WorldWideScience

Sample records for cord mesenchymal stem

  1. File list: His.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 Histone Cardiovascular Umbilical cord.../hg19/assembled/His.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  2. File list: His.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 Histone Cardiovascular Umbilical cord.../hg19/assembled/His.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  3. File list: His.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 Histone Cardiovascular Umbilical cord.../hg19/assembled/His.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  4. Propofol promotes spinal cord injury repair by bone marrow mesenchymal stem cell transplantation

    OpenAIRE

    Ya-jing Zhou; Jian-min Liu; Shu-ming Wei; Yun-hao Zhang; Zhen-hua Qu; Shu-bo Chen

    2015-01-01

    Propofol is a neuroprotective anesthetic. Whether propofol can promote spinal cord injury repair by bone marrow mesenchymal stem cells remains poorly understood. We used rats to investigate spinal cord injury repair using bone marrow mesenchymal stem cell transplantation combined with propofol administration via the tail vein. Rat spinal cord injury was clearly alleviated; a large number of newborn non-myelinated and myelinated nerve fibers appeared in the spinal cord, the numbers of CM-Dil-l...

  5. Propofol promotes spinal cord injury repair by bone marrow mesenchymal stem cell transplantation.

    Science.gov (United States)

    Zhou, Ya-Jing; Liu, Jian-Min; Wei, Shu-Ming; Zhang, Yun-Hao; Qu, Zhen-Hua; Chen, Shu-Bo

    2015-08-01

    Propofol is a neuroprotective anesthetic. Whether propofol can promote spinal cord injury repair by bone marrow mesenchymal stem cells remains poorly understood. We used rats to investigate spinal cord injury repair using bone marrow mesenchymal stem cell transplantation combined with propofol administration via the tail vein. Rat spinal cord injury was clearly alleviated; a large number of newborn non-myelinated and myelinated nerve fibers appeared in the spinal cord, the numbers of CM-Dil-labeled bone marrow mesenchymal stem cells and fluorogold-labeled nerve fibers were increased and hindlimb motor function of spinal cord-injured rats was markedly improved. These improvements were more prominent in rats subjected to bone marrow mesenchymal cell transplantation combined with propofol administration than in rats receiving monotherapy. These results indicate that propofol can enhance the therapeutic effects of bone marrow mesenchymal stem cell transplantation on spinal cord injury in rats.

  6. Propofol promotes spinal cord injury repair by bone marrow mesenchymal stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Ya-jing Zhou

    2015-01-01

    Full Text Available Propofol is a neuroprotective anesthetic. Whether propofol can promote spinal cord injury repair by bone marrow mesenchymal stem cells remains poorly understood. We used rats to investigate spinal cord injury repair using bone marrow mesenchymal stem cell transplantation combined with propofol administration via the tail vein. Rat spinal cord injury was clearly alleviated; a large number of newborn non-myelinated and myelinated nerve fibers appeared in the spinal cord, the numbers of CM-Dil-labeled bone marrow mesenchymal stem cells and fluorogold-labeled nerve fibers were increased and hindlimb motor function of spinal cord-injured rats was markedly improved. These improvements were more prominent in rats subjected to bone marrow mesenchymal cell transplantation combined with propofol administration than in rats receiving monotherapy. These results indicate that propofol can enhance the therapeutic effects of bone marrow mesenchymal stem cell transplantation on spinal cord injury in rats.

  7. File list: InP.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 Input control C...bc.jp/kyushu-u/hg19/assembled/InP.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ... ...ardiovascular Umbilical cord-derived mesenchymal stem cells SRX831247,SRX831246 http://dbarchive.bioscienced

  8. File list: Pol.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 RNA polymerase ...Cardiovascular Umbilical cord-derived mesenchymal stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19.../assembled/Pol.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  9. File list: Unc.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 Unclassified Ca...ssembled/Unc.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ... ...rdiovascular Umbilical cord-derived mesenchymal stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/a

  10. File list: ALL.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 All antigens Ca...biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ... ...rdiovascular Umbilical cord-derived mesenchymal stem cells SRX831253,SRX831250,SRX831252,SRX831249,SRX831251

  11. File list: Pol.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 RNA polymerase ...Cardiovascular Umbilical cord-derived mesenchymal stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19.../assembled/Pol.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  12. File list: Unc.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 Unclassified Ca...ssembled/Unc.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ... ...rdiovascular Umbilical cord-derived mesenchymal stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/a

  13. File list: DNS.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 DNase-seq Cardiovascular Umbilical cord...-derived mesenchymal stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  14. File list: Oth.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 TFs and others ...Cardiovascular Umbilical cord-derived mesenchymal stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19.../assembled/Oth.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  15. File list: Oth.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 TFs and others ...Cardiovascular Umbilical cord-derived mesenchymal stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19.../assembled/Oth.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  16. File list: DNS.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 DNase-seq Cardiovascular Umbilical cord...-derived mesenchymal stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  17. File list: Oth.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 TFs and others ...Cardiovascular Umbilical cord-derived mesenchymal stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19.../assembled/Oth.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  18. File list: InP.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 Input control C...bc.jp/kyushu-u/hg19/assembled/InP.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ... ...ardiovascular Umbilical cord-derived mesenchymal stem cells SRX831247,SRX831246 http://dbarchive.bioscienced

  19. File list: InP.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 Input control C...bc.jp/kyushu-u/hg19/assembled/InP.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ... ...ardiovascular Umbilical cord-derived mesenchymal stem cells SRX831247,SRX831246 http://dbarchive.bioscienced

  20. File list: NoD.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 No description ...Cardiovascular Umbilical cord-derived mesenchymal stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19.../assembled/NoD.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  1. File list: ALL.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 All antigens Ca...biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ... ...rdiovascular Umbilical cord-derived mesenchymal stem cells SRX831249,SRX831250,SRX831253,SRX831252,SRX831247

  2. File list: Unc.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 Unclassified Ca...ssembled/Unc.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ... ...rdiovascular Umbilical cord-derived mesenchymal stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/a

  3. File list: InP.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 Input control C...bc.jp/kyushu-u/hg19/assembled/InP.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ... ...ardiovascular Umbilical cord-derived mesenchymal stem cells SRX831247,SRX831246 http://dbarchive.bioscienced

  4. File list: NoD.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 No description ...Cardiovascular Umbilical cord-derived mesenchymal stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19.../assembled/NoD.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  5. File list: Pol.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 RNA polymerase ...Cardiovascular Umbilical cord-derived mesenchymal stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19.../assembled/Pol.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  6. File list: NoD.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 No description ...Cardiovascular Umbilical cord-derived mesenchymal stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19.../assembled/NoD.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  7. File list: DNS.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 DNase-seq Cardiovascular Umbilical cord...-derived mesenchymal stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  8. File list: Unc.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 Unclassified Ca...ssembled/Unc.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ... ...rdiovascular Umbilical cord-derived mesenchymal stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/a

  9. File list: ALL.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 All antigens Ca...biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ... ...rdiovascular Umbilical cord-derived mesenchymal stem cells SRX831253,SRX831250,SRX831249,SRX831252,SRX831247

  10. File list: Oth.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 TFs and others ...Cardiovascular Umbilical cord-derived mesenchymal stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19.../assembled/Oth.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  11. File list: ALL.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 All antigens Ca...biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ... ...rdiovascular Umbilical cord-derived mesenchymal stem cells SRX831250,SRX831253,SRX831254,SRX831248,SRX831252

  12. File list: Pol.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 RNA polymerase ...Cardiovascular Umbilical cord-derived mesenchymal stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19.../assembled/Pol.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  13. File list: NoD.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 No description ...Cardiovascular Umbilical cord-derived mesenchymal stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19.../assembled/NoD.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  14. Transplantation of placenta-derived mesenchymal stem cell-induced neural stem cells to treat spinal cord injury.

    Science.gov (United States)

    Li, Zhi; Zhao, Wei; Liu, Wei; Zhou, Ye; Jia, Jingqiao; Yang, Lifeng

    2014-12-15

    Because of their strong proliferative capacity and multi-potency, placenta-derived mesenchymal stem cells have gained interest as a cell source in the field of nerve damage repair. In the present study, human placenta-derived mesenchymal stem cells were induced to differentiate into neural stem cells, which were then transplanted into the spinal cord after local spinal cord injury in rats. The motor functional recovery and pathological changes in the injured spinal cord were observed for 3 successive weeks. The results showed that human placenta-derived mesenchymal stem cells can differentiate into neuron-like cells and that induced neural stem cells contribute to the restoration of injured spinal cord without causing transplant rejection. Thus, these cells promote the recovery of motor and sensory functions in a rat model of spinal cord injury. Therefore, human placenta-derived mesenchymal stem cells may be useful as seed cells during the repair of spinal cord injury.

  15. Functional recovery in acute traumatic spinal cord injury after transplantation of human umbilical cord mesenchymal stem cells.

    Science.gov (United States)

    Hu, Sheng-Li; Luo, Hai-Shui; Li, Jiang-Tao; Xia, Yong-Zhi; Li, Lan; Zhang, Li-Jun; Meng, Hui; Cui, Gao-Yu; Chen, Zhi; Wu, Nan; Lin, Jiang-Kai; Zhu, Gang; Feng, Hua

    2010-11-01

    Spinal cord injury results in loss of neurons, degeneration of axons, formation of glial scar, and severe functional impairment. Human umbilical cord mesenchymal stem cells can be induced to form neural cells in vitro. Thus, these cells have a potential therapeutic role for treating spinal cord injury. Rats were randomly divided into three groups: sham operation group, control group, and human umbilical cord mesenchymal stem cell group. All groups were subjected to spinal cord injury by weight drop device except for sham group. Thirty-six female Sprague-Dawley rats. The control group received Dulbecco's modified essential media/nutrient mixture F-12 injections, whereas the human umbilical cord mesenchymal stem cell group undertook cells transplantation at the dorsal spinal cord 2 mm rostrally and 2 mm caudally to the injury site at 24 hrs after spinal cord injury. Rats from each group were examined for neurologic function and contents of brain-derived neurotrophic factor, glial cell line-derived neurotrophic factor, and neurotrophin-3. Survival, migration, and differentiation of human umbilical cord mesenchymal stem cells, regeneration of axons, and formation of glial scar were also explored by using immunohistochemistry and immunofluorescence. Recovery of hindlimb locomotor function was significantly enhanced in the human umbilical cord mesenchymal stem cells grafted animals at 5 wks after transplantation. This recovery was accompanied by increased length of neurofilament-positive fibers and increased numbers of growth cone-like structures around the lesion site. Transplanted human umbilical cord-mesenchymal stem cells survived, migrated over short distances, and produced large amounts of glial cell line-derived neurotrophic factor and neurotrophin-3 in the host spinal cord. There were fewer reactive astrocytes in both the rostral and caudal stumps of the spinal cord in the human umbilical cord-mesenchymal stem cell group than in the control group. Treatment with

  16. Umbilical Cord as Prospective Source for Mesenchymal Stem Cell-Based Therapy

    Directory of Open Access Journals (Sweden)

    Irina Arutyunyan

    2016-01-01

    Full Text Available The paper presents current evidence on the properties of human umbilical cord-derived mesenchymal stem cells, including origin, proliferative potential, plasticity, stability of karyotype and phenotype, transcriptome, secretome, and immunomodulatory activity. A review of preclinical studies and clinical trials using this cell type is performed. Prospects for the use of mesenchymal stem cells, derived from the umbilical cord, in cell transplantation are associated with the need for specialized biobanking and transplant standardization criteria.

  17. Umbilical Cord as Prospective Source for Mesenchymal Stem Cell-Based Therapy

    Science.gov (United States)

    2016-01-01

    The paper presents current evidence on the properties of human umbilical cord-derived mesenchymal stem cells, including origin, proliferative potential, plasticity, stability of karyotype and phenotype, transcriptome, secretome, and immunomodulatory activity. A review of preclinical studies and clinical trials using this cell type is performed. Prospects for the use of mesenchymal stem cells, derived from the umbilical cord, in cell transplantation are associated with the need for specialized biobanking and transplant standardization criteria. PMID:27651799

  18. Roles of Mesenchymal Stem Cells in Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Jing Qu

    2017-01-01

    Full Text Available Spinal cord injury (SCI represents one of the most complicated and heterogeneous pathological processes of central nervous system (CNS impairments, which is still beyond functional regeneration. Transplantation of mesenchymal stem cells (MSCs has been shown to promote the repair of the injured spinal cord tissues in animal models, and therefore, there is much interest in the clinical use of these cells. However, many questions which are essential to improve the therapy effects remain unanswered. For instance, the functional roles and related molecular regulatory mechanisms of MSCs in vivo are not yet completely determined. It is important for transplanted cells to migrate into the injured tissue, to survive and undergo neural differentiation, or to play neural protection roles by various mechanisms after SCI. In this review, we will focus on some of the recent knowledge about the biological behavior and function of MSCs in SCI. Meanwhile, we highlight the function of biomaterials to direct the behavior of MSCs based on our series of work on silk fibroin biomaterials and attempt to emphasize combinational strategies such as tissue engineering for functional improvement of SCI.

  19. [Serum-free culture of umbilical cord mesenchymal stem cells].

    Science.gov (United States)

    Zhou, Ping; Li, Dan; Chen, Guang-Hua; Wang, Yi

    2013-10-01

    This study was purposed to observe the culture of umbilical cord mesenchymal stem cells (UC-MSC) with serum-free medium, and compared it with the medium containing 10% fetal bovine serum (FBS). The normal umbilical cords were acquired during cesarean section, and then were cultured with MesenCult-XF serum-free medium or medium containing 10% fetal bovine serum (FBS). The morphology, immunophenotype, cell cycle, proliferation and differentiation potential of mesenchymal stem cells and the inhibition of mixed lymphocyte reaction were observed through different medium culture method. The results showed that the MSC cultured with serum-free MesenCult(-)XF medium could transfer and multiply for average of 6.57 ± 0.7 times, and the serum medium-cultured MSC could transfer and multiply for average of 4.59 ± 0.45 times (P cultured MSC all expressed CD44, CD90, CD73, CD105 antigen, but did not expressed CD31, CD45, HLA-DR and CD34 antigen, and their expression levels were not significantly different. The serum-free medium-cultured MSC (65 ± 5.2%) were all at Go/G1 phase, and the serum-contained medium-cultured MSC (62+3.1%) were at Go/G1 phase(P > 0.05); the 2 kinds of media-cultured MSC all could differentiate into fat and ossification; when serum-free medium cultured umbilical cord MSC were inoculated at the the density of 10(3), 5×10(3), 10(4), and 2×10(4) cells/well, then co-cultured with the reactant and stimulating cells, the CPM were (6.43 ± 0.47)×10(4), (4.30 ± 0.38)×10(4), (1.97 ± 0.13)×10(4) and (0.24 ± 0.03)×10(4), respectively, and the serum-containing medium-cultured MSC were incubated with different density of mixed lymphocyte, displaying CPM that were (7.85 ± 0.07)×10(4), (5.64 ± 0.12)×10(4), (3.09 ± 0.18)×10(4) and (1.73 ± 0.05)×10(4). It is concluded that the serum-free medium has been confirmed to culture MSC, which have potential of transfer and differentiation with count for clinical application, and can avoid foreign protein

  20. Visual bone marrow mesenchymal stem cell transplantation in the repair of spinal cord injury.

    Science.gov (United States)

    Zhang, Rui-Ping; Xu, Cheng; Liu, Yin; Li, Jian-Ding; Xie, Jun

    2015-03-01

    An important factor in improving functional recovery from spinal cord injury using stem cells is maximizing the number of transplanted cells at the lesion site. Here, we established a contusion model of spinal cord injury by dropping a weight onto the spinal cord at T7-8. Superparamagnetic iron oxide-labeled bone marrow mesenchymal stem cells were transplanted into the injured spinal cord via the subarachnoid space. An outer magnetic field was used to successfully guide the labeled cells to the lesion site. Prussian blue staining showed that more bone marrow mesenchymal stem cells reached the lesion site in these rats than in those without magnetic guidance or superparamagnetic iron oxide labeling, and immunofluorescence revealed a greater number of complete axons at the lesion site. Moreover, the Basso, Beattie and Bresnahan (BBB) locomotor rating scale scores were the highest in rats with superparamagnetic labeling and magnetic guidance. Our data confirm that superparamagnetic iron oxide nanoparticles effectively label bone marrow mesenchymal stem cells and impart sufficient magnetism to respond to the external magnetic field guides. More importantly, superparamagnetic iron oxide-labeled bone marrow mesenchymal stem cells can be dynamically and non-invasively tracked in vivo using magnetic resonance imaging. Superparamagnetic iron oxide labeling of bone marrow mesenchymal stem cells coupled with magnetic guidance offers a promising avenue for the clinical treatment of spinal cord injury.

  1. Transplantation of neurotrophin-3-transfected bone marrow mesenchymal stem cells for the repair of spinal cord injury

    OpenAIRE

    Dong, Yuzhen; Yang, Libin; Yang, Lin; Zhao, Hongxing; Zhang, Chao; Wu, Dapeng

    2014-01-01

    Bone marrow mesenchymal stem cell transplantation has been shown to be therapeutic in the repair of spinal cord injury. However, the low survival rate of transplanted bone marrow mesenchymal stem cells in vivo remains a problem. Neurotrophin-3 promotes motor neuron survival and it is hypothesized that its transfection can enhance the therapeutic effect. We show that in vitro transfection of neurotrophin-3 gene increases the number of bone marrow mesenchymal stem cells in the region of spinal ...

  2. Therapeutic Potential of Olfactory Ensheathing Cells and Mesenchymal Stem Cells in Spinal Cord Injuries

    Science.gov (United States)

    Anna, Zadroga; Joanna, Czarzasta; Barczewska, Monika; Wojciech, Maksymowicz

    2017-01-01

    Spinal cord injury (SCI) is a devastating neurological condition that affects individuals worldwide, significantly reducing quality of life, for both patients and their families. In recent years there has been a growing interest in cell therapy potential in the context of spinal cord injuries. The present review aims to discuss and compare the restorative approaches based on the current knowledge, available spinal cord restorative cell therapies, and use of selected cell types. However, treatment options for spinal cord injury are limited, but rehabilitation and experimental technologies have been found to help maintain or improve remaining nerve function in some cases. Mesenchymal stem cells as well as olfactory ensheathing cells seem to show therapeutic impact on damaged spinal cord and might be useful in neuroregeneration. Recent research in animal models and first human trials give patients with spinal cord injuries hope for recovery. PMID:28298927

  3. Transplantation of neurotrophin-3-transfected bone marrow mesenchymal stem cells for the repair of spinal cord injury.

    Science.gov (United States)

    Dong, Yuzhen; Yang, Libin; Yang, Lin; Zhao, Hongxing; Zhang, Chao; Wu, Dapeng

    2014-08-15

    Bone marrow mesenchymal stem cell transplantation has been shown to be therapeutic in the repair of spinal cord injury. However, the low survival rate of transplanted bone marrow mesenchymal stem cells in vivo remains a problem. Neurotrophin-3 promotes motor neuron survival and it is hypothesized that its transfection can enhance the therapeutic effect. We show that in vitro transfection of neurotrophin-3 gene increases the number of bone marrow mesenchymal stem cells in the region of spinal cord injury. These results indicate that neurotrophin-3 can promote the survival of bone marrow mesenchymal stem cells transplanted into the region of spinal cord injury and potentially enhance the therapeutic effect in the repair of spinal cord injury.

  4. Mesenchymal stem cells improve locomotor recovery in traumatic spinal cord injury

    DEFF Research Database (Denmark)

    Oliveri, Roberto S; Bello, Segun; Biering-Sørensen, Fin

    2013-01-01

    Traumatic spinal cord injury (SCI) is a devastating event with huge personal and societal costs. A limited number of treatments exist to ameliorate the progressive secondary damage that rapidly follows the primary mechanical impact. Mesenchymal stem or stromal cells (MSCs) have anti-inflammatory ......Traumatic spinal cord injury (SCI) is a devastating event with huge personal and societal costs. A limited number of treatments exist to ameliorate the progressive secondary damage that rapidly follows the primary mechanical impact. Mesenchymal stem or stromal cells (MSCs) have anti...... of 1,568 rats. Between-study heterogeneity was large. Fifty-three studies (64%) were reported as randomised, but only four reported adequate methodologies for randomisation. Forty-eight studies (58%) reported the use of a blinded outcome assessment. A random-effects meta-analysis yielded a difference...

  5. Mesenchymal stem cells from human umbilical cord ameliorate testicular dysfunction in a male rat hypogonadism model

    Directory of Open Access Journals (Sweden)

    Zhi-Yuan Zhang

    2017-01-01

    Full Text Available Androgen deficiency is a physical disorder that not only affects adults but can also jeopardize children′s health. Because there are many disadvantages to using traditional androgen replacement therapy, we have herein attempted to explore the use of human umbilical cord mesenchymal stem cells for the treatment of androgen deficiency. We transplanted CM-Dil-labeled human umbilical cord mesenchymal stem cells into the testes of an ethane dimethanesulfonate (EDS-induced male rat hypogonadism model. Twenty-one days after transplantation, we found that blood testosterone levels in the therapy group were higher than that of the control group (P = 0.037, and using immunohistochemistry and flow cytometry, we observed that some of the CM-Dil-labeled cells expressed Leydig cell markers for cytochrome P450, family 11, subfamily A, polypeptide 1, and 3-β-hydroxysteroid dehydrogenase. We then recovered these cells and observed that they were still able to proliferate in vitro. The present study shows that mesenchymal stem cells from human umbilical cord may constitute a promising therapeutic modality for the treatment of male hypogonadism patients.

  6. Biocompatibility of nano-hydroxyapatite/Mg-Zn-Ca alloy composite scaffolds to human umbilical cord mesenchymal stem cells from Wharton's jelly in vitro

    National Research Council Canada - National Science Library

    Guan, FangXia; Ma, ShanShan; Shi, XinYi; Ma, Xun; Chi, LianKai; Liang, Shuo; Cui, YuanBo; Wang, ZhiBin; Yao, Ning; Guan, ShaoKang; Yang, Bo

    2014-01-01

    .... Wharton's jelly-derived mesenchymal stem cells (WJCs) from human umbilical cord represent attractive and promising seeding cells in tissue regeneration and engineering for treatment applications...

  7. Comparison of proliferative and multilineage differentiation potentials of cord matrix, cord blood, and bone marrow mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Shetty Prathibha

    2010-01-01

    Full Text Available Background: Hematopoietic stem cells (HSCs and mesenchymal stem cells (MSCs are the two widely studied and characterized adult stem cells. Thus far, MSCs were obtained from the bone marrow, which is a painful procedure. Therefore, MSCs from less common sources like cord blood, adipose tissue, tooth pulp, and so on, have been the subject of research. The purpose of this study is to explore the possibility of finding MSCs from a less controversial, easy, and abundant source, such as the umbilical cord, for potential regenerative medicine applications. Study Design and Methods: Five bone marrow samples (BM, seventy cord blood units (CB, and four umbilical cord matrix (CM samples have been used for the study. Expanded MSCs were checked for biomarker expression by flow cytometry and were also checked for their differentiation to mesodermal and ectodermal lineages. Results: MSCs could be isolated from 100% BM and CM samples, as compared to only 6% of CB samples. The fold expansion of the mesenchymal stem cells observed in CB (CB-MSCs was distinctly higher as compared to BM (BM-MSCs and CM (CM-MSCs. MSCs isolated from all the three sources expressed a characteristic mesenchymal phenotype of CD45-/vWF-/CD14-/CD31-/CD73+/CD105+/SSEA4+/CD29+/CD44+/HLAABC+, whereas, the HLA DR was conspicuously absent in CM-MSCs and CB-MSCs. Although osteogenic, chondrogenic, and neural differentiation was observed in MSCs from all sources, adipogenic differentiation was observed only in BM-MSCs. Conclusion: CM-MSCs are a dependable source of an unlimited number of MSCs for autologous and allogenic use in regenerative medicine.

  8. Treatment of spinal cord injury: a review of engineering using neural and mesenchymal stem cells.

    Science.gov (United States)

    Mortazavi, Martin M; Harmon, Olivia A; Adeeb, Nimer; Deep, Aman; Tubbs, R Shane

    2015-01-01

    Over time, various treatment modalities for spinal cord injury have been trialed, including pharmacological and nonpharmacological methods. Among these, replacement of the injured neural and paraneural tissues via cellular transplantation of neural and mesenchymal stem cells has been the most attractive. Extensive experimental studies have been done to identify the safety and effectiveness of this transplantation in animal and human models. Herein, we review the literature for studies conducted, with a focus on the human-related studies, recruitment, isolation, and transplantation, of these multipotent stem cells, and associated outcomes. © 2014 Wiley Periodicals, Inc.

  9. Comparative studies of mesenchymal stem cells derived from different cord tissue compartments - The influence of cryopreservation and growth media.

    Science.gov (United States)

    Dulugiac, Magda; Moldovan, Lucia; Zarnescu, Otilia

    2015-10-01

    We have identified some critical aspects concerning umbilical cord tissue mesenchymal stem cells: the lack of standards for cell isolation, expansion and cryopreservation, the lack of unanimous opinions upon their multilineage differentiation potential and the existence of very few results related to the functional characterization of the cells isolated from cryopreserved umbilical cord tissue. Umbilical cord tissue cryopreservation appears to be the optimal solution for umbilical cord tissue mesenchymal stem cells storage for future clinical use. Umbilical cord tissue cryopreservation allows mesenchymal stem cells isolation before expected use, according with the specific clinical applications, by different customized isolation and expansion protocols agreed by cell therapy institutions. Using an optimized protocol for umbilical cord tissue cryopreservation in autologous cord blood plasma, isolation explant method and growth media supplemented with FBS or human serum, we performed comparative studies with respect to the characteristics of mesenchymal stem cells (MSC) isolated from different compartments of the same umbilical cord tissue such as Wharton's jelly, vein, arteries, before cryopreservation (pre freeze) and after cryopreservation (post thaw). Expression of histochemical and immunohistochemical markers as well as electron microscopy observations revealed similar adipogenic, chondrogenic and osteogenic differentiation capacity for cells isolated from pre freeze and corresponding post thaw tissue fragments of Wharton's jelly, vein or arteries of the same umbilical cord tissue, regardless growth media used for cells isolation and expansion. Our efficient umbilical cord tissue cryopreservation protocol is reliable for clinical applicability of mesenchymal stem cells that could next be isolated and expanded in compliance with future accepted standards. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Therapeutic Effects of Umbilical Cord Blood Derived Mesenchymal Stem Cell-Conditioned Medium on Pulmonary Arterial Hypertension in Rats

    OpenAIRE

    Jae Chul Lee; Choong Ik Cha; Dong-Sik Kim; Soo Young Choe

    2015-01-01

    Background: Human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) may have multiple therapeutic applications for cell based therapy including the treatment of pulmonary artery hypertension (PAH). As low survival rates and potential tumorigenicity of implanted cells could undermine the mesenchymal stem cell (MSC) cell-based therapy, we chose to investigate the use of conditioned medium (CM) from a culture of MSC cells as a feasible alternative. Methods: CM was prepared by cultu...

  11. [Human umbilical cord mesenchymal stem cell transplantation for the treatment of two noncontinuous segments spinal cord compression injury in rabbits].

    Science.gov (United States)

    Yang, C H; Yu, B Q; You, Q H; Feng, J J

    2017-08-08

    Objective: In order to explore the effects of human umbilical cord mesenchymal stem cells (UCMSC) transplantation on the treatment of two noncontinuous segments spinal cord compression injury and to investigate whether repeated intravenous injection UCMSC was more beneficial for the recovery of spinal cord function. Methods: A total of 30 adult rabbits were randomly divided into three groups: control group (received PBS), single injection group, repeated injection group with 3 days intervals. A noncontinuous two segments SCI model was established by using the 2F Fogarty balloon catheter. Rabbits were infused with either a single total dose or three divided doses of 2×10(6) UCMSC (3 intervals) at first day post-decompreesion. Behavioral scores, somatosensory evoked potentials (SSEP) and histopathological were used to evaluate therapeutic effects. The rates of stem cell homing were studied by immunofluorescence test and the apoptosis of the spinal cord was evaluated by TUNEL test. Results: Behavior alanalyses showed that the rabbits in the UCMSC injection groups showed better motor performance than those in the control group (Ptransplantation group was better than that in the single transplantation group (Pcells compared with control group (Pstem cell homing in the repeated injection group was significantly higher than that in single injection group (PTransplantation of UCMSC after spinal cord compression injury of two noncontinuous segments can promote functional recovery through enhancement anti-apoptotic and neuroprotective effects, and the recovery was more pronounced in the rabbits repeatedly injected at 3-day intervals.

  12. precursor cells from human cord blood-derived mesenchymal stem ...

    African Journals Online (AJOL)

    ONOS

    2010-09-06

    Sep 6, 2010 ... The loss of skin pigmentation can induce compromised cutaneous immunity, which can result in conditions such as vitiligo. In this study, we evaluated various agents that are able to induce the differentiation of stem cells into melanocytes. We found that a mixture of forskolin (FK), stem cell factor. (SCF) and ...

  13. Improvement of renal function after human umbilical cord mesenchymal stem cell treatment on chronic renal failure and thoracic spinal cord entrapment: a case report.

    Science.gov (United States)

    Rahyussalim, Ahmad Jabir; Saleh, Ifran; Kurniawati, Tri; Lutfi, Andi Praja Wira Yudha

    2017-11-30

    Chronic renal failure is an important clinical problem with significant socioeconomic impact worldwide. Thoracic spinal cord entrapment induced by a metabolic yield deposit in patients with renal failure results in intrusion of nervous tissue and consequently loss of motor and sensory function. Human umbilical cord mesenchymal stem cells are immune naïve and they are able to differentiate into other phenotypes, including the neural lineage. Over the past decade, advances in the field of regenerative medicine allowed development of cell therapies suitable for kidney repair. Mesenchymal stem cell studies in animal models of chronic renal failure have uncovered a unique potential of these cells for improving function and regenerating the damaged kidney. We report a case of a 62-year-old ethnic Indonesian woman previously diagnosed as having thoracic spinal cord entrapment with paraplegic condition and chronic renal failure on hemodialysis. She had diabetes mellitus that affected her kidneys and had chronic renal failure for 2 years, with creatinine level of 11 mg/dl, and no urinating since then. She was treated with human umbilical cord mesenchymal stem cell implantation protocol. This protocol consists of implantation of 16 million human umbilical cord mesenchymal stem cells intrathecally and 16 million human umbilical cord mesenchymal stem cells intravenously. Three weeks after first intrathecal and intravenous implantation she could move her toes and her kidney improved. Her creatinine level decreased to 9 mg/dl. Now after 8 months she can raise her legs and her creatinine level is 2 mg/dl with normal urinating. Human umbilical cord mesenchymal stem cell implantations led to significant improvement for spinal cord entrapment and kidney failure. The major histocompatibility in allogeneic implantation is an important issue to be addressed in the future.

  14. Human Mesenchymal Stem Cells Modulate Inflammatory Cytokines after Spinal Cord Injury in Rat

    Directory of Open Access Journals (Sweden)

    Lucia Machová Urdzíková

    2014-06-01

    Full Text Available Transplantation of mesenchymal stem cells (MSC improves functional recovery in experimental models of spinal cord injury (SCI; however, the mechanisms underlying this effect are not completely understood. We investigated the effect of intrathecal implantation of human MSC on functional recovery, astrogliosis and levels of inflammatory cytokines in rats using balloon-induced spinal cord compression lesions. Transplanted cells did not survive at the lesion site of the spinal cord; however, functional recovery was enhanced in the MSC-treated group as was confirmed by the Basso, Beattie, and Bresnahan (BBB and the flat beam test. Morphometric analysis showed a significantly higher amount of remaining white matter in the cranial part of the lesioned spinal cords. Immunohistochemical analysis of the lesions indicated the rearrangement of the glial scar in MSC-treated animals. Real-time PCR analysis revealed an increased expression of Irf5, Mrc1, Fgf2, Gap43 and Gfap. Transplantation of MSCs into a lesioned spinal cord reduced TNFα, IL-4, IL-1β, IL-2, IL-6 and IL-12 and increased the levels of MIP-1α and RANTES when compared to saline-treated controls. Intrathecal implantation of MSCs reduces the inflammatory reaction and apoptosis, improves functional recovery and modulates glial scar formation after SCI, regardless of cell survival. Therefore, repeated applications may prolong the beneficial effects induced by MSC application.

  15. Clinical observation of umbilical cord mesenchymal stem cell transplantation in treatment for sequelae of thoracolumbar spinal cord injury.

    Science.gov (United States)

    Cheng, Hongbin; Liu, Xuebin; Hua, Rongrong; Dai, Guanghui; Wang, Xiaodong; Gao, Jianhua; An, Yihua

    2014-09-12

    Umbilical cord mesenchymal stem cells (UCMSCs) have a considerable advantage and potential in treating for central nervous system diseases and have become a novel alternative treatment for spinal cord injury. This study aims to compare the neurological function outcome of stem cell transplantation, rehabilitation therapy, and self-healing for sequelae of spinal cord injury. Thirty-four cases of thoracolumbar spinal cord injury were randomly divided into three groups: the stem cell transplantation group was given CT-guided UCMSC transplantation twice; the rehabilitation group received rehabilitation therapy; and the blank control group did not receive any specific treatment. AIS grading, ASIA scoring, the manual muscle strength and muscle tension scale, and the Barthel index were used to evaluate the clinical outcome. Urodynamic examination was also performed for patients in the UCMSC group and the rehabilitation therapy group. Seven of the ten patients in the UCMSC group had significant and stable improvement in movement, self-care ability, and muscular tension; five of the forteen patients (36%) in the rehabilitation group also had certain improvement in these aspects. Urodynamic examination demonstrated that patients in the UCMSC group exhibited an increase in maximum urinary flow rate and maximum bladder capacity, as well as a decrease in residue urine volume and maximum detrusor pressure. The rehabilitation group exhibited decreased maximum bladder capacity, but no perceptible change in maximum urinary flow rate, residue urine volume or maximum detrusor pressure. UCMSC transplantation can effectively improve neurological functional recovery after spinal cord injury, and its efficacy is superior to that of rehabilitation therapy and self-healing. The present clinical study was registered at chictr.org (registration number: NCT01393977).

  16. In vitro culture of Keratinocytes from human umbilical cord blood mesenchymal stem cells: the Saigonese culture.

    Science.gov (United States)

    Tran, Cong Toai; Huynh, Duy Thao; Gargiulo, Ciro; Nguyen, Phuong Thao; Tran, Thi Thanh Thuy; Huynh, Minh Tuan; Nguyen, Thanh Tung; Filgueira, Luis; Strong, D Micheal

    2011-05-01

    There have been many attempts to acquire and culture human keratinocytes for clinical purposes including from keratotome slices in media with fetal calf serum (FCS) or pituitary extract (PE), from skin specimens in media with feeder layers, from suction blister epidermal roofs' in serum-free culture and from human umbilical cord blood (hUCB) mesenchymal stem cells (MSCs) in media with skin feeder layers. Conversely this study was designed to investigate whether keratinocytes could be obtained directly from hUCB MSCs in vitro. It is widely established that mesenchymal stem cells from human umbilical cord blood have multipotent capacity and the ability to differentiate into disparate cell lineages hUCB MSCs were directly induced to differentiate into keratinocytes by using a specific medium composed of primary culture medium (PCM) and serum free medium (SFM) in a ratio 1:9 for a period of 7 days and tested by immunostain p63 and K1-K10. Cells thus cultured were positive in both tests, confirming the possibility to directly obtain keratinocytes from MSCs hUCB in vitro.

  17. Co-culture with Sertoli cells promotes proliferation and migration of umbilical cord mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fenxi, E-mail: fxzhang0824@gmail.com [Department of Anatomy, Sanquan College, Xinxiang Medical University, Henan 453003, People' s Republic of China (China); Hong, Yan; Liang, Wenmei [Department of Histology and Embryology, Guiyang Medical University, Guizhou 550004, People' s Republic of China (China); Ren, Tongming [Department of Anatomy, Sanquan College, Xinxiang Medical University, Henan 453003, People' s Republic of China (China); Jing, Suhua [ICU Center, The Third Hospital of Xinxiang Medical University, Henan 453003, People' s Republic of China (China); Lin, Juntang [Stem Cell Center, Xinxiang Medical University, Henan 453003, People' s Republic of China (China)

    2012-10-12

    Highlights: Black-Right-Pointing-Pointer Co-culture of Sertoli cells (SCs) with human umbilical cord mesenchymal stem cells (UCMSCs). Black-Right-Pointing-Pointer Presence of SCs dramatically increased proliferation and migration of UCMSCs. Black-Right-Pointing-Pointer Presence of SCs stimulated expression of Mdm2, Akt, CDC2, Cyclin D, CXCR4, MAPKs. -- Abstract: Human umbilical cord mesenchymal stem cells (hUCMSCs) have been recently used in transplant therapy. The proliferation and migration of MSCs are the determinants of the efficiency of MSC transplant therapy. Sertoli cells are a kind of 'nurse' cells that support the development of sperm cells. Recent studies show that Sertoli cells promote proliferation of endothelial cells and neural stem cells in co-culture. We hypothesized that co-culture of UCMSCs with Sertoli cells may also promote proliferation and migration of UCMSCs. To examine this hypothesis, we isolated UCMSCs from human cords and Sertoli cells from mouse testes, and co-cultured them using a Transwell system. We found that UCMSCs exhibited strong proliferation ability and potential to differentiate to other cell lineages such as osteocytes and adipocytes. The presence of Sertoli cells in co-culture significantly enhanced the proliferation and migration potential of UCMSCs (P < 0.01). Moreover, these phenotypic changes were accompanied with upregulation of multiple genes involved in cell proliferation and migration including phospho-Akt, Mdm2, phospho-CDC2, Cyclin D1, Cyclin D3 as well as CXCR4, phospho-p44 MAPK and phospho-p38 MAPK. These findings indicate that Sertoli cells boost UCMSC proliferation and migration potential.

  18. Mesenchymal Stem Cells as an Alternative for Schwann Cells in Rat Spinal Cord Injury

    Science.gov (United States)

    Zaminy, Arash; Shokrgozar, Mohammad Ali; Sadeghi, Yousef; Noroozian, Mohsen; Heidari, Mohammad Hassan; Piryaei, Abbas

    2013-01-01

    Background: Spinal cord has a limited capacity to repair; therefore, medical interventions are necessary for treatment of injuries. Transplantation of Schwann cells has shown a great promising result for spinal cord injury (SCI). However, harvesting Schwann cell has been limited due to donor morbidity and limited expansion capacity. Furthermore, accessible sources such as bone marrow stem cells have drawn attentions to themselves. Therefore, this study was designed to evaluate the effect of bone marrow-derived Schwann cell on functional recovery in adult rats after injury. Methods: Mesenchymal stem cells were cultured from adult rats’ bone marrow and induced into Schwann cells in vitro. Differentiation was confirmed by immunocytochemistry and RT-PCR. Next, Schwann cells were seeded into collagen scaffolds and engrafted in 3 mm lateral hemisection defects. For 8 weeks, motor and sensory improvements were assessed by open field locomotor scale, narrow beam, and tail flick tests. Afterwards, lesioned spinal cord was evaluated by conventional histology and immunohistochemistry. Results: In vitro observations showed that differentiated cells had Schwann cell morphology and markers. In this study, we had four groups (n = 10 each): laminectomy, control, scaffold and scaffold + Schwann cells. Locomotor and sensory scores of cell grafted group were significantly better than control and scaffold groups. In histology, axonal regeneration and remyelination were better than control and scaffold groups. Conclusion: This study demonstrates that bone marrow-derived Schwann cells can be considered as a cell source for Schwann cells in SCI treatment. PMID:23748888

  19. Influence of obstetric factors on osteogenic potential of umbilical cord-derived mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Canella Alessandro

    2009-10-01

    Full Text Available Abstract Wharton's jelly from the umbilical cord is a noncontroversial source of mesenchymal stem cells (WJMSCs with high plasticity, proliferation rate and ability to differentiate towards multiple lineages. WJMSCs from different donors have been characterized for their osteogenic potential. Although there is large evidence of WJMSCs plasticity, recently scientific debate has focused on MSCs selection, establishing predictable elements to discriminate the cells with most promising osteoprogenitor cell potential. In the present study a comparative study between the presence of osteoblastic markers and different parameters that pertain to both the newborn and the mother was performed. Umbilical cords were collected after all patients signed the informed consent and local ethical commettee approved the study. Obstetric parameters, including baby's gender and birth weight, mother's age at delivery, gestational stage at parturition and mode of delivery were examined. After characterization and expansion, WJMSCs were analyzed for two osteoblastic markers, alkaline phosphatase (ALP activity, and the expression level of RUNX-2 transcription factor, and for their ability to deposit mineralized matrix after osteogenic induction. We found that osteoblastic potential was not influenced by baby's gender and mode of delivery. On the contrary, the highest degree of osteoblastic potential has been shown by WJMSCs with RUNX-2 high basal levels, selected from umbilical cords of the heaviest term babies. Even if further evaluation is required, our hypothesis is that our findings may help in selecting the optimal umbilical cord donors and in collecting high potential Wharton's jelly-derived osteoprogenitors efficiently.

  20. Intravenously delivered mesenchymal stem cell-derived exosomes target M2-type macrophages in the injured spinal cord

    OpenAIRE

    Lankford, Karen L.; Arroyo, Edgardo J.; Nazimek, Katarzyna; Bryniarski, Krzysztof; Askenase, Philip W.; Kocsis, Jeffery D.

    2018-01-01

    In a previous report we showed that intravenous infusion of bone marrow-derived mesenchymal stem cells (MSCs) improved functional recovery after contusive spinal cord injury (SCI) in the non-immunosuppressed rat, although the MSCs themselves were not detected at the spinal cord injury (SCI) site [1]. Rather, the MSCs lodged transiently in the lungs for about two days post-infusion. Preliminary studies and a recent report [2] suggest that the effects of intravenous (IV) infusion of MSCs could ...

  1. Mesenchymal stem cells promote augmented response of endogenous neural stem cells in spinal cord injury of rats

    Directory of Open Access Journals (Sweden)

    Marta Rocha Araujo

    2016-06-01

    Full Text Available Traumatic spinal cord injury results in severe neurological deficits, mostly irreversible. The cell therapy represents a strategy for treatment particularly with the use of stem cells with satisfactory results in several experimental models. The aim of the study was to compare the treatment of spinal cord injury (SCI with and without mesenchymal stem cells (MSC, to investigate whether MSCs migrate and/or remain at the site of injury, and to analyze the effects of MSCs on inflammation, astrocytic reactivity and activation of endogenous stem cells. Three hours after SCI, animals received bone marrow-derived MSCs (1×107 in 1mL PBS, IV. Animals were euthanized 24 hours, 7 and 21 days post-injury. The MSC were not present in the site of the lesion and the immunofluorescent evaluation showed significant attenuation of inflammatory response with reduction in macrophages labeled with anti-CD68 antibody (ED1, decreased immunoreactivity of astrocytes (GFAP+ and greater activation of endogenous stem cells (nestin+ in the treated groups. Therefore, cell transplantation have a positive effect on recovery from traumatic spinal cord injury possibly due to the potential of MSCs to attenuate the immune response.

  2. Safety and neurological assessments after autologous transplantation of bone marrow mesenchymal stem cells in subjects with chronic spinal cord injury.

    Science.gov (United States)

    Mendonça, Marcus Vinícius Pinheiro; Larocca, Ticiana Ferreira; de Freitas Souza, Bruno Solano; Villarreal, Cristiane Flora; Silva, Luiz Flávio Maia; Matos, André Costa; Novaes, Marco Antonio; Bahia, Cláudia Maria Pinheiro; de Oliveira Melo Martinez, Ana Carine; Kaneto, Carla Martins; Furtado, Sissi Brandão Carneiro; Sampaio, Geraldo Pedral; Soares, Milena Botelho Pereira; dos Santos, Ricardo Ribeiro

    2014-11-17

    The administration of stem cells holds promise as a potential therapy for spinal cord injury (SCI). Mesenchymal stem cells have advantages for clinical applications, since they can be easily obtained, are suitable for autologous transplantation and have been previously shown to induce regeneration of the spinal cord in experimental settings. Here we evaluated the feasibility, safety and potential efficacy of autologous transplantation of mesenchymal stem cells in subjects with chronic complete SCI. We conducted a phase I, non-controlled study in 14 subjects of both genders aging between 18 to 65 years, with chronic traumatic SCI (>6 months), at thoracic or lumbar levels, classified as American Spinal Injury Association (ASIA) A - complete injury. Baseline somatosensory evoked potentials (SSEP), spinal magnetic resonance imaging (MRI) and urodynamics were assessed before and after treatment. Pain rating was performed using the McGill Pain Questionnaire and a visual analogue score scale. Bone marrow-derived mesenchymal stem cells were cultured and characterized by flow cytometry, cell differentiation assays and G-band karyotyping. Mesenchymal stem cells were injected directly into the lesion following laminectomy and durotomy. Cell transplantation was an overall safe and well-tolerated procedure. All subjects displayed variable improvements in tactile sensitivity and eight subjects developed lower limbs motor functional gains, principally in the hip flexors. Seven subjects presented sacral sparing and improved American Spinal Injury Association impairment scale (AIS) grades to B or C - incomplete injury. Nine subjects had improvements in urologic function. One subject presented changes in SSEP 3 and 6 months after mesenchymal stem cells transplantation. Statistically significant correlations between the improvements in neurological function and both injury size and level were found. Intralesional transplantation of autologous mesenchymal stem cells in subjects with

  3. Biodegradable chitin conduit tubulation combined with bone marrow mesenchymal stem cell transplantation for treatment of spinal cord injury by reducing glial scar and cavity formation.

    Science.gov (United States)

    Xue, Feng; Wu, Er-Jun; Zhang, Pei-Xun; Li-Ya, A; Kou, Yu-Hui; Yin, Xiao-Feng; Han, Na

    2015-01-01

    We examined the restorative effect of modified biodegradable chitin conduits in combination with bone marrow mesenchymal stem cell transplantation after right spinal cord hemisection injury. Immunohistochemical staining revealed that biological conduit sleeve bridging reduced glial scar formation and spinal muscular atrophy after spinal cord hemisection. Bone marrow mesenchymal stem cells survived and proliferated after transplantation in vivo, and differentiated into cells double-positive for S100 (Schwann cell marker) and glial fibrillary acidic protein (glial cell marker) at 8 weeks. Retrograde tracing showed that more nerve fibers had grown through the injured spinal cord at 14 weeks after combination therapy than either treatment alone. Our findings indicate that a biological conduit combined with bone marrow mesenchymal stem cell transplantation effectively prevented scar formation and provided a favorable local microenvironment for the proliferation, migration and differentiation of bone marrow mesenchymal stem cells in the spinal cord, thus promoting restoration following spinal cord hemisection injury.

  4. Biodegradable chitin conduit tubulation combined with bone marrow mesenchymal stem cell transplantation for treatment of spinal cord injury by reducing glial scar and cavity formation

    Directory of Open Access Journals (Sweden)

    Feng Xue

    2015-01-01

    Full Text Available We examined the restorative effect of modified biodegradable chitin conduits in combination with bone marrow mesenchymal stem cell transplantation after right spinal cord hemisection injury. Immunohistochemical staining revealed that biological conduit sleeve bridging reduced glial scar formation and spinal muscular atrophy after spinal cord hemisection. Bone marrow mesenchymal stem cells survived and proliferated after transplantation in vivo, and differentiated into cells double-positive for S100 (Schwann cell marker and glial fibrillary acidic protein (glial cell marker at 8 weeks. Retrograde tracing showed that more nerve fibers had grown through the injured spinal cord at 14 weeks after combination therapy than either treatment alone. Our findings indicate that a biological conduit combined with bone marrow mesenchymal stem cell transplantation effectively prevented scar formation and provided a favorable local microenvironment for the proliferation, migration and differentiation of bone marrow mesenchymal stem cells in the spinal cord, thus promoting restoration following spinal cord hemisection injury.

  5. [Comparison of human cord blood mesenchymal stem cell culture between using human umbilical cord plasma and using fetal bovine serum].

    Science.gov (United States)

    Ding, Yan; Lu, Zhiyong; Yuan, Yahong; Wang, Xiaoli; Li, Dongsheng; Zeng, Yi

    2013-12-01

    To investigate whether human umbilical cord plasma (HUP) can be used to culture human cord blood mesenchymal stem cells (HUCMSCs), we collected 20 surplus HUP. After being treated with salting out and diasysis, the HUP were used to culture HUCMSCs as 10% volume, and compared with fetal bovine serum (FBS). Morphological characteristics, growth curve and reproductive activity of HUCMSCs cells were observed. The concentration of bFGF and noggin secreted by HUCMSCs cultured with HUP and FBS medium were detected by ELISA. It was found that compared to FBS, the morphology, reproductive activity and characteristic of HUCMSCs cell cultured with HUP were not distinctively different from FBS. The concentration of bFGF in HUP group was significantly higher than that of FBS group, and the concentration of noggin was also different in the two groups. So we concluded that HUP could be used to culture HUCMSCs for a long-time, and the HUP mediumcoild could be more suitable for the culture of human embryonic stem cell (hESC).

  6. Transplanted Human Umbilical Cord Mesenchymal Stem Cells Facilitate Lesion Repair in B6.Fas Mice

    Directory of Open Access Journals (Sweden)

    Guang-ping Ruan

    2014-01-01

    Full Text Available Background. Systemic lupus erythematosus (SLE is a multisystem disease that is characterized by the appearance of serum autoantibodies. No effective treatment for SLE currently exists. Methods. We used human umbilical cord mesenchymal stem cell (H-UC-MSC transplantation to treat B6.Fas mice. Results. After four rounds of cell transplantation, we observed a statistically significant decrease in the levels of mouse anti-nuclear, anti-histone, and anti-double-stranded DNA antibodies in transplanted mice compared with controls. The percentage of CD4+CD25+Foxp3+ T cells in mouse peripheral blood significantly increased after H-UC-MSC transplantation. Conclusions. The results showed that H-UC-MSCs could repair lesions in B6.Fas mice such that all of the relevant disease indicators in B6.Fas mice were restored to the levels observed in normal C57BL/6 mice.

  7. Cytotoxic effects of acrylonitrile on human umbilical cord mesenchymal stem cells in vitro.

    Science.gov (United States)

    Sun, Xiaochun; Sun, Min; Xie, Yan; Zhai, Wei; Zhu, Wei; Ma, Rui; Lu, Rongzhu; Xu, Wenrong

    2014-01-01

    The effects of acrylonitrile (ACN) on human umbilical cord mesenchymal stem cells (hUC‑MSCs) remain unknown. The proliferation, differentiation, clonogenicity and apoptosis effects of ACN and/or N‑acetyl‑L‑cysteine (NAC) on hUC‑MSCs were investigated. The results showed that although ACN at a concentration of 0.1 µg/ml did not affect proliferation or the morphology of hUC‑MSCs compared with the control, osteogenic differentiation and the positive rate of alkaline phosphatase staining in the experimental group were significantly lower compared with the control (P<0.01). All of the effects of ACN were counteracted using NAC, a typical antioxidant. Using a flow cytometry assay, it was observed that ACN induced apoptosis in hUC‑MSCs. The results indicated that the toxic effect produced by ACN on hUC‑MSCs is based on a redox mechanism.

  8. Effects of Hypoxia and Chitosan on Equine Umbilical Cord-Derived Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    D. J. Griffon

    2016-01-01

    Full Text Available Chitosan opens new perspectives in regenerative medicine as it enhances the properties of mesenchymal stem cells (MSCs through formation of spheroids. Hypoxia has also been proposed to enhance stemness and survival of MSCs after in vivo implantation. These characteristics are relevant to the development of an off-the-shelf source of allogenic cells for regenerative therapy of tendinopathies. Umbilical cord-derived MSCs (UCM-MSCs offer an abundant source of immature and immunoprivileged stem cells. In this study, equine UCM-MSCs (eqUCM-MSCs conditioned for 3 and 7 days on chitosan films at 5% oxygen were compared to eqUCM-MSCs under standard conditions. Equine UCM-MSCs formed spheroids on chitosan but yielded 72% less DNA than standard eqUCM-MSCs. Expression of Sox2, Oct4, and Nanog was 4 to 10 times greater in conditioned cells at day 7. Fluorescence-labeled cells cultured for 7 days under standard conditions or on chitosan films under hypoxia were compared in a bilateral patellar tendon defect model in rats. Fluorescence was present in all treated tendons, but the modulus of elasticity under tension was greater in tendons treated with conditioned cells. Chitosan and hypoxia affected cell yield but improved the stemness of eqUCM-MSCs and their contribution to the healing of tissues. Given the abundance of allogenic cells, these properties are highly relevant to clinical applications and outweigh the negative impact on cell proliferation.

  9. Biocompatibility of nano-hydroxyapatite/Mg-Zn-Ca alloy composite scaffolds to human umbilical cord mesenchymal stem cells from Wharton's jelly in vitro

    National Research Council Canada - National Science Library

    GUAN FangXia MA ShanShan SHI XinYi MA Xun CHI LianKai LIANG Shuo CUI YuanBo WANG ZhiBin YAO Ning GUAN ShaoKang YANG Bo

    2014-01-01

    ... medicine.Wharton’s jelly-derived mesenchymal stem cells(WJCs)from human umbilical cord represent attractive and promising seeding cells in tissue regeneration and engineering for treatment...

  10. Immunophenotypic characterisation and cytogenetic analysis of mesenchymal stem cells from equine bone marrow and foal umbilical cords during in vitro culture

    Directory of Open Access Journals (Sweden)

    Mazurkevych Anatoliy

    2016-09-01

    Full Text Available Introduction: The objective of the study was immunophenotypic and cytogenetic analysis of mesenchymal stem cells from equine bone marrow and foal umbilical cords during in vitro culture.

  11. Decreased Intracellular pH Induced by Cariporide Differentially Contributes to Human Umbilical Cord-Derived Mesenchymal Stem Cells Differentiation

    Directory of Open Access Journals (Sweden)

    Wei Gao

    2014-01-01

    Full Text Available Background/Aims: Na+/H+ exchanger 1 (NHE1 is an important regulator of intracellular pH (pHi. High pHi is required for cell proliferation and differentiation. Our previous study has proven that the pHi of mesenchymal stem cells is higher than that of normal differentiated cells and similar to tumor cells. NHE1 is highly expressed in both mesenchymal stem cells and tumor cells. Targeted inhibition of NHE1 could induce differentiation of K562 leukemia cells. In the present paper we explored whether inhibition of NHE1 could induce differentiation of mesenchymal stem cells. Methods: MSCs were obtained from human umbilical cord and both the surface phenotype and functional characteristics were analyzed. Selective NHE1 inhibitor cariporide was used to treat human umbilical cord-derived mesenchymal stem cells (hUC-MSCs. The pHi and the differentiation of hUC-MSCs were compared upon cariporide treatment. The putative signaling pathway involved was also explored. Results: The pHi of hUC-MSCs was decreased upon cariporide treatment. Cariporide up-regulated the osteogenic differentiation of hUC-MSCs while the adipogenic differentiation was not affected. For osteogenic differentiation, β-catenin expression was up-regulated upon cariporide treatment. Conclusion: Decreased pHi induced by cariporide differentially contributes to hUC-MSCs differentiation.

  12. Platelet-rich plasma enhanced umbilical cord mesenchymal stem cells-based bone tissue regeneration.

    Science.gov (United States)

    Wen, Yong; Gu, Weiting; Cui, Jun; Yu, Meijiao; Zhang, Yunpeng; Tang, Cuizhu; Yang, Pishan; Xu, Xin

    2014-11-01

    To evaluate the effects of platelet-rich plasma (PRP) on the proliferation and differentiation of umbilical cord mesenchymal stem cells (UC-MSCs) and explore the possibility that PRP combined with UC-MSCs may be useful for bone tissue regeneration in vivo. The proliferation potential of UC-MSCs was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The pluripotent differentiation capacity and alkaline phosphatase (ALP) expression were further determined by ALP staining. The expression of osteoblast-associated genes was evaluated by real-time PCR. In addition, rat critical-sized calvarial defects were examined to evaluate bone regeneration in vivo. PRP enhanced UC-MSC proliferation, and 10% PRP caused the strongest ALP and Alizarin red staining. At 7 days, the expression levels of ALP, Collagen 1 (COL-1) and Runt-related transcription factor 2 (RUNX2) in the PRP group were higher than those in the FBS group. Newly regenerated bone was observed in the defect areas, and PRP combined with UC-MSCs can accelerate bone regeneration at an early stage. Our current data suggest that UC-MSCs may be utilized in alternative stem cell-based approaches for the reconstruction and regeneration of bone defects, and PRP combined with UC-MSCs can enhance bone regeneration in vivo. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Effects of hypoxic culture conditions on umbilical cord-derived human mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Hass Ralf

    2010-07-01

    Full Text Available Abstract Following cultivation of distinct mesenchymal stem cell (MSC populations derived from human umbilical cord under hypoxic conditions (between 1.5% to 5% oxygen (O2 revealed a 2- to 3-fold reduced oxygen consumption rate as compared to the same cultures at normoxic oxygen levels (21% O2. A simultaneous measurement of dissolved oxygen within the culture media from 4 different MSC donors ranged from 15 μmol/L at 1.5% O2 to 196 μmol/L at normoxic 21% O2. The proliferative capacity of the different hypoxic MSC populations was elevated as compared to the normoxic culture. This effect was paralleled by a significantly reduced cell damage or cell death under hypoxic conditions as evaluated by the cellular release of LDH whereby the measurement of caspase3/7 activity revealed little if any differences in apoptotic cell death between the various cultures. The MSC culture under hypoxic conditions was associated with the induction of hypoxia-inducing factor-alpha (HIF-1α and an elevated expression of energy metabolism-associated genes including GLUT-1, LDH and PDK1. Concomitantly, a significantly enhanced glucose consumption and a corresponding lactate production could be observed in the hypoxic MSC cultures suggesting an altered metabolism of these human stem cells within the hypoxic environment.

  14. Human umbilical cord mesenchymal stem cells promote peripheral nerve repair via paracrine mechanisms

    Directory of Open Access Journals (Sweden)

    Zhi-yuan Guo

    2015-01-01

    Full Text Available Human umbilical cord-derived mesenchymal stem cells (hUCMSCs represent a promising young-state stem cell source for cell-based therapy. hUCMSC transplantation into the transected sciatic nerve promotes axonal regeneration and functional recovery. To further clarify the paracrine effects of hUCMSCs on nerve regeneration, we performed human cytokine antibody array analysis, which revealed that hUCMSCs express 14 important neurotrophic factors. Enzyme-linked immunosorbent assay and immunohistochemistry showed that brain-derived neurotrophic factor, glial-derived neurotrophic factor, hepatocyte growth factor, neurotrophin-3, basic fibroblast growth factor, type I collagen, fibronectin and laminin were highly expressed. Treatment with hUCMSC-conditioned medium enhanced Schwann cell viability and proliferation, increased nerve growth factor and brain-derived neurotrophic factor expression in Schwann cells, and enhanced neurite growth from dorsal root ganglion explants. These findings suggest that paracrine action may be a key mechanism underlying the effects of hUCMSCs in peripheral nerve repair.

  15. Identification of subpopulations in mesenchymal stem cell-like cultures from human umbilical cord

    Directory of Open Access Journals (Sweden)

    Majore Ingrida

    2009-03-01

    Full Text Available Abstract Background A variety of cell types can be identified in the adherent fraction of bone marrow mononuclear cells including more primitive and embryonic-like stem cells, mesenchymal stem cells (MSC, lineage-committed progenitors as well as mature cells such as osteoblasts and fibroblasts. Different methods are described for the isolation of single bone marrow stem cell subpopulations – beginning from ordinary size sieving, long term cultivation under specific conditions to FACS-based approaches. Besides bone marrow-derived subpopulations, also other tissues including human umbilical cord (UC have been recently suggested to provide a potential source for MSC. Although of clinical importance, these UC-derived MSC populations remain to be characterized. It was thus the aim of the present study to identify possible subpopulations in cultures of MSC-like cells obtained from UC. We used counterflow centrifugal elutriation (CCE as a novel strategy to successfully address this question. Results UC-derived primary cells were separated by CCE and revealed differentially-sized populations in the fractions. Thus, a subpopulation with an average diameter of about 11 μm and a small flat cell body was compared to a large sized subpopulation of about 19 μm average diameter. Flow cytometric analysis revealed the expression of certain MSC stem cell markers including CD44, CD73, CD90 and CD105, respectively, although these markers were expressed at higher levels in the small-sized population. Moreover, this small-sized subpopulation exhibited a higher proliferative capacity as compared to the total UC-derived primary cultures and the large-sized cells and demonstrated a reduced amount of aging cells. Conclusion Using the CCE technique, we were the first to demonstrate a subpopulation of small-sized UC-derived primary cells carrying MSC-like characteristics according to the presence of various mesenchymal stem cell markers. This is also supported by the

  16. Effects of umbilical cord tissue mesenchymal stem cells (UCX®) on rat sciatic nerve regeneration after neurotmesis injuries

    OpenAIRE

    Gärtner A; Pereira T; Armada-da-Silva PAS; Amado S; Veloso AP; Amorim I; Ribeiro J.; Santos JD; Bárcia RN; Cruz P; Cruz H; Luís AL; Santos JM; Geuna S; Maurício AC

    2014-01-01

    Peripheral nerves have the intrinsic capacity of self-regeneration after traumatic injury but the extent of the regeneration is often very poor. Increasing evidence demonstrates that mesenchymal stem/stromal cells (MSCs) may play an important role in tissue regeneration through the secretion of soluble trophic factors that enhance and assist in repair by paracrine activation of surrounding cells. In the present study, the therapeutic value of a population of umbilical cord tissue-derived MSCs...

  17. Progesterone promotes neuronal differentiation of human umbilical cord mesenchymal stem cells in culture conditions that mimic the brain microenvironment★

    Science.gov (United States)

    Wang, Xianying; Wu, Honghai; Xue, Gai; Hou, Yanning

    2012-01-01

    In this study, human umbilical cord mesenchymal stem cells from full-term neonates born by vaginal delivery were cultured in medium containing 150 mg/mL of brain tissue extracts from Sprague-Dawley rats (to mimic the brain microenvironment). Immunocytochemical analysis demonstrated that the cells differentiated into neuron-like cells. To evaluate the effects of progesterone as a neurosteroid on the neuronal differentiation of human umbilical cord mesenchymal stem cells, we cultured the cells in medium containing progesterone (0.1, 1, 10 μM) in addition to brain tissue extracts. Reverse transcription-PCR and flow cytometric analysis of neuron specific enolase-positive cells revealed that the percentages of these cells increased significantly following progesterone treatment, with the optimal progesterone concentration for neuron-like differentiation being 1 μM. These results suggest that progesterone can enhance the neuronal differentiation of human umbilical cord mesenchymal stem cells in culture medium containing brain tissue extracts to mimic the brain microenvironment. PMID:25624820

  18. Effects of Human Umbilical Cord Mesenchymal Stem Cells on Human Trophoblast Cell Functions In Vitro

    Directory of Open Access Journals (Sweden)

    Yajing Huang

    2016-01-01

    Full Text Available Trophoblast cell dysfunction is involved in many disorders during pregnancy such as preeclampsia and intrauterine growth restriction. Few treatments exist, however, that target improving trophoblast cell function. Human umbilical cord mesenchymal stem cells (hUCMSCs are capable of self-renewing, can undergo multilineage differentiation, and have homing abilities; in addition, they have immunomodulatory effects and paracrine properties and thus are a prospective source for cell therapy. To identify whether hUCMSCs can regulate trophoblast cell functions, we treated trophoblast cells with hUCMSC supernatant or cocultured them with hUCMSCs. Both treatments remarkably enhanced the migration and invasion abilities of trophoblast cells and upregulated their proliferation ability. At a certain concentration, hUCMSCs also modulated hCG, PIGF, and sEndoglin levels in the trophoblast culture medium. Thus, hUCMSCs have a positive effect on trophoblast cellular functions, which may provide a new avenue for treatment of placenta-related diseases during pregnancy.

  19. Exosomes Derived from Human Umbilical Cord Mesenchymal Stem Cells Relieve Acute Myocardial Ischemic Injury

    Directory of Open Access Journals (Sweden)

    Yuanyuan Zhao

    2015-01-01

    Full Text Available This study is aimed at investigating whether human umbilical cord mesenchymal stem cell- (hucMSC- derived exosomes (hucMSC-exosomes have a protective effect on acute myocardial infarction (AMI. Exosomes were characterized under transmission electron microscopy and the particles of exosomes were further examined through nanoparticle tracking analysis. Exosomes (400 μg protein were intravenously administrated immediately following ligation of the left anterior descending (LAD coronary artery in rats. Cardiac function was evaluated by echocardiography and apoptotic cells were counted using TUNEL staining. The cardiac fibrosis was assessed using Masson’s trichrome staining. The Ki67 positive cells in ischemic myocardium were determined using immunohistochemistry. The effect of hucMSC-exosomes on blood vessel formation was evaluated through tube formation and migration of human umbilical vein endothelial cells (EA.hy926 cells. The results indicated that ligation of the LAD coronary artery reduced cardiac function and induced cardiomyocyte apoptosis. Administration of hucMSC-exosomes significantly improved cardiac systolic function and reduced cardiac fibrosis. Moreover, hucMSC-exosomes protected myocardial cells from apoptosis and promoted the tube formation and migration of EA.hy926 cells. It is concluded that hucMSC-exosomes improved cardiac systolic function by protecting myocardial cells from apoptosis and promoting angiogenesis. These effects of hucMSC-exosomes might be associated with regulating the expression of Bcl-2 family.

  20. Human Umbilical Cord Mesenchymal Stem Cells Therapy in Cyclophosphamide-Induced Premature Ovarian Failure Rat Model

    Directory of Open Access Journals (Sweden)

    Dan Song

    2016-01-01

    Full Text Available Premature ovarian failure (POF is one of the most common causes of infertility in women. In our present study, we established cyclophosphamide- (CTX- induced POF rat model and elucidated its effect on ovarian function. We detected the serum estrogen, follicle stimulating hormone, and anti-Müllerian hormone of mice models by ELISA and evaluated their folliculogenesis by histopathology examination. Our study revealed that CTX administration could severely disturb hormone secretion and influence folliculogenesis in rat. This study also detected ovarian cells apoptosis by deoxy-UTP-digoxigenin nick end labeling (TUNEL and demonstrated marked ovarian cells apoptosis in rat models following CTX administration. In order to explore the potential of human umbilical cord mesenchymal stem cells (UCMSCs in POF treatment, the above indexes were used to evaluate ovarian function. We found that human UCMSCs transplantation recovered disturbed hormone secretion and folliculogenesis in POF rat, in addition to reduced ovarian cell apoptosis. We also tracked transplanted UCMSCs in ovaries by fluorescence in situ hybridization (FISH. The results manifested that the transplanted human UCMSCs could reside in ovarian tissues and could survive for a comparatively long time without obvious proliferation. Our present study provides new insights into the great clinical potential of human UCMSCs in POF treatment.

  1. Clinical Observation of Employment of Umbilical Cord Derived Mesenchymal Stem Cell for Juvenile Idiopathic Arthritis Therapy

    Directory of Open Access Journals (Sweden)

    Liming Wang

    2016-01-01

    Full Text Available Juvenile idiopathic arthritis (JIA, known as Juvenile rheumatoid arthritis, is the most common type of arthritis in children aged under 17. It may cause sequelae due to lack of effective treatment. The goal of this study is to explore the therapeutic effect of umbilical cord mesenchymal stem cells (UC-MSCs for JIA. Ten JIA patients were treated with UC-MSCs and received second infusion three months later. Some key values such as 28-joint disease activity score (DAS28, TNF-α, IL-6, and regulatory T cells (Tregs were evaluated. Data were collected at 3 months and 6 months after first treatment. DAS28 score of 10 patients was between 2.6 and 3.2 at three months after infusion. WBC, ESR, and CRP were significantly decreased while Tregs were remarkably increased and IL-6 and TNF-α were declined. Similar changes of above values were found after 6 months. At the same time, the amount of NSAIDS and steroid usage in patients was reduced. However, no significant changes were found comparing the data from 3 and 6 months. These results suggest that UC-MSCs can reduce inflammatory cytokines, improve immune network effects, adjust immune tolerance, and effectively alleviate the symptoms and they might provide a safe and novel approach for JIA treatment.

  2. Human Umbilical Cord Mesenchymal Stem Cells: A New Therapeutic Option for Tooth Regeneration.

    Science.gov (United States)

    Chen, Yuanwei; Yu, Yongchun; Chen, Lin; Ye, Lanfeng; Cui, Junhui; Sun, Quan; Li, Kaide; Li, Zhiyong; Liu, Lei

    2015-01-01

    Tooth regeneration is considered to be an optimistic approach to replace current treatments for tooth loss. It is important to determine the most suitable seed cells for tooth regeneration. Recently, human umbilical cord mesenchymal stem cells (hUCMSCs) have been regarded as a promising candidate for tissue regeneration. However, it has not been reported whether hUCMSCs can be employed in tooth regeneration. Here, we report that hUCMSCs can be induced into odontoblast-like cells in vitro and in vivo. Induced hUCMSCs expressed dentin-related proteins including dentin sialoprotein (DSP) and dentin matrix protein-1 (DMP-1), and their gene expression levels were similar to those in native pulp tissue cells. Moreover, DSP- and DMP-1-positive calcifications were observed after implantation of hUCMSCs in vivo. These findings reveal that hUCMSCs have an odontogenic differentiation potency to differentiate to odontoblast-like cells with characteristic deposition of dentin-like matrix in vivo. This study clearly demonstrates hUCMSCs as an alternative therapeutic cell source for tooth regeneration.

  3. Umbilical cord-derived mesenchymal stem cells alleviate liver fibrosis in rats

    Science.gov (United States)

    Chai, Ning-Li; Zhang, Xiao-Bin; Chen, Si-Wen; Fan, Ke-Xing; Linghu, En-Qiang

    2016-01-01

    AIM: To evaluate the efficacy of umbilical cord-derived mesenchymal stem cells (UC-MSCs) transplantation in the treatment of liver fibrosis. METHODS: Cultured human UC-MSCs were isolated and transfused into rats with liver fibrosis induced by dimethylnitrosamine (DMN). The effects of UC-MSCs transfusion on liver fibrosis were then evaluated by histopathology; serum interleukin (IL)-4 and IL-10 levels were also measured. Furthermore, Kupffer cells (KCs) in fibrotic livers were isolated and cultured to analyze their phenotype. Moreover, UC-MSCs were co-cultured with KCs in vitro to assess the effects of UC-MSCs on KCs’ phenotype, and IL-4 and IL-10 levels were measured in cell culture supernatants. Finally, UC-MSCs and KCs were cultured in the presence of IL-4 antibodies to block the effects of this cytokine, followed by phenotypical analysis of KCs. RESULTS: UC-MSCs transfused into rats were recruited by the injured liver and alleviated liver fibrosis, increasing serum IL-4 and IL-10 levels. Interestingly, UC-MSCs promoted mobilization of KCs not only in fibrotic livers, but also in vitro. Co-culture of UC-MSCs with KCs resulted in increased production of IL-4 and IL-10. The addition of IL-4 antibodies into the co-culture system resulted in decreased KC mobilization. CONCLUSION: UC-MSCs could increase IL-4 and promote mobilization of KCs both in vitro and in vivo, subsequently alleviating the liver fibrosis induced by DMN. PMID:27468195

  4. Conditioned medium derived from umbilical cord mesenchymal stem cells regenerates atrophied muscles.

    Science.gov (United States)

    Kim, Mi Jin; Kim, Z-Hun; Kim, Sun-Mi; Choi, Yong-Soo

    2016-10-01

    We investigated the regenerative effects and regulatory mechanisms of human umbilical cord mesenchymal stem cells (UC-MSCs)-derived conditioned medium (CM) in atrophied muscles using an in vivo model. To determine the appropriate harvest point of UC-CM, active factor content was analyzed in the secretome over time. A muscle atrophy model was induced in rats by hindlimb suspension (HS) for 2 weeks. Next, UC-CM was injected directly into the soleus muscle of both hind legs to assess its regenerative efficacy on atrophy-related factors after 1 week of HS. During HS, muscle mass and muscle fiber size were significantly reduced by over 2-fold relative to untreated controls. Lactate accumulation within the muscles was similarly increased. By contrast, all of the above analytical factors were significantly improved in HS-induced rats by UC-CM injection compared with saline injection. Furthermore, the expression levels of desmin and skeletal muscle actin were significantly elevated by UC-CM treatment. Importantly, UC-CM effectively suppressed expression of the atrophy-related ubiquitin E3-ligases, muscle ring finger 1 and muscle atrophy F-box by 2.3- and 2.1-fold, respectively. UC-CM exerted its actions by stimulating the phosphoinositol-3-kinase (PI3K)/Akt signaling cascade. These findings suggest that UC-CM provides an effective stimulus to recover muscle status and function in atrophied muscles. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Biological effects of low-level laser irradiation on umbilical cord mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hongli; Wang, Hong; Li, Yingxin, E-mail: yingxinli2005@126.com; Liu, Weichao; Chen, Zhuying [Key Laboratory of Laser Medicine of Tianjin, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192 (China); Wang, Chao [Biomedical Engineering and Technology College, Tianjin Medical University, Tianjin, 300070 (China)

    2016-04-15

    Low-level laser irradiation (LLLI) can enhance stem cell (SC) activity by increasing migration and proliferation. This study investigated the effects of LLLI on proliferation, enzymatic activity, and growth factor production in human umbilical cord mesenchymal SCs (hUC-MSCs) as well as the underlying mechanisms. hUC-MSCs were assigned to a control group (non-irradiation group) and three LLLI treatment groups (635 nm group, 808 nm group, and 635/808 nm group). Laser power density and energy density of 20 mW/cm{sup 2} and 12 J/cm{sup 2}, respectively, were used for each experiment. The proliferation rate was higher in the 635 nm as compared to the other groups. LLLI at 808 nm did not induce cell proliferation. ROS levels in cells exposed to 635, 808, and 635/808 nm radiation were increased by 52.81%, 26.89%, and 21.15%, respectively, relative to the control group. CAT, tGPx, and SOD activity was increased. LLLI at 808 nm increased the levels of IL-1, IL-6, and NFκB but not VEGF. LLLI improved hUC-MSCs function and increased antioxidant activity. Dual-wavelength LLLI had more potent effects on hUC-MSCs than single-wavelength treatment. LLLI has potential applications in the preconditioning of hUC-MSCs in vitro prior to transplantation, which could improve the regenerative capacity of cells.

  6. Transplantation of umbilical cord mesenchymal stem cells via different routes in rats with acute liver failure.

    Science.gov (United States)

    Zheng, Sheng; Yang, Juan; Yang, Jinhui; Tang, Yingmei; Shao, Qinghua; Guo, Ling; Liu, Qinghua

    2015-01-01

    This study aimed to compare the therapeutic efficacy of transplantation of human umbilical cord mesenchymal stem cells (hUCMSC) in different routes in acute hepatic failure (ALF) in rats. hUCMSCs were isolated and identified by detection of surface antigens via flow cytometry. In T group and H group, ALF rats received hUCMSC transplantation through the tail vein and intrahepatic injection, respectively. In hUCMSC group, healthy rats received hUCMSCs transplantation via the tail vein. In ALF group, rats received injection of normal saline through the tail vein. The TBil and ALT in ALF rats with and without transplantation were significantly higher than in healthy rats (Pcells, and liver pathology was improved in T group and H group as compared to ALF group. At 3 d after transplantation, CK18 expression was detectable in both H group and T group. At 1 w and 2 w, the mRNA expressions of CK8, CK18 and AFP in H group and T group were significantly different from those in ALF group (Pstem cells were comparable between H group and T group (P>0.05). hUCMSCs transplantation can improve the liver function and promote the liver repair following ALF. hUCMSCs transplantation via tail vein has similar therapeutic efficacy to that through intrahepatic injection.

  7. Repair of Osteochondral Defects Using Human Umbilical Cord Wharton's Jelly-Derived Mesenchymal Stem Cells in a Rabbit Model

    Science.gov (United States)

    Jia, Yanhui; Yuan, Mei; Guo, Weimin; Huang, Jingxiang; Zhao, Bin; Xu, Wenjing; Lu, Shibi

    2017-01-01

    Umbilical cord Wharton's jelly-derived mesenchymal stem cell (WJMSC) is a new-found mesenchymal stem cell in recent years with multiple lineage potential. Due to its abundant resources, no damage procurement, and lower immunogenicity than other adult MSCs, WJMSC promises to be a good xenogenous cell candidate for tissue engineering. This in vivo pilot study explored the use of human umbilical cord Wharton's jelly mesenchymal stem cells (hWJMSCs) containing a tissue engineering construct xenotransplant in rabbits to repair full-thickness cartilage defects in the femoral patellar groove. We observed orderly spatial-temporal remodeling of hWJMSCs into cartilage tissues during repair over 16 months, with characteristic architectural features, including a hyaline-like neocartilage layer with good surface regularity, complete integration with adjacent host cartilage, and regenerated subchondral bone. No immune rejection was detected when xenograft hWJMSCs were implanted into rabbit cartilage defects. The repair results using hWJMSCs were superior to those of chondrogenically induced hWJMSCs after assessing gross appearance and histological grading scores. These preliminary results suggest that using novel undifferentiated hWJMSCs as seed cells might be a better approach than using transforming growth factor-β-induced differentiated hWJMSCs for in vivo tissue engineering treatment of cartilage defects. hWJMSC allografts may be promising for clinical applications. PMID:28261617

  8. New approach to isolate mesenchymal stem cell (MSC) from human umbilical cord blood.

    Science.gov (United States)

    Hussain, Issam; Magd, Salah A; Eremin, Oleg; El-Sheemy, Mohamed

    2012-07-01

    HUCB (human umbilical cord blood) has been frequently used in clinical allogeneic HSC (haemopoietic stem cell) transplant. However, HUCB is poorly recognized as a rich source of MSC (mesenchymal stem cell). The aim of this study has been to establish a new method for isolating large number of MSC from HUCB to recognize it as a good source of MSC. HUCB samples were collected from women following their elective caesarean section. The new method (Clot Spot method) was carried out by explanting HUCB samples in mesencult complete medium and maintained in 37°C, in a 5% CO2 and air incubator. MSC presence was established by quantitative and qualitative immunophenotyping of cells and using FITC attached to MSC phenotypic markers (CD29, CD73, CD44 and CD105). Haematopoietic antibodies (CD34 and CD45) were used as negative control. MSC differentiation was examined in neurogenic and adipogenic media. Immunocytochemistry was carried out for the embryonic markers: SOX2 (sex determining region Y-box 2), OLIG-4 (oligodendrocyte-4) and FABP-4 (fatty acid binding protein-4). The new method was compared with the conventional Rosset Sep method. MSC cultures using the Clot Spot method showed 3-fold increase in proliferation rate compared with conventional method. Also, the cells showed high expression of MSC markers CD29, CD73, CD44 and CD105, but lacked the expression of specific HSC markers (CD34 and CD45). The isolated MSC showed some differentiation by expressing the neurogenic (SOX2 and Olig4) and adipogenic (FABP-4) markers respectively. In conclusion, HUCB is a good source of MSC using this new technique.

  9. Use of hybrid chitosan membranes and human mesenchymal stem cells from the Wharton jelly of umbilical cord for promoting nerve regeneration in an axonotmesis rat model★

    OpenAIRE

    Gärtner, Andrea; Pereira, Tiago; Simões, Maria João; Armada-da-Silva, Paulo AS; França, Miguel L; Sousa, Rosa; Bompasso, Simone; Raimondo, Stefania; Shirosaki, Yuki; Nakamura, Yuri; Hayakawa, Satoshi; Osakah, Akiyoshi; Porto, Beatriz; Luís, Ana Lúcia; Varejão, Artur SP

    2012-01-01

    Many studies have been dedicated to the development of scaffolds for improving post-traumatic nerve regeneration. The goal of this study was to assess the effect on nerve regeneration, associating a hybrid chitosan membrane with non-differentiated human mesenchymal stem cells isolated from Wharton's jelly of umbilical cord, in peripheral nerve reconstruction after crush injury. Chromosome analysis on human mesenchymal stem cell line from Wharton's jelly was carried out and no structural alter...

  10. Mesenchymal stem cells versus mesenchymal stem cells combined with cord blood for engraftment failure after autologous hematopoietic stem cell transplantation: a pilot prospective, open-label, randomized trial.

    Science.gov (United States)

    Xiong, Yi-Ying; Fan, Qian; Huang, Fen; Zhang, Yu; Wang, Yu; Chen, Xiao-Yong; Fan, Zhi-Ping; Zhou, Hong-Sheng; Xiao, Yang; Xu, Xiao-Jun; Dai, Min; Xu, Na; Sun, Jing; Xiang, Peng; Huang, Xiao-Jun; Liu, Qi-Fa

    2014-02-01

    Engraftment failure (EF) after autologous hematopoietic stem cell transplantation is a serious complication. We prospectively evaluated the effects and safeties of mesenchymal stem cells (MSCs) alone and MSCs combined with cord blood (CB) for EF. Twenty-two patients were randomized to receive MSCs (MSC group; n = 11) or MSCs plus CB (CB group; n = 11). Patients with no response (NR) to MSCs received the therapeutic schedule in the CB group, and those patients with partial response (PR) in the MSC group and patients without complete remission (CR) in the CB group received another cycle of MSC treatment. Patients who did not achieve CR after 2 cycles of treatments received other treatments, including allogeneic HSCT. After the first treatment cycle, response was seen in 7 of 11 patients in the MSC group and in 9 of 11 in the CB group (P = .635), with a significant difference in neutrophil reconstruction between the 2 groups (P = .030). After 2 treatment cycles, 16 patients achieved CR, 3 achieved PR, and 3 had NR. No patient experienced graft-versus-host disease (GVHD). With a median follow-up of 345 d (range, 129 to 784 d) post-transplantation, 18 patients remained alive and 4 had died (3 from primary disease relapse and 1 from cytomegalovirus pneumonia). The 2-year overall survival, disease-free survival, and cumulative incidence of tumor relapse post-transplantation were 75.2% ± 12.0%, 79.5% ± 9.4%, and 20.5% ± 9.4%, respectively. Our data indicate that the 2 strategies are effective for EF and do not result in GVHD or increase the risk of tumor relapse, but the MSC plus CB regimen has a superior effect on neutrophil reconstruction. Copyright © 2014 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  11. Hypoxic pretreatment of human umbilical cord mesenchymal stem cells regulating macrophage polarization

    Directory of Open Access Journals (Sweden)

    Chuan TONG

    2016-08-01

    Full Text Available Objective  To investigate the effect of human umbilical cord mesenchymal stem cells (hUC-MSCs on macrophage polarization under hypoxia. Methods  hUC-MSCs were obtained by explants adherent culture and cultured under normoxia (21% O2 and hypoxia (5% O2. The multi-directional differentiation of hUC-MSCs was observed by osteogenic and adipogenic differentiation induction. Live/death staining was performed to detect the cell viability, and ELISA was executed to detect the protein content in supernatant of hUC-MSCs. Transwell chamber was employed to co-culture the hUC-MSCs cultured under normoxia and hypoxia and macrophage (THP-1 stimulated by lipopolysaccharide (IPS, then the polarization of THP-1 was detected by immunofluorescence, and the secretions of inflammatory factor and anti-inflammatory factor of THP-1 were detected by ELISA. Results  hUC-MSCs cultured under hypoxia showed the ability of osteogenic and adipogenic multi-directional differentiation. Live/death staining showed the high cell viability of hUC-MSCs cultured under normoxia and hypoxia. The expression levels of prostaglandin E2 (PGE2 and indoleamine 2,3-dioxygenase (IDO were significantly higher in the hUC-MSCs cultured under hypoxia than in those cultured under normoxia. hUCMSCs cultured under hypoxia promoted the polarization of THP-1 to M2, obviously reduced the expression of TNF-α and IL-1β, and increased the expression of IL-10 significantly. Conclusion hUC-MSCs cultured under hypoxia may promote the polarization of THP-1 to M2 and improve the viability of anti-inflammatory. DOI: 10.11855/j.issn.0577-7402.2016.07.01

  12. Umbilical Cord Blood Platelet Lysate as Serum Substitute in Expansion of Human Mesenchymal Stem Cells.

    Science.gov (United States)

    Shirzad, Negin; Bordbar, Sima; Goodarzi, Alireza; Mohammad, Monire; Khosravani, Pardis; Sayahpour, Froughazam; Baghaban Eslaminejad, Mohamadreza; Ebrahimi, Marzieh

    2017-10-01

    The diverse clinical applications for human mesenchymal stem cells (hMSCs) in cellular therapy and regenerative medicine warrant increased focus on developing adequate culture supplements devoid of animal-derived products. In the present study, we have investigated the feasibility of umbilical cord blood-platelet lysate (UCB-PL) as a standard substitute for fetal bovine serum (FBS) and human peripheral blood-PL (PB-PL). In this experimental study, platelet concentrates (PC) from UCB and human PB donors were frozen, melted, and sterilized to obtain PL. Quality control included platelet cell counts, sterility testing (viral and microbial), total protein concentrations, growth factor levels, and PL stability. The effects of UCB-PL and PB-PL on hMSCs proliferation and differentiation into osteocytes, chondrocytes, and adipocytes were studied and the results compared with FBS. UCB-PL contained high levels of protein content, platelet-derived growth factor- AB (PDGF-AB), and transforming growth factor (TGF) compared to PB-PL. All growth factors were stable for at least nine months post-storage at -70˚C. hMSCs proliferation enhanced following treatment with UCB-PL. With all three supplements, hMSCs could differentiate into all three lineages. PB-PL and UCB-PL both were potent in hMSCs proliferation. However, PB promoted osteoblastic differentiation and UCB-PL induced chondrogenic differentiation. Because of availability, ease of use and feasible standardization of UCB-PL, we have suggested that UCB-PL be used as an alternative to FBS and PB-PL for the cultivation and expansion of hMSCs in cellular therapy.

  13. Human umbilical cord mesenchymal stem cells alleviate nasal mucosa radiation damage in a guinea pig model.

    Science.gov (United States)

    Duan, Hong-Gang; Ji, Fang; Zheng, Chun-Quan; Wang, Chun-Hua; Li, Jing

    2015-02-01

    Nasal complications after radiotherapy severely affect the quality of life of nasopharyngeal carcinoma patients, and there is a compelling need to find novel therapies for nasal epithelial cell radiation damage. Therefore, we investigated the therapeutic effect of human umbilical cord mesenchymal stem cells (hUC-MSCs) in guinea pig model of nasal mucosa radiation damage and explored its therapeutic mechanism. Cultured hUC-MSCs were injected intravenously immediately after radiation in the nasal mucosa-radiation-damage guinea pig model. Migration of hUC-MSCs into the nasal mucosa and the potential for differentiation into nasal epithelial cells were evaluated by immunofluorescence. The therapeutic effects of hUC-MSCs were evaluated by mucus clearance time (MCT), degree of nasal mucosa edema, and the nasal mucosa cilia form and coverage ratio. Results indicate that the hUC-MSCs migrated to the nasal mucosa lamina propria and did not differentiate into nasal epithelial cells in this model. The MCT and degree of mucosal edema were improved at 1 week and 1 month after radiation, respectively, but no difference was found at 3 months and 6 months after radiation. The nasal mucosa cilia form and coverage ratio was not improved 6 months after radiation. Thus, hUC-MSCs can migrate to the nasal mucosa lamina propria and improve MCT and mucosa edema within a short time period, but these cells are unable to differentiate into nasal epithelial cells and improve nasal epithelial regeneration in the nasal mucosa radiation damage guinea pig model. © 2014 Wiley Periodicals, Inc.

  14. Transplantation of Human Amniotic Mesenchymal Stem Cells Promotes Functional Recovery in a Rat Model of Traumatic Spinal Cord Injury.

    Science.gov (United States)

    Zhou, Hong-Long; Zhang, Xue-Jun; Zhang, Mao-Ying; Yan, Zhong-Jie; Xu, Zhi-Min; Xu, Ru-Xiang

    2016-10-01

    Human amniotic membrane mesenchymal stem cells (hAMSCs) are considered ideal candidate stem cells for cell-based therapy. In this study, we assessed whether hAMSCs transplantation promotes neurological functional recovery in rats after traumatic spinal cord injury (SCI). In addition, the potential mechanisms underlying the possible benefits of this therapy were investigated. Female Sprague-Dawley rats were subjected to SCI using a weight drop device and then hAMSCs, or phosphate-buffered saline (PBS) were immediately injected into the contused dorsal spinal cord at 2 mm rostral and 2 mm caudal to the injury site. Our results indicated that transplanted hAMSCs migrated in the host spinal cord without differentiating into neuronal or glial cells. Compared with the control group, hAMSCs transplantation significantly decreased the numbers of ED1+ macrophages/microglia and caspase-3+ cells. In addition, hAMSCs transplantation significantly increased the levels of brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF) in the injured spinal cord, and promoted both angiogenesis and axonal regeneration. These effects were associated with significantly improved neurobehavioral recovery in the hAMSCs transplantation group. These results show that transplantation of hAMSCs provides neuroprotective effects in rats after SCI, and could be candidate stem cells for the treatment of SCI.

  15. Three-dimensional spheroid culture of human umbilical cord mesenchymal stem cells promotes cell yield and stemness maintenance.

    Science.gov (United States)

    Li, Yi; Guo, Gang; Li, Li; Chen, Fei; Bao, Ji; Shi, Yu-Jun; Bu, Hong

    2015-05-01

    Mesenchymal stem cell (MSC) transplantation is a promising treatment of many diseases. However, conventional techniques with cells being cultured as a monolayer result in slow cell proliferation and insufficient yield to meet clinical demands. Three-dimensional (3D) culture systems are gaining attention with regard to recreating a complex microenvironment and to understanding the conditions experienced by cells. Our aim is to establish a novel 3D system for the culture of human umbilical cord MSCs (hUC-MSCs) within a real 3D microenvironment but with no digestion or passaging. Primary hUC-MSCs were isolated and grown in serum-free medium (SFM) on a suspension Rocker system. Cell characteristics including proliferation, phenotype and multipotency were recorded. The therapeutic effects of 3D-cultured hUC-MSCs on carbon tetrachloride (CCl4)-induced acute liver failure in mouse models were examined. In the 3D Rocker system, hUC-MSCs formed spheroids in SFM and maintained high viability and active proliferation. Compared with monolayer culture, the 3D-culture system yielded more hUC-MSCs cells within the same volume. The spheroids expressed higher levels of stem cell markers and displayed stronger multipotency. After transplantation into mouse, 3D hUC-MSCs significantly promoted the secretion of interferon-γ and interleukin-6 but inhibited that of tumor necrosis factor-α, thereby alleviating liver necrosis and promoting regeneration following CCl4 injury. The 3D culture of hUC-MSCs thus promotes cell yield and stemness maintenance and represents a promising strategy for hUC-MSCs expansion on an industrial scale with great potential for cell therapy and biotechnology.

  16. Cord blood mesenchymal stem cells suppress DC-T Cell proliferation via prostaglandin B2

    NARCIS (Netherlands)

    Berk, L.C.J. van den; Jansen, B.J.H.; Snowden, S.; Siebers-Vermeulen, K.G.C.; Gilissen, C.; Kogler, G.; Figdor, C.G.; Wheelock, C.E.; Torensma, R.

    2014-01-01

    Immune suppression is a very stable property of multipotent stromal cells also known as mesenchymal stem cells (MSCs). All cell lines tested showed robust immune suppression not affected by a long culture history. Several mechanisms were described to account for this capability. Since several of the

  17. Acellular spinal cord scaffold seeded with mesenchymal stem cells promotes long-distance axon regeneration and functional recovery in spinal cord injured rats.

    Science.gov (United States)

    Liu, Jia; Chen, Jian; Liu, Bin; Yang, Cuilan; Xie, Denghui; Zheng, Xiaochen; Xu, Song; Chen, Tianyu; Wang, Liang; Zhang, Zhongmin; Bai, Xiaochun; Jin, Dadi

    2013-02-15

    The stem cell-based experimental therapies are partially successful for the recovery of spinal cord injury (SCI). Recently, acellular spinal cord (ASC) scaffolds which mimic native extracellular matrix (ECM) have been successfully prepared. This study aimed at investigating whether the spinal cord lesion gap could be bridged by implantation of bionic-designed ASC scaffold alone and seeded with human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) respectively, and their effects on functional improvement. A laterally hemisected SCI lesion was performed in adult Sprague-Dawley (SD) rats (n=36) and ASC scaffolds seeded with or without hUCB-MSCs were implanted into the lesion immediately. All rats were behaviorally tested using the Basso-Beattie-Bresnahan (BBB) test once a week for 8weeks. Behavioral analysis showed that there was significant locomotor recovery improvement in combined treatment group (ASC scaffold and ASC scaffold+hUCB-MSCs) as compared with the SCI only group (pregeneration at lesion sites. This study provides evidence for the first time that ASC scaffold seeded with hUCB-MSCs is able to bridge a spinal cord cavity and promote long-distance axon regeneration and functional recovery in SCI rats. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Osteoinduction in umbilical cord- and palate periosteum-derived mesenchymal stem cells.

    Science.gov (United States)

    Caballero, Montserrat; Reed, Courtney R; Madan, Gitanjali; van Aalst, John A

    2010-05-01

    Adult abdominoplasty (AA) fat is an ideal source for mesenchymal stem cells (MSCs) because it is discarded after surgery, abundant, and easy to harvest. Children however, do not have the same abundant quantities of fat as adults, nor are they likely to undergo a procedure during which fat is routinely discarded. Hence, finding an alternate source for MSCs in children is a reasonable strategy. Two such sources are the palate periosteum (PP) and the umbilical cord (UC). Advantages for PP as a source of MSCs are accessibility during palate repair, ease of harvest, and minimal risk to the patient. The UC, like AA, is a discarded tissue, with a theoretically unlimited supply, which can be harvested in children with craniofacial bone abnormalities in advance of reconstructive procedures. Our objective in this study is to characterize MSCs from 3 sources (AA, PP, and UC) by surface marker prevalence, and to assess osteoinductive capability. Institutional review board approval was obtained for harvest of AA, PP, and UC. The presence of MSCs was determined using immunostaining and flow cytometry for cell surface markers CD73, CD90, CD105, and SSEA-4. Osteogenesis was induced using osteogenic medium. Osteoinduction was evaluated using Alizarin red staining, and real-time polymerase chain reaction for bone morphogenetic protein-2, alkaline phosphatase, and osteocalcin at 7, 14, and 21 days. MSCs from AA, PP, and UC all stained positive for CD73, CD90, CD105, and SSEA-4. Flow cytometry demonstrated significant differences in expression of CD90 and SSEA-4 but similar values for CD73 and CD105. Following osteoinduction, MSCs from all sources stained positive for calcium deposition. In UC MSCs, reverse transcriptase-polymerase chain reaction demonstrated greater elevation in bone morphogenetic protein-2 and alkaline phosphatase mRNA beginning at day 7 and extending to day 21. Osteocalcin mRNA levels were comparable for all 3 sources of MSCs. For children with craniofacial bone

  19. Human umbilical cord mesenchymal stem cells transplantation promotes cutaneous wound healing of severe burned rats.

    Science.gov (United States)

    Liu, Lingying; Yu, Yonghui; Hou, Yusen; Chai, Jiake; Duan, Hongjie; Chu, Wanli; Zhang, Haijun; Hu, Quan; Du, Jundong

    2014-01-01

    Severe burns are a common and highly lethal trauma. The key step for severe burn therapy is to promote the wound healing as early as possible, and reports indicate that mesenchymal stem cell (MSC) therapy contributes to facilitate wound healing. In this study, we investigated effect of human umbilical cord MSCs (hUC-MSCs) could on wound healing in a rat model of severe burn and its potential mechanism. Adult male Wistar rats were randomly divided into sham, burn, and burn transplanted hUC-MSCs. GFP labeled hUC-MSCs or PBS was intravenous injected into respective groups. The rate of wound closure was evaluated by Image Pro Plus. GFP-labeled hUC-MSCs were tracked by in vivo bioluminescence imaging (BLI), and human-specific DNA expression in wounds was detected by PCR. Inflammatory cells, neutrophils, macrophages, capillaries and collagen types I/III in wounds were evaluated by histochemical staining. Wound blood flow was evaluated by laser Doppler blood flow meter. The levels of proinflammatory and anti-inflammatory factors, VEGF, collagen types I/III in wounds were analyzed using an ELISA. We found that wound healing was significantly accelerated in the hUC-MSC therapy group. The hUC-MSCs migrated into wound and remarkably decreased the quantity of infiltrated inflammatory cells and levels of IL-1, IL-6, TNF-α and increased levels of IL-10 and TSG-6 in wounds. Additionally, the neovascularization and levels of VEGF in wounds in the hUC-MSC therapy group were markedly higher than those in other control groups. The ratio of collagen types I and III in the hUC-MSC therapy group were markedly higher than that in the burn group at indicated time after transplantation. The study suggests that hUC-MSCs transplantation can effectively improve wound healing in severe burned rat model. Moreover, these data might provide the theoretical foundation for the further clinical application of hUC-MSC in burn areas.

  20. Human umbilical cord mesenchymal stem cells transplantation promotes cutaneous wound healing of severe burned rats.

    Directory of Open Access Journals (Sweden)

    Lingying Liu

    Full Text Available BACKGROUND: Severe burns are a common and highly lethal trauma. The key step for severe burn therapy is to promote the wound healing as early as possible, and reports indicate that mesenchymal stem cell (MSC therapy contributes to facilitate wound healing. In this study, we investigated effect of human umbilical cord MSCs (hUC-MSCs could on wound healing in a rat model of severe burn and its potential mechanism. METHODS: Adult male Wistar rats were randomly divided into sham, burn, and burn transplanted hUC-MSCs. GFP labeled hUC-MSCs or PBS was intravenous injected into respective groups. The rate of wound closure was evaluated by Image Pro Plus. GFP-labeled hUC-MSCs were tracked by in vivo bioluminescence imaging (BLI, and human-specific DNA expression in wounds was detected by PCR. Inflammatory cells, neutrophils, macrophages, capillaries and collagen types I/III in wounds were evaluated by histochemical staining. Wound blood flow was evaluated by laser Doppler blood flow meter. The levels of proinflammatory and anti-inflammatory factors, VEGF, collagen types I/III in wounds were analyzed using an ELISA. RESULTS: We found that wound healing was significantly accelerated in the hUC-MSC therapy group. The hUC-MSCs migrated into wound and remarkably decreased the quantity of infiltrated inflammatory cells and levels of IL-1, IL-6, TNF-α and increased levels of IL-10 and TSG-6 in wounds. Additionally, the neovascularization and levels of VEGF in wounds in the hUC-MSC therapy group were markedly higher than those in other control groups. The ratio of collagen types I and III in the hUC-MSC therapy group were markedly higher than that in the burn group at indicated time after transplantation. CONCLUSION: The study suggests that hUC-MSCs transplantation can effectively improve wound healing in severe burned rat model. Moreover, these data might provide the theoretical foundation for the further clinical application of hUC-MSC in burn areas.

  1. Combination of autologous bone marrow mesenchymal stem cells and cord blood mononuclear cells in the treatment of chronic thoracic spinal cord injury in 27 cases

    Directory of Open Access Journals (Sweden)

    Lian-zhong WANG

    2012-08-01

    Full Text Available Objective To investigate and evaluate therapeutic effects of transplantation of autologous bone marrow mesenchymal stem cells in conjunction with cord blood mononuclear cells for late thoracic spinal cord injury. Methods Data from 27 patients with late thoracic spinal cord injury who received transplantation of autologous bone marrow mesenchymal stem cells in conjunction with cord blood mononuclear cells in Neurosurgery Department of 463rd Hospital of PLA between July 2006 and July 2008 were collected and analyzed. The full treatment course consisted of 4 consecutive injections at one week apart. Indicators for evaluation followed that of the American Spiral Injury Association (ASIA Impairment Scale (AIS grade, ASIA motor and sensory scores, ASIA visual analog score, and the Ashworth score. The follow-up period was 6 months. Evaluations were made 6 weeks and 6 months after the treatment. Results Improvement from AIS A to AIS B was found in 4 patients. In one patient, improvement from AIS A to AIS C and in one patient from AIS B to AIS C was found 6 weeks after the treatment. The AIS improvement rate was 22.2%. In one patient improvement from AIS A to AIS B was found after 6 months. The overall AIS improvement rate was 25.9%. ASIA baseline motor scores of lower extremties were 0.5±1.5, 1.7±2.9, 3.1±3.6 before the treatment, 6 weeks and 6 months after the treatment, respectively, and showed a statistically significant improvement (P < 0.05. ASIA sensory scores including light touch and pinprick were 66.6±13.7 and 67.0±13.6 respectively before treatment, and they became 68.8±14.4, 68.4±14.7 and 70.5±14.4, 70.2±14.4 six weeks and six months after the treatment. The changes were statistically significant (P < 0.05; Modified Ashworth Scale scores were 1.8±1.5, 1.6±1.2,1.1±0.8 respectively at baseline, 6 weeks and 6months after the treatment, and showed a statistically significant descending trend (P < 0.05. Conclusion Transplantation of

  2. Effect of matrix stiffness on the proliferation and differentiation of umbilical cord mesenchymal stem cells.

    Science.gov (United States)

    Xu, Juanjuan; Sun, Meiyu; Tan, Ye; Wang, Haowei; Wang, Heping; Li, Pengdong; Xu, Ziran; Xia, Yuhan; Li, Lisha; Li, Yulin

    Mesenchymal stem cells (MSCs) are a compatible cellular alternative for regenerative medicine and tissue engineering because of their powerful multipotency. Matrix stiffness plays a profound role on stem cell behavior. Nevertheless, the effect of matrix stiffness on umbilical cordmesenchymal stem cells (UC-MSCs) remains unexplored. To conduct an in-depth exploration, we cultured UC-MSCs on different stiffness (Young's modulus: 13-16, 35-38, 48-53, and 62-68 kPa) polyacrylamide gels coated with fibronectin. We found that the proliferation and adhesion of UC-MSCs varied when cultured on the different matrices, and the spreading capacity was stronger as the stiffness increased (*Pmatrix promoted adipogenic differentiation, with higher expression levels of adipocytic markers like PPARγ and C/EBPα (*Pmatrix, which was validated by increased expression of myogenic makers like desminand MOYG (*Pmatrix. Copyright © 2017 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  3. Propofol injection combined with bone marrow mesenchymal stem cell transplantation better improves electrophysiological function in the hindlimb of rats with spinal cord injury than monotherapy.

    Science.gov (United States)

    Wang, Yue-Xin; Sun, Jing-Jing; Zhang, Mei; Hou, Xiao-Hua; Hong, Jun; Zhou, Ya-Jing; Zhang, Zhi-Yong

    2015-04-01

    The repair effects of bone marrow mesenchymal stem cell transplantation on nervous system damage are not satisfactory. Propofol has been shown to protect against spinal cord injury. Therefore, this study sought to explore the therapeutic effects of their combination on spinal cord injury. Rat models of spinal cord injury were established using the weight drop method. Rats were subjected to bone marrow mesenchymal stem cell transplantation via tail vein injection and/or propofol injection via tail vein using an infusion pump. Four weeks after cell transplantation and/or propofol treatment, the cavity within the spinal cord was reduced. The numbers of PKH-26-positive cells and horseradish peroxidase-positive nerve fibers apparently increased in the spinal cord. Latencies of somatosensory evoked potentials and motor evoked potentials in the hindlimb were noticeably shortened, amplitude was increased and hindlimb motor function was obviously improved. Moreover, the combined effects were better than cell transplantation or propofol injection alone. The above data suggest that the combination of propofol injection and bone marrow mesenchymal stem cell transplantation can effectively improve hindlimb electrophysiological function, promote the recovery of motor funtion, and play a neuroprotective role in spinal cord injury in rats.

  4. Isolation, culture, characterization and cryopreservation of stem cells derived from amniotic mesenchymal layer and umbilical cord tissue of bovine fetuses

    Directory of Open Access Journals (Sweden)

    Loreta L. Campos

    Full Text Available ABSTRACT: Stem cells are undifferentiated cells with a high proliferation potential. These cells can be characterized by their in vivo ability to self-renew and to differentiate into specialized cell lines. The most used stem cell types, in both human and veterinary fields, are the mesenchymal stem cells (MSC derived from bone marrow and adipose tissue. Nowadays, there is a great interest in using stem cells derived from fetal tissues, such as amniotic membrane (AM and umbilical cord tissue (UCT, which can be obtained non-invasively at delivery time. Due to the scarcity of studies in bovine species, the aim of this study was to isolate, characterize, differentiate and cryopreserve MSC derived from the mesenchymal layer of amniotic membrane (AM, for the first time, and umbilical cord tissue (UCT of dairy cow neonates after assisted delivery (AD and from fetus at initial third of pregnancy (IT obtained in slaughterhouse. Cells were isolated by enzymatic digestion of the tissue fragments with 0.1% collagenase solution. Six samples of AM and UCT at delivery time and six samples of AM and UCT at first trimester of pregnancy were subjected to morphology evaluation, imunophenotype characterization, in vitro osteogenic, adipogenic and chondrogenic differentiation and viability analysis after cryopreservation. All samples showed adherence to plastic and fibroblast-like morphology. Immunocytochemistry revealed expression of CD 44, NANOG and OCT-4 and lack of expression of MHC II in MSC from all samples. Flow cytometry demonstrated that cells from all samples expressed CD 44, did not or low expressed CD 34 (AM: IT-0.3%a, AD-3.4%b; UCT: 0.4%, 1.4% and MHC II (AM: IT-1.05%a, AD-9.7%b; UCT: IT-0.7%a, AD-5.7%b. They were also capable of trilineage mesenchymal differentiation and showed 80% viability after cryopreservation. According to the results, bovine AM and UCT-derived cells, either obtained at delivery time or from slaughterhouse, are a painless and non

  5. Umbilical-cord-blood-derived mesenchymal stem cells seeded onto fibronectin-immobilized polycaprolactone nanofiber improve cardiac function.

    Science.gov (United States)

    Kang, Byung-Jae; Kim, Hwan; Lee, Seul Ki; Kim, Joohyun; Shen, Yiming; Jung, Sunyoung; Kang, Kyung-Sun; Im, Sung Gap; Lee, So Yeong; Choi, Mincheol; Hwang, Nathaniel S; Cho, Je-Yoel

    2014-07-01

    Stem cells seeded onto biofunctional materials have greater potency for therapeutic applications. We investigated whether umbilical-cord-blood-derived mesenchymal stem cell (UCB-MSC)-seeded fibronectin (FN)-immobilized polycaprolactone (PCL) nanofibers could improve cardiac function and inhibit left ventricle (LV) remodeling in a rat model of myocardial infarction (MI). Aligned nanofibers were uniformly coated with poly(glycidyl methacrylate) by initiated chemical vapor deposition followed by covalent immobilization of FN proteins. The degree of cell elongation and adhesion efficacy were improved by FN immobilization. Furthermore, genes related to angiogenesis and mesenchymal differentiations were up-regulated in the FN-immobilized PCL nanofibers in comparison to control PCL nanofibers in vitro. 4 weeks after the transplantation in the rat MI model, the echocardiogram showed that the UCB-MSC-seeded FN-immobilized PCL nanofiber group increased LV ejection fraction and fraction shortening as compared to the non-treated control and acellular FN-immobilized PCL nanofiber groups. Histological analysis indicated that the implantation of UCB-MSCs with FN-immobilized PCL nanofibers induced a decrease in MI size and fibrosis, and an increase in scar thickness. This study indicates that FN-immobilized biofunctional PCL nanofibers could be an effective carrier for UCB-MSC transplantation for the treatment of MI. Copyright © 2014. Published by Elsevier Ltd.

  6. HPMA-RGD hydrogels seeded with mesenchymal stem cells improve functional outcome in chronic spinal cord injury.

    Science.gov (United States)

    Hejcl, Ales; Sedý, Jirí; Kapcalová, Miroslava; Toro, David Arboleda; Amemori, Takashi; Lesný, Petr; Likavcanová-Mašínová, Katarina; Krumbholcová, Eva; Prádný, Martin; Michálek, Jirí; Burian, Martin; Hájek, Milan; Jendelová, Pavla; Syková, Eva

    2010-10-01

    Chronic spinal cord injury (SCI) is characterized by tissue loss and a stable functional deficit. While several experimental therapies have proven to be partly successful for the treatment of acute SCI, treatment of chronic SCI is still challenging. We studied whether we can bridge a chronic spinal cord lesion by implantation of our newly developed hydrogel based on 2-hydroxypropyl methacrylamide, either alone or seeded with mesenchymal stem cells (MSCs), and whether this treatment leads to functional improvement. A balloon-induced compression lesion was performed in adult 2-month-old male Wistar rats. Five weeks after injury, HPMA-RGD hydrogels [N-(2-hydroxypropyl)-methacrylamide with attached amino acid sequences--Arg-Gly-Asp] were implanted into the lesion, either with or without seeded MSCs. Animals with chronic SCI served as controls. The animals were behaviorally tested using the Basso–Beattie-Breshnahan (BBB) (motor) and plantar (sensory) tests once a week for 6 months. Behavioral analysis showed a statistically significant improvement in rats with combined treatment, hydrogel and MSCs, compared with the control group (P HPMA-RGD hydrogels seeded with MSCs can successfully bridge a spinal cord cavity and provide a scaffold for tissue regeneration. This treatment leads to functional improvement even in chronic SCI.

  7. Immunosuppression of allogenic mesenchymal stem cells transplantation after spinal cord injury improves graft survival and beneficial outcomes.

    Science.gov (United States)

    Torres-Espín, Abel; Redondo-Castro, Elena; Hernandez, Joaquim; Navarro, Xavier

    2015-03-15

    Cell therapy for spinal cord injury (SCI) is a promising strategy for clinical application. Mesenchymal stem cells (MSC) have demonstrated beneficial effects following transplantation in animal models of SCI. However, despite the immunoprivilege properties of the MSC, their survival in the injured spinal cord is reduced due to the detrimental milieu in the damaged tissue and immune rejection of the cells. The limited survival of the engrafted cells may determine the therapy success. Therefore, we compared two strategies to increase the presence of the cells in the injured spinal cord in rats: increasing the amount of MSC transplants and using immunosuppressive treatment with FK506 after transplantation. Functional outcomes for locomotion and electrophysiological responses were assessed. The grafted cells survival and the amount of cavity and spared tissue were studied. The findings indicate that immunosuppression improved grafted cells survival. A cell-dose effect was found regarding locomotion recovery and tissue protection independent of immunosuppression. Nevertheless, immunosuppression enhanced the electrophysiological outcomes and allowed filling of the cavity formed after injury by new regenerative tissue and axons. These results indicate that MSC transplantation combined with immunosuppression prolongs the survival of engrafted cells and improves functional and morphological outcomes after SCI.

  8. Anti-inflammatory Mechanism of Bone Marrow Mesenchymal Stem Cell Transplantation in Rat Model of Spinal Cord Injury.

    Science.gov (United States)

    Han, Dongji; Wu, Chenglong; Xiong, Qiuju; Zhou, Ling; Tian, Yuke

    2015-04-01

    To explore the effect of bone marrow mesenchymal stem cell (BMSC) transplantation on the levels of toll-like receptor 4 (TLR4), interleukin-1β (IL-1β), and tumor necrosis factor (TNF-α) in spinal cord tissue of rat model of spinal cord injury (SCI). BMSCs from 4-week-old male SD rats were isolated, cultured, and characterized after three generations using specific surface markers CD34 and CD44. Fifty four SD male rats were divided into sham group, model group, and cell transplantation group (18 rats each group). SCI model was generated using an improved Allen's method. Rats in cell transplantation group were treated with BMSCs in caudal vein. Rats were sacrificed at 24 h, 72 h, and 7 d post-injury, and spinal cord tissues were taken out for detection of IL-1β and TNF-α tissue content by enzyme-linked immunosorbent assay. IL-1β and TNF-α mRNA expression was evaluated by qPCR and TLR4 protein expression was analyzed by Western blotting. IL-1β and TNF-α protein levels, as well as IL-1β, TNF-α mRNA, and TLR4 expression were significantly increased in rats with established SCI, and reached its peak in spinal cord tissues at 72 h after the initial injury (p transplantation resulted in significant decrease in IL-1β and TNF-α tissue content, as well as IL-1β, TNF-α mRNA, and TLR4 expression as compared with model group (p spinal cord inflammation by weakening TLR4-mediated signaling pathways and reducing tissue content of IL-1β and TNF-α.

  9. Human Umbilical Cord Wharton Jelly-Derived Adult Mesenchymal Stem Cells, in Biohybrid Scaffolds, for Experimental Skin Regeneration

    Science.gov (United States)

    Montanucci, Pia; di Pasquali, Camilla; Ferri, Ivana; Sidoni, Angelo; Cervelli, Valerio

    2017-01-01

    The ultimate goal for skin tissue engineering is to regenerate skin lesions to allow the full restoration of morphological and functional properties as what they were before injury. To this end, we have assembled a new prototype of a biomimetic human umbilical cord adult mesenchymal stem cell (hUCMS)/fibrin-based scaffold. We have fully characterized the proposed dermal equivalent (DE) in vitro, to assess morphological, functional, and biological properties of the encased cells. We transplanted DE subcutaneously into immunocompetent rodents, to verify its full biocompatibility. Finally, we studied DE graft effects on full-thickness wounds, in immunocompetent mice to demonstrate its capability to drive the healing process in the absence of significant scarring tissue. The excellent outcome of these in vivo studies fuels hope that this new approach, based on a biohybrid DE, may be applied to the operative treatment of skin lesions (i.e., diabetic foot ulcers and burns) in man. PMID:29456556

  10. Human Umbilical Cord Wharton Jelly-Derived Adult Mesenchymal Stem Cells, in Biohybrid Scaffolds, for Experimental Skin Regeneration

    Directory of Open Access Journals (Sweden)

    Pia Montanucci

    2017-01-01

    Full Text Available The ultimate goal for skin tissue engineering is to regenerate skin lesions to allow the full restoration of morphological and functional properties as what they were before injury. To this end, we have assembled a new prototype of a biomimetic human umbilical cord adult mesenchymal stem cell (hUCMS/fibrin-based scaffold. We have fully characterized the proposed dermal equivalent (DE in vitro, to assess morphological, functional, and biological properties of the encased cells. We transplanted DE subcutaneously into immunocompetent rodents, to verify its full biocompatibility. Finally, we studied DE graft effects on full-thickness wounds, in immunocompetent mice to demonstrate its capability to drive the healing process in the absence of significant scarring tissue. The excellent outcome of these in vivo studies fuels hope that this new approach, based on a biohybrid DE, may be applied to the operative treatment of skin lesions (i.e., diabetic foot ulcers and burns in man.

  11. DLK-1 as a marker to distinguish unrestricted somatic stem cells and mesenchymal stromal cells in cord blood.

    Science.gov (United States)

    Kluth, Simone Maria; Buchheiser, Anja; Houben, Amelie Pia; Geyh, Stefanie; Krenz, Thomas; Radke, Teja Falk; Wiek, Constanze; Hanenberg, Helmut; Reinecke, Petra; Wernet, Peter; Kögler, Gesine

    2010-10-01

    In addition to hematopoietic stem cells, cord blood (CB) also contains different nonhematopoietic CD45-, CD34- adherent cell populations: cord blood mesenchymal stromal cells (CB MSC) that behave almost like MSC from bone marrow (BM MSC) and unrestricted somatic stem cells (USSC) that differentiate into cells of all 3 germ layers. Distinguishing between these populations is difficult due to overlapping features such as the immunophenotype or the osteogenic and chondrogenic differentiation pathway. Functional differences in the differentiation potential suggest different developmental stages or different cell populations. Here we demonstrate that the expression of genes and the differentiation toward the adipogenic lineage can discriminate between these 2 populations. USSC, including clonal-derived cells lacking adipogenic differentiation, strongly expressed δ-like 1/preadipocyte factor 1 (DLK-1/PREF1) correlating with high proliferative potential, while CB MSC were characterized by a strong differentiation toward adipocytes correlating with a weak or negative DLK-1/PREF1 expression. Constitutive overexpression of DLK-1/PREF1 in CB MSC resulted in a reduced adipogenic differentiation, whereas silencing of DLK-1 in USSC resulted in adipogenic differentiation.

  12. Osteoinduction of umbilical cord and palate periosteum-derived mesenchymal stem cells on poly(lactic-co-glycolic) acid nanomicrofibers.

    Science.gov (United States)

    Caballero, Montserrat; Pappa, Andrew K; Roden, Katherine S; Krochmal, Daniel J; van Aalst, John A

    2014-01-01

    The need for tissue-engineered bone to treat complex craniofacial bone defects secondary to congenital anomalies, trauma, and cancer extirpation is sizeable. Traditional strategies for treatment have focused on autologous bone in younger patients and bone substitutes in older patients. However, the capacity for merging new technologies, including the creation of nanofiber and microfiber scaffolds with advances in natal sources of stem cells, is crucial to improving our treatment options. The advantages of using smaller diameter fibers for scaffolding are 2-fold: the similar fiber diameters mimic the in vivo extracellular matrix construct and smaller fibers also provide a dramatically increased surface area for cell-scaffold interactions. In this study, we compare the capacity for a polymer with Federal Drug Administration approval for use in humans, poly(lactic-co-glycolic) acid (PLGA) from Delta polymer, to support osteoinduction of mesenchymal stem cells (MSCs) harvested from the umbilical cord (UC) and palate periosteum (PP). Proliferation of both UC- and PP-derived MSCs was improved on PLGA scaffolds. The PLGA scaffolds promoted UC MSC differentiation (indicated by earlier gene expression and higher calcium deposition), but not in PP-derived MSCs. Umbilical cord-derived MSCs on the PLGA nanomicrofiber scaffolds have potential clinical utility in providing solutions for craniofacial bone defects, with the added benefit of earlier availability.

  13. Evaluation of umbilical cord mesenchymal stem cell labeling with superparamagnetic iron oxide nanoparticles coated with dextran and complexed with Poly-L-lysine.

    Science.gov (United States)

    Sibov, Tatiana Taís; Miyaki, Liza Aya Mabuchi; Mamani, Javier Bustamante; Marti, Luciana Cavalheiro; Sardinha, Luiz Roberto; Pavon, Lorena Favaro; Oliveira, Daniela Mara de; Cardenas, Walter Humberto; Gamarra, Lionel Fernel

    2012-01-01

    The objective of this study was to evaluate the effect of the labeling of umbilical cord vein derived mesenchymal stem cells with superparamagnetic iron oxide nanoparticles coated with dextran and complexed to a non-viral transfector agent transfector poly-L-lysine. The labeling of mesenchymal stem cells was performed using the superparamagnetic iron oxide nanoparticles/dextran complexed and not complexed to poly-L-lysine. Superparamagnetic iron oxide nanoparticles/dextran was incubated with poly-L-lysine in an ultrasonic sonicator at 37°C for 10 minutes for complex formation superparamagnetic iron oxide nanoparticles/dextran/poly-L-lysine by electrostatic interaction. Then, the mesenchymal stem cells were incubated overnight with the complex superparamagnetic iron oxide nanoparticles/dextran/poly-L-lysine and superparamagnetic iron oxide nanoparticles/dextran. After the incubation period the mesenchymal stem cells were evaluated by internalization of the complex superparamagnetic iron oxide nanoparticles/dextran/poly-L-lysine and superparamagnetic iron oxide nanoparticles/dextran by Prussian Blue stain. Cellular viability of labeled mesenchymal stem cells was evaluated by cellular proliferation assay using 5,6-carboxy-fluorescein-succinimidyl ester method and apoptosis detection by Annexin V- Propidium Iodide assay. mesenchymal stem cells labeled with superparamagnetic iron oxide nanoparticles/dextran without poly-L-lysine not internalized efficiently the superparamagnetic iron oxide nanoparticles due to its low presence detected within cells. Mesenchymal stem cells labeled with the complex superparamagnetic iron oxide nanoparticles/dextran/poly-L-lysine efficiently internalized the superparamagnetic iron oxide nanoparticles due to greater presence in the cells interior. The viability and apoptosis assays demonstrated that the mesenchymal stem cells labeled and not labeled respectively with the superparamagnetic iron oxide nanoparticles

  14. Functional Profiles of Human Umbilical Cord-Derived Adult Mesenchymal Stem Cells in Obese/Diabetic Versus Healthy Women.

    Science.gov (United States)

    Montanucci, Pia; Pescara, Teresa; Pennoni, Ilaria; Alunno, Alessia; Bistoni, Onelia; Torlone, Elisabetta; Luca, Giovanni; Gerli, Roberto; Basta, Giuseppe; Calafiore, Riccardo

    2016-06-28

    Adult human mesenchymal stem cells retrieved, from the post-partum human umbilical cord Wharton jelly (hUCMS), have recently gained growing interest due to their morphological and functional properties. The main purpose of our work was to examine morphology and functional properties of hUCMS retrieved from healthy women as compared to those with obesity, or gestational or type 2 diabetes mellitus, under fair metabolic control. Possible differences between groups could shed light into the potential use of these cells for the cell therapy of a variety of diseases, regardless of the obesity/diabetes status of the donor mothers. Additionally, information on how the maternal disease may affect the cord-derived stem cells, hence possibly newborn children would be important. We have studied obese/diabetic or normal donor post-partum umbilical cord-derived hUCMS, either in basal or during differentiation protocols into several cell phenotypes and the definitive endoderm. Immunomodulatory properties of these cells, in terms of inhibition of activated lymphocyte proliferation, also was examined. According to our preliminary results, there are functional differences, as assessed by cell and molecular assays, in terms of both, differentiation and immunomodulatory potential, between the cells derived from normal as compared to obese/diabetic mothers. The findings seemingly indicate that the uterine environment of obese/diabetic mothers is quite distant from normal, regardless of metabolic control. Hence hUCMS extracted from obese/diabetic mothers do not appear to be suitable for cell therapy clinical protocols but more studies are required.

  15. Comparative Study on the Differentiation of Mesenchymal Stem Cells Between Fetal and Postnatal Rat Spinal Cord Niche.

    Science.gov (United States)

    Cao, Songying; Wei, Xiaowei; Li, Hui; Miao, Jianing; Zhao, Guifeng; Wu, Di; Liu, Bo; Zhang, Yi; Gu, Hui; Wang, Lili; Fan, Yang; An, Dong; Yuan, Zhengwei

    2016-01-01

    In a previous study, we established a prenatal surgical approach and transplanted mesenchymal stem cells (MSCs) into the fetal rat spinal column to treat neural tube defects (NTDs). We found that the transplanted MSCs survived and differentiated into neural lineage cells. Various cytokines and extracellular signaling systems in the spinal cord niche play an important role in cell differentiation. In this study, we observed the differentiation of transplanted MSCs in different spinal cord niches and further observed the expression of neurotrophic factors and growth factors in the spinal cord at different developmental stages to explore the mechanism of MSC differentiation in different spinal cord niches. The results showed that transplanted MSCs expressed markers of neural precursor cells (nestin), neurogliocytes (GFAP), and neurons (β-tubulin). The percentages of GFP(+)/nestin(+) double-positive cells in transplanted MSCs in E16, P1, and P21 rats were 18.31%, 12.18%, and 5.06%, respectively. The percentages of GFP(+)/GFAP(+) double-positive cells in E16, P1, and P21 rats were 32.01%, 15.35%, and 12.56%, respectively. The percentages of GFP(+)/β-tubulin(+) double-positive cells in E16, P1, and P21 were 11.76%, 7.62%, and 4.88%, respectively. The differentiation rates of MSCs in embryonic spinal cords were significantly higher than in postnatal spinal cords (p transplanted MSCs expressed synapsin-1 at different developmental stages. After MSC transplantation, we observed that neurotrophic factor-3 (NT-3), fibroblast growth factor-2 (FGF-2), FGF-8, transforming growth factor-α (TGF-α), vascular endothelial growth factor (VEGF), and platelet-derived growth factor (PDGF) significantly increased in the MSC transplantation group compared with the blank injection group. Furthermore, FGF-2 and VEGF expression were positively correlated with the number of surviving MSCs. In addition, we found that the expression of brain-derived neurotrophic factor (BDNF), NT-3, FGF-8

  16. Effects of combinatorial treatment with pituitary adenylate cyclase activating peptide and human mesenchymal stem cells on spinal cord tissue repair.

    Directory of Open Access Journals (Sweden)

    Kuan-Min Fang

    Full Text Available The aim of this study is to understand if human mesenchymal stem cells (hMSCs and neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP have synergistic protective effect that promotes functional recovery in rats with severe spinal cord injury (SCI. To evaluate the effect of delayed combinatorial therapy of PACAP and hMSCs on spinal cord tissue repair, we used the immortalized hMSCs that retain their potential of neuronal differentiation under the stimulation of neurogenic factors and possess the properties for the production of several growth factors beneficial for neural cell survival. The results indicated that delayed treatment with PACAP and hMSCs at day 7 post SCI increased the remaining neuronal fibers in the injured spinal cord, leading to better locomotor functional recovery in SCI rats when compared to treatment only with PACAP or hMSCs. Western blotting also showed that the levels of antioxidant enzymes, Mn-superoxide dismutase (MnSOD and peroxiredoxin-1/6 (Prx-1 and Prx-6, were increased at the lesion center 1 week after the delayed treatment with the combinatorial therapy when compared to that observed in the vehicle-treated control. Furthermore, in vitro studies showed that co-culture with hMSCs in the presence of PACAP not only increased a subpopulation of microglia expressing galectin-3, but also enhanced the ability of astrocytes to uptake extracellular glutamate. In summary, our in vivo and in vitro studies reveal that delayed transplantation of hMSCs combined with PACAP provides trophic molecules to promote neuronal cell survival, which also foster beneficial microenvironment for endogenous glia to increase their neuroprotective effect on the repair of injured spinal cord tissue.

  17. Transplantation of mesenchymal stem cells exerts anti-apoptotic effects in adult rats after spinal cord ischemia-reperfusion injury.

    Science.gov (United States)

    Yin, Fei; Guo, Li; Meng, Chun-yang; Liu, Ya-juan; Lu, Ri-feng; Li, Peng; Zhou, Yu-bo

    2014-05-02

    It is unknown whether transplantation of bone marrow mesenchymal stem cells (BM-MSCs) can repair spinal cord ischemia-reperfusion injury (SCII) in a rat model through an anti-apoptotic effect. Adult rats were divided into untreated or sham-operated controls, untreated models of SCII (uSCII) and BM-MSC-transplanted models of SCII (tSCII; labeled with CM-Dill transplanted at 1 h and 24 h after reperfusion). According to evaluation of hind-limb motor function, the motor functions of tSCII rats were significantly better than those of uSCII rats by the seventh day. H&E and TUNEL staining showed that the spinal cords of uSCII rats contained damaged neural cells with nuclear pyknosis and congestion of blood vessels, with a high percentage of apoptotic neural cells, while the spinal cords of tSCII rats were nearly normal with significantly fewer apoptotic neural cells. Immunohistochemistry and double immunofluorescence staining revealed that in tSCII rats CASP3 and neurofilament-H (NF-H) levels were 14.57% and 174% those of uSCII rats, respectively, and in tSCII rats the ratio of BAX to BCL2 was reduced by nearly 50%. The differentiation of transplanted CM-Dil-labeled BM-MSCs into neurons and astrocytes was observed in the spinal cords of the tSCII rats under laser scanning confocal microscopy. These results showed that transplantation of BM-MSCs improved functional recovery after SCII via anti-apoptosis. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. [Effects of chondroitinase ABC combined with bone marrow mesenchymal stem cells transplantation on repair of spinal cord injury in rats].

    Science.gov (United States)

    Zhang, Chun; He, Xijing; Li, Haopeng

    2013-05-01

    To investigate the effects of chondroitinase ABC (ChABC) combined with bone marrow mesenchymal stem cells (BMSCs) in repair spinal cord injury of rats. Primary BMSCs were isolated and cultured from the femur and tibia of neonatal Sprague Dawley (SD) rats. The spinal cord injury model was established in 24 adult SD male rats (weighing, 200-230 g), which were randomly divided into control group (group A), BMSCs transplantation group (group B), ChABC injection group (group C), and ChABC and BMSCs transplantation group (group D), 6 rats in each group. At 7 and 14 days after injury, Basso-Beattie-Bresnahan (BBB) score criteria was used to evaluate the hindlimb motor function; at 14 days after injury, the injured spinal cord tissue was perfused and stained by HE for further calculation of the injury area. Immunofluorescence staining were used for observing the expressions of glial fibrillary acidic protein (GFAP)/chondroitin sulfate proteoglycan (CSPG) and GFAP/growth associated protein 43 (GAP43). At 7 days after injury, three joints movement of the hindlimbs were recovered in all groups, and no significant difference in the BBB score was found among 4 groups (P > 0.05). At 14 days after injury, no load drag was observed in 3 joints of the hindlimbs in groups A, B, and C, but weight-bearing plantar or occasional dorsalis pedis weight-bearing walking was observed in group D with no plantar walking. The BBB score of group D was significantly higher than that of the other 3 groups (P injury, the GFAP/CSPG double immunofluorescence staining showed that the astroglial scar damage zone in group D was significantly reduced, and no cavity formation was found. And the fluorescence intensity in groups C and D was significantly lower than that in group B (P transplantation in early injury may promote the regeneration of nerve fibers, and repair spinal cord injury in rats.

  19. Trimetazidine Protects Umbilical Cord Mesenchymal Stem Cells Against Hypoxia and Serum Deprivation Induced Apoptosis by Activation of Akt

    Directory of Open Access Journals (Sweden)

    Xuhe Gong

    2014-12-01

    Full Text Available Background: Mesenchymal stem cell (MSC transplantation is a promising therapy for cardiac repair. However, the efficacy is limited by the poor viability of MSCs in the infarcted heart. Recent findings have implicated that trimetazidine (TMZ enhanced the survival of the stem cells under various conditions. However, as the stem cells in these studies were animal-derived, little information is available about the effects of TMZ on human MSCs. Herein, we propose that TMZ may protect human MSCs against apoptosis induced by Hypoxia/Serum deprivation (H/SD. Methods: Human umbilical cord MSCs (UC-MSCs from Wharton's jelly were pretreated with 10µM TMZ of H/SD with or without the Akt inhibitor LY294002. The morphological changes were assessed using Hoechst 33342. Apoptosis was evaluated via Annexin V/PI staining; and apoptosis-related proteins were detected using Western-blot. Protein chip technology was used to screen for differences between the cell supernatants. Results: TMZ had a significant protective effect against H/SD-induced apoptosis, accompanied by an increase in Bcl-2 and p-Akt. The TMZ-mediated anti-apoptotic effect on MSCs could be attenuated by treatment with LY294002. Moreover, protein chip assays showed that TMZ treatment increased the paracrine functions of MSCs. Conclusion: Trimetazidine protects human UC-MSCs from H/SD-induced apoptosis via the Akt pathway and may therefore be a potentially useful therapeutic adjunct for transplanting MSCs into damaged heart after myocardial infarction.

  20. [Immune intervention of human umbilical cord mesenchymal stem cells on sepsis rats].

    Science.gov (United States)

    Zhang, Hewei; Cui, Xiaoxu; Fang, Tao; Fu, Qiang

    2017-08-01

    To investigate the effect of human umbilical cord mesenchymal stem cells (UC-MSCs) on immune cells and inflammatory factors in septic rats. 184 male Sprague-Dawley (SD) rats were divided into normal control group (n = 8), sham operation group (n = 48), sepsis model group (n = 64), and UC-MSCs treatment group (n = 64). An animal model of sepsis was produced by cecal ligation and puncture (CLP). In the UC-MSCs treatment group 1 mL UC-MSCs (2×106/mL) were injected intraperitoneally at 1 hour after the model establishment; the sham operation group and the sepsis model group were given the same amount of saline. Sixteen animals in each group of the sham operation group, sepsis model group, and UC-MSCs treatment group were observed for 72-hour survival rate. The percentages of CD4+ T cells and the ratio of helper T cells 1/2 (Th1/Th2) in whole blood cells were measured by flow cytometry at 12, 24, 48 and 72 hours after operation. The levels of tumor necrosis factor-α (TNF-α), high mobility group box 1 (HMGB1), interleukin-10 (IL-10) were measured by enzyme linked immunoabsorbent assay (ELISA). The 72-hour survival rate of the UC-MSCs treatment group was slightly higher than that of the sepsis model group [62.5% (10/16) vs. 50.0% (8/16), χ 2 = 0.509, P > 0.05]. The percentage of CD4+ T cells and Th1/Th2 ratio in the sepsis model group were significantly higher than those in the sham operation group at 12 hours after operation, and decreased as the time prolonged to 48 hours. The levels of plasma inflammatory factors were significantly higher than those of sham operation group at 12 hours after operation, TNF-α and IL-10 were decreased at 48 hours after operation, while HMGB1 continued to increase until 72 hours after operation. Compared with those in the sepsis model group, the percentages of CD4+ T cells at 12 hours and 24 hours after operation [(49.66±0.91)% vs. (59.11±1.17)%, (41.80±0.89)% vs. (49.84±0.99)%], the levels of Th1/Th2 ratio at 12, 24, 48 hours

  1. Systemic administration of a novel human umbilical cord mesenchymal stem cells population accelerates the resolution of acute liver injury

    Directory of Open Access Journals (Sweden)

    Burra Patrizia

    2012-07-01

    Full Text Available Abstract Background Hepatocytes and stem cells transplantation may be an alternative to liver transplantation in acute or chronic liver disease. We aimed to evaluate the therapeutic potential of mesenchymal stem cells from human umbilical cord (UCMSCs, a readily available source of mesenchymal stem cells, in the CCl4-induced acute liver injury model. Methods Mesenchymal stem cells profile was analyzed by flow cytometry. In order to evaluate the capability of our UCMSCs to differentiate in hepatocytes, cells were seeded on three different supports, untreated plastic support, MatrigelTM and human liver acellular matrix. Cells were analyzed by immunocitochemistry for alpha-fetoprotein and albumin expression, qPCR for hepatocyte markers gene expression, Periodic Acid-Schiff staining for glycogen storage, ELISA for albumin detection and colorimetric assay for urea secretion. To assess the effects of undifferentiated UCMSCs in hepatic regeneration after an acute liver injury, we transplanted them via tail vein in mice injected intraperitoneally with a single dose of CCl4. Livers were analyzed by histological evaluation for damage quantification, immunostaining for Kupffer and stellate cells/liver myofibroblasts activation and for UCMSCs homing. Pro- and anti-inflammatory cytokines gene expression was evaluated by qPCR analysis and antioxidant enzyme activity was measured by catalase quantification. Data were analyzed by Mann–Whitney U-test, Kruskal-Wallis test and Cuzick’s test followed by Bonferroni correction for multiple comparisons. Results We have standardized the isolation procedure to obtain a cell population with hepatogenic properties prior to in vivo transplantation. When subjected to hepatogenic differentiation on untreated plastic support, UCMSCs differentiated in hepatocyte-like cells as demonstrated by their morphology, progressive up-regulation of mature hepatocyte markers, glycogen storage, albumin and urea secretion. However

  2. Perspectives of employing mesenchymal stem cells from the Wharton's jelly of the umbilical cord for peripheral nerve repair.

    Science.gov (United States)

    Ribeiro, Jorge; Gartner, Andrea; Pereira, Tiago; Gomes, Raquel; Lopes, Maria Ascensão; Gonçalves, Carolina; Varejão, Artur; Luís, Ana Lúcia; Maurício, Ana Colette

    2013-01-01

    Mesenchymal stem cells (MSCs) from Wharton's jelly present high plasticity and low immunogenicity, turning them into a desirable form of cell therapy for the injured nervous system. Their isolation, expansion, and characterization have been performed from cryopreserved umbilical cord tissue. Great concern has been dedicated to the collection, preservation, and transport protocols of the umbilical cord after the parturition to the laboratory in order to obtain samples with higher number of viable MSCs without microbiological contamination. Different biomaterials like chitosan-silicate hybrid, collagen, PLGA90:10, poly(DL-lactide-ɛ-caprolactone), and poly(vinyl alcohol) loaded with electrical conductive materials, associated to MSCs have also been tested in the rat sciatic nerve in axonotmesis and neurotmesis lesions. The in vitro studies of the scaffolds included citocompatibility evaluation of the biomaterials used and cell characterization by imunocytochemistry, karyotype analysis, differentiation capacity into neuroglial-like cells, and flow cytometry. The regeneration process follow-up has been performed by functional analysis and the repaired nerves processed for stereological studies permitted the morphologic regeneration evaluation. The MSCs from Wharton's jelly delivered through tested biomaterials should be regarded a potentially valuable tool to improve clinical outcome especially after trauma to sensory nerves. In addition, these cells represent a noncontroversial source of primitive mesenchymal progenitor cells, which can be harvested after birth, cryogenically stored, thawed, and expanded for therapeutic uses. The importance of a longitudinal study concerning tissue engineering of the peripheral nerve, which includes a multidisciplinary team able to develop biomaterials associated to cell therapies, to perform preclinical trials concerning animal welfare and the appropriate animal model is here enhanced. © 2013 Elsevier Inc. All rights reserved.

  3. Hypoxia-mimetic agents inhibit proliferation and alter the morphology of human umbilical cord-derived mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Zeng Hui-Lan

    2011-08-01

    Full Text Available Abstract Background The therapeutic efficacy of human mesenchymal stem cells (hMSCs for the treatment of hypoxic-ischemic diseases is closely related to level of hypoxia in the damaged tissues. To elucidate the potential therapeutic applications and limitations of hMSCs derived from human umbilical cords, the effects of hypoxia on the morphology and proliferation of hMSCs were analyzed. Results After treatment with DFO and CoCl2, hMSCs were elongated, and adjacent cells were no longer in close contact. In addition, vacuole-like structures were observed within the cytoplasm; the rough endoplasmic reticulum expanded, and expanded ridges were observed in mitochondria. In addition, DFO and CoCl2 treatments for 48 h significantly inhibited hMSCs proliferation in a concentration-dependent manner (P Conclusions The hypoxia-mimetic agents, DFO and CoCl2, alter umbilical cord-derived hMSCs morphology and inhibit their proliferation through influencing the cell cycle.

  4. Icariin combined with human umbilical cord mesenchymal stem cells significantly improve the impaired kidney function in chronic renal failure.

    Science.gov (United States)

    Li, Wen; Wang, Li; Chu, Xiaoqian; Cui, Huantian; Bian, Yuhong

    2017-04-01

    At present, the main therapy for chronic renal failure (CRF) is dialysis and renal transplantation, but neither obtains satisfactory results. Human umbilical cord mesenchymal stem cells (huMSCs) are isolated from the fetal umbilical cord which has a high self-renewal and multi-directional differentiation potential. Icariin (ICA), a kidney-tonifying Chinese Medicine can enhance the multipotency of huMSCs. Therefore, this work seeks to employ the use of ICA-treated huMSCs for the treatment of chronic renal failure. Blood urea nitrogen and creatinine (Cr) analyses showed amelioration of functional parameters in ICA-treated huMSCs for the treatment of CRF rats at 3, 7, and 14 days after transplantation. ICA-treated huMSCs can obviously increase the number of cells in injured renal tissues at 3, 7, and 14 days after transplantation by optical molecular imaging system. Hematoxylin-eosin staining demonstrated that ICA-treated huMSCs reduced the levels of fibrosis in CRF rats at 14 days after transplantation. Superoxide dismutase and Malondialdehyde analyses showed that ICA-treated huMSCs reduced the oxidative damage in CRF rats. Moreover, transplantation with ICA-treated huMSCs decreased inflammatory responses, promoted the expression of growth factors, and protected injured renal tissues. Taken together, our findings suggest that ICA-treated huMSCs could improve the kidney function in CRF rats.

  5. Safety of Allogeneic Canine Adipose Tissue-Derived Mesenchymal Stem Cell Intraspinal Transplantation in Dogs with Chronic Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Cláudia Cardoso Maciel Escalhão

    2017-01-01

    Full Text Available This is a pilot clinical study primarily designed to assess the feasibility and safety of X-ray-guided percutaneous intraspinal injection of allogeneic canine adipose tissue-derived mesenchymal stem cells in dogs with chronic spinal cord injury. Six dogs with chronic paraplegia (≥six months were intraparenchymally injected with allogeneic cells in the site of lesion. Cells were obtained from subcutaneous adipose tissue of a healthy dog, cultured to passage 3, labeled with 99mTechnetium, and transplanted into the lesion by percutaneous X-ray-guided injection. Digital X-ray efficiently guided cell injection as 99mTechnetium-labeled cells remained in the injection site for at least 24 hours after transplantation. No adverse effects or complications (infection, neuropathic pain, or worsening of neurological function were observed during the 16-week follow-up period after transplantation. Three animals improved locomotion as assessed by the Olby scale. One animal walked without support, but no changes in deep pain perception were observed. We conclude that X-ray-guided percutaneous intraspinal transplantation of allogeneic cells in dogs with chronic spinal cord injury is feasible and safe. The efficacy of the treatment will be assessed in a new study involving a larger number of animals.

  6. Sphingosine-1-phosphate promotes the differentiation of human umbilical cord mesenchymal stem cells into cardiomyocytes under the designated culturing conditions

    Directory of Open Access Journals (Sweden)

    Zhang Henggui

    2011-06-01

    Full Text Available Abstract Background It is of growing interest to develop novel approaches to initiate differentiation of mesenchymal stem cells (MSCs into cardiomyocytes. The purpose of this investigation was to determine if Sphingosine-1-phosphate (S1P, a native circulating bioactive lipid metabolite, plays a role in differentiation of human umbilical cord mesenchymal stem cells (HUMSCs into cardiomyocytes. We also developed an engineered cell sheet from these HUMSCs derived cardiomyocytes by using a temperature-responsive polymer, poly(N-isopropylacrylamide (PIPAAm cell sheet technology. Methods Cardiomyogenic differentiation of HUMSCs was performed by culturing these cells with either designated cardiomyocytes conditioned medium (CMCM alone, or with 1 μM S1P; or DMEM with 10% FBS + 1 μM S1P. Cardiomyogenic differentiation was determined by immunocytochemical analysis of expression of cardiomyocyte markers and patch clamping recording of the action potential. Results A cardiomyocyte-like morphology and the expression of α-actinin and myosin heavy chain (MHC proteins can be observed in both CMCM culturing or CMCM+S1P culturing groups after 5 days' culturing, however, only the cells in CMCM+S1P culture condition present cardiomyocyte-like action potential and voltage gated currents. A new approach was used to form PIPAAm based temperature-responsive culture surfaces and this successfully produced cell sheets from HUMSCs derived cardiomyocytes. Conclusions This study for the first time demonstrates that S1P potentiates differentiation of HUMSCs towards functional cardiomyocytes under the designated culture conditions. Our engineered cell sheets may provide a potential for clinically applicable myocardial tissues should promote cardiac tissue engineering research.

  7. Therapeutic Effects of Umbilical Cord Blood Derived Mesenchymal Stem Cell-Conditioned Medium on Pulmonary Arterial Hypertension in Rats

    Directory of Open Access Journals (Sweden)

    Jae Chul Lee

    2015-11-01

    Full Text Available Background: Human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs may have multiple therapeutic applications for cell based therapy including the treatment of pulmonary artery hypertension (PAH. As low survival rates and potential tumorigenicity of implanted cells could undermine the mesenchymal stem cell (MSC cell-based therapy, we chose to investigate the use of conditioned medium (CM from a culture of MSC cells as a feasible alternative. Methods: CM was prepared by culturing hUCB-MSCs in three-dimensional spheroids. In a rat model of PAH induced by monocrotaline, we infused CM or the control unconditioned culture media via the tail-vein of 6-week-old Sprague-Dawley rats. Results: Compared with the control unconditioned media, CM infusion reduced the ventricular pressure, the right ventricle/(left ventricle+interventricular septum ratio, and maintained respiratory function in the treated animals. Also, the number of interleukin 1α (IL-1α, chemokine (C-C motif ligand 5 (CCL5, and tissue inhibitor of metalloproteinase 1 (TIMP-1–positive cells increased in lung samples and the number of terminal deoxynucleotidyl transferase–mediated deoxyuridine triphosphate nick-end labeling technique (TUNEL–positive cells decreased significantly in the CM treated animals. Conclusions: From our in vivo data in the rat model, the observed decreases in the TUNEL staining suggest a potential therapeutic benefit of the CM in ameliorating PAH-mediated lung tissue damage. Increased IL-1α, CCL5, and TIMP-1 levels may play important roles in this regard.

  8. Ex Vivo Expansion of Human Limbal Epithelial Cells Using Human Placenta-Derived and Umbilical Cord-Derived Mesenchymal Stem Cells

    OpenAIRE

    Sang Min Nam; Yong-Sun Maeng; Eung Kweon Kim; Kyoung Yul Seo; Helen Lew

    2017-01-01

    Ex vivo culture of human limbal epithelial cells (LECs) is used to treat limbal stem cell (LSC) deficiency, a vision loss condition, and suitable culture systems using feeder cells or serum without animal elements have been developed. This study evaluated the use of human umbilical cord or placenta mesenchymal stem cells (C-MSCs or P-MSCs, resp.) as feeder cells in an animal/serum-free coculture system with human LECs. C-/P-MSCs stimulated LEC colony formation of the stem cell markers (p63, A...

  9. Fate of transplanted bone marrow derived mesenchymal stem cells following spinal cord injury in rats by transplantation routes.

    Science.gov (United States)

    Kang, Eun-Sun; Ha, Kee-Yong; Kim, Young-Hoon

    2012-06-01

    This research was performed to investigate the differences of the transplanted cells' survival and differentiation, and its efficacy according to the delivery routes following spinal cord injury. Allogenic mesenchymal stem cells (MSCs) were transplanted intravenously (IV group) or intralesionally (IL group) at post-injury 1 day in rats. Behavioral improvement, engraftment and differentiation of the transplanted cells and the expression of neurotrophic factors of the transplanted groups were analyzed and compared with those of the control group. At 6 weeks post-injury, the mean BBB motor scales in the control, IV and IL groups were 6.5 ± 1.8, 11.1 ± 2.1, and 8.5 ± 2.8, respectively. Regardless of the delivery route, the MSCs transplantation following spinal cord injuries presented better behavioral improvement. The differentiations of the engrafted cells were different according to the delivery routes. The engrafted cells predominantly differentiated into astrocytes in the IV group and on the other hand, engrafted cells of the IL group demonstrated relatively even neural and glial differentiation. The expressions of neuronal growth factor were significantly higher in the IL group (mean relative optical density, 2.4 ± 0.15) than those in the control (2.16 ± 0.04) or IV group (1.7 ± 0.23). Transplantation of MSCs in the early stage of spinal cord injury gives a significant clinical improvement. However, the fate of the transplanted MSCs and expression of neuronal growth factors are different along the transplantation route.

  10. Transplantation of autologous bone marrow mesenchymal stem cells in the treatment of complete and chronic cervical spinal cord injury.

    Science.gov (United States)

    Dai, Guanghui; Liu, Xuebin; Zhang, Zan; Yang, Zhijun; Dai, Yiwu; Xu, Ruxiang

    2013-10-02

    Neuronal injuries have been a challenging problem for treatment, especially in the case of complete and chronic cervical spinal cord injury (SCI). Recently, particular attention is paid to the potential of stem cell in treating SCI, but there are only few clinical studies and insufficient data. This study explored the efficacy of autologous bone marrow mesenchymal stem cells (BMMSCs) transplantation in the treatment of SCI. Forty patients with complete and chronic cervical SCI were selected and randomly assigned to one of the two experimental groups, treatment group and control group. The treatment group received BMMSCs transplantation to the area surrounding injury, while the control group was not treated with any cell transplantation. Both the transplant recipients and the control group were followed up to 6 months, postoperatively. Preoperative and postoperative neurological functions were evaluated with AIS grading, ASIA score, residual urine volume and neurophysiological examination. Results showed that in the treatment group 10 patients had a significant clinical improvement in terms of motor, light touch, pin prick sensory and residual urine volume, while nine patients showed changes in AIS grade. Neurophysiological examination was consistent with clinical observations. No sign of tumor was evident until 6 months postoperatively. In the control group, no improvement was observed in any of the neurological functions specified above. BMMSCs transplantation improves neurological function in patients with complete and chronic cervical SCI, providing valuable information on applications of BMMSCs for the treatment of SCI. © 2013 Published by Elsevier B.V.

  11. Regeneration of Full-Thickness Rotator Cuff Tendon Tear After Ultrasound-Guided Injection With Umbilical Cord Blood-Derived Mesenchymal Stem Cells in a Rabbit Model

    OpenAIRE

    Park, Gi-Young; Kwon, Dong Rak; Lee, Sang Chul

    2015-01-01

    The therapeutic effects of ultrasound-guided human umbilical cord blood (UBC)-derived mesenchymal stem cell (MSC) injection to regenerate a full-thickness subscapularis tendon tear in a rabbit model were studied. Gross morphology and histology of the injected tendon were evaluated, and improvement in functional ability was assessed by motion analysis. Histology revealed that UCB-derived MSCs induced regeneration of the rotator cuff tendon; motion analysis showed improved walking capacity.

  12. Promoting the Recovery of Injured Liver with Poly (3-Hydroxybutyrate-Co-3-Hydroxyvalerate-Co-3-Hydroxyhexanoate) Scaffolds Loaded with Umbilical Cord-Derived Mesenchymal Stem Cells

    OpenAIRE

    Li, Pengshan; Zhang, Jin; Liu, Jing; Ma, Huan; Liu, Jie; Lie, Puchang; Wang, Yuechun; Liu, Gexiu; Zeng, Huilan; Li, Zhizhong; Wei, Xing

    2014-01-01

    Cell-based therapies are major focus of current research for treatment of liver diseases. In this study, mesenchymal stem cells were isolated from human umbilical cord Wharton's jelly (WJ-MSCs). Results confirmed that WJ-MSCs isolated in this study could express the typical MSC-specific markers and be induced to differentiate into adipocytes, osteoblasts, and chondrocytes. They could also be induced to differentiate into hepatocyte-like cells. Poly (3-hydroxybutyrate-co-3-hydroxyvalerate-co-3...

  13. Use of hybrid chitosan membranes and human mesenchymal stem cells from the Wharton jelly of umbilical cord for promoting nerve regeneration in an axonotmesis rat model★

    Science.gov (United States)

    Gärtner, Andrea; Pereira, Tiago; Simões, Maria João; Armada-da-Silva, Paulo AS; França, Miguel L; Sousa, Rosa; Bompasso, Simone; Raimondo, Stefania; Shirosaki, Yuki; Nakamura, Yuri; Hayakawa, Satoshi; Osakah, Akiyoshi; Porto, Beatriz; Luís, Ana Lúcia; Varejão, Artur SP; Maurício, Ana Colette

    2012-01-01

    Many studies have been dedicated to the development of scaffolds for improving post-traumatic nerve regeneration. The goal of this study was to assess the effect on nerve regeneration, associating a hybrid chitosan membrane with non-differentiated human mesenchymal stem cells isolated from Wharton's jelly of umbilical cord, in peripheral nerve reconstruction after crush injury. Chromosome analysis on human mesenchymal stem cell line from Wharton's jelly was carried out and no structural alterations were found in metaphase. Chitosan membranes were previously tested in vitro, to assess their ability in supporting human mesenchymal stem cell survival, expansion, and differentiation. For the in vivo testing, Sasco Sprague adult rats were divided in 4 groups of 6 or 7 animals each: Group 1, sciatic axonotmesis injury without any other intervention (Group 1-Crush); Group 2, the axonotmesis lesion of 3 mm was infiltrated with a suspension of 1 250–1 500 human mesenchymal stem cells (total volume of 50 μL) (Group 2-CrushCell); Group 3, axonotmesis lesion of 3 mm was enwrapped with a chitosan type III membrane covered with a monolayer of non-differentiated human mesenchymal stem cells (Group 3-CrushChitIIICell) and Group 4, axonotmesis lesion of 3 mm was enwrapped with a chitosan type III membrane (Group 4-CrushChitIII). Motor and sensory functional recovery was evaluated throughout a healing period of 12 weeks using sciatic functional index, static sciatic index, extensor postural thrust, and withdrawal reflex latency. Stereological analysis was carried out on regenerated nerve fibers. Results showed that infiltration of human mesenchymal stem cells, or the combination of chitosan membrane enwrapment and human mesenchymal stem cell enrichment after nerve crush injury provide a slight advantage to post-traumatic nerve regeneration. Results obtained with chitosan type III membrane alone confirmed that they significantly improve post-traumatic axonal regrowth and may

  14. Use of hybrid chitosan membranes and human mesenchymal stem cells from the Wharton jelly of umbilical cord for promoting nerve regeneration in an axonotmesis rat model.

    Science.gov (United States)

    Gärtner, Andrea; Pereira, Tiago; Simões, Maria João; Armada-da-Silva, Paulo As; França, Miguel L; Sousa, Rosa; Bompasso, Simone; Raimondo, Stefania; Shirosaki, Yuki; Nakamura, Yuri; Hayakawa, Satoshi; Osakah, Akiyoshi; Porto, Beatriz; Luís, Ana Lúcia; Varejão, Artur Sp; Maurício, Ana Colette

    2012-10-15

    Many studies have been dedicated to the development of scaffolds for improving post-traumatic nerve regeneration. The goal of this study was to assess the effect on nerve regeneration, associating a hybrid chitosan membrane with non-differentiated human mesenchymal stem cells isolated from Wharton's jelly of umbilical cord, in peripheral nerve reconstruction after crush injury. Chromosome analysis on human mesenchymal stem cell line from Wharton's jelly was carried out and no structural alterations were found in metaphase. Chitosan membranes were previously tested in vitro, to assess their ability in supporting human mesenchymal stem cell survival, expansion, and differentiation. For the in vivo testing, Sasco Sprague adult rats were divided in 4 groups of 6 or 7 animals each: Group 1, sciatic axonotmesis injury without any other intervention (Group 1-Crush); Group 2, the axonotmesis lesion of 3 mm was infiltrated with a suspension of 1 250-1 500 human mesenchymal stem cells (total volume of 50 μL) (Group 2-CrushCell); Group 3, axonotmesis lesion of 3 mm was enwrapped with a chitosan type III membrane covered with a monolayer of non-differentiated human mesenchymal stem cells (Group 3-CrushChitIIICell) and Group 4, axonotmesis lesion of 3 mm was enwrapped with a chitosan type III membrane (Group 4-CrushChitIII). Motor and sensory functional recovery was evaluated throughout a healing period of 12 weeks using sciatic functional index, static sciatic index, extensor postural thrust, and withdrawal reflex latency. Stereological analysis was carried out on regenerated nerve fibers. Results showed that infiltration of human mesenchymal stem cells, or the combination of chitosan membrane enwrapment and human mesenchymal stem cell enrichment after nerve crush injury provide a slight advantage to post-traumatic nerve regeneration. Results obtained with chitosan type III membrane alone confirmed that they significantly improve post-traumatic axonal regrowth and may

  15. Chronic spinal cord injury treated with transplanted autologous bone marrow-derived mesenchymal stem cells tracked by magnetic resonance imaging: a case report.

    Science.gov (United States)

    Chotivichit, Areesak; Ruangchainikom, Monchai; Chiewvit, Pipat; Wongkajornsilp, Adisak; Sujirattanawimol, Kittipong

    2015-04-09

    Intrathecal transplantation is a minimally invasive method for the delivery of stem cells, however, whether the cells migrate from the lumbar to the injured cervical spinal cord has not been proved in humans. We describe an attempt to track bone marrow-derived mesenchymal stem cells in a patient with a chronic cervical spinal cord injury. A 33-year-old Thai man who sustained an incomplete spinal cord injury from the atlanto-axial subluxation was enrolled into a pilot study aiming to track bone marrow-derived mesenchymal stem cells, labeled with superparamagnetic iron oxide nanoparticles, from intrathecal transplantation in chronic cervical spinal cord injury. He had been dependent on respiratory support since 2005. There had been no improvement in his neurological function for the past 54 months. Bone marrow-derived mesenchymal stem cells were retrieved from his iliac crest and repopulated to the target number. One half of the total cells were labeled with superparamagnetic iron oxide nanoparticles before transplantation to the intrathecal space between L4 and L5. Magnetic resonance imaging studies were performed immediately after the transplantation and at 48 hours, two weeks, one month and seven months after the transplantation. His magnetic resonance imaging scan performed immediately after the transplantation showed hyposignal intensity of paramagnetic substance tagged stem cells in the subarachnoid space at the lumbar spine area. This phenomenon was observed at the surface around his cervical spinal cord at 48 hours. A focal hyposignal intensity of tagged bone marrow-derived stem cells was detected at his cervical spinal cord with magnetic resonance imaging at 48 hours, which faded after two weeks, and then disappeared after one month. No clinical improvement of the neurological function had occurred at the end of this study. However, at 48 hours after the transplantation, he presented with a fever, headache, myalgia and worsening of his motor function (by one

  16. Conditioned Media from Human Adipose Tissue-Derived Mesenchymal Stem Cells and Umbilical Cord-Derived Mesenchymal Stem Cells Efficiently Induced the Apoptosis and Differentiation in Human Glioma Cell Lines In Vitro

    Directory of Open Access Journals (Sweden)

    Chao Yang

    2014-01-01

    Full Text Available Human mesenchymal stem cells (MSCs have an intrinsic property for homing towards tumor sites and can be used as tumor-tropic vectors for tumor therapy. But very limited studies investigated the antitumor properties of MSCs themselves. In this study we investigated the antiglioma properties of two easily accessible MSCs, namely, human adipose tissue-derived mesenchymal stem cells (ASCs and umbilical cord-derived mesenchymal stem cells (UC-MSCs. We found (1 MSC conditioned media can significantly inhibit the growth of human U251 glioma cell line; (2 MSC conditioned media can significantly induce apoptosis in human U251 cell line; (3 real-time PCR experiments showed significant upregulation of apoptotic genes of both caspase-3 and caspase-9 and significant downregulation of antiapoptotic genes such as survivin and XIAP after MSC conditioned media induction in U 251 cells; (4 furthermore, MSCs conditioned media culture induced rapid and complete differentiation in U251 cells. These results indicate MSCs can efficiently induce both apoptosis and differentiation in U251 human glioma cell line. Whereas UC-MSCs are more efficient for apoptosis induction than ASCs, their capability of differentiation induction is not distinguishable from each other. Our findings suggest MSCs themselves have favorable antitumor characteristics and should be further explored in future glioma therapy.

  17. [EFFECTS OF BONE MARROW MESENCHYMAL STEM CELLS TRANSPLANTATION FOR TREATING RAT SPINAL CORD INJURY AND CYTOKINE EXPRESSION AT INJURY SITES].

    Science.gov (United States)

    Mo, Cuiping; Ren, Lijie; Zhao Zhenfu; Zhou, Guangqian; Yao, Xiaolu; Gong, Feipeng; Chen, Gang

    2016-03-01

    To investigate the effects of bone marrow mesenchymal stem cells (BMSCs) transplantation for treating spinal cord injury (SCI) in rat and the cytokine expression changes in the local injury tissues. BMSCs were separated from Sprague Dawley (SD) rat and cultured with the whole bone marrow culture method. rAd-EGFP was used to transfect the 5th generation BMSCs for green fluorescent protein (GFP) label. Twelve SD rats were randomly divided into experimental group (n = 6) and control group (n = 6). After the T10 SCI model was established with Allen's impact device in 2 groups, 1 x 1096) GFP-labeled BMSCs and PBS were administered by subarachnoid injection in situ in experimental group and control group, respectively. Basso-Beattie-Bresnahan (BBB) score was used to detect the motor function at immediat, 1, 2, 3, 4, and 5 weeks after SCI. At 5 weeks, the spinal cord tissues were harvested for the histological and immunofluorescent staining examinations to measure the expressions of neural marker molecules, including Nestin, glial fibrillary acidic protein (GFAP), and neuron-specific nuclear protein (NeuN). Cytokine was analyzed with antibody array. At 5 weeks, 2 rats died of urinary tract infection in 2 groups respectively, the other rats survived to the end of experiment. BBB score of experimental group was significantly higher than that of control group at 1, 2, 3, 4, and 5 weeks (P cells with regular arrangement in the experimental group; there were less cells with irregular arrangement in the control group. Compared with the control group, Nestin and NeuN expressions significantly increased (P transplantation can improve survival and regeneration of nerve cells and enhances the recovery of nerve function by regulating secretion of cytokines from grafted BMSCs.

  18. Evaluation of umbilical cord mesenchymal stem cell labeling with superparamagnetic iron oxide nanoparticles coated with dextran and complexed with Poly-L-lysine

    Directory of Open Access Journals (Sweden)

    Tatiana Taís Sibov

    2012-06-01

    Full Text Available Objective: The objective of this study was to evaluate the effect of thelabeling of umbilical cord vein derived mesenchymal stem cells withsuperparamagnetic iron oxide nanoparticles coated with dextran andcomplexed to a non-viral transfector agent transfector poly-L-lysine.Methods: The labeling of mesenchymal stem cells was performedusing the superparamagnetic iron oxide nanoparticles/dextrancomplexed and not complexed to poly-L-lysine. Superparamagneticiron oxide nanoparticles/dextran was incubated with poly-L-lysine inan ultrasonic sonicator at 37°C for 10 minutes for complex formationsuperparamagnetic iron oxide nanoparticles/dextran/poly-L-lysineby electrostatic interaction. Then, the mesenchymal stem cellswere incubated overnight with the complex superparamagnetic ironoxide nanoparticles/dextran/poly-L-lysine and superparamagneticiron oxide nanoparticles/dextran. After the incubation period themesenchymal stem cells were evaluated by internalization of thecomplex superparamagnetic iron oxide nanoparticles/dextran/poly-L-lysine and superparamagnetic iron oxide nanoparticles/dextran byPrussian Blue stain. Cellular viability of labeled mesenchymal stemcells was evaluated by cellular proliferation assay using 5,6-carboxyfluorescein-succinimidyl ester method and apoptosis detectionby Annexin V- Propidium Iodide assay. Results: mesenchymalstem cells labeled with superparamagnetic iron oxide nanoparticles/dextran without poly-L-lysine not internalized efficiently thesuperparamagnetic iron oxide nanoparticles due to its low presencedetected within cells. Mesenchymal stem cells labeled with thecomplex superparamagnetic iron oxide nanoparticles/dextran/poly-L-lysine efficiently internalized the superparamagnetic iron oxidenanoparticles due to greater presence in the cells interior. The viabilityand apoptosis assays demonstrated that the mesenchymal stemcells labeled and not labeled respectively with the superparamagneticiron oxide nanoparticles

  19. Activation of the Extracellular Signal-Regulated Kinase Signaling Is Critical for Human Umbilical Cord Mesenchymal Stem Cell Osteogenic Differentiation

    Directory of Open Access Journals (Sweden)

    Chen-Shuang Li

    2016-01-01

    Full Text Available Human umbilical cord mesenchymal stem cells (hUCMSCs are recognized as candidate progenitor cells for bone regeneration. However, the mechanism of hUCMSC osteogenesis remains unclear. In this study, we revealed that mitogen-activated protein kinases (MAPKs signaling is involved in hUCMSC osteogenic differentiation in vitro. Particularly, the activation of c-Jun N-terminal kinases (JNK and p38 signaling pathways maintained a consistent level in hUCMSCs through the entire 21-day osteogenic differentiation period. At the same time, the activation of extracellular signal-regulated kinases (ERK signaling significantly increased from day 5, peaked at day 9, and declined thereafter. Moreover, gene profiling of osteogenic markers, alkaline phosphatase (ALP activity measurement, and alizarin red staining demonstrated that the application of U0126, a specific inhibitor for ERK activation, completely prohibited hUCMSC osteogenic differentiation. However, when U0126 was removed from the culture at day 9, ERK activation and osteogenic differentiation of hUCMSCs were partially recovered. Together, these findings demonstrate that the activation of ERK signaling is essential for hUCMSC osteogenic differentiation, which points out the significance of ERK signaling pathway to regulate the osteogenic differentiation of hUCMSCs as an alternative cell source for bone tissue engineering.

  20. Dual Differentiation-Exogenous Mesenchymal Stem Cell Therapy for Traumatic Spinal Cord Injury Repair in a Murine Hemisection Model

    Directory of Open Access Journals (Sweden)

    Hai Liu

    2013-01-01

    Full Text Available Mesenchymal stem cell (MSC transplantation has shown tremendous promise as a therapy for repair of various tissues of the musculoskeletal, vascular, and central nervous systems. Based on this success, recent research in this field has focused on complex tissue damage, such as that which occurs from traumatic spinal cord injury (TSCI. As the critical event for successful exogenous, MSC therapy is their migration to the injury site, which allows for their anti-inflammatory and morphogenic effects on fracture healing, neuronal regeneration, and functional recover. Thus, there is a need for a cost-effective in vivo model that can faithfully recapitulate the salient features of the injury, therapy, and recovery. To address this, we review the recent advances in exogenous MSC therapy for TSCI and traumatic vertebral fracture repair and the existing challenges regarding their translational applications. We also describe a novel murine model designed to take advantage of multidisciplinary collaborations between musculoskeletal and neuroscience researchers, which is needed to establish an efficacious MSC therapy for TSCI.

  1. Umbilical Cord-Derived Mesenchymal Stem Cells Inhibit Cadherin-11 Expression by Fibroblast-Like Synoviocytes in Rheumatoid Arthritis

    Directory of Open Access Journals (Sweden)

    Cheng Zhao

    2015-01-01

    Full Text Available This study aimed to determine whether umbilical cord-derived mesenchymal stem cells (UCMSC regulate Cadherin-11 (CDH11 expression by fibroblast-like synoviocytes (FLS in rheumatoid arthritis (RA. FLS were isolated from the synovium of RA and osteoarthritis (OA patients. FLS from RA patients were cocultured with UCMSC in a transwell system. CDH11 mRNA levels in FLS were tested, and levels of soluble factors expressed by UCMSC, such as indoleamine 2,3-dioxygenase (IDO, hepatocyte growth factor (HGF, and interleukin- (IL- 10, were determined. IDO, HGF, and IL-10 were upregulated in cocultures, so that appropriate inhibitors were added before determination of CDH11 expression. The effects of UCMSC on arthritis were investigated in the collagen-induced arthritis (CIA model in Wistar rats. FLS from RA patients expressed higher CDH11 levels than those from OA patients, and this effect was suppressed by UCMSC. The inhibitory effect of UCMSC on CDH11 expression by FLS was abolished by suppression of IL-10 activity. CDH11 expression in synovial tissues was higher in the context of CIA than under basal conditions, and this effect was prevented by UCMSC administration. IL-10 mediates the inhibitory effect of UCMSC on CDH11 expression by FLS, and this mechanism might be targeted to ameliorate arthritis.

  2. Low immunogenicity of allogeneic human umbilical cord blood-derived mesenchymal stem cells in vitro and in vivo.

    Science.gov (United States)

    Lee, Miyoung; Jeong, Sang Young; Ha, Jueun; Kim, Miyeon; Jin, Hye Jin; Kwon, Soon-Jae; Chang, Jong Wook; Choi, Soo Jin; Oh, Wonil; Yang, Yoon Sun; Kim, Jae-Sung; Jeon, Hong Bae

    2014-04-18

    Evaluation of the immunogenicity of human mesenchymal stem cells (MSCs) in an allogeneic setting during therapy has been hampered by lack of suitable models due to technical and ethical limitations. Here, we show that allogeneic human umbilical cord blood derived-MSCs (hUCB-MSCs) maintained low immunogenicity even after immune challenge in vitro. To confirm these properties in vivo, a humanized mouse model was established by injecting isolated hUCB-derived CD34+ cells intravenously into immunocompromised NOD/SCID IL2γnull (NSG) mice. After repeated intravenous injection of human peripheral blood mononuclear cells (hPBMCs) or MRC5 cells into these mice, immunological alterations including T cell proliferation and increased IFN-γ, TNF-α, and human IgG levels, were observed. In contrast, hUCB-MSC injection did not elicit these responses. While lymphocyte infiltration in the lung and small intestine and reduced survival rates were observed after hPBMC or MRC5 transplantation, no adverse events were observed following hUCB-MSC introduction. In conclusion, our data suggest that allogeneic hUCB-MSCs have low immunogenicity in vitro and in vivo, and are therefore "immunologically safe" for use in allogeneic clinical applications. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Extracellular matrix from human umbilical cord-derived mesenchymal stem cells as a scaffold for peripheral nerve regeneration.

    Science.gov (United States)

    Xiao, Bo; Rao, Feng; Guo, Zhi-Yuan; Sun, Xun; Wang, Yi-Guo; Liu, Shu-Yun; Wang, Ai-Yuan; Guo, Quan-Yi; Meng, Hao-Ye; Zhao, Qing; Peng, Jiang; Wang, Yu; Lu, Shi-Bi

    2016-07-01

    The extracellular matrix, which includes collagens, laminin, or fibronectin, plays an important role in peripheral nerve regeneration. Recently, a Schwann cell-derived extracellular matrix with classical biomaterial was used to mimic the neural niche. However, extensive clinical use of Schwann cells remains limited because of the limited origin, loss of an autologous nerve, and extended in vitro culture times. In the present study, human umbilical cord-derived mesenchymal stem cells (hUCMSCs), which are easily accessible and more proliferative than Schwann cells, were used to prepare an extracellular matrix. We identified the morphology and function of hUCMSCs and investigated their effect on peripheral nerve regeneration. Compared with a non-coated dish tissue culture, the hUCMSC-derived extracellular matrix enhanced Schwann cell proliferation, upregulated gene and protein expression levels of brain-derived neurotrophic factor, glial cell-derived neurotrophic factor, and vascular endothelial growth factor in Schwann cells, and enhanced neurite outgrowth from dorsal root ganglion neurons. These findings suggest that the hUCMSC-derived extracellular matrix promotes peripheral nerve repair and can be used as a basis for the rational design of engineered neural niches.

  4. Therapeutic potential of human umbilical cord blood mesenchymal stem cells on erectile function in rats with cavernous nerve injury.

    Science.gov (United States)

    Zhu, Jian-Qiang; Lu, Hong-Kai; Cui, Zhi-Qiang; Wang, Yong-Chuan; Li, Yong-Hui; Zhao, Weixin; Fu, Qiang; Xu, Yue-Min; Xu, Yong; Song, Lu-Jie

    2015-07-01

    To evaluate the therapeutic potential of human umbilical cord blood mesenchymal stem cells (hUCBMSCs) on promoting erectile function in a rat model of bilateral cavernous nerve (CN) crush injury. Fifty male Sprague-Dawley rats were randomly assigned to sham + PBS group (n = 10), BCNI (bilateral cavernous nerve crush injury) + PBS group (n = 10), BCNI + hUCBMSCs group (n = 30). At day 28 (n = 10) post-surgery, erectile function was examined and histological specimens were harvested. Compared with BCNI + PBS group, hUCBMSC intracavernous injection treatment significantly increased the mean ratio of ICP/MAP, nNOS-positive nerve fibers in the dorsal penile nerve, smooth muscle content, and smooth muscle to collagen ratio in the corpus cavernousum. Electron microscopy revealed few CN and major pelvic ganglion (MPG) lesions in the BCNI + hUCBMSCs group. Injected hUCBMSCs were localized to the sinusoid endothelium of the penis and MPG on day 1, 3, 7, and 28 post-intracavernous injection. hUCBMSCs intracavernous injection treatment improves erectile function by inhibiting corpus cavernosum fibrosis and exerting neuroregenerative effects on cell bodies of injured nerves at MPG in a BCNI rat model.

  5. Ultrastructural and immunocytochemical analysis of multilineage differentiated human dental pulp- and umbilical cord-derived mesenchymal stem cells

    NARCIS (Netherlands)

    Struys, T.; Moreels, M.; Martens, W.; Donders, R.; Wolfs, E.; Lambrichts, I.

    2011-01-01

    Mesenchymal stem cells (MSCs) are one of the most promising stem cell types due to their availability and relatively simple requirements for in vitro expansion and genetic manipulation. Besides the well-characterized MSCs derived from bone marrow, there is growing evidence suggesting that dental

  6. Differentiation of human umbilical cord Wharton's jelly-derived mesenchymal stem cells into endometrial cells.

    Science.gov (United States)

    Shi, Qin; Gao, JingWei; Jiang, Yao; Sun, Baolan; Lu, Wei; Su, Min; Xu, Yunzhao; Yang, Xiaoqing; Zhang, Yuquan

    2017-11-02

    Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) are a novel and promising strategy for tissue engineering because of their ability to differentiate into many cell types. We characterized the differentiation of WJ-MSCs into endometrial epithelial cell (EEC)-like and endometrial stromal cell (ESC)-like cells and assessed the effect of 17β-estradiol and 8-Br-cAMP on the differentiation system. WJ-MSCs were treated in two ways to differentiate into EEC-like and ESC-like cells respectively: cocultured with ESCs in control/differentiation medium (17β-estradiol, growth factors); and cultured in control/differentiation medium (8-Br-cAMP alone or 8-Br-cAMP plus 17β-estrogen and growth factors). Three signaling pathway inhibitors (SB203580, PD98059, H89) were used to investigate the mechanism of WJ-MSC differentiation into ESC-like cells. Immunofluorescence, western blot and flow cytometry analyses were used to analyze expression of epithelial markers and stromal cell markers. Enzyme-linked immunosorbent assays were used to test the production of secretory proteins associated with the differentiation of ESC-like cells. 17β-estradiol at 1 μM downregulated vimentin and CD13 and upregulated cytokeratin and CD9 proteins, promoting the differentiation of WJ-MSCs into EEC-like cells in the coculture system. 8-Br-cAMP at 0.5 mM upregulated vimentin and CD13 and downregulated CK and CD9, promoting the differentiation of WJ-MSCs into ESC-like cells. Prolactin (PRL) and insulin-like growth factor-binding protein 1 (IGFBP1) were upregulated and the protein kinase A (PKA) signaling pathway was activated, whereas extracellular signal-regulated (ERK)1/2 and p38 mitogen-activated protein kinase (MAPK) were not affected. 17β-estradiol at 1 μM is a good inducer for facilitating the differentiation of WJ-MSCs into EEC-like cells. 8-Br-cAMP plus estrogen and growth factors can induce the differentiation of WJ-MSCs into ESC-like cells. During the differentiation of WJ

  7. Repair of Osteochondral Defects Using Human Umbilical Cord Wharton’s Jelly-Derived Mesenchymal Stem Cells in a Rabbit Model

    Directory of Open Access Journals (Sweden)

    Shuyun Liu

    2017-01-01

    Full Text Available Umbilical cord Wharton’s jelly-derived mesenchymal stem cell (WJMSC is a new-found mesenchymal stem cell in recent years with multiple lineage potential. Due to its abundant resources, no damage procurement, and lower immunogenicity than other adult MSCs, WJMSC promises to be a good xenogenous cell candidate for tissue engineering. This in vivo pilot study explored the use of human umbilical cord Wharton’s jelly mesenchymal stem cells (hWJMSCs containing a tissue engineering construct xenotransplant in rabbits to repair full-thickness cartilage defects in the femoral patellar groove. We observed orderly spatial-temporal remodeling of hWJMSCs into cartilage tissues during repair over 16 months, with characteristic architectural features, including a hyaline-like neocartilage layer with good surface regularity, complete integration with adjacent host cartilage, and regenerated subchondral bone. No immune rejection was detected when xenograft hWJMSCs were implanted into rabbit cartilage defects. The repair results using hWJMSCs were superior to those of chondrogenically induced hWJMSCs after assessing gross appearance and histological grading scores. These preliminary results suggest that using novel undifferentiated hWJMSCs as seed cells might be a better approach than using transforming growth factor-β-induced differentiated hWJMSCs for in vivo tissue engineering treatment of cartilage defects. hWJMSC allografts may be promising for clinical applications.

  8. Good manufacturing practice-compliant isolation and culture of human umbilical cord blood-derived mesenchymal stem cells.

    Science.gov (United States)

    Pham, Phuc Van; Vu, Ngoc Bich; Pham, Vuong Minh; Truong, Nhung Hai; Pham, Truc Le-Buu; Dang, Loan Thi-Tung; Nguyen, Tam Thanh; Bui, Anh Nguyen-Tu; Phan, Ngoc Kim

    2014-02-24

    Mesenchymal stem cells (MSCs) are an attractive source of stem cells for clinical applications. These cells exhibit a multilineage differentiation potential and strong capacity for immune modulation. Thus, MSCs are widely used in cell therapy, tissue engineering, and immunotherapy. Because of important advantages, umbilical cord blood-derived MSCs (UCB-MSCs) have attracted interest for some time. However, the applications of UCB-MSCs are limited by the small number of recoverable UCB-MSCs and fetal bovine serum (FBS)-dependent expansion methods. Hence, this study aimed to establish a xenogenic and allogeneic supplement-free expansion protocol. UCB was collected to prepare activated platelet-rich plasma (aPRP) and mononuclear cells (MNCs). aPRP was applied as a supplement in Iscove modified Dulbecco medium (IMDM) together with antibiotics. MNCs were cultured in complete IMDM with four concentrations of aPRP (2, 5, 7, or 10%) or 10% FBS as the control. The efficiency of the protocols was evaluated in terms of the number of adherent cells and their expansion, the percentage of successfully isolated cells in the primary culture, surface marker expression, and in vitro differentiation potential following expansion. The results showed that primary cultures with complete medium containing 10% aPRP exhibited the highest success, whereas expansion in complete medium containing 5% aPRP was suitable. UCB-MSCs isolated using this protocol maintained their immunophenotypes, multilineage differentiation potential, and did not form tumors when injected at a high dose into athymic nude mice. This technique provides a method to obtain UCB-MSCs compliant with good manufacturing practices for clinical application.

  9. Altered Bioenergetic Profile in Umbilical Cord and Amniotic Mesenchymal Stem Cells from Newborns of Obese Women.

    Science.gov (United States)

    Iaffaldano, Laura; Nardelli, Carmela; D'Alessio, Francesca; D'Argenio, Valeria; Nunziato, Marcella; Mauriello, Lucia; Procaccini, Claudio; Maruotti, Giuseppe Maria; Martinelli, Pasquale; Matarese, Giuseppe; Pastore, Lucio; Del Vecchio, Luigi; Labruna, Giuseppe; Sacchetti, Lucia

    2018-01-03

    Nutritional imbalance and metabolic alterations associated with maternal obesity during pregnancy predispose offspring to obesity and/or to type 2 diabetes, but the mechanisms underlying these effects are still obscure. In this context, we evaluated whether the two main energy-producing pathways (glycolysis and mitochondrial oxidative phosphorylation) are impaired in obesity during pregnancy thus contributing to metabolic intrauterine alterations. Specifically, we studied metabolic abnormalities in the intrauterine life of newborns using stem cells isolated from amnion and umbilical cord (hA- and hUC-MSCs). We isolated, at delivery, neonatal hUC-MSCs from 13 obese (Ob) and 10 normal weight control (Co) women (prepregnancy body mass index >30 and women. The hUC-MSC immunophenotype was characterized by flow cytometry. The extracellular acidification rate and oxygen consumption rate, which are indicators of glycolysis and mitochondrial respiration, respectively, were measured using the Seahorse XFe96 analyzer. Basal glycolysis (Co: 27.5 ± 2.9; Ob: 21.3 ± 2.3 mpH/min) and glycolytic capacity (Co: 65.3 ± 1.2; Ob: 55.0 ± 0.3 mpH/min) were significantly lower in Ob-hUC-MSCs versus Co-hUC-MSCs (P < 0.05 and P < 0.0001, respectively). Mitochondrial basal respiration (Co: 46.9 ± 0.7; Ob: 32.6 ± 0.8 pmol/min), ATP-linked respiration (Co: 29.3 ± 1.9; Ob: 20.1 ± 0.3 pmol/min), and maximal respiration (Co: 75.2 ± 5.3; Ob: 50.5 ± 4.1 pmol/min) were significantly (P < 0.0001) lower in Ob-hUC-MSCs versus Co-hUC-MSCs. Similarly, bioenergetic profiles of the subgroup of Ob-hA-MSCs differed from those of Co-hA-MSCs. These results demonstrate that the bioenergetic performance of Ob-h-MSCs is lower in basal conditions and in conditions of increased energy demand compared with Co-h-MSCs. In conclusion, we describe a new mechanism whereby obesity alters intrauterine metabolism. This process could concur to predispose

  10. 3D study of capillary network derived from human cord blood mesenchymal stem cells and differentiated into endothelial cell with VEGFR2 protein expression

    Directory of Open Access Journals (Sweden)

    Mohammad Hossein Tahmasbi

    2013-09-01

    Full Text Available New blood forming vessels are produced by differentiation of mesodermal precursor cells to angioblasts that become endothelial cells (ECs which in turn give rise to primitive capillary network. Human cord blood (HCB contains large subsets of mononuclear cells (MNCs that can be differentiated into endothelial-like cells in vitro. Human mononuclear progenitor cells were purified from fresh umbilical cord blood by the expression of CD34 and FLK-1 antigens expressed in both angioblasts and hematopoetic stem cells. The HCB derived mesenchymal stem cells (MSCs can be differentiated into adipocyte, osteocyte, chondrocyte and ECs. In this study, the differentiation of human cord blood mesenchymal stem cells (hCBMSCs into endothelial-like cells was induced in the presence of vascular endothelial growth factor (VEGF and insulin-like growth factor (IGF-1. The differentiated ECs were then examined for their ability to express VEGF receptor-2 (VEGFR2 and von Willebrand factor (vWF. These cells were adopted to grow, proliferate and develop into a capillary network in a semisolid gel matrix in vitro. The capillary network formation in each well of 24-well plate was found to be 80% in presence of VEGF (40 ng/ml and IGF-1 (20 ng/ml of culture media, suggesting that the capillary network formation is associated with endothelial-like cells derived from hCBMSCs by expression of their markers.

  11. Evaluation of the pro-angiogenic effect of nanoscale extracellular vesicles derived from human umbilical cord mesenchymal stem cells.

    Science.gov (United States)

    Dostert, G; Willemin, A-S; Jouan-Hureaux, V; Louis, H; Hupont, S; Gillet, P; Menu, P; Decot, V; Moby, V; Velot, É

    2017-01-01

    Mesenchymal stem cells (MSCs) are a common tool in regenerative medicine. The nanoscale extracellular vesicles (nEVs) secreted by these cells were recently brought up to light thanks to their therapeutic potential. In this study, we assessed the in vitro behaviour of human umbilical vein endothelial cells (HUVECs) exposed to nEVs derived from human umbilical cord mesenchymal stem cells (hUC-MSCs). Nanoscale extracellular vesicles were isolated and characterized by NanoSight® and flow cytometry. HUVECs were stimulated with various concentrations of nEVs. To assess nEV interactions with HUVECs, confocal microscopy and angiogenesis assay were performed. The use of nEVs derived from hUC-MSCs was able to produce positive outcomes on HUVECs by acting on their angiogenic potential.

  12. Efficient generation of multipotent mesenchymal stem cells from umbilical cord blood in stroma-free liquid culture.

    Directory of Open Access Journals (Sweden)

    Rowayda Peters

    Full Text Available BACKGROUND: Haematopoiesis is sustained by haematopoietic (HSC and mesenchymal stem cells (MSC. HSC are the precursors for blood cells, whereas marrow, stroma, bone, cartilage, muscle and connective tissues derive from MSC. The generation of MSC from umbilical cord blood (UCB is possible, but with low and unpredictable success. Here we describe a novel, robust stroma-free dual cell culture system for long-term expansion of primitive UCB-derived MSC. METHODS AND FINDINGS: UCB-derived mononuclear cells (MNC or selected CD34(+ cells were grown in liquid culture in the presence of serum and cytokines. Out of 32 different culture conditions that have been tested for the efficient expansion of HSC, we identified one condition (DMEM, pooled human AB serum, Flt-3 ligand, SCF, MGDF and IL-6; further denoted as D7 which, besides supporting HSC expansion, successfully enabled long-term expansion of stromal/MSC from 8 out of 8 UCB units (5 MNC-derived and 3 CD34(+ selected cells. Expanded MSC displayed a fibroblast-like morphology, expressed several stromal/MSC-related antigens (CD105, CD73, CD29, CD44, CD133 and Nestin but were negative for haematopoietic cell markers (CD45, CD34 and CD14. MSC stemness phenotype and their differentiation capacity in vitro before and after high dilution were preserved throughout long-term culture. Even at passage 24 cells remained Nestin(+, CD133(+ and >95% were positive for CD105, CD73, CD29 and CD44 with the capacity to differentiate into mesodermal lineages. Similarly we show that UCB derived MSC express pluripotency stem cell markers despite differences in cell confluency and culture passages. Further, we generated MSC from peripheral blood (PB MNC of 8 healthy volunteers. In all cases, the resulting MSC expressed MSC-related antigens and showed the capacity to form CFU-F colonies. CONCLUSIONS: This novel stroma-free liquid culture overcomes the existing limitation in obtaining MSC from UCB and PB enabling so far unmet

  13. Application potential of bone marrow mesenchymal stem cell (BMSCs) based tissue-engineering for spinal cord defect repair in rat fetuses with spina bifida aperta.

    Science.gov (United States)

    Li, Xiaoshuai; Yuan, Zhengwei; Wei, Xiaowei; Li, Hui; Zhao, Guifeng; Miao, Jiaoning; Wu, Di; Liu, Bo; Cao, Songying; An, Dong; Ma, Wei; Zhang, Henan; Wang, Weilin; Wang, Qiushi; Gu, Hui

    2016-04-01

    Spina bifida aperta are complex congenital malformations resulting from failure of fusion in the spinal neural tube during embryogenesis. Despite surgical repair of the defect, most patients who survive with spina bifida aperta have a multiple system handicap due to neuron deficiency of the defective spinal cord. Tissue engineering has emerged as a novel treatment for replacement of lost tissue. This study evaluated the prenatal surgical approach of transplanting a chitosan-gelatin scaffold seeded with bone marrow mesenchymal stem cells (BMSCs) in the healing the defective spinal cord of rat fetuses with retinoic acid induced spina bifida aperta. Scaffold characterisation revealed the porous structure, organic and amorphous content. This biomaterial promoted the adhesion, spreading and in vitro viability of the BMSCs. After transplantation of the scaffold combined with BMSCs, the defective region of spinal cord in rat fetuses with spina bifida aperta at E20 decreased obviously under stereomicroscopy, and the skin defect almost closed in many fetuses. The transplanted BMSCs in chitosan-gelatin scaffold survived, grew and expressed markers of neural stem cells and neurons in the defective spinal cord. In addition, the biomaterial presented high biocompatibility and slow biodegradation in vivo. In conclusion, prenatal transplantation of the scaffold combined with BMSCs could treat spinal cord defect in fetuses with spina bifida aperta by the regeneration of neurons and repairmen of defective region.

  14. Chondrogenic Differentiation of Defined Equine Mesenchymal Stem Cells Derived from Umbilical Cord Blood for Use in Cartilage Repair Therapy

    Directory of Open Access Journals (Sweden)

    Mélanie Desancé

    2018-02-01

    Full Text Available Cartilage engineering is a new strategy for the treatment of cartilage damage due to osteoarthritis or trauma in humans. Racehorses are exposed to the same type of cartilage damage and the anatomical, cellular, and biochemical properties of their cartilage are comparable to those of human cartilage, making the horse an excellent model for the development of cartilage engineering. Human mesenchymal stem cells (MSCs differentiated into chondrocytes with chondrogenic factors in a biomaterial appears to be a promising therapeutic approach for direct implantation and cartilage repair. Here, we characterized equine umbilical cord blood-derived MSCs (eUCB-MSCs and evaluated their potential for chondrocyte differentiation for use in cartilage repair therapy. Our results show that isolated eUCB-MSCs had high proliferative capacity and differentiated easily into osteoblasts and chondrocytes, but not into adipocytes. A three-dimensional (3D culture approach with the chondrogenic factors BMP-2 and TGF-β1 potentiated chondrogenic differentiation with a significant increase in cartilage-specific markers at the mRNA level (Col2a1, Acan, Snorc and the protein level (type II and IIB collagen without an increase in hypertrophic chondrocyte markers (Col10a1 and Mmp13 in normoxia and in hypoxia. However, these chondrogenic factors caused an increase in type I collagen, which can be reduced using small interfering RNA targeting Col1a2. This study provides robust data on MSCs characterization and demonstrates that eUCB-MSCs have a great potential for cartilage tissue engineering.

  15. Therapy for Cerebral Palsy by Human Umbilical Cord Blood Mesenchymal Stem Cells Transplantation Combined With Basic Rehabilitation Treatment

    Directory of Open Access Journals (Sweden)

    Che Zhang MD

    2015-03-01

    Full Text Available Background. Cerebral palsy (CP is the most common cause leading to childhood disability. Human umbilical cord blood mesenchymal stem cells (hUCB-MSCs transplantation is a promising alternative considering the safety and efficacy in current reports. This report represents a case of hUCB-MSCs transplantation combined with basic rehabilitation treatment beginning as early as age 6 months with follow-up as long as 5 years. Methods. A 6-year-old female patient was diagnosed with CP at age 6 months. The patient accepted 4 infusions of intravenous hUCB-MSCs in each course and received 4 courses of transplantation totally. A series of assessments were performed before the first transplantation, including laboratory tests, CDCC Infant Mental Development Scale, and Gross Motor Function Measure-88 (GMFM-88. Then annual assessments using the GMFM-88, Ashworth spasm assessment, and comprehensive function assessment scale were made in addition to the annual laboratory tests. In addition, electroencephalography and brain magnetic resonance imaging were conducted before transplantation and in the follow-up phase. Rehabilitation and safety follow-up have been ongoing for 5 years up to date. Results. There was no complaint about adverse effects during hospitalization or postoperative follow-up. Motor function recovered to normal level according to the evaluation of scales. Language function improved significantly. Linguistic rehabilitation therapy was enhanced for further improvement. Conclusions. The clinical application of hUC-MSCs combined with basic rehabilitation treatment was effective and safe for improving motor and comprehensive function in a patient with CP.

  16. Human umbilical cord matrix mesenchymal stem cells suppress the growth of breast cancer by expression of tumor suppressor genes.

    Directory of Open Access Journals (Sweden)

    Naomi Ohta

    Full Text Available Human and rat umbilical cord matrix mesenchymal stem cells (UCMSC possess the ability to control the growth of breast carcinoma cells. Comparative analyses of two types of UCMSC suggest that rat UCMSC-dependent growth regulation is significantly stronger than that of human UCMSC. Their different tumoricidal abilities were clarified by analyzing gene expression profiles in the two types of UCMSC. Microarray analysis revealed differential gene expression between untreated naïve UCMSC and those co-cultured with species-matched breast carcinoma cells. The analyses screened 17 differentially expressed genes that are commonly detected in both human and rat UCMSC. The comparison between the two sets of gene expression profiles identified two tumor suppressor genes, adipose-differentiation related protein (ADRP and follistatin (FST, that were specifically up-regulated in rat UCMSC, but down-regulated in human UCMSC when they were co-cultured with the corresponding species' breast carcinoma cells. Over-expression of FST, but not ADRP, in human UCMSC enhanced their ability to suppress the growth of MDA-231 cells. The growth of MDA-231 cells was also significantly lower when they were cultured in medium conditioned with FST, but not ADRP over-expressing human UCMSC. In the breast carcinoma lung metastasis model generated with MDA-231 cells, systemic treatment with FST-over-expressing human UCMSC significantly attenuated the tumor burden. These results suggest that FST may play an important role in exhibiting stronger tumoricidal ability in rat UCMSC than human UCMSC and also implies that human UCMSC can be transformed into stronger tumoricidal cells by enhancing tumor suppressor gene expression.

  17. The Effect of Umbilical Cord Blood Derived Mesenchymal Stem Cells in Monocrotaline-induced Pulmonary Artery Hypertension Rats.

    Science.gov (United States)

    Lee, Hyeryon; Lee, Jae Chul; Kwon, Jung Hyun; Kim, Kwan Chang; Cho, Min-Sun; Yang, Yoon Sun; Oh, Wonil; Choi, Soo Jin; Seo, Eun-Seok; Lee, Sang-Joon; Wang, Tae Jun; Hong, Young Mi

    2015-05-01

    Pulmonary arterial hypertension (PAH) causes right ventricular failure due to a gradual increase in pulmonary vascular resistance. The purposes of this study were to confirm the engraftment of human umbilical cord blood-mesenchymal stem cells (hUCB-MSCs) placed in the correct place in the lung and research on changes of hemodynamics, pulmonary pathology, immunomodulation and several gene expressions in monocrotaline (MCT)-induced PAH rat models after hUCB-MSCs transfusion. The rats were grouped as follows: the control (C) group; the M group (MCT 60 mg/kg); the U group (hUCB-MSCs transfusion). They received transfusions via the external jugular vein a week after MCT injection. The mean right ventricular pressure (RVP) was significantly reduced in the U group after the 2 week. The indicators of RV hypertrophy were significantly reduced in the U group at week 4. Reduced medial wall thickness in the pulmonary arteriole was noted in the U group at week 4. Reduced number of intra-acinar muscular pulmonary arteries was observed in the U group after 2 week. Protein expressions such as endothelin (ET)-1, endothelin receptor A (ERA), endothelial nitric oxide synthase (eNOS) and matrix metalloproteinase (MMP)-2 significantly decreased at week 4. The decreased levels of ERA, eNOS and MMP-2 immunoreactivity were noted by immnohistochemical staining. After hUCB-MSCs were administered, there were the improvement of RVH and mean RVP. Reductions in several protein expressions and immunomodulation were also detected. It is suggested that hUCB-MSCs may be a promising therapeutic option for PAH.

  18. Low immunogenicity of allogeneic human umbilical cord blood-derived mesenchymal stem cells in vitro and in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Miyoung; Jeong, Sang Young; Ha, Jueun; Kim, Miyeon; Jin, Hye Jin; Kwon, Soon-Jae [Biomedical Research Institute, MEDIPOST Co., Ltd, Seoul 137-874 (Korea, Republic of); Chang, Jong Wook [Research Institute for Future Medicine Stem Cell and Regenerative Medicine Center, Samsung Medical Center, Seoul 137-710 (Korea, Republic of); Choi, Soo Jin; Oh, Wonil; Yang, Yoon Sun [Biomedical Research Institute, MEDIPOST Co., Ltd, Seoul 137-874 (Korea, Republic of); Kim, Jae-Sung [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul 139-709 (Korea, Republic of); Jeon, Hong Bae, E-mail: jhb@medi-post.co.kr [Biomedical Research Institute, MEDIPOST Co., Ltd, Seoul 137-874 (Korea, Republic of)

    2014-04-18

    Highlights: • hUCB-MSCs maintained low immunogenicity even after immune challenge in vitro. • Humanized NSG mice were established using human UCB CD34+ cells. • Repeated intravenous hUCB-MSC injection into mice did not lead to immune responses and adverse events. • Allogeneic hUCB-MSCs maintained low immunogenicity in vitro and in vivo. - Abstract: Evaluation of the immunogenicity of human mesenchymal stem cells (MSCs) in an allogeneic setting during therapy has been hampered by lack of suitable models due to technical and ethical limitations. Here, we show that allogeneic human umbilical cord blood derived-MSCs (hUCB-MSCs) maintained low immunogenicity even after immune challenge in vitro. To confirm these properties in vivo, a humanized mouse model was established by injecting isolated hUCB-derived CD34+ cells intravenously into immunocompromised NOD/SCID IL2γnull (NSG) mice. After repeated intravenous injection of human peripheral blood mononuclear cells (hPBMCs) or MRC5 cells into these mice, immunological alterations including T cell proliferation and increased IFN-γ, TNF-α, and human IgG levels, were observed. In contrast, hUCB-MSC injection did not elicit these responses. While lymphocyte infiltration in the lung and small intestine and reduced survival rates were observed after hPBMC or MRC5 transplantation, no adverse events were observed following hUCB-MSC introduction. In conclusion, our data suggest that allogeneic hUCB-MSCs have low immunogenicity in vitro and in vivo, and are therefore “immunologically safe” for use in allogeneic clinical applications.

  19. Conditioned medium from bone marrow-derived mesenchymal stem cells improves recovery after spinal cord injury in rats: an original strategy to avoid cell transplantation.

    Directory of Open Access Journals (Sweden)

    Dorothée Cantinieaux

    Full Text Available Spinal cord injury triggers irreversible loss of motor and sensory functions. Numerous strategies aiming at repairing the injured spinal cord have been studied. Among them, the use of bone marrow-derived mesenchymal stem cells (BMSCs is promising. Indeed, these cells possess interesting properties to modulate CNS environment and allow axon regeneration and functional recovery. Unfortunately, BMSC survival and differentiation within the host spinal cord remain poor, and these cells have been found to have various adverse effects when grafted in other pathological contexts. Moreover, paracrine-mediated actions have been proposed to explain the beneficial effects of BMSC transplantation after spinal cord injury. We thus decided to deliver BMSC-released factors to spinal cord injured rats and to study, in parallel, their properties in vitro. We show that, in vitro, BMSC-conditioned medium (BMSC-CM protects neurons from apoptosis, activates macrophages and is pro-angiogenic. In vivo, BMSC-CM administered after spinal cord contusion improves motor recovery. Histological analysis confirms the pro-angiogenic action of BMSC-CM, as well as a tissue protection effect. Finally, the characterization of BMSC-CM by cytokine array and ELISA identified trophic factors as well as cytokines likely involved in the beneficial observed effects. In conclusion, our results support the paracrine-mediated mode of action of BMSCs and raise the possibility to develop a cell-free therapeutic approach.

  20. Clinical Effects of Novel Nanoscaled Core Decompression Rods Combined with Umbilical Cord Mesenchymal Stem Cells on the Treatment of Early Osteonecrosis of the Femoral Head

    Directory of Open Access Journals (Sweden)

    Hongyang Gao

    2015-01-01

    Full Text Available Osteonecrosis of the femoral head (ONFH is one of the most common diseases in orthopedics. In this study, we investigated the clinical effects of novel nanoscaled core decompression rods combined with mesenchymal stem cells on the treatment of the ONFH. 12 adult patients with early ONFH (at the stage of Ficat II received the treatment using the implantation of novel nanoscaled core decompression rods combined with umbilical cord mesenchymal stem cells. The grade of the patients’ hip was scored by Harris marking system before and after the surgery, and then paired t-test was done. We assessed the curative efficiency based on the change of the patients before and after the surgery. In particular, the survival rate of femoral head was assessed at 12 months after the surgery. The results demonstrated that according to the standard of Harris Scoring, the average grade of hip joint before the surgery was 54.16 ± 4.23 points while average grade of hip joint at 12 months after the surgery was 85.28 ± 3.65 points. So, the implantation of the novel nanoscaled core decompression rods combined with mesenchymal stem cells had satisfactory clinical effects, suggesting that this implantation should be effective to treat early ONFH.

  1. Human mesenchymal stem cells

    DEFF Research Database (Denmark)

    Abdallah, Basem; Kassem, Moustapha

    2008-01-01

    introduced into clinical medicine in variety of applications and through different ways of administration. Here, we discuss approaches for isolation, characterization and directing differentiation of human mesenchymal stem cells (hMSC). An update of the current clinical use of the cells is also provided....

  2. Impact of adipose tissue or umbilical cord derived mesenchymal stem cells on the immunogenicity of human cord blood derived endothelial progenitor cells.

    Directory of Open Access Journals (Sweden)

    Kefang Tan

    Full Text Available The application of autologous endothelial progenitor cell (EPC transplantation is a promising approach in therapeutic cardiovascular diseases and ischemic diseases. In this study, we compared the immunogenicity of EPCs, adipose tissue (AD-derived mesenchymal stem cells (MSCs and umbilical cord (UC-derived MSCs by flow cytometry and the mixed lymphocyte reaction. The impact of AD-MSCs and UC-MSCs on the immunogenicity of EPCs was analyzed by the mixed lymphocyte reaction and cytokine secretion in vitro and was further tested by allogenic peripheral blood mononuclear cell (PBMC induced immuno-rejection on a cell/matrigel graft in an SCID mouse model. EPCs and AD-MSCs express higher levels of MHC class I than UC-MSCs. All three kinds of cells are negative for MHC class II. UC-MSCs also express lower levels of IFN-γ receptor mRNA when compared with EPCs and AD-MSCs. EPCs can stimulate higher rates of proliferation of lymphocytes than AD-MSCs and UC-MSCs. Furthermore, AD-MSCs and UC-MSCs can modulate immune response and inhibit lymphocyte proliferation induced by EPCs, mainly through inhibition of the proliferation of CD8+ T cells. Compared with UC-MSCs, AD-MSCs can significantly improve vessel formation and maintain the integrity of neovascular structure in an EPC+MSC/matrigel graft in SCID mice, especially under allo-PBMC induced immuno-rejection. In conclusion, our study shows that AD-MSC is a powerful candidate to minimize immunological rejection and improve vessel formation in EPC transplantation treatment.

  3. Transplanted neurally modified bone marrow-derived mesenchymal stem cells promote tissue protection and locomotor recovery in spinal cord injured rats.

    Science.gov (United States)

    Alexanian, Arshak R; Fehlings, Michael G; Zhang, Zhiying; Maiman, Dennis J

    2011-01-01

    Stem cell-based therapy for repair and replacement of lost neural cells is a promising treatment for central nervous system (CNS) diseases. Bone marrow (BM)-derived mesenchymal stem cells (MSCs) can differentiate into neural phenotypes and be isolated and expanded for autotransplantation with no risk of rejection. The authors examined whether transplanted neurally induced human MSCs (NI hMSCs), developed by a new procedure, can survive, differentiate, and promote tissue protection and functional recovery in injured spinal cord (ISC) rats. Neural induction was achieved by exposing cells simultaneously to inhibitors of DNA methylation, histone deacetylation, and pharmacological agents that increased cAMP levels. Three groups of adult female Sprague-Dawley rats were injected immediately rostral and caudal to the midline lesion with phosphate-buffered saline, MSCs, or NI hMSCs, 1 week after a spinal cord impact injury at T-8. Functional outcome was measured using the Basso Beattie Bresnahan (BBB) locomotor rating scale and thermal sensitivity test on a weekly basis up to 12 weeks postinjury. Graft integration and anatomy of spinal cord was assessed by stereological, histochemical, and immunohistochemical techniques. The transplanted NI hMSCs survived, differentiated, and significantly improved locomotor recovery of ISC rats. Transplantation also reduced the volume of lesion cavity and white matter loss. This method of hMSC modification may provide an alternative source of autologous adult stem cells for CNS repair.

  4. Genetically modified mesenchymal stem cells (MSCs) promote axonal regeneration and prevent hypersensitivity after spinal cord injury.

    Science.gov (United States)

    Kumagai, Gentaro; Tsoulfas, Pantelis; Toh, Satoshi; McNiece, Ian; Bramlett, Helen M; Dietrich, W Dalton

    2013-10-01

    Neurotrophins and the transplantation of bone marrow-derived stromal cells (MSCs) are both candidate therapies targeting spinal cord injury (SCI). While some studies have suggested the ability of MSCs to transdifferentiate into neural cells, other SCI studies have proposed anti-inflammatory and other mechanisms underlying established beneficial effects. We grafted rat MSCs genetically modified to express MNTS1, a multineurotrophin that binds TrkA, TrkB and TrkC, and p75(NTR) receptors or MSC-MNTS1/p75(-) that binds mainly to the Trk receptors. Seven days after contusive SCI, PBS-only, GFP-MSC, MSC-MNTS1/GFP or MSC-MNTS1/p75(-)/GFP were delivered into the injury epicenter. All transplanted groups showed reduced inflammation and cystic cavity size compared to control SCI rats. Interestingly, transplantation of the MSC-MNTS1 and MSC-MNTS1/p75(-), but not the naïve MSCs, enhanced axonal growth and significantly prevented cutaneous hypersensitivity after SCI. Moreover, transplantation of MSC-MNTS1/p75(-) promoted angiogenesis and modified glial scar formation. These findings suggest that MSCs transduced with a multineurotrophin are effective in promoting cell growth and improving sensory function after SCI. These novel data also provide insight into the neurotrophin-receptor dependent mechanisms through which cellular transplantation leads to functional improvement after experimental SCI. © 2013.

  5. Differentiation of Mesenchymal Stem Cells from Human Umbilical Cord Tissue into Odontoblast-Like Cells Using the Conditioned Medium of Tooth Germ Cells In Vitro

    Directory of Open Access Journals (Sweden)

    Tian Xia Li

    2013-01-01

    Full Text Available The easily accessible mesenchymal stem cells in the Wharton's jelly of human umbilical cord tissue (hUCMSCs have excellent proliferation and differentiation potential, but it remains unclear whether hUCMSCs can differentiate into odontoblasts. In this study, mesenchymal stem cells were isolated from the Wharton's jelly of human umbilical cord tissue using the simple method of tissue blocks culture attachment. UCMSC surface marker expression was then evaluated for the isolated cells using flow cytometry. The third-passage hUCMSCs induced by conditioned medium from developing tooth germ cells (TGC-CM displayed high alkaline phosphatase (ALP levels (P<0.001, an enhanced ability to proliferate (P<0.05, and the presence of mineralized nodules. These effects were not observed in cells treated with regular medium. After induction of hUCMSCs, the results of reverse transcriptional polymerase chain reaction (PCR indicated that the dentin sialophosphoprotein (DSPP and dentin matrix protein 1 (DMP1 genes were significantly tested. Additionally, dentin sialoprotein (DSP and DMP1 demonstrated significant levels of staining in an immunofluorescence analysis. In contrast, the control cells failed to display the characteristics of odontoblasts. Taken together, these results suggest that hUCMSCs can be induced to differentiate into odontoblast-like cells with TGC-CM and provide a novel strategy for tooth regeneration research.

  6. Comparative analysis of adherence, viability, proliferation and morphology of umbilical cord tissue-derived mesenchymal stem cells seeded on different titanium-coated expanded polytetrafluoroethylene scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Hollweck, Trixi; Marschmann, Michaela; Hartmann, Isabel; Akra, Bassil; Meiser, Bruno; Reichart, Bruno; Eissner, Guenther [Department of Cardiac Surgery, University of Munich, Marchioninistrasse 15, 81377 Munich (Germany); Eblenkamp, Markus; Wintermantel, Erich, E-mail: Guenther.Eissner@med.uni-muenchen.d [Chair of Medical Engineering, Technische Universitaet Muenchen, Boltzmannstrasse 15, 85748 Garching (Germany)

    2010-12-15

    Umbilical cord tissue comprises an attractive new source for mesenchymal stem cells. Umbilical cord tissue-derived mesenchymal stem cells (UCMSC) exhibit self-renewal, multipotency and immunological naivity, and they can be obtained without medical intervention. The transfer of UCMSC to the ischemic region of the heart may have a favorable impact on tissue regeneration. Benefit from typical cell delivery by injection to the infarcted area is often limited due to poor cell retention and survival. Another route of administration is to use populated scaffolds implanted into the infarcted zone. In this paper, the seeding efficiency of UCMSC on uncoated and titanium-coated expanded polytetrafluoroethylene (ePTFE) scaffolds with different surface structures was determined. Dualmesh (registered) (DM) offers a corduroy-like surface in contrast to the comparatively planar surface of cardiovascular patch (CVP). The investigation of adherence, viability and proliferation of UCMSC demonstrates that titanium-coated scaffolds are superior to uncoated scaffolds, independent of the surface structure. Microscopic images reveal spherical UCMSC seeded on uncoated scaffolds. In contrast, UCMSC on titanium-coated scaffolds display their characteristic spindle-shaped morphology and a homogeneous coverage of CVP. In summary, titanium coating of clinically approved CVP enhances the retention of UCMSC and thus offers a potential cell delivery system for the repair of the damaged myocardium.

  7. Effects of umbilical cord tissue mesenchymal stem cells (UCX®) on rat sciatic nerve regeneration after neurotmesis injuries.

    Science.gov (United States)

    Gärtner, A; Pereira, T; Armada-da-Silva, Pas; Amado, S; Veloso, Ap; Amorim, I; Ribeiro, J; Santos, Jd; Bárcia, Rn; Cruz, P; Cruz, H; Luís, Al; Santos, Jm; Geuna, S; Maurício, Ac

    2014-01-01

    Peripheral nerves have the intrinsic capacity of self-regeneration after traumatic injury but the extent of the regeneration is often very poor. Increasing evidence demonstrates that mesenchymal stem/stromal cells (MSCs) may play an important role in tissue regeneration through the secretion of soluble trophic factors that enhance and assist in repair by paracrine activation of surrounding cells. In the present study, the therapeutic value of a population of umbilical cord tissue-derived MSCs, obtained by a proprietary method (UCX(®)), was evaluated on end-to-end rat sciatic nerve repair. Furthermore, in order to promote both, end-to-end nerve fiber contacts and MSC cell-cell interaction, as well as reduce the flush away effect of the cells after administration, a commercially available haemostatic sealant, Floseal(®), was used as vehicle. Both, functional and morphologic recoveries were evaluated along the healing period using extensor postural thrust (EPT), withdrawal reflex latency (WRL), ankle kinematics analysis, and either histological analysis or stereology, in the hyper-acute, acute and chronic phases of healing. The histological analysis of the hyper-acute and acute phase studies revealed that in the group treated with UCX(®) alone the Wallerian degeneration was improved for the subsequent process of regeneration, the fiber organization was higher, and the extent of fibrosis was lower. The chronic phase experimental groups revealed that treatment with UCX(®) induced an increased number of regenerated fibers and thickening of the myelin sheet. Kinematics analysis showed that the ankle joint angle determined for untreated animals was significantly different from any of the treated groups at the instant of initial contact (IC). At opposite toe off (OT) and heel rise (HR), differences were found between untreated animals and the groups treated with either uCx(®) alone or UCX(®) administered with Floseal(®). Overall, the UCX(®) application presented

  8. Effects of umbilical cord tissue mesenchymal stem cells (UCX® on rat sciatic nerve regeneration after neurotmesis injuries

    Directory of Open Access Journals (Sweden)

    Gärtner A

    2013-04-01

    Full Text Available Peripheral nerves have the intrinsic capacity of self-regeneration after traumatic injury but the extent of the regeneration is often very poor. Increasing evidence demonstrates that mesenchymal stem/stromal cells (MSCs may play an important role in tissue regeneration through the secretion of soluble trophic factors that enhance and assist in repair by paracrine activation of surrounding cells. In the present study, the therapeutic value of a population of umbilical cord tissue-derived MSCs, obtained by a proprietary method (UCX®, was evaluated on end-to-end rat sciatic nerve repair. Furthermore, in order to promote both, end-to-end nerve fiber contacts and MSC cell-cell interaction, as well as reduce the flush away effect of the cells after administration, a commercially available haemostatic sealant, Floseal®, was used as vehicle. Both, functional and morphologic recoveries were evaluated along the healing period using extensor postural thrust (EPT, withdrawal reflex latency (WRL, ankle kinematics analysis, and either histological analysis or stereology, in the hyper-acute, acute and chronic phases of healing. The histological analysis of the hyper-acute and acute phase studies revealed that in the group treated with UCX ® alone the Wallerian degeneration was improved for the subsequent process of regeneration, the fiber organization was higher, and the extent of fibrosis was lower. The chronic phase experimental groups revealed that treatment with UCX® induced an increased number of regenerated fibers and thickening of the myelin sheet. Kinematics analysis showed that the ankle joint angle determined for untreated animals was significantly different from any of the treated groups at the instant of initial contact (IC. At opposite toe off (OT and heel rise (HR, differences were found between untreated animals and the groups treated with either UCX® alone or UCX® administered with Floseal®. Overall, the UCX® application presented

  9. Culturing on decellularized extracellular matrix enhances antioxidant properties of human umbilical cord-derived mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaozhen [School of Engineering, Sun Yat-sen University, Guangzhou 510006 (China); Zhou, Long; Chen, Xi [Orthopaedic Institute, Soochow University, Suzhou 215007 (China); Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006 (China); Liu, Tao [Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006 (China); Pan, Guoqing; Cui, Wenguo; Li, Mao; Luo, Zong-Ping [Orthopaedic Institute, Soochow University, Suzhou 215007 (China); Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006 (China); Pei, Ming [Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV 26506 (United States); Yang, Huilin [Orthopaedic Institute, Soochow University, Suzhou 215007 (China); Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006 (China); Gong, Yihong, E-mail: gongyih@mail.sysu.edu.cn [School of Engineering, Sun Yat-sen University, Guangzhou 510006 (China); He, Fan, E-mail: fanhe@suda.edu.cn [Orthopaedic Institute, Soochow University, Suzhou 215007 (China); Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006 (China)

    2016-04-01

    Human umbilical cord-derived mesenchymal stem cells (UC-MSCs) have attracted great interest in clinical application because of their regenerative potential and their lack of ethical issues. Our previous studies showed that decellularized cell-deposited extracellular matrix (ECM) provided an in vivo-mimicking microenvironment for MSCs and facilitated in vitro cell expansion. This study was conducted to analyze the cellular response of UC-MSCs when culturing on the ECM, including reactive oxygen species (ROS), intracellular antioxidative enzymes, and the resistance to exogenous oxidative stress. After decellularization, the architecture of cell-deposited ECM was characterized as nanofibrous, collagen fibrils and the matrix components were identified as type I and III collagens, fibronectin, and laminin. Compared to tissue culture polystyrene (TCPS) plates, culturing on ECM yielded a 2-fold increase of UC-MSC proliferation and improved the percentage of cells in the S phase by 2.4-fold. The levels of intracellular ROS and hydrogen peroxide (H{sub 2}O{sub 2}) in ECM-cultured cells were reduced by 41.7% and 82.9%, respectively. More importantly, ECM-cultured UC-MSCs showed enhanced expression and activity of intracellular antioxidative enzymes such as superoxide dismutase and catalase, up-regulated expression of silent information regulator type 1, and suppressed phosphorylation of p38 mitogen-activated protein kinase. Furthermore, a continuous treatment with exogenous 100 μM H{sub 2}O{sub 2} dramatically inhibited osteogenic differentiation of UC-MSCs cultured on TCPS, but culturing on ECM retained the differentiation capacity for matrix mineralization and osteoblast-specific marker gene expression. Collectively, by providing sufficient cell amounts and enhancing antioxidant capacity, decellularized ECM can be a promising cell culture platform for in vitro expansion of UC-MSCs. - Highlights: • Decellularization preserved the architecture and components of cell

  10. Gene expression changes in the injured spinal cord following transplantation of mesenchymal stem cells or olfactory ensheathing cells.

    Directory of Open Access Journals (Sweden)

    Abel Torres-Espín

    Full Text Available Transplantation of bone marrow derived mesenchymal stromal cells (MSC or olfactory ensheathing cells (OEC have demonstrated beneficial effects after spinal cord injury (SCI, providing tissue protection and improving the functional recovery. However, the changes induced by these cells after their transplantation into the injured spinal cord remain largely unknown. We analyzed the changes in the spinal cord transcriptome after a contusion injury and MSC or OEC transplantation. The cells were injected immediately or 7 days after the injury. The mRNA of the spinal cord injured segment was extracted and analyzed by microarray at 2 and 7 days after cell grafting. The gene profiles were analyzed by clustering and functional enrichment analysis based on the Gene Ontology database. We found that both MSC and OEC transplanted acutely after injury induce an early up-regulation of genes related to tissue protection and regeneration. In contrast, cells transplanted at 7 days after injury down-regulate genes related to tissue regeneration. The most important change after MSC or OEC transplant was a marked increase in expression of genes associated with foreign body response and adaptive immune response. These data suggest a regulatory effect of MSC and OEC transplantation after SCI regarding tissue repair processes, but a fast rejection response to the grafted cells. Our results provide an initial step to determine the mechanisms of action and to optimize cell therapy for SCI.

  11. Localized delivery of brain-derived neurotrophic factor-expressing mesenchymal stem cells enhances functional recovery following cervical spinal cord injury.

    Science.gov (United States)

    Gransee, Heather M; Zhan, Wen-Zhi; Sieck, Gary C; Mantilla, Carlos B

    2015-02-01

    Neurotrophins, such as brain-derived neurotrophic factor (BDNF), are important in modulating neuroplasticity and promoting recovery after spinal cord injury. Intrathecal delivery of BDNF enhances functional recovery following unilateral spinal cord hemisection (SH) at C2, a well-established model of incomplete cervical spinal cord injury. We hypothesized that localized delivery of BDNF-expressing mesenchymal stem cells (BDNF-MSCs) would promote functional recovery of rhythmic diaphragm activity after SH. In adult rats, bilateral diaphragm electromyographic (EMG) activity was chronically monitored to determine evidence of complete SH at 3 days post-injury, and recovery of rhythmic ipsilateral diaphragm EMG activity over time post-SH. Wild-type, bone marrow-derived MSCs (WT-MSCs) or BDNF-MSCs (2×10(5) cells) were injected intraspinally at C2 at the time of injury. At 14 days post-SH, green fluorescent protein (GFP) immunoreactivity confirmed MSCs presence in the cervical spinal cord. Functional recovery in SH animals injected with WT-MSCs was not different from untreated SH controls (n=10; overall, 20% at 7 days and 30% at 14 days). In contrast, functional recovery was observed in 29% and 100% of SH animals injected with BDNF-MSCs at 7 days and 14 days post-SH, respectively (n=7). In BDNF-MSCs treated SH animals at 14 days, root-mean-squared EMG amplitude was 63±16% of the pre-SH value compared with 12±9% in the control/WT-MSCs group. We conclude that localized delivery of BDNF-expressing MSCs enhances functional recovery of diaphragm muscle activity following cervical spinal cord injury. MSCs can be used to facilitate localized delivery of trophic factors such as BDNF in order to promote neuroplasticity following spinal cord injury.

  12. In vitro differentiation of human umbilical cord blood mesenchymal ...

    African Journals Online (AJOL)

    May H. Hasan

    2016-08-05

    Aug 5, 2016 ... Abstract Mesenchymal stem cells (MSCs) were isolated by gradient density centrifugation from umbilical cord blood. Spindle-shaped adherent cells were permitted to grow to 70% confluence in primary culture media which was reached by day 12. Induction of differentiation started by cul- turing cells with ...

  13. In vitro differentiation of human umbilical cord blood mesenchymal ...

    African Journals Online (AJOL)

    Mesenchymal stem cells (MSCs) were isolated by gradient density centrifugation from umbilical cord blood. Spindle-shaped adherent cells were permitted to grow to 70% confluence in primary culture media which was reached by day 12. Induction of differentiation started by culturing cells with differentiation medium ...

  14. Transplantation of Mesenchymal Stem Cells for Acute Spinal Cord Injury in Rats: Comparative Study between Intralesional Injection and Scaffold Based Transplantation.

    Science.gov (United States)

    Kim, Yoon Chung; Kim, Young Hoon; Kim, Jang Woon; Ha, Kee Yong

    2016-09-01

    Experimental stem cell therapy for spinal cord injury (SCI) has been extensively investigated. The selection of effective cell transplantation route is also an important issue. Although various types of scaffold have been widely tried as a carrier of stem cells to the injured spinal cord, there was little comparative study to investigate the efficacy of transplantation comparing with conventional transplantation route. A total of 48 Sprague-Dawley rats were subjected to standardized SCI, followed by transplantation of allogeneic mesenchymal stem cells (MSCs), either via intralesional injection (IL group), or via the poly (lactic-co-glycolic acid) (PLGA) scaffold (IP group) or chitosan scaffold (IC group). Engraftment and differentiation of the transplanted cells, expression of neurotrophic factors in the injured spinal cord, and functional recovery were compared with those of the control group. The mean numbers of engrafted MSCs in the IL, IP, and IC groups were 20.6 ± 0.7, 25.6 ± 1.7 and 26.7 ± 1.8 cells/high power filed (HPF), respectively. Results showed higher success rate of MSCs engraftment in the scaffold groups compared to the IL group. Expression of neuroprotective growth factors in the SCI lesions showed no significant differences between the IL, IP, and IC groups. The mean Basso, Beattie and Bresnahan locomotor scales at 6 weeks post-transplantation in the IL, IP, IC, and control groups were 7.9 ± 1.1, 7.9 ± 2.1, 8.7 ± 2.1, and 2.9 ± 1.0, respectively. The functional improvement was most excellent in the IC group. The scaffold based MSC transplantation for acute SCI presented the better cell engraftment and neuroprotective effect compared to the intralesional injection transplantation.

  15. Umbilical Cord-Derived Mesenchymal Stem Cells Suppress Autophagy of T Cells in Patients with Systemic Lupus Erythematosus via Transfer of Mitochondria

    Directory of Open Access Journals (Sweden)

    Jinyun Chen

    2016-01-01

    Full Text Available Aberrant autophagy played an important role in the pathogenesis of autoimmune diseases, especially in systemic lupus erythematosus (SLE. In this study, we showed that T cells from SLE patients had higher autophagic activity than that from healthy controls. A correlation between autophagic activity and apoptotic rate was observed in activated T cells. Moreover, activation of autophagy with rapamycin increased T cell apoptosis, whereas inhibition of autophagy with 3-MA decreased T cell apoptosis. Umbilical cord-derived mesenchymal stem cells (UC-MSCs could inhibit respiratory mitochondrial biogenesis in activated T cells to downregulate autophagy and consequently decrease T cell apoptosis through mitochondrial transfer and thus may play an important role in SLE treatment.

  16. Donor mesenchymal stem cell-derived neural-like cells transdifferentiate into myelin-forming cells and promote axon regeneration in rat spinal cord transection.

    Science.gov (United States)

    Qiu, Xue-Cheng; Jin, Hui; Zhang, Rong-Yi; Ding, Ying; Zeng, Xiang; Lai, Bi-Qin; Ling, Eng-Ang; Wu, Jin-Lang; Zeng, Yuan-Shan

    2015-05-27

    Severe spinal cord injury often causes temporary or permanent damages in strength, sensation, or autonomic functions below the site of the injury. So far, there is still no effective treatment for spinal cord injury. Mesenchymal stem cells (MSCs) have been used to repair injured spinal cord as an effective strategy. However, the low neural differentiation frequency of MSCs has limited its application. The present study attempted to explore whether the grafted MSC-derived neural-like cells in a gelatin sponge (GS) scaffold could maintain neural features or transdifferentiate into myelin-forming cells in the transected spinal cord. We constructed an engineered tissue by co-seeding of MSCs with genetically enhanced expression of neurotrophin-3 (NT-3) and its high-affinity receptor tropomyosin receptor kinase C (TrkC) separately into a three-dimensional GS scaffold to promote the MSCs differentiating into neural-like cells and transplanted it into the gap of a completely transected rat spinal cord. The rats received extensive post-operation care, including cyclosporin A administrated once daily for 2 months. MSCs modified genetically could differentiate into neural-like cells in the MN + MT (NT-3-MSCs + TrKC-MSCs) group 14 days after culture in the GS scaffold. However, after the MSC-derived neural-like cells were transplanted into the injury site of spinal cord, some of them appeared to lose the neural phenotypes and instead transdifferentiated into myelin-forming cells at 8 weeks. In the latter, the MSC-derived myelin-forming cells established myelin sheaths associated with the host regenerating axons. And the injured host neurons were rescued, and axon regeneration was induced by grafted MSCs modified genetically. In addition, the cortical motor evoked potential and hindlimb locomotion were significantly ameliorated in the rat spinal cord transected in the MN + MT group compared with the GS and MSC groups. Grafted MSC-derived neural-like cells in the

  17. Autocrine fibronectin from differentiating mesenchymal stem cells induces the neurite elongation in vitro and promotes nerve fiber regeneration in transected spinal cord injury.

    Science.gov (United States)

    Zeng, Xiang; Ma, Yuan-Huan; Chen, Yuan-Feng; Qiu, Xue-Cheng; Wu, Jin-Lang; Ling, Eng-Ang; Zeng, Yuan-Shan

    2016-08-01

    Extracellular matrix (ECM) expression is temporally and spatially regulated during the development of stem cells. We reported previously that fibronectin (FN) secreted by bone marrow mesenchymal stem cells (MSCs) was deposited on the surface of gelatin sponge (GS) soon after culture. In this study, we aimed to assess the function of accumulated FN on neuronal differentiating MSCs as induced by Schwann cells (SCs) in three dimensional transwell co-culture system. The expression pattern and amount of FN of differentiating MSCs was examined by immunofluorescence, Western blot and immunoelectron microscopy. The results showed that FN accumulated inside GS scaffold, although its mRNA expression in MSCs was progressively decreased during neural induction. MSC-derived neuron-like cells showed spindle-shaped cell body and long extending processes on FN-decorated scaffold surface. However, after blocking of FN function by application of monoclonal antibodies, neuron-like cells showed flattened cell body with short and thick neurites, together with decreased expression of integrin β1. In vivo transplantation study revealed that autocrine FN significantly facilitated endogenous nerve fiber regeneration in spinal cord transection model. Taken together, the present results showed that FN secreted by MSCs in the early stage accumulated on the GS scaffold and promoted the neurite elongation of neuronal differentiating MSCs as well as nerve fiber regeneration after spinal cord injury. This suggests that autocrine FN has a dynamic influence on MSCs in a three dimensional culture system and its potential application for treatment of traumatic spinal cord injury. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1902-1911, 2016. © 2016 Wiley Periodicals, Inc.

  18. Preconditioning in lowered oxygen enhances the therapeutic potential of human umbilical mesenchymal stem cells in a rat model of spinal cord injury.

    Science.gov (United States)

    Zhilai, Zhou; Biling, Mo; Sujun, Qiu; Chao, Dong; Benchao, Shi; Shuai, Huang; Shun, Yao; Hui, Zhang

    2016-07-01

    Human umbilical cord mesenchymal stem cells (UCMSCs) have recently been shown to hold great therapeutic potential for the treatment of spinal cord injury (SCI). However, the number of engrafted cells has been shown to decrease dramatically post-transplantation. Physioxia is known to enhance the paracrine properties and immune modulation of stem cells, a notion that has been applied in many clinical settings. We therefore hypothesized that preconditioning of UCMSCs in physioxic environment would enhance the regenerative properties of these cells in the treatment of rat SCI. UCMSCs were pretreated with either atmospheric normoxia (21% O2, N-UCMSC) or physioxia (5% O2, P-UCMSC). The MSCs were characterized using flow cytometry, immunocytochemistry, and real-time polymerase chain reaction. Furthermore, 10(5) N-UCMSC or P-UCMSC were injected into the injured spinal cord immediately after SCI, and locomotor function as well as cellular, molecular and pathological changes were compared between the groups. We found that N-UCMSC and P-UCMSC displayed similar surface protein expression. P-UCMSC grew faster, while physioxia up-regulated the expression of trophic and growth factors, including hepatocyte growth factor (HGF), brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor(VEGF), in UCMSCs. Compared to N-UCMSC, treatment with P-UCMSC was associated with marked changes in the SCI environment, with a significant increase in axonal preservation and a decrease in the number of caspase-3+ cells and ED-1+ macrophages. These changes were accompanied by improved functional recovery. Thus, the present study indicated that preculturing UCMSCs under 5% lowered oxygen physioxic conditions prior to transplantation improves their therapeutic potential for the treatment of SCI in rats. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Magnetic resonance imaging tracking and assessing repair function of the bone marrow mesenchymal stem cells transplantation in a rat model of spinal cord injury

    Science.gov (United States)

    Wen, Shihong; Xiang, Qingfeng; Xiang, Xianhong; Xu, Caixia; Wan, Yong; Wang, Jingnan; Li, Bin; Wan, Yiqian; Yang, Zhiyun; Deng, David Y .B.

    2017-01-01

    The transplantation of bone marrow mesenchymal stem cells (BMSCs) to repair spinal cord injury (SCI) has become a promising therapy. However, there is still a lack of visual evidence directly implicating the transplanted cells as the source of the improvement of spinal cord function. In this study, BMSCs were labeled with NF-200 promoter and lipase-activated gadolinium-containing nanoparticles (Gd-DTPA-FA). Double labeled BMSCs were implanted into spinal cord transaction injury in rat models in situ, the function recovery was evaluated on 1st, 7th, 14th, 28 th days by MRI, Diffusion Tensor Imaing, CT imaging and post-processing, and histological observations. BBB scores were used for assessing function recovery. After transplantation of BMSCs, the hypersignal emerged in spinal cord in T1WI starting at day 7 that was focused at the injection site, which then increased and extended until day 14. Subsequently, the increased signal intensity area rapidly spread from the injection site to entire injured segment lasting four weeks. The diffusion tensor tractography and histological analysis both showed the nerve fibre from dividing to connecting partly. Immunofluorescence showed higher expression of NF-200 in Repaired group than Injury group. Electron microscopy showed detachment and loose of myelin lamellar getting better in Repaired group compared with the Injury group. BBB scores in Repaired group were significantly higher than those of injury animals. Our study suggests that the migration and distribution of Gd-DTPA-FA labeled BMSCs can be tracked using MRI. Transplantation of BMSCs represents a promising potential strategy for the repair of SCI. PMID:28938612

  20. Magnetic resonance imaging tracking and assessing repair function of the bone marrow mesenchymal stem cells transplantation in a rat model of spinal cord injury.

    Science.gov (United States)

    Zhang, Hongwu; Wang, Liqin; Wen, Shihong; Xiang, Qingfeng; Xiang, Xianhong; Xu, Caixia; Wan, Yong; Wang, Jingnan; Li, Bin; Wan, Yiqian; Yang, Zhiyun; Deng, David Y B

    2017-08-29

    The transplantation of bone marrow mesenchymal stem cells (BMSCs) to repair spinal cord injury (SCI) has become a promising therapy. However, there is still a lack of visual evidence directly implicating the transplanted cells as the source of the improvement of spinal cord function. In this study, BMSCs were labeled with NF-200 promoter and lipase-activated gadolinium-containing nanoparticles (Gd-DTPA-FA). Double labeled BMSCs were implanted into spinal cord transaction injury in rat models in situ, the function recovery was evaluated on 1st, 7th, 14th, 28 th days by MRI, Diffusion Tensor Imaing, CT imaging and post-processing, and histological observations. BBB scores were used for assessing function recovery. After transplantation of BMSCs, the hypersignal emerged in spinal cord in T1WI starting at day 7 that was focused at the injection site, which then increased and extended until day 14. Subsequently, the increased signal intensity area rapidly spread from the injection site to entire injured segment lasting four weeks. The diffusion tensor tractography and histological analysis both showed the nerve fibre from dividing to connecting partly. Immunofluorescence showed higher expression of NF-200 in Repaired group than Injury group. Electron microscopy showed detachment and loose of myelin lamellar getting better in Repaired group compared with the Injury group. BBB scores in Repaired group were significantly higher than those of injury animals. Our study suggests that the migration and distribution of Gd-DTPA-FA labeled BMSCs can be tracked using MRI. Transplantation of BMSCs represents a promising potential strategy for the repair of SCI.

  1. Biological characteristics and effect of human umbilical cord mesenchymal stem cells (hUC-MSCs) grafting with blood plasma on bone regeneration in rats.

    Science.gov (United States)

    Qu, Zhiguo; Guo, Libin; Fang, Guojun; Cui, Zhenghong; Guo, Shengnan; Liu, Ying

    2012-06-01

    We evaluated the biological characteristics/effect of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) grafting with blood plasma on bone regeneration in rat tibia nonunion. SD rats (142) were randomly divided into four groups: fracture group (positive control); nonunion group (negative control); hUC-MSCs grafting with blood plasma group; and hUC-MSCs grafting with saline group. Rats were administered tetracycline (30 mg/kg) and calcein blue (5 mg/kg) 8 days before killing. The animals were killed under deep anesthesia at 4 and 8 weeks post fracture for radiological evaluation and histological/immunohistological studies. The hUC-MSCs grafting with blood plasma group was similar to fracture group: the fracture line blurred in 4 weeks and disappeared in 8 weeks postoperatively. Histological/immunohistological studies showed that hUC-MSCs were of low immunogenicity which merged in rat bone tissue, differentiated into osteogenic lineages, and completed the healing of nonunion. After stem cell transplantation, regardless of whether plasma or saline was used, new multi-center bone formation was observed; fracture site density was better in stem cell grafting with blood plasma group. We, therefore, concluded that the biological characteristics of hUC-MSCs-treated nonunion were different from the standard fracture healing process, and the proliferative and localization capacity of hUC-MSCs might benefit from the use of blood plasma.

  2. Preclinical evaluation of the immunomodulatory properties of cardiac adipose tissue progenitor cells using umbilical cord blood mesenchymal stem cells: a direct comparative study.

    Science.gov (United States)

    Perea-Gil, Isaac; Monguió-Tortajada, Marta; Gálvez-Montón, Carolina; Bayes-Genis, Antoni; Borràs, Francesc E; Roura, Santiago

    2015-01-01

    Cell-based strategies to regenerate injured myocardial tissue have emerged over the past decade, but the optimum cell type is still under scrutiny. In this context, human adult epicardial fat surrounding the heart has been characterized as a reservoir of mesenchymal-like progenitor cells (cardiac ATDPCs) with potential clinical benefits. However, additional data on the possibility that these cells could trigger a deleterious immune response following implantation are needed. Thus, in the presented study, we took advantage of the well-established low immunogenicity of umbilical cord blood-derived mesenchymal stem cells (UCBMSCs) to comparatively assess the immunomodulatory properties of cardiac ATDPCs in an in vitro allostimulatory assay using allogeneic mature monocyte-derived dendritic cells (MDDCs). Similar to UCBMSCs, increasing amounts of seeded cardiac ATDPCs suppressed the alloproliferation of T cells in a dose-dependent manner. Secretion of proinflammatory cytokines (IL6, TNFα, and IFNγ) was also specifically modulated by the different numbers of cardiac ATDPCs cocultured. In summary, we show that cardiac ATDPCs abrogate T cell alloproliferation upon stimulation with allogeneic mature MDDCs, suggesting that they could further regulate a possible harmful immune response in vivo. Additionally, UCBMSCs can be considered as valuable tools to preclinically predict the immunogenicity of prospective regenerative cells.

  3. Preclinical Evaluation of the Immunomodulatory Properties of Cardiac Adipose Tissue Progenitor Cells Using Umbilical Cord Blood Mesenchymal Stem Cells: A Direct Comparative Study

    Directory of Open Access Journals (Sweden)

    Isaac Perea-Gil

    2015-01-01

    Full Text Available Cell-based strategies to regenerate injured myocardial tissue have emerged over the past decade, but the optimum cell type is still under scrutiny. In this context, human adult epicardial fat surrounding the heart has been characterized as a reservoir of mesenchymal-like progenitor cells (cardiac ATDPCs with potential clinical benefits. However, additional data on the possibility that these cells could trigger a deleterious immune response following implantation are needed. Thus, in the presented study, we took advantage of the well-established low immunogenicity of umbilical cord blood-derived mesenchymal stem cells (UCBMSCs to comparatively assess the immunomodulatory properties of cardiac ATDPCs in an in vitro allostimulatory assay using allogeneic mature monocyte-derived dendritic cells (MDDCs. Similar to UCBMSCs, increasing amounts of seeded cardiac ATDPCs suppressed the alloproliferation of T cells in a dose-dependent manner. Secretion of proinflammatory cytokines (IL6, TNFα, and IFNγ was also specifically modulated by the different numbers of cardiac ATDPCs cocultured. In summary, we show that cardiac ATDPCs abrogate T cell alloproliferation upon stimulation with allogeneic mature MDDCs, suggesting that they could further regulate a possible harmful immune response in vivo. Additionally, UCBMSCs can be considered as valuable tools to preclinically predict the immunogenicity of prospective regenerative cells.

  4. Downregulation of Melanoma Cell Adhesion Molecule (MCAM/CD146) Accelerates Cellular Senescence in Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells.

    Science.gov (United States)

    Jin, Hye Jin; Kwon, Ji Hye; Kim, Miyeon; Bae, Yun Kyung; Choi, Soo Jin; Oh, Wonil; Yang, Yoon Sun; Jeon, Hong Bae

    2016-04-01

    Therapeutic applications of mesenchymal stem cells (MSCs) for treating various diseases have increased in recent years. To ensure that treatment is effective, an adequate MSC dosage should be determined before these cells are used for therapeutic purposes. To obtain a sufficient number of cells for therapeutic applications, MSCs must be expanded in long-term cell culture, which inevitably triggers cellular senescence. In this study, we investigated the surface markers of human umbilical cord blood-derived MSCs (hUCB-MSCs) associated with cellular senescence using fluorescence-activated cell sorting analysis and 242 cell surface-marker antibodies. Among these surface proteins, we selected the melanoma cell adhesion molecule (MCAM/CD146) for further study with the aim of validating observed expression differences and investigating the associated implications in hUCB-MSCs during cellular senescence. We observed that CD146 expression markedly decreased in hUCB-MSCs following prolonged in vitro expansion. Using preparative sorting, we found that hUCB-MSCs with high CD146 expression displayed high growth rates, multilineage differentiation, expression of stemness markers, and telomerase activity, as well as significantly lower expression of the senescence markers p16, p21, p53, and senescence-associated β-galactosidase, compared with that observed in hUCB-MSCs with low-level CD146 expression. In contrast, CD146 downregulation with small interfering RNAs enhanced the senescence phenotype. In addition, CD146 suppression in hUCB-MSCs caused downregulation of other cellular senescence regulators, including Bmi-1, Id1, and Twist1. Collectively, our results suggest that CD146 regulates cellular senescence; thus, it could be used as a therapeutic marker to identify senescent hUCB-MSCs. One of the fundamental requirements for mesenchymal stem cell (MSC)-based therapies is the expansion of MSCs during long-term culture because a sufficient number of functional cells is required

  5. Lavandula angustifolia Extract Improves the Result of Human Umbilical Mesenchymal Wharton’s Jelly Stem Cell Transplantation after Contusive Spinal Cord Injury in Wistar Rats

    Directory of Open Access Journals (Sweden)

    Kayvan Yaghoobi

    2016-01-01

    Full Text Available Introduction. The primary trauma of spinal cord injury (SCI results in severe damage to nervous functions. At the cellular level, SCI causes astrogliosis. Human umbilical mesenchymal stem cells (HUMSCs, isolated from Wharton’s jelly of the umbilical cord, can be easily obtained. Previously, we showed that the neuroprotective effects of Lavandula angustifolia can lead to improvement in a contusive SCI model in rats. Objective. The aim of this study was to investigate the effect of L. angustifolia (Lav on HUMSC transplantation after acute SCI. Materials and Methods. Sixty adult female rats were randomly divided into eight groups. Every week after SCI onset, all animals were evaluated for behavior outcomes. H&E staining was performed to examine the lesions after injury. GFAP expression was assessed for astrogliosis. Somatosensory evoked potential (SEP testing was performed to detect the recovery of neural conduction. Results. Behavioral tests showed that the HUMSC group improved in comparison with the SCI group, but HUMSC + Lav 400 was very effective, resulting in a significant increase in locomotion activity. Sensory tests and histomorphological and immunohistochemistry analyses verified the potentiation effects of Lav extract on HUMSC treatment. Conclusion. Transplantation of HUMSCs is beneficial for SCI in rats, and Lav extract can potentiate the functional and cellular recovery with HUMSC treatment in rats after SCI.

  6. Delivery of the Sox9 gene promotes chondrogenic differentiation of human umbilical cord blood-derived mesenchymal stem cells in an in vitro model

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Z.H. [Department of Otolaryngology - Head and Neck Surgery, The Second Hospital, Xi' an Jiaotong University, Xi' an (China); Li, X.L. [Department of Dermatology, The Second Hospital, Xi' an Jiaotong University, Xi' an (China); He, X.J. [Department of Orthopedics, The Second Hospital, Xi' an Jiaotong University, Xi' an (China); Wu, B.J.; Xu, M. [Department of Otolaryngology - Head and Neck Surgery, The Second Hospital, Xi' an Jiaotong University, Xi' an (China); Chang, H.M. [Department of Otolaryngology - Head and Neck Surgery, Affiliated Hospital of Xi' an Medical University, Xi' an (China); Zhang, X.H. [Department of Otolaryngology - Head and Neck Surgery, The Second Hospital, Xi' an Jiaotong University, Xi' an (China); Xing, Z. [Department of Clinical Dentistry, Faculty of Dentistry, Center for Clinical Dental Research, University of Bergen, Bergen (Norway); Jing, X.H.; Kong, D.M.; Kou, X.H.; Yang, Y.Y. [Department of Otolaryngology - Head and Neck Surgery, The Second Hospital, Xi' an Jiaotong University, Xi' an (China)

    2014-03-18

    SRY-related high-mobility-group box 9 (Sox9) gene is a cartilage-specific transcription factor that plays essential roles in chondrocyte differentiation and cartilage formation. The aim of this study was to investigate the feasibility of genetic delivery of Sox9 to enhance chondrogenic differentiation of human umbilical cord blood-derived mesenchymal stem cells (hUC-MSCs). After they were isolated from human umbilical cord blood within 24 h after delivery of neonates, hUC-MSCs were untreated or transfected with a human Sox9-expressing plasmid or an empty vector. The cells were assessed for morphology and chondrogenic differentiation. The isolated cells with a fibroblast-like morphology in monolayer culture were positive for the MSC markers CD44, CD105, CD73, and CD90, but negative for the differentiation markers CD34, CD45, CD19, CD14, or major histocompatibility complex class II. Sox9 overexpression induced accumulation of sulfated proteoglycans, without altering the cellular morphology. Immunocytochemistry demonstrated that genetic delivery of Sox9 markedly enhanced the expression of aggrecan and type II collagen in hUC-MSCs compared with empty vector-transfected counterparts. Reverse transcription-polymerase chain reaction analysis further confirmed the elevation of aggrecan and type II collagen at the mRNA level in Sox9-transfected cells. Taken together, short-term Sox9 overexpression facilitates chondrogenesis of hUC-MSCs and may thus have potential implications in cartilage tissue engineering.

  7. Microvesicles derived from human umbilical cord Wharton's jelly mesenchymal stem cells attenuate bladder tumor cell growth in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Shuai Wu

    Full Text Available Several studies suggest that mesenchymal stem cells (MSCs possess antitumor properties; however, the exact mechanisms remain unclear. Recently, microvesicles (MVs are considered as a novel avenue intercellular communication, which may be a mediator in MSCs-related antitumor effect. In the present study, we evaluated whether MVs derived from human umbilical cord Wharton's jelly mesenchymal stem cells (hWJMSCs may inhibit bladder tumor T24 cells growth using cell culture and the BALB/c nu/nu mice xenograft model. CCK-8 assay and Ki-67 immunostaining were performed to estimate cell proliferation in vitro and in vivo. Flow cytometry and TUNEL assay were used to assess cell cycle and apoptosis. To study the conceivable mechanism by which hWJMSC-MVs attenuate bladder tumor T24 cells, we estimated the expression of Akt/p-Akt, p-p53, p21 and cleaved Caspase 3 by Western blot technique after exposing T24 cells to hWJMSC-MVs for 24, 48 and 72h. Our data indicated that hWJMSC-MVs can inhibit T24 cells proliferative viability via cell cycle arrest and induce apoptosis in T24 cells in vitro and in vivo. This study showed that hWJMSC-MVs down-regulated phosphorylation of Akt protein kinase and up-regulated cleaved Caspase 3 during the process of anti-proliferation and pro-apoptosis in T24 cells. These results demonstrate that hWJMSC-MVs play a vital role in hWJMSC-induced antitumor effect and may be a novel tool for cancer therapy as a new mechanism of cell-to-cell communication.

  8. Microvesicles Derived from Human Umbilical Cord Wharton’s Jelly Mesenchymal Stem Cells Attenuate Bladder Tumor Cell Growth In Vitro and In Vivo

    Science.gov (United States)

    Du, Tao; Zhu, Ying-Jian; Liu, Guo-Hua

    2013-01-01

    Several studies suggest that mesenchymal stem cells (MSCs) possess antitumor properties; however, the exact mechanisms remain unclear. Recently, microvesicles (MVs) are considered as a novel avenue intercellular communication, which may be a mediator in MSCs-related antitumor effect. In the present study, we evaluated whether MVs derived from human umbilical cord Wharton’s jelly mesenchymal stem cells (hWJMSCs) may inhibit bladder tumor T24 cells growth using cell culture and the BALB/c nu/nu mice xenograft model. CCK-8 assay and Ki-67 immunostaining were performed to estimate cell proliferation in vitro and in vivo. Flow cytometry and TUNEL assay were used to assess cell cycle and apoptosis. To study the conceivable mechanism by which hWJMSC-MVs attenuate bladder tumor T24 cells, we estimated the expression of Akt/p-Akt, p-p53, p21 and cleaved Caspase 3 by Western blot technique after exposing T24 cells to hWJMSC-MVs for 24, 48 and 72h. Our data indicated that hWJMSC-MVs can inhibit T24 cells proliferative viability via cell cycle arrest and induce apoptosis in T24 cells in vitro and in vivo. This study showed that hWJMSC-MVs down-regulated phosphorylation of Akt protein kinase and up-regulated cleaved Caspase 3 during the process of anti-proliferation and pro-apoptosis in T24 cells. These results demonstrate that hWJMSC-MVs play a vital role in hWJMSC-induced antitumor effect and may be a novel tool for cancer therapy as a new mechanism of cell-to-cell communication. PMID:23593475

  9. Osteoinduction of Umbilical Cord and Palate Periosteum-Derived Mesenchymal Stem Cells on Poly-Co-Glycolytic Acid Nano-Microfibers

    Science.gov (United States)

    Caballero, Montserrat; Pappa, Andrew; Roden, Katherine; Krochmal, Daniel J.; van Aalst, John A.

    2014-01-01

    The need for tissue engineered bone to treat complex craniofacial bone defects secondary to congenital anomalies, trauma, and cancer extirpation is sizeable. Traditional strategies for treatment have focused on autologous bone in younger patients and bone substitutes in older patients. However, the capacity for merging new technologies, including the creation of nano and microfiber scaffolds with advances in natal sources of stem cells, is crucial to improving our treatment options. The advantages of using smaller diameter fibers for scaffolding are two-fold: the similar fiber diameters mimic the in vivo extracellular matrix construct;, and smaller fibers also provide a dramatically increased surface area for cell-scaffold interactions. In this study, we compare the capacity for a polymer with Federal Drug Administration (FDA) approval for use in humans, poly-co-glycolytic acid (PLGA) from Delta polymer, to support osteoinduction of mesenchymal stem cells (MSCs) harvested from the umbilical cord (UC) and palate periosteum (PP). Proliferation of both UC- and PP-derived MSCs was improved on PLGA scaffolds. PLGA scaffolds promoted UC MSC differentiation (indicated by earlier gene expression and higher calcium deposition), but not in PP-derived MSCs. UC-derived MSCs on PLGA nano-micro-fiber scaffolds have potential clinical utility in providing solutions for craniofacial bone defects, with the added benefit of earlier availability. PMID:24691324

  10. Preliminary evaluation of treatment efficacy of umbilical cord blood-derived mesenchymal stem cell-differentiated cardiac pro-genitor cells in a myocardial injury mouse model

    Directory of Open Access Journals (Sweden)

    Truc Le-Buu Pham

    2015-12-01

    Full Text Available Recently, stem cell therapy has been investigated as a strategy to prevent or reverse damage to heart tissue. Although the results of cell transplantation in animal models and patients with myocardial ischemia are promising, the selection of the appropriate cell type remains an issue that requires consideration. In this study, we aimed to evaluate the effect of cardiac progenitor cell transplantation in a mouse model of myocardial ischemia. The cardiac progenitor cells used for transplantation were differentiated from umbilical cord blood mesenchymal stem cells. Animal models injected with phosphate-buffered saline (PBS and healthy mice were used as controls. Cell grafting was assessed by changes in blood pressure and histological evaluation. After 14 days of transplantation, the results demonstrated that the blood pressure of transplanted mice was stable, similar to healthy mice, whereas it fluctuated in PBS-injected mice. Histological analysis showed that heart tissue had regenerated in transplanted mice, but remained damaged in PBS-injected mice. Furthermore, trichrome staining revealed that the transplanted mice did not generate significant amount of scar tissue compared with PBS-injected control mice. In addition, the cardiac progenitor cells managed to survive and integrate with local cells in cell-injected heart tissue 14 days after transplantation. Most importantly, the transplanted cells did not exhibit tumorigenesis. In conclusion, cardiac progenitor cell transplantation produced a positive effect in a mouse model of myocardial ischemia. [Biomed Res Ther 2015; 2(12.000: 435-445

  11. Human umbilical cord-derived mesenchymal stem cells utilise Activin-A to suppress Interferon-gamma production by natural killer cells.

    Directory of Open Access Journals (Sweden)

    Debanjana eChaterjee

    2014-12-01

    Full Text Available Following allogeneic hematopoietic stem cell transplantation (HSCT, interferon (IFN-gamma levels in the recipient’s body can strongly influence the clinical outcome. Human umbilical cord-derived mesenchymal stem cells (UC-MSCs are lucrative as biological tolerance-inducers in HSCT settings. Hence, we studied the molecular mechanism of how UC-MSCs influence natural killer (NK cell-mediated IFN-gamma production. Allogeneic NK cells were cultured in direct contact with UC-MSCs or cell free supernatants from MSC cultures (MSC conditioned media. We found that soluble factors secreted by UC-MSCs strongly suppressed IL-12/IL-18-induced IFN-gamma production by NK cells by reducing phosphorylation of STAT4, NF-kB as well as T-bet activity. UC-MSCs secreted considerable amounts of Activin-A, which could suppress IFN-gamma production by NK cells. Neutralisation of Activin-A in MSC-conditioned media significantly abrogated their suppressive abilities. Till date, multiple groups have reported that prostaglandin (PG-E2 produced by MSCs can suppress NK cell functions. Indeed, we found that inhibition of PGE2 production by MSCs could also significantly restore IFN-gamma production. However, the effects of Activin-A and PGE2 were not cumulative. To the best of our knowledge, we are first to report the role of Activin-A in MSC-mediated suppression of IFN-gamma production by NK cells.

  12. Optimizing isolation culture and freezing methods to preserve Wharton's jelly's mesenchymal stem cell (MSC) properties: an MSC banking protocol validation for the Hellenic Cord Blood Bank.

    Science.gov (United States)

    Chatzistamatiou, Theofanis K; Papassavas, Andreas C; Michalopoulos, Efstathios; Gamaloutsos, Christos; Mallis, Panagiotis; Gontika, Ioanna; Panagouli, Effrosyni; Koussoulakos, Stauros L; Stavropoulos-Giokas, Catherine

    2014-12-01

    Mesenchymal stem or stromal cells (MSCs) are a heterogeneous population that can be isolated from many tissues including umbilical cord Wharton's jelly (UC-WJ). Although initially limited in studies such as a hematopoietic stem cell transplantation adjuvant, an increasing number of clinical trials consider MSCs as a potential anti-inflammatory or a regenerative medicine agent. It has been proposed that creating a repository of MSCs would increase their availability for clinical applications. The aim of this study was to assess the optimal isolation and cryopreservation procedures to facilitate WJ MSC banking. Cells were isolated from UC-WJ using enzymatic digestion or plastic adhesion methods. Their isolation efficacy, growth kinetics, immunophenotype, and differentiation potential were studied, as well as the effects of freezing. Flow cytometry for common MSC markers was performed on all cases and differentiation was shown with histocytochemical staining. Finally, the isolation efficacy on cryopreserved WJ tissue fragments was tested. MSC isolation was successful using both isolation methods on fresh UC-WJ tissue. However, UC-WJ MSC isolation from frozen tissue fragments was impossible. Flow cytometry analysis revealed that only MSC markers were expressed on the surface of the isolated cells while differentiation assays showed that they were capable of trilinear differentiation. All the above characteristics were also preserved in isolated UC-WJ MSCs over the cryopreservation study period. These data showed that viable MSCs can only be isolated from fresh UC-WJ tissue, setting the foundation for clinical-grade banking. © 2014 AABB.

  13. Human mesenchymal stem cells from the umbilical cord matrix: successful isolation and ex vivo expansion using serum-/xeno-free culture media.

    Science.gov (United States)

    Simões, Irina N; Boura, Joana S; dos Santos, Francisco; Andrade, Pedro Z; Cardoso, Carla M P; Gimble, Jeffrey M; da Silva, Cláudia L; Cabral, Joaquim M S

    2013-04-01

    Mesenchymal stem cells (MSC) could potentially be applied in therapeutic settings due to their multilineage differentiation ability, immunomodulatory properties, as well as their trophic activity. The umbilical cord matrix (UCM) represents a promising source of MSC for biomedical applications. The number of cells isloated per umbilical cord (UC) unit is limited and ex vivo expansion is imperative in order to reach clinically meaningful cell numbers. The limitations of poorly defined reagents (e.g. fetal bovine serum, which is commonly used as a supplement for human MSC expansion) make the use of serum-/xeno-free conditions mandatory. We demonstrated the feasibility of isolating UCM-MSC by plastic adherence using serum-/xeno-free culture medium following enzymatic digestion of UCs, with a 100% success rate. 2.6 ± 0.21 × 10(5) cells were isolated per UC unit, of which 1.9 ± 0.21 × 10(5) were MSC-like cells expressing CD73, CD90, and CD105. When compared to adult sources (bone marrow-derived MSC and adipose-derived stem/stromal cells), UCM-MSC displayed a similar immunophenotype and similar multilineage differentiation ability, while demonstrating a higher expansion potential (average fold increase of 7.4 for serum-containing culture medium and 11.0 for xeno-free culture medium (P3-P6)). The isolation and expansion of UCM-MSC under defined serum-/xeno-free conditions contributes to safer and more effective MSC cellular products, boosting the usefulness of MSC in cellular therapy and tissue engineering. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Does vitamin C have the ability to augment the therapeutic effect of bone marrow-derived mesenchymal stem cells on spinal cord injury?

    Directory of Open Access Journals (Sweden)

    Nesrine Salem

    2017-01-01

    Full Text Available Methylprednisolone (MP is currently the only drug confirmed to exhibit a neuroprotective effect on acute spinal cord injury (SCI. Vitamin C (VC is a natural water-soluble antioxidant that exerts neuroprotective effects through eliminating free radical damage to nerve cells. Bone marrow mesenchymal stem cells (BMMSCs, as multipotent stem cells, are promising candidates in SCI repair. To evaluate the therapeutic effects of MP, VC and BMMSCs on traumatic SCI, 80 adult male rats were randomly divided into seven groups: control, SCI (SCI induction by weight-drop method, MP (SCI induction, followed by administration of 30 mg/kg MP via the tail vein, once every other 6 hours, for five times, VC (SCI induction, followed by intraperitoneal administration of 100 mg/kg VC once a day, for 28 days, MP + VC (SCI induction, followed by administration of MP and VC as the former, BMMSCs (SCI induction, followed by injection of 3 × 106 BMMSCs at the injury site, and BMMSCs + VC (SCI induction, followed by BMMSCs injection and VC administration as the former. Locomotor recovery was assessed using the Basso Mouse Scale. Injured spinal cord tissue was evaluated using hematoxylin-eosin staining and immunohistochemical staining. Expression of transforming growth factor-beta, tumor necrosis factor-alpha, and matrix metalloproteinase-2 genes was determined using real-time quantitative PCR. BMMSCs intervention better promoted recovery of nerve function of rats with SCI, mitigated nerve cell damage, and decreased expression of transforming growth factor-beta, tumor necrosis factor-alpha, and matrix metalloproteinase-2 genes than MP and/or VC. More importantly, BMMSCs in combination with VC induced more obvious improvements. These results suggest that VC can enhance the neuroprotective effects of BMMSCs against SCI.

  15. Enhanced axonal regeneration by transplanted Wnt3a-secreting human mesenchymal stem cells in a rat model of spinal cord injury.

    Science.gov (United States)

    Seo, Dong Kwang; Kim, Jeong Hoon; Min, Joongkee; Yoon, Hyung Ho; Shin, Eun-Sil; Kim, Seong Who; Jeon, Sang Ryong

    2017-05-01

    While pure mesenchymal stem cell (MSC) treatment for spinal cord injury (SCI) is known to be safe, its efficacy is insufficient. Therefore, gene-modified stem cells are being developed to enhance the effect of pure MSCs. We investigated the effect of stem cell therapy through the transfection of a Wnt3a-producing gene that stimulates axonal regeneration. MSCs obtained from the human umbilical cord blood (hMSCs) were multiplied, cultivated, and transfected with the pLenti-Wnt3a-GFP viral vector to produce Wnt3a-secreting hMSCs. A total of 50 rats were injured with an Infinite Horizon impactor at the level of the T7-8 vertebrae. Rats were divided into five groups according to the transplanted material: (1) phosphate-buffered saline injection group (sham group, n = 10); (Pertz et al. Proc Natl Acad Sci USA 105:1931-1936, 39) Wnt3a protein injection group (Wnt3a protein group, n = 10); (3) hMSC transplantation group (MSC group, n = 10); (4) hMSCs transfected with the pLenti vector transplantation group (pLenti-MSC group, n = 10); (5) hMSCs transfected with the pLenti+Wnt3a vector transplantation group (Wnt3a-MSC group, n = 10). Behavioral tests were performed daily for the first 3 days after injury and then weekly for 8 weeks. The injured spinal cords were extracted, and axonal regeneration markers including choline acetyltransferase (ChAT), growth-associated protein 43 (GAP43), and microtubule-associated protein 2 (MAP2) were investigated by immunofluorescence, RT-PCR, and western blotting. Seven weeks after the transplantation (8 weeks after SCI), rats in the Wnt3a-MSC group achieved significantly higher average scores in the motor behavior tests than those in the other groups (p regeneration in a rat SCI model.

  16. Cartilage Repair Using Composites of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells and Hyaluronic Acid Hydrogel in a Minipig Model.

    Science.gov (United States)

    Ha, Chul-Won; Park, Yong-Beom; Chung, Jun-Young; Park, Yong-Geun

    2015-09-01

    The cartilage regeneration potential of human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) with a hyaluronic acid (HA) hydrogel composite has shown remarkable results in rat and rabbit models. The purpose of the present study was to confirm the consistent regenerative potential in a pig model using three different cell lines. A full-thickness chondral injury was intentionally created in the trochlear groove of each knee in 6 minipigs. Three weeks later, an osteochondral defect, 5 mm wide by 10 mm deep, was created, followed by an 8-mm-wide and 5-mm-deep reaming. A mixture (1.5 ml) of hUCB-MSCs (0.5×10(7) cells per milliliter) and 4% HA hydrogel composite was then transplanted into the defect on the right knee. Each cell line was used in two minipigs. The osteochondral defect created in the same manner on the left knee was untreated to act as the control. At 12 weeks postoperatively, the pigs were sacrificed, and the degree of subsequent cartilage regeneration was evaluated by gross and histological analysis. The transplanted knee resulted in superior and more complete hyaline cartilage regeneration compared with the control knee. The cellular characteristics (e.g., cellular proliferation and chondrogenic differentiation capacity) of the hUCB-MSCs influenced the degree of cartilage regeneration potential. This evidence of consistent cartilage regeneration using composites of hUCB-MSCs and HA hydrogel in a large animal model could be a stepping stone to a human clinical trial in the future. To date, several studies have investigated the chondrogenic potential of human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs); however, the preclinical studies are still limited in numbers with various results. In parallel, in the past several years, the cartilage regeneration potential of hUCB-MSCs with a hyaluronic acid (HA) hydrogel composite have been investigated and remarkable results in rat and rabbit models have been attained. (These

  17. Construction of bioengineered hepatic tissue derived from human umbilical cord mesenchymal stem cells via aggregation culture in porcine decellularized liver scaffolds.

    Science.gov (United States)

    Li, Yi; Wu, Qiong; Wang, Yujia; Li, Li; Chen, Fei; Shi, Yujun; Bao, Ji; Bu, Hong

    2017-01-01

    An individualized, tissue-engineered liver suitable for transplanting into a patient with liver disease would be of great benefit to the patient and the healthcare system. The tissue-engineered liver would possess the functions of the original healthy organ. Two fields of study, (i) using decellularized tissue as cell scaffolding, and (ii) stem cell differentiation into functional cells, are coming together to make this concept feasible. The decellularized liver scaffolds (DLS) can interact with cells to promote cell differentiation and signal transduction and three-dimensional (3D) stem cell aggregations can maintain the phenotypes and improve functions of stem cells after differentiation by undergoing cell-cell contact. Although the effects of DLS and stem cell aggregation culture have been intensively studied, few observations about the interaction between the two have been achieved. We established a method that combines the use of decellularized liver scaffolds and aggregation culture of MSCs (3D-DLS) and explored the effects of the two on hepatic differentiation of human umbilical cord mesenchymal stem cells (hUC-MSCs) in bioengineered hepatic tissue. A higher percentage of albumin-producing cells, higher levels of liver-specific transcripts, higher urea cycle-related transcripts, and lower levels of stem cell-specific transcripts were observed in the 3D-DLS group when compared to that of hUC-MSCs in monolayer culture (2D), aggregation culture (3D), monolayer on DLS culture (2D-DLS). The gene arrays also indicated that 3D-DLS induced the differentiation from the hUC-MSC phenotype to the PHH phenotype. Liver-specific proteins albumin, CK-18, and glycogen storage were highly positive in the 3D-DLS group. Albumin secretion and ammonia conversion to urea were more effective with a higher cell survival rate in the 3D-DLS group for 14 days. This DLS and aggregation combination culture system provides a novel method to improve hepatic differentiation, maintain

  18. Umbilical cord Wharton's jelly repeated culture system: a new device and method for obtaining abundant mesenchymal stem cells for bone tissue engineering.

    Science.gov (United States)

    Chang, Zhengqi; Hou, Tianyong; Xing, Junchao; Wu, Xuehui; Jin, Huiyong; Li, Zhiqiang; Deng, Moyuan; Xie, Zhao; Xu, Jianzhong

    2014-01-01

    To date, various types of cells for seeding regenerative scaffolds have been used for bone tissue engineering. Among seed cells, the mesenchymal stem cells derived from human umbilical cord Wharton's jelly (hUCMSCs) represent a promising candidate and hold potential for bone tissue engineering due to the the lack of ethical controversies, accessibility, sourced by non-invasive procedures for donors, a reduced risk of contamination, osteogenic differentiation capacities, and higher immunomodulatory capacity. However, the current culture methods are somewhat complicated and inefficient and often fail to make the best use of the umbilical cord (UC) tissues. Moreover, these culture processes cannot be performed on a large scale and under strict quality control. As a result, only a small quantity of cells can be harvested using the current culture methods. To solve these problems, we designed and evaluated an UC Wharton's jelly repeated culture device. Using this device, hUCMSCs were obtained from the repeated cultures and their quantities and biological characteristics were compared. We found that using our culture device, which retained all tissue blocks on the bottom of the dish, the total number of obtained cells increased 15-20 times, and the time required for the primary passage was reduced. Moreover, cells harvested from the repeated cultures exhibited no significant difference in their immunophenotype, potential for multilineage differentiation, or proliferative, osteoinductive capacities, and final osteogenesis. The application of the repeated culture frame (RCF) not only made full use of the Wharton's jelly but also simplified and specified the culture process, and thus, the culture efficiency was significantly improved. In summary, abundant hUCMSCs of dependable quality can be acquired using the RCF.

  19. An increase in CD3+CD4+CD25+ regulatory T cells after administration of umbilical cord-derived mesenchymal stem cells during sepsis.

    Directory of Open Access Journals (Sweden)

    Yu-Hua Chao

    Full Text Available Sepsis remains an important cause of death worldwide, and vigorous immune responses during sepsis could be beneficial for bacterial clearance but at the price of collateral damage to self tissues. Mesenchymal stem cells (MSCs have been found to modulate the immune system and attenuate sepsis. In the present study, MSCs derived from bone marrow and umbilical cord were used and compared. With a cecal ligation and puncture (CLP model, the mechanisms of MSC-mediated immunoregulation during sepsis were studied by determining the changes of circulating inflammation-associated cytokine profiles and peripheral blood mononuclear cells 18 hours after CLP-induced sepsis. In vitro, bone marrow-derived MSCs (BMMSCs and umbilical cord-derived MSCs (UCMSCs showed a similar morphology and surface marker expression. UCMSCs had stronger potential for osteogenesis but lower for adipogenesis than BMMSCs. Compared with rats receiving PBS only after CLP, the percentage of circulating CD3+CD4+CD25+ regulatory T (Treg cells and the ratio of Treg cells/T cells were elevated significantly in rats receiving MSCs. Further experiment regarding Treg cell function demonstrated that the immunosuppressive capacity of Treg cells from rats with CLP-induced sepsis was decreased, but could be restored by administration of MSCs. Compared with rats receiving PBS only after CLP, serum levels of interleukin-6 and tumor necrosis factor-α were significantly lower in rats receiving MSCs after CLP. There were no differences between BMMSCs and UCMSCs. In summary, this work provides the first in vivo evidence that administering BMMSCs or UCMSCs to rats with CLP-induced sepsis could increase circulating CD3+CD4+CD25+ Treg cells and Treg cells/T cells ratio, enhance Treg cell suppressive function, and decrease serum levels of interleukin-6 and tumor necrosis factor-α, suggesting the immunomodulatory association of Treg cells and MSCs during sepsis.

  20. Stirred tank bioreactor culture combined with serum-/xenogeneic-free culture medium enables an efficient expansion of umbilical cord-derived mesenchymal stem/stromal cells.

    Science.gov (United States)

    Mizukami, Amanda; Fernandes-Platzgummer, Ana; Carmelo, Joana G; Swiech, Kamilla; Covas, Dimas T; Cabral, Joaquim M S; da Silva, Cláudia L

    2016-08-01

    Mesenchymal stem/stromal cells (MSC) are being widely explored as promising candidates for cell-based therapies. Among the different human MSC origins exploited, umbilical cord represents an attractive and readily available source of MSC that involves a non-invasive collection procedure. In order to achieve relevant cell numbers of human MSC for clinical applications, it is crucial to develop scalable culture systems that allow bioprocess control and monitoring, combined with the use of serum/xenogeneic (xeno)-free culture media. In the present study, we firstly established a spinner flask culture system combining gelatin-based Cultispher(®) S microcarriers and xeno-free culture medium for the expansion of umbilical cord matrix (UCM)-derived MSC. This system enabled the production of 2.4 (±1.1) x10(5) cells/mL (n = 4) after 5 days of culture, corresponding to a 5.3 (±1.6)-fold increase in cell number. The established protocol was then implemented in a stirred-tank bioreactor (800 mL working volume) (n = 3) yielding 115 million cells after 4 days. Upon expansion under stirred conditions, cells retained their differentiation ability and immunomodulatory potential. The development of a scalable microcarrier-based stirred culture system, using xeno-free culture medium that suits the intrinsic features of UCM-derived MSC represents an important step towards a GMP compliant large-scale production platform for these promising cell therapy candidates. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Umbilical cord Wharton's jelly repeated culture system: a new device and method for obtaining abundant mesenchymal stem cells for bone tissue engineering.

    Directory of Open Access Journals (Sweden)

    Zhengqi Chang

    Full Text Available To date, various types of cells for seeding regenerative scaffolds have been used for bone tissue engineering. Among seed cells, the mesenchymal stem cells derived from human umbilical cord Wharton's jelly (hUCMSCs represent a promising candidate and hold potential for bone tissue engineering due to the the lack of ethical controversies, accessibility, sourced by non-invasive procedures for donors, a reduced risk of contamination, osteogenic differentiation capacities, and higher immunomodulatory capacity. However, the current culture methods are somewhat complicated and inefficient and often fail to make the best use of the umbilical cord (UC tissues. Moreover, these culture processes cannot be performed on a large scale and under strict quality control. As a result, only a small quantity of cells can be harvested using the current culture methods. To solve these problems, we designed and evaluated an UC Wharton's jelly repeated culture device. Using this device, hUCMSCs were obtained from the repeated cultures and their quantities and biological characteristics were compared. We found that using our culture device, which retained all tissue blocks on the bottom of the dish, the total number of obtained cells increased 15-20 times, and the time required for the primary passage was reduced. Moreover, cells harvested from the repeated cultures exhibited no significant difference in their immunophenotype, potential for multilineage differentiation, or proliferative, osteoinductive capacities, and final osteogenesis. The application of the repeated culture frame (RCF not only made full use of the Wharton's jelly but also simplified and specified the culture process, and thus, the culture efficiency was significantly improved. In summary, abundant hUCMSCs of dependable quality can be acquired using the RCF.

  2. Early transplantation of mesenchymal stem cells after spinal cord injury relieves pain hypersensitivity through suppression of pain-related signaling cascades and reduced inflammatory cell recruitment.

    Science.gov (United States)

    Watanabe, Shuji; Uchida, Kenzo; Nakajima, Hideaki; Matsuo, Hideaki; Sugita, Daisuke; Yoshida, Ai; Honjoh, Kazuya; Johnson, William E B; Baba, Hisatoshi

    2015-06-01

    Bone marrow-derived mesenchymal stem cells (BMSC) modulate inflammatory/immune responses and promote motor functional recovery after spinal cord injury (SCI). However, the effects of BMSC transplantation on central neuropathic pain and neuronal hyperexcitability after SCI remain elusive. This is of importance because BMSC-based therapies have been proposed for clinical treatment. We investigated the effects of BMSC transplantation on pain hypersensitivity in green fluorescent protein (GFP)-positive bone marrow-chimeric mice subjected to a contusion SCI, and the mechanisms of such effects. BMSC transplantation at day 3 post-SCI improved motor function and relieved SCI-induced hypersensitivities to mechanical and thermal stimulation. The pain improvements were mediated by suppression of protein kinase C-γ and phosphocyclic AMP response element binding protein expression in dorsal horn neurons. BMSC transplants significantly reduced levels of p-p38 mitogen-activated protein kinase and extracellular signal-regulated kinase (p-ERK1/2) in both hematogenous macrophages and resident microglia and significantly reduced the infiltration of CD11b and GFP double-positive hematogenous macrophages without decreasing the CD11b-positive and GFP-negative activated spinal-microglia population. BMSC transplants prevented hematogenous macrophages recruitment by restoration of the blood-spinal cord barrier (BSCB), which was associated with decreased levels of (a) inflammatory cytokines (tumor necrosis factor-α, interleukin-6); (b) mediators of early secondary vascular pathogenesis (matrix metallopeptidase 9); (c) macrophage recruiting factors (CCL2, CCL5, and CXCL10), but increased levels of a microglial stimulating factor (granulocyte-macrophage colony-stimulating factor). These findings support the use of BMSC transplants for SCI treatment. Furthermore, they suggest that BMSC reduce neuropathic pain through a variety of related mechanisms that include neuronal sparing and

  3. Bone Regeneration by Nanohydroxyapatite/Chitosan/Poly(lactide-co-glycolide Scaffolds Seeded with Human Umbilical Cord Mesenchymal Stem Cells in the Calvarial Defects of the Nude Mice

    Directory of Open Access Journals (Sweden)

    Fei Wang

    2015-01-01

    Full Text Available In the preliminary study, we have found an excellent osteogenic property of nanohydroxyapatite/chitosan/poly(lactide-co-glycolide (nHA/CS/PLGA scaffolds seeded with human umbilical cord mesenchymal stem cells (hUCMSCs in vitro and subcutaneously in the nude mice. The aim of this study was to further evaluate the osteogenic capacity of nHA/CS/PLGA scaffolds seeded with hUCMSCs in the calvarial defects of the nude mice. Totally 108 nude mice were included and divided into 6 groups: PLGA scaffolds + hUCMSCs; nHA/PLGA scaffolds + hUCMSCs; CS/PLGA scaffolds + hUCMSCs; nHA/CS/PLGA scaffolds + hUCMSCs; nHA/CS/PLGA scaffolds without seeding; the control group (no scaffolds (n=18. The scaffolds were implanted into the calvarial defects of nude mice. The amount of new bones was evaluated by fluorescence labeling, H&E staining, and Van Gieson staining at 4 and 8 weeks, respectively. The results demonstrated that the amount of new bones was significantly increased in the group of nHA/CS/PLGA scaffolds seeded with hUCMSCs (p<0.01. On the basis of previous studies in vitro and in subcutaneous implantation of the nude mice, the results revealed that the nHA and CS also enhanced the bone regeneration by nHA/CS/PLGA scaffolds seeded with hUCMSCs in the calvarial defects of the nude mice at early stage.

  4. Clinical follow-up of horses treated with allogeneic equine mesenchymal stem cells derived from umbilical cord blood for different tendon and ligament disorders.

    Science.gov (United States)

    Van Loon, Vic J F; Scheffer, Carmen J W; Genn, Herman J; Hoogendoorn, Arie C; Greve, Jan W

    2014-01-01

    Mesenchymal stem cells (MSCs) offer promise as therapeutic aids in the repair of tendon and ligament disorders in sport horses. Equine allogeneic MSCs derived from umbilical cord blood (eUCB-MSCs) can be obtained in a minimally invasive fashion with successful propagation of MSCs. The objective of this study was to determine the applicability and therapeutic effect of eUCB-MSCs on tendinitis of the superficial digital flexor tendon, desmitis of the suspensory ligament, tendinitis of the deep digital flexor tendon, and desmitis of the inferior check ligament in clinical cases. A retrospective clinical study was performed. At two equine clinics, 52 warmblood horses were treated with cultured eUCB-MSCs between 2009 and 2012. About 2-10 × 10(6) cells per lesion were administered. When a lesion was treated twice, the total amount could run up to 20 × 10(6) cells. Pearson's chi-squared test was used to compare the effect of the injured structure on the success rate, as well as the effect of the age of the horse. Based on repeated examinations, 40 horses (77%) returned to work on the same or a higher level based on information provided by the owner. Neither the injured structure nor the age of the horse had a statistically significant influence on the result. Overall, the results of treatment of some tendon and ligament injuries with eUCB-MSCs in clinical cases are promising.

  5. Isolation of mesenchymal stromal/stem cells from small-volume umbilical cord blood units that do not qualify for the banking system.

    Science.gov (United States)

    Yoshioka, Satoshi; Miura, Yasuo; Iwasa, Masaki; Fujishiro, Aya; Yao, Hisayuki; Miura, Masako; Fukuoka, Masaaki; Nakagawa, Yoko; Yokota, Asumi; Hirai, Hideyo; Ichinohe, Tatsuo; Takaori-Kondo, Akifumi; Maekawa, Taira

    2015-08-01

    The clinical application of mesenchymal stromal/stem cells (MSCs) has been extensively explored. In this study, we examined the availability of freshly donated umbilical cord blood (UCB) units that do not qualify for the Japanese banking system for transplantation because of their small volume as a source of MSCs. Forty-five UCB units were used. The median volume of each UCB unit and number of nucleated cells per unit were 40 mL and 5.39 × 10(8), respectively. MSCs were successfully isolated from 18 of 45 units (40 %). The MSC isolation rate was not affected by cell processing method or the interval between delivery and cell processing. The volume of the UCB unit and the mononuclear cell count were predictive factors of the MSC isolation rate. MSCs were effectively isolated by selecting UCB units with a volume of ≥54 mL and containing ≥1.28 × 10(8) mononuclear cells, yielding a MSC isolation rate of >70 %. UCB-derived MSCs were similar to bone marrow-derived MSCs in terms of their morphology, surface marker expression, and differentiation potential, apart from adipogenesis. Our data indicate that UCB units that are currently discarded due to inadequate volume should be reconsidered as a source of MSCs using the well-established UCB banking system.

  6. Effects of Human Mesenchymal Stem Cells Isolated from Wharton’s Jelly of the Umbilical Cord and Conditioned Media on Skeletal Muscle Regeneration Using a Myectomy Model

    Directory of Open Access Journals (Sweden)

    T. Pereira

    2014-01-01

    Full Text Available Skeletal muscle has good regenerative capacity, but the extent of muscle injury and the developed fibrosis might prevent complete regeneration. The in vivo application of human mesenchymal stem cells (HMSCs of the umbilical cord and the conditioned media (CM where the HMSCs were cultured and expanded, associated with different vehicles to induce muscle regeneration, was evaluated in a rat myectomy model. Two commercially available vehicles and a spherical hydrogel developed by our research group were used. The treated groups obtained interesting results in terms of muscle regeneration, both in the histological and in the functional assessments. A less evident scar tissue, demonstrated by collagen type I quantification, was present in the muscles treated with HMSCs or their CM. In terms of the histological evaluation performed by ISO 10993-6 scoring, it was observed that HMSCs apparently have a long-term negative effect, since the groups treated with CM presented better scores. CM could be considered an alternative to the in vivo transplantation of these cells, as it can benefit from the local tissue response to secreted molecules with similar results in terms of muscular regeneration. Searching for an optimal vehicle might be the key point in the future of skeletal muscle tissue engineering.

  7. Hypoxia Is a Critical Parameter for Chondrogenic Differentiation of Human Umbilical Cord Blood Mesenchymal Stem Cells in Type I/III Collagen Sponges.

    Science.gov (United States)

    Gómez-Leduc, Tangni; Desancé, Mélanie; Hervieu, Magalie; Legendre, Florence; Ollitrault, David; de Vienne, Claire; Herlicoviez, Michel; Galéra, Philippe; Demoor, Magali

    2017-09-08

    Umbilical cord blood (UCB) is an attractive alternative to bone marrow for isolation of mesenchymal stem cells (MSCs) to treat articular cartilage defects. Here, we set out to determine the growth factors (bone morphogenetic protein 2 (BMP-2) and transforming growth factor-β (TGF-β1)) and oxygen tension effects during chondrogenesis of human UCB-MSCs for cartilage engineering. Chondrogenic differentiation was induced using 3D cultures in type I/III collagen sponges with chondrogenic factors in normoxia (21% O₂) or hypoxia (<5% O₂) for 7, 14 and 21 days. Our results show that UCB-MSCs can be committed to chondrogenesis in the presence of BMP-2+TGF-β1. Normoxia induced the highest levels of chondrocyte-specific markers. However, hypoxia exerted more benefit by decreasing collagen X and matrix metalloproteinase-13 (MMP13) expression, two chondrocyte hypertrophy markers. However, a better chondrogenesis was obtained by switching oxygen conditions, with seven days in normoxia followed by 14 days in hypoxia, since these conditions avoid hypertrophy of hUCB-MSC-derived chondrocytes while maintaining the expression of chondrocyte-specific markers observed in normoxia. Our study demonstrates that oxygen tension is a key factor for chondrogenesis and suggests that UBC-MSCs 3D-culture should begin in normoxia to obtain a more efficient chondrocyte differentiation before placing them in hypoxia for chondrocyte phenotype stabilization. UCB-MSCs are therefore a reliable source for cartilage engineering.

  8. In vitro immunomodulatory effects of microencapsulated umbilical cord Wharton jelly-derived mesenchymal stem cells in primary Sjögren's syndrome.

    Science.gov (United States)

    Alunno, Alessia; Montanucci, Pia; Bistoni, Onelia; Basta, Giuseppe; Caterbi, Sara; Pescara, Teresa; Pennoni, Ilaria; Bini, Vittorio; Bartoloni, Elena; Gerli, Roberto; Calafiore, Riccardo

    2015-01-01

    Human umbilical cord Wharton jelly-derived mesenchymal stem cells (hUCMS) are easy to retrieve in bulk. They may interact with immune cells by either cell contact or soluble factors. Little evidence is currently available on potential therapeutic application of hUCMS to systemic autoimmune disorders such as primary SS (pSS). We have recently developed an endotoxin-free alginate gel that can be used to microencapsulate different cell types for graft into non-immunosuppressed hosts. We aimed to assess the in vitro effects of IFN-γ-pretreated microencapsulated (CpS)-hUCMS on T cells of pSS. Ten pSS patients and 10 healthy donors were selected. Peripheral blood mononuclear cells (PBMCs) were obtained from venous blood to establish co-cultures with CpS-hUCMS. Lymphocyte proliferation and phenotypic analysis was performed by flow cytometry and real-time PCR on IFN-γ-pretreated hUCMS was performed before PBMCs co-culture. We found that CpS-hUCMS suppress pSS T cell proliferation and restore the Treg/Th17 ratio, thereby possibly positively impacting the pSS disease process. We have developed a new biohybrid drug delivery system that now waits for clinical application in autoimmune diseases, including pSS. © The Author 2014. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Insulin Promotes the Proliferation of Human Umbilical Cord Matrix-Derived Mesenchymal Stem Cells by Activating the Akt-Cyclin D1 Axis

    Directory of Open Access Journals (Sweden)

    Peng Li

    2017-01-01

    Full Text Available Background. The functions of insulin in mesenchymal stem cells (MSC remain poorly understood. Methods. MSC from human umbilical cord matrix (UCM cultured in serum-free media (SFM with or without insulin were subjected to various molecular biological analyses to determine their proliferation and growth states, expression levels of Akt-cyclin D1 signaling molecules, and in vitro differentiation capacities. Results. Insulin accelerated the G1-S cell cycle progression of UCM-MSC and significantly stimulated their proliferation and growth in SFM. The pro-proliferative action of insulin was associated with augmented cyclin D1 and phosphorylated Akt expression levels. Akt inactivation remarkably abrogated insulin-induced increases in cyclin D1 expression and cell proliferation, indicating that insulin enhances the proliferation of UCM-MSC via acceleration of the G1-S transition mediated by the Akt-cyclin D1 pathway. Additionally, the UCM-MSC propagated in SFM supplemented with insulin exhibited similar specific surface antigen profiles and differentiation capacities as those generated in conventional media containing fetal bovine serum. Conclusions. These findings suggest that insulin acts solely to promote UCM-MSC proliferation without affecting their immunophenotype and differentiation potentials and thus have important implications for utilizing insulin to expand clinical-grade MSC in vitro.

  10. A Conditioned Medium of Umbilical Cord Mesenchymal Stem Cells Overexpressing Wnt7a Promotes Wound Repair and Regeneration of Hair Follicles in Mice

    Directory of Open Access Journals (Sweden)

    Liang Dong

    2017-01-01

    Full Text Available Mesenchymal stem cells (MSCs can affect the microenvironment of a wound and thereby accelerate wound healing. Wnt proteins act as key mediators of skin development and participate in the formation of skin appendages such as hair. The mechanisms of action of MSCs and Wnt proteins on skin wounds are largely unknown. Here, we prepared a Wnt7a-containing conditioned medium (Wnt-CM from the supernatant of cultured human umbilical cord-MSCs (UC-MSCs overexpressing Wnt7a in order to examine the effects of this CM on cutaneous healing. Our results revealed that Wnt-CM can accelerate wound closure and induce regeneration of hair follicles. Meanwhile, Wnt-CM enhanced expression of extracellular matrix (ECM components and cell migration of fibroblasts but inhibited the migratory ability and expression of K6 and K16 in keratinocytes by enhancing expression of c-Myc. However, we found that the CM of fibroblasts treated with Wnt-CM (HFWnt-CM-CM can also promote wound repair and keratinocyte migration; but there was no increase in the number of hair follicles of regeneration. These data indicate that Wnt7a and UC-MSCs have synergistic effects: they can accelerate wound repair and induce hair regeneration via cellular communication in the wound microenvironment. Thus, this study opens up new avenues of research on the mechanisms underlying wound repair.

  11. Human Mesenchymal Stem/Stromal Cells from Umbilical Cord Blood and Placenta Exhibit Similar Capacities to Promote Expansion of Hematopoietic Progenitor Cells In Vitro

    Directory of Open Access Journals (Sweden)

    Guadalupe R. Fajardo-Orduña

    2017-01-01

    Full Text Available Mesenchymal stem/stromal cells (MSCs from bone marrow (BM have been used in coculture systems as a feeder layer for promoting the expansion of hematopoietic progenitor cells (HPCs for hematopoietic cell transplantation. Because BM has some drawbacks, umbilical cord blood (UCB and placenta (PL have been proposed as possible alternative sources of MSCs. However, MSCs from UCB and PL sources have not been compared to determine which of these cell populations has the best capacity of promoting hematopoietic expansion. In this study, MSCs from UCB and PL were cultured under the same conditions to compare their capacities to support the expansion of HPCs in vitro. MSCs were cocultured with CD34+CD38−Lin− HPCs in the presence or absence of early acting cytokines. HPC expansion was analyzed through quantification of colony-forming cells (CFCs, long-term culture-initiating cells (LTC-ICs, and CD34+CD38−Lin− cells. MSCs from UCB and PL have similar capacities to increase HPC expansion, and this capacity is similar to that presented by BM-MSCs. Here, we are the first to determine that MSCs from UCB and PL have similar capacities to promote HPC expansion; however, PL is a better alternative source because MSCs can be obtained from a higher proportion of samples.

  12. Pleiotrophin is involved in the amniotic epithelial cell-induced differentiation of human umbilical cord blood-derived mesenchymal stem cells into dopaminergic neuron-like cells.

    Science.gov (United States)

    Yang, Shu; Xue, Dan-Dan; Wu, Bo; Sun, Hai-Mei; Li, Xiao-Shuang; Dong, Fang; Li, Wen-Shuai; Ji, Feng-Qing; Zhou, De-Shan

    2013-02-28

    We have reported that human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) are capable of differentiating into dopaminergic (DA) neuron-like cells upon being induced by amniotic epithelial cells (AECs). However, what factor(s) is involved in the differentiation process has not been explored out thoroughly. Because pleiotrophin (PTN) is known to exert important trophic effects on DA neurons, in the present study, we investigated whether PTN is released by AECs and whether it is involved in the differentiation of hUCB-MSCs into DA neuron-like cells. The expression and secretion of PTN by AECs were detected by immunofluorescence, RT-PCR and ELISA. The hUCB-MSCs were isolated and treated with AEC-conditioned medium (ACM) or recombinant human PTN. Compared to the controls, a higher proportion of treated cells differentiated into DA neuron-like cells, indicated by the increased expression of TH and DAT and the increased dopamine content. These results indicate that PTN released by AECs acts as a synergetic factor with other neurotrophic factors and is involved in the differentiation of hUCB-MSCs into DA neuron-like cells. We suggest that ACM, which contains PTN and other neurotrophic factors, could potentially be used as an agent to promote the differentiation of DA neuron-like cells from hUCB-MSCs for cell therapy of Parkinson's disease without creating legal or ethical issues. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  13. In vitro induction and differentiation of umbilical cord mesenchymal stem cells into neuron-like cells by all-trans retinoic acid

    Directory of Open Access Journals (Sweden)

    Wei Jin

    2015-04-01

    Full Text Available AIM: To determine the optimal concentration for inducing the differentiation of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs into neuron-like cells, although it is understood that all-trans retinoic acid (ATRA regulates cell proliferation in the nervous system by modulating the balance between mitosis and apoptosis. METHODS: The abilities of ATRA to promote apoptosis as well as neural differentiation were assessed in cultured hUC-MSCs by morphological observation, MTT assay, annexin V-FITC/PI flow cytometry and immunocytochemistry. RESULTS: The data showed that low concentrations of ATRA (0.5 µmol, 0.25 µmol had no effect on the number of cells. However, treatment with 1.0 µmol or 2.0 µmol ATRA induced a 24.16% and 52.67% reduction in cell number, respectively, compared with vehicle-treated cultures. Further, 4.0 µmol ATRA had a potent effect on cell number, with almost no adherent cells recovered after 24h. We further showed that 0.5 µmol ATRA caused these cells to express characteristic markers of neuronal progenitor cells. CONCLUSION: Taken together, we conclude that ATRA has a dose-dependent influence on the neural differentiation and apoptosis of hUC-MSCs. These findings have implications on the use of ATRA-differentiated hUC-MSCs for the study of neural degeneration diseases.

  14. Islet-like clusters derived from mesenchymal stem cells in Wharton's Jelly of the human umbilical cord for transplantation to control type 1 diabetes.

    Directory of Open Access Journals (Sweden)

    Kuo Ching Chao

    Full Text Available BACKGROUND: There is a widespread interest in developing renewable sources of islet-replacement tissue for type I diabetes mellitus. Human mesenchymal cells isolated from the Wharton's jelly of the umbilical cord (HUMSCs, which can be easily obtained and processed compared with embryonic and bone marrow stem cells, possess stem cell properties. HUMSCs may be a valuable source for the generation of islets. METHODOLOGY AND PRINCIPAL FINDINGS: HUMSCs were induced to transform into islet-like cell clusters in vitro through stepwise culturing in neuron-conditioned medium. To assess the functional stability of the islet-like cell clusters in vivo, these cell clusters were transplanted into the liver of streptozotocin-induced diabetic rats via laparotomy. Glucose tolerance was measured on week 12 after transplantation accompanied with immunohistochemistry and electron microscopy analysis. These islet-like cell clusters were shown to contain human C-peptide and release human insulin in response to physiological glucose levels. Real-time RT-PCR detected the expressions of insulin and other pancreatic beta-cell-related genes (Pdx1, Hlxb9, Nkx2.2, Nkx6.1, and Glut-2 in these islet-like cell clusters. The hyperglycemia and glucose intolerance in streptozotocin-induced diabetic rats was significantly alleviated after xenotransplantation of islet-like cell clusters, without the use of immunosuppressants. In addition to the existence of islet-like cell clusters in the liver, some special fused liver cells were also found, which characterized by human insulin and nuclei-positive staining and possessing secretory granules. CONCLUSIONS AND SIGNIFICANCE: In this study, we successfully differentiate HUMSCs into mature islet-like cell clusters, and these islet-like cell clusters possess insulin-producing ability in vitro and in vivo. HUMSCs in Wharton's Jelly of the umbilical cord seem to be the preferential source of stem cells to convert into insulin

  15. Alginate/PEG based microcarriers with cleavable crosslinkage for expansion and non-invasive harvest of human umbilical cord blood mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chunge [Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, No. 92, Weijin Road, Tianjin 300072 (China); Qian, Yufeng [Department of Chemistry and Biochemistry, University of Texas at Austin, 2500 Speedway, Austin, TX 78712 (United States); Zhao, Shuang [Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, No. 92, Weijin Road, Tianjin 300072 (China); Yin, Yuji, E-mail: yinyuji@tju.edu.cn [Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, No. 92, Weijin Road, Tianjin 300072 (China); Li, Junjie, E-mail: li41308@tju.edu.cn [Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, No. 92, Weijin Road, Tianjin 300072 (China); Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, No. 27, Taiping Road, Beijing 100850 (China)

    2016-07-01

    Porous microcarriers are increasingly used to expand and harvest stem cells. Generally, the cells are harvested via proteolytic enzyme treatment, which always leads to damages to stem cells. To address this disadvantage, a series of alginate/PEG (AL/PEG) semi-interpenetrating network microcarriers are prepared in this study. In this AL/PEG system, the chemically cross-linked alginate networks are formed via the reaction between carboxylic acid group of alginate and di-terminated amine groups of cystamine. PEG is introduced to modulate the degradation of microcarriers, which does not participate in this cross-linked reaction, while it interpenetrates in alginate network via physical interactions. In addition, chitosan are coated on the surface of AL/PEG to improve the mechanical strength via the electrostatic interactions. Biocompatible fibronectin are also coated on these microcarriers to modulate the biological behaviors of cells seeded in microcarriers. Results suggest that the size of AL/PEG microcarriers can be modulated via adjusting the contents and molecular weight of PEG. Moreover, the microcarriers are designed to be degraded with cleavage of disulfide crosslinkage. By changing the type and concentration of reductant, the ratio of AL to PEG, and the magnitude of chitosan coating, the degradation ability of AL/PEG microcarriers can be well controlled. In addition, AL/PEG microcarriers can support the attachment and proliferation of human umbilical cord blood mesenchymal stem cells (hUCB-MSCs). More importantly, the expanded hUCB-MSCs can be detached from microcarriers after addition of reductant, which indeed reduce the cell damage caused by proteolytic enzyme treatment. Therefore, it is convinced that AL/PEG based microcarriers will be a promising candidate for large-scale expansion of hUCB-MSCs. - Graphical abstract: Alginate/PEG IPN microcarriers can support the attachment and expansion of hUCB-MSCs. More importantly, the expanded cells can be harvested

  16. Monitoring the biology stability of human umbilical cord-derived mesenchymal stem cells during long-term culture in serum-free medium.

    Science.gov (United States)

    Chen, Gecai; Yue, Aihuan; Ruan, Zhongbao; Yin, Yigang; Wang, Ruzhu; Ren, Yin; Zhu, Li

    2014-12-01

    Mesenchymal stem cells (MSCs) are multipotent adult stem cells that have an immunosuppressive effect. The biological stability of MSCs in serum-free medium during long-term culture in vitro has not been elucidated clearly. The morphology, immunophenotype and multi-lineage potential were analyzed at passages 3, 5, 10, 15, 20, and 25 (P3, P5, P10, P15, P20, and P25, respectively). The cell cycle distribution, apoptosis, and karyotype of human umbilical cord-derived (hUC)-MSCs were analyzed at P3, P5, P10, P15, P20, and P25. From P3 to P25, the three defining biological properties of hUC-MSCs [adherence to plastic, specific surface antigen expression, multipotent differentiation potential] met the standards proposed by the International Society for Cellular Therapy for definition of MSCs. The cell cycle distribution analysis at the P25 showed that the percentage of cells at G0/G1 was increased, compared with the cells at P3 (P Cells at P25 displayed an increase in the apoptosis rate (to 183 %), compared to those at P3 (P cell apoptotic rates were not statistically significant (P > 0.05). There were no detectable chromosome eliminations, displacements, or chromosomal imbalances, as assessed by the karyotyping guidelines of the International System for Human Cytogenetic Nomenclature (ISCN, 2009). Long-term culture affects the biological stability of MSCs in serum-free MesenCult-XF medium. MSCs can be expanded up to the 25th passage without chromosomal changes by G-band. The best biological activity period and stability appeared between the third to 20th generations.

  17. Bridging defects in chronic spinal cord injury using peripheral nerve grafts combined with a chitosan-laminin scaffold and enhancing regeneration through them by co-transplantation with bone-marrow-derived mesenchymal stem cells: case series of 14 patients.

    Science.gov (United States)

    Amr, Sherif M; Gouda, Ashraf; Koptan, Wael T; Galal, Ahmad A; Abdel-Fattah, Dina Sabry; Rashed, Laila A; Atta, Hazem M; Abdel-Aziz, Mohammad T

    2014-01-01

    To investigate the effect of bridging defects in chronic spinal cord injury using peripheral nerve grafts combined with a chitosan-laminin scaffold and enhancing regeneration through them by co-transplantation with bone-marrow-derived mesenchymal stem cells. In 14 patients with chronic paraplegia caused by spinal cord injury, cord defects were grafted and stem cells injected into the whole construct and contained using a chitosan-laminin paste. Patients were evaluated using the International Standards for Classification of Spinal Cord Injuries. Chitosan disintegration leading to post-operative seroma formation was a complication. Motor level improved four levels in 2 cases and two levels in 12 cases. Sensory-level improved six levels in two cases, five levels in five cases, four levels in three cases, and three levels in four cases. A four-level neurological improvement was recorded in 2 cases and a two-level neurological improvement occurred in 12 cases. The American Spinal Impairment Association (ASIA) impairment scale improved from A to C in 12 cases and from A to B in 2 cases. Although motor power improvement was recorded in the abdominal muscles (2 grades), hip flexors (3 grades), hip adductors (3 grades), knee extensors (2-3 grades), ankle dorsiflexors (1-2 grades), long toe extensors (1-2 grades), and plantar flexors (0-2 grades), this improvement was too low to enable them to stand erect and hold their knees extended while walking unaided. Mesenchymal stem cell-derived neural stem cell-like cell transplantation enhances recovery in chronic spinal cord injuries with defects bridged by sural nerve grafts combined with a chitosan-laminin scaffold.

  18. [Analysis of chronergy for treatment of spinal cord injury with the allogeneic bone mesenchymal stem cells (BMscs) transplantation in rats].

    Science.gov (United States)

    Duan, Da-peng; Su, Quan; Hu, Wei; You, Wu-Lin; Dang, Xiao-Qian; Wang, Kun-Zheng

    2013-10-01

    To observe the change of behavior, pathological change of the spinal cord,and expression of brain-derived neurotrophic factor (BDNF) and brain-derived neurotrophic factor (NGF) on rats with spinal cord injury in order to explore the optimal time of BMSCs transplantation. Eighty health SD rats were randomly divided into 8 groups (group A,B,C,D,E,F,G,H), 10 rats in each group. According to the modified Allen method,the rat model of spinal cord injury was built. Group A as non-injured group only exposed the spinal cord but not result in blast injury. BMSCs of vitro culture were respectively infunded the region of spinal cord injury in group C, D, E, F, G, H (as transplantation groups) at the 0 h, 6 h, 24 h,3 d,5 d,7 d after model made. Group B as single model group was infunded the equal cell culture fluid. BBB score was used to evaluate the function of spinal cord at the 1st,2nd and 4th weeks after injury. The morphological changes of the tissue of spinal cord injury were observed by HE stain and the expression of BDNF and NGF were detected by Elisa method at the 4th weeks after BMSCs transplantation. In non-injured group,BBB score was highest than that of other 7 groups at the 1st, 2nd and 4th weeks after injury (Ptransplantation groups at the 1st week after BMSCs transplantation (P>0.05). BBB score in transplantation groups were higher than that of single model group at the 2nd and 4th weeks after BMSCs transplantation (Pinjury, BBB score from high to low was group F,E,G,D,H,C,but there was no significant difference among the groups (P>0.05). At the 4th week after injury,there was significant differences in BBB score between group F and other transplantation groups (group C,D,E,G,H)(P0.05). The levels of BDNF and NGF in group F was highest at the 4th week after BMSCs transplantation (Pspinal cord was clear and complete,no neutrophil was found. But in other 7 groups,HE staining showed obviously oedema at local tissue,juncture of gray and white matter was undefined

  19. Bone Marrow Mesenchymal Stem-Cell Transplantation Promotes Functional Improvement Associated with CNTF-STAT3 Activation after Hemi-Sectioned Spinal Cord Injury in Tree Shrews

    Directory of Open Access Journals (Sweden)

    Liu-Lin Xiong

    2017-06-01

    Full Text Available Hemi-sectioned spinal cord injury (hSCI can lead to spastic paralysis on the injured side, as well as flaccid paralysis on the contralateral side, which can negatively affect a patient’s daily life. Stem-cell therapy may offer an effective treatment option for individuals with hSCI. To examine the role of bone marrow mesenchymal stem cells (BMSCs transplantation on hSCI and explore related mechanisms in the tree shrews, here, we created a model of hSCI by inducing injury at the tenth thoracic vertebra (T10. Hoechst 33342-labeled BMSCs derived from adult tree shrews were isolated, cultured, and implanted into the spinal cord around the injury site at 9 days after injury. The isolated BMSCs were able to survive, proliferate and release a variety of neurotrophic factors (NTFs both in vitro and in vivo. At 28 days after injury, compared with the sham group, the hSCI group displayed scar formation and dramatic elevations in the mean interleukin 1 beta (IL-1β density and cell apoptosis level, whereas the expression of signal transducer and activator of transcription 3 (STAT3 and ciliary neurotrophic factor (CNTF mRNA was reduced. Following BMSC transplantation, motoneurons extent of shrinkage were reduced and the animals’ Basso, Beattie, and Bresnahan (BBB locomotion scale scores were significantly higher at 21 and 28 days after injury when compared with the injured group. Moreover, the hSCI-induced elevations in scar formation, IL-1β, and cell apoptosis were reduced by BMSC transplantation to levels that were close to those of the sham group. Corresponding elevations in the expression of STAT3 and CNTF mRNA were observed in the hSCI + BMSCs group, and the levels were not significantly different from those observed in the sham group. Together, our results support that grafted BMSCs can significantly improve locomotor function in tree shrews subjected to hSCI and that this improvement is associated with the upregulation of CNTF and STAT3

  20. Effect of human umbilical cord blood mesenchymal stem cells administered by intravenous or intravitreal routes on cryo-induced retinal injury.

    Science.gov (United States)

    Mohamed, Eman M; Abdelrahman, Shaimaa A; Hussein, Samia; Shalaby, Sally M; Mosaad, Hala; Awad, Ahmed M B

    2017-03-01

    Traumatic optic neuropathy is an important cause of severe vision loss. So, many attempts were performed to transplant stem cells systemically or locally to regenerate the injured retina. In this study, we investigated the effect of human umbilical cord blood mesenchymal stem cells (hUBMSCs) on histological structure, apoptotic, antiapoptotic, oxidant and antioxidant markers in an experimental model of cryo-induced retinal damage in mice. Forty-eight mice were included with 4 major groups; group I contained 18 mice as controls. The others included 30 mice exposed to cryo-induced retinal injury and were subdivided into three equal groups: group II received no treatment after injury. Group III was intravenously injected with hUCBMSCs after injury and group IV received an intravitreal injection with hUCBMSCs into both eyes. Retinal tissues were used for histopathological, immunological and gene expression studies. Real time-PCR was performed to assess B-cell lymphoma 2 (bcl2), Bcl2-associated X protein (bax), heme oxygenase-1 (hmox-1) and thioredoxin-2 (tnx-2) expression and to assess the differentiation of the stem cells into the retinal tissue. Immunohistochemical analysis was performed to assess caspase-3, 3-nitrotyrosine (3-NT) and basic fibroblast growth factor (bFGF). Disturbed retinal structure was seen in cryo-injured mice while hUCBMSCs treated groups showed nearly normal structure. By real time-PCR, significantly reduced mRNA expressions of Bax and notably enhanced mRNA expression of Bcl-2, hmox-1 and txn-2 were demonstrated in retinal injured mice with hUCBMSCs treatment compared to those without. In addition, immunohistochemical analysis confirmed downregulation of 3-NT and caspase-3 and upregulation of bFGF after hUCBMSCs injection in injured retina. Furthermore, there was no differentiation of transplanted stem cells into the retinal tissue. In conclusions, hUCBMSCs could improve the morphological retinal structure in cryo-induced retinal damage model by

  1. Mesenchymal stem cells in osteoarthritis.

    Science.gov (United States)

    Luyten, Frank P

    2004-09-01

    Accumulating evidence indicates that every tissue contains stem cells. Our understanding of the biology of stem cells reveals that these cell populations have a critical role in the homeostasis and repair of tissues. Besides the local stem cell niches, additional compartments in the body such as the bone marrow may serve as reservoirs for stem cell populations. On more extensive tissue damage, and guided by local repair responses, "reparative" cell populations are mobilized from more distant stem cell reservoirs and migrate to the site of injury, thereby contributing in many aspects of local tissue repair. Osteoarthritis has long been regarded as an imbalance between destructive and reparative processes. The lack of repair of the weight-bearing articular cartilage and the associated subchondral bone changes are considered of critical importance in the progression of the disease. Recent findings indicate a depletion and/or functional alteration of mesenchymal stem cell populations in osteoarthritis. These preliminary data suggest that in joint diseases such as osteoarthritis, it is of importance to investigate further the involvement of the stem cell pool in the mechanisms contributing to joint homeostasis and driving disease progression. In view of the emerging body of evidence pointing to a potential therapeutic utility of stem cell technology, it is not surprising that local delivery of mesenchymal stem cells has been explored as a therapeutic approach in animal models of osteoarthritis. Copyright 2004 Lippincott Williams & Wilkins

  2. Viability of mesenchymal stem cells during electrospinning

    Directory of Open Access Journals (Sweden)

    G. Zanatta

    2012-02-01

    Full Text Available Tissue engineering is a technique by which a live tissue can be re-constructed and one of its main goals is to associate cells with biomaterials. Electrospinning is a technique that facilitates the production of nanofibers and is commonly used to develop fibrous scaffolds to be used in tissue engineering. In the present study, a different approach for cell incorporation into fibrous scaffolds was tested. Mesenchymal stem cells were extracted from the wall of the umbilical cord and mononuclear cells from umbilical cord blood. Cells were re-suspended in a 10% polyvinyl alcohol solution and subjected to electrospinning for 30 min under a voltage of 21 kV. Cell viability was assessed before and after the procedure by exclusion of dead cells using trypan blue staining. Fiber diameter was observed by scanning electron microscopy and the presence of cells within the scaffolds was analyzed by confocal laser scanning microscopy. After electrospinning, the viability of mesenchymal stem cells was reduced from 88 to 19.6% and the viability of mononuclear cells from 99 to 8.38%. The loss of viability was possibly due to the high viscosity of the polymer solution, which reduced the access to nutrients associated with electric and mechanical stress during electrospinning. These results suggest that the incorporation of cells during fiber formation by electrospinning is a viable process that needs more investigation in order to find ways to protect cells from damage.

  3. Safety and Efficacy of the Intravenous Infusion of Umbilical Cord Mesenchymal Stem Cells in Patients With Heart Failure: A Phase 1/2 Randomized Controlled Trial (RIMECARD Trial [Randomized Clinical Trial of Intravenous Infusion Umbilical Cord Mesenchymal Stem Cells on Cardiopathy]).

    Science.gov (United States)

    Bartolucci, Jorge; Verdugo, Fernando J; González, Paz L; Larrea, Ricardo E; Abarzua, Ema; Goset, Carlos; Rojo, Pamela; Palma, Ivan; Lamich, Ruben; Pedreros, Pablo A; Valdivia, Gloria; Lopez, Valentina M; Nazzal, Carolina; Alcayaga-Miranda, Francisca; Cuenca, Jimena; Brobeck, Matthew J; Patel, Amit N; Figueroa, Fernando E; Khoury, Maroun

    2017-10-27

    Umbilical cord-derived mesenchymal stem cells (UC-MSC) are easily accessible and expanded in vitro, possess distinct properties, and improve myocardial remodeling and function in experimental models of cardiovascular disease. Although bone marrow-derived mesenchymal stem cells have been previously assessed for their therapeutic potential in individuals with heart failure and reduced ejection fraction, no clinical trial has evaluated intravenous infusion of UC-MSCs in these patients. Evaluate the safety and efficacy of the intravenous infusion of UC-MSC in patients with chronic stable heart failure and reduced ejection fraction. Patients with heart failure and reduced ejection fraction under optimal medical treatment were randomized to intravenous infusion of allogenic UC-MSCs (Cellistem, Cells for Cells S.A., Santiago, Chile; 1×10 6 cells/kg) or placebo (n=15 per group). UC-MSCs in vitro, compared with bone marrow-derived mesenchymal stem cells, displayed a 55-fold increase in the expression of hepatocyte growth factor, known to be involved in myogenesis, cell migration, and immunoregulation. UC-MSC-treated patients presented no adverse events related to the cell infusion, and none of the patients tested at 0, 15, and 90 days presented alloantibodies to the UC-MSCs (n=7). Only the UC-MSC-treated group exhibited significant improvements in left ventricular ejection fraction at 3, 6, and 12 months of follow-up assessed both through transthoracic echocardiography ( P =0.0167 versus baseline) and cardiac MRI ( P =0.025 versus baseline). Echocardiographic left ventricular ejection fraction change from baseline to month 12 differed significantly between groups (+7.07±6.22% versus +1.85±5.60%; P =0.028). In addition, at all follow-up time points, UC-MSC-treated patients displayed improvements of New York Heart Association functional class ( P =0.0167 versus baseline) and Minnesota Living with Heart Failure Questionnaire ( P <0.05 versus baseline). At study completion

  4. Human umbilical cord mesenchymal stem cells and derived hepatocyte-like cells exhibit similar therapeutic effects on an acute liver failure mouse model.

    Directory of Open Access Journals (Sweden)

    Ruiping Zhou

    Full Text Available Mesenchymal stem cells (MSCs have exhibited therapeutic effects in multiple animal models so that are promising liver substitute for transplantation treatment of end-stage liver diseases. However, it has been shown that over-manipulation of these cells increased their tumorigenic potential, and that reducing the in vitro culture time could minimize the risk. In this study, we used a D-galactosamine plus lipopolysaccharide (Gal/LPS-induced acute liver failure mouse model, which caused death of about 50% of the mice with necrosis of more than 50% hepatocytes, to compare the therapeutic effects of human umbilical cord MSCs (hUCMSCs before and after induction of differentiation into hepatocyte (i-Heps. Induction of hUCMSCs to become i-Heps was achieved by treatment of the cells with a group of growth factors within 4 weeks. The resulted i-Heps exhibited a panel of human hepatocyte biomarkers including cytokeratin (hCK-18, α-fetoprotein (hAFP, albumin (hALB, and hepatocyte-specific functions glycogen storage and urea metabolism. We demonstrated that transplantation of both cell types through tail vein injection rescued almost all of the Gal/LPS-intoxicated mice. Although both cell types exhibited similar ability in homing at the mouse livers, the populations of the hUCMSCs-derived cells, as judged by expressing hAFP, hCK-18 and human hepatocyte growth factor (hHGF, were small. These observations let us to conclude that the hUCMSCs was as effective as the i-Heps in treatment of the mouse acute liver failure, and that the therapeutic effects of hUCMSCs were mediated largely via stimulation of host hepatocyte regeneration, and that delivery of the cells through intravenous injection was effective.

  5. Adult and umbilical cord blood-derived platelet-rich plasma for mesenchymal stem cell proliferation, chemotaxis, and cryo-preservation.

    Science.gov (United States)

    Murphy, Matthew B; Blashki, Daniel; Buchanan, Rachel M; Yazdi, Iman K; Ferrari, Mauro; Simmons, Paul J; Tasciotti, Ennio

    2012-07-01

    Platelet-rich plasma (PRP) was prepared from human adult peripheral blood and from human umbilical cord (uc) blood and the properties were compared in a series of in vitro bioassays. Quantification of growth factors in PRP and platelet-poor plasma (PPP) fractions revealed increased levels of mitogenic growth factors PDGF-AB, PDGF-BB, and FGF-2, the angiogenic agent VEGF and the chemokine RANTES in ucPRP compared to adult PRP (aPRP) and PPP. To compare the ability of the various PRP products to stimulate proliferation of human bone marrow (BM), rat BM and compact bone (CB)-derived mesenchymal stem cells (MSC), cells were cultured in serum-free media for 4 and 7 days with varying concentrations of PRP, PPP, or combinations of recombinant mitogens. It was found that while all forms of PRP and PPP were more mitogenic than fetal bovine serum, ucPRP resulted in significantly higher proliferation by 7 days than adult PRP and PPP. We observed that addition of as little as 0.1% ucPRP caused greater proliferation of MSC effects than the most potent combination of recombinant growth factors tested, namely PDGF-AB + PDGF-BB + FGF-2, each at 10 ng/mL. Similarly, in chemotaxis assays, ucPRP showed greater potency than adult PRP, PPP from either source, or indeed than combinations of either recombinant growth factors (PDGF, FGF, and TGF-β1) or chemokines previously shown to stimulate chemotactic migration of MSC. Lastly, we successfully demonstrated that PRP and PPP represented a viable alternative to FBS containing media for the cryo-preservation of MSC from human and rat BM. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSC) inhibit the proliferation of K562 (human erythromyeloblastoid leukaemic cell line).

    Science.gov (United States)

    Fonseka, Malini; Ramasamy, Rajesh; Tan, Boon Chong; Seow, Heng Fong

    2012-09-01

    hUCB-MSC (human umbilical cord blood-derived mesenchymal stem cells) offer an attractive alternative to bone marrow-derived MSC for cell-based therapy by being less invasive a source of biological material. We have evaluated the effect of hUCB-MSC on the proliferation of K562 (an erythromyeloblastoid cell line) and the cytokine secretion pattern of hUCB-MSC. Co-culturing of hUCB-MSC and K562 resulted in inhibition of proliferation of K562 in a dose-dependent manner. However, the anti-proliferative effect was reduced in transwells, suggesting the importance of direct cell-to-cell contact. hUCB-MSC inhibited proliferation of K562, arresting them in the G0 /G1 phase. NO (nitric oxide) was not involved in the hUCB-MSC-mediated tumour suppression. The presence of IL-6 (interleukin 6) and IL-8 were obvious in the hUCB-MSC conditioned media, but no significant increase was found in 29 other cytokines. Th1 cytokines, IFNα (interferon α), Th2 cytokine IL-4 and Th17 cytokine, IL-17 were not secreted by hUCB-MSC. There was an increase in the number of hUCB-MSC expressing the latent membrane-bound form of TGFβ1 co-cultured with K562. The anti-proliferative effect of hUCB-MSC was due to arrest of the growth of K562 in the G0 /G1 phase. The mechanisms underlying increased IL-6 and IL-8 secretion and LAP (latency-associated peptide; TGFβ1) by hUCB-MSC remains unknown. © The Author(s) Journal compilation © 2012 International Federation for Cell Biology.

  7. Comparable therapeutic potential of umbilical cord mesenchymal stem cells in collagen-induced arthritis to TNF inhibitor or anti-CD20 treatment.

    Science.gov (United States)

    Sun, Yue; Kong, Wei; Huang, Saisai; Shi, Bingyu; Zhang, Hanyu; Chen, Weiwei; Zhang, Huayong; Zhao, Cheng; Tang, Xiaojun; Yao, Genhong; Feng, Xuebing; Sun, Lingyun

    2017-01-01

    The effects of mesenchymal stem cell (MSC) transplantation on established collagen-induced arthritis (CIA) were evaluated and compared to biologic therapies. CIA was induced with the immunisation of type II collagen (CII) in DBA/1 mice. Human umbilical cord MSC, anti-TNF antibody, rhTNFR:Fc fusion protein and anti-CD20 antibody were respectively injected intraperitoneally into CIA mice. Arthritis severity was assessed by clinical and histological scoring. The frequencies of lymphocytes in spleen were analysed, and serum concentrations of cytokines and autoantibody to CII were also measured. The ability of MSC to regulate the balance of T helper cell subsets in CII stimulated CIA CD4+ T cells was assessed in vitro. MSC treatment significantly decreased the severity of arthritis, which was comparable to biologic treatments. All the treatments down-regulated Th1 subset. Except anti-CD20 all the treatments decreased Th17 subset. MSC treatment enhanced the proportion of regulatory T (Treg) cells and inhibited the generation of T follicular helper (Tfh) cells. The decrease in autoantibody level was detectable in all the treated groups. In vitro MSC induced Foxp3+ T cells, and down-regulated IL-17+, IFNγ+ T cells and pathogenic IL-17+IFNγ+ or IL-17+Foxp3+ T cells. MSC also reduced the secretion of IL-1β, IL-6, IL-17 and TNF-α among collagen-specific T cells. MSC show comparable effects to the known biologic treatments and correct immune imbalance in CIA. MSC might provide a promising approach for the treatment of rheumatoid arthritis.

  8. Conditioned medium from human amniotic epithelial cells may induce the differentiation of human umbilical cord blood mesenchymal stem cells into dopaminergic neuron-like cells.

    Science.gov (United States)

    Yang, Shu; Sun, Hai-Mei; Yan, Ji-Hong; Xue, Hong; Wu, Bo; Dong, Fang; Li, Wen-Shuai; Ji, Feng-Qing; Zhou, De-Shan

    2013-07-01

    Dopaminergic (DA) neuron therapy has been established as a new clinical tool for treating Parkinson's disease (PD). Prior to cell transplantation, there are two primary issues that must be resolved: one is the appropriate seed cell origin, and the other is the efficient inducing technique. In the present study, human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) were used as the available seed cells, and conditioned medium from human amniotic epithelial cells (ACM) was used as the inducing reagent. Results showed that the proportion of DA neuron-like cells from hUCB-MSCs was significantly increased after cultured in ACM, suggested by the upregulation of DAT, TH, Nurr1, and Pitx3. To identify the process by which ACM induces DA neuron differentiation, we pretreated hUCB-MSCs with k252a, the Trk receptor inhibitor of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF), and found that the proportion of DA neuron-like cells was significantly decreased compared with ACM-treated hUCB-MSCs, suggesting that NGF and BDNF in ACM were involved in the differentiation process. However, we could not rule out the involvement of other unidentified factors in the ACM, because ACM + k252a treatment does not fully block DA neuron-like cell differentiation compared with control. The transplantation of ACM-induced hUCB-MSCs could ameliorate behavioral deficits in PD rats, which may be associated with the survival of engrafted DA neuron-like cells. In conclusion, we propose that hUCB-MSCs are a good source of DA neuron-like cells and that ACM is a potential inducer to obtain DA neuron-like cells from hUCB-MSCs in vitro for an ethical and legal cell therapy for PD. Copyright © 2013 Wiley Periodicals, Inc.

  9. Intradermal injections of equine allogeneic umbilical cord-derived mesenchymal stem cells are well tolerated and do not elicit immediate or delayed hypersensitivity reactions.

    Science.gov (United States)

    Carrade, Danielle D; Affolter, Verena K; Outerbridge, Catherine A; Watson, Johanna L; Galuppo, Larry D; Buerchler, Sabine; Kumar, Vijay; Walker, Naomi J; Borjesson, Dori L

    2011-11-01

    BACKGROUND AIMS. The use of allogeneic mesenchymal stem cells (MSC) to treat acute equine lesions would greatly expand equine cellular therapy options; however, the safety and antigenicity of these cells have not been well-studied. We hypothesized that equine allogeneic umbilical cord tissue (UCT)-derived MSC would not elicit acute graft rejection or a delayed-type hypersensitivity response when injected intradermally. METHODS. Six Quarterhorse yearlings received 12 intradermal injections (autologous MSC, allogeneic MSC, positive control and negative control, in triplicate) followed by the same series of 12 injections, 3-4 weeks later, at another site. Wheals were measured and palpated at 0.25, 4, 24, 48, 72 h and 7 days post-injection. Biopsies were obtained at 48 and 72 h and 7 days post-injection. Mixed leukocyte reactions were performed 1 week prior to the first injections and 3 weeks after the second injections. RESULTS. There were no adverse local or systemic responses to two intradermal injections of allogeneic MSC. MSC injection resulted in minor wheal formation, characterized by mild dermatitis, dermal edema and endothelial hyperplasia, that fully resolved by 48-72 h. No differences were noted between allogeneic and autologous MSC. The second injection of MSC did not elicit more significant physical or histomorphologic alterations compared with the first MSC injection. Neither allogeneic nor autologous UCT-derived MSC stimulated or suppressed baseline T-cell proliferation in vitro prior to or after two MSC administrations. CONCLUSIONS. Equine allogeneic UCT MSC may be safely administered intradermally on multiple occasions without eliciting a measurable cellular immune response.

  10. Human umbilical cord mesenchymal stem cells: subpopulations and their difference in cell biology and effects on retinal degeneration in RCS rats.

    Science.gov (United States)

    Wang, L; Li, P; Tian, Y; Li, Z; Lian, C; Ou, Q; Jin, C; Gao, F; Xu, J-Y; Wang, J; Wang, F; Zhang, J; Zhang, J; Li, W; Tian, H; Lu, L; Xu, G-T

    2017-12-05

    Human umbilical cord mesenchymal stem cells (hUC-MSCs) are potential candidates for treating retinal degeneration (RD). To further study the biology and therapeutic effects of these cells, two hUC-MSC subpopulations, termed hUC-MSC1 and hUC-MSC2, were isolated by single-cell cloning method and their therapeutic functions were compared in RCS rat, a RD model. Although both subsets satisfied the basic requirements for hUC-MSCs, they were significantly different in morphology, proliferation rate, differentiation capacity, phenotype and gene expression. Furthermore, only the smaller, fibroblast-like, faster growing subset hUC-MSC1 displayed stronger colony forming potential as well as adipogenic and osteogenic differentiation capacities. When the two subsets were respectively transplanted into the subretinal spaces of RCS rats, both subsets survived, but only hUC-MSC1 expressed RPE cell markers Bestrophin and RPE65. More importantly, hUC-MSC1 showed stronger rescue effect on the retinal function as indicated by the higher b-wave amplitude on ERG examination, thicker retinal nuclear layer, and decreased apoptotic photoreceptors. When both subsets were treated with interleukin-6, mimicking the inflammatory environment when the cells were transplanted into the eyes with degenerated retina, hUC-MSC1 expressed much higher levels of trophic factors in comparison with hUC-MSC2. Therefore, data here, in addition to prove the heterogeneity of hUC-MSCs, confirmed that the stronger therapeutic effects of hUC-MSC1 were attributed to its stronger anti-apoptotic effect, paracrine of trophic factors and potentially RPE cell differentiation capacity. Thus, the subset hUC-MSC1, not the other subset or the un-grouped hUC-MSCs should be used for effective treatment of RD. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Suppression of MicroRNA-383 Enhances Therapeutic Potential of Human Bone-Marrow-Derived Mesenchymal Stem Cells in Treating Spinal Cord Injury via GDNF

    Directory of Open Access Journals (Sweden)

    Guo-Jun Wei

    2017-03-01

    Full Text Available Background/Aims: Transplantation of bone-marrow-derived mesenchymal stem cells (MSCs has been used to treat spinal cord injury (SCI to enhance tissue repair and neural cell regeneration. Glial cell line derived neurotrophic factor (GDNF is an identified neural growth and survival factor. Here, we examined whether modification of GDNF levels in MSCs may further increase the potential of MSCs in promoting neural cell regeneration and subsequently the therapeutic outcome. Methods: We examined the mRNA and protein levels of GDNF in human MSCs by RT-qPCR and Western blot, respectively. Bioinformatics analyses were done to predict microRNAs (miRNAs that target GDNF in MSCs. The functional binding of miRNAs to GDNF mRNA was examined by a dual luciferase reporter assay. MSCs were transduced with adeno-associated virus (AAV carrying null or antisense for miR-383 (as-miR-383, which were transplanted into nude rats that underwent SCI. The intact tissue, cavity volume, and recovery of locomotor activity were assessed. Results: MSCs expressed very low GDNF protein, but surprisingly high levels of GDNF mRNA. Bioinformatics analyses showed that miR-383 inhibited protein translation of GDNF, through binding to the 3’-UTR of the GDNF mRNA. MSCs transduced with AAV-as-miR-383 further increased the intact tissue percentage, decreased cavity volume, and enhanced the recovery of locomotor activity in nude rats that underwent SCI, compared to MSCs. Conclusions: Suppression of miR-383 may increase the therapeutic potential of human bone-marrow-derived MSCs in treating SCI via augmentation of GDNF protein levels.

  12. Morphology and Microscopy of Equine Umbilical Cord and Characterization of Mesenchymal Stem Cells Isolated from Foetal Adnexa

    OpenAIRE

    Lanci, Aliai

    2017-01-01

    The purpose of this PhD thesis is to perform a dissertation about the equine umbilical cord (UC), with particular attention to its macroscopic characteristics moving into its microscopic features. Furthermore, equine UC was microscopically and immunohistochemically described. The coiling makes the UC a structure both flexible and strong, and provides resistance to external forces, which could compromise blood flow. Data obtained from the present study could be considered as a normal range of ...

  13. Human stromal (mesenchymal) stem cells

    DEFF Research Database (Denmark)

    Aldahmash, Abdullah; Zaher, Walid; Al-Nbaheen, May

    2012-01-01

    Human stromal (mesenchymal) stem cells (hMSC) represent a group of non-hematopoietic stem cells present in the bone marrow stroma and the stroma of other organs including subcutaneous adipose tissue, placenta, and muscles. They exhibit the characteristics of somatic stem cells of self......-renewal and multi-lineage differentiation into mesoderm-type of cells, e.g., to osteoblasts, adipocytes, chondrocytes and possibly other cell types including hepatocytes and astrocytes. Due to their ease of culture and multipotentiality, hMSC are increasingly employed as a source for cells suitable for a number...

  14. Nicotinamide Promotes Adipogenesis in Umbilical Cord-Derived Mesenchymal Stem Cells and Is Associated with Neonatal Adiposity: The Healthy Start BabyBUMP Project.

    Directory of Open Access Journals (Sweden)

    Allison L B Shapiro

    Full Text Available The cellular mechanisms whereby excess maternal nutrition during pregnancy increases adiposity of the offspring are not well understood. However, nicotinamide (NAM, a fundamental micronutrient that is important in energy metabolism, has been shown to regulate adipogenesis through inhibition of SIRT1. Here we tested three novel hypotheses: 1 NAM increases the adipogenic response of human umbilical cord tissue-derived mesenchymal stem cells (MSCs through a SIRT1 and PPARγ pathway; 2 lipid potentiates the NAM-enhanced adipogenic response; and 3 the adipogenic response to NAM is associated with increased percent fat mass (%FM among neonates. MSCs were derived from the umbilical cord of 46 neonates born to non-obese mothers enrolled in the Healthy Start study. Neonatal %FM was measured using air displacement plethysmography (Pea Pod shortly after birth. Adipogenic differentiation was induced for 21 days in the 46 MSC sets under four conditions, +NAM (3mM/-lipid (200 μM oleate/palmitate mix, +NAM/+lipid, -NAM/+lipid, and vehicle-control (-NAM/-lipid. Cells incubated in the presence of NAM had significantly higher PPARγ protein (+24%, p <0.01, FABP4 protein (+57%, p <0.01, and intracellular lipid content (+51%, p <0.01. Lipid did not significantly increase either PPARγ protein (p = 0.98 or FABP4 protein content (p = 0.82. There was no evidence of an interaction between NAM and lipid on adipogenic response of PPARγ or FABP4 protein (p = 0.99 and p = 0.09. In a subset of 9 MSC, SIRT1 activity was measured in the +NAM/-lipid and vehicle control conditions. SIRT1 enzymatic activity was significantly lower (-70%, p <0.05 in the +NAM/-lipid condition than in vehicle-control. In a linear model with neonatal %FM as the outcome, the percent increase in PPARγ protein in the +NAM/-lipid condition compared to vehicle-control was a significant predictor (β = 0.04, 95% CI 0.01-0.06, p <0.001. These are the first data to support that chronic NAM exposure

  15. Differentiation of human umbilical cord Wharton’s jelly derived mesenchymal stem cells into sweat gland-like cells under special microenvironment:an experimental study

    Directory of Open Access Journals (Sweden)

    Yong-an XU

    2011-03-01

    Full Text Available Objective To identify the potentiality of human umbilical cord Wharton’s jelly derived mesenchymal stem cells(hUCWJ-MSCs differentiated into sweat gland-like cells under the cultivation of sweat gland-induction medium.Methods Sweat gland cells were harvested from normal skin by digesting with collagenase typeⅡ,heat-shocked and then the supernatants of medium were collected.The sweat gland-induction medium was prepared at 10% volume fraction.hUCWJ-MSCs were harvested by enzyme digestion,and the cell phenotypes were analyzed by flow cytometry(FCM.Alkaline phosphatase(ALP and Oil red-O staining were then performed after culturing in osteogenic and adipogenic induction medium for 2-3 weeks respectively.The hUCWJ-MSCs were cultured in sweat gland-induction medium for 3 weeks,the changes of cell morphology were observed with inverted microscope;the cells cultured for 1,2 and 3 weeks were harvested,and the expression of sweat gland markers(CEA,CK14 and CK19 were determined by immunohistochemistry and FCM,the expression of sweat gland development gene(EDA was determined by RT-PCR.Results The normal sweat gland cells exhibited clonal growth with a flagstone appearance,while the hUCWJ-MSCs showed spindle and myofibroblast-like phenotype,and the positive rate of CD44,CD105,CD34 and CEA detected by FCM was 97.37%,96.26%,0.56% and 0.52%,respectively.After cultured in osteogenic and adipogenic induction medium for 2-3 weeks,the hUCWJ-MSCs were induced into adipocytes of Oil red-O positive staining and osteocytes of ALP positive staining,respectively.After cultured in sweat gland-induction medium for 3 weeks,sweat gland-like structures were found,and sweat gland markers CEA,CK14 and CK19 were positive in differentiated hUCWJ-MSCs when detected by immunohistochemistry,the positive rate detected by FCM was 54.37%,60.25% and 62.13%,respectively.RT-PCR analysis revealed a high level expression of gene EDA in differentiated hUCWJ-MSCs.Conclusion The h

  16. BDNF-hypersecreting human umbilical cord blood mesenchymal stem cells promote erectile function in a rat model of cavernous nerve electrocautery injury.

    Science.gov (United States)

    Song, Lujie; Zhu, Jianqiang; Zhang, Xiong; Cui, Zhiqiang; Fu, Qiang; Huang, Jianwen; Lu, Hongkai

    2016-01-01

    Erectile dysfunction (ED) continues to be a significant problem for men following radical prostatectomy. We hypothesize that intracavernous injection of BDNF-hypersecreting human umbilical cord blood mesenchymal stem cells (hUCB-MSCs) can ameliorate ED in a rat model of cavernous nerve electrocautery injury (CNEI). Forty-two male Sprague-Dawley rats were randomly divided into four groups: sham + PBS (n = 6), CNEI + PBS (n = 12), CNEI + hUCB-MSCs (n = 12) and CNEI + BDNF-hUCB-MSCs (n = 12). At day 28 post-surgery, erectile function was examined and specimens were harvested for histology. Immunofluorescence staining, Masson's trichrome staining and transmission electron microscopy were performed to determine the structural changes in corpus cavernosum. Cells that are injected into penis were labeled by BrdU and tracked by immunofluorescence staining. Three days post-surgery, the concentration of BDNF protein in penile tissues was measured by Western blotting. Rats intracavernosally injected with BDNF-hUCB-MSCs showed the most significant improvement in the ratio of maximal ICP to MAP (ICP/MAP). Histological examinations showed moderate recovery of nNOS-positive nerve fibers, ratio of smooth muscle to collagen and smooth muscle content in the CNEI + hUCB-MSCs group and remarkable recovery in the CNEI + BDNF-hUCB-MSCs group compared to the CNEI + PBS group. By TEM examination, atrophy of myelinated and non-myelinated nerve fibers was noted in CNEI + PBS group and significant recovery was observed in two treated groups. There were more BrdU-positive cells in the BDNF-hUCB-MSCs group than in the hUCB-MSCs group both in the penis and in the MPG. Three days post-surgery, the concentration of BDNF protein in penile tissues in BDNF-hUCB-MSCs group was much higher than in other groups. Intracavernous injection of BDNF-hypersecreting hUCB-MSCs can enhance the recovery of erectile function, promote the CNs regeneration and inhibit corpus cavernosum fibrosis after CNEI in a rat

  17. Mesenchymal Stem Cells: Angels or Demons?

    Directory of Open Access Journals (Sweden)

    Rebecca S. Y. Wong

    2011-01-01

    Full Text Available Mesenchymal stem cells (MSCs have been used in cell-based therapy in various disease conditions such as graft-versus-host and heart diseases, osteogenesis imperfecta, and spinal cord injuries, and the results have been encouraging. However, as MSC therapy gains popularity among practitioners and researchers, there have been reports on the adverse effects of MSCs especially in the context of tumour modulation and malignant transformation. These cells have been found to enhance tumour growth and metastasis in some studies and have been related to anticancer-drug resistance in other instances. In addition, various studies have also reported spontaneous malignant transformation of MSCs. The mechanism of the modulatory behaviour and the tumorigenic potential of MSCs, warrant urgent exploration, and the use of MSCs in patients with cancer awaits further evaluation. However, if MSCs truly play a role in tumour modulation, they can also be potential targets of cancer treatment.

  18. [Effects of combined application of culture supernatant of human umbilical cord mesenchymal stem cells and ciprofloxacin onStaphylococcus aureusin vitro].

    Science.gov (United States)

    Zhou, B; Tu, H L; Ba, T; Wang, L F; Wang, S J; Nie, S Y

    2017-06-20

    Objective: To explore the effects of combined application of culture supernatant of human umbilical cord mesenchymal stem cells (hUCMSCs) and ciprofloxacin on Staphylococcus aureus (SA) in vitro. Methods: hUCMSCs were isolated from umbilical cord tissue of full-term healthy fetus after cesarean section and cultured. Cells in the third passage were used in the experiments after identification. SA strains isolated from wounds of burn patients in our burn wards were used in the experiments. Cells were divided into 0, 10, 100, and 1 000 ng/mL lipopolysaccharide (LPS) groups according to the random number table (the same dividing method below). Cells were cultured with culture medium of mesenchymal stem cells (MSCs) after being treated with medium containing the corresponding mass concentrations of LPS for 12 h. At post culture hour (PCH) 6, 12, and 24, 6 wells of culture supernatant of cells in each group were obtained to measure the content of LL-37 with enzyme-linked immunosorbent assay. Ninety blood agar plates were divided into ciprofloxacin control group (CC), ciprofloxacin+ supernatant group (CS), and ciprofloxacin+ supernatant+ LL-37 antibody group (CSL), with 30 blood agar plates in each group. Blood agar plates in group CC were coated with 1.5×10(8) colony forming unit (CFU)/mL bacteria solution prepared with normal saline. Blood agar plates in group CS were coated with 1.5×10(8) CFU/mL bacteria solution prepared with normal saline and culture supernatant of hUCMSCs (cultured by culture medium of MSCs, the same below) in double volume of normal saline. Blood agar plates in group CSL were coated with 1.5×10(8) CFU/mL bacteria solution prepared with normal saline, culture supernatant of hUCMSCs in double volume of normal saline, and 2.6 μL LL-37 antibody in the concentration of 2 μg/mL. At PCH 12, 24, and 48, 10 blood agar plates of each group were harvested to observe the distribution of SA colony on blood agar plate and to measure the diameter of

  19. Implanted spike wave electric stimulation promotes survival of the bone marrow mesenchymal stem cells and functional recovery in the spinal cord injured rats.

    Science.gov (United States)

    Wu, Wenliang; Zhao, Hua; Xie, Bin; Liu, Haichun; Chen, Yunzhen; Jiao, Guangjun; Wang, Hongliang

    2011-03-10

    Transplantation of bone marrow-derived mesenchymal stromal cells (BMSCs) into the injured spinal cord may provide therapeutic benefit, but its application is limited by their poor survival and low differentiation rate into neurons. Electrical stimulation (ES) has been reported to promote survival and differentiation of the BMSCs. Therefore we investigated whether implanted spike wave ES could improve survival of BMSCs after transplantation and result in functional improvement in animals with spinal cord injury. Our results showed that the number and ratio of survived BMSCs near the lesion site were significantly increased in the BMSCs+ES-treated group as compared to BMSCs transplantation or ES treatment alone group. Furthermore, results from BBB scales, SSEP and DTI demonstrated a significant improved functional recovery in the BMSCs+ES group. This indicated that implanted spike wave ES could promote the bioactivity of BMSCs and their survival. This represents a new therapeutic potential of the combination of BMSCs transplantation with implanted spike wave ES to treat spinal cord injury. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  20. Migratory properties of mesenchymal stem cells.

    Science.gov (United States)

    Dittmar, Thomas; Entschladen, Frank

    2013-01-01

    Mesenchymal stem cells raise great expectations in regenerative medicine due to their capacity to regenerate damaged tissues, thereby restoring organ tissue integrity and functionality. Even though it is not yet clear how mesenchymal stem cells are guided to injured tissue it is generally assumed that the directed migration of these cells is facilitated by the same soluble factors that also recruit immune competent cells to inflamed tissue areas. Tumor tissue represents another type of (chronically) inflamed tissue and because of that mesenchymal stem cells are highly attracted. Although some data indicate that esenchymal stem cells might have a beneficial effect on tumor growth due to anti-tumor effects the plethora of data suggest that tumor tissue recruited mesenchymal stem cells rather promote tumor growth and metastasis formation. Nonetheless, the enhanced tumor tropism of mesenchymal stem cells makes them ideal candidates for novel anti-cancer strategies. Like Trojan Horses genetically modified mesenchymal stem cells will deliver their deadly cargo, such as anti-tumor cytokines or oncolytic viruses, into cancerous tissues, thereby destroying the tumor form within. In this chapter we will summarize the current concepts of genetic modification of mesenchymal stem cells for future anti-cancer therapies.

  1. Co-transplantation of autologous bone marrow mesenchymal stem cells and Schwann cells through cerebral spinal fluid for the treatment of patients with chronic spinal cord injury: safety and possible outcome.

    Science.gov (United States)

    Oraee-Yazdani, S; Hafizi, M; Atashi, A; Ashrafi, F; Seddighi, A-S; Hashemi, S M; Seddighi, A; Soleimani, M; Zali, A

    2016-02-01

    This is a clinical trial (phase 1). The objective of this study was to asses the safety and feasibility of bone marrow mesenchymal stem cell (MSC) and Schwann cell (SC) co-injection through cerebral spinal fluid (CSF) for the treatment of patients with chronic spinal cord injury. Six subjects with complete spinal cord injury due to trauma according to International Standard of Neurological Classification for Spinal Cord Injury (ISNCSCI) developed by the American Spinal Injury Association were enrolled. They received autologous co-transplantation of MSC and SC through lumbar puncture. Neurological status of the patients was determined by ISNCSCI, as well as by assessment of functional status by Spinal Cord Independent Measure. Before and after cell transplantation, magnetic resonance imaging (MRI) was performed for all the patients. Before the procedure, all the patients underwent electromyography, urodynamic study (UDS) and MRI tractograghy. After transplantation, these assessments were performed in special cases when the patients reported any changes in motor function or any changes in urinary sensation. Over the mean 30 months of follow-up, the radiological findings were unchanged without any evidence of neoplastic tissue overgrowth. American Spinal Injury Association class in one patient was changed from A to B, in addition to the improvement in indexes of UDS, especially bladder compliance, which was congruous with axonal regeneration detected in MRI tractography. No motor score improvement was observed among the patients. No adverse findings were detected at a mean of 30 months after autologous transplantation of the combination of MSCs and SCs through CSF. It may suggest the safety of this combination of cells for spinal cord regeneration.

  2. Evaluation of umbilical cord mesenchymal stem cells labeling with superparamagnetic iron oxide nanoparticles coated with dextran and complexed with Poly-L-Lysine; Avaliacao da marcacao de celulas-tronco mesenquimais de cordao umbilical com nanoparticulas superparamagneticas de oxido de ferro recobertas com Dextran e complexadas a Poli-L-Lisina

    Energy Technology Data Exchange (ETDEWEB)

    Sibov, Tatiana Tais; Mamani, Javier Bustamante; Pavon, Lorena Favaro; Cardenas, Walter Humberto; Gamarra, Lionel Fernel, E-mail: tatianats@einstein.br [Instituto do Cerebro - InCe, Hospital Israelita Albert Einstein - HIAE, Sao Paulo, SP (Brazil); Miyaki, Liza Aya Mabuchi [Faculdade de Enfermagem, Hospital Israelita Albert Einstein - HIAE, Sao Paulo, SP (Brazil); Marti, Luciana Cavalheiro; Sardinha, Luiz Roberto [Centro de Pesquisa Experimental, Hospital Israelita Albert Einstein - HIAE, Sao Paulo, SP (Brazil); Oliveira, Daniela Mara de [Universidade de Brasilia - UnB, Brasilia, DF (Brazil)

    2012-04-15

    Objective: The objective of this study was to evaluate the effect of the labeling of umbilical cord vein derived mesenchymal stem cells with superparamagnetic iron oxide nanoparticles coated with dextran and complexed to a non-viral transfector agent transfector poly-L-lysine. Methods: The labeling of mesenchymal stem cells was performed using the superparamagnetic iron oxide nanoparticles/dextran complexed and not complexed to poly-L-lysine. Superparamagnetic iron oxide nanoparticles/dextran was incubated with poly-L-lysine in an ultrasonic sonicator at 37 deg C for 10 minutes for complex formation superparamagnetic iron oxide nanoparticles/dextran/poly-L-lysine by electrostatic interaction. Then, the mesenchymal stem cells were incubated overnight with the complex superparamagnetic iron oxide nanoparticles/dextran/poly-L-lysine and superparamagnetic iron oxide nanoparticles/dextran. After the incubation period the mesenchymal stem cells were evaluated by internalization of the complex superparamagnetic iron oxide nanoparticles/dextran/polyL-lysine and superparamagnetic iron oxide nanoparticles/dextran by Prussian Blue stain. Cellular viability of labeled mesenchymal stem cells was evaluated by cellular proliferation assay using 5,6-carboxyfluorescein-succinimidyl ester method and apoptosis detection by Annexin V- Propidium Iodide assay. Results: mesenchymal stem cells labeled with superparamagnetic iron oxide nanoparticles/ dextran without poly-L-lysine not internalized efficiently the superparamagnetic iron oxide nanoparticles due to its low presence detected within cells. Mesenchymal stem cells labeled with the complex superparamagnetic iron oxide nanoparticles/dextran/polyL-lysine efficiently internalized the superparamagnetic iron oxide nanoparticles due to greater presence in the cells interior. The viability and apoptosis assays demonstrated that the mesenchymal stem cells labeled and not labeled respectively with the superparamagnetic iron oxide

  3. Research Advancements in Porcine Derived Mesenchymal Stem Cells.

    Science.gov (United States)

    Bharti, Dinesh; Shivakumar, Sharath Belame; Subbarao, Raghavendra Baregundi; Rho, Gyu-Jin

    2016-01-01

    In the present era of stem cell biology, various animals such as Mouse, Bovine, Rabbit and Porcine have been tested for the efficiency of their mesenchymal stem cells (MSCs before their actual use for stem cell based application in humans. Among them pigs have many similarities to humans in the form of organ size, physiology and their functioning, therefore they have been considered as a valuable model system for in vitro studies and preclinical assessments. Easy assessability, few ethical issues, successful MSC isolation from different origins like bone marrow, skin, umbilical cord blood, Wharton's jelly, endometrium, amniotic fluid and peripheral blood make porcine a good model for stem cell therapy. Porcine derived MSCs (pMSCs have shown greater in vitro differentiation and transdifferention potential towards mesenchymal lineages and specialized lineages such as cardiomyocytes, neurons, hepatocytes and pancreatic beta cells. Immunomodulatory and low immunogenic profiles as shown by autologous and heterologous MSCs proves them safe and appropriate models for xenotransplantation purposes. Furthermore, tissue engineered stem cell constructs can be of immense importance in relation to various osteochondral defects which are difficult to treat otherwise. Using pMSCs successful treatment of various disorders like Parkinson's disease, cardiac ischemia, hepatic failure, has been reported by many studies. Here, in this review we highlight current research findings in the area of porcine mesenchymal stem cells dealing with their isolation methods, differentiation ability, transplantation applications and their therapeutic potential towards various diseases.

  4. Research Advancements in Porcine Derived Mesenchymal Stem Cells

    Science.gov (United States)

    Bharti, Dinesh; Shivakumar, Sharath Belame; Subbarao, Raghavendra Baregundi; Rho, Gyu-Jin

    2016-01-01

    In the present era of stem cell biology, various animals such as Mouse, Bovine, Rabbit and Porcine have been tested for the efficiency of their mesenchymal stem cells (MSCs) before their actual use for stem cell based application in humans. Among them pigs have many similarities to humans in the form of organ size, physiology and their functioning, therefore they have been considered as a valuable model system for in vitro studies and preclinical assessments. Easy assessability, few ethical issues, successful MSC isolation from different origins like bone marrow, skin, umbilical cord blood, Wharton’s jelly, endometrium, amniotic fluid and peripheral blood make porcine a good model for stem cell therapy. Porcine derived MSCs (pMSCs) have shown greater in vitro differentiation and transdifferention potential towards mesenchymal lineages and specialized lineages such as cardiomyocytes, neurons, hepatocytes and pancreatic beta cells. Immunomodulatory and low immunogenic profiles as shown by autologous and heterologous MSCs proves them safe and appropriate models for xenotransplantation purposes. Furthermore, tissue engineered stem cell constructs can be of immense importance in relation to various osteochondral defects which are difficult to treat otherwise. Using pMSCs successful treatment of various disorders like Parkinson’s disease, cardiac ischemia, hepatic failure, has been reported by many studies. Here, in this review we highlight current research findings in the area of porcine mesenchymal stem cells dealing with their isolation methods, differentiation ability, transplantation applications and their therapeutic potential towards various diseases. PMID:26201864

  5. Stem Cells: New Hope For Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Gazdic Marina

    2015-03-01

    Full Text Available Stem cell therapy offers several attractive strategies for spinal cord repair. The regenerative potential of pluripotent stem cells was confirmed in an animal model of Spinal Cord Injury (SCI; nevertheless, optimized growth and differentiation protocols along with reliable safety assays should be established prior to the clinical application of hESCs and iPSCs. Th e therapeutic effects of mesenchymal stem cells (MSCs in SCI result from neurotrophin secretion, angiogenesis, and antiinflammatory actions. Several preclinical SCI studies have reported that the occurrence of axonal extension, remyelination and neuroprotection occur after the transplantation of olfactory ensheathing cells (OECs. The transplantation of neural stem cells NSCs (NSCs promotes partial functional improvement after SCI because of their potential to differentiate into neurons, oligodendrocytes, and astrocytes. The ideal source of stem cells for safe and efficient cell-based therapy for SCI remains a challenging issue that requires further investigation.

  6. Mesenchymal Stem Cells and Their Clinical Applications in Osteoarthritis.

    Science.gov (United States)

    Chang, Yu-Hsun; Liu, Hwan-Wun; Wu, Kun-Chi; Ding, Dah-Ching

    2016-01-01

    Osteoarthritis is a chronic degenerative joint disorder characterized by articular cartilage destruction and osteophyte formation. Chondrocytes in the matrix have a relatively slow turnover rate, and the tissue itself lacks a blood supply to support repair and remodeling. Researchers have evaluated the effectiveness of stem cell therapy and tissue engineering for treating osteoarthritis. All sources of stem cells, including embryonic, induced pluripotent, fetal, and adult stem cells, have potential use in stem cell therapy, which provides a permanent biological solution. Mesenchymal stem cells (MSCs) isolated from bone marrow, adipose tissue, and umbilical cord show considerable promise for use in cartilage repair. MSCs can be sourced from any or all joint tissues and can modulate the immune response. Additionally, MSCs can directly differentiate into chondrocytes under appropriate signal transduction. They also have immunosuppressive and anti-inflammatory paracrine effects. This article reviews the current clinical applications of MSCs and future directions of research in osteoarthritis.

  7. In Vitro Differentiation of Human Umbilical Cord Blood CD133+Cells into Insulin Producing Cells in Co-Culture with Rat Pancreatic Mesenchymal Stem Cells

    Science.gov (United States)

    Sahraneshin Samani, Fazel; Ebrahimi, Marzieh; Zandieh, Tahereh; Khoshchehreh, Reyhaneh; Baghaban Eslaminejad, Mohamadreza; Aghdami, Nasser; Baharvand, Hossein

    2015-01-01

    Objective Pancreatic stroma plays an important role in the induction of pancreatic cells by the use of close range signaling. In this respect, we presume that pancreatic mesenchymal cells (PMCs) as a fundamental factor of the stromal niche may have an effective role in differentiation of umbilical cord blood cluster of differentiation 133+ (UCB-CD133+) cells into newly-formed β-cells in vitro. Materials and Methods This study is an experimental research. The UCB-CD133+cells were purified by magnetic activated cell sorting (MACS) and differentiated into insulin producing cells (IPCs) in co-culture, both directly and indirectly with rat PMCs. Immunocytochemistry and enzyme linked immune sorbent assay (ELISA) were used to determine expression and production of insulin and C-peptide at the protein level. Results Our results demonstrated that UCB-CD133+differentiated into IPCs. Cells in islet-like clusters with (out) co-cultured with rat pancreatic stromal cells produced insulin and C-peptide and released them into the culture medium at the end of the induction protocol. However they did not respond well to glucose challenges. Conclusion Rat PMCs possibly affect differentiation of UCB-CD133+cells into IPCs by increasing the number of immature β-cells. PMID:26199900

  8. High Concentrations of TNF-α Induce Cell Death during Interactions between Human Umbilical Cord Mesenchymal Stem Cells and Peripheral Blood Mononuclear Cells.

    Directory of Open Access Journals (Sweden)

    Xue Li

    Full Text Available Human umbilical cord mesenchymal stromal cells (hUC-MSCs are currently being used as novel therapeutic agents in numerous clinical trials. Previous works have shown that hUC-MSCs possess profound immunomodulatory capacities through IL-1 stimulation produced by peripheral blood mononuclear cells (PBMCs, their main cellular partner in most pathophysiological and therapeutic situations. The present study was designed to explore the role of TNF-α in these interactions. In these experiments, we demonstrated that TNF-α originated from PBMCs under the influence of IL-1. We also showed that TNF-α acted differently depending upon the concentrations reached. At low concentrations it clearly contributed to IL-6 and monocyte chemotactic protein 1 (MCP-1 production. At high concentrations, used alone or in association with the TNF-related apoptosis-inducing ligand, TNF-α also stimulated hUC-MSC IL-6 but, more intensely, MCP-1 production. This stimulation was associated but independent of apoptosis induction in a process involving Inhibitor of Apoptosis Proteins. Interferon gamma (IFN-γ, tested to stimulate PBMC and tissue activation, amplified IL-6 and MCP-1 production and cell death by, apparently, a different process involving necrosis. Our findings bring new insights into the complex interactions between hUC-MSCs and PBMCs, involving cytokines, chemokines and cell death, and are of fundamental importance for tissue homeostasis.

  9. The Cotransplantation of Olfactory Ensheathing Cells with Bone Marrow Mesenchymal Stem Cells Exerts Antiapoptotic Effects in Adult Rats after Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Shifeng Wu

    2015-01-01

    Full Text Available The mechanisms behind the repairing effects of the cotransplantation of olfactory ensheathing cells (OECs with bone marrow mesenchymal stromal cells (BMSCs have not been fully understood. Therefore, we investigated the effects of the cotransplantation of OECs with BMSCs on antiapoptotic effects in adult rats for which the models of SCI are induced. We examined the changes in body weight, histopathological changes, apoptosis, and the expressions of apoptosis-related proteins after 14 days and 28 days after transplantation. We also assessed animal locomotion using BBB test. We found that treatment with OECs and BMSCs had a remissive effect on behavioral outcome and histopathological changes induced SCI. Furthermore, we observed the significant antiapoptotic effect on cotransplant treated group. In addition, cotransplantation of OECs with BMSCs was found to have more significant repairing effect than that of OECs or BMSCs alone. Furthermore, the recovery of hind limb could be related to antiapoptotic effect of OECs and BMSCs through downregulating the apoptotic pathways. Finally, our data suggested the cotransplantation of OECs with BMSCs holds promise for a potential cure after SCI through the ability to incorporate into the spinal cord.

  10. Comparison of biological properties of umbilical cord-derived mesenchymal stem cells from early and late passages: immunomodulatory ability is enhanced in aged cells.

    Science.gov (United States)

    Zhuang, Yong; Li, Dong; Fu, Jinqiu; Shi, Qing; Lu, Yuanyuan; Ju, Xiuli

    2015-01-01

    Mesenchymal stem cells (MSCs) are a potential source of adult stem cells for cell-based therapeutics due to their substantial multilineage differentiation capacity and secretory functions. No information is presently available regarding the maintenance of immunosuppressive properties of this cell type with repeated passages. It was therefore the aim of the present study to analyze the biological properties, particularly the immunoregulatory effect, of MSCs from late passages. The differences between young and old MSCs in morphology, cell surface antigen phenotype, proliferation, gene expression and immunomodulatory ability were investigated. The results of the current study demonstrated that with the passage of cells, senescent MSCs displayed a characteristically enlarged and flattened morphology, different gene expression profiles and stronger immunosuppressive activities. Increased interleukin-6 production may be a possible underlying mechanism for this enhanced immunomodulatory ability of MSCs. These findings suggest that aged MSCs may provide a treatment option for patients with graft versus host disease and other diseases associated with dysregulation of the immune system.

  11. Mesenchymal stem cells avoid allogeneic rejection

    Directory of Open Access Journals (Sweden)

    Murphy J Mary

    2005-07-01

    Full Text Available Abstract Adult bone marrow derived mesenchymal stem cells offer the potential to open a new frontier in medicine. Regenerative medicine aims to replace effete cells in a broad range of conditions associated with damaged cartilage, bone, muscle, tendon and ligament. However the normal process of immune rejection of mismatched allogeneic tissue would appear to prevent the realisation of such ambitions. In fact mesenchymal stem cells avoid allogeneic rejection in humans and in animal models. These finding are supported by in vitro co-culture studies. Three broad mechanisms contribute to this effect. Firstly, mesenchymal stem cells are hypoimmunogenic, often lacking MHC-II and costimulatory molecule expression. Secondly, these stem cells prevent T cell responses indirectly through modulation of dendritic cells and directly by disrupting NK as well as CD8+ and CD4+ T cell function. Thirdly, mesenchymal stem cells induce a suppressive local microenvironment through the production of prostaglandins and interleukin-10 as well as by the expression of indoleamine 2,3,-dioxygenase, which depletes the local milieu of tryptophan. Comparison is made to maternal tolerance of the fetal allograft, and contrasted with the immune evasion mechanisms of tumor cells. Mesenchymal stem cells are a highly regulated self-renewing population of cells with potent mechanisms to avoid allogeneic rejection.

  12. Mesenchymal stem cells in oral reconstructive surgery

    DEFF Research Database (Denmark)

    Jakobsen, C; Sørensen, J A; Kassem, M

    2013-01-01

    This study evaluated clinical outcomes following intraoperative use of adult mesenchymal stem cells (MSCs) in various oral reconstructive procedures. PubMed was searched without language restrictions from 2000 to 2011 using the search words stem cell, oral surgery, tissue engineering, sinus lift...

  13. Cell therapy of congenital corneal diseases with umbilical mesenchymal stem cells: lumican null mice.

    Directory of Open Access Journals (Sweden)

    Hongshan Liu

    Full Text Available BACKGROUND: Keratoplasty is the most effective treatment for corneal blindness, but suboptimal medical conditions and lack of qualified medical personnel and donated cornea often prevent the performance of corneal transplantation in developing countries. Our study aims to develop alternative treatment regimens for congenital corneal diseases of genetic mutation. METHODOLOGY/PRINCIPAL FINDINGS: Human mesenchymal stem cells isolated from neonatal umbilical cords were transplanted to treat thin and cloudy corneas of lumican null mice. Transplantation of umbilical mesenchymal stem cells significantly improved corneal transparency and increased stromal thickness of lumican null mice, but human umbilical hematopoietic stem cells failed to do the same. Further studies revealed that collagen lamellae were re-organized in corneal stroma of lumican null mice after mesenchymal stem cell transplantation. Transplanted umbilical mesenchymal stem cells survived in the mouse corneal stroma for more than 3 months with little or no graft rejection. In addition, these cells assumed a keratocyte phenotype, e.g., dendritic morphology, quiescence, expression of keratocyte unique keratan sulfated keratocan and lumican, and CD34. Moreover, umbilical mesenchymal stem cell transplantation improved host keratocyte functions, which was verified by enhanced expression of keratocan and aldehyde dehydrogenase class 3A1 in lumican null mice. CONCLUSIONS/SIGNIFICANCE: Umbilical mesenchymal stem cell transplantation is a promising treatment for congenital corneal diseases involving keratocyte dysfunction. Unlike donated corneas, umbilical mesenchymal stem cells are easily isolated, expanded, stored, and can be quickly recovered from liquid nitrogen when a patient is in urgent need.

  14. Immunological characteristics of mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Cíntia de Vasconcellos Machado

    2013-01-01

    Full Text Available Although bone marrow is the main source, mesenchymal stem cells have already been isolated from various other tissues, such as the liver, pancreas, adipose tissue, peripheral blood and dental pulp. These plastic adherent cells are morphologically similar to fibroblasts and have a high proliferative potential. This special group of cells possesses two essential characteristics: self-renewal and differentiation, with appropriate stimuli, into various cell types. Mesenchymal stem cells are considered immunologically privileged, since they do not express costimulatory molecules, required for complete T cell activation, on their surface. Several studies have shown that these cells exert an immunosuppressive effect on cells from both innate and acquired immunity systems. Mesenchymal stem cells can regulate the immune response in vitro by inhibiting the maturation of dendritic cells, as well as by suppressing the proliferation and function of T and B lymphocytes and natural killer cells. These special properties of mesenchymal stem cells make them a promising strategy in the treatment of immune mediated disorders, such as graft-versus-host disease and autoimmune diseases, as well as in regenerative medicine. The understanding of immune regulation mechanisms of mesenchymal stem cells, and also those involved in the differentiation of these cells in various lineages is primordial for their successful and safe application in different areas of medicine.

  15. Therapeutic Potential of Umbilical Cord Mesenchymal Stromal Cells Transplantation for Cerebral Palsy: A Case Report

    OpenAIRE

    Liming Wang; Haijie Ji; Jianjun Zhou; Jiang Xie; Zhanqiang Zhong; Ming Li; Wen Bai; Na Li; Zijia Zhang; Xuejun Wang; Delin Zhu; Yongjun Liu; Mingyuan Wu

    2013-01-01

    Cerebral palsy is the most common motor disability in childhood. In current paper, we first report our clinical data regarding administration of umbilical cord mesenchymal stem cells (MSCs) transplantation in treatment of cerebral palsy. A 5-year-old girl with cerebral palsy was treated with multiple times of intravenous and intrathecal administration of MSCs derived from her young sister and was followed up for 28 months. The gross motor dysfunction was improved. Other benefits included enha...

  16. Encapsulation of factor IX–engineered mesenchymal stem cells in fibrinogen–alginate microcapsules enhances their viability and transgene secretion

    Directory of Open Access Journals (Sweden)

    Bahareh Sayyar

    2012-12-01

    Full Text Available Cell microencapsulation holds significant promise as a strategy for cellular therapies; however, inadequate survival and functionality of the enclosed cells limit its application in hemophilia treatment. Here, we evaluated the use of alginate-based microcapsules to enhance the viability and transgene secretion of human cord blood–derived mesenchymal stem cells in three-dimensional cultures. Given the positive effects of extracellular matrix molecules on mesenchymal stem cell growth, we tested whether fibrinogen-supplemented alginate microcapsules can improve the efficiency of encapsulated factor IX–engineered mesenchymal stem cells as a treatment of hemophilia B. We found that fibrinogen-supplemented alginate microcapsules (a significantly enhanced the viability and proliferation of factor IX–engineered mesenchymal stem cells and (b increased factor IX secretion by mesenchymal stem cells compared to mesenchymal stem cells in nonsupplemented microcapsules. Moreover, we observed the osteogenic, but not chondrogenic or adipogenic, differentiation capability of factor IX–engineered cord blood mesenchymal stem cells and their efficient factor IX secretion while encapsulated in fibrinogen-supplemented alginate microcapsules. Thus, the use of engineered mesenchymal stem cells encapsulated in fibrinogen-modified microcapsules may have potential application in the treatment of hemophilia or other protein deficiency diseases.

  17. Human Umbilical Cord-Derived Mesenchymal Stem Cells Improve Learning and Memory Function in Hypoxic-Ischemic Brain-Damaged Rats via an IL-8-Mediated Secretion Mechanism Rather than Differentiation Pattern Induction

    Directory of Open Access Journals (Sweden)

    Xiaoqin Zhou

    2015-04-01

    Full Text Available Background: MSCs are a promising therapeutic resource. Paracrine effects and the induction of differentiation patterns are thought to represent the two primary mechanisms underlying the therapeutic effects of mesenchymal stem cell (MSC transplantation in vivo. However, it is unclear which mechanism is involved in the therapeutic effects of human umbilical cord-derived MSC (hUC-MSC transplantation. Methods and Results: Based on flow cytometry analysis, hUC-MSCs exhibited the morphological characteristics and surface markers of MSCs. Following directed neural induction, these cells displayed a neuron-like morphology and expressed high levels of neural markers. All types of hUC-MSCs, including differentiated and redifferentiated cells, promoted learning and memory function recovery in hypoxic-ischemic brain damaged (HIBD rats. The hUC-MSCs secreted IL-8, which enhanced angiogenesis in the hippocampus via the JNK pathway. However, the differentiated and redifferentiated cells did not exert significantly greater therapeutic effects than the undifferentiated hUC-MSCs. Conclusion: hUC-MSCs display the biological properties and neural differentiation potential of MSCs and provide therapeutic advantages by secreting IL-8, which participates in angiogenesis in the rat HIBD model. These data suggest that hUC-MSC transplantation improves the recovery of neuronal function via an IL-8-mediated secretion mechanism, whereas differentiation pattern induction was limited.

  18. Inactivated Mesenchymal Stem Cells Maintain Immunomodulatory Capacity

    NARCIS (Netherlands)

    Luk, Franka; de Witte, Samantha F. H.; Korevaar, Sander S.; Roemeling, Marieke; Franquesa, Marcella; Strini, Tanja; van den Engel, Sandra; Gargesha, Madhusudhana; Roy, Debashish; Dor, Frank J. M. F.; Horwitz, Edwin M.; de Bruin, Ron W. F.; Betjes, Michiel G. H.; Baan, Carla C.; Hoogduijn, Martin J.

    2016-01-01

    Mesenchymal stem cells (MSC) are studied as a cell therapeutic agent for treatment of various immune diseases. However, therapy with living culture-expanded cells comes with safety concerns. Furthermore, development of effective MSC immunotherapy is hampered by lack of knowledge of the mechanisms of

  19. Mesenchymal stem cell-educated macrophages

    NARCIS (Netherlands)

    E. Eggenhofer (Elke); M.J. Hoogduijn (Martin)

    2012-01-01

    textabstractMesenchymal stem cells (MSC) mediate their immunosuppressive effects via a variety of mechanisms. One of these mechanisms involves the induction of macrophages with immunomodulatory capacities. This effect of MSC may be exploited when MSC are used as a cell therapeutic product.

  20. Study of internalization and viability of multimodal nanoparticles for labeling of human umbilical cord mesenchymal stem cells; Estudo de internalizacao e viabilidade de nanoparticulas multimodal para marcacao de celulas-tronco mesenquimais de cordao umbilical humano

    Energy Technology Data Exchange (ETDEWEB)

    Miyaki, Liza Aya Mabuchi [Faculdade de Enfermagem, Hospital Israelita Albert Einstein - HIAE, Sao Paulo, SP (Brazil); Sibov, Tatiana Tais; Pavon, Lorena Favaro; Mamani, Javier Bustamante; Gamarra, Lionel Fernel, E-mail: tatianats@einstein.br [Instituto do Cerebro - InCe, Hospital Israelita Albert Einstein - HIAE, Sao Paulo, SP (Brazil)

    2012-04-15

    Objective: To analyze multimodal magnetic nanoparticles-Rhodamine B in culture media for cell labeling, and to establish a study of multimodal magnetic nanoparticles-Rhodamine B detection at labeled cells evaluating they viability at concentrations of 10 {mu}g Fe/mL and 100{mu}g Fe/mL. Methods: We performed the analysis of stability of multimodal magnetic nanoparticles-Rhodamine B in different culture media; the mesenchymal stem cells labeling with multimodal magnetic nanoparticles-Rhodamine B; the intracellular detection of multimodal magnetic nanoparticles-Rhodamine B in mesenchymal stem cells, and assessment of the viability of labeled cells by kinetic proliferation. Results: The stability analysis showed that multimodal magnetic nanoparticles-Rhodamine B had good stability in cultured Dulbecco's Modified Eagle's-Low Glucose medium and RPMI 1640 medium. The mesenchymal stem cell with multimodal magnetic nanoparticles-Rhodamine B described location of intracellular nanoparticles, which were shown as blue granules co-localized in fluorescent clusters, thus characterizing magnetic and fluorescent properties of multimodal magnetic nanoparticles Rhodamine B. Conclusion: The stability of multimodal magnetic nanoparticles-Rhodamine B found in cultured Dulbecco's Modified Eagle's-Low Glucose medium and RPMI 1640 medium assured intracellular mesenchymal stem cells labeling. This cell labeling did not affect viability of labeled mesenchymal stem cells since they continued to proliferate for five days. (author)

  1. Evaluation of umbilical cord blood CD34+ hematopoietic stem cells expansion with inhibition of TGF-β receptorII in co-culture with bone marrow mesenchymal stromal cells.

    Science.gov (United States)

    Sohrabi Akhkand, Saman; Amirizadeh, Naser; Nikougoftar, Mahin; Alizadeh, Javad; Zaker, Farhad; Sarveazad, Arash; Joghataei, Mohammad Taghi; Faramarzi, Mahmood

    2016-08-01

    Umbilical cord blood (UCB) is an important source of hematopoietic stem cells (HSCs). However, low number of HSCs in UCB has been an obstacle for adult hematopoietic stem cell transplantation. The expansion of HSCs in culture is one approach to overcome this problem. In this study, we investigated the expansion of UCB-HSCs by using human bone marrow mesenchymal stromal cells (MSCs) as feeder layer as well as inhibiting the TGF-β signaling pathway through reduction of TGF-βRII expression. CD34(+) cells were isolated from UCB and transfected by SiRNA targeting TGF-βRII mRNA. CD34(+) cells were expanded in four culture media with different conditions, including 1) expansion of CD34(+) cells in serum free medium containing growth factors, 2) expansion of cells transfected with SiRNA targeting TGF-βRII in medium containing growth factors, 3) expansion of cells in presence of growth factors and MSCs, 4) expansion of cells transfected with SiRNA targeting TGF-βRII on MSCs feeder layer in medium containing growth factors. These culture conditions were evaluated for the number of total nucleated cells (TNCs), CD34 surface marker as well as using CFU assay on 8th day after culture. The fold increase in CD34(+) cells, TNCs, and colony numbers (71.8±6.9, 93.2±10.2 and 128±10, respectively) was observed to be highest in fourth culture medium compared to other culture conditions. The difference between number of cells in four culture media in 8th day compared to unexpanded cells (0day) before expansion was statistically significant (Pcells with SiRNA targeting TGF-βRII and their co-culture with MSCs could considerably increase the number of progenitors. Therefore, this method could be useful for UCB-HSCs expansion. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Mesenchymal Stem Cells for Osteochondral Tissue Engineering.

    Science.gov (United States)

    Ng, Johnathan; Bernhard, Jonathan; Vunjak-Novakovic, Gordana

    2016-01-01

    Mesenchymal stem cells (MSC) are of major interest in regenerative medicine, as they are easily harvested from a variety of sources (including bone marrow and fat aspirates) and they are able to form a range of mesenchymal tissues, in vitro and in vivo. We focus here on the use of MSCs for engineering of cartilage, bone, and complex osteochondral tissue constructs, using protocols that replicate some aspects of natural mesodermal development. For engineering of human bone, we discuss some of the current advances, and highlight the use of perfusion bioreactors for supporting anatomically exact human bone grafts. For engineering of human cartilage, we discuss the limitations of current approaches, and highlight engineering of stratified, mechanically functional human cartilage interfaced with bone by mesenchymal condensation of MSCs. Taken together, current advances enable engineering of physiologically relevant bone, cartilage and osteochondral composites, and physiologically relevant studies of osteochondral development and disease.

  3. Mesenchymal stem cell assays and applications

    Directory of Open Access Journals (Sweden)

    CarloAlberto Redi

    2011-11-01

    Full Text Available Among the many types of adult, or better, somatic, stem cells, mesenchymal stem cells (marrow-derived stromal cells, MSC are those more versatile in changing their phenotype during differentiation: from smooth muscle, adipocyte, bone and cartilage cells to name a few. In addition, they are present in large number in adults and relatively easy to isolate and colture. All these features simply explain the already large number of application that their use allow in rigenerative medicine, not to tell about researches in which they play a crucial role in understanding the meaning of stemness and stem cell niche and the other several conceptual paradigms framing the fascinating field of stem cell biology. Having clear in mind this situation.....

  4. Self-Assembled Matrix by Umbilical Cord Stem Cells

    Directory of Open Access Journals (Sweden)

    Biagio Saitta

    2011-09-01

    Full Text Available Corneal integrity is critical for vision. Corneal wounds frequently heal with scarring that impairs vision. Recently, human umbilical cord mesenchymal stem cells (cord stem cells have been investigated for tissue engineering and therapy due to their availability and differentiation potential. In this study, we used cord stem cells in a 3-dimensional (3D stroma-like model to observe extracellular matrix organization, with human corneal fibroblasts acting as a control. For 4 weeks, the cells were stimulated with a stable Vitamin C (VitC derivative ±TGF-b1. After 4 weeks, the mean thickness of the constructs was ~30 mm; however, cord stem cell constructs had 50% less cells per unit volume, indicating the formation of a dense matrix. We found minimal change in decorin and lumican mRNA, and a significant increase in perlecan mRNA in the presence of TGF-b1. Keratocan on the other hand decreased with TGF-b1 in both cell lineages. With both cell types, the constructs possessed aligned collagen fibrils and associated glycosaminoglycans. Fibril diameters did not change with TGF-b1 stimulation or cell lineage; however, highly sulfated glycosaminoglycans associated with the collagen fibrils significantly increased with TGF-b1. Overall, we have shown that cord stem cells can secrete their own extracellular matrix and promote the deposition and sulfation of various proteoglycans. Furthermore, these cells are at least comparable to commonly used corneal fibroblasts and present an alternative for the 3D in vitro tissue engineered model.

  5. Mesenchymal dental stem cells in regenerative dentistry

    OpenAIRE

    Rodríguez Lozano, Francisco Javier; Insausti, Carmen Luisa; Iniesta, Francisca; Blanquer, Miguel; Ramírez, María del Carmen; Meseguer, Luis; Meseguer Henarejos, Ana Belén; Marín Atucha, Noemi Teresa; Martínez, Salvador; Moraleda Jiménez, José María

    2012-01-01

    In the last decade, tissue engineering is a field that has been suffering an enormous expansion in the regenerative medicine and dentistry. The use of cells as mesenchymal dental stem cells of easy access for dentist and oral surgeon, immunosuppressive properties, high proliferation and capacity to differentiate into odontoblasts, cementoblasts, osteoblasts and other cells implicated in the teeth, suppose a good perspective of future in the clinical dentistry. However, is necessary advance in...

  6. Poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) scaffolds coated with PhaP-RGD fusion protein promotes the proliferation and chondrogenic differentiation of human umbilical cord mesenchymal stem cells in vitro.

    Science.gov (United States)

    Li, Xiaoli; Chang, Huimin; Luo, Huanan; Wang, Zhenghui; Zheng, Guoxi; Lu, Xiaoyun; He, Xijing; Chen, Fang; Wang, Ting; Liang, Jianmin; Xu, Min

    2015-03-01

    Human umbilical cord blood-derived mesenchymal stem cells (hUC-MSCs) have been widely used in tissue engineering. The aim of this study is to evaluate the ability of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) scaffolds coated with polyhydroxyalkanoate binding protein fused with arginyl-glycyl-aspartic acid (PhaP-RGD) to promote the proliferation and chondrogenic differentiation of hUC-MSCs seeded on them. The PhaP-RGD fusion protein was expressed by Escherichia coli. PHBHHx films were coated with PhaP-RGD fusion protein and the physiochemical properties were examined. hUC-MSCs were seeded on PHBHHx films with or without PhaP-RGD precoating and tested for changes in morphology, viability, and chondrogenic differentiation. We found that PhaP-RGD-coated PHBHHx films had similar surface morphology to uncoated PHBHHx. The water contact angle of the coated PHBHHx surface was lower than that of the uncoated surface (10.63° vs. 98.69°). At 7 and 14 days after seeding, the PhaP-RGD-coated PHBHHx group showed greater numbers of viable cells compared to the uncoated PHBHHx group. The expression levels of aggrecan and collagen II were enhanced in the PhaP-RGD-coated PHBHHx group relative to the uncoated PHBHHx group. Histological analysis using toluidine blue staining showed elevated formation of proteoglycan producing chondrocytes in the PhaP-RGD-coated PHBHHx group. Additionally, the synthesis of proteoglycan and collagen was significantly enhanced within the PhaP-RGD constructs. Taken together, PhaP-RGD coating promotes the proliferation and chondrogenic differentiation of hUC-MSCs seeded on PHBHHx films. PhaP-RGD-coated PHBHHx may be a useful scaffold for cartilage tissue engineering. © 2014 Wiley Periodicals, Inc.

  7. Umbilical Cord-Derived Mesenchymal Stem Cell Transplantation in Hepatitis B Virus Related Acute-on-Chronic Liver Failure Treated with Plasma Exchange and Entecavir: a 24-Month Prospective Study.

    Science.gov (United States)

    Li, Yu-Hua; Xu, Ying; Wu, Hua-Mei; Yang, Jing; Yang, Li-Hong; Yue-Meng, Wan

    2016-12-01

    Search for an effective therapy for patients with hepatitis B virus related acute-on-chronic liver failure (HBV-ACLF) remains an important issue. This study investigated the efficacy of umbilical cord-derived mesenchymal stem cell (UC-MSC) transplantation in patients with HBV-ACLF. 45 consecutive entecavir-treated HBV-ACLF patients were prospectively studied. Among these patients, 11 received both plasma exchange (PE) and a single transplantation of UC-MSCs (group A), while 34 received only PE (group B). The primary endpoint was survival at 24 months. Compared with group B, levels of albumin, alanine aminotransferase, aspartate aminotransferase, total bilirubin, direct bilirubin, prothrombin time (PT), international normalized ratio (INR) and model for end-stage liver disease score in group A improved significantly at 4 weeks after transplantation (p < 0.05). Levels of albumin, PT and INR in group A were also markedly improved at 24 months (p < 0.05). Group A had significantly higher cumulative survival rate at 24 months (54.5 % v.s. 26.5 %, p = 0.015 by log rank test). Between the two groups, levels of creatinine, White blood cell, hemoglobin and platelet were similar. HBeAg loss and hepatocellular carcinoma incidence were similar at 24 months. Group assignment (relative risk: 2.926, 95%confidence interval: 1.043-8.203, p = 0.041) was an independent predictor for survival at 24 months. Success rate of UC-MSC transplantation was 100 % in group A. No severe adverse event was observed in any patient. UC-MSC transplantation is safe and effective for HBV-ACLF patients treated with PE and entecavir. It further improves the hepatic function and survival.

  8. Mesenchymal Stem Cells in Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Olcay Ergurhan Kiroglu

    2015-03-01

    Full Text Available Neurodegenerative diseases are almost incurable, debilitating, and they might be fatal, because of limited neurogenesis in nervous system, presence of inhibitory substances and inhibition of recovery due to development of glial scar. Despite many treatment strategies of neurodegenerative diseases no full cure has been achieved. The successful results for mesenchymal stem cells applications on muscles, heart and liver diseases and the application of these cells to the damaged area in particular, hypoxia, inflammation and apoptosis promise hope of using them for neurodegenerative diseases. Mesenchymal stem cells applications constitute a vascular and neuronal phenotype in Parkinsons disease, Huntingtons disease, Amyotrophic lateral sclerosis and Alzheimers disease. Stem cells release bioactive agents that lead to suppression of local immune system, reduction of free radicals, increase in angiogenesis, inhibition of fibrosis, and apoptosis. In addition, tissue stem cells, increase neuronal healing, stimulate proliferation and differentiation. These findings show that stem cells might be a hope of a cure in the treatment of neurodegenerative diseases and intensive work on this issue should continue.

  9. Stem cell transplantation for treating spinal cord injury: A literature comparison between studies of stem cells obtained from various sources.

    Science.gov (United States)

    Xiang, Liangbi; Chen, Yu

    2012-06-05

    To identify global research trends of stem cell transplantation for treating spinal cord injury using a bibliometric analysis of the Web of Science. We performed a bibliometric analysis of data retrievals for stem cell transplantation for treating spinal cord injury from 2002 to 2011 using the Web of Science. (a) peer-reviewed articles on stem cell transplantation for treating spinal cord injury that were published and indexed in the Web of Science; (b) type of articles: original research articles, reviews, meeting abstracts, proceedings papers, book chapters, editorial material, and news items; and (c) year of publication: 2002-2011. (a) articles that required manual searching or telephone access; (b) documents that were not published in the public domain; and (c) a number of corrected papers from the total number of articles. (1) Annual publication output; (2) distribution according to country; (3) distribution according to institution; (4) distribution according to journals; (5) distribution according to funding agencies; and (6) top cited articles over the last 10 years. Bone marrow mesenchymal stem cells and embryonic stem cells have been widely used for treating spinal cord injury. In total, 191 studies of bone marrow mesenchymal stem cell transplantation and 236 studies of embryonic stem cell transplantation for treating spinal cord injury appeared in the Web of Science from 2002 to 2011, and almost half of which were derived from American or Japanese authors and institutes. The number of studies of stem cell transplantation for treating spinal cord injury has gradually increased over the past 10 years. Most papers on stem cell transplantation for treating spinal cord injury appeared in journals with a particular focus on stem cell research, such as Stem Cells and Cell Transplantation. Although umbilical cord blood stem cells and adipose-derived stem cells have been studied for treating spinal cord injury, the number of published papers was much smaller

  10. Tumorigenic hybrids between mesenchymal stem cells and gastric cancer cells enhanced cancer proliferation, migration and stemness.

    Science.gov (United States)

    Xue, Jianguo; Zhu, Yuan; Sun, Zixuan; Ji, Runbi; Zhang, Xu; Xu, Wenrong; Yuan, Xiao; Zhang, Bin; Yan, Yongmin; Yin, Lei; Xu, Huijuan; Zhang, Leilei; Zhu, Wei; Qian, Hui

    2015-10-24

    Emerging evidence indicates that inappropriate cell-cell fusion might contribute to cancer progression. Similarly, mesenchymal stem cells (MSCs) can also fuse with other cells spontaneously and capable of adopting the phenotype of other cells. The aim of our study was to investigate the role of MSCs participated cell fusion in the tumorigenesis of gastric cancer. We fused human umbilical cord mesenchymal stem cells (hucMSCs) with gastric cancer cells in vitro by polyethylene glycol (PEG), the hybrid cells were sorted by flow cytometer. The growth and migration of hybrids were assessed by cell counting, cell colony formation and transwell assays. The proteins and genes related to epithelial- mesenchymal transition and stemness were tested by western blot, immunocytochemistry and real-time RT-PCR. The expression of CD44 and CD133 was examined by immunocytochemistry and flow cytometry. The xenograft assay was used to evaluation the tumorigenesis of the hybrids. The obtained hybrids exhibited epithelial- mesenchymal transition (EMT) change with down-regulation of E-cadherin and up-regulation of Vimentin, N-cadherin, α-smooth muscle actin (α-SMA), and fibroblast activation protein (FAP). The hybrids also increased expression of stemness factors Oct4, Nanog, Sox2 and Lin28. The expression of CD44 and CD133 on hybrid cells was stronger than parental gastric cancer cells. Moreover, the migration and proliferation of heterotypic hybrids were enhanced. In addition, the heterotypic hybrids promoted the growth abilities of gastric xenograft tumor in vivo. Taken together, our results suggest that cell fusion between hucMSCs and gastric cancer cells could contribute to tumorigenic hybrids with EMT and stem cell-like properties, which may provide a flexible tool for investigating the roles of MSCs in gastric cancer.

  11. Transplantation of human umbilical cord blood or amniotic epithelial stem cells alleviates mechanical allodynia after spinal cord injury in rats.

    Science.gov (United States)

    Roh, Dae-Hyun; Seo, Min-Soo; Choi, Hoon-Seong; Park, Sang-Bum; Han, Ho-Jae; Beitz, Alvin J; Kang, Kyung-Sun; Lee, Jang-Hern

    2013-01-01

    Stem cell therapy is a potential treatment for spinal cord injury (SCI), and a variety of different stem cell types have been grafted into humans suffering from spinal cord trauma or into animal models of spinal injury. Although several studies have reported functional motor improvement after transplantation of stem cells into injured spinal cord, the benefit of these cells for treating SCI-induced neuropathic pain is not clear. In this study, we investigated the therapeutic effect of transplanting human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) or amniotic epithelial stem cells (hAESCs) on SCI-induced mechanical allodynia (MA) and thermal hyperalgesia (TH) in T13 spinal cord hemisected rats. Two weeks after SCI, hUCB-MSCs or hAESCs were transplanted around the spinal cord lesion site, and behavioral tests were performed to evaluate changes in SCI-induced MA and TH. Immunohistochemical and Western blot analyses were also performed to evaluate possible therapeutic effects on SCI-induced inflammation and the nociceptive-related phosphorylation of the NMDA NR1 receptor subunit. While transplantation of hUCB-MSCs showed a tendency to reduce MA, transplantation of hAESCs significantly reduced MA. Neither hUCB-MSC nor hAESC transplantation had any effect on SCI-induced TH. Transplantation of hAESCs also significantly reduced the SCI-induced increase in NMDA receptor NR1 subunit phosphorylation (pNR1) expression in the spinal cord. Both hUCB-MSCs and hAESCs reduced the SCI-induced increase in spinal cord expression of the microglial marker, F4/80, but not the increased expression of GFAP or iNOS. Taken together, these findings demonstrate that the transplantation of hAESCs into the injured spinal cord can suppress mechanical allodynia, and this effect seems to be closely associated with the modulation of spinal cord microglia activity and NR1 phosphorylation.

  12. Spheroid Culture of Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Zoe Cesarz

    2016-01-01

    Full Text Available Compared with traditional 2D adherent cell culture, 3D spheroidal cell aggregates, or spheroids, are regarded as more physiological, and this technique has been exploited in the field of oncology, stem cell biology, and tissue engineering. Mesenchymal stem cells (MSCs cultured in spheroids have enhanced anti-inflammatory, angiogenic, and tissue reparative/regenerative effects with improved cell survival after transplantation. Cytoskeletal reorganization and drastic changes in cell morphology in MSC spheroids indicate a major difference in mechanophysical properties compared with 2D culture. Enhanced multidifferentiation potential, upregulated expression of pluripotency marker genes, and delayed replicative senescence indicate enhanced stemness in MSC spheroids. Furthermore, spheroid formation causes drastic changes in the gene expression profile of MSC in microarray analyses. In spite of these significant changes, underlying molecular mechanisms and signaling pathways triggering and sustaining these changes are largely unknown.

  13. Mesenchymal Stem Cells in Fibrotic Disease.

    Science.gov (United States)

    El Agha, Elie; Kramann, Rafael; Schneider, Rebekka K; Li, Xiaokun; Seeger, Werner; Humphreys, Benjamin D; Bellusci, Saverio

    2017-08-03

    Fibrosis is associated with organ failure and high mortality and is commonly characterized by aberrant myofibroblast accumulation. Investigating the cellular origin of myofibroblasts in various diseases is thus a promising strategy for developing targeted anti-fibrotic treatments. Recent studies using genetic lineage tracing technology have implicated diverse organ-resident perivascular mesenchymal stem cell (MSC)-like cells and bone marrow-MSCs in myofibroblast generation during fibrosis development. In this Review, we give an overview of the emerging role of MSCs and MSC-like cells in myofibroblast-mediated fibrotic disease in the kidney, lung, heart, liver, skin, and bone marrow. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Labeling of human mesenchymal stem cells with quantum dots allows tracking of transplanted cells engrafted in infarcted pig hearts

    Directory of Open Access Journals (Sweden)

    Daniela Mara de Oliveira

    2009-09-01

    Full Text Available Objective: The purpose of this paper was to validate fluorescent quantum dots QD as a cell marker for tracking human mesenchymal stem cells in vivo, using a pre-clinical model of acute myocardium infarction. Methods: Human umbilical cord mesenchymal stem cells were isolated and expanded in vitro. Mesenchymal stem cells were labeled with QD 655. Myocardium infarction induction in pigs was performed by occluding the left descending coronary artery for 60 minutes, with a balloon catheter. One day after the myocardium infarction, intracoronary injection of mesenchymal stem cells was performed. One week after cell transplantation, the animals were killed; their hearts were removed and underwent histological examination Rresults: All the mesenchymal stem cells were labeled with QD 655. The labeling process did not affect viability, proliferation, and osteogenic and adipogenic differentiation potential of the cells. Labeled mesenchymal stem cells were easily tracked in the histological sections of the infarcted area. Cells were observed with a frequency of two per section, while no cells were observed in the remote myocardium. Cconclusion: These results indicate that QD 655 labeling is an efficient tool for tracking mesenchymal stem cells in vivo.

  15. Adenovirus vector-mediated ex vivo gene transfer of brain-derived neurotrophic factor (BDNF) tohuman umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) promotescrush-injured rat sciatic nerve regeneration.

    Science.gov (United States)

    Hei, Wei-Hong; Almansoori, Akram A; Sung, Mi-Ae; Ju, Kyung-Won; Seo, Nari; Lee, Sung-Ho; Kim, Bong-Ju; Kim, Soung-Min; Jahng, Jeong Won; He, Hong; Lee, Jong-Ho

    2017-03-16

    This study was designed toinvestigate the efficacy of adenovirus vector-mediated brain-derived neurotrophic factor (BDNF) ex vivo gene transfer to human umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) in a rat sciatic nerve crush injury model. BDNF protein and mRNA expression after infection was checked through an enzyme-linked immunosorbent assay (ELISA) and quantitative real-time polymerase chain reaction (qRT-PCR). Male Sprague-Dawley rats (200-250g, 6 weeks old) were distributed into threegroups (n=20 each): the control group, UCB-MSC group, and BDNF-adenovirus infected UCB-MSC (BDNF-Ad+UCB-MSC) group. UCB-MSCs (1×10 6 cells/10μl/rat) or BDNF-Ad+UCB-MSCs (1×10 6 cells/10μl/rat)were transplantedinto the rats at the crush site immediately after sciatic nerve injury. Cell tracking was done with PKH26-labeled UCB-MSCs and BDNF-Ad+UCB-MSCs (1×10 6 cells/10μl/rat). The rats were monitored for 4 weeks post-surgery. Results showed that expression of BDNF at both the protein and mRNA levels was higher inthe BDNF-Ad+UCB-MSC group compared to theUCB-MSC group in vitro.Moreover, BDNF mRNA expression was higher in both UCB-MSC group and BDNF-Ad+ UCB-MSC group compared tothe control group, and BDNF mRNA expression in theBDNF-Ad+UCB-MSC group was higher than inboth other groups 5days after surgeryin vivo. Labeled neurons in the dorsal root ganglia (DRG), axon counts, axon density, and sciatic function index were significantly increased in the UCB-MSC and BDNF-Ad+ UCB-MSCgroupscompared to the controlgroup four weeksaftercell transplantation. Importantly,the BDNF-Ad+UCB-MSCgroup exhibited more peripheral nerve regeneration than the other two groups.Our results indicate thatboth UCB-MSCs and BDNF-Ad+UCB-MSCscan improve rat sciatic nerve regeneration, with BDNF-Ad+UCB-MSCsshowing a greater effectthan UCB-MSCs. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Basic fibroblast growth factor/vascular endothelial growth factor in the serum from severe burn patients stimulates the proliferation of cultured human umbilical cord mesenchymal stem cells via activation of Notch signaling pathways.

    Science.gov (United States)

    Liu, Ling-Ying; Hou, Yu-Sen; Chai, Jia-Ke; Hu, Quan; Duan, Hong-Jie; Yu, Yong-Hui; Yin, Hui-Nan; Hao, Dai-Feng; Feng, Guang; Li, Tao; Du, Jun-Dong

    2013-11-01

    Mesenchymal stem cells (MSCs) are the leading cellular constituents used in regenerative medicine. MSCs repair and reconstruct wounds of acute traumata and radiation-induced burns through proliferation, differentiation, and trophic activity. However, repair effect of MSCs on severe burn wounds remain to be clarified because severe burns are much more complex traumata than radiation-induced burns. Survival and proliferation of MSCs in microenvironments affected by severe burns are very important for improving wound repair/regeneration. This study aimed to elucidate the survival and proliferation effects and the potential proliferation mechanism of serum from severe burn patients (BPS) on human umbilical cord MSCs (hUCMSCs) in vitro. The hUCMSCs were isolated, cultured, and identified. Next, we evaluated the effects of BPS on cell numbers, cell cycle progression, cyclin D expression, and key proteins and genes of the Notch signaling pathway. Putative mechanisms underlying the proliferation of hUCMSCs were investigated. BPS markedly increased the number of hUCMSCs, and the results of the cell cycle studies indicated that BPS induced cell cycle progression into the M phase. Cyclin D expression was higher with BPS than in the control group. Moreover, Notch-1, a key determinant of hUCMSC activation and proliferation, and its target gene Hes-1 were overexpressed after BPS treatment. Proliferation numbers of hUCMSC, rate of proliferation period (G2/M+S), and the expression of cyclin D, Notch-1, and Hes-1 were markedly decreased by Notch signaling inhibitors (DAPT/GSI). In the case of BPS, basic fibroblast growth factor and vascular endothelial growth factor were the key factors that promoted hUCMSC proliferation. This study provides novel evidence for the role of BPS in the survival and rapid proliferation of hUCMSCs and suggests that these cells could be used for cell therapy-based clinical applications for treating severe burns. Furthermore, hUCMSC proliferation was

  17. Effect of Transplanting Various Concentrations of a Composite of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells and Hyaluronic Acid Hydrogel on Articular Cartilage Repair in a Rabbit Model.

    Directory of Open Access Journals (Sweden)

    Yong-Beom Park

    Full Text Available Mesenchymal stem cells (MSCs are known to have therapeutic potential for cartilage repair. However, the optimal concentration of MSCs for cartilage repair remains unclear. Therefore, we aimed to explore the feasibility of cartilage repair by human umbilical cord blood-derived MSCs (hUCB-MSCs and to determine the optimal concentrations of the MSCs in a rabbit model.Osteochondral defects were created in the trochlear groove of femur in 55 rabbits. Four experimental groups (11 rabbits/group were treated by transplanting the composite of hUCB-MSCs and HA with various MSCs concentrations (0.1, 0.5, 1.0, and 1.5 x 107 cells/ml. One control group was left untreated. At 4, 8, and 16 weeks post-transplantation, the degree of cartilage repair was evaluated grossly and histologically.Overall, transplanting hUCB-MSCs and HA hydrogel resulted in cartilage repair tissue with better quality than the control without transplantation (P = 0.015 in 0.1, P = 0.004 in 0.5, P = 0.004 in 1.0, P = 0.132 in 1.5 x 107 cells/ml. Interestingly, high cell concentration of hUCB-MSCs (1.5×107 cells/ml was inferior to low cell concentrations (0.1, 0.5, and 1.0 x 107 cells/ml in cartilage repair (P = 0.394,P = 0.041, P = 0.699, respectively. The 0.5 x 107 cells/ml group showed the highest cartilage repair score at 4, 8 and 16 weeks post transplantation, and followed by 0.1x107 cells/ml group or 1.0 x 107 cell/ml group.The results of this study suggest that transplantation of the composite of hUCB-MSCs and HA is beneficial for cartilage repair. In addition, this study shows that optimal MSC concentration needs to be determined for better cartilage repair.

  18. Extracellular Vesicles Released from Human Umbilical Cord-Derived Mesenchymal Stromal Cells Prevent Life-Threatening Acute Graft-Versus-Host Disease in a Mouse Model of Allogeneic Hematopoietic Stem Cell Transplantation.

    Science.gov (United States)

    Wang, Li; Gu, Zhenyang; Zhao, Xiaoli; Yang, Nan; Wang, Feiyan; Deng, Ailing; Zhao, Shasha; Luo, Lan; Wei, Huaping; Guan, Lixun; Gao, Zhe; Li, Yonghui; Wang, Lili; Liu, Daihong; Gao, Chunji

    2016-12-15

    Mesenchymal stromal cells (MSCs) are attractive agents for the prophylaxis of acute graft-versus-host disease (aGVHD) after allogeneic hematopoietic stem cell transplantation (allo-HSCT). However, safety concerns remain about their clinical application. In this study, we explored whether extracellular vesicles released from human umbilical cord-derived MSCs (hUC-MSC-EVs) could prevent aGVHD in a mouse model of allo-HSCT. hUC-MSC-EVs were intravenously administered to recipient mice on days 0 and 7 after allo-HSCT, and the prophylactic effects of hUC-MSC-EVs were assessed by observing the in vivo manifestations of aGVHD, histologic changes in target organs, and recipient mouse survival. We evaluated the effects of hUC-MSC-EVs on immune cells and inflammatory cytokines by flow cytometry and ProcartaPlex™ Multiplex Immunoassays, respectively. The in vitro effects of hUC-MSC-EVs were determined by mitogen-induced proliferation assays. hUC-MSC-EVs alleviated the in vivo manifestations of aGVHD and the associated histologic changes and significantly reduced the mortality of the recipient mice. Recipients treated with hUC-MSC-EVs had significantly lower frequencies and absolute numbers of CD3+CD8+ T cells; reduced serum levels of IL-2, TNF-α, and IFN-γ; a higher ratio of CD3+CD4+ and CD3+CD8+ T cells; and higher serum levels of IL-10. An in vitro experiment demonstrated that hUC-MSC-EVs inhibited the mitogen-induced proliferation of splenocytes in a dose-dependent manner, and the cytokine changes were similar to those observed in vivo. This study indicated that hUC-MSC-EVs can prevent life-threatening aGVHD by modulating immune responses. These data provide the first evidence that hUC-MSC-EVs represent an ideal alternative in the prophylaxis of aGVHD after allo-HSCT.

  19. Cultivo de células mesenquimais do sangue de cordão umbilical com e sem uso do gradiente de densidade Ficoll-Paque Blood mesenchymal stem cell culture from the umbilical cord with and without Ficoll-Paque density gradient method

    Directory of Open Access Journals (Sweden)

    Rosa Sayoko Kawasaki-Oyama

    2008-03-01

    Full Text Available OBJETIVOS: Implantação de técnicas de isolamento e cultivo de células-tronco mesenquimais do sangue de cordão umbilical humano, com e sem uso de gradiente de densidade Ficoll-Paque (d=1,077g/ml. MÉTODOS: Dez amostras de sangue de cordão umbilical humano de gestação a termo foram submetidas a dois procedimentos de cultivo de células-tronco mesenquimais: sem gradiente de densidade Ficoll-Paque e com gradiente de densidade. As células foram semeadas em frascos de 25cm² a uma densidade de 1x10(7células nucleadas/cm² (sem Ficoll e 1,0x10(6 células mononucleares/cm² (com Ficoll. As células aderentes foram submetidas a marcação citoquímica com fosfatase ácida e reativo de Schiff. RESULTADOS: No procedimento sem gradiente de densidade Ficoll, foram obtidas 2,0-13,0x10(7 células nucleadas (mediana=2,35x10(7 e, no procedimento com gradiente de densidade Ficoll, foram obtidas 3,7-15,7x10(6 células mononucleares (mediana=7,2x10(6. Em todas as culturas foram observadas células aderentes 24 horas após o início de cultivo. As células apresentaram morfologias fibroblastóides ou epitelióides. Na maioria das culturas houve proliferação celular nas primeiras semanas de cultivo, mas após a segunda semana, somente três culturas provenientes do método sem gradiente de densidade Ficoll-Paque mantiveram crescimento celular, formando focos confluentes de células. Essas culturas foram submetidas a várias etapas de tripsinização para espalhamento ou subdivisão e permaneceram em cultivo por períodos que variaram de dois a três meses. CONCLUSÃO: Nas amostras estudadas, o isolamento e cultivo de células-tronco mesenquimais do sangue de cordão umbilical humano pelo método sem gradiente de densidade Ficoll-Paque foi mais eficiente do que o método com gradiente de densidade Ficoll-Paque.OBJECTIVES: Implantation of cell separation and mesenchymal stem cell culture techniques from human umbilical cord blood with and without using the

  20. Mesenchymal stem cell therapy for nonmusculoskeletal diseases: emerging applications.

    Science.gov (United States)

    Kuo, Tom K; Ho, Jennifer H; Lee, Oscar K

    2009-01-01

    Mesenchymal stem cells are stem/progenitor cells originated from the mesoderm and can different into multiple cell types of the musculoskeletal system. The vast differentiation potential and the relative ease for culture expansion have established mesenchymal stem cells as the building blocks in cell therapy and tissue engineering applications for a variety of musculoskeletal diseases, including repair of fractures and bone defects, cartilage regeneration, treatment of osteonecrosis of the femoral head, and correction of genetic diseases such as osteogenesis imperfect. However, research in the past decade has revealed differentiation potentials of mesenchymal stem cells beyond lineages of the mesoderm, suggesting broader applications than originally perceived. In this article, we review the recent developments in mesenchymal stem cell research with respect to their emerging properties and applications in nonmusculoskeletal diseases.

  1. Concise review: mesenchymal stem cells for diabetes.

    Science.gov (United States)

    Domínguez-Bendala, Juan; Lanzoni, Giacomo; Inverardi, Luca; Ricordi, Camillo

    2012-01-01

    Mesenchymal stem cells (MSCs) have already made their mark in the young field of regenerative medicine. Easily derived from many adult tissues, their therapeutic worth has already been validated for a number of conditions. Unlike embryonic stem cells, neither their procurement nor their use is deemed controversial. Here we review the potential use of MSCs for the treatment of type 1 diabetes mellitus, a devastating chronic disease in which the insulin-producing cells of the pancreas (the β-cells) are the target of an autoimmune process. It has been hypothesized that stem cell-derived β-cells may be used to replenish the islet mass in diabetic patients, making islet transplantation (a form of cell therapy that has already proven effective at clinically restoring normoglycemia) available to millions of prospective patients. Here we review the most current advances in the design and application of protocols for the differentiation of transplantable β-cells, with a special emphasis in analyzing MSC potency according to their tissue of origin. Although no single method appears to be ripe enough for clinical trials yet, recent progress in reprogramming (a biotechnological breakthrough that relativizes the thus far insurmountable barriers between embryonal germ layers) bodes well for the rise of MSCs as a potential weapon of choice to develop personalized therapies for type 1 diabetes.

  2. Treatment of osteoarthritis with mesenchymal stem cells.

    Science.gov (United States)

    Wang, Wen; Cao, Wei

    2014-06-01

    Osteoarthritis (OA) is one of the most prevalent joint diseases with prominent symptoms affecting the daily life of millions of middle aged and elderly people. Despite this, there are no successful medical interventions that can prevent the progressive destruction of OA joints. The onset of pathological changes in OA is associated with deviant activity of mesenchymal stem cells (MSCs), the multipotent precursors of connective tissue cells that reside in joints. Current therapies for OA have resulted in poor clinical outcomes without repairing the damaged cartilage. Intra-articular delivery of culture-expanded MSCs has opened new avenues of OA treatment. Pre-clinical and clinical trials demonstrated the feasibility, safety, and efficacy of MSC therapy. The Wnt/β-catenin, bone morphogenetic protein 2, Indian hedgehog, and Mitogen-activated protein kinase signaling pathways have been demonstrated to be involved in OA and the mechanism of action of MSC therapies.

  3. Reprogramming of mesenchymal stem cells by oncogenes.

    Science.gov (United States)

    Eid, Josiane E; Garcia, Christina B

    2015-06-01

    Mesenchymal stem cells (MSCs) originate from embryonic mesoderm and give rise to the multiple lineages of connective tissues. Transformed MSCs develop into aggressive sarcomas, some of which are initiated by specific chromosomal translocations that generate fusion proteins with potent oncogenic properties. The sarcoma oncogenes typically prime MSCs through aberrant reprogramming. They dictate commitment to a specific lineage but prevent mature differentiation, thus locking the cells in a state of proliferative precursors. Deregulated expression of lineage-specific transcription factors and controllers of chromatin structure play a central role in MSC reprogramming and sarcoma pathogenesis. This suggests that reversing the epigenetic aberrancies created by the sarcoma oncogenes with differentiation-related reagents holds great promise as a beneficial addition to sarcoma therapies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Mesenchymal Stem Cells for Cartilage Regeneration of TMJ Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Dixin Cui

    2017-01-01

    Full Text Available Temporomandibular joint osteoarthritis (TMJ OA is a degenerative disease, characterized by progressive cartilage degradation, subchondral bone remodeling, synovitis, and chronic pain. Due to the limited self-healing capacity in condylar cartilage, traditional clinical treatments have limited symptom-modifying and structure-modifying effects to restore impaired cartilage as well as other TMJ tissues. In recent years, stem cell-based therapy has raised much attention as an alternative approach towards tissue repair and regeneration. Mesenchymal stem cells (MSCs, derived from the bone marrow, synovium, and even umbilical cord, play a role as seed cells for the cartilage regeneration of TMJ OA. MSCs possess multilineage differentiation potential, including chondrogenic differentiation as well as osteogenic differentiation. In addition, the trophic modulations of MSCs exert anti-inflammatory and immunomodulatory effects under aberrant conditions. Furthermore, MSCs combined with appropriate scaffolds can form cartilaginous or even osseous compartments to repair damaged tissue and impaired function of TMJ. In this review, we will briefly discuss the pathogenesis of cartilage degeneration in TMJ OA and emphasize the potential sources of MSCs and novel approaches for the cartilage regeneration of TMJ OA, particularly focusing on the MSC-based therapy and tissue engineering.

  5. Labeling and Imaging Mesenchymal Stem Cells with Quantum Dots

    Science.gov (United States)

    Mesenchymal stem cells (MSCs) are multipotent cells with the potential to differentiate into bone, cartilage, adipose and muscle cells. Adult derived MSCs are being actively investigated because of their potential to be utilized for therapeutic cell-based transplantation. Methods...

  6. Isolation and Characterization of Human Umbilical Cord Wharton’s jelly Stem Cells

    Directory of Open Access Journals (Sweden)

    Saber Zahri

    2013-04-01

    Full Text Available Background & Objectives: Stem cells are fundamental supporter of multicellular tissue. They allow blood, bone, gametes, epithelia, nervous system, muscle, and other tissues to be replaced by fresh cells throughout life. In recent years human Wharton’s jelly stem cells (WJSCs have gained attention. They express a number of surface markers characteristic of mesenchymal stem cells. In this study, human Wharton’s jelly stem cells were isolated using explant method. To show the stemness property of these cells, three CD markers including CD105, CD44 and CD34 were tested.   Methods: The umbilical cord samples were collected by Caesarian section at Arta Hospital in Ardabil. Cords were transferred in sterile conditions and stem cells were isolated using explant method. After log phase, cells were passaged then growth characteristics and CD105, CD44 and CD34 markers investigated by RT-PCR.   Results: Separation of human Wharton’s jelly stem cells were started after 7 days. WJSCs in culture revealed two distinct cell population named Type 1 and Type 2. RT-PCR results showed that WJSCs were CD105+, CD44+ and CD34-.   Conclusion: Human umbilical cord stem cells could be an alternative source instead bone marrow stem cells for cell therapy and tissue engineering. These cells have a fibroblastic appearance. Following the lag phase and into log phase respectively, cells grow easily in culture and retain stemness properties in higher passages.

  7. Mesenchymal Stem Cell Therapy for Nerve Regeneration and Immunomodulation after Composite Tissue Allotransplantation

    Science.gov (United States)

    2012-02-01

    10-1-0927 TITLE: Mesenchymal Stem Cell Therapy for Nerve Regeneration and Immunomodulation after Composite Tissue Allotransplantation...immunosuppression. Bone Marrow Derived Mesenchymal stem cells (BM-MSCs) are pluripotent cells, capable of differentiation along multiple mesenchymal lineages into...As part of implemented transition from University of Pittsburgh to Johns Hopkins University, we optimized our mesenchymal stem cell (MSC) isolation

  8. Application of mesenchymal stem cells in paediatrics

    Directory of Open Access Journals (Sweden)

    Wawryk-Gawda Ewelina

    2017-09-01

    Full Text Available Mesenchymal stem cells (MSC were described by Friedenstein in the 1970s as being a group of bone marrow non-hematopoietic cells that are the source of fibroblasts. Since then, knowledge about the therapeutic potential of MSCs has significantly increased. MSCs are currently used for the treatment of many diseases, both in adults and children. MSCs are used successfully in the case of autoimmune diseases, including rheumatic diseases, diabetes mellitus type 1, gastroenterological and neurological diseases. Moreover, treatment of such organ disorders as damage or hypoxia through application of MSC therapy has shown to be satisfactory. In addition, there are some types of congenital disorders, including osteogenesis imperfecta and Spinal Muscular Atrophy, that may be treated with cellular therapy. Most studies showed no other adverse effects than fever. Our study is an analysis that particularly focuses on the registered trials and results of MSCs application to under 18 patients with acute, chronic, recurrent, resistance and corticosteroids types of Graft-versus-Host Disease (GvHD. Stem cells currently play an important role in the treatment of many diseases. Long-term studies conducted on animals have shown that cell therapy is both effective and safe. The number of indications for use of these cells in the course of treatment of people is constantly increasing. The results of subsequent studies provide important data justifying the application of MSCs in the course of treatment of many diseases whose treatment is ineffective when utilizing other approaches.

  9. Isolation, culture and characterization of postnatal human umbilical vein-derived mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    "Mehdi Kadivar

    2005-07-01

    Full Text Available On the basis of reports that mesenchymal stem cells (MSCs can be isolated from the placenta/umbilical cord stroma, the present study was undertaken to isolate and characterize MSCs from the human umbilical cord veins. In this investigation, a cell population was isolated which was derived from the endothelium/subendothelium layers of 20 umbilical cord veins obtained from term deliveries using a solution of 0.1% collagenase type IV. Results suggest that these cells possess morphological, immunophenotypical and cell differentiation capacities similar to the bone marrow-derived mesenchymal stem cells (MSCs. The isolated cell population has fibroblastoid morphology which upon proper stimulation gives rise to adipocytes, osteocytes and chondrocytes in culture. Immunophenotypically, this cell population is positive for CD54, CD29, CD73, CD49e, CD166, CD105, CD13, and CD44 markers and alpha-smooth muscle actin and negative for CD31, CD45, CD49d, and CD34 markers, von Willebrand factor (vWF and smooth muscle myosin (MySM. Altogether, these findings indicate that umbilical cord obtained from term deliveries is an important source of MSCs which could have an important application in cell therapy protocols.

  10. Mesenchymal Stem Cell-Mediated Functional Tooth Regeneration in Swine

    OpenAIRE

    Wataru Sonoyama; Yi Liu; Dianji Fang; Takayoshi Yamaza; Byoung-Moo Seo; Chunmei Zhang; He Liu; Stan Gronthos; Cun-Yu Wang; Songlin Wang; Songtao Shi

    2006-01-01

    Mesenchymal stem cell-mediated tissue regeneration is a promising approach for regenerative medicine for a wide range of applications. Here we report a new population of stem cells isolated from the root apical papilla of human teeth (SCAP, stem cells from apical papilla). Using a minipig model, we transplanted both human SCAP and periodontal ligament stem cells (PDLSCs) to generate a root/periodontal complex capable of supporting a porcelain crown, resulting in normal tooth function. This wo...

  11. Stem cell transplantation for treating spinal cord injury

    OpenAIRE

    Xiang, Liangbi; Chen, Yu

    2012-01-01

    OBJECTIVE: To identify global research trends of stem cell transplantation for treating spinal cord injury using a bibliometric analysis of the Web of Science. DATA RETRIEVAL: We performed a bibliometric analysis of data retrievals for stem cell transplantation for treating spinal cord injury from 2002 to 2011 using the Web of Science. SELECTION CRITERIA: Inclusion criteria: (a) peer-reviewed articles on stem cell transplantation for treating spinal cord injury that were published and indexed...

  12. Telomere stability and telomerase in mesenchymal stem cells

    DEFF Research Database (Denmark)

    Serakinci, Nedime; Graakjaer, Jesper; Kølvrå, Steen

    2008-01-01

    Telomeres are repetitive genetic material that cap and thereby protect the ends of chromosomes. Each time a cell divides, telomeres get shorter. Telomere length is mainly maintained by telomerase. This enzyme is present in high concentrations in the embryonic stem cells and in fast growing...... embryonic cells, and declines with age. It is still unclear to what extent there is telomerase in adult stem cells, but since these are the founder cells of cells of all the tissues in the body, understanding the telomere dynamics and expression of telomerase in adult stem cells is very important....... In the present communication we focus on telomere expression and telomere length in stem cells, with a special focus on mesenchymal stem cells. We consider different mechanisms by which stem cells can maintain telomeres and also focus on the dynamics of telomere length in mesenchymal stem cells, both the overall...

  13. Mesenchymal stem cell therapy for liver fibrosis.

    Science.gov (United States)

    Eom, Young Woo; Shim, Kwang Yong; Baik, Soon Koo

    2015-09-01

    Currently, the most effective treatment for end-stage liver fibrosis is liver transplantation; however, transplantation is limited by a shortage of donor organs, surgical complications, immunological rejection, and high medical costs. Recently, mesenchymal stem cell (MSC) therapy has been suggested as an effective alternate approach for the treatment of hepatic diseases. MSCs have the potential to differentiate into hepatocytes, and therapeutic value exists in their immune-modulatory properties and secretion of trophic factors, such as growth factors and cytokines. In addition, MSCs can suppress inflammatory responses, reduce hepatocyte apoptosis, increase hepatocyte regeneration, regress liver fibrosis and enhance liver functionality. Despite these advantages, issues remain; MSCs also have fibrogenic potential and the capacity to promote tumor cell growth and oncogenicity. This paper summarizes the properties of MSCs for regenerative medicine and their therapeutic mechanisms and clinical application in the treatment of liver fibrosis. We also present several outstanding risks, including their fibrogenic potential and their capacity to promote pre-existing tumor cell growth and oncogenicity.

  14. Therapeutic Potential of Umbilical Cord Mesenchymal Stromal Cells Transplantation for Cerebral Palsy: A Case Report

    Directory of Open Access Journals (Sweden)

    Liming Wang

    2013-01-01

    Full Text Available Cerebral palsy is the most common motor disability in childhood. In current paper, we first report our clinical data regarding administration of umbilical cord mesenchymal stem cells (MSCs transplantation in treatment of cerebral palsy. A 5-year-old girl with cerebral palsy was treated with multiple times of intravenous and intrathecal administration of MSCs derived from her young sister and was followed up for 28 months. The gross motor dysfunction was improved. Other benefits included enhanced immunity, increased physical strength, and adjusted speech and comprehension. Temporary low-grade fever was the only side effect during the treatment. MSCs may be a safe and effective therapy to improve symptoms in children with cerebral palsy.

  15. Amniotic fluid-derived mesenchymal stem cells as a novel ...

    African Journals Online (AJOL)

    CLEMENTINA

    2012-06-28

    Jun 28, 2012 ... As a potential alternative treatment for terminal liver diseases, amniotic fluid derived mesenchymal stem cells (AFMSCs) have many advantages over other stem cells: avoiding much ethical controversy and decrease in both quantity and differentiation potential with age. However, the therapeutic role of.

  16. Mesenchymal stem cells: cell biology and potential use in therapy

    DEFF Research Database (Denmark)

    Kassem, Moustapha; Kristiansen, Malthe; Abdallah, Basem M

    2004-01-01

    Mesenchymal stem cells are clonogenic, non-haematopoietic stem cells present in the bone marrow and are able to differentiate into multiple mesoderm-type cell lineages e.g. osteoblasts, chondrocytes, endothelial-cells and also non-mesoderm-type lineages e.g. neuronal-like cells. Several methods a...

  17. One-step derivation of cardiomyocytes and mesenchymal stem cells from human pluripotent stem cells.

    Science.gov (United States)

    Wei, Heming; Tan, Grace; Manasi; Qiu, Suhua; Kong, Geraldine; Yong, Pearly; Koh, Caihong; Ooi, Ting Huay; Lim, Sze Yun; Wong, Philip; Gan, Shu Uin; Shim, Winston

    2012-09-01

    Cardiomyocytes (CMs) and mesenchymal stem cells (MSCs) are important cell types for cardiac repair post myocardial infarction. Here we proved that both CMs and MSCs can be simultaneously generated from human induced pluripotent stem cells (hiPSCs) via a pro-mesoderm differentiation strategy. Two hiPSC lines, hiPSC (1) and hiPSC (2) were generated from human dermal fibroblasts using OCT-4, SOX-2, KLF-4, c-Myc via retroviral-based reprogramming. H9 human embryonic stem cells (hESCs) served as control. CMs and MSCs were co-generated from hiPSCs and hESCs via embryoid body-dependent cardiac differentiation protocol involving a serum-free and insulin-depleted medium containing a p38 MAPK inhibitor, SB 203580. Comparing to bone marrow and umbilical cord blood-derived MSCs, hiPSC-derived MSCs (iMSCs) expressed common MSC markers and were capable of adipogenesis, osteogenesis and chondrogenesis. Moreover, iMSCs continuously proliferated for more than 32 population doublings without cellular senescence and showed superior pro-angiogenic and wound healing properties. In summary, we generated a large number of homogenous MSCs in conjunction with CMs in a low-cost and efficient one step manner. Functionally competent CMs and MSCs co-generated from hiPSCs may be useful for autologous cardiac repair. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Can mesenchymal stem cells improve spermatogonial stem cell transplantation efficiency?

    Science.gov (United States)

    Kadam, P; Van Saen, D; Goossens, E

    2017-01-01

    Improved treatments have led to an increased survival rate in cancer patients. However, in pre-pubertal boys, these gonadotoxic treatments can result in the depletion of the spermatogonial stem cell (SSC) pool causing lifelong infertility. SSC transplantation has been proposed as a promising technique to preserve the fertility of these patients. In mice, this technique has resulted in live-born offspring, but the efficiency of colonization remained low. This could be because of a deficient microenvironment, leading to apoptosis of the transplanted SSCs. Interestingly, mesenchymal stem cells (MSCs), being multipotent and easy to isolate and multiply in vitro, are nowadays successfully and widely used in regenerative medicine. Here, we shortly review the current understanding of MSC and SSC biology, and we hypothesize that a combined MSC-SSC transplantation might improve the efficiency of SSC colonization and differentiation as paracrine factors from MSCs may contribute to the SSC niche. © 2016 American Society of Andrology and European Academy of Andrology.

  19. Research Advancements in Porcine Derived Mesenchymal Stem Cells

    OpenAIRE

    Bharti, Dinesh; Shivakumar, Sharath Belame; Subbarao, Raghavendra Baregundi; Rho, Gyu-Jin

    2016-01-01

    In the present era of stem cell biology, various animals such as Mouse, Bovine, Rabbit and Porcine have been tested for the efficiency of their mesenchymal stem cells (MSCs) before their actual use for stem cell based application in humans. Among them pigs have many similarities to humans in the form of organ size, physiology and their functioning, therefore they have been considered as a valuable model system for in vitro studies and preclinical assessments. Easy assessability, few ethical i...

  20. Quantum dot labeling of mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Cascio Wayne E

    2007-11-01

    Full Text Available Abstract Background Mesenchymal stem cells (MSCs are multipotent cells with the potential to differentiate into bone, cartilage, fat and muscle cells and are being investigated for their utility in cell-based transplantation therapy. Yet, adequate methods to track transplanted MSCs in vivo are limited, precluding functional studies. Quantum Dots (QDs offer an alternative to organic dyes and fluorescent proteins to label and track cells in vitro and in vivo. These nanoparticles are resistant to chemical and metabolic degradation, demonstrating long term photostability. Here, we investigate the cytotoxic effects of in vitro QD labeling on MSC proliferation and differentiation and use as a cell label in a cardiomyocyte co-culture. Results A dose-response to QDs in rat bone marrow MSCs was assessed in Control (no-QDs, Low concentration (LC, 5 nmol/L and High concentration (HC, 20 nmol/L groups. QD yield and retention, MSC survival, proinflammatory cytokines, proliferation and DNA damage were evaluated in MSCs, 24 -120 hrs post QD labeling. In addition, functional integration of QD labeled MSCs in an in vitro cardiomyocyte co-culture was assessed. A dose-dependent effect was measured with increased yield in HC vs. LC labeled MSCs (93 ± 3% vs. 50% ± 15%, p 90% of QD labeled cells were viable in all groups, however, at 120 hrs increased apoptosis was measured in HC vs. Control MSCs (7.2% ± 2.7% vs. 0.5% ± 0.4%, p Conclusion Fluorescent QDs label MSC effectively in an in vitro co-culture model. QDs are easy to use, show a high yield and survival rate with minimal cytotoxic effects. Dose-dependent effects suggest limiting MSC QD exposure.

  1. Mesenchymal stem cell-mediated functional tooth regeneration in swine.

    Science.gov (United States)

    Sonoyama, Wataru; Liu, Yi; Fang, Dianji; Yamaza, Takayoshi; Seo, Byoung-Moo; Zhang, Chunmei; Liu, He; Gronthos, Stan; Wang, Cun-Yu; Wang, Songlin; Shi, Songtao

    2006-12-20

    Mesenchymal stem cell-mediated tissue regeneration is a promising approach for regenerative medicine for a wide range of applications. Here we report a new population of stem cells isolated from the root apical papilla of human teeth (SCAP, stem cells from apical papilla). Using a minipig model, we transplanted both human SCAP and periodontal ligament stem cells (PDLSCs) to generate a root/periodontal complex capable of supporting a porcelain crown, resulting in normal tooth function. This work integrates a stem cell-mediated tissue regeneration strategy, engineered materials for structure, and current dental crown technologies. This hybridized tissue engineering approach led to recovery of tooth strength and appearance.

  2. Mesenchymal stem cell-mediated functional tooth regeneration in swine.

    Directory of Open Access Journals (Sweden)

    Wataru Sonoyama

    2006-12-01

    Full Text Available Mesenchymal stem cell-mediated tissue regeneration is a promising approach for regenerative medicine for a wide range of applications. Here we report a new population of stem cells isolated from the root apical papilla of human teeth (SCAP, stem cells from apical papilla. Using a minipig model, we transplanted both human SCAP and periodontal ligament stem cells (PDLSCs to generate a root/periodontal complex capable of supporting a porcelain crown, resulting in normal tooth function. This work integrates a stem cell-mediated tissue regeneration strategy, engineered materials for structure, and current dental crown technologies. This hybridized tissue engineering approach led to recovery of tooth strength and appearance.

  3. Tumourigenicity and radiation resistance of mesenchymal stem cells

    DEFF Research Database (Denmark)

    D'Andrea, Filippo Peder; Horsman, Michael Robert; Kassem, Moustapha

    2012-01-01

    Background. Cancer stem cells are believed to be more radiation resistant than differentiated tumour cells of the same origin. It is not known, however, whether normal nontransformed adult stem cells share the same radioresistance as their cancerous counterpart. Material and methods....... Nontumourigenic (TERT4) and tumourigenic (TRET20) cell lines, from an immortalised mesenchymal stem cell line, were grown in culture prior to irradiation and gene expression analysis. Radiation resistance was measured using a clonogenic assay. Differences in gene expression between the two cell lines, both under...... the intercellular matrix. These results also indicate that cancer stem cells are more radiation resistant than stem cells of the same origin....

  4. Bone marrow mesenchymal stem cells: historical overview and concepts.

    Science.gov (United States)

    Charbord, Pierre

    2010-09-01

    This review describes the historical emergence of the concept of bone marrow mesenchymal stem cells (MSCs), summarizing data on Wolf and Trentin's hematopoietic inductive microenvironment; Dexter's hematopoiesis-supportive stromal cells; Friedenstein's osteogenic cells; and Pittenger's trilineal osteoblastic, chondrocytic, and adipocytic precursors; to finally introduce the specific bone marrow mesenchymal stem cells with differentiation potential to four lineages (mesenchymal and vascular smooth muscle lineages), and stromal and immunomodulatory capacities. Two points are the object of detailed discussion. The first point envisions the stem cell attributes (multipotentiality, self-renewal, tissue regeneration, population heterogeneity, plasticity, and lineage priming) compared with that of the paradigmatic hematopoietic stem cell. In the second point, we discuss the possible existence of bone marrow cells with greater differentiation potential, eventually pluripotential cells. The latter point raises the issues of cell fusion, reprogramming, or selection under nonstandardized conditions of rare populations of neuroectodermal origin, or of cells that had undergone mesenchymal-to-epithelial transition. In the last section, we review data on MSC senescence and possible malignant transformation secondary to extensive culture, gene transfer of telomerase, or mutations such as leading to Ewing's sarcoma. The set of data leads to the conclusion that bone marrow MSCs constitute a specific adult tissue stem cell population. The multiple characteristics of this stem cell type account for the versatility of the mechanisms of injured tissue repair. Although MSC administration may be extremely useful in a number of clinical applications, their transplantation is not without risks that must not be overlooked when developing cell therapy protocols.

  5. Decellularized matrix from tumorigenic human mesenchymal stem cells promotes neovascularization with galectin-1 dependent endothelial interaction

    DEFF Research Database (Denmark)

    Burns, Jorge S; Kristiansen, Malthe; Kristensen, Lars P

    2011-01-01

    . Histological analysis showed that cells of the most vascularized tumorigenic clone, -BD11 had a pericyte-like alpha smooth muscle actin (ASMA+) and CD146+ positive phenotype. Upon serum withdrawal in culture, -BD11 cells formed cord-like structures mimicking capillary morphogenesis. In contrast, cells...... of the poorly tumorigenic clone, -BC8 did not stain for ASMA, tumours were less vascularized and serum withdrawal in culture led to cell death. By exploring the heterogeneity in hMSC-TERT20 clones we aimed to understand molecular mechanisms by which mesenchymal stem cells may promote neovascularization....

  6. Pluripotent Stem Cells as a Robust Source of Mesenchymal Stem Cells.

    Science.gov (United States)

    Luzzani, Carlos D; Miriuka, Santiago G

    2017-02-01

    Mesenchymal stem cells (MSC) have been extensively studied over the past years for the treatment of different diseases. Most of the ongoing clinical trials currently involve the use of MSC derived from adult tissues. This source may have some limitations, particularly with therapies that may require extensive and repetitive cell dosage. However, nowadays, there is a staggering growth in literature on a new source of MSC. There is now increasing evidence about the mesenchymal differentiation from pluripotent stem cell (PSC). Here, we summarize the current knowledge of pluripotent-derived mesenchymal stem cells (PD-MSC). We present a historical perspective on the subject, and then discuss some critical questions that remain unanswered.

  7. File list: DNS.Oth.20.AllAg.Mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Oth.20.AllAg.Mesenchymal_stem_cells hg19 DNase-seq Others Mesenchymal stem cell...s SRX201267,SRX201258 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Oth.20.AllAg.Mesenchymal_stem_cells.bed ...

  8. File list: His.Oth.50.AllAg.Mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Oth.50.AllAg.Mesenchymal_stem_cells mm9 Histone Others Mesenchymal stem cells S...,SRX228669,SRX228666,SRX228664 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Oth.50.AllAg.Mesenchymal_stem_cells.bed ...

  9. File list: Oth.Oth.50.AllAg.Mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Oth.50.AllAg.Mesenchymal_stem_cells hg19 TFs and others Others Mesenchymal stem...X1027439,SRX1027441,SRX1027449,SRX1027452,SRX1027451,SRX1027440 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Oth.50.AllAg.Mesenchymal_stem_cells.bed ...

  10. File list: Unc.Oth.10.AllAg.Mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Oth.10.AllAg.Mesenchymal_stem_cells hg19 Unclassified Others Mesenchymal stem c...ells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Oth.10.AllAg.Mesenchymal_stem_cells.bed ...

  11. File list: Unc.Oth.05.AllAg.Mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Oth.05.AllAg.Mesenchymal_stem_cells mm9 Unclassified Others Mesenchymal stem ce...lls http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Oth.05.AllAg.Mesenchymal_stem_cells.bed ...

  12. File list: DNS.Oth.10.AllAg.Mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Oth.10.AllAg.Mesenchymal_stem_cells hg19 DNase-seq Others Mesenchymal stem cell...s SRX201258,SRX201267 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Oth.10.AllAg.Mesenchymal_stem_cells.bed ...

  13. File list: DNS.Oth.50.AllAg.Mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Oth.50.AllAg.Mesenchymal_stem_cells hg19 DNase-seq Others Mesenchymal stem cell...s SRX201267,SRX201258 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Oth.50.AllAg.Mesenchymal_stem_cells.bed ...

  14. File list: DNS.Oth.05.AllAg.Mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Oth.05.AllAg.Mesenchymal_stem_cells mm9 DNase-seq Others Mesenchymal stem cells... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Oth.05.AllAg.Mesenchymal_stem_cells.bed ...

  15. File list: ALL.Oth.05.AllAg.Mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Oth.05.AllAg.Mesenchymal_stem_cells mm9 All antigens Others Mesenchymal stem ce...X228662,SRX228660,SRX228665,SRX228678,SRX228661 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Oth.05.AllAg.Mesenchymal_stem_cells.bed ...

  16. File list: ALL.Oth.20.AllAg.Mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Oth.20.AllAg.Mesenchymal_stem_cells hg19 All antigens Others Mesenchymal stem c...ttp://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Oth.20.AllAg.Mesenchymal_stem_cells.bed ...

  17. File list: Oth.Oth.50.AllAg.Mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Oth.50.AllAg.Mesenchymal_stem_cells mm9 TFs and others Others Mesenchymal stem ...cells SRX228677,SRX228679,SRX228676,SRX228678 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Oth.50.AllAg.Mesenchymal_stem_cells.bed ...

  18. File list: DNS.Oth.10.AllAg.Mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Oth.10.AllAg.Mesenchymal_stem_cells mm9 DNase-seq Others Mesenchymal stem cells... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Oth.10.AllAg.Mesenchymal_stem_cells.bed ...

  19. File list: His.Oth.20.AllAg.Mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Oth.20.AllAg.Mesenchymal_stem_cells hg19 Histone Others Mesenchymal stem cells ...027442,SRX376722,SRX376723 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Oth.20.AllAg.Mesenchymal_stem_cells.bed ...

  20. File list: Unc.Oth.10.AllAg.Mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Oth.10.AllAg.Mesenchymal_stem_cells mm9 Unclassified Others Mesenchymal stem ce...lls http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Oth.10.AllAg.Mesenchymal_stem_cells.bed ...

  1. File list: Unc.Oth.50.AllAg.Mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Oth.50.AllAg.Mesenchymal_stem_cells hg19 Unclassified Others Mesenchymal stem c...ells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Oth.50.AllAg.Mesenchymal_stem_cells.bed ...

  2. File list: Unc.Oth.50.AllAg.Mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Oth.50.AllAg.Mesenchymal_stem_cells mm9 Unclassified Others Mesenchymal stem ce...lls http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Oth.50.AllAg.Mesenchymal_stem_cells.bed ...

  3. File list: His.Oth.05.AllAg.Mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Oth.05.AllAg.Mesenchymal_stem_cells mm9 Histone Others Mesenchymal stem cells S...,SRX318103,SRX228666,SRX228665 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Oth.05.AllAg.Mesenchymal_stem_cells.bed ...

  4. File list: Pol.Oth.20.AllAg.Mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Oth.20.AllAg.Mesenchymal_stem_cells hg19 RNA polymerase Others Mesenchymal stem... cells SRX1027436,SRX1027435,SRX1027434,SRX1027433 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Oth.20.AllAg.Mesenchymal_stem_cells.bed ...

  5. File list: DNS.Oth.05.AllAg.Mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Oth.05.AllAg.Mesenchymal_stem_cells hg19 DNase-seq Others Mesenchymal stem cell...s SRX201258,SRX201267 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Oth.05.AllAg.Mesenchymal_stem_cells.bed ...

  6. File list: ALL.Oth.50.AllAg.Mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Oth.50.AllAg.Mesenchymal_stem_cells hg19 All antigens Others Mesenchymal stem c...ttp://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Oth.50.AllAg.Mesenchymal_stem_cells.bed ...

  7. File list: ALL.Oth.50.AllAg.Mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Oth.50.AllAg.Mesenchymal_stem_cells mm9 All antigens Others Mesenchymal stem ce...X228667,SRX228665,SRX228669,SRX228666,SRX228664 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Oth.50.AllAg.Mesenchymal_stem_cells.bed ...

  8. File list: Unc.Oth.20.AllAg.Mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Oth.20.AllAg.Mesenchymal_stem_cells mm9 Unclassified Others Mesenchymal stem ce...lls http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Oth.20.AllAg.Mesenchymal_stem_cells.bed ...

  9. File list: Pol.Oth.50.AllAg.Mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Oth.50.AllAg.Mesenchymal_stem_cells hg19 RNA polymerase Others Mesenchymal stem... cells SRX1027436,SRX1027435,SRX1027434,SRX1027433 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Oth.50.AllAg.Mesenchymal_stem_cells.bed ...

  10. File list: Oth.Oth.05.AllAg.Mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Oth.05.AllAg.Mesenchymal_stem_cells hg19 TFs and others Others Mesenchymal stem...X1027447,SRX1027448,SRX1027444,SRX1027441,SRX1027446,SRX1027445 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Oth.05.AllAg.Mesenchymal_stem_cells.bed ...

  11. File list: Unc.Oth.05.AllAg.Mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Oth.05.AllAg.Mesenchymal_stem_cells hg19 Unclassified Others Mesenchymal stem c...ells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Oth.05.AllAg.Mesenchymal_stem_cells.bed ...

  12. File list: His.Oth.50.AllAg.Mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Oth.50.AllAg.Mesenchymal_stem_cells hg19 Histone Others Mesenchymal stem cells ...76722,SRX376723,SRX1027442 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Oth.50.AllAg.Mesenchymal_stem_cells.bed ...

  13. File list: His.Oth.20.AllAg.Mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Oth.20.AllAg.Mesenchymal_stem_cells mm9 Histone Others Mesenchymal stem cells S...,SRX228667,SRX228665,SRX228666 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Oth.20.AllAg.Mesenchymal_stem_cells.bed ...

  14. File list: DNS.Oth.50.AllAg.Mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Oth.50.AllAg.Mesenchymal_stem_cells mm9 DNase-seq Others Mesenchymal stem cells... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Oth.50.AllAg.Mesenchymal_stem_cells.bed ...

  15. File list: Unc.Oth.20.AllAg.Mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Oth.20.AllAg.Mesenchymal_stem_cells hg19 Unclassified Others Mesenchymal stem c...ells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Oth.20.AllAg.Mesenchymal_stem_cells.bed ...

  16. File list: ALL.Oth.05.AllAg.Mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Oth.05.AllAg.Mesenchymal_stem_cells hg19 All antigens Others Mesenchymal stem c...ttp://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Oth.05.AllAg.Mesenchymal_stem_cells.bed ...

  17. File list: Oth.Oth.20.AllAg.Mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Oth.20.AllAg.Mesenchymal_stem_cells hg19 TFs and others Others Mesenchymal stem...X1027446,SRX1027448,SRX1027443,SRX1027439,SRX1027450,SRX1027449 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Oth.20.AllAg.Mesenchymal_stem_cells.bed ...

  18. File list: Pol.Oth.05.AllAg.Mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Oth.05.AllAg.Mesenchymal_stem_cells hg19 RNA polymerase Others Mesenchymal stem... cells SRX1027435,SRX1027436,SRX1027434,SRX1027433 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Oth.05.AllAg.Mesenchymal_stem_cells.bed ...

  19. File list: Oth.Oth.10.AllAg.Mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Oth.10.AllAg.Mesenchymal_stem_cells hg19 TFs and others Others Mesenchymal stem...X1027448,SRX1027444,SRX1027446,SRX1027445,SRX1027439,SRX1027449 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Oth.10.AllAg.Mesenchymal_stem_cells.bed ...

  20. File list: Oth.Oth.05.AllAg.Mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Oth.05.AllAg.Mesenchymal_stem_cells mm9 TFs and others Others Mesenchymal stem ...cells SRX228677,SRX228676,SRX228679,SRX228678 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Oth.05.AllAg.Mesenchymal_stem_cells.bed ...

  1. Nanoscale Mechanical Stimulation of Human Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    H Nikukar

    2014-05-01

    We observed significant responses after 1 and 2-week stimulations in cell number, cell shapes and phenotypical markers. Microarray was performed for all groups. Cell count showed normal cell growth with stimulation. However, cell surface area, cell perimeter, and arboration after 1-week stimulation showed significant increases. Immunofluorescent studies have showed significant increase in osteocalcin production after stimulation. Conclusions: Nanoscale mechanical vibration showed significant changes in human mesenchymal stem cell behaviours. Cell morphology changed to become more polygonal and increased expression of the osteoblast markers were noted. These findings with gene regulation changes suggesting nanoscale mechanostimulation has stimulated osteoblastogenesis.  Keywords:  Mesenchymal, Nanoscale, Stem Cells.

  2. Mesenchymal Stem Cells Improve Healing of Diabetic Foot Ulcer

    Directory of Open Access Journals (Sweden)

    Yue Cao

    2017-01-01

    Full Text Available Mesenchymal stem cells (MSCs, an ideal cell source for regenerative therapy with no ethical issues, play an important role in diabetic foot ulcer (DFU. Growing evidence has demonstrated that MSCs transplantation can accelerate wound closure, ameliorate clinical parameters, and avoid amputation. In this review, we clarify the mechanism of preclinical studies, as well as safety and efficacy of clinical trials in the treatment of DFU. Bone marrow-derived mesenchymal stem cells (BM-MSCs, compared with MSCs derived from other tissues, may be a suitable cell type that can provide easy, effective, and cost-efficient transplantation to treat DFU and protect patients from amputation.

  3. Stem cell therapy in spinal cord injury: Hollow promise or promising science?

    Directory of Open Access Journals (Sweden)

    Aimee Goel

    2016-01-01

    Full Text Available Spinal cord injury (SCI remains one of the most physically, psychologically and socially debilitating conditions worldwide. While rehabilitation measures may help limit disability to some extent, there is no effective primary treatment yet available. The efficacy of stem cells as a primary therapeutic option in spinal cord injury is currently an area under much scrutiny and debate. Several laboratory and some primary clinical studies into the use of bone marrow mesenchymal stem cells or embryonic stem cell-derived oligodentrocyte precursor cells have shown some promising results in terms of remyelination and regeneration of damaged spinal nerve tracts. More recently,laboratory and early clinical experiments into the use of Olfactory Ensheathing Cells, a type of glial cell derived from olfactory bulb and mucosa have provided some phenomenal preliminary evidence as to their neuroregenerative and neural bridging capacity. This report compares and evaluates some current research into selected forms of embryonic and mesenchymal stem cell therapy as well as olfactory ensheathing cell therapy in SCI, and also highlights some legal and ethical issues surrounding their use. While early results shows promise, more rigorous large scaleclinical trials are needed to shed light on the safety, efficacy and long term viability of stem cell and cellular transplant techniques in SCI.

  4. Neuromuscular Regeneration: Perspective on the Application of Mesenchymal Stem Cells and Their Secretion Products

    Directory of Open Access Journals (Sweden)

    Ana Rita Caseiro

    2016-01-01

    Full Text Available Mesenchymal stem cells are posing as a promising character in the most recent therapeutic strategies and, since their discovery, extensive knowledge on their features and functions has been gained. In recent years, innovative sources have been disclosed in alternative to the bone marrow, conveying their associated ethical concerns and ease of harvest, such as the umbilical cord tissue and the dental pulp. These are also amenable of cryopreservation and thawing for desired purposes, in benefit of the donor itself or other patients in pressing need. These sources present promising possibilities in becoming useful cell sources for therapeutic applications in the forthcoming years. Effective and potential applications of these cellular-based strategies for the regeneration of peripheral nerve are overviewed, documenting recent advances and identified issues for this research area in the near future. Finally, besides the differentiation capacities attributed to mesenchymal stem cells, advances in the recognition of their effective mode of action in the regenerative theatre have led to a new area of interest: the mesenchymal stem cells’ secretome. The paracrine modulatory pathway appears to be a major mechanism by which these are beneficial to nerve regeneration and comprehension on the specific growth factors, cytokine, and extracellular molecules secretion profiles is therefore of great interest.

  5. A Comparison of Culture Characteristics between Human Amniotic Mesenchymal Stem Cells and Dental Stem Cells.

    Science.gov (United States)

    Yusoff, Nurul Hidayat; Alshehadat, Saaid Ayesh; Azlina, Ahmad; Kannan, Thirumulu Ponnuraj; Hamid, Suzina Sheikh Abdul

    2015-04-01

    In the past decade, the field of stem cell biology is of major interest among researchers due to its broad therapeutic potential. Stem cells are a class of undifferentiated cells that are able to differentiate into specialised cell types. Stem cells can be classified into two main types: adult stem cells (adult tissues) and embryonic stem cells (embryos formed during the blastocyst phase of embryological development). This review will discuss two types of adult mesenchymal stem cells, dental stem cells and amniotic stem cells, with respect to their differentiation lineages, passage numbers and animal model studies. Amniotic stem cells have a greater number of differentiation lineages than dental stem cells. On the contrary, dental stem cells showed the highest number of passages compared to amniotic stem cells. For tissue regeneration based on animal studies, amniotic stem cells showed the shortest time to regenerate in comparison with dental stem cells.

  6. Mesenchymal stem cells in tissue repairing and regeneration: Progress and future

    Directory of Open Access Journals (Sweden)

    Jiafei Xi

    2013-07-01

    Full Text Available The presence of mesenchymal progenitor cells within bone marrow has been known since the late nineteenth century. To date, mesenchymal stem cells (MSCs have been isolated from several different connective tissues, such as adipose tissue, muscle, placenta, umbilical cord matrix, blood, liver, and dental pulp. Bone marrow, however, is still one of the major sources of MSCs for preclinical and clinical research. MSCs were first evaluated for regenerative applications and have since been shown to directly influence the immune system and to promote neovascularization of ischemic tissues. These observations have prompted a new era of MSC transplantation as a treatment for various diseases. In this review, we summarize the important studies that have investigated the use of MSCs as a therapeutic agent for regenerative medicine, immune disorders, cancer, and gene therapy. Furthermore, we discuss the mechanisms involved in MSC-based therapies and clinical-grade MSC manufacturing.

  7. The Protein Content of Extracellular Vesicles Derived from Expanded Human Umbilical Cord Blood-Derived CD133+and Human Bone Marrow-Derived Mesenchymal Stem Cells Partially Explains Why both Sources are Advantageous for Regenerative Medicine.

    Science.gov (United States)

    Angulski, Addeli B B; Capriglione, Luiz G; Batista, Michel; Marcon, Bruna H; Senegaglia, Alexandra C; Stimamiglio, Marco A; Correa, Alejandro

    2017-04-01

    Adult stem cells have beneficial effects when exposed to damaged tissue due, at least in part, to their paracrine activity, which includes soluble factors and extracellular vesicles (EVs). Given the multiplicity of signals carried by these vesicles through the horizontal transfer of functional molecules, human mesenchymal stem cell (hMSCs) and CD133 + cell-derived EVs have been tested in various disease models and shown to recover damaged tissues. In this study, we profiled the protein content of EVs derived from expanded human CD133 + cells and bone marrow-derived hMSCs with the intention of better understanding the functions performed by these vesicles/cells and delineating the most appropriate use of each EV in future therapeutic procedures. Using LC-MS/MS analysis, we identified 623 proteins for expanded CD133 + -EVs and 797 proteins for hMSCs-EVs. Although the EVs from both origins were qualitatively similar, when protein abundance was considered, hMSCs-EVs and CD133 + -EVs were different. Gene Ontology (GO) enrichment analysis in CD133 + -EVs revealed proteins involved in a variety of angiogenesis-related functions as well proteins related to the cytoskeleton and highly implicated in cell motility and cellular activation. In contrast, when overrepresented proteins in hMSCs-EVs were analyzed, a GO cluster of immune response-related genes involved with immune response-regulating factors acting on phagocytosis and innate immunity was identified. Together our data demonstrate that from the point of view of protein content, expanded CD133 + -EVs and hMSCs-EVs are in part similar but also sufficiently different to reflect the main beneficial paracrine effects widely reported in pre-clinical studies using expanded CD133 + cells and/or hBM-MSCs.

  8. Defining human mesenchymal stem cell efficacy in vivo

    Directory of Open Access Journals (Sweden)

    Lennon Donald P

    2010-10-01

    Full Text Available Abstract Allogeneic human mesenchymal stem cells (hMSCs can suppress graft versus host disease (GvHD and have profound anti-inflammatory and regenerative capacity in stroke, infarct, spinal cord injury, meniscus regeneration, tendinitis, acute renal failure, and heart disease in human and animal models of disease. There is significant clinical hMSC variability in efficacy and the ultimate response in vivo. The challenge in hMSC based therapy is defining the efficacy of hMSC in vivo. Models which may provide insight into hMSC bioactivity in vivo would provide a means to distinguish hMSCs for clinical utility. hMSC function has been described as both regenerative and trophic through the production of bioactive factors. The regenerative component involves the multi-potentiality of hMSC progenitor differentiation. The secreted factors generated by the hMSCs are milieu and injury specific providing unique niches for responses in vivo. These bioactive factors are anti-scarring, angiogenic, anti-apoptotic as well as regenerative. Further, from an immunological standpoint, hMSC's can avoid host immune response, providing xenographic applications. To study the in vivo immuno-regulatory effectiveness of hMSCs, we used the ovalbumin challenge model of acute asthma. This is a quick 3 week in vivo pulmonary inflammation model with readily accessible ways of measuring effectiveness of hMSCs. Our data show that there is a direct correlation between the traditional ceramic cube score to hMSCs attenuation of cellular recruitment due to ovalbumin challenge. The results from these studies verify the in vivo immuno-modulator effectiveness of hMSCs and support the potential use of the ovalbumin model as an in vivo model of hMSC potency and efficacy. Our data also support future directions toward exploring hMSCs as an alternative therapeutic for the treatment of airway inflammation associated with asthma.

  9. Phase II Multicenter, Randomized, Double-Blind Controlled Study of Efficacy and Safety of Umbilical Cord-Derived Mesenchymal Stromal Cells in the Prophylaxis of Chronic Graft-Versus-Host Disease After HLA-Haploidentical Stem-Cell Transplantation.

    Science.gov (United States)

    Gao, Lei; Zhang, Yanqi; Hu, Baoyang; Liu, Jia; Kong, Peiyan; Lou, Shifeng; Su, Yi; Yang, Tonghua; Li, Huimin; Liu, Yao; Zhang, Cheng; Gao, Li; Zhu, Lidan; Wen, Qin; Wang, Ping; Chen, Xinghua; Zhong, Jiangfan; Zhang, Xi

    2016-08-20

    Although mesenchymal stromal cells (MSCs) possess immunomodulatory properties and exhibit promising efficacy against chronic graft-versus-host disease (cGVHD), little is known about the efficacy of MSCs in the prophylaxis of cGVHD after HLA-haploidentical hematopoietic stem-cell transplantation (HLA-haplo HSCT). In this multicenter, double-blind, randomized controlled trial, we investigated the incidence and severity of cGVHD among patients, and the changes in T, B, and natural killer (NK) cells after the repeated infusion of MSCs. The 2-year cumulative incidence of cGVHD in the MSCs group was 27.4% (95% CI, 16.2% to 38.6%), compared with 49.0% (95% CI, 36.5% to 61.5%) in the non-MSCs control group (P = .021). Seven patients in the non-MSCs control group had severe lung cGVHD, but no patients in the MSCs group developed typical lung cGVHD (P = .047). After the MSC infusions, increasing memory B lymphocytes and regulatory T cells, as well as the ratio of type 1 T helper to type 2 T helper cells, were observed, whereas the number of NK cells decreased. Our findings suggest that the repeated infusion of MSCs might inhibit cGVHD symptoms in patients after HLA-haplo HSCT, accompanied by changes in the numbers and subtypes of T, B, and NK cells, leading to the acquisition of immune tolerance. © 2016 by American Society of Clinical Oncology.

  10. Impairment of mesenchymal stem cells derived from oral leukoplakia

    OpenAIRE

    Zhang, Zhihui; Song, Jiangyuan; Han, Ying; Mu, Dongdong; Su, Sha; Ji, Xiaoli; Liu, Hongwei

    2015-01-01

    Oral leukoplakia is one of the common precancerous lesions in oral mucosa. To compare the biological characteristics and regenerative capacities of mesenchymal stem cells (MSCs) from oral leukoplakia (epithelial hyperplasia and dysplasia) and normal oral mucosa, MSCs were isolated by enzyme digestion. Then these cells were identified by the expression of MSC related markers, STRO-1, CD105 and CD90, with the absent for the hematopoietic stem cell marker CD34 by flow cytometric detection. The s...

  11. The interaction between mesenchymal stem cells and steroids during inflammation

    OpenAIRE

    Chen, X; Gan, Y.; W. Li; Su, J.; Zhang, Y; Y. Huang; Roberts, A I; Han, Y; Li, J; Wang, Y.; Shi, Y

    2014-01-01

    Mesenchymal stem cells (MSCs) are believed to exert their regenerative effects through differentiation and modulation of inflammatory responses. However, the relationship between the severity of inflammation and stem cell-mediated tissue repair has not been formally investigated. In this study, we applied different concentrations of dexamethasone (Dex) to anti-CD3-activated splenocyte cultured with or without MSCs. As expected, Dex exhibited a classical dose-dependent inhibition of T-cell pro...

  12. Mesenchymal Stem Cells: Emerging Therapy for Duchenne Muscular Dystrophy

    OpenAIRE

    Markert, Chad; Atala, Anthony; Cann, Jennifer K.; Christ, George; Furth, Mark; Ambrosio, Fabrisia; Childers, Martin K.

    2009-01-01

    Multipotent cells that can give rise to bone, cartilage, fat, connective tissue, skeletal and cardiac muscle are termed mesenchymal stem cells (MSCs). These cells were first identified in the bone marrow, distinct from blood-forming stem cells. Based on the embryologic derivation, availability, and various pro-regenerative characteristics, research exploring their use in cell therapy shows great promise for patients with degenerative muscle diseases and a number of other conditions. In this r...

  13. Pericytes or Mesenchymal Stem Cells: Is That the Question?

    Science.gov (United States)

    Cano, Elena; Gebala, Véronique; Gerhardt, Holger

    2017-03-02

    For almost a decade, mesenchymal stem cells (MSCs) were believed to reside as perivascular cells in vivo. In this issue of Cell Stem Cell, Guimarães-Camboa et al. (2017) challenge this idea and use lineage tracing to demonstrate that perivascular cells do not behave as tissue-specific progenitors in various organs, despite showing MSC potential in vitro. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Directed induction of functional motor neuron-like cells from genetically engineered human mesenchymal stem cells.

    Directory of Open Access Journals (Sweden)

    Hwan-Woo Park

    Full Text Available Cell replacement using stem cells is a promising therapeutic approach to treat degenerative motor neuron (MN disorders, such as amyotrophic lateral sclerosis and spinal cord injury. Human bone marrow-derived mesenchymal stem cells (hMSCs are a desirable cell source for autologous cell replacement therapy to treat nervous system injury due to their plasticity, low immunogenicity, and a lower risk of tumor formation than embryonic stem cells. However, hMSCs are inefficient with regards to differentiating into MN-like cells. To solve this limitation, we genetically engineered hMSCs to express MN-associated transcription factors, Olig2 and Hb9, and then treat the hMSCs expressing Olig2 and Hb9 with optimal MN induction medium (MNIM. This method of induction led to higher expression (>30% of total cells of MN markers. Electrophysiological data revealed that the induced hMSCs had the excitable properties of neurons and were able to form functional connections with muscle fibers in vitro. Furthermore, when the induced hMSCs were transplanted into an injured organotypic rat spinal cord slice culture, an ex vivo model of spinal cord injury, they exhibited characteristics of MNs. The data strongly suggest that induced Olig2/Hb9-expressing hMSCs were clearly reprogrammed and directed toward a MN-like lineage. We propose that methods to induce Olig2 and Hb9, followed by further induction with MNIM have therapeutic potential for autologous cell replacement therapy to treat degenerative MN disorders.

  15. The role of bone marrow derived mesenchymal stem cells in ...

    African Journals Online (AJOL)

    The role of bone marrow derived mesenchymal stem cells in induced stroke. ... MSCs showed positive response for CD105+ (the specific marker for MSCs detection) and negative response for surface marker (CD34¯), characteristic for the hematopoietic cells. The immunohistochemistry study of intravenous administration ...

  16. Mesenchymal stem cells (MSCs) as skeletal therapeutics-an update

    DEFF Research Database (Denmark)

    Saeed, H.; Ahsan, M.; Saleem, Z.

    2016-01-01

    Mesenchymal stem cells hold the promise to treat not only several congenital and acquired bone degenerative diseases but also to repair and regenerate morbid bone tissues. Utilizing MSCs, several lines of evidences advocate promising clinical outcomes in skeletal diseases and skeletal tissue repa...

  17. Transition of mesenchymal stem/stromal cells to endothelial cells

    NARCIS (Netherlands)

    M. Crisan (Mihaela)

    2013-01-01

    textabstractMesenchymal stem/stromal cells (MSCs) are heterogeneous. A fraction of these cells constitute multipotent cells that can self-renew and mainly give rise to mesodermal lineage cells such as adipocytes, osteocytes and chondrocytes. The ability of MSCs to differentiate into endothelial

  18. Mesenchymal stem cells promote incision wound repair in a mouse ...

    African Journals Online (AJOL)

    250 cells/cm2. Conclusion: The results suggest that MSC therapies enhance the tissue regeneration capacity in mice, especially in older populations, through effective transdifferentiation into the epithelium. Keywords: Mesenchymal stem cell, wound healing, mouse. Tropical Journal of Pharmaceutical Research is indexed ...

  19. Mesenchymal stem cells promote incision wound repair in a mouse ...

    African Journals Online (AJOL)

    ... a dosage of 5 × 104 activated MSCs/8 cm2 of wound area or 6, 250 cells/cm2. Conclusion: The results suggest that MSC therapies enhance the tissue regeneration capacity in mice, especially in older populations, through effective transdifferentiation into the epithelium. Keywords: Mesenchymal stem cell, wound healing, ...

  20. Growth and metabolism of mesenchymal stem cells cultivated on microcarriers

    NARCIS (Netherlands)

    Schop, Deborah

    2010-01-01

    Mesenchymal stem cells, MSCs, are a great potential source for clinical applications in the field of tissue regeneration. Although MSCs can be isolated from several tissues of the human body, e.g. the bone marrow, the tissues does not contain clinically relevant amounts of MSCs for cell therapeutic

  1. Research on human placenta-derived mesenchymal stem cells ...

    African Journals Online (AJOL)

    PCR) technology, amplified hVEGF165 gene fragments from human leukemia cells HL-60. hVEGF165 gene was reconstructed in pIRES2-EGFP and transferred into the human placenta-derived mesenchymal stem cells (HPMSCs) by ...

  2. Trophic Effects of Mesenchymal Stem Cells in Tissue Regeneration

    NARCIS (Netherlands)

    Fu, Yao; Karbaat, Lisanne; Wu, Ling; Leijten, Jeroen; Both, Sanne K.; Karperien, Marcel

    2017-01-01

    Mesenchymal stem cells (MSCs) are considered to hold great therapeutic value for cell-based therapy and for tissue regeneration in particular. Recent evidence indicates that the main underlying mechanism for MSCs' beneficial effects in tissue regeneration is based on their capability to produce a

  3. Wnt signaling inhibits osteogenic differentiation of human mesenchymal stem cells

    NARCIS (Netherlands)

    de Boer, Jan; Siddappa, R.; Gaspar, Claudia; van Apeldoorn, Aart A.; Fodde, Riccardo; van Blitterswijk, Clemens

    2004-01-01

    Human mesenchymal stem cells (hMSCs) from the bone marrow represent a potential source of pluripotent cells for autologous bone tissue engineering. We previously discovered that over activation of the Wnt signal transduction pathway by either lithium or Wnt3A stimulates hMSC proliferation while

  4. Mesenchymal stem cell therapy in proteoglycan induced arthritis

    NARCIS (Netherlands)

    Swart, J. F.; de Roock, S.; Hofhuis, F. M.; Rozemuller, H.; van den Broek, T.; Moerer, P.; Broere, F.|info:eu-repo/dai/nl/264075323; van Wijk, F.; Kuis, W.; Prakken, B. J.; Martens, a.c.m|info:eu-repo/dai/nl/375286063; Wulffraat, N. M.

    2015-01-01

    Objectives: To explore the immunosuppressive effect and mechanism of action of intraperitoneal (ip) and intra-articular (ia) mesenchymal stem cell (MSC) injection in proteoglycan induced arthritis (PGIA). Methods: MSC were administered ip or ia after establishment of arthritis. We used serial

  5. Mesenchymal Stem Cells as Immunomodulators in a Vascularized Composite Allotransplantation

    OpenAIRE

    Yur-Ren Kuo; Chien-Chang Chen; Shigeru Goto; Pao-Yuan Lin; Fu-Chan Wei; Chao-Long Chen

    2012-01-01

    Vascularized composite allotransplantations (VCAs) are not routinely performed for tissue reconstruction because of the potentially harmful adverse effects associated with lifelong administration of immunosuppressive agents. Researchers have been eagerly seeking alternative methods that circumvent the long-term use of immunosuppressants. Mesenchymal stem cells (MSCs) show promise as an immunomodulatory therapeutic agent and are currently being tested in preclinical and clinical settings as th...

  6. Human bone-marrow-derived mesenchymal stem cells

    DEFF Research Database (Denmark)

    Kassem, Moustapha; Abdallah, Basem M

    2008-01-01

    Mesenchymal stem cells (MSC) are a group of cells present in bone-marrow stroma and the stroma of various organs with the capacity for mesoderm-like cell differentiation into, for example, osteoblasts, adipocytes, and chondrocytes. MSC are being introduced in the clinic for the treatment...

  7. Human bone marrow-derived mesenchymal stem cells | Nasef ...

    African Journals Online (AJOL)

    Mesenchymal stem cells (MSCs) have elicited a great clinical interest, particularly in the areas of regenerative medicine and induction of tolerance in allogeneic transplantation. Previous reports demonstrated the feasibility of transplanting MSCs, which generates new prospects in cellular therapy. Recently, injection of ...

  8. Mesenchymal Stem Cell-Based Therapy for Prostate Cancer

    Science.gov (United States)

    2014-09-01

    graft versus host disease, inflammatory bowel disease and myocardial infarction in clinical trials. These clinical studies have documented that... myocardial infarction in clinical trials. Conclusions These results document two things. First, the therapeutic agent loaded into hbMSCs must...Mesenchymal Stem Cell-Based Therapy for Prostate Cancer PRINCIPAL INVESTIGATOR: John Isaacs; Jeffrey Karp

  9. An update on application of nanotechnology and stem cells in spinal cord injury regeneration.

    Science.gov (United States)

    Nejati-Koshki, Kazem; Mortazavi, Yousef; Pilehvar-Soltanahmadi, Younes; Sheoran, Sumit; Zarghami, Nosratollah

    2017-06-01

    Spinal cord injury (SCI) is damage to the spinal cord that leads to sudden loss of motor and autonomic function and sensory under the level of the injury. The pathophysiological advancement of SCI is divided into two categories: primary injury and secondary injury. Due to the loss of motor, sensory, or cognitive function, a patient's quality of life is likely reduced and places a great burden on society in order to supply health care costs. Therefore, it is important to develop suitable therapeutic strategies for SCI therapy. Nano biomedical systems and stem cell based therapy have the potential to provide new therapeutic availability and efficacy over conventional medicine. Due to their unique properties, nanomaterials and mesenchymal stem cells can be used to offer efficient treatments. Nanoparticles have a potential to deliver therapeutic molecules to the target tissue of interest, reducing side effects of untargeted therapies in unwanted areas. Mesenchymal stem cells (MSCs) can reduce activating inflammation responses that lead to cell death and promote functional recovery and cell growth. We review recent uses of nanomaterials and stem cells in regeneration of SCI. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  10. Human mesenchymal stem cells self-renew and differentiate according to a deterministic hierarchy.

    Directory of Open Access Journals (Sweden)

    Rahul Sarugaser

    Full Text Available BACKGROUND: Mesenchymal progenitor cells (MPCs have been isolated from a variety of connective tissues, and are commonly called "mesenchymal stem cells" (MSCs. A stem cell is defined as having robust clonal self-renewal and multilineage differentiation potential. Accordingly, the term "MSC" has been criticised, as there is little data demonstrating self-renewal of definitive single-cell-derived (SCD clonal populations from a mesenchymal cell source. METHODOLOGY/PRINCIPAL FINDINGS: Here we show that a tractable MPC population, human umbilical cord perivascular cells (HUCPVCs, was capable of multilineage differentiation in vitro and, more importantly, contributed to rapid connective tissue healing in vivo by producing bone, cartilage and fibrous stroma. Furthermore, HUCPVCs exhibit a high clonogenic frequency, allowing us to isolate definitive SCD parent and daughter clones from mixed gender suspensions as determined by Y-chromosome fluorescent in situ hybridization. CONCLUSIONS/SIGNIFICANCE: Analysis of the multilineage differentiation capacity of SCD parent clones and daughter clones enabled us to formulate a new hierarchical schema for MSC self-renewal and differentiation in which a self-renewing multipotent MSC gives rise to more restricted self-renewing progenitors that gradually lose differentiation potential until a state of complete restriction to the fibroblast is reached.

  11. Mesenchymal stem cell therapies in the treatment of musculoskeletal diseases.

    Science.gov (United States)

    Bashir, Jamil; Sherman, Andrew; Lee, Henry; Kaplan, Lee; Hare, Joshua M

    2014-01-01

    The application of regenerative strategies to musculoskeletal ailments offers extraordinary promise to transform management of the conditions of numerous patients. The use of cell-based therapies and adjunct strategies is under active investigation for injuries and illnesses affecting bones, joints, tendons, and skeletal muscle. Of particular interest to the field is the mesenchymal stem cell, an adult stem cell found in bone marrow and adipose tissue. This cell type can be expanded ex vivo, has allogeneic application, and has the capacity for engraftment and differentiation into mesodermal lineages. Also of major interest in the field is the use of platelet-rich plasma, a strategy to concentrate endogenous cytokines and growth factors with reparative potential. Here we review the biological basis, clinical studies, safety, and current state of mesenchymal stem cell and platelet-rich plasma therapies in the treatment of musculoskeletal disease. Copyright © 2014 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  12. Glial origin of mesenchymal stem cells in a tooth model system

    NARCIS (Netherlands)

    Kaukua, Nina; Shahidi, Maryam Khatibi; Konstantinidou, Chrysoula; Dyachuk, Vyacheslav; Kaucka, Marketa; Furlan, Alessandro; An, Zhengwen; Wang, Longlong; Hultman, Isabell; Ahrlund-Richter, Lars; Blom, Hans; Brismar, Hjalmar; Lopes, Natalia Assaife; Pachnis, Vassilis; Suter, Ueli; Clevers, Hans; Thesleff, Irma; Sharpe, Paul; Ernfors, Patrik; Fried, Kaj; Adameyko, Igor

    2014-01-01

    Mesenchymal stem cells occupy niches in stromal tissues where they provide sources of cells for specialized mesenchymal derivatives during growth and repair. The origins of mesenchymal stem cells have been the subject of considerable discussion, and current consensus holds that perivascular cells

  13. Mesenchymal stem cells as therapeutic delivery vehicles targeting tumor stroma

    DEFF Research Database (Denmark)

    Serakinci, Nedime; Christensen, Rikke; Sørensen, Flemming Brandt

    2011-01-01

    The field of stem cell biology continues to evolve by characterization of further types of stem cells and by exploring their therapeutic potential for experimental and clinical applications. Human mesenchymal stem cells (hMSCs) are one of the most promising candidates simply because...... better understanding and in vivo supporting data. The homing ability of hMSCs was investigated by creating a human xenograft model by transplanting an ovarian cancer cell line into immunocompromised mice. Then, genetically engineered hMSC-telo1 cells were injected through the tail vein...

  14. Stem cell based therapies for spinal cord injury.

    Science.gov (United States)

    Muheremu, Aikeremujiang; Peng, Jiang; Ao, Qiang

    2016-08-01

    Treatment of spinal cord injury has always been a challenge for clinical practitioners and scientists. The development in stem cell based therapies has brought new hopes to patients with spinal cord injuries. In the last a few decades, a variety of stem cells have been used to treat spinal cord injury in animal experiments and some clinical trials. However, there are many technical and ethical challenges to overcome before this novel therapeutic method can be widely applied in clinical practice. With further research in pluripotent stem cells and combined application of genetic and tissue engineering techniques, stem cell based therapies are bond to play increasingly important role in the management of spinal cord injuries. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Improved isolation protocol for equine cord blood-derived mesenchymal stromal cells

    DEFF Research Database (Denmark)

    Koch, Thomas Gadegaard; Thomsen, Preben Dybdahl; Betts, Dean H.

    2009-01-01

      BACKGROUND AIMS: A robust methodology for the isolation of cord blood-derived multipotent mesenchymal stromal cells (CB-MSCs) from fresh umbilical cord blood has not been reported in any species. The objective of this study was to improve the isolation procedure for equine CB-MSCs. METHODS: Pre......Cyte-EQ medium is superior to Ficoll-Paque PREMIUM density medium for the isolation of putative equine CB MSC and that MSC-qualified FBS may improve the isolation efficiency....

  16. Induced Pluripotent Stem Cell Derived Mesenchymal Stem Cells for Attenuating Age-Related Bone Loss

    Science.gov (United States)

    2012-07-01

    Mesenchymal stem cell (MSC) differentiation towards the bone forming osteoblastic lineage decreases as a function of age and may contribute to age-related...problem of age-related reduced availability of MSC we propose to examine the bone anabolic potential of induced pluripotent stem cell (iPS) derived MSC

  17. Mesenchymal Stem Cells and the Origin of Ewing's Sarcoma

    Directory of Open Access Journals (Sweden)

    Patrick P. Lin

    2011-01-01

    Full Text Available The origin of Ewing's sarcoma is a subject of much debate. Once thought to be derived from primitive neuroectodermal cells, many now believe it to arise from a mesenchymal stem cell (MSC. Expression of the EWS-FLI1 fusion gene in MSCs changes cell morphology to resemble Ewing's sarcoma and induces expression of neuroectodermal markers. In murine cells, transformation to sarcomas can occur. In knockdown experiments, Ewing's sarcoma cells develop characteristics of MSCs and the ability to differentiate into mesodermal lineages. However, it cannot be concluded that MSCs are the cell of origin. The concept of an MSC still needs to be rigorously defined, and there may be different subpopulations of mesenchymal pluripotential cells. Furthermore, EWS-FLI1 by itself does not transform human cells, and cooperating mutations appear to be necessary. Therefore, while it is possible that Ewing's sarcoma may originate from a primitive mesenchymal cell, the idea needs to be refined further.

  18. The Holy Grail of Orthopedic Surgery: Mesenchymal Stem Cells—Their Current Uses and Potential Applications

    Directory of Open Access Journals (Sweden)

    Roberto Berebichez-Fridman

    2017-01-01

    Full Text Available Only select tissues and organs are able to spontaneously regenerate after disease or trauma, and this regenerative capacity diminishes over time. Human stem cell research explores therapeutic regenerative approaches to treat various conditions. Mesenchymal stem cells (MSCs are derived from adult stem cells; they are multipotent and exert anti-inflammatory and immunomodulatory effects. They can differentiate into multiple cell types of the mesenchyme, for example, endothelial cells, osteoblasts, chondrocytes, fibroblasts, tenocytes, vascular smooth muscle cells, and sarcomere muscular cells. MSCs are easily obtained and can be cultivated and expanded in vitro; thus, they represent a promising and encouraging treatment approach in orthopedic surgery. Here, we review the application of MSCs to various orthopedic conditions, namely, orthopedic trauma; muscle injury; articular cartilage defects and osteoarthritis; meniscal injuries; bone disease; nerve, tendon, and ligament injuries; spinal cord injuries; intervertebral disc problems; pediatrics; and rotator cuff repair. The use of MSCs in orthopedics may transition the practice in the field from predominately surgical replacement and reconstruction to bioregeneration and prevention. However, additional research is necessary to explore the safety and effectiveness of MSC treatment in orthopedics, as well as applications in other medical specialties.

  19. The Holy Grail of Orthopedic Surgery: Mesenchymal Stem Cells—Their Current Uses and Potential Applications

    Science.gov (United States)

    Berebichez-Fridman, Roberto; Gómez-García, Ricardo; Berebichez-Fastlicht, Enrique; Olivos-Meza, Anell; Granados, Julio; Velasquillo, Cristina

    2017-01-01

    Only select tissues and organs are able to spontaneously regenerate after disease or trauma, and this regenerative capacity diminishes over time. Human stem cell research explores therapeutic regenerative approaches to treat various conditions. Mesenchymal stem cells (MSCs) are derived from adult stem cells; they are multipotent and exert anti-inflammatory and immunomodulatory effects. They can differentiate into multiple cell types of the mesenchyme, for example, endothelial cells, osteoblasts, chondrocytes, fibroblasts, tenocytes, vascular smooth muscle cells, and sarcomere muscular cells. MSCs are easily obtained and can be cultivated and expanded in vitro; thus, they represent a promising and encouraging treatment approach in orthopedic surgery. Here, we review the application of MSCs to various orthopedic conditions, namely, orthopedic trauma; muscle injury; articular cartilage defects and osteoarthritis; meniscal injuries; bone disease; nerve, tendon, and ligament injuries; spinal cord injuries; intervertebral disc problems; pediatrics; and rotator cuff repair. The use of MSCs in orthopedics may transition the practice in the field from predominately surgical replacement and reconstruction to bioregeneration and prevention. However, additional research is necessary to explore the safety and effectiveness of MSC treatment in orthopedics, as well as applications in other medical specialties. PMID:28698718

  20. Rare cause of spinal cord compression in childhood from intraspinal mesenchymal chondrosarcoma

    Energy Technology Data Exchange (ETDEWEB)

    Chan, H.S.L.; Turner-Gomes, S.O.; Chuang, S.H.; Fitz, C.R.; Daneman, A.; Martin, J.; Becker, L.E.

    1984-07-01

    Two children presented with acute spinal cord compression by primary and metastatic intraspinal mesenchymal chondrosarcoma, a rare pediatric malignancy. Patients with the primary intraspinal tumor usually present early and often respond well to combined surgery, irradiation and chemotherapy. Patients with intraspinal metastases present late in the course of their disease and their prognoses are poor.

  1. Mesenchymal stem cells: an alternative for bone regeneration

    OpenAIRE

    Franco-González, Lina María; Restrepo-Múnera, Luz Marina

    2014-01-01

    Mesenchymal Stem Cells (msc) are found in the bone marrow and have the capacity for self-renewal and differentiation in multiple lineages: osteogenic, condrogenic, adipogenic and thenogenic. They also serve as reservoirs involved in homeostasis, maintenance and cellular regeneration. Their application in bone alterations (traumatic defects, inflammatory and degenerative diseases) has led to the development of new osteo/conductive and/or inductive therapies. During the differentiation process ...

  2. Mesenchymal stem cells in diabetes treatment: progress and perspectives

    Directory of Open Access Journals (Sweden)

    Yu CHENG

    2016-08-01

    Full Text Available Diabetes is a chronic metabolic disorder caused by relative or absolute insulin deficient or reduced sensitivity of target cells to insulin. Mesenchymal stem cells (MSCs are adult stem cells with multiple differentiation potential, self-renewable and immunoregulatory properties. Accumulating evidences from clinic or animal experiments recent years showed that MSCs infusion could ameliorate hyperglycemia in diabetes. The research progress of MSCs in diabetes treatment is summarized and a corresponding perspective is herewith proposed in present paper. DOI: 10.11855/j.issn.0577-7402.2016.07.16

  3. Sarcomas as a mise en abyme of mesenchymal stem cells

    DEFF Research Database (Denmark)

    Burns, Jorge S.; Safwat, Akmal Ahmed; Grisendi, Giulia

    2012-01-01

    Mise en abyme meaning "placed into abyss or infinite recurrence" is an apt paradigm for the relentless growth of sarcoma cells. Its alternative meaning, "self-reflexive embedding" fits the central role attributed to cancer stem cells (CSCs). Diversely sourced and defined, mesenchymal stem cells...... (MSCs) may be the cells of sarcoma origin, evolve a CSC phenotype and/or contribute to tumor growth through inherent qualities for homing, neovascularization, paracrine cross-feeding, microvesicle secretion, cell fusion, entosis and immune modulation. Exploiting these qualities, MSC expressing modified...

  4. Study of mesanchymal stem cells derived from human umbilical cord vein wall and determining the Process of differentiation to cartilage and bone

    Directory of Open Access Journals (Sweden)

    MohammadAli Zare

    2015-01-01

    Full Text Available Background: Mesenchymal stem cells (MSCs comprise a rare population of multipotent progenitors capable of supporting hematopoiesis and differentiating into three (osteogenic, adipogenic, and chondrogenic or more (myogenic, cardiomyogenic, etc. lineages. Due to this ability, MSCs appear to be an attractive tool in the context of tissue engineering and cell-based therapy. Currently, bone marrow represents the main source of MSCs for both experimental and clinical studies. The purpose of this study was isolation and quantitative comparison of mesenchymal stem cells derived from umbilical vein. Materials and Methods: In this study, 35 samples of umbilical cord of healthy full- term newborn were studied. Results: The cells had fibroblastoid like appearance and had revealed the potential to differentiate into three linage of bone, Adipose and cartilage. Surface markers for mesenchymal nature were their demonstratives. Conclusion: Based on our findings the mesenchymal stem cells, from umbilical vein wall can be isolated, cultured and differentiated into three categories of bone, cartilage and adipose.

  5. Magnetic Resonance Imaging of Ferumoxytol-Labeled Human Mesenchymal Stem Cells in the Mouse Brain.

    Science.gov (United States)

    Lee, Na Kyung; Kim, Hyeong Seop; Yoo, Dongkyeom; Hwang, Jung Won; Choi, Soo Jin; Oh, Wonil; Chang, Jong Wook; Na, Duk L

    2017-02-01

    The success of stem cell therapy is highly dependent on accurate delivery of stem cells to the target site of interest. Possible ways to track the distribution of MSCs in vivo include the use of reporter genes or nanoparticles. The U.S. Food and Drug Administration (FDA) has approved ferumoxytol (Feraheme® [USA], Rienso® [UK]) as a treatment for iron deficiency anemia. Ferumoxytol is an ultrasmall superparamagnetic iron oxide nanoparticle (USPIO) that has recently been used to track the fate of transplanted cells using magnetic resonance imaging (MRI). The major objectives of this study were to demonstrate the feasibility of labeling hUCB-MSCs with ferumoxytol and to observe, through MRI, the engraftment of ferumoxytol-labeled human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) delivered via stereotactic injection into the hippocampi of a transgenic mouse model of familial Alzheimer's disease (5XFAD). Ferumoxytol had no toxic effects on the viability or stemness of hUCB-MSCs when assessed in vitro. Through MRI, hypointense signals were discernible at the site where ferumoxytol-labeled human MSCs were injected. Iron-positive areas were also observed in the engrafted hippocampi. The results from this study support the use of nanoparticle labeling to monitor transplanted MSCs in real time as a follow-up for AD stem cell therapy in the clinical field.

  6. Bone marrow mesenchymal stem cell therapy in ischemic stroke: mechanisms of action and treatment optimization strategies

    Directory of Open Access Journals (Sweden)

    Guihong Li

    2016-01-01

    Full Text Available Animal and clinical studies have confirmed the therapeutic effect of bone marrow mesenchymal stem cells on cerebral ischemia, but their mechanisms of action remain poorly understood. Here, we summarize the transplantation approaches, directional migration, differentiation, replacement, neural circuit reconstruction, angiogenesis, neurotrophic factor secretion, apoptosis, immunomodulation, multiple mechanisms of action, and optimization strategies for bone marrow mesenchymal stem cells in the treatment of ischemic stroke. We also explore the safety of bone marrow mesenchymal stem cell transplantation and conclude that bone marrow mesenchymal stem cell transplantation is an important direction for future treatment of cerebral ischemia. Determining the optimal timing and dose for the transplantation are important directions for future research.

  7. Meta-analysis of stem cell transplantation for reflex hypersensitivity after spinal cord injury.

    Science.gov (United States)

    Chen, Xuemei; Xue, Bohan; Li, Yuping; Song, Chunhua; Jia, Peijun; Ren, Xiuhua; Zang, Weidong; Wang, Jian

    2017-11-05

    Stem cells have been used in novel therapeutic strategies for spinal cord injury (SCI), but the effect of stem cell transplantation on neuropathic pain after SCI is unclear. The current meta-analysis evaluates the effects of stem cell transplantation on neuropathic pain after SCI. We first conducted online searches of PubMed, Web of Science, China Academic Journals Full-text Database, and Wanfang Data for randomized controlled trials that compared stem cell transplantation and vehicle treatments in rodent models of neuropathic pain after SCI. Quality assessment was performed using Cochrane Reviewer's Handbook 5.1.0, and meta-analysis was conducted with RevMan 5.3. Then, we developed a rat model of SCI and transplanted bone marrow mesenchymal stem cells to verify meta-analysis results. Twelve randomized, controlled trials (n=354 total animals) were included in our meta-analysis and divided by subgroups, including species, timing of behavioral measurements, and transplantation time after SCI. Subgroup analysis of these 12 studies indicated that stem cell-treated animals had a higher mechanical reflex threshold than vehicle groups, with a significant difference in both rats and mice. The thermal withdrawal latency showed the same results in mouse subgroups, but not in rat subgroups. In addition, mesenchymal stem cell transplantation was an effective treatment for mechanical, but not thermal reflex hypersensitivity relief in rats. Transplantation showed a positive effect when carried out at 3 or 7days post-SCI. Stem cell transplantation alleviates mechanical reflex hypersensitivity in rats and mice and thermal reflex hypersensitivity in mice after SCI. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  8. Lowering the concentration affects the migration and viability of intracerebroventricular-delivered human mesenchymal stem cells.

    Science.gov (United States)

    Kim, Hyeong Seop; Lee, Na Kyung; Yoo, Dongkyeom; Lee, Jeongmin; Choi, Soo Jin; Oh, Wonil; Chang, Jong Wook; Na, Duk L

    2017-11-04

    Due to their widely known therapeutic benefits, mesenchymal stem cells have been proposed as a novel treatment option for a wide range of diseases including Alzheimer's disease. To maximize these benefits, critical factors such as delivery route, cell viability, and cell migration must be accounted for. Out of the various delivery routes to the brain, the intracerebroventricular (ICV) route stands out due to the widespread distribution that can occur via cerebrospinal fluid flow. The major objective of this present study was to observe how altering cell concentration influences the migration and viability of human umbilical cord blood derived-mesenchymal stem cells (hUCB-MSCs), delivered via ICV injection, in the brains of wild-type (WT) mice. C3H/C57 WT mice were divided into three groups and were injected with 1 × 10(5) hUCB-MSCs suspended in varying volumes: high (3 μl), middle (5 μl), and low (7 μl) concentrations, respectively. Lowering the concentration increased the migratory capabilities and elevated the viability of hUCB-MSCs. These results suggest that cell concentration can affect the physiological state of hUCB-MSCs, and thus the extent of therapeutic efficacy that can be achieved. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Molecular Imaging in Stem Cell Therapy for Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Fahuan Song

    2014-01-01

    Full Text Available Spinal cord injury (SCI is a serious disease of the center nervous system (CNS. It is a devastating injury with sudden loss of motor, sensory, and autonomic function distal to the level of trauma and produces great personal and societal costs. Currently, there are no remarkable effective therapies for the treatment of SCI. Compared to traditional treatment methods, stem cell transplantation therapy holds potential for repair and functional plasticity after SCI. However, the mechanism of stem cell therapy for SCI remains largely unknown and obscure partly due to the lack of efficient stem cell trafficking methods. Molecular imaging technology including positron emission tomography (PET, magnetic resonance imaging (MRI, optical imaging (i.e., bioluminescence imaging (BLI gives the hope to complete the knowledge concerning basic stem cell biology survival, migration, differentiation, and integration in real time when transplanted into damaged spinal cord. In this paper, we mainly review the molecular imaging technology in stem cell therapy for SCI.

  10. Replication of influenza A virus in swine umbilical cord epithelial stem-like cells.

    Science.gov (United States)

    Khatri, Mahesh; Chattha, Kuldeep S

    2015-01-01

    In this study, we describe the isolation and characterization of epithelial stem-like cells from the swine umbilical cord and their susceptibility to influenza virus infection. Swine umbilical cord epithelial stem cells (SUCECs) expressed stem cell and pluripotency associated markers such as SSEA-1, SSEA-4, TRA 1-60 and TRA 1-81 and Oct4. Morphologically, cells displayed polygonal morphology and were found to express epithelial markers; pancytokeratin, cytokeratin-18 and occludin; mesenchymal cell markers CD44, CD90 and haematopoietic cell marker CD45 were not detected on these cells. The cells had extensive proliferation and self- renewal properties. The cells also possessed immunomodulatory activity and inhibited the proliferation of T cells. Also, higher levels of anti-inflammatory cytokine IL-10 were detected in SUCEC-T cell co-cultures. The cells were multipotent and differentiated into lung epithelial cells when cultured in epithelial differentiation media. We also examined if SUCECs are susceptible to infection with influenza virus. SUCECs expressed sialic acid receptors, used by influenza virus for binding to cells. The 2009 pandemic influenza virus and swine influenza virus replicated in these cells. SUCECs due to their differentiation and immunoregulatory properties will be useful as cellular therapy in a pig model for human diseases. Additionally, our data indicate that influenza virus can infect SUCECs and may transmit influenza virus from mother to fetus through umbilical cord and transplantation of influenza virus-infected stem cells may transmit infection to recipients. Therefore, we propose that umbilical cord cells, in addition to other agents, should also be tested for influenza virus before cryopreservation for future use as a cell therapy for disease conditions.

  11. Mesenchymal Stem Cells and Induced Pluripotent Stem Cells as Therapies for Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Juan Xiao

    2015-04-01

    Full Text Available Multiple sclerosis (MS is a chronic, autoimmune, inflammatory demyelinating disorder of the central nervous system that leads to permanent neurological deficits. Current MS treatment regimens are insufficient to treat the irreversible neurological disabilities. Tremendous progress in the experimental and clinical applications of cell-based therapies has recognized stem cells as potential candidates for regenerative therapy for many neurodegenerative disorders including MS. Mesenchymal stem cells (MSC and induced pluripotent stem cell (iPSCs derived precursor cells can modulate the autoimmune response in the central nervous system (CNS and promote endogenous remyelination and repair process in animal models. This review highlights studies involving the immunomodulatory and regenerative effects of mesenchymal stem cells and iPSCs derived cells in animal models, and their translation into immunomodulatory and neuroregenerative treatment strategies for MS.

  12. Mesenchymal stem cells for cardiac repair: are the actors ready for the clinical scenario?

    Directory of Open Access Journals (Sweden)

    Santiago Roura

    2017-10-01

    Full Text Available Abstract For years, sufficient progress has been made in treating heart failure following myocardial infarction; however, the social and economic burdens and the costs to world health systems remain high. Moreover, treatment advances have not resolved the underlying problem of functional heart tissue loss. In this field of research, for years we have actively explored innovative biotherapies for cardiac repair. Here, we present a general, critical overview of our experience in using mesenchymal stem cells, derived from cardiac adipose tissue and umbilical cord blood, in a variety of cell therapy and tissue engineering approaches. We also include the latest advances and future challenges, including good manufacturing practice and regulatory issues. Finally, we evaluate whether recent approaches hold potential for reliable translation to clinical trials.

  13. Mesenchymal stem cell injections improve symptoms of knee osteoarthritis.

    Science.gov (United States)

    Koh, Yong-Gon; Jo, Seung-Bae; Kwon, Oh-Ryong; Suh, Dong-Suk; Lee, Seung-Woo; Park, Sung-Ho; Choi, Yun-Jin

    2013-04-01

    The purpose of this study was to evaluate the clinical and imaging results of patients who received intra-articular injections of autologous mesenchymal stem cells for the treatment of knee osteoarthritis. The study group comprised 18 patients (6 men and 12 women), among whom the mean age was 54.6 years (range, 41 to 69 years). In each patient the adipose synovium was harvested from the inner side of the infrapatellar fat pad by skin incision extension at the arthroscopic lateral portal site after the patient underwent arthroscopic debridement. After stem cells were isolated, a mean of 1.18 × 10(6) stem cells (range, 0.3 × 10(6) to 2.7 × 10(6) stem cells) were prepared with approximately 3.0 mL of platelet-rich plasma (with a mean of 1.28 × 10(6) platelets per microliter) and injected into the selected knees of patients. Clinical outcome was evaluated with the Western Ontario and McMaster Universities Osteoarthritis Index, the Lysholm score, and the visual analog scale (VAS) for grading knee pain. We also compared magnetic resonance imaging (MRI) data collected both preoperatively and at the final follow-up. Western Ontario and McMaster Universities Osteoarthritis Index scores decreased significantly (P stem cells injected. The results of our study are encouraging and show that intra-articular injection of infrapatellar fat pad-derived mesenchymal stem cells is effective for reducing pain and improving knee function in patients being treated for knee osteoarthritis. Level IV, therapeutic case series. Copyright © 2013 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  14. Glycosaminoglycans mimetics potentiate the clonogenicity, proliferation, migration and differentiation properties of rat mesenchymal stem cells.

    NARCIS (Netherlands)

    Frescaline, G.; Bouderlique, T.; Huynh, M.B.; Papy-Garcia, D.; Courty, J.; Albanese, P.

    2012-01-01

    Successful use of stem cell-based therapeutic products is conditioned by transplantation of optimized cells in permissive microenvironment. Mesenchymal stem cell (MSC) fates are tightly regulated by humoral factors, cellular interactions and extracellular matrix (ECM) components, such as

  15. In vitro and in vivo neurogenic potential of mesenchymal stem cells ...

    Indian Academy of Sciences (India)

    renewal. Abstract. Regenerative medicine is an evolving interdisciplinary topic of research involving numerous technological methods that utilize stem cells to repair damaged tissues. Particularly, mesenchymal stem cells (MSCs) are a great tool in ...

  16. Enhanced neuro-therapeutic potential of Wharton's Jelly-derived mesenchymal stem cells in comparison with bone marrow mesenchymal stem cells culture.

    Science.gov (United States)

    Drela, Katarzyna; Lech, Wioletta; Figiel-Dabrowska, Anna; Zychowicz, Marzena; Mikula, Michał; Sarnowska, Anna; Domanska-Janik, Krystyna

    2016-04-01

    Substantial inconsistencies in mesenchymal stem (stromal) cell (MSC) therapy reported in early translational and clinical studies may indicate need for selection of the proper cell population for any particular therapeutic purpose. In the present study we have examined stromal stem cells derived either from umbilical cord Wharton's Jelly (WJ-MSC) or bone marrow (BM-MSC) of adult, healthy donors. The cells characterized in accordance with the International Society for Cellular Therapy (ISCT) indications as well as other phenotypic and functional parameters have been compared under strictly controlled culture conditions. WJ-MSC, in comparison with BM-MSC, exhibited a higher proliferation rate, a greater expansion capability being additionally stimulated under low-oxygen atmosphere, enhanced neurotrophic factors gene expression and spontaneous tendency toward a neural lineage differentiation commitment confirmed by protein and gene marker induction. Our data suggest that WJ-MSC may represent an example of immature-type "pre-MSC," where a substantial cellular component is embryonic-like, pluripotent derivatives with the default neural-like differentiation. These cells may contribute in different extents to nearly all classical MSC populations adversely correlated with the age of cell donors. Our data suggest that neuro-epithelial markers, like nestin, stage specific embryonic antigens-4 or α-smooth muscle actin expressions, may serve as useful indicators of MSC culture neuro-regeneration-associated potency. Copyright © 2016 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  17. Different Angiogenic Potentials of Mesenchymal Stem Cells Derived from Umbilical Artery, Umbilical Vein, and Wharton’s Jelly

    Directory of Open Access Journals (Sweden)

    Lu Xu

    2017-01-01

    Full Text Available Human mesenchymal stem cells derived from the umbilical cord (UC are a favorable source for allogeneic cell therapy. Here, we successfully isolated the stem cells derived from three different compartments of the human UC, including perivascular stem cells derived from umbilical arteries (UCA-PSCs, perivascular stem cells derived from umbilical vein (UCV-PSCs, and mesenchymal stem cells derived from Wharton’s jelly (WJ-MSCs. These cells had the similar phenotype and differentiation potential toward adipocytes, osteoblasts, and neuron-like cells. However, UCA-PSCs and UCV-PSCs had more CD146+ cells than WJ-MSCs (P<0.05. Tube formation assay in vitro showed the largest number of tube-like structures and branch points in UCA-PSCs among the three stem cells. Additionally, the total tube length in UCA-PSCs and UCV-PSCs was significantly longer than in WJ-MSCs (P<0.01. Microarray, qRT-PCR, and Western blot analysis showed that UCA-PSCs had the highest expression of the Notch ligand Jagged1 (JAG1, which is crucial for blood vessel maturation. Knockdown of Jagged1 significantly impaired the angiogenesis in UCA-PSCs. In summary, UCA-PSCs are promising cell populations for clinical use in ischemic diseases.

  18. Multilineage Potential Research of Bovine Amniotic Fluid Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Yuhua Gao

    2014-02-01

    Full Text Available The use of amnion and amniotic fluid (AF are abundant sources of mesenchymal stem cells (MSCs that can be harvested at low cost and do not pose ethical conflicts. In human and veterinary research, stem cells derived from these tissues are promising candidates for disease treatment, specifically for their plasticity, their reduced immunogenicity, and high anti-inflammatory potential. This work aimed to obtain and characterize bovine amniotic fluid mesenchymal stem cells (AFMSC. The bovine AF from the amniotic cavity of pregnant gilts in the early stages of gestation (3- and 4-m-old bovine embryos was collected. AFMSCs exhibit a fibroblastic-like morphology only starting from the fourth passage, being heterogeneous during the primary culture. Immunofluorescence results showed that AFMSCs were positive for β-integrin, CD44, CD73 and CD166, but negative for CD34, CD45. Meanwhile, AFMSCs expressed ES cell markers, such as Oct4, and when appropriately induced, are capable of differentiating into ectodermal and mesodermal lineages. This study reinforces the emerging importance of these cells as ideal tools in veterinary medicine; future studies aimed at a deeper evaluation of their immunological properties will allow a better understanding of their role in cellular therapy.

  19. Molecular and environmental cues in cardiac differentiation of mesenchymal stem cells

    NARCIS (Netherlands)

    Ramkisoensing, Arti Anushka

    2014-01-01

    In this thesis molecular and environmental cues in cardiac differentiation of mesenchymal stem cells were investigated. The main conclusions were that the cardiac differentiation potential of human mesenchymal stem cells negatively correlates with donor age. This in its own shows a negative

  20. Design and development of a magnetic device for mesenchymal stem cell retaining in deep targets

    Science.gov (United States)

    Banis, G. C.

    2017-12-01

    This paper focuses on the retaining of mesenchymal stem cells in blood flow conditions using the appropriate magnetic field. Mesenchymal stem cells can be tagged with magnetic nanoparticles and thus, they can be manipulated from distance, through the application of an external magnetic field. In this paper the case of kidney as target of the therapy is being studied.

  1. Transition of mesenchymal stem/stromal cells to endothelial cells.

    Science.gov (United States)

    Crisan, Mihaela

    2013-08-14

    Mesenchymal stem/stromal cells (MSCs) are heterogeneous. A fraction of these cells constitute multipotent cells that can self-renew and mainly give rise to mesodermal lineage cells such as adipocytes, osteocytes and chondrocytes. The ability of MSCs to differentiate into endothelial cells remains controversial. Isolation and in vitro manipulation of MSCs before clinical application are important steps. High numbers of MSCs are needed, requiring the in vitro expansion of these clinically important cells. To this end, a well-controlled procedure for MSC isolation and maintenance in culture is necessary.

  2. Importance of mesenchymal stem cells in autologous fat grafting

    DEFF Research Database (Denmark)

    Trojahn Kølle, Stig-Frederik; Oliveri, Roberto S; Glovinski, Peter Viktor

    2012-01-01

    the fat graft with adipose tissue-derived mesenchymal stem cells (ASC) before transplantation. We have reviewed original studies published on fat transplantation enriched with ASC. We found four murine and three human studies that investigated the subject after a sensitive search of publications....... In the human studies, so-called cell assisted lipotransfer (CAL) increased the ASC concentration 2-5 times compared with non-manipulated fat grafts, which caused a questionable improvement in survival of fat grafts, compared with that of traditional lipofilling. In contrast, in two of the murine studies ASC...

  3. File list: InP.Oth.05.AllAg.Mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Oth.05.AllAg.Mesenchymal_stem_cells mm9 Input control Others Mesenchymal stem c...ells SRX318104,SRX318102,SRX228663,SRX228662,SRX228660,SRX228661 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Oth.05.AllAg.Mesenchymal_stem_cells.bed ...

  4. File list: NoD.Oth.10.AllAg.Mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Oth.10.AllAg.Mesenchymal_stem_cells hg19 No description Others Mesenchymal stem...RX302073,ERX302070,ERX302072,ERX302074 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Oth.10.AllAg.Mesenchymal_stem_cells.bed ...

  5. File list: Pol.Adp.50.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adp.50.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells hg19 RNA polymerase Adipocyte Adipose-Derived... Mesenchymal Stem Cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Adp.50.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells.bed ...

  6. File list: Unc.Adp.05.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Adp.05.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells hg19 Unclassified Adipocyte Adipose-Derived... Mesenchymal Stem Cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Adp.05.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells.bed ...

  7. File list: DNS.Adp.10.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Adp.10.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells hg19 DNase-seq Adipocyte Adipose-Derived... Mesenchymal Stem Cells SRX660076,SRX660075 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Adp.10.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells.bed ...

  8. File list: Pol.Adp.20.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adp.20.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells hg19 RNA polymerase Adipocyte Adipose-Derived... Mesenchymal Stem Cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Adp.20.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells.bed ...

  9. File list: Pol.Adp.10.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adp.10.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells hg19 RNA polymerase Adipocyte Adipose-Derived... Mesenchymal Stem Cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Adp.10.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells.bed ...

  10. File list: Unc.Adp.10.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Adp.10.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells hg19 Unclassified Adipocyte Adipose-Derived... Mesenchymal Stem Cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Adp.10.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells.bed ...

  11. File list: Unc.Adp.20.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Adp.20.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells hg19 Unclassified Adipocyte Adipose-Derived... Mesenchymal Stem Cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Adp.20.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells.bed ...

  12. File list: Pol.Adp.05.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adp.05.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells hg19 RNA polymerase Adipocyte Adipose-Derived... Mesenchymal Stem Cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Adp.05.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells.bed ...

  13. File list: NoD.Adp.20.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.20.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells hg19 No description Adipocyte Adipose-Derived... Mesenchymal Stem Cells SRX312175,SRX312171 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Adp.20.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells.bed ...

  14. File list: InP.Adp.20.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Adp.20.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells hg19 Input control Adipocyte Adipose-Derived... Mesenchymal Stem Cells SRX660092,SRX660091 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Adp.20.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells.bed ...

  15. File list: InP.Adp.05.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Adp.05.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells hg19 Input control Adipocyte Adipose-Derived... Mesenchymal Stem Cells SRX660092,SRX660091 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Adp.05.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells.bed ...

  16. File list: NoD.Adp.50.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.50.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells hg19 No description Adipocyte Adipose-Derived... Mesenchymal Stem Cells SRX312175,SRX312171 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Adp.50.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells.bed ...

  17. File list: DNS.Adp.50.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Adp.50.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells hg19 DNase-seq Adipocyte Adipose-Derived... Mesenchymal Stem Cells SRX660075,SRX660076 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Adp.50.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells.bed ...

  18. File list: NoD.Adp.10.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.10.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells hg19 No description Adipocyte Adipose-Derived... Mesenchymal Stem Cells SRX312175,SRX312171 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Adp.10.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells.bed ...

  19. File list: InP.Adp.10.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Adp.10.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells hg19 Input control Adipocyte Adipose-Derived... Mesenchymal Stem Cells SRX660092,SRX660091 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Adp.10.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells.bed ...

  20. File list: InP.Adp.50.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Adp.50.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells hg19 Input control Adipocyte Adipose-Derived... Mesenchymal Stem Cells SRX660091,SRX660092 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Adp.50.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells.bed ...

  1. File list: Unc.Adp.50.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Adp.50.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells hg19 Unclassified Adipocyte Adipose-Derived... Mesenchymal Stem Cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Adp.50.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells.bed ...

  2. File list: DNS.Adp.20.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Adp.20.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells hg19 DNase-seq Adipocyte Adipose-Derived... Mesenchymal Stem Cells SRX660076,SRX660075 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Adp.20.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells.bed ...

  3. File list: NoD.Adp.05.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.05.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells hg19 No description Adipocyte Adipose-Derived... Mesenchymal Stem Cells SRX312175,SRX312171 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Adp.05.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells.bed ...

  4. File list: DNS.Adp.05.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Adp.05.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells hg19 DNase-seq Adipocyte Adipose-Derived... Mesenchymal Stem Cells SRX660076,SRX660075 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Adp.05.AllAg.Adipose-Derived_Mesenchymal_Stem_Cells.bed ...

  5. File list: InP.Oth.10.AllAg.Mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Oth.10.AllAg.Mesenchymal_stem_cells mm9 Input control Others Mesenchymal stem c...ells SRX318104,SRX318102,SRX228660,SRX228662,SRX228663,SRX228661 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Oth.10.AllAg.Mesenchymal_stem_cells.bed ...

  6. File list: NoD.Oth.05.AllAg.Mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Oth.05.AllAg.Mesenchymal_stem_cells mm9 No description Others Mesenchymal stem ...cells SRX694677,SRX694678 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Oth.05.AllAg.Mesenchymal_stem_cells.bed ...

  7. File list: NoD.Oth.50.AllAg.Mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Oth.50.AllAg.Mesenchymal_stem_cells hg19 No description Others Mesenchymal stem...RX302074,ERX302075,ERX302066,ERX302072 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Oth.50.AllAg.Mesenchymal_stem_cells.bed ...

  8. File list: NoD.Oth.20.AllAg.Mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Oth.20.AllAg.Mesenchymal_stem_cells hg19 No description Others Mesenchymal stem...RX302072,ERX302066,ERX302075,ERX302074 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Oth.20.AllAg.Mesenchymal_stem_cells.bed ...

  9. File list: NoD.Oth.50.AllAg.Mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Oth.50.AllAg.Mesenchymal_stem_cells mm9 No description Others Mesenchymal stem ...cells SRX694677,SRX694678 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Oth.50.AllAg.Mesenchymal_stem_cells.bed ...

  10. Intrathecal transplantation of stem cells by lumbar puncture for thoracic spinal cord injury in the rat.

    Science.gov (United States)

    Mothe, A J; Bozkurt, G; Catapano, J; Zabojova, J; Wang, X; Keating, A; Tator, C H

    2011-09-01

    Experimental investigation of intrathecal transplantation of stem cells by lumbar puncture (LP) in a rat model that simulates human thoracic spinal cord injury (SCI). To examine the distribution and phenotype of spinal cord-derived neural stem/progenitor cells (NSPCs) and bone marrow-derived mesenchymal stromal cells (BMSCs) following LP transplantation in SCI rats. Toronto Western Research Institute, Toronto, Ontario, Canada. NSPCs or BMSCs were transplanted via LP at level L3-5 1 week after compression SCI at T8. Rats were killed at 3, 17 and 27 days after LP transplantation and the relative distribution of cells at C4, T8 and L3-5 was quantitated. The phenotype of the NSPC and BMSC was assessed with immunocytochemistry in vitro and following LP transplantation. By 4 weeks, more NSPC migrated to the lesion site relative to BMSC and uninjured animals. However, there was no preferential homing of either of these types of cells into the parenchyma of the injury site, and most of the transplanted cells remained in the intrathecal space. In vitro, spinal cord-derived NSPC proliferated and expressed nestin, but after LP transplantation, NSPC became post-mitotic and primarily expressed oligodendrocyte markers. In contrast, BMSC did not express any neural antigens in vivo. LP is a minimally invasive method of cell transplantation that produces wide dissemination of cells in the subarachnoid space of the spinal cord. This is the first study to report and quantify the phenotype and spatial distribution of LP transplanted NSPC and BMSC in the intact and injured spinal cord.

  11. The bone marrow stem cell niche grows up: mesenchymal stem cells and macrophages move in.

    Science.gov (United States)

    Ehninger, Armin; Trumpp, Andreas

    2011-03-14

    Stem cell niches are defined as the cellular and molecular microenvironments that regulate stem cell function together with stem cell autonomous mechanisms. This includes control of the balance between quiescence, self-renewal, and differentiation, as well as the engagement of specific programs in response to stress. In mammals, the best understood niche is that harboring bone marrow hematopoietic stem cells (HSCs). Recent studies have expanded the number of cell types contributing to the HSC niche. Perivascular mesenchymal stem cells and macrophages now join the previously identified sinusoidal endothelial cells, sympathetic nerve fibers, and cells of the osteoblastic lineage to form similar, but distinct, niches that harbor dormant and self-renewing HSCs during homeostasis and mediate stem cell mobilization in response to granulocyte colony-stimulating factor.

  12. ¬Mesenchymal Stem Cell Fate: Applying Biomaterials for Control of Stem Cell Behaviour

    Directory of Open Access Journals (Sweden)

    Hilary Jane Anderson

    2016-05-01

    Full Text Available Mesenchymal Stem Cell Fate: Applying Biomaterials for Control of Stem Cell BehaviourHilary J Anderson1, Jugal Kishore Sahoo2, Rein V Ulijn2,3, Matthew J Dalby1*1 Centre for Cell Engineering, University of Glasgow, Glasgow, UK.2 Technology and Innovation centre, Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, UK. 3 Advanced Science Research Centre (ASRC and Hunter College, City University of New York, NY 10031, NY, USA. Correspondence:*Hilary Andersonh.anderson.1@research.gla.ac.ukKeywords: mesenchymal stem cells, bioengineering, materials synthesis, nanotopography, stimuli responsive material□AbstractThe materials pipeline for biomaterials and tissue engineering applications is under continuous development. Specifically, there is great interest in the use of designed materials in the stem cell arena as materials can be used to manipulate the cells providing control of behaviour. This is important as the ability to ‘engineer’ complexity and subsequent in vitro growth of tissues and organs is a key objective for tissue engineers. This review will describe the nature of the materials strategies, both static and dynamic, and their influence specifically on mesenchymal stem cell fate.

  13. Composition of Mineral Produced by Dental Mesenchymal Stem Cells.

    Science.gov (United States)

    Volponi, A A; Gentleman, E; Fatscher, R; Pang, Y W Y; Gentleman, M M; Sharpe, P T

    2015-11-01

    Mesenchymal stem cells isolated from different dental tissues have been described to have osteogenic/odontogenic-like differentiation capacity, but little attention has been paid to the biochemical composition of the material that each produces. Here, we used Raman spectroscopy to analyze the mineralized materials produced in vitro by different dental cell populations, and we compared them with the biochemical composition of native dental tissues. We show that different dental stem cell populations produce materials that differ in their mineral and matrix composition and that these differ from those of native dental tissues. In vitro, BCMP (bone chip mass population), SCAP (stem cells from apical papilla), and SHED (stem cells from human-exfoliated deciduous teeth) cells produce a more highly mineralized matrix when compared with that produced by PDL (periodontal ligament), DPA (dental pulp adult), and GF (gingival fibroblast) cells. Principal component analyses of Raman spectra further demonstrated that the crystallinity and carbonate substitution environments in the material produced by each cell type varied, with DPA cells, for example, producing a more carbonate-substituted mineral and with SCAP, SHED, and GF cells creating a less crystalline material when compared with other dental stem cells and native tissues. These variations in mineral composition reveal intrinsic differences in the various cell populations, which may in turn affect their specific clinical applications. © International & American Associations for Dental Research 2015.

  14. Mesenchymal Stem Cells to Treat Crohn's Disease with Fistula.

    Science.gov (United States)

    Zhang, Xiao-Mei; Zhang, Yu-Jing; Wang, Wei; Wei, Yu-Quan; Deng, Hong-Xin

    2017-07-01

    Crohn's disease, which mainly affects the gastrointestinal tract, is a refractory inflammatory disease that has clinical manifestations of abdominal pain, fever, bowel obstruction, and diarrhea with blood or mucus. Together, these symptoms can severely impair a patient's quality of life. Besides the common complication of intestinal obstruction, fistulas, particularly anorectal fistulas, are common in Crohn's disease patients. Since radical surgical cures can be difficult to achieve and relapse is common, Crohn's disease patients often seek other effective treatments in addition to surgery. Stem-cell therapies have recently been proposed as a method to address the challenges and prospective medical needs of Crohn's disease patients in general and those with fistulas. Several studies suggest that mesenchymal stem cells (MSCs) could improve Crohn's disease and Crohn's fistula. Moreover, studies concerning MSC transplantation or local rejection of stem cells derived from bone marrow or adipose tissue-derived stem cells have assessed stem cell-based treatments for refractory Crohn's disease. Many patients in these studies are now in remission. A number of clinical trials for refractory Crohn's disease have also evaluated transplantation of autologous or allogenic MSCs and showed that MSCs can be safely administered to Crohn's disease patients, with some achieving positive clinical responses.

  15. Mesenchymal Stem Cell Therapy in Diabetes Mellitus: Progress and Challenges

    Directory of Open Access Journals (Sweden)

    Nagwa El-Badri

    2013-01-01

    Full Text Available Advanced type 2 diabetes mellitus is associated with significant morbidity and mortality due to cardiovascular, nervous, and renal complications. Attempts to cure diabetes mellitus using islet transplantation have been successful in providing a source for insulin secreting cells. However, limited donors, graft rejection, the need for continued immune suppression, and exhaustion of the donor cell pool prompted the search for a more sustained source of insulin secreting cells. Stem cell therapy is a promising alternative for islet transplantation in type 2 diabetic patients who fail to control hyperglycemia even with insulin injection. Autologous stem cell transplantation may provide the best outcome for those patients, since autologous cells are readily available and do not entail prolonged hospital stays or sustained immunotoxic therapy. Among autologous adult stem cells, mesenchymal stem cells (MSCs therapy has been applied with varying degrees of success in both animal models and in clinical trials. This review will focus on the advantages of MSCs over other types of stem cells and the possible mechanisms by which MSCs transplant restores normoglycemia in type 2 diabetic patients. Sources of MSCs including autologous cells from diabetic patients and the use of various differentiation protocols in relation to best transplant outcome will be discussed.

  16. Intra-arterial delivery of mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Mitsuyoshi Watanabe

    2016-01-01

    Full Text Available While treatments have been developed to combat stroke, such as intravenous recombinant tissue plasminogen activator and endovascular recanalization therapies, their ability to decrease the long-term disability that accompanies stroke is limited. Currently, stem cell research focused on mesenchymal stem cells (MSCs. MSCs are multipotent, nonhematopoietic stem cells found in the stromal fraction of the bone marrow, along with the connective tissue of most organs. MSCs are an increasingly appealing cell source due to the relative ease in which they can be retrieved, developed, and handled in vitro. Despite the fact that numerous paths of stem cell transport to the brain in acute ischemic stroke (AIS exist, the intra-arterial (IA route of stem cell transport is most attractive. This is due to its great potential for clinical translation, especially considering the growing clinical application of endovascular treatment for AIS. Here, we evaluate research examining IA delivery of MSCs to the stroke region. The results of the study revealed the maximum tolerated dose and that the optimal time for administration was 24 h, following cerebral ischemia. It is important that future translational studies are performed to establish IA administration of MSCs as a widely used treatment for AIS.

  17. Immunosuppressive and remodelling properties of mesenchymal stem cells in a model of chronic kidney disease

    Directory of Open Access Journals (Sweden)

    Patricia Semedo

    2009-12-01

    Full Text Available Objective: To investigate the role of mesenchymal stem cells in fibrogenesis using a model of chronic renal insufficiency. Methods: Mesenchymal stem cells  were obtained from tibias and femurs of Wistar-EPM rats. After three to five passages, the cells were submitted to phenotypic analyses and differentiation. Wistar rats were submitted to the 5/6 nephrectomy model, and 2.105 mesenchymal stem cells  were administered intravenously to each rat every two weeks until the eighth week. Rresults: Sex-determining region Y was observed in female rats treated with stem cells. Serum and urine analyses showed improvement of functional parameters in mesenchymal stem cells treated animals, such as creatinine, serum urea, and proteinuria. Moreover, hemocrit analysis showed improvement of anemia in mesenchymal stem cells treated animals. Masson’s Trichromium and Picrosirius Red staining demonstrated reduced levels of fibrosis in mesenchymal stem cells treated in animals. These results were corroborated by reduced vimentin, collagen I, TGFβ, FSP-1, MCP-1 and Smad3 mRNA expression. Renal IL-6 and TNFα mRNA expression levels were significantly decreased after mesenchymal stem cells treatment, while IL-4 and IL-10 expression were increased. Serum expression of IL-1α, IL-1β, IL-6, IFN-γ, TNF-α, and IL-10 was decreased in mesenchymal cell-treated animals. Cconclusions: Altogether, these results suggest that mesenchymal stem cells therapy can indeed modulate the inflammatory response that follows the initial phase of a chronic renal lesion. The immunosuppresive and remodeling properties of the mesenchymal stem cells  may be involved in the improved fibrotic outcome.

  18. Expansion of human cord blood hematopoietic stem cells for transplantation.

    Science.gov (United States)

    Chou, Song; Chu, Pat; Hwang, William; Lodish, Harvey

    2010-10-08

    A recent Science paper reported a purine derivative that expands human cord blood hematopoietic stem cells in culture (Boitano et al., 2010) by antagonizing the aryl hydrocarbon receptor. Major problems need to be overcome before ex vivo HSC expansion can be used clinically. Copyright © 2010 Elsevier Inc. All rights reserved.

  19. Stem cell-based therapies for spinal cord injury.

    NARCIS (Netherlands)

    Nandoe, R.D.S.; Hurtado, A.; Bartels, R.H.M.A.; Grotenhuis, A.; Oudega, M.

    2009-01-01

    Spinal cord injury (SCI) results in loss of nervous tissue and consequently loss of motor and sensory function. There is no treatment available that restores the injury-induced loss of function to a degree that an independent life can be guaranteed. Transplantation of stem cells or progenitors may

  20. Therapeutic Implications of Mesenchymal Stem Cells in Liver Injury

    Directory of Open Access Journals (Sweden)

    Maria Ausiliatrice Puglisi

    2011-01-01

    Full Text Available Mesenchymal stem cells (MSCs, represent an attractive tool for the establishment of a successful stem-cell-based therapy of liver diseases. A number of different mechanisms contribute to the therapeutic effects exerted by MSCs, since these cells can differentiate into functional hepatic cells and can also produce a series of growth factors and cytokines able to suppress inflammatory responses, reduce hepatocyte apoptosis, regress liver fibrosis, and enhance hepatocyte functionality. To date, the infusion of MSCs or MSC-conditioned medium has shown encouraging results in the treatment of fulminant hepatic failure and in end-stage liver disease in experimental settings. However, some issues under debate hamper the use of MSCs in clinical trials. This paper summarizes the biological relevance of MSCs and the potential benefits and risks that can result from translating the MSC research to the treatment of liver diseases.

  1. Mesenchymal Stem Cells: The Magic Cure for Intraventricular Hemorrhage?

    Science.gov (United States)

    Park, Won Soon; Ahn, So Yoon; Sung, Se In; Ahn, Jee-Yin; Chang, Yun Sil

    2017-01-01

    Severe intraventricular hemorrhage (IVH) remains a major cause of mortality and long-term neurologic morbidities in premature infants, despite recent advances in neonatal intensive care medicine. Several preclinical studies have demonstrated the beneficial effects of mesenchymal stem cell (MSC) transplantation in attenuating brain injuries resulting from severe IVH. Because there currently exists no effective intervention for severe IVH, the therapeutic potential of MSC transplantation in this intractable and devastating disease is creating excitement in this field. This review summarizes recent progress in stem cell research for treating neonatal brain injury due to severe IVH, with a particular focus on preclinical data concerning important issues, such as mechanism of protective action and determining optimal source, route, timing, and dose of MSC transplantation, and on the translation of these preclinical study results to a clinical trial. PMID:27938484

  2. A nanofibrous electrospun patch to maintain human mesenchymal cell stemness.

    Science.gov (United States)

    Pandolfi, L; Furman, N Toledano; Wang, Xin; Lupo, C; Martinez, J O; Mohamed, M; Taraballi, F; Tasciotti, E

    2017-03-01

    Mesenchymal stem cells (MSCs) have been extensively investigated in regenerative medicine because of their crucial role in tissue healing. For these properties, they are widely tested in clinical trials, usually injected in cell suspension or in combination with tridimensional scaffolds. However, scaffolds can largely affect the fates of MSCs, inducing a progressive loss of functionality overtime. The ideal scaffold must delay MSCs differentiation until paracrine signals from the host induce their change. Herein, we proposed a nanostructured electrospun gelatin patch as an appropriate environment where human MSCs (hMSCs) can adhere, proliferate, and maintain their stemness. This patch exhibited characteristics of a non-linear elastic material and withstood degradation up to 4 weeks. As compared to culture and expansion in 2D, hMSCs on the patch showed a similar degree of proliferation and better maintained their progenitor properties, as assessed by their superior differentiation capacity towards typical mesenchymal lineages (i.e. osteogenic and chondrogenic). Furthermore, immunohistochemical analysis and longitudinal non-invasive imaging of inflammatory response revealed no sign of foreign body reaction for 3 weeks. In summary, our results demonstrated that our biocompatible patch favored the maintenance of undifferentiated hMSCs for up to 21 days and is an ideal candidate for tridimensional delivery of hMSCs. The present work reports a nanostructured patch gelatin-based able to maintain in vitro hMSCs stemness features. Moreover, hMSCs were able to differentiate toward osteo- and chondrogenic lineages once induces by differentiative media, confirming the ability of this patch to support stem cells for a potential in vivo application. These attractive properties together with the low inflammatory response in vivo make this patch a promising platform in regenerative medicine.

  3. The in Vitro Assessment of Biochemical Factors in Hepatocyte like Cells Derived from Umbilical Cord Blood Stem Cells

    Directory of Open Access Journals (Sweden)

    A KHoramroodi

    2009-10-01

    Full Text Available Introduction & Objective: Umbilical cord blood (UCB is a source of Hematopoietic Stem Cells (HSC and progenitor cells that can reconstitute the hematopoietic system in patients with malignant and nonmalignant disorders. Mesenchymal stem cell-derived from umbilical cord blood (UCB have been differentiated to some kind of cells, such as osteobblast, adipoblast and chondroblast in Vitro. This study examined the differentiation of Umbilical Cord Blood (UCB derived stem cells to functional hepatocytes. Materials & Methods: The present study was an experimental study which was carried out in the Payam-e-Noor University of Tehran in cooperation with Hamedan University of Medical Sciences in 2008. Umbilical cord blood (UCB was obtained from Fatemieh hospital (Hamadan, Iran. Stem cells were isolated from the cord blood by combining density gradient centrifugation with plastic adherence. When the isolated cells reached 80% confluence, they differentiated to hepatocyte like cells. The medium which was used was consists of DMEM and 10% Fetal Bovine Serum (FBS supplemented with 20 ng/mL Hepatocyte Growth Factor (HGF, 10 ng/mL basic Fibroblast Growth Factor (bFGF and 20 ng/mL Oncostatin M (OSM.The medium was changed every 3 days and stored for Albumin (ALB, Alpha Fetoprotein (AFP, Alkaline Phosphatase (ALP, and urea assay. Finally PAS stain was done to study Glycogen storage in the differentiated cell. Results: Measurement of biochemical factors in different days showed that concentration of albumin (ALB, alpha fetoprotein (AFP, alkaline phosphatase (ALP, and Urea gradually increased. Also, PAS staining showed the storage of glycogen in these cells. Conclusion: Stem cell-derived from human umbilical cord blood (HUCB is a new source of cell types for cell transplantation therapy of hepatic diseases and under certain conditions these cells can differentiate into liver cells.

  4. Mesenchymal stem cell and osteoarthritis: a literature review

    Directory of Open Access Journals (Sweden)

    Zhaleh Shariati Sarabi

    2016-04-01

    Full Text Available The most common disease in the aged population is osteoarthritis (OA that is resulting in progressive dysfunction following isolated cartilage injuries, subchondral bone remodeling, tissue loss, marginal osteophytes, and loss of joint space. Mesenchymal stem cells (MSCs are multipotent stem cells; they are able to produce many or all joint tissues. Bone marrow and adipose tissue are rich sources of mesenchymal cells that are useful for the reconstruction of injured tissues such as bone, cartilage, or cardiac muscle. Recently, some studies have been performed on the use of the direct intra-articular injection of mononuclear cells (MNCs and MSCs as potential therapeutic targets in OA. In this review, the history of MSCs in the treatment of OA are explained. Injection of Bone Marrow Aspirates Concentrate (BMAC has significantly improved both joint pain and function in radiologic findings; some studies suggested that the injection would be even more effective in early to moderate phases of OA. Injection of MSCs in combination with growth factors may be better solution for the treatment.

  5. Intravenous Transplantation of Mesenchymal Progenitors Distribute Solely to the Lungs and Improve Outcomes in Cervical Spinal Cord Injury.

    Science.gov (United States)

    White, Seok Voon; Czisch, Chris E; Han, May H; Plant, Christine D; Harvey, Alan R; Plant, Giles W

    2016-07-01

    Cellular transplantation strategies utilizing intraspinal injection of mesenchymal progenitor cells (MPCs) have been reported as beneficial for spinal cord injuries. However, intraspinal injection is not only technically challenging, but requires invasive surgical procedures for patients. Therefore, we investigated the feasibility and potential benefits of noninvasive intravenous injection of MPCs in two models of cervical spinal cord injury, unilateral C5 contusion and complete unilateral C5 hemisection. MPCs isolated from green fluorescence protein (GFP)-luciferase transgenic mice compact bone (1 × 10(6) cells), or vehicle Hank's Buffered Saline Solution (HBSS), were intravenously injected via the tail vein at D1, D3, D7, D10, or D14. Transplanted MPCs were tracked via bioluminescence imaging. Live in vivo imaging data showed that intravenously injected MPCs accumulate in the lungs, confirmed by postmortem bioluminescence signal-irrespective of the time of injection or injury model. The results showed a rapid, positive modulation of the inflammatory response providing protection to the injured spinal cord tissue. Histological processing of the lungs showed GFP(+) cells evenly distributed around the alveoli. We propose that injected cells can act as cellular target decoys to an immune system primed by injury, thereby lessening the inflammatory response at the injury site. We also propose that intravenous injected MPCs modulate the immune system via the lungs through secreted immune mediators or contact interaction with peripheral organs. In conclusion, the timing of intravenous injection of MPCs is key to the success for improving function and tissue preservation following cervical spinal cord injury. Stem Cells 2016;34:1812-1825. © 2016 AlphaMed Press.

  6. ALS Pathogenesis and Therapeutic Approaches: The Role of Mesenchymal Stem Cells and Extracellular Vesicles.

    Science.gov (United States)

    Bonafede, Roberta; Mariotti, Raffaella

    2017-01-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive muscle paralysis determined by the degeneration of motoneurons in the motor cortex brainstem and spinal cord. The ALS pathogenetic mechanisms are still unclear, despite the wealth of studies demonstrating the involvement of several altered signaling pathways, such as mitochondrial dysfunction, glutamate excitotoxicity, oxidative stress and neuroinflammation. To date, the proposed therapeutic strategies are targeted to one or a few of these alterations, resulting in only a minimal effect on disease course and survival of ALS patients. The involvement of different mechanisms in ALS pathogenesis underlines the need for a therapeutic approach targeted to multiple aspects. Mesenchymal stem cells (MSC) can support motoneurons and surrounding cells, reduce inflammation, stimulate tissue regeneration and release growth factors. On this basis, MSC have been proposed as promising candidates to treat ALS. However, due to the drawbacks of cell therapy, the possible therapeutic use of extracellular vesicles (EVs) released by stem cells is raising increasing interest. The present review summarizes the main pathological mechanisms involved in ALS and the related therapeutic approaches proposed to date, focusing on MSC therapy and their preclinical and clinical applications. Moreover, the nature and characteristics of EVs and their role in recapitulating the effect of stem cells are discussed, elucidating how and why these vesicles could provide novel opportunities for ALS treatment.

  7. Rat hair follicle stem cells differentiate and promote recovery following spinal cord injury

    OpenAIRE

    Najafzadeh, Nowruz; Nobakht, Maliheh; Pourheydar, Bagher; Golmohammadi, Mohammad Ghasem

    2013-01-01

    Emerging studies of treating spinal cord injury (SCI) with adult stem cells led us to evaluate the effects of transplantation of hair follicle stem cells in rats with a compression-induced spinal cord lesion. Here, we proposed a hypothesis that rat hair follicle stem cell transplantation can promote the recovery of injured spinal cord. Compression-induced spinal cord injury was induced in Wistar rats in this study. The bulge area of the rat vibrissa follicles was isolated, cultivated and char...

  8. Potential benefits of allogeneic bone marrow mesenchymal stem cells for wound healing.

    Science.gov (United States)

    Badiavas, Alexander R; Badiavas, Evangelos V

    2011-11-01

    It is becoming increasingly evident that select adult stem cells have the capacity to participate in repair and regeneration of damaged and/or diseased tissues. Mesenchymal stem cells have been among the most studied adult stem cells for the treatment of a variety of conditions, including wound healing. Mesenchymal stem cell features potentially beneficial to cutaneous wound healing applications are reviewed. Given their potential for in vitro expansion and immune modulatory effects, both autologous and allogeneic mesenchymal stem cells appear to be well suited as wound healing therapies. Allogeneic mesenchymal stem cells derived from young healthy donors could have particular advantage over autologous sources where age and systemic disease can be significant factors.

  9. Umbilical Cord Blood Stem Cells. Who has the right word?

    Directory of Open Access Journals (Sweden)

    Gisela Laporta

    2014-12-01

    Full Text Available In this article we analyze bioethical and legal aspects related to the cryopreservation of cord blood stem cells in Argentina. To unify definitions, the concept and variety of stem cells, together with the understanding of the means to obtain and store umbilical cord blood stem cells, are provided.  Options that arise in our country, mainly analyzing the conceptual differences underlying legal body and parts by public and private biobanks, are described. Additionally, the current Argentinean legislation and circumstances arising from a resolution which INCUCAI sought to regulate private biobanks, is analyzed. This analysis leads to thoughts on the way conflicts are solved when the health and life of people are judicialized. In this particular case, the appearance of a complex new topic which gives rise to new social and healthcare scenarios, must be further understood.

  10. Intrinsic properties of mesemchymal stem cells from human bone marrow, umbilical cord and umbilical cord blood comparing the different sources of MSC.

    Science.gov (United States)

    Lv, Fengjuan; Lu, Minmin; Cheung, Kenneth M C; Leung, Victor Y L; Zhou, Guangqian

    2012-11-01

    The past decade has witnessed numerous publications on mesenchymal stem cells (MSC), which have great potential in regenerative medicine. MSC from various types of origins exhibit different characteristics, which may relate to the maintenance role of MSC in that specific source. Reports have emerged that among the most widely investigated sources, umbilical cord (UC) or umbilical cord blood (UCB) derived MSC throw advantages over bone marrow (BM) derived MSC due to their close to fetal origin. Here the methodologies used to separate MSC from UC or UCB, and the intrinsic properties, including proliferation capacity, multipotency, cytokine profile, cell surface protein expression and gene expression, between UC, UCB and BM derived MSC, are discussed in details, though may not in a full picture, for the first time.

  11. Mesenchymal stem cell therapy for osteoarthritis: current perspectives

    Directory of Open Access Journals (Sweden)

    Wyles CC

    2015-08-01

    Full Text Available Cody C Wyles,1 Matthew T Houdek,2 Atta Behfar,3 Rafael J Sierra,21Mayo Medical School, 2Department of Orthopedic Surgery, 3Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USAAbstract: Osteoarthritis (OA is a painful chronic condition with a significant impact on quality of life. The societal burden imposed by OA is increasing in parallel with the aging population; however, no therapies have demonstrated efficacy in preventing the progression of this degenerative joint disease. Current mainstays of therapy include activity modification, conservative pain management strategies, weight loss, and if necessary, replacement of the affected joint. Mesenchymal stem cells (MSCs are a multipotent endogenous population of progenitors capable of differentiation to musculoskeletal tissues. MSCs have a well-documented immunomodulatory role, managing the inflammatory response primarily through paracrine signaling. Given these properties, MSCs have been proposed as a potential regenerative cell therapy source for patients with OA. Research efforts are focused on determining the ideal source for derivation, as MSCs are native to several tissues. Furthermore, optimizing the mode of delivery remains a challenge both for appropriate localization of MSCs and for directed guidance toward stemming the local inflammatory process and initiating a regenerative response. Scaffolds and matrices with growth factor adjuvants may prove critical in this effort. The purpose of this review is to summarize the current state of MSC-based therapeutics for OA and discuss potential barriers that must be overcome for successful implementation of cell-based therapy as a routine treatment strategy in orthopedics.Keywords: mesenchymal stem cell, osteoarthritis, treatment, regenerative medicine, cell therapy

  12. RNA-Seq Reveals the Angiogenesis Diversity between the Fetal and Adults Bone Mesenchyme Stem Cell.

    Directory of Open Access Journals (Sweden)

    Xin Zhao

    Full Text Available In this research, we used RNA sequencing (RNA-seq to analyze 23 single cell samples and 2 bulk cells sample from human adult bone mesenchyme stem cell line and human fetal bone mesenchyme stem cell line. The results from the research demonstrated that there were big differences between two cell lines. Adult bone mesenchyme stem cell lines showed a strong trend on the blood vessel differentiation and cell motion, 48/49 vascular related differential expressed genes showed higher expression in adult bone mesenchyme stem cell lines (Abmsc than fetal bone mesenchyme stem cell lines (Fbmsc. 96/106 cell motion related genes showed the same tendency. Further analysis showed that genes like ANGPT1, VEGFA, FGF2, PDGFB and PDGFRA showed higher expression in Abmsc. This work showed cell heterogeneity between human adult bone mesenchyme stem cell line and human fetal bone mesenchyme stem cell line. Also the work may give an indication that Abmsc had a better potency than Fbmsc in the future vascular related application.

  13. Myogenic differentiation of mesenchymal stem cells for muscle regeneration in urinary tract.

    Science.gov (United States)

    Yang, Bin; Zheng, Jun-hua; Zhang, Yuan-yuan

    2013-01-01

    This article was to review the current status of adult mesenchymal stem cells transplantation for muscle regeneration in urinary tract and propose the future prospect in this field. The data used in this review were mainly obtained from articles listed in Medline and PubMed (2000-2013). The search terms were "mesenchymal stem cells", "bladder", "stress urinary incontinence" and "tissue engineering". Articles regarding the adult mesenchymal stem cells for tissue engineering of bladder and stress urinary incontinence were selected and reviewed. Adult mesenchymal stem cells had been identified and well characterized in human bone marrow, adipose tissue, skeletal muscle and urine, and demonstrated the capability of differentiating into smooth muscle cells and skeletal muscle cells under myogenic differentiation conditions in vitro. Multiple preclinical and clinical studies indicated that adult mesenchymal stem cells could restore and maintain the structure and function of urinary muscle tissues after transplanted, and potentially improve the quality of life in patients. Smooth or skeletal myogenic differentiation of mesenchymal stem cells with regenerative medicine technology may provide a novel approach for muscle regeneration and tissue repair in urinary tract. The long-term effect and safety of mesenchymal stem cell transplantation should be further evaluated before this approach becomes widely used in patients.

  14. Human mesenchymal precursor cells (Stro-1⁺) from spinal cord injury patients improve functional recovery and tissue sparing in an acute spinal cord injury rat model.

    Science.gov (United States)

    Hodgetts, Stuart I; Simmons, Paul J; Plant, Giles W

    2013-01-01

    This study aimed to determine the potential of purified (Stro-1(+)) human mesenchymal precursor cells (hMPCs) to repair the injured spinal cord (SC) after transplantation into T-cell-deficient athymic RNU nude rats following acute moderate contusive spinal cord injury (SCI). hMPCs were isolated from the bone marrow (BM) stroma of SCI patients and transplanted as a suspension graft in medium [with or without immunosuppression using cyclosporin A (CsA)]. Extensive anatomical analysis shows statistically significant improvement in functional recovery, tissue sparing, and cyst reduction. We provide quantitative assessment of supraspinal projections in combination with functional outcomes. hMPC-transplanted animals consistently achieved mean BBB scores of 15 at 8 weeks post injury. Quantitative histological staining revealed that graft-recipient animals possessed more intact spinal tissue and reduced cyst formation than controls. Fluorogold (FG) retrograde tracing revealed sparing/regeneration of supraspinal and local propriospinal axonal pathways, but no statistical differences were observed compared to controls. Immunohistochemical analysis revealed increased serotonergic (5-HT) and sensory (CGRP) axonal growth within and surrounding transplanted donor hMPCs 2 weeks posttransplantation, but no evidence of hMPC transdifferentiation was seen. Although hMPCs initially survive at 2 weeks posttransplantation, their numbers were dramatically reduced and no cells were detected at 8 weeks posttransplantation using retroviral/lentiviral GFP labeling and a human nuclear antigen (HNA) antibody. Additional immunosuppression with CsA did not improve hMPC survival or their ability to promote tissue sparing or functional recovery. We propose Stro-1(+)-selected hMPCs provide (i) a reproducible source for stem cell transplantation for SC therapy and (ii) a positive host microenvironment resulting in the promotion of tissue sparing/repair that subsequently improves behavioral outcomes

  15. Use of poly(DL-lactide-ε-caprolactone) membranes and mesenchymal stem cells from the Wharton's jelly of the umbilical cord for promoting nerve regeneration in axonotmesis: in vitro and in vivo analysis.

    Science.gov (United States)

    Gärtner, A; Pereira, T; Alves, Marco G; Armada-da-Silva, P A S; Amorim, I; Gomes, R; Ribeiro, J; França, M L; Lopes, C; Carvalho, Rui A; Socorro, S; Oliveira, Pedro F; Porto, B; Sousa, R; Bombaci, A; Ronchi, G; Fregnan, F; Varejão, A S P; Luís, A L; Geuna, S; Maurício, A C

    2012-12-01

    Cellular systems implanted into an injured nerve may produce growth factors or extracellular matrix molecules, modulate the inflammatory process and eventually improve nerve regeneration. In the present study, we evaluated the therapeutic value of human umbilical cord matrix MSCs (HMSCs) on rat sciatic nerve after axonotmesis injury associated to Vivosorb® membrane. During HMSCs expansion and differentiation in neuroglial-like cells, the culture medium was collected at 48, 72 and 96 h for nuclear magnetic resonance (NMR) analysis in order to evaluate the metabolic profile. To correlate the HMSCs ability to differentiate and survival capacity in the presence of the Vivosorb® membrane, the [Ca(2+)]i of undifferentiated HMSCs or neuroglial-differentiated HMSCs was determined by the epifluorescence technique using the Fura-2AM probe. The Vivosorb® membrane proved to be adequate and used as scaffold associated with undifferentiated HMSCs or neuroglial-differentiated HMSCs. In vivo testing was carried out in adult rats where a sciatic nerve axonotmesis injury was treated with undifferentiated HMSCs or neuroglial differentiated HMSCs with or without the Vivosorb® membrane. Motor and sensory functional recovery was evaluated throughout a healing period of 12 weeks using sciatic functional index (SFI), extensor postural thrust (EPT), and withdrawal reflex latency (WRL). Stereological analysis was carried out on regenerated nerve fibers. In vitro investigation showed the formation of typical neuroglial cells after differentiation, which were positively stained for the typical specific neuroglial markers such as the GFAP, the GAP-43 and NeuN. NMR showed clear evidence that HMSCs expansion is glycolysis-dependent but their differentiation requires the switch of the metabolic profile to oxidative metabolism. In vivo studies showed enhanced recovery of motor and sensory function in animals treated with transplanted undifferentiated and differentiated HMSCs that was

  16. [Bone and Stem Cells. The mechanism of osteogenic differentiation from mesenchymal stem cell].

    Science.gov (United States)

    Ohata, Yasuhisa; Ozono, Keiichi

    2014-04-01

    Osteoblasts and osteocytes originate from pluripotent mesenchymal stem cells. Mesenchymal stem cells commit to osteogenic lineage and differentiate into mature osteoblasts and osteocytes through osteoprogenitor cells and preosteoblasts in response to multiple stimuli. The osteoblast commitment, differentiation, and functions are governed by several transcription factors. Among these transcription factors, runt-related transcription factor 2 (Runx2) is a crucial factor in osteoblast differentiation and controls bone formation. Differentiation toward these osteogenic lineage is controlled by a multitude of cytokines including WNTs, bone morphogenetic protein (BMP) , transforming growth factor-β (TGF-β) , hedgehog, parathyroid hormone (PTH) /parathyroid hormone related protein (PTHrP) , insulin-like growth factor-1 (IGF-1) , fibroblast growth factor (FGF) , and Notch. Although regulation of Runx2 activity is a point of convergence of many of the signal transduction routes, there is also a high degree of cross-talk between these pathways. Thus, the combined action of the signal transduction pathways induced by some cytokines determines the commitment and differentiation of mesenchymal stem cells toward the osteogenic lineage.

  17. Induced pluripotent stem cell-derived mesenchymal stem cells: A leap toward personalized therapies.

    Science.gov (United States)

    Whitt, Jason; Vallabhaneni, Krishna C; Penfornis, Patrice; Pochampally, Radhika

    2016-01-01

    Mesenchymal Stem/stromal cell (MSCs) transplantation procedures have been used since the 1960's to treat leukemia and other diseases, but due to the risks involved only patients with life threatening illnesses were typically subjected to the transplantation procedure until the last decade. Recent advancements in transplantation techniques have made it more feasible to use it for non-life-threatening diseases. However, the potential uses for stem cells are still limited by their rarity, and, in the case of allogeneic transplants, graft-vs.-host complications. An evolving alternative to conventional stem cell therapies is induced pluripotent stem-cell derived mesenchymal stem/stromal cells (iPSC- MSCs), which have a multi-lineage potential comparable to conventionally acquired MSCs with the added benefit of being less immunoreactive. However there are still many hurdles left to be overcome before they can be used regularly for personalized therapies. This review will focus on recent advancements that have been made regarding the role MSCs play in tumor development and the potential uses iPSC-MSCs may have in future cancer treatment.

  18. Guidance of mesenchymal stem cells on fibronectin structured hydrogel films.

    Directory of Open Access Journals (Sweden)

    Annika Kasten

    Full Text Available Designing of implant surfaces using a suitable ligand for cell adhesion to stimulate specific biological responses of stem cells will boost the application of regenerative implants. For example, materials that facilitate rapid and guided migration of stem cells would promote tissue regeneration. When seeded on fibronectin (FN that was homogeneously immmobilized to NCO-sP(EO-stat-PO, which otherwise prevents protein binding and cell adhesion, human mesenchymal stem cells (MSC revealed a faster migration, increased spreading and a more rapid organization of different cellular components for cell adhesion on fibronectin than on a glass surface. To further explore, how a structural organization of FN controls the behavior of MSC, adhesive lines of FN with varying width between 10 µm and 80 µm and spacings between 5 µm and 20 µm that did not allow cell adhesion were generated. In dependance on both line width and gaps, cells formed adjacent cell contacts, were individually organized in lines, or bridged the lines. With decreasing sizes of FN lines, speed and directionality of cell migration increased, which correlated with organization of the actin cytoskeleton, size and shape of the nuclei as well as of focal adhesions. Together, defined FN lines and gaps enabled a fine tuning of the structural organization of cellular components and migration. Microstructured adhesive substrates can mimic the extracellular matrix in vivo and stimulate cellular mechanisms which play a role in tissue regeneration.

  19. Characterization of mesenchymal stem cells derived from equine adipose tissue

    Directory of Open Access Journals (Sweden)

    A.M. Carvalho

    2013-08-01

    Full Text Available Stem cell therapy has shown promising results in tendinitis and osteoarthritis in equine medicine. The purpose of this work was to characterize the adipose-derived mesenchymal stem cells (AdMSCs in horses through (1 the assessment of the capacity of progenitor cells to perform adipogenic, osteogenic and chondrogenic differentiation; and (2 flow cytometry analysis using the stemness related markers: CD44, CD90, CD105 and MHC Class II. Five mixed-breed horses, aged 2-4 years-old were used to collect adipose tissue from the base of the tail. After isolation and culture of AdMSCs, immunophenotypic characterization was performed through flow cytometry. There was a high expression of CD44, CD90 and CD105, and no expression of MHC Class II markers. The tri-lineage differentiation was confirmed by specific staining: adipogenic (Oil Red O, osteogenic (Alizarin Red, and chondrogenic (Alcian Blue. The equine AdMSCs are a promising type of adult progenitor cell for tissue engineering in veterinary medicine.

  20. The role of catecholamines in mesenchymal stem cell fate.

    Science.gov (United States)

    Hajifathali, Abbas; Saba, Fakhredin; Atashi, Amir; Soleimani, Masoud; Mortaz, Esmaeil; Rasekhi, Mahsa

    2014-12-01

    Mesenchymal stem cells (MSCs) are multipotent stem cells found in many adult tissues, especially bone marrow (BM) and are capable of differentiation into various lineage cells such as osteoblasts, adipocytes, chondrocytes and myocytes. Moreover, MSCs can be mobilized from connective tissue into circulation and from there to damaged sites to contribute to regeneration processes. MSCs commitment and differentiation are controlled by complex activities involving signal transduction through cytokines and catecholamines. There has been an increasing interest in recent years in the neural system, functioning in the support of stem cells like MSCs. Recent efforts have indicated that the catecholamine released from neural and not neural cells could be affected characteristics of MSCs. However, there have not been review studies of most aspects involved in catecholamines-mediated functions of MSCs. Thus, in this review paper, we will try to describe the current state of catecholamines in MSCs destination and discuss strategies being used for catecholamines for migration of these cells to damaged tissues. Then, the role of the nervous system in the induction of osteogenesis, adipogenesis, chondrogenesis and myogenesis from MSCs is discussed. Recent progress in studies of signaling transduction of catecholamines in determination of the final fate of MSCs is highlighted. Hence, the knowledge of interaction between MSCs with the neural system could be applied towards the development of new diagnostic and treatment alternatives for human diseases.

  1. The interaction between mesenchymal stem cells and steroids during inflammation.

    Science.gov (United States)

    Chen, X; Gan, Y; Li, W; Su, J; Zhang, Y; Huang, Y; Roberts, A I; Han, Y; Li, J; Wang, Y; Shi, Y

    2014-01-23

    Mesenchymal stem cells (MSCs) are believed to exert their regenerative effects through differentiation and modulation of inflammatory responses. However, the relationship between the severity of inflammation and stem cell-mediated tissue repair has not been formally investigated. In this study, we applied different concentrations of dexamethasone (Dex) to anti-CD3-activated splenocyte cultured with or without MSCs. As expected, Dex exhibited a classical dose-dependent inhibition of T-cell proliferation. Surprisingly, although MSCs also blocked T-cell proliferation, the presence of Dex unexpectedly showed a dose-dependent reversion of T-cell proliferation. This effect of Dex was found to be exerted through interfering STAT1 phosphorylation-prompted expression of inducible nitric oxide synthase (iNOS). Interestingly, inflammation-induced chemokines in MSCs was unaffected. To test the role of inflammation severity in stem cell-mediated tissue repair, we employed mice with carbon tetrachloride-induced advanced liver fibrosis and found that although MSCs alone were effective, concurrent administration of Dex abrogated the therapeutic effects of MSCs on fibrin deposition, serum levels of bilirubin, albumin, and aminotransferases, as well as T-lymphocyte infiltration, especially IFN-γ(+)CD4(+) and IL-17A(+)CD4(+)T cells. Likewise, iNOS(-/-) MSCs, which produce chemokines but not nitric oxide under inflammatory conditions, are ineffective in treating advanced liver fibrosis. Therefore, inflammation has a critical role in MSC-mediated tissue repair. In addition, concomitant application of MSCs with steroids should be avoided.

  2. Mesenchymal stem cells as therapeutic delivery vehicles targeting tumor stroma.

    Science.gov (United States)

    Serakinci, Nedime; Christensen, Rikke; Fahrioglu, Umut; Sorensen, Flemming Brandt; Dagnæs-Hansen, Frederik; Hajek, Miroslav; Jensen, Tinna Herløv; Kolvraa, Steen; Keith, Nicol W

    2011-12-01

    The field of stem cell biology continues to evolve by characterization of further types of stem cells and by exploring their therapeutic potential for experimental and clinical applications. Human mesenchymal stem cells (hMSCs) are one of the most promising candidates simply because of their easiness of both ex vivo expansion in culture dishes and genetic manipulation. Despite many extensive isolation and expansion studies, relatively little has been done with regard to hMSCs' therapeutic potential. Although clinical trials using hMSCs are underway, their use in cancer therapy still needs better understanding and in vivo supporting data. The homing ability of hMSCs was investigated by creating a human xenograft model by transplanting an ovarian cancer cell line into immunocompromised mice. Then, genetically engineered hMSC-telo1 cells were injected through the tail vein and the contribution and distribution of hMSCs to the tumor stroma were investigated by immunohistochemistry and PCR specific to the telomerase gene. Results show that exogenously administered hMSCs preferentially home, engraft, and proliferate at tumor sites and contribute to the population of stromal fibroblasts. In conclusion, this study provides support for the capacity of hMSCs to home to tumor site and serve as a delivery platform for chemotherapeutic agents.

  3. Mesenchymal stem cells for cartilage repair in osteoarthritis.

    Science.gov (United States)

    Gupta, Pawan K; Das, Anjan K; Chullikana, Anoop; Majumdar, Anish S

    2012-07-09

    Osteoarthritis (OA) is a degenerative disease of the connective tissue and progresses with age in the older population or develops in young athletes following sports-related injury. The articular cartilage is especially vulnerable to damage and has poor potential for regeneration because of the absence of vasculature within the tissue. Normal load-bearing capacity and biomechanical properties of thinning cartilage are severely compromised during the course of disease progression. Although surgical and pharmaceutical interventions are currently available for treating OA, restoration of normal cartilage function has been difficult to achieve. Since the tissue is composed primarily of chondrocytes distributed in a specialized extracellular matrix bed, bone marrow stromal cells (BMSCs), also known as bone marrow-derived 'mesenchymal stem cells' or 'mesenchymal stromal cells', with inherent chondrogenic differentiation potential appear to be ideally suited for therapeutic use in cartilage regeneration. BMSCs can be easily isolated and massively expanded in culture in an undifferentiated state for therapeutic use. Owing to their potential to modulate local microenvironment via anti-inflammatory and immunosuppressive functions, BMSCs have an additional advantage for allogeneic application. Moreover, by secreting various bioactive soluble factors, BMSCs can protect the cartilage from further tissue destruction and facilitate regeneration of the remaining progenitor cells in situ. This review broadly describes the advances made during the last several years in BMSCs and their therapeutic potential for repairing cartilage damage in OA.

  4. Melatonin regulates mesenchymal stem cell differentiation: a review.

    Science.gov (United States)

    Luchetti, Francesca; Canonico, Barbara; Bartolini, Desirée; Arcangeletti, Marcella; Ciffolilli, Silvia; Murdolo, Giuseppe; Piroddi, Marta; Papa, Stefano; Reiter, Russel J; Galli, Francesco

    2014-05-01

    Among the numerous functions of melatonin, the control of survival and differentiation of mesenchymal stem cells (MSCs) has been recently proposed. MSCs are a heterogeneous population of multipotent elements resident in tissues such as bone marrow, muscle, and adipose tissue, which are primarily involved in developmental and regeneration processes, gaining thus increasing interest for tissue repair and restoration therapeutic protocols. Receptor-dependent and receptor-independent responses to melatonin are suggested to occur in these cells. These involve antioxidant or redox-dependent functions of this indolamine as well as secondary effects resulting from autocrine and paracrine responses. Inflammatory cytokines and adipokines, proangiogenic/mitogenic stimuli, and other mediators that influence the differentiation processes may affect the survival and functional integrity of these mesenchymal precursor cells. In this scenario, melatonin seems to regulate signaling pathways that drive commitment and differentiation of MSC into osteogenic, chondrogenic, adipogenic, or myogenic lineages. Common pathways suggested to be involved as master regulators of these processes are the Wnt/β-catenin pathway, the MAPKs and the, TGF-β signaling. In this respect melatonin emerges a novel and potential modulator of MSC lineage commitment and adipogenic differentiation. These and other aspects of the physiological and pharmacological effects of melatonin as regulator of MSC are discussed in this review. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Decellularized Matrix from Tumorigenic Human Mesenchymal Stem Cells Promotes Neovascularization with Galectin-1 Dependent Endothelial Interaction

    Science.gov (United States)

    Burns, Jorge S.; Kristiansen, Malthe; Kristensen, Lars P.; Larsen, Kenneth H.; Nielsen, Maria O.; Christiansen, Helle; Nehlin, Jan; Andersen, Jens S.; Kassem, Moustapha

    2011-01-01

    Background Acquisition of a blood supply is fundamental for extensive tumor growth. We recently described vascular heterogeneity in tumours derived from cell clones of a human mesenchymal stem cell (hMSC) strain (hMSC-TERT20) immortalized by retroviral vector mediated human telomerase (hTERT) gene expression. Histological analysis showed that cells of the most vascularized tumorigenic clone, -BD11 had a pericyte-like alpha smooth muscle actin (ASMA+) and CD146+ positive phenotype. Upon serum withdrawal in culture, -BD11 cells formed cord-like structures mimicking capillary morphogenesis. In contrast, cells of the poorly tumorigenic clone, -BC8 did not stain for ASMA, tumours were less vascularized and serum withdrawal in culture led to cell death. By exploring the heterogeneity in hMSC-TERT20 clones we aimed to understand molecular mechanisms by which mesenchymal stem cells may promote neovascularization. Methodology/Principal Findings Quantitative qRT-PCR analysis revealed similar mRNA levels for genes encoding the angiogenic cytokines VEGF and Angiopoietin-1 in both clones. However, clone-BD11 produced a denser extracellular matrix that supported stable ex vivo capillary morphogenesis of human endothelial cells and promoted in vivo neovascularization. Proteomic characterization of the -BD11 decellularized matrix identified 50 extracellular angiogenic proteins, including galectin-1. siRNA knock down of galectin-1 expression abrogated the ex vivo interaction between decellularized -BD11 matrix and endothelial cells. More stable shRNA knock down of galectin-1 expression did not prevent -BD11 tumorigenesis, but greatly reduced endothelial migration into -BD11 cell xenografts. Conclusions Decellularized hMSC matrix had significant angiogenic potential with at least 50 angiogenic cell surface and extracellular proteins, implicated in attracting endothelial cells, their adhesion and activation to form tubular structures. hMSC -BD11 surface galectin-1 expression was

  6. The Life and Fate of Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Elke eEggenhofer

    2014-05-01

    Full Text Available Mesenchymal stem cells (MSC are present throughout the body and are thought to play a role in tissue regeneration and control of inflammation. MSC can be easily expanded in vitro and their potential as a therapeutic option for degenerative and inflammatory disease is therefore intensively investigated. Whilst it was initially thought that MSC would replace dysfunctional cells and migrate to sites of injury to interact with inflammatory cells, experimental evidence indicates that the majority of administered MSC get trapped in capillary networks and have a short life span. In this review we discuss current knowledge on the migratory properties of endogenous and exogenous MSC and confer on how culture induced modifications of MSC may affect these properties. Finally we will discuss how, despite their limited survival, administered MSC can bring about their therapeutic effects.

  7. Mesenchymal stem cell-derived extracellular vesicles for renal repair

    Science.gov (United States)

    Nargesi, Arash Aghajani; Lerman, Lilach O.; Eirin, Alfonso

    2017-01-01

    Transplantation of autologous mesenchymal stem cells (MSCs) has been shown to attenuate renal injury and dysfunction in several animal models, and its efficacy is currently being tested in clinical trials for patients with renal disease. Accumulating evidence indicates that MSCs release extracellular vesicles (EVs) that deliver genes, microRNAs and proteins to recipient cells, acting as mediators of MSC paracrine actions. In this context, it is critical to characterize the MSC-derived EV cargo to elucidate their potential contribution to renal repair. In recent years, researchers have performed high-throughput sequencing and proteomic analysis to detect and identify genes, microRNAs, and proteins enriched in MSC-derived EVs. The present review summarizes the current knowledge of the MSC-derived EV secretome to shed light into the mechanisms mediating MSC renal repair, and discusses preclinical and clinical studies testing the efficacy of MSC-derived EVs for treating renal disease. PMID:28403795

  8. Mesenchymal stem cell application in children with subacute sclerosing panencephalitis.

    Science.gov (United States)

    Kuşkonmaz, Bariş; Uçkan, Duygu; Yalnizoğlu, Dilek; Günel, Mintaze; Karli Oğuz, Kader; Konuşkan, Bahadir; Anlar, Banu

    2015-09-01

    Subacute sclerosing panencephalitis (SSPE) is a serious, often fatal disease that responds poorly to current treatment modalities. Recently, the ability of mesenchymal stem cells (MSCs) to produce neurotrophic factors and inflammatory molecules has placed them among potential treatment agents for neurological conditions. We report the results of four patients treated with MSC for SSPE. The patients were followed up clinically, and by periodical laboratory evaluations, magnetic resonance imaging (MRI), and electroencephalography. One patient deteriorated to stage III of the disease, two patients remained in the same stage, and one died from disease progression and respiratory problems. Neurological findings and electroencephalography scores were consistent with the clinical course of the patient whereas MRI showed new inflammatory lesions in two patients. This is the first report of the application of MSC in SSPE. No benefit is demonstrated. © 2015 Mac Keith Press.

  9. Osteoarthritis and Mesenchymal Stem Cell Therapy: An Overview

    Directory of Open Access Journals (Sweden)

    I Gusti Ayu Putri Purwanthi

    2017-08-01

    Full Text Available Osteoarthritis (OA is the most common form of arthritis that affects cartilage joints and leads to disability. OA becomes the major public health problem, as it is the most leading cause of disability and morbidity worldwide. Treatment choices for OA can be classified into several categories such as non-pharmacologic, pharmacologic, surgical therapy, and cell-based therapy. There is no curative treatment for OA, while conventional treatments that are commonly used focus on alleviating the pain as the main symptom of the disease. Mesenchymal stem cells (MSCs that can be found in several tissues of human body offer a new strategy for OA treatment owing to their ability to differentiate into chondrocytes. This article provides an overview about the basic concept of osteoarthritis as well as an insight about the MSCs therapy, including their basic characteristics, source, and transplantation strategies in the OA area.

  10. Good manufacturing practices production of mesenchymal stem/stromal cells.

    Science.gov (United States)

    Sensebé, Luc; Bourin, Philippe; Tarte, Karin

    2011-01-01

    Because of their multi/pluripotency and immunosuppressive properties mesenchymal stem/stromal cells (MSCs) are important tools for treating immune disorders and for tissue repair. The increasing use of MSCs has led to production processes that need to be in accordance with Good Manufacturing Practice (GMP). In cellular therapy, safety remains one of the main concerns and refers to donor validation, choice of starting material, processes, and the controls used, not only at the batch release level but also during the development of processes. The culture processes should be reproducible, robust, and efficient. Moreover, they should be adapted to closed systems that are easy to use. Implementing controls during the manufacturing of clinical-grade MSCs is essential. The controls should ensure microbiological safety but also avoid potential side effects linked to genomic instability driving transformation and senescence or decrease of cell functions (immunoregulation, differentiation potential). In this rapidly evolving field, a new approach to controls is needed.

  11. [Immunomodulatory properties of stem mesenchymal cells in autoimmune diseases].

    Science.gov (United States)

    Sánchez-Berná, Isabel; Santiago-Díaz, Carlos; Jiménez-Alonso, Juan

    2015-01-20

    Autoimmune diseases are a cluster of disorders characterized by a failure of the immune tolerance and a hyperactivation of the immune system that leads to a chronic inflammation state and the damage of several organs. The medications currently used to treat these diseases usually consist of immunosuppressive drugs that have significant systemic toxic effects and are associated with an increased risk of opportunistic infections. Recently, several studies have demonstrated that mesenchymal stem cells have immunomodulatory properties, a feature that make them candidates to be used in the treatment of autoimmune diseases. In the present study, we reviewed the role of this therapy in the treatment of systemic lupus erythematosus, Sjögren's syndrome, systemic sclerosis, Crohn's disease and multiple sclerosis, as well as the potential risks associated with its use. Copyright © 2013 Elsevier España, S.L.U. All rights reserved.

  12. Mesenchymal stem cells and their immunosuppressive role in transplantation tolerance.

    Science.gov (United States)

    Contreras-Kallens, Pamina; Terraza, Claudia; Oyarce, Karina; Gajardo, Tania; Campos-Mora, Mauricio; Barroilhet, María Teresa; Álvarez, Carla; Fuentes, Ricardo; Figueroa, Fernando; Khoury, Maroun; Pino-Lagos, Karina

    2017-07-12

    Since they were first described, mesenchymal stem cells (MSCs) have been shown to have important effector mechanisms and the potential for use in cell therapy. A great deal of research has been focused on unveiling how MSCs contribute to anti-inflammatory responses, including describing several cell populations involved and identifying soluble and other effector molecules. In this review, we discuss some of the contemporary evidence for use of MSCs in the field of immune tolerance, with a special emphasis on transplantation. Although considerable effort has been devoted to understanding the biological function of MSCs, additional resources are required to clarify the mechanisms of their induction of immune tolerance, which will undoubtedly lead to improved clinical outcomes for MSC-based therapies. © 2017 New York Academy of Sciences.

  13. Mesenchymal stem cells as immunomodulators in a vascularized composite allotransplantation.

    Science.gov (United States)

    Kuo, Yur-Ren; Chen, Chien-Chang; Goto, Shigeru; Lin, Pao-Yuan; Wei, Fu-Chan; Chen, Chao-Long

    2012-01-01

    Vascularized composite allotransplantations (VCAs) are not routinely performed for tissue reconstruction because of the potentially harmful adverse effects associated with lifelong administration of immunosuppressive agents. Researchers have been eagerly seeking alternative methods that circumvent the long-term use of immunosuppressants. Mesenchymal stem cells (MSCs) show promise as an immunomodulatory therapeutic agent and are currently being tested in preclinical and clinical settings as therapies for autoimmune disorders or transplant rejection. The mechanisms by which MSCs modulate the immune response are still under thorough investigation, but these most likely involve expression of local factors influencing T-cell regulation, modulation of cytokine expression (e.g., IL-10, TGF-β, TNF-α, INF-γ, etc.), and interactions with dendritic or antigen presenting cells. In this paper, we summarize the current understanding of immunomodulation achieved by MSC therapies and introduce a possible outline for future clinical applications in VCA.

  14. Mesenchymal Stem Cells as Immunomodulators in a Vascularized Composite Allotransplantation

    Directory of Open Access Journals (Sweden)

    Yur-Ren Kuo

    2012-01-01

    Full Text Available Vascularized composite allotransplantations (VCAs are not routinely performed for tissue reconstruction because of the potentially harmful adverse effects associated with lifelong administration of immunosuppressive agents. Researchers have been eagerly seeking alternative methods that circumvent the long-term use of immunosuppressants. Mesenchymal stem cells (MSCs show promise as an immunomodulatory therapeutic agent and are currently being tested in preclinical and clinical settings as therapies for autoimmune disorders or transplant rejection. The mechanisms by which MSCs modulate the immune response are still under thorough investigation, but these most likely involve expression of local factors influencing T-cell regulation, modulation of cytokine expression (e.g., IL-10, TGF-β, TNF-, INF-γ, etc., and interactions with dendritic or antigen presenting cells. In this paper, we summarize the current understanding of immunomodulation achieved by MSC therapies and introduce a possible outline for future clinical applications in VCA.

  15. Mesenchymal stem cell ingrowth and differentiation on coralline hydroxyapatite scaffolds

    DEFF Research Database (Denmark)

    Mygind, Tina; Stiehler, Maik; Baatrup, Anette

    2007-01-01

    Culture of osteogenic cells on a porous scaffold could offer a new solution to bone grafting using autologous human mesenchymal stem cells (hMSC) from the patient. We compared coralline hydroxyapatite scaffolds with pore sizes of 200 and 500 microm for expansion and differentiation of hMSCs. We...... polymerase chain reaction for 10 osteogenic markers. The 500-microm scaffolds had increased proliferation rates and accommodated a higher number of cells (shown by DNA content, scanning electron microscopy and fluorescence microscopy). Thus the porosity of a 3D microporous biomaterial may be used to steer h......MSC in a particular direction. We found that dynamic spinner flask cultivation of hMSC/scaffold constructs resulted in increased proliferation, differentiation and distribution of cells in scaffolds. Therefore, spinner flask cultivation is an easy-to-use inexpensive system for cultivating hMSCs on small...

  16. Adult Mesenchymal Stem Cells: When, Where, and How

    Directory of Open Access Journals (Sweden)

    Arnold I. Caplan

    2015-01-01

    Full Text Available Adult mesenchymal stem cells (MSCs have profound medicinal effects at body sites of tissue injury, disease, or inflammation as either endogenously or exogenously supplied. The medicinal effects are either immunomodulatory or trophic or both. When to deliver these mediators of regeneration, where, and by what delivery apparatus or mechanism will directly determine their medical efficacy. The MSCs help manage the innate regenerative capacity of almost every body tissue and the MSCs have only recently been fully appreciated. Perhaps the most skilled physician-manager of the body’s innate regenerative capacity is in orthopedics where the vigorous regeneration and repair capacity of bone through local MSCs-titers is expertly managed by the orthopaedic physician. The challenge is to extend MSCs expertise to address other tissue dysfunctions and diseases. The medicine of tomorrow will encompass optimizing the tissues’ intrinsic regenerative potential through management of local MSCs.

  17. Mesenchymal stem cell therapy: Two steps forward, one step back

    Science.gov (United States)

    Ankrum, James; Karp, Jeffrey M.

    2010-01-01

    Mesenchymal stem cell (MSC) therapy is poised to establish a new clinical paradigm; however, recent trials have produced mixed results. Although MSC were originally considered to treat connective tissue defects, preclinical studies revealed potent immunomodulatory properties that prompted the use of MSC to treat numerous inflammatory conditions. Unfortunately, although clinical trials have met safety endpoints, efficacy has not been demonstrated. We believe the challenge to demonstrate efficacy can be attributed in part to an incomplete understanding of the fate of MSC following infusion. Here, we highlight the clinical status of MSC therapy and discuss the importance of cell-tracking techniques, which have advanced our understanding of the fate and function of systemically infused MSC and might improve clinical application. PMID:20335067

  18. Wound-healing potential of human umbilical cord blood-derived mesenchymal stromal cells in vitro--a pilot study.

    Science.gov (United States)

    You, Hi-Jin; Namgoong, Sik; Han, Seung-Kyu; Jeong, Seong-Ho; Dhong, Eun-Sang; Kim, Woo-Kyung

    2015-11-01

    Our previous studies demonstrated that human bone marrow-derived mesenchymal stromal cells have great potential for wound healing. However, it is difficult to clinically utilize cultured stem cells. Recently, human umbilical cord blood-derived mesenchymal stromal cells (hUCB-MSCs) have been commercialized for cartilage repair as a first cell therapy product that uses allogeneic stem cells. Should hUCB-MSCs have a superior effect on wound healing as compared with fibroblasts, which are the main cell source in current cell therapy products for wound healing, they may possibly replace fibroblasts. The purpose of this in vitro study was to compare the wound-healing activity of hUCB-MSCs with that of fibroblasts. This study was particularly designed to compare the effect of hUCB-MSCs on diabetic wound healing with those of allogeneic and autologous fibroblasts. Healthy (n = 5) and diabetic (n = 5) fibroblasts were used as the representatives of allogeneic and autologous fibroblasts for diabetic patients in the control group. Human UCB-MSCs (n = 5) were used in the experimental group. Cell proliferation, collagen synthesis and growth factor (basic fibroblast growth factor, vascular endothelial growth factor and transforming growth factor-β) production were compared among the three cell groups. Human UCB-MSCs produced significantly higher amounts of vascular endothelial growth factor and basic fibroblast growth factor when compared with both fibroblast groups. Human UCB-MSCs were superior to diabetic fibroblasts but not to healthy fibroblasts in collagen synthesis. There were no significant differences in cell proliferation and transforming growth factor-β production. Human UCB-MSCs may have greater capacity for diabetic wound healing than allogeneic or autologous fibroblasts, especially in angiogenesis. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  19. Can mesenchymal stem cell survive in hydroxyapatite sulphate?

    Directory of Open Access Journals (Sweden)

    Erica Kholinne

    2012-02-01

    Full Text Available Background: Many studies have reported the role of Mesenchymal Stem Cells (MSC in treating fractures. In case with bone defect, fracture healing needs not only osteogenic but also osteoconductive component (scaffold. Hydroxyapatite calcium sulphate (HA-CaSO4 being widely used as bone void filler, may serve as scaffold for MSC. However, the effect of this scaffold to the viability of MSC has not been evaluated before.Methods: MSC were isolated from the iliac marrow of a Giant Flamish rabbit, and expanded in DMEM using histogradient density. After one week, they were sub-cultured in a 25cc TC flask (passage 1 and have the medium replaced every 3 days. During the subculture, we embedded a HA-CaSO4 pellet into the flask. The cells were evaluated under inverted microscope at a weekly interval.Results: At the first week, MSC are difficult to be identified in microscope due to the large number of HA-CaSO4 crystals. By the third week however MSC have grown and the HA-CaSO4 crystals can readily be washed off by medium replacement. By the fourth weeks, MSC can be still seen on microscope.Conclusion: HA-CaSO4 could serve as a good scaffold due to its pellet shape and easily absorbed, thus providing revascularization which is essential for bone healing.In addition, HA-CaSO4 does not interfere with MSC survival. (Med J Indones 2012;21:8-12Keywords: Fracture healing, Hydroxyapatite Calcium Sulphate (HA-CaSO4, Mesenchymal Stem Cells (MSC

  20. Mesenchymal Stem Cells Obtained from Synovial Fluid Mesenchymal Stem Cell-Derived Induced Pluripotent Stem Cells on a Matrigel Coating Exhibited Enhanced Proliferation and Differentiation Potential

    OpenAIRE

    Zheng, Yu-Liang; Sun, Yang-Peng; Zhang, Hong; Liu, Wen-Jing; Jiang, Rui; Li, Wen-Yu; Zheng, You-Hua; Zhang, Zhi-Guang

    2015-01-01

    Induced pluripotent stem cell-derived mesenchymal stem cells (iPSC-MSCs) serve as a promising source for cell-based therapies in regenerative medicine. However, optimal methods for transforming iPSCs into MSCs and the characteristics of iPSC-MSCs obtained from different methods remain poorly understood. In this study, we developed a one-step method for obtaining iPSC-MSCs (CD146+STRO-1+ MSCs) from human synovial fluid MSC-derived induced iPSCs (SFMSC-iPSCs). CD146-STRO-1-SFMSCs were reprogram...

  1. Regeneration of musculoskeletal injuries using mesenchymal stem cells loaded scaffolds: review article

    Directory of Open Access Journals (Sweden)

    Maryam Ataie

    2017-07-01

    are better suggestion. Combination of mesenchymal stem cells harvested from bone marrow, adipose tissue and cord blood with proper scaffolds and growth factors could be a useful method in treatment of skeletal injuries. In this review paper, we focus on the application of mesenchymal stem cells in the repair of damaged bone, cartilage, meniscus, ligaments, tendons and spine tissue.

  2. Progress in the study of stem cell transplantation for the repair of spinal cord injury

    Directory of Open Access Journals (Sweden)

    Chao Zhang

    2017-08-01

    Full Text Available Spinal cord injury is a critical medical emergency that severely jeopardizes human health. Such injuries can cause lifelong paralysis and lead to various complications, including death, and there are often tremendous economic and emotional burdens placed on the society and family. Therefore, the study of spinal cord injury repair has important significance. The use of stem cell transplantation to repair spinal cord injury has been the focus and cause of difficulty in studies of spinal cord injury repair in recent years. However, there are numerous types of stem cells, diverse cell transplantation methods and different injury models that often cause confusion for investigators. The goal of this paper is to review the studies of spinal cord injury repair with various stem cells and summarize the bottleneck of stem cell transplantation for spinal cord injury repair to reveal the future direction of stem cell transplantation studies for spinal cord injury repair.

  3. Autologous Transplantation of Amniotic Fluid-Derived Mesenchymal Stem Cells into Sheep Fetuses.

    Science.gov (United States)

    Shaw, S W Steven; Bollini, Sveva; Nader, Khalil Abi; Gastaldello, Annalisa; Mehta, Vedanta; Filppi, Elisa; Cananzi, Mara; Gaspar, H Bobby; Qasim, Waseem; De Coppi, Paolo; David, Anna L

    2016-03-01

    Long-term engraftment and phenotype correction has been difficult to achieve in humans after in utero stem cell transplantation mainly because of allogeneic rejection. Autologous cells could be obtained during gestation from the amniotic fluid with minimal risk for the fetus and the mother. Using a sheep model, we explored the possibility of using amniotic fluid mesenchymal stem cells (AFMSCs) for autologous in utero stem cell/gene therapy. We collected amniotic fluid (AF) under ultrasound-guided amniocentesis in early gestation pregnant sheep ( n = 9, 58 days of gestation, term = 145 days). AFMSCs were isolated and expanded in all sampled fetal sheep. Those cells were transduced using an HIV vector encoding enhanced green fluorescent protein (GFP) with 63.2% (range 38.3-96.2%) transduction efficiency rate. After expansion, transduced AFMSCs were injected into the peritoneal cavity of each donor fetal sheep at 76 days under ultrasound guidance. One ewe miscarried twin fetuses after amniocentesis. Intraperitoneal injection was successful in the remaining 7 fetal sheep giving a 78% survival for the full procedure. Tissues were sampled at postmortem examination 2 weeks later. PCR analysis detected GFP-positive cells in fetal tissues including liver, heart, placenta, membrane, umbilical cord, adrenal gland, and muscle. GFP protein was detected in these tissues by Western blotting and further confirmed by cytofluorimetric and immunofluorescence analyses. This is the first demonstration of autologous stem cell transplantation in the fetus using AFMSCs. Autologous cells derived from AF showed widespread organ migration and could offer an alternative way to ameliorate prenatal congenital disease.

  4. Mesenchymal stem cell characteristics of dental pulp and periodontal ligament stem cells after in vivo transplantation.

    Science.gov (United States)

    Lei, Ming; Li, Kun; Li, Bei; Gao, Li-Na; Chen, Fa-Ming; Jin, Yan

    2014-08-01

    Mesenchymal stem cells (MSCs) isolated from human postnatal dental pulp and periodontal ligament (PDL) tissues can give rise to multilineage differentiation in vitro and generate related dental tissues in vivo. However, the cell properties of human dental pulp stem cells (DPSCs) and PDL stem cells (PDLSCs) after in vivo implantation remain largely unidentified. In this study, cells were re-isolated from in vivo-generated dental pulp-like and PDL-like tissues (termed re-DPCs and re-PDLCs, respectively) as a result of ectopic transplantation of human DPSC and PDLSC sheets. The cell characteristics in terms of colony-forming ability, cell surface antigens and multi-differentiation potentials were all evaluated before and after implantation. It was found that re-DPCs and re-PDLCs were of human and mesenchymal origin and positive for MSC markers such as STRO-1, CD146, CD29, CD90 and CD105; and, to some extent, re-DPCs could maintain their colony forming abilities. Moreover, both cell types were able to form mineral deposits and differentiate into adipocytes and chondrocytes; however, quantitative analysis and related gene expression determination showed that the osteo-/chondro-differentiation capabilities of re-DPCs and re-PDLCs were significantly reduced compared to those of DPSCs and PDLSCs, respectively (P dental tissue-derived stem cells in cell therapy and tissue engineering. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Myogenic-induced mesenchymal stem cells are capable of modulating the immune response by regulatory T cells

    Directory of Open Access Journals (Sweden)

    Sunyoung Joo

    2014-02-01

    Full Text Available Cell therapy for patients who have intractable muscle disorders may require highly regenerative cells from young, healthy allogeneic donors. Mesenchymal stem cells are currently under clinical investigation because they are known to induce muscle regeneration and believed to be immune privileged, thus making them suitable for allogeneic applications. However, it is unclear whether allogeneic and myogenic-induced mesenchymal stem cells retain their immunomodulatory characteristics. Therefore, our aim was to evaluate the effects of mesenchymal stem cell differentiation on the immune characteristics of cells in vitro. We investigated the immunologic properties of mesenchymal stem cells after myogenic induction. Mesenchymal stem cells were obtained from C57BL/6 mice and the C3H/10T1/2 murine mesenchymal stem cell line. Two different 5-aza-2′-deoxycytidine doses (0.5 and 3 µM were evaluated for their effects on mesenchymal stem cell skeletal myogenic differentiation potential, immune antigen expression, and mixed lymphocytic reactions. Using a mixed lymphocytic reaction, we determined the optimal splenocyte proliferation inhibition dose. The induction of regulatory T cells was markedly increased by the addition of 3 µM 5-aza-2′-deoxycytidine–treated mesenchymal stem cells. Myogenic-induced mesenchymal stem cells do not elicit alloreactive lymphocyte proliferative responses and are able to modulate immune responses. These findings support the hypothesis that myogenic-induced mesenchymal stem cells may be transplantable across allogeneic barriers.

  6. Imaging gene expression in human mesenchymal stem cells: from small to large animals

    DEFF Research Database (Denmark)

    Willmann, Jürgen K; Paulmurugan, Ramasamy; Rodriguez-Porcel, Martin

    2009-01-01

    To evaluate the feasibility of reporter gene imaging in implanted human mesenchymal stem cells (MSCs) in porcine myocardium by using clinical positron emission tomography (PET)-computed tomography (CT) scanning....

  7. Encapsulation of allogeneic mesenchymal stem cells in alginate extends local presence and therapeutic function

    NARCIS (Netherlands)

    M.J.C. Leijs (Maarten J.C.); E. Villafuertes; J.C. Haeck (Joost); W.J.L.M. Koevoet (Wendy J.L.M.); B. Fernandez-Gutierrez; M.J. Hoogduijn (Martin); J.A.N. Verhaar (Jan); M.R. Bernsen (Monique); G.M. van Buul (Gerben); G.J.V.M. van Osch (Gerjo)

    2017-01-01

    textabstractBone marrow derived mesenchymal stem cells (MSCs) have immunomodulatory and trophic capacities. For therapeutic application in local chronic inflammatory diseases, MSCs, preferably of allogeneic origin, have to retain immunomodulatory properties. This might be achieved by encapsulation

  8. Chondrogenic potential of human adult mesenchymal stem cells is independent of age or osteoarthritis etiology

    NARCIS (Netherlands)

    Scharstuhl, A.; Schewe, B.; Benz, K.; Gaissmaier, C.; Bühring, H.J.; Stoop, R.

    2007-01-01

    Osteoarthritis (OA) is a multifactorial disease strongly correlated with history of joint trauma, joint dysplasia, and advanced age. Mesenchymal stem cells (MSCs) are promising cells for biological cartilage regeneration. Conflicting data have been published concerning the availability of MSCs from

  9. Chondrogenic potential of human adult mesenchymal stem cells is independent of age or osteoarthritis etiology.

    NARCIS (Netherlands)

    Scharstuhl, A.; Schewe, B.; Benz, K.; Gaissmaier, C.; Buhring, H.J.; Stoop, R.

    2007-01-01

    Osteoarthritis (OA) is a multifactorial disease strongly correlated with history of joint trauma, joint dysplasia, and advanced age. Mesenchymal stem cells (MSCs) are promising cells for biological cartilage regeneration. Conflicting data have been published concerning the availability of MSCs from

  10. Expression of odontogenic genes in human bone marrow mesenchymal stem cells

    National Research Council Canada - National Science Library

    Mashhadi Abbas, Fatemeh; Sichani Fallahi, Hamed; Khoshzaban, Ahad; Mahdavi, Nazanin; Bagheri, Seyedeh Sara

    2013-01-01

    .... A challenging problem in tooth regeneration is to find a proper clinically feasible cell to seed.This study was designed to investigate the odontogenic potential of human bone marrow mesenchymal stem cells (HBMSCs...

  11. Basic Fibroblast Growth Factor Controls Migration in Human Mesenchymal Stem Cells

    National Research Council Canada - National Science Library

    Schmidt, Annette; Ladage, Dennis; Schinköthe, Timo; Klausmann, Ursula; Ulrichs, Christoph; Klinz, Franz‐Josef; Brixius, Klara; Arnhold, Stefan; Desai, Biren; Mehlhorn, Uwe; Schwinger, Robert H.G; Staib, Peter; Addicks, Klaus; Bloch, Wilhelm

    2006-01-01

    Little is known about the migration of mesenchymal stem cells (MSCs). Some therapeutic approaches had demonstrated that MSCs were able to regenerate injured tissues when applied from different sites of application...

  12. Mesenchymal stem cells originating from ES cells show high telomerase activity and therapeutic benefits.

    Science.gov (United States)

    Ninagawa, Nana; Murakami, Rumi; Isobe, Eri; Tanaka, Yusuke; Nakagawa, Hiroki; Torihashi, Shigeko

    2011-10-01

    We establish a novel method for the induction and collection of mesenchymal stem cells using a typical cell surface marker, CD105, through adipogenesis from mouse ES cells. ES cells were cultured in a medium for adipogenesis. Mesenchymal stem cells from mouse ES cells were easily identified by the expression of CD105, and were isolated and differentiated into multiple mesenchymal cell types. Mesenchymal stem cells showed remarkable telomerase activity and sustained their growth for a long time with a high potential for differentiation involving skeletal myogenesis in vitro. When mesenchymal stem cells were transplanted into the injured tibialis anterior muscles, they differentiated into skeletal muscle cells in vivo. In addition, they improved the vascular formation, but never formed teratoma for longer than 6 months. Gene expression profiles revealed that mesenchymal stem cells lost pluripotency, while they acquired high potential to differentiate into mesenchymal cell lines. They thus indicate a promising new source of cell-based therapy without teratoma formation. Copyright © 2011 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  13. Human Umbilical Cord Blood Serum: Effective Substitute of Fetal Bovine Serum for Culturing of Human Multipotent Mesenchymal Stromal Cells.

    Science.gov (United States)

    Romanov, Yu A; Balashova, E E; Volgina, N E; Kabaeva, N V; Dugina, T N; Sukhikh, G T

    2017-02-01

    Optimal conditions for culturing of multipotent mesenchymal stromal cells in the presence of pooled umbilical cord blood serum were determined. It was found that umbilical cord blood serum in a concentration range of 1-10% effectively supported high viability and proliferative activity of cells with unaltered phenotype and preserved multilineage differentiation capacity. The proposed approach allows avoiding the use of xenogenic animal sera for culturing of multipotent mesenchymal stromal cells and creates prerequisites for designing and manufacturing safe cellular and/or acellular products for medical purposes.

  14. Human mesenchymal stem cell-engineered hepatic cell sheets accelerate liver regeneration in mice

    OpenAIRE

    Noriko Itaba; Yoshiaki Matsumi; Kaori Okinaka; An Afida Ashla; Yohei Kono; Mitsuhiko Osaki; Minoru Morimoto; Naoyuki Sugiyama; Kazuo Ohashi; Teruo Okano; Goshi Shiota

    2015-01-01

    Mesenchymal stem cells (MSCs) are an attractive cell source for cell therapy. Based on our hypothesis that suppression of Wnt/β-catenin signal enhances hepatic differentiation of human MSCs, we developed human mesenchymal stem cell-engineered hepatic cell sheets by a small molecule compound. Screening of 10 small molecule compounds was performed by WST assay, TCF reporter assay, and albumin mRNA expression. Consequently, hexachlorophene suppressed TCF reporter activity in time- and concentrat...

  15. Culturing of Mouse Mesenchymal Stem Cells on Poly-3-Hydroxybutyrate Scaffolds.

    Science.gov (United States)

    Andreeva, N V; Bonartsev, A P; Zharkova, I I; Makhina, T K; Myshkina, V L; Kharitonova, E P; Voinova, V V; Bonartseva, G A; Shaitan, K V; Belyavskii, A V

    2015-08-01

    We studied the possibility of long-term culturing of mouse mesenchymal stem cells on a porous scaffold made of biocompatible polymer poly-3-hydroxybutyrate. The cells remained viable for at least 2 months and passed more than 65 population doublings in culture. Culturing on the scaffold did not change surface phenotype of cells. 3D poly-3-hydroxybutyrate scaffolds are appropriate substrate for long-term culturing of mesenchymal stem cells.

  16. Production Methods for a Mesenchymal Stem Cell Therapeutic as a Medical Defense Countermeasure

    Science.gov (United States)

    2012-02-01

    Technologies # 6471) and 1% penicillin /streptomycin solution (Invitrogen # 15070- 063). Rabbit cells were grown in 89% DMEM, 10% fetal bovine serum and 1... penicillin /streptomycin solution. To initiate cultures at passage 0 (P0), bone marrow was flushed using PBS from both femurs and tibiae from each...mesenchymal stem cells. Inflamm Allergy Drug Targets. 2009 Jun;8(2):110-23. 13. Paul D, Samuel SM, Maulik N. Mesenchymal stem cell: present

  17. Mesenchymal stem cells for diabetes mellitus treatment: new advances

    Directory of Open Access Journals (Sweden)

    Loan Thi-Tung Dang

    2017-01-01

    Full Text Available Mesenchymal stem cells (MSCs are the most widely used stem cells of the human body due to ease of successful isolation and expansion for many years. In particular, from 2012 until now, MSCs have been widely clinically used to treat various diseases, including graft versus host disease (GVHD, Crohn’s disease, and knee osteoarthritis. In this review, the applications of MSCs in diabetes will be reviewed and discussed. Diabetes mellitus type 1, also known as Type 1 diabetes (T1DM, is an autoimmune disease in which immune cells attack the beta cells in islets of Langerhans (pancreatic islets. Although type 2 diabetes (T2DM is considered to be a disease related to insulin resistance, several recent studies have shown some relation of immune dysfunction in this disease. Therefore, MSC transplantation may be a beneficial treatment for both T1DM and T2DM. MSC transplantation in preclinical trials and clinical trials for T1DM and T2DM have shown a moderate to significant improvement in diabetes without adverse side effects. In this review, we will discuss some of the updates from preclinical and clinical trials of MSC transplantation for diabetes.

  18. Clinical Applications of Mesenchymal Stem Cells in Chronic Diseases

    Directory of Open Access Journals (Sweden)

    Andrea Farini

    2014-01-01

    Full Text Available Extraordinary progress in understanding several key features of stem cells has been made in the last ten years, including definition of the niche, and identification of signals regulating mobilization and homing as well as partial understanding of the mechanisms controlling self-renewal, commitment, and differentiation. This progress produced invaluable tools for the development of rational cell therapy protocols that have yielded positive results in preclinical models of genetic and acquired diseases and, in several cases, have entered clinical experimentation with positive outcome. Adult mesenchymal stem cells (MSCs are nonhematopoietic cells with multilineage potential to differentiate into various tissues of mesodermal origin. They can be isolated from bone marrow and other tissues and have the capacity to extensively proliferate in vitro. Moreover, MSCs have also been shown to produce anti-inflammatory molecules which can modulate humoral and cellular immune responses. Considering their regenerative potential and immunoregulatory effect, MSC therapy is a promising tool in the treatment of degenerative, inflammatory, and autoimmune diseases. It is obvious that much work remains to be done to increase our knowledge of the mechanisms regulating development, homeostasis, and tissue repair and thus to provide new tools to implement the efficacy of cell therapy trials.

  19. Inducible immortality in hTERT-human mesenchymal stem cells.

    Science.gov (United States)

    Piper, Samantha L; Wang, Miqi; Yamamoto, Akira; Malek, Farbod; Luu, Andrew; Kuo, Alfred C; Kim, Hubert T

    2012-12-01

    Human mesenchymal stem cells (hMSCs) are attractive candidates for tissue engineering and cell-based therapy because of their multipotentiality and availability in adult donors. However, in vitro expansion and differentiation of these cells is limited by replicative senescence. The proliferative capacity of hMSCs can be enhanced by ectopic expression of telomerase, allowing for long-term culture. However, hMSCs with constitutive telomerase expression demonstrate unregulated growth and even tumor formation. To address this problem, we used an inducible Tet-On gene expression system to create hMSCs in which ectopic telomerase expression can be induced selectively by the addition of doxycycline (i-hTERT hMSCs). i-hTERT hMSCs have inducible hTERT expression and telomerase activity, and are able to proliferate significantly longer than wild type hMSCs when hTERT expression is induced. They stop proliferating when hTERT expression is turned off and can be rescued when expression is re-induced. They retain multipotentiality in vitro even at an advanced age. We also used a selective inhibitor of telomere elongation to show that the mechanism driving immortalization of hMSCs by hTERT is dependent upon maintenance of telomere length. Thanks to their extended lifespan, preserved multipotentiality and controlled growth, i-hTERT hMSCs may prove to be a useful tool for the development and testing of novel stem cell therapies. Copyright © 2012 Orthopaedic Research Society.

  20. Impairment of mesenchymal stem cells derived from oral leukoplakia.

    Science.gov (United States)

    Zhang, Zhihui; Song, Jiangyuan; Han, Ying; Mu, Dongdong; Su, Sha; Ji, Xiaoli; Liu, Hongwei

    2015-01-01

    Oral leukoplakia is one of the common precancerous lesions in oral mucosa. To compare the biological characteristics and regenerative capacities of mesenchymal stem cells (MSCs) from oral leukoplakia (epithelial hyperplasia and dysplasia) and normal oral mucosa, MSCs were isolated by enzyme digestion. Then these cells were identified by the expression of MSC related markers, STRO-1, CD105 and CD90, with the absent for the hematopoietic stem cell marker CD34 by flow cytometric detection. The self-renewal ability of MSCs from oral leukoplakia was enhanced, while the multipotent differentiation was descended, compared with MSCs from normal oral mucosa. Fibrin gel was used as a carrier for MSCs transplanted into immunocompromised mice to detect their regenerative capacity. The regenerative capacities of MSCs from oral leukoplakia became impaired partly. Collagen IV (Col IV) and matrix metalloproteinases-9 (MMP-9) were selected to analyze the potential mechanism for the functional changes of MSCs from oral leukoplakia by immunochemical and western blot analysis. The expression of Col IV was decreased and that of MMP-9 was increased by MSCs with the progression of oral leukoplakia, especially in MSCs from epithelial dysplasia. The imbalance between regenerative and metabolic self-regulatory functions of MSCs from oral leukoplakia may be related to the progression of this premalignant disorder.