WorldWideScience

Sample records for cord injury effects

  1. Neuroprotective effect corilagin in spinal cord injury rat model by ...

    African Journals Online (AJOL)

    Background: Neurological functions get altered in a patient suffering from spinal cord injury (SCI). Present study evaluates the neuroprotective effect of corilagin in spinal cord injury rats by inhibiting nuclear factor-kappa B (NF-κB), inflammatory mediators and apoptosis. Materials and method: Spinal cord injury was ...

  2. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Cord Injury What is a Spinal Cord Injury Levels of Injury and What They Mean Animated Spinal ... Cord Injury What is a Spinal Cord Injury Levels of Injury and What They Mean Animated Spinal ...

  3. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Injury Chart Spinal Cord Injury Facts and Figures Care and Treatment After SCI Spinal Cord Injury Rehabilitation ... Injury Chart Spinal Cord Injury Facts and Figures Care and Treatment After SCI Spinal Cord Injury Rehabilitation ...

  4. Spinal Cord Injury 101

    Medline Plus

    Full Text Available menu Understanding Spinal Cord Injury What is a Spinal Cord Injury Levels of Injury and What They Mean Animated Spinal Cord Injury Chart Spinal Cord Injury Facts and Figures Care and Treatment After SCI Spinal ...

  5. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Spinal Cord Injury Facts and Figures Care and Treatment After SCI Spinal Cord Injury Rehabilitation Pediatric Spinal ... Spinal Cord Injury Facts and Figures Care and Treatment After SCI Spinal Cord Injury Rehabilitation Pediatric Spinal ...

  6. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Cord Injury Rehabilitation Pediatric Spinal Cord Injuries Video Library SCI Medical Experts People Living with SCI Personal ... Cord Injury Rehabilitation Pediatric Spinal Cord Injuries Video Library SCI Medical Experts People Living with SCI Personal ...

  7. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Animated Spinal Cord Injury Chart Spinal Cord Injury Facts and Figures Care and Treatment After SCI Spinal ... Animated Spinal Cord Injury Chart Spinal Cord Injury Facts and Figures Care and Treatment After SCI Spinal ...

  8. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Cord Injury Diane M. Rowles, MS, NP How Family Life Changes After Spinal Cord Injury Nancy Rosenberg, ... Children with Spinal Cord Injury Patricia Mucia, RN Family Life After Pediatric Spinal Injury Dawn Sheaffer, MSW ...

  9. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Topic Resources Peer Counseling Blog About Media Donate Spinal Cord Injury Medical Expert Videos Topics menu Topics Spinal Cord Injury 101 Adult Injuries Spinal Cord Injury 101 David ...

  10. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Topic Resources Peer Counseling Blog About Media Donate Spinal Cord Injury Medical Expert Videos Topics menu Topics Spinal Cord Injury 101 Adult Injuries Spinal Cord Injury 101 ...

  11. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... spinal cord injury? play_arrow What kind of surgery is common after a spinal cord injury? play_ ... How soon after a spinal cord injury should surgery be performed? play_arrow Is it common to ...

  12. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... L Sarah Harrison, OT Anne Bryden, OT The Role of the Social Worker after Spinal Cord Injury ... a spinal cord injury important? play_arrow What role does “compression” play in a spinal cord injury? ...

  13. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Counseling Blog About Media Donate Spinal Cord Injury Medical Expert Videos Topics menu Topics Spinal Cord Injury ... Jennifer Piatt, PhD David Chen, MD Read Bio Medical Director, Spinal Cord Injury Rehabilitation Program, Rehabilitation Institute ...

  14. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Blog About Media Donate Spinal Cord Injury Medical Expert Videos Topics menu Topics Spinal Cord Injury 101 ... arrow What is the “Spinal Cord Injury Model Systems” program? play_arrow What are the most promising ...

  15. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... About Media Donate Spinal Cord Injury Medical Expert Videos ... Home Kim Eberhardt Muir, MS Coping with a New Injury Robin Dorman, PsyD Sex and Fertility After Spinal Cord Injury Diane M. ...

  16. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Injury Facts and Figures Care and Treatment After SCI Spinal Cord Injury Rehabilitation Pediatric Spinal Cord Injuries Video Library SCI Medical Experts People Living with SCI Personal Experiences ...

  17. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... RN Pediatric Injuries Pediatric Spinal Cord Injury 101 Lawrence Vogel, MD The Basics of Pediatric SCI Rehabilitation ... Rogers, PT Recreational Therapy after Spinal Cord Injury Jennifer Piatt, PhD David Chen, MD Read Bio Medical ...

  18. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Spinal Cord Injury 101 Lawrence Vogel, MD The Basics of Pediatric SCI Rehabilitation Sara Klaas, MSW Transitions for Children with Spinal Cord Injury Patricia Mucia, RN Family Life After Pediatric Spinal Injury Dawn Sheaffer, MSW Rehabilitation ...

  19. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Spinal Cord Injury 101 David Chen, MD Preventing Pressure Sores Mary Zeigler, MS Transition from Hospital to ... a spinal cord injury? play_arrow Why are high-dose steroids often used right after an injury? ...

  20. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... injury? play_arrow How does the spinal cord work? play_arrow Why is the level of a spinal cord injury important? play_arrow What role does “compression” play in a spinal cord injury? play_arrow Why are high-dose steroids often used right after an injury? play_arrow What is meant ...

  1. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... of Spinal Cord Injury Rehabilitation Kristine Cichowski, MS Occupational Therapy after Spinal Cord Injury Katie Powell, OT ... does not provide medical advice, recommend or endorse health care products or services, or control the information ...

  2. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... of spinal cord injuries? play_arrow What does stem-cell research on animals tell us? play_arrow When can we expect stem-cell treatments to become available for spinal cord injuries? ...

  3. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... spinal cord injuries? play_arrow What does stem-cell research on animals tell us? play_arrow When can we expect stem-cell treatments to become available for spinal cord injuries? ...

  4. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Spinal Cord Injuries Video Library SCI Medical Experts People Living with SCI Personal Experiences by Topic Resources ... Spinal Cord Injuries Video Library SCI Medical Experts People Living with SCI Personal Experiences by Topic Resources ...

  5. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... the spinal cord work? play_arrow Why is the level of a spinal cord injury important? play_arrow What role does “compression” play in a spinal cord injury? play_arrow Why are high-dose steroids often used right after an injury? play_arrow What is meant ...

  6. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... arrow What is the “Spinal Cord Injury Model Systems” program? play_arrow What are the most promising new treatments for spinal cord injuries? play_arrow What are the latest developments in the use of electrical stimulation for spinal cord injuries? play_arrow ...

  7. Spinal Cord Injuries

    Science.gov (United States)

    ... forth between your body and your brain. A spinal cord injury disrupts the signals. Spinal cord injuries usually begin with a blow that fractures or ... down on the nerve parts that carry signals. Spinal cord injuries can be complete or incomplete. With a complete ...

  8. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Abuse and Spinal Cord Injury Allen Heinemann, PhD How Peer Counseling Works Julie Gassaway, MS, RN Pediatric Injuries Pediatric Spinal ... What is a spinal cord injury? play_arrow How does the spinal cord work? play_arrow Why is the level of a ...

  9. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... play_arrow What are the chances of regaining feeling and mobility after a spinal cord injury? play_arrow How long does it usually take for feeling and movement to return after a spinal cord ...

  10. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Disabilities Photography by Rona Talcott Website by Mobile Marketing LLC Understanding Spinal Cord Injury About Us Expert Videos Contact Us Personal Experience Videos Blog Videos By Topic Media Resources Donate to support families facing spinal cord ...

  11. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Cord Injury Allen Heinemann, PhD How Peer Counseling Works Julie Gassaway, MS, RN Pediatric Injuries Pediatric Spinal ... injury? play_arrow How does the spinal cord work? play_arrow Why is the level of a ...

  12. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Spinal Cord Injury Guy W. Fried, MD Substance Abuse and Spinal Cord Injury Allen Heinemann, PhD How ... arrow Why are high-dose steroids often used right after an injury? play_arrow What is meant ...

  13. Effect of lycopene on the blood-spinal cord barrier after spinal cord injury in mice.

    Science.gov (United States)

    Zhang, Qian; Wang, Jianbo; Gu, Zhengsong; Zhang, Qing; Zheng, Hong

    2016-09-05

    The current study aimed to investigate the effect of lycopene on the blood-spinal cord barrier (BSCB) after spinal cord injury (SCI) in a mouse model. Lycopene inhibited lipid peroxidation and oxidative DNA damage as a highly efficient antioxidant and free radical scavenger. Lycopene (4 mg/kg/d) was administrated immediately following SCI. The permeability of the BSCB and water content in the spinal cord tissue were evaluated. Additionally, levels of expression of tight junction proteins and heme oxygenase-1 (HO-1) were determined with Western blotting. An enzyme-linked immunosorbent assay analysis of spinal cord tissue homogenates was performed 48 h after SCI to evaluate the expression of inflammation-related cytokines. In addition, recovery of motor function was assessed 1 d, 2 d, 5 d, 10 d, and 15 d after SCI using the Basso Mouse Scale to score locomotion. Compared to the group with an untreated SCI, mice with an SCI treated with lycopene had significantly reduced spinal cord tissue water content and BSCB permeability. Furthermore, motor function of mice with an SCI was also greatly improved by lycopene administration. The expression of the proinflammatory factors TNF-α and NF-kB increased markedly 48 h after SCI, and their upregulation was significantly attenuated by lycopene treatment. The expression of molecules that protect tight junctions, zonula occluden-1 and claudin-5, was upregulated by lycopene treatment after SCI. Taken together, these results clearly indicate that lycopene attenuated SCI by promoting repair of the damaged BSCB, so lycopene is a novel and promising treatment for SCI in humans.

  14. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Disabilities Photography by Rona Talcott Website by Mobile Marketing LLC Understanding Spinal Cord Injury About ... Your email address * This iframe contains the logic required to ...

  15. Trauma: Spinal Cord Injury.

    Science.gov (United States)

    Eckert, Matthew J; Martin, Matthew J

    2017-10-01

    Injuries to the spinal column and spinal cord frequently occur after high-energy mechanisms of injury, or with lower-energy mechanisms, in select patient populations like the elderly. A focused yet complete neurologic examination during the initial evaluation will guide subsequent diagnostic procedures and early supportive measures to help prevent further injury. For patients with injury to bone and/or ligaments, the initial focus should be spinal immobilization and prevention of inducing injury to the spinal cord. Spinal cord injury is associated with numerous life-threatening complications during the acute and long-term phases of care that all acute care surgeons must recognize. Published by Elsevier Inc.

  16. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... How Peer Counseling Works Julie Gassaway, MS, RN Pediatric Injuries Pediatric Spinal Cord Injury 101 Lawrence Vogel, MD The Basics of Pediatric SCI Rehabilitation Sara Klaas, MSW Transitions for Children ...

  17. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Anne Bryden, OT The Role of the Social Worker after Spinal Cord Injury Patti Rogers, SW Marguerite ... arrow Why are high-dose steroids often used right after an injury? play_arrow What is meant ...

  18. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Injury Diane M. Rowles, MS, NP How Family Life Changes After Spinal Cord Injury Nancy Rosenberg, PsyD ... Rehabilitation Donald Peck Leslie, MD Adjusting to Social Life in a Wheelchair Lisa Rosen, MS Spasticity, Physical ...

  19. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Medical Experts People Living with SCI Personal Experiences by Topic Resources Peer ... Injuries Spinal Cord Injury 101 David Chen, MD Preventing Pressure Sores Mary Zeigler, MS Transition from Hospital to ...

  20. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Living with SCI Personal Experiences by Topic Resources Peer ... Adult Injuries Spinal Cord Injury 101 David Chen, MD Preventing Pressure Sores Mary Zeigler, MS Transition from Hospital to ...

  1. The effect of Sativex in neuropathic pain and spasticity in spinal cord injury

    DEFF Research Database (Denmark)

    Andresen, Sven Robert; Hansen, Rikke Bod Middelhede; Johansen, Inger Lauge

    2014-01-01

    Introduction: Neuropathic pain and spasticity after spinal cord injury represent significant but still unresolved problems, which cause considerable suffering and reduced quality of life for patients with spinal cord injury. Treatment of neuropathic pain and spasticity is complicated and patients...... often receive incomplete relief from present available and recommended treatment. Cannabinoids has shown efficacy on both neuropathic pain and spasticity in patients with spinal cord injury, but the studies one the topic has been too small to make a general conclusion for patients with spinal cord...... injury. Aims: To investigate the effect of Sativex (cannabinoid agonist given as an oral mucosal spray), on neuropathic pain and spasticity in patients with spinal cord injury. Methods: A randomized, double-blind, placebo-controlled crossover study. We will include 30 patients with neuropathic pain...

  2. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... spinal cord injuries? play_arrow What is “Braingate” research? play_arrow How would stem-cell therapies work ... cord injuries? play_arrow What does stem-cell research on animals tell us? play_arrow When can ...

  3. Effects of glycine on motor performance in rats after traumatic spinal cord injury.

    Science.gov (United States)

    Gonzalez-Piña, Rigoberto; Nuño-Licona, Alberto

    2007-01-01

    It has been reported that glycine improves some functions lost after spinal cord injury (SCI). In order to assess the effects of glycine administration on motor performance after SCI, we used fifteen male Wistar rats distributed into three groups: sham (n = 3), spinal-cord injury (n = 6,) and spinal cord injury + glycine (n = 6). Motor performance was assessed using the beam-walking paradigm and footprint analysis. Results showed that for all animals with spinal-cord injury, scores in the beam-walking increased, which is an indication of increased motor deficit. In addition, footprint analysis showed a decrease in stride length and an increase in stride angle, additional indicators of motor deficit. These effects trended towards recovery after 8 weeks of recording and trended toward improvement by glycine administration; the effect was not significant. These results suggest that glycine replacement alone is not sufficient to improve the motor deficits that occur after SCI.

  4. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... arrow What are the latest developments in the use of electrical stimulation for spinal cord injuries? play_arrow What is “Braingate” research? play_arrow How would stem-cell therapies work in the treatment of spinal cord ...

  5. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Disabilities Photography by Rona Talcott Website by Mobile Marketing LLC Understanding Spinal Cord Injury About Us Expert ... Disabilities Photography by Rona Talcott Website by Mobile Marketing LLC close close

  6. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Life in a Wheelchair Lisa Rosen, MS Spasticity, Physical Therapy-Lokomat T. George Hornby, PhD, PT Empowering ... Rogers, SW Marguerite David, MSW Kathy Hulse, MSW Physical Therapy after Spinal Cord Injury Laura Wehrli, PT ...

  7. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... com is an informational and support website for families facing spinal cord injuries. The website does not provide medical advice, recommend or endorse health care products or ...

  8. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... OT Anne Bryden, OT The Role of the Social Worker after Spinal Cord Injury Patti Rogers, SW Marguerite ... play_arrow What are the latest developments in the use of electrical stimulation for spinal ...

  9. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Diane M. Rowles, MS, NP How Family Life Changes After Spinal Cord Injury Nancy Rosenberg, PsyD Understanding SCI Rehabilitation Donald Peck Leslie, MD Adjusting to Social Life in a Wheelchair Lisa Rosen, MS Spasticity, ...

  10. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... with SCI Personal Experiences by Topic Resources Peer Counseling Blog About Media Donate close search Understanding Spinal ... with SCI Personal Experiences by Topic Resources Peer Counseling Blog About Media Donate Spinal Cord Injury Medical ...

  11. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... does not provide medical advice, recommend or endorse health care products or services, or control the information ... With Disabilities Photography by Rona Talcott Website by Mobile Marketing LLC Understanding Spinal Cord Injury About Us ...

  12. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Resources Peer Counseling Blog About Media Donate close search Understanding Spinal Cord Injury What is a Spinal ... health care products or services, or control the information found on external websites. The Hill Foundation is ...

  13. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Living with SCI Personal Experiences by Topic Resources Peer Counseling Blog About Media Donate close search Understanding ... Living with SCI Personal Experiences by Topic Resources Peer Counseling Blog About Media Donate Spinal Cord Injury ...

  14. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... With Disabilities Photography by Rona Talcott Website by Mobile Marketing LLC Understanding Spinal Cord Injury About Us ... With Disabilities Photography by Rona Talcott Website by Mobile Marketing LLC close close

  15. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Anne Bryden, OT The Role of the Social Worker after Spinal Cord Injury Patti Rogers, SW Marguerite ... or endorse health care products or services, or control the information found on external websites. The Hill ...

  16. Spinal Cord Injury 101

    Science.gov (United States)

    ... With Disabilities Photography by Rona Talcott Website by Mobile Marketing LLC Understanding Spinal Cord Injury About Us Expert ... With Disabilities Photography by Rona Talcott Website by Mobile Marketing LLC close close

  17. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... With Disabilities Photography by Rona Talcott Website by Mobile Marketing LLC Understanding Spinal Cord Injury About Us Expert ... With Disabilities Photography by Rona Talcott Website by Mobile Marketing LLC close close

  18. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... OT Anne Bryden, OT The Role of the Social Worker after Spinal Cord Injury Patti Rogers, SW ... Experiences By Topic Resources Blog Peer Counseling About Media Donate Contact Us Terms of Use Site Map ...

  19. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... SCI Rehabilitation Donald Peck Leslie, MD Adjusting to Social Life in a Wheelchair Lisa Rosen, MS Spasticity, ... OT Anne Bryden, OT The Role of the Social Worker after Spinal Cord Injury Patti Rogers, SW ...

  20. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... arrow What is the “Spinal Cord Injury Model Systems” program? play_arrow ... recommend or endorse health care products or services, or control the information found on external websites. The Hill Foundation is ...

  1. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... arrow What is the “Spinal Cord Injury Model Systems” program? play_arrow What are the most promising ... health care products or services, or control the information found on external websites. The Hill Foundation is ...

  2. Pericytes Make Spinal Cord Breathless after Injury.

    Science.gov (United States)

    Almeida, Viviani M; Paiva, Ana E; Sena, Isadora F G; Mintz, Akiva; Magno, Luiz Alexandre V; Birbrair, Alexander

    2017-09-01

    Traumatic spinal cord injury is a devastating condition that leads to significant neurological deficits and reduced quality of life. Therapeutic interventions after spinal cord lesions are designed to address multiple aspects of the secondary damage. However, the lack of detailed knowledge about the cellular and molecular changes that occur after spinal cord injury restricts the design of effective treatments. Li and colleagues using a rat model of spinal cord injury and in vivo microscopy reveal that pericytes play a key role in the regulation of capillary tone and blood flow in the spinal cord below the site of the lesion. Strikingly, inhibition of specific proteins expressed by pericytes after spinal cord injury diminished hypoxia and improved motor function and locomotion of the injured rats. This work highlights a novel central cellular population that might be pharmacologically targeted in patients with spinal cord trauma. The emerging knowledge from this research may provide new approaches for the treatment of spinal cord injury.

  3. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Home Kim Eberhardt Muir, MS Coping with a New Injury Robin Dorman, PsyD Sex and Fertility After ... program? play_arrow What are the most promising new treatments for spinal cord injuries? play_arrow What ...

  4. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Anne Bryden, OT The Role of the Social Worker after Spinal Cord Injury Patti Rogers, SW Marguerite David, ... injuries. The website does not provide medical advice, recommend or endorse health care products or services, or control the information ...

  5. The Protective Effect of Spinal Cord Stimulation Postconditioning Against Spinal Cord Ischemia/Reperfusion Injury in Rabbits.

    Science.gov (United States)

    Li, Huixian; Dong, Xiuhua; Jin, Mu; Cheng, Weiping

    2018-01-18

    Delayed paraplegia due to spinal cord ischemia/reperfusion injury (IRI) remains one of the most severe complications of thoracoabdominal aneurysm surgery, for which effective prevention and treatment is still lacking. The current study investigates whether spinal cord stimulation (SCS) postconditioning has neuroprotective effects against spinal cord IRI. Ninety-six New Zealand white male rabbits were randomly divided into four groups as follows: a sham group and three experimental groups (C group, 2 Hz group, and 50 Hz group) n = 24/group. Spinal cord ischemia was induced by transient infrarenal aortic balloon occlusion for 28 min, after which rabbits in group C underwent no additional intervention, while rabbits in the other two experimental groups underwent 2 Hz or 50 Hz epidural SCS for 30 min at the onset of reperfusion and then daily until sacrifice. Hind limb neurologic function of rabbits was assessed using Jacob scale. Lumbar spinal cords were harvested immediately after sacrifice for histological examination and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining. The number of viable α-motor neurons in ventral horn was counted and TUNEL-positive rate of α-motor neurons was calculated. Spinal cord IRI was caused by transient infrarenal aorta occlusion for 28 min. Both 2 Hz and 50 Hz SCS postconditioning had neuroprotective effects, particularly the 2 Hz SCS postconditioning. Comparing to C group and 50 Hz group, rabbits in the 2 Hz group demonstrated better hind limb motor function and a lower rate of TUNEL-positive α-motor neuron after eight hours, one day, three days, and seven days of spinal cord reperfusion. More viable α-motor neurons were preserved after one and three days of spinal cord reperfusion in 2 Hz group rabbits than in C group and 50 Hz group rabbits. SCS postconditioning at 2 Hz protected the spinal cord from IRI. © 2018 International Neuromodulation Society.

  6. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... What is “Braingate” research? play_arrow How would stem-cell therapies work in the treatment of spinal cord injuries? play_arrow What does stem-cell research on animals tell us? play_arrow When ...

  7. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... is “Braingate” research? play_arrow How would stem-cell therapies work in the treatment of spinal cord injuries? play_arrow What does stem-cell research on animals tell us? play_arrow When ...

  8. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Braingate” research? play_arrow How would stem-cell therapies work in the treatment of spinal cord injuries? play_arrow What does stem-cell research on animals tell us? play_arrow When can we expect ...

  9. Neuroprotective effects of Ganoderma lucidum polysaccharides against traumatic spinal cord injury in rats.

    Science.gov (United States)

    Gokce, Emre Cemal; Kahveci, Ramazan; Atanur, Osman Malik; Gürer, Bora; Aksoy, Nurkan; Gokce, Aysun; Sargon, Mustafa Fevzi; Cemil, Berker; Erdogan, Bulent; Kahveci, Ozan

    2015-11-01

    Ganoderma lucidum (G. lucidum) is a mushroom belonging to the polyporaceae family of Basidiomycota and has widely been used as a traditional medicine for thousands of years. G. lucidum has never been studied in traumatic spinal cord injury. The aim of this study is to investigate whether G. lucidum polysaccharides (GLPS) can protect the spinal cord after experimental spinal cord injury. Rats were randomized into five groups of eight animals each: control, sham, trauma, GLPS, and methylprednisolone. In the control group, no surgical intervention was performed. In the sham group, only a laminectomy was performed. In all the other groups, the spinal cord trauma model was created by the occlusion of the spinal cord with an aneurysm clip. In the spinal cord tissue, caspase-3 activity, tumour necrosis factor-alpha levels, myeloperoxidase activity, malondialdehyde levels, nitric oxide levels, and superoxide dismutase levels were analysed. Histopathological and ultrastructural evaluations were also performed. Neurological evaluation was performed using the Basso, Beattie, and Bresnahan locomotor scale and the inclined-plane test. After traumatic spinal cord injury, increases in caspase-3 activity, tumour necrosis factor-alpha levels, myeloperoxidase activity, malondialdehyde levels, and nitric oxide levels were detected. After the administration of GLPS, decreases were observed in tissue caspase-3 activity, tumour necrosis factor-alpha levels, myeloperoxidase activity, malondialdehyde levels, and nitric oxide levels. Furthermore, GLPS treatment showed improved results in histopathological scores, ultrastructural scores, and functional tests. Biochemical, histopathological, and ultrastructural analyses and functional tests reveal that GLPS exhibits meaningful neuroprotective effects against spinal cord injury. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Acute spinal cord injuries

    International Nuclear Information System (INIS)

    Takahashi, M.; Izunaga, H.; Sato, R.; Shinzato, I.; Korogi, Y.; Yamashita, Y.

    1991-01-01

    This paper reports on sequential MR images and neurologic findings that were correlated in 40 acute spinal cord injuries. Within 1 week after injury, frequent initial MR changes appeared isointense on both T1- and T2-weighted images and isointense on T1- and hyperintense on T2-weighted images. After 2 months, hypointensity appeared on T1-weighted images and hyperintensity persisted or appeared on T2-weighted images. Clinical improvements were observed in patients with isointensity on both T1- and T2-weighted images at the initial examination. A larger area of hyperintensity on subsequent T2-weighted images was correlated with no neurologic improvement. MR findings were good indicators of the spinal cord injury

  11. The Neuroprotective Effect of Kefir on Spinal Cord Ischemia/Reperfusion Injury in Rats

    Science.gov (United States)

    Akman, Tarik; Yener, Ali Umit; Sehitoglu, Muserref Hilal; Yuksel, Yasemin; Cosar, Murat

    2015-01-01

    Objective The main causes of spinal cord ischemia are a variety of vascular pathologies causing acute arterial occlusions. We investigated neuroprotective effects of kefir on spinal cord ischemia injury in rats. Methods Rats were divided into three groups : 1) sham operated control rats; 2) spinal cord ischemia group fed on a standard diet without kefir pretreatment; and 3) spinal cord ischemia group fed on a standard diet plus kefir. Spinal cord ischemia was performed by the infrarenal aorta cross-clamping model. The spinal cord was removed after the procedure. The biochemical and histopathological changes were observed within the samples. Functional assessment was performed for neurological deficit scores. Results The kefir group was compared with the ischemia group, a significant decrease in malondialdehyde levels was observed (pkefir group were significantly higher than ischemia group (pkefir group is compared with ischemia group, there was a significant decrease in numbers of dead and degenerated neurons (pkefir group compared with ischemia group (pkefir group were significantly higher than ischemia group at 24 h (pkefir pretreatment in spinal cord ischemia/reperfusion reduced oxidative stress and neuronal degeneration as a neuroprotective agent. Ultrastructural studies are required in order for kefir to be developed as a promising therapeutic agent to be utilized for human spinal cord ischemia in the future. PMID:26113960

  12. The Neuroprotective Effect of Kefir on Spinal Cord Ischemia/Reperfusion Injury in Rats.

    Science.gov (United States)

    Guven, Mustafa; Akman, Tarik; Yener, Ali Umit; Sehitoglu, Muserref Hilal; Yuksel, Yasemin; Cosar, Murat

    2015-05-01

    The main causes of spinal cord ischemia are a variety of vascular pathologies causing acute arterial occlusions. We investigated neuroprotective effects of kefir on spinal cord ischemia injury in rats. Rats were divided into three groups : 1) sham operated control rats; 2) spinal cord ischemia group fed on a standard diet without kefir pretreatment; and 3) spinal cord ischemia group fed on a standard diet plus kefir. Spinal cord ischemia was performed by the infrarenal aorta cross-clamping model. The spinal cord was removed after the procedure. The biochemical and histopathological changes were observed within the samples. Functional assessment was performed for neurological deficit scores. The kefir group was compared with the ischemia group, a significant decrease in malondialdehyde levels was observed (pkefir group were significantly higher than ischemia group (pkefir group is compared with ischemia group, there was a significant decrease in numbers of dead and degenerated neurons (pkefir group compared with ischemia group (pkefir group were significantly higher than ischemia group at 24 h (pkefir pretreatment in spinal cord ischemia/reperfusion reduced oxidative stress and neuronal degeneration as a neuroprotective agent. Ultrastructural studies are required in order for kefir to be developed as a promising therapeutic agent to be utilized for human spinal cord ischemia in the future.

  13. Effect the exercise program on neuropathic pain intensity in patients with paraplegia Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Sedghi Goyaghaj N

    2015-11-01

    Full Text Available Background and Objective: Patients with spinal cord injury suffer from continuous and persistent neuropathic pain that has a destructive impact on their quality of life. Exercise therapy is one of the non-pharmacological interventions that is recommended to control chronic pain, This study aimed to determine the effect of exercise program on neuropathic pain intensity in patients with paraplegia Spinal Cord Injury. Materials and Method: This study is a clinical trial.that population was the all of the patients with spinal cord injury, who referred to one of the educational hospitals in Tehran in 2014, 40 patient were selected based on purposive sampling and were randomly allocated into two groups of experimental and control. Exercise program for paraplegia spinal cord injury was implemented in experimental group during twelve 45-60minutes sessions, twice a week. Data collection was done before and one week after the intervention through using personal information form and, The International Spinal Cord Injury Pain Basic Data Set. Data were analyzed with statistical software SPSS19 and Fisher's exact test, Independent samples T-test Paired T-test and Chi square. Results: The mean score of neuropathic pain intensity before the intervention was 8.05 ± 1.51 in intervention group and 7.57 ± 1.21 in the control group. These amounts after the intervention were 5.55 ± 1.61 and 7.37 ± 1.05 respectively (p < 0.001. Conclusion: Results showed that the regular exercise program can reduce neuropathic pain severity in patients with spinal cord injuries and it can be recommended as a non-pharmacological method of pain control in these patients.

  14. The effects of upper body exercise on the physical capacity of people with a spinal cord injury: a systematic review

    NARCIS (Netherlands)

    Valent, L.; Dallmeijer, A.J.; Houdijk, J.H.P.; Talsma, E.; van der Woude, L.H.V.

    2007-01-01

    Objective: To describe the effects of upper body training on the physical capacity of people with a spinal cord injury. Data sources: The databases of PubMed, CINAHL, Sport Discus and Cochrane were searched from 1970 to May 2006. Review methods: The keywords 'spinal cord injury', 'paraplegia',

  15. Spinal Cord Injury Rehabilitation in Nepal

    OpenAIRE

    Nabina Shah; Binav Shrestha; Kamana Subba

    2013-01-01

    Spinal cord injury is a major trauma, with its short and long term effects and consequences to the patient, his friends and family. Spinal cord injury is addressed in the developed countries with standard trauma care system commencing immediately after injury and continuing to the specialized rehabilitation units. Rehabilitation is important to those with spinal injury for both functional and psychosocial reintegration. It has been an emerging concept in Nepal, which has been evident with the...

  16. International Spinal Cord Injury

    DEFF Research Database (Denmark)

    Dvorak, M F; Itshayek, E; Fehlings, M G

    2015-01-01

    STUDY DESIGN: Survey of expert opinion, feedback and final consensus. OBJECTIVE: To describe the development and the variables included in the International Spinal Cord Injury (SCI) Spinal Interventions and Surgical Procedures Basic Data set. SETTING: International working group. METHODS......: A committee of experts was established to select and define data elements. The data set was then disseminated to the appropriate committees and organizations for comments. All suggested revisions were considered and both the International Spinal Cord Society and the American Spinal Injury Association endorsed...... spinal intervention and procedure is coded (variables 1 through 7) and the spinal segment level is described (variables 8 and 9). Sample clinical cases were developed to illustrate how to complete it. CONCLUSION: The International SCI Spinal Interventions and Surgical Procedures Basic Data Set...

  17. Complement elevation in spinal cord injury.

    Science.gov (United States)

    Rebhun, J; Botvin, J

    1980-05-01

    Laboratory studies revealed an elevated complement in 66% of patients with spinal cord injury. It is postulated that the activated complement may be a component of self-feeding immunological mechanism responsible for the failure of regeneration of a mature mammalian spinal cord. There was no evidence that such an injury had any effect on pre-existing atopy.

  18. The effect of Normast (PEA) on neuropathic pain in spinal cord injury

    DEFF Research Database (Denmark)

    Andresen, Sven Robert; Bing, Jette; Hansen, Rikke Bod Middelhede

    2015-01-01

    status: Presently, 66 patients (74% male) are included of which 55 have completed the trial. Of those included, 5% have complete tetraplegia, 39% incomplete tetraplegia, 29% complete paraplegia and 27% incomplete paraplegia. Average age at inclusion is 55.3 (±9.5) years and average time since injury is 8......Introduction: Neuropathic pain and spasticity after spinal cord injury (SCI) represent still a significant, unresolved problem causing suffering and re¬duced quality of life in patients with SCI. Treatment of neuropathic pain is a complex and difficult task, and many patients have incom......) on neuropathic pain, and sec¬ondary to study the effect of Normast on spas¬ticity and psychological functioning in patients with spinal cord injury. Population characteristics: Gender, male/female, n 43/15 Age since inclusion, years, mean (SD) 55.3 (9.5) Time since injury, years, mean (SD) 8.8 (8.9) Present...

  19. Preventive Effect of Intrathecal Paracetamol on Spinal Cord Injury in Rats

    Science.gov (United States)

    Sahin, Murat; Sayar, Ilyas; Peker, Kemal; Gullu, Huriye; Yildiz, Huseyin

    2014-01-01

    Background: Ischemic injury of the spinal cord during the surgical repair of thoracoabdominal aortic aneurysms might lead to paraplegia. Although a number of different mechanisms have been proposed, the exact cause of paraplegia has remained unknown, hampering the development of effective pharmacologic or other strategies for prevention of this condition. A number of studies suggested that cyclooxygenases (COX) contribute to neural breakdown; thus, COX inhibitors might reduce injury. Objectives: We aimed to assess the preventive effect of intrathecal (IT) pretreatment with paracetamol on spinal cord injury in a rat model. Materials and Methods: This experimental study was performed in Ataturk University Animal Research Laboratory Center, Erzurum, Turkey. Adult male Wistar rats were randomly allocated to three experimental groups (n = 6) to receive IT physiologic saline (controls), 50 µg of paracetamol, or 100 µg paracetamol one hour before induction of spinal cord ischemia. Six other rats were considered as the sham group. For the assessment of ischemic injury, motor functions of the hind limbs and histopathologic changes of the lumbar spinal cord were evaluated. Additional 20 rats were divided into two equal groups for the second part of the study where the survival rates were recorded in controls and in animals receiving 100 µg of paracetamol during the 28-day observation period. Results: Pretreatment with 100 µg of paracetamol resulted in a significant improvement in motor functions and histopathologic findings (P < 0.05). Despite a higher rate of survival in 100 µg of paracetamol group (70%) at day 28, the difference was not statistically significant in comparison with controls. Conclusions: Our results suggest a protective effect of pretreatment with IT paracetamol on ischemic spinal cord injury during thoracolumbar aortic aneurysm surgery. PMID:25763224

  20. The Neuroprotective Effect of Puerarin in Acute Spinal Cord Injury Rats

    Directory of Open Access Journals (Sweden)

    Dapeng Zhang

    2016-08-01

    Full Text Available Background: Acute spinal cord injury (SCI leads to permanent disabilities. This study evaluated the neuroprotective effect of puerarin, a natural extract, in a rat model of SCI. Methods: Acute SCI models were established in rats using a modified Allen's method. Locomotor function was evaluated using the BBB test. The histological changes in the spinal cord were observed by H&E staining. Neuron survival and glial cells activation were evaluated by immunostaining. ELISA and realtime PCR were used to measure secretion and gene expression of cytokines. TUNEL staining was used to examine cell apoptosis and western blot analysis was used to detect protein expression. Results: Puerarin significantly increased BBB score in SCI rats, attenuated histological injury of spinal cord, decreased neuron loss, inhibited glial cells activation, alleviated inflammation, and inhibited cell apoptosis in the injured spinal cords. In addition, the downregulated PI3K and phospho-Akt protein expression were restored by puerarin. Conclusion: Puerarin accelerated locomotor function recovery and tissue repair of SCI rats, which is associated with its neuroprotection, glial cell activation suppression, anti-inflammatory and anti-apoptosis effects. These effects may be associated with the activation of PI3K/Akt signaling pathway.

  1. Nanomedicine for treating spinal cord injury

    Science.gov (United States)

    Tyler, Jacqueline Y.; Xu, Xiao-Ming; Cheng, Ji-Xin

    2013-09-01

    Spinal cord injury results in significant mortality and morbidity, lifestyle changes, and difficult rehabilitation. Treatment of spinal cord injury is challenging because the spinal cord is both complex to treat acutely and difficult to regenerate. Nanomaterials can be used to provide effective treatments; their unique properties can facilitate drug delivery to the injury site, enact as neuroprotective agents, or provide platforms to stimulate regrowth of damaged tissues. We review recent uses of nanomaterials including nanowires, micelles, nanoparticles, liposomes, and carbon-based nanomaterials for neuroprotection in the acute phase. We also review the design and neural regenerative application of electrospun scaffolds, conduits, and self-assembling peptide scaffolds.

  2. Therapeutic effects of neurotrophic factors in experimental spinal cord injury models

    Directory of Open Access Journals (Sweden)

    Enomoto M

    2016-03-01

    Full Text Available Mitsuhiro Enomoto1,21Department of Orthopaedic and Spinal Surgery, Graduate School, 2Hyperbaric Medical Center, Tokyo Medical and Dental University, Tokyo, JapanAbstract: Neurotrophic factors (NFs play important roles in regenerative medicine approaches to mitigate primary and secondary damage after spinal cord injury (SCI because their receptors are still present in the injured spinal cord even though the expression of the NFs themselves is decreased. Several reports have shown that NF administration increases regenerative signaling after SCI, particularly by stimulating axonal growth. However, few NFs cross the blood–brain barrier, and most of them show low stability and limited diffusion within the central nervous system. To overcome this problem, transplantation strategies using genetically modified NF-secreting Schwann cells, neural and glial progenitor cells, and mesenchymal stem cells have been applied to animal models of SCI. In particular, multifunctional NFs that bind to TrkB, TrkC, and p75NTR receptors have been discovered in the last decade and utilized in preclinical cell therapies for spinal cord repair. To achieve functional recovery after SCI, it is important to consider the different effects of each NF on axonal regeneration, and strategies should be established to specifically harness the multifunctional properties of NFs. This review provides an overview of multifunctional NFs combined with cell therapy in experimental SCI models and a proposal to implement their use as a clinically viable therapy.Keywords: spinal cord injury, neurotrophic factor, multineurotrophin, regeneration, cell transplantation

  3. Therapeutic Effect of Platelet-Rich Plasma in Rat Spinal Cord Injuries

    Directory of Open Access Journals (Sweden)

    Nan-Fu Chen

    2018-04-01

    Full Text Available Platelet-rich plasma (PRP is prepared by centrifuging fresh blood in an anticoagulant state, and harvesting the platelet-rich portion or condensing platelets. Studies have consistently demonstrated that PRP concentrates are an abundant source of growth factors, such as platelet-derived growth factor (PDGF, transforming growth factor β (TGF-β, insulin-like growth factor 1 (IGF-1, and epithelial growth factor (EGF. The complex mechanisms underlying spinal cord injury (SCI diminish intrinsic repair and neuronal regeneration. Several studies have suggested that growth factor-promoted axonal regeneration can occur for an extended period after injury. More importantly, the delivery of exogenous growth factors contained in PRP, such as EGF, IGF-1, and TGF-β, has neurotrophic effects on central nervous system (CNS injuries and neurodegenerative diseases. However, only a few studies have investigated the effects of PRP on CNS injuries or neurodegenerative diseases. According to our review of relevant literature, no study has investigated the effect of intrathecal (i.t. PRP injection into the injured spinal cord and activation of intrinsic mechanisms. In the present study, we directly injected i.t. PRP into rat spinal cords and examined the effects of PRP on normal and injured spinal cords. In rats with normal spinal cords, PRP induced microglia and astrocyte activation and PDGF-B and ICAM-1 expression. In rats with SCIs, i.t. PRP enhanced the locomotor recovery and spared white matter, promoted angiogenesis and neuronal regeneration, and modulated blood vessel size. Furthermore, a sustained treatment (a bolus of PRP followed by a 1/3 dose of initial PRP concentration exerted more favorable therapeutic effects than a single dose of PRP. Our findings suggest by i.t. PRP stimulate angiogenesis, enhancing neuronal regeneration after SCI in rats. Although PRP induces minor inflammation in normal and injured spinal cords, it has many advantages. It is an

  4. Effects of polarization in low-level laser therapy of spinal cord injury in rats

    Science.gov (United States)

    Ando, Takahiro; Sato, Shunichi; Kobayashi, Hiroaki; Nawashiro, Hiroshi; Ashida, Hiroshi; Hamblin, Michael R.; Obara, Minoru

    2012-03-01

    Low-level laser therapy (LLLT) is a promising approach to treat the spinal cord injury (SCI). Since nerve fibers have optical anisotropy, propagation of light in the spinal tissue might be affected by its polarization direction. However, the effect of polarization on the efficacy of LLLT has not been elucidated. In the present study, we investigated the effect of polarization on the efficacy of near-infrared LLLT for SCI. Rat spinal cord was injured with a weight-drop device. The lesion site was irradiated with an 808-nm diode laser beam that was transmitted through a polarizing filter immediately after injury and daily for five consecutive days. The laser power at the injured spinal cord surface was 25 mW, and the dosage per day was 9.6 J/cm2 (spot diameter, 2 cm; irradiation duration, 1200 s). Functional recovery was assessed daily by an open-field test. The results showed that the functional scores of the SCI rats that were treated with 808-nm laser irradiation were significantly higher than those of the SCI alone group (Group 1) from day 5 after injury, regardless of the polarization direction. Importantly, as compared to the locomotive function of the SCI rats that were treated with the perpendicularly-polarized laser parallel to the spinal column (Group 2), that of the SCI rats that were irradiated with the linearly aligned polarization (Group 3) was significantly improved from day 10 after injury. In addition, the ATP contents in the injured spinal tissue of Group 3, which were measured immediately after laser irradiation, were moderately higher than those of Group 2. These observations are attributable to the deeper penetration of the parallelpolarized light in the anisotropic spinal tissue, suggesting that polarization direction significantly affects the efficacy of LLLT for SCI.

  5. Effect of spinal anterior root stimulation and sacral deafferentation on bladder and sexual dysfunction in spinal cord injury

    DEFF Research Database (Denmark)

    Zaer, Hamed; Rasmussen, Mikkel Mylius

    2018-01-01

    Spinal cord injury (SCI) is a highly devastating injury with a variety of complications; among them are neurogenic bladder, bowel, and sexual dysfunction. We aimed to evaluate the effect of sacral anterior root stimulation with sacral deafferentation (SARS-SDAF) on neurogenic bladder and sexual d...

  6. The effect of Normast (PEA) in neuropathic pain in spinal cord injury

    DEFF Research Database (Denmark)

    Andresen, Sven Robert; Bing, Jette; Hansen, Rikke Bod Middelhede

    2015-01-01

    Introduction: Neuropathic pain and spasticity after spinal cord injury represent significant problems. Palmitoylethanolamide (PEA) is a fatty acid that is produced in many cells in the body, and it is thought to potentiate the body's own cannabis-like substances (endocannabinoids). PEA is suggested...... to reduce pain and inflammation but randomized controlled trials are lacking. Normast is a medical supplement which contains (PEA) approved for use in Denmark. The primary aim is to investigate the effect of Normast (PEA) on neuropathic pain, and secondary to study the effect of Normast on spasticity...

  7. Raman-based imaging uncovers the effects of alginate hydrogel implants in spinal cord injury

    Science.gov (United States)

    Galli, Roberta; Tamosaityte, Sandra; Koch, Maria; Sitoci-Ficici, Kerim H.; Later, Robert; Uckermann, Ortrud; Beiermeister, Rudolf; Gelinsky, Michael; Schackert, Gabriele; Kirsch, Matthias; Koch, Edmund; Steiner, Gerald

    2015-07-01

    The treatment of spinal cord injury by using implants that provide a permissive environment for axonal growth is in the focus of the research for regenerative therapies. Here, Raman-based label-free techniques were applied for the characterization of morphochemical properties of surgically induced spinal cord injury in the rat that received an implant of soft unfunctionalized alginate hydrogel. Raman microspectroscopy followed by chemometrics allowed mapping the different degenerative areas, while multimodal multiphoton microscopy (e.g. the combination of coherent anti-Stokes Raman scattering (CARS), endogenous two-photon fluorescence and second harmonic generation on the same platform) enabled to address the morphochemistry of the tissue at cellular level. The regions of injury, characterized by demyelination and scarring, were retrieved and the distribution of key tissue components was evaluated by Raman mapping. The alginate hydrogel was detected in the lesion up to six months after implantation and had positive effects on the nervous tissue. For instance, multimodal multiphoton microscopy complemented the results of Raman mapping, providing the micromorphology of lipid-rich tissue structures by CARS and enabling to discern lipid-rich regions that contained myelinated axons from degenerative regions characterized by myelin fragmentation and presence of foam cells. These findings demonstrate that Raman-based imaging methods provide useful information for the evaluation of alginate implant effects and have therefore the potential to contribute to new strategies for monitoring degenerative and regenerative processes induced in SCI, thereby improving the effectiveness of therapies.

  8. Levetiracetam in spinal cord injury pain: a randomized controlled trial

    DEFF Research Database (Denmark)

    Finnerup, N B; Grydehøj, J; Bing, J

    2009-01-01

    . OBJECTIVES: The objective of the study was primarily to evaluate the efficacy of the anticonvulsant levetiracetam in patients with spinal cord injury (SCI) at- and below-level pain and secondarily to evaluate the effect on spasm severity. SETTING: Outpatients at two spinal cord units and a pain center...... severity following spinal cord injury....

  9. Effect of transplantation of olfactory ensheathing cell conditioned medium induced bone marrow stromal cells on rats with spinal cord injury

    Science.gov (United States)

    Feng, Linjie; Gan, Hongquan; Zhao, Wenguo; Liu, Yingjie

    2017-01-01

    Spinal cord injury is a serious threat to human health and various techniques have been deployed to ameliorate or cure its effects. Stem cells transplantation is one of the promising methods. The primary aim of the present study was to investigate the effect of the transplantation of olfactory ensheathing cell (OEC) conditioned medium-induced bone marrow stromal cells (BMSCs) on spinal cord injury. Rat spinal cord compression injury animal models were generated, and the rats divided into the following three groups: Group A, (control) Dulbecco's modified Eagle's medium-treated group; group B, normal BMSC-treated group; group C, OEC conditioned medium-induced BMSC-treated group. The animals were sacrificed at 2, 4 and 8 weeks following transplantation for hematoxylin and eosin staining, and fluorescence staining of neurofilament protein, growth associated protein-43 and neuron-specific nuclear protein. The cavity area of the spinal cord injury was significantly reduced at 2 and 4 weeks following transplantation in group C, and a significant difference between the Basso, Beattie and Bresnahan score in group C and groups A and B was observed. Regenerated nerve fibers were observed in groups B and C; however, a greater number of regenerated nerve fibers were observed in group C. BMSCs induced by OEC conditioned medium survived in vivo, significantly reduced the cavity area of spinal cord injury, promoted nerve fiber regeneration following spinal cord injury and facilitated recovery of motor function. The present study demonstrated a novel method to repair spinal cord injury by using induced BMSCs, with satisfactory results. PMID:28656221

  10. Spinal Cord Injury Rehabilitation in Nepal

    Directory of Open Access Journals (Sweden)

    Nabina Shah

    2013-06-01

    Full Text Available Spinal cord injury is a major trauma, with its short and long term effects and consequences to the patient, his friends and family. Spinal cord injury is addressed in the developed countries with standard trauma care system commencing immediately after injury and continuing to the specialized rehabilitation units. Rehabilitation is important to those with spinal injury for both functional and psychosocial reintegration. It has been an emerging concept in Nepal, which has been evident with the establishment of the various hospitals with rehabilitation units, rehabilitation centres and physical therapy units in different institutions. However, the spinal cord injury rehabilitation setting and scenario is different in Nepal from those in the developed countries since spinal cord injury rehabilitation care has not been adequately incorporated into the health care delivery system nor its importance has been realized within the medical community of Nepal. To name few, lack of human resource for the rehabilitation care, awareness among the medical personnel and general population, adequate scientific research evidence regarding situation of spinal injury and exorbitant health care policy are the important hurdles that has led to the current situation. Hence, it is our responsibility to address these apparent barriers to successful implementation and functioning of rehabilitation so that those with spinal injury would benefit from enhanced quality of life. Keywords: rehabilitation; spinal injury.

  11. Regulatory effect of neuroglobin in the recovery of spinal cord injury.

    Science.gov (United States)

    Dai, Ji-Lin; Lin, Yun; Yuan, Yong-Jian; Xing, Shi-Tong; Xu, Yi; Zhang, Qiang-Hua; Min, Ji-Kang

    2017-11-16

    The present study was aimed to investigate the therapeutic potential of neuroglobin in the recovery of spinal cord injury. The male albino Wistar strain rats were used as an experimental model, and adeno associated virus (AAV) was administered in the T12 section of spinal cord ten days prior to the injury. Basso Beattie Bresnahan (BBB) locomotor rating scale was used to determine the recovery of the hind limb during four weeks post-operation. Malondialdehyde (MDA), catalase and superoxide dismutase (SOD) were determined in the spinal cord tissues. Terminal deoxynucleotidyl transferase (TdT) dUTP Nick-End Labeling (TUNEL) assay was carried out to determine the presence of apoptotic cells. Immunofluorescence analysis was carried out to determine the neuroglobin expression. Western blot analysis was carried out to determine the protein expressions of caspase-3, cytochrome c, bax and bcl-2 in the spinal cord tissues. Experimental results showed that rats were recovered from the spinal cord injury due to increased neuroglobin expression. Lipid peroxidation was reduced, whereas catalase and SOD activity were increased in the spinal cord tissues. Apoptosis and lesions were significantly reduced in the spinal cord tissues. Caspase-3, cytochrome c and bax levels were significantly reduced, whereas bcl-2 expression was reduced in the spinal cord tissues. Taking all these data together, it is suggested that the increased neuroglobin expression could improve the locomotor function.

  12. Protective effect of bone marrow mesenchymal stem cells combined with erythropoietin therapy on spinal cord injury rat model

    Directory of Open Access Journals (Sweden)

    Peng Xie

    2016-01-01

    Full Text Available Objective: To study the protective effect of bone marrow mesenchymal stem cells combined with erythropoietin therapy on spinal cord injury rat model. Methods: SD rats were selected as experimental animals, spinal cord injury rat model was built by striking spinal cord with Hatteras Instruments PCI3000, and model rats were divided into control group, bone marrow mesenchymal stem cells (BMSCs group, erythropoietin (EPO group and BMSCs combined with EPO group according to different treatment methods. Then number of apoptotic cells in spinal cord tissue, contents of neural markers and neurotrophic factors as well as expression of apoptosis and injury molecules was detected. Results: Number of apoptotic cells as well as mRNA contents of Caspase-3 and c-fos of BMSCs group, EPO group and BMSCs+EPO group was lower than those of control group, and number of apoptotic cells as well as mRNA contents of Caspase-3 and c-fos of BMSCs+EPO group were lower than those of BMSCs group and EPO group; mRNA contents of NF-200 and MBP as well as protein contents of NGF and BDNF in spinal cord tissue of BMSCs group, EPO group and BMSCs+EPO group were higher than those of control group, and mRNA contents of NF-200 and MBP as well as protein contents of NGF and BDNF in spinal cord tissue of BMSCs+EPO group were higher than those of BMSCs group and EPO group. Conclusions: Bone marrow mesenchymal stem cells combined with erythropoietin therapy can inhibit cell apoptosis in the injured spinal cord tissue, increase neurotrophic factor levels and inhibit apoptosis and injury molecule expression; it has protective effect on spinal cord injury.

  13. Effects of enriched housing on functional recovery after spinal cord contusive injury in the adult rat

    NARCIS (Netherlands)

    Gispen, W.H.; Lankhorst, A.J.; Laak, M.P. ter; Laar, T.J. van

    2001-01-01

    To date, most research performed in the area of spinal cord injury focuses on treatments designed to either prevent spreading lesion (secondary injury) or to enhance outgrowth of long descending and ascending fiber tracts around or through the lesion. In the last decade, however, several authors

  14. Tamoxifen: an FDA approved drug with neuroprotective effects for spinal cord injury recovery

    Directory of Open Access Journals (Sweden)

    Jennifer M Colón

    2016-01-01

    Full Text Available Spinal cord injury (SCI is a condition without a cure, affecting sensory and/or motor functions. The physical trauma to the spinal cord initiates a cascade of molecular and cellular events that generates a non-permissive environment for cell survival and axonal regeneration. Among these complex set of events are damage of the blood-brain barrier, edema formation, inflammation, oxidative stress, demyelination, reactive gliosis and apoptosis. The multiple events activated after SCI require a multi-active drug that could target most of these events and produce a permissive environment for cell survival, regeneration, vascular reorganization and synaptic formation. Tamoxifen, a selective estrogen receptor modulator, is an FDA approved drug with several neuroprotective properties that should be considered for the treatment of this devastating condition. Various investigators using different animal models and injury parameters have demonstrated the beneficial effects of this drug to improve functional locomotor recovery after SCI. Results suggest that the mechanism of action of Tamoxifen administration is to modulate anti-oxidant, anti-inflammatory and anti-gliotic responses. A gap of knowledge exists regarding the sex differences in response to Tamoxifen and the therapeutic window available to administer this treatment. In addition, the effects of Tamoxifen in axonal outgrowth or synapse formation needs to be investigated. This review will address some of the mechanisms activated by Tamoxifen after SCI and the results recently published by investigators in the field.

  15. Effects of iloprost and piracetam in spinal cord ischemia-reperfusion injury in the rabbit.

    Science.gov (United States)

    Kalkan, E; Keskin, F; Kaya, B; Esen, H; Tosun, M; Kalkan, S S; Erdi, F; Unlü, A; Avunduk, M C; Cicek, O

    2011-01-01

    Experimental Study. The aim of this study was to investigate the neuroprotective effects of iloprost and piracetam on spinal cord ischemia/reperfusion (I/R) injury in the rabbit. The Experimental Research Center of Selcuk University, Konya, Turkey. A total of 24 rabbits were divided into four groups of six rabbits each, as follows: group 1 (n = 6) sham, laparotomy only; group 2 (n = 6) I/R; group 3 (n = 6) I/R+iloprost; and group 4 (n = 6) I/R+piracetam. I/R was established in groups 2, 3 and 4. Subsequently, they were followed up neurologically for 24 h until the rabbits were killed; biochemical and histopathological examinations of samples from the spinal cord were carried out. Neurological examination results were significantly better in the iloprost and piracetam groups compared with the I/R group (P piracetam by suppressing malondialdehyde (P piracetam groups were statistically different from the I/R group in terms of the number of apoptotic neurons in gray matter and white matter, as well as in terms of degenerated neurons and glial cells (P 0.05). This study has shown that iloprost and piracetam have neuroprotective effects in I/R injury both neurologically and histopathologically because of inhibition of lipid peroxidation.

  16. Neuroprotective effect of rapamycin on spinal cord injury via activation of the Wnt/β-catenin signaling pathway

    Directory of Open Access Journals (Sweden)

    Kai Gao

    2015-01-01

    Full Text Available The Wnt/β-catenin signaling pathway plays a crucial role in neural development, axonal guidance, neuropathic pain remission and neuronal survival. In this study, we initially examined the effect of rapamycin on the Wnt/β-catenin signaling pathway after spinal cord injury, by intraperitoneally injecting spinal cord injured rats with rapamycin over 2 days. Western blot analysis and immunofluorescence staining were used to detect the expression levels of β-catenin protein, ca-spase-3 protein and brain-derived neurotrophic factor protein, components of the Wnt/β-catenin signaling pathway. Rapamycin increased the levels of β-catenin and brain-derived neurotrophic factor in the injured spinal cord, improved the pathological morphology at the injury site, reduced the loss of motor neurons, and promoted motor functional recovery in rats after spinal cord injury. Our experimental findings suggest that the neuroprotective effect of rapamycin intervention is mediated through activation of the Wnt/β-catenin signaling pathway after spinal cord injury.

  17. Training effectiveness when teaching the International Standards for Neurological Classification of Spinal Cord Injury (ISNCSCI) to medical students

    DEFF Research Database (Denmark)

    Liu, N; Zhou, M-W; Krassioukov, A V

    2013-01-01

    STUDY DESIGN: Interventional training sessions. OBJECTIVES: To examine the effectiveness of training medical students in the International Standards for Neurological Classification of Spinal Cord Injury (ISNCSCI). SETTING: A Peking University teaching hospital. METHODS: A total of 46 medical...... without more detailed discussions and case presentations. Utilization of cases is a valuable method in training ISNCSCI and can improve the overall training effectiveness....

  18. ANALGESIC EFFECT OF INTRATHECAL BACLOFEN BOLUS ON NEUROPATHIC PAIN IN SPINAL CORD INJURY PATIENTS.

    Science.gov (United States)

    Kumru, Hatice; Benito-Penalva, Jesus; Kofler, Markus; Vidal, Joan

    2018-05-18

    GABA-ergic neurons are widely distributed throughout the central nervous system, including the spinal cord which is important for the transmission of pain impulses to the brain. Here we hypothesized that intrathecal baclofen (ITB) which is a GABA analogue might exert analgesic effects on neuropathic pain, which could be related to subtypes of pain in spinal cord injury (SCI). SCI patients with a cervical or thoracic lesion and neuropathic pain were randomized to receive either a single ITB bolus or placebo. Numerical Rating Scale (NRS), Neuropathic Pain Symptom Inventory (NPSI), and Brief Pain Inventory (BPI) were obtained for assessment of neuropathic pain. Spasticity was assessed using Modified Ashworth Scale and visual analogue scale. Evaluations were performed at baseline, and 4, 8, and 24 hours after application of ITB or placebo. Eight patients received ITB, 5 placebo. Neuropathic pain improved significantly in the ITB group based on NRS, BPI, and NPSI, which revealed an effect on all subtypes of pain. Spasticity declined significantly. In the placebo group, there was neither significant change in pain nor in spasticity. An ITB bolus exerted a significant analgesic effect on all subtypes of neuropathic pain in SCI patients. ITB has analgesic effects on all subtypes of neuropathic pain and can improve interference of neuropathic pain with activities of daily living. ITB might be a promising analgesic treatment to control neuropathic pain. Copyright © 2018. Published by Elsevier Inc.

  19. Effects of Hybrid Cycle and Handcycle Exercise on Cardiovascular Disease Risk Factors in People with Spinal Cord Injury: a Randomized Controlled Trial

    NARCIS (Netherlands)

    Bakkum, A.J.T.; Paulson, T.A.W.; Bishop, N.C.; Goosey-Tolfrey, V.L.; Stolwijk-Swuste, J.M.; van Kuppevelt, D.J.; de Groot, S.; Janssen, T.W.J.

    2015-01-01

    Objective: To examine the effects of a 16-week exercise programme, using either a hybrid cycle or a handcycle, on cardiovascular disease risk factors in people with spinal cord injury. Participants: Nineteen individuals with spinal cord injury ≥ 8 years. Design: Multicentre randomized controlled

  20. Effects of Hybrid Cycle and Handcycle Exercise on Cardiovascular Disease Risk Factors in People with Spinal Cord Injury : A Randomized Controlled Trial

    NARCIS (Netherlands)

    Bakkum, Arjan J. T.; Paulson, Thomas A. W.; Bishop, Nicolette C.; Goosey-Tolfrey, Victoria L.; Stolwijk-Swuste, Janneke M.; van Kuppevelt, Dirk J.; de Groot, Sonja; Janssen, Thomas W. J.

    Objective: To examine the effects of a 16-week exercise programme, using either a hybrid cycle or a handcycle, on cardiovascular disease risk factors in people with spinal cord injury. Participants: Nineteen individuals with spinal cord injury >= 8 years. Design: Multicentre randomized controlled

  1. Brain protection by methylprednisolone in rats with spinal cord injury.

    Science.gov (United States)

    Chang, Chia-Mao; Lee, Ming-Hsueh; Wang, Ting-Chung; Weng, Hsu-Huei; Chung, Chiu-Yen; Yang, Jen-Tsung

    2009-07-01

    Traumatic spinal cord injury is clinically treated by high doses of methylprednisolone. However, the effect of methylprednisolone on the brain in spinal cord injury patients has been little investigated. This experimental study examined Bcl-2 and Bax protein expression and Nissl staining to evaluate an apoptosis-related intracellular signaling event and final neuron death, respectively. Spinal cord injury produced a significant apoptotic change and cell death not only in the spinal cord but also in the supraventricular cortex and hippocampal cornu ammonis 1 region in the rat brains. The treatment of methylprednisolone increased the Bcl-2/Bax ratio and prevented neuron death for 1-7 days after spinal cord injury. These findings suggest that rats with spinal cord injury show ascending brain injury that could be restricted through methylprednisolone management.

  2. Spinal cord injury at birth

    DEFF Research Database (Denmark)

    Fenger-Gron, Jesper; Kock, Kirsten; Nielsen, Rasmus G

    2008-01-01

    UNLABELLED: A case of perinatally acquired spinal cord injury (SCI) is presented. The foetus was vigorous until birth, the breech presented and delivery was performed by a non-traumatic Caesarean section. The infant displayed symptoms of severe SCI but diagnosis was delayed due to severe co...

  3. Effect of electrical stimulation of hamstrings and L3/4 dermatome on gait in spinal cord injury

    NARCIS (Netherlands)

    van der Salm, Arjan; Veltink, Petrus H.; Hermens, Hermanus J.; Nene, A.V.; IJzerman, Maarten Joost

    2006-01-01

    Objective. To determine the effect of electrical stimulation of hamstrings and L3/4 dermatome on the swing phase of gait. Materials and Methods. Five subjects with incomplete spinal cord injury (SCI) with spasticity were included. Two electrical stimulation methods were investigated, i.e.,

  4. Effect of Patient Education on Reducing Medication in Spinal Cord Injury Patients With Neuropathic Pain.

    Science.gov (United States)

    Shin, Ji Cheol; Kim, Na Young; Chang, Shin Hye; Lee, Jae Joong; Park, Han Kyul

    2017-08-01

    To determine whether providing education about the disease pathophysiology and drug mechanisms and side effects, would be effective for reducing the use of pain medication while appropriately managing neurogenic pain in spinal cord injury (SCI) patients. In this prospective study, 109 patients with an SCI and neuropathic pain, participated in an educational pain management program. This comprehensive program was specifically created, for patients with an SCI and neuropathic pain. It consisted of 6 sessions, including educational training, over a 6-week period. Of 109 patients, 79 (72.5%) initially took more than two types of pain medication, and this decreased to 36 (33.0%) after the educational pain management program was completed. The mean pain scale score and the number of pain medications decreased, compared to the baseline values. Compared to the non-response group, the response group had a shorter duration of pain onset (p=0.004), and a higher initial number of different medications (ppain management program, can be a valuable complement to the treatment of spinal cord injured patients with neuropathic pain. Early intervention is important, to prevent patients from developing chronic SCI-related pain.

  5. Effect of Aspirin on Spinal Cord Injury: An Experimental Study

    Directory of Open Access Journals (Sweden)

    Hamed Reihani Kermani

    2016-05-01

    Full Text Available Aspirin is an anti-inflammatory drug, peroxyl radical scavenger, and antioxidant agent that inhibits phospholipases, nitric oxide synthetases, and cyclooxygenase enzymes. The existing literature contains no studies on the effects of various doses of aspirin on spinal cord injury (SCI. Therefore, we sought to investigate the putative effects of aspirin on experimental SCI. The weight-drop injury model was used to produce SCI in 100 albino Wistar rats. The animals were allocated to five groups: a control group, where the rats did not undergo any surgical or medical intervention except for anesthesia; a sham-treated group, where laminectomy was performed without SCI and no further therapy was administered; and three other groups, where the rats with SCI received low-dose aspirin [20 mg/kg], high-dose aspirin [80 mg/kg], and a vehicle, respectively. Half of the rats were sacrificed 24 hours later, and their spinal cords were excised for biochemical studies. The other rats were subjected to Basso, Beattie, and Bresnahan (BBB locomotor rating scale scoring once a week for 6 consecutive weeks. Aspirin decreased lipid peroxidation following SCI as the mean (± standard error catalase level was significantly higher in the high-dose aspirin group (46.10±12.01 than in the sham-treated group (16.07±2.42 and the vehicle-treated group (15.31±3.20 (P<0.05; P<0.05, respectively. Both of the groups treated with high-dose and low-dose aspirin demonstrated a higher mean BBB score than did the control group (P<0.001 and the sham-treated group (P<0.001. Our data provide evidence in support of the potential effects of aspirin in biochemical and neurobehavioral recovery after SCI.

  6. Osteopathic manipulative treatment is effective on pain control associated to spinal cord injury.

    Science.gov (United States)

    Arienti, C; Daccò, S; Piccolo, I; Redaelli, T

    2011-04-01

    This study was designed as an experimental study (trial). To verify the effects of the association between conventional pharmacological treatment and osteopathic manipulative treatment (OMT) for chronic pain management in spinal cord injury (SCI). This study was carried out at Spinal Unit, Ospedale Niguarda Ca' Granda, Milan, Italy. Istituto Superiore di Osteopatia, Milan, Italy. We enrolled 47 patients with SCI, 26 with pain of both nociceptive and neuropathic origin, and 21 with pure neuropathic pain. In all, 33 patients had a complete spinal cord lesion (ASIA level A) and 14 had incomplete lesion (ASIA level B, C and D). The patients were subdivided in a pharmacological group (Ph), a pharmacological osteopathic (PhO) group and a osteopathic (Os) group. The verbal numeric scale (VNS) was used at various time intervals to evaluate treatment outcomes. Ph patients reached a 24% improvement in their pain perception, assessed by the VNS scale after 3 weeks of treatment, whereas Os patients reached a 16% improvement in their pain perception for the same weeks. Both treatments per se failed to induce further improvements at later time points. In contrast, the combination of the two approaches yielded a significantly better pain relief both in patients with nociceptive or pure neuropathic pain in the PhO group. Our results suggest the OMT is a feasible approach in patients in whom available drugs cannot be used. Moreover, a benefit can be expected by the association of OMT in patients treated according to existing pharmacological protocols.

  7. Therapeutic Effects of Traditional Chinese Medicine on Spinal Cord Injury: A Promising Supplementary Treatment in Future

    Directory of Open Access Journals (Sweden)

    Qian Zhang

    2016-01-01

    Full Text Available Objective. Spinal cord injury (SCI is a devastating neurological disorder caused by trauma. Pathophysiological events occurring after SCI include acute, subacute, and chronic phases, while complex mechanisms are comprised. As an abundant source of natural drugs, Traditional Chinese Medicine (TCM attracts much attention in SCI treatment recently. Hence, this review provides an overview of pathophysiology of SCI and TCM application in its therapy. Methods. Information was collected from articles published in peer-reviewed journals via electronic search (PubMed, SciFinder, Google Scholar, Web of Science, and CNKI, as well as from master’s dissertations, doctoral dissertations, and Chinese Pharmacopoeia. Results. Both active ingredients and herbs could exert prevention and treatment against SCI, which is linked to antioxidant, anti-inflammatory, neuroprotective, or antiapoptosis effects. The detailed information of six active natural ingredients (i.e., curcumin, resveratrol, epigallocatechin gallate, ligustrazine, quercitrin, and puerarin and five commonly used herbs (i.e., Danshen, Ginkgo, Ginseng, Notoginseng, and Astragali Radix was elucidated and summarized. Conclusions. As an important supplementary treatment, TCM may provide benefits in repair of injured spinal cord. With a general consensus that future clinical approaches will be diversified and a combination of multiple strategies, TCM is likely to attract greater attention in SCI treatment.

  8. The neuroprotective effect of treatment with curcumin in acute spinal cord injury: laboratory investigation.

    Science.gov (United States)

    Kim, Kyoung-Tae; Kim, Myoung-Jin; Cho, Dae-Chul; Park, Seong-Hyun; Hwang, Jeong-Hyun; Sung, Joo-Kyung; Cho, Hee-Jung; Jeon, Younghoon

    2014-01-01

    The purpose of this study was investigating the effects of curcumin on the histological changes and functional recovery following spinal cord injury (SCI) in a rat model. Following either sham operation or SCI, 36 male Sprague-Dawley rats were distributed into three groups: sham group, curcumin-treated group, and vehicle-injected group. Locomotor function was assessed according to the Basso, Beattie, and Bresnahan (BBB) scale in rats who had received daily intraperitoneal injections of 200 mg/kg curcumin or an equivalent volume of vehicle for 7 days following SCI. The injured spinal cord was then examined histologically, including quantification of cavitation. BBB scores were significantly higher in rats receiving curcumin than receiving vehicle (P curcumin group as compared to the control group (P = 0.039). Superoxide dismutase (SOD) activity was significantly elevated in the curcumin group as compared to the vehicle group but was not significantly different from the sham group (P 0.05, respectively) at one and two weeks after SCI. Malondialdehyde (MDA) levels were significantly elevated in the vehicle group as compared to the sham group (P curcumin group at 2 weeks after SCI when compared to the vehicle group (P = 0.004). The numbers of macrophage were significantly decreased in the curcumin group (P = 0.001). This study demonstrated that curcumin enhances early functional recovery after SCI by diminishing cavitation volume, anti-inflammatory reactions, and antioxidant activity.

  9. The Long Term Effects of Chronic Spinal Cord Injury on Sperm Parameters in Rats

    Directory of Open Access Journals (Sweden)

    MA Khalili

    2004-07-01

    Full Text Available Introduction: Spinal cord injury (SCI is a serious public health problem which seriously affects the victim, family, and even the society. Research studies have shown that 80% of SCI victims are men. In recent years, there have been extensive research works on the effect of SCI (acute and/or chronic on fertility potential of sperm and spermatogenesis in laboratory animals. SCI may disturb the spermatogenic cell lines in laboratory animals. The objective of this experimental study was to investigate the effect of chronic spinal cord injury (CSCI on sperm parameters in adult rats. Materials & Methods: Adult Wistar rats weighing between 225-275g were divided into 3groups of control (n=5, sham (n=10, and experimental CSCI (n=10. No surgery was done on control animals. Only laminectomy was done in the sham animals at T10. CSCI was developed in experimental rats using 10g weight dropped 5cm above the exposed T10 level. All animals were sacrificed 50 days post experiment to extract epididymal samples. Sperm parameters of count, motility, morphology, as well as number of round cells were evaluated with the aid of Makler chamber and Geimsa staining. Results: Progressive motility was significantly reduced in CSCI group (P<0.05. The percentage of normal morphology of spermatozoa was 99.0±1.0 in control rats which was significantly reduced to 74.90±37.64 in CSCI animals In addition, sperm counts in control and CSCI rats were 69.20±12.43 and 25.0±13.68, respectively (P<0.01. Round cell concentration was increased in CSCI group as compared to controls. Conclusion: The results suggest that reduction in parameters of progressive motility, morphology, as well as sperm count following CSCI in rats may disturb the fertility potential of spermatozoa.

  10. Cervical spine cord injury in pregnancy. Conservative management ...

    African Journals Online (AJOL)

    Study design A prospective study of 3 patients with incomplete cervical spinal cord injury in the 3rd trimester of pregnancy. Objectives To determine the effect of spinal cord injury and treatment with Gardner-Wells\\' Tong traction on pregnancy, labour and parturition; and ascertain the effectiveness and safety of this ...

  11. MR imaging and spinal cord injury

    International Nuclear Information System (INIS)

    Azar-Kia, B.; Fine, M.; Naheedy, M.; Elias, D.

    1987-01-01

    MR imaging has significantly improved diagnostic capability of spinal cord injuries. Other available diagnostic modalities such as plain films, myelography, CT, and post-CT myelography have failed to consistently show the secific evidence of spinal cord injuries and their true extent. The authors are presenting our experiences with MR imaging in spinal column injury. They have found MR imaging to be the procedure of choice for prognostic evaluation of spinal cord trauma. They are showing examples of recent and old spinal cord injury such as hematomyelia, myelomalacia, transection, spinal cord edema, and cavitation

  12. Hyperbaric oxygen therapy of spinal cord injury

    Directory of Open Access Journals (Sweden)

    Nitesh P Patel

    2017-01-01

    Full Text Available Spinal cord injury (SCI is a complex disease process that involves both primary and secondary mechanisms of injury and can leave patients with devastating functional impairment as well as psychological debilitation. While no curative treatment is available for spinal cord injury, current therapeutic approaches focus on reducing the secondary injury that follows SCI. Hyperbaric oxygen (HBO therapy has shown promising neuroprotective effects in several experimental studies, but the limited number of clinical reports have shown mixed findings. This review will provide an overview of the potential mechanisms by which HBO therapy may exert neuroprotection, provide a summary of the clinical application of HBO therapy in patients with SCI, and discuss avenues for future studies.

  13. Effects of Human Umbilical Cord Mesenchymal Stem Cells on Renal Ischaemia-reperfusion Injury in Rats

    Directory of Open Access Journals (Sweden)

    Zhenyu Qiu

    2014-08-01

    Full Text Available Objective This study aims to observe the function of umbilical cord-mesenchymal stem cells (UC-MSCs labelled with enhanced green fluorescent protein (eGFP in the repair of renal ischaemia-reperfusion (I/R injury, to determine the effects on inflammatory cascade in an established rat model and to explore possible pathogenesis. Materials and Methods Sixty rats were randomly divided into three groups: the sham-operated, I/R and UC-MSC treatment groups. All rats underwent right nephrectomy. Ischaemia was induced in the left kidney by occlusion of the renal artery and vein for 1hour, followed by reperfusion for 24 hours or 48 hours. Kidney samples were collected to observe morphological changes. Immunohistochemistry was performed to assess the expression of intercellular adhesion molecule 1 (ICAM-1 in the renal tissue sample, as well as the number of infiltrating polymorphonuclear neutrophils (PMNLs and UC-MSCs with positive eGFP. Results Renal histopathological damages and the expression of ICAM-1 and PMNL increased significantly in the I/R group compared with those in the sham-operated group, whereas the damages were less conspicuous in the UC-MSC treatment group. Conclusions Renal ICAM-1, which mediated PMNL infiltration and contributed to renal damage, was significantly up-regulated in the I/R group. UC-MSCs were identified to inhibit these pathological processes and protect the kidney from I/R injury.

  14. Effects of melatonin on spinal cord injury-induced oxidative damage in mice testis.

    Science.gov (United States)

    Yuan, X-C; Wang, P; Li, H-W; Wu, Q-B; Zhang, X-Y; Li, B-W; Xiu, R-J

    2017-09-01

    This study evaluated the effects of melatonin on spinal cord injury (SCI)-induced oxidative damage in testes. Adult male C57BL/6 mice were randomly divided into sham-, SCI- or melatonin (10 mg/kg, i.p.)-treated SCI groups. To induce SCI, a standard weight-drop method that induced a contusion injury at T10 was used. After 1 week, testicular blood flow velocity was measured using the Laser Doppler Line Scanner. Malondialdehyde (MDA), glutathione (GSH), oxidised glutathione (GSSG) and myeloperoxidase (MPO) were measured in testis homogenates. Microvascular permeability of the testes to Evan's Blue was examined by spectrophotometric and fluorescence microscopic quantitation. The tight junction protein zonula occludens-1 (ZO-1) and occludin in testes were assessed by immunoblot analysis. Melatonin increased the reduced blood flow and decreased SCI-induced permeability of capillaries. MDA levels and MPO activity were elevated in the SCI group compared with shams, which was reversed by melatonin. In contrast, SCI-induced reductions in GSH/GSSG ratio were restored by melatonin. Decreased expression of ZO-1 and occludin was observed, which was attenuated by melatonin. Overall, melatonin treatment protects the testes against oxidative stress damage caused by SCI. © 2016 Blackwell Verlag GmbH.

  15. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... PhD Sigmund Hough, PhD Laura Tuck, PsyD Terrie Price, PhD Heather Taylor, PhD Michelle Meade, PhD Jonathon ... arrow Why are high-dose steroids often used right after an injury? play_arrow What is meant ...

  16. Effects and Safety of Aqueous Extract of Poncirus fructus in Spinal Cord Injury with Neurogenic Bowel

    Directory of Open Access Journals (Sweden)

    Ji Hee Kim

    2016-01-01

    Full Text Available Objective. To investigate the effects and safety of the aqueous extract of the dried, immature fruit of Poncirus trifoliata (L. Raf., known as Poncirus fructus (PF, in spinal cord injury (SCI patients with neurogenic bowel. Methods. Thirty-one SCI patients with neurogenic bowel were recruited. Patients were evaluated based on clinical information, constipation score, Bristol Stool Form Scale, stool retention score using plain abdominal radiograph, and colon transit time. PF was administered in dosages of 800 mg each prior to breakfast and lunch for 14 days. Results. The morphological feature of the stool before and after administration indicated a statistically significant difference from 3.52 ± 1.33 to 4.32 ± 1.44 points (p<0.05. Stool retention score before and after administration of PF was represented with low significance (7.25 ± 1.60 to 6.46 ± 1.53 points in the whole colon (p<0.05, and the colon transit time was significantly shortened (57.41 ± 20.7 to 41.2 ± 25.5 hours in terms of the whole transit time (p<0.05. Side effects were observed in 7 people (28.0% consisting of 2 people with soft stools and 5 people with diarrhea. Conclusion. For SCI patients, PF administration significantly improved defecation patterns, defecation retention, and colon transit time. PF could be an effective aid to improve colonic motility and constipation.

  17. Assessment of the neuroprotective effects of Lavandula angustifolia extract on the contusive model of spinal cord injury in Wistar rats

    Directory of Open Access Journals (Sweden)

    Gholamreza eKaka

    2016-02-01

    Full Text Available IntroductionSpinal cord injury (SCI involves a primary trauma and secondary cellular processes that can lead to severe damage to the nervous system, resulting in long-term spinal deficits. At the cellular level, SCI causes astrogliosis, of which glial fibrillary acidic protein (GFAP is a major index. ObjectiveThe aim of this study was to investigate the neuroprotective effects of Lavandula angustifolia (Lav on the repair of spinal cord injuries in Wistar rats.Materials and MethodsForty-five female rats were randomly divided into six groups of seven rats each: the intact, sham, control (SCI, Lav 100, Lav 200, and Lav 400 groups. Every week after SCI onset, all animals were evaluated for behavior outcomes by the Basso, Beattie, and Bresnahan (BBB score. H&E staining was performed to examine the lesions post-injury. GFAP expression was assessed for astrogliosis. Somatosensory evoked potential (SEP testing was performed to detect the recovery of neural conduction.Results BBB scores were significantly increased and delayed responses on sensory tests were significantly decreased in the Lav 200 and Lav 400 groups compared to the control group. The greatest decrease of GFAP was evident in the Lav 200 and Lav 400 groups. EMG results showed significant improvement in the hindlimbs in the Lav 200 and Lav 400 groups compared to the control group. Cavity areas significantly decreased and the number of ventral motor neurons significantly increased in the Lav 200 and Lav 400 groups.ConclusionLav at doses of 200 mg/kg and 400 mg/kg can promote structural and functional recovery after SCI. The neuroprotective effects of L. angustifolia can lead to improvement in the contusive model of spinal cord injury in Wistar rats.Keywords Spinal cord injury (SCI; Lavandula angustifolia; neuroprotection; Basso, Beattie, and Bresnahan (BBB; glial fibrillary acidic protein (GFAP; somatosensory evoked potential (SEP

  18. Effects of wheelchair sports on respiratory muscle strength and thoracic mobility of individuals with spinal cord injury.

    Science.gov (United States)

    Moreno, Marlene Aparecida; Zamunér, Antonio Roberto; Paris, Juliana Viana; Teodori, Rosana Macher; Barros, Ricardo M L

    2012-06-01

    The aim of this study was to evaluate the effects of wheelchair sports on respiratory muscle strength and the thoracic mobility of individuals with spinal cord injury. Thirty male subjects with chronic spinal cord injury (American Spinal Injury Association Impairment Scale grade A) took part in the study and were divided into four groups: sedentary subjects with quadriplegia (S-QUAD, n = 7), wheelchair rugby athletes with quadriplegia (A-QUAD, n = 8), sedentary subjects with paraplegia (S-PARA, n = 6), and wheelchair basketball athletes with paraplegia (A-PARA, n = 9). The main outcome measures were maximal inspiratory and expiratory pressure and the respiratory coefficients at the axillary and xiphoid levels. A-QUAD group presented values significantly higher for all respiratory variables studied compared with the S-QUAD group. No significant differences in any of the respiratory variables were observed between S-PARA and A-PARA groups. There was a negative correlation between spinal cord injury level and respiratory variables for the S-QUAD and S-PARA groups. There were positive correlations in the A-QUAD group between time of training and maximal inspiratory pressure (adjusted R = 0.84; P = 0.001) and respiratory coefficients at the axillary level (adjusted R = 0.80; P = 0.002). Physical training seems to have a positive influence on respiratory muscle strength and thoracic mobility, especially in subjects with quadriplegia.

  19. The Effects of Testosterone on Oxidative Stress Markers in Mice with Spinal Cord Injuries

    Directory of Open Access Journals (Sweden)

    Hamid Choobineh

    2016-05-01

    Full Text Available Background: Spinal cord injury (SCI causes infertility in male patients through erectile dysfunction, ejaculatory dysfunction, semen and hormone abnormalities. Oxidative stress (OS is involved in poor semen quality and subsequent infertility in males with SCI. The aim of this study is to examine the effects of SCI on the level of testosterone hormone. Materials and Methods: In this experimental study, we evaluated the effects of exogenous testosterone on the activity of the antioxidant enzymes superoxide dismutase (SOD and glutathione peroxidase (GPx as well as the levels of malondialdehyde (MDA and protein carbonylation (PCO, as markers of OS, in 10 groups of SCI mice. Total antioxidant capacity (TAC was determined using the 2,29-azinobis-(3-ethylbenzothiazoline- 6-sulfonic acid (ABTS radical cation assay. Results: Exogenous testosterone administration in mice with SCI significantly reduced SOD and GPx enzyme activities and MDA level. There was no significant decrease in PCO content. In addition, TAC remarkably increased in the sham and SCI groups not treated with testosterone but remained unchanged in all other experimental groups. Exogenous testosterone also reduced serum testosterone levels in all groups except the positive control group. Conclusion: Our cumulative data indicated that SCI could cause sterility by disturbing the plasmatic testosterone balance. The normal level of endogenous testosterone was not completely restored by exogenous testosterone administration.

  20. Effect of service dogs on manual wheelchair users with spinal cord injury: a pilot study.

    Science.gov (United States)

    Hubert, Geoffroy; Tousignant, Michel; Routhier, François; Corriveau, Hélène; Champagne, Noël

    2013-01-01

    Service dogs help people with mobility impairments. They are trained to perform a variety of tasks, such as opening doors, retrieving the telephone, picking up objects, and pulling manual wheelchairs (MWCs). More specifically, using the traction provided by the service dog has physical benefits because MWC users can operate their MWCs with less effort. The objective of this study was to document the effect of a service dog on MWC mobility and user shoulder pain, social participation, and quality of life. Eleven MWC users with spinal cord injury were assessed before and after training with a service dog and 7 mo later. Based on a standardized protocol, all study participants learned how to use the service dog safely and how to move around efficiently in different environments and under different conditions. Results showed that using a service dog increased the distance covered by the MWC users and also significantly decreased shoulder pain and intensity of effort. Using the service dog also produced slight but significant improvements in MWC user skills and social participation and may indicate a trend for improvement in quality of life. More extensive research is needed to precisely identify the effect of service dogs on the long-term management of MWC use.

  1. Effective antibiotic stewardship in spinal cord injury: Challenges and a way forward.

    Science.gov (United States)

    Skelton, Felicia; Suda, Katie; Evans, Charlesnika; Trautner, Barbara

    2018-01-11

    Context Antibiotic stewardship, defined as a multidisciplinary program to reduce the misuse of antibiotics, and in turn, antibiotic resistance, is a high priority. Persons with spinal cord injury/disorder (SCI/D) are vulnerable to receiving multiple courses of antibiotics over their lifetime given frequent healthcare exposure, and have high rates of bacterial infection with multi-drug resistant organisms. Additional challenges to evaluating appropriate use of antibiotics in this population include bacterial colonization in the urine and the differences in the presenting signs and symptoms of infection. Therefore, Veterans Health Administration (VHA) facilities with SCI/D centers need effective antibiotic stewardship programs. Results We analyzed the results of a 2012 VHA-wide survey evaluating available antibiotic stewardship resources, and compared the resources present at facilities with SCI/D (n=23) versus non-SCI/D facilities (n=107). VHA facilities with SCI/D centers are more likely to have components of an antibiotic stewardship program that have led to reduced antibiotic use in previous studies. They are also more likely to have personnel with infectious diseases training. Conclusion VHA facilities with SCI/D centers have the resources needed for antibiotic stewardship. The next step will be to determine how to implement effective antibiotic stewardship tailored for this patient care setting.

  2. Blocking weight-induced spinal cord injury in rats: effects of TRH or naloxone on motor function recovery and spinal cord blood flow

    International Nuclear Information System (INIS)

    Holtz, A.; Nystroem, B.; Gerdin, B.

    1989-01-01

    The ability of thyotropin releasing hormone (TRH) or naloxone to reduce the motor function deficit and to improve the spinal cord blood flow (SCBF) was investigated in a rat spinal cord compression injury model. Spinal cord injury was induced by compression for 5 min with a load of 35 g on a 2.2 x 5.0 mm sized compression plate causing a transient paraparesis. One group of animals was given TRH, one group naloxone and one group saline alone. Each drug was administered intravenously as a bolus dose of 2 mg/kg 60 min after injury followed by a continuous infusion of 2 mg/kg/h for 4 h. The motor performance was assessed daily on the inclined plant until Day 4, when SCBF was measured with the 14 C-iodoantipyrine autoradiographic method. It was found that neither TRH nor naloxone had promoted motor function recovery or affected SCBF 4 days after spinal cord injury. (author)

  3. Traumatic spinal cord injury in MR imaging

    International Nuclear Information System (INIS)

    Bronarski, J.; Wozniak, E.

    1993-01-01

    Spinal cord injuries in tetraplegics were briefly discussed on the basis of MR imaging. It was found that severe cervical spine trauma usually results in concussion - the complete transection of the cord is rare. A case of 19 years old male with total cord transection confirmed by MR imaging is described. (author)

  4. Risk factors in iatrogenic spinal cord injury.

    Science.gov (United States)

    Montalva-Iborra, A; Alcanyis-Alberola, M; Grao-Castellote, C; Torralba-Collados, F; Giner-Pascual, M

    2017-09-01

    In the last years, there has been a change in the aetiology of spinal cord injury. There has been an increase in the number of elderly patients with spinal cord injuries caused by diseases or medical procedures. The aim of this study is to investigate the frequency of the occurrence of iatrogenic spinal cord injury in our unit. The secondary aim is to study what variables can be associated with a higher risk of iatrogenesis. A retrospective, descriptive, observational study of patients with acute spinal cord injury admitted from June 2009 to May 2014 was conducted. The information collected included the patient age, aetiology, neurological level and grade of injury when admitted and when discharged, cardiovascular risk factors, a previous history of depression and any prior treatment with anticoagulant or antiplatelet drugs. We applied a logistic regression. The grade of statistical significance was established as Pinjury was the thoracic level (48%). The main aetiology of spinal cord injury caused by iatrogenesis was surgery for degenerative spine disease, in patients under the age of 30 were treated with intrathecal chemotherapy. Iatrogenic spinal cord injury is a frequent complication. A statistically significant association between a patient history of depression and iatrogenic spinal cord injury was found as well as with anticoagulant and antiplatelet drug use prior to iatrogenic spinal cord injury.

  5. Effect of oxidative stress induced by intracranial iron overload on central pain after spinal cord injury.

    Science.gov (United States)

    Meng, Fan Xing; Hou, Jing Ming; Sun, Tian Sheng

    2017-02-08

    Central pain (CP) is a common clinical problem in patients with spinal cord injury (SCI). Recent studies found the pathogenesis of CP was related to the remodeling of the brain. We investigate the roles of iron overload and subsequent oxidative stress in the remodeling of the brain after SCI. We established a rat model of central pain after SCI. Rats were divided randomly into four groups: SCI, sham operation, SCI plus deferoxamine (DFX) intervention, and SCI plus nitric oxide synthase (NOS) inhibitor treatment. Pain behavior was observed and thermal pain threshold was measured regularly, and brain levels of iron, transferrin receptor 1 (TfR1), ferritin (Fn), and lactoferrin (Lf), were detected in the different groups 12 weeks after establishment of the model. Rats demonstrated self-biting behavior after SCI. Furthermore, the latent period of thermal pain was reduced and iron levels in the hind limb sensory area, hippocampus, and thalamus increased after SCI. Iron-regulatory protein (IRP) 1 levels increased in the hind limb sensory area, while Fn levels decreased. TfR1 mRNA levels were also increased and oxidative stress was activated. Oxidative stress could be inhibited by ferric iron chelators and NOS inhibitors. SCI may cause intracranial iron overload through the NOS-iron-responsive element/IRP pathway, resulting in central pain mediated by the oxidative stress response. Iron chelators and oxidative stress inhibitors can effectively relieve SCI-associated central pain.

  6. Spinal cord injury arising in anaesthesia practice.

    Science.gov (United States)

    Hewson, D W; Bedforth, N M; Hardman, J G

    2018-01-01

    Spinal cord injury arising during anaesthetic practice is a rare event, but one that carries a significant burden in terms of morbidity and mortality. In this article, we will review the pathophysiology of spinal cord injury. We will then discuss injuries relating to patient position, spinal cord hypoperfusion and neuraxial techniques. The most serious causes of spinal cord injury - vertebral canal haematoma, spinal epidural abscess, meningitis and adhesive arachnoiditis - will be discussed in turn. For each condition, we draw attention to practical, evidence-based measures clinicians can undertake to reduce their incidence, or mitigate their severity. Finally, we will discuss transient neurological symptoms. Some cases of spinal cord injury during anaesthesia can be ascribed to anaesthesia itself, arising as a direct consequence of its conduct. The injury to a spinal nerve root by inaccurate and/or incautious needling during spinal anaesthesia is an obvious example. But in many cases, spinal cord injury during anaesthesia is not caused by, related to, or even associated with, the conduct of the anaesthetic. Surgical factors, whether direct (e.g. spinal nerve root damage due to incorrect pedicle screw placement) or indirect (e.g. cord ischaemia following aortic surgery) are responsible for a significant proportion of spinal cord injuries that occur concurrently with the delivery of regional or general anaesthesia. © 2018 The Association of Anaesthetists of Great Britain and Ireland.

  7. Spinal cord injury drives chronic brain changes

    Directory of Open Access Journals (Sweden)

    Ignacio Jure

    2017-01-01

    Full Text Available Only a few studies have considered changes in brain structures other than sensory and motor cortex after spinal cord injury, although cognitive impairments have been reported in these patients. Spinal cord injury results in chronic brain neuroinflammation with consequent neurodegeneration and cognitive decline in rodents. Regarding the hippocampus, neurogenesis is reduced and reactive gliosis increased. These long-term abnormalities could explain behavioral impairments exhibited in humans patients suffering from spinal cord trauma.

  8. Muscle after spinal cord injury

    DEFF Research Database (Denmark)

    Biering-Sørensen, Bo; Kristensen, Ida Bruun; Kjaer, Michael

    2009-01-01

    years after the injury. There is a progressive drop in the proportion of slow myosin heavy chain (MHC) isoform fibers and a rise in the proportion of fibers that coexpress both the fast and slow MHC isoforms. The oxidative enzymatic activity starts to decline after the first few months post-SCI. Muscles......The morphological and contractile changes of muscles below the level of the lesion after spinal cord injury (SCI) are dramatic. In humans with SCI, a fiber-type transformation away from type I begins 4-7 months post-SCI and reaches a new steady state with predominantly fast glycolytic IIX fibers...... from individuals with chronic SCI show less resistance to fatigue, and the speed-related contractile properties change, becoming faster. These findings are also present in animals. Future studies should longitudinally examine changes in muscles from early SCI until steady state is reached in order...

  9. Interactive and individual effects of sensory potentiation and region-specific changes in excitability after spinal cord injury.

    Science.gov (United States)

    Hoffman, N; Parker, D

    2011-12-29

    While promoting regeneration across lesion sites is a main focus of research into spinal injury, changes also occur in the sublesion spinal cord and its sensory inputs. However, how these varied effects relate to recovery remains largely unknown. Here, we have examined changes in sensory inputs and region-specific changes in spinal cord excitability after spinal cord lesions in the lamprey, a model system for studying regeneration and functional recovery, and related the changes to the degree of locomotor recovery.Proprioceptive responses below lesion sites were potentiated and their rate of adaptation reduced 8-10 weeks after lesioning (i.e. when animals usually showed significant locomotor recovery). These effects were associated with changes in cellular properties that were consistent with an increase in proprioceptor excitability. However, the changes in proprioceptive inputs did not correlate with the degree of locomotor recovery. There were region-specific changes in spinal cord excitability below lesion sites. In isolation, these excitability changes also did not correlate with the degree of locomotor recovery, but in this case, there were significant interactions between the magnitude of stimulation-evoked responses across the lesion site (used to assess the extent of regeneration) and sublesion changes in excitability. These interactions differed in animals that recovered well or poorly, suggesting that the nature of this interaction influenced recovery. These results add to the evidence for diverse changes in the spinal cord after injury, and suggest that regenerated inputs and their interactions with sublesion networks influence the degree of functional recovery. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  10. The effects of transcranial direct current stimulation in patients with neuropathic pain from spinal cord injury.

    Science.gov (United States)

    Ngernyam, Niran; Jensen, Mark P; Arayawichanon, Preeda; Auvichayapat, Narong; Tiamkao, Somsak; Janjarasjitt, Suparerk; Punjaruk, Wiyada; Amatachaya, Anuwat; Aree-uea, Benchaporn; Auvichayapat, Paradee

    2015-02-01

    Transcranial direct current stimulation (tDCS) has demonstrated efficacy for reducing neuropathic pain, but the respective mechanisms remain largely unknown. The current study tested the hypothesis that pain reduction with tDCS is associated with an increase in the peak frequency spectrum density in the theta-alpha range. Twenty patients with spinal cord injury and bilateral neuropathic pain received single sessions of both sham and anodal tDCS (2 mA) over the left primary motor area (M1) for 20 min. Treatment order was randomly assigned. Pre- to post-procedure changes in pain intensity and peak frequency of electroencephalogram spectral analysis were compared between treatment conditions. The active treatment condition (anodal tDCS over M1) but not sham treatment resulted in significant decreases in pain intensity. In addition, consistent with the study hypothesis, peak theta-alpha frequency (PTAF) assessed from an electrode placed over the site of stimulation increased more from pre- to post-session among participants in the active tDCS condition, relative to those in the sham tDCS condition. Moreover, we found a significant association between a decrease in pain intensity and an increase in PTAF at the stimulation site. The findings are consistent with the possibility that anodal tDCS over the left M1 may be effective, at least in part, because it results in an increase in M1 cortical excitability, perhaps due to a pain inhibitory effect of motor cortex stimulation that may influence the descending pain modulation system. Future research is needed to determine if there is a causal association between increased left anterior activity and pain reduction. The results provide new findings regarding the effects of tDCS on neuropathic pain and brain oscillation changes. Copyright © 2014 International Federation of Clinical Neurophysiology. All rights reserved.

  11. Effects of exercise on fitness and health of adults with spinal cord injury: A systematic review.

    Science.gov (United States)

    van der Scheer, Jan W; Martin Ginis, Kathleen A; Ditor, David S; Goosey-Tolfrey, Victoria L; Hicks, Audrey L; West, Christopher R; Wolfe, Dalton L

    2017-08-15

    To synthesize and appraise research testing the effects of exercise interventions on fitness, cardiometabolic health, and bone health among adults with spinal cord injury (SCI). Electronic databases were searched (1980-2016). Included studies employed exercise interventions for a period ≥2 weeks, involved adults with acute or chronic SCI, and measured fitness (cardiorespiratory fitness, power output, or muscle strength), cardiometabolic health (body composition or cardiovascular risk factors), or bone health outcomes. Evidence was synthesized and appraised using Grading of Recommendations Assessment, Development, and Evaluation (GRADE). A total of 211 studies met the inclusion criteria (22 acute, 189 chronic). For chronic SCI, GRADE confidence ratings were moderate to high for evidence showing exercise can improve all of the reviewed outcomes except bone health. For acute SCI, GRADE ratings were very low for all outcomes. For chronic SCI, there was low to moderate confidence in the evidence showing that 2-3 sessions/week of upper body aerobic exercise at a moderate to vigorous intensity for 20-40 minutes, plus upper body strength exercise (3 sets of 10 repetitions at 50%-80% 1-repetition maximum for all large muscle groups), can improve cardiorespiratory fitness, power output, and muscle strength. For chronic SCI, there was low to moderate confidence in the evidence showing that 3-5 sessions per week of upper body aerobic exercise at a moderate to vigorous intensity for 20-44 minutes can improve cardiorespiratory fitness, muscle strength, body composition, and cardiovascular risk. Exercise improves fitness and cardiometabolic health of adults with chronic SCI. The evidence on effective exercise types, frequencies, intensities, and durations should be used to formulate exercise guidelines for adults with SCI. © 2017 American Academy of Neurology.

  12. Effects of bone marrow stromal cell transplantation through CSF on the subacute and chronic spinal cord injury in rats.

    Directory of Open Access Journals (Sweden)

    Norihiko Nakano

    Full Text Available It has been demonstrated that the infusion of bone marrow stromal cells (BMSCs through the cerebrospinal fluid (CSF has beneficial effects on acute spinal cord injury (SCI in rats. The present study examined whether BMSC infusion into the CSF is effective for subacute (1- and 2-week post-injury, and/or chronic (4-week post-injury SCI in rats. The spinal cord was contused by dropping a weight at the thoracic 8-9 levels. BMSCs cultured from GFP-transgenic rats of the same strain were injected three times (once weekly into the CSF through the fourth ventricle, beginning at 1, 2 and 4 weeks post-injury. At 4 weeks after initial injection, the average BBB score for locomotor assessment increased from 1.0-3.5 points before injection to 9.0-10.9 points in the BMSC-injection subgroups, while, in the PBS (vehicle-injection subgroups, it increased only from 0.5-4.0 points before injection to 3.0-5.1 points. Numerous axons associated with Schwann cells extended longitudinally through the connective tissue matrices in the astrocyte-devoid lesion without being blocked at either the rostral or the caudal borders in the BMSC-injection subgroups. A small number of BMSCs were found to survive within the spinal cord lesion in SCI of the 1-week post-injury at 2 days of injection, but none at 7 days. No BMSCs were found in the spinal cord lesion at 2 days or at 7 days in the SCI of the 2-week and the 4-week post-injury groups. In an in vitro experiment, BMSC-injected CSF promoted the survival and the neurite extension of cultured neurons more effectively than did the PBS-injected CSF. These results indicate that BMSCs had beneficial effects on locomotor improvement as well as on axonal regeneration in both subacute and chronic SCI rats, and the results also suggest that BMSCs might function as neurotrophic sources via the CSF.

  13. Effects of Bone Marrow Stromal Cell Transplantation through CSF on the Subacute and Chronic Spinal Cord Injury in Rats

    Science.gov (United States)

    Nakano, Norihiko; Nakai, Yoshiyasu; Seo, Tae-Beom; Homma, Tamami; Yamada, Yoshihiro; Ohta, Masayoshi; Suzuki, Yoshihisa; Nakatani, Toshio; Fukushima, Masanori; Hayashibe, Miki; Ide, Chizuka

    2013-01-01

    It has been demonstrated that the infusion of bone marrow stromal cells (BMSCs) through the cerebrospinal fluid (CSF) has beneficial effects on acute spinal cord injury (SCI) in rats. The present study examined whether BMSC infusion into the CSF is effective for subacute (1- and 2-week post-injury), and/or chronic (4-week post-injury) SCI in rats. The spinal cord was contused by dropping a weight at the thoracic 8-9 levels. BMSCs cultured from GFP-transgenic rats of the same strain were injected three times (once weekly) into the CSF through the fourth ventricle, beginning at 1, 2 and 4 weeks post-injury. At 4 weeks after initial injection, the average BBB score for locomotor assessment increased from 1.0–3.5 points before injection to 9.0-10.9 points in the BMSC-injection subgroups, while, in the PBS (vehicle)-injection subgroups, it increased only from 0.5–4.0 points before injection to 3.0-5.1 points. Numerous axons associated with Schwann cells extended longitudinally through the connective tissue matrices in the astrocyte-devoid lesion without being blocked at either the rostral or the caudal borders in the BMSC-injection subgroups. A small number of BMSCs were found to survive within the spinal cord lesion in SCI of the 1-week post-injury at 2 days of injection, but none at 7 days. No BMSCs were found in the spinal cord lesion at 2 days or at 7 days in the SCI of the 2-week and the 4-week post-injury groups. In an in vitro experiment, BMSC-injected CSF promoted the survival and the neurite extension of cultured neurons more effectively than did the PBS-injected CSF. These results indicate that BMSCs had beneficial effects on locomotor improvement as well as on axonal regeneration in both subacute and chronic SCI rats, and the results also suggest that BMSCs might function as neurotrophic sources via the CSF. PMID:24039961

  14. Acute effects of glossopharyngeal insufflation in people with cervical spinal cord injury.

    Science.gov (United States)

    Nygren-Bonnier, Malin; Schiffer, Tomas A; Lindholm, Peter

    2018-01-01

    To evaluate acute effects of glossopharyngeal insufflation (GI) on lung function, airway pressure (P aw ), blood pressure and heart rate (HR) in people with cervical spinal cord injury (CSCI). Case-control design. Karolinska Institutet, Stockholm, Sweden. Ten participants with CSCI suffering from lesions between C4 and C8, and ASIA classification of A or B were recruited. Ten healthy particpants familiar with GI were recruited as a reference group. Spirometry, mean arterial blood pressure (MAP), P aw, and HR were measured in a sitting and a supine position before, during, and after GI. GI in the study group in a sitting position increased total lung capacity (TLC) by 712 ml: P < 0.001, vital capacity (VC) by 587 ml: P < 0.0001, P aw by 13 cm H 2 O: P < 0.01, and HR by 10 beats/min: P < 0.001. MAP decreased by 25 mmHg, P < 0.0001. Significant differences were observed between groups comparing baseline with GI. The reference group had a higher increase in; TLC (P < 0.01), VC (P < 0.001), P aw (P < 0.001) and HR (P < 0.05) and a higher decrease in MAP (P < 0.001). With GI in a sitting compared to a supine position, TLC, MAP, HR, P aw remained unchanged in the study group, while residual volume decreased in the supine position (P < 0.01). There was a difference between the groups in the increase in TLC; VC; P aw, HR and in the decrease in MAP with GI, however MAP, HR and P aw responded in similar way in both groups in a sitting as well as a supine position. If performed correctly, the risks of GI resulting in clinically significant hemodynamic changes is low, although syncope may still occur.

  15. Experimental study of effectiveness of local application of electroneurostimulation, cortexin and methylprednisolone in acute spinal cord injury

    Directory of Open Access Journals (Sweden)

    Tsymbaliuk V.I.

    2014-09-01

    Full Text Available The tasks were to investigate the effect of topical electroneurostimulation, cortexin and methy¬lprednisolone in acute spinal cord injury in electrophysiological experiments on laboratory rats. The animals un¬derwent half transection of the spinal cord in the lower-thoracic area to simulate Brown-Sequard’s syndrome. Drugs were administered subdurally once daily in the dose of 0.03 mg for cortexin and 0.7 mg for methylprednisolone during 72 hours. Electrophysiological studies were carried out using standard electrophysiological apparatus. Reliable changes of bioelectric indicators in neuromuscular complex during topical application of electrical stimulation, as well as in administered methylprednisolone, failed to be found. However, local application of cortexin in terms of traumatic spinal cord injury due the antioxidant and neurotrophic effect results in improvement of bioelectrical indicators; this is manifested in reliable (p<0.05 increase of amplitude of the background electromyogram impulses at rest by 33% and increase of spontaneous oscillations frequency by 29.82%.

  16. Therapeutic effects of NogoA vaccine and olfactory ensheathing glial cell implantation on acute spinal cord injury

    Directory of Open Access Journals (Sweden)

    Zhang Z

    2013-10-01

    Full Text Available Zhicheng Zhang, Fang Li, Tiansheng Sun, Dajiang Ren, Xiumei Liu PLA Institute of Orthopedics, Beijing Army General Hospital, Beijing, People's Republic of China Background: Many previous studies have focused on the effects of IN-1, a monoclonal antibody that neutralizes Nogo (a neurite growth inhibitory protein, on neurologic regeneration in spinal cord injury (SCI. However, safety problems and the short half-life of the exogenous antibody are still problematic. In the present study, the NogoA polypeptide was used as an antigen to make a therapeutic NogoA vaccine. Rats were immunized with this vaccine and were able to secrete the polyclonal antibody before SCI. The antibody can block NogoA within the injured spinal cord when the antibody gains access to the spinal cord due to a compromised blood–spinal cord barrier. Olfactory ensheathing glial cell transplantation has been used in a spinal cord contusion model to promote the recovery of SCI. The present study was designed to verify the efficacy and safety of NogoA polypeptide vaccine, the effects of immunotherapy with this vaccine, and the synergistic effects of the vaccine and olfactory ensheathing glial cells in repair of SCI. Methods: A 13-polypeptide fragment of NogoA was synthesized. This fragment was then coupled with keyhole limpet hemocyanin to improve the immunogenicity of the polypeptide vaccine. Immunization via injection into the abdominal cavity was performed in rats before SCI. The serum antibody level and ability of the vaccine to bind with Nogo were detected by enzyme-linked immunosorbent assay. The safety of the vaccine was evaluated according to the incidence and severity of experimental autoimmune encephalomyelitis. Olfactory ensheathing glia cells were obtained, purified, and subsequently implanted into a Wistar rat model of thoracic spinal cord contusion injury. The rats were divided into four groups, ie, an SCI model group, an olfactory ensheathing glia group, a vaccine

  17. Spinal cord injuries among paragliders in Norway.

    Science.gov (United States)

    Rekand, T; Schaanning, E E; Varga, V; Schattel, U; Gronning, M

    2008-06-01

    A national retrospective descriptive study. To study the clinical effects of spinal cord injuries (SCIs) caused by paragliding accidents in Norway. Spinal cord units at Haukeland University Hospital, Sunnaas Rehabilitation Hospital and St Olav Hospital in Norway. We studied the medical files for nine patients with SCI caused by paragliding accidents to evaluate the circumstances of the accidents, and clinical effects of injury. We obtained the data from hospital patient files at all three spinal units in Norway and crosschecked them through the Norwegian Paragliding Association's voluntary registry for injuries. All patients were hospitalized from 1997 to 2006, eight men and one woman, with mean age 30.7 years. The causes of the accidents were landing problems combined with unexpected wind whirls, technical problems and limited experience with unexpected events. All patients contracted fractures in the thoracolumbal junction of the spine, most commonly at the L1 level. At clinical follow-up, all patients presented clinically incomplete SCI (American Spinal Injury Association impairment scores B-D). Their main health problems differed widely, ranging from urinary and sexual disturbances to neuropathic pain and loss of motor functioning. Only three patients returned to full-time employment after rehabilitation. Paragliding accidents cause spinal fractures predominantly in the thoracolumbal junction with subsequent SCIs and increased morbidity. All patients experienced permanent health problems that influenced daily activities and required long-time clinical follow-up and medical intervention. Better education in landing techniques and understanding of aerodynamics may reduce the risk of paragliding accidents.

  18. Imaging of Spinal Cord Injury: Acute Cervical Spinal Cord Injury, Cervical Spondylotic Myelopathy, and Cord Herniation.

    Science.gov (United States)

    Talekar, Kiran; Poplawski, Michael; Hegde, Rahul; Cox, Mougnyan; Flanders, Adam

    2016-10-01

    We review the pathophysiology and imaging findings of acute traumatic spinal cord injury (SCI), cervical spondylotic myelopathy, and briefly review the much less common cord herniation as a unique cause of myelopathy. Acute traumatic SCI is devastating to the patient and the costs to society are staggering. There are currently no "cures" for SCI and the only accepted pharmacologic treatment regimen for traumatic SCI is currently being questioned. Evaluation and prognostication of SCI is a demanding area with significant deficiencies, including lack of biomarkers. Accurate classification of SCI is heavily dependent on a good clinical examination, the results of which can vary substantially based upon the patient׳s condition or comorbidities and the skills of the examiner. Moreover, the full extent of a patients׳ neurologic injury may not become apparent for days after injury; by then, therapeutic response may be limited. Although magnetic resonance imaging (MRI) is the best imaging modality for the evaluation of spinal cord parenchyma, conventional MR techniques do not appear to differentiate edema from axonal injury. Recently, it is proposed that in addition to characterizing the anatomic extent of injury, metrics derived from conventional MRI and diffusion tensor imaging, in conjunction with the neurological examination, can serve as a reliable objective biomarker for determination of the extent of neurologic injury and early identification of patients who would benefit from treatment. Cervical spondylosis is a common disorder affecting predominantly the elderly with a potential to narrow the spinal canal and thereby impinge or compress upon the neural elements leading to cervical spondylotic myelopathy and radiculopathy. It is the commonest nontraumatic cause of spinal cord disorder in adults. Imaging plays an important role in grading the severity of spondylosis and detecting cord abnormalities suggesting myelopathy. Copyright © 2016 Elsevier Inc. All rights

  19. Spinal cord injury with central cord syndrome from surfing.

    Science.gov (United States)

    Steinfeld, Yaniv; Keren, Yaniv; Haddad, Elias

    2018-01-01

    Central cord syndrome (CCS) is an injury to the center of the spinal cord. It is well known as a hyperextension injury, but it has never been described as a surfing injury. Our report describes this injury in detail. A 35-year-old male novice surfer presented to the emergency department with acute tetraplegia following falling off his surfboard and hitting sea floor at a shallow beach break. He was rescued by a fellow surfer while floating in the sea and unable to raise his head above sea level. Upon arrival at the hospital, tetraplegia and sensory deficits were noted. Radiological investigations showed advanced spinal stenosis at C4-6 levels. T2 magnetic resonance imaging (MRI) demonstrated myelopathy at C5-C6 level. He was diagnosed as having central cord syndrome, treated conservatively, and regained near full neurologic recovery after a month of rehabilitation. Unique sport activities lead to unique injuries. It is important to accurately describe these injuries in order to create protective measures against them. Neurologic injuries in surfers are uncommon. With low-energy trauma, surfer's myelopathy is still the most common diagnosis, but central cord syndrome should be in the differential diagnosis.

  20. Therapeutic approaches for spinal cord injury

    Directory of Open Access Journals (Sweden)

    Alexandre Fogaça Cristante

    2012-10-01

    Full Text Available This study reviews the literature concerning possible therapeutic approaches for spinal cord injury. Spinal cord injury is a disabling and irreversible condition that has high economic and social costs. There are both primary and secondary mechanisms of damage to the spinal cord. The primary lesion is the mechanical injury itself. The secondary lesion results from one or more biochemical and cellular processes that are triggered by the primary lesion. The frustration of health professionals in treating a severe spinal cord injury was described in 1700 BC in an Egyptian surgical papyrus that was translated by Edwin Smith; the papyrus reported spinal fractures as a ''disease that should not be treated.'' Over the last biological or pharmacological treatment method. Science is unraveling the mechanisms of cell protection and neuroregeneration, but clinically, we only provide supportive care for patients with spinal cord injuries. By combining these treatments, researchers attempt to enhance the functional recovery of patients with spinal cord injuries. Advances in the last decade have allowed us to encourage the development of experimental studies in the field of spinal cord regeneration. The combination of several therapeutic strategies should, at minimum, allow for partial functional recoveries for these patients, which could improve their quality of life.

  1. Diffusion tensor imaging in spinal cord injury

    International Nuclear Information System (INIS)

    Kamble, Ravindra B; Venkataramana, Neelam K; Naik, Arun L; Rao, Shailesh V

    2011-01-01

    To assess the feasibility of spinal tractography in patients of spinal cord injury vs a control group and to compare fractional anisotropy (FA) values between the groups. Diffusion tensor imaging (DTI) was performed in the spinal cord of 29 patients (18 patients and 11 controls). DTI was done in the cervical region if the cord injury was at the dorsal or lumbar region and in the conus region if cord injury was in the cervical or dorsal region. FA was calculated for the patients and the controls and the values were compared. The mean FA value was 0.550±0.09 in the control group and 0.367±0.14 in the patients; this difference was statistically significant (P=0.001). Spinal tractography is a feasible technique to assess the extent of spinal cord injury by FA, which is reduced in patients of spinal cord injury, suggesting possible Wallerian degeneration. In future, this technique may become a useful tool for assessing cord injury patients after stem cell therapy, with improvement in FA values indicating axonal regeneration

  2. Examining the Time to Therapeutic Effect of Pregabalin in Spinal Cord Injury Patients With Neuropathic Pain.

    Science.gov (United States)

    Cardenas, Diana D; Emir, Birol; Parsons, Bruce

    2015-05-01

    In 2 large-scale, placebo-controlled trials, pregabalin improved both pain and pain-related sleep interference in patients with neuropathic pain due to spinal cord injury (SCI). In both trials, pregabalin found statistically significant improvement compared with placebo after 1 week of treatment. However, the effects of pregabalin in the days immediately after initiation of treatment are unknown. The purpose of the present analysis was to determine timing of pregabalin's therapeutic effect in the days after initiation of treatment. Data were derived from 2 trials of pregabalin in patients with SCI-related neuropathic pain. Each day patients rated severity of pain and pain-related sleep interference over the past 24 hours on a scale from 0 to 10, with higher scores indicating greater severity. To quantify timing of therapeutic effect, we compared (pregabalin [vs] placebo) daily average pain and pain-related sleep interference scores over the first 14 days of treatment. Significant improvement was defined as the first day, of ≥2 consecutive days, that pregabalin significantly (P pain and pain-related sleep interference score among patients with a clinically meaningful and sustained response (≥30% improvement from baseline to end point) by using a time-to-event analysis method. Kaplan-Meier analyses were used to estimate the median (or 25th quartile) time (in days) required to achieve a ≥1-point improvement, among these responders, in pain and pain-related sleep interference scores. Comparisons between pregabalin and placebo were made with a log-rank test. In both trials, significant improvement of pain and pain-related sleep interference occurred within 2 days of initiating treatment with pregabalin. Among patients reporting a clinically meaningful and sustained response to treatment (patients with ≥30% improvement from baseline to end point), the time to a ≥1-point improvement of pain and pain-related sleep interference occurred significantly earlier among

  3. Tracking Changes following Spinal Cord Injury

    Science.gov (United States)

    Curt, Armin; Friston, Karl; Thompson, Alan

    2013-01-01

    Traumatic spinal cord injury is often disabling and recovery of function is limited. As a consequence of damage, both spinal cord and brain undergo anatomical and functional changes. Besides clinical measures of recovery, biomarkers that can detect early anatomical and functional changes might be useful in determining clinical outcome—during the course of rehabilitation and recovery—as well as furnishing a tool to evaluate novel treatment interventions and their mechanisms of action. Recent evidence suggests an interesting three-way relationship between neurological deficit and changes in the spinal cord and of the brain and that, importantly, noninvasive magnetic resonance imaging techniques, both structural and functional, provide a sensitive tool to lay out these interactions. This review describes recent findings from multimodal imaging studies of remote anatomical changes (i.e., beyond the lesion site), cortical reorganization, and their relationship to clinical disability. These developments in this field may improve our understanding of effects on the nervous system that are attributable to the injury itself and will allow their distinction from changes that result from rehabilitation (i.e., functional retraining) and from interventions affecting the nervous system directly (i.e., neuroprotection or regeneration). PMID:22730072

  4. Intensity dependent effects of transcranial direct current stimulation on corticospinal excitability in chronic spinal cord injury.

    Science.gov (United States)

    Murray, Lynda M; Edwards, Dylan J; Ruffini, Giulio; Labar, Douglas; Stampas, Argyrios; Pascual-Leone, Alvaro; Cortes, Mar

    2015-04-01

    To investigate the effects of anodal transcranial direct current stimulation (a-tDCS) intensity on corticospinal excitability and affected muscle activation in individuals with chronic spinal cord injury (SCI). Single-blind, randomized, sham-controlled, crossover study. Medical research institute and rehabilitation hospital. Volunteers (N = 9) with chronic SCI and motor dysfunction in wrist extensor muscles. Three single session exposures to 20 minutes of a-tDCS (anode over the extensor carpi radialis [ECR] muscle representation on the left primary motor cortex, cathode over the right supraorbital area) using 1 mA, 2 mA, or sham stimulation, delivered at rest, with at least 1 week between sessions. Corticospinal excitability was assessed with motor-evoked potentials (MEPs) from the ECR muscle using surface electromyography after transcranial magnetic stimulation. Changes in spinal excitability, sensory threshold, and muscle strength were also investigated. Mean MEP amplitude significantly increased by approximately 40% immediately after 2mA a-tDCS (pre: 0.36 ± 0.1 mV; post: 0.47 ± 0.11 mV; P = .001), but not with 1 mA or sham. Maximal voluntary contraction measures remained unaltered across all conditions. Sensory threshold significantly decreased over time after 1mA (P = .002) and 2mA (P = .039) a-tDCS and did not change with sham. F-wave persistence showed a nonsignificant trend for increase (pre: 32% ± 12%; post: 41% ± 10%; follow-up: 46% ± 12%) after 2 mA stimulation. No adverse effects were reported with any of the experimental conditions. The a-tDCS can transiently raise corticospinal excitability to affected muscles in patients with chronic SCI after 2 mA stimulation. Sensory perception can improve with both 1 and 2 mA stimulation. This study gives support to the safe and effective use of a-tDCS using small electrodes in patients with SCI and highlights the importance of stimulation intensity. Copyright © 2015 American Congress of Rehabilitation

  5. A clinical perspective of spinal cord injury.

    NARCIS (Netherlands)

    Nandoe Tewarie, R.D.S.; Hurtado, A.; Bartels, R.H.M.A.; Grotenhuis, J.A.; Oudega, M.

    2010-01-01

    Spinal cord injury (SCI) results in loss of nervous tissue in the spinal cord and consequently loss of motor and sensory function. The impairments are permanent because endogenous repair events fail to restore the damaged axonal circuits that are involved in function. There is no treatment available

  6. Effect of DSPE-PEG on compound action potential, injury potential and ion concentration following compression in ex vivo spinal cord.

    Science.gov (United States)

    Wang, Aihua; Huo, Xiaolin; Zhang, Guanghao; Wang, Xiaochen; Zhang, Cheng; Wu, Changzhe; Rong, Wei; Xu, Jing; Song, Tao

    2016-05-04

    It has been shown that polyethylene glycol (PEG) can reseal membrane disruption on the spinal cord, but only high concentrations of PEG have been shown to have this effect. Therefore, the effect of PEG is somewhat limited, and it is necessary to investigate a new approach to repair spinal cord injury. This study assesses the ability of 1, 2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(poly (ethylene glycol)) 2000] (DSPE-PEG) to recover physiological function and attenuate the injury-induced influx of extracellular ions in ex vivo spinal cord injury. Isolated spinal cords were subjected to compression injury and treated with PEG or DSPE-PEG immediately after injury. The compound action potential (CAP) was recorded before and after injury to assess the functional recovery. Furthermore, injury potential, the difference in gap potentials before and after compression, and the concentration of intracellular ions were used to evaluate the effect of DSPE-PEG on reducing ion influx. Data showed that the injury potential and ion concentration of the untreated, PEG and DSPE-PEG group, without significant difference among them, are remarkably higher than those of the intact group. Moreover, the CAP recovery of the DSPE-PEG and PEG treated spinal cords was significantly greater than that of the untreated spinal cords. The level of CAP recovery in the DSPE-PEG and PEG treated groups was the same, but the concentration of DSPE-PEG used was much lower than the concentration of PEG. These results suggest that instant application of DSPE-PEG could effectively repair functional disturbance in SCI at a much lower concentration than PEG. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Spinal Cord Injury Model System Information Network

    Science.gov (United States)

    ... the UAB-SCIMS More The UAB-SCIMS Information Network The University of Alabama at Birmingham Spinal Cord Injury Model System (UAB-SCIMS) maintains this Information Network as a resource to promote knowledge in the ...

  8. Biochemical Monitoring of Spinal Cord Injury by FT-IR Spectroscopy—Effects of Therapeutic Alginate Implant in Rat Models

    Science.gov (United States)

    Uckermann, Ortrud; Sitoci-Ficici, Kerim H.; Later, Robert; Beiermeister, Rudolf; Doberenz, Falko; Gelinsky, Michael; Leipnitz, Elke; Schackert, Gabriele; Koch, Edmund; Sablinskas, Valdas; Steiner, Gerald; Kirsch, Matthias

    2015-01-01

    Spinal cord injury (SCI) induces complex biochemical changes, which result in inhibition of nervous tissue regeneration abilities. In this study, Fourier-transform infrared (FT-IR) spectroscopy was applied to assess the outcomes of implants made of a novel type of non-functionalized soft calcium alginate hydrogel in a rat model of spinal cord hemisection (n = 28). Using FT-IR spectroscopic imaging, we evaluated the stability of the implants and the effects on morphology and biochemistry of the injured tissue one and six months after injury. A semi-quantitative evaluation of the distribution of lipids and collagen showed that alginate significantly reduced injury-induced demyelination of the contralateral white matter and fibrotic scarring in the chronic state after SCI. The spectral information enabled to detect and localize the alginate hydrogel at the lesion site and proved its long-term persistence in vivo. These findings demonstrate a positive impact of alginate hydrogel on recovery after SCI and prove FT-IR spectroscopic imaging as alternative method to evaluate and optimize future SCI repair strategies. PMID:26559822

  9. Biochemical Monitoring of Spinal Cord Injury by FT-IR Spectroscopy--Effects of Therapeutic Alginate Implant in Rat Models.

    Directory of Open Access Journals (Sweden)

    Sandra Tamosaityte

    Full Text Available Spinal cord injury (SCI induces complex biochemical changes, which result in inhibition of nervous tissue regeneration abilities. In this study, Fourier-transform infrared (FT-IR spectroscopy was applied to assess the outcomes of implants made of a novel type of non-functionalized soft calcium alginate hydrogel in a rat model of spinal cord hemisection (n = 28. Using FT-IR spectroscopic imaging, we evaluated the stability of the implants and the effects on morphology and biochemistry of the injured tissue one and six months after injury. A semi-quantitative evaluation of the distribution of lipids and collagen showed that alginate significantly reduced injury-induced demyelination of the contralateral white matter and fibrotic scarring in the chronic state after SCI. The spectral information enabled to detect and localize the alginate hydrogel at the lesion site and proved its long-term persistence in vivo. These findings demonstrate a positive impact of alginate hydrogel on recovery after SCI and prove FT-IR spectroscopic imaging as alternative method to evaluate and optimize future SCI repair strategies.

  10. Effects of estrogen on functional and neurological recovery after spinal cord injury: An experimental study with rats

    Directory of Open Access Journals (Sweden)

    Olavo Biraghi Letaif

    2015-10-01

    Full Text Available OBJECTIVES:To evaluate the functional and histological effects of estrogen as a neuroprotective agent after a standard experimentally induced spinal cord lesion.METHODS:In this experimental study, 20 male Wistar rats were divided into two groups: one group with rats undergoing spinal cord injury (SCI at T10 and receiving estrogen therapy with 17-beta estradiol (4mg/kg immediately following the injury and after the placement of skin sutures and a control group with rats only subjected to SCI. A moderate standard experimentally induced SCI was produced using a computerized device that dropped a weight on the rat's spine from a height of 12.5 mm. Functional recovery was verified with the Basso, Beattie and Bresnahan scale on the 2nd, 7th, 14th, 21st, 28th, 35th and 42nd days after injury and by quantifying the motor-evoked potential on the 42nd day after injury. Histopathological evaluation of the SCI area was performed after euthanasia on the 42nd day.RESULTS:The experimental group showed a significantly greater functional improvement from the 28th to the 42nd day of observation compared to the control group. The experimental group showed statistically significant improvements in the motor-evoked potential compared with the control group. The results of pathological histomorphometry evaluations showed a better neurological recovery in the experimental group, with respect to the proportion and diameter of the quantified nerve fibers.CONCLUSIONS:Estrogen administration provided benefits in neurological and functional motor recovery in rats with SCI beginning at the 28th day after injury.

  11. Effects of estrogen on functional and neurological recovery after spinal cord injury: An experimental study with rats.

    Science.gov (United States)

    Letaif, Olavo Biraghi; Cristante, Alexandre Fogaça; Barros Filho, Tarcísio Eloy Pessoa de; Ferreira, Ricardo; Santos, Gustavo Bispo dos; Rocha, Ivan Dias da; Marcon, Raphael Martus

    2015-10-01

    To evaluate the functional and histological effects of estrogen as a neuroprotective agent after a standard experimentally induced spinal cord lesion. In this experimental study, 20 male Wistar rats were divided into two groups: one group with rats undergoing spinal cord injury (SCI) at T10 and receiving estrogen therapy with 17-beta estradiol (4mg/kg) immediately following the injury and after the placement of skin sutures and a control group with rats only subjected to SCI. A moderate standard experimentally induced SCI was produced using a computerized device that dropped a weight on the rat's spine from a height of 12.5 mm. Functional recovery was verified with the Basso, Beattie and Bresnahan scale on the 2nd, 7th, 14th, 21st, 28th, 35th and 42nd days after injury and by quantifying the motor-evoked potential on the 42nd day after injury. Histopathological evaluation of the SCI area was performed after euthanasia on the 42nd day. The experimental group showed a significantly greater functional improvement from the 28th to the 42nd day of observation compared to the control group. The experimental group showed statistically significant improvements in the motor-evoked potential compared with the control group. The results of pathological histomorphometry evaluations showed a better neurological recovery in the experimental group, with respect to the proportion and diameter of the quantified nerve fibers. Estrogen administration provided benefits in neurological and functional motor recovery in rats with SCI beginning at the 28th day after injury.

  12. Cervical Cord-Canal Mismatch: A New Method for Identifying Predisposition to Spinal Cord Injury.

    Science.gov (United States)

    Nouri, Aria; Montejo, Julio; Sun, Xin; Virojanapa, Justin; Kolb, Luis E; Abbed, Khalid M; Cheng, Joseph S

    2017-12-01

    The risk for spinal cord injuries (SCIs) ranging from devastating traumatic injuries, compression because of degenerative pathology, and neurapraxia is increased in patients with congenital spinal stenosis. Classical diagnostic criteria include an absolute anteroposterior diameter of spinal cord, which varies across patients, independent of canal size. Recent large magnetic resonance imaging studies of population cohorts have allowed newer methods to emerge that account for both cord and canal size by measuring a spinal cord occupation ratio (SCOR). A SCOR defined as ≥70% on midsagittal imaging or ≥80% on axial imaging appears to be an effective method of identifying cord-canal mismatch, but requires further validation. Cord-canal size mismatch predisposes patients to SCI because of 1) less space within the canal lowering the amount of degenerative changes needed for cord compression, and 2) less cerebrospinal fluid surrounding the spinal cord decreasing the ability to absorb kinetic forces directed at the spine. Patients with cord-canal mismatch have been reported to be at a substantially higher risk of traumatic SCI, and present with degenerative cervical myelopathy at a younger age than patients without cord-canal mismatch. However, neurologic outcome after SCI has occurred does not appear to be different in patients with or without a cord-canal mismatch. Recognition that canal and cord size are both factors which predispose to SCI supports that cord-canal size mismatch rather than a narrow cervical canal in isolation should be viewed as the underlying mechanism predisposing to SCI. Copyright © 2017. Published by Elsevier Inc.

  13. Protective effects of gallic acid against spinal cord injury-induced oxidative stress.

    Science.gov (United States)

    Yang, Yong Hong; Wang, Zao; Zheng, Jie; Wang, Ran

    2015-08-01

    The present study aimed to investigate the role of gallic acid in oxidative stress induced during spinal cord injury (SCI). In order to measure oxidative stress, the levels of lipid peroxide, protein carbonyl, reactive oxygen species and nitrates/nitrites were determined. In addition, the antioxidant status during SCI injury and the protective role of gallic acid were investigated by determining glutathione levels as well as the activities of catalase, superoxide dismutase, glutathione peroxidase and glutathione-S-transferase. Adenosine triphophatase (ATPase) enzyme activities were determined to evaluate the role of gallic acid in SCI-induced deregulation of the activity of enzymes involved in ion homeostasis. The levels of inflammatory markers such as nuclear factor (NF)-κB and cycloxygenase (COX)-2 were determined by western blot analysis. Treatment with gallic acid was observed to significantly mitigate SCI-induced oxidative stress and the inflammatory response by reducing the oxidative stress, decreasing the expression of NF-κB and COX-2 as well as increasing the antioxidant status of cells. In addition, gallic acid modulated the activity of ATPase enzymes. Thus the present study indicated that gallic acid may have a role as a potent antioxidant and anti-inflammatory agent against SCI.

  14. Brief report Effects of spinal cord injuries on the subjective component of emotions.

    Science.gov (United States)

    Cobos, Pilar; Sánchez, María; Pérez, Nieves; Vila, Jaime

    2004-02-01

    Responses to a structured interview by 19 patients with spinal cord injuries (SCI) (7 women and 12 men) concerning their past (pre-injury) and present emotions were analysed and compared with responses by 19 SCI-free controls matched for sex, age, and education. In addition, subjects assessed the valence and arousal of 10 pleasant, 10 neutral, and 10 unpleasant pictures selected from the International Affective Picture System. The results indicate that there is no decrease in emotional experience among individuals with SCI compared with those without. For all the emotional scales (joy, love, sentimentalism, positive emotions as a whole, fear, anger, sadness, and negative emotions as a whole) the SCI group always showed either no change or an increase; this increase was significantly higher in SCI than in control subjects for sadness. No differences were observed between the two groups in the subjective assessment of the pictures. The implications of the results for the James versus Cannon controversy on the theory of emotions are discussed.

  15. Optical measurement of blood flow changes in spinal cord injury

    International Nuclear Information System (INIS)

    Phillips, J P; Kyriacou, P A; George, K J; Langford, R M

    2010-01-01

    Little is known about cell death in spinal cord tissue following compression injury, despite compression being a key component of spinal injuries. Currently models are used to mimic compression injury in animals and the effects of the compression evaluated by observing the extent and duration of recovery of normal motor function in the days and weeks following the injury. A fibreoptic photoplethysmography system was used to investigate whether pulsation of the small arteries in the spinal cord occurred before, during and after compressive loads were applied to the tissue. It was found that the signal amplitudes were reduced and this reduction persisted for at least five minutes after the compression ceased. It is hoped that results from this preliminary study may improve knowledge of the mechanism of spinal cord injury.

  16. Optical measurement of blood flow changes in spinal cord injury

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, J P; Kyriacou, P A [Biomedical Engineering Research Group, City University London, Northampton Square, London (United Kingdom); George, K J [Neuroscience Centre, Queen Mary, University of London, Mile End, London (United Kingdom); Langford, R M, E-mail: justin.phillips.1@city.ac.u [Pain and Anaesthesia Research Centre, St Bartholomew' s Hospital, West Smithfield, London (United Kingdom)

    2010-07-01

    Little is known about cell death in spinal cord tissue following compression injury, despite compression being a key component of spinal injuries. Currently models are used to mimic compression injury in animals and the effects of the compression evaluated by observing the extent and duration of recovery of normal motor function in the days and weeks following the injury. A fibreoptic photoplethysmography system was used to investigate whether pulsation of the small arteries in the spinal cord occurred before, during and after compressive loads were applied to the tissue. It was found that the signal amplitudes were reduced and this reduction persisted for at least five minutes after the compression ceased. It is hoped that results from this preliminary study may improve knowledge of the mechanism of spinal cord injury.

  17. The Animal Model of Spinal Cord Injury as an Experimental Pain Model

    Directory of Open Access Journals (Sweden)

    Aya Nakae

    2011-01-01

    Full Text Available Pain, which remains largely unsolved, is one of the most crucial problems for spinal cord injury patients. Due to sensory problems, as well as motor dysfunctions, spinal cord injury research has proven to be complex and difficult. Furthermore, many types of pain are associated with spinal cord injury, such as neuropathic, visceral, and musculoskeletal pain. Many animal models of spinal cord injury exist to emulate clinical situations, which could help to determine common mechanisms of pathology. However, results can be easily misunderstood and falsely interpreted. Therefore, it is important to fully understand the symptoms of human spinal cord injury, as well as the various spinal cord injury models and the possible pathologies. The present paper summarizes results from animal models of spinal cord injury, as well as the most effective use of these models.

  18. The Animal Model of Spinal Cord Injury as an Experimental Pain Model

    Science.gov (United States)

    Nakae, Aya; Nakai, Kunihiro; Yano, Kenji; Hosokawa, Ko; Shibata, Masahiko; Mashimo, Takashi

    2011-01-01

    Pain, which remains largely unsolved, is one of the most crucial problems for spinal cord injury patients. Due to sensory problems, as well as motor dysfunctions, spinal cord injury research has proven to be complex and difficult. Furthermore, many types of pain are associated with spinal cord injury, such as neuropathic, visceral, and musculoskeletal pain. Many animal models of spinal cord injury exist to emulate clinical situations, which could help to determine common mechanisms of pathology. However, results can be easily misunderstood and falsely interpreted. Therefore, it is important to fully understand the symptoms of human spinal cord injury, as well as the various spinal cord injury models and the possible pathologies. The present paper summarizes results from animal models of spinal cord injury, as well as the most effective use of these models. PMID:21436995

  19. Effect of technique and timing of tracheostomy in patients with acute traumatic spinal cord injury undergoing mechanical ventilation

    Science.gov (United States)

    Ganuza, Javier Romero; Forcada, Angel Garcia; Gambarrutta, Claudia; De La Lastra Buigues, Elena Diez; Gonzalez, Victoria Eugenia Merlo; Fuentes, Fátima Paz; Luciani, Alejandro A.

    2011-01-01

    Objective To assess the effect of timing and techniques of tracheostomy on morbidity, mortality, and the burden of resources in patients with acute traumatic spinal cord injuries (SCIs) undergoing mechanical ventilation. Design Review of a prospectively collected database. Setting Intensive and intermediate care units of a monographic hospital for the treatment of SCI. Participants Consecutive patients admitted to the intensive care unit (ICU) during their first inpatient rehabilitation for cervical and thoracic traumatic SCI. A total of 323 patients were included: 297 required mechanical ventilation and 215 underwent tracheostomy. Outcome measures Demographic data, data relevant to the patients’ neurological injuries (level and grade of spinal cord damage), tracheostomy technique and timing, duration of mechanical ventilation, length of stay at ICU, incidence of pneumonia, incidence of perioperative and early postoperative complications, and mortality. Results Early tracheostomy (tracheostomy was performed in 101 patients (47%) and late (≥7 days) in 114 (53%). Surgical tracheostomy was employed in 119 cases (55%) and percutaneous tracheostomy in 96 (45%). There were 61 complications in 53 patients related to all tracheostomy procedures. Two were qualified as serious (tracheoesophageal fistula and mediastinal abscess). Other complications were mild. Bleeding was moderate in one case (late, percutaneous tracheostomy). Postoperative infection rate was low. Mortality of all causes was also low. Conclusion Early tracheostomy may have favorable effects in patients with acute traumatic SC. Both techniques, percutaneous and surgical tracheostomy, can be performed safely in the ICU. PMID:21528630

  20. Contrasting effects of cord injury on intravenous and oral pharmacokinetics of diclofenac: a drug with intermediate hepatic extraction.

    Science.gov (United States)

    Cruz-Antonio, L; Arauz, J; Franco-Bourland, R E; Guízar-Sahagún, G; Castañeda-Hernández, G

    2012-08-01

    Laboratory investigation in rats submitted to experimental spinal cord injury (SCI). To determine the effect of acute SCI on the pharmacokinetics of diclofenac, a marker drug of intermediate hepatic extraction, administered by the intravenous and the oral routes. Female Wistar rats were submitted to complete section of the spinal cord at the T8 level. SCI and sham-injured rats received 3.2 mg kg(-1) of diclofenac sodium either intravenously or orally, diclofenac concentration was measured in whole blood samples and pharmacokinetic parameters were estimated. Diclofenac was not selected as test drug because of its therapeutic properties, but because to its biopharmaceutical properties, that is, intermediate hepatic extraction. Diclofenac bioavailability after intravenous administration was increased in injured rats compared with controls due to a reduced clearance. In contrast, oral diclofenac bioavailability was diminished in SCI animals due to a reduction in drug absorption, which overrides the effect on clearance. Acute SCI induces significant pharmacokinetic changes for diclofenac, a marker drug with intermediate hepatic extraction. SCI-induced pharmacokinetic changes are not only determined by injury characteristics, but also by the route of administration and the biopharmaceutical properties of the studied drug.

  1. Combined effects of rat Schwann cells and 17β-estradiol in a spinal cord injury model.

    Science.gov (United States)

    Namjoo, Zeinab; Moradi, Fateme; Aryanpour, Roya; Piryaei, Abbas; Joghataei, Mohammad Taghi; Abbasi, Yusef; Hosseini, Amir; Hassanzadeh, Sajad; Taklimie, Fatemeh Ranjbar; Beyer, Cordian; Zendedel, Adib

    2018-04-15

    Spinal cord injury (SCI) is a devastating traumatic event which burdens the affected individuals and the health system. Schwann cell (SC) transplantation is a promising repair strategy after SCI. However, a large number of SCs do not survive following transplantation. Previous studies demonstrated that 17β-estradiol (E2) protects different cell types and reduces tissue damage in SCI experimental animal model. In the current study, we evaluated the protective potential of E2 on SCs in vitro and investigated whether the combination of hormonal and SC therapeutic strategy has a better effect on the outcome after SCI. Primary SC cultures were incubated with E2 for 72 h. In a subsequent experiment, thoracic contusion SCI was induced in male rats followed by sustained administration of E2 or vehicle. Eight days after SCI, DiI-labeled SCs were transplanted into the injury epicenter in vehicle and E2-treated animals. The combinatory regimen decreased neurological and behavioral deficits and protected neurons and oligodendrocytes in comparison to vehicle rats. Moreover, E2 and SC significantly decreased the number of Iba-1+ (microglia) and GFAP + cells (astrocyte) in the SCI group. In addition, we found a significant reduction of mitochondrial fission-markers (Fis1) and an increase of fusion-markers (Mfn1 and Mfn2) in the injured spinal cord after E2 and SC treatment. These data demonstrated that E2 protects SCs against hypoxia-induced SCI and improves the survival of transplanted SCs.

  2. Extended magnetic resonance imaging studies on the effect of classically activated microglia transplantation on white matter regeneration following spinal cord focal injury in adult rats.

    Science.gov (United States)

    Marcol, Wiesław; Ślusarczyk, Wojciech; Larysz-Brysz, Magdalena; Łabuzek, Krzysztof; Kapustka, Bartosz; Staszkiewicz, Rafał; Rosicka, Paulina; Kalita, Katarzyna; Węglarz, Władysław; Lewin-Kowalik, Joanna

    2017-11-01

    Spinal cord injuries are still a serious problem for regenerative medicine. Previous research has demonstrated that activated microglia accumulate in spinal lesions, influencing the injured tissues in various ways. Therefore, transplantation of activated microglia may have a beneficial role in the regeneration of the nervous system. The present study examined the influence of transplanted activated microglial cells in adult rats with injured spinal cords. Rats were randomly divided into an experimental (M) and control (C) group, and were subjected to non-laminectomy focal injury of spinal cord white matter by means of a high-pressured air stream. In group M, activated cultured microglial cells were injected twice into the site of injury. Functional outcome and morphological features of regeneration were analyzed during a 12-week follow-up. The lesions were characterized by means of magnetic resonance imaging (MRI). Neurons in the brain stem and motor cortex were labeled with FluoroGold (FG). A total of 12 weeks after surgery, spinal cords and brains were collected and subjected to histopathological and immunohistochemical examinations. Lesion sizes in the spinal cord were measured and the number of FG-positive neurons was counted. Rats in group M demonstrated significant improvement of locomotor performance when compared with group C (Pspinal cord in the group M following microglia treatment, as compared with group C. The water diffusion perpendicular to the spinal cord in group M was closer to the reference values for a healthy spinal cord than it was in group C. The sizes of lesions were also significantly smaller in group M than in the group C (Pspinal cord gives some positive effects for the regeneration of the white matter.

  3. Extended magnetic resonance imaging studies on the effect of classically activated microglia transplantation on white matter regeneration following spinal cord focal injury in adult rats

    Science.gov (United States)

    Marcol, Wiesław; Ślusarczyk, Wojciech; Larysz-Brysz, Magdalena; Łabuzek, Krzysztof; Kapustka, Bartosz; Staszkiewicz, Rafał; Rosicka, Paulina; Kalita, Katarzyna; Węglarz, Władysław; Lewin-Kowalik, Joanna

    2017-01-01

    Spinal cord injuries are still a serious problem for regenerative medicine. Previous research has demonstrated that activated microglia accumulate in spinal lesions, influencing the injured tissues in various ways. Therefore, transplantation of activated microglia may have a beneficial role in the regeneration of the nervous system. The present study examined the influence of transplanted activated microglial cells in adult rats with injured spinal cords. Rats were randomly divided into an experimental (M) and control (C) group, and were subjected to non-laminectomy focal injury of spinal cord white matter by means of a high-pressured air stream. In group M, activated cultured microglial cells were injected twice into the site of injury. Functional outcome and morphological features of regeneration were analyzed during a 12-week follow-up. The lesions were characterized by means of magnetic resonance imaging (MRI). Neurons in the brain stem and motor cortex were labeled with FluoroGold (FG). A total of 12 weeks after surgery, spinal cords and brains were collected and subjected to histopathological and immunohistochemical examinations. Lesion sizes in the spinal cord were measured and the number of FG-positive neurons was counted. Rats in group M demonstrated significant improvement of locomotor performance when compared with group C (PMRI analysis demonstrated moderate improvement in water diffusion along the spinal cord in the group M following microglia treatment, as compared with group C. The water diffusion perpendicular to the spinal cord in group M was closer to the reference values for a healthy spinal cord than it was in group C. The sizes of lesions were also significantly smaller in group M than in the group C (P<0.05). The number of brain stem and motor cortex FG-positive neurons in group M was significantly higher than in group C. The present study demonstrated that delivery of activated microglia directly into the injured spinal cord gives some

  4. An effective strategy of magnetic stem cell delivery for spinal cord injury therapy

    Science.gov (United States)

    Tukmachev, Dmitry; Lunov, Oleg; Zablotskii, Vitalii; Dejneka, Alexandr; Babic, Michal; Syková, Eva; Kubinová, Šárka

    2015-02-01

    Spinal cord injury (SCI) is a condition that results in significant mortality and morbidity. Treatment of SCI utilizing stem cell transplantation represents a promising therapy. However, current conventional treatments are limited by inefficient delivery strategies of cells into the injured tissue. In this study, we designed a magnetic system and used it to accumulate stem cells labelled with superparamagnetic iron oxide nanoparticles (SPION) at a specific site of a SCI lesion. The loading of stem cells with engineered SPIONs that guarantees sufficient attractive magnetic forces was achieved. Further, the magnetic system allowed rapid guidance of the SPION-labelled cells precisely to the lesion location. Histological analysis of cell distribution throughout the cerebrospinal channel showed a good correlation with the calculated distribution of magnetic forces exerted onto the transplanted cells. The results suggest that focused targeting and fast delivery of stem cells can be achieved using the proposed non-invasive magnetic system. With future implementation the proposed targeting and delivery strategy bears advantages for the treatment of disease requiring fast stem cell transplantation.Spinal cord injury (SCI) is a condition that results in significant mortality and morbidity. Treatment of SCI utilizing stem cell transplantation represents a promising therapy. However, current conventional treatments are limited by inefficient delivery strategies of cells into the injured tissue. In this study, we designed a magnetic system and used it to accumulate stem cells labelled with superparamagnetic iron oxide nanoparticles (SPION) at a specific site of a SCI lesion. The loading of stem cells with engineered SPIONs that guarantees sufficient attractive magnetic forces was achieved. Further, the magnetic system allowed rapid guidance of the SPION-labelled cells precisely to the lesion location. Histological analysis of cell distribution throughout the cerebrospinal

  5. Effect of intermittent normobaric hyperoxia for treatment of neuropathic pain in Chinese patients with spinal cord injury.

    Science.gov (United States)

    Gui, Y; Li, H; Zhao, M; Yang, Q; Kuang, X

    2014-10-07

    Study design:Prospective, randomized and controlled study.Objectives:The aim of the study was to investigate the effect of intermittent normobaric hyperoxia (InHO) for treatment of neuropathic pain in patients with spinal cord injury (SCI).Setting:The First Affiliated Hospital of Nanhua University, Hengyang, Hunan Province, China.Methods:Patients with SCI from Hunan Province were recruited from the First Affiliated Hospital of Nanhua University. History, duration, localization and characteristics of pain were recorded. Visual analog scale (VAS), the Patient Global Impression of Change (PGIC) and Short Form-36 walk-wheel (SF-36ww) was used to investigate the effect of InHO. Patients were randomly assigned to study and control groups. In study group, patients were exposed to pure oxygen via non-rebreathing reservoir mask, which increased the provided oxygen at a rate of 7 l min -1 for 1 or 4 h daily in 2 weeks. While in control group, patients breathed air via non-rebreathing reservoir mask at the same rate.Results:A total of 62 SCI patients with neuropathic pain were included in the study. The mean age of the patients was 36.85±10.71 years. Out of 62 patients, 21 were tetraplegic and 41 were paraplegic. Overall, 14 patients had complete SCI while 48 patients had incomplete injuries. Three groups were similar with respect to age, gender, duration, smoker or not, level and severity of injury. In the 4 h per day InHO groups, a statistically significant reduction of the VAS values was observed (Ppain scores and PGIC (Pneuropathic pain of SCI patients, InHO may be effective.Perspective:This article presents InHO may effectively complement pharmacological treatment in patients with SCI and neuropathic pain.Spinal Cord advance online publication, 7 October 2014; doi:10.1038/sc.2014.161.

  6. Alterations in cardiac autonomic control in spinal cord injury.

    Science.gov (United States)

    Biering-Sørensen, Fin; Biering-Sørensen, Tor; Liu, Nan; Malmqvist, Lasse; Wecht, Jill Maria; Krassioukov, Andrei

    2018-01-01

    A spinal cord injury (SCI) interferes with the autonomic nervous system (ANS). The effect on the cardiovascular system will depend on the extent of damage to the spinal/central component of ANS. The cardiac changes are caused by loss of supraspinal sympathetic control and relatively increased parasympathetic cardiac control. Decreases in sympathetic activity result in heart rate and the arterial blood pressure changes, and may cause arrhythmias, in particular bradycardia, with the risk of cardiac arrest in those with cervical or high thoracic injuries. The objective of this review is to give an update of the current knowledge related to the alterations in cardiac autonomic control following SCI. With this purpose the review includes the following subheadings: 2. Neuro-anatomical plasticity and cardiac control 2.1 Autonomic nervous system and the heart 2.2 Alteration in autonomic control of the heart following spinal cord injury 3. Spinal shock and neurogenic shock 3.1 Pathophysiology of spinal shock 3.2 Pathophysiology of neurogenic shock 4. Autonomic dysreflexia 4.1 Pathophysiology of autonomic dysreflexia 4.2 Diagnosis of autonomic dysreflexia 5. Heart rate/electrocardiography following spinal cord injury 5.1 Acute phase 5.2 Chronic phase 6. Heart rate variability 6.1 Time domain analysis 6.2 Frequency domain analysis 6.3 QT-variability index 6.4 Nonlinear (fractal) indexes 7. Echocardiography 7.1 Changes in cardiac structure following spinal cord injury 7.2 Changes in cardiac function following spinal cord injury 8. International spinal cord injury cardiovascular basic data set and international standards to document the remaining autonomic function in spinal cord injury. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Microdialysis to optimize cord perfusion and drug delivery in spinal cord injury.

    OpenAIRE

    Phang, I; Zoumprouli, A; Papadopoulos, MC; Saadoun, S

    2016-01-01

    OBJECTIVE: There is lack of monitoring from the injury site to guide management of patients with acute traumatic spinal cord injury. Here we describe a bedside microdialysis monitoring technique for optimizing spinal cord perfusion and drug delivery at the injury site. METHODS: 14 patients were recruited within 72 hours of severe spinal cord injury. We inserted intradurally at the injury site a pressure probe, to monitor continuously spinal cord perfusion pressure, and a microdialysis cathete...

  8. Cardiovascular response during urodynamics in individuals with spinal cord injury

    DEFF Research Database (Denmark)

    Liu, N; Zhou, M-W; Biering-Sørensen, F

    2017-01-01

    STUDY DESIGN: Retrospective chart review. OBJECTIVES: To establish the frequency and severity of autonomic dysreflexia (AD) during urodynamics among individuals with chronic spinal cord injury (SCI) and to investigate the possible effect of the number of years since SCI on the severity of AD...... was more severe in individuals with complete (American Spinal Cord Association (ASIA) impairment scale (AIS) A) injuries, worse with greater time after SCI. CONCLUSION: Individuals with cervical SCI, DSD, poor bladder compliance or >2 years after SCI were associated with a higher possibility of developing...... AD during urodynamics. Furthermore, AD was more severe in complete (AIS A) individuals and was exacerbated with time after injury....

  9. The effect of low-frequency TENS in the treatment of neuropathic pain in patients with spinal cord injury.

    Science.gov (United States)

    Celik, E C; Erhan, B; Gunduz, B; Lakse, E

    2013-04-01

    Prospective, randomized and controlled study. The aim of the study was to investigate the effect of low-frequency transcutaneous electrical nerve stimulation (LF-TENS) in the treatment of neuropathic pain in patients with spinal cord injury (SCI). A total of 33 SCI patients with neuropathic pain were included in the study. History, duration, localization and characteristics of pain were recorded. Visual analog scale (VAS) was used to investigate the effect of LF-TENS four times during the day. Patients were randomly assigned to study and control groups. The study group was treated with 30 min of LF-TENS daily for 10 days while the placebo group with 30 min of sham TENS. The mean age of the patients was 36.55±10.36 years. Out of 33 patients, 7 were tetraplegic and 26 were paraplegic. Twenty-three patients had complete SCI while 10 patients had incomplete injuries. Two groups were similar with respect to age, gender, duration, level and severity of injury. In the LF-TENS treatment group, a statistically significant reduction of the VAS values was observed, however, such an effect was not evident in the control group. This study revealed that in treatment of neuropathic pain of SCI patients, LF-TENS may be effective. This article presents LF-TENS may effectively complement pharmacological treatment in patients with SCI and neuropathic pain.

  10. The Effects of Two Months Body Weight Supported Treadmill Training on Balance and Quality of Life of Patients With Incomplete Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Hamid Zamani

    2018-01-01

    Conclusion According to achieved results, eight weeks body weight supported treadmill training can improve the balance of the patients with spinal cord injury. It was observed that the gait training with stimulation and use of proprioceptors and increase of patient’s confidence in walking and standing positions improve the patient’s balance. The patients were also able to control the internal and external perturbations and maintain the better balance. But eight weeks gait training had no significant effect on the quality of life in patients with spinal cord injury which suggest that more extended rehabilitation is required.

  11. Effects of level and degree of spinal cord injury on male orgasm.

    Science.gov (United States)

    Sipski, M; Alexander, C J; Gómez-Marín, O

    2006-12-01

    Controlled, laboratory-based analysis. To determine the impact of spinal cord injuries (SCIs) on the ability to achieve male orgasm. US academic medical center. A laboratory-based analysis of the ability of 45 men with SCIs and 16 able-bodied control subjects to achieve orgasm coupled with a detailed neurologic examination, history and physical examination, and administration of the International Index of Erectile Function. Men with SCIs were less likely than controls to achieve orgasm. Mean latency to orgasm, blood pressure and heart rates at orgasm were not significantly different between controls and SCI subjects. Men with incomplete SCIs were more likely to achieve orgasm than those with complete SCIs. A disconnect was noted between the presence of orgasm and the presence of ejaculation. Men with complete lower motor neuron dysfunction affecting their sacral segments were less likely to achieve orgasm than men with any other patterns of SCI. These results document the ability of men with complete SCIs to achieve orgasm. Characteristics of orgasm in men with SCIs as compared to able-bodied subjects are similar. Although orgasm and ejaculation are more likely to occur together, a number of men with SCIs achieve orgasm without ejaculation. Further research should explore the possibility of retraining ejaculatory and orgasmic responses in men with SCIs.

  12. Assessment of the Neuroprotective Effects of Lavandula angustifolia Extract on the Contusive Model of Spinal Cord Injury in Wistar Rats

    Science.gov (United States)

    Kaka, Gholamreza; Yaghoobi, Kayvan; Davoodi, Shaghayegh; Hosseini, Seyed R.; Sadraie, Seyed H.; Mansouri, Korosh

    2016-01-01

    Introduction: Spinal cord injury (SCI) involves a primary trauma and secondary cellular processes that can lead to severe damage to the nervous system, resulting in long-term spinal deficits. At the cellular level, SCI causes astrogliosis, of which glial fibrillary acidic protein (GFAP) is a major index. Objective: The aim of this study was to investigate the neuroprotective effects of Lavandula angustifolia (Lav) on the repair of spinal cord injuries in Wistar rats. Materials and Methods: Forty-five female rats were randomly divided into six groups of seven rats each: the intact, sham, control (SCI), Lav 100, Lav 200, and Lav 400 groups. Every week after SCI onset, all animals were evaluated for behavior outcomes by the Basso, Beattie, and Bresnahan (BBB) score. H&E staining was performed to examine the lesions post-injury. GFAP expression was assessed for astrogliosis. Somatosensory evoked potential (SEP) testing was performed to detect the recovery of neural conduction. Results: BBB scores were significantly increased and delayed responses on sensory tests were significantly decreased in the Lav 200 and Lav 400 groups compared to the control group. The greatest decrease of GFAP was evident in the Lav 200 and Lav 400 groups. EMG results showed significant improvement in the hindlimbs in the Lav 200 and Lav 400 groups compared to the control group. Cavity areas significantly decreased and the number of ventral motor neurons significantly increased in the Lav 200 and Lav 400 groups. Conclusion: Lav at doses of 200 and 400 mg/kg can promote structural and functional recovery after SCI. The neuroprotective effects of L. angustifolia can lead to improvement in the contusive model of SCI in Wistar rats. PMID:26903793

  13. Effect of spinal anterior root stimulation and sacral deafferentation on bladder and sexual dysfunction in spinal cord injury.

    Science.gov (United States)

    Zaer, Hamed; Rasmussen, Mikkel Mylius; Zepke, Franko; Bodin, Charlotte; Domurath, Burkhard; Kutzenberger, Johannes

    2018-05-10

    Spinal cord injury (SCI) is a highly devastating injury with a variety of complications; among them are neurogenic bladder, bowel, and sexual dysfunction. We aimed to evaluate the effect of sacral anterior root stimulation with sacral deafferentation (SARS-SDAF) on neurogenic bladder and sexual dysfunction in a large well-defined spinal cord injury cohort. In the manner of cross-sectional study, subjects undergone SARS-SDAF between September 1986 and July 2011 answered a questionnaire concerning conditions before and after surgery in the department of Neuro-Urology, Bad Wildungen, Germany. In total 287 of 587 subjects were analyzed. Median age was 49 years (range 19-80), median time from SCI to surgery was 10 years (range 0-49), and from surgery to follow-up 13 years (range 1-25). Of the analyzed subjects, 100% of both gender used SARS for bladder emptying. On the visual analogue scale (VAS) ranging from 0 to 10 (best), satisfaction with SARS-SDAF was 10 concerning bladder emptying, however 5 and 8 regarding sexual performance, for female and male users, respectively. Baseline and follow-up comparison showed a decline in self-intermittent catheterization (p < 0.0001), partial catheterization by attendant (p = 0.0125), complete catheterization and suprapubic catheterization (p < 0.0001), transurethral catheterization (p < 0.0011), and fewer cases of involuntary urine leakage (p < 0.0001). The SARS-SDAF is a beneficial multi-potential treatment method with simultaneous positive effect on multi-organ dysfunction among SCI subjects.

  14. Wpływ obozów Fundacji Aktywnej Rehabilitacji na stan psychofizyczny osób po uszkodzeniu rdzenia kręgowego = The effect of foundation for active rehabilitation camps on psychophysical state following spinal cord injury

    Directory of Open Access Journals (Sweden)

    Ewelina Kamińska-Gwóźdź

    2015-11-01

    Conclusion. Foundation for Active Rehabilitation introductory camp had a positive effect on the psychophysical status of individuals with spinal cord injury. Through the effort of the Foundation for Active Rehabilitation, individuals with spinal cord injury can benefit from the experience of professional camp staff.  Development of new motor skills further affects not only their comfort in life, but also their mental state.

  15. Effect of endogenous androgens on 17beta-estradiol-mediated protection after spinal cord injury in male rats.

    Science.gov (United States)

    Kachadroka, Supatra; Hall, Alicia M; Niedzielko, Tracy L; Chongthammakun, Sukumal; Floyd, Candace L

    2010-03-01

    Several groups have recently shown that 17beta-estradiol is protective in spinal cord injury (SCI). Testosterone can be aromatized to 17beta-estradiol and may increase estrogen-mediated protection. Alternatively, testosterone has been shown to increase excitotoxicity in models of central nervous system (CNS) injury. These experiments test the hypothesis that endogenous testosterone in male rats alters 17beta-estradiol-mediated protection by evaluating a delayed administration over a clinically relevant dose range and manipulating testicular-derived testosterone. Adult male Sprague Dawley rats were either gonadectomized or left gonad-intact prior to SCI. SCI was produced by a midthoracic crush injury. At 30 min post SCI, animals received a subcutaneous pellet of 0.0, 0.05, 0.5, or 5.0 mg of 17beta-estradiol, released over 21 days. Hindlimb locomotion was analyzed weekly in the open field. Spinal cords were collected and analyzed for cell death, expression of Bcl-family proteins, and white-matter sparing. Post-SCI administration of the 0.5- or 5.0-mg pellet improved hindlimb locomotion, reduced urinary bladder size, increased neuronal survival, reduced apoptosis, improved the Bax/Bcl-xL protein ratio, and increased white-matter sparing. In the absence of endogenous testicular-derived androgens, SCI induced greater apoptosis, yet 17beta-estradiol administration reduced apoptosis to the same extent in gonadectomized and gonad-intact male rats. These data suggest that delayed post-SCI administration of a clinically relevant dose of 17beta-estradiol is protective in male rats, and endogenous androgens do not alter estrogen-mediated protection. These data suggest that 17beta-estradiol is an effective therapeutic intervention for reducing secondary damage after SCI in males, which could be readily translated to clinical trials.

  16. Afferent Pathway-Mediated Effect of α1 Adrenergic Antagonist, Tamsulosin, on the Neurogenic Bladder After Spinal Cord Injury.

    Science.gov (United States)

    Han, Jin-Hee; Kim, Sung-Eun; Ko, Il-Gyu; Kim, Jayoung; Kim, Khae Hawn

    2017-09-01

    The functions of the lower urinary tract (LUT), such as voiding and storing urine, are dependent on complex central neural networks located in the brain, spinal cord, and peripheral ganglia. Thus, the functions of the LUT are susceptible to various neurologic disorders including spinal cord injury (SCI). SCI at the cervical or thoracic levels disrupts voluntary control of voiding and the normal reflex pathways coordinating bladder and sphincter functions. In this context, it is noteworthy that α1-adrenoceptor blockers have been reported to relieve voiding symptoms and storage symptoms in elderly men with benign prostatic hyperplasia (BPH). Tamsulosin, an α1-adrenoceptor blocker, is also considered the most effective regimen for patients with LUT symptoms such as BPH and overactive bladder (OAB). In the present study, the effects of tamsulosin on the expression of c-Fos, nerve growth factor (NGF), and nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) in the afferent micturition areas, including the pontine micturition center (PMC), the ventrolateral periaqueductal gray matter (vlPAG), and the spinal cord (L5), of rats with an SCI were investigated. SCI was found to remarkably upregulate the expression of c-Fos, NGF, and NADPH-d in the afferent pathway of micturition, the dorsal horn of L5, the vlPAG, and the PMC, resulting in the symptoms of OAB. In contrast, tamsulosin treatment significantly suppressed these neural activities and the production of nitric oxide in the afferent pathways of micturition, and consequently, attenuated the symptoms of OAB. Based on these results, tamsulosin, an α1-adrenoceptor antagonist, could be used to attenuate bladder dysfunction following SCI. However, further studies are needed to elucidate the exact mechanism and effects of tamsulosin on the afferent pathways of micturition.

  17. Does combined therapy of curcumin and epigallocatechin gallate have a synergistic neuroprotective effect against spinal cord injury?

    Directory of Open Access Journals (Sweden)

    Jiri Ruzicka

    2018-01-01

    Full Text Available Systematic inflammatory response after spinal cord injury (SCI is one of the factors leading to lesion development and a profound degree of functional loss. Anti-inflammatory compounds, such as curcumin and epigallocatechin gallate (EGCG are known for their neuroprotective effects. In this study, we investigated the effect of combined therapy of curcumin and EGCG in a rat model of acute SCI induced by balloon compression. Immediately after SCI, rats received curcumin, EGCG, curcumin + EGCG or saline [daily intraperitoneal doses (curcumin, 6 mg/kg; EGCG 17 mg/kg] and weekly intramuscular doses (curcumin, 60 mg/kg; EGCG 17 mg/kg] for 28 days. Rats were evaluated using behavioral tests (the Basso, Beattie, and Bresnahan (BBB open-field locomotor test, flat beam test. Spinal cord tissue was analyzed using histological methods (Luxol Blue-cresyl violet staining and immunohistochemistry (anti-glial fibrillary acidic protein, anti-growth associated protein 43. Cytokine levels (interleukin-1β, interleukin-4, interleukin-2, interleukin-6, macrophage inflammatory protein 1-alpha, and RANTES were measured using Luminex assay. Quantitative polymerase chain reaction was performed to determine the relative expression of genes (Sort1, Fgf2, Irf5, Mrc1, Olig2, Casp3, Gap43, Gfap, Vegf, NfκB, Cntf related to regenerative processes in injured spinal cord. We found that all treatments displayed significant behavioral recovery, with no obvious synergistic effect after combined therapy of curcumin and ECGC. Curcumin and EGCG alone or in combination increased axonal sprouting, decreased glial scar formation, and altered the levels of macrophage inflammatory protein 1-alpha, interleukin-1β, interleukin-4 and interleukin-6 cytokines. These results imply that although the expected synergistic response of this combined therapy was less obvious, aspects of tissue regeneration and immune responses in severe SCI were evident.

  18. Does combined therapy of curcumin and epigallocatechin gallate have a synergistic neuroprotective effect against spinal cord injury?

    Science.gov (United States)

    Ruzicka, Jiri; Urdzikova, Lucia Machova; Svobodova, Barbora; Amin, Anubhav G; Karova, Kristyna; Dubisova, Jana; Zaviskova, Kristyna; Kubinova, Sarka; Schmidt, Meic; Jhanwar-Uniyal, Meena; Jendelova, Pavla

    2018-01-01

    Systematic inflammatory response after spinal cord injury (SCI) is one of the factors leading to lesion development and a profound degree of functional loss. Anti-inflammatory compounds, such as curcumin and epigallocatechin gallate (EGCG) are known for their neuroprotective effects. In this study, we investigated the effect of combined therapy of curcumin and EGCG in a rat model of acute SCI induced by balloon compression. Immediately after SCI, rats received curcumin, EGCG, curcumin + EGCG or saline [daily intraperitoneal doses (curcumin, 6 mg/kg; EGCG 17 mg/kg)] and weekly intramuscular doses (curcumin, 60 mg/kg; EGCG 17 mg/kg)] for 28 days. Rats were evaluated using behavioral tests (the Basso, Beattie, and Bresnahan (BBB) open-field locomotor test, flat beam test). Spinal cord tissue was analyzed using histological methods (Luxol Blue-cresyl violet staining) and immunohistochemistry (anti-glial fibrillary acidic protein, anti-growth associated protein 43). Cytokine levels (interleukin-1β, interleukin-4, interleukin-2, interleukin-6, macrophage inflammatory protein 1-alpha, and RANTES) were measured using Luminex assay. Quantitative polymerase chain reaction was performed to determine the relative expression of genes (Sort1, Fgf2, Irf5, Mrc1, Olig2, Casp3, Gap43, Gfap, Vegf, NfκB, Cntf) related to regenerative processes in injured spinal cord. We found that all treatments displayed significant behavioral recovery, with no obvious synergistic effect after combined therapy of curcumin and ECGC. Curcumin and EGCG alone or in combination increased axonal sprouting, decreased glial scar formation, and altered the levels of macrophage inflammatory protein 1-alpha, interleukin-1β, interleukin-4 and interleukin-6 cytokines. These results imply that although the expected synergistic response of this combined therapy was less obvious, aspects of tissue regeneration and immune responses in severe SCI were evident.

  19. Nanomedicine strategies for treatment of secondary spinal cord injury

    Directory of Open Access Journals (Sweden)

    White-Schenk D

    2015-01-01

    Full Text Available Désirée White-Schenk,1,4 Riyi Shi,1–3 James F Leary1–4 1Interdisciplinary Biomedical Sciences Program, 2Weldon School of Biomedical Engineering, 3Department of Basic Medical Sciences, Lynn School of Veterinary Medicine, 4Birck Nanotechnology Center, Discovery Park, Purdue University, West Lafayette, IN, USA Abstract: Neurological injury, such as spinal cord injury, has a secondary injury associated with it. The secondary injury results from the biological cascade after the primary injury and affects previous uninjured, healthy tissue. Therefore, the mitigation of such a cascade would benefit patients suffering a primary injury and allow the body to recover more quickly. Unfortunately, the delivery of effective therapeutics is quite limited. Due to the inefficient delivery of therapeutic drugs, nanoparticles have become a major field of exploration for medical applications. Based on their material properties, they can help treat disease by delivering drugs to specific tissues, enhancing detection methods, or a mixture of both. Incorporating nanomedicine into the treatment of neuronal injury and disease would likely push nanomedicine into a new light. This review highlights the various pathological issues involved in secondary spinal cord injury, current treatment options, and the improvements that could be made using a nanomedical approach. Keywords: spinal cord injury, acrolein, drug delivery, methylprednisolone, secondary injury

  20. Prolonged electrical stimulation-induced gluteal and hamstring muscle activation and sitting pressure in spinal cord injury: Effect of duty cycle

    NARCIS (Netherlands)

    MSc Karin J.A. Legemate; MD Christof A. J. Smit; MSc Anja de Koning; PhD Sonja de Groot; MD, PhD Janneke M. Stolwijk-Swuste; PhD Thomas W.H. Janssen

    2013-01-01

    Abstract—Pressure ulcers (PUs) are highly prevalent in people with spinal cord injury (SCI). Electrical stimulation (ES) activates muscles and might reduce risk factors. Our objectives were to study and compare the effects of two duty cycles during 3 h of ES-induced gluteal and hamstring activation

  1. Prolonged electrical stimulation-induced gluteal and hamstring muscle activation and sitting pressure in spinal cord injury : Effect of duty cycle

    NARCIS (Netherlands)

    Smit, Christof A. J.; Legemate, Karin J. A.; de Koning, Anja; de Groot, Sonja; Stolwijk-Swuste, Janneke M.; Janssen, Thomas W. J.

    2013-01-01

    Pressure ulcers (PUs) are highly prevalent in people with spinal cord injury (SCI). Electrical stimulation (ES) activates muscles and might reduce risk factors. Our objectives were to study and compare the effects of two duty cycles during 3 h of ES-induced gluteal and hamstring activation on

  2. The effects of hybrid cycle training in inactive people with long-term spinal cord injury : design of a multicenter randomized controlled trial

    NARCIS (Netherlands)

    Bakkum, Arjan J. T.; de Groot, Sonja; van der Woude, Lucas H. V.; Janssen, Thomas W. J.

    2013-01-01

    Purpose: Physical activity in people with long-term spinal cord injury (SCI) is important to stay fit and healthy. The purpose of this study is to evaluate the effects of hybrid cycle training (hand cycling in combination with functional electrical stimulation-induced leg cycling) on fitness,

  3. Evidence-Based Evaluation of Physiological Effects of Standing and Walking in Individuals with Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Mohammad Taghi Karimi

    2011-12-01

    Full Text Available Spinal Cord Injury (SCI is damage to spinal cord, which is categorized according to the extent of functional loss, sensation loss and inability of the subjects to stand and walk. The patients use two transportation systems including orthosis and wheelchair. It was claimed that standing and walking bring some benefits such as decreasing bone osteoporosis, prevention of pressure sores, and improvement of the function of the digestive system for SCI patients. Nevertheless, the question of wether or not there is enough evidence to support the effect of walking with orthosis on the health status of the subjects with SCI remains unanswered. In order to answer this question a review of the relevant literature was carried out. The review of the literature showed that evidence reported in the literature regarding the effectiveness of orthoses for improving the health condition of SCI patients was controversial. Many investigators had only used the comments of the users of orthoses. The benefits mentioned in various research studies regarding the use of orthosis included decreasing bone osteoprosis, preventing joint deformity, improving bowl and bladder function, improving digestive system function, decreasing muscle spasm, improving independent living, and improving respiratory and cardiovascular systems function. The findings of the studies reviewed also showed that improving the independent living and physiological health of the subjects were the only two benefits, which were supported by strong evidence. The review of the literature suggests that most published studies are in fact surveys, which collected questionnaire-based information from the users of orthosis

  4. Effects of Electroacupuncture at Governor Vessel Acupoints on Neurotrophin-3 in Rats with Experimental Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Yu-ping Mo

    2016-01-01

    Full Text Available In an effort to explore new, noninvasive treatment options for spinal cord injuries (SCI, this study investigated the effects of electroacupuncture (EA for SCI rat models. SCI was induced by a modified Allen’s weight-drop method. We investigated the response of EA at Dazhui (GV 14 and Mingmen (GV 4 acupoints to understand the effects and mechanisms of EA in neuroprotection and neuronal function recovery after SCI. BBB testing was used to detect motor function of rats’ hind limbs among groups, and EA was shown to promote the recovery of SCI rats’ motor function. Nissl staining showed a restored neural morphology and an increase in the quantity of neurons after EA. Also, the antiapoptosis role was exposed by TUNEL staining. Western blotting analysis was used to determine the protein expression of neurotrophin-3 (NT-3 in spinal cord tissue. Compared to the sham group, the expression levels of NT-3 were significantly decreased and EA was shown to upregulate the expression of NT-3. The present study suggests that the role of EA in neuroprotection and dorsal neuronal function recovery after SCI in rats, especially EA stimulation at GV 14 and GV 4, can greatly promote neuronal function recovery, which may result from upregulating the expression of NT-3.

  5. The effectiveness of FES-evoked EMG potentials to assess muscle force and fatigue in individuals with spinal cord injury.

    Science.gov (United States)

    Ibitoye, Morufu Olusola; Estigoni, Eduardo H; Hamzaid, Nur Azah; Wahab, Ahmad Khairi Abdul; Davis, Glen M

    2014-07-14

    The evoked electromyographic signal (eEMG) potential is the standard index used to monitor both electrical changes within the motor unit during muscular activity and the electrical patterns during evoked contraction. However, technical and physiological limitations often preclude the acquisition and analysis of the signal especially during functional electrical stimulation (FES)-evoked contractions. Hence, an accurate quantification of the relationship between the eEMG potential and FES-evoked muscle response remains elusive and continues to attract the attention of researchers due to its potential application in the fields of biomechanics, muscle physiology, and rehabilitation science. We conducted a systematic review to examine the effectiveness of eEMG potentials to assess muscle force and fatigue, particularly as a biofeedback descriptor of FES-evoked contractions in individuals with spinal cord injury. At the outset, 2867 citations were identified and, finally, fifty-nine trials met the inclusion criteria. Four hypotheses were proposed and evaluated to inform this review. The results showed that eEMG is effective at quantifying muscle force and fatigue during isometric contraction, but may not be effective during dynamic contractions including cycling and stepping. Positive correlation of up to r = 0.90 (p peak-to-peak amplitude of the eEMG and the decline in the force output during fatiguing isometric contractions has been reported. In the available prediction models, the performance index of the eEMG signal to estimate the generated muscle force ranged from 3.8% to 34% for 18 s to 70 s ahead of the actual muscle force generation. The strength and inherent limitations of the eEMG signal to assess muscle force and fatigue were evident from our findings with implications in clinical management of spinal cord injury (SCI) population.

  6. The Effectiveness of FES-Evoked EMG Potentials to Assess Muscle Force and Fatigue in Individuals with Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Morufu Olusola Ibitoye

    2014-07-01

    Full Text Available The evoked electromyographic signal (eEMG potential is the standard index used to monitor both electrical changes within the motor unit during muscular activity and the electrical patterns during evoked contraction. However, technical and physiological limitations often preclude the acquisition and analysis of the signal especially during functional electrical stimulation (FES-evoked contractions. Hence, an accurate quantification of the relationship between the eEMG potential and FES-evoked muscle response remains elusive and continues to attract the attention of researchers due to its potential application in the fields of biomechanics, muscle physiology, and rehabilitation science. We conducted a systematic review to examine the effectiveness of eEMG potentials to assess muscle force and fatigue, particularly as a biofeedback descriptor of FES-evoked contractions in individuals with spinal cord injury. At the outset, 2867 citations were identified and, finally, fifty-nine trials met the inclusion criteria. Four hypotheses were proposed and evaluated to inform this review. The results showed that eEMG is effective at quantifying muscle force and fatigue during isometric contraction, but may not be effective during dynamic contractions including cycling and stepping. Positive correlation of up to r = 0.90 (p < 0.05 between the decline in the peak-to-peak amplitude of the eEMG and the decline in the force output during fatiguing isometric contractions has been reported. In the available prediction models, the performance index of the eEMG signal to estimate the generated muscle force ranged from 3.8% to 34% for 18 s to 70 s ahead of the actual muscle force generation. The strength and inherent limitations of the eEMG signal to assess muscle force and fatigue were evident from our findings with implications in clinical management of spinal cord injury (SCI population.

  7. Effect of electroacupuncture on the mRNA and protein expression of Rho-A and Rho-associated kinase II in spinal cord injury rats

    Directory of Open Access Journals (Sweden)

    You-jiang Min

    2017-01-01

    Full Text Available Electroacupuncture is beneficial for the recovery of spinal cord injury, but the underlying mechanism is unclear. The Rho/Rho-associated kinase (ROCK signaling pathway regulates the actin cytoskeleton by controlling the adhesive and migratory behaviors of cells that could inhibit neurite regrowth after neural injury and consequently hinder the recovery from spinal cord injury. Therefore, we hypothesized electroacupuncture could affect the Rho/ROCK signaling pathway to promote the recovery of spinal cord injury. In our experiments, the spinal cord injury in adult Sprague-Dawley rats was caused by an impact device. Those rats were subjected to electroacupuncture at Yaoyangguan (GV3, Dazhui (GV14, Zusanli (ST36 and Ciliao (BL32 and/or monosialoganglioside treatment. Behavioral scores revealed that the hindlimb motor functions improved with those treatments. Real-time quantitative polymerase chain reaction, fluorescence in situ hybridization and western blot assay showed that electroacupuncture suppressed the mRNA and protein expression of Rho-A and Rho-associated kinase II (ROCKII of injured spinal cord. Although monosialoganglioside promoted the recovery of hindlimb motor function, monosialoganglioside did not affect the expression of Rho-A and ROCKII. However, electroacupuncture combined with monosialoganglioside did not further improve the motor function or suppress the expression of Rho-A and ROCKII. Our data suggested that the electroacupuncture could specifically inhibit the activation of the Rho/ROCK signaling pathway thus partially contributing to the repair of injured spinal cord. Monosialoganglioside could promote the motor function but did not suppress expression of RhoA and ROCKII. There was no synergistic effect of electroacupuncture combined with monosialoganglioside.

  8. Effect of Endogenous Androgens on 17β-Estradiol-Mediated Protection after Spinal Cord Injury in Male Rats

    OpenAIRE

    Kachadroka, Supatra; Hall, Alicia M.; Niedzielko, Tracy L.; Chongthammakun, Sukumal; Floyd, Candace L.

    2010-01-01

    Several groups have recently shown that 17β-estradiol is protective in spinal cord injury (SCI). Testosterone can be aromatized to 17β-estradiol and may increase estrogen-mediated protection. Alternatively, testosterone has been shown to increase excitotoxicity in models of central nervous system (CNS) injury. These experiments test the hypothesis that endogenous testosterone in male rats alters 17β-estradiol-mediated protection by evaluating a delayed administration over a clinically relevan...

  9. Acute Thoracolumbar Spinal Cord Injury: Relationship of Cord Compression to Neurological Outcome.

    Science.gov (United States)

    Skeers, Peta; Battistuzzo, Camila R; Clark, Jillian M; Bernard, Stephen; Freeman, Brian J C; Batchelor, Peter E

    2018-02-21

    Spinal cord injury in the cervical spine is commonly accompanied by cord compression and urgent surgical decompression may improve neurological recovery. However, the extent of spinal cord compression and its relationship to neurological recovery following traumatic thoracolumbar spinal cord injury is unclear. The purpose of this study was to quantify maximum cord compression following thoracolumbar spinal cord injury and to assess the relationship among cord compression, cord swelling, and eventual clinical outcome. The medical records of patients who were 15 to 70 years of age, were admitted with a traumatic thoracolumbar spinal cord injury (T1 to L1), and underwent a spinal surgical procedure were examined. Patients with penetrating injuries and multitrauma were excluded. Maximal osseous canal compromise and maximal spinal cord compression were measured on preoperative mid-sagittal computed tomography (CT) scans and T2-weighted magnetic resonance imaging (MRI) by observers blinded to patient outcome. The American Spinal Injury Association (ASIA) Impairment Scale (AIS) grades from acute hospital admission (≤24 hours of injury) and rehabilitation discharge were used to measure clinical outcome. Relationships among spinal cord compression, canal compromise, and initial and final AIS grades were assessed via univariate and multivariate analyses. Fifty-three patients with thoracolumbar spinal cord injury were included in this study. The overall mean maximal spinal cord compression (and standard deviation) was 40% ± 21%. There was a significant relationship between median spinal cord compression and final AIS grade, with grade-A patients (complete injury) exhibiting greater compression than grade-C and D patients (incomplete injury) (p compression as independently influencing the likelihood of complete spinal cord injury (p compression. Greater cord compression is associated with an increased likelihood of severe neurological deficits (complete injury) following

  10. The effect of Foundation for Active Rehabilitation camps on the quality of life of individuals with spinal cord injury

    Directory of Open Access Journals (Sweden)

    Ewelina Kamińska-Gwóźdź

    2018-03-01

    Conclusions. Participation by individuals with spinal cord injury in the introductory camps organized by the Foundation for Active Rehabilitation has a positive impact on the subjective quality of life, strengthens sense of the meaning of life and decreases the motivation to find its purpose.

  11. Selective adenosine A2A receptor agonists and antagonists protect against spinal cord injury through peripheral and central effects

    Directory of Open Access Journals (Sweden)

    Esposito Emanuela

    2011-04-01

    Full Text Available Abstract Background Permanent functional deficits following spinal cord injury (SCI arise both from mechanical injury and from secondary tissue reactions involving inflammation. Enhanced release of adenosine and glutamate soon after SCI represents a component in the sequelae that may be responsible for resulting functional deficits. The role of adenosine A2A receptor in central ischemia/trauma is still to be elucidated. In our previous studies we have demonstrated that the adenosine A2A receptor-selective agonist CGS21680, systemically administered after SCI, protects from tissue damage, locomotor dysfunction and different inflammatory readouts. In this work we studied the effect of the adenosine A2A receptor antagonist SCH58261, systemically administered after SCI, on the same parameters. We investigated the hypothesis that the main action mechanism of agonists and antagonists is at peripheral or central sites. Methods Spinal trauma was induced by extradural compression of SC exposed via a four-level T5-T8 laminectomy in mouse. Three drug-dosing protocols were utilized: a short-term systemic administration by intraperitoneal injection, a chronic administration via osmotic minipump, and direct injection into the spinal cord. Results SCH58261, systemically administered (0.01 mg/kg intraperitoneal. 1, 6 and 10 hours after SCI, reduced demyelination and levels of TNF-α, Fas-L, PAR, Bax expression and activation of JNK mitogen-activated protein kinase (MAPK 24 hours after SCI. Chronic SCH58261 administration, by mini-osmotic pump delivery for 10 days, improved the neurological deficit up to 10 days after SCI. Adenosine A2A receptors are physiologically expressed in the spinal cord by astrocytes, microglia and oligodendrocytes. Soon after SCI (24 hours, these receptors showed enhanced expression in neurons. Both the A2A agonist and antagonist, administered intraperitoneally, reduced expression of the A2A receptor, ruling out the possibility that the

  12. Effects of gabapentin on muscle spasticity and both induced as well as spontaneous autonomic dysreflexia after complete spinal cord injury

    Directory of Open Access Journals (Sweden)

    Alexander G. Rabchevsky

    2012-08-01

    Full Text Available We recently reported that the neuropathic pain medication, gabapentin (GBP; Neurontin, significantly attenuated both noxious colorectal distension (CRD-induced autonomic dysreflexia (AD and tail pinch-induced spasticity compared to saline-treated cohorts 2-3 weeks after complete high thoracic (T4 spinal cord injury (SCI. Here we employed long-term blood pressure telemetry to test, firstly, the efficacy of daily versus acute GBP treatment in modulating AD and tail spasticity in response to noxious stimuli at 2 and 3 weeks post-injury. Secondly, we determined whether daily GBP alters baseline cardiovascular parameters, as well as spontaneous AD events detected using a novel algorithm based on blood pressure telemetry data. At both 14 and 21 days after SCI, irrespective of daily treatment, acute GBP given 1 hr prior to stimulus significantly attenuated CRD-induced AD and pinch-evoked tail spasticity; conversely, acute saline had no such effects. Moreover, daily GBP did not alter 24 hr mean arterial pressure (MAP or heart rate values compared to saline treatment, nor did it reduce the incidence of spontaneous AD events compared to saline over the three week assessment period. Power spectral density analysis of the MAP signals demonstrated relative power losses in mid frequency ranges (0.2-0.8 Hz for all injured animals relative to low frequency MAP power (0.02-0.08 Hz. However, there was no significant difference between groups over time post-injury; hence, GBP had no effect on the persistent loss of MAP fluctuations in the mid frequency range after injury. In summary, the mechanism(s by which acute GBP treatment mitigate aberrant somatosensory and cardiophysiological responses to noxious stimuli after SCI remain unclear. Nevertheless, with further refinements in defining the dynamics associated with AD events, such as eliminating requisite concomitant bradycardia, the objective repeatability of automatic detection of hypertensive crises provides a

  13. The effect of psycho-educational interventions on the quality of life of the family caregivers of the patients with spinal cord injury: a randomized controlled trial.

    Science.gov (United States)

    Molazem, Zahra; Falahati, Tayebeh; Jahanbin, Iran; Jafari, Peyman; Ghadakpour, Soraya

    2014-01-01

    Family caregivers usually report the reduction of their life quality due to one of the family member's spinal cord injury. Thus, the present study aimed to investigate the effectiveness of psycho-educational interventions on the life quality of the family caregivers of the patients with spinal cord injury. The present randomized controlled trial was conducted on 72 family caregivers who had the primary responsibility of taking care of the patients with spinal cord injury. The participants were randomly divided into intervention (n=36) and control groups (n=36). The intervention group was involved in 90-minute educational sessions held once a week for four weeks. Both groups completed SF-36 questionnaire before and 2 and 6 weeks after the intervention. Then, the data were analyzed through independent t-test, Chi-square, and repeated measures ANOVA. All the caregivers had low quality of life and the lowest mean score was related to mental health in both groups. After the intervention, various dimensions of life quality had improved in the intervention group's caregivers compared to the control group (Peducational interventions on the life quality of the caregivers of the patients with spinal cord injury. According to the results, the authorities have to pay special attention to the problems of this group and educational interventions have to be continuously followed. IRCT2013070811388N2.

  14. The effects of gender on clinical and neurological outcomes after acute cervical spinal cord injury.

    Science.gov (United States)

    Furlan, Julio C; Krassioukov, Andrei V; Fehlings, Michael G

    2005-03-01

    The potential clinical relevance of gender on clinical and neurological outcome after spinal cord injury (SCI) has received little attention. In order to address this issue, we examined all consecutive cases of acute traumatic cervical SCI admitted to our institution from 1998 to 2000. There were 38 males (ages 17-89 years, mean of 51.6) and 17 females (ages 18-84 years, mean of 63.2). Both groups were comparable regarding level (C1 to C7) and severity of SCI (ASIA A to D) at admission. Age differences between the groups approached significance (p = 0.057), and thus this factor was treated as a covariate in the analysis. Co-morbidities were as frequent in men (86.8%) as in women (76.5%). The therapeutic approaches, length-of-stay in the acute care unit, mortality, and discharge disposition were similar in men and women. During hospitalization, 44.7% of men and 52.9% of women developed post-SCI secondary complications without any significant gender-related differences. Both groups showed a similar incidence of infections, cardiovascular complications, thromboembolism, and pressure sores. Univariate analysis revealed a trend for higher incidence of psychiatric complications (p = 0.054) and deep venous thrombosis (p = 0.092) in women, which was confirmed by multivariate analysis. Neurological outcome was not correlated with gender. A similar number of males and females (42.1%, 47.1%) showed evidence of neurological recovery as revealed by an improvement in ASIA scores. Moreover, 18.4% of males and 29.4% of females recovered to ASIA E status. Our data suggest a shift in the demographics of acute SCI with an increasing incidence in elderly women. Although neurological outcomes were not significantly related to gender, we observed a trend for higher rates of reactive depression and deep venous thrombosis in women. These issues may be of key clinical importance in developing improved management protocols for SCI so as to maximize functional recovery and quality-of-life.

  15. Cardiac arrhythmias associated with spinal cord injury

    DEFF Research Database (Denmark)

    Hector, Sven Magnus; Biering-Sørensen, Tor; Krassioukov, Andrei

    2013-01-01

    CONTEXT/OBJECTIVES: To review the current literature to reveal the incidence of cardiac arrhythmias and its relation to spinal cord injury (SCI). METHODS: Data source: MEDLINE database, 304 hits, and 32 articles were found to be relevant. The relevant articles all met the inclusion criteria: (1...

  16. Magnetic resonance imaging of spinal cord injury

    International Nuclear Information System (INIS)

    Shakudo, Miyuki; Inoue, Yuichi; Fukuda, Teruo

    1988-01-01

    Forty-three MR examinations of 30 patients with spinal cord injuries were retrospectively reviewed to evaluate MR findings of the injured cord and to correlate them with the time interval from the day of spinal cord injury. There were 18 cysts, 8 ''myelomalacias'', 2 cord atrophies, one intramedullary hematoma and two transections. In one patient, ''myelomalacia'' became a cyst on the follow-up study. Large cysts of more than 6 vertebral segments were found in 7 patients, all of whom had had trauma more than 5 years prior to examination. Small cysts of less than half a vertebral height were seen in 5 patients, all of whom were studied 3 to 6 months after the injury. Intermediate cysts were seen in 7 patients who had sustained trauma more than a year before. In a majority (13/14 scans) of ''myelomalacia'', the time interval from injury until examination was only 2 weeks to 6 months. Of the 14 patients who showed post-traumatic progressive myelopathy, seven had large cysts. It is known that intramedullary hematoma becomes a cyst, and that post-traumatic myelomalacia probably results in a cyst in animal studies. Our clinical study seems to support a strong causal relation between myelomalacia and post-traumatic cysts. Since post-traumatic progressive myelopathy with a cyst is surgically treatable, follow-up MR imaging is preferable in cases with myelomalacia. (author)

  17. Alleviating Autonomic Dysreflexia after Spinal Cord Injury

    Science.gov (United States)

    2017-12-01

    tracts originating from cortex, we may eventually be able to use cell transplantation as a bridge to promote targeted, functional axon regeneration ...13. SUPPLEMENTARY NOTES 14. ABSTRACT 15. SUBJECT TERMS autonomic dysreflexia, spinal cord injury, transplantation, axon regeneration 16. SECURITY...different root causes – i.e. using neural precursor cells to restore more normal innervation of sympathetic preganglionic neurons and

  18. Detailed analysis of the clinical effects of cell therapy for thoracolumbar spinal cord injury: an original study

    Directory of Open Access Journals (Sweden)

    Sharma A

    2013-07-01

    Full Text Available Alok Sharma,1 Nandini Gokulchandran,1 Hemangi Sane,2 Prerna Badhe,1 Pooja Kulkarni,2 Mamta Lohia,3 Anjana Nagrajan,3 Nancy Thomas3 1Department of Medical Services and Clinical Research, 2Department of Research and Development, 3Department of Neurorehabilitation, NeuroGen Brain and Spine Institute, Surana Sethia Hospital and Research Centre, Chembur, Mumbai, India Background: Cell therapy is amongst the most promising treatment strategies in spinal cord injury (SCI because it focuses on repair. There are many published animal studies and a few human trials showing remarkable results with various cell types. The level of SCI determines whether paraplegia or quadriplegia is present, and greatly influences recovery. The purpose of this study was to determine the significance of the clinical effects and long-term safety of intrathecal administration of autologous bone marrow-derived mononuclear cells, along with changes in functional independence and quality of life in patients with thoracolumbar SCI. Methods: We undertook a retrospective analysis of a clinical study in which a nonrandomized sample of 110 patients with thoracolumbar SCI underwent autologous bone marrow-derived mononuclear cell transplantation intrathecally and subsequent neurorehabilitation, with a mean follow-up of 2 years ± 1 month. Changes on any parameters were recorded at follow-up. The data were analyzed using the Wilcoxon's signed-rank test and McNemar's test. Functional Independence Measure and American Spinal Injury Association (ASIA scores were recorded, and a detailed neurological assessment was performed. Results: Overall improvement was seen in 91% of patients, including reduction in spasticity, partial sensory recovery, and improvement in trunk control, postural hypotension, bladder management, mobility, activities of daily living, and functional independence. A significant association of these symptomatic improvements with the cell therapy intervention was established

  19. Mediating effects of social support and self-concept on depressive symptoms in adults with spinal cord injury.

    Science.gov (United States)

    Huang, C-Y; Chen, W-K; Lu, C-Y; Tsai, C-C; Lai, H-L; Lin, H-Y; Guo, S-E; Wu, L-M; Chen, C-I

    2015-05-01

    Cross-sectional, correlational design. To examine the effects of individual demographics, activities of daily living, social support, and self-concept on depressive symptoms in people with spinal cord injury (SCI). A convenience sample of 135 adults with SCI was recruited from medical and rehabilitation centres in Taiwan. Face-to-face, structured interviews were employed to collect information. Study questionnaires included a demographic sheet, the Barthel scale, the modified Social Support Inventory, the Huang self-concept scale and the Beck Depression Inventory. Data were analysed by structural equation modelling (SEM). The average age of the participants was 43.3 years (±11.98), the mean duration of injury was 114 months (±93.78), and most were males. Emotional support (r=-0.173, Pself-concept as significant predictors of depressive symptoms, with self-concept acting as a mediator in this relationship. Participants' characteristics and social support both contributed substantial indirect effects on depressive symptoms via self-concept. Self-concept also mediated the relationship between education, income, physical functioning and participants' depressive symptoms. For this sample, the more negative that individuals perceived themselves, the more likely they were to report worsening depressive symptoms. The more social support that individuals have, the more likely they were to report less depressive symptoms. Further longitudinal research will help clarify the direction of these relationships.

  20. CT-myelography of cervical cord injury

    International Nuclear Information System (INIS)

    Koyanagi, Izumi; Isu, Toyohiko; Iwasaki, Yoshinobu

    1986-01-01

    We reported seven cases of acute cervical cord injuries who were examined by CT-Myelography (CTM) within 7 days after trauma. The presence or absence of spinal cord enlargement, the initial neurological status and the neurological prognosis of these patients were studied. The neurological status of each patient was graded by the method of Frankel who defined five grades from A to E according to the severity of neurological deficits. Seven patients were all males. The youngest was 18 and the oldest was 73 years old, with a mean age of 40.7 years. Follows up periods ranged from 7 to 23 months. Result: CTM revealed the enlargement of spinal cord in two cases, who had severe neurological deficits and were graded to A. No neurological improvements were obtained in these cases. Five cases without cord enlargement were graded to A in one patient, B in one patient and C in three patients. Four of these five patients improved neurologically. One grade C patient remained grade C. Complete block of subarachnoid space was observed in two out of seven cases. Cord enlargement was present in one of them. Another case of complete block improved from C to D. Conclusion: We consider the presence of cord enlargement which can be demonstrated by CTM well correlates the severity of the cord damage and presume poor neurological prognosis. Internal decompression, such as posterior longitudinal myelotomy may be recommended to the case of cord enlargement. When the cord enlargement is absent, improvement of neurological grade is expected although the initial neurological status shows severe deficits. (author)

  1. Nogo-A expression dynamically varies after spinal cord injury

    Directory of Open Access Journals (Sweden)

    Jian-wei Wang

    2015-01-01

    Full Text Available The mechanism involved in neural regeneration after spinal cord injury is unclear. The myelin-derived protein Nogo-A, which is specific to the central nervous system, has been identified to negatively affect the cytoskeleton and growth program of axotomized neurons. Studies have shown that Nogo-A exerts immediate and chronic inhibitory effects on neurite outgrowth. In vivo, inhibitors of Nogo-A have been shown to lead to a marked enhancement of regenerative axon extension. We established a spinal cord injury model in rats using a free-falling weight drop device to subsequently investigate Nogo-A expression. Nogo-A mRNA and protein expression and immunoreactivity were detected in spinal cord tissue using real-time quantitative PCR, immunohistochemistry and western blot analysis. At 24 hours after spinal cord injury, Nogo-A protein and mRNA expression was low in the injured group compared with control and sham-operated groups. The levels then continued to drop further and were at their lowest at 3 days, rapidly rose to a peak after 7 days, and then gradually declined again after 14 days. These changes were observed at both the mRNA and protein level. The transient decrease observed early after injury followed by high levels for a few days indicates Nogo-A expression is time dependent. This may contribute to the lack of regeneration in the central nervous system after spinal cord injury. The dynamic variation of Nogo-A should be taken into account in the treatment of spinal cord injury.

  2. Stem cell transplantation for spinal cord injury: a meta-analysis of treatment effectiveness and safety

    Directory of Open Access Journals (Sweden)

    Xiao Fan

    2017-01-01

    RESULTS: Ten studies comprising 377 patients were included in the analysis and the overall risk of bias was relatively low level. Four studies did not detail how random sequences were generated, two studies did not clearly state the blinding outcome assessment, two studies lacked blinding outcome assessment, one study lacked follow-up information, and four studies carried out selective reporting. Compared with rehabilitation therapy, stem cell transplantation significantly increased the lower limb light touch score (odds ratio (OR = 3.43, 95% confidence interval (CI: 0.01 – 6.86, P = 0.05, lower limb pinprick score (OR = 3.93, 95%CI: 0.74 – 7.12, P = 0.02, ASI grading rate (relative risk (RR = 2.95, 95%CI: 1.64 – 5.29, P = 0.0003, and notably reduced residual urine volume (OR = –8.10, 95%CI: –15.09 to –1.10, P = 0.02. However, stem cell transplantation did not significantly improve motor score (OR = 1.89, 95%CI: –0.25 to 4.03, P = 0.08 or activities of daily living score (OR = 1.12, 95%CI: –1.17 to 4.04, P = 0.45. Furthermore, stem cell transplantation caused a high rate of mild adverse effects (RR = 14.49, 95%CI: 5.34 – 34.08, P < 0.00001; however, these were alleviated in a short time. CONCLUSION: Stem cell transplantation was determined to be an efficient and safe treatment for SCI and simultaneously improved sensory and bladder functions. Although associated minor and temporary adverse effects were observed with transplanted stem cells, spinal cord repair and axon remyelination were apparent. More randomized controlled trials with larger sample sizes and longer follow-up times are needed to further validate the effectiveness of stem cell transplantation in the treatment of SCI.

  3. 9 Expression in Rats with Acute Spinal Cord Injury by Cantharidin

    African Journals Online (AJOL)

    Purpose: To demonstrate the anti-apoptotic effects of cantharidin in mice with acute spinal cord injury. (ASCI). Methods: In total, 30 ... were obtained from the Shanghai Laboratory .... prevent the development of secondary spinal injury in mice ...

  4. The effects of gait training using powered lower limb exoskeleton robot on individuals with complete spinal cord injury.

    Science.gov (United States)

    Wu, Cheng-Hua; Mao, Hui-Fen; Hu, Jwu-Sheng; Wang, Ting-Yun; Tsai, Yi-Jeng; Hsu, Wei-Li

    2018-03-05

    Powered exoskeleton can improve the mobility for people with movement deficits by providing mechanical support and facilitate the gait training. This pilot study evaluated the effect of gait training using a newly developed powered lower limb exoskeleton robot for individuals with complete spinal cord injury (SCI). Two participants with a complete SCI were recruited for this clinical study. The powered exoskeleton gait training was 8 weeks, 1 h per session, and 2 sessions per week. The evaluation was performed before and after the training for (1) the time taken by the user to don and doff the powered exoskeleton independently, (2) the level of exertion perceived by participants while using the powered exoskeleton, and (3) the mobility performance included the timed up-and-go test, 10-m walk test, and 6-min walk test with the powered exoskeleton. The safety of the powered exoskeleton was evaluated on the basis of injury reports and the incidence of falls or imbalance while using the device. The results indicated that the participants were donning and doffing the powered lower limb exoskeleton robot independently with a lower level of exertion and walked faster and farther without any injury or fall incidence when using the powered exoskeleton than when using a knee-ankle-foot orthosis. Bone mineral densities was also increased after the gait training. No adverse effects, such as skin abrasions, or discomfort were reported while using the powered exoskeleton. The findings demonstrated that individuals with complete SCI used the powered lower limb exoskeleton robot independently without any assistance after 8 weeks of powered exoskeleton gait training. Trial registration: National Taiwan University Hospital. 201210051RIB . Name of registry: Hui-Fen Mao. URL of registry: Not available. Date of registration: December 12th, 2012. Date of enrolment of the first participant to the trial: January 3rd, 2013.

  5. Quality of Life in Patients with Spinal Cord Injury

    Science.gov (United States)

    Gurcay, Eda; Bal, Ajda; Eksioglu, Emel; Cakci, Aytul

    2010-01-01

    The primary objective of this study was to assess the quality of life (QoL) in spinal cord injury (SCI) survivors. Secondary objectives were to determine the effects of various sociodemographic and clinical characteristics on QoL. This cross-sectional study included 54 patients with SCI. The Turkish version of the Short-Form-36 Health Survey was…

  6. Evaluation of early and late effects into the acute spinal cord injury of an injectable functionalized self-assembling scaffold.

    Directory of Open Access Journals (Sweden)

    Daniela Cigognini

    Full Text Available The complex physiopathological events occurring after spinal cord injury (SCI make this devastating trauma still incurable. Self-assembling peptides (SAPs are nanomaterials displaying some appealing properties for application in regenerative medicine because they mimic the structure of the extra-cellular matrix (ECM, are reabsorbable, allow biofunctionalizations and can be injected directly into the lesion. In this study we evaluated the putative neurorigenerative properties of RADA16-4G-BMHP1 SAP, proved to enhance in vitro neural stem cells survival and differentiation. This SAP (RADA16-I has been functionalized with a bone marrow homing motif (BMHP1 and optimized via the insertion of a 4-glycine-spacer that ameliorates scaffold stability and exposure of the biomotifs. We injected the scaffold immediately after contusion in the rat spinal cord, then we evaluated the early effects by semi-quantitative RT-PCR and the late effects by histological analysis. Locomotor recovery over 8 weeks was assessed using Basso, Beattie, Bresnahan (BBB test. Gene expression analysis showed that at 7 days after lesion the functionalized SAP induced a general upregulation of GAP-43, trophic factors and ECM remodelling proteins, whereas 3 days after SCI no remarkable changes were observed. Hystological analysis revealed that 8 weeks after SCI our scaffold increased cellular infiltration, basement membrane deposition and axon regeneration/sprouting within the cyst. Moreover the functionalized SAP showed to be compatible with the surrounding nervous tissue and to at least partially fill the cavities. Finally SAP injection resulted in a statistically significant improvement of both hindlimbs' motor performance and forelimbs-hindlimbs coordination. Altogether, these results indicate that RADA16-4G-BMHP1 induced favourable reparative processes, such as matrix remodelling, and provided a physical and trophic support to nervous tissue ingrowth. Thus this biomaterial

  7. Experimental spinal cord trauma: a review of mechanically induced spinal cord injury in rat models.

    Science.gov (United States)

    Abdullahi, Dauda; Annuar, Azlina Ahmad; Mohamad, Masro; Aziz, Izzuddin; Sanusi, Junedah

    2017-01-01

    It has been shown that animal spinal cord compression (using methods such as clips, balloons, spinal cord strapping, or calibrated forceps) mimics the persistent spinal canal occlusion that is common in human spinal cord injury (SCI). These methods can be used to investigate the effects of compression or to know the optimal timing of decompression (as duration of compression can affect the outcome of pathology) in acute SCI. Compression models involve prolonged cord compression and are distinct from contusion models, which apply only transient force to inflict an acute injury to the spinal cord. While the use of forceps to compress the spinal cord is a common choice due to it being inexpensive, it has not been critically assessed against the other methods to determine whether it is the best method to use. To date, there is no available review specifically focused on the current compression methods of inducing SCI in rats; thus, we performed a systematic and comprehensive publication search to identify studies on experimental spinalization in rat models, and this review discusses the advantages and limitations of each method.

  8. Effect of intravenous transplantation of bone marrow mesenchymal stem cells on neurotransmitters and synapsins in rats with spinal cord injury

    Science.gov (United States)

    Chen, Shaoqiang; Wu, Bilian; Lin, Jianhua

    2012-01-01

    Bone marrow mesenchymal stem cells were isolated, purified and cultured in vitro by Percoll density gradient centrifugation combined with the cell adherence method. Passages 3–5 bone marrow mesenchymal stem cells were transplanted into rats with traumatic spinal cord injury via the caudal vein. Basso-Beattie-Bresnahan scores indicate that neurological function of experimental rats was significantly improved over transplantation time (1–5 weeks). Expressions of choline acetyltransferase, glutamic acid decarboxylase and synapsins in the damaged spinal cord of rats was significantly increased after transplantation, determined by immunofluorescence staining and laser confocal scanning microscopy. Bone marrow mesenchymal stem cells that had migrated into the damaged area of rats in the experimental group began to express choline acetyltransferase, glutamic acid decarboxylase and synapsins, 3 weeks after transplantation. The Basso-Beattie- Bresnahan scores positively correlated with expression of choline acetyltransferase and synapsins. Experimental findings indicate that intravenously transplanted bone marrow mesenchymal stem cells traverse into the damaged spinal cord of rats, promote expression of choline acetyltransferase, glutamic acid decarboxylase and synapsins, and improve nerve function in rats with spinal cord injury. PMID:25657678

  9. Sublethal concentration of H2O2 enhances the protective effect of mesenchymal stem cells in rat model of spinal cord injury.

    Science.gov (United States)

    Rahimi, Asrin; Amiri, Iraj; Roushandeh, Amaneh Mohammadi; Choshali, Zoleikha Golipour; Alizadeh, Zohreh; Artimani, Tayebeh; Afshar, Saeid; Asl, Sara Soleimani

    2018-03-01

    To investigate the effect of H 2 O 2 on the migration and antioxidant defense of mesenchymal stem cells (MSCs) and the neurotrophic effects of H 2 O 2 -treated MSCs on spinal cord injury (SCI). Sublethal concentrations of H 2 O 2 decreased cell migration and expression of CXCR4 and CCR2 as well as Nrf2 expression in MSCs. In the second phase, transplantation of treated and untreated MSCs to SCI caused minor changes in locomotor dysfunction. There was a significantly difference between cell-treated and spinal cord injury groups in expression of BDNF (brain-derived neurotrophic factor). Transplantation of H 2 O 2 -treated cells caused an increase in BDNF expression compared to non-treated cells. Transplantation of H 2 O 2 -treated stem cells may have protective effects against SCI through by increasing neurotrophic factors.

  10. Beneficial Effects of Melatonin Combined with Exercise on Endogenous Neural Stem/Progenitor Cells Proliferation after Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Youngjeon Lee

    2014-01-01

    Full Text Available Endogenous neural stem/progenitor cells (eNSPCs proliferate and differentiate into neurons and glial cells after spinal cord injury (SCI. We have previously shown that melatonin (MT plus exercise (Ex had a synergistic effect on functional recovery after SCI. Thus, we hypothesized that combined therapy including melatonin and exercise might exert a beneficial effect on eNSPCs after SCI. Melatonin was administered twice a day and exercise was performed on a treadmill for 15 min, six days per week for 3 weeks after SCI. Immunohistochemistry and RT-PCR analysis were used to determine cell population for late response, in conjunction with histological examination and motor function test. There was marked improvement in hindlimb function in SCI+MT+Ex group at day 14 and 21 after injury, as documented by the reduced size of the spinal lesion and a higher density of dendritic spines and axons; such functional improvements were associated with increased numbers of BrdU-positive cells. Furthermore, MAP2 was increased in the injured thoracic segment, while GFAP was increased in the cervical segment, along with elevated numbers of BrdU-positive nestin-expressing eNSPCs in the SCI+MT+Ex group. The dendritic spine density was augmented markedly in SCI+MT and SCI+MT+Ex groups.These results suggest a synergistic effect of SCI+MT+Ex might create a microenvironment to facilitate proliferation of eNSPCs to effectively replace injured cells and to improve regeneration in SCI.

  11. Effects of Enhanced Oxygen Delivery by Perfluorocarbons in Spinal Cord Injury

    Science.gov (United States)

    2013-10-01

    indicator of spinal cord ischemia. Acta Med Okayama 1997; 51:71–77. 10. Daugherty WP, Levasseur JE, Sun D, Spiess BD, Bullock MR: Perfluorocarbon... Spiess B. Perflurocarbon emulsions as a promising technology: a review of tissue and vascular gas dynamics. J Appl Physiol 2009; 106: 1444–1452. 12...Neurosurg Spine. 2008; 2: 213-20. 13. Zhou Z, Sun D, Levasseur JE, Merenda A, Hamm RJ, Zhu J, Spiess BD, Bullock MR. Perfluorocarbon emulsions improve

  12. Effects of umbilical cord blood stem cells on healing factors for diabetic foot injuries.

    Science.gov (United States)

    Çil, N; Oğuz, E O; Mete, E; Çetinkaya, A; Mete, G A

    2017-01-01

    The use of stem or progenitor cells from bone marrow, or peripheral or umbilical cord blood is becoming more common for treatment of diabetic foot problems. These cells promote neovascularization by angiogenic factors and they promote epithelium formation by stimulating cell replication and migration under certain pathological conditions. We investigated the role of CD34 + stem cells from human umbilical cord blood in wound healing using a rat model. Rats were randomly divided into a control group and two groups with diabetes induced by a single dose of 55 mg/kg intraperitoneal streptozocin. Scarred areas 5 mm in diameter were created on the feet of all rats. The diabetic rats constituted the diabetes control group and a diabetes + stem cell group with local injection into the wound site of 0.5 × 106 CD34 + stem cells from human umbilical cord blood. The newly formed skin in the foot wounds following CD34 + stem cell treatment showed significantly improvement by immunohistochemistry and TUNEL staining, and were closer to the wound healing of the control group than the untreated diabetic animals. The increase in FGF expression that accompanied the local injection of CD34 + stem cells indicates that FGF stimulation helped prevent apoptosis. Our findings suggest a promising new treatment approach to diabetic wound healing.

  13. Gabapentinoids are effective in decreasing neuropathic pain and other secondary outcomes after spinal cord injury: a meta-analysis.

    Science.gov (United States)

    Mehta, Swati; McIntyre, Amanda; Dijkers, Marcel; Loh, Eldon; Teasell, Robert W

    2014-11-01

    To examine the effectiveness of gabapentin and pregabalin in diminishing neuropathic pain and other secondary conditions in individuals with spinal cord injury (SCI). A systematic search was conducted using multiple databases for relevant articles published from 1980 to June 2013. Controlled and uncontrolled trials involving gabapentin and pregabalin for treatment of neuropathic pain, with ≥3 subjects and ≥50% of study population with SCI, were included. Two independent reviewers selected studies based on inclusion criteria and then extracted data. Pooled analysis using Cohen's d to calculate standardized mean difference (SMD), SE, and 95% confidence interval (CI) for primary (pain) and secondary outcomes (anxiety, depression, sleep interference) was conducted. Eight studies met inclusion criteria. There was a significant reduction in the intensity of neuropathic pain at pain with gabapentin (SMD=1.20±.16; 95% CI, .88-1.52; Ppain and other secondary conditions after SCI. Effectiveness comparative to other analgesics has not been studied. Patients need to be monitored closely for side effects. Copyright © 2014 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  14. Cooling athletes with a spinal cord injury.

    Science.gov (United States)

    Griggs, Katy E; Price, Michael J; Goosey-Tolfrey, Victoria L

    2015-01-01

    Cooling strategies that help prevent a reduction in exercise capacity whilst exercising in the heat have received considerable research interest over the past 3 decades, especially in the lead up to a relatively hot Olympic and Paralympic Games. Progressing into the next Olympic/Paralympic cycle, the host, Rio de Janeiro, could again present an environmental challenge for competing athletes. Despite the interest and vast array of research into cooling strategies for the able-bodied athlete, less is known regarding the application of these cooling strategies in the thermoregulatory impaired spinal cord injured (SCI) athletic population. Individuals with a spinal cord injury (SCI) have a reduced afferent input to the thermoregulatory centre and a loss of both sweating capacity and vasomotor control below the level of the spinal cord lesion. The magnitude of this thermoregulatory impairment is proportional to the level of the lesion. For instance, individuals with high-level lesions (tetraplegia) are at a greater risk of heat illness than individuals with lower-level lesions (paraplegia) at a given exercise intensity. Therefore, cooling strategies may be highly beneficial in this population group, even in moderate ambient conditions (~21 °C). This review was undertaken to examine the scientific literature that addresses the application of cooling strategies in individuals with an SCI. Each method is discussed in regards to the practical issues associated with the method and the potential underlying mechanism. For instance, site-specific cooling would be more suitable for an athlete with an SCI than whole body water immersion, due to the practical difficulties of administering this method in this population group. From the studies reviewed, wearing an ice vest during intermittent sprint exercise has been shown to decrease thermal strain and improve performance. These garments have also been shown to be effective during exercise in the able-bodied. Drawing on

  15. Biocompatible hydrogels in spinal cord injury repair

    Czech Academy of Sciences Publication Activity Database

    Hejčl, Aleš; Lesný, Petr; Přádný, Martin; Michálek, Jiří; Jendelová, Pavla; Štulík, J.; Syková, Eva

    2008-01-01

    Roč. 57, Suppl.3 (2008), S121-S132 ISSN 0862-8408 R&D Projects: GA MŠk(CZ) LC554; GA ČR GA309/06/1246 Grant - others:GA ČR(CZ) 1A8697 Institutional research plan: CEZ:AV0Z50390703; CEZ:AV0Z40500505 Keywords : Spinal cord injury * Hydrogel * Tissue engineering Subject RIV: FH - Neurology Impact factor: 1.653, year: 2008

  16. Prolonged electrical stimulation-induced gluteal and hamstring muscle activation and sitting pressure in spinal cord injury: Effect of duty cycle

    OpenAIRE

    Christof A. J. Smit, MD; Karin J. A. Legemate, MSc; Anja de Koning, MSc; Sonja de Groot, PhD; Janneke M. Stolwijk-Swuste, MD, PhD; Thomas W. J. Janssen, PhD

    2013-01-01

    Pressure ulcers (PUs) are highly prevalent in people with spinal cord injury (SCI). Electrical stimulation (ES) activates muscles and might reduce risk factors. Our objectives were to study and compare the effects of two duty cycles during 3 h of ES-induced gluteal and hamstring activation on interface pressure distribution in sitting individuals with SCI and study the usability of a newly developed electrode garment (ES shorts). Ten individuals with SCI participated in this study, in which t...

  17. Effects of Transplanted Heparin-Poloxamer Hydrogel Combining Dental Pulp Stem Cells and bFGF on Spinal Cord Injury Repair

    OpenAIRE

    Luo, Lihua; Albashari, Abdullkhaleg Ali; Wang, Xiaoyan; Jin, Ling; Zhang, Yanni; Zheng, Lina; Xia, Jianjian; Xu, Helin; Zhao, Yingzheng; Xiao, Jian; He, Yan; Ye, Qingsong

    2018-01-01

    Spinal cord injury (SCI) is one of serious traumatic diseases of the central nervous system and has no effective treatment because of its complicated pathophysiology. Tissue engineering strategy which contains scaffolds, cells, and growth factors can provide a promising treatment for SCI. Hydrogel that has 3D network structure and biomimetic microenvironment can support cellular growth and embed biological macromolecules for sustaining release. Dental pulp stem cells (DPSCs), derived from cra...

  18. Neurogenic bladder in spinal cord injury patients

    Directory of Open Access Journals (Sweden)

    Al Taweel W

    2015-06-01

    Full Text Available Waleed Al Taweel, Raouf SeyamDepartment of Urology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi ArabiaAbstract: Neurogenic bladder dysfunction due to spinal cord injury poses a significant threat to the well-being of patients. Incontinence, renal impairment, urinary tract infection, stones, and poor quality of life are some complications of this condition. The majority of patients will require management to ensure low pressure reservoir function of the bladder, complete emptying, and dryness. Management typically begins with anticholinergic medications and clean intermittent catheterization. Patients who fail this treatment because of inefficacy or intolerability are candidates for a spectrum of more invasive procedures. Endoscopic managements to relieve the bladder outlet resistance include sphincterotomy, botulinum toxin injection, and stent insertion. In contrast, patients with incompetent sphincters are candidates for transobturator tape insertion, sling surgery, or artificial sphincter implantation. Coordinated bladder emptying is possible with neuromodulation in selected patients. Bladder augmentation, usually with an intestinal segment, and urinary diversion are the last resort. Tissue engineering is promising in experimental settings; however, its role in clinical bladder management is still evolving. In this review, we summarize the current literature pertaining to the pathology and management of neurogenic bladder dysfunction in patients with spinal cord injury.Keywords: neurogenic bladder, spinal cord injury, urodynamics, intestine, intermittent catheterization

  19. In vivo PET imaging of the neuroinflammatory response in rat spinal cord injury using the TSPO tracer [18F]GE-180 and effect of docosahexaenoic acid

    International Nuclear Information System (INIS)

    Tremoleda, J.L.; Thau-Zuchman, O.; Davies, M.; Vadivelu, K.C.; Yip, P.K.; Michael-Titus, A.T.; Foster, J.; Sosabowski, J.; Khan, I.; Trigg, W.

    2016-01-01

    Traumatic spinal cord injury (SCI) is a devastating condition which affects millions of people worldwide causing major disability and substantial socioeconomic burden. There are currently no effective treatments. Modulating the neuroinflammatory (NI) response after SCI has evolved as a major therapeutic strategy. PET can be used to detect the upregulation of the 18-kDa translocator protein (TSPO), a hallmark of activated microglia in the CNS. We investigated whether PET imaging using the novel TSPO tracer [ 18 F]GE-180 can be used as a clinically relevant biomarker for NI in a contusion SCI rat model, and we present data on the modulation of NI by the lipid docosahexaenoic acid (DHA). A total of 22 adult male Wistar rats were subjected to controlled spinal cord contusion at the T10 spinal cord level. Six non-injured and ten T10 laminectomy only (LAM) animals were used as controls. A subset of six SCI animals were treated with a single intravenous dose of 250 nmol/kg DHA (SCI-DHA group) 30 min after injury; a saline-injected group of six animals was used as an injection control. PET and CT imaging was carried out 7 days after injury using the [ 18 F]GE-180 radiotracer. After imaging, the animals were killed and the spinal cord dissected out for biodistribution and autoradiography studies. In vivo data were correlated with ex vivo immunohistochemistry for TSPO. In vivo dynamic PET imaging revealed an increase in tracer uptake in the spinal cord of the SCI animals compared with the non-injured and LAM animals from 35 min after injection (P < 0.0001; SCI vs. LAM vs. non-injured). Biodistribution and autoradiography studies confirmed the high affinity and specific [ 18 F]GE-180 binding in the injured spinal cord compared with the binding in the control groups. Furthermore, they also showed decreased tracer uptake in the T10 SCI area in relation to the non-injured remainder of the spinal cord in the SCI-DHA group compared with the SCI-saline group (P < 0.05), supporting

  20. Propofol promotes spinal cord injury repair by bone marrow mesenchymal stem cell transplantation

    Science.gov (United States)

    Zhou, Ya-jing; Liu, Jian-min; Wei, Shu-ming; Zhang, Yun-hao; Qu, Zhen-hua; Chen, Shu-bo

    2015-01-01

    Propofol is a neuroprotective anesthetic. Whether propofol can promote spinal cord injury repair by bone marrow mesenchymal stem cells remains poorly understood. We used rats to investigate spinal cord injury repair using bone marrow mesenchymal stem cell transplantation combined with propofol administration via the tail vein. Rat spinal cord injury was clearly alleviated; a large number of newborn non-myelinated and myelinated nerve fibers appeared in the spinal cord, the numbers of CM-Dil-labeled bone marrow mesenchymal stem cells and fluorogold-labeled nerve fibers were increased and hindlimb motor function of spinal cord-injured rats was markedly improved. These improvements were more prominent in rats subjected to bone marrow mesenchymal cell transplantation combined with propofol administration than in rats receiving monotherapy. These results indicate that propofol can enhance the therapeutic effects of bone marrow mesenchymal stem cell transplantation on spinal cord injury in rats. PMID:26487860

  1. Mixed-reality exercise effects on participation of individuals with spinal cord injuries and developmental disabilities: a pilot study.

    Science.gov (United States)

    Heyn, Patricia C; Baumgardner, Chad A; McLachlan, Leslie; Bodine, Cathy

    2014-01-01

    The purpose of this pilot study was to investigate the effectiveness of a mixed-reality (MR) exercise environment on engagement and enjoyment levels of individuals with spinal cord injury (SCI) and intellectual and developmental disabilities (IDD). Six people participated in this cross-sectional, observational pilot study involving one MR exercise trial. The augmented reality environment was based on a first-person perspective video of a scenic biking/walking trail in Colorado. Males and females (mean age, 43.3 ± 13.7 years) were recruited from a research database for their participation in previous clinical studies. Of the 6 participants, 2 had SCI, 2 had IDD, and 2 were without disability. The primary outcome measurement of this pilot study was the self-reported engagement and enjoyment level of each participant after the exercise trial. All participants reported increased levels of engagement, enjoyment, and immersion involving the MR exercise environment as well as positive feedback recommending this type of exercise approach to peers with similar disabilities. All the participants reported higher than normal levels of enjoyment and 66.7% reported higher than normal levels of being on a real trail. Participants' feedback suggested that the MR environment could be entertaining, motivating, and engaging for users with disabilities, resulting in a foundation for further development of this technology for use in individuals with cognitive and physical disabilities.

  2. [Effect of electroacupuncture on the expression of oligodendrocyte precursor cells in rats with compressed spinal cord injury].

    Science.gov (United States)

    Huang, Si-qin; Qi, Wei; Zeng, Zhi-hua; Wang, Ke-jian; Wu, Xiu-yu

    2014-11-01

    To investigate the effect of electroacupuncture on the expression of oligodendrocyte precursor cells in rats with compressed spinal cord injury (CSCI) and to explore the mechanism of remyelinization. Thirty-six SD rats were randomly divided into a control group and three treatment groups with 3 d, 7 d and 14 d of treatment respectively. Acupuncture was given to rats in the treatment groups through jiaji point, double zusanli (ST36), and double taixi (KI3). Electroacupuncture (continuous wave, 2 Hz/1. 5 V, 30 min) was applied for the double zusanli (ST36) and double taixi (KI3). Ethological alterations of the rats were observed with quantitative assessment of neurologic function. The ultrastructure changes of nerve fibers in white matter were determined under electronic microscope. Expressions of NG2 protein, an OPC marker, was observed by Western blot. No significant changes in neurologic function and G-ratio were observed after three days and seven days of electroacupuncture treatment (P>0. 05). However, 14 d of electroacupuncture treatment made a significant change compared to the 7 d treatment group and the control group (PElectroacupuncture can improve inflammation and edema in the injured nerve fibers and up regulate NG2 expression and remyelination of the injured nerve fibers in rats with CSCI.

  3. A clinically meaningful training effect in walking speed using functional electrical stimulation for motor-incomplete spinal cord injury.

    Science.gov (United States)

    Street, Tamsyn; Singleton, Christine

    2018-05-01

    The study aimed to investigate the presence of a training effect for rehabilitation of walking function in motor-incomplete spinal cord injury (SCI) through daily use of functional electrical stimulation (FES). A specialist FES outpatient centre. Thirty-five participants (mean age 53, SD 15, range 18-80; mean years since diagnosis 9, range 5 months - 39 years) with drop foot and motor-incomplete SCI (T12 or higher, ASIA Impairment Scale C and D) able to ambulate 10 metres with the use of a walking stick or frame. FES of the peroneal nerve, glutei and hamstrings as clinically indicated over six months in the community. The data was analysed for a training effect (difference between unassisted ten metre walking speed at baseline and after six months) and orthotic effects (difference between walking speed with and without FES) initially on day one and after six months. The data was further analysed for a minimum clinically important difference (MCID) (>0.06 m/s). A clinically meaningful, significant change was observed for initial orthotic effect (0.13m/s, CI: 0.04-0.17, P = 0.013), total orthotic effect (0.11m/s, CI: 0.04-0.18, P = 0.017) and training effect (0.09m/s, CI: 0.02-0.16, P = 0.025). The results suggest that daily independent use of FES may produce clinically meaningful changes in walking speed which are significant for motor-incomplete SCI. Further research exploring the mechanism for the presence of a training effect may be beneficial in targeting therapies for future rehabilitation.

  4. Spinal-cord injuries in Australian footballers, 1960-1985.

    Science.gov (United States)

    Taylor, T K; Coolican, M R

    1987-08-03

    A review of 107 footballers who suffered a spinal-cord injury between 1960 and 1985 has been undertaken. Since 1977, the number of such injuries in Rugby Union, Rugby League and Australian Rules has increased, from an average of about two injuries a year before 1977 to over eight injuries a year since then. Rugby Union is clearly the most dangerous game, particularly for schoolboys; all of the injuries in schoolboy games for this code have occurred since 1977. This study has shown that collision at scrum engagement, and not at scrum collapse, is the way in which the majority of scrum injuries are sustained. These injuries are largely preventable, and suggestions for rule changes are made. Half the injured players recovered to Frankel grades D or E. The financial entitlements of those injured were grossly inadequate; this warrants action. A national register for spinal-cord injuries from football should be established to monitor the effects of desirable rule changes in Rugby Union and Rugby League.

  5. Spinal cord injury reveals multilineage differentiation of ependymal cells.

    Directory of Open Access Journals (Sweden)

    Konstantinos Meletis

    2008-07-01

    Full Text Available Spinal cord injury often results in permanent functional impairment. Neural stem cells present in the adult spinal cord can be expanded in vitro and improve recovery when transplanted to the injured spinal cord, demonstrating the presence of cells that can promote regeneration but that normally fail to do so efficiently. Using genetic fate mapping, we show that close to all in vitro neural stem cell potential in the adult spinal cord resides within the population of ependymal cells lining the central canal. These cells are recruited by spinal cord injury and produce not only scar-forming glial cells, but also, to a lesser degree, oligodendrocytes. Modulating the fate of ependymal progeny after spinal cord injury may offer an alternative to cell transplantation for cell replacement therapies in spinal cord injury.

  6. Central Neuropathic Pain in Spinal Cord Injury

    Science.gov (United States)

    Lee, Sujin; Zhao, Xing; Hatch, Maya; Chun, Sophia; Chang, Eric

    2015-01-01

    Spinal cord injury (SCI) is a devastating medical condition affecting 1.2 million people in the United States. Central neuropathic pain is one of the most common medical complications of SCI. Current treatment options include opioids, antiepileptic agents such as gabapentin, antispastic agents such as baclofen or tizanidine, and tricyclic acid. Other options include complementary, nonpharmacological treatment such as exercise or acupuncture, interventional treatments, and psychological approaches. Although these treatment options exist, central neuropathic pain in patients with SCI is still extremely difficult to treat because of its complexity. To develop and provide more effective treatment options to these patients, proper assessment of and classification tools for central neuropathic pain, as well as a better understanding of the pathophysiology, are needed. A combination of approaches, from standard general pain assessments to medically specific questions unique to SCI pathophysiology, is essential for this population. A multidisciplinary approach to patient care, in addition with a better understanding of pathophysiology and diagnosis, will lead to improved management and treatment of patients with SCI displaying central neuropathic pain. Here we summarize the most recent classification tools, pathophysiology, and current treatment options for patients with SCI with central neuropathic pain. PMID:25750485

  7. Inpatient migration patterns in persons with spinal cord injury: A registry study with hospital discharge data

    Directory of Open Access Journals (Sweden)

    Elias Ronca

    2016-12-01

    Full Text Available This study investigated and compared patient migration patterns of persons with spinal cord injury, the general population and persons with morbid obesity, rheumatic conditions and bowel disease, for secondary health conditions, across administrative boundaries in Switzerland. The effects of patient characteristics and health conditions on visiting hospitals outside the residential canton were examined using complete, nationwide, inpatient health records for the years 2010 and 2011. Patients with spinal cord injury were more likely to obtain treatment outside their residential canton as compared to all other conditions. Facilitators of patient migration in persons with spinal cord injury and the general hospital population were private or accidental health insurances covering costs. Barriers of patient migration in persons with spinal cord injury were old age, severe multimorbidity, financial coverage by basic health insurance, and minority language region. Keywords: Spinal cord injury, Patient migration, Health services accessibility, Health care utilization, Inpatient hospital care

  8. rTMS of the prefrontal cortex has analgesic effects on neuropathic pain in subjects with spinal cord injury.

    Science.gov (United States)

    Nardone, R; Höller, Y; Langthaler, P B; Lochner, P; Golaszewski, S; Schwenker, K; Brigo, F; Trinka, E

    2017-01-01

    Repetitive transcranial magnetic stimulation study. The analgesic effects of repetitive transcranial magnetic stimulation (rTMS) in chronic pain have been the focus of several studies. In particular, rTMS of the premotor cortex/dorsolateral prefrontal cortex (PMC/DLPFC) changes pain perception in healthy subjects and has analgesic effects in acute postoperative pain, as well as in fibromyalgia patients. However, its effect on neuropathic pain in patients with traumatic spinal cord injury (SCI) has not been assessed. Merano (Italy) and Salzburg (Austria). In this study, we performed PMC/DLPFC rTMS in subjects with SCI and neuropathic pain. Twelve subjects with chronic cervical or thoracic SCI were randomized to receive 1250 pulses at 10 Hz rTMS (n=6) or sham rTMS (n=6) treatment for 10 sessions over 2 weeks. The visual analog scale, the sensory and affective pain rating indices of the McGill Pain Questionnaire (MPQ), the Hamilton Depression Rating Scale and the Hamilton Anxiety Rating Scale were used to assed pain and mood at baseline (T0), 1 day after the first week of treatment (T1), 1 day (T2), 1 week (T3) and 1 month (T4) after the last intervention. Subjects who received active rTMS had a statistically significant reduction in pain symptoms in comparison with their baseline pain, whereas sham rTMS participants had a non-significant change in daily pain from their baseline pain. The findings of this preliminary study in a small patient sample suggest that rTMS of the PMC/DLPFC may be effective in relieving neuropathic pain in SCI patients.

  9. Targeting Translational Successes through CANSORT-SCI: Using Pet Dogs To Identify Effective Treatments for Spinal Cord Injury.

    Science.gov (United States)

    Moore, Sarah A; Granger, Nicolas; Olby, Natasha J; Spitzbarth, Ingo; Jeffery, Nick D; Tipold, Andrea; Nout-Lomas, Yvette S; da Costa, Ronaldo C; Stein, Veronika M; Noble-Haeusslein, Linda J; Blight, Andrew R; Grossman, Robert G; Basso, D Michele; Levine, Jonathan M

    2017-06-15

    Translation of therapeutic interventions for spinal cord injury (SCI) from laboratory to clinic has been historically challenging, highlighting the need for robust models of injury that more closely mirror the human condition. The high prevalence of acute, naturally occurring SCI in pet dogs provides a unique opportunity to evaluate expeditiously promising interventions in a population of animals that receive diagnoses and treatment clinically in a manner similar to persons with SCI, while adhering to National Institutes of Health guidelines for scientific rigor and transparent reporting. In addition, pet dogs with chronic paralysis are often maintained long-term by their owners, offering a similarly unique population for study of chronic SCI. Despite this, only a small number of studies have used the clinical dog model of SCI. The Canine Spinal Cord Injury Consortium (CANSORT-SCI) was recently established by a group of veterinarians and basic science researchers to promote the value of the canine clinical model of SCI. The CANSORT-SCI group held an inaugural meeting November 20 and 21, 2015 to evaluate opportunities and challenges to the use of pet dogs in SCI research. Key challenges identified included lack of familiarity with the model among nonveterinary scientists and questions about how and where in the translational process the canine clinical model would be most valuable. In light of these, we review the natural history, outcome, and available assessment tools associated with canine clinical SCI with emphasis on their relevance to human SCI and the translational process.

  10. Early elective colostomy following spinal cord injury.

    Science.gov (United States)

    Boucher, Michelle

    Elective colostomy is an accepted method of bowel management for patients who have had a spinal cord injury (SCI). Approximately 2.4% of patients with SCI have a colostomy, and traditionally it is performed as a last resort several years after injury, and only if bowel complications persist when all other methods have failed. This is despite evidence that patients find a colostomy easier to manage and frequently report wishing it had been performed earlier. It was noticed in the author's spinal unit that increasing numbers of patients were requesting colostomy formation during inpatient rehabilitation following SCI. No supporting literature was found for this; it appears to be an emerging and untested practice. This article explores colostomy formation as a method of bowel management in patients with SCI, considers the optimal time for colostomy formation after injury and examines issues for health professionals.

  11. Evaluation of the cost-effectiveness of electrical stimulation therapy for pressure ulcers in spinal cord injury.

    Science.gov (United States)

    Mittmann, Nicole; Chan, Brian C; Craven, B Cathy; Isogai, Pierre K; Houghton, Pamela

    2011-06-01

    To evaluate the incremental cost-effectiveness of electrical stimulation (ES) plus standard wound care (SWC) as compared with SWC only in a spinal cord injury (SCI) population with grade III/IV pressure ulcers (PUs) from the public payer perspective. A decision analytic model was constructed for a 1-year time horizon to determine the incremental cost-effectiveness of ES plus SWC to SWC in a cohort of participants with SCI and grade III/IV PUs. Model inputs for clinical probabilities were based on published literature. Model inputs, namely clinical probabilities and direct health system and medical resources were based on a randomized controlled trial of ES plus SWC versus SWC. Costs (Can $) included outpatient (clinic, home care, health professional) and inpatient management (surgery, complications). One way and probabilistic sensitivity (1000 Monte Carlo iterations) analyses were conducted. The perspective of this analysis is from a Canadian public health system payer. Model target population was an SCI cohort with grade III/IV PUs. Not applicable. Incremental cost per PU healed. ES plus SWC were associated with better outcomes and lower costs. There was a 16.4% increase in the PUs healed and a cost savings of $224 at 1 year. ES plus SWC were thus considered a dominant economic comparator. Probabilistic sensitivity analysis resulted in economic dominance for ES plus SWC in 62%, with another 35% having incremental cost-effectiveness ratios of $50,000 or less per PU healed. The largest driver of the economic model was the percentage of PU healed with ES plus SWC. The addition of ES to SWC improved healing in grade III/IV PU and reduced costs in an SCI population. Copyright © 2011 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  12. Somatosensory inputs by application of KinesioTaping: Effects on spasticity, balance, and gait in chronic spinal cord injury

    Directory of Open Access Journals (Sweden)

    Federica eTamburella

    2014-05-01

    Full Text Available Introduction: Leg paralysis, spasticity, reduced inter limb coordination and impaired balance are considered the chief limitations to overground ambulation in subjects with incomplete spinal cord injury (SCI. In the last years KinesioTaping (KT application has been proposed for enhancing sensory inputs, decreasing spasticity via proprioception feedback and relieving abnormal muscle tension. No studies addressed KT technique on SCI subjects: our goal was to analyze effects of ankle joint KT application on spasticity, balance and gait. Material and Methods: A randomized cross-over case control design was used to compare KT and conventional non-elastic silk tape (ST application’s effects in 11 chronic SCI subjects, AIS level D, with soleus/gastrocnemius (S/G muscles’ spasticity , balance and gait impairments. Treatment: 48 hours of either KT or ST treatment was followed after 1 week interval by a reverse protocol. Patient treated with KT were subjected to 48 hours of ST treatment and viceversa. Single Y-stripe of Cure©tape (KT and ST were applied to S and G with 0% stretch. Before and after 48 hours of KT and ST application, clinical data of range of motion (ROM, spasticity, clonus, pain, balance and gait were collected. Stabilometric platform assessment of Centre of Pressure (COP movements, bi-dimensional gait analysis and electromyograpich (EMG activity of S, G, Tibialis Anterior and Extensor Hallicus Lungus muscles were also collected. Results: Only After KT treatment significant effects on spasticity, clonus and COP movements, kinematic gait parameters and EMG activities were recorded. Comparison between KT and ST improvements pointed out significant differences for ROM, spasticity, clonus, pain, COP parameters and most of all kinematic gait data. Discussion: KT short term application reduces spasticity and pain and improves balance and gait performances in chronic incomplete SCI subjects.

  13. Sleep disordered breathing following spinal cord injury

    DEFF Research Database (Denmark)

    Biering-Sørensen, Fin; Jennum, Poul; Laub, Michael

    2009-01-01

    Individuals with spinal cord injury (SCI) commonly complain about difficulty in sleeping. Although various sleep disordered breathing definitions and indices are used that make comparisons between studies difficult, it seems evident that the frequency of sleep disorders is higher in individuals...... with SCI, especially with regard to obstructive sleep apnea. In addition, there is a correlation between the incidence of sleep disturbances and the spinal cord level injured, age, body mass index, neck circumference, abdominal girth, and use of sedating medications. Regulation of respiration is dependent...... on wakefulness and sleep. Thus, it is important to be aware of basic mechanisms in the regulation and control of sleep and awake states. Supine position decreases the vital capacity in tetraplegic individuals, and diminished responsiveness to Pa(CO)(2) may further decrease ventilatory reserve. There also may...

  14. Beneficial effect of human induced pluripotent stem cell-derived neural precursors in spinal cord injury repair

    Czech Academy of Sciences Publication Activity Database

    Romanyuk, Nataliya; Amemori, Takashi; Turnovcová, Karolína; Procházka, Pavel; Onteniente, B.; Syková, Eva; Jendelová, Pavla

    2015-01-01

    Roč. 24, č. 9 (2015), s. 1781-1797 ISSN 0963-6897 R&D Projects: GA MŠk LH12024; GA ČR(CZ) GA13-00939S; GA ČR(CZ) GBP304/12/G069; GA MŠk(CZ) ED1.1.00/02.0109; GA MŠk(CZ) LO1309 Institutional support: RVO:68378041 Keywords : human induced pluripotent stem cells * neural precursors * spinal cord injury Subject RIV: FH - Neurology Impact factor: 3.427, year: 2015

  15. Effectiveness of minocycline and FK506 alone and in combination on enhanced behavioral and biochemical recovery from spinal cord injury in rats.

    Science.gov (United States)

    Ahmad, Mohammad; Zakaria, Abdulrahim; Almutairi, Khalid M

    2016-06-01

    Injury to the spinal cord results in immediate physical damage (primary injury) followed by a prolonged posttraumatic inflammatory disorder (secondary injury). The present study aimed to investigate the neuroprotective effects of minocycline and FK506 (Tacrolimus) individually and in combination on recovery from experimental spinal cord injury (SCI). Young adult male rats were subjected to experimental SCI by weight compression method. Minocycline (50mg/kg) and FK506 (1mg/kg) were administered orally in combination and individually to the SCI group daily for three weeks. During these three weeks, the recovery was measured using behavioral motor parameters (including BBB, Tarlov and other scorings) every other day for 29days after SCI. Thereafter, the animals were sacrificed and the segment of the spinal cord centered at the injury site was removed for the histopathological studies as well as for biochemical analysis of monoamines such as 5-hydroxytryptamine (5-HT) and 5-hydroxy-indolacetic acid (5-HIAA) and some oxidative stress indices, such as thiobarbituric acid-reactive substances (TBARS), total glutathione (GSH) and myeloperoxidase (MPO). All behavioral results indicated that both drugs induced significant recovery from SCI with respect to time. The biochemical and histopathological results supported the behavioral findings, revealing significant recovery in the regeneration of the injured spinal tissues, the monoamine levels, and the oxidative stress indices. Overall, the effects of the tested drugs for SCI recovery were as follows: FK506+minocycline>minocycline>FK506 in all studied parameters. Thus, minocycline and FK506 may prove to be a potential therapy cocktail to treat acute SCI. However, further studies are warranted. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Effects of Curcumin on Bone Loss and Biochemical Markers of Bone Turnover in Patients with Spinal Cord Injury.

    Science.gov (United States)

    Hatefi, Masoud; Ahmadi, Mohammad Reza Hafezi; Rahmani, Asghar; Dastjerdi, Masoud Moghadas; Asadollahi, Khairollah

    2018-06-01

    Osteoporosis is one of the most common problems of patients with spinal cord injuries (SCIs). The current study aimed to evaluate the antiosteoporotic effects of curcumin on densitometry parameters and biomarkers of bone turnovers among patients with SCI. The current controlled clinical trial was conducted among 100 patients with SCI referred to an outpatient clinic of rehabilitation in Ilam City, Iran, in 2013-2015. The intervention group received 110/mg/kg/day curcumin for 6 months and the control group received placebo. Bone mineral density (BMD) was measured in all patients. The level of procollagen type I N-terminal propeptide, serum carboxy-terminal telopeptide of type I collagen, osteocalcin, and bone-specific alkaline phosphates were compared before and after study. BMD indicators of lumbar, femoral neck, and total hip in the control group significantly decreased compared with the beginning of study. However, in the curcumin group, a significant increase was observed in BMD indicators of lumbar, femoral neck, and hip at the end of study compared with the beginning. There was also a significant difference between interventional and control groups for the mean BMD of femoral neck and hip at the end of study (0.718 ± 0.002 g/cm 2 vs. 0.712 ± 0.003 g/cm 2 and 0.742 ± 0.031 g/cm 2 vs. 0.692 ± 0.016 g/cm 2 , respectively). Curcumin, via modulation of densitometry indices and bone resorption markers, showed inhibitory effects on the process of osteoporosis. Treatment with curcumin was significantly associated with a decrease in the osteoporosis progression and bone turnover markers of patients with SCI after 6 months. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Neuroprotective effects of lycopene in spinal cord injury in rats via antioxidative and anti-apoptotic pathway.

    Science.gov (United States)

    Hu, Wei; Wang, Hongbo; Liu, Zhenfeng; Liu, Yanlu; Wang, Rong; Luo, Xiao; Huang, Yifei

    2017-03-06

    Oxidative damage induced-mitochondrial dysfunction and apoptosis has been widely studied in spinal cord injury (SCI). Lycopene, a polyunsaturated hydrocarbon, has the highest antioxidant capacity compared to the other carotenoids. However, the role of lycopene in SCI is unknown. In the present study, we evaluated the antioxidant effects of lycopene on mitochondrial dysfunction and apoptosis following T10 contusion SCI in rats. The rats were randomized into 5 groups: the sham group, the SCI group and the SCI pre-treated with lycopene (5, 10, or 20mg/kg) group. The SCI group showed increased malondialdehyde (MDA) content, decreased superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) ability, which indicated that SCI could induce oxidative damage. What's more, the SCI group showed decreased mRNA expression of cytochrome b and mitochondrial transcription factor A (Tfam), and decreased mitochondrial membrane potential (ΔYm), which indicated that SCI could induce mitochondrial dysfunction. Besides, the SCI group showed decreased protein expression of bcl-2 and mitochondrial cytochrome C, increased protein expression of cytosolic cytochrome C, cleaved caspase-9, cleaved caspase-3 and bax, and increased TUNEL-positive cell numbers, which indicated that SCI could induce cell apoptosis. Fortunately, the lycopene treatment significantly ameliorated oxidative damage, mitochondrial dysfunction and cell apoptosis via the reversion of those parameters described above in the dose of lycopene of 10 and 20mg/kg. In addition, lycopene significantly ameliorated the hind limb motor disturbances in the SCI+lyco10 group and the SCI+lyco20 group compared with the SCI group. These results suggested that lycopene administration could improve total antioxidant status and might have neuroprotective effects on SCI. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. International Standards for Neurological Classification of Spinal Cord Injury

    DEFF Research Database (Denmark)

    Kirshblum, S C; Biering-Sorensen, F; Betz, R

    2014-01-01

    The International Standards for the Neurological Classification of Spinal Cord Injury (ISNCSCI) is routinely used to determine the levels of injury and to classify the severity of the injury. Questions are often posed to the International Standards Committee of the American Spinal Injury Associat......The International Standards for the Neurological Classification of Spinal Cord Injury (ISNCSCI) is routinely used to determine the levels of injury and to classify the severity of the injury. Questions are often posed to the International Standards Committee of the American Spinal Injury...

  19. Necrosulfonamide Attenuates Spinal Cord Injury via Necroptosis Inhibition.

    Science.gov (United States)

    Wang, Yongxiang; Wang, Jingcheng; Wang, Hua; Feng, Xinmin; Tao, Yuping; Yang, Jiandong; Cai, Jun

    2018-03-31

    Spinal cord injury (SCI) is a serious trauma without efficient treatment currently. Necroptosis can be blocked post injury by special inhibitors. This study is to investigate the effects, mechanism, and potential benefit of necrosulfonamide (NSA) for SCI therapy. Pathologic condition was detected using hematoxylin-eosin staining on injured spinal cord and other major organs. Necroptosis-related factors-RIP1, RIP3, and MLKL-were detected using Western blot. Detections on mitochondrial functions such as adenosine triphosphate generation and activities of superoxide dismutase and caspase-3 were also performed. Finally, ethologic performance was detected using a 21-point open-field locomotion test. Reduced lesions and protected neurons were found in the injured spinal cord after treatment with NSA using hematoxylin-eosin staining for pathologic detection. No obvious toxicity on rat liver, kidney, heart, and spleen was detected. Rather than RIP1 and RIP3, MLKL was significantly inhibited by the NSA using Western blot detection. Adenosine triphosphate generation was obviously decreased post injury but slightly increased after the NSA treatment, especially 24 hours post injury. No significant changes were found on activities of superoxide dismutase and caspase-3 after the treatment of NSA. Ethologic performance was significantly improved using a 21-point, open-field locomotion test. Our research indicates NSA attenuates the spinal cord injury via necroptosis inhibition. It might be a potential and safe chemical benefit for SCI therapy. To our knowledge, this is the first study on the effects of NSA as treatment of traumatic SCI. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Management of Penetrating Spinal Cord Injuries in a Non Spinal ...

    African Journals Online (AJOL)

    Management of Penetrating Spinal Cord Injuries in a Non Spinal Centre: Experience at Enugu, Nigeria. ... The thoracic spine{9(41%)}was most often involved. ... Five (23%) patients with injury at cervical level died from respiratory failure.

  1. What Are the Treatments for Spinal Cord Injury (SCI)?

    Science.gov (United States)

    ... What are the treatments for spinal cord injury (SCI)? Unfortunately, there are at present no known ways ... function of the nerves that remain after an SCI. SCI treatment currently focuses on preventing further injury ...

  2. The relationship between pain and mood following spinal cord injury.

    Science.gov (United States)

    Kennedy, Paul; Hasson, Laurence

    2017-05-01

    To explore the relationship between pain and mood during spinal cord injury rehabilitation, and to discuss clinical implications to optimize rehabilitation outcomes. Repeated measures, retrospective cohort study. Tertiary care, spinal cord injury rehabilitation center. Patients (N = 509) who completed both Needs Assessment Checklist (NAC) 1 and NAC2 between February 2008 and February 2015. Not applicable. Pain ratings (0-10) and mood scores (0-24) were obtained from the Needs Assessment Checklist (NAC). NAC1 is completed within 4 weeks post-mobilization and NAC2 upon the patient moving to the pre-discharge ward. There were statistically significant improvements in both pain and mood from NAC1 to NAC2. There were significant correlations between pain and mood at both NAC1 and NAC2 (a decrease in pain was associated with an improvement in mood). Individuals who reported that pain interfered with their rehabilitation had higher pain scores and lower mood scores at both NAC1 and NAC2. Pain and mood evidently interact following spinal cord injury, and the nature of this relationship is complex. The current study provides some support for the bidirectional causality hypothesis, suggesting that pain and mood exert an effect upon each other. It is important to address pain and psychological issues early and together in the post-injury phase to optimize rehabilitation outcomes.

  3. Promising neuroprotective strategies for traumatic spinal cord injury with a focus on the differential effects among anatomical levels of injury [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Antigona Ulndreaj

    2017-10-01

    Full Text Available Traumatic spinal cord injury (SCI is a devastating condition of motor, sensory, and autonomic dysfunction. The significant cost associated with the management and lifetime care of patients with SCI also presents a major economic burden. For these reasons, there is a need to develop and translate strategies that can improve outcomes following SCI. Given the challenges in achieving regeneration of the injured spinal cord, neuroprotection has been at the forefront of clinical translation. Yet, despite many preclinical advances, there has been limited translation into the clinic apart from methylprednisolone (which remains controversial, hypertensive therapy to maintain spinal cord perfusion, and early decompressive surgery. While there are several factors related to the limited translational success, including the clinical and mechanistic heterogeneity of human SCI, the misalignment between animal models of SCI and clinical reality continues to be an important factor. Whereas most clinical cases are at the cervical level, only a small fraction of preclinical research is conducted in cervical models of SCI. Therefore, this review highlights the most promising neuroprotective and neural reparative therapeutic strategies undergoing clinical assessment, including riluzole, hypothermia, granulocyte colony-stimulating factor, glibenclamide, minocycline, Cethrin (VX-210, and anti-Nogo-A antibody, and emphasizes their efficacy in relation to the anatomical level of injury. Our hope is that more basic research will be conducted in clinically relevant cervical SCI models in order to expedite the transition of important laboratory discoveries into meaningful treatment options for patients with SCI.

  4. The effect from maximal bench press strength training on work economy during wheelchair propulsion in men with spinal cord injury.

    Science.gov (United States)

    Tørhaug, T; Brurok, B; Hoff, J; Helgerud, J; Leivseth, G

    2016-10-01

    To assess the effect from maximal bench press strength training (MST) on wheelchair propulsion work economy (WE). Pretest-posttest case-control group design. St Olavs Hospital, Trondheim, Norway. Seventeen male individuals with spinal cord injury (SCI) paraplegia were allocated to either MST bench press (n=11) or the control group (CG) (n=7). The MST group trained bench press three times per week, for 6 weeks, starting at 85-95% of their pretest bench press one-repetition maximum (1RM). For calculation of WE during wheelchair propulsion, oxygen uptake (VO 2 ) measurements were collected during wheelchair ergometry (WCE) at submaximal workload of 50 W. Similarly, peak oxygen uptake (VO 2peak ) and peak power output (W) were measured during WCE. Individuals in the MST regimen significantly improved WE compared with the CG by 17.3 % (mean between-group differences: 95% confidence interval) of 2.63 ml kg -1  min -1 : (-4.34, -0.91) (P=0.007). Between pretest and posttest, the increase in bench press 1RM was by 17% higher in the MST group compared with the CG. At peak testing, the MST group generated significantly higher peak power compared with the CG. All other physiological variables were comparable within and between groups. A 6-week MST bench press regimen significantly improved WE during wheelchair propulsion at 50 W workload. These preliminary data support a possible beneficial role for MST to reduce the energy cost of wheelchair propulsion for SCI individuals.

  5. A randomized trial of functional electrical stimulation for walking in incomplete spinal cord injury: Effects on walking competency.

    Science.gov (United States)

    Kapadia, Naaz; Masani, Kei; Catharine Craven, B; Giangregorio, Lora M; Hitzig, Sander L; Richards, Kieva; Popovic, Milos R

    2014-09-01

    Multi-channel surface functional electrical stimulation (FES) for walking has been used to improve voluntary walking and balance in individuals with spinal cord injury (SCI). To investigate short- and long-term benefits of 16 weeks of thrice-weekly FES-assisted walking program, while ambulating on a body weight support treadmill and harness system, versus a non-FES exercise program, on improvements in gait and balance in individuals with chronic incomplete traumatic SCI, in a randomized controlled trial design. Individuals with traumatic and chronic (≥18 months) motor incomplete SCI (level C2 to T12, American Spinal Cord Injury Association Impairment Scale C or D) were recruited from an outpatient SCI rehabilitation hospital, and randomized to FES-assisted walking therapy (intervention group) or aerobic and resistance training program (control group). Outcomes were assessed at baseline, and after 4, 6, and 12 months. Gait, balance, spasticity, and functional measures were collected. Spinal cord independence measure (SCIM) mobility sub-score improved over time in the intervention group compared with the control group (baseline/12 months: 17.27/21.33 vs. 19.09/17.36, respectively). On all other outcome measures the intervention and control groups had similar improvements. Irrespective of group allocation walking speed, endurance, and balance during ambulation all improved upon completion of therapy, and majority of participants retained these gains at long-term follow-ups. Task-oriented training improves walking ability in individuals with incomplete SCI, even in the chronic stage. Further randomized controlled trials, involving a large number of participants are needed, to verify if FES-assisted treadmill training is superior to aerobic and strength training.

  6. Rat models of spinal cord injury: from pathology to potential therapies

    Science.gov (United States)

    2016-01-01

    ABSTRACT A long-standing goal of spinal cord injury research is to develop effective spinal cord repair strategies for the clinic. Rat models of spinal cord injury provide an important mammalian model in which to evaluate treatment strategies and to understand the pathological basis of spinal cord injuries. These models have facilitated the development of robust tests for assessing the recovery of locomotor and sensory functions. Rat models have also allowed us to understand how neuronal circuitry changes following spinal cord injury and how recovery could be promoted by enhancing spontaneous regenerative mechanisms and by counteracting intrinsic inhibitory factors. Rat studies have also revealed possible routes to rescuing circuitry and cells in the acute stage of injury. Spatiotemporal and functional studies in these models highlight the therapeutic potential of manipulating inflammation, scarring and myelination. In addition, potential replacement therapies for spinal cord injury, including grafts and bridges, stem primarily from rat studies. Here, we discuss advantages and disadvantages of rat experimental spinal cord injury models and summarize knowledge gained from these models. We also discuss how an emerging understanding of different forms of injury, their pathology and degree of recovery has inspired numerous treatment strategies, some of which have led to clinical trials. PMID:27736748

  7. The Spinal Cord Injury-Interventions Classification System

    NARCIS (Netherlands)

    van Langeveld, A.H.B.

    2010-01-01

    Title: The Spinal Cord Injury-Interventions Classification System: development and evaluation of a documentation tool to record therapy to improve mobility and self-care in people with spinal cord injury. Background: Many rehabilitation researchers have emphasized the need to examine the actual

  8. International spinal cord injury cardiovascular function basic data set

    DEFF Research Database (Denmark)

    Krassioukov, A; Alexander, M S; Karlsson, Anders Hans

    2010-01-01

    To create an International Spinal Cord Injury (SCI) Cardiovascular Function Basic Data Set within the framework of the International SCI Data Sets.......To create an International Spinal Cord Injury (SCI) Cardiovascular Function Basic Data Set within the framework of the International SCI Data Sets....

  9. Shriners Hospital Spinal Cord Injury Self Care Manual.

    Science.gov (United States)

    Fox, Carol

    This manual is intended for young people with spinal cord injuries who are receiving rehabilitation services within the Spinal Cord Injury Unit at Shriners Hospital (San Francisco, California). An introduction describes the rehabilitation program, which includes family conferences, an individualized program, an independent living program,…

  10. International Spinal Cord Injury Male Sexual Function Basic Data Set

    DEFF Research Database (Denmark)

    Alexander, M S; Biering-Sørensen, F; Elliott, S

    2011-01-01

    To create the International Spinal Cord Injury (SCI) Male Sexual Function Basic Data Set within the International SCI Data Sets.......To create the International Spinal Cord Injury (SCI) Male Sexual Function Basic Data Set within the International SCI Data Sets....

  11. Using the Spinal Cord Injury Common Data Elements

    DEFF Research Database (Denmark)

    Biering-Sørensen, Fin; Charlifue, Susan; Devivo, Michael J

    2012-01-01

    International Spinal Cord Injury (SCI) Data Sets include core, basic, and extended data sets. To date, 13 data sets have been published on the Web site of the International Spinal Cord Injury Society (ISCoS; www.iscos.org.uk), and several more are forthcoming. The data sets are constituted of data...

  12. Molecular Imaging in Stem Cell Therapy for Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Fahuan Song

    2014-01-01

    Full Text Available Spinal cord injury (SCI is a serious disease of the center nervous system (CNS. It is a devastating injury with sudden loss of motor, sensory, and autonomic function distal to the level of trauma and produces great personal and societal costs. Currently, there are no remarkable effective therapies for the treatment of SCI. Compared to traditional treatment methods, stem cell transplantation therapy holds potential for repair and functional plasticity after SCI. However, the mechanism of stem cell therapy for SCI remains largely unknown and obscure partly due to the lack of efficient stem cell trafficking methods. Molecular imaging technology including positron emission tomography (PET, magnetic resonance imaging (MRI, optical imaging (i.e., bioluminescence imaging (BLI gives the hope to complete the knowledge concerning basic stem cell biology survival, migration, differentiation, and integration in real time when transplanted into damaged spinal cord. In this paper, we mainly review the molecular imaging technology in stem cell therapy for SCI.

  13. Parents with a spinal cord injury

    DEFF Research Database (Denmark)

    Rasul, A; Biering-Sørensen, F

    2016-01-01

    : A postal survey was designed to collect data in persons with SCI regarding the following: (1) socio-demographics, injury characteristics and parental status; (2) employment status; (3) environmental adjustments to support parenting roles; (4) childcare institution use and experiences; (5) network support......STUDY DESIGN: This is a cross-sectional questionnaire. OBJECTIVES: The objective of this study was to describe the impact of parenting young children with a spinal cord injury (SCI) on various life situations (for example, personal, vocational and social). SETTING: Community; Denmark. METHODS...... for parenting; and (6) parenting advice for others. RESULTS: A total of 62 persons (58% men) responded to the survey, with 56% having paraplegia and 44% having tetraplegia. The majority of men (83%) and women (62%) were employed during the first 10 years of their child's lives. Half of the sample (50%) did...

  14. Effects of aquaporin 4 and inward rectifier potassium channel 4.1 on medullospinal edema after methylprednisolone treatment to suppress acute spinal cord injury in rats.

    Science.gov (United States)

    Li, Ye; Hu, Haifeng; Liu, Jingchen; Zhu, Qingsan; Gu, Rui

    2018-02-01

    To investigate the effects of aquaporin 4 (AQP4) and inward rectifier potassium channel 4.1 (Kir4.1) on medullospinal edema after treatment with methylprednisolone (MP) to suppress acute spinal cord injury (ASCI) in rats. Sprague Dawley rats were randomly divided into control, sham, ASCI, and MP-treated ASCI groups. After the induction of ASCI, we injected 30 mg/kg MP via the tail vein at various time points. The Tarlov scoring method was applied to evaluate neurological symptoms, and the wet-dry weights method was applied to measure the water content of the spinal cord. The motor function score of the ASCI group was significantly lower than that of the sham group, and the spinal water content was significantly increased. In addition, the levels of AQP4 and Kir4.1 were significantly increased, as was their degree of coexpression. Compared with that in the ASCI group, the motor function score and the water content were significantly increased in the MP group; in addition, the expression and coexpression of AQP4 and Kir4.1 were significantly reduced. Methylprednisolone inhibited medullospinal edema in rats with acute spinal cord injury, possibly by reducing the coexpression of aquaporin 4 and Kir4.1 in medullospinal tissues.

  15. Corporeal illusions in chronic spinal cord injuries.

    Science.gov (United States)

    Scandola, Michele; Aglioti, Salvatore Maria; Avesani, Renato; Bertagnoni, Gianettore; Marangoni, Anna; Moro, Valentina

    2017-03-01

    While several studies have investigated corporeal illusions in patients who have suffered from a stroke or undergone an amputation, only anecdotal or single case reports have explored this phenomenon after spinal cord injury. Here we examine various different types of bodily misperceptions in a comparatively large group of 49 people with spinal cord injury in the post-acute and chronic phases after the traumatic lesion onset. An extensive battery of questionnaires concerning a variety of body related feelings was administered and the results were correlated to the main clinical variables. Six different typologies of Corporeal Illusion emerged: Sensations of Body Loss; Body-Part Misperceptions; Somatoparaphrenia-like sensations; Disownership-like sensations; Illusory motion and Misoplegia. All of these (with the exception of Misoplegia) are modulated by clinical variables such as pain (visceral, neuropathic and musculoskeletal), completeness of the lesion, level of the lesion and the length of time since lesion onset. In contrast, no significant correlations between bodily illusions and personality variables were found. These results support data indicating that at least some cognitive functions (in particular the body, action and space representations) are embodied and that somatosensory input and motor output may be necessary to build and maintain a typical self-body representation. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. An ovine model of spinal cord injury.

    Science.gov (United States)

    Wilson, Saul; Abode-Iyamah, Kingsley O; Miller, John W; Reddy, Chandan G; Safayi, Sina; Fredericks, Douglas C; Jeffery, Nicholas D; DeVries-Watson, Nicole A; Shivapour, Sara K; Viljoen, Stephanus; Dalm, Brian D; Gibson-Corley, Katherine N; Johnson, Michael D; Gillies, George T; Howard, Matthew A

    2017-05-01

    To develop a large animal model of spinal cord injury (SCI), for use in translational studies of spinal cord stimulation (SCS) in the treatment of spasticity. We seek to establish thresholds for the SCS parameters associated with reduction of post-SCI spasticity in the pelvic limbs, with implications for patients. The weight-drop method was used to create a moderate SCI in adult sheep, leading to mild spasticity in the pelvic limbs. Electrodes for electromyography (EMG) and an epidural spinal cord stimulator were then implanted. Behavioral and electrophysiological data were taken during treadmill ambulation in six animals, and in one animal with and without SCS at 0.1, 0.3, 0.5, and 0.9 V. All surgical procedures were carried out at the University of Iowa. The gait measurements were made at Iowa State University. Nine adult female sheep were used in these institutionally approved protocols. Six of them were trained in treadmill ambulation prior to SCI surgeries, and underwent gait analysis pre- and post-SCI. Stretch reflex and H-reflex measurements were also made in conscious animals. Gait analysis revealed repeatable quantitative differences in 20% of the key kinematic parameters of the sheep, pre- and post-SCI. Hock joint angular velocity increased toward the normal pre-injury baseline in the animal with SCS at 0.9 V. The ovine model is workable as a large animal surrogate suitable for translational studies of novel SCS therapies aimed at relieving spasticity in patients with SCI.

  17. Sleep disordered breathing in spinal cord injury: A systematic review.

    Science.gov (United States)

    Chiodo, Anthony E; Sitrin, Robert G; Bauman, Kristy A

    2016-07-01

    Spinal cord injury commonly results in neuromuscular weakness that impacts respiratory function. This would be expected to be associated with an increased likelihood of sleep-disordered breathing. (1) Understand the incidence and prevalence of sleep disordered breathing in spinal cord injury. (2) Understand the relationship between injury and patient characteristics and the incidence of sleep disordered breathing in spinal cord injury. (3) Distinguish between obstructive sleep apnea and central sleep apnea incidence in spinal cord injury. (4) Clarify the relationship between sleep disordered breathing and stroke, myocardial infarction, metabolic dysfunction, injuries, autonomic dysreflexia and spasticity incidence in persons with spinal cord injury. (5) Understand treatment tolerance and outcome in persons with spinal cord injury and sleep disordered breathing. Extensive database search including PubMed, Cochrane Library, CINAHL and Web of Science. Given the current literature limitations, sleep disordered breathing as currently defined is high in patients with spinal cord injury, approaching 60% in motor complete persons with tetraplegia. Central apnea is more common in patients with tetraplegia than in patients with paraplegia. Early formal sleep study in patients with acute complete tetraplegia is recommended. In patients with incomplete tetraplegia and with paraplegia, the incidence of sleep-disordered breathing is significantly higher than the general population. With the lack of correlation between symptoms and SDB, formal study would be reasonable. There is insufficient evidence in the literature on the impact of treatment on morbidity, mortality and quality of life outcomes.

  18. International Standards for Neurological Classification of Spinal Cord Injury:

    DEFF Research Database (Denmark)

    Kirshblum, S C; Biering-Sørensen, Fin; Betz, R

    2014-01-01

    The International Standards for the Neurological Classification of Spinal Cord Injury (ISNCSCI) is routinely used to determine levels of injury and to classify the severity of the injury. Questions are often posed to the International Standards Committee of the American Spinal Injury Association...

  19. Spinal neuropeptide expression and neuropathic behavior in the acute and chronic phases after spinal cord injury: Effects of progesterone administration.

    Science.gov (United States)

    Coronel, María F; Villar, Marcelo J; Brumovsky, Pablo R; González, Susana L

    2017-02-01

    Patients with spinal cord injury (SCI) develop chronic pain that severely compromises their quality of life. We have previously reported that progesterone (PG), a neuroprotective steroid, could offer a promising therapeutic strategy for neuropathic pain. In the present study, we explored temporal changes in the expression of the neuropeptides galanin and tyrosine (NPY) and their receptors (GalR1 and GalR2; Y1R and Y2R, respectively) in the injured spinal cord and evaluated the impact of PG administration on both neuropeptide systems and neuropathic behavior. Male rats were subjected to spinal cord hemisection at T13 level, received daily subcutaneous injections of PG or vehicle, and were evaluated for signs of mechanical and thermal allodynia. Real time PCR was used to determine relative mRNA levels of neuropeptides and receptors, both in the acute (1day) and chronic (28days) phases after injury. A significant increase in Y1R and Y2R expression, as well as a significant downregulation in GalR2 mRNA levels, was observed 1day after SCI. Interestingly, PG early treatment prevented Y1R upregulation and resulted in lower NPY, Y2R and GalR1 mRNA levels. In the chronic phase, injured rats showed well-established mechanical and cold allodynia and significant increases in galanin, NPY, GalR1 and Y1R mRNAs, while maintaining reduced GalR2 expression. Animals receiving PG treatment showed basal expression levels of galanin, NPY, GalR1 and Y1R, and reduced Y2R mRNA levels. Also, and in line with previously published observations, PG-treated animals did not develop mechanical allodynia and showed reduced sensitivity to cold stimulation. Altogether, we show that SCI leads to considerable changes in the spinal expression of galanin, NPY and their associated receptors, and that early and sustained PG administration prevents them. Moreover, our data suggest the participation of galaninergic and NPYergic systems in the plastic changes associated with SCI-induced neuropathic pain

  20. Effects of umbilical cord tissue mesenchymal stem cells (UCX® on rat sciatic nerve regeneration after neurotmesis injuries

    Directory of Open Access Journals (Sweden)

    Gärtner A

    2013-04-01

    Full Text Available Peripheral nerves have the intrinsic capacity of self-regeneration after traumatic injury but the extent of the regeneration is often very poor. Increasing evidence demonstrates that mesenchymal stem/stromal cells (MSCs may play an important role in tissue regeneration through the secretion of soluble trophic factors that enhance and assist in repair by paracrine activation of surrounding cells. In the present study, the therapeutic value of a population of umbilical cord tissue-derived MSCs, obtained by a proprietary method (UCX®, was evaluated on end-to-end rat sciatic nerve repair. Furthermore, in order to promote both, end-to-end nerve fiber contacts and MSC cell-cell interaction, as well as reduce the flush away effect of the cells after administration, a commercially available haemostatic sealant, Floseal®, was used as vehicle. Both, functional and morphologic recoveries were evaluated along the healing period using extensor postural thrust (EPT, withdrawal reflex latency (WRL, ankle kinematics analysis, and either histological analysis or stereology, in the hyper-acute, acute and chronic phases of healing. The histological analysis of the hyper-acute and acute phase studies revealed that in the group treated with UCX ® alone the Wallerian degeneration was improved for the subsequent process of regeneration, the fiber organization was higher, and the extent of fibrosis was lower. The chronic phase experimental groups revealed that treatment with UCX® induced an increased number of regenerated fibers and thickening of the myelin sheet. Kinematics analysis showed that the ankle joint angle determined for untreated animals was significantly different from any of the treated groups at the instant of initial contact (IC. At opposite toe off (OT and heel rise (HR, differences were found between untreated animals and the groups treated with either UCX® alone or UCX® administered with Floseal®. Overall, the UCX® application presented

  1. Somatosensory inputs by application of KinesioTaping: effects on spasticity, balance, and gait in chronic spinal cord injury.

    Science.gov (United States)

    Tamburella, Federica; Scivoletto, Giorgio; Molinari, Marco

    2014-01-01

    Leg paralysis, spasticity, reduced interlimb coordination, and impaired balance are the chief limitations to overground ambulation in subjects with incomplete spinal cord injury (SCI). In recent years, the application of KinesioTaping (KT) has been proposed to enhance sensory inputs, decreasing spasticity by proprioception feedback and relieving abnormal muscle tension. Because no studies have examined KT-based techniques in SCI subjects, our goal was to analyze the effects of ankle joint KT on spasticity, balance, and gait. A randomized crossover case control design was used to compare the effects of KT and conventional nonelastic silk tape (ST) in 11 chronic SCI subjects, AIS level D, with soleus/gastrocnemius (S/G) muscle spasticity and balance and gait impairments. 48 h of treatment with KT or ST was followed by 48 h with the other technique after 1 week. A single Y-strip of Cure(©) tape (KT) and ST was to the S and G muscles with 0% stretch. Before and 48 h after of application of KT and ST, clinical data on the range of motion (ROM), spasticity, clonus, pain, balance, and gait were collected. Stabilometric platform assessment of center of pressure (COP) movements; bidimensional gait analysis; and recording of electromyographic (EMG) activity of the S, G, and tibialis anterior and extensor hallucis lungus muscles were also performed. Only KT had significant effects on spasticity (p < 0.05), clonus (p < 0.001) and COP movements (p < 0.05), kinematic gait parameters (p < 0.001), and EMG activity (p < 0.001). Comparison between ST and KT improvements pointed out significant differences as concerns ROM (p < 0.001), spasticity (p < 0.001), clonus (p < 0.001), pain (p < 0.001), COP parameters (p < 0.05), and most kinematic gait data (p < 0.05). Short-term application of KT reduces spasticity and pain and improves balance and gait in chronic SCI subjects. Although these data are promising, they require confirmation in a larger cohort of patients.

  2. The effect of virtual reality-enhanced driving protocol in patients following spinal cord injury

    Directory of Open Access Journals (Sweden)

    Wen-Hsu Sung

    2012-11-01

    Conclusion: This study shows the significant effect of a virtual environment on the progress of driving rehabilitation, and suggests that incorporating virtual reality into rehabilitation programs will accelerate the maximal recovery of the patient’s driving competence.

  3. Implantable porous gelatin microspheres sustained release of bFGF and improved its neuroprotective effect on rats after spinal cord injury.

    Directory of Open Access Journals (Sweden)

    Li Lan

    Full Text Available In this study, porous gelatin microspheres (GMSs were constructed to improve the neuroprotective effect of basic fibroblast growth factor (bFGF on spinal cord injury. GMSs were prepared by a W/O emulsion template, followed by cross-linking, washing and drying. The particle sizes and surface porosity of the blank GMSs were carefully characterized by scan electronic microscopy. The blank GMSs have a mean particle size of 35μm and theirs surface was coarse and porous. bFGF was easily encapsulated inside the bulk GMSs through diffusion along the porous channel. 200μg of bFGF was completely encapsulated in 100mg of GMSs. The bFGF-loaded GMSs displayed a continuous drug release pattern without an obvious burst release over two weeks in vitro. Moreover, the therapeutic effects of bFGF-loaded GMSs were also evaluated in spinal cord injury rat model. After implantation of bFGF-loaded GMSs, the recovery of the motor function of SCI rats were evaluated by behavioral score and foot print experiment. The motor function of SCI rats treated with bFGF-loaded GMSs was more obvious than that treated with free bFGF solution (P<0.05. At the 28th days after treatment, rats were sacrificed and the injured spinal were removed for histopathological and apoptosis examination. Compared with treatment with free bFGF solution, treatment with bFGF-loaded GMSs resulted in a less necrosis, less infiltration of leukocytes, and a reduced the cavity ratio and less apoptotic cells in injured spinal(P<0.01, indicating its better therapeutic effect. Implantable porous GMSs may be a potential carrier to deliver bFGF for therapy of spinal cord injury.

  4. Utility of MR imaging in pediatric spinal cord injury

    International Nuclear Information System (INIS)

    Felsberg, G.J.; Tien, R.D.; Osumi, A.K.; Cardenas, C.A.

    1995-01-01

    We evaluated the utility of MR imaging in pediatric patients with acute and subacute spinal cord injuries. MR imaging of 22 pediatric patients with suspected traumatic spinal cord injuries was reviewed. MR findings were correlated with physical examination and compared to available radiographs and CT examinations performed at time of presentation. Twelve patients had abnormalities on MR imaging. Seven had spinal cord contusions; five contusions were hemorrhagic. Five of seven patients with cord contusion had normal radiographs and CT exams. Six patients with normal radiographs and CT examinations had abnormal MR studies revealing cord contusion, ligamentous injury, disc herniation, and epidural hematoma. MR is useful in initial evaluation of pediatric patients with spinal cord injuries and in prognosis of future neurologic function. In the setting of spinal cord symptomatology and negative radiographic studies, MR imaging should be performed. Surgically correctable causes of cord compression demonstrated by MR imaging include disc herniation, epidural hematoma, and retropulsed fracture fragments. The entity of spinal cord injury without radiographic abnormality is a diagnosis of exclusion which should only be made after radiologic investigation with radiographs, high-resolution thin-section CT, and MR imaging. (orig.)

  5. Women's Sex Life After Spinal Cord Injury.

    Science.gov (United States)

    Sramkova, Tatana; Skrivanova, Katerina; Dolan, Igor; Zamecnik, Libor; Sramkova, Katerina; Kriz, Jiri; Muzik, Vladimir; Fajtova, Radmila

    2017-12-01

    After spinal cord injury (SCI), individuals are typically considered by the general public to be asexual. Handicapped women have more problems with socio-sexual adaptation, stemming from low self-confidence, low self-esteem, and the absence of spontaneity. To determine changes in the sexual lives of women after SCI. A self-constructed questionnaire was used to map sexual function after SCI. We retrospectively compared sexual function in 30 women with SCI with that in 30 without SCI who led an active sexual life. Descriptive and inductive statistics were applied using the Student paired and non-paired t-tests and the Levene test. The main variables were presence vs absence of sexual dysfunction in a group of women after SCI and a comparison of the incidence of sexual dysfunctions in women after SCI with that of a control group. A significant difference was ascertained in women with SCI in sexual desire (P negative impact of incontinence on the sexual life of women with SCI proved significant (P Negative factors for sexual activity in women with SCI were lower sensitivity in 16 (53%), spasms and mobility problems in 12 (40%), lower desire in 11 (36%), pain in 4 (13%), and a less accommodating partner in 3 (10%). Intercourse was the preferred sexual activity in women with SCI. Compared with the period before injury, there was significant lowering of sexual desire, impaired lubrication, and orgasmic ability after SCI. A comparison of the two groups showed a difference in erotogenous zones and in reaching orgasm. Sramkova T, Skrivanova K, Dolan I, et al. Women's Sex Life After Spinal Cord Injury. Sex Med 2017;5:e255-e259. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  6. The effect of sports on level of community integration as reported by persons with spinal cord injury.

    Science.gov (United States)

    Hanson, C S; Nabavi, D; Yuen, H K

    2001-01-01

    The purpose of this study was to determine whether participation in sports by persons with spinal cord injuries (SCIs) affected level of community integration as defined by the World Health Organization and as measured by the Craig Handicap Assessment and Reporting Technique (CHART). Forty-eight participants were recruited from a camp for persons with physical disabilities as well as from SCI support groups. Participants were divided into groups of athletes (n = 30) and nonathletes (n = 18) on the basis of their self-reported level of sports participation. Athletes scored significantly higher on four of five subsections of the CHART (physical independence, mobility, occupation, social integration), indicating greater levels of community integration than nonathletes. These findings extend the literature outlining the physical and psychological benefits of sports. Occupational therapists have a unique opportunity to use the occupation of sports to integrate the roots of the profession with the cultural demands of society.

  7. Effects of chronic shoulder pain on quality of life and occupational engagement in the population with chronic spinal cord injury: preparing for the best outcomes with occupational therapy.

    Science.gov (United States)

    Silvestri, Jennifer

    2017-01-01

    Purpose To examine the implications of chronic shoulder pain on quality of life and occupational engagement in spinal cord injury (SCI). The Ecology of Human Performance Model and Self-Efficacy Theory will be used to further examine the interplay of shoulder pain, quality of life and engagement in this population. Method Analysis of literature. Results Persons with SCI have a high prevalence of shoulder pain and injury, affecting 37-84% of analysed studies; chronic pain limits occupational engagement and decreases quality of life. Remediation of pain provides improved occupational engagement, functional independence and quality of life in those with high self-efficacy and low depression. Conclusion Shoulder pain is a serious complication following SCI and the Ecology of Human Performance Model and Self-Efficacy Theory can be utilized in conjunction for a framework to evaluate, treat and prevent shoulder pain and its devastating effects on occupational engagement and quality of life in the spinal cord injured population. Thereafter, rehabilitation professionals will have a greater understanding of these interactions to serve as a guide for evaluation and intervention planning to promote optimal occupational engagement through limiting the experiences of occupational injustices for those with SCI and shoulder pain. Implications for Rehabilitation Musculoskeletal pain at the shoulder joint and depression are common complications following spinal cord injury that limit occupational engagement and decrease quality of life. To increase engagement and quality of life in this population, treatments need to address all factors including the under-lying psychosocial instead of task and environment modification alone. The Ecology of Human Performance Model and Self-efficacy Theory are effective frameworks that can be used for evaluation, treatment planning and outcome measurement to maximize occupational engagement and quality of life.

  8. Cervical spinal cord injury without radiological abnormality in adults.

    OpenAIRE

    Bhatoe H

    2000-01-01

    Spinal cord injury occurring without concomitant radiologically demonstrable trauma to the skeletal elements of the spinal canal rim, or compromise of the spinal canal rim without fracture, is a rare event. Though documented in children, the injury is not very well reported in adults. We present seventeen adult patients with spinal cord injury without accompanying fracture of the spinal canal rim, or vertebral dislocation, seen over seven years. None had preexisting spinal canal stenosis or c...

  9. SCiPad: Effective Implementation of Telemedicine Using iPads with Individuals with Spinal Cord Injuries, a Case Series

    Directory of Open Access Journals (Sweden)

    Kazuko Shem

    2017-05-01

    Full Text Available BackgroundIndividuals with spinal cord injury (SCI must often travel long distances to see a rehabilitation specialist. While telemedicine (TM for pressure ulcer management has been used in this population, real-time video telecommunication using iPad has never been described.ObjectiveThe objective of this study was to provide specialized care for persons with SCI through TM consultation expediently in order to address medical needs, manage secondary complications, and to improve quality of life (QoL of individuals with SCI.MethodsTen individuals with SCI participated in the TM program using iPads for 6 months as a feasibility study at a single-center, county hospital. The participants contacted the project staff for SCI-related conditions and were then connected to an SCI-trained health-care provider within 24 hours via FaceTime. Main outcome measures included health-care utilization; QoL and psychosocial measures collected at baseline and at 6 months: Reintegration to Normal Living Index (RNLI, Life Satisfaction Index A (LSI-A, and Patient Health Questionnaire 9 (PHQ-9; and a Program Satisfaction Survey.ResultsTen patients (seven with tetraplegia, three with paraplegia; eight males and two females with an average age of 34.4 (18–54 years were enrolled. The average baseline and 6-month follow-up scores were RNLI—70.1 ± 19.7 and 74.7 ± 21.8, respectively; LSI-A—25.4 ± 7.4 and 26.4 ± 8.2, respectively; and PHQ-9 were 6.8 ± 7.2 and 8.6 ± 6.1, respectively. TM encounters included topics such as pain, bladder and skin management, medication changes, and lab results. The Program Satisfaction Survey yielded positive results with 100% of program completers stating they would recommend the program and would like to continue having TM.ConclusionThis is the first known successful project using iPad to provide TM in the SCI population. This study discusses the implementation of such a TM program in a health system

  10. Inflammogenesis of Secondary Spinal Cord Injury

    Science.gov (United States)

    Anwar, M. Akhtar; Al Shehabi, Tuqa S.; Eid, Ali H.

    2016-01-01

    Spinal cord injury (SCI) and spinal infarction lead to neurological complications and eventually to paraplegia or quadriplegia. These extremely debilitating conditions are major contributors to morbidity. Our understanding of SCI has certainly increased during the last decade, but remains far from clear. SCI consists of two defined phases: the initial impact causes primary injury, which is followed by a prolonged secondary injury consisting of evolving sub-phases that may last for years. The underlying pathophysiological mechanisms driving this condition are complex. Derangement of the vasculature is a notable feature of the pathology of SCI. In particular, an important component of SCI is the ischemia-reperfusion injury (IRI) that leads to endothelial dysfunction and changes in vascular permeability. Indeed, together with endothelial cell damage and failure in homeostasis, ischemia reperfusion injury triggers full-blown inflammatory cascades arising from activation of residential innate immune cells (microglia and astrocytes) and infiltrating leukocytes (neutrophils and macrophages). These inflammatory cells release neurotoxins (proinflammatory cytokines and chemokines, free radicals, excitotoxic amino acids, nitric oxide (NO)), all of which partake in axonal and neuronal deficit. Therefore, our review considers the recent advances in SCI mechanisms, whereby it becomes clear that SCI is a heterogeneous condition. Hence, this leads towards evidence of a restorative approach based on monotherapy with multiple targets or combinatorial treatment. Moreover, from evaluation of the existing literature, it appears that there is an urgent requirement for multi-centered, randomized trials for a large patient population. These clinical studies would offer an opportunity in stratifying SCI patients at high risk and selecting appropriate, optimal therapeutic regimens for personalized medicine. PMID:27147970

  11. Depression following a spinal cord injury.

    Science.gov (United States)

    Boekamp, J R; Overholser, J C; Schubert, D S

    1996-01-01

    Depression is a common problem following a spinal cord injury (SCI) and can greatly interfere with the rehabilitation process because of reduced energy, negative expectations, and social withdrawal. Understanding various factors which influence a vulnerability to depression may improve the diagnosis and treatment of depressive disorders and can improve rehabilitation outcome. A thorough literature search was conducted using Medline, PsychLit, Pyschinfo, and Social Science Citation Index to identify relevant articles published between 1967 and 1995. A diathesis-stress model is proposed to explain the increased risk of depressive symptoms after a SCI. Biological changes associated with SCI and pre-existing cognitive biases may influence the individual's vulnerability to stressful life events following the injury. The nature and frequency of stressful life events following the injury can tax the individual's coping resources. Furthermore, the perceived quality of social support and the severity of conflict within the family can influence the individual's adaptation. Social support and recent stressors should be assessed to identify patients at high risk for depression. Patients are less likely to become depressed if their independence is fostered and they are encouraged to develop new sources of self-esteem. Relatives can be counseled to help maintain supportive relationships within the family.

  12. Evaluating the evidence: is phrenic nerve stimulation a safe and effective tool for decreasing ventilator dependence in patients with high cervical spinal cord injuries and central hypoventilation?

    Science.gov (United States)

    Sieg, Emily P; Payne, Russell A; Hazard, Sprague; Rizk, Elias

    2016-06-01

    Case reports, case series and case control studies have looked at the use of phrenic nerve stimulators in the setting of high spinal cord injuries and central hypoventilation syndromes dating back to the 1980s. We evaluated the evidence related to this topic by performing a systematic review of the published literature. Search terms "phrenic nerve stimulation," "phrenic nerve and spinal cord injury," and "phrenic nerve and central hypoventilation" were entered into standard search engines in a systematic fashion. Articles were reviewed by two study authors and graded independently for class of evidence according to published guidelines. The published evidence was reviewed, and the overall body of evidence was evaluated using the grading of recommendations, assesment, development and evaluations (GRADE) criteria Balshem et al. (J Clin Epidemiol 64:401-406, 2011). Our initial search yielded 420 articles. There were no class I, II, or III studies. There were 18 relevant class IV articles. There were no discrepancies among article ratings (i.e., kappa = 1). A meta-analysis could not be performed due to the low quality of the available evidence. The overall quality of the body of evidence was evaluated using GRADE criteria and fell within the "very poor" category. The quality of the published literature for phrenic nerve stimulation is poor. Our review of the literature suggests that phrenic nerve stimulation is a safe and effective option for decreasing ventilator dependence in high spinal cord injuries and central hypoventilation; however, we are left with critical questions that provide crucial directions for future studies.

  13. Anti-apoptotic effect of insulin in the control of cell death and neurologic deficit after acute spinal cord injury in rats.

    Science.gov (United States)

    Wu, Xing-Huo; Yang, Shu-Hua; Duan, De-Yu; Cheng, Heng-Hui; Bao, Yu-Ting; Zhang, Yukun

    2007-09-01

    Recent studies confirmed that the new cell survival signal pathway of Insulin-PI3K-Akt exerted cyto-protective actions involving anti-apoptosis. This study was undertaken to investigate the potential neuroprotective effects of insulin in the pathogenesis of spinal cord injury (SCI) and evaluate its therapeutic effects in adult rats. SCI was produced by extradural compression using modified Allen's stall with damage energy of 40 g-cm force. One group of rats was subjected to SCI in combination with the administration of recombinant human insulin dissolved in 50% glucose solution at the dose of 1 IU/kg day, for 7 days. At the same time, another group of rats was subjected to SCI in combination with the administration of an equal volume of sterile saline solution. Functional recovery was evaluated using open-field walking, inclined plane tests, and motor evoked potentials (MEPs) during the first 14 days post-trauma. Levels of protein for B-cell lymphoma/leukemia-2 gene (Bcl-2), Caspase-3, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) were quantified in the injured spinal cord by Western blot analysis. Neuronal apoptosis was detected by TUNEL, and spinal cord blood flow (SCBF) was measured by laser-Doppler flowmetry (LDF). Ultimately, the data established the effectiveness of insulin treatment in improving neurologic recovery, increasing the expression of anti-apoptotic bcl-2 proteins, inhibiting caspase-3 expression decreasing neuronal apoptosis, reducing the expression of proinflammatory cytokines iNOS and COX-2, and ameliorating microcirculation of injured spinal cord after moderate contusive SCI in rats. In sum, this study reported the beneficial effects of insulin in the treatment of SCI, with the suggestion that insulin should be considered as a potential therapeutic agent.

  14. Low-Grade Inflammation and Spinal Cord Injury: Exercise as Therapy?

    Directory of Open Access Journals (Sweden)

    Eduardo da Silva Alves

    2013-01-01

    Full Text Available An increase in the prevalence of obesity in people with spinal cord injury can contribute to low-grade chronic inflammation and increase the risk of infection in this population. A decrease in sympathetic activity contributes to immunosuppression due to the lower activation of immune cells in the blood. The effects of physical exercise on inflammatory parameters in individuals with spinal cord injury have not been well described. We conducted a review of the literature published from 1974 to 2012. This review explored the relationships between low-grade inflammation, spinal cord injury, and exercise to discuss a novel mechanism that might explain the beneficial effects of exercise involving an increase in catecholamines and cytokines in people with spinal cord injury.

  15. Low-Grade Inflammation and Spinal Cord Injury: Exercise as Therapy?

    Science.gov (United States)

    da Silva Alves, Eduardo; de Aquino Lemos, Valdir; Ruiz da Silva, Francieli; Lira, Fabio Santos; dos Santos, Ronaldo Vagner Thomathieli; Rosa, João Paulo Pereira; Caperuto, Erico; Tufik, Sergio; de Mello, Marco Tulio

    2013-01-01

    An increase in the prevalence of obesity in people with spinal cord injury can contribute to low-grade chronic inflammation and increase the risk of infection in this population. A decrease in sympathetic activity contributes to immunosuppression due to the lower activation of immune cells in the blood. The effects of physical exercise on inflammatory parameters in individuals with spinal cord injury have not been well described. We conducted a review of the literature published from 1974 to 2012. This review explored the relationships between low-grade inflammation, spinal cord injury, and exercise to discuss a novel mechanism that might explain the beneficial effects of exercise involving an increase in catecholamines and cytokines in people with spinal cord injury. PMID:23533315

  16. The effectiveness of the anti-CD11d treatment is reduced in rat models of spinal cord injury that produce significant levels of intraspinal hemorrhage.

    Science.gov (United States)

    Geremia, N M; Hryciw, T; Bao, F; Streijger, F; Okon, E; Lee, J H T; Weaver, L C; Dekaban, G A; Kwon, B K; Brown, A

    2017-09-01

    We have previously reported that administration of a CD11d monoclonal antibody (mAb) improves recovery in a clip-compression model of SCI. In this model the CD11d mAb reduces the infiltration of activated leukocytes into the injured spinal cord (as indicated by reduced intraspinal MPO). However not all anti-inflammatory strategies have reported beneficial results, suggesting that success of the CD11d mAb treatment may depend on the type or severity of the injury. We therefore tested the CD11d mAb treatment in a rat hemi-contusion model of cervical SCI. In contrast to its effects in the clip-compression model, the CD11d mAb treatment did not improve forelimb function nor did it significantly reduce MPO levels in the hemi-contused cord. To determine if the disparate results using the CD11d mAb were due to the biomechanical nature of the cord injury (compression SCI versus contusion SCI) or to the spinal level of the injury (12th thoracic level versus cervical) we further evaluated the CD11d mAb treatment after a T12 contusion SCI. In contrast to the T12 clip compression SCI, the CD11d mAb treatment did not improve locomotor recovery or significantly reduce MPO levels after T12 contusion SCI. Lesion analyses revealed increased levels of hemorrhage after contusion SCI compared to clip-compression SCI. SCI that is accompanied by increased intraspinal hemorrhage would be predicted to be refractory to the CD11d mAb therapy as this approach targets leukocyte diapedesis through the intact vasculature. These results suggest that the disparate results of the anti-CD11d treatment in contusion and clip-compression models of SCI are due to the different pathophysiological mechanisms that dominate these two types of spinal cord injuries. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  17. The effects of using the Internet on the health-related quality of life in people with spinal cord injury: a controlled study.

    Science.gov (United States)

    Celik, B; Ones, K; Celik, E C; Bugdayci, D S; Paker, N; Avci, C; Ince, N

    2014-05-01

    Prospective cohort study. To compare the health-related quality of life (HRQoL) in people with spinal cord injury (SCI) who use the Internet versus those who don't and with a control group of able-bodied individuals. To investigate the frequency of Internet usage before and after injury. To evaluate the differences in terms of demographic features of both groups, analyze the variation in the Internet usage pattern of people with SCI before and after the injury. Istanbul, Turkey. A total of 60 people with SCI (38 Internet users, 22 nonusers) were included in the study. The control group consisted of 33 healthy persons of similar age and sex. The HRQoL was evaluated with the SF-36 Health Survey. The scores of all the subscales of the SF-36, except vitality, were significantly lower in people with SCI than those of the controls'. The bodily pain subscale and physical component scores were found to be significantly higher in people with SCI using the Internet than the nonuser group with SCI (PInternet usage frequency increased significantly in people with SCI after injury (PInternet use (r=0.365, P=0.007). Although HRQoL scores were lower in people with an SCI, the physical status component score was better in the Internet user SCI group. As there is a significant increase in the time spent online after injury, the Internet could be an effective modality to contact and educate people with an SCI.

  18. Low-Grade Inflammation and Spinal Cord Injury: Exercise as Therapy?

    OpenAIRE

    da Silva Alves, Eduardo; de Aquino Lemos, Valdir; Ruiz da Silva, Francieli; Lira, Fabio Santos; dos Santos, Ronaldo Vagner Thomathieli; Rosa, Jo?o Paulo Pereira; Caperuto, Erico; Tufik, Sergio; de Mello, Marco Tulio

    2013-01-01

    An increase in the prevalence of obesity in people with spinal cord injury can contribute to low-grade chronic inflammation and increase the risk of infection in this population. A decrease in sympathetic activity contributes to immunosuppression due to the lower activation of immune cells in the blood. The effects of physical exercise on inflammatory parameters in individuals with spinal cord injury have not been well described. We conducted a review of the literature published from 1974 to ...

  19. Effects of body weight-support treadmill training on postural sway and gait independence in patients with chronic spinal cord injury.

    Science.gov (United States)

    Covarrubias-Escudero, Felipe; Rivera-Lillo, Gonzalo; Torres-Castro, Rodrigo; Varas-Díaz, Gonzalo

    2017-10-23

    To examine the effects of a six-week body weight-support treadmill training (BWSTT) program on center-of-mass control and gait independence in chronic, incomplete spinal cord injury (iSCI) patients. Descriptive. Clinica Los Coihues. Neurorehabilitation center in Santiago, Chile. 17 chronic iSCI patients and 17 healthy subjects. An instrumented sway (ISway) test was performed before and after the implementation of a six-week BWSTT program. The standing balance of participants was measured by Normalized jerk (NJ) and root mean square (RMS). These values were used to assess the standing balance of participants, and were correlated with the scores obtained on the Walking Index Spinal Cord Injury (WISCI) II test. Significant differences were found in standing balance (i.e., through NJ) after the BWSTT program (P = 0.016), but no significant differences were found in RMS values for postural sway (P = 0.693). None of the patients obtained improved WISCI II scores pre- vs. post-intervention. While a BWSTT program can improve center-of-mass control in iSCI patients, no effects were recorded for gait independence. National Clinical Trials, registry number NCT02703883.

  20. Effect of continuous versus intermittent turning on nursing and non-nursing care time for acute spinal cord injuries.

    Science.gov (United States)

    Bugaresti, J M; Tator, C H; Szalai, J P

    1991-06-01

    The present study was conducted to determine whether automated, continuous turning beds would reduce the nursing care time for spinal cord injured (SCI) patients by freeing hospital staff from manual turning of patients every 2 hours. Seventeen patients were randomly assigned to continuous or intermittent turning and were observed during the 8 hour shift for 1 to 18 days following injury. Trained observers recorded the time taken for patient contact activities performed by the nursing staff (direct nursing care) and other hospital staff. The mean direct nursing care time per dayshift per patient was 130 +/- 22 (mean +/- SD) minutes for 9 patients managed with continuous turning and 115 +/- 41 (mean +/- SD) minutes for 8 patients managed with intermittent turning. The observed difference in care time between the two treatment groups was not significant (p greater than 0.05). Numerous factors including neurological level, time following injury, and medical complications appeared to affect the direct nursing care time. Although continuous turning did not reduce nursing care time it offered major advantages for the treatment of selected cases of acute SCI. Some major advantages of continuous turning treatment were observed. Spinal alignment was easier to maintain during continuous turning in patients with injuries of the cervical spine. Continuous turning allowed radiological procedures on the spine, chest and abdomen to be more easily performed without having to alter the patients' position in bed. Therapy and nursing staff indicated that the continuous turning bed facilitated patient positioning for such activities as chest physiotherapy. With continuous turning, one nurse was sufficient to provide care for an individual SCI patient without having to rely on the assistance of other nurses on the ward for patient turning every 2 hours.

  1. Race-Ethnicity, Education, and Employment after Spinal Cord Injury

    Science.gov (United States)

    Krause, James S.; Saunders, Lee; Staten, David

    2010-01-01

    The objective of this article was to identify the relationship between race-ethnicity and employment after spinal cord injury (SCI), while evaluating interrelationships with gender, injury severity, and education. The authors used a cohort design using the most current status from a post-injury interview from the National SCI Statistical Center.…

  2. A Direct Comparison between Norepinephrine and Phenylephrine for Augmenting Spinal Cord Perfusion in a Porcine Model of Spinal Cord Injury.

    Science.gov (United States)

    Streijger, Femke; So, Kitty; Manouchehri, Neda; Gheorghe, Ana; Okon, Elena B; Chan, Ryan M; Ng, Benjamin; Shortt, Katelyn; Sekhon, Mypinder S; Griesdale, Donald E; Kwon, Brian K

    2018-03-28

    Current clinical guidelines recommend elevating the mean arterial blood pressure (MAP) to increase spinal cord perfusion in patients with acute spinal cord injury (SCI). This is typically achieved with vasopressors such as norepinephrine (NE) and phenylephrine (PE). These drugs differ in their pharmacological properties and potentially have different effects on spinal cord blood flow (SCBF), oxygenation (PO 2 ), and downstream metabolism after injury. Using a porcine model of thoracic SCI, we evaluated how these vasopressors influenced intraparenchymal SCBF, PO 2 , hydrostatic pressure, and metabolism within the spinal cord adjacent to the injury site. Yorkshire pigs underwent a contusion/compression SCI at T10 and were randomized to receive either NE or PE for MAP elevation of 20 mm Hg, or no MAP augmentation. Prior to injury, a combined SCBF/PO 2 sensor, a pressure sensor, and a microdialysis probe were inserted into the spinal cord adjacent to T10 at two locations: a "proximal" site and a "distal" site, 2 mm and 22 mm from the SCI, respectively. At the proximal site, NE and PE resulted in little improvement in SCBF during cord compression. Following decompression, NE resulted in increased SCBF and PO 2 , whereas decreased levels were observed for PE. However, both NE and PE were associated with a gradual decrease in the lactate to pyruvate (L/P) ratio after decompression. PE was associated with greater hemorrhage through the injury site than that in control animals. Combined, our results suggest that NE promotes better restoration of blood flow and oxygenation than PE in the traumatically injured spinal cord, thus providing a physiological rationale for selecting NE over PE in the hemodynamic management of acute SCI.

  3. Stem Cells: New Hope For Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Gazdic Marina

    2015-03-01

    Full Text Available Stem cell therapy offers several attractive strategies for spinal cord repair. The regenerative potential of pluripotent stem cells was confirmed in an animal model of Spinal Cord Injury (SCI; nevertheless, optimized growth and differentiation protocols along with reliable safety assays should be established prior to the clinical application of hESCs and iPSCs. Th e therapeutic effects of mesenchymal stem cells (MSCs in SCI result from neurotrophin secretion, angiogenesis, and antiinflammatory actions. Several preclinical SCI studies have reported that the occurrence of axonal extension, remyelination and neuroprotection occur after the transplantation of olfactory ensheathing cells (OECs. The transplantation of neural stem cells NSCs (NSCs promotes partial functional improvement after SCI because of their potential to differentiate into neurons, oligodendrocytes, and astrocytes. The ideal source of stem cells for safe and efficient cell-based therapy for SCI remains a challenging issue that requires further investigation.

  4. Magnetic resonance imaging of acute spinal-cord injury

    International Nuclear Information System (INIS)

    Yamamoto, Hideki; Nakagawa, Hiroshi; Yamada, Takahisa; Iwata, Kinjiro; Okumura, Terufumi; Hoshino, Daisaku.

    1992-01-01

    Magnetic resonance imaging (MRI) provides a noninvasive and very important method of investigating spinal-cord injuries. By means of MRI we examined 36 patients with spinal injuries, 34 of them in the acute stage. 19 cases had complete spinal-cord injury with paraplegia, while 17 cases had incomplete spinal-cord injury. MRI showed the injured spinal-cord in the acute stage to be partially swollen, with a high signal intensity in the T 2 -weighted images. In the chronic stage, the injured cord may show atrophic changes with a post-traumatic cavity or myelomalacia, which appears as a high-signal-intensity lesion in the T 2 -weighted images and as a low-signal intensity in the T 1 -weighted images. The cases with complete spinal injuries showed a high signal intensity at the wide level, and these prognoses were poor. The cases with incomplete injuries showed normal findings or a high-signal-intensity spot. In the Gd-DTPA enhanced images, the injured cords were enhanced very well in the subchronic stage. MRI is thus found to be useful in the diagnosis of spinal injuries; it also demonstrates a potential for predicting the neurological prognosis. (author)

  5. Magnetic resonance imaging of spinal cord injury in chronic stage

    International Nuclear Information System (INIS)

    Tobimatsu, Haruki; Nihei, Ryuichi; Kimura, Tetsuhiko; Yano, Hideo; Touyama, Tetsuo; Tobimatsu, Yoshiko; Suyama, Naoto; Yoshino, Yasumasa

    1991-01-01

    Magnetic resonance (MR) images of a total of 195 patients with cervical (125) or thoracic (70) spinal cord injury were reviewed. The imaging studies of the spinal cord lesions were correlated with clinical manifestations. Sequential MR imaging revealed hypointensity on T1-weighted images (T1WI) and hyperintensity on T2-weighted images (T2WI) in all patients, except for five patients showing no signal changes and two showing isointensity, suggesting gliosis, myelomalacia, and syringomyelia. Spinal cord lesions were classified into four types: small lesions, large lesions, complete transverse, and longitudinal rupture. These lesions were well correlated with the severity of injury and paralysis. Complete paralysis was frequently associated with enlarged, complete transverse for cervical spinal cord injury, and longitudinal ruptured or thinned complete transverse for thoracic spinal cord injury. The height of paralysis was well in agreement with that of lesions. For incomplete paralysis, localized lesions were seen within the spinal cord, coinciding with the paralysis or severity. Traumatic syringomyelia was seen in 17 patients (8.7%)-- for the cervical site (10 patients, 8%) and the thoracic site (7 patients, 10%). When homogeneous and marginally clear hypointensity is shown on T1-weighted images and vacuolated hyperintensity is shown on T2-weighted images, in addition to lesions spreading two or more cords or 1.5 or more cords above the nervous root level of paralysis, traumatic syringomyelia is strongly suspected, requiring the follow up observation. (N.K.)

  6. Sensory and Motor Responses to Spinal Cord Injury

    National Research Council Canada - National Science Library

    Yezierski, Robert P

    1999-01-01

    The goal of Dr. Yezierski's research was to gain a better understanding of the anatomical, neurochemical and functional changes that occur within the central nervous system following spinal cord injury...

  7. Treatment of infertility in men with spinal cord injury

    DEFF Research Database (Denmark)

    Brackett, N.L.; Lynne, C.M.; El Dib, Hussein Ibrahim El Desouki Hussein

    2010-01-01

    Most men with spinal cord injury (SCI) are infertile. Erectile dysfunction, ejaculatory dysfunction and semen abnormalities contribute to the problem. Treatments for erectile dysfunction include phosphodiesterase type 5 inhibitors, intracavernous injections of alprostadil, penile prostheses...

  8. Restoring voluntary control of locomotion after paralyzing spinal cord injury

    NARCIS (Netherlands)

    van den Brand, Rubia; Heutschi, Janine; Barraud, Quentin; DiGiovanna, Jack; Bartholdi, Kay; Huerlimann, Michèle; Friedli, Lucia; Vollenweider, Isabel; Moraud, Eduardo Martin; Duis, Simone; Dominici, Nadia; Micera, Silvestro; Musienko, Pavel; Courtine, Grégoire

    2012-01-01

    Half of human spinal cord injuries lead to chronic paralysis. Here, we introduce an electrochemical neuroprosthesis and a robotic postural interface designed to encourage supraspinally mediated movements in rats with paralyzing lesions. Despite the interruption of direct supraspinal pathways, the

  9. International spinal cord injury musculoskeletal basic data set

    DEFF Research Database (Denmark)

    Biering-Sørensen, Fin; Burns, A S; Curt, A

    2012-01-01

    To develop an International Spinal Cord Injury (SCI) Musculoskeletal Basic Data Set as part of the International SCI Data Sets to facilitate consistent collection and reporting of basic musculoskeletal findings in the SCI population.Setting:International.......To develop an International Spinal Cord Injury (SCI) Musculoskeletal Basic Data Set as part of the International SCI Data Sets to facilitate consistent collection and reporting of basic musculoskeletal findings in the SCI population.Setting:International....

  10. International spinal cord injury pulmonary function basic data set

    DEFF Research Database (Denmark)

    Biering-Sørensen, Fin; Krassioukov, A; Alexander, M S

    2012-01-01

    To develop the International Spinal Cord Injury (SCI) Pulmonary Function Basic Data Set within the framework of the International SCI Data Sets in order to facilitate consistent collection and reporting of basic bronchopulmonary findings in the SCI population.......To develop the International Spinal Cord Injury (SCI) Pulmonary Function Basic Data Set within the framework of the International SCI Data Sets in order to facilitate consistent collection and reporting of basic bronchopulmonary findings in the SCI population....

  11. International Spinal Cord Injury Urinary Tract Infection Basic Data Set

    DEFF Research Database (Denmark)

    Goetz, L L; Cardenas, D D; Kennelly, M

    2013-01-01

    To develop an International Spinal Cord Injury (SCI) Urinary Tract Infection (UTI) Basic Data Set presenting a standardized format for the collection and reporting of a minimal amount of information on UTIs in daily practice or research.......To develop an International Spinal Cord Injury (SCI) Urinary Tract Infection (UTI) Basic Data Set presenting a standardized format for the collection and reporting of a minimal amount of information on UTIs in daily practice or research....

  12. Maladaptive spinal plasticity opposes spinal learning and recovery in spinal cord injury

    Directory of Open Access Journals (Sweden)

    Adam R Ferguson

    2012-10-01

    Full Text Available Synaptic plasticity within the spinal cord has great potential to facilitate recovery of function after spinal cord injury (SCI. Spinal plasticity can be induced in an activity-dependent manner even without input from the brain after complete SCI. The mechanistic basis for these effects is provided by research demonstrating that spinal synapses have many of the same plasticity mechanisms that are known to underlie learning and memory in the brain. In addition, the lumbar spinal cord can sustain several forms of learning and memory, including limb-position training. However, not all spinal plasticity promotes recovery of function. Central sensitization of nociceptive (pain pathways in the spinal cord may emerge with certain patterns of activity, demonstrating that plasticity within the spinal cord may contribute to maladaptive pain states. In this review we discuss interactions between adaptive and maladaptive forms of activity-dependent plasticity in the spinal cord. The literature demonstrates that activity-dependent plasticity within the spinal cord must be carefully tuned to promote adaptive spinal training. Stimulation that is delivered in a limb position-dependent manner or on a fixed interval can induce adaptive plasticity that promotes future spinal cord learning and reduces nociceptive hyper-reactivity. On the other hand, stimulation that is delivered in an unsynchronized fashion, such as randomized electrical stimulation or peripheral skin injuries, can generate maladaptive spinal plasticity that undermines future spinal cord learning, reduces recovery of locomotor function, and promotes nociceptive hyper-reactivity after spinal cord injury. We review these basic phenomena, discuss the cellular and molecular mechanisms, and discuss implications of these findings for improved rehabilitative therapies after spinal cord injury.

  13. Cannabis use in persons with traumatic spinal cord injury in Denmark.

    Science.gov (United States)

    Andresen, Sven R; Biering-Sørensen, Fin; Hagen, Ellen Merete; Nielsen, Jørgen F; Bach, Flemming W; Finnerup, Nanna B

    2017-01-31

    To evaluate recreational and medical cannabis use in individuals with traumatic spinal cord injury, including reasons and predictors for use, perceived benefits and negative consequences. Cross-sectional survey in Denmark. A 35-item questionnaire was sent to 1,101 patients with spinal cord injury who had been in contact with a rehabilitation centre between 1990 and 2012. A total of 537 participants completed the questionnaire. Of these, 36% had tried cannabis at least once and 9% were current users. Of current users, 79% had started to use cannabis before their spinal cord injury. The main reason for use was pleasure, but 65% used cannabis partly for spinal cord injury-related consequences and 59% reported at least good effect on pain and spasticity. Negative consequences of use were primarily inertia and feeling quiet/subdued. Lower age, living in rural areas/larger cities, tobacco-smoking, high alcohol intake and higher muscle stiffness were significantly associated with cannabis use. Those who had never tried cannabis reported that they would mainly use cannabis to alleviate pain and spasticity if it were legalized. Cannabis use is more frequent among individuals with spinal cord injury in Denmark than among the general population. High muscle stiffness and various demographic characteristics (lower age, living in rural areas/larger cities, tobacco-smoking and high alcohol intake) were associated with cannabis use. Most participants had started using cannabis before their spinal cord injury. There was considerable overlap between recreational and disability-related use.

  14. MR imaging of stable posttraumatic spinal cord injury

    International Nuclear Information System (INIS)

    Braun, I.F.; Hoffman, J.C. Jr.; Murphy, C.; Davis, P.C.

    1986-01-01

    Posttraumatic spinal cord cysts have been thought to be infrequent sequelae of spinal trauma. To evaluate the incidence of spinal cord abnormalities in patients who have previously sustained cord trauma, the authors studied the incidence of these changes in clinically stable patients following injury. Twenty-five patients with a history of previous cord injury and stable neurologic status volunteered for MR imaging studies. Studies performed using a 0.5-T and 1.5-T unit revealed focal kinking of the cord at the trauma site as well as intramedullary hypointense areas on T1-weighted images in most volunteers. There was close clinical correlation between MR imaging findings and experimental pathologic data, which suggests that these lesions are much more prevalent than once thought

  15. Radiation effects in brain and spinal cord

    International Nuclear Information System (INIS)

    Franke, H.D.; Lierse, W.

    1978-01-01

    Radiation sensitivity of both the brain and spinal cord in prenatal and postnatal stages, in infancy and adult age is represented also in consideration of a combined treatment with methotrexate. In adults, application of important doses of high-energy radiation increases the risk of injurious effects to the central nervous system. If the spinal cord is involved, more than 60% of the radiolesions have a progredient course ending with death. The pathogenesis and disposing factors are referred to, and the incidence of radiation necrosis with regard to age and sex, the degrees of injury and their frequence within different ranges of dosage are analyzed on the basis of data from universal literature. An examination of 'tolerance doses' for the spinal cord is made by means of Strandquist-diagrams and of the Ellis-formula. The slopes of regression lines are reported for various 'degrees of response' in skin, brain and spinal cord following radiation therapy. In the Strandquist-diagram, slopes of regression lines are dependent on the 'degree of response', flattening if skin and spinal cord are affected by radiation in the same degree, necroses having the same slope for both the organs. (orig./MG) [de

  16. The effects of powered ankle-foot orthoses on joint kinematics and muscle activation during walking in individuals with incomplete spinal cord injury

    Directory of Open Access Journals (Sweden)

    Domingo Antoinette

    2006-02-01

    Full Text Available Abstract Background Powered lower limb orthoses could reduce therapist labor during gait rehabilitation after neurological injury. However, it is not clear how patients respond to powered assistance during stepping. Patients might allow the orthoses to drive the movement pattern and reduce their muscle activation. The goal of this study was to test the effects of robotic assistance in subjects with incomplete spinal cord injury using pneumatically powered ankle-foot orthoses. Methods Five individuals with chronic incomplete spinal cord injury (ASIA C-D participated in the study. Each subject was fitted with bilateral ankle-foot orthoses equipped with artificial pneumatic muscles to power ankle plantar flexion. Subjects walked on a treadmill with partial bodyweight support at four speeds (0.36, 0.54, 0.72 and 0.89 m/s under three conditions: without wearing orthoses, wearing orthoses unpowered (passively, and wearing orthoses activated under pushbutton control by a physical therapist. Subjects also attempted a fourth condition wearing orthoses activated under pushbutton control by them. We measured joint angles, electromyography, and orthoses torque assistance. Results A therapist quickly learned to activate the artificial pneumatic muscles using the pushbuttons with the appropriate amplitude and timing. The powered orthoses provided ~50% of peak ankle torque. Ankle angle at stance push-off increased when subjects walked with powered orthoses versus when they walked with passive-orthoses (ANOVA, p Two of the five subjects were able to control the orthoses themselves using the pushbuttons. The other three subjects found it too difficult to coordinate pushbutton timing. Orthoses assistance and maximum ankle angle at push-off were smaller when the subject controlled the orthoses compared to when the therapist-controlled the orthoses (p Conclusion Mechanical assistance from powered ankle-foot orthoses improved ankle push-off kinematics without

  17. Tamoxifen and estradiol improved locomotor function and increased spared tissue in rats after spinal cord injury: their antioxidant effect and role of estrogen receptor alpha.

    Science.gov (United States)

    Mosquera, Laurivette; Colón, Jennifer M; Santiago, José M; Torrado, Aranza I; Meléndez, Margarita; Segarra, Annabell C; Rodríguez-Orengo, José F; Miranda, Jorge D

    2014-05-02

    17β-Estradiol is a multi-active steroid that imparts neuroprotection via diverse mechanisms of action. However, its role as a neuroprotective agent after spinal cord injury (SCI), or the involvement of the estrogen receptor-alpha (ER-α) in locomotor recovery, is still a subject of much debate. In this study, we evaluated the effects of estradiol and of Tamoxifen (an estrogen receptor mixed agonist/antagonist) on locomotor recovery following SCI. To control estradiol cyclical variability, ovariectomized female rats received empty or estradiol filled implants, prior to a moderate contusion to the spinal cord. Estradiol improved locomotor function at 7, 14, 21, and 28 days post injury (DPI), when compared to control groups (measured with the BBB open field test). This effect was ER-α mediated, because functional recovery was blocked with an ER-α antagonist. We also observed that ER-α was up-regulated after SCI. Long-term treatment (28 DPI) with estradiol and Tamoxifen reduced the extent of the lesion cavity, an effect also mediated by ER-α. The antioxidant effects of estradiol were seen acutely at 2 DPI but not at 28 DPI, and this acute effect was not receptor mediated. Rats treated with Tamoxifen recovered some locomotor activity at 21 and 28 DPI, which could be related to the antioxidant protection seen at these time points. These results show that estradiol improves functional outcome, and these protective effects are mediated by the ER-α dependent and independent-mechanisms. Tamoxifen׳s effects during late stages of SCI support the use of this drug as a long-term alternative treatment for this condition. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Towards a miniaturized brain-machine-spinal cord interface (BMSI) for restoration of function after spinal cord injury.

    Science.gov (United States)

    Shahdoost, Shahab; Frost, Shawn; Van Acker, Gustaf; DeJong, Stacey; Dunham, Caleb; Barbay, Scott; Nudo, Randolph; Mohseni, Pedram

    2014-01-01

    Nearly 6 million people in the United States are currently living with paralysis in which 23% of the cases are related to spinal cord injury (SCI). Miniaturized closed-loop neural interfaces have the potential for restoring function and mobility lost to debilitating neural injuries such as SCI by leveraging recent advancements in bioelectronics and a better understanding of the processes that underlie functional and anatomical reorganization in an injured nervous system. This paper describes our current progress towards developing a miniaturized brain-machine-spinal cord interface (BMSI) that is envisioned to convert in real time the neural command signals recorded from the brain to electrical stimuli delivered to the spinal cord below the injury level. Specifically, the paper reports on a corticospinal interface integrated circuit (IC) as a core building block for such a BMSI that is capable of low-noise recording of extracellular neural spikes from the cerebral cortex as well as muscle activation using intraspinal microstimulation (ISMS) in a rat with contusion injury to the thoracic spinal cord. The paper further presents results from a neurobiological study conducted in both normal and SCI rats to investigate the effect of various ISMS parameters on movement thresholds in the rat hindlimb. Coupled with proper signal-processing algorithms in the future for the transformation between the cortically recorded data and ISMS parameters, such a BMSI has the potential to facilitate functional recovery after an SCI by re-establishing corticospinal communication channels lost due to the injury.

  19. Cervical Spinal Cord Injury at the Victorian Spinal Cord Injury Service: Epidemiology of the Last Decade

    Directory of Open Access Journals (Sweden)

    Simon C.P. Lau

    2014-01-01

    Full Text Available Introduction Cervical spinal cord injury (CSCI is a significant medical and socioeconomic problem. In Victoria, Australia, there has been limited research into the incidence of CSCI. The Austin Hospital's Victorian Spinal Cord Injury Service (VSCIS is a tertiary referral hospital that accepts referrals for surgical management and ongoing neurological rehabilitation for south eastern Australia. The aim of this study was to characterise the epidemiology of CSCI managed operatively at the VSCIS over the last decade, in order to help fashion public health campaigns. Methods This was a retrospective review of medical records from January 2000 to December 2009 of all patients who underwent surgical management of acute CSCI in the VSCIS catchment region. Patients treated non-operatively were excluded. Outcome measures included: demographics, mechanism of injury and associated factors (like alcohol and patient neurological status. Results Men were much more likely to have CSCI than women, with a 4:1 ratio, and the highest incidence of CSCI for men was in their 20s (39%. The most common cause of CSCI was transport related (52%, followed by falls (23% and water-related incidents (16%. Falls were more prevalent among those >50 years. Alcohol was associated in 22% of all CSCIs, including 42% of water-related injuries. Discussion Our retrospective epidemiological study identified at-risk groups presenting to our spinal injury service. Young males in their 20s were associated with an increased risk of transport-related accidents, water-related incidents in the summer months and accidents associated with alcohol. Another high risk group were men >50 years who suffer falls, both from standing and from greater heights. Public awareness campaigns should target these groups to lower incidence of CSCI.

  20. Hydralazine inhibits compression and acrolein-mediated injuries in ex vivo spinal cord.

    Science.gov (United States)

    Hamann, Kristin; Nehrt, Genevieve; Ouyang, Hui; Duerstock, Brad; Shi, Riyi

    2008-02-01

    We have previously shown that acrolein, a lipid peroxidation byproduct, is significantly increased following spinal cord injury in vivo, and that exposure to neuronal cells results in oxidative stress, mitochondrial dysfunction, increased membrane permeability, impaired axonal conductivity, and eventually cell death. Acrolein thus may be a key player in the pathogenesis of spinal cord injury, where lipid peroxidation is known to be involved. The current study demonstrates that the acrolein scavenger hydralazine protects against not only acrolein-mediated injury, but also compression in guinea pig spinal cord ex vivo. Specifically, hydralazine (500 mumol/L to 1 mmol/L) can significantly alleviate acrolein (100-500 mumol/L)-induced superoxide production, glutathione depletion, mitochondrial dysfunction, loss of membrane integrity, and reduced compound action potential conduction. Additionally, 500 mumol/L hydralazine significantly attenuated compression-mediated membrane disruptions at 2 and 3 h following injury. This was consistent with our findings that acrolein-lys adducts were increased following compression injury ex vivo, an effect that was prevented by hydralazine treatment. These findings provide further evidence for the role of acrolein in spinal cord injury, and suggest that acrolein-scavenging drugs such as hydralazine may represent a novel therapy to effectively reduce oxidative stress in disorders such as spinal cord injury and neurodegenerative diseases, where oxidative stress is known to play a role.

  1. Epidural spinal cord stimulation for recovery from spinal cord injury: its place in therapy

    Directory of Open Access Journals (Sweden)

    Jacques L

    2016-09-01

    Full Text Available Line Jacques, Michael Safaee Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA Abstract: This paper is a review of some of the current research focused on using existing epidural spinal cord stimulation technologies in establishing the effectiveness in the recovery of independent standing, ambulation, or intentional movement of spinal cord injury patients. From a clinician’s perspective, the results have been intriguing, from a restorative perspective they are promising, and from a patient’s perspective they are hopeful. The outcomes, although still in the experimental phase, show some proof of theory and support further research. From a high volume university based clinician’s perspective, the resources needed to integrate this type of restorative care into a busy clinical practice are highly challenging without a well-structured and resource rich institutional restorative program. Patient selection is profoundly critical due to the extraordinary resources needed, and the level of motivation required to participate in such an intense and arduous rehabilitation process. Establishing an algorithmic approach to patient selection and treatment will be paramount to effectively utilize scarce resources and optimize outcomes. Further research is warranted, and the development of dedicated technological hardware and software for this therapeutic treatment versus using traditional spinal cord stimulation devices may yield more robust and efficacious outcomes. Keywords: independent standing, ambulation, intentional movement, recovery, rehabilitation, locomotion

  2. A re-assessment of the effects of a Nogo-66 receptor antagonist on regenerative growth of axons and locomotor recovery after spinal cord injury in mice

    OpenAIRE

    Steward, Oswald; Sharp, Kelli; Yee, Kelly Matsudaira; Hofstadter, Maura

    2007-01-01

    This study was undertaken as part of the NIH “Facilities of Research-Spinal Cord Injury” project to support independent replication of published studies. Here, we repeated a study reporting that treatment with the NgR antagonist peptide NEP1-40 results in enhanced growth of corticospinal and serotonergic axons and enhanced locomotor recovery after thoracic spinal cord injury. Mice received dorsal hemisection injuries at T8 and then received either NEP1-40, Vehicle, or a Control Peptide beginn...

  3. Bladder cancer mortality after spinal cord injury over 4 decades.

    Science.gov (United States)

    Nahm, Laura S; Chen, Yuying; DeVivo, Michael J; Lloyd, L Keith

    2015-06-01

    We estimate bladder cancer mortality in people with spinal cord injury compared to the general population. Data and statistics were retrieved from the National Spinal Cord Injury Statistical Center and the National Center for Health Statistics. The mortality experience of the 45,486 patients with traumatic spinal cord injury treated at a Spinal Cord Injury Model System or Shriners Hospital was compared to the general population using a standardized mortality ratio. The standardized mortality ratio data were further stratified by age, gender, race, time since injury and injury severity. Our study included 566,532 person-years of followup between 1960 and 2009, identified 10,575 deaths and categorized 99 deaths from bladder cancer. The expected number of deaths from bladder cancer would have been 14.8 if patients with spinal cord injury had the same bladder cancer mortality as the general population. Thus, the standardized mortality ratio is 6.7 (95% CI 5.4-8.1). Increased mortality risk from bladder cancer was observed for various ages, races and genders, as well as for those injured for 10 or more years and with motor complete injuries. Bladder cancer mortality was not significantly increased for ventilator users, those with motor incomplete injuries or those injured less than 10 years. Individuals with a spinal cord injury can potentially live healthier and longer by reducing the incidence and mortality of bladder cancer. Study findings highlight the need to identify at risk groups and contributing factors for bladder cancer death, leading to the development of prevention, screening and management strategies. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  4. Role of biomaterials in neurorestoration after spinal cord injuries

    Directory of Open Access Journals (Sweden)

    Ioana Stanescu

    2016-05-01

    Full Text Available Despite advances in knowledge and technology SCI remains one of the most severe and disabling disorders affecting young people. Spinal cord lesions result in permanent loss of motor, sensory and autonomic functions, causing an enormous impact on patient’s personal, social, familial and professional life. There is currently no effective treatment available to improve severe neurologic deficits and to decrease disability. Tissue-engineering techniques have developed a variety of scaffolds, made by biomaterials, used alone, incapsulated with cells or embedded with molecules, which are delivered to lesion site to achieve neural regeneration. Biomaterials may provide structural support and/or serve as a delivery vehicle for factors to arrest growth inhibition and promote axonal growth. Biomaterials acts like cell-carriers for the injury site, but also as reservoirs for growth factors or biomolecules. Hydrogels are a promising therapeutical strategy in spinal cord repair. Nano-fibers provide a three-dimensional network, which mimic closely the native extracellular matrix, thus offering a better support for cell attachment and proliferation than traditional micro-structure. New strategies like pharmacologic treatments, cell therapies, gene therapies and biomaterial tissue engineering should combine to increase their synergistic effect and to obtain the expected functional recovery in spinal cord injured patients

  5. MRI and clinical symptoms in chronic cervical cord injury

    International Nuclear Information System (INIS)

    Soeda, Shuichi; Maruiwa, Hirofumi; Yokoi, Masahiro; Saitoh, Seiya; Yamauchi, Kenji.

    1992-01-01

    To assess the ability of magnetic resonance (MR) imaging to determine the prognosis of spinal cord injury in the chronic stage and to detect the injured myelomere, 39 patients were examined with MR images obtained by T1-weighted spin echo method 5 months to 4 years and 8 months (mean, one year and 5 months) after they had sustained spinal cord injury. According to hypointensity area of the ventrodorsad diameter of the spinal cord, MR images were classified as non-hypointensity (I), discrete (II), central (III), large cavity (IV), and transverse (V). The most common type was III (25%), followed by IV (26%), II (18%), V (15%), and I (13%). In 21 patients with bone injury, 14 (67%) had type IV or V, in contrast to 2 (11%) of 18 patients without bone injury. Increased hypointensity on MR images was associated with severer injury of the spinal cord. When hypointensity accounted for less than 1/2 of the ventrodorsad diameter of the spinal cord, walking ability was recovered in more than 80% of the patients. When less than 1/3 of the ventrodorsad diameter of the spinal cord was seen as hypointensity, arm function was well preserved, and the anterior horn of gray matter was found less injured. In 60% of the patients, there was difference in the injured level of myelomere between MR images and the neurological examination; the injured level of myelomere tended to be more cephalad level in the neurological examination than MR appearance.(N.K.)

  6. Pelvic floor electrophysiology in spinal cord injury.

    Science.gov (United States)

    Tankisi, H; Pugdahl, K; Rasmussen, M M; Clemmensen, D; Rawashdeh, Y F; Christensen, P; Krogh, K; Fuglsang-Frederiksen, A

    2016-05-01

    The study aimed to investigate sacral peripheral nerve function and continuity of pudendal nerve in patients with chronic spinal cord injury (SCI) using pelvic floor electrophysiological tests. Twelve patients with low cervical or thoracic SCI were prospectively included. Quantitative external anal sphincter (EAS) muscle electromyography (EMG), pudendal nerve terminal motor latency (PNTML) testing, bulbocavernosus reflex (BCR) testing and pudendal short-latency somatosensory-evoked potential (SEP) measurement were performed. In EAS muscle EMG, two patients had abnormal increased spontaneous activity and seven prolonged motor unit potential duration. PNTML was normal in 10 patients. BCR was present with normal latency in 11 patients and with prolonged latency in one. The second component of BCR could be recorded in four patients. SEPs showed absent cortical responses in 11 patients and normal latency in one. Pudendal nerve and sacral lower motor neuron involvement are significantly associated with chronic SCI, most prominently in EAS muscle EMG. The frequent finding of normal PNTML latencies supports earlier concerns on the utility of this test; however, BCR and pudendal SEPs may have clinical relevance. As intact peripheral nerves including pudendal nerve are essential for efficient supportive therapies, pelvic floor electrophysiological testing prior to these interventions is highly recommended. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  7. Effects of Transplanted Heparin-Poloxamer Hydrogel Combining Dental Pulp Stem Cells and bFGF on Spinal Cord Injury Repair

    Directory of Open Access Journals (Sweden)

    Lihua Luo

    2018-01-01

    Full Text Available Spinal cord injury (SCI is one of serious traumatic diseases of the central nervous system and has no effective treatment because of its complicated pathophysiology. Tissue engineering strategy which contains scaffolds, cells, and growth factors can provide a promising treatment for SCI. Hydrogel that has 3D network structure and biomimetic microenvironment can support cellular growth and embed biological macromolecules for sustaining release. Dental pulp stem cells (DPSCs, derived from cranial neural crest, possess mesenchymal stem cell (MSC characteristics and have an ability to provide neuroprotective and neurotrophic properties for SCI treatment. Basic fibroblast growth factor (bFGF is able to promote cell survival and proliferation and also has beneficial effect on neural regeneration and functional recovery after SCI. Herein, a thermosensitive heparin-poloxamer (HP hydrogel containing DPSCs and bFGF was prepared, and the effects of HP-bFGF-DPSCs on neuron restoration after SCI were evaluated by functional recovery tests, western blotting, magnetic resonance imaging (MRI, histology evaluation, and immunohistochemistry. The results suggested that transplanted HP hydrogel containing DPSCs and bFGF had a significant impact on spinal cord repair and regeneration and may provide a promising strategy for neuron repair, functional recovery, and tissue regeneration after SCI.

  8. Effects of cathodal trans-spinal direct current stimulation on lower urinary tract function in normal and spinal cord injury mice with overactive bladder

    Science.gov (United States)

    Ahmed, Zaghloul

    2017-10-01

    Objective. Lower urinary tract (LUT) dysfunction is a monumental problem affecting quality of life following neurotrauma, such as spinal cord injury (SCI). Proper function of the bladder and its associated structures depends on coordinated activity of the neuronal circuitry in the spinal cord and brain. Disconnection between the spinal and brain centers controlling the LUT causes fundamental changes in the mechanisms involved in the micturition and storage reflexes. We investigated the effects of cathodal trans-spinal direct current stimulation (c-tsDCS) of the lumbosacral spine on bladder and external urinary sphincter (EUS) functions. Approach. We used cystometry and electromyography (EMG), in mice with and without SCI. Main results. c-tsDCS caused initiation of the micturition reflex in urethane-anesthetized normal mice with depressed micturition reflexes. This effect was associated with normalized EUS-EMG activity. Moreover, in urethane-anesthetized normal mice with expressed micturition reflexes, c-tsDCS increased the firing frequency, amplitude, and duration of EUS-EMG activity. These effects were associated with increased maximum intravesical pressure (P max) and intercontraction interval (ICI). In conscious normal animals, c-tsDCS caused significant increases in P max, ICI, threshold pressure (P thres), baseline pressure (P base), and number and amplitude of non-voiding contractions (NVCnumb and P im, respectively). In conscious mice with severe contusive SCI and overactive bladder, c-tsDCS increased P max, ICI, and P thres, but decreased P base, NVCnumb, and P im. c-tsDCS reduced the detrusor-overactivity/cystometry ratio, which is a measure of bladder overactivity associated with renal deterioration. Significance. These results indicate that c-tsDCS induces robust modulation of the lumbosacral spinal-cord circuitry that controls the LUT.

  9. Does vitamin C have the ability to augment the therapeutic effect of bone marrow-derived mesenchymal stem cells on spinal cord injury?

    Directory of Open Access Journals (Sweden)

    Nesrine Salem

    2017-01-01

    Full Text Available Methylprednisolone (MP is currently the only drug confirmed to exhibit a neuroprotective effect on acute spinal cord injury (SCI. Vitamin C (VC is a natural water-soluble antioxidant that exerts neuroprotective effects through eliminating free radical damage to nerve cells. Bone marrow mesenchymal stem cells (BMMSCs, as multipotent stem cells, are promising candidates in SCI repair. To evaluate the therapeutic effects of MP, VC and BMMSCs on traumatic SCI, 80 adult male rats were randomly divided into seven groups: control, SCI (SCI induction by weight-drop method, MP (SCI induction, followed by administration of 30 mg/kg MP via the tail vein, once every other 6 hours, for five times, VC (SCI induction, followed by intraperitoneal administration of 100 mg/kg VC once a day, for 28 days, MP + VC (SCI induction, followed by administration of MP and VC as the former, BMMSCs (SCI induction, followed by injection of 3 × 106 BMMSCs at the injury site, and BMMSCs + VC (SCI induction, followed by BMMSCs injection and VC administration as the former. Locomotor recovery was assessed using the Basso Mouse Scale. Injured spinal cord tissue was evaluated using hematoxylin-eosin staining and immunohistochemical staining. Expression of transforming growth factor-beta, tumor necrosis factor-alpha, and matrix metalloproteinase-2 genes was determined using real-time quantitative PCR. BMMSCs intervention better promoted recovery of nerve function of rats with SCI, mitigated nerve cell damage, and decreased expression of transforming growth factor-beta, tumor necrosis factor-alpha, and matrix metalloproteinase-2 genes than MP and/or VC. More importantly, BMMSCs in combination with VC induced more obvious improvements. These results suggest that VC can enhance the neuroprotective effects of BMMSCs against SCI.

  10. Effects of hybrid cycling versus handcycling on wheelchair-specific fitness and physical activity in people with long-term spinal cord injury : a 16-week randomized controlled trial

    NARCIS (Netherlands)

    Bakkum, A. J. T.; de Groot, S.; Stolwijk-Swuste, J. M.; van Kuppevelt, D. J.; van der Woude, L. H. V.; Janssen, T. W. J.

    Study design: This is an open randomized controlled trial. Objective: The objective of this study was to investigate the effects of a 16-week hybrid cycle versus handcycle exercise program on fitness and physical activity in inactive people with long-term spinal cord injury (SCI). Setting: The study

  11. Effects of hybrid cycling versus handcycling on wheelchair-specific fitness and physical activity in people with long-term spinal cord injury: a 16-week randomized controlled trial

    NARCIS (Netherlands)

    Bakkum, A.J.T.; de Groot, S.; Stolwijk-Swuste, J.M.; van Kuppevelt, D.J.; van der Woude, L.H.V.; Janssen, T.W.J.

    2015-01-01

    Study design:This is an open randomized controlled trial.Objective:The objective of this study was to investigate the effects of a 16-week hybrid cycle versus handcycle exercise program on fitness and physical activity in inactive people with long-term spinal cord injury (SCI).Setting:The study was

  12. Robot-Applied Resistance Augments the Effects of Body Weight-Supported Treadmill Training on Stepping and Synaptic Plasticity in a Rodent Model of Spinal Cord Injury.

    Science.gov (United States)

    Hinahon, Erika; Estrada, Christina; Tong, Lin; Won, Deborah S; de Leon, Ray D

    2017-08-01

    The application of resistive forces has been used during body weight-supported treadmill training (BWSTT) to improve walking function after spinal cord injury (SCI). Whether this form of training actually augments the effects of BWSTT is not yet known. To determine if robotic-applied resistance augments the effects of BWSTT using a controlled experimental design in a rodent model of SCI. Spinally contused rats were treadmill trained using robotic resistance against horizontal (n = 9) or vertical (n = 8) hind limb movements. Hind limb stepping was tested before and after 6 weeks of training. Two control groups, one receiving standard training (ie, without resistance; n = 9) and one untrained (n = 8), were also tested. At the terminal experiment, the spinal cords were prepared for immunohistochemical analysis of synaptophysin. Six weeks of training with horizontal resistance increased step length, whereas training with vertical resistance enhanced step height and movement velocity. None of these changes occurred in the group that received standard (ie, no resistance) training or in the untrained group. Only standard training increased the number of step cycles and shortened cycle period toward normal values. Synaptophysin expression in the ventral horn was highest in rats trained with horizontal resistance and in untrained rats and was positively correlated with step length. Adding robotic-applied resistance to BWSTT produced gains in locomotor function over BWSTT alone. The impact of resistive forces on spinal connections may depend on the nature of the resistive forces and the synaptic milieu that is present after SCI.

  13. Cervical spinal cord injuries in patients with cervical spondylosis.

    Science.gov (United States)

    Regenbogen, V S; Rogers, L F; Atlas, S W; Kim, K S

    1986-02-01

    Eighty-eight patients over age 40 with traumatic cervical spinal cord injuries were clinically and radiographically evaluated, and comparison was made with 35 spinal cord injury patients under age 36. While most older patients sustained obvious bony and/or ligamentous damage commensurate with their neurologic findings, 25 (28%) of the 88 patients had no demonstrable bony abnormalities and 17 (20%) of the 88 patients had only minimal evidence of bony injury. Of particular interest are the patients with severe cord injuries, yet no bony abnormalities, who seem to form a distinct subgroup of the cervical spinal cord injury patient on the basis of radiographic and clinical features. Of these 25 patients, 24 (96%) had severe cervical spondylosis. Fourteen (56%) of the 25 patients were injured in falls, five (36%) of these 14 being of a seemingly trivial nature. Of the 42 patients with minimal or no demonstrable bony abnormalities, 33 (79%) were evaluated with plain tomography and no occult fractures or other significant pathology was demonstrated. Pantopaque myelography in 27 (64%) of the 42 cases revealed no extruded disk or other surgical lesion in any patient. In large measure, these injuries can be attributed to cervical spondylosis, which narrows the canal and makes the cord more susceptible to compression by the bulging ligamenta flava during hyperextension.

  14. Effects of spinal cord injury-induced changes in muscle activation on foot drag in a computational rat ankle model.

    Science.gov (United States)

    Hillen, Brian K; Jindrich, Devin L; Abbas, James J; Yamaguchi, Gary T; Jung, Ranu

    2015-04-01

    Spinal cord injury (SCI) can lead to changes in muscle activation patterns and atrophy of affected muscles. Moderate levels of SCI are typically associated with foot drag during the swing phase of locomotion. Foot drag is often used to assess locomotor recovery, but the causes remain unclear. We hypothesized that foot drag results from inappropriate muscle coordination preventing flexion at the stance-to-swing transition. To test this hypothesis and to assess the relative contributions of neural and muscular changes on foot drag, we developed a two-dimensional, one degree of freedom ankle musculoskeletal model with gastrocnemius and tibialis anterior muscles. Anatomical data collected from sham-injured and incomplete SCI (iSCI) female Long-Evans rats as well as physiological data from the literature were used to implement an open-loop muscle dynamics model. Muscle insertion point motion was calculated with imposed ankle trajectories from kinematic analysis of treadmill walking in sham-injured and iSCI animals. Relative gastrocnemius deactivation and tibialis anterior activation onset times were varied within physiologically relevant ranges based on simplified locomotor electromyogram profiles. No-atrophy and moderate muscle atrophy as well as normal and injured muscle activation profiles were also simulated. Positive moments coinciding with the transition from stance to swing phase were defined as foot swing and negative moments as foot drag. Whereas decreases in activation delay caused by delayed gastrocnemius deactivation promote foot drag, all other changes associated with iSCI facilitate foot swing. Our results suggest that even small changes in the ability to precisely deactivate the gastrocnemius could result in foot drag after iSCI. Copyright © 2015 the American Physiological Society.

  15. Arterial Blood Supply to the Spinal Cord in Animal Models of Spinal Cord Injury. A Review.

    Science.gov (United States)

    Mazensky, David; Flesarova, Slavka; Sulla, Igor

    2017-12-01

    Animal models are used to examine the results of experimental spinal cord injury. Alterations in spinal cord blood supply caused by complex spinal cord injuries contribute significantly to the diversity and severity of the spinal cord damage, particularly ischemic changes. However, the literature has not completely clarified our knowledge of anatomy of the complex three-dimensional arterial system of the spinal cord in experimental animals, which can impede the translation of experimental results to human clinical applications. As the literary sources dealing with the spinal cord arterial blood supply in experimental animals are limited and scattered, the authors performed a review of the anatomy of the arterial blood supply to the spinal cord in several experimental animals, including pigs, dogs, cats, rabbits, guinea pigs, rats, and mice and created a coherent format discussing the interspecies differences. This provides researchers with a valuable tool for the selection of the most suitable animal model for their experiments in the study of spinal cord ischemia and provides clinicians with a basis for the appropriate translation of research work to their clinical applications. Anat Rec, 300:2091-2106, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  16. Work related spinal cord injury, Australia 1986–97

    OpenAIRE

    O'Connor, P

    2001-01-01

    Objectives—Little has been published before on the epidemiology and prevention of work related spinal cord injury (SCI). This study is the first national population based epidemiological analysis of this type of injury. It presents that largest case series ever reported.

  17. Spinal cord injuries in South African Rugby Union (1980 - 2007 ...

    African Journals Online (AJOL)

    related spinal cord injuries (SCIs) in South Africa, a retrospective case-series study was conducted on injuries that occurred between 1980 and 2007. We aimed to identify preventable causes to reduce the overall rate of SCIs in South African ...

  18. The Role of Hope in Spinal Cord Injury Rehabilitation.

    Science.gov (United States)

    Heinemann, Allen; And Others

    Hope has motivational importance to individuals who have suffered a major physical loss. Theories of adjustment to a spinal cord injury take one of three approaches: (1) premorbid personality, which highlights the individual's past experiences, personal meanings, and body image; (2) typologies of injury reactions, which range from normal to…

  19. Agmatine Modulates the Phenotype of Macrophage Acute Phase after Spinal Cord Injury in Rats.

    Science.gov (United States)

    Kim, Jae Hwan; Kim, Jae Young; Mun, Chin Hee; Suh, Minah; Lee, Jong Eun

    2017-10-01

    Agmatine is a decarboxylated arginine by arginine decarboxylase. Agmatine is known to be a neuroprotective agent. It has been reported that agmatine works as a NMDA receptor blocker or a competitive nitric oxide synthase inhibitor in CNS injuries. In spinal cord injury, agmatine showed reduction of neuropathic pain, improvement of locomotor function, and neuroprotection. Macrophage is a key cellular component in neuroinflammation, a major cause of impairment after spinal cord injury. Macrophage has subtypes, M1 and M2 macrophages. M1 macrophage induces a pro-inflammatory response, but M2 inspires an anti-inflammatory response. In this study, it was clarified whether the neuroprotective effect of agmatine is related with the modulation of macrophage subdivision after spinal cord injury. Spinal cord injury was induced in rats with contusion using MASCIS. Animals received agmatine (100 mg/kg, IP) daily for 6 days beginning the day after spinal cord injury. The proportion of M1 and M2 macrophages are confirmed with immunohistochemistry and FACS. CD206 + & ED1 + cells were counted as M2 macrophages. The systemic treatment of agmatine increased M2 macrophages caudal side to epicenter 1 week after spinal cord injury in immunohistochemistry. M2 macrophage related markers, Arginase-1 and CD206 mRNA, were increased in the agmatine treatment group and M2 macrophage expressing and stimulated cytokine, IL-10 mRNA, also was significantly overexpressed by agmatine injection. Among BMPs, BMP2/4/7, agmatine significantly increased only the expression of BMP2 known to reduce M1 macrophage under inflammatory status. These results suggest that agmatine reduces impairment after spinal cord injury through modulating the macrophage phenotype.

  20. Magnetic resonance imaging of experimental spinal cord injury

    International Nuclear Information System (INIS)

    Nakamura, Tsutomu; Kumano, Kouichi; Kadoya, Satoru

    1989-01-01

    Correlation between pathological findings and magnetic resonance imaging (MRI) of experimental cord injury were investigated. Cord injuries were made on ten Wistar rats weighing 80-170 gm by epidural compression of the thoracic cord with a Biemer cerebral vascular clip for 5-20 seconds. Several hours after the procedure animals were examined by spin echo axial MR images with a pulse sequence of TR/TE=1000/36 msec. MR studies were repeated on 4 animals 3-7 days after the initial examination. Immediately after the latest MRI examination animals were sacrificed and fixed with 10% formalin. Three micron thickness paraffin sections stained with hematoxylin and eosin were evaluated under a microscope. The pathological finding was hemorrhagic necrosis with edema of various severity depending on duration of clip application. The hemorrhagic necrosis was observed either unilaterally or bilaterally to the cord. MR findings of the cord were of high intensity in five animals which were severely injured, while central low intensity of the injured cord appeared in three mildly injured animals. Of the remaining two animals which had mild injury, one showed unilateral high intensity, while no definitive change was demonstrated in the other. The high intensity in the MRI suggested edema associated with hemorrhagic necrosis rather than hemorrhage. The central low intensity appearing in the mildly injured cord might be hemorrhage in the gray matter. It is concluded that MRI was useful to diagnose not only the level and severity but also the pathological process in the injured cord, and thus to estimate the prognosis of the cord injuries. (author)

  1. The multifaceted effects of agmatine on functional recovery after spinal cord injury through Modulations of BMP-2/4/7 expressions in neurons and glial cells.

    Directory of Open Access Journals (Sweden)

    Yu Mi Park

    Full Text Available Presently, few treatments for spinal cord injury (SCI are available and none have facilitated neural regeneration and/or significant functional improvement. Agmatine (Agm, a guanidinium compound formed from decarboxylation of L-arginine by arginine decarboxylase, is a neurotransmitter/neuromodulator and been reported to exert neuroprotective effects in central nervous system injury models including SCI. The purpose of this study was to demonstrate the multifaceted effects of Agm on functional recovery and remyelinating events following SCI. Compression SCI in mice was produced by placing a 15 g/mm(2 weight for 1 min at thoracic vertebra (Th 9 segment. Mice that received an intraperitoneal (i.p. injection of Agm (100 mg/kg/day within 1 hour after SCI until 35 days showed improvement in locomotor recovery and bladder function. Emphasis was made on the analysis of remyelination events, neuronal cell preservation and ablation of glial scar area following SCI. Agm treatment significantly inhibited the demyelination events, neuronal loss and glial scar around the lesion site. In light of recent findings that expressions of bone morphogenetic proteins (BMPs are modulated in the neuronal and glial cell population after SCI, we hypothesized whether Agm could modulate BMP- 2/4/7 expressions in neurons, astrocytes, oligodendrocytes and play key role in promoting the neuronal and glial cell survival in the injured spinal cord. The results from computer assisted stereological toolbox analysis (CAST demonstrate that Agm treatment dramatically increased BMP- 2/7 expressions in neurons and oligodendrocytes. On the other hand, BMP- 4 expressions were significantly decreased in astrocytes and oligodendrocytes around the lesion site. Together, our results reveal that Agm treatment improved neurological and histological outcomes, induced oligodendrogenesis, protected neurons, and decreased glial scar formation through modulating the BMP- 2/4/7 expressions following

  2. The Multifaceted Effects of Agmatine on Functional Recovery after Spinal Cord Injury through Modulations of BMP-2/4/7 Expressions in Neurons and Glial Cells

    Science.gov (United States)

    Park, Yu Mi; Lee, Won Taek; Bokara, Kiran Kumar; Seo, Su Kyoung; Park, Seung Hwa; Kim, Jae Hwan; Yenari, Midori A.; Park, Kyung Ah; Lee, Jong Eun

    2013-01-01

    Presently, few treatments for spinal cord injury (SCI) are available and none have facilitated neural regeneration and/or significant functional improvement. Agmatine (Agm), a guanidinium compound formed from decarboxylation of L-arginine by arginine decarboxylase, is a neurotransmitter/neuromodulator and been reported to exert neuroprotective effects in central nervous system injury models including SCI. The purpose of this study was to demonstrate the multifaceted effects of Agm on functional recovery and remyelinating events following SCI. Compression SCI in mice was produced by placing a 15 g/mm2 weight for 1 min at thoracic vertebra (Th) 9 segment. Mice that received an intraperitoneal (i.p.) injection of Agm (100 mg/kg/day) within 1 hour after SCI until 35 days showed improvement in locomotor recovery and bladder function. Emphasis was made on the analysis of remyelination events, neuronal cell preservation and ablation of glial scar area following SCI. Agm treatment significantly inhibited the demyelination events, neuronal loss and glial scar around the lesion site. In light of recent findings that expressions of bone morphogenetic proteins (BMPs) are modulated in the neuronal and glial cell population after SCI, we hypothesized whether Agm could modulate BMP- 2/4/7 expressions in neurons, astrocytes, oligodendrocytes and play key role in promoting the neuronal and glial cell survival in the injured spinal cord. The results from computer assisted stereological toolbox analysis (CAST) demonstrate that Agm treatment dramatically increased BMP- 2/7 expressions in neurons and oligodendrocytes. On the other hand, BMP- 4 expressions were significantly decreased in astrocytes and oligodendrocytes around the lesion site. Together, our results reveal that Agm treatment improved neurological and histological outcomes, induced oligodendrogenesis, protected neurons, and decreased glial scar formation through modulating the BMP- 2/4/7 expressions following SCI. PMID

  3. Effect of high-frequency repetitive transcranial magnetic stimulation on motor cortical excitability and sensory nerve conduction velocity in subacute-stage incomplete spinal cord injury patients.

    Science.gov (United States)

    Cha, Hyun Gyu; Ji, Sang-Goo; Kim, Myoung-Kwon

    2016-07-01

    [Purpose] The aim of the present study was to determine whether repetitive transcranial magnetic stimulation can improve sensory recovery of the lower extremities in subacute-stage spinal cord injury patients. [Subjects and Methods] This study was conducted on 20 subjects with diagnosed paraplegia due to spinal cord injury. These 20 subjects were allocated to an experimental group of 10 subjects that underwent active repetitive transcranial magnetic stimulation or to a control group of 10 subjects that underwent sham repetitive transcranial magnetic stimulation. The SCI patients in the experimental group underwent active repetitive transcranial magnetic stimulation and conventional rehabilitation therapy, whereas the spinal cord injury patients in the control group underwent sham repetitive transcranial magnetic stimulation and conventional rehabilitation therapy. Participants in both groups received therapy five days per week for six-weeks. Latency, amplitude, and sensory nerve conduction velocity were assessed before and after the six week therapy period. [Results] A significant intergroup difference was observed for posttreatment velocity gains, but no significant intergroup difference was observed for amplitude or latency. [Conclusion] repetitive transcranial magnetic stimulation may be improve sensory recovery of the lower extremities in subacute-stage spinal cord injury patients.

  4. Psychological impact of sports activity in spinal cord injury patients.

    Science.gov (United States)

    Gioia, M C; Cerasa, A; Di Lucente, L; Brunelli, S; Castellano, V; Traballesi, M

    2006-12-01

    To investigate whether sports activity is associated with better psychological profiles in patients with spinal cord injury (SCI) and to evaluate the effect of demographic factors on psychological benefits. The State-Trait Anxiety Inventory, Form X2 (STAI-X2), the Eysenck Personality Questionnaire for extraversion (EPQ-R (E)) and the questionnaire for depression (QD) were administered in a cross-sectional study of 137 males with spinal cord injury including 52 tetraplegics and 85 paraplegics. The subjects were divided into two groups according to sports activity participation (high frequency vs no sports participation). Moreover, multiple regression analysis was adopted to investigate the influence of demographic variables, such as age, educational level, occupational status and marital status, on psychological variables. Analysis of variance revealed significant differences among the groups for anxiety (STAI-X2), extraversion (EPQ-R (E)) and depression (QD). In particular, SCI patients who did not practice sports showed higher anxiety and depression scores and lower extraversion scores than sports participants. In addition, with respect to the paraplegics, the tetraplegic group showed the lowest depression scores. Following multiple regression analysis, only the sports activity factor remained as an independent factor of anxiety scores. These findings demonstrate that sports activity is associated with better psychological status in SCI patients, irrespective of tetraplegia and paraplegia, and that psychological benefits are not emphasized by demographic factors.

  5. Mechanism of injury and instability of cervical cord injuries without remarkable Xp evidence of injury

    International Nuclear Information System (INIS)

    Ueta, Takayoshi; Shiba, Keiichiro; Katsuki, Masaaki; Shirasawa, Kenzo; Murao, Tetsu; Mori, Eiji; Yoshimura, Toyoaki; Ishibashi, Yuichi; Ryu, Seiman

    1989-01-01

    In 27 patients with no radiographic evidence of injury, spinal cord injury was depicted as low signal intensity on MRI. In 4 patients who had spontaneous reduction of the anterior dislocation, remarkable instability was observed. Among the other 23 patients, two patients had each two injured sites, and the remaining patients had only one injuried site. Injured sites were not correlated with the development of spondylosis or the antero-posterior diameter of the spinal canal, but well correlated with ossification of the posterior longitudinal ligament. Many of the patients had surgical evidence of horizontal rupture of the anterior longitudinal ligament and intervertebral disk. In these cases, although the spinal cord was instable at the level of extension, it was stable at the level of midline flection. Excessively extended injury with no associated anterior longitudinal ligament was considered attributable to the strictured spinal canal. (Namekawa, K)

  6. Radionuclide assessment of heterotopic ossification in spinal cord injury patients

    International Nuclear Information System (INIS)

    Prakash, V.

    1983-01-01

    Whole body /sup 99m/T-pyrophosphate bone scans were obtained and correlated with skeletal radiographs for detection of heterotopic ossification in 135 spinal injury patients. There were 40 patients with recent injury (less than 6 months) and 95 with injury of over 6 months duration. Heterotopic new bone was detected on the bone scan in 33.7% of 95 patients with spinal cord injuries of more than 6 months duration and 30% of 40 patients with injuries of less than 6 months. The radionuclide scan was found to be useful in detection of heterotopic ossification at its early stage and in its differentiation from other complications in spinal cord injury patients

  7. Neuropathic pain in spinal cord injury.

    Science.gov (United States)

    Nakipoglu-Yuzer, Guidal F; Atçı, Nermin; Ozgirgin, Nese

    2013-01-01

    Several studies have described pain prevalence, risk factors, pain and medical variables in spinal cord injury (SCI) populations. In this study on traumatic SCI in Turkey, we surveyed the neuropathic pain experiences during in-patient rehabilitation and defined the relationships between neuropathic pain and demographic and SCI characteristics of patients. To survey the neuropathic pain experiences during in-patient rehabilitation in traumatic SCI and to define the relationships between neuropathic pain and demographic and SCI-related characteristics of patients. Descriptive study. Physicial Medicine and Rehabilitation inpatient clinic, Ankara, Turkey Sixty-nine SCI patients as inpatients were included in this descriptive study. All patients demographic and SCI-related characteristics were enrolled. The diagnosis of neuropathic pain was made with the Leeds Assessment of Neuropathic Symptoms and Signs (LANSS) Pain Scale. Location of pain and pain description, relation to time and severity according to McGill Pain Questionnaire (MPQ) were enrolled. The neuropathic pain localization was below the lesion level in 67 (97.1%) and at the lesion level in 2 (2.9%) patients. The pain was at the hip and leg regions in 36 (52.2%) patients. The neuropathic pain was defined as burning in 27 (39.1%), aching in 26 (37.7%), sharp in 4 (5.8%), stinging in 3 (4.3%), and cramping in 3 (4.3%). We did not find a significant difference between demographic and SCI-related characteristics and the localization of neuropathic pain for the patients (P > 0.05). There was no significant difference according to pain description by MPQ and pain localization (P > 0.05). We found a significant relationship between the patient's lesion level and the region of pain (P neuropathic pain due to SCI to be mostly below the lesion level with a burning or aching character and we did not find a significant relationship between the demographic and SCI-related characteristics of the patient and the pain

  8. Effect of Teriparatide, Vibration and the Combination on Bone Mass and Bone Architecture in Chronic Spinal Cord Injury

    Science.gov (United States)

    2015-12-01

    osteoporosis. J Bone Miner Res, 2003. 18(3): p. 539-43. 10. Ma, Y., et al., Parathyroid hormone and mechanical usage have a synergistic effect in rat tibial...directions, respectively. Material nonlinearity was modeled as bilinear elastic– plastic with a postyield modulus that was 5% of the pre-yield modulus(31...Injury Poster Sessions, Presentation Number: SA0435 Session: Poster Session I & Poster Tours Saturday, October 5, 2013 12:00 PM - 2:00 PM, Baltimore

  9. Iatrogenic Spinal Cord Injury Resulting From Cervical Spine Surgery.

    Science.gov (United States)

    Daniels, Alan H; Hart, Robert A; Hilibrand, Alan S; Fish, David E; Wang, Jeffrey C; Lord, Elizabeth L; Buser, Zorica; Tortolani, P Justin; Stroh, D Alex; Nassr, Ahmad; Currier, Bradford L; Sebastian, Arjun S; Arnold, Paul M; Fehlings, Michael G; Mroz, Thomas E; Riew, K Daniel

    2017-04-01

    Retrospective cohort study of prospectively collected data. To examine the incidence of iatrogenic spinal cord injury following elective cervical spine surgery. A retrospective multicenter case series study involving 21 high-volume surgical centers from the AOSpine North America Clinical Research Network was conducted. Medical records for 17 625 patients who received cervical spine surgery (levels from C2 to C7) between January 1, 2005, and December 31, 2011, were reviewed to identify occurrence of iatrogenic spinal cord injury. In total, 3 cases of iatrogenic spinal cord injury following cervical spine surgery were identified. Institutional incidence rates ranged from 0.0% to 0.24%. Of the 3 patients with quadriplegia, one underwent anterior-only surgery with 2-level cervical corpectomy, one underwent anterior surgery with corpectomy in addition to posterior surgery, and one underwent posterior decompression and fusion surgery alone. One patient had complete neurologic recovery, one partially recovered, and one did not recover motor function. Iatrogenic spinal cord injury following cervical spine surgery is a rare and devastating adverse event. No standard protocol exists that can guarantee prevention of this complication, and there is a lack of consensus regarding evaluation and treatment when it does occur. Emergent imaging with magnetic resonance imaging or computed tomography myelography to evaluate for compressive etiology or malpositioned instrumentation and avoidance of hypotension should be performed in cases of intraoperative and postoperative spinal cord injury.

  10. Developing a spinal cord injury rehabilitation service in Madagascar

    Directory of Open Access Journals (Sweden)

    Rakotonirainy Renaud

    2018-03-01

    Full Text Available Rehabilitation for people with spinal cord injury in many low- and middle-income countries is not avail-able or is in the early stages of development. However, rehabilitation is recognized as crucial in order to optimize functional recovery and outcomes for patients with spinal cord injury. With an increasing incidence of spinal cord injury, the unmet need for rehabilitation is huge. This report describes the early development of a specialist rehabilitation service for spinal cord injury in Madagascar, one of the poorest countries in the world. The sustained input to an expanding rehabilitation team has led to reductions in avoidable complications. The input of the rehabilitation team has been welcomed by the neurosurgery department, which has recognized fewer delays in patients undergoing surgical treatments. Cost, lack of resources and trained staff, and poor understanding of disability continue to provide challenges. However, the development of the rehabilitation service using low technology, but with a high level of knowledge and systematic management, is a source of considerable pride. This development in Madagascar can be regarded as a model for spinal cord injury rehabilitation in other low-resource settings.

  11. Chronic Neuropathic Pain in Spinal Cord Injury: The Patient's Perspective

    Directory of Open Access Journals (Sweden)

    Penelope Henwood

    2004-01-01

    Full Text Available BACKGROUND: Chronic neuropathic pain (CNP in spinal cord injury (SCI is recognized as severely compromising, in both adjustment after injury and quality of life. Studies indicate that chronic pain in SCI is associated with great emotional distress over and above that of the injury itself. Currently, little is known about the SCI patient's perception of the impact of living with chronic neuropathic pain.

  12. Spinal cord injury and its association with blunt head trauma

    OpenAIRE

    Paiva, Wellingson S; Oliveira, Arthur MP; Andrade, Almir F; Amorim, Robson LO; Lourenço, Leonardo JO; Teixeira, Manoel J

    2011-01-01

    Wellingson S Paiva, Arthur MP Oliveira, Almir F Andrade, Robson LO Amorim, Leonardo JO Lourenço, Manoel J TeixeiraDivision of Neurosurgery, University of São Paulo, BrazilBackground: Severe and moderate head injury can cause misdiagnosis of a spinal cord injury, leading to devastating long-term consequences. The objective of this study is to identify risk factors involving spine trauma and moderate-to-severe brain injury.Methods: A prospective study involving 1617 patien...

  13. Effect of low-energy extracorporeal shock wave on vascular regeneration after spinal cord injury and the recovery of motor function.

    Science.gov (United States)

    Wang, Lei; Jiang, Yuquan; Jiang, Zheng; Han, Lizhang

    2016-01-01

    Latest studies show that low-energy extracorporeal shock wave therapy (ESWT) can upregulate levels of vascular endothelial growth factor (VEGF). VEGF can ease nervous tissue harm after spinal cord injury (SCI). This study aims to explore whether low-energy ESWT can promote expression of VEGF, protect nervous tissue after SCI, and improve motor function. Ninety adult female rats were divided into the following groups: Group A (simple laminectomy), Group B (laminectomy and low-energy ESWT), Group C (spinal cord injury), and Group D (spinal cord injury and low-energy ESWT). Impinger was used to cause thoracic spinal cord injury. Low-energy ESWT was applied as treatment after injury three times a week, for 3 weeks. After SCI, the Basso, Beattie, and Bresnahan (BBB) scale was used to evaluate motor function over a period of 42 days at different time points. Hematoxylin and eosin (HE) staining was used to evaluate nerve tissue injury. Neuronal nuclear antigen (NeuN) staining was also used to evaluate loss of neurons. Polymerase chain reaction was used to detect messenger RNA (mRNA) expression of VEGF and its receptor fms-like tyrosine kinase 1 (Flt-1). Immunostaining was used to evaluate VEGF protein expression level in myeloid tissue. BBB scores of Groups A and B showed no significant result related to dyskinesia. HE and NeuN staining indicated that only using low-energy ESWT could not cause damage of nervous tissue in Group B. Recovery of motor function at 7, 35, and 42 days after SCI in Group D was better than that in Group C (Pfunction. It can be regarded as one mode of clinical routine adjunctive therapy for spinal injury.

  14. Mechanisms underlying the promotion of functional recovery by deferoxamine after spinal cord injury in rats

    Directory of Open Access Journals (Sweden)

    Jian Hao

    2017-01-01

    Full Text Available Deferoxamine, a clinically safe drug used for treating iron overload, also repairs spinal cord injury although the mechanism for this action remains unknown. Here, we determined whether deferoxamine was therapeutic in a rat model of spinal cord injury and explored potential mechanisms for this effect. Spinal cord injury was induced by impacting the spinal cord at the thoracic T10 vertebra level. One group of injured rats received deferoxamine, a second injured group received saline, and a third group was sham operated. Both 2 days and 2 weeks after spinal cord injury, total iron ion levels and protein expression levels of the proinflammatory cytokines tumor necrosis factor-α and interleukin-1β and the pro-apoptotic protein caspase-3 in the spinal cords of the injured deferoxamine-treated rats were significantly lower than those in the injured saline-treated group. The percentage of the area positive for glial fibrillary acidic protein immunoreactivity and the number of terminal deoxynucleotidyl transferase dUTP nick end labeling-positive cells were also significantly decreased both 2 days and 2 weeks post injury, while the number of NeuN-positive cells and the percentage of the area positive for the oligodendrocyte marker CNPase were increased in the injured deferoxamine-treated rats. At 14–56 days post injury, hind limb motor function in the deferoxamine-treated rats was superior to that in the saline-treated rats. These results suggest that deferoxamine decreases total iron ion, tumor necrosis factor-α, interleukin-1β, and caspase-3 expression levels after spinal cord injury and inhibits apoptosis and glial scar formation to promote motor function recovery.

  15. Frequency of pressure ulcers in patients with spinal cord injury

    International Nuclear Information System (INIS)

    Shah, S.H.; Ahmed, K.

    2017-01-01

    To determine the frequency of pressure ulcers in patients with spinal cord injury. To compare frequency of pressure ulcers in complete and incomplete spinal cord injury using ASIA impairment scale.Study Design: Cross sectional study. Place and Duration of Study: Departments of Armed Forces Institute of Rehabilitation Medicine Rawalpindi, from Jun 2013 to Jan 2014. Material and Methods: After permission from the hospital ethical committee and informed consent, spinal cord injury (SCI) patients were included from the outdoor and the indoor departments of Armed Forces Institute of Rehabilitation Medicine Rawalpindi from June 2013 to January 2014. Patients were divided in two groups of complete SCI and incomplete SCI on the basis of American Spinal Injury Association (ASIA) impairment scale. SPSS version 17 was used for data analysis. Results: Total 62 SCI patients were included. Mean age of patients was 36 +- 0.93 SD. Males were more in number 79% (49). On ASIA scoring 51.6% (32) were in ASIA 'A' followed by 19.4% (12), 17.7% (11) and 11.3% (7) patients in ASIA 'B', 'C' and 'D' respectively. SCI was complete in 51.6% (32) and incomplete in 48.4% (30). PU were present in 32.3% (20) patients. PU were in stage 4 in 30% (6) patients. PU were more frequent in ASIA 'A' injuries followed by 'B', 'C' and 'D' involving 43.8%, 25%,18.2% and 14.3% of patients respectively. Pressure ulcers (PU) were common in complete injuries involving 43.8% (14) than in incomplete injuries 20% (6) (p=0.041). Conclusions: Pressure ulsers were more common complication detected after spinal cord injury with more frequency in complete spinal cord injury. (author)

  16. Electroacupuncture in the repair of spinal cord injury: inhibiting the Notch signaling pathway and promoting neural stem cell proliferation

    Directory of Open Access Journals (Sweden)

    Xin Geng

    2015-01-01

    Full Text Available Electroacupuncture for the treatment of spinal cord injury has a good clinical curative effect, but the underlying mechanism is unclear. In our experiments, the spinal cord of adult Sprague-Dawley rats was clamped for 60 seconds. Dazhui (GV14 and Mingmen (GV4 acupoints of rats were subjected to electroacupuncture. Enzyme-linked immunosorbent assay revealed that the expression of serum inflammatory factors was apparently downregulated in rat models of spinal cord injury after electroacupuncture. Hematoxylin-eosin staining and immunohistochemistry results demonstrated that electroacupuncture contributed to the proliferation of neural stem cells in rat injured spinal cord, and suppressed their differentiation into astrocytes. Real-time quantitative PCR and western blot assays showed that electroacupuncture inhibited activation of the Notch signaling pathway induced by spinal cord injury. These findings indicate that electroacupuncture repaired the injured spinal cord by suppressing the Notch signaling pathway and promoting the proliferation of endogenous neural stem cells.

  17. The Effect of Intrathecal Administration of Muscimol on Modulation of Neuropathic Pain Symptoms Resulting from Spinal Cord Injury; an Experimental Study

    Directory of Open Access Journals (Sweden)

    Marjan Hosseini

    2014-09-01

    Full Text Available Introduction: Neuropathic pain can be very difficult to treat and it is one of the important medical challenging about pain treatments. Muscimol as a new agonist of gamma-Aminobutyric acid receptor type A (GABAA have been introduced for pain management. Thus, the present study was performed to evaluate the pain alleviating effect of intrathecal injection of different doses of muscimol as GABAA receptor agonist in spinal cord injury (SCI model of neuropathic pain. Methods: In the present experimental study male Wistar rats were treated by muscimol 0.01, 0.1 or 1 µg/10ul, intrathecally (i.t. three weeks after induction of spinal cord injury using compression injury model. Neuropathic pain symptoms were assessed at before treatment, 15 minutes, one hour and three hours after muscimol administration. The time of peak effect and optimum dosage was assessed by repeated measures analysis of variance and analysis of covariance, respectively. Results: Muscimol with the dose of 0.01 µg in 15 minutes caused to improve the thermal hyperalgesia (df: 24, 5; F= 6.6; p<0.001, mechanical hyperalgesia (df: 24, 5; F= 7.8; p<0.001, cold allodynia (df: 24, 5; F= 6.96; p<0.001, and mechanical allodynia (df: 24, 5; F= 15.7; p<0.001. The effect of doses of 0.1 µg and 1 µg were also significant. In addition, the efficacy of different doses of muscimol didn't have difference on thermal hyperalgesia (df: 24, 5; F= 1.52; p= 0.24, mechanical hyperalgesia (df: 24, 5; F= 0.3; p= -0.75, cold allodynia (df: 24, 5; F= 0.8; p= -0.56, and mechanical allodynia (df: 24, 5; F= 1.75; p= 0.86. Conclusion: The finding of the present study revealed that using muscimol with doses of 0.01µg, 0.1µg, and 1 µg reduces the symptoms of neuropathic pain. Also the effect of GABAA agonist is short term and its effectiveness gradually decreases by time.

  18. Effect of acute intermittent hypoxia on motor function in individuals with chronic spinal cord injury following ibuprofen pretreatment: A pilot study.

    Science.gov (United States)

    Lynch, Meaghan; Duffell, Lynsey; Sandhu, Milap; Srivatsan, Sudarshan; Deatsch, Kelly; Kessler, Allison; Mitchell, Gordon S; Jayaraman, Arun; Rymer, William Zev

    2017-05-01

    Acute intermittent hypoxia (AIH) enhances lower extremity motor function in humans with chronic incomplete spinal cord injury (SCI). AIH-induced spinal plasticity is inhibited by systemic inflammation in animal models. Since SCI is frequently associated with systemic inflammation in humans, we tested the hypothesis that pretreatment with the anti-inflammatory agent ibuprofen enhances the effects of AIH. A randomized, double-blinded, placebo-controlled crossover design was used. Nine adults (mean age 51.1 ± 13.1 years) with chronic motor-incomplete SCI (7.7 ± 6.3 years post-injury) received a single dose of ibuprofen (800 mg) or placebo, 90 minutes prior to AIH. For AIH, 9% O 2 for 90 seconds was interspersed with 21% O 2 for 60 seconds. Maximal voluntary ankle plantar flexion isometric torque was assessed prior to, and at 0, 30, and 60 minutes post-AIH. Surface electromyography (EMG) of plantar flexor muscles was also recorded. Torque increased significantly after AIH at 30 (P = 0.007; by ∼20%) and 60 (P Ibuprofen did not augment the effects of AIH. EMG activity did not increase significantly after AIH; however, there was a significant association between increases in torque and EMG in both gastrocnemius (R 2  = 0.17, P ibuprofen pretreatment. Our study re-confirms the ability of AIH to enhance leg strength in persons with chronic incomplete SCI.

  19. [Impact of animal-assisted intervention on rehabilitation of patients with spinal cord injury].

    Science.gov (United States)

    Zsoldos, Amanda; Sátori, Agnes; Zana, Agnes

    2014-09-28

    The animal-assisted programs represent an interdisciplinary approach. They can be integrated into preventive, therapeutic and rehabilitative processes as complementary methods. The aim of the study was to promote the psychological adaptation and social reintegration of patients who suffered spinal cord injury, as well as reducing depression and feelings of isolation caused by the long hospitalization. The hypothesis of the authors was that the animal-assisted intervention method can be effectively inserted into the rehabilitation process of individuals with spinal cord injury as complementary therapy. 15 adults with spinal cord injury participated in the five-week program, twice a week. Participants first filled out a questionnaire on socio-demographics, and after completion of the program they participated in a short, directed interview with open questions. During the field-work, after observing the participants, qualitative data analysis was performed. The results suggest that the therapeutic animal induced a positive effect on the emotional state of the patients. Participants acquired new skills and knowledge, socialization and group cohesion had been improved. The authors conclude that the animal-assisted activity complemented by therapeutic elements can be beneficial in patients undergoing spinal cord injury rehabilitation and that knowledge obtained from the study can be helpful in the development of a future animal-assisted therapy program for spinal cord injury patients.

  20. How Do I Deal with Depression and Adjustment to My Spinal Cord Injury?

    Medline Plus

    Full Text Available ... cord injury population -- affecting about 1 in 5 people. There are treatments available to ease the symptoms ... booklet, What You Should Know, A Guide for People with Spinal Cord Injury, on navigating depression following ...

  1. Men with spinal cord injury have a smaller prostate than men without

    DEFF Research Database (Denmark)

    Hvarness, Helle; Jakobsen, Henrik; Biering-Sørensen, Fin

    2007-01-01

    To compare prostate volume and number of ejaculations in men with and without spinal cord injury (SCI).......To compare prostate volume and number of ejaculations in men with and without spinal cord injury (SCI)....

  2. How Do I Deal with Depression and Adjustment to My Spinal Cord Injury?

    Medline Plus

    Full Text Available ... to arm yourself with information on what a spinal cord injury is, and what it means in terms ... or negative thoughts. Depression is common in the spinal cord injury population -- affecting about 1 in 5 people. ...

  3. Lifestyle and health conditions of adults with spinal cord injury

    Directory of Open Access Journals (Sweden)

    Inacia Sátiro Xavier de França

    2014-07-01

    Full Text Available Objective. To describe the lifestyle of adults with spinal cord injury and explore its relation with some health conditions. Methodology. Cross sectional study, in which a questionnaire containing sociodemographic, habits and health conditions variables was used. Forty-seven people with spinal cord injury participated and answered the self-report questionnaire. Results. The group under study was predominantly male (92%, under 40 years of age (47%, and had low educational level (76%. The most frequent risk factors related to the lifestyle were: smoking (28%, alcohol consumption (36%, coffee consumption (92% and being physically inactive (64%. Association was found between having four or more risk factors related to lifestyle and the loss of appetite, as well as constipation. Conclusion. The actual inadequate lifestyle is associated with the health conditions of patients, and the nursing team should pay special attention to the education and promotion of health related to people with spinal cord injury.

  4. Lifestyle and health conditions of adults with spinal cord injury.

    Science.gov (United States)

    Xavier de França, Inacia Sátiro; Cruz Enders, Bertha; Silva Coura, Alexsandro; Pereira Cruz, Giovanna Karinny; da Silva Aragão, Jamilly; Carvalho de Oliveira, Déborah Raquel

    2014-01-01

    . To describe the lifestyle of adults with spinal cord injury and explore its relation with some health conditions. Cross sectional study, in which a questionnaire containing sociodemographic, habits and health conditions variables was used. Forty-seven people with spinal cord injury participated and answered the self-report questionnaire. The group under study was predominantly male (92%), under 40 years of age (47%), and had low educational level (76%). The most frequent risk factors related to the lifestyle were: smoking (28%), alcohol consumption (36%), coffee consumption (92%) and being physically inactive (64%). Association was found between having four or more risk factors related to lifestyle and the loss of appetite, as well as constipation. . The actual inadequate lifestyle is associated with the health conditions of patients, and the nursing team should pay special attention to the education and promotion of health related to people with spinal cord injury.

  5. Targeting Lumbar Spinal Neural Circuitry by Epidural Stimulation to Restore Motor Function After Spinal Cord Injury

    OpenAIRE

    Minassian, Karen; McKay, W. Barry; Binder, Heinrich; Hofstoetter, Ursula S.

    2016-01-01

    Epidural spinal cord stimulation has a long history of application for improving motor control in spinal cord injury. This review focuses on its resurgence following the progress made in understanding the underlying neurophysiological mechanisms and on recent reports of its augmentative effects upon otherwise subfunctional volitional motor control. Early work revealed that the spinal circuitry involved in lower-limb motor control can be accessed by stimulating through electrodes placed epidur...

  6. Bipedal locomotion of bonnet macaques after spinal cord injury.

    Science.gov (United States)

    Babu, Rangasamy Suresh; Anand, P; Jeraud, Mathew; Periasamy, P; Namasivayam, A

    2007-10-01

    Experimental studies concerning the analysis of locomotor behavior in spinal cord injury research are widely performed in rodent models. The purpose of this study was to quantitatively evaluate the degree of functional recovery in reflex components and bipedal locomotor behavior of bonnet macaques (Macaca radiata) after spinal contusive injury. Six monkeys were tested for various reflex components (grasping, righting, hopping, extension withdrawal) and were trained preoperatively to walk in bipedal fashion on the simple and complex locomotor runways (narrow beam, grid, inclined plane, treadmill) of this investigation. The overall performance of the animals'motor behavior and the functional status of limb movements during bipedal locomotion were graded by the Combined Behavioral Score (CBS) system. Using the simple Allen weight-drop technique, a contusive injury was produced by dropping a 13-g weight from a height of 30 cm to the exposed spinal cord at the T12-L1 vertebral level of the trained monkeys. All the monkeys showed significant impairments in every reflex activity and in walking behavior during the early part of the postoperative period. In subsequent periods, the animals displayed mild alterations in certain reflex responses, such as grasping, extension withdrawal, and placing reflexes, which persisted through a 1-year follow-up. The contused animals traversed locomotor runways--narrow beam, incline plane, and grid runways--with more steps and few errors, as evaluated with the CBS system. Eventually, the behavioral performance of all spinal-contused monkeys recovered to near-preoperative level by the fifth postoperative month. The findings of this study reveal the recovery time course of various reflex components and bipedal locomotor behavior of spinal-contused macaques on runways for a postoperative period of up to 1 year. Our spinal cord research in primates is advantageous in understanding the characteristics of hind limb functions only, which possibly

  7. Patterns of morbidity and rehospitalisation following spinal cord injury.

    Science.gov (United States)

    Middleton, J W; Lim, K; Taylor, L; Soden, R; Rutkowski, S

    2004-06-01

    Longitudinal, descriptive design. The aim of this study was to investigate the frequency, cause and duration of rehospitalisations in individuals with spinal cord injury (SCI) living in the community. Australian spinal cord injury unit in collaboration with State Health Department. A data set was created by linking records from the NSW Department of Health Inpatient Statistics Collection between 1989-1990 and 1999-2000 with data from the Royal North Shore Hospital (RNSH) Spinal Cord Injuries Database using probabilistic record linkage techniques. Records excluded were nontraumatic injuries, age recovery (ASIA Grade E) and index admission not at RNSH. Descriptive statistics and time to readmission using survival analysis, stratified by ASIA impairment grade, were calculated. Over the 10-year period, 253 persons (58.6%) required one or more spinal-related readmissions, accounting for 977 rehospitalisations and 15,127 bed-days (average length of stay (ALOS) 15.5 days; median 5 days). The most frequent causes for rehospitalisation were genitourinary (24.1% of readmissions), gastrointestinal (11.0%), further rehabilitation (11.0%), skin-related (8.9%), musculoskeletal (8.6%) and psychiatric disorders (6.8%). Pressure sores accounted for only 6.6% of all readmissions, however, contributed a disproportionate number of bed-days (27.9%), with an ALOS of 65.9 (median 49) days and over 50% of readmissions (33 out of 64) occurred in only nine individuals aged under 30 years. Age, level and completeness of neurological impairment, all influenced differential rates of readmission depending on the type of complication. Overall rehospitalisation rates were high in the first 4 years after initial treatment episode, averaging 0.64 readmissions (12.6 bed-days) per person at risk in the first year and fluctuating between 0.52 and 0.61 readmissions (5.1-8.3 bed-days) per person at risk per year between the second to fourth years, before trending downwards to reach 0.35 readmissions (2

  8. Spinal Cord Injury: Hope through Research

    Science.gov (United States)

    ... research? Where can I get more information? Glossary Introduction Until World War II, a serious spinal cord ... muscle, the bony structure appears white on the film. Vertebral misalignment or fracture can be seen within ...

  9. Protective effect of nicotinamide adenine dinucleotide (NAD+) against spinal cord ischemia-reperfusion injury via reducing oxidative stress-induced neuronal apoptosis.

    Science.gov (United States)

    Xie, Lei; Wang, Zhenfei; Li, Changwei; Yang, Kai; Liang, Yu

    2017-02-01

    As previous studies demonstrate that oxidative stress and apoptosis play crucial roles in ischemic pathogenesis and nicotinamide adenine dinucleotide (NAD + ) treatment attenuates oxidative stress-induced cell death among primary neurons and astrocytes as well as significantly reduce cerebral ischemic injury in rats. We used a spinal cord ischemia injury (SCII) model in rats to verify our hypothesis that NAD + could ameliorate oxidative stress-induced neuronal apoptosis. Adult male rats were subjected to transient spinal cord ischemia for 60min, and different doses of NAD + were administered intraperitoneally immediately after the start of reperfusion. Neurological function was determined by Basso, Beattie, Bresnahan (BBB) scores. The oxidative stress level was assessed by superoxide dismutase (SOD) activity and malondialdehyde (MDA) content. The degree of apoptosis was analyzed by deoxyuridinetriphosphate nick-end labeling (TUNEL) staining and protein levels of cleaved caspase-3 and AIF (apoptosis inducing factor). The results showed that NAD + at 50 or 100mg/kg significantly decreased the oxidative stress level and neuronal apoptosis in the spinal cord of ischemia-reperfusion rats compared with saline, as accompanied with the decreased oxidative stress, NAD + administration significantly restrained the neuronal apoptosis after ischemia injury while improved the neurological and motor function. These findings suggested that NAD + might protect against spinal cord ischemia-reperfusion via reducing oxidative stress-induced neuronal apoptosis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Central nociceptive sensitization vs. spinal cord training: Opposing forms of plasticity that dictate function after complete spinal cord injury

    Directory of Open Access Journals (Sweden)

    Adam R Ferguson

    2012-10-01

    Full Text Available The spinal cord demonstrates several forms of plasticity that resemble brain-dependent learning and memory. Among the most studied form of spinal plasticity is spinal memory for noxious (nociceptive stimulation. Numerous papers have described central pain as a spinally-stored memory that enhances future responses to cutaneous stimulation. This phenomenon, known as central sensitization, has broad relevance to a range of pathological conditions. Work from the spinal cord injury (SCI field indicates that the lumbar spinal cord demonstrates several other forms of plasticity, including formal learning and memory. After complete thoracic SCI, the lumbar spinal cord can be trained by delivering stimulation to the hindleg when the leg is extended. In the presence of this response-contingent stimulation the spinal cord rapidly learns to hold the leg in a flexed position, a centrally mediated effect that meets the formal criteria for instrumental (response-outcome learning. Instrumental flexion training produces a central change in spinal plasticity that enables future spinal learning on both the ipsilateral and contralateral leg. However, if stimulation is given in a response-independent manner, the spinal cord develops central maladaptive plasticity that undermines future spinal learning on both legs. The present paper tests for interactions between spinal cord training and central nociceptive sensitization after complete spinal cord transection. We found that spinal training alters future central sensitization by intradermal formalin (24 h post-training. Conversely intradermal formalin impaired future spinal learning (24 h post-injection. Because the NMDA receptor has been implicated in formalin-induced central sensitization, we tested whether pretreatment with NMDA affects spinal learning. We found intrathecal NMDA impaired learning in a dose-dependent fashion, and that this effect endures for at least 24h. These data provide strong evidence for an

  11. The Animal Model of Spinal Cord Injury as an Experimental Pain Model

    OpenAIRE

    Nakae, Aya; Nakai, Kunihiro; Yano, Kenji; Hosokawa, Ko; Shibata, Masahiko; Mashimo, Takashi

    2011-01-01

    Pain, which remains largely unsolved, is one of the most crucial problems for spinal cord injury patients. Due to sensory problems, as well as motor dysfunctions, spinal cord injury research has proven to be complex and difficult. Furthermore, many types of pain are associated with spinal cord injury, such as neuropathic, visceral, and musculoskeletal pain. Many animal models of spinal cord injury exist to emulate clinical situations, which could help to determine common mechanisms of patholo...

  12. Spinal cord injury and its association with blunt head trauma

    Directory of Open Access Journals (Sweden)

    Paiva WS

    2011-09-01

    Full Text Available Wellingson S Paiva, Arthur MP Oliveira, Almir F Andrade, Robson LO Amorim, Leonardo JO Lourenço, Manoel J TeixeiraDivision of Neurosurgery, University of São Paulo, BrazilBackground: Severe and moderate head injury can cause misdiagnosis of a spinal cord injury, leading to devastating long-term consequences. The objective of this study is to identify risk factors involving spine trauma and moderate-to-severe brain injury.Methods: A prospective study involving 1617 patients admitted in the emergency unit was carried out. Of these patients, 180 with moderate or severe head injury were enrolled. All patients were submitted to three-view spine series X-ray and thin cut axial CT scans for spine trauma investigations.Results: 112 male patients and 78 female patients, whose ages ranged from 11 to 76 years (mean age, 34 years. The most common causes of brain trauma were pedestrians struck by motor vehicles (31.1%, car crashes (27.7%, and falls (25%. Systemic lesions were present in 80 (44.4% patients and the most common were fractures, and lung and spleen injuries. 52.8% had severe and 47.2% moderate head trauma. Fourteen patients (7.8% suffered spinal cord injury (12 in cervical spine, one in lumbar, and one thoracic spine. In elderly patients, the presence of associated lesions and Glasgow Coma Scale (GCS < 9 were statistically significant as risk factors (P < 0.05 for spine injury.Conclusion: Spinal cord injury related to moderate and severe brain trauma usually affects the cervical spine. The incidence of spinal lesions and GCS < 9 points were related to greater incidence of spinal cord injury.Keywords: head injury, spine trauma, risk factors

  13. Barriers to Physical Activity in Individuals with Spinal Cord Injury

    DEFF Research Database (Denmark)

    Roberton, Terri; Bucks, Romola S.; Skinner, Timothy C.

    2011-01-01

    This study examined barriers to physical activity reported individuals with spinal cord injury (SCI) and the degree to which these barriers differed across varying degrees of independence. Participants were 65 individuals recruited from the Western Australian Spinal Cord Injury database. Data...... on physical activity participation and perceived barriers to physical activity participation were collected using a cross-sectional survey and analysed using independent samples t-tests. We found that, regardless of level of ambulation or ability to transfer, few participants reported being physically active....... While there were no significant differences in the amount of barriers reported by individuals with different levels of independence, the type of barriers reported varied across groups....

  14. Nontraumatic spinal cord injury: etiology, demography and clinics

    OpenAIRE

    Quintana-Gonzales, Asencio; Dirección Ejecutiva de Investigación, Docencia y Rehabilitación Integral en Funciones Motoras, Instituto Nacional de Rehabilitación. Callao, Perú. Médico Rehabilitador.; Sotomayor-Espichan, Rosa; Departamento de Investigación, Docencia y Rehabilitación Integral en Lesiones Medulares, Instituto Nacional de Rehabilitación. Callao, Perú. Médico Rehabilitado.; Martínez-Romero, María; Departamento de Investigación, Docencia y Rehabilitación Integral en Lesiones Medulares, Instituto Nacional de Rehabilitación. Callao, Perú. Médico Rehabilitador.; Kuroki-García, César; Departamento de Investigación, Docencia y Rehabilitación Integral en Unidad Motora y Dolor, Instituto Nacional de Rehabilitación. Callao, Perú. Médico Rehabilitador.

    2014-01-01

    We performed a retrospective and descriptive cross-sectional; study in 210 hospitalized patients with spinal cord injury at the National Institute of Rehabilitation (INR), Callao, Peru from 2000-2006. The goal was to describe etiology, and clinical and socio-demographic characteristics of non traumatic spinal cord injuries (LMNT). We found a prevalence of 27 % for LMNT, average age at onset of 32.0 years, male gender 50.5 %, and secondary education completed in 41.9 %, poverty 90.5 %. The inf...

  15. Cell therapy for spinal cord injury informed by electromagnetic waves.

    Science.gov (United States)

    Finnegan, Jack; Ye, Hui

    2016-10-01

    Spinal cord injury devastates the CNS, besetting patients with symptoms including but not limited to: paralysis, autonomic nervous dysfunction, pain disorders and depression. Despite the identification of several molecular and genetic factors, a reliable regenerative therapy has yet to be produced for this terminal disease. Perhaps the missing piece of this puzzle will be discovered within endogenous electrotactic cellular behaviors. Neurons and stem cells both show mediated responses (growth rate, migration, differentiation) to electromagnetic waves, including direct current electric fields. This review analyzes the pathophysiology of spinal cord injury, the rationale for regenerative cell therapy and the evidence for directing cell therapy via electromagnetic waves shown by in vitro experiments.

  16. Cannabis use in persons with traumatic spinal cord injury in Denmark

    DEFF Research Database (Denmark)

    Andresen, Sven R; Biering-Sørensen, Fin; Hagen, Ellen Merete

    2017-01-01

    OBJECTIVE: To evaluate recreational and medical cannabis use in individuals with traumatic spinal cord injury, including reasons and predictors for use, perceived benefits and negative consequences. DESIGN: Cross-sectional survey in Denmark. METHODS: A 35-item questionnaire was sent to 1,101 pati......OBJECTIVE: To evaluate recreational and medical cannabis use in individuals with traumatic spinal cord injury, including reasons and predictors for use, perceived benefits and negative consequences. DESIGN: Cross-sectional survey in Denmark. METHODS: A 35-item questionnaire was sent to 1......,101 patients with spinal cord injury who had been in contact with a rehabilitation centre between 1990 and 2012. RESULTS: A total of 537 participants completed the questionnaire. Of these, 36% had tried cannabis at least once and 9% were current users. Of current users, 79% had started to use cannabis before...... their spinal cord injury. The main reason for use was pleasure, but 65% used cannabis partly for spinal cord injury-related consequences and 59% reported at least good effect on pain and spasticity. Negative consequences of use were primarily inertia and feeling quiet/subdued. Lower age, living in rural areas...

  17. DIFFERENT TYPES OF INSPIRATORY MUSCLE TRAINING PROVIDES BETTERMENT IN ALTERED PULMONARY FUNCTIONS IN UPPER THORACIC SPINAL CORD INJURIES

    Directory of Open Access Journals (Sweden)

    Muruganandam Periyasamy

    2016-08-01

    Full Text Available Background: Respiratory problems are usual in upper thoracic spinal cord injuries when compared to Lower thoracic spinal cord injuries. Generally there are frequent respiratory complications in the individuals with spinal cord injuries. The complications of the respiratory system are severe and more prevalent source of morbidity and mortality after the spinal cord injury due to the inefficient breathing capacity including inspiratory and expiratory abilities. The present study represents the inspiratory muscle training especially in upper thoracic spinal cord injury patients to assess the improvement in the pulmonary functions. Methods: Twenty five patients with the age between 25 -40 years with the upper spinal cord injuries were selected in the present study in order to assess the efficacy of the training. Several types of exercises were practiced including diaphragmatic breathing exercises, incentive spirometry, active cycle of breathing technique and weight training. COPD Conditions, Chest wall deformities, Hypertensive patients, Cardio vascular problems were excluded in the study. Results: The results from the study showed that significant changes were found in the patients treated with all the above mentioned techniques. Axillary level, nipple level, Xiphisternum levels were analysed and the results found to be significant after the treatment. Incentive spirometry and peak flow meter observations were also found to be significant when compare to the pretreatment. Conclusion: The present study conclude that the combined effect of incentive spriometry, diaphragmatic breathing exercises, and active cycle of breathing technique is more effective in improving the pulmonary functions in upper thoracic spinal cord injuries than single method efficiency.

  18. Successful spinal cord stimulation for neuropathic below-level spinal cord injury pain following complete paraplegia: a case report.

    Science.gov (United States)

    Reck, Tim A; Landmann, Gunther

    2017-01-01

    Neuropathic pain is common in patients with spinal cord injury (SCI) and often difficult to treat. We report a case where epidural spinal cord stimulation (SCS) below the level of injury has been successfully applied in a patient with a complete spinal cord lesion. A 53-year-old female presented with neuropathic below-level SCI pain of both lower legs and feet due to complete SCI below T5. Time and pain duration since injury was 2 years. Pain intensity was reported on numeric rating scale with an average of 7/10 (0 meaning no pain, 10 meaning the worst imaginable pain), but also with about 8-10 pain attacks during the day with an intensity of 9/10, which lasted between some minutes and half an hour. SCS was applied below the level of injury at-level T11-L1. After a successful 2 weeks testing period the pulse generator has been implanted permanently with a burst-stimulation pattern. The average pain was reduced to a bearable intensity of 4/10, in addition attacks could be reduced both in frequency and in intensity. This effects lasted for at least three months of follow-up. Even in case of complete SCI, SCS might be effective. Mechanisms of pain relief remain unclear. A modulation of suggested residual spinothalamic tract function may play a role. Further investigation has to be carried out to support this theory.

  19. Mesoporous silica nanoparticles for treating spinal cord injury

    Science.gov (United States)

    White-Schenk, Désirée.; Shi, Riyi; Leary, James F.

    2013-02-01

    An estimated 12,000 new cases of spinal cord injury (SCI) occur every year in the United States. A small oxidative molecule responsible for secondary injury, acrolein, is an important target in SCI. Acrolein attacks essential proteins and lipids, creating a feed-forward loop of oxidative stress in both the primary injury area and the surrounding areas. A small molecule used and FDA-approved for hypertension, hydralazine, has been found to "scavenge" acrolein after injury, but its delivery and short half-life, as well as its hypertension effects, hinder its application for SCI. Nanomedical systems broaden the range of therapeutic availability and efficacy over conventional medicine. They allow for targeted delivery of therapeutic molecules to tissues of interest, reducing side effects of untargeted therapies in unwanted areas. Nanoparticles made from silica form porous networks that can carry therapeutic molecules throughout the body. To attenuate the acrolein cascade and improve therapeutic availability, we have used a one-step, modified Stober method to synthesize two types of silica nanoparticles. Both particles are "stealth-coated" with poly(ethylene) glycol (PEG) (to minimize interactions with the immune system and to increase circulation time), which is also a therapeutic agent for SCI by facilitating membrane repair. One nanoparticle type contains an amine-terminal PEG (SiNP-mPEG-Am) and the other possesses a terminal hydrazide group (SiNP-mPEG-Hz). The former allows for exploration of hydralazine delivery, loading, and controlled release. The latter group has the ability to react with acrolein, allowing the nanoparticle to scavenge directly. The nanoparticles have been characterized and are being explored using neuronal PC-12 cells in vitro, demonstrating the potential of novel silica nanoparticles for use in attenuating secondary injury after SCI.

  20. Methylprednisolone for acute spinal cord injury: an increasingly philosophical debate.

    Science.gov (United States)

    Bowers, Christian A; Kundu, Bornali; Hawryluk, Gregory W J

    2016-06-01

    Following publication of NASCIS II, methylprednisolone sodium succinate (MPSS) was hailed as a breakthrough for patients with acute spinal cord injury (SCI). MPSS use for SCI has since become very controversial and it is our opinion that additional evidence is unlikely to break the stalemate amongst clinicians. Patient opinion has the potential to break this stalemate and we review our recent findings which reported that spinal cord injured patients informed of the risks and benefits of MPSS reported a preference for MPSS administration. We discuss the implications of the current MPSS debate on translational research and seek to address some misconceptions which have evolved. As science has failed to resolve the MPSS debate we argue that the debate is an increasingly philosophical one. We question whether SCI might be viewed as a serious condition like cancer where serious side effects of therapeutics are tolerated even when benefits may be small. We also draw attention to the similarity between the side effects of MPSS and isotretinoin which is prescribed for the cosmetic disorder acne vulgaris. Ultimately we question how patient autonomy should be weighed in the context of current SCI guidelines and MPSS's status as a historical standard of care.

  1. Urodynamic Bladder Patterns in Spinal Cord Injury Patients

    International Nuclear Information System (INIS)

    Aziz, T.; Khan, A. A.; Iqbal, S.; Aziz, U.; Jilani, S.; Ayyub, A.

    2017-01-01

    Objective: To determine the frequency of various neurogenic bladder patterns in patients with traumatic spinal cord injury presenting at Armed Forces Institute of Rehabilitation Medicine Rawalpindi based on urodynamic studies. Study Design: Descriptive cross sectional study. Place and Duration of Study: Armed Forces Institute of Rehabilitation Medicine (AFIRM) Rawalpindi, from Jul 2014 to Jun 2016. Material and Methods: One hundred and forty traumatic spinal cord injury patients fulfilling the inclusion criteria were included both from indoor and outdoor departments through non-probability purposive sampling. Urodynamic studies were performed using the urodynamic equipment at urodynamic laboratory. Data were collected and recorded on specialized proforma by the principal investigator. Results: Among 140 study participants detrusor overactivity was found in 100 patients out of which 76 (76 percent) had thoracic level of injury, 20 (20 percent) had cervical level and 4 (4 percent) had lumbar level of injury. Detrusor areflexia was the bladder pattern in 40 patients out of which 26 (65 percent) had thoracic level of injury, 10 (25 percent) had cervical level, and 4 (10 percent) had lumbar level of injury. Conclusion: Detrusor overactivity was the commonest neurogenic bladder pattern among the traumatic spinal cord injury patients. (author)

  2. Examination of the Combined Effects of Chondroitinase ABC, Growth Factors and Locomotor Training following Compressive Spinal Cord Injury on Neuroanatomical Plasticity and Kinematics

    Science.gov (United States)

    Alluin, Olivier; Fehlings, Michael G.; Rossignol, Serge; Karimi-Abdolrezaee, Soheila

    2014-01-01

    While several cellular and pharmacological treatments have been evaluated following spinal cord injury (SCI) in animal models, it is increasingly recognized that approaches to address the glial scar, including the use of chondroitinase ABC (ChABC), can facilitate neuroanatomical plasticity. Moreover, increasing evidence suggests that combinatorial strategies are key to unlocking the plasticity that is enabled by ChABC. Given this, we evaluated the anatomical and functional consequences of ChABC in a combinatorial approach that also included growth factor (EGF, FGF2 and PDGF-AA) treatments and daily treadmill training on the recovery of hindlimb locomotion in rats with mid thoracic clip compression SCI. Using quantitative neuroanatomical and kinematic assessments, we demonstrate that the combined therapy significantly enhanced the neuroanatomical plasticity of major descending spinal tracts such as corticospinal and serotonergic-spinal pathways. Additionally, the pharmacological treatment attenuated chronic astrogliosis and inflammation at and adjacent to the lesion with the modest synergistic effects of treadmill training. We also observed a trend for earlier recovery of locomotion accompanied by an improvement of the overall angular excursions in rats treated with ChABC and growth factors in the first 4 weeks after SCI. At the end of the 7-week recovery period, rats from all groups exhibited an impressive spontaneous recovery of the kinematic parameters during locomotion on treadmill. However, although the combinatorial treatment led to clear chronic neuroanatomical plasticity, these structural changes did not translate to an additional long-term improvement of locomotor parameters studied including hindlimb-forelimb coupling. These findings demonstrate the beneficial effects of combined ChABC, growth factors and locomotor training on the plasticity of the injured spinal cord and the potential to induce earlier neurobehavioral recovery. However, additional

  3. Beneficial effects of endogenous and exogenous melatonin on neural reconstruction and functional recovery in an animal model of spinal cord injury.

    Science.gov (United States)

    Park, Sookyoung; Lee, Sang-Kil; Park, Kanghui; Lee, Youngjeon; Hong, Yunkyung; Lee, Seunghoon; Jeon, Je-Cheol; Kim, Joo-Heon; Lee, Sang-Rae; Chang, Kyu-Tae; Hong, Yonggeun

    2012-01-01

    The purpose of this study was to investigate the beneficial effects of endogenous and exogenous melatonin on functional recovery in an animal model of spinal cord injury (SCI). Eight-week-old male Sprague-Dawley (SD, 250-260 g) rats were used for contusion SCI surgery. All experimental groups were maintained under one of the following conditions: 12/12-hr light/dark (L/D) or 24:0-hr constant light (LL). Melatonin (10 mg/kg) was injected subcutaneously for 4 wk, twice daily (07:00, 19:00). Locomotor recovery, inducible nitric oxide synthase (iNOS), glial fibrillary acidic protein gene expression, and muscle atrophy-related genes, including muscle atrophy F-box (MAFbx) and muscle-specific ring-finger protein 1 (MuRF1) gene expression were evaluated. Furthermore, autophagic signaling such as Beclin-1 and LC3 protein expression was examined in the spinal cord and in skeletal muscle. The melatonin treatment resulted in increased hind-limb motor function and decreased iNOS mRNA expression in the L/D condition compared with the LL condition (P endogenous melatonin had neuroprotective effects. Furthermore, the MAFbx, MuRF1 mRNA level, and converted LC3 II protein expression were decreased in the melatonin-treated SCI groups under the LL (P exogenous melatonin treatment. Therefore, it seems that both endogenous and exogenous melatonin contribute to neural recovery and to the prevention of skeletal muscle atrophy, promoting functional recovery after SCI. Finally, this study supports the benefit of endogenous melatonin and use of exogenous melatonin as a therapeutic intervention for SCI. © 2011 John Wiley & Sons A/S.

  4. Examination of the combined effects of chondroitinase ABC, growth factors and locomotor training following compressive spinal cord injury on neuroanatomical plasticity and kinematics.

    Directory of Open Access Journals (Sweden)

    Olivier Alluin

    Full Text Available While several cellular and pharmacological treatments have been evaluated following spinal cord injury (SCI in animal models, it is increasingly recognized that approaches to address the glial scar, including the use of chondroitinase ABC (ChABC, can facilitate neuroanatomical plasticity. Moreover, increasing evidence suggests that combinatorial strategies are key to unlocking the plasticity that is enabled by ChABC. Given this, we evaluated the anatomical and functional consequences of ChABC in a combinatorial approach that also included growth factor (EGF, FGF2 and PDGF-AA treatments and daily treadmill training on the recovery of hindlimb locomotion in rats with mid thoracic clip compression SCI. Using quantitative neuroanatomical and kinematic assessments, we demonstrate that the combined therapy significantly enhanced the neuroanatomical plasticity of major descending spinal tracts such as corticospinal and serotonergic-spinal pathways. Additionally, the pharmacological treatment attenuated chronic astrogliosis and inflammation at and adjacent to the lesion with the modest synergistic effects of treadmill training. We also observed a trend for earlier recovery of locomotion accompanied by an improvement of the overall angular excursions in rats treated with ChABC and growth factors in the first 4 weeks after SCI. At the end of the 7-week recovery period, rats from all groups exhibited an impressive spontaneous recovery of the kinematic parameters during locomotion on treadmill. However, although the combinatorial treatment led to clear chronic neuroanatomical plasticity, these structural changes did not translate to an additional long-term improvement of locomotor parameters studied including hindlimb-forelimb coupling. These findings demonstrate the beneficial effects of combined ChABC, growth factors and locomotor training on the plasticity of the injured spinal cord and the potential to induce earlier neurobehavioral recovery. However

  5. Acute injuries of the spinal cord and spine

    International Nuclear Information System (INIS)

    Heinemann, U.; Freund, M.

    2004-01-01

    Spinal injuries may result in severe neurological deficits, especially if the spinal cord or spinal nerve roots are involved. Patients may even die of a spinal shock. Besides presenting the important embryologic and anatomical basis underlying the typical radiological findings of spinal trauma, the trauma mechanisms and the resulting injuries are correlated. Special situations, such as the involvement of the alar ligaments and typical injuries in children, will be discussed as well as specific traumatic patters relevant for imaging. Based on the actual literature and recommendations of professional organizations, an approach is provided to the radiologic evaluation of spinal injuries. Advantages and disadvantages of the individual imaging modalities are presented and discussed. (orig.)

  6. Segmental hypersensitivity and spinothalamic function in spinal cord injury pain

    DEFF Research Database (Denmark)

    Finnerup, Nanna Brix; Sørensen, Leif Hougaard; Biering-Sørensen, Fin

    2007-01-01

    The mechanisms underlying central pain following spinal cord injury (SCI) are unsettled. The purpose of the present study was to examine differences in spinothalamic tract function below injury level and evoked pain in incomplete SCI patients with neuropathic pain below injury level (central pain......-free group. The rostral-caudal extent of the lesion measured by MRI did not differ between the two patient groups, and there were no statistically significant differences in any of the predefined areas of interest on the axial plane images. This study suggests that neuronal hyperexcitability plays a key role...... in central SCI pain and furthermore - in contrast to previous findings - that loss of spinothalamic functions does not appear to be a predictor for central neuropathic pain in spinal cord injury....

  7. Health behavior in persons with spinal cord injury: development and initial validation of an outcome measure.

    Science.gov (United States)

    Pruitt, S D; Wahlgren, D R; Epping-Jordan, J E; Rossi, A L

    1998-10-01

    To describe the development and initial psychometric properties of a new outcome measure for health behaviors that delay or prevent secondary impairments associated with spinal cord injury (SCI). Persons with SCI were surveyed during routine annual physical evaluations. Veterans Affairs Medical Center Spinal Cord Injury Unit, which specializes in primary care for persons with SCI. Forty-nine persons with SCI, aged 19-73 years, 1-50 years post-SCI. The newly developed Spinal Cord Injury Lifestyle Scale (SCILS). Internal consistency is high (alpha = 0.81). Correlations between clinicians' ratings of participants' health behavior and the new SCILS provide preliminary support for construct validity. The SCILS is a brief, self-report measure of health-related behavior in persons with SCI. It is a promising new outcome measure to evaluate the effectiveness of clinical and educational efforts for health maintenance and prevention of secondary impairments associated with SCI.

  8. Advances in regenerative therapies for spinal cord injury: a biomaterials approach

    Directory of Open Access Journals (Sweden)

    Magdalini Tsintou

    2015-01-01

    Full Text Available Spinal cord injury results in the permanent loss of function, causing enormous personal, social and economic problems. Even though neural regeneration has been proven to be a natural mechanism, central nervous system repair mechanisms are ineffective due to the imbalance of the inhibitory and excitatory factors implicated in neuroregeneration. Therefore, there is growing research interest on discovering a novel therapeutic strategy for effective spinal cord injury repair. To this direction, cell-based delivery strategies, biomolecule delivery strategies as well as scaffold-based therapeutic strategies have been developed with a tendency to seek for the answer to a combinatorial approach of all the above. Here we review the recent advances on regenerative/neural engineering therapies for spinal cord injury, aiming at providing an insight to the most promising repair strategies, in order to facilitate future research conduction.

  9. The expression of IL-1β can deteriorate the prognosis of nervous system after spinal cord injury.

    Science.gov (United States)

    Li, Tao; Li, Yu-Tang; Song, Di-Yu

    2018-01-15

    We used Anakinra to inhibit the expression of IL-1β based on the model of spinal cord injury in the rat stomach and explored whether it had a certain neuroprotective effect after spinal cord injury. The spinal cord injury model of four segments (T5-T8) was prepared by using vascular clamp. Thirty rats were randomized to the control group and the experimental group, and the control group used normal saline, while the experimental group used Anakinra after spinal cord injury. The spinal cord tissue was extracted at 6 h and 24 h after the operation to carry out the histopathological evaluation and to analyze the contents of IL-1β and malondialdehyde and the activities of glutathione peroxidase and superoxide dismutase. Edema and inflammatory cell infiltration were obviously seen after spinal cord injury, the IL-1β level in serum was significantly increased, but the activity of glutathione peroxidase, superoxide dismutase and catalase was decreased in the control group compared with the experimental group. The experimental group could increase the activity of antioxidant enzymes, but had no significant effect on malondialdehyde. Anakinra had a certain protective effect through the inhibition of IL-1β on spinal cord injury.

  10. Gastrocnemius muscle contracture after spinal cord injury: a longitudinal study.

    Science.gov (United States)

    Diong, Joanna; Harvey, Lisa A; Kwah, Li Khim; Clarke, Jillian L; Bilston, Lynne E; Gandevia, Simon C; Herbert, Robert D

    2013-07-01

    The aim of this study was to examine changes in passive length and stiffness of the gastrocnemius muscle-tendon unit in people after spinal cord injury. In a prospective longitudinal study, eight wheelchair-dependent participants with severe paralysis were assessed 3 and 12 mos after spinal cord injury. Passive torque-angle data were obtained as the ankle was slowly rotated through range at six knee angles. Differences in passive ankle torque-angle data recorded at different knee angles were used to derive passive length-tension curves of the gastrocnemius muscle-tendon unit. Ultrasound imaging was used to determine fascicle and tendon contributions to the muscle-tendon unit length-tension curves. The participants had ankle contractures (mean [SD] maximum passive ankle dorsiflexion angle, 88 [9] degrees) 3 mos after spinal cord injury. Ankle range did not worsen significantly during the subsequent 9 mos (mean change, -5 degrees; 95% confidence interval, -16 to 6 degrees). There were no changes in the mean slack length or the stiffness of the gastrocnemius muscle-tendon unit or in the slack lengths of the fascicles or the tendon between 3 and 12 mos after spinal cord injury. There were no consistent patterns of the change in slack length or stiffness with the changes in ankle range in the data from the individual participants. This study, the first longitudinal study of muscle length and stiffness after spinal cord injury, showed that the length and the stiffness of the gastrocnemius did not change substantially between 3 and 12 mos after injury.

  11. Hospital- and community-based interventions enhancing (re) employment for people with spinal cord injury : a systematic review

    NARCIS (Netherlands)

    Roels, E. H.; Aertgeerts, B.; Ramaekers, D.; Peers, K.

    Study design: Systematic Review. Objectives: To investigate the effect of interventions enhancing (re) employment following spinal cord injury (SCI). Setting: Studies from multiple countries were included. Methods: MEDLINE, EMBASE, Cochrane Central Register of Controlled Trials (CENTRAL), CINAHL,

  12. Transcutaneous electrical neurostimulation in musculoskeletal pain of acute spinal cord injuries.

    Science.gov (United States)

    Richardson, R R; Meyer, P R; Cerullo, L J

    1980-01-01

    Cervical, thoracic, thoracolumbar, and lumbar fractures associated with physiologic complete or incomplete spinal cord injuries frequently have severe soft-tissue injury as well as severe pain associated with the site or area of injury. Transcutaneous electrical neurostimulation has proved effective in the treatment of various causes of severe acute and chronic intractable pains. We applied this modality to a group of 20 patients who had acute spinal cord injuries and pain associated with severe, extensive soft-tissue injury. Its advantages include ease of application, lack of major complications, increased intestinal peristalsis, and avoidance of narcotic analgesic medications. It also produced significant (greater than 50%) pain relief in 75% of patients treated by transcutaneous electrical neurostimulation.

  13. Effect of Concomitant Pain Medications on Response to Pregabalin in Patients with Postherpetic Neuralgia or Spinal Cord Injury-Related Neuropathic Pain.

    Science.gov (United States)

    Schug, Stephan A; Parsons, Bruce; Almas, Mary; Whalen, Ed

    2017-01-01

    Patients with neuropathic pain (NeP) often receive combination therapy with multiple agents in the hopes of improving both pain and any comorbidities that may be present. While pregabalin is often recommended as a first-line treatment of NeP, few studies have examined the effects of concomitant medications on the efficacy of pregabalin. To examine the effects of concomitant medications on the efficacy and safety of pregabalin for the treatment of NeP. Data were derived from 7 randomized placebo-controlled trials of pregabalin (150, 300, 600, and flexible 150 - 600 mg/d) for the treatment of postherpetic neuralgia (PHN) and 2 randomized placebo-controlled trials for the treatment of NeP due to spinal cord injury (SCI-NeP). On each day, patients rated the severity of their pain and pain-related sleep interference (PRSI) over the previous 24 hours on a scale from 0 to 10, with higher scores indicating greater severity. Patients were also continually monitored for the occurrence of adverse events. A pooled retrospective analyses of data from randomized clinical trials. Changes from baseline in mean weekly pain and PRSI scores were compared between patients who received concomitant NeP medications and patients who did not receive concomitant NeP medications. Results of these comparisons are presented separately for the PHN (through 4, 8, and 12 weeks) and SCI-NeP (through 12 weeks) cohorts. Common adverse events are also presented for each treatment group. Pregabalin significantly improved both pain and PRSI scores relative to placebo at most dose levels and time points examined. Notably, little difference was observed in the extent of therapeutic response to pregabalin between patients who received concomitant NeP medications and patients who did not receive concomitant NeP medications. Additionally, the profile of treatment-emergent adverse events appeared to be largely unaffected by the use of concomitant NeP medications in the pooled patient population. Our analysis

  14. International standards to document remaining autonomic function after spinal cord injury

    DEFF Research Database (Denmark)

    Alexander, M S; Biering-Sørensen, Fin; Bodner, D

    2008-01-01

    -line communication was followed by numerous face to face meetings. The information was then presented in a summary format at a course on Measurement in Spinal Cord Injury, held on June 24, 2006. Subsequent to this it was revised online by the committee members, posted on the websites of both ASIA and ISCo...... function. Based upon current knowledge of the neuroanatomy of autonomic function this paper provides a framework with which to communicate the effects of specific spinal cord injuries on cardiovascular, broncho-pulmonary, sudomotor, bladder, bowel and sexual function....

  15. Cellular therapy after spinal cord injury using neural progenitor cells

    NARCIS (Netherlands)

    Vroemen, Maurice

    2006-01-01

    In this thesis, the possibilities and limitations of cell-based therapies after spinal cord injury are explored. Particularly, the potential of adult derived neural progenitor cell (NPC) grafts to function as a permissive substrate for axonal regeneration was investigated. It was found that syngenic

  16. Human spinal cord injury : motor unit properties and behaviour

    NARCIS (Netherlands)

    Thomas, C. K.; Bakels, R.; Klein, C. S.; Zijdewind, I.

    Spinal cord injury (SCI) results in widespread variation in muscle function. Review of motor unit data shows that changes in the amount and balance of excitatory and inhibitory inputs after SCI alter management of motoneurons. Not only are units recruited up to higher than usual relative forces when

  17. What are the Causes of Spinal Cord Injury?

    Science.gov (United States)

    ... in a New Light An Honest Wheelchair Love Story Seven Helpful Smart Home Devices for People With Disabilities Can’t Work Because of a Spinal Cord Injury? Tags accessibility accident ADA adaptive adaptive equipment Adaptive technology Americans with Disabilities Act Ben Mattlin caregiver Cerebral ...

  18. Sexual health of women with spinal cord injury in Bangladesh

    NARCIS (Netherlands)

    Lubbers, N.P.M; Nuri, R.P; van Brakel, W.H.; Cornielje, H.

    2012-01-01

    Purpose: To identify factors influencing the sexual health of women with spinal cord injury (SCI) in Bangladesh. Methods: This study used both qualitative and quantitative methods. The quantitative part used a case-control design. Cases were women with SCI and controls were age-matched women without

  19. International Spinal Cord Injury Upper Extremity Basic Data Set

    DEFF Research Database (Denmark)

    Biering-Sørensen, F; Bryden, A; Curt, A

    2014-01-01

    OBJECTIVE: To develop an International Spinal Cord Injury (SCI) Upper Extremity Basic Data Set as part of the International SCI Data Sets, which facilitates consistent collection and reporting of basic upper extremity findings in the SCI population. SETTING: International. METHODS: A first draft...

  20. Perceptions of Positive Attitudes toward People with Spinal Cord Injury.

    Science.gov (United States)

    Lys, K.; Pernice, R.

    1995-01-01

    This New Zealand study examined attitudes toward persons with spinal cord injury (SCI) via a survey of 35 people with SCI, 27 SCI rehabilitation workers, 16 outpatient hospital rehabilitation workers, and 37 people from the general population. Results were analyzed in terms of age, ethnic identity, gender, professional training, and amount of…

  1. Substance Use by Persons with Recent Spinal Cord Injuries.

    Science.gov (United States)

    Heinemann, Allen W.; And Others

    Substance use histories were obtained from 103 persons (16 to 63 years of age) with recent spinal cord injuries (SCI). Lifetime exposure to and current use of substances with abuse potential were substantially greater in this sample compared to a like-age national sample. Exposure to and recent use of substances with abuse potential was…

  2. Working mechanisms of a behavioural intervention promoting physical activity in persons with subacute spinal cord injury

    NARCIS (Netherlands)

    Nooijen, Carla F. J.; Stam, Henk J.; Schoenmakers, Imte; Sluis, Tebbe; Post, Marcel; Twisk, Jos; van den Berg-Emons, Rita J. G.

    OBJECTIVE: In order to unravel the working mechanisms that underlie the effectiveness of a behavioural intervention promoting physical activity in persons with subacute spinal cord injury, the aim of this study was to assess the mediating effects of physical and psychosocial factors on the

  3. Reaction to topical capsaicin in spinal cord injury patients with and without central pain

    DEFF Research Database (Denmark)

    Finnerup, Nanna Brix; Pedersen, Louise H.; Terkelsen, Astrid J.

    2007-01-01

    of a spinal cord injury which already is hyperexcitable, would cause enhanced responses in patients with central pain at the level of injury compared to patients without neuropathic pain and healthy controls. Touch, punctuate stimuli, cold stimuli and topical capsaicin was applied above, at, and below injury......Central neuropathic pain is a debilitating and frequent complication to spinal cord injury (SCI). Excitatory input from hyperexcitable cells around the injured grey matter zone is suggested to play a role for central neuropathic pain felt below the level of a spinal cord injury. Direct evidence...... at the level of injury. Keywords: Spinal cord injury; Neuropathic pain; Capsaicin; Neuronal hyperexcitability; Hyperalgesia; Blood flow...

  4. Topiramate as a neuroprotective agent in a rat model of spinal cord injury

    Directory of Open Access Journals (Sweden)

    Firat Narin

    2017-01-01

    Full Text Available Topiramate (TPM is a widely used antiepileptic and antimigraine agent which has been shown to exert neuroprotective effects in various experimental traumatic brain injury and stroke models. However, its utility in spinal cord injury has not been studied extensively. Thus, we evaluated effects of TPM on secondary cellular injury mechanisms in an experimental rat model of traumatic spinal cord injury (SCI. After rat models of thoracic contusive SCI were established by free weight-drop method, TPM (40 mg/kg was given at 12-hour intervals for four times orally. Post TPM treatment, malondialdehyde and protein carbonyl levels were significantly reduced and reduced glutathione levels were increased, while immunoreactivity for endothelial nitric oxide synthase, inducible nitric oxide synthase, and apoptotic peptidase activating factor 1 was diminished in SCI rats. In addition, TPM treatment improved the functional recovery of SCI rats. This study suggests that administration of TPM exerts neuroprotective effects on SCI.

  5. The Lesioned Spinal Cord Is a “New” Spinal Cord: Evidence from Functional Changes after Spinal Injury in Lamprey

    Science.gov (United States)

    Parker, David

    2017-01-01

    comparisons with mammalian systems can be made effects seem to be conserved, improving functional recovery in higher vertebrates will require interventions that generate the optimal spinal cord conditions conducive to recovery. The analyses needed to identify these conditions are difficult in the mammalian spinal cord, but lower vertebrate systems should help to identify the principles of the optimal spinal cord response to injury. PMID:29163065

  6. Propofol promotes spinal cord injury repair by bone marrow mesenchymal stem cell transplantation

    OpenAIRE

    Zhou, Ya-jing; Liu, Jian-min; Wei, Shu-ming; Zhang, Yun-hao; Qu, Zhen-hua; Chen, Shu-bo

    2015-01-01

    Propofol is a neuroprotective anesthetic. Whether propofol can promote spinal cord injury repair by bone marrow mesenchymal stem cells remains poorly understood. We used rats to investigate spinal cord injury repair using bone marrow mesenchymal stem cell transplantation combined with propofol administration via the tail vein. Rat spinal cord injury was clearly alleviated; a large number of newborn non-myelinated and myelinated nerve fibers appeared in the spinal cord, the numbers of CM-Dil-l...

  7. Effects of a visuotemporal cue on walking ability of independent ambulatory subjects with spinal cord injury as compared with healthy subjects.

    Science.gov (United States)

    Pramodhyakul, N; Amatachaya, P; Sooknuan, T; Arayawichanon, P; Amatachaya, S

    2014-03-01

    An experimental, cross-sectional study. To investigate effects of using a visuotemporal cue on the walking ability of independent ambulatory subjects with spinal cord injury (SCI) as compared with healthy subjects. A tertiary rehabilitation center, Thailand. Forty independent ambulatory subjects with SCI and healthy subjects participated in the study (20 subjects per group). All of them were assessed for their walking speed, stride length, cadence and percents of step symmetry under two conditions, including walking at their fastest speed with and without a visuotemporal cue along a 10 m walkway. When walking with a visuotemporal cue, walking speed, stride length and cadence of the subjects were significantly increased from the uncued condition (Pwalking speed and cadence, whereas, subjects with SCI demonstrated significantly higher improvement in stride length as compared with the other group (Pbenefits of using a visuotemporal cue to improve variables relating to walking ability in subjects with intact integrative capability of the brain but with different levels of sensorimotor deterioration. The findings suggest the use of a visuotemporal cue to improve the effectiveness of programs in sport and exercise sciences, and rehabilitation treatments.

  8. Effects of Peer Mentoring on Self-Efficacy and Hospital Readmission After Inpatient Rehabilitation of Individuals With Spinal Cord Injury: A Randomized Controlled Trial.

    Science.gov (United States)

    Gassaway, Julie; Jones, Michael L; Sweatman, W Mark; Hong, Minna; Anziano, Peter; DeVault, Karen

    2017-08-01

    To investigate the effect of intensive peer mentoring on patient-reported outcomes of self-efficacy and unplanned hospital readmissions for persons with spinal cord injury/disease (SCI/D) within the first 6 months after discharge from inpatient rehabilitation. Randomized controlled trial. Nonprofit inpatient rehabilitation hospital specializing in care of persons with SCI/D and brain injury. Patients (N=158) admitted to the SCI/D rehabilitation program whose discharge location was a community setting. Participants (51% with paraplegia and 49% with tetraplegia) were 73% white and 77% men, with a mean age of 38 years. Participants in the experimental group received initial consult/introduction with a peer support program liaison and were assigned a peer mentor, who met with the participant weekly throughout the inpatient stay and made weekly contact by phone, e-mail, or in person for 90 days postdischarge. Participants also were encouraged to participate in regularly scheduled peer support activities. Nonexperimental group participants were introduced to peer support and provided services only on request. General Self-efficacy Scale (adapted to SCI/D), project-developed community integration self-efficacy scale, and patient-reported unplanned rehospitalizations. Growth rate for self-efficacy in the first 6 months postdischarge was significantly higher for experimental group participants than nonexperimental group participants. Experimental group participants also had significantly fewer unplanned hospital days. This study provides evidence that individuals receiving intensive peer mentoring during and after rehabilitation for SCI/D demonstrate greater gains in self-efficacy over time and have fewer days of unplanned rehospitalization in the first 180 days postdischarge. More research is needed to examine the long-term effects of this intervention on health care utilization and the relation between improved health and patient-reported quality of life outcomes

  9. Clinical effectiveness and safety of powered exoskeleton-assisted walking in patients with spinal cord injury: systematic review with meta-analysis.

    Science.gov (United States)

    Miller, Larry E; Zimmermann, Angela K; Herbert, William G

    2016-01-01

    Powered exoskeletons are designed to safely facilitate ambulation in patients with spinal cord injury (SCI). We conducted the first meta-analysis of the available published research on the clinical effectiveness and safety of powered exoskeletons in SCI patients. MEDLINE and EMBASE databases were searched for studies of powered exoskeleton-assisted walking in patients with SCI. Main outcomes were analyzed using fixed and random effects meta-analysis models. A total of 14 studies (eight ReWalk™, three Ekso™, two Indego(®), and one unspecified exoskeleton) representing 111 patients were included in the analysis. Training programs were typically conducted three times per week, 60-120 minutes per session, for 1-24 weeks. Ten studies utilized flat indoor surfaces for training and four studies incorporated complex training, including walking outdoors, navigating obstacles, climbing and descending stairs, and performing activities of daily living. Following the exoskeleton training program, 76% of patients were able to ambulate with no physical assistance. The weighted mean distance for the 6-minute walk test was 98 m. The physiologic demand of powered exoskeleton-assisted walking was 3.3 metabolic equivalents and rating of perceived exertion was 10 on the Borg 6-20 scale, comparable to self-reported exertion of an able-bodied person walking at 3 miles per hour. Improvements in spasticity and bowel movement regularity were reported in 38% and 61% of patients, respectively. No serious adverse events occurred. The incidence of fall at any time during training was 4.4%, all occurring while tethered using a first-generation exoskeleton and none resulting in injury. The incidence of bone fracture during training was 3.4%. These risks have since been mitigated with newer generation exoskeletons and refinements to patient eligibility criteria. Powered exoskeletons allow patients with SCI to safely ambulate in real-world settings at a physical activity intensity conducive to

  10. Clinical effectiveness and safety of powered exoskeleton-assisted walking in patients with spinal cord injury: systematic review with meta-analysis

    Science.gov (United States)

    Miller, Larry E; Zimmermann, Angela K; Herbert, William G

    2016-01-01

    Background Powered exoskeletons are designed to safely facilitate ambulation in patients with spinal cord injury (SCI). We conducted the first meta-analysis of the available published research on the clinical effectiveness and safety of powered exoskeletons in SCI patients. Methods MEDLINE and EMBASE databases were searched for studies of powered exoskeleton-assisted walking in patients with SCI. Main outcomes were analyzed using fixed and random effects meta-analysis models. Results A total of 14 studies (eight ReWalk™, three Ekso™, two Indego®, and one unspecified exoskeleton) representing 111 patients were included in the analysis. Training programs were typically conducted three times per week, 60–120 minutes per session, for 1–24 weeks. Ten studies utilized flat indoor surfaces for training and four studies incorporated complex training, including walking outdoors, navigating obstacles, climbing and descending stairs, and performing activities of daily living. Following the exoskeleton training program, 76% of patients were able to ambulate with no physical assistance. The weighted mean distance for the 6-minute walk test was 98 m. The physiologic demand of powered exoskeleton-assisted walking was 3.3 metabolic equivalents and rating of perceived exertion was 10 on the Borg 6–20 scale, comparable to self-reported exertion of an able-bodied person walking at 3 miles per hour. Improvements in spasticity and bowel movement regularity were reported in 38% and 61% of patients, respectively. No serious adverse events occurred. The incidence of fall at any time during training was 4.4%, all occurring while tethered using a first-generation exoskeleton and none resulting in injury. The incidence of bone fracture during training was 3.4%. These risks have since been mitigated with newer generation exoskeletons and refinements to patient eligibility criteria. Conclusion Powered exoskeletons allow patients with SCI to safely ambulate in real-world settings at

  11. The effects of the Nintendo™ Wii Fit on gait, balance, and quality of life in individuals with incomplete spinal cord injury

    Science.gov (United States)

    Feinn, Richard; Chui, Kevin; Cheng, M. Samuel

    2015-01-01

    Purpose To assess the effects of virtual reality using the NintendoTM Wii Fit on balance, gait, and quality of life in ambulatory individuals with incomplete spinal cord injury (iSCI). Relevance There is a need for continued research to support effective treatment techniques in individuals with iSCI to maximize each individual's potential functional performance. Subjects Five males with a mean age of 58.6 years who had an iSCI and were greater than one-year post injury. Methods An interrupted time series design with three pre-tests over three weeks, a post-test within one week of the intervention, and a four-week follow up. Outcome measures: gait speed, timed up and go (TUG), forward functional reach test (FFRT) and lateral functional reach test (LFRT), RAND SF-36. Intervention consisted of one-hour sessions with varied games using the Nintendo Wii Fit twice per week for seven weeks. Survey data was also collected at post-test. Results There were statistically significant changes found in gait speed and functional reach. The changes were also maintained at the four-week follow up post-test. Survey reports suggested improvements in balance, endurance, and mobility with daily tasks at home. Conclusion All subjects who participated in training with the NintendoTM Wii Fit demonstrated statistically significant improvements in gait speed and functional reach after seven weeks of training. Given the potential positive impact that the NintendoTM Wii Fit has on functional reach and gait speed in patients with iSCI, physical therapists may want to incorporate these activities as part of a rehabilitation program. PMID:25613853

  12. Transplantation of neurotrophin-3-transfected bone marrow mesenchymal stem cells for the repair of spinal cord injury.

    Science.gov (United States)

    Dong, Yuzhen; Yang, Libin; Yang, Lin; Zhao, Hongxing; Zhang, Chao; Wu, Dapeng

    2014-08-15

    Bone marrow mesenchymal stem cell transplantation has been shown to be therapeutic in the repair of spinal cord injury. However, the low survival rate of transplanted bone marrow mesenchymal stem cells in vivo remains a problem. Neurotrophin-3 promotes motor neuron survival and it is hypothesized that its transfection can enhance the therapeutic effect. We show that in vitro transfection of neurotrophin-3 gene increases the number of bone marrow mesenchymal stem cells in the region of spinal cord injury. These results indicate that neurotrophin-3 can promote the survival of bone marrow mesenchymal stem cells transplanted into the region of spinal cord injury and potentially enhance the therapeutic effect in the repair of spinal cord injury.

  13. Maladaptive spinal plasticity opposes spinal learning and recovery in spinal cord injury

    Science.gov (United States)

    Ferguson, Adam R.; Huie, J. Russell; Crown, Eric D.; Baumbauer, Kyle M.; Hook, Michelle A.; Garraway, Sandra M.; Lee, Kuan H.; Hoy, Kevin C.; Grau, James W.

    2012-01-01

    Synaptic plasticity within the spinal cord has great potential to facilitate recovery of function after spinal cord injury (SCI). Spinal plasticity can be induced in an activity-dependent manner even without input from the brain after complete SCI. A mechanistic basis for these effects is provided by research demonstrating that spinal synapses have many of the same plasticity mechanisms that are known to underlie learning and memory in the brain. In addition, the lumbar spinal cord can sustain several forms of learning and memory, including limb-position training. However, not all spinal plasticity promotes recovery of function. Central sensitization of nociceptive (pain) pathways in the spinal cord may emerge in response to various noxious inputs, demonstrating that plasticity within the spinal cord may contribute to maladaptive pain states. In this review we discuss interactions between adaptive and maladaptive forms of activity-dependent plasticity in the spinal cord below the level of SCI. The literature demonstrates that activity-dependent plasticity within the spinal cord must be carefully tuned to promote adaptive spinal training. Prior work from our group has shown that stimulation that is delivered in a limb position-dependent manner or on a fixed interval can induce adaptive plasticity that promotes future spinal cord learning and reduces nociceptive hyper-reactivity. On the other hand, stimulation that is delivered in an unsynchronized fashion, such as randomized electrical stimulation or peripheral skin injuries, can generate maladaptive spinal plasticity that undermines future spinal cord learning, reduces recovery of locomotor function, and promotes nociceptive hyper-reactivity after SCI. We review these basic phenomena, how these findings relate to the broader spinal plasticity literature, discuss the cellular and molecular mechanisms, and finally discuss implications of these and other findings for improved rehabilitative therapies after SCI. PMID

  14. Autonomic Nervous System in Paralympic Athletes with Spinal Cord Injury.

    Science.gov (United States)

    Walter, Matthias; Krassioukov, Andrei V

    2018-05-01

    Individuals sustaining a spinal cord injury (SCI) frequently suffer from sensorimotor and autonomic impairment. Damage to the autonomic nervous system results in cardiovascular, respiratory, bladder, bowel, and sexual dysfunctions, as well as temperature dysregulation. These complications not only impede quality of life, but also affect athletic performance of individuals with SCI. This article summarizes existing evidence on how damage to the spinal cord affects the autonomic nervous system and impacts the performance in athletes with SCI. Also discussed are frequently used performance-enhancing strategies, with a special focus on their legal aspect and implication on the athletes' health. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Effect and reporting bias of RhoA/ROCK-blockade intervention on locomotor recovery after spinal cord injury: a systematic review and meta-analysis.

    Science.gov (United States)

    Watzlawick, Ralf; Sena, Emily S; Dirnagl, Ulrich; Brommer, Benedikt; Kopp, Marcel A; Macleod, Malcolm R; Howells, David W; Schwab, Jan M

    2014-01-01

    Blockade of small GTPase-RhoA signaling pathway is considered a candidate translational strategy to improve functional outcome after spinal cord injury (SCI) in humans. Pooling preclinical evidence by orthodox meta-analysis is confounded by missing data (publication bias). To conduct a systematic review and meta-analysis of RhoA/Rho-associated coiled-coil containing protein kinase (ROCK) blocking approaches to (1) analyze the impact of bias that may lead to inflated effect sizes and (2) determine the normalized effect size of functional locomotor recovery after experimental thoracic SCI. We conducted a systematic search of PubMed, EMBASE, and Web of Science and hand searched related references. Studies were selected if they reported the effect of RhoA/ROCK inhibitors (C3-exoenzmye, fasudil, Y-27632, ibuprofen, siRhoA, and p21) in experimental spinal cord hemisection, contusion, or transection on locomotor recovery measured by the Basso, Beattie, and Bresnahan score or the Basso Mouse Scale for Locomotion. Two investigators independently assessed the identified studies. Details of individual study characteristics from each publication were extracted and effect sizes pooled using a random effects model. We assessed risk for bias using a 9-point-item quality checklist and calculated publication bias with Egger regression and the trim and fill method. A stratified meta-analysis was used to assess the impact of study characteristics on locomotor recovery. Thirty studies (725 animals) were identified. RhoA/ROCK inhibition was found to improve locomotor outcome by 21% (95% CI, 16.0-26.6). Assessment of publication bias by the trim and fill method suggested that 30% of experiments remain unpublished. Inclusion of these theoretical missing studies suggested a 27% overestimation of efficacy, reducing the overall efficacy to a 15% improvement in locomotor recovery. Low study quality was associated with larger estimates of neurobehavioral outcome. Taking into account

  16. Locomotor recovery after spinal cord contusion injury in rats is improved by spontaneous exercise

    NARCIS (Netherlands)

    Gispen, W.H.; Meeteren, N.L. van; Eggers, L.; Lankhorst, A.J.; Hamers, F.P.

    2003-01-01

    We have recently shown that enriched environment (EE) housing significantly enhances locomotor recovery following spinal cord contusion injury (SCI) in rats. As the type and intensity of locomotor training with EE housing are rather poorly characterized, we decided to compare the effectiveness of EE

  17. Treatment of Pain and Autonomic Dysreflexia in Spinal Cord Injury with Deep Brain Stimulation

    Science.gov (United States)

    2015-10-01

    currently investigating the effects of CG stimulation in subjects with debilitating pain due to cervical or thoracic SCI. This study stemmed from...had a low thoracic injury and pain in lumbar dermatomes, whereas Subject 1 had mainly mid- cervical pain that responded minimally to DBS and matched...AWARD NUMBER: W81XWH-12-1-0559 TITLE: Treatment of Pain and Autonomic Dysreflexia in Spinal Cord Injury with Deep Brain Stimulation PRINCIPAL

  18. One day of motor training with amphetamine impairs motor recovery following spinal cord injury.

    Science.gov (United States)

    Wong, Jamie K; Steward, Oswald

    2012-02-01

    It has previously been reported that a single dose of amphetamine paired with training on a beam walking task can enhance locomotor recovery following brain injury (Feeney et al., 1982). Here, we investigated whether this same drug/training regimen could enhance functional recovery following either thoracic (T9) or cervical (C5) spinal cord injury. Different groups of female Sprague-Dawley rats were trained on a beam walking task, and in a straight alley for assessment of hindlimb locomotor recovery using the BBB locomotor scale. For rats that received C5 hemisections, forelimb grip strength was assessed using a grip strength meter. Three separate experiments assessed the consequences of training rats on the beam walking task 24 h following a thoracic lateral hemisection with administration of either amphetamine or saline. Beginning 1 h following drug administration, rats either received additional testing/retraining on the beam hourly for 6 h, or they were returned to their home cages without further testing/retraining. Rats with thoracic spinal cord injuries that received amphetamine in conjunction with testing/retraining on the beam at 1 day post injury (DPI) exhibited significantly impaired recovery on the beam walking task and BBB. Rats with cervical spinal cord injuries that received training with amphetamine also exhibited significant impairments in beam walking and locomotion, as well as impairments in gripping and reaching abilities. Even when administered at 14 DPI, the drug/training regimen significantly impaired reaching ability in cervical spinal cord injured rats. Impairments were not seen in rats that received amphetamine without training. Histological analyses revealed that rats that received training with amphetamine had significantly larger lesions than saline controls. These data indicate that an amphetamine/training regimen that improves recovery after cortical injury has the opposite effect of impairing recovery following spinal cord injury

  19. Modification of spasticity by transcutaneous spinal cord stimulation in individuals with incomplete spinal cord injury

    Science.gov (United States)

    Hofstoetter, Ursula S.; McKay, William B.; Tansey, Keith E.; Mayr, Winfried; Kern, Helmut; Minassian, Karen

    2014-01-01

    Context/objective To examine the effects of transcutaneous spinal cord stimulation (tSCS) on lower-limb spasticity. Design Interventional pilot study to produce preliminary data. Setting Department of Physical Medicine and Rehabilitation, Wilhelminenspital, Vienna, Austria. Participants Three subjects with chronic motor-incomplete spinal cord injury (SCI) who could walk ≥10 m. Interventions Two interconnected stimulating skin electrodes (Ø 5 cm) were placed paraspinally at the T11/T12 vertebral levels, and two rectangular electrodes (8 × 13 cm) on the abdomen for the reference. Biphasic 2 ms-width pulses were delivered at 50 Hz for 30 minutes at intensities producing paraesthesias but no motor responses in the lower limbs. Outcome measures The Wartenberg pendulum test and neurological recordings of surface-electromyography (EMG) were used to assess effects on exaggerated reflex excitability. Non-functional co-activation during volitional movement was evaluated. The timed 10-m walk test provided measures of clinical function. Results The index of spasticity derived from the pendulum test changed from 0.8 ± 0.4 pre- to 0.9 ± 0.3 post-stimulation, with an improvement in the subject with the lowest pre-stimulation index. Exaggerated reflex responsiveness was decreased after tSCS across all subjects, with the most profound effect on passive lower-limb movement (pre- to post-tSCS EMG ratio: 0.2 ± 0.1), as was non-functional co-activation during voluntary movement. Gait speed values increased in two subjects by 39%. Conclusion These preliminary results suggest that tSCS, similar to epidurally delivered stimulation, may be used for spasticity control, without negatively impacting residual motor control in incomplete SCI. Further study in a larger population is warranted. PMID:24090290

  20. Co-ultramicronized palmitoylethanolamide/luteolin promotes neuronal regeneration after spinal cord injury

    Directory of Open Access Journals (Sweden)

    Rosalia eCrupi

    2016-03-01

    Full Text Available Spinal cord injury (SCI stimulates activation of astrocytes and infiltration of immune cells at the lesion site; however, the mechanism that promotes the birth of new neurons is still under debate. Neuronal regeneration is restricted after spinal cord injury, but can be stimulated by experimental intervention. Previously we demonstrated that treatment co-ultramicronized palmitoylethanolamide and luteolin, namely co-ultraPEALut, reduced inflammation. The present study was designed to explore the neuroregenerative properties of co-ultra PEALut in an estabished murine model of SCI. A vascular clip was applied to the spinal cord dura at T5 to T8 to provoke injury. Mice were treated with co-ultraPEALut (1 mg/kg, intraperitoneally daily for 72 h after SCI. Co-ultraPEALut increased the numbers of both bromodeoxyuridine-positive nuclei and doublecortin-immunoreactive cells in the spinal cord of injured mice. To correlate neuronal development with synaptic plasticity a Golgi method was employed to analyze dendritic spine density. Co-ultraPEALut administration stimulated expression of the neurotrophic factors brain-derived neurotrophic factor, glial cell-derived neurotrophic factor, nerve growth factor and neurotrophin-3. These findings show a prominent effect of co-ultraPEALut administration in the management of survival and differentiation of new neurons and spine maturation, and may represent a therapeutic treatment for spinal cord and other traumatic diseases.

  1. Visual bone marrow mesenchymal stem cell transplantation in the repair of spinal cord injury

    Directory of Open Access Journals (Sweden)

    Rui-ping Zhang

    2015-01-01

    Full Text Available An important factor in improving functional recovery from spinal cord injury using stem cells is maximizing the number of transplanted cells at the lesion site. Here, we established a contusion model of spinal cord injury by dropping a weight onto the spinal cord at T 7-8 . Superparamagnetic iron oxide-labeled bone marrow mesenchymal stem cells were transplanted into the injured spinal cord via the subarachnoid space. An outer magnetic field was used to successfully guide the labeled cells to the lesion site. Prussian blue staining showed that more bone marrow mesenchymal stem cells reached the lesion site in these rats than in those without magnetic guidance or superparamagnetic iron oxide labeling, and immunofluorescence revealed a greater number of complete axons at the lesion site. Moreover, the Basso, Beattie and Bresnahan (BBB locomotor rating scale scores were the highest in rats with superparamagnetic labeling and magnetic guidance. Our data confirm that superparamagnetic iron oxide nanoparticles effectively label bone marrow mesenchymal stem cells and impart sufficient magnetism to respond to the external magnetic field guides. More importantly, superparamagnetic iron oxide-labeled bone marrow mesenchymal stem cells can be dynamically and non-invasively tracked in vivo using magnetic resonance imaging. Superparamagnetic iron oxide labeling of bone marrow mesenchymal stem cells coupled with magnetic guidance offers a promising avenue for the clinical treatment of spinal cord injury.

  2. Human bone marrow-derived and umbilical cord-derived mesenchymal stem cells for alleviating neuropathic pain in a spinal cord injury model

    OpenAIRE

    Yousefifard, Mahmoud; Nasirinezhad, Farinaz; Shardi Manaheji, Homa; Janzadeh, Atousa; Hosseini, Mostafa; Keshavarz, Mansoor

    2016-01-01

    Background Stem cell therapy can be used for alleviating the neuropathic pain induced by spinal cord injuries (SCIs). However, survival and differentiation of stem cells following their transplantation vary depending on the host and intrinsic factors of the cell. Therefore, the present study aimed to determine the effect of stem cells derived from bone marrow (BM-MSC) and umbilical cord (UC-MSC) on neuropathic pain relief. Methods A compression model was used to induce SCI in a rat model. A w...

  3. Resveratrol, an antioxidant, protects spinal cord injury in rats by suppressing MAPK pathway

    Directory of Open Access Journals (Sweden)

    Song Fu

    2018-02-01

    Full Text Available Resveratrol, a polyphenol found in various plants, including grapes, plums and peanuts has shown various medIRInal properties, including antioxidant, protection of cardiovascular disease and cancer risk. However, the effects of resveratrol on spinal cord reperfusion injury have not been investigated. Hence, the present study was designed to evaluate the effect of resveratrol on nitric oxide synthase (iNOS/p38MAPK signaling pathway and to elucidate its regulating effect on the protection of spinal cord injury. Spinal cord ischemia–reperfusion injury (IRI was performed by the infrarenal abdominal aorta with mini aneurysm clip model. The expressions of iNOS and p38MAPK and the levels of biochemical parameters, including nitrite/nitrate, malondialdehyde (MDA, advanced oxidation products (AOPP, reduced glutathione (GSH, superoxide dismutase (SOD and catalase (CAT were measured in control and experimental groups. IRI-induced rats treated with 10 mg/kg resveratrol protected spinal cord from ischemia injury as supported by improved biological parameters measured in spinal cord tissue homogenates. The resveratrol treatment significantly decreased the levels of plasma nitrite/nitrate, iNOS mRNA and protein expressions and phosphorylation of p38MAPK in IRI-induced rats. Further, IRI-produced free radicals were reduced by resveratrol treatment by increasing enzymatic and non-enzymatic antioxidant levels such as GSH, SOD and CAT. Taken together, administration of resveratrol protects the damage caused by spinal cord ischemia with potential mechanism of suppressing the activation of iNOS/p38MAPK pathway and subsequent reduction of oxidative stress due to IRI.

  4. Comprehensive Effects of Suppression of MicroRNA-383 in Human Bone-Marrow-Derived Mesenchymal Stem Cells on Treating Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Guo-Jun Wei

    2018-05-01

    Full Text Available Background/Aims: Transplantation of bone-marrow-derived mesenchymal stem cells (MSCs promotes neural cell regeneration after spinal cord injury (SCI. Recently, we showed that suppression of microRNA-383 (miR-383 in MSCs increased the protein levels of glial cell line derived neurotrophic factor (GDNF, resulting in improved therapeutic effects on SCI. However, the overall effects of miR-383 suppression in MSCs on SCI therapy were not determined yet. Here, we addressed this question. Methods: We used bioinformatics tools to predict all miR-383-targeting genes, confirmed the functional bindings in a dual luciferase reporter assay. The effects of alteration of candidate genes in MSCs on cell proliferation were analyzed by MTT assay and by Western blotting for PCNA. The effects on angiogenesis were assessed by HUVEC assay. The effects on SCI in vivo were analyzed by transplantation of the modified MSCs into nude rats that underwent SCI. Results: Suppression of miR-383 in MSCs not only upregulated GDNF protein, but also increased vascular endothelial growth factor A (VEGF-A and cyclin-dependent kinase 19 (CDK19, two other miR-383 targets. MiR-383-suppression-induced increases in CDK19 resulted in a slight but significant increase in MSC proliferation, while miR-383-suppression-induced increases in VEGF-A resulted in a slight but significant increase in MSC-mediated angiogenesis. Conclusions: Upregulation of CDK19 and VEGF-A by miR-383 suppression in MSCs further improve the therapeutic potential of MSCs in treating SCI in rats.

  5. Diffusion tensor imaging of spinal cord parenchyma lesion in rat with chronic spinal cord injury.

    Science.gov (United States)

    Zhao, Can; Rao, Jia-Sheng; Pei, Xiao-Jiao; Lei, Jian-Feng; Wang, Zhan-Jing; Zhao, Wen; Wei, Rui-Han; Yang, Zhao-Yang; Li, Xiao-Guang

    2018-04-01

    Adequate evaluation of spinal cord parenchyma and accurate identification of injury range are considered two premises for the research and treatment of chronic spinal cord injury (SCI). Diffusion tensor imaging (DTI) provides information about water diffusion in spinal cord, and thus makes it possible to realize these premises. In this study, we conducted magnetic resonance imaging (MRI) for Wistar rats 84days after spinal cord contusion. DTI metrics including fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) from different positions of the injured cord were collected, analyzed, and compared with the histological results and locomotor outcomes. Moreover, we performed fiber tractography, and examined the difference in cavity percentage obtained respectively via conventional MRI, DTI and histology. Results showed that the chronic SCI rats had the largest changes of all DTI metrics at the epicenter; the farther away from the epicenter, the smaller the variation. FA, AD and RD were all influenced by SCI in a greater space range than MD. The good consistency of FA values and histological results in specific regions evidenced FA's capability of reflecting Wallerian degeneration after SCI. DTI metrics at the epicenter in ventral funiculus also showed a close correlation with the BBB scores. Additionally, supported by the histological results, DTI enables a more accurate measurement of cavity percentage compared to the conventional MRI. DTI parameters might comprehensively reflect the post-SCI pathological status of spinal cord parenchyma at the epicenter and distal parts during the chronic stage, while showing good consistency with locomotor performance. DTI combined with tractography could intuitively display the distribution of spared fibers after SCI and accurately provide information such as cavity area. This may shed light on the research and treatment of chronic SCI. Copyright © 2017 Elsevier Inc. All rights

  6. Local delivery of thyroid hormone enhances oligodendrogenesis and myelination after spinal cord injury

    Science.gov (United States)

    Shultz, Robert B.; Wang, Zhicheng; Nong, Jia; Zhang, Zhiling; Zhong, Yinghui

    2017-06-01

    Objective. Traumatic spinal cord injury (SCI) causes apoptosis of myelin-forming oligodendrocytes (OLs) and demyelination of surviving axons, resulting in conduction failure. Remyelination of surviving denuded axons provides a promising therapeutic target for spinal cord repair. While cell transplantation has demonstrated efficacy in promoting remyelination and functional recovery, the lack of ideal cell sources presents a major obstacle to clinical application. The adult spinal cord contains oligodendrocyte precursor cells and multipotent neural stem/progenitor cells that have the capacity to differentiate into mature, myelinating OLs. However, endogenous oligodendrogenesis and remyelination processes are limited by the upregulation of remyelination-inhibitory molecules in the post-injury microenvironment. Multiple growth factors/molecules have been shown to promote OL differentiation and myelination. Approach. In this study we screened these therapeutics and found that 3, 3‧, 5-triiodothyronine (T3) is the most effective in promoting oligodendrogenesis and OL maturation in vitro. However, systemic administration of T3 to achieve therapeutic doses in the injured spinal cord is likely to induce hyperthyroidism, resulting in serious side effects. Main results. In this study we developed a novel hydrogel-based drug delivery system for local delivery of T3 to the injury site without eliciting systemic toxicity. Significance. Using a clinically relevant cervical contusion injury model, we demonstrate that local delivery of T3 at doses comparable to safe human doses promoted new mature OL formation and myelination after SCI.

  7. Stretching After Heat But Not After Cold Decreases Contractures After Spinal Cord Injury in Rats.

    Science.gov (United States)

    Iwasawa, Hiroyuki; Nomura, Masato; Sakitani, Naoyoshi; Watanabe, Kosuke; Watanabe, Daichi; Moriyama, Hideki

    2016-12-01

    Contractures are a prevalent and potentially severe complication in patients with neurologic disorders. Although heat, cold, and stretching are commonly used for treatment of contractures and/or spasticity (the cause of many contractures), the sequential effects of these modalities remain unclear. Using an established rat model with spinal cord injury with knee flexion contracture, we sought to determine what combination of heat or cold before stretching is the most effective for treatment of contractures derived from spastic paralyses and investigated which treatment leads to the best (1) improvement in the loss of ROM; (2) restoration of deterioration in the muscular and articular factors responsible for contractures; and (3) amelioration of histopathologic features such as muscular fibrosis in biceps femoris and shortening of the joint capsule. Forty-two adolescent male Wistar rats were used. After spasticity developed at 2 weeks postinjury, each animal with spinal cord injury underwent the treatment protocol daily for 1 week. Knee extension ROM was measured with a goniometer by two examiners blinded to each other's scores. The muscular and articular factors contributing to contractures were calculated by measuring ROM before and after the myotomies. We quantitatively measured the muscular fibrosis and the synovial intima length, and observed the distribution of collagen of skeletal muscle. The results were confirmed by a blinded observer. The ROM of heat alone (34° ± 1°) and cold alone (34° ± 2°) rats were not different with the numbers available from that of rats with spinal cord injury (35° ± 2°) (p = 0.92 and 0.89, respectively). Stretching after heat (24° ± 1°) was more effective than stretching alone (27° ± 3°) at increasing ROM (p contractures. Although quantification of muscular fibrosis in the rats with spinal cord injury (11% ± 1%) was higher than that of controls (9% ± 0.4%) (p = 0.01), no difference was found between spinal cord

  8. Cervical spinal cord, root, and bony spine injuries: a closed claims analysis.

    Science.gov (United States)

    Hindman, Bradley J; Palecek, John P; Posner, Karen L; Traynelis, Vincent C; Lee, Lorri A; Sawin, Paul D; Tredway, Trent L; Todd, Michael M; Domino, Karen B

    2011-04-01

    The aim of this study was to characterize cervical cord, root, and bony spine claims in the American Society of Anesthesiologists Closed Claims database to formulate hypotheses regarding mechanisms of injury. All general anesthesia claims (1970-2007) in the Closed Claims database were searched to identify cervical injuries. Three independent teams, each consisting of an anesthesiologist and neurosurgeon, used a standardized review form to extract data from claim summaries and judge probable contributors to injury. Cervical injury claims (n = 48; mean ± SD age 47 ± 15 yr; 73% male) comprised less than 1% of all general anesthesia claims. When compared with other general anesthesia claims (19%), cervical injury claims were more often permanent and disabling (69%; P cervical stenosis) were often present, cord injuries usually occurred in the absence of traumatic injury (81%) or cervical spine instability (76%). Cord injury occurred with cervical spine (65%) and noncervical spine (35%) procedures. Twenty-four percent of cord injuries were associated with the sitting position. Probable contributors to cord injury included anatomic abnormalities (81%), direct surgical complications (24% [38%, cervical spine procedures]), preprocedural symptomatic cord injury (19%), intraoperative head/neck position (19%), and airway management (11%). Most cervical cord injuries occurred in the absence of traumatic injury, instability, and airway difficulties. Cervical spine procedures and/or sitting procedures appear to predominate. In the absence of instability, cervical spondylosis was the most common factor associated with cord injury.

  9. Selected factors affecting the efficiency of wheelchair mobility in individuals with spinal cord injury

    Directory of Open Access Journals (Sweden)

    Przysada Grzegorz

    2016-06-01

    Full Text Available Introduction: Locomotion efficiency levels in individuals with spinal cord injury deal cord injury depend upon the level of spinal cord injury. Rehabilitation of people with spinal cord injury aims to prepare them to function in society in the best possible manner. One of the significant tasks of rehabilitation is to develop the skill of moving in a wheelchair, which becomes the only means of locomotion for most people. The aim of the study was to assess the influence of selected factors such as age, sex, time from the occurrence of the injury, the level of spinal cord injury, participation in Active Rehabilitation camps and the level of physical activity on the efficiency of locomotion in a wheelchair in individuals with spinal cord injury.

  10. International spinal cord injury pulmonary function basic data set.

    Science.gov (United States)

    Biering-Sørensen, F; Krassioukov, A; Alexander, M S; Donovan, W; Karlsson, A-K; Mueller, G; Perkash, I; Sheel, A William; Wecht, J; Schilero, G J

    2012-06-01

    To develop the International Spinal Cord Injury (SCI) Pulmonary Function Basic Data Set within the framework of the International SCI Data Sets in order to facilitate consistent collection and reporting of basic bronchopulmonary findings in the SCI population. International. The SCI Pulmonary Function Data Set was developed by an international working group. The initial data set document was revised on the basis of suggestions from members of the Executive Committee of the International SCI Standards and Data Sets, the International Spinal Cord Society (ISCoS) Executive and Scientific Committees, American Spinal Injury Association (ASIA) Board, other interested organizations and societies and individual reviewers. In addition, the data set was posted for 2 months on ISCoS and ASIA websites for comments. The final International SCI Pulmonary Function Data Set contains questions on the pulmonary conditions diagnosed before spinal cord lesion,if available, to be obtained only once; smoking history; pulmonary complications and conditions after the spinal cord lesion, which may be collected at any time. These data include information on pneumonia, asthma, chronic obstructive pulmonary disease and sleep apnea. Current utilization of ventilator assistance including mechanical ventilation, diaphragmatic pacing, phrenic nerve stimulation and Bi-level positive airway pressure can be reported, as well as results from pulmonary function testing includes: forced vital capacity, forced expiratory volume in one second and peak expiratory flow. The complete instructions for data collection and the data sheet itself are freely available on the website of ISCoS (http://www.iscos.org.uk).

  11. International Spinal Cord Injury Data Sets for non-traumatic spinal cord injury.

    Science.gov (United States)

    New, P W; Marshall, R

    2014-02-01

    Multifaceted: extensive discussions at workshop and conference presentations, survey of experts and feedback. Present the background, purpose and development of the International Spinal Cord Injury (SCI) Data Sets for Non-Traumatic SCI (NTSCI), including a hierarchical classification of aetiology. International. Consultation via e-mail, presentations and discussions at ISCoS conferences (2006-2009), and workshop (1 September 2008). The consultation processes aimed to: (1) clarify aspects of the classification structure, (2) determine placement of certain aetiologies and identify important missing causes of NTSCI and (3) resolve coding issues and refine definitions. Every effort was made to consider feedback and suggestions from participants. The International Data Sets for NTSCI includes basic and an extended versions. The extended data set includes a two-axis classification system for the causes of NTSCI. Axis 1 consists of a five-level, two-tier (congenital-genetic and acquired) hierarchy that allows for increasing detail to specify the aetiology. Axis 2 uses the International Statistical Classification of Diseases (ICD) and Related Health Problems for coding the initiating diseases(s) that may have triggered the events that resulted in the axis 1 diagnosis, where appropriate. Additional items cover the timeframe of onset of NTSCI symptoms and presence of iatrogenicity. Complete instructions for data collection, data sheet and training cases are available at the websites of ISCoS (http://www.iscos.org.uk) and ASIA (http://www.asia-spinalinjury.org). The data sets should facilitate comparative research involving NTSCI participants, especially epidemiological studies and prevention projects. Further work is anticipated to refine the data sets, particularly regarding iatrogenicity.

  12. Pharmacokinetics and safety of oral glyburide in dogs with acute spinal cord injury

    Directory of Open Access Journals (Sweden)

    Nick Jeffery

    2018-02-01

    Full Text Available Background Glyburide (also known as glibenclamide is effective in reducing the severity of tissue destruction and improving functional outcome after experimental spinal cord injury in rodents and so has promise as a therapy in humans. There are many important differences between spinal cord injury in experimental animals and in human clinical cases, making it difficult to introduce new therapies into clinical practice. Spinal cord injury is also common in pet dogs and requires new effective therapies, meaning that they can act as a translational model for the human condition while also deriving direct benefits from such research. In this study we investigated the pharmacokinetics and safety of glyburide in dogs with clinical spinal cord injury. Methods We recruited dogs that had incurred an acute thoracolumbar spinal cord injury within the previous 72 h. These had become acutely non-ambulatory on the pelvic limbs and were admitted to our veterinary hospitals to undergo anesthesia, cross sectional diagnostic imaging, and surgical decompression. Oral glyburide was given to each dog at a dose of 75 mcg/kg. In five dogs, we measured blood glucose concentrations for 10 h after a single oral dose. In six dogs, we measured serum glyburide and glucose concentrations for 24 h and estimated pharmacokinetic parameters to estimate a suitable dose for use in a subsequent clinical trial in similarly affected dogs. Results No detrimental effects of glyburide administration were detected in any participating dog. Peak serum concentrations of glyburide were attained at a mean of 13 h after dosing, and mean apparent elimination half-life was approximately 7 h. Observed mean maximum plasma concentration was 31 ng/mL. At the glyburide dose administered there was no observable association between glyburide and glucose concentrations in blood. Discussion Our data suggest that glyburide can be safely administered to dogs that are undergoing anesthesia, imaging and

  13. The effect of impedance-controlled robotic gait training on walking ability and quality in individuals with chronic incomplete spinal cord injury: an explorative study.

    Science.gov (United States)

    Fleerkotte, Bertine M; Koopman, Bram; Buurke, Jaap H; van Asseldonk, Edwin H F; van der Kooij, Herman; Rietman, Johan S

    2014-03-04

    There is increasing interest in the use of robotic gait-training devices in walking rehabilitation of incomplete spinal cord injured (iSCI) individuals. These devices provide promising opportunities to increase the intensity of training and reduce physical demands on therapists. Despite these potential benefits, robotic gait-training devices have not yet demonstrated clear advantages over conventional gait-training approaches, in terms of functional outcomes. This might be due to the reduced active participation and step-to-step variability in most robotic gait-training strategies, when compared to manually assisted therapy. Impedance-controlled devices can increase active participation and step-to-step variability. The aim of this study was to assess the effect of impedance-controlled robotic gait training on walking ability and quality in chronic iSCI individuals. A group of 10 individuals with chronic iSCI participated in an explorative clinical trial. Participants trained three times a week for eight weeks using an impedance-controlled robotic gait trainer (LOPES: LOwer extremity Powered ExoSkeleton). Primary outcomes were the 10-meter walking test (10 MWT), the Walking Index for Spinal Cord Injury (WISCI II), the six-meter walking test (6 MWT), the Timed Up and Go test (TUG) and the Lower Extremity Motor Scores (LEMS). Secondary outcomes were spatiotemporal and kinematics measures. All participants were tested before, during, and after training and at 8 weeks follow-up. Participants experienced significant improvements in walking speed (0.06 m/s, p = 0.008), distance (29 m, p = 0.005), TUG (3.4 s, p = 0.012), LEMS (3.4, p = 0.017) and WISCI after eight weeks of training with LOPES. At the eight-week follow-up, participants retained the improvements measured at the end of the training period. Significant improvements were also found in spatiotemporal measures and hip range of motion. Robotic gait training using an impedance-controlled robot is feasible in gait

  14. Epidermal growth factor regulates apoptosis and oxidative stress in a rat model of spinal cord injury.

    Science.gov (United States)

    Ozturk, Anil Murat; Sozbilen, Murat Celal; Sevgili, Elvin; Dagci, Taner; Özyalcin, Halit; Armagan, Guliz

    2018-03-22

    Spinal cord injury (SCI) leads to vascular damage and disruption of blood-spinal cord barrier which participates in secondary nerve injury. Epidermal growth factor (EGF) is an endogenous protein which regulates cell proliferation, growth and differention. Previous studies reported that EGF exerts neuroprotective effect in spinal cord after SCI. However, the molecular mechanisms underlying EGF-mediated protection in different regions of nervous system have not shown yet. In this study, we aimed to examine possible anti-apoptotic and protective roles of EGF not only in spinal cord but also in brain following SCI. Twenty-eight adult rats were divided into four groups of seven animals each as follows: sham, trauma (SCI), SCI + EGF and SCI + methylprednisolone (MP) groups. The functional neurological deficits due to the SCI were assessed by behavioral analysis using the Basso, Beattie and Bresnahan (BBB) open-field locomotor test. The alterations in pro-/anti-apoptotic protein levels and antioxidant enzyme activities were measured in spinal cord and frontal cortex. In our study, EGF promoted locomotor recovery and motor neuron survival of SCI rats. EGF treatment significantly decreased Bax and increased Bcl-2 protein expressions both in spinal cord and brain when compared to SCI group. Moreover, antioxidant enzyme activities including catalase, superoxide dismutase (SOD) and glutathione peroxidase (GPx) were increased following EGF treatment similar to MP treatment. Our experiment also suggests that alteration of the ratio of Bcl-2 to Bax may result from decreased apoptosis following EGF treatment. As a conclusion, these results show, for the first time, that administration of EGF exerts its protection via regulating apoptotic and oxidative pathways in response to spinal cord injury in different regions of central nervous system. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Abdominal pain in long-term spinal cord injury

    DEFF Research Database (Denmark)

    Finnerup, Nanna Brix; Faaborg, Pia Møller; Krogh, Klaus

    2008-01-01

    Objectives:To describe the prevalence and character of chronic abdominal pain in a group of patients with long-term spinal cord injury (SCI) and to assess predictors of abdominal pain.Study design:Postal survey.Setting:Members of the Danish Paraplegic Association.Methods:We mailed a questionnaire...... to 284 members of the Danish Paraplegic Association who met the inclusion criteria (member for at least 10 years). The questionnaire contained questions about cause and level of spinal injury, colorectal function and pain/discomfort.Results:Seventy percent returned the questionnaire (133 men and 70 women....../discomfort. There was no relation of abdominal pain to other types of pain.Conclusion:Chronic pain located in the abdomen is frequent in patients with long-term SCI. The delayed onset following SCI and the relation to constipation suggest that constipation plays an important role for this type of pain in the spinal cord injured....

  16. The International Spinal Cord Injury Pain Basic Data Set

    DEFF Research Database (Denmark)

    Widerstrom-Noga, E.; Bryce, T.; Cardenas, D.D.

    2008-01-01

    Objective:To develop a basic pain data set (International Spinal Cord Injury Basic Pain Data Set, ISCIPDS:B) within the framework of the International spinal cord injury (SCI) data sets that would facilitate consistent collection and reporting of pain in the SCI population.Setting:International.......Methods:The ISCIPDS:B was developed by a working group consisting of individuals with published evidence of expertise in SCI-related pain regarding taxonomy, psychophysics, psychology, epidemiology and assessment, and one representative of the Executive Committee of the International SCI Standards and Data Sets...... on suggestions from members of the Executive Committee of the International SCI Standards and Data Sets, the ISCoS Scientific Committee, ASIA and APS Boards, and the Neuropathic Pain Special Interest Group of the IASP, individual reviewers and societies and the ISCoS Council.Results:The final ISCIPDS:B contains...

  17. International spinal cord injury endocrine and metabolic extended data set

    DEFF Research Database (Denmark)

    Bauman, W A; Wecht, J M; Biering-Sørensen, F

    2017-01-01

    findings in the SCI population. SETTING: This study was conducted in an international setting. METHODS: The ISCIEMEDS was developed by a working group. The initial ISCIEMEDS was revised based on suggestions from members of the International SCI Data Sets Committee, the International Spinal Cord Society......OBJECTIVE: The objective of this study was to develop the International Spinal Cord Injury (SCI) Endocrine and Metabolic Extended Data Set (ISCIEMEDS) within the framework of the International SCI Data Sets that would facilitate consistent collection and reporting of endocrine and metabolic...... (ISCoS) Executive and Scientific Committees, American Spinal Injury Association (ASIA) Board, other interested organizations, societies and individual reviewers. The data set was posted for two months on ISCoS and ASIA websites for comments. Variable names were standardized, and a suggested database...

  18. Shedding light on restoring respiratory function after spinal cord injury

    Directory of Open Access Journals (Sweden)

    Warren J Alilain

    2009-10-01

    Full Text Available Loss of respiratory function is one of the leading causes of death following spinal cord injury. Because of this, much work has been done in studying ways to restore respiratory function following SCI - including pharmacological and regeneration strategies. With the emergence of new and powerful tools from molecular neuroscience, new therapeutically relevant alternatives to these approaches have become available, including expression of light sensitive proteins called channelrhodopsins. In this article we briefly review the history of various attempts to restore breathing after C2 hemisection, and focus on our recent work using the activation of light sensitive channels to restore respiratory function after experimental spinal cord injury. We also discuss how such light induced activity can help shed light on the inner workings of the central nervous system respiratory circuitry that controls diaphragmatic function.

  19. International bowel function extended spinal cord injury data set

    DEFF Research Database (Denmark)

    Krogh, K; Perkash, I; Stiens, S A

    2008-01-01

    and the ASIA Board. Relevant and interested scientific and professional organizations and societies (around 40) were also invited to review the data set and it was posted on the ISCoS and ASIA websites for 3 months to allow comments and suggestions. The ISCoS Scientific Committee, ISCoS Council and ASIA Board......STUDY DESIGN: International expert working group.Objective:To develop an International Bowel Function Extended Spinal Cord Injury (SCI) Data Set presenting a standardized format for the collection and reporting of an extended amount of information on bowel function. SETTING: Working group...... consisting of members appointed by the American Spinal Injury Association (ASIA) and the International Spinal Cord Society (ISCoS). METHODS: A draft prepared by the working group was reviewed by Executive Committee of the International SCI Standards and Data Sets and later by the ISCoS Scientific Committee...

  20. International bowel function basic spinal cord injury data set

    DEFF Research Database (Denmark)

    Krogh, K; Perkash, I; Stiens, S A

    2008-01-01

    S Scientific Committee and the ASIA Board. Relevant and interested scientific and professional (international) organizations and societies (approximately 40) were also invited to review the data set and it was posted on the ISCoS and ASIA websites for 3 months to allow comments and suggestions. The ISCo......STUDY DESIGN: International expert working group. OBJECTIVE: To develop an International Bowel Function Basic Spinal Cord Injury (SCI) Data Set presenting a standardized format for the collection and reporting of a minimal amount of information on bowel function in daily practice or in research....... SETTING: Working group consisting of members appointed by the American Spinal Injury Association (ASIA) and the International Spinal Cord Society (ISCoS). METHODS: A draft prepared by the working group was reviewed by Executive Committee of the International SCI Standards and Data Sets, and later by ISCo...

  1. Abdominal pain in long-term spinal cord injury

    DEFF Research Database (Denmark)

    Finnerup, Nanna Brix; Faaborg, Pia Møller; Krogh, Klaus

    2008-01-01

    Objectives:To describe the prevalence and character of chronic abdominal pain in a group of patients with long-term spinal cord injury (SCI) and to assess predictors of abdominal pain.Study design:Postal survey.Setting:Members of the Danish Paraplegic Association.Methods:We mailed a questionnaire....../discomfort. There was no relation of abdominal pain to other types of pain.Conclusion:Chronic pain located in the abdomen is frequent in patients with long-term SCI. The delayed onset following SCI and the relation to constipation suggest that constipation plays an important role for this type of pain in the spinal cord injured....... to 284 members of the Danish Paraplegic Association who met the inclusion criteria (member for at least 10 years). The questionnaire contained questions about cause and level of spinal injury, colorectal function and pain/discomfort.Results:Seventy percent returned the questionnaire (133 men and 70 women...

  2. Dental Apical Papilla as Therapy for Spinal Cord Injury.

    Science.gov (United States)

    De Berdt, P; Vanacker, J; Ucakar, B; Elens, L; Diogenes, A; Leprince, J G; Deumens, R; des Rieux, A

    2015-11-01

    Stem cells of the apical papilla (SCAP) represent great promise regarding treatment of neural tissue damage, such as spinal cord injury (SCI). They derive from the neural crest, express numerous neurogenic markers, and mediate neurite outgrowth and axonal targeting. The goal of the present work was to investigate for the first time their potential to promote motor recovery after SCI in a rat hemisection model when delivered in their original stem cell niche-that is, by transplantation of the human apical papilla tissue itself into the lesion. Control groups consisted of animals subjected to laminectomy only (shams) and to lesion either untreated or injected with a fibrin hydrogel with or without human SCAP. Basso-Beattie-Bresnahan locomotor scores at 1 and 3 d postsurgery confirmed early functional decline in all SCI groups. This significant impairment was reversed, as seen in CatWalk analyses, after transplantation of apical papilla into the injured spinal cord wound, whereas the other groups demonstrated persistent functional impairment. Moreover, tactile allodynia did not develop as an unwanted side effect in any of the groups, even though the SCAP hydrogel group showed higher expression of the microglial marker Iba-1, which has been frequently associated with allodynia. Notably, the apical papilla transplant group presented with reduced Iba-1 expression level. Masson trichrome and human mitochondria staining showed the preservation of the apical papilla integrity and the presence of numerous human cells, while human cells could no longer be detected in the SCAP hydrogel group at the 6-wk postsurgery time point. Altogether, our data suggest that the transplantation of a human apical papilla at the lesion site improves gait in spinally injured rats and reduces glial reactivity. It also underlines the potential interest for the application of delivering SCAP in their original niche, as compared with use of a fibrin hydrogel. © International & American

  3. Targeting Lumbar Spinal Neural Circuitry by Epidural Stimulation to Restore Motor Function After Spinal Cord Injury.

    Science.gov (United States)

    Minassian, Karen; McKay, W Barry; Binder, Heinrich; Hofstoetter, Ursula S

    2016-04-01

    Epidural spinal cord stimulation has a long history of application for improving motor control in spinal cord injury. This review focuses on its resurgence following the progress made in understanding the underlying neurophysiological mechanisms and on recent reports of its augmentative effects upon otherwise subfunctional volitional motor control. Early work revealed that the spinal circuitry involved in lower-limb motor control can be accessed by stimulating through electrodes placed epidurally over the posterior aspect of the lumbar spinal cord below a paralyzing injury. Current understanding is that such stimulation activates large-to-medium-diameter sensory fibers within the posterior roots. Those fibers then trans-synaptically activate various spinal reflex circuits and plurisegmentally organized interneuronal networks that control more complex contraction and relaxation patterns involving multiple muscles. The induced change in responsiveness of this spinal motor circuitry to any residual supraspinal input via clinically silent translesional neural connections that have survived the injury may be a likely explanation for rudimentary volitional control enabled by epidural stimulation in otherwise paralyzed muscles. Technological developments that allow dynamic control of stimulation parameters and the potential for activity-dependent beneficial plasticity may further unveil the remarkable capacity of spinal motor processing that remains even after severe spinal cord injuries.

  4. Development of a 3D matrix for modeling mammalian spinal cord injury in vitro

    Directory of Open Access Journals (Sweden)

    Juan Felipe Diaz Quiroz

    2016-01-01

    Full Text Available Spinal cord injury affects millions of people around the world, however, limited therapies are available to improve the quality of life of these patients. Spinal cord injury is usually modeled in rats and mice using contusion or complete transection models and this has led to a deeper understanding of the molecular and cellular complexities of the injury. However, it has not to date led to development of successful novel therapies, this is in part due to the complexity of the injury and the difficulty of deciphering the exact roles and interactions of different cells within this complex environment. Here we developed a collagen matrix that can be molded into the 3D tubular shape with a lumen and can hence support cell interactions in a similar architecture to a spinal cord. We show that astrocytes can be successfully grown on this matrix in vitro and when injured, the cells respond as they do in vivo and undergo reactive gliosis, one of the steps that lead to formation of a glial scar, the main barrier to spinal cord regeneration. In the future, this system can be used to quickly assess the effect of drugs on glial scar protein activity or to perform live imaging of labeled cells after exposure to drugs.

  5. Co-transplantation of olfactory ensheathing glia and mesenchymal stromal cells does not have synergistic effects after spinal cord injury in the rat

    Czech Academy of Sciences Publication Activity Database

    Amemori, Takashi; Jendelová, Pavla; Růžičková, Kateřina; Arboleda Toro, David; Syková, Eva

    2010-01-01

    Roč. 12, č. 2 (2010), s. 212-225 ISSN 1465-3249 R&D Projects: GA AV ČR IAA500390902; GA ČR GA309/06/1246; GA MŠk(CZ) LC554 Grant - others:GA MŠk.(CZ) 1M0538; GA MZd(CZ) 1A8697 Program:1M Institutional research plan: CEZ:AV0Z50390703 Keywords : mesemchymal stromal cells * olfactory ensheathing glia * spinal cord injury Subject RIV: FH - Neurology Impact factor: 2.925, year: 2010

  6. Iatrogenic Spinal Cord Injury Resulting From Cervical Spine Surgery

    OpenAIRE

    Daniels, Alan H.; Hart, Robert A.; Hilibrand, Alan S.; Fish, David E.; Wang, Jeffrey C.; Lord, Elizabeth L.; Buser, Zorica; Tortolani, P. Justin; Stroh, D. Alex; Nassr, Ahmad; Currier, Bradford L.; Sebastian, Arjun S.; Arnold, Paul M.; Fehlings, Michael G.; Mroz, Thomas E.

    2017-01-01

    Study Design: Retrospective cohort study of prospectively collected data. Objective: To examine the incidence of iatrogenic spinal cord injury following elective cervical spine surgery. Methods: A retrospective multicenter case series study involving 21 high-volume surgical centers from the AOSpine North America Clinical Research Network was conducted. Medical records for 17?625 patients who received cervical spine surgery (levels from C2 to C7) between January 1, 2005, and December 31, 2011,...

  7. Treatment of infertility in men with spinal cord injury

    DEFF Research Database (Denmark)

    Brackett, N.L.; Lynne, C.M.; El Dib, Hussein Ibrahim El Desouki Hussein

    2010-01-01

    Most men with spinal cord injury (SCI) are infertile. Erectile dysfunction, ejaculatory dysfunction and semen abnormalities contribute to the problem. Treatments for erectile dysfunction include phosphodiesterase type 5 inhibitors, intracavernous injections of alprostadil, penile prostheses...... of intrauterine insemination increases as the total motile sperm count inseminated increases. In vitro fertilization and intracytoplasmic sperm injection are options in cases of extremely low total motile sperm count. Reproductive outcomes for SCI male factor infertility are similar to outcomes for general male...... factor infertility...

  8. Epidemiology of worldwide spinal cord injury: a literature review

    Directory of Open Access Journals (Sweden)

    Kang Y

    2017-12-01

    Full Text Available Yi Kang,1,2,* Han Ding,1,2,* Hengxing Zhou,1,2 Zhijian Wei,1,2 Lu Liu,1,2 Dayu Pan,1,2 Shiqing Feng1,2 1Department of Orthopaedics, Tianjin Medical University General Hospital, 2Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, People’s Republic of China *These authors contributed equally to this work Study design: A literature review of worldwide epidemiology of spinal cord injury (SCI. Objectives: To review the epidemiological indicators of SCI, such as incidence, prevalence, demographic characteristics, etiology, level and severity of injury, complications and mortality. Setting: The Department of Orthopaedics, Tianjin Medical University General Hospital, ­Heping District, Tianjin, People’s Republic of China. Methods: We searched articles published in PubMed, Medline, EMBASE and the Web of ­Science between January 1993 and June 2017 using the key words “spinal cord injury”, “­traumatic spinal cord injury”, “non-traumatic spinal cord injury” and “epidemiology”. The incidence, etiology, prevalence, patient demographics, level and severity of injury, complications and mortality were reviewed from the articles. Results: The epidemiology of SCI has changed. Motor vehicle accidents and falls have become the most common reasons of injury gradually. Incidence of SCI varies by regions or countries, and it has gradually increased with the expansion of human activities. The number of male patients were significantly more than female, the average age of patients with SCI had a tendency to increase gradually. The cervical level of spine was the most common part of injury; there were more number of patients with tetraplegia than patients with paraplegia. Electrolyte disturbances, pulmonary infections, urinary tract infections and bedsores were the four most common complications. Conclusion: We must have a greater

  9. Estimating the global incidence of traumatic spinal cord injury.

    Science.gov (United States)

    Fitzharris, M; Cripps, R A; Lee, B B

    2014-02-01

    Population modelling--forecasting. To estimate the global incidence of traumatic spinal cord injury (TSCI). An initiative of the International Spinal Cord Society (ISCoS) Prevention Committee. Regression techniques were used to derive regional and global estimates of TSCI incidence. Using the findings of 31 published studies, a regression model was fitted using a known number of TSCI cases as the dependent variable and the population at risk as the single independent variable. In the process of deriving TSCI incidence, an alternative TSCI model was specified in an attempt to arrive at an optimal way of estimating the global incidence of TSCI. The global incidence of TSCI was estimated to be 23 cases per 1,000,000 persons in 2007 (179,312 cases per annum). World Health Organization's regional results are provided. Understanding the incidence of TSCI is important for health service planning and for the determination of injury prevention priorities. In the absence of high-quality epidemiological studies of TSCI in each country, the estimation of TSCI obtained through population modelling can be used to overcome known deficits in global spinal cord injury (SCI) data. The incidence of TSCI is context specific, and an alternative regression model demonstrated how TSCI incidence estimates could be improved with additional data. The results highlight the need for data standardisation and comprehensive reporting of national level TSCI data. A step-wise approach from the collation of conventional epidemiological data through to population modelling is suggested.

  10. Neuroarthropathy of the hip following spinal cord injury

    Directory of Open Access Journals (Sweden)

    Bibek Banskota

    2011-01-01

    Full Text Available We present the case of a 33-year-old male who sustained a burst fracture D12 vertebrae with spinal cord injury (ASIA impairment scale A and a right mid-diaphysial femoral shaft fracture around 1.5 years back. The patient reported 1.5 years later with a swelling over the right buttock. Arthrotomy revealed serous fluid and fragmented bone debris. The biopsy showed a normal bony architecture with no evidence of infection and malignant cells. Hence, a diagnosis of Charcot′s hip was made. Charcot′s neuroarthropathy of the feet is a well-recognized entity in the setting of insensate feet resulting from causes such as diabetes or spina bifida. Although Charcot′s disease of the hips has been described, it is uncommon in association with spinal cord injury, syphilis and even with the use of epidural injection. The present case highlights the fact that neuroarthropathy of the hip can occur in isolation in the setting of a spinal cord injury, and this can lead to considerable morbidity.

  11. Alpha-2 agonist attenuates ischemic injury in spinal cord neurons.

    Science.gov (United States)

    Freeman, Kirsten A; Puskas, Ferenc; Bell, Marshall T; Mares, Joshua M; Foley, Lisa S; Weyant, Michael J; Cleveland, Joseph C; Fullerton, David A; Meng, Xianzhong; Herson, Paco S; Reece, T Brett

    2015-05-01

    Paraplegia secondary to spinal cord ischemia-reperfusion injury remains a devastating complication of thoracoabdominal aortic intervention. The complex interactions between injured neurons and activated leukocytes have limited the understanding of neuron-specific injury. We hypothesize that spinal cord neuron cell cultures subjected to oxygen-glucose deprivation (OGD) would simulate ischemia-reperfusion injury, which could be attenuated by specific alpha-2a agonism in an Akt-dependent fashion. Spinal cords from perinatal mice were harvested, and neurons cultured in vitro for 7-10 d. Cells were pretreated with 1 μM dexmedetomidine (Dex) and subjected to OGD in an anoxic chamber. Viability was determined by MTT assay. Deoxyuridine-triphosphate nick-end labeling staining and lactate dehydrogenase (LDH) assay were used for apoptosis and necrosis identification, respectively. Western blot was used for protein analysis. Vehicle control cells were only 59% viable after 1 h of OGD. Pretreatment with Dex significantly preserves neuronal viability with 88% viable (P control cells by 50% (P neuron cell culture, OGD mimics neuronal metabolic derangement responsible for paraplegia after aortic surgery. Dex preserves neuronal viability and decreases apoptosis in an Akt-dependent fashion. Dex demonstrates clinical promise for reducing the risk of paraplegia after high-risk aortic surgery. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. The epidemiology of spinal cord injuries in Papua New Guinea.

    Science.gov (United States)

    Gee, R W; Sinha, S N

    1982-06-01

    Thirty six patients with traumatic spinal cord injury were studied in Papua New Guinean hospitals. Road trauma and falls from trees each accounted for 1/3 of injuries. The mean age of patients, 80% of whom were male, was 26 years. Complications included pressure sores (69%), urinary tract infection (61%) and contractures (22%). Two thirds of patients failed to make any significant recovery and remained permanently in hospital. At present there are no special facilities for treating paraplegic patients in this country but as the number of cases is increasing it is recommended that major hospitals provide special units and a standard management protocol for these patients.

  13. Current pregnancy among women with spinal cord injury: findings from the US national spinal cord injury database.

    Science.gov (United States)

    Iezzoni, L I; Chen, Y; McLain, A B J

    2015-11-01

    Cross-sectional study. To examine the prevalence of pregnancy and associations with sociodemographic and clinical factors among women with spinal cord injury (SCI). US National Spinal Cord Injury Database, an SCI registry that interviews participants 1, 5 and then every 5 years post injury. Data include SCI clinical details, functional impairments, participation measures, depressive symptoms and life satisfaction. Women aged 18-49 are asked about hospitalizations in the last year relating to pregnancy or its complications. Data represent 1907 women, who completed 3054 interviews. We used generalized estimating equations to examine bivariable associations between pregnancy and clinical and psychosocial variables and to perform multivariable regressions predicting pregnancy. Across all women, 2.0% reported pregnancy during the prior 12 months. This annual prevalence differed significantly by the years elapsed since injury; the highest rate occurred 15 years post injury (3.7%). Bivariable analyses found that younger age at injury was significantly associated with current pregnancy (Ppregnancy were significantly more likely to be married or partnered, have sport-related SCI, have higher motor scores and have more positive psychosocial status scores. Multivariable analyses found significant associations between current pregnancy and age, marital status, motor score and mobility and occupation scale scores. Current pregnancy rates among reproductive-aged women with SCI are similar to rates of other US women with chronic mobility impairments. More information is needed about pregnancy experiences and outcomes to inform both women with SCI seeking childbearing and clinicians providing their care.

  14. Synergistic impact of acute kidney injury and high level of cervical spinal cord injury on the weaning outcome of patients with acute traumatic cervical spinal cord injury.

    Science.gov (United States)

    Yu, Wen-Kuang; Ko, Hsin-Kuo; Ho, Li-Ing; Wang, Jia-Horng; Kou, Yu Ru

    2015-07-01

    Respiratory neuromuscular impairment severity is known to predict weaning outcome among patients with cervical spinal cord injury; however, the impact of non-neuromuscular complications remains unexplored. This study was to evaluate possible neuromuscular and non-neuromuscular factors that may negatively impact weaning outcome. From September 2002 to October 2012, acute traumatic cervical spinal cord injury patients who had received mechanical ventilation for >48h were enrolled and divided into successful (n=54) and unsuccessful weaning groups (n=19). Various neuromuscular, non-neuromuscular factors and events during the intensive care unit stay were extracted from medical charts and electronic medical records. Variables presenting with a significant difference (pspinal cord injury (C1-3), lower pulse rates, and lower Glasgow Coma Scale score on admission, higher peak blood urea nitrogen, lower trough albumin, and lower trough blood leukocyte counts. Furthermore, unsuccessful weaning patients had a higher incidence of pneumonia, acute respiratory distress syndrome, shock and acute kidney injury during the intensive care unit stay. Multivariate logistic regression analysis revealed acute kidney injury and high level of cervical spinal cord injury were independent risk factors for failure of weaning. Importantly, patients with both risk factors showed a large increase in odds ratio for unsuccessful weaning from mechanical ventilation (pinjury during the intensive care unit stay and high level of cervical spinal injury are two independent risk factors that synergistically work together producing a negative impact on weaning outcome. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Critical role of acrolein in secondary injury following ex vivo spinal cord trauma.

    Science.gov (United States)

    Hamann, Kristin; Durkes, Abigail; Ouyang, Hui; Uchida, Koji; Pond, Amber; Shi, Riyi

    2008-11-01

    The pathophysiology of spinal cord injury (SCI) is characterized by the initial, primary injury followed by secondary injury processes in which oxidative stress is a critical component. Secondary injury processes not only exacerbate pathology at the site of primary injury, but also result in spreading of injuries to the adjacent, otherwise healthy tissue. The lipid peroxidation byproduct acrolein has been implicated as one potential mediator of secondary injury. To further and rigorously elucidate the role of acrolein in secondary injury, a unique ex vivo model is utilized to isolate the detrimental effects of mechanical injury from toxins such as acrolein that are produced endogenously following SCI. We demonstrate that (i) acrolein-Lys adducts are capable of diffusing from compressed tissue to adjacent, otherwise uninjured tissue; (ii) secondary injury by itself produces significant membrane damage and increased superoxide production; and (iii) these injuries are significantly attenuated by the acrolein scavenger hydralazine. Furthermore, hydralazine treatment results in significantly less membrane damage 2 h following compression injury, but not immediately after. These findings support our hypothesis that, following SCI, acrolein is increased to pathologic concentrations, contributes significantly to secondary injury, and thus represents a novel target for scavenging to promote improved recovery.

  16. Urinary tract stone in patients with spinal cord injury: a retrospective radiological study

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Eun Joo; Lee, Jong Koo; Shin, Hyun Ja [Korea Veterans Hospital, Seoul (Korea, Republic of)

    1995-01-15

    To compare the incidence between author's first and current report on urinary tract stone in patient with spinal cord injury and to evaluate the effectiveness of recent developed in medical technology and care on in treating the patients. We reviewed urinary tract stone in 257 patients with paraplegia or quadriplegia after spinal cord injury. These patients were diagnosed retrospectively by KUB and intravenous urography at the Korea Veterans Hospital during 10 years from January, 1984 to December, 1993. We evaluated and compared the overall incidence, incidence of specific location of urinary tract, recurrent rate, incidence according to the level of spinal cord injury, and the duration of development in urinary tract stone. Total patients were 257 with 186 (72.4%) paraplegia and 71 (27.6%) quadriplegia. Overall incidence of the stone was 16.0% in this study and 38.1% in the first study. Incidence of the stone in individual organ; 5.5% in kidney, 1.2% in ureter, and 13.6% in urinary bladder. The recurrent rate was 29.3% in this study and 40.6% in the first study. Incidence of the stone according to the level of spinal cord injury was as follows; 15.6% in cervix, 17.1% in upper thorax, 17.9% in lower thorax and 13.9% in lumbar. The stone developed during the first 4 years and between 12 to 16 years following spinal cord injury was 28.3% each. Overall incidence and recurrent rate of urinary tract stone was obviously decreased since the first study. Highest incidence of the stone occurred in urinary bladder and in patient with lower thoracic spinal cord injury, which is similar to first report. Peak incidence of the stone was in the first 4 years, and another peak was in 12-16 years after spinal cord injury. The decreased overall incidence of urinary tract stone maybe attributable to the development in medical technology and care, and active rehabilitation.

  17. Urinary tract stone in patients with spinal cord injury: a retrospective radiological study

    International Nuclear Information System (INIS)

    Yun, Eun Joo; Lee, Jong Koo; Shin, Hyun Ja

    1995-01-01

    To compare the incidence between author's first and current report on urinary tract stone in patient with spinal cord injury and to evaluate the effectiveness of recent developed in medical technology and care on in treating the patients. We reviewed urinary tract stone in 257 patients with paraplegia or quadriplegia after spinal cord injury. These patients were diagnosed retrospectively by KUB and intravenous urography at the Korea Veterans Hospital during 10 years from January, 1984 to December, 1993. We evaluated and compared the overall incidence, incidence of specific location of urinary tract, recurrent rate, incidence according to the level of spinal cord injury, and the duration of development in urinary tract stone. Total patients were 257 with 186 (72.4%) paraplegia and 71 (27.6%) quadriplegia. Overall incidence of the stone was 16.0% in this study and 38.1% in the first study. Incidence of the stone in individual organ; 5.5% in kidney, 1.2% in ureter, and 13.6% in urinary bladder. The recurrent rate was 29.3% in this study and 40.6% in the first study. Incidence of the stone according to the level of spinal cord injury was as follows; 15.6% in cervix, 17.1% in upper thorax, 17.9% in lower thorax and 13.9% in lumbar. The stone developed during the first 4 years and between 12 to 16 years following spinal cord injury was 28.3% each. Overall incidence and recurrent rate of urinary tract stone was obviously decreased since the first study. Highest incidence of the stone occurred in urinary bladder and in patient with lower thoracic spinal cord injury, which is similar to first report. Peak incidence of the stone was in the first 4 years, and another peak was in 12-16 years after spinal cord injury. The decreased overall incidence of urinary tract stone maybe attributable to the development in medical technology and care, and active rehabilitation

  18. "My body was my temple": a narrative revealing body image experiences following treatment of a spinal cord injury.

    Science.gov (United States)

    Bailey, K Alysse; Gammage, Kimberley L; van Ingen, Cathy; Ditor, David S

    2017-09-01

    This narrative explores the lived experience of a young woman, Rebecca, and her transitioned body image after sustaining and being treated for a spinal cord injury. Data were collected from a single semi-structured in-depth interview. Rebecca disclosed her transitioned body image experiences after sustaining a spinal cord injury and being treated by medical staff immediately following her injury. Before her injury, she described a holistic body experience and named this experience her "temple". During intensive care in the hospital, she explained her body was treated as an object. The disconnected treatment of her body led to a loss of the private self, as she described her sacred body being stripped away - her "temple" lost and in ruins. Body image may be an overlooked component of health following a spinal cord injury. This narrative emphasizes the importance of unveiling body image experiences after the treatment of a spinal cord injury to medical professionals. Lessons of the importance of considering the transitioned body experiences after a spinal cord injury may help prevent body-related depression and other subsequent health impacts. Recommendations for best practice are provided. Implications for Rehabilitation    Spinal Cord Injury   • A spinal cord injury may drastically change a person's body image, thereby significantly impacting psychological health   • More effective screening for body image within the medical/rehabilitation context is needed to help practitioners recognize distress   • Practitioners should be prepared to refer clients to distress hotlines they may need once released from treatment.

  19. Advanced Restoration Therapies in Spinal Cord Injury

    Science.gov (United States)

    2016-05-01

    improve functional outcome post-SCI. SCI was induced at segment T9 in adult rats . The sensory and motor functions were evaluated in the weeks following...the injury. 2) Specific objectives: We tested the outcome of TMS therapy on sensory and motor functions in three groups: SCI rats that received TMS...acute- TMS) have shown greater sensory responses in primary somatosensory cortex of HL representation compared to rats that did not receive any TMS

  20. Effects of Assist-As-Needed Upper Extremity Robotic Therapy after Incomplete Spinal Cord Injury: A Parallel-Group Controlled Trial

    Directory of Open Access Journals (Sweden)

    John Michael Frullo

    2017-06-01

    Full Text Available BackgroundRobotic rehabilitation of the upper limb following neurological injury has been supported through several large clinical studies for individuals with chronic stroke. The application of robotic rehabilitation to the treatment of other neurological injuries is less developed, despite indications that strategies successful for restoration of motor capability following stroke may benefit individuals with incomplete spinal cord injury (SCI as well. Although recent studies suggest that robot-aided rehabilitation might be beneficial after incomplete SCI, it is still unclear what type of robot-aided intervention contributes to motor recovery.MethodsWe developed a novel assist-as-needed (AAN robotic controller to adjust challenge and robotic assistance continuously during rehabilitation therapy delivered via an upper extremity exoskeleton, the MAHI Exo-II, to train independent elbow and wrist joint movements. We further enrolled seventeen patients with incomplete spinal cord injury (AIS C and D levels in a parallel-group balanced controlled trial to test the efficacy of the AAN controller, compared to a subject-triggered (ST controller that does not adjust assistance or challenge levels continuously during therapy. The conducted study is a stage two, development-of-concept pilot study.ResultsWe validated the AAN controller in its capability of modulating assistance and challenge during therapy via analysis of longitudinal robotic metrics. For the selected primary outcome measure, the pre–post difference in ARAT score, no statistically significant change was measured in either group of subjects. Ancillary analysis of secondary outcome measures obtained via robotic testing indicates gradual improvement in movement quality during the therapy program in both groups, with the AAN controller affording greater increases in movement quality over the ST controller.ConclusionThe present study demonstrates feasibility of subject-adaptive robotic therapy

  1. Clinical effectiveness and safety of powered exoskeleton-assisted walking in patients with spinal cord injury: systematic review with meta-analysis

    Directory of Open Access Journals (Sweden)

    Miller LE

    2016-03-01

    Full Text Available Larry E Miller,1 Angela K Zimmermann,1 William G Herbert,1,2 1Miller Scientific Consulting, Inc., Asheville, NC, 2Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, USA Background: Powered exoskeletons are designed to safely facilitate ambulation in patients with spinal cord injury (SCI. We conducted the first meta-analysis of the available published research on the clinical effectiveness and safety of powered exoskeletons in SCI patients. Methods: MEDLINE and EMBASE databases were searched for studies of powered exoskeleton-assisted walking in patients with SCI. Main outcomes were analyzed using fixed and random effects meta-analysis models. Results: A total of 14 studies (eight ReWalk™, three Ekso™, two Indego®, and one unspecified exoskeleton representing 111 patients were included in the analysis. Training programs were typically conducted three times per week, 60–120 minutes per session, for 1–24 weeks. Ten studies utilized flat indoor surfaces for training and four studies incorporated complex training, including walking outdoors, navigating obstacles, climbing and descending stairs, and performing activities of daily living. Following the exoskeleton training program, 76% of patients were able to ambulate with no physical assistance. The weighted mean distance for the 6-minute walk test was 98 m. The physiologic demand of powered exoskeleton-assisted walking was 3.3 metabolic equivalents and rating of perceived exertion was 10 on the Borg 6–20 scale, comparable to self-reported exertion of an able-bodied person walking at 3 miles per hour. Improvements in spasticity and bowel movement regularity were reported in 38% and 61% of patients, respectively. No serious adverse events occurred. The incidence of fall at any time during training was 4.4%, all occurring while tethered using a first-generation exoskeleton and none resulting in injury. The incidence of bone fracture during training was 3

  2. International spinal cord injury cardiovascular function basic data set.

    Science.gov (United States)

    Krassioukov, A; Alexander, M S; Karlsson, A-K; Donovan, W; Mathias, C J; Biering-Sørensen, F

    2010-08-01

    To create an International Spinal Cord Injury (SCI) Cardiovascular Function Basic Data Set within the framework of the International SCI Data Sets. An international working group. The draft of the data set was developed by a working group comprising members appointed by the American Spinal Injury Association (ASIA), the International Spinal Cord Society (ISCoS) and a representative of the executive committee of the International SCI Standards and Data Sets. The final version of the data set was developed after review by members of the executive committee of the International SCI Standards and Data Sets, the ISCoS scientific committee, ASIA board, relevant and interested international organizations and societies, individual persons with specific interest and the ISCoS Council. To make the data set uniform, each variable and each response category within each variable have been specifically defined in a way that is designed to promote the collection and reporting of comparable minimal data. The variables included in the International SCI Cardiovascular Function Basic Data Set include the following items: date of data collection, cardiovascular history before the spinal cord lesion, events related to cardiovascular function after the spinal cord lesion, cardiovascular function after the spinal cord lesion, medications affecting cardiovascular function on the day of examination; and objective measures of cardiovascular functions, including time of examination, position of examination, pulse and blood pressure. The complete instructions for data collection and the data sheet itself are freely available on the websites of both ISCoS (http://www.iscos.org.uk) and ASIA (http://www.asia-spinalinjury.org).

  3. Effects of electrical stimulation-induced gluteal versus gluteal and hamstring muscles activation on sitting pressure distribution in persons with a spinal cord injury.

    Science.gov (United States)

    Smit, C A J; Haverkamp, G L G; de Groot, S; Stolwijk-Swuste, J M; Janssen, T W J

    2012-08-01

    Ten participants underwent two electrical stimulation (ES) protocols applied using a custom-made electrode garment with built-in electrodes. Interface pressure was measured using a force-sensitive area. In one protocol, both the gluteal and hamstring (g+h) muscles were activated, in the other gluteal (g) muscles only. To study and compare the effects of electrically induced activation of g+h muscles versus g muscles only on sitting pressure distribution in individuals with a spinal cord injury (SCI). Ischial tuberosities interface pressure (ITs pressure) and pressure gradient. In all participants, both protocols of g and g+h ES-induced activation caused a significant decrease in IT pressure. IT pressure after g+h muscles activation was reduced significantly by 34.5% compared with rest pressure, whereas a significant reduction of 10.2% after activation of g muscles only was found. Pressure gradient reduced significantly only after stimulation of g+h muscles (49.3%). g+h muscles activation showed a decrease in pressure relief (Δ IT) over time compared with g muscles only. Both protocols of surface ES-induced of g and g+h activation gave pressure relief from the ITs. Activation of both g+h muscles in SCI resulted in better IT pressure reduction in sitting individuals with a SCI than activation of g muscles only. ES might be a promising method in preventing pressure ulcers (PUs) on the ITs in people with SCI. Further research needs to show which pressure reduction is sufficient in preventing PUs.

  4. Effects of the Post-Spinal Cord Injury Microenvironment on the Differentiation Capacity of Human Neural Stem Cells Derived from Induced Pluripotent Stem Cells.

    Science.gov (United States)

    López-Serrano, Clara; Torres-Espín, Abel; Hernández, Joaquim; Alvarez-Palomo, Ana B; Requena, Jordi; Gasull, Xavier; Edel, Michael J; Navarro, Xavier

    2016-10-01

    Spinal cord injury (SCI) causes loss of neural functions below the level of the lesion due to interruption of spinal pathways and secondary neurodegenerative processes. The transplant of neural stem cells (NSCs) is a promising approach for the repair of SCI. Reprogramming of adult somatic cells into induced pluripotent stem cells (iPSCs) is expected to provide an autologous source of iPSC-derived NSCs, avoiding the immune response as well as ethical issues. However, there is still limited information on the behavior and differentiation pattern of transplanted iPSC-derived NSCs within the damaged spinal cord. We transplanted iPSC-derived NSCs, obtained from adult human somatic cells, into rats at 0 or 7 days after SCI, and evaluated motor-evoked potentials and locomotion of the animals. We histologically analyzed engraftment, proliferation, and differentiation of the iPSC-derived NSCs and the spared tissue in the spinal cords at 7, 21, and 63 days posttransplant. Both transplanted groups showed a late decline in functional recovery compared to vehicle-injected groups. Histological analysis showed proliferation of transplanted cells within the tissue and that cells formed a mass. At the final time point, most grafted cells differentiated to neural and astroglial lineages, but not into oligodendrocytes, while some grafted cells remained undifferentiated and proliferative. The proinflammatory tissue microenviroment of the injured spinal cord induced proliferation of the grafted cells and, therefore, there are possible risks associated with iPSC-derived NSC transplantation. New approaches are needed to promote and guide cell differentiation, as well as reduce their tumorigenicity once the cells are transplanted at the lesion site.

  5. Caregiver outcomes and interventions: a systematic scoping review of the traumatic brain injury and spinal cord injury literature.

    Science.gov (United States)

    Baker, Anne; Barker, Samantha; Sampson, Amanda; Martin, Clarissa

    2017-01-01

    To identify factors reported with negative and positive outcomes for caregivers of the traumatic brain injury and spinal cord injury cohorts, to investigate what interventions have been studied to support carers and to report what effectiveness has been found. Scoping systematic review. Electronic databases and websites were searched from 1990 to December 2015. Studies were agreed for inclusion using pre-defined criteria. Relevant information from included studies was extracted and quality assessment was completed. Data were synthesised using qualitative methods. A total of 62 studies reported caregiver outcomes for the traumatic brain injury cohort; 51 reported negative outcomes and 11 reported positive outcomes. For the spinal cord injury cohort, 18 studies reported caregiver outcomes; 15 reported negative outcomes and three reported positive outcomes. Burden of care was over-represented in the literature for both cohorts, with few studies looking at factors associated with positive outcomes. Good family functioning, coping skills and social support were reported to mediate caregiver burden and promote positive outcomes. A total of 21 studies further described interventions to support traumatic brain injury caregivers and four described interventions to support spinal cord injury caregivers, with emerging evidence for the effectiveness of problem-solving training. Further research is required to explore the effects of injury severity of the care recipient, as well as caregiver age, on the outcome of the interventions. Most studies reported negative outcomes, suggesting that barriers to caregiving have been established, but not facilitators. The interventions described to support carers are limited and require further testing to confirm their effectiveness.

  6. Quality of Life and Related Factors Among People With Spinal Cord Injuries in Tehran, Iran.

    Science.gov (United States)

    Moghimian, Maryam; Kashani, Fahimeh; Cheraghi, Mohammad Ali; Mohammadnejad, Esmaeil

    2015-09-01

    Spinal Cord Injury (SCI) is one of the biggest health problems. Disabilities resulting from injuries such as spinal disability requires special attention because of their potential reduced to cause adverse effects in different systems of the body. Today, improving the Quality of Life (QOL) in patients with SCIs is an important goal of treatment. The purpose of this study was to determine the QOL and related factors among people with SCIs. In this cross-sectional descriptive study, 106 patients with SCI were selected through sampling based on census. Data were collected using a demographic questionnaire and a Short-Form 36 (SF-36) health survey questionnaire for measuring the QOL among patients. Data were analyzed using SPSS 14 software and descriptive and inferential statistics. P spinal cord injuries. Planning principles is recommended in order to reform the disability.

  7. Bowel function and quality of life after colostomy in individuals with spinal cord injury

    DEFF Research Database (Denmark)

    Bølling Hansen, Rikke; Staun, Michael; Kalhauge, Anna

    2016-01-01

    OBJECTIVE: To evaluate the effect of colostomy on bowel function and quality of life (QoL) in individuals with spinal cord injury (SCI). DESIGN: Cross-sectional descriptive study. SETTING: Department for Spinal Cord Injuries and Departments of Gastroenterology and Radiology, Rigshospitalet....... PARTICIPANTS: Eighteen individuals with SCI and a colostomy performed post injury, 12 males, 6 females, 8 with tetraplegia and 10 with paraplegia. Median age at time of study was 49.9 years, years since lesion was 3-56 years, and time since colostomy was performed 0.5 to 20 years. INTERVENTIONS: Questionnaires...... and measurement of gastrointestinal transit time (GITT). OUTCOME MEASURES: Retrospective data collection from patient records, a questionnaire on bowel management pre and post colostomy, quality of life (QoL) by SF-36, and GITT. RESULTS: Seventy-two percent significantly reduced their use of time on bowel...

  8. Descriptions of Community by People with Spinal Cord Injuries: Concepts to Inform Community Integration and Community Rehabilitation

    Science.gov (United States)

    Kuipers, Pim; Kendall, Melissa B.; Amsters, Delena; Pershouse, Kiley; Schuurs, Sarita

    2011-01-01

    Effective measurement and optimization of re-entry into the community after injury depends on a degree of understanding of how those injured persons actually perceive their community. In light of the limited research about foundational concepts regarding community integration after spinal cord injury, this study investigated how a large number of…

  9. Breaking bad news in spinal cord injury; a qualitative study assessing the perspective of spinal cord injury survivors in Turkey.

    Science.gov (United States)

    Ozyemisci-Taskiran, Ozden; Coskun, Ozlem; Budakoglu, Isil Irem; Demirsoy, Nesrin

    2018-05-01

    Prior abstract publication: 2 nd Medical Rehabilitation Congress; Nov 4-7, 2010; Ankara, Turkey Objective: This study aims to investigate the process of breaking bad news from the perspective of spinal cord injury survivors. A cross sectional, qualitative study. Community. Fourteen spinal cord injury survivors. Subjects participated in a semi-structured interview about 'when', 'where' 'by whom' and 'how' they received and 'would' prefer to receive bad news. Answers to 'how' questions were coded according to SPIKES protocol (Setting, Perception, Invitation, Knowledge, Empathizing, Summary). Eight participants (57%) reported that they received bad news from a physician, mostly during rehabilitation. All would prefer to be informed by a physician and majority preferred to be gradually informed during rehabilitation. Half were not satisfied with the content of information. Only half felt that his/her physiatrist understood his/her emotional distress. Majority of participants who received bad news from physicians reported that the setting was private and their family members accompanied them. Most spinal cord injury survivors were unsatisfied with knowledge and emotional support provided by rehabilitation physicians. Participants would prefer to receive bad news by a senior physiatrist in a planned meeting during rehabilitation.

  10. Emergence of Serotonergic Neurons After Spinal Cord Injury in Turtles

    Directory of Open Access Journals (Sweden)

    Gabriela Fabbiani

    2018-03-01

    Full Text Available Plasticity of neural circuits takes many forms and plays a fundamental role in regulating behavior to changing demands while maintaining stability. For example, during spinal cord development neurotransmitter identity in neurons is dynamically adjusted in response to changes in the activity of spinal networks. It is reasonable to speculate that this type of plasticity might occur also in mature spinal circuits in response to injury. Because serotonergic signaling has a central role in spinal cord functions, we hypothesized that spinal cord injury (SCI in the fresh water turtle Trachemys scripta elegans may trigger homeostatic changes in serotonergic innervation. To test this possibility we performed immunohistochemistry for serotonin (5-HT and key molecules involved in the determination of the serotonergic phenotype before and after SCI. We found that as expected, in the acute phase after injury the dense serotonergic innervation was strongly reduced. However, 30 days after SCI the population of serotonergic cells (5-HT+ increased in segments caudal to the lesion site. These cells expressed the neuronal marker HuC/D and the transcription factor Nkx6.1. The new serotonergic neurons did not incorporate the thymidine analog 5-bromo-2′-deoxyuridine (BrdU and did not express the proliferating cell nuclear antigen (PCNA indicating that novel serotonergic neurons were not newborn but post-mitotic cells that have changed their neurochemical identity. Switching towards a serotonergic neurotransmitter phenotype may be a spinal cord homeostatic mechanism to compensate for the loss of descending serotonergic neuromodulation, thereby helping the outstanding functional recovery displayed by turtles. The 5-HT1A receptor agonist (±-8-Hydroxy-2-dipropylaminotetralin hydrobromide (8-OH-DPAT blocked the increase in 5-HT+ cells suggesting 5-HT1A receptors may trigger the respecification process.

  11. Emergence of Serotonergic Neurons After Spinal Cord Injury in Turtles

    Science.gov (United States)

    Fabbiani, Gabriela; Rehermann, María I.; Aldecosea, Carina; Trujillo-Cenóz, Omar; Russo, Raúl E.

    2018-01-01

    Plasticity of neural circuits takes many forms and plays a fundamental role in regulating behavior to changing demands while maintaining stability. For example, during spinal cord development neurotransmitter identity in neurons is dynamically adjusted in response to changes in the activity of spinal networks. It is reasonable to speculate that this type of plasticity might occur also in mature spinal circuits in response to injury. Because serotonergic signaling has a central role in spinal cord functions, we hypothesized that spinal cord injury (SCI) in the fresh water turtle Trachemys scripta elegans may trigger homeostatic changes in serotonergic innervation. To test this possibility we performed immunohistochemistry for serotonin (5-HT) and key molecules involved in the determination of the serotonergic phenotype before and after SCI. We found that as expected, in the acute phase after injury the dense serotonergic innervation was strongly reduced. However, 30 days after SCI the population of serotonergic cells (5-HT+) increased in segments caudal to the lesion site. These cells expressed the neuronal marker HuC/D and the transcription factor Nkx6.1. The new serotonergic neurons did not incorporate the thymidine analog 5-bromo-2′-deoxyuridine (BrdU) and did not express the proliferating cell nuclear antigen (PCNA) indicating that novel serotonergic neurons were not newborn but post-mitotic cells that have changed their neurochemical identity. Switching towards a serotonergic neurotransmitter phenotype may be a spinal cord homeostatic mechanism to compensate for the loss of descending serotonergic neuromodulation, thereby helping the outstanding functional recovery displayed by turtles. The 5-HT1A receptor agonist (±)-8-Hydroxy-2-dipropylaminotetralin hydrobromide (8-OH-DPAT) blocked the increase in 5-HT+ cells suggesting 5-HT1A receptors may trigger the respecification process. PMID:29593503

  12. Methods of analysis of physical activity among persons with spinal cord injury: A review

    OpenAIRE

    Jarmila Štěpánová; Martin Kudláček; Mirka Bednaříková

    2016-01-01

    Background: A spinal cord injury is one of the most devastating acquired physical disabilities. People with spinal cord injury are usually in a productive age, often interested in sports and physical activity. Therefore it is essential to support the development of monitoring of the quality and quantity of physical activity of people with spinal cord injury. Objective: The aim of this study was to perform systematic review of international studies from the period 2004-2014 with the aim to fin...

  13. A profile of traumatic spinal cord injury and medical complications in Latvia

    OpenAIRE

    Nulle, Anda; Tjurina, Uljana; Erts, Renars; Vetra, Anita

    2017-01-01

    Study design A single centre retrospective study. Objectives To collect data and analyse the epidemiological profile of traumatic spinal cord injury and its medical complications during the subacute rehabilitation period. Setting Spinal Cord Injury Rehabilitation Programme of the National Rehabilitation Centre, ‘Vaivari’, Jurmala, Latvia. Methods Information was collected in 2015 from the medical records of 134 patients with a traumatic spinal cord injury admitted for primary rehabilitation b...

  14. Traumatic spinal cord injuries – epidemiologic and medico-legal issues

    OpenAIRE

    Hanganu Bianca; Velnic Andreea Alexandra; Petre-Ciudin Valentin; Manoilescu Irina; Ioan Beatrice Gabriela

    2017-01-01

    Spinal cord injuries represent a special category of injuries in traumatic pathology, with high morbidity and mortality, which justify their analysis with the aim to identify useful aspects in order to prevent and treat them. We therefore performed a retrospective study on 426 cases in order to analyze epidemiology and medico-legal issues related to spinal cord injuries. The studied items regarded socio-demographic aspects (gender, age, home region), type of lesions (vertebral, spinal cord, a...

  15. EphA4 blockers promote axonal regeneration and functional recovery following spinal cord injury in mice.

    Directory of Open Access Journals (Sweden)

    Yona Goldshmit

    Full Text Available Upregulation and activation of developmental axon guidance molecules, such as semaphorins and members of the Eph receptor tyrosine kinase family and their ligands, the ephrins, play a role in the inhibition of axonal regeneration following injury to the central nervous system. Previously we have demonstrated in a knockout model that axonal regeneration following spinal cord injury is promoted in the absence of the axon guidance protein EphA4. Antagonism of EphA4 was therefore proposed as a potential therapy to promote recovery from spinal cord injury. To further assess this potential, two soluble recombinant blockers of EphA4, unclustered ephrin-A5-Fc and EphA4-Fc, were examined for their ability to promote axonal regeneration and to improve functional outcome following spinal cord hemisection in wildtype mice. A 2-week administration of either of these blockers following spinal cord injury was sufficient to promote substantial axonal regeneration and functional recovery by 5 weeks following injury. Both inhibitors produced a moderate reduction in astrocytic gliosis, indicating that much of the effect of the blockers may be due to promotion of axon growth. These studies provide definitive evidence that soluble inhibitors of EphA4 function offer considerable therapeutic potential for the treatment of spinal cord injury and may have broader potential for the treatment of other central nervous system injuries.

  16. Induced Pluripotent Stem Cell Therapies for Cervical Spinal Cord Injury

    Science.gov (United States)

    Doulames, Vanessa M.; Plant, Giles W.

    2016-01-01

    Cervical-level injuries account for the majority of presented spinal cord injuries (SCIs) to date. Despite the increase in survival rates due to emergency medicine improvements, overall quality of life remains poor, with patients facing variable deficits in respiratory and motor function. Therapies aiming to ameliorate symptoms and restore function, even partially, are urgently needed. Current therapeutic avenues in SCI seek to increase regenerative capacities through trophic and immunomodulatory factors, provide scaffolding to bridge the lesion site and promote regeneration of native axons, and to replace SCI-lost neurons and glia via intraspinal transplantation. Induced pluripotent stem cells (iPSCs) are a clinically viable means to accomplish this; they have no major ethical barriers, sources can be patient-matched and collected using non-invasive methods. In addition, the patient’s own cells can be used to establish a starter population capable of producing multiple cell types. To date, there is only a limited pool of research examining iPSC-derived transplants in SCI—even less research that is specific to cervical injury. The purpose of the review herein is to explore both preclinical and clinical recent advances in iPSC therapies with a detailed focus on cervical spinal cord injury. PMID:27070598

  17. Fluoxetine and vitamin C synergistically inhibits blood-spinal cord barrier disruption and improves functional recovery after spinal cord injury.

    Science.gov (United States)

    Lee, Jee Y; Choi, Hae Y; Yune, Tae Y

    2016-10-01

    Recently we reported that fluoxetine (10 mg/kg) improves functional recovery by attenuating blood spinal cord barrier (BSCB) disruption after spinal cord injury (SCI). Here we investigated whether a low-dose of fluoxetine (1 mg/kg) and vitamin C (100 mg/kg), separately not possessing any protective effect, prevents BSCB disruption and improves functional recovery when combined. After a moderate contusion injury at T9 in rat, a low-dose of fluoxetine and vitamin C, or the combination of both was administered intraperitoneally immediately after SCI and further treated once a day for 14 d. Co-treatment with fluoxetine and vitamin C significantly attenuated BSCB permeability at 1 d after SCI. When only fluoxetine or vitamin C was treated after injury, however, there was no effect on BSCB disruption. Co-treatment with fluoxetine and vitamin C also significantly inhibited the expression and activation of MMP-9 at 8 h and 1 d after injury, respectively, and the infiltration of neutrophils (at 1 d) and macrophages (at 5 d) and the expression of inflammatory mediators (at 2 h, 6 h, 8 h or 24 h after injury) were significantly inhibited by co-treatment with fluoxetine and vitamin C. Furthermore, the combination of fluoxetine and vitamin C attenuated apoptotic cell death at 1 d and 5 d and improved locomotor function at 5 weeks after SCI. These results demonstrate the synergistic effect combination of low-dose fluoxetine and vitamin C on BSCB disruption after SCI and furthermore support the effectiveness of the combination treatment regimen for the management of acute SCI. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Quality of Life Among Veterans With Chronic Spinal Cord Injury and Related Variables

    OpenAIRE

    Ebrahimzadeh, Mohammad Hosein; Soltani-Moghaddas, Seyed Hosein; Birjandinejad, Ali; Omidi-Kashani, Farzad; Bozorgnia, Shahram

    2014-01-01

    Background: In recent decades, the incidence of spinal cord injuries has increased. In a systemic review on epidemiology of traumatic spinal cord injury in developing countries reported 25.5/million cases per year. Objectives: To assess the quality of life (QOL) of the veterans among Iran-Iraq war with chronic spinal cord injuries (SCI) and to evaluate long-term impressions of SCI on their quality of life. Patients and Methods: Fifty-two veterans, all male, with chronic spinal cord injury fro...

  19. Transformational mentoring: Leadership behaviors of spinal cord injury peer mentors.

    Science.gov (United States)

    Shaw, Robert B; McBride, Christopher B; Casemore, Sheila; Martin Ginis, Kathleen A

    2018-02-01

    The purpose of this study was to investigate the leadership behaviors of spinal cord injury (SCI) peer mentors and examine whether behaviors of peer mentors align with the tenets of transformational leadership theory. A total of 12 SCI peer mentors aged 28-75 (M = 49.4) who had between 3 and 56 years (M = 13.9) of mentoring experience were recruited for the study. Utilizing a qualitative methodology (informed by a social constructionist approach), each mentor engaged in a semistructured interview about their experiences as a peer mentor. Interviews were transcribed verbatim and subjected to a directed content analysis. SCI peer mentors reported using mentorship behaviors and engaging with mentees in a manner that closely aligns with the core components of transformational leadership theory: idealized influence, inspirational motivation, individualized consideration, and intellectual stimulation. A new subcomponent of inspirational motivation described as 'active promotion of achievement' was also identified and may be unique to the context of peer mentorship. SCI peer mentors inherently use behaviors associated with transformational leadership theory when interacting with mentees. The results from this study have the potential to inform SCI peer mentor training programs about specific leadership behaviors that mentors could be taught to use and could lead to more effective mentoring practices for people with SCI. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  20. Management of obesity after spinal cord injury: a systematic review.

    Science.gov (United States)

    Shojaei, Mir Hatef; Alavinia, Seyed Mohammad; Craven, B Catharine

    2017-11-01

    Individuals with chronic spinal cord injury (SCI) are susceptible to central and visceral obesity and it's metabolic consequences; consensus based guidelines for obesity management after SCI have not yet been stablished. To identify and compare effective means of obesity management among SCI individuals. This systematic review included English and non-English articles, published prior to April 2017 found in the PubMed/Medline, Embase, CINAHL Psychinfo and Cochrane databases. Studies evaluating any obesity management strategy, alone or in combination, including: diet therapy, voluntary and involuntary exercise such as neuro-muscular electric stimulation (NMES), pharmacotherapy, and surgery, among individuals with chronic SCI were included. Outcomes of interest were reductions in waist circumference, body weight (BW), body mass index (BMI) and total fat mass (TFM) and increases in total lean body mass (TLBM) from baseline. From 3,553 retrieved titles and abstracts, 34 articles underwent full text review and 23 articles were selected for data abstraction. Articles describing weight loss due to inflammation, cancer or B12 deficiency were excluded. The Downs and Black reported poor to moderate quality of the studies. Bariatric surgery produced the greatest permanent weight reduction and BMI correction followed by combinations of physical exercise and diet therapy. Generally, NMES and pharmacotherapy improved TLBM and reduced TFM but not weight. The greatest weight reduction and BMI correction was produced by bariatric surgery, followed by a combination of physical exercise and diet therapy. NMES and pharmacologic treatment did not reduce weight or TFM but increased in TLBM.

  1. Neuropathic Pain Experiences of Spinal Cord Injury Patients.

    Science.gov (United States)

    Li, Chin-Ching; Lin, Hung-Ru; Tsai, Ming-Dar; Tsay, Shiow-Luan

    2017-11-09

    Neuropathic pain (NP) is a common, severe problem that affects spinal cord injury (SCI) patients. Only SCI patients truly understand the impact and extent of this type of pain. The aim of this study was to understand the NP experienced by SCI patients and the influence of this type of pain on their daily life. A qualitative design was used. An interview guide including a semistructured questionnaire and in-depth interviews was conducted with SCI patients with NP in a neurorehabilitation department at a medical center in northern Taiwan. The data were collected using a purposive sampling method. Content analysis was performed on the interview data, which were obtained from 13 SCI patients with NP. Three themes and eight subthemes were identified that described the NP experience of the participants and the influence of NP on their daily life. The three themes included elusive pain (changing and individual pain sensations, erratically haunting threat, and phantom limb sensations), complicated feelings about pain (converting depression into an active attitude toward life, having feelings of anticipation and anxiety about future pain relief, and facing and experiencing pain), and renewed hope (bravely fighting pain and seeking pain relief methods). This study revealed three important themes of NP experienced by SCI patients, including elusive pain, complicated feelings about pain, and renewed hope. Nurses should understand the nature of NP, provide a thorough pain assessment, and design a proper pain management plan to care effectively for patients with NP.

  2. Nutritional Health Considerations for Persons with Spinal Cord Injury.

    Science.gov (United States)

    Bigford, Gregory; Nash, Mark S

    2017-01-01

    Chronic spinal cord injury (SCI) often results in morbidity and mortality due to all-cause cardiovascular disease (CVD) and comorbid endocrine disorders. Several component risk factors for CVD, described as the cardiometabolic syndrome (CMS), are prevalent in SCI, with the individual risks of obesity and insulin resistance known to advance the disease prognosis to a greater extent than other established risks. Notably, adiposity and insulin resistance are attributed in large part to a commonly observed maladaptive dietary/nutritional profile. Although there are no evidence-based nutritional guidelines to address the CMS risk in SCI, contemporary treatment strategies advocate more comprehensive lifestyle management that includes sustained nutritional guidance as a necessary component for overall health management. This monograph describes factors in SCI that contribute to CMS risks, the current nutritional profile and its contribution to CMS risks, and effective treatment strategies including the adaptability of the Diabetes Prevention Program (DPP) to SCI. Establishing appropriate nutritional guidelines and recommendations will play an important role in addressing the CMS risks in SCI and preserving optimal long-term health.

  3. Neuropathic Pain Following Spinal Cord Injury: Mechanism, Assessment and Treatment

    Directory of Open Access Journals (Sweden)

    Gul Mete Civelek

    2016-04-01

    Full Text Available Spinal cord injury (SCI is a devastating disease which may cause physical, psychological and social dysfunction. Neuropathic pain (NP after SCI is common, can be seen in varying degrees and is one of the most difficultly treated problems developing after SCI. With the addition of the NP to loss of function after SCI, sleep patterns, moods and daily activities of patients are adversely affected. In order to treat pain effectively, classification of pain after SCI must be done carefully and correctly. According to classification of International Pain Study Group, pain after SCI is divided into two main groups as nociceptive and neuropathic pain. Neuropathic pain is defined as %u201Cpain occuring as a direct result of a disease or lesion directly affecting somato-sensorial system%u201D. NP after SCI can be classified according to anatomical region (above the level of lesion, at the level of lesion, below the level of lesion. Treatment of NP after SCI is often challenging and receiving response to treatment may take long time. Therefore, treatment of NP after SCI should be multifactorial. Treatment options include pharmochologic treatment, application of transcutanous electrical nerve stimulation, psychiatric treatment approaches, and surgical approaches in selected cases. In pharmachologic treatment, first line agents are tricyclic antidepresants, pregabalin and gabapentin. In this review, mechanisms and assessment and treatment of NP after SCI is discussed with the guide of current literature.

  4. SEXUALITY OF PEOPLE WITH SPINAL CORD INJURY: AN ISSUE OF HEALTH EDUCATION

    Directory of Open Access Journals (Sweden)

    L. R. Cruz

    2016-02-01

    Full Text Available The spinal cord injury causes loss of sensation and movement below the level of injury, damaging some important functions in the body such as motor function, bladder control, bowel and sexual dysfunction. In general, affect mainly young males and its main cause is given by stab wound (SW, injury by firearms (IF, high falls, car accident, diving in shallow water, infectious and degenerative diseases. Spinal cord injury brings drastic changes in the lives not only of the person who suffered spinal cord injury, but also for the entire family. Health education focused on sexual rehabilitation is able to expand individual and collective knowledge, aiding in sexual adjustment. The purpose of this article is to describe the importance of health education for people with spinal cord injury. Through a structured questionnaire can appreciate the difficulties of people with spinal cord injury on sexuality and prove that the health education contributes to improving the quality of life of people

  5. The Clinical Study On 1 Case for The sensation of patient with Spinal Cord Injury whose is improved by using sweet BV

    Directory of Open Access Journals (Sweden)

    In-Sun Park

    2009-06-01

    Full Text Available Obejective : Patients with spinal cord injury are increasing in numbers. However, there is no reliable treatment guide in both conventional & complementory medicine. Also, there are not much clinical case of patients with spina cord injury in oriental medical field. We invesigated effect of sweet BV on subacute stage patient with spinal cord injury. Method : 31-year old female patient with spinal cord injury was treated with herb medicine(TID, electro arcupunture (BID, sweet BV injection(QOD , Physical treatment(QD, and conventionalmedicine. Result : We had a satisfactory result with using sweet BV injection. The patient`s ASIA grade improved from 34 to 52. And Frankle classification of the patient shifted from A to B. Conclusion : We reach a conclusion Using Sweet BV improve the sensation of patient with spinal cord injury. And more study about this disease is needed.

  6. Study of cervical cord injury without radiological abnormality using MRI at injury

    International Nuclear Information System (INIS)

    Park, Jin-Soo; Ei, Terumi; Uchida, Yoko; Kodai, Yujiro; Yasumatsu, Hideo; Yoshino, Kazutaka; Hirakawa, Takashi.

    1994-01-01

    This study was undertaken, using MRI at the time of injury, to examine cervical cord injury without radiological abnormality. The subjects were 30 patients (24 men and 6 women) seen during the 4-year period 1989-1993, who ranged in age from 31 to 83 years (an average age of 62.8 years). Of these patients, 10 had a slightly irregular alignment of the vertebral body on plain X-rays. These 10 patients were examined using MRI early after sustaining trauma (within 24 hours in 9 and 48 hours in one). As a result, spinal cord was seen as isointensity on T1-weighted images and hyperintensity on T2-weighted images, corresponding to irregular alignment. These findings suggest that reduction of a dislocation may transiently occur due to patient transfer or natural elasticity, as plain X-rays indicated no evidence of bone abnormalities. Thus injuries like dislocations may have occurred at the time of trauma, and structural changes of the vertebral body may be responsible for the occurrence of cervical spinal cord. Spinal cord injuries, even if not evidenced on plain X-rays, should not be categorized as non-osseous injuries. (N.K.)

  7. Deep venous thrombosis in patients with chronic spinal cord injury.

    Science.gov (United States)

    Mackiewicz-Milewska, Magdalena; Jung, Stanisław; Kroszczyński, Andrzej C; Mackiewicz-Nartowicz, Hanna; Serafin, Zbigniew; Cisowska-Adamiak, Małgorzata; Pyskir, Jerzy; Szymkuć-Bukowska, Iwona; Hagner, Wojciech; Rość, Danuta

    2016-07-01

    Deep venous thrombosis (DVT) is a well-known complication of an acute spinal cord injury (SCI). However, the prevalence of DVT in patients with chronic SCI has only been reported in a limited number of studies. The aim of our study was to examine the prevalence of DVT in patients with SCI beyond three months after injury. Cross-sectional study. Rehabilitation Department at the Bydgoszcz University Hospital in Poland. Sixty-three patients with SCI that were more than 3 months post injury. The patients, ranging in age from 13 to 65 years, consisted of 15 women and 48 men; the mean age of the patients was 32.1 years. The time from injury varied from 4 to 124 months. Clinical assessment, D-dimer and venous duplex scan. The venous duplex scan revealed DVT in 5 of the 63 patients. The post-injury time in four of the patients varied between 4 and 5 months; one patient was 42 months post-injury. DVT occurred in patients with chronic SCI, mainly by the 6th post injury month.

  8. New products tissue-engineering in the treatment of spinal cord injury

    Science.gov (United States)

    Bolshakov, I. N.; Sergienko, V. I.; Kiselev, S. L.; Lagarkova, M. A.; Remigaylo, A. A.; Mihaylov, A. A.; Prokopenko, S. V.

    2015-11-01

    In the treatment of patients with complicated spinal cord injury the Russian Health spends about one million rubles for each patient in the acute and the interim period after the injury. The number of complicated spinal cord injury is different in geographical areas Russian Federation from 30 to 50 people per 1 million that is affected by the year 5600. Applied to the present surgical and pharmacological techniques provide unsatisfactory results or minimally effective treatment. Transplantation of 100 thousand neuronal mouse predecessors (24 rats) or human neuronal predecessors (18 rats) in the anatomical gap rat spinal cord, followed by analysis of neurological deficit. The neuro-matrix implantation in the rat spinal cord containing 100 thousand neuronal precursors hESC, repeatable control neuro-matrix transplantation, non-cell mass, eliminating neurological deficit for 14 weeks after transplantation about 5-9 points on the scale of the BBB. The cultivation under conditions in vitro human induced pluripotent stem cells on collagen-chitosan matrix (hIPSC) showed that neurons differentiated from induced pluripotent stem cells grown on scaffolds as compact groups and has no neurites. Cells do not penetrate into the matrix during long-term cultivation and formed near the surface of the spherical structures resembling neurospheres. At least 90% of the cells were positive for the neuronal marker tubulin b3. Further studies should be performed to examine the compatibility of neuronal cultures and matrices.

  9. Borax partially prevents neurologic disability and oxidative stress in experimental spinal cord ischemia/reperfusion injury.

    Science.gov (United States)

    Koc, Emine Rabia; Gökce, Emre Cemal; Sönmez, Mehmet Akif; Namuslu, Mehmet; Gökce, Aysun; Bodur, A Said

    2015-01-01

    The aim of this study is to investigate the potential effects of borax on ischemia/reperfusion injury of the rat spinal cord. Twenty-one Wistar albino rats were divided into 3 groups: sham (no ischemia/reperfusion), ischemia/reperfusion, and borax (ischemia/reperfusion + borax); each group was consist of 7 animals. Infrarenal aortic cross clamp was applied for 30 minutes to generate spinal cord ischemia. Animals were evaluated functionally with the Basso, Beattie, and Bresnahan scoring system and inclined-plane test. The spinal cord tissue samples were harvested to analyze tissue concentrations of nitric oxide, nitric oxide synthase activity, xanthine oxidase activity, total antioxidant capacity, and total oxidant status and to perform histopathological examination. At the 72nd hour after ischemia, the borax group had significantly higher Basso, Beattie, and Bresnahan and inclined-plane scores than those of ischemia/reperfusion group. Histopathological examination of spinal cord tissues in borax group showed that treatment with borax significantly reduced the degree of spinal cord edema, inflammation, and tissue injury disclosed by light microscopy. Xanthine oxidase activity and total oxidant status levels of the ischemia/reperfusion group were significantly higher than those of the sham and borax groups (P borax group were significantly higher than those of the ischemia/reperfusion group (P borax groups in terms of total antioxidant capacity levels (P > .05). The nitric oxide levels and nitric oxide synthase activity of all groups were similar (P > .05). Borax treatment seems to protect the spinal cord against injury in a rat ischemia/reperfusion model and improve neurological outcome. Copyright © 2015 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  10. Emotional Intelligence in Patients with Spinal Cord Injury (SCI).

    Science.gov (United States)

    Saberi, Hooshang; Ghajarzadeh, Mahsa

    2017-05-01

    Spinal Cord Injury (SCI) is a devastating situation. Spinal Cord Injury affects functional, psychological and socioeconomic aspects of patients' lives. The ability to accomplish and explicate the one's own and other's feelings and emotions to spread over appropriate information for confirming thoughts and actions is defined as emotional intelligence (EI). The goal of this study was to evaluate depression and EI in SCI patients in comparison with healthy subjects. One-hundred-ten patients with SCI and 80 healthy subjects between Aug 2014 and Aug 2015 were enrolled. The study was conducted in Imam Hospital, Tehran, Iran. All participants were asked to fill valid and reliable Persian version Emotional Quotient inventory (EQ-i) and Beck Depression Inventory (BDI). All data were analyzed using SPSS. Data were presented as Mean±SD for continuous or frequencies for categorical variables. Continuous variables compared by means of independent sample t -test. P -values less than 0.05 were considered as significant. Mean age of patients was 28.7 and mean age of controls was 30.2 yr. Spinal cord injury in 20 (18.3%) were at cervical level, in 83 (75.4%) were thoracic and in 7 (6.3%) were lumbar. Mean values of independence, stress tolerance, self-actualization, emotional Self-Awareness, reality testing, Impulse Control, flexibility, responsibility, and assertiveness were significantly different between cases and controls. Mean values of stress tolerance, optimism, self-regard, and responsibility were significantly different between three groups with different injury level. Most scales were not significantly different between male and female cases. Emotional intelligence should be considered in SCI cases as their physical and psychological health is affected by their illness.

  11. Frequency of co-morbidities associated with spinal cord injury

    International Nuclear Information System (INIS)

    Ayub, A.; Hashim, R.

    2015-01-01

    To determine the frequencies of comorbidities (dyslipidemias, diabetes mellitus, and hypertension) in patients with spinal cord injury (SCI) of duration > 1 year. Study Design: Case control. Place and Duration of Study: Spinal Cord Injury Department, Armed Forces Institute of Rehabilitation Medicine (AFIRM) Rawalpindi and Department of Chemical Pathology, Army Medical College, National University of Sciences and Technology (NUST), from October 2013 to March 2014. Patients and Methods: Thirty six patients with complete spinal cord injury (SCI), level C5 to T12 were included by non-probability, convenience sampling. Control group consisted of age and sex matched healthy individuals. A detailed medical history was obtained. Anthropometric measurements and blood pressure were recorded. Fasting blood samples were obtained and analyzed for plasma glucose and serum lipid profile. Results: Out of thirty six patients, 31 (86.1%) were male and 5 (13.9%) were females; their mean age was 36.6 ± 11 years. Mean duration of injury was 6.04 ± 3.35 years. Among cases, dyslipidemias were detected in 25 (69.4%) patients while 7 (19.4%) patients had diabetes mellitus. Whereas in control group, frequency of dyslipidemias and diabetes mellitus were significantly lower than cases i.e 13.8% and 5.5% respectively. Also no significant difference was found between blood pressures of study group when compared with control group. Conclusion: Individuals with chronic SCI had more frequent associated co-morbid conditions like dyslipidemias and diabetes mellitus than normal individuals. Early screening is recommended in patients having SCI >6 months for better patient care and reduction in long term comorbidities in such patients. (author)

  12. Topical Ketamine 10% for Neuropathic Pain in Spinal Cord Injury Patients: An Open-Label Trial.

    Science.gov (United States)

    Rabi, Joseph; Minori, Joshua; Abad, Hasan; Lee, Ray; Gittler, Michelle

    2016-01-01

    Topical ketamine, an N-methyl-D-aspartate antagonist, has been shown to be effective in certain neuropathic pain syndromes. The objective of this study was to determine the efficacy of topical ketamine in spinal cord injury patients with neuropathic pain. An open label trial enrolled five subjects at an outpatient rehabilitation hospital with traumatic spinal cord injuries who had neuropathic pain at or below the level of injury. Subjects applied topical ketamine 10% three times a day for a two-week duration. Subjects recorded their numerical pain score-ranging from 0 to 10, with 0 representing "no pain, 5 representing "moderate pain," and 10 being described as "worst possible pain"-in a journal at the time of application of topical ketamine and one hour after application. Using a numerical pain scale allows for something as subjective as pain to be given an objective quantification. Subjects also recorded any occurrence of adverse events and level of satisfaction. All five subjects had a decrease in their numerical pain scale by the end of two weeks, ranging from 14% to 63%. The duration ranged from one hour in one subject to the next application in other subjects. There were no adverse effects. Overall, four out of the five subjects stated they were satisfied. Topical ketamine 10% is an effective neuropathic pain medicine in patients with spinal cord injuries; however, further studies need to be done with a placebo and larger sample size. Copyright© by International Journal of Pharmaceutical Compounding, Inc.

  13. Bone marrow mesenchymal stem cells repair spinal cord ischemia/reperfusion injury by promoting axonal growth and anti-autophagy

    Science.gov (United States)

    Yin, Fei; Meng, Chunyang; Lu, Rifeng; Li, Lei; Zhang, Ying; Chen, Hao; Qin, Yonggang; Guo, Li

    2014-01-01

    Bone marrow mesenchymal stem cells can differentiate into neurons and astrocytes after transplantation in the spinal cord of rats with ischemia/reperfusion injury. Although bone marrow mesenchymal stem cells are known to protect against spinal cord ischemia/reperfusion injury through anti-apoptotic effects, the precise mechanisms remain unclear. In the present study, bone marrow mesenchymal stem cells were cultured and proliferated, then transplanted into rats with ischemia/reperfusion injury via retro-orbital injection. Immunohistochemistry and immunofluorescence with subsequent quantification revealed that the expression of the axonal regeneration marker, growth associated protein-43, and the neuronal marker, microtubule-associated protein 2, significantly increased in rats with bone marrow mesenchymal stem cell transplantation compared with those in rats with spinal cord ischemia/reperfusion injury. Furthermore, the expression of the autophagy marker, microtubule-associated protein light chain 3B, and Beclin 1, was significantly reduced in rats with the bone marrow mesenchymal stem cell transplantation compared with those in rats with spinal cord ischemia/reperfusion injury. Western blot analysis showed that the expression of growth associated protein-43 and neurofilament-H increased but light chain 3B and Beclin 1 decreased in rats with the bone marrow mesenchymal stem cell transplantation. Our results therefore suggest that bone marrow mesenchymal stem cell transplantation promotes neurite growth and regeneration and prevents autophagy. These responses may likely be mechanisms underlying the protective effect of bone marrow mesenchymal stem cells against spinal cord ischemia/reperfusion injury. PMID:25374587

  14. Computed tomography of the spinal canal for the cervical spine and spinal cord injury

    International Nuclear Information System (INIS)

    Kimura, Isao; Niimiya, Hikosuke; Nasu, Kichiro; Shioya, Akihide; Ohhama, Mitsuru

    1983-01-01

    The cervical spinal canal and cervical spinal cord were measured in normal cases and 34 cases of spinal or spinal cord injury. The anteroposterior diameter and area of the normal cervical spinal canal showed a high correlation. The area ratio of the normal cervical spinal canal to the cervical spinal cord showed that the proportion of the cervical spinal cord in the spinal canal was 1/3 - 1/5, Csub(4,5) showing a particularly large proportion. In acute and subacute spinal or spinal cord injury, CT visualized in more details of the spinal canal in cases that x-ray showed definite bone injuries. Computer assisted myelography visualized more clearly the condition of the spinal cord in cases without definite findings bone injuries on x-ray. Demonstrating the morphology of spinal injury in more details, CT is useful for selection of therapy for injured spines. (Chiba, N.)

  15. Combined SCI and TBI: recovery of forelimb function after unilateral cervical spinal cord injury (SCI) is retarded by contralateral traumatic brain injury (TBI), and ipsilateral TBI balances the effects of SCI on paw placement.

    Science.gov (United States)

    Inoue, Tomoo; Lin, Amity; Ma, Xiaokui; McKenna, Stephen L; Creasey, Graham H; Manley, Geoffrey T; Ferguson, Adam R; Bresnahan, Jacqueline C; Beattie, Michael S

    2013-10-01

    A significant proportion (estimates range from 16 to 74%) of patients with spinal cord injury (SCI) have concomitant traumatic brain injury (TBI), and the combination often produces difficulties in planning and implementing rehabilitation strategies and drug therapies. For example, many of the drugs used to treat SCI may interfere with cognitive rehabilitation, and conversely drugs that are used to control seizures in TBI patients may undermine locomotor recovery after SCI. The current paper presents an experimental animal model for combined SCI and TBI to help drive mechanistic studies of dual diagnosis. Rats received a unilateral SCI (75 kdyn) at C5 vertebral level, a unilateral TBI (2.0 mm depth, 4.0 m/s velocity impact on the forelimb sensori-motor cortex), or both SCI+TBI. TBI was placed either contralateral or ipsilateral to the SCI. Behavioral recovery was examined using paw placement in a cylinder, grooming, open field locomotion, and the IBB cereal eating test. Over 6weeks, in the paw placement test, SCI+contralateral TBI produced a profound deficit that failed to recover, but SCI+ipsilateral TBI increased the relative use of the paw on the SCI side. In the grooming test, SCI+contralateral TBI produced worse recovery than either lesion alone even though contralateral TBI alone produced no observable deficit. In the IBB forelimb test, SCI+contralateral TBI revealed a severe deficit that recovered in 3 weeks. For open field locomotion, SCI alone or in combination with TBI resulted in an initial deficit that recovered in 2 weeks. Thus, TBI and SCI affected forelimb function differently depending upon the test, reflecting different neural substrates underlying, for example, exploratory paw placement and stereotyped grooming. Concurrent SCI and TBI had significantly different effects on outcomes and recovery, depending upon laterality of the two lesions. Recovery of function after cervical SCI was retarded by the addition of a moderate TBI in the contralateral

  16. Transplanted Human Stem Cell-Derived Interneuron Precursors Mitigate Mouse Bladder Dysfunction and Central Neuropathic Pain after Spinal Cord Injury.

    Science.gov (United States)

    Fandel, Thomas M; Trivedi, Alpa; Nicholas, Cory R; Zhang, Haoqian; Chen, Jiadong; Martinez, Aida F; Noble-Haeusslein, Linda J; Kriegstein, Arnold R

    2016-10-06

    Neuropathic pain and bladder dysfunction represent significant quality-of-life issues for many spinal cord injury patients. Loss of GABAergic tone in the injured spinal cord may contribute to the emergence of these symptoms. Previous studies have shown that transplantation of rodent inhibitory interneuron precursors from the medial ganglionic eminence (MGE) enhances GABAergic signaling in the brain and spinal cord. Here we look at whether transplanted MGE-like cells derived from human embryonic stem cells (hESC-MGEs) can mitigate the pathological effects of spinal cord injury. We find that 6 months after transplantation into injured mouse spinal cords, hESC-MGEs differentiate into GABAergic neuron subtypes and receive synaptic inputs, suggesting functional integration into host spinal cord. Moreover, the transplanted animals show improved bladder function and mitigation of pain-related symptoms. Our results therefore suggest that this approach may be a valuable strategy for ameliorating the adverse effects of spinal cord injury. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Change in the profile of traumatic spinal cord injury over 15 years in Spain.

    Science.gov (United States)

    Bárbara-Bataller, Enrique; Méndez-Suárez, José Luis; Alemán-Sánchez, Carolina; Sánchez-Enríquez, Jesús; Sosa-Henríquez, Manuel

    2018-04-05

    Traumatic spinal cord injury remains a serious public health and social problem. Although incidence rates are decreasing in our environment, it is a high cost condition that is associated with great disability. The objective of this study was to describe the epidemiological and demographic characteristics of traumatic spinal cord injury and to analyse its epidemiological changes. This study was an observational study with prospective monitoring of all traumatic spinal cord injury patients in the Canary Islands, Spain (2.1 million inhabitants) between 2001 and 2015. Over the specified period of the study, 282 patients suffered a traumatic spinal cord injury. The crude incidence rate was 9.3 cases per million people/year. The patients' mean age increased from 38 years (2001-2005) to 48 years (2011-2015) (p spinal cord injury were falls in 44%, traffic accidents in 36.5%, diving accidents in 8.9% and others in 10.7%. While traffic accidents decreased, falls increased, particularly in the elderly (p injuries and injuries associated with poor functionality (p spinal cord injury in our environment. This change in the profile of new traumatic spinal cord injuries led us to reformulate the functional objectives planned for these patients upon admission to specialized units, to plan destination-upon-discharge in advance and to promote campaigns to prevent spinal cord injury in older adults.

  18. The management of spinal cord injury patients in Greece.

    Science.gov (United States)

    Petropoulou, C B; Rapidi, C A; Beltsios, M; Karantonis, G; Lampiris, P E

    1992-02-01

    In Greece, spinal cord injury patients have serious problems concerning their treatment, social management and vocational integration. Unfortunately the treatment of such patients is usually limited to that offered in institutions for the chronically sick, after they have received their acute initial care in general hospitals. The large number of institutional beds (1287 in 1986) in relation to the small number of active rehabilitation beds (116 beds in 1989) is noteworthy. Generally speaking, the specialisation of health personnel is limited. In practice there is no programme of social rehabilitation, except for special concessions. Disabled individuals can refer to the Professional Integration Service for their vocational reintegration. We must note that vocational counsellors do not take part in the rehabilitation team. The idea of intervention for the adaptation of architectural barriers is now beginning to be considered in theory. Physicians are making efforts to establish 'basic' spinal cord units.

  19. Timing of Decompression in Patients With Acute Spinal Cord Injury: A Systematic Review

    OpenAIRE

    Wilson, Jefferson R.; Tetreault, Lindsay A.; Kwon, Brian K.; Arnold, Paul M.; Mroz, Thomas E.; Shaffrey, Christopher; Harrop, James S.; Chapman, Jens R.; Casha, Steve; Skelly, Andrea C.; Holmer, Haley K.; Brodt, Erika D.; Fehlings, Michael G.

    2017-01-01

    Study Design: Systematic review. Objective: To conduct a systematic review and synthesis of the literature to assess the comparative effectiveness, safety, and cost-effectiveness of early (≤24 hours) versus late decompression (>24 hours) in adults with acute spinal cord injury (SCI). Methods: A systematic search was conducted of Medline, EMBASE, the Cochrane Collaboration Library, and Google Scholar to identify studies published through November 6, 2014. Studies published in any language, in ...

  20. Transplantation of mononuclear cells from human umbilical cord blood promotes functional recovery after traumatic spinal cord injury in Wistar rats

    International Nuclear Information System (INIS)

    Rodrigues, L.P.; Iglesias, D.; Nicola, F.C.; Steffens, D.; Valentim, L.; Witczak, A.; Zanatta, G.; Achaval, M.; Pranke, P.; Netto, C.A.

    2011-01-01

    Cell transplantation is a promising experimental treatment for spinal cord injury. The aim of the present study was to evaluate the efficacy of mononuclear cells from human umbilical cord blood in promoting functional recovery when transplanted after a contusion spinal cord injury. Female Wistar rats (12 weeks old) were submitted to spinal injury with a MASCIS impactor and divided into 4 groups: control, surgical control, spinal cord injury, and one cell-treated lesion group. Mononuclear cells from umbilical cord blood of human male neonates were transplanted in two experiments: a) 1 h after surgery, into the injury site at a concentration of 5 x 10 6 cells diluted in 10 µL 0.9% NaCl (N = 8-10 per group); b) into the cisterna magna, 9 days after lesion at a concentration of 5 x 10 6 cells diluted in 150 µL 0.9% NaCl (N = 12-14 per group). The transplanted animals were immunosuppressed with cyclosporin-A (10 mg/kg per day). The BBB scale was used to evaluate motor behavior and the injury site was analyzed with immunofluorescent markers to label human transplanted cells, oligodendrocytes, neurons, and astrocytes. Spinal cord injury rats had 25% loss of cord tissue and cell treatment did not affect lesion extension. Transplanted cells survived in the injured area for 6 weeks after the procedure and both transplanted groups showed better motor recovery than the untreated ones (P < 0.05). The transplantation of mononuclear cells from human umbilical cord blood promoted functional recovery with no evidence of cell differentiation

  1. Transplantation of mononuclear cells from human umbilical cord blood promotes functional recovery after traumatic spinal cord injury in Wistar rats

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, L.P. [Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Iglesias, D. [Laboratório de Hematologia e Células-Tronco, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Nicola, F.C. [Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Steffens, D. [Laboratório de Hematologia e Células-Tronco, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Valentim, L.; Witczak, A.; Zanatta, G. [Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Achaval, M. [Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Pranke, P. [Laboratório de Hematologia e Células-Tronco, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Netto, C.A. [Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil)

    2011-12-23

    Cell transplantation is a promising experimental treatment for spinal cord injury. The aim of the present study was to evaluate the efficacy of mononuclear cells from human umbilical cord blood in promoting functional recovery when transplanted after a contusion spinal cord injury. Female Wistar rats (12 weeks old) were submitted to spinal injury with a MASCIS impactor and divided into 4 groups: control, surgical control, spinal cord injury, and one cell-treated lesion group. Mononuclear cells from umbilical cord blood of human male neonates were transplanted in two experiments: a) 1 h after surgery, into the injury site at a concentration of 5 x 10{sup 6} cells diluted in 10 µL 0.9% NaCl (N = 8-10 per group); b) into the cisterna magna, 9 days after lesion at a concentration of 5 x 10{sup 6} cells diluted in 150 µL 0.9% NaCl (N = 12-14 per group). The transplanted animals were immunosuppressed with cyclosporin-A (10 mg/kg per day). The BBB scale was used to evaluate motor behavior and the injury site was analyzed with immunofluorescent markers to label human transplanted cells, oligodendrocytes, neurons, and astrocytes. Spinal cord injury rats had 25% loss of cord tissue and cell treatment did not affect lesion extension. Transplanted cells survived in the injured area for 6 weeks after the procedure and both transplanted groups showed better motor recovery than the untreated ones (P < 0.05). The transplantation of mononuclear cells from human umbilical cord blood promoted functional recovery with no evidence of cell differentiation.

  2. Childhood onset of spinal cord injury: self-esteem and self-perception.

    Science.gov (United States)

    Kennedy, P; Gorsuch, N; Marsh, N

    1995-11-01

    The effects of spinal cord injury in childhood upon later psychological adjustment were investigated by comparing a group of 86 people injured as children with a control group (matched for time since injury and level of injury) of people injured as adults. It was hypothesized that adolescence is a crucial period in psychological development and that the effect of spinal cord injury on body image, self-concept and social relationships during adolescence will have a long-term negative effect on psychological well-being. However, on overall measures of depression, self-esteem and self-perception, there were no significant differences between the experimental and control groups. Furthermore, there were no significant differences between paraplegics and tetraplegics, between men women, or between those who were involved in a significant intimate relationship and those who were not. These findings support previous research which has suggested that organic variables, such as age at injury and level of injury, are not predictive of long-term psychological adjustment.

  3. Traumatic spinal cord injury in MR imaging; Urazowe przerwanie ciaglosci rdzenia kregowego w obrazie MR

    Energy Technology Data Exchange (ETDEWEB)

    Bronarski, J.; Wozniak, E. [Stoleczne Centrum Rehabilitacji, Konstancin (Poland)]|[Inst. Psychiatrii i Neurologii, Warsaw (Poland)

    1993-12-31

    Spinal cord injuries in tetraplegics were briefly discussed on the basis of MR imaging. It was found that severe cervical spine trauma usually results in concussion - the complete transection of the cord is rare. A case of 19 years old male with total cord transection confirmed by MR imaging is described. (author). 5 refs, 3 figs.

  4. Motor cortex and spinal cord neuromodulation promote corticospinal tract axonal outgrowth and motor recovery after cervical contusion spinal cord injury.

    Science.gov (United States)

    Zareen, N; Shinozaki, M; Ryan, D; Alexander, H; Amer, A; Truong, D Q; Khadka, N; Sarkar, A; Naeem, S; Bikson, M; Martin, J H

    2017-11-01

    Cervical injuries are the most common form of SCI. In this study, we used a neuromodulatory approach to promote skilled movement recovery and repair of the corticospinal tract (CST) after a moderately severe C4 midline contusion in adult rats. We used bilateral epidural intermittent theta burst (iTBS) electrical stimulation of motor cortex to promote CST axonal sprouting and cathodal trans-spinal direct current stimulation (tsDCS) to enhance spinal cord activation to motor cortex stimulation after injury. We used Finite Element Method (FEM) modeling to direct tsDCS to the cervical enlargement. Combined iTBS-tsDCS was delivered for 30min daily for 10days. We compared the effect of stimulation on performance in the horizontal ladder and the Irvine Beattie and Bresnahan forepaw manipulation tasks and CST axonal sprouting in injury-only and injury+stimulation animals. The contusion eliminated the dorsal CST in all animals. tsDCS significantly enhanced motor cortex evoked responses after C4 injury. Using this combined spinal-M1 neuromodulatory approach, we found significant recovery of skilled locomotion and forepaw manipulation skills compared with injury-only controls. The spared CST axons caudal to the lesion in both animal groups derived mostly from lateral CST axons that populated the contralateral intermediate zone. Stimulation enhanced injury-dependent CST axonal outgrowth below and above the level of the injury. This dual neuromodulatory approach produced partial recovery of skilled motor behaviors that normally require integration of posture, upper limb sensory information, and intent for performance. We propose that the motor systems use these new CST projections to control movements better after injury. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Effects of visual illusion and transcutaneous electrical nerve stimulation on neuropathic pain in patients with spinal cord injury: A randomised controlled cross-over trial.

    Science.gov (United States)

    Özkul, Çağla; Kılınç, Muhammed; Yıldırım, Sibel Aksu; Topçuoğlu, Elif Yalçın; Akyüz, Müfit

    2015-01-01

    Chronic pain is a common consequence of spinal cord injury (SCI). No therapeutic drugs or drug groups are proven to be superior for neuropathic pain and treatments only aim to convert pain from dull to tolerable levels and not to remove it. This study was planned to compare the effect of visual illusion (VI) and transcutaneous electrical nerve stimulation (TENS) on pain intensity, pain quality and functional capacity in SCI patients with neuropathic pain. Twenty-four patients were included and randomly categorized into two groups. In the first group (n= 12), visual illusion was applied for first two weeks, 1 week wash out period and then TENS was applied for 2 weeks. In second group (n= 12), TENS was applied firstly, 1 week wash out and then %visual illusion VI were applied. Pain severity, pain quality, and functional capacity were assessed with the visual ana