

    Full Text Available When fed in restricted amounts, rodents show robust activity in the hours preceding expected meal delivery. This process, termed food anticipatory activity (FAA, is independent of the light-entrained clock, the suprachiasmatic nucleus, yet beyond this basic observation there is little agreement on the neuronal underpinnings of FAA. One complication in studying FAA using a calorie restriction model is that much of the brain is activated in response to this strong hunger signal. Thus, daily timed access to palatable meals in the presence of continuous access to standard chow has been employed as a model to study FAA in rats. In order to exploit the extensive genetic resources available in the murine system we extended this model to mice, which will anticipate rodent high fat diet but not chocolate or other sweet daily meals (Hsu, Patton, Mistlberger, and Steele; 2010, PLoS ONE e12903. In this study we test additional fatty meals, including peanut butter and cheese, both of which induced modest FAA. Measurement of core body temperature revealed a moderate preprandial increase in temperature in mice fed high fat diet but entrainment due to handling complicated interpretation of these results. Finally, we examined activation patterns of neurons by immunostaining for the immediate early gene c-Fos and observed a modest amount of entrainment of gene expression in the hypothalamus of mice fed a daily fatty palatable meal.

  10. Finite-temperature second-order many-body perturbation theory revisited

    CERN Document Server

    Santra, Robin

    2016-01-01

    We present an algebraic, nondiagrammatic derivation of finite-temperature second-order many-body perturbation theory [FT-MBPT(2)], using techniques and concepts accessible to theoretical chemical physicists. We give explicit expressions not just for the grand potential but particularly for the mean energy of an interacting many-electron system. The framework presented is suitable for computing the energy of a finite or infinite system in contact with a heat and particle bath at finite temperature and chemical potential. FT-MBPT(2) may be applied if the system, at zero temperature, may be described using standard (i.e., zero-temperature) second-order many-body perturbation theory [ZT-MBPT(2)] for the energy. We point out that in such a situation, FT-MBPT(2) reproduces, in the zero-temperature limit, the energy computed within ZT-MBPT(2). In other words, the difficulty that has been referred to as the Kohn--Luttinger conundrum, does not occur. We comment, in this context, on a "renormalization" scheme recently ...

  11. [Body temperature, Aldrete-Kroulik index, and patient discharge from the post-anesthetic recovery unit].

    Science.gov (United States)

    de Castro, Fernanda Salim Ferreira; Peniche, Aparecida de Cássia Giani; Mendoza, Isabel Yovana Quispe; Couto, Andréa Tamancoldi

    2012-08-01

    Patient discharge from post-anesthetic recovery (PAR) depends, among other factors, on normothermia and the patient's score on the Aldrete-Kroulik index. The objective of this study was to verify the relationship between the Aldrete-Kroulik index and body temperature in patients. This study was performed at the University of São Paulo University Hospital. Convenience sampling was used, and the sample consisted of 60 patients of ages between 18 and 60 years who underwent general anesthesia. The patients' body temperature was obtained by tympanic measurement, and the Aldrete-Kroulik index was measured on admission and at discharge from post-anesthetic recovery. The data were processed using SPSS, considering a significance level of 5%, and the Spearman and Wilcoxon tests were applied. In conclusion, no significant correlation was found between the two parameters for discharge.

  12. Impact of water temperature and stressor controllability on swim stress-induced changes in body temperature, serum corticosterone, and immobility in rats.

    Science.gov (United States)

    Drugan, Robert C; Eren, Senem; Hazi, Agnes; Silva, Jennifer; Christianson, John P; Kent, Stephen

    2005-10-01

    The present study compared the effects of three different water temperatures (20, 25, and 30 degrees C) and stressor controllability on several physiological and behavioral endpoints in an intermittent swim stress paradigm. The escape latency of rats in the 20 and 25 degrees C water was less than that observed for the 30 degrees C group. Both escape and yoked groups at 20 and 25 degrees C exhibited moderate to severe hypothermia following the swim stress session that returned to prestress levels 30-40 min post-stress. At 30 degrees C core body temperature (Tb) only decreased by 1 degree C for either swim group. Following swim, serum corticosterone (CORT) levels were significantly elevated in both escape and yoked groups in comparison to confined and home cage controls. The confined control group showed a significant elevation that was approximately halfway between the home cage control and the swim stress groups. At 30 degrees C, there was still a significant elevation of serum CORT in both swim groups in comparison to confined and home cage controls. Therefore, 30 degrees C appears to be the optimal water temperature to evaluate stress controllability effects in the current paradigm. In a final experiment, swim stressor controllability effects were examined in a 5 min forced swim test (FST) 24 h following the initial stress exposure. Rats exposed to yoked-inescapable swim stress at 30 degrees C exhibited more immobility than their escapable swim stress and confined counterparts, while the escape and confined controls did not differ. These results demonstrate that the behavioral deficits observed in the FST are attributable to the stress of inescapable swim and not swim stress per se.

  13. Sensitivity of interglacial Greenland temperature and δ18O: ice core data, orbital and increased CO2 climate simulations

    Directory of Open Access Journals (Sweden)

    D. Swingedouw

    2011-09-01

    Full Text Available The sensitivity of interglacial Greenland temperature to orbital and CO2 forcing is investigated using the NorthGRIP ice core data and coupled ocean-atmosphere IPSL-CM4 model simulations. These simulations were conducted in response to different interglacial orbital configurations, and to increased CO2 concentrations. These different forcings cause very distinct simulated seasonal and latitudinal temperature and water cycle changes, limiting the analogies between the last interglacial and future climate. However, the IPSL-CM4 model shows similar magnitudes of Arctic summer warming and climate feedbacks in response to 2 × CO2 and orbital forcing of the last interglacial period (126 000 years ago. The IPSL-CM4 model produces a remarkably linear relationship between TOA incoming summer solar radiation and simulated changes in summer and annual mean central Greenland temperature. This contrasts with the stable isotope record from the Greenland ice cores, showing a multi-millennial lagged response to summer insolation. During the early part of interglacials, the observed lags may be explained by ice sheet-ocean feedbacks linked with changes in ice sheet elevation and the impact of meltwater on ocean circulation, as investigated with sensitivity studies. A quantitative comparison between ice core data and climate simulations requires stability of the stable isotope – temperature relationship to be explored. Atmospheric simulations including water stable isotopes have been conducted with the LMDZiso model under different boundary conditions. This set of simulations allows calculation of a temporal Greenland isotope-temperature slope (0.3–0.4‰ per °C during warmer-than-present Arctic climates, in response to increased CO2, increased ocean temperature and orbital forcing. This temporal slope appears half as large as the modern spatial gradient and is consistent with other ice core estimates. It may, however, be model-dependent, as indicated by

  14. Central inhibitory effect of α-methyldopa on blood pressure, heart rate and body temperature of renal hypertensive rats

    NARCIS (Netherlands)

    Nijkamp, F.P.; Ezer, Joseph; Jong, Wybren de

    The central inhibitory effect of α-methyldopa on blood pressure, heart rate and body temperature was studied in conscious renal hypertensive rats. Systemic administration of α-methyldopa decreased mean arterial blood pressure and body temperature and caused a short lasting increase in heart rate

  15. Central inhibitory effect of α-methyldopa on blood pressure, heart rate and body temperature of renal hypertensive rats

    NARCIS (Netherlands)

    Nijkamp, F.P.; Ezer, Joseph; Jong, Wybren de

    1975-01-01

    The central inhibitory effect of α-methyldopa on blood pressure, heart rate and body temperature was studied in conscious renal hypertensive rats. Systemic administration of α-methyldopa decreased mean arterial blood pressure and body temperature and caused a short lasting increase in heart rate fol

  16. Skin Sensitive Difference of Human Body Sections under Clothing--Multiple Analysis of Skin Surface Temperature Changes

    Institute of Scientific and Technical Information of China (English)

    李俊; 吴海燕; 张渭源

    2003-01-01

    A new researching method on clothing comfort perception is developed.By it the skin surface temperature changes and subjective psychological perception of human body sections stimulated by the same cold stimulation are studied.With the multiple comparison analysis method the changing laws of skin temperature of main human body sections is obtained.

  17. Anaphylaxis Imaging: Non-Invasive Measurement of Surface Body Temperature and Physical Activity in Small Animals.

    Directory of Open Access Journals (Sweden)

    Krisztina Manzano-Szalai

    Full Text Available In highly sensitized patients, the encounter with a specific allergen from food, insect stings or medications may rapidly induce systemic anaphylaxis with potentially lethal symptoms. Countless animal models of anaphylaxis, most often in BALB/c mice, were established to understand the pathophysiology and to prove the safety of different treatments. The most common symptoms during anaphylactic shock are drop of body temperature and reduced physical activity. To refine, improve and objectify the currently applied manual monitoring methods, we developed an imaging method for the automated, non-invasive measurement of the whole-body surface temperature and, at the same time, of the horizontal and vertical movement activity of small animals. We tested the anaphylaxis imaging in three in vivo allergy mouse models for i milk allergy, ii peanut allergy and iii egg allergy. These proof-of-principle experiments suggest that the imaging technology represents a reliable non-invasive method for the objective monitoring of small animals during anaphylaxis over time. We propose that the method will be useful for monitoring diseases associated with both, changes in body temperature and in physical behaviour.

  18. Effect of body size and temperature on respiration of Galaxias maculatus (Pisces: Galaxiidae)

    Science.gov (United States)

    Milano, D.; Vigliano, P.H.; Beauchamp, David A.

    2016-01-01

    Body mass and temperature are primary determinants of metabolic rate in ectothermic animals. Oxygen consumption of post-larval Galaxias maculatus was measured in respirometry trials under different temperatures (5–21°C) and varying body masses (0.1–>1.5 g) spanning a relevant range of thermal conditions and sizes. Specific respiration rates (R in g O2 g−1 d−1) declined as a power function of body mass and increased exponentially with temperature and was expressed as: R = 0.0007 * W −0.31 * e 0.13 * T. The ability of this model to predict specific respiration rate was evaluated by comparing observed values with those predicted by the model. Our findings suggest that the respiration rate of G. maculatus is the result of multiple interactive processes (intrinsic and extrinsic factors) that modulate each other in ‘meta-mechanistic’ ways; this would help to explain the species’ ability to undergo the complex ontogenetic habitat shifts observed in the lakes of the Andean Patagonic range.

  19. Conservatism of lizard thermal tolerances and body temperatures across evolutionary history and geography.

    Science.gov (United States)

    Grigg, Joseph W; Buckley, Lauren B

    2013-04-23

    Species may exhibit similar thermal tolerances via either common ancestry or environmental filtering and local adaptation, if the species inhabit similar environments. We ask whether upper and lower thermal limits (critical thermal maxima and minima) and body temperatures are more strongly conserved across evolutionary history or geography for lizard populations distributed globally. We find that critical thermal maxima are highly conserved with location accounting for a higher proportion of the variation than phylogeny. Notably, thermal tolerance breadth is conserved across the phylogeny despite critical thermal minima showing little niche conservatism. Body temperatures observed during activity in the field show the greatest degree of conservatism, with phylogeny accounting for most of the variation. This suggests that propensities for thermoregulatory behaviour, which can buffer body temperatures from environmental variation, are similar within lineages. Phylogeny and geography constrain thermal tolerances similarly within continents, but variably within clades. Conservatism of thermal tolerances across lineages suggests that the potential for local adaptation to alleviate the impacts of climate change on lizards may be limited.

  20. A temperature-independent fibre-optic magnetic-field sensor using thin-core fibre tailored fibre Bragg grating

    Science.gov (United States)

    Tian, Qin; Feng, Zhongyao; Rong, Qiangzhou; Wan, Yun; Qiao, Xueguang; Hu, Manli; Yang, Hangzhou; Wang, Ruohui; Shao, Zhihua; Yang, Tingting

    2017-06-01

    A temperature-independent fibre-optic magnetic-field sensor is proposed and demonstrated experimentally. The device consists of a thin-core fibre (TCF) sandwiched in the upstream of a fibre Bragg grating (FBG). Because of the core-mismatch between the TCF and the single-mode fibre (SMF), the core mode is coupled to the cladding modes within the TCF cladding, and parts of them are recoupled back to the leading-in SMF by the downstream FBG. The cladding modes are sensitive to the ambient refractive index (RI), and therefore have the ability to respond to a RI change in the magnetic fluid determined by the ambient magnetic field. The intensities of the cladding-mode resonances are highly sensitive to the magnetic field change, while, in contrast, the resonance wavelengths always remain unchanged. This property can allow the sensor to act as a power-referenced reflection probe for magnetic field measurements.

  1. Development of in-service inspection system for core support graphite structures in the high temperature engineering test reactor (HTTR)

    Energy Technology Data Exchange (ETDEWEB)

    Sumita, Junya; Hanawa, Satoshi; Kikuchi, Takayuki; Ishihara, Masahiro [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment

    2003-03-01

    Visual inspection of core support graphite structures using TV camera as in-service inspection and measurement of material characteristics using surveillance test specimens are planned in the High Temperature Engineering Test Reactor (HTTR) to confirm structural integrity of the core support graphite structures. For the visual inspection, in-service inspection system developed from September 1996 to June 1998, and pre-service inspection using the system was carried out. As the result of the pre-service inspection, it was validated that high quality of visual inspection with TV camera can be carried out, and also structural integrity of the core support graphite structures at the initial stage of the HTTR operation was confirmed. (author)

  2. Northern squawfish Ptychochelius oregonensis, O2 consumption rate: Effects of temperature and body size

    Science.gov (United States)

    Cech, Joseph J.; Castleberry, Daniel T.; Hopkins, Todd E.; Petersen, James H.

    1994-01-01

    Northern squawfish, Ptychocheilus oregonensis (live weight range 0.361–1.973 kg), O2consumption was measured with temperature-controlled, flow-through respirometers for >24 h. Mean standard O2 consumption rate of northern squawfish increased with acclimation temperature: 24.3, 49.1, 75.0, and 89.4 mg∙kg−0.67∙h−1 at 9, 15, 18, and 21 °C, respectively. Q10analysis showed that O2 consumption rate temperature sensitivity was greatest at the intermediate acclimation temperatures (15–18 °C, Q10 = 4.10), moderate at the lower acclimation temperatures (9–15 °C, Q10 = 3.23), and lowest at the higher acclimation temperatures (18–21 °C, Q10 = 1.80). Overall Q10 was 2.96 (9–21 °C). Body size (W, grams) and temperature (T, degrees Celcius) were related to O2 consumption (, grams per gram per day) by W−0.285∙e0.105T. Northern squawfish red to white muscle ratios significantly exceeded those of rainbow trout, Oncorhynchus mykiss, in cross sections at 50 and 75% of standard length. High metabolic rates and red to white muscle ratios argue for comparability of northern squawfish with active predators such as sympatric rainbow trout.

  3. Does viviparity evolve in cold climate reptiles because pregnant females maintain stable (not high) body temperatures?

    Science.gov (United States)

    Shine, Richard

    2004-08-01

    Viviparity (live bearing) has evolved from egg laying (oviparity) in many lineages of lizards and snakes, apparently in response to occupancy of cold climates. Explanations for this pattern have focused on the idea that behaviorally thermoregulating (sun-basking) pregnant female reptiles can maintain higher incubation temperatures for their embryos than would be available in nests under the soil surface. This is certainly true at very high elevations, where only viviparous species occur. However, comparisons of nest and lizard temperatures at sites close to the upper elevational limit for oviparous reptiles (presumably, the selective environment where the transition from oviparity to viviparity actually occurs) suggest that reproductive mode has less effect on mean incubation temperatures than on the diel distribution of those temperatures. Nests of the oviparous scincid lizard Bassiana duperreyi showed smooth diel cycles of heating and cooling. In contrast, body temperatures of the viviparous scincid Eulamprus heatwolei rose abruptly in the morning, were high and stable during daylight hours, and fell abruptly at night. Laboratory incubation experiments mimicking these patterns showed that developmental rates of eggs and phenotypic traits of hatchling B. duperreyi were sensitive to this type of thermal variance as well as to mean temperature. Hence, diel distributions as well as mean incubation temperatures may have played an important role in the selective forces for viviparity. More generally, variances as well as mean values of abiotic factors may constitute significant selective forces on life-history evolution.

  4. Forced-Air Warming Provides Better Control of Body Temperature in Porcine Surgical Patients

    Directory of Open Access Journals (Sweden)

    Brian T. Dent

    2016-09-01

    Full Text Available Background: Maintaining normothermia during porcine surgery is critical in ensuring subject welfare and recovery, reducing the risk of immune system compromise and surgical-site infection that can result from hypothermia. In humans, various methods of patient heating have been demonstrated to be useful, but less evaluation has been performed in techniques to prevent hypothermia perioperatively in pigs. Methods: We compared body temperature regulation during surgery before and after modification of the ambient temperature of the operating laboratories. Three different methods of heating were then compared; a standard circulating water mattress, a resistive fabric blanket, and a forced hot air system. The primary measure was percentage of temperature readings outside a specification range of 36.7–40.0 °C. Results: Tighter control of the ambient temperature while using a circulating water mattress reduced the occurrence of out-of-specification body temperature readings from 20.8% to 5.0%, with most of these the result of hypothermia. Use of a resistive fabric blanket further reduced out-of-specification readings to 1.5%, with a slight increase in the occurrence of hyperthermia. Use of a forced air system reduced out-of-specification readings to less 0.1%. Conclusions: Maintenance of normothermia perioperatively in pig can be improved by tightly controlling ambient temperatures. Use of a resistive blanket or a forced air system can lead to better control than a circulating water mattress, with the forced air system providing a faster response to temperature variations and less chance of hyperthermia.

  5. The acute and subchronic effect of 3,4-methylenedioxymethamphetamine on body temperature in rats

    Directory of Open Access Journals (Sweden)

    Simić Ivan

    2009-01-01

    Full Text Available Introduction. The consumption of 3,4-methylenedioxymethamphetamine (MDMA, ecstasy is known to cause severe hyperthermia in humans. This is of extreme importance since ecstasy is often consumed at 'rave' parties, where dancing takes place in a warm environment, which may exacerbate the effect of MDMA on thermoregulation. The present study was performed in order to evaluate the effects of single and repeated administration of MDMA on body temperature in Wistar rats. Material and methods. The study included 72 male Wistar rats, housed in groups of four in cages at a room temperature of 222oC. They were divided in two groups. The rats in the first group were treated with oral solution of MDMA (5 mg/kg, 10 mg/kg, 20 mg/kg, 40 mg/kg and their temperature was measured hourly until 8th hour. The rats in the second group were treated with oral solution of MDMA (5 mg/kg, 10 mg/kg, 20 mg/kg every day during 15 days and their temperature was measured daily at 0th, 1st, 3rd, 5th and 8th hour. Temperature was measured by inserting a thermocouple probe 2,5 cm into the rectum. Results. Both groups showed dose dependent increase of body temperature, determined by rectal temperature measurements. The magnitude of hyperthemic response caused by subchronic administration of MDMA was markedly diminished during the experiment. Conclusion. The hyperthermic effect of MDMA was dose-dependent. The magnitude of the hyperthermic response was markedly diminished in subchronic administration.

  6. Exposure to thermoneutral conditions following acute heat stress reduces skin temperature and increase core body temperature in pigs

    Science.gov (United States)

    Identifying new methods of assessing livestock welfare is a growing area of research. Non-invasive methods of assessment such as infrared thermography are valuable for quick and accurate observations and could be utilized to monitor the thermal status of swine without direct contact. The objectives ...

  7. Effect of short-term decrease in water temperature on body temperature and involvement of testosterone in steelhead and rainbow trout, Oncorhynchus mykiss.

    Science.gov (United States)

    Miura, Go; Munakata, Arimune; Yada, Takashi; Schreck, Carl B; Noakes, David L G; Matsuda, Hiroyuki

    2013-09-01

    The Pacific salmonid species Oncorhynchus mykiss is separated into a migratory form (steelhead trout) and a non-migratory form (rainbow trout). A decrease in water temperature is likely a cue triggering downstream behavior in the migratory form, and testosterone inhibits onset of this behavior. To elucidate differences in sensitivity to water temperature decreases between the migratory and non-migratory forms and effect of testosterone on the sensitivity, we examined two experiments. In experiment 1, we compared changes in body temperature during a short-term decrease in water temperature between both live and dead steelhead and rainbow trout. In experiment 2, we investigated effects of testosterone on body temperature decrease in steelhead trout. Water temperature was decreased by 3°C in 30min. The body temperature of the steelhead decreased faster than that of the rainbow trout. In contrast, there was no significant difference in the decrease in body temperature between dead steelhead and rainbow trout specimens. The body temperature of the testosterone-treated steelhead trout decreased more slowly than that of control fish. Our results suggest that the migratory form is more sensitive to decreases in water temperature than the non-migratory form. Moreover, testosterone might play an inhibitory role in sensitivity to such decreases. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Skin Sensitive Difference of Human Body Sections under Clothing-Smirnov Test of Skin Surface Temperatures' Dynamic Changing

    Institute of Scientific and Technical Information of China (English)

    LI Jun; WU Hai-yan; WANG Yun-yi

    2004-01-01

    Skin sensitive difference of human body sections under clothing is the theoretic foundation of thermal insulation clothing design.By a new method of researching on clothing comfort perception,the skin temperature live changing procedure of human body sections affected by the same cold stimulation is inspected.Furthermore with the Smirnov test the skin temperatures dynamic changing patterns of main human body sections are obtained.

  9. Hepatic mTORC1 controls locomotor activity, body temperature, and lipid metabolism through FGF21

    Science.gov (United States)

    Cornu, Marion; Oppliger, Wolfgang; Albert, Verena; Robitaille, Aaron M.; Trapani, Francesca; Quagliata, Luca; Fuhrer, Tobias; Sauer, Uwe; Terracciano, Luigi; Hall, Michael N.

    2014-01-01

    The liver is a key metabolic organ that controls whole-body physiology in response to nutrient availability. Mammalian target of rapamycin (mTOR) is a nutrient-activated kinase and central controller of growth and metabolism that is negatively regulated by the tumor suppressor tuberous sclerosis complex 1 (TSC1). To investigate the role of hepatic mTOR complex 1 (mTORC1) in whole-body physiology, we generated liver-specific Tsc1 (L-Tsc1 KO) knockout mice. L-Tsc1 KO mice displayed reduced locomotor activity, body temperature, and hepatic triglyceride content in a rapamycin-sensitive manner. Ectopic activation of mTORC1 also caused depletion of hepatic and plasma glutamine, leading to peroxisome proliferator–activated receptor γ coactivator-1α (PGC-1α)–dependent fibroblast growth factor 21 (FGF21) expression in the liver. Injection of glutamine or knockdown of PGC-1α or FGF21 in the liver suppressed the behavioral and metabolic defects due to mTORC1 activation. Thus, mTORC1 in the liver controls whole-body physiology through PGC-1α and FGF21. Finally, mTORC1 signaling correlated with FGF21 expression in human liver tumors, suggesting that treatment of glutamine-addicted cancers with mTOR inhibitors might have beneficial effects at both the tumor and whole-body level. PMID:25082895

  10. Characterization of a CMOS sensing core for ultra-miniature wireless implantable temperature sensors with application to cryomedicine.

    Science.gov (United States)

    Khairi, Ahmad; Thaokar, Chandrajit; Fedder, Gary; Paramesh, Jeyanandh; Rabin, Yoed

    2014-09-01

    In effort to improve thermal control in minimally invasive cryosurgery, the concept of a miniature, wireless, implantable sensing unit has been developed recently. The sensing unit integrates a wireless power delivery mechanism, wireless communication means, and a sensing core-the subject matter of the current study. The current study presents a CMOS ultra-miniature PTAT temperature sensing core and focuses on design principles, fabrication of a proof-of-concept, and characterization in a cryogenic environment. For this purpose, a 100 μm × 400 μm sensing core prototype has been fabricated using a 130 nm CMOS process. The senor has shown to operate between -180°C and room temperature, to consume power of less than 1 μW, and to have an uncertainty range of 1.4°C and non-linearity of 1.1%. Results of this study suggest that the sensing core is ready to be integrated in the sensing unit, where system integration is the subject matter of a parallel effort.

  11. A Near-Infrared and Temperature-Responsive Pesticide Release Platform through Core-Shell Polydopamine@PNIPAm Nanocomposites.

    Science.gov (United States)

    Xu, Xiaohui; Bai, Bo; Wang, Honglun; Suo, Yourui

    2017-02-22

    Controlled stimuli-responsive release systems are a feasible and effective way to increase the efficiency of pesticides and help improve environmental pollution issues. However, near-infrared (NIR)-responsive systems for encapsulation of pesticides for controlling release have not been reported because of high cost and load ability of conventional NIR absorbers as well as complicated preparation process. Herein, we proposed polydopamine (PDA) microspheres as a photothermal agent owing to their abundant active sites, satisfactory photothermal efficiency, low cost, and easy fabrication, followed by capping with a PNIPAm thermosensitive polymer shell. In this core-shell PDA@PNIPAm hybrid system, the PDA core provided excellent temperature and NIR-light sensitivity as well as high loading capacity, while the PNIPAm applied as both a thermosensitive gatekeeper and a pesticide reservoir. The structure of the PDA@PNIPAm nanocomposites was characterized by transmission electron microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, ultraviolet-visible spectroscopy, dynamic light scattering, and thermogravimetric analysis; the results showed that the nanocomposites had a well-defined core-shell configuration for efficient loading of small pesticide molecules. Moreover, the core-shell PDA@PNIPAm nanocomposites exhibited high loading capacity and temperature- or NIR-controlled release performance. Overall, this system has significant potential in controlled drug release and agriculture-related fields as a delivery system for pesticides with photothermal responsive behavior.

  12. On the correlation between air temperature and the core Earth processes: Further investigations using a continuous wavelet analysis

    CERN Document Server

    Sello, Stefano

    2011-01-01

    In a recent article by Dickey, J. O., Marcus, S.L. and O. de Viron, 2011, the authors show evidences for correlations in the multi-decadal variability of Earth's rotation rate [i.e., length of day (LOD)], the angular momentum of the core (CAM), and natural surface air temperature (SAT). Previous investigators have already found that the LOD fluctuations are largely attributed to core-mantle interactions and that the SAT appears strongly anti-correlated with the decadal LOD. As the above authors note, the cause of this common variability needs to be further investigated and studied. In fact, "since temperature cannot affect the CAM or LOD to a sufficient extent, the results favor either a direct effect of Earth's core-generated magnetic field (e.g., through the modulation of charged-particle fluxes, which may impact cloud formation) or a more indirect effect of some other core process on the climate-or yet another process that affects both". The main aim of the present research note is to further support the a...

  13. Influence of body temperature on the development of fatigue during prolonged exercise in the heat

    DEFF Research Database (Denmark)

    Hyldig, Tino Hoffmann

    1999-01-01

    We investigated whether fatigue during prolonged exercise in uncompensable hot environments occurred at the same critical level of hyperthermia when the initial value and the rate of increase in body temperature are altered. To examine the effect of initial body temperature [esophageal temperature...... (Tes) = 35.9 ± 0.2, 37.4 ± 0.1, or 38.2 ± 0.1 (SE) °C induced by 30 min of water immersion], seven cyclists (maximal O2 uptake = 5.1 ± 0.1 l/min) performed three randomly assigned bouts of cycle ergometer exercise (60% maximal O2 uptake) in the heat (40°C) until volitional exhaustion. To determine...... the influence of rate of heat storage (0.10 vs. 0.05°C/min induced by a water-perfused jacket), four cyclists performed two additional exercise bouts, starting with Tes of 37.0°C. Despite different initial temperatures, all subjects fatigued at an identical level of hyperthermia (Tes = 40.1-40.2°C, muscle...

  14. Water- and Temperature-Triggered Reversible Structural Transformation of Tetranuclear Cobalt(II) Cores Sandwiched by Polyoxometalates.

    Science.gov (United States)

    Kuriyama, Yosuke; Kikukawa, Yuji; Suzuki, Kosuke; Yamaguchi, Kazuya; Mizuno, Noritaka

    2016-03-14

    Although stimuli-responsive structural transformations of inorganic materials have attracted considerable attention because of their potential use as functional switchable materials, multinuclear metal cores frequently suffer from unexpected dissociation of metal cations and/or irreversible transformations into infinite structures. In this study, we describe the successful demonstration of the water- and temperature-triggered reversible structural transformation between cubane- and planar-type tetranuclear Co(II) cores sandwiched by polyoxometalates. The arrangements and coordination geometries of the Co(II) cations were interconverted by simple hydration and dehydration, resulting in the manipulation of the magnetic and optical properties of these compounds. Moreover, this system showed unique thermochromism through temperature-dependent reversible structural interconversion.

  15. Effects of wearing two different types of clothing on body temperatures during and after exercise

    Science.gov (United States)

    Jeong, Woon Seon; Tokura, Hiromi

    1989-06-01

    The experiment was conducted to investigate the human thermoregulatory responses during rest, exercise and recovery at T a 20°C and 60% R.H. under the conditions of wearing two different types of clothing. Six healthy men wore two types of clothing: one covering the whole body area except the head (Type A, weight 1656 g), and the other covering only the trunk, upper arms and thighs (Type B, weight 996 g). The level of rectal temperature was kept significantly higher in Type B than in Type A during rest and recovery. The increased and decreased rates of rectal temperature during exercise and recovery were significantly greater in Type A than in Type B, respectively. These findings are discussed from the viewpoint of the differences of skin temperatures of the extremities between Type A and Type B.

  16. Effect of strain and temperature on the threshold displacement energy in body-centered cubic iron

    Science.gov (United States)

    Beeler, Benjamin; Asta, Mark; Hosemann, Peter; Grønbech-Jensen, Niels

    2016-06-01

    The threshold displacement energy (TDE) is the minimum amount of kinetic energy required to displace an atom from its lattice site. The magnitude of the TDE displays significant variance as a function of the crystallographic direction, system temperature and applied strain, among a variety of other factors. It is critically important to determine an accurate value of the TDE in order to calculate the total number of displacements due to a given irradiation condition, and thus to understand the materials response to irradiation. In this study, molecular dynamics simulations have been performed to calculate the threshold displacement energy in body-centered cubic iron as a function of strain and temperature. With applied strain, a decrease of the TDE of up to approximately 14 eV was observed. A temperature increase from 300 K to 500 K can result in an increase of the TDE of up to approximately 9 eV.

  17. Verification of the exponential model of body temperature decrease after death in pigs.

    Science.gov (United States)

    Kaliszan, Michal; Hauser, Roman; Kaliszan, Roman; Wiczling, Paweł; Buczyñski, Janusz; Penkowski, Michal

    2005-09-01

    The authors have conducted a systematic study in pigs to verify the models of post-mortem body temperature decrease currently employed in forensic medicine. Twenty-four hour automatic temperature recordings were performed in four body sites starting 1.25 h after pig killing in an industrial slaughterhouse under typical environmental conditions (19.5-22.5 degrees C). The animals had been randomly selected under a regular manufacturing process. The temperature decrease time plots drawn starting 75 min after death for the eyeball, the orbit soft tissues, the rectum and muscle tissue were found to fit the single-exponential thermodynamic model originally proposed by H. Rainy in 1868. In view of the actual intersubject variability, the addition of a second exponential term to the model was demonstrated to be statistically insignificant. Therefore, the two-exponential model for death time estimation frequently recommended in the forensic medicine literature, even if theoretically substantiated for individual test cases, provides no advantage as regards the reliability of estimation in an actual case. The improvement of the precision of time of death estimation by the reconstruction of an individual curve on the basis of two dead body temperature measurements taken 1 h apart or taken continuously for a longer time (about 4 h), has also been proved incorrect. It was demonstrated that the reported increase of precision of time of death estimation due to use of a multiexponential model, with individual exponential terms to account for the cooling rate of the specific body sites separately, is artifactual. The results of this study support the use of the eyeball and/or the orbit soft tissues as temperature measuring sites at times shortly after death. A single-exponential model applied to the eyeball cooling has been shown to provide a very precise estimation of the time of death up to approximately 13 h after death. For the period thereafter, a better estimation of the time

  18. Recalibrating sleep: is recalibration and readjustment of sense organs and brain-body connections the core function of sleep?

    Science.gov (United States)

    Smetacek, Victor

    2010-10-01

    Sleep is an enigma because we all know what it means and does to us, yet a scientific explanation for why animals including humans need to sleep is still lacking. However, the enigma can be resolved if the animal body is regarded as a purposeful machine whose moving parts are coordinated with spatial information provided by a disparate array of sense organs. The performance of all complex machines deteriorates with time due to inevitable instrument drift of the individual sensors combined with wear and tear of the moving parts which result in declining precision and coordination. Peak performance is restored by servicing the machine, which involves calibrating the sensors against baselines and standards, then with one another, and finally readjusting the connections between instruments and moving parts. It follows that the animal body and its sensors will also require regular calibration of sense organs and readjustment of brain-body connections which will need to be carried out while the animal is not in functional but in calibration mode. I suggest that this is the core function of sleep. This recalibration hypothesis of sleep can be tested subjectively. We all know from personal experience that sleep is needed to recover from tiredness that sets in towards the end of a long day. This tiredness, which is quite distinct from mental or muscular exhaustion caused by strenuous exertion, manifests itself in deteriorating general performance: the sense organs lose precision, movements become clumsy and the mind struggles to maintain focus. We can all agree that sleep sharpens the sense organs and restores agility to mind and body. I now propose that the sense of freshness and buoyancy after a good night's sleep is the feeling of recalibrated sensory and motor systems. The hypothesis can be tested rigorously by examining available data on sleep cycles and stages against this background. For instance, REM and deep sleep cycles can be interpreted as successive, separate

  19. Very High Temperature Reactor (VHTR) Deep Burn Core and Fuel Analysis -- Complete Design Selection for the Pebble Bed Reactor

    Energy Technology Data Exchange (ETDEWEB)

    B. Boer; A. M. Ougouag

    2010-09-01

    The Deep-Burn (DB) concept focuses on the destruction of transuranic nuclides from used light water reactor fuel. These transuranic nuclides are incorporated into TRISO coated fuel particles and used in gas-cooled reactors with the aim of a fractional fuel burnup of 60 to 70% in fissions per initial metal atom (FIMA). This high performance is expected through the use of multiple recirculation passes of the fuel in pebble form without any physical or chemical changes between passes. In particular, the concept does not call for reprocessing of the fuel between passes. In principle, the DB pebble bed concept employs the same reactor designs as the presently envisioned low-enriched uranium core designs, such as the 400 MWth Pebble Bed Modular Reactor (PBMR-400). Although it has been shown in the previous Fiscal Year (2009) that a PuO2 fueled pebble bed reactor concept is viable, achieving a high fuel burnup, while remaining within safety-imposed prescribed operational limits for fuel temperature, power peaking and temperature reactivity feedback coefficients for the entire temperature range, is challenging. The presence of the isotopes 239-Pu, 240-Pu and 241-Pu that have resonances in the thermal energy range significantly modifies the neutron thermal energy spectrum as compared to a ”standard,” UO2-fueled core. Therefore, the DB pebble bed core exhibits a relatively hard neutron energy spectrum. However, regions within the pebble bed that are near the graphite reflectors experience a locally softer spectrum. This can lead to power and temperature peaking in these regions. Furthermore, a shift of the thermal energy spectrum with increasing temperature can lead to increased absorption in the resonances of the fissile Pu isotopes. This can lead to a positive temperature reactivity coefficient for the graphite moderator under certain operating conditions. The effort of this task in FY 2010 has focused on the optimization of the core to maximize the pebble discharge

  20. An Investigation of Summertime Inland Water Body Temperatures in California and Nevada (USA): Recent Trends and Future Projections

    Science.gov (United States)

    Healey, Nathan; Hook, Simon; Piccolroaz, Sebastiano; Toffolon, Marco; Radocinski, Robert

    2016-04-01

    Inland water body temperature has been identified as an ideal indicator of potential climate change. Understanding inland water body temperature trends is important for forecasting impacts to limnological, biological, and hydrological resources. Many inland water bodies are situated in remote locations with incomplete data records of in-situ monitoring or lack in-situ observations altogether. Thus, the utilization of satellite data is essential for understanding the behavior of global inland water body temperatures. Part of this research provides an analysis of summertime (July-September) temperature trends in the largest California/Nevada (USA) inland water bodies between 1991 and 2015. We examine satellite temperature retrievals from ATSR (ATSR-1, ATSR-2, AATSR), MODIS (Terra and Aqua), and VIIRS sensors. Our findings indicate that inland water body temperatures in the western United States were rapidly warming between 1991 and 2009, but since then trends have been decreasing. This research also includes implementation of a model called air2water to predict future inland water body surface temperature through the sole input of air temperature. Using projections from CMIP5-CCSM4 output, our model indicates that Lake Tahoe (USA) is expected to experience an increase of roughly 3 °C by 2100.

  1. Wet Belly in Reindeer (Rangifer tarandus tarandus in Relation to Body Condition, Body Temperature and Blood Constituents

    Directory of Open Access Journals (Sweden)

    Olsson K

    2002-06-01

    Full Text Available Wet belly, when the reindeer becomes wet over the lower parts of the thorax and abdomen, sometimes occurs in reindeer during feeding. In a feeding experiment, 11 out of 69 reindeer were affected by wet belly. The problem was first observed in 7 animals during a period of restricted feed intake. When the animals were then fed standard rations, 3 additional animals fed only silage, and 1 fed pellets and silage, became wet. Four animals died and 1 had to be euthanised. To investigate why reindeer developed wet belly, we compared data from healthy reindeer and reindeer affected by wet belly. Urea, plasma protein, glucose, insulin and cortisol were affected by restricted feed intake or by diet but did not generally differ between healthy reindeer and those with wet belly. The wet animals had low body temperature and the deaths occurred during a period of especially cold weather. Animals that died were emaciated and showed different signs of infections and stress. In a second experiment, with 20 reindeer, the feeding procedure of the most affected group in the first experiment was repeated, but none of the reindeer showed any signs of wet belly. The study shows that wet belly is not induced by any specific diet and may affect also lichen-fed reindeer. The fluid making the fur wet was proven to be of internal origin. Mortality was caused by emaciation, probably secondary to reduced energy intake caused by diseases and/or unsuitable feed.

  2. External magnetic field dependent shift of superparamagnetic blocking temperature due to core/surface disordered spin interactions

    Science.gov (United States)

    Lee, Kwan; Jang, Jung-tak; Nakano, Hiroshi; Nakagawa, Shigeki; Paek, Sun Ha; Bae, Seongtae

    2017-02-01

    Although the blocking temperature of superparamagnetic nanoparticles (SPNPs) is crucial for various spintronics and biomedical applications, the precise determination of the blocking temperature is still not clear. Here, we present ‘intrinsic’ and ‘extrinsic’ characteristics of the blocking temperature in SPNP systems. In zero-field-cooled/field-cooled (ZFC-FC) curves, there was no shift of ‘intrinsic blocking temperature’ at different applied external (excitation) magnetic fields. However, ‘extrinsic blocking temperature’ shift is clearly dependent on the external (excitation) magnetic field. According to our newly proposed physical model, the ‘intermediate spin layer’ located between the core and surface disordered spin layers is primarily responsible for the physical nature of the shift of extrinsic blocking temperature. Our new findings offer possibilities for characterizing the thermally induced physical properties of SPNPs. Furthermore, these findings provide a new empirical approach to indirectly estimate the qualitative degree of the disordered surface spin status in SPNPs.

  3. Qualification of a full plant nodalization for the prediction of the core exit temperature through a scaling methodology

    Energy Technology Data Exchange (ETDEWEB)

    Freixa, J., E-mail: jordi.freixa-terradas@upc.edu; Martínez-Quiroga, V., E-mail: victor.martinez.quiroga@upc.edu; Reventós, F., E-mail: francesc.reventos@upc.edu

    2016-11-15

    Highlights: • Core exit temperature is used in PWRs as an indication of core heat up. • Qualification of full scale nuclear reactors by means of a scaling methodology. • Scaling of RELAP5 calculations to full scale power plants. - Abstract: System codes and their necessary power plant nodalizations are an essential step in thermal hydraulic safety analysis. In order to assess the safety of a particular power plant, in addition to the validation and verification of the code, the nodalization of the system needs to be qualified. Since most existing experimental data come from scaled-down facilities, any qualification process must therefore address scale considerations. The Group of Thermal Hydraulic Studies at Technical University of Catalonia has developed a scaling-up methodology (SCUP) for the qualification of full-scale nodalizations through a systematic procedure based on the extrapolation of post-test simulations of Integral Test Facility experiments. In the present work, the SCUP methodology will be employed to qualify the nodalization of the AscóNPP, a Pressurized Water Reactor (PWR), for the reproduction of an important safety phenomenon which is the effectiveness of the Core Exit Temperature (CET) as an Accident Management (AM) indicator. Given the difficulties in placing measurements in the core region, CET measurements are used as a criterion for the initiation of safety operational procedures during accidental conditions in PWR. However, the CET response has some limitation in detecting inadequate core cooling simply because the measurement is not taken in the position where the cladding exposure occurs. In order to apply the SCUP methodology, the OECD/NEA ROSA-2 Test 3, an SBLOCA in the hot leg, has been selected as a starting point. This experiment was conducted at the Large Scale Test Facility (LSTF), a facility operated by the Japanese Atomic Energy Agency (JAEA) and was focused on the assessment of the effectiveness of AM actions triggered by

  4. Supraphysiological cyclic dosing of sustained release T3 in order to reset low basal body temperature.

    Science.gov (United States)

    Friedman, Michael; Miranda-Massari, Jorge R; Gonzalez, Michael J

    2006-03-01

    The use of sustained release tri-iodothyronine (SR-T3) in clinical practice, has gained popularity in the complementary and alternative medical community in the treatment of chronic fatigue with a protocol (WT3) pioneered by Dr. Denis Wilson. The WT3 protocol involves the use of SR-T3 taken orally by the patient every 12 hours according to a cyclic dose schedule determined by patient response. The patient is then weaned once a body temperature of 98.6 degrees F has been maintained for 3 consecutive weeks. The symptoms associated with this protocol have been given the name Wilson's Temperature Syndrome (WTS). There have been clinical studies using T3 in patients who are euthyroid based on normal TSH values. However, this treatment has created a controversy in the conventional medical community, especially with the American Thyroid Association, because it is not based on a measured deficiency of thyroid hormone. However, just as estrogen and progesterone are prescribed to regulate menstrual cycles in patients who have normal serum hormone levels, the WT3 therapy can be used to regulate metabolism despite normal serum thyroid hormone levels. SR-T3 prescription is based exclusively on low body temperature and presentation of symptoms. Decreased T3 function exerts widespread effects throughout the body. It can decrease serotonin and growth hormone levels and increase the number of adrenal hormone receptor sites. These effects may explain some of the symptoms observed in WTS. The dysregulation of neuroendocrine function may begin to explain such symptoms as alpha intrusion into slow wave sleep, decrease in blood flow to the brain, alterations in carbohydrate metabolism, fatigue, myalgia and arthralgia, depression and cognitive dysfunction. Despite all thermoregulatory control mechanisms of the body and the complex metabolic processes involved, WT3 therapy seems a valuable tool to re-establish normal body functions. We report the results of 11 patients who underwent the

  5. Measurement of bovine body and scrotal temperature using implanted temperature sensitive radio transmitters, data loggers and infrared thermography.

    Science.gov (United States)

    Wallage, A L; Gaughan, J B; Lisle, A T; Beard, L; Collins, C W; Johnston, S D

    2017-03-23

    Synchronous and continuous measurement of body (BT) and scrotal temperature (ST) without adverse welfare or behavioural interference is essential for understanding thermoregulation of the bull testis. This study compared three technologies for their efficacy for long-term measurement of the relationship between BT and ST by means of (1) temperature sensitive radio transmitters (RT), (2) data loggers (DL) and (3) infrared imaging (IRI). After an initial pilot study on two bulls to establish a surgical protocol, RTs and DLs were implanted into the flank and mid-scrotum of six Wagyu bulls for between 29 and 49 days. RT frequencies were scanned every 15 min, whilst DLs logged every 30 min. Infrared imaging of the body (flank) and scrotum of each bull was recorded hourly for one 24-h period and compared to RT and DL data. After a series of subsequent heat stress studies, bulls were castrated and testicular tissue samples processed for evidence of histopathology. Radio transmitters were less reliable than DLs; RTs lost >11 % of data, whilst 11 of the 12 DLs had 0 % data loss. IRI was only interpretable in 35.8 % of images recorded. Pearson correlations between DL and RT were strong for both BT (r > 0.94, P  0.80, P < 0.001). Surgery produced temporary minor inflammation and scrotal hematoma in two animals post-surgery. Whilst scar tissue was observed at all surgical sutured sites when bulls were castrated, there was no evidence of testicular adhesion and normal active spermatogenesis was observed in six of the eight implanted testicles. There was no significant correlation of IRI with either DL or RT. We conclude that DLs provided to be a reliable continuous source of data for synchronous measurement of BT and ST.

  6. Measurement of bovine body and scrotal temperature using implanted temperature sensitive radio transmitters, data loggers and infrared thermography

    Science.gov (United States)

    Wallage, A. L.; Gaughan, J. B.; Lisle, A. T.; Beard, L.; Collins, C. W.; Johnston, S. D.

    2017-07-01

    Synchronous and continuous measurement of body (BT) and scrotal temperature (ST) without adverse welfare or behavioural interference is essential for understanding thermoregulation of the bull testis. This study compared three technologies for their efficacy for long-term measurement of the relationship between BT and ST by means of (1) temperature sensitive radio transmitters (RT), (2) data loggers (DL) and (3) infrared imaging (IRI). After an initial pilot study on two bulls to establish a surgical protocol, RTs and DLs were implanted into the flank and mid-scrotum of six Wagyu bulls for between 29 and 49 days. RT frequencies were scanned every 15 min, whilst DLs logged every 30 min. Infrared imaging of the body (flank) and scrotum of each bull was recorded hourly for one 24-h period and compared to RT and DL data. After a series of subsequent heat stress studies, bulls were castrated and testicular tissue samples processed for evidence of histopathology. Radio transmitters were less reliable than DLs; RTs lost >11 % of data, whilst 11 of the 12 DLs had 0 % data loss. IRI was only interpretable in 35.8 % of images recorded. Pearson correlations between DL and RT were strong for both BT ( r > 0.94, P 0.80, P < 0.001). Surgery produced temporary minor inflammation and scrotal hematoma in two animals post-surgery. Whilst scar tissue was observed at all surgical sutured sites when bulls were castrated, there was no evidence of testicular adhesion and normal active spermatogenesis was observed in six of the eight implanted testicles. There was no significant correlation of IRI with either DL or RT. We conclude that DLs provided to be a reliable continuous source of data for synchronous measurement of BT and ST.

  7. Light masking of circadian rhythms of heat production, heat loss, and body temperature in squirrel monkeys

    Science.gov (United States)

    Robinson, E. L.; Fuller, C. A.

    1999-01-01

    Whole body heat production (HP) and heat loss (HL) were examined to determine their relative contributions to light masking of the circadian rhythm in body temperature (Tb). Squirrel monkey metabolism (n = 6) was monitored by both indirect and direct calorimetry, with telemetered measurement of body temperature and activity. Feeding was also measured. Responses to an entraining light-dark (LD) cycle (LD 12:12) and a masking LD cycle (LD 2:2) were compared. HP and HL contributed to both the daily rhythm and the masking changes in Tb. All variables showed phase-dependent masking responses. Masking transients at L or D transitions were generally greater during subjective day; however, L masking resulted in sustained elevation of Tb, HP, and HL during subjective night. Parallel, apparently compensatory, changes of HL and HP suggest action by both the circadian timing system and light masking on Tb set point. Furthermore, transient HL increases during subjective night suggest that gain change may supplement set point regulation of Tb.

  8. Pervasive, high temperature hydrothermal alteration in the RN-17B drill core, Reykjanes Geothermal System-Iceland Deep Drilling Project

    Science.gov (United States)

    Zierenberg, R. A.; Schiffman, P.; Marks, N. E.; Reed, M. H.; Elders, W. A.; Fridleifsson, G. O.

    2010-12-01

    burial at T<300 is replaced by more calcic plagioclase at higher temperature. Texturally, hydrothermal anorthite (An90-98) and pargasite (up to 13.5 wt % Al2O3) appear to have grown at the expense of earlier formed epidote + chlorite + actinolite. Measured downhole temperature at 2800m in RN-17B following reequilibration was 320°C, although amphibole-plagioclase geothermometry imply that anorthite + pargasite, if in equilibrium, should have formed at much higher temperatures. The differences in extent and intensity of alteration inferred from examination of cuttings compared to drill core indicate that selective recovery and mixing of cuttings from multiple depths may be a larger problem than presently appreciated. Previous work has shown that the Reykjanes geothermal system has evolved from a meteoric water-dominated system to higher salinity system dominated by seawater-recharge. The paragenetic relationships that are discernible in the core hopefully will allow us to quantify the alteration processes related to the change in salinity.

  9. Intracellular pH in lizard Dipsosaurus dorsalis in relation to changing body temperatures.

    Science.gov (United States)

    Bickler, P E

    1982-12-01

    Mean whole-body and tissue-specific intracellular pH values (pHi) were measured in Dipsosaurus dorsalis by the dimethyloxazolidinedione technique. pHi was measured in lizards at constant body temperatures (Tb) (18, 25, 35, and 42 degrees C) and in lizards undergoing changes in Tb between 18 and 42 degrees C. Constant Tb between 18 and 42 degrees C maintained for 24 h or more produced a delta pH/delta Tb of -0.015 for the mean whole-body, -0.012 for venous blood, -0.0104 for cardiac muscle, and -0.0098 for skeletal muscle. Within the preferred range of Tb values (35-42 degrees C), the delta pH/delta Tb patterns were closer to that expected to achieve constant dissociation of protein imidazole (approximately -0.017): mean whole-body -0.020, cardiac muscle -0.016, and skeletal muscle -0.018. Tissue water contents were independent of Tb. Whole-body pHi during gradual warming and cooling (approximately 2 h elapsed time for each direction) closely corresponded to steady-state values. Upon cooling to 18 degrees C, tissue-specific and whole-body pHi often fell 0.1-0.2 unit below that expected; in each case this was correlated with an extracellular acidosis. A gradual recovery of pHi occurred with the recovery of the extracellular acidosis. Over the normally experienced Tb range, adjustments in pHi apparently rapidly achieve steady-state values and are in accord with the imidazole alphastat hypothesis. These patterns are discussed in terms of the thermal ecology of Dipsosaurus.

  10. Vascularization and restoration of heart function in rat myocardial infarction using transplantation of human cbMSC/HUVEC core-shell bodies.

    Science.gov (United States)

    Lee, Wen-Yu; Wei, Hao-Ji; Wang, Jiun-Jie; Lin, Kun-Ju; Lin, Wei-Wen; Chen, Ding-Yuan; Huang, Chieh-Cheng; Lee, Ting-Yin; Ma, Hsiang-Yang; Hwang, Shiaw-Min; Chang, Yen; Sung, Hsing-Wen

    2012-03-01

    Cell transplantation is a promising strategy for therapeutic treatment of ischemic heart diseases. In this study, cord blood mesenchymal stem cells (cbMSCs) and human umbilical vein endothelial cells (HUVECs) in the form of core-shell bodies (cbMSC/HUVEC bodies) were prepared to promote vascularization and restore heart functions in an experimentally-created myocardial infarction (MI) rat model. Saline, cbMSC bodies and HUVEC bodies were used as controls. In vitro results indicated that cbMSC/HUVEC bodies possessed the capability of heterotypic assembly of cbMSCs and HUVECs into robust and durable tubular networks on Matrigel. The up-regulated gene expressions of VEGF and IGF-1 reflected the robust expansion of tubular networks; in addition, the augmented levels of SMA and SM22 suggested smooth muscle differentiation of cbMSCs, possibly helping to improve the durability of networks. Moreover, according to the in vivo echocardiographic, magnetic resonance and computed-tomographic results, transplantation of cbMSC/HUVEC bodies benefited post-MI dysfunction. Furthermore, the vascularization analyses demonstrated the robust vasculogenic potential of cbMSC/HUVEC bodies in vivo, thus contributing to the greater viable myocardium and the less scar region, and ultimately restoring the cardiac function. The concept of core-shell bodies composed of perivascular cells and endothelial cells may serve as an attractive cell delivery vehicle for vasculogenesis, thus improving the cardiac function significantly.

  11. Assessment of brain core temperature using MR DWI-thermometry in Alzheimer disease patients compared to healthy subjects.

    Science.gov (United States)

    Sparacia, Gianvincenzo; Sakai, Koji; Yamada, Kei; Giordano, Giovanna; Coppola, Rosalia; Midiri, Massimo; Grimaldi, Luigi Maria

    2017-04-01

    To assess the brain core temperature of Alzheimer disease (AD) patients in comparison with healthy volunteers using diffusion-weighted thermometry. Fourteen AD patients (3 men, 11 women; age range 60-81 years, mean age 73.8 ± 6.1 years) and 14 healthy volunteers, age and sex-matched (mean age 70.1 ± 6.9 years; range 62-84 years; 5 men, 9 women) underwent MR examination between February 2014 and March 2016. MR imaging studies were performed with a 1.5-T MR scanner. Brain core temperature (T: °C) was calculated using the following equation from the diffusion coefficient (D) in the lateral ventricular (LV) cerebrospinal fluid: T = 2256.74/ln (4.39221/D) - 273.15 using a standard DWI single-shot echo-planar pulse sequence (b value 1000 s/mm(2)). Statistical analysis was performed using a nonparametric Wilcoxon rank-sum test to compare the patient and control groups regarding LV temperatures. There was no significant difference (P = 0.1937) in LV temperature between patients (mean 37.9 ± 1.1 °C, range 35.8-39.2 °C) and control group (38.7 ± 1.4 °C, range 36.9-42.7 °C). Brain core temperature in AD patients showed no significant alterations compared to healthy volunteers.

  12. Core-ion temperature measurement of the ADITYA tokamak using passive charge exchange neutral particle energy analyzer.

    Science.gov (United States)

    Pandya, Santosh P; Ajay, Kumar; Mishra, Priyanka; Dhingra, Rajani D; Govindarajan, J

    2013-02-01

    Core-ion temperature measurements have been carried out by the energy analysis of passive charge exchange (CX) neutrals escaping out of the ADITYA tokamak plasma (minor radius, a = 25 cm and major radius, R = 75 cm) using a 45° parallel plate electrostatic energy analyzer. The neutral particle analyzer (NPA) uses a gas cell configuration for re-ionizing the CX-neutrals and channel electron multipliers (CEMs) as detectors. Energy calibration of the NPA has been carried out using ion-source and ΔE∕E of high-energy channel has been found to be ∼10%. Low signal to noise ratio (SNR) due to VUV reflections on the CEMs was identified during the operation of the NPA with ADITYA plasma discharges. This problem was rectified by upgrading the system by incorporating the additional components and arrangements to suppress VUV radiations and improve its VUV rejection capabilities. The noise rejection capability of the NPA was experimentally confirmed using a standard UV-source and also during the plasma discharges to get an adequate SNR (>30) at the energy channels. Core-ion temperature Ti(0) during flattop of the plasma current has been measured to be up to 150 eV during ohmically heated plasma discharges which is nearly 40% of the average core-electron temperature (typically Te(0) ∼ 400 eV). The present paper describes the principle of tokamak ion temperature measurement, NPA's design, development, and calibration along with the modifications carried out for minimizing the interference of plasma radiations in the CX-spectrum. Performance of the NPA during plasma discharges and experimental results on the measurement of ion-temperature have also been reported here.

  13. Association between Body Temperature Patterns and Neurological Outcomes after Extracorporeal Cardiopulmonary Resuscitation

    Science.gov (United States)

    Ryu, Jeong-Am; Park, Taek Kyu; Chung, Chi Ryang; Cho, Yang Hyun; Sung, Kiick; Suh, Gee Young; Lee, Tae Rim; Sim, Min Seob; Yang, Jeong Hoon

    2017-01-01

    We evaluated the association of body temperature patterns with neurological outcomes after extracorporeal cardiopulmonary resuscitation (ECPR). Between December 2013 and December 2015, we enrolled 48 patients with cardiac arrest who survived for at least 24 hours after ECPR. Based on their body temperature patterns and the intention to control fever, we divided the patients into those in whom fever was actively controlled (N = 25), those with normothermia (N = 17), and those with unintended hypothermia (N = 6). The primary outcome was the Cerebral Performance Categories (CPC) scale at discharge. Of the 48 ECPR patients, 23 patients (47.9%) had good neurological outcomes (CPC 1 and 2) and 27 patients (56.3%) survived to discharge. The normothermia group showed a pattern of higher temperatures compared with the other groups during 48 hours after ECPR. Not only poor neurological outcomes but also intensive care unit (ICU) mortality occurred more often in the unintended hypothermia group than in the other two groups, regardless of the fever control strategy (p = 0.023 and p = 0.002, respectively). There were no differences in neurological outcomes and ICU mortality between the actively controlled fever group and the normothermia group (p = 0.845 and p = 0.616, respectively). Unintentionally sustained hypothermia may be associated with poor neurological outcomes after ECPR. These findings suggest that patients who are unable to generate a fever following ECPR may incur severe hypoxic brain injury. PMID:28114337

  14. Hilbert-Glass Transition: New Universality of Temperature-Tuned Many-Body Dynamical Quantum Criticality

    Directory of Open Access Journals (Sweden)

    David Pekker

    2014-03-01

    Full Text Available We study a new class of unconventional critical phenomena that is characterized by singularities only in dynamical quantities and has no thermodynamic signatures. One example of such a transition is the recently proposed many-body localization-delocalization transition, in which transport coefficients vanish at a critical temperature with no singularities in thermodynamic observables. Describing this purely dynamical quantum criticality is technically challenging as understanding the finite-temperature dynamics necessarily requires averaging over a large number of matrix elements between many-body eigenstates. Here, we develop a real-space renormalization group method for excited states that allows us to overcome this challenge in a large class of models. We characterize a specific example: the 1 D disordered transverse-field Ising model with generic interactions. While thermodynamic phase transitions are generally forbidden in this model, using the real-space renormalization group method for excited states we find a finite-temperature dynamical transition between two localized phases. The transition is characterized by nonanalyticities in the low-frequency heat conductivity and in the long-time (dynamic spin correlation function. The latter is a consequence of an up-down spin symmetry that results in the appearance of an Edwards-Anderson-like order parameter in one of the localized phases.

  15. Climate change effects on macrofaunal litter decomposition: the interplay of temperature, body masses and stoichiometry.

    Science.gov (United States)

    Ott, David; Rall, Björn C; Brose, Ulrich

    2012-11-05

    Macrofauna invertebrates of forest floors provide important functions in the decomposition process of soil organic matter, which is affected by the nutrient stoichiometry of the leaf litter. Climate change effects on forest ecosystems include warming and decreasing litter quality (e.g. higher C : nutrient ratios) induced by higher atmospheric CO(2) concentrations. While litter-bag experiments unravelled separate effects, a mechanistic understanding of how interactions between temperature and litter stoichiometry are driving decomposition rates is lacking. In a laboratory experiment, we filled this void by quantifying decomposer consumption rates analogous to predator-prey functional responses that include the mechanistic parameters handling time and attack rate. Systematically, we varied the body masses of isopods, the environmental temperature and the resource between poor (hornbeam) and good quality (ash). We found that attack rates increased and handling times decreased (i) with body masses and (ii) temperature. Interestingly, these relationships interacted with litter quality: small isopods possibly avoided the poorer resource, whereas large isopods exhibited increased, compensatory feeding of the poorer resource, which may be explained by their higher metabolic demands. The combination of metabolic theory and ecological stoichiometry provided critically important mechanistic insights into how warming and varying litter quality may modify macrofaunal decomposition rates.

  16. The Effect of Tub Bathing on Body Temperature in Preterm Infants: Randomized Clinical Trial

    Directory of Open Access Journals (Sweden)

    Mahnaz Jabraeili

    2015-06-01

    Full Text Available Background: Bathing of a premature newborn is important in care giving, but due to inadequate evidences, infant caregivers are not sure about bathing being safe in terms of not causing hypothermia and are not systematically considered in the infants’ care giving programs. Aim: To determine the effect of tub bathing on body temperature of preterm infants”. Methods: This study is a randomized controlled clinical trial which was conducted in 1392 in neonatal unit of Al-zahra hospital. 118 preterm infants were randomly divided into intervention and control groups. The infants in the control group received routine skin care only. The intervention group was bathed three times every other day inside the bathtub. In both group, the infants’ body temperature was measured at the same times by the researcher. Data were analyzed with SPSS software version 14 using independent T-test, Chi-square and repeated measurements tests. Results: In both groups, boys outnumbered girls. At the time of inclusion, the infants' age was 5.8 ± 8.6 days and their weight was 320.6 ± 1660.0 grams. In both groups, the mean temperature of premature infants after bath was dropped in all three times. Which was statistically significant in the first and second baths (P

  17. Relationships between body temperatures and inflammation indicators under physiological and pathophysiological conditions in pigs exposed to systemic lipopolysaccharide and dietary deoxynivalenol.

    Science.gov (United States)

    Tesch, T; Bannert, E; Kluess, J; Frahm, J; Hüther, L; Kersten, S; Breves, G; Renner, L; Kahlert, S; Rothkötter, H-J; Dänicke, S

    2017-03-06

    We studied the constancy of the relationship between rectal and intraabdominal temperature as well as their linkage to inflammatory markers (leucocyte counts, kynurenine-to-tryptophan ratio (Kyn-Trp ratio), tumour necrosis factor alpha (TNF-α) in healthy and in pigs exposed to lipopolysaccharide (LPS) and/or deoxynivalenol (DON). Barrows (n = 44) were fed 4 weeks either a DON-contaminated (4.59 mg DON/kg feed) or a control (CON) diet and equipped with an intraabdominal temperature logger and a multicatheter system (V.portae hepatis, V.lienalis, Vv.jugulares) facilitating infusion of 0.9% NaCl (CON) or LPS (7.5 μg/kg BW) and simultaneous blood sampling. Body temperatures were measured and blood samples taken every 15 min for leucocyte counts, TNF-α and Kyn-Trp ratio. Combination of diet and infusion created six groups: CON_CONjug .-CONpor. , CON_CONjug. -LPSpor. , CON_LPSjug. -CONpor. , DON_CONjug. -CONpor. , DON_CONjug. -LPSpor. , DON_LPSjug. -CONpor. . The relationship between both temperatures was not uniform for all conditions. Linear regression revealed that an intraabdominal increase per 1°C increase in rectal temperature was ~25% higher in all LPS-infused pigs compared to NaCl-infusion, albeit diet and site of LPS infusion modified the magnitude of this difference. Inflammatory markers were only strongly present under LPS influence and showed a significant relationship with body temperatures. For example, leucocyte counts in clinically inconspicuous animals were only significantly correlated to core temperature in DON-fed pigs, but in all LPS-infused groups, irrespective of diet and temperature method. In conclusion, the gradient between body core and rectal temperature is constant in clinically inconspicuous pigs, but not under various pathophysiological conditions. In the latter, measurement of inflammatory markers seems to be a useful completion.

  18. Seasonal acclimation of preferred body temperatures improves the opportunity for thermoregulation in newts.

    Science.gov (United States)

    Hadamová, Markéta; Gvoždík, Lumír

    2011-01-01

    Seasonal acclimation and thermoregulation represent major components of complex thermal strategies by which ectotherms cope with the heterogeneity of their thermal environment. Some ectotherms possess the acclimatory capacity to shift seasonally their thermoregulatory behavior, but the frequent use of constant acclimation temperatures during experiments and the lack of information about thermal heterogeneity in the field obscures the ecological relevance of this plastic response. We examined the experimentally induced seasonal acclimation of preferred body temperatures (T(p)) in alpine newts Ichthyosaura (formerly Triturus) alpestris subjected to a gradual increase in acclimation temperature from 5°C during the winter to a constant 15°C or diel fluctuations between 10° and 20°C during the spring/summer. Both the mean and range of T(p) followed the increase in mean acclimation temperature without the influence of diel temperature fluctuations. The direction and magnitude of this acclimatory capacity has the potential to increase the time window available for thermoregulation. Although thermoregulation and thermal acclimation are often considered as separate but coadapted adjustments to thermal heterogeneity, their combined response is employed by newts to tackle seasonal variation in a thermoregulatory-challenging aquatic environment.

  19. Quantum three-body calculation of the nonresonant triple-\\alpha reaction rate at low temperatures

    CERN Document Server

    Ogata, Kazuyuki; Kamimura, Masayasu

    2009-01-01

    The triple-\\alpha reaction rate is re-evaluated by directly solving the three-body Schroedinger equation. The resonant and nonresonant processes are treated on the same footing using the continuum-discretized coupled-channels method for three-body scattering. Accurate description of the \\alpha-\\alpha nonresonant states significantly quenches the Coulomb barrier between the two-\\alpha's and the third \\alpha particle. Consequently, the \\alpha-\\alpha nonresonant continuum states below the resonance at 92.04 keV, i.e., the ground state of 8Be, give markedly larger contribution at low temperatures than in foregoing studies. We find about 20 orders-of-magnitude enhancement of the triple-\\alpha reaction rate around 10^7 K compared to the rate of the NACRE compilation.

  20. Optimization of a Pain Model: Effects of Body Temperature and Anesthesia on Bladder Nociception in Mice

    Science.gov (United States)

    Sadler, Katelyn E.; Stratton, Jarred M.; DeBerry, Jennifer J.; Kolber, Benedict J.

    2013-01-01

    Interstitial cystitis/bladder pain syndrome (IC/BPS) is a debilitating urological condition that is resistant to treatment and poorly understood. To determine novel molecular treatment targets and to elucidate the contribution of the nervous system to IC/BPS, many rodent bladder pain models have been developed. In this study we evaluated the effects of anesthesia induction and temperature variation in a mouse model of bladder pain known as urinary bladder distension (UBD). In this model compressed air is used to distend the bladder to distinct pressures while electrodes record the reflexive visceromotor response (VMR) from the overlying abdominal muscle. Two isoflurane induction models are commonly used before UBD: a short method lasting approximately 30 minutes and a long method lasting approximately 90 minutes. Animals were anesthetized with one of the methods then put through three sets of graded bladder distensions. Distensions performed following the short anesthesia protocol were significantly different from one another despite identical testing parameters; this same effect was not observed when the long anesthesia protocol was used. In order to determine the effect of temperature on VMRs, animals were put through three graded distension sets at 37.5 (normal mouse body temperature), 35.5, and 33.5°C. Distensions performed at 33.5 and 35.5°C were significantly lower than those performed at 37.5°C. Additionally, Western blot analysis revealed significantly smaller increases in spinal levels of phosphorylated extracellular-signal regulated kinase 2 (pERK2) following bladder distension in animals whose body temperature was maintained at 33.5°C as opposed to 37.5°C. These results highlight the significance of the dynamic effects of anesthesia on pain-like changes and the importance of close monitoring of temperature while performing UBD. For successful interpretation of VMRs and translation to human disease, body temperature should be maintained at 37.5

  1. Optimization of a pain model: effects of body temperature and anesthesia on bladder nociception in mice.

    Science.gov (United States)

    Sadler, Katelyn E; Stratton, Jarred M; DeBerry, Jennifer J; Kolber, Benedict J

    2013-01-01

    Interstitial cystitis/bladder pain syndrome (IC/BPS) is a debilitating urological condition that is resistant to treatment and poorly understood. To determine novel molecular treatment targets and to elucidate the contribution of the nervous system to IC/BPS, many rodent bladder pain models have been developed. In this study we evaluated the effects of anesthesia induction and temperature variation in a mouse model of bladder pain known as urinary bladder distension (UBD). In this model compressed air is used to distend the bladder to distinct pressures while electrodes record the reflexive visceromotor response (VMR) from the overlying abdominal muscle. Two isoflurane induction models are commonly used before UBD: a short method lasting approximately 30 minutes and a long method lasting approximately 90 minutes. Animals were anesthetized with one of the methods then put through three sets of graded bladder distensions. Distensions performed following the short anesthesia protocol were significantly different from one another despite identical testing parameters; this same effect was not observed when the long anesthesia protocol was used. In order to determine the effect of temperature on VMRs, animals were put through three graded distension sets at 37.5 (normal mouse body temperature), 35.5, and 33.5°C. Distensions performed at 33.5 and 35.5°C were significantly lower than those performed at 37.5°C. Additionally, Western blot analysis revealed significantly smaller increases in spinal levels of phosphorylated extracellular-signal regulated kinase 2 (pERK2) following bladder distension in animals whose body temperature was maintained at 33.5°C as opposed to 37.5°C. These results highlight the significance of the dynamic effects of anesthesia on pain-like changes and the importance of close monitoring of temperature while performing UBD. For successful interpretation of VMRs and translation to human disease, body temperature should be maintained at 37.5

  2. Dinosaur body temperatures determined from isotopic (¹³C-¹⁸O) ordering in fossil biominerals.

    Science.gov (United States)

    Eagle, Robert A; Tütken, Thomas; Martin, Taylor S; Tripati, Aradhna K; Fricke, Henry C; Connely, Melissa; Cifelli, Richard L; Eiler, John M

    2011-07-22

    The nature of the physiology and thermal regulation of the nonavian dinosaurs is the subject of debate. Previously, arguments have been made for both endothermic and ectothermic metabolisms on the basis of differing methodologies. We used clumped isotope thermometry to determine body temperatures from the fossilized teeth of large Jurassic sauropods. Our data indicate body temperatures of 36° to 38°C, which are similar to those of most modern mammals. This temperature range is 4° to 7°C lower than predicted by a model that showed scaling of dinosaur body temperature with mass, which could indicate that sauropods had mechanisms to prevent excessively high body temperatures being reached because of their gigantic size.

  3. Assessment of body mapping sportswear using a manikin operated in constant temperature mode and thermoregulatory model control mode.

    Science.gov (United States)

    Wang, Faming; Del Ferraro, Simona; Molinaro, Vincenzo; Morrissey, Matthew; Rossi, René

    2014-09-01

    Regional sweating patterns and body surface temperature differences exist between genders. Traditional sportswear made from one material and/or one fabric structure has a limited ability to provide athletes sufficient local wear comfort. Body mapping sportswear consists of one piece of multiple knit structure fabric or of different fabric pieces that may provide athletes better wear comfort. In this study, the 'modular' body mapping sportswear was designed and subsequently assessed on a 'Newton' type sweating manikin that operated in both constant temperature mode and thermophysiological model control mode. The performance of the modular body mapping sportswear kit and commercial products were also compared. The results demonstrated that such a modular body mapping sportswear kit can meet multiple wear/thermal comfort requirements in various environmental conditions. All body mapping clothing (BMC) presented limited global thermophysiological benefits for the wearers. Nevertheless, BMC showed evident improvements in adjusting local body heat exchanges and local thermal sensations.

  4. Effects of meal size, meal type, body temperature, and body size on the specific dynamic action of the marine toad, Bufo marinus.

    Science.gov (United States)

    Secor, Stephen M; Faulkner, Angela C

    2002-01-01

    Specific dynamic action (SDA), the accumulated energy expended on all physiological processes associated with meal digestion, is strongly influenced by features of both the meal and the organism. We assessed the effects of meal size, meal type, body temperature, and body size on the postprandial metabolic response and calculated SDA of the marine toad, Bufo marinus. Peak postprandial rates of O(2) consumption (.V(O2)) and CO(2) production (.V(CO2)) and SDA increased with meal size (5%-20% of body mass). Postprandial metabolism was impacted by meal type; the digestion of hard-bodied superworms (Zophobas larva) and crickets was more costly than the digestion of soft-bodied earthworms and juvenile rats. An increase in body temperature (from 20 degrees to 35 degrees C) altered the postprandial metabolic profile, decreasing its duration and increasing its magnitude, but did not effect SDA, with the cost of meal digestion remaining constant across body temperatures. Allometric mass exponents were 0.69 for standard metabolic rate, 0.85 for peak postprandial .V(O2), and 1.02 for SDA; therefore, the factorial scope of peak postprandial .V(O2) increased with body mass. The mass of nutritive organs (stomach, liver, intestines, and kidneys) accounted for 38% and 20% of the variation in peak postprandial .V(O2) and SDA, respectively. Toads forced to exercise experienced 25-fold increases in .V(O2) much greater than the 5.5-fold increase experience during digestion. Controlling for meal size, meal type, and body temperature, the specific dynamic responses of B. marinus are similar to those of the congeneric Bufo alvarius, Bufo boreas, Bufo terrestris, and Bufo woodhouseii.

  5. Validity of inner canthus temperature recorded by infrared thermography as a non-invasive surrogate measure for core temperature at rest, during exercise and recovery.

    Science.gov (United States)

    Fernandes, Alex Andrade; Moreira, Danilo Gomes; Brito, Ciro José; da Silva, Cristiano Diniz; Sillero-Quintana, Manuel; Pimenta, Eduardo Mendonça; Bach, Aaron J E; Garcia, Emerson Silami; Bouzas Marins, João Carlos

    2016-12-01

    Research into obtaining a fast, valid, reliable and non-invasive measure of core temperature is of interest in many disciplinary fields. Occupational and sports medicine research has attempted to determine a non-invasive proxy for core temperature particularly when access to participants is limited and thermal safety is of a concern due to protective encapsulating clothing, hot ambient environments and/or high endogenous heat production during athletic competition. This investigation aimed to determine the validity of inner canthus of the eye temperature (TEC) as an alternate non-invasive measure of intestinal core temperature (TC) during rest, exercise and post-exercise conditions. Twelve physically active males rested for 30min prior to exercise, performed 60min of aerobic exercise at 60% V̇O2max and passively recovered a further 60min post-exercise. TEC and TC were measured at 5min intervals during each condition. Mean differences between TEC and TC were 0.61°C during pre-exercise, -1.78°C during exercise and -1.00°C during post-exercise. The reliability between the methods was low in the pre-exercise (ICC=0.49 [-0.09 to 0.82]), exercise (ICC=-0.14 [-0.65 to 0.44]) and post-exercise (ICC=-0.25 [-0.70 to 0.35]) conditions. In conclusion, poor agreement was observed between the TEC values measured through IRT and TC measured through a gastrointestinal telemetry pill. Therefore, TEC is not a valid substitute measurement to gastrointestinal telemetry pill in sports and exercise science settings.

  6. Heat production and body temperature during cooling and rewarming in overweight and lean men.

    Science.gov (United States)

    Claessens-van Ooijen, Anne M J; Westerterp, Klaas R; Wouters, Loek; Schoffelen, Paul F M; van Steenhoven, Anton A; van Marken Lichtenbelt, Wouter D

    2006-11-01

    To compare overweight and lean subjects with respect to thermogenesis and physiological insulation in response to mild cold and rewarming. Ten overweight men (mean BMI, 29.2 +/- 2.8 kg/m(2)) and 10 lean men (mean BMI, 21.1 +/- 2.0 kg/m(2)) were exposed to cold air for 1 hour, followed by 1 hour of rewarming. Body composition was determined by hydrodensitometry and deuterium dilution. Heat production and body temperatures were measured continuously by indirect calorimetry and thermistors, respectively. Muscle activity was recorded using electromyography. In both groups, heat production increased significantly during cooling (lean, p = 0.004; overweight, p = 0.006). The increase was larger in the lean group compared with the overweight group (p = 0.04). During rewarming, heat production returned to baseline in the overweight group and stayed higher compared with baseline in the lean group (p = 0.003). The difference in heat production between rewarming and baseline was larger in the lean (p = 0.01) than in the overweight subjects. Weighted body temperature of both groups decreased during cold exposure (lean, p = 0.002; overweight, p < 0.001) and did not return to baseline during rewarming. Overweight subjects showed a blunted mild cold-induced thermogenesis. The insulative cold response was not different among the groups. The energy-efficient response of the overweight subjects can have consequences for energy balance in the long term. The results support the concept of a dynamic heat regulation model instead of temperature regulation around a fixed set point.

  7. Elevational variation in body-temperature response to immune challenge in a lizard

    Directory of Open Access Journals (Sweden)

    Francisco Javier Zamora-Camacho

    2016-04-01

    Full Text Available Immunocompetence benefits animal fitness by combating pathogens, but also entails some costs. One of its main components is fever, which in ectotherms involves two main types of costs: energy expenditure and predation risk. Whenever those costs of fever outweigh its benefits, ectotherms are expected not to develop fever, or even to show hypothermia, reducing costs of thermoregulation and diverting the energy saved to other components of the immune system. Environmental thermal quality, and therefore the thermoregulation cost/benefit balance, varies geographically. Hence, we hypothesize that, in alpine habitats, immune-challenged ectotherms should show no thermal response, given that (1 hypothermia would be very costly, as the temporal window for reproduction is extremely small, and (2 fever would have a prohibitive cost, as heat acquisition is limited in such habitat. However, in temperate habitats, immune-challenged ectotherms might show a febrile response, due to lower cost/benefit balance as a consequence of a more suitable thermal environment. We tested this hypothesis in Psammodromus algirus lizards from Sierra Nevada (SE Spain, by testing body temperature preferred by alpine and non-alpine lizards, before and after activating their immune system with a typical innocuous pyrogen. Surprisingly, non-alpine lizards responded to immune challenge by decreasing preferential body-temperature, presumably allowing them to save energy and reduce exposure to predators. On the contrary, as predicted, immune-challenged alpine lizards maintained their body-temperature preferences. These results match with increased costs of no thermoregulation with elevation, due to the reduced window of time for reproduction in alpine environment.

  8. Temperature and photoperiod as environmental cues affect body mass and thermoregulation in Chinese bulbuls, Pycnonotus sinensis.

    Science.gov (United States)

    Hu, Shi-Nan; Zhu, Ying-Yang; Lin, Lin; Zheng, Wei-Hong; Liu, Jin-Song

    2017-03-01

    Seasonal changes in temperature and photoperiod are important environmental cues used by small birds to adjust their body mass (Mb) and thermogenesis. However, the relative importance of these cues with respect to seasonal adjustments in Mb and thermogenesis is difficult to distinguish. In particular, the effects of temperature and photoperiod on energy metabolism and thermoregulation are not well known in many passerines. To address this problem, we measured the effects of temperature and photoperiod on Mb, energy intake, resting metabolic rate (RMR), organ mass and physiological and biochemical markers of metabolic activity in the Chinese bulbul (Pycnonotus sinensis). Groups of Chinese bulbuls were acclimated in a laboratory to the following conditions: (1) warm and long photoperiod, (2) warm and short photoperiod, (3) cold and long photoperiod, and (4) cold and short photoperiod, for 4 weeks. The results indicate that Chinese bulbuls exhibit adaptive physiological regulation when exposed to different temperatures and photoperiods. Mb, RMR, gross energy intake and digestible energy intake were higher in cold-acclimated than in warm-acclimated bulbuls, and in the short photoperiod than in the long photoperiod. The resultant flexibility in energy intake and RMR allows Chinese bulbuls exposed to different temperatures and photoperiods to adjust their energy balance and thermogenesis accordingly. Cold-acclimated birds had heightened state-4 respiration and cytochrome c oxidase activity in their liver and muscle tissue compared with warm-acclimated birds indicating the cellular mechanisms underlying their adaptive thermogenesis. Temperature appears to be a primary cue for adjusting energy budget and thermogenic ability in Chinese bulbuls; photoperiod appears to intensify temperature-induced changes in energy metabolism and thermoregulation. © 2017. Published by The Company of Biologists Ltd.

  9. Pulmonary artery and intestinal temperatures during heat stress and cooling

    DEFF Research Database (Denmark)

    Pearson, James; Ganio, Matthew S; Seifert, Thomas;

    2012-01-01

    In humans, whole body heating and cooling are used to address physiological questions where core temperature is central to the investigated hypotheses. Core temperature can be measured in various locations throughout the human body. The measurement of intestinal temperature is increasingly used...

  10. Ice cores

    DEFF Research Database (Denmark)

    Svensson, Anders

    2014-01-01

    Ice cores from Antarctica, from Greenland, and from a number of smaller glaciers around the world yield a wealth of information on past climates and environments. Ice cores offer unique records on past temperatures, atmospheric composition (including greenhouse gases), volcanism, solar activity......, dustiness, and biomass burning, among others. In Antarctica, ice cores extend back more than 800,000 years before present (Jouzel et al. 2007), whereas. Greenland ice cores cover the last 130,000 years...

  11. Ice cores

    DEFF Research Database (Denmark)

    Svensson, Anders

    2014-01-01

    Ice cores from Antarctica, from Greenland, and from a number of smaller glaciers around the world yield a wealth of information on past climates and environments. Ice cores offer unique records on past temperatures, atmospheric composition (including greenhouse gases), volcanism, solar activity......, dustiness, and biomass burning, among others. In Antarctica, ice cores extend back more than 800,000 years before present (Jouzel et al. 2007), whereas. Greenland ice cores cover the last 130,000 years...

  12. High Temperature Reactor (HTR) Deep Burn Core and Fuel Analysis: Design Selection for the Prismatic Block Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Francesco Venneri; Chang-Keun Jo; Jae-Man Noh; Yonghee Kim; Claudio Filippone; Jonghwa Chang; Chris Hamilton; Young-Min Kim; Ji-Su Jun; Moon-Sung Cho; Hong-Sik Lim; MIchael A. Pope; Abderrafi M. Ougouag; Vincent Descotes; Brian Boer

    2010-09-01

    The Deep Burn (DB) Project is a U.S. Department of Energy sponsored feasibility study of Transuranic Management using high burnup fuel in the high temperature helium cooled reactor (HTR). The DB Project consists of seven tasks: project management, core and fuel analysis, spent fuel management, fuel cycle integration, TRU fuel modeling, TRU fuel qualification, and HTR fuel recycle. In the Phase II of the Project, we conducted nuclear analysis of TRU destruction/utilization in the HTR prismatic block design (Task 2.1), deep burn fuel/TRISO microanalysis (Task 2.3), and synergy with fast reactors (Task 4.2). The Task 2.1 covers the core physics design, thermo-hydraulic CFD analysis, and the thermofluid and safety analysis (low pressure conduction cooling, LPCC) of the HTR prismatic block design. The Task 2.3 covers the analysis of the structural behavior of TRISO fuel containing TRU at very high burnup level, i.e. exceeding 50% of FIMA. The Task 4.2 includes the self-cleaning HTR based on recycle of HTR-generated TRU in the same HTR. Chapter IV contains the design and analysis results of the 600MWth DB-HTR core physics with the cycle length, the average discharged burnup, heavy metal and plutonium consumptions, radial and axial power distributions, temperature reactivity coefficients. Also, it contains the analysis results of the 450MWth DB-HTR core physics and the analysis of the decay heat of a TRU loaded DB-HTR core. The evaluation of the hot spot fuel temperature of the fuel block in the DB-HTR (Deep-Burn High Temperature Reactor) core under full operating power conditions are described in Chapter V. The investigated designs are the 600MWth and 460MWth DB-HTRs. In Chapter VI, the thermo-fluid and safety of the 600MWth DB-HTRs has been analyzed to investigate a thermal-fluid design performance at the steady state and a passive safety performance during an LPCC event. Chapter VII describes the analysis results of the TRISO fuel microanalysis of the 600MWth and 450

  13. Prediction of thermal environment via revision of PMV index with body temperature

    Institute of Scientific and Technical Information of China (English)

    Mao Yan; Liu Jiaping; Kubota Hideki

    2007-01-01

    PMV (Predicted Mean Vote) is a widely used index for evaluating the thermal environment. However, few studies have been conducted to take physiological values directly as evaluating indices. This paper assumes a linear relation between body temperature and both sweating rate and heat produced by shivering, and introduces the linear relation into the human heat balance equation to revise the classic PMV. And the assumption of linear relation is subsequently proved. The revised PMV possesses the same characteristic of dependent heat load as that of the classic one, and moreover it is convenient to be calculated.

  14. Evaluation of the relationship between motion sickness symptomatology and blood pressure, heart rate, and body temperature

    Science.gov (United States)

    Graybiel, A.; Lackner, J. R.

    1980-01-01

    This study investigated the relationship between the development of symptoms of motion sickness and changes in blood pressure, heart rate, and body temperature. Twelve subjects were each evaluated four times using the vestibular-visual interaction test (Graybiel and Lackner, 1980). The results were analyzed both within and across individual subjects. Neither a systematic group nor consistent individual relationship was found between the physiological parameters and the appearance of symptoms of motion sickness. These findings suggest that biofeedback control of the physiological variables studied is not likely to prevent the expression of motion sickness symptomatology.

  15. Low-temperature CVD synthesis of patterned core-shell VO2@ZnO nanotetrapods and enhanced temperature-dependent field-emission properties

    Science.gov (United States)

    Yin, Haihong; Yu, Ke; Song, Changqing; Wang, Zhiliang; Zhu, Ziqiang

    2014-09-01

    VO2 nanostructures are attractive materials because of their reversible metal-insulator transition (MIT) and wide applications in devices. When they are used as field emitters, a new type of temperature-controlled field emission device can be fabricated. Vapor transport methods used to synthesize traditional VO2 nanostructures are energy-intensive, low yield, and produce simple morphology (quasi-1D) that exhibits substrate clamping; thus they are not suitable for field emission applications. To overcome these limitations, ZnO nanotetrapods were used as templates, and patterned core-shell VO2@ZnO nanotetrapods were successfully grown on an ITO/glass substrate via a low-temperature CVD synthesis. SEM, TEM, EDX, XPS analyses and X-ray diffraction revealed that the cores and shells of these nanotetrapods were single crystal wurtzite-type ZnO and polycrystalline VO2, respectively. The VO2@ZnO nanotetrapods show strongly MIT-related FE properties, the emission current density at low temperature is significantly enhanced in comparison with pure VO2 nanostructures, and the emission current density increased by about 20 times as the ambient temperature increased from 25 to 105 °C at a fixed field of 5 V μm-1. Although the VO2@ZnO nanotetrapods show a worse FE performance at low temperatures compared with pure ZnO nanotetrapods, the FE performance was substantially improved at high temperatures, which was attributed to the MIT-related band bending near the interface and the abrupt resistance change across the MIT.

  16. Description of a Portable Wireless Device for High-Frequency Body Temperature Acquisition and Analysis

    Science.gov (United States)

    Cuesta-Frau, David; Varela, Manuel; Aboy, Mateo; Miró-Martínez, Pau

    2009-01-01

    We describe a device for dual channel body temperature monitoring. The device can operate as a real time monitor or as a data logger, and has Bluetooth capabilities to enable for wireless data download to the computer used for data analysis. The proposed device is capable of sampling temperature at a rate of 1 sample per minute with a resolution of 0.01 °C . The internal memory allows for stand-alone data logging of up to 10 days. The device has a battery life of 50 hours in continuous real-time mode. In addition to describing the proposed device in detail, we report the results of a statistical analysis conducted to assess its accuracy and reproducibility. PMID:22408473

  17. A High Temperature-Tolerant and Radiation-Resistant In-Core Neutron Sensor for Advanced Reactors. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Lei [The Ohio State Univ., Columbus, OH (United States); Miller, Don [The Ohio State Univ., Columbus, OH (United States)

    2015-01-23

    The objectives of this project are to develop a small and reliable gallium nitride (GaN) neutron sensor that is capable of withstanding high neutron fluence and high temperature, isolating gamma background, and operating in a wide dynamic range. The first objective will be the understanding of the fundamental materials properties and electronic response of a GaN semiconductor materials and device in an environment of high temperature and intense neutron field. To achieve such goal, an in-situ study of electronic properties of GaN device such as I-V, leakage current, and charge collection efficiency (CCE) in high temperature using an external neutron beam will be designed and implemented. We will also perform in-core irradiation of GaN up to the highest yet fast neutron fluence and an off-line performance evaluation.

  18. Body temperature and oxygen uptake in the kinkajou (Potos flavus, Schreber), a nocturnal tropical carnivore.

    Science.gov (United States)

    Müller, E; Kulzer, E

    1978-02-01

    Two kinkajous (Potos flavus, Procyonidae) showed marked nycthemeral variations in their rectal temperature. The mean Tr at night was 38.1 +/- 0.4 degrees C SD and 36.0 +/- 0.6 degrees C SD while resting during the day. Body temperature and O2-consumption were measured at ambient temperatures from 5-35 degrees C. With one exception at 35 degrees C, hypo- or hyperthermia was never observed. At air temperatures above 30 degrees C the bears reacted with behavioural responses. O2-consumption was minimal at Ta's from 23-30 degrees C. The mean basal metabolic rate was 0.316 ml O2 g-1 h-1 which is only 65% of the expected value according to the Kleiber formula. Below 23 degrees C heat production followed the equation : y (ml O2 g-1 h-1) = 0.727--0.018 Ta. The minimal thermal conductance was 90% of the predicted value according to the formula : C (ml O2 g-1 h-1 degrees C-1) = 1.02 W-0.505 (HERREID & KESSEL, 1967). Kinkajous are another distinct exception to the mouse to elephant curve.

  19. Motor excitability measurements: the influence of gender, body mass index, age and temperature in healthy controls.

    Science.gov (United States)

    Casanova, I; Diaz, A; Pinto, S; de Carvalho, M

    2014-04-01

    The technique of threshold tracking to test axonal excitability gives information about nodal and internodal ion channel function. We aimed to investigate variability of the motor excitability measurements in healthy controls, taking into account age, gender, body mass index (BMI) and small changes in skin temperature. We examined the left median nerve of 47 healthy controls using the automated threshold-tacking program, QTRAC. Statistical multiple regression analysis was applied to test relationship between nerve excitability measurements and subject variables. Comparisons between genders did not find any significant difference (P>0.2 for all comparisons). Multiple regression analysis showed that motor amplitude decreases with age and temperature, stimulus-response slope decreases with age and BMI, and that accommodation half-time decrease with age and temperature. The changes related to demographic features on TRONDE protocol parameters are small and less important than in conventional nerve conduction studies. Nonetheless, our results underscore the relevance of careful temperature control, and indicate that interpretation of stimulus-response slope and accommodation half-time should take into account age and BMI. In contrast, gender is not of major relevance to axonal threshold findings in motor nerves. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  20. A simple and inexpensive system for controlling body temperature in small animal experiments using MRI and the effect of body temperature on the hepatic kinetics of Gd-EOB-DTPA.

    Science.gov (United States)

    Murase, Kenya; Assanai, Purapan; Takata, Hiroshige; Saito, Shigeyoshi; Nishiura, Motoko

    2013-12-01

    The purpose of this study was to develop a simple and inexpensive system for controlling body temperature in small animal experiments using magnetic resonance imaging (MRI) and to investigate the effect of body temperature on the kinetic behavior of gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA) in the liver. In our temperature-control system, body temperature was controlled using a feedback-regulated heated or cooled air flow generated by two Futon dryers. The switches of the two Futon dryers were controlled using a digital temperature controller, in which the rectal temperature of a mouse measured by an optical fiber thermometer was used as the input. In experimental studies, male ICR mice aged 8weeks old were used and allocated into 5 groups (39-, 36-, 33-, 30-, and 27-degree groups, n=10), in which the body temperature was maintained at 39 °C, 36 °C, 33 °C, 30 °C, and 27 °C, respectively, using our system. The dynamic contrast-enhanced MRI (DCE-MRI) data were acquired with an MRI system for animal experiments equipped with a 1.5-Tesla permanent magnet, for approximately 43min, after the injection of Gd-EOB-DTPA into the tail vein. After correction of the image shift due to the temperature-dependent drift of the Larmor frequency using the gradient-based image registration method with robust estimation of displacement parameters, the kinetic behavior of Gd-EOB-DTPA was analyzed using an empirical mathematical model. With the use of this approach, the upper limit of the relative enhancement (A), the rates of contrast uptake (α) and washout (β), the parameter related to the slope of early uptake (q), the area under the curve (AUC), the maximum relative enhancement (REmax), the time to REmax (Tmax), and the elimination half-life of the contrast agent (T1/2) were calculated. The body temperature of mice could be controlled well by use of our system. Although there were no significant differences in α, AUC, and q among groups, there

  1. Temperature measurement in the Intel(R) CoreTM Duo Processor

    OpenAIRE

    Rotem, E.; Hermerding, J.; Cohen, A.; Cain, H

    2007-01-01

    Modern CPUs with increasing core frequency and power are rapidly reaching a point where the CPU frequency and performance are limited by the amount of heat that can be extracted by the cooling technology. In mobile environment, this issue is becoming more apparent, as form factors become thinner and lighter. Often, mobile platforms trade CPU performance in order to reduce power and manage thermals. This enables the delivery of high performance computing together with improved ergonomics by lo...

  2. Temperature measurement in the Intel® CoreTM Duo Processor

    OpenAIRE

    Rotem, E.; Hermerding, J.; Cohen, A.; Cain, H

    2006-01-01

    Submitted on behalf of EDA Publishing Association (http://irevues.inist.fr/handle/2042/5920); International audience; Modern CPUs with increasing core frequency and power are rapidly reaching a point where the CPU frequency and performance are limited by the amount of heat that can be extracted by the cooling technology. In mobile environment, this issue is becoming more apparent, as form factors become thinner and lighter. Often, mobile platforms trade CPU performance in order to reduce powe...

  3. Kv4.2 mediates histamine modulation of preoptic neuron activity and body temperature.

    Directory of Open Access Journals (Sweden)

    Jasmine Sethi

    Full Text Available Histamine regulates arousal, circadian rhythms, and thermoregulation. Activation of H3 histamine receptors expressed by preoptic GABAergic neurons results in a decrease of their firing rate and hyperthermia. Here we report that an increase in the A-type K⁺ current in preoptic GABAergic neurons in response to activation of H3 histamine receptors results in decreased firing rate and hyperthermia in mice. The Kv4.2 subunit is required for these actions in spite of the fact that Kv4.2⁻/⁻ preoptic GABAergic neurons display A-type currents and firing characteristics similar to those of wild-type neurons. This electrical remodeling is achieved by robust upregulation of the expression of the Kv4.1 subunit and of a delayed rectifier current. Dynamic clamp experiments indicate that enhancement of the A-type current by a similar amount to that induced by histamine is sufficient to mimic its robust effect on firing rates. These data indicate a central role played by the Kv4.2 subunit in histamine regulation of body temperature and its interaction with pERK1/2 downstream of the H3 receptor. We also reveal that this pathway provides a mechanism for selective modulation of body temperature at the beginning of the active phase of the circadian cycle.

  4. Temperature dependence of beat-length and confinement loss in an air-core photonic band-gap fiber

    Science.gov (United States)

    Xu, Zhenlong; Li, Xuyou; Hong, Yong; Liu, Pan; Yang, Hanrui; Ling, Weiwei

    2016-05-01

    The temperature dependence of polarization-maintaining (PM) property and loss in a highly-birefringent air-core photonic band-gap fiber (PBF) is investigated. The effects of temperature variation on the effective index, beat-length and confinement loss are studied numerically by using the full-vector finite element method (FEM). It is found that, the PM property of this PBF is insensitive to the temperature, and the temperature-dependent beat-length coefficient can be as low as 2.86×10-8 m/°C, which is typically 200 times less than those of conventional panda fibers, the PBF has a stable confinement loss of 0.01 dB/m over the temperature range of -30 to 20 °C for the slow axis at the wavelength of 1.55 μm. The PBF with ultra-low temperature-dependent PM property and low loss can reduce the thermally induced polarization instability apparently in interferometric applications such as resonant fiber optic gyroscope (RFOG), optical fiber sensors, and so on.