WorldWideScience

Sample records for cord injury damage

  1. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Injury Chart Spinal Cord Injury Facts and Figures Care and Treatment After SCI Spinal Cord Injury Rehabilitation ... Injury Chart Spinal Cord Injury Facts and Figures Care and Treatment After SCI Spinal Cord Injury Rehabilitation ...

  2. Spinal Cord Injury 101

    Medline Plus

    Full Text Available menu Understanding Spinal Cord Injury What is a Spinal Cord Injury Levels of Injury and What They Mean Animated Spinal Cord Injury Chart Spinal Cord Injury Facts and Figures Care and ...

  3. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... and What They Mean Animated Spinal Cord Injury Chart Spinal Cord Injury Facts and Figures Care and ... and What They Mean Animated Spinal Cord Injury Chart Spinal Cord Injury Facts and Figures Care and ...

  4. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Spinal Cord Injury Facts and Figures Care and Treatment After SCI Spinal Cord Injury Rehabilitation Pediatric Spinal ... Spinal Cord Injury Facts and Figures Care and Treatment After SCI Spinal Cord Injury Rehabilitation Pediatric Spinal ...

  5. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Cord Injury Rehabilitation Pediatric Spinal Cord Injuries Video Library SCI Medical Experts People Living with SCI Personal ... Cord Injury Rehabilitation Pediatric Spinal Cord Injuries Video Library SCI Medical Experts People Living with SCI Personal ...

  6. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Cord Injury Diane M. Rowles, MS, NP How Family Life Changes After Spinal Cord Injury Nancy Rosenberg, ... Children with Spinal Cord Injury Patricia Mucia, RN Family Life After Pediatric Spinal Injury Dawn Sheaffer, MSW ...

  7. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Life After Pediatric Spinal Injury Dawn Sheaffer, MSW Rehabilitation Psychological Realities after Spinal Cord Injury Toby Huston, ... Rose, PhD The Basics of Spinal Cord Injury Rehabilitation Kristine Cichowski, MS Occupational Therapy after Spinal Cord ...

  8. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... spinal cord injury? play_arrow What kind of surgery is common after a spinal cord injury? play_ ... How soon after a spinal cord injury should surgery be performed? play_arrow Is it common to ...

  9. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... L Sarah Harrison, OT Anne Bryden, OT The Role of the Social Worker after Spinal Cord Injury ... a spinal cord injury important? play_arrow What role does “compression” play in a spinal cord injury? ...

  10. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Counseling Blog About Media Donate Spinal Cord Injury Medical Expert Videos Topics menu Topics Spinal Cord Injury ... Jennifer Piatt, PhD David Chen, MD Read Bio Medical Director, Spinal Cord Injury Rehabilitation Program, Rehabilitation Institute ...

  11. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Spinal Cord Injury Diane M. Rowles, MS, NP How Family Life Changes After Spinal Cord Injury Nancy ... Abuse and Spinal Cord Injury Allen Heinemann, PhD How Peer Counseling Works Julie Gassaway, MS, RN Pediatric ...

  12. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Cord Injury Rehabilitation Pediatric Spinal Cord Injuries Video Library SCI Medical Experts People Living with SCI Personal Experiences by Topic Resources Peer Counseling Blog About Media Donate close search Understanding Spinal Cord Injury What ...

  13. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... About Media Donate Spinal Cord Injury Medical Expert Videos Topics menu Topics Spinal Cord Injury 101 Adult ... LLC Understanding Spinal Cord Injury About Us Expert Videos Contact Us Personal Experience Videos Blog Videos By ...

  14. Harnessing neural activity to promote repair of the damaged corticospinal system after spinal cord injury

    Directory of Open Access Journals (Sweden)

    John H Martin

    2016-01-01

    Full Text Available As most spinal cord injuries (SCIs are incomplete, an important target for promoting neural repair and recovery of lost motor function is to promote the connections of spared descending spinal pathways with spinal motor circuits. Among the pathways, the corticospinal tract (CST is most associated with skilled voluntary functions in humans and many animals. CST loss, whether at its origin in the motor cortex or in the white matter tracts subcortically and in the spinal cord, leads to movement impairments and paralysis. To restore motor function after injury will require repair of the damaged CST. In this review, I discuss how knowledge of activity-dependent development of the CST-which establishes connectional specificity through axon pruning, axon outgrowth, and synaptic competition among CST terminals-informed a novel activity-based therapy for promoting sprouting of spared CST axons after injur in mature animals. This therapy, which comprises motor cortex electrical stimulation with and without concurrent trans-spinal direct current stimulation, leads to an increase in the gray matter axon length of spared CST axons in the rat spinal cord and, after a pyramidal tract lesion, restoration of skilled locomotor movements. I discuss how this approach is now being applied to a C 4 contusion rat model.

  15. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Facts and Figures Care and Treatment After SCI Spinal Cord Injury Rehabilitation Pediatric Spinal Cord Injuries Video Library SCI Medical ... Facts and Figures Care and Treatment After SCI Spinal Cord Injury Rehabilitation Pediatric Spinal Cord Injuries Video Library SCI Medical ...

  16. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Injury Chart Spinal Cord Injury Facts and Figures Care and Treatment After SCI Spinal Cord Injury ... Pressure Sores Mary Zeigler, MS Transition from Hospital to Home Kim Eberhardt Muir, MS Coping with a New ...

  17. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... is a spinal cord injury? play_arrow How does the spinal cord work? play_arrow Why is ... spinal cord injury important? play_arrow What role does “compression” play in a spinal cord injury? play_ ...

  18. Delayed administration of dapsone protects from tissue damage and improves recovery after spinal cord injury.

    Science.gov (United States)

    Diaz-Ruiz, Araceli; Salgado-Ceballos, Hermelinda; Montes, Sergio; Guizar-Sahagún, Gabriel; Gelista-Herrera, Noemi; Mendez-Armenta, Marisela; Diaz-Cintra, Sofia; Ríos, Camilo

    2011-03-01

    After spinal cord injury (SCI), a complex cascade of pathophysiological processes increases the primary damage. The inflammatory response plays a key role in this pathology. Recent evidence suggests that myeloperoxidase (MPO), an enzyme produced and released by neutrophils, is of special importance in spreading tissue damage. Dapsone (4,4'-diaminodiphenylsulfone) is an irreversible inhibitor of MPO. Recently, we demonstrated, in a model of brain ischemia/reperfusion, that dapsone has antioxidant, antiinflammatory, and antiapoptotic effects. The effects of dapsone on MPO activity, lipid peroxidation (LP) processes, motor function recovery, and the amount of spared tissue were evaluated in a rat model of SCI. MPO activity had increased 24.5-fold 24 hr after SCI vs. the sham group, and it had diminished by 38% and 19% in the groups treated with dapsone at 3 and 5 hr after SCI, respectively. SCI increased LP by 45%, and this increase was blocked by dapsone. In rats treated with dapsone, a significant motor function recovery (Basso-Beattie-Bresnahan score, BBB) was observed beginning during the first week of evaluation and continuing until the end of the study. Spontaneous recovery 8 weeks after SCI was 9.2 ± 1.12, whereas, in the dapsone-treated groups, it reached 13.6 ± 1.04 and 12.9 ± 1.17. Spared tissue increased by 42% and 33% in the dapsone-treated groups (3 and 5 hr after SCI, respectively) vs. SCI without treatment. Dapsone significantly prevented mortality. The results show that inhibition of MPO by dapsone significantly protected the spinal cord from tissue damage and enhanced motor recovery after SCI. Copyright © 2011 Wiley-Liss, Inc.

  19. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Cord Injury Allen Heinemann, PhD How Peer Counseling Works Julie Gassaway, MS, RN Pediatric Injuries Pediatric Spinal Cord Injury 101 Lawrence Vogel, MD The Basics of Pediatric SCI Rehabilitation Sara Klaas, MSW Transitions for Children with Spinal Cord Injury Patricia Mucia, RN Family ...

  20. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Lokomat T. George Hornby, PhD, PT Empowering the Patient After Spinal Cord Injury Guy W. Fried, MD Substance Abuse and Spinal Cord Injury Allen Heinemann, PhD How Peer Counseling Works Julie Gassaway, MS, RN Pediatric Injuries Pediatric Spinal Cord Injury 101 Lawrence Vogel, ...

  1. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Cord Injury Diane M. Rowles, MS, NP How Family Life Changes After Spinal Cord Injury Nancy Rosenberg, PsyD ... Children with Spinal Cord Injury Patricia Mucia, RN Family Life After Pediatric Spinal Injury Dawn Sheaffer, MSW Rehabilitation ...

  2. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... of spinal cord injuries? play_arrow What does stem-cell research on animals tell us? play_arrow When can we expect stem-cell treatments to become available for spinal cord injuries? ...

  3. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Gravity Forms. FacingDisability.com is an informational and support website for families facing spinal cord injuries. The ... Blog Videos By Topic Media Resources Donate to support families facing spinal cord injuries Peer Counseling 312- ...

  4. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... long does it usually take for feeling and movement to return after a spinal cord injury? play_ ... LLC Understanding Spinal Cord Injury About Us Expert Videos Contact Us Personal Experience Videos Blog Videos By ...

  5. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Experiences by Topic Resources Peer Counseling Blog About Media Donate close search Understanding Spinal Cord Injury What ... Experiences by Topic Resources Peer Counseling Blog About Media Donate Spinal Cord Injury Medical Expert Videos Topics ...

  6. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Pediatric SCI Rehabilitation Sara Klaas, MSW Transitions for Children with Spinal Cord Injury Patricia Mucia, RN Family Life After Pediatric Spinal Injury Dawn Sheaffer, MSW ...

  7. Spinal Cord Injuries

    Science.gov (United States)

    ... forth between your body and your brain. A spinal cord injury disrupts the signals. Spinal cord injuries usually begin with a blow that fractures or ... down on the nerve parts that carry signals. Spinal cord injuries can be complete or incomplete. With a complete ...

  8. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... cord injuries? play_arrow What are the latest developments in the use of electrical stimulation for spinal cord injuries? play_arrow What is “Braingate” research? play_arrow How would stem-cell therapies work in the treatment of spinal cord injuries? play_ ...

  9. The NAMPT inhibitor FK866 reverts the damage in spinal cord injury

    Directory of Open Access Journals (Sweden)

    Esposito Emanuela

    2012-04-01

    Full Text Available Abstract Background Emerging data implicate nicotinamide phosphoribosyl transferase (NAMPT in the pathogenesis of cancer and inflammation. NAMPT inhibitors have proven beneficial in inflammatory animal models of arthritis and endotoxic shock as well as in autoimmune encephalitis. Given the role of inflammatory responses in spinal cord injury (SCI, the effect of NAMPT inhibitors was examined in this setting. Methods We investigated the effects of the NAMPT inhibitor FK866 in an experimental compression model of SCI. Results Twenty-four hr following induction of SCI, a significant functional deficit accompanied widespread edema, demyelination, neuron loss and a substantial increase in TNF-α, IL-1β, PAR, NAMPT, Bax, MPO activity, NF-κB activation, astrogliosis and microglial activation was observed. Meanwhile, the expression of neurotrophins BDNF, GDNF, NT3 and anti-apoptotic Bcl-2 decreased significantly. Treatment with FK866 (10 mg/kg, the best known and characterized NAMPT inhibitor, at 1 h and 6 h after SCI rescued motor function, preserved perilesional gray and white matter, restored anti-apoptotic and neurotrophic factors, prevented the activation of neutrophils, microglia and astrocytes and inhibited the elevation of NAMPT, PAR, TNF-α, IL-1β, Bax expression and NF-κB activity. We show for the first time that FK866, a specific inhibitor of NAMPT, administered after SCI, is capable of reducing the secondary inflammatory injury and partly reduce permanent damage. We also show that NAMPT protein levels are increased upon SCI in the perilesional area which can be corrected by administration of FK866. Conclusions Our findings suggest that the inflammatory component associated to SCI is the primary target of these inhibitors.

  10. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... play_arrow What are the chances of regaining feeling and mobility after a spinal cord injury? play_arrow How long does it usually take for feeling and movement to return after a spinal cord ...

  11. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Disabilities Photography by Rona Talcott Website by Mobile Marketing LLC Understanding Spinal Cord Injury About Us Expert Videos Contact Us Personal Experience Videos Blog Videos By Topic Media Resources Donate to support families facing spinal cord ...

  12. Trauma: Spinal Cord Injury.

    Science.gov (United States)

    Eckert, Matthew J; Martin, Matthew J

    2017-10-01

    Injuries to the spinal column and spinal cord frequently occur after high-energy mechanisms of injury, or with lower-energy mechanisms, in select patient populations like the elderly. A focused yet complete neurologic examination during the initial evaluation will guide subsequent diagnostic procedures and early supportive measures to help prevent further injury. For patients with injury to bone and/or ligaments, the initial focus should be spinal immobilization and prevention of inducing injury to the spinal cord. Spinal cord injury is associated with numerous life-threatening complications during the acute and long-term phases of care that all acute care surgeons must recognize. Published by Elsevier Inc.

  13. Spatio-temporal progression of grey and white matter damage following contusion injury in rat spinal cord.

    Science.gov (United States)

    Ek, C Joakim; Habgood, Mark D; Callaway, Jennifer K; Dennis, Ross; Dziegielewska, Katarzyna M; Johansson, Pia A; Potter, Ann; Wheaton, Benjamin; Saunders, Norman R

    2010-08-09

    Cellular mechanisms of secondary damage progression following spinal cord injury remain unclear. We have studied the extent of tissue damage from 15 min to 10 weeks after injury using morphological and biochemical estimates of lesion volume and surviving grey and white matter. This has been achieved by semi-quantitative immunocytochemical methods for a range of cellular markers, quantitative counts of white matter axonal profiles in semi-thin sections and semi-quantitative Western blot analysis, together with behavioural tests (BBB scores, ledged beam, random rung horizontal ladder and DigiGait analysis). We have developed a new computer-controlled electronic impactor based on a linear motor that allows specification of the precise nature, extent and timing of the impact. Initial (15 min) lesion volumes showed very low variance (1.92+/-0.23 mm3, mean+/-SD, n=5). Although substantial tissue clearance continued for weeks after injury, loss of grey matter was rapid and complete by 24 hours, whereas loss of white matter extended up to one week. No change was found between one and 10 weeks after injury for almost all morphological and biochemical estimates of lesion size or behavioural methods. These results suggest that previously reported apparent ongoing injury progression is likely to be due, to a large extent, to clearance of tissue damaged by the primary impact rather than continuing cell death. The low variance of the impactor and the comprehensive assessment methods described in this paper provide an improved basis on which the effects of potential treatment regimes for spinal cord injury can be assessed.

  14. Spatio-temporal progression of grey and white matter damage following contusion injury in rat spinal cord.

    Directory of Open Access Journals (Sweden)

    C Joakim Ek

    Full Text Available Cellular mechanisms of secondary damage progression following spinal cord injury remain unclear. We have studied the extent of tissue damage from 15 min to 10 weeks after injury using morphological and biochemical estimates of lesion volume and surviving grey and white matter. This has been achieved by semi-quantitative immunocytochemical methods for a range of cellular markers, quantitative counts of white matter axonal profiles in semi-thin sections and semi-quantitative Western blot analysis, together with behavioural tests (BBB scores, ledged beam, random rung horizontal ladder and DigiGait analysis. We have developed a new computer-controlled electronic impactor based on a linear motor that allows specification of the precise nature, extent and timing of the impact. Initial (15 min lesion volumes showed very low variance (1.92+/-0.23 mm3, mean+/-SD, n=5. Although substantial tissue clearance continued for weeks after injury, loss of grey matter was rapid and complete by 24 hours, whereas loss of white matter extended up to one week. No change was found between one and 10 weeks after injury for almost all morphological and biochemical estimates of lesion size or behavioural methods. These results suggest that previously reported apparent ongoing injury progression is likely to be due, to a large extent, to clearance of tissue damaged by the primary impact rather than continuing cell death. The low variance of the impactor and the comprehensive assessment methods described in this paper provide an improved basis on which the effects of potential treatment regimes for spinal cord injury can be assessed.

  15. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... After Pediatric Spinal Injury Dawn Sheaffer, MSW Rehabilitation Psychological Realities after Spinal Cord Injury Toby Huston, PhD ... not provide medical advice, recommend or endorse health care products or services, or control the information found ...

  16. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Living with SCI Personal Experiences by Topic Resources Peer ... Adult Injuries Spinal Cord Injury 101 David Chen, MD Preventing Pressure Sores Mary Zeigler, MS Transition from Hospital to ...

  17. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... How Peer Counseling Works Julie Gassaway, MS, RN Pediatric Injuries Pediatric Spinal Cord Injury 101 Lawrence Vogel, MD The Basics of Pediatric SCI Rehabilitation Sara Klaas, MSW Transitions for Children ...

  18. Spinal Cord Injury

    Science.gov (United States)

    ... hips, legs, and feet. If you have a spinal injury you may need surgery, physical therapy , and other ... your health on a daily basis. Living with spinal cord injury — your questions answered top What are pediatric ...

  19. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Injury Diane M. Rowles, MS, NP How Family Life Changes After Spinal Cord Injury Nancy Rosenberg, PsyD ... Rehabilitation Donald Peck Leslie, MD Adjusting to Social Life in a Wheelchair Lisa Rosen, MS Spasticity, Physical ...

  20. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Spinal Cord Injury 101 Lawrence Vogel, MD The Basics of Pediatric SCI Rehabilitation Sara Klaas, MSW Transitions ... PhD Michelle Meade, PhD Jonathon Rose, PhD The Basics of Spinal Cord Injury Rehabilitation Kristine Cichowski, MS ...

  1. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... in a Wheelchair Lisa Rosen, MS Spasticity, Physical Therapy-Lokomat T. George Hornby, PhD, PT Empowering the Patient After Spinal Cord Injury Guy W. Fried, MD Substance Abuse and Spinal Cord Injury Allen Heinemann, PhD How ...

  2. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Read Bio Medical Director, Spinal Cord Injury Rehabilitation Program, Rehabilitation Institute of Chicago play_arrow What is ... What is the “Spinal Cord Injury Model Systems” program? play_arrow What are the most promising new ...

  3. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Blog Videos By Topic Media Resources Donate to support families facing spinal cord injuries Peer Counseling 312-284- ... of Use FacingDisability.com is an informational and support website for families facing spinal cord injuries. The website does not ...

  4. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... MS Spasticity, Physical Therapy-Lokomat T. George Hornby, PhD, PT Empowering the Patient After Spinal Cord Injury ... Substance Abuse and Spinal Cord Injury Allen Heinemann, PhD How Peer Counseling Works Julie Gassaway, MS, RN ...

  5. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... play_arrow What is the “Spinal Cord Injury Model Systems” program? play_arrow What are the most promising new treatments for spinal cord injuries? play_arrow What are the latest developments in the use of electrical stimulation for spinal ...

  6. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Life in a Wheelchair Lisa Rosen, MS Spasticity, Physical Therapy-Lokomat T. George Hornby, PhD, PT Empowering the Patient After Spinal Cord Injury Guy W. Fried, MD Substance Abuse and Spinal Cord Injury Allen Heinemann, PhD How ...

  7. Pericytes Make Spinal Cord Breathless after Injury.

    Science.gov (United States)

    Almeida, Viviani M; Paiva, Ana E; Sena, Isadora F G; Mintz, Akiva; Magno, Luiz Alexandre V; Birbrair, Alexander

    2017-09-01

    Traumatic spinal cord injury is a devastating condition that leads to significant neurological deficits and reduced quality of life. Therapeutic interventions after spinal cord lesions are designed to address multiple aspects of the secondary damage. However, the lack of detailed knowledge about the cellular and molecular changes that occur after spinal cord injury restricts the design of effective treatments. Li and colleagues using a rat model of spinal cord injury and in vivo microscopy reveal that pericytes play a key role in the regulation of capillary tone and blood flow in the spinal cord below the site of the lesion. Strikingly, inhibition of specific proteins expressed by pericytes after spinal cord injury diminished hypoxia and improved motor function and locomotion of the injured rats. This work highlights a novel central cellular population that might be pharmacologically targeted in patients with spinal cord trauma. The emerging knowledge from this research may provide new approaches for the treatment of spinal cord injury.

  8. Spinal cord injury produced by direct damage during cervical transforaminal epidural injection.

    Science.gov (United States)

    Lee, Jae-Hyun; Lee, Jung-Kil; Seo, Bo-Ra; Moon, Sung-Jun; Kim, Jae-Hyoo; Kim, Soo-Han

    2008-01-01

    Cervical transforaminal epidural steroid injection (TFESI) has become a common treatment for cervical radiculopathy. We describe a case of spinal cord injury caused by direct injection of iohexol into the cervical spinal cord during cervical TFESI. A 55-year-old male suffered from intractable pain in the neck, radiating to his left arm. After undergoing C6-7 TFESI under fluoroscopic guidance, the patient reported a shooting pain during needle insertion, and developed quadriparesis shortly after contrast injection. The radiological findings of the contrast medium and air bubble within the cord indicated needle penetration and intracord contrast injection. The paresis of his right arm and both legs recovered within 4 hours after the procedure. At 1-month follow-up, his left arm paresis had continued to improve. One year after the event, the motor paresis improved except for grasping with the left hand, resulting in a claw hand deformity. This case report draws attention to this very serious complication of cervical TFESI. It is essential to confirm final needle position using both anteroposterior and lateral fluoroscopy before any injection through the needle.

  9. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... with SCI Personal Experiences by Topic Resources Peer Counseling Blog About Media Donate close search Understanding Spinal ... with SCI Personal Experiences by Topic Resources Peer Counseling Blog About Media Donate Spinal Cord Injury Medical ...

  10. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Diane M. Rowles, MS, NP How Family Life Changes After Spinal Cord Injury Nancy Rosenberg, PsyD Understanding SCI Rehabilitation Donald Peck Leslie, MD Adjusting to Social Life in a Wheelchair Lisa Rosen, MS Spasticity, ...

  11. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... With Disabilities Photography by Rona Talcott Website by Mobile Marketing LLC Understanding Spinal Cord Injury About Us ... With Disabilities Photography by Rona Talcott Website by Mobile Marketing LLC close close

  12. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Preventing Pressure Sores Mary Zeigler, MS Transition from Hospital to Home Kim Eberhardt Muir, MS Coping with ... Disabilities Photography by Rona Talcott Website by Mobile Marketing LLC Understanding Spinal Cord Injury About Us Expert ...

  13. Spinal Cord Injury 101

    Science.gov (United States)

    ... Preventing Pressure Sores Mary Zeigler, MS Transition from Hospital to Home Kim Eberhardt Muir, MS Coping with ... Disabilities Photography by Rona Talcott Website by Mobile Marketing LLC Understanding Spinal Cord Injury About Us Expert ...

  14. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... to experience neuropathic pain after a spinal cord injury? play_arrow What is a “physiatrist”? play_arrow What factors are important in choosing a rehabilitation facility after ...

  15. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... com is an informational and support website for families facing spinal cord injuries. The website does not provide medical advice, recommend or endorse health care products or services, or control the information ...

  16. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... OT Anne Bryden, OT The Role of the Social Worker after Spinal Cord Injury Patti Rogers, SW Marguerite ... play_arrow What are the latest developments in the use of electrical stimulation for spinal ...

  17. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... arrow What is the “Spinal Cord Injury Model Systems” program? play_arrow What are the most promising ... health care products or services, or control the information found on external websites. The Hill Foundation is ...

  18. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Disabilities Photography by Rona Talcott Website by Mobile Marketing LLC Understanding Spinal Cord Injury About Us Expert ... Disabilities Photography by Rona Talcott Website by Mobile Marketing LLC close close

  19. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... cord injuries? play_arrow What are the latest developments in the use of electrical stimulation for spinal ... health care products or services, or control the information found on external websites. The Hill Foundation is ...

  20. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Experiences By Topic Resources Blog Peer ... cord injuries. The website does not provide medical advice, recommend or endorse health care products or services, or control the information ...

  1. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... arrow What is the “Spinal Cord Injury Model Systems” program? play_arrow ... recommend or endorse health care products or services, or control the information found on external websites. The Hill Foundation is ...

  2. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Living with SCI Personal Experiences by Topic Resources Peer Counseling Blog About Media Donate close search Understanding ... Living with SCI Personal Experiences by Topic Resources Peer Counseling Blog About Media Donate Spinal Cord Injury ...

  3. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Life in a Wheelchair Lisa Rosen, MS Spasticity, Physical Therapy-Lokomat T. George Hornby, PhD, PT Empowering ... Rogers, SW Marguerite David, MSW Kathy Hulse, MSW Physical Therapy after Spinal Cord Injury Laura Wehrli, PT ...

  4. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... SCI Rehabilitation Donald Peck Leslie, MD Adjusting to Social Life in a Wheelchair Lisa Rosen, MS Spasticity, ... OT Anne Bryden, OT The Role of the Social Worker after Spinal Cord Injury Patti Rogers, SW ...

  5. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... OT Anne Bryden, OT The Role of the Social Worker after Spinal Cord Injury Patti Rogers, ... not provide medical advice, recommend or endorse health care products or services, or control the information found on external websites. ...

  6. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... play_arrow What does stem-cell research on animals tell us? play_arrow When can we expect ... com is an informational and support website for families facing spinal cord injuries. The website does not ...

  7. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Forms. FacingDisability.com is an informational and support website for families facing spinal cord injuries. The website does not provide medical advice, recommend or endorse ...

  8. Spinal cord injury after blunt cervical spine trauma: correlation of soft-tissue damage and extension of lesion.

    Science.gov (United States)

    Martínez-Pérez, R; Paredes, I; Cepeda, S; Ramos, A; Castaño-León, A M; García-Fuentes, C; Lobato, R D; Gómez, P A; Lagares, A

    2014-05-01

    In patients with spinal cord injury after blunt trauma, several studies have observed a correlation between neurologic impairment and radiologic findings. Few studies have been performed to correlate spinal cord injury with ligamentous injury. The purpose of this study was to retrospectively evaluate whether ligamentous injury or disk disruption after spinal cord injury correlates with lesion length. We retrospectively reviewed 108 patients diagnosed with traumatic spinal cord injury after cervical trauma between 1990-2011. Plain films, CT, and MR imaging were performed on patients and then reviewed for this study. MR imaging was performed within 96 hours after cervical trauma for all patients. Data regarding ligamentous injury, disk injury, and the extent of the spinal cord injury were collected from an adequate number of MR images. We evaluated anterior longitudinal ligaments, posterior longitudinal ligaments, and the ligamentum flavum. Length of lesion, disk disruption, and ligamentous injury association, as well as the extent of the spinal cord injury were statistically assessed by means of univariate analysis, with the use of nonparametric tests and multivariate analysis along with linear regression. There were significant differences in lesion length on T2-weighted images for anterior longitudinal ligaments, posterior longitudinal ligaments, and ligamentum flavum in the univariate analysis; however, when this was adjusted by age, level of injury, sex, and disruption of the soft tissue evaluated (disk, anterior longitudinal ligaments, posterior longitudinal ligaments, and ligamentum flavum) in a multivariable analysis, only ligamentum flavum showed a statistically significant association with lesion length. Furthermore, the number of ligaments affected had a positive correlation with the extension of the lesion. In cervical spine trauma, a specific pattern of ligamentous injury correlates with the length of the spinal cord lesion in MR imaging studies

  9. Spinal cord injury arising in anaesthesia practice.

    Science.gov (United States)

    Hewson, D W; Bedforth, N M; Hardman, J G

    2018-01-01

    Spinal cord injury arising during anaesthetic practice is a rare event, but one that carries a significant burden in terms of morbidity and mortality. In this article, we will review the pathophysiology of spinal cord injury. We will then discuss injuries relating to patient position, spinal cord hypoperfusion and neuraxial techniques. The most serious causes of spinal cord injury - vertebral canal haematoma, spinal epidural abscess, meningitis and adhesive arachnoiditis - will be discussed in turn. For each condition, we draw attention to practical, evidence-based measures clinicians can undertake to reduce their incidence, or mitigate their severity. Finally, we will discuss transient neurological symptoms. Some cases of spinal cord injury during anaesthesia can be ascribed to anaesthesia itself, arising as a direct consequence of its conduct. The injury to a spinal nerve root by inaccurate and/or incautious needling during spinal anaesthesia is an obvious example. But in many cases, spinal cord injury during anaesthesia is not caused by, related to, or even associated with, the conduct of the anaesthetic. Surgical factors, whether direct (e.g. spinal nerve root damage due to incorrect pedicle screw placement) or indirect (e.g. cord ischaemia following aortic surgery) are responsible for a significant proportion of spinal cord injuries that occur concurrently with the delivery of regional or general anaesthesia. © 2018 The Association of Anaesthetists of Great Britain and Ireland.

  10. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... play_arrow What is the “Spinal Cord Injury Model Systems” program? play_arrow What are the most ... Experiences By Topic Resources Blog Peer Counseling About Media Donate Contact Us Terms of Use Site Map ...

  11. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Life in a Wheelchair Lisa Rosen, MS Spasticity, Physical Therapy-Lokomat T. George Hornby, PhD, PT Empowering the ... Rogers, SW Marguerite David, MSW Kathy Hulse, MSW Physical Therapy after Spinal Cord Injury Laura Wehrli, PT Isa ...

  12. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Braingate” research? play_arrow How would stem-cell therapies work in the treatment of spinal cord injuries? play_arrow What does stem-cell research on animals tell us? play_arrow When can we expect ...

  13. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... play_arrow What is the “Spinal Cord Injury Model Systems” program? play_arrow What are the most ... 2011 – 2017 Hill Foundation for Families Living With Disabilities Photography by Rona Talcott Website by Mobile Marketing ...

  14. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... is “Braingate” research? play_arrow How would stem-cell therapies work in the treatment of spinal cord injuries? play_arrow What does stem-cell research on animals tell us? play_arrow When ...

  15. Spinal Cord Injury

    Science.gov (United States)

    ... stimulation to produce actions. They're often called functional electrical stimulation (FES) systems, and they use electrical stimulators to control arm and leg muscles to allow people with a spinal cord injury to stand, walk, reach and grip. Robotic gait ...

  16. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... What is “Braingate” research? play_arrow How would stem-cell therapies work in the treatment of spinal cord injuries? play_arrow What does stem-cell research on animals tell us? play_arrow ...

  17. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Use Site Map Privacy Statement 312-284-2525 info@facingdisability.com SIGN UP FOR OUR NEWSLETTER Your ... spinal cord injuries Peer Counseling 312-284-2525 info@facingdisability.com SIGN UP FOR OUR NEWSLETTER Your ...

  18. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... What is “Braingate” research? play_arrow How would stem-cell therapies work in the treatment of spinal cord injuries? play_arrow What does stem-cell research on animals tell us? play_arrow When ...

  19. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Blog Videos By Topic Media Resources Donate to support families facing spinal cord injuries Peer Counseling 312-284-2525 info@facingdisability.com SIGN UP FOR OUR NEWSLETTER Your email address * This iframe contains the logic required to ...

  20. Neutralization of tumor necrosis factor-related apoptosis-inducing ligand reduces spinal cord injury damage in mice.

    Science.gov (United States)

    Cantarella, Giuseppina; Di Benedetto, Giulia; Scollo, Mimmo; Paterniti, Irene; Cuzzocrea, Salvatore; Bosco, Paolo; Nocentini, Giuseppe; Riccardi, Carlo; Bernardini, Renato

    2010-05-01

    Spinal cord injury (SCI) is a major cause of disability, its clinical outcome depending mostly on the extent of damage in which proapoptotic cytokines have a crucial function. In particular, the inducers of apoptosis belonging to TNF receptor superfamily and their respective ligands are upregulated after SCI. In this study, the function of the proapoptotic cytokine tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in SCI-induced damage was investigated in the mouse. SCI resulted in severe trauma, characterized by prominent inflammation-related damage and apoptosis. Immunostaining for TRAIL and its receptor DR5 was found in the white and gray matter of the perilesional area, as also confirmed by western blotting experiments. Immunoneutralization of TRAIL resulted in improved functional recovery, reduced apoptotic cell number, modulation of molecules involved in the inflammatory response (FasL, TNF-alpha, IL-1beta, and MPO), and the corresponding signaling (caspase-8 and -3 activation, JNK phosphorylation, Bax, and Bcl-2 expression). As glucocorticoid-induced TNF receptor superfamily-related protein (GITR) activated by its ligand (GITRL) contributes to SCI-related inflammation, interactions between TRAIL and GITRL were investigated. SCI was associated with upregulated GITR and GITRL expression, a phenomenon prevented by anti-TRAIL treatment. Moreover, the expression of both TRAIL and DR5 was reduced in tissues from mice lacking the GITR gene (GITR(-/-)) in comparison with wild-type mice suggesting that TRAIL- and GITRL-activated pathways synergise in the development of SCI-related inflammatory damage. Characterization of new targets within such molecular systems may constitute a platform for innovative treatment of SCI.

  1. Nanomedicine for treating spinal cord injury

    Science.gov (United States)

    Tyler, Jacqueline Y.; Xu, Xiao-Ming; Cheng, Ji-Xin

    2013-09-01

    Spinal cord injury results in significant mortality and morbidity, lifestyle changes, and difficult rehabilitation. Treatment of spinal cord injury is challenging because the spinal cord is both complex to treat acutely and difficult to regenerate. Nanomaterials can be used to provide effective treatments; their unique properties can facilitate drug delivery to the injury site, enact as neuroprotective agents, or provide platforms to stimulate regrowth of damaged tissues. We review recent uses of nanomaterials including nanowires, micelles, nanoparticles, liposomes, and carbon-based nanomaterials for neuroprotection in the acute phase. We also review the design and neural regenerative application of electrospun scaffolds, conduits, and self-assembling peptide scaffolds.

  2. What Is Spinal Cord Injury?

    Science.gov (United States)

    ... degrees of incomplete injury. 1 The closer the spinal injury is to the skull, the more extensive is ... 3 National Institute of Neurological Disorders and Stroke. Spinal cord injury: Hope through research. Retrieved June 19 , 2013 , from ...

  3. Depression and Spinal Cord Injury

    Science.gov (United States)

    ... Urinary Tract Infections: Indwelling (Foley) Catheter Depression and Spinal Cord Injury [ Download this pamphlet: “Depression and Spinal Cord Injury” (PDF - 477KB)] Depression is a common illness that ...

  4. International Spinal Cord Injury

    DEFF Research Database (Denmark)

    Dvorak, M F; Itshayek, E; Fehlings, M G

    2015-01-01

    STUDY DESIGN: Survey of expert opinion, feedback and final consensus. OBJECTIVE: To describe the development and the variables included in the International Spinal Cord Injury (SCI) Spinal Interventions and Surgical Procedures Basic Data set. SETTING: International working group. METHODS......: A committee of experts was established to select and define data elements. The data set was then disseminated to the appropriate committees and organizations for comments. All suggested revisions were considered and both the International Spinal Cord Society and the American Spinal Injury Association endorsed...... the final version. RESULTS: The data set consists of nine variables: (1) Intervention/Procedure Date and start time (2) Non-surgical bed rest and external immobilization, (3) Spinal intervention-closed manipulation and/or reduction of spinal elements, (4) Surgical procedure-approach, (5) Date and time...

  5. Affinity for, and localization of, PEG-functionalized silica nanoparticles to sites of damage in an ex vivo spinal cord injury model

    Directory of Open Access Journals (Sweden)

    Chen Bojun

    2012-09-01

    Full Text Available Abstract Background Traumatic spinal cord injury (SCI leads to serious neurological and functional deficits through a chain of pathophysiological events. At the molecular level, progressive damage is initially revealed by collapse of plasma membrane organization and integrity produced by breaches. Consequently, the loss of its role as a semi-permeable barrier that generally mediates the regulation and transport of ions and molecules eventually results in cell death. In previous studies, we have demonstrated the functional recovery of compromised plasma membranes can be induced by the application of the hydrophilic polymer polyethylene glycol (PEG after both spinal and brain trauma in adult rats and guinea pigs. Additionally, efforts have been directed towards a nanoparticle-based PEG application. The in vivo and ex vivo applications of PEG-decorated silica nanoparticles following CNS injury were able to effectively and efficiently enhance resealing of damaged cell membranes. Results The possibility for selectivity of tetramethyl rhodamine-dextran (TMR dye-doped, PEG-functionalized silica nanoparticles (TMR-PSiNPs to damaged spinal cord was evaluated using an ex vivo model of guinea pig SCI. Crushed and nearby undamaged spinal cord tissues exhibited an obvious difference in both the imbibement and accumulation of the TMR-PSiNPs, revealing selective labeling of compression-injured tissues. Conclusions These data show that appropriately functionalized nanoparticles can be an efficient means to both 1. carry drugs, and 2. apply membrane repair agents where they are needed in focally damaged nervous tissue.

  6. Therapeutic approaches for spinal cord injury

    Directory of Open Access Journals (Sweden)

    Alexandre Fogaça Cristante

    2012-10-01

    Full Text Available This study reviews the literature concerning possible therapeutic approaches for spinal cord injury. Spinal cord injury is a disabling and irreversible condition that has high economic and social costs. There are both primary and secondary mechanisms of damage to the spinal cord. The primary lesion is the mechanical injury itself. The secondary lesion results from one or more biochemical and cellular processes that are triggered by the primary lesion. The frustration of health professionals in treating a severe spinal cord injury was described in 1700 BC in an Egyptian surgical papyrus that was translated by Edwin Smith; the papyrus reported spinal fractures as a ''disease that should not be treated.'' Over the last biological or pharmacological treatment method. Science is unraveling the mechanisms of cell protection and neuroregeneration, but clinically, we only provide supportive care for patients with spinal cord injuries. By combining these treatments, researchers attempt to enhance the functional recovery of patients with spinal cord injuries. Advances in the last decade have allowed us to encourage the development of experimental studies in the field of spinal cord regeneration. The combination of several therapeutic strategies should, at minimum, allow for partial functional recoveries for these patients, which could improve their quality of life.

  7. Hormonal therapy in traumatic spinal cord injury.

    Science.gov (United States)

    Ludwig, Parker E; Patil, Arun A; Chamczuk, Andrea J; Agrawal, Devendra K

    2017-01-01

    Traumatic spinal cord injuries are major health problems and the underlying pathophysiological events and treatment strategies are currently under investigation. In this article, we critically reviewed the literature investigating the effects of estrogen, progesterone, and human chorionic gonadotropin on spinal cord damage or preservation following traumatic spinal cord injury. The National Library of Medicine database was searched through December 2016 using PubMed for articles addressing the clinical relevance of the hormones to improve neural structural integrity following traumatic spinal cord injury. It was found that each of these hormones, through varied mechanisms, could serve to reduce the harmful effects associated with spinal cord injury, and could aid in restoring some function to the injured spinal cord in the animal models. The most striking effects were seen in the reduction of inflammation commonly linked to injury of the central nervous system. The effects of human chorionic gonadotropin administration following spinal cord injury have received far less attention than those of either estrogen or progesterone, and additional inquiry could be of general benefit. In this article, we discussed the outstanding questions and suggested future directions for further investigation.

  8. Biomaterials for revascularization and immunomodulation after spinal cord injury.

    Science.gov (United States)

    Haggerty, Agnes E; Maldonado-Lasuncion, Ines; Oudega, Martin

    2018-01-23

    Spinal cord injury causes immediate damage to the nervous tissue accompanied by loss of motor and sensory function. The limited self-repair competence of injured nervous tissue underscores the need for reparative interventions to recover function after spinal cord injury. The vasculature of the spinal cord plays a crucial role in spinal cord injury and repair. Ruptured and sheared blood vessels in the injury epicenter and blood vessels with a breached blood-spinal cord barrier in the surrounding tissue cause bleeding and inflammation, which contribute to the overall tissue damage. The insufficient formation of new functional vasculature in and near the injury impedes endogenous tissue repair and limits the prospect of repair approaches. Limiting the loss of blood vessels, stabilizing the blood-spinal cord barrier, and promoting the formation of new blood vessels are therapeutic targets for spinal cord repair. Inflammation is an integral part of injury-mediated vascular damage, with deleterious and reparative consequences. Inflammation and the formation of new blood vessels are intricately interwoven. Biomaterials can be effectively used for promoting and guiding blood vessel formation or modulating the inflammatory response after spinal cord injury, thereby governing the extent of damage and the success of reparative interventions. This review deals with the vasculature after spinal cord injury, the reciprocal interactions between inflammation and blood vessel formation, and the potential of biomaterials to support revascularization and immunomodulation in damaged spinal cord nervous tissue. © 2018 IOP Publishing Ltd.

  9. Attitudes Towards Individuals with Spinal Cord Injuries

    Science.gov (United States)

    Conway, Cassandra Sligh D.; Gooden, Randy; Nowell, Jennifer; Wilson, Navodda

    2010-01-01

    This paper will shed light on the lives of persons with spinal cord injuries by revealing the literature on spinal cord injuries that focuses on research that can shed light on attitudes towards persons with spinal cord injuries. The background literature related to incidences, the definition of spinal cord injury, and vocational opportunities are…

  10. FAQs about Spinal Cord Injury (SCI)

    Science.gov (United States)

    ... What is paralysis? What is paraplegia? What is tetraplegia? What is a “complete” spinal cord injury? What ... What is paralysis? What is paraplegia? What is tetraplegia? What is a “complete” spinal cord injury? What ...

  11. Central cord injury: pathophysiology, management, and outcomes.

    Science.gov (United States)

    Harrop, James S; Sharan, Ashwini; Ratliff, Jonathon

    2006-01-01

    Cervical spinal trauma can result in a heterogeneous collection of spinal cord injury syndromes. Acute traumatic central cord syndrome is a common category of which no uniform consensus on the etiology, pathophysiology, and treatment exists. To evaluate and review potential pathophysiology, current treatment options, and management of central cord injuries. Comprehensive literature review and clinical experience. A systematic review of Medline for articles related to central cord and spinal cord injury was conducted up to and including journal articles published in September 2005. Central cord injuries is a clinical definition which is composed of a heterogeneous population for which medical management and surgical decompression and stabilization provide improved neurologic recovery.

  12. Spinal cord injury at birth

    DEFF Research Database (Denmark)

    Fenger-Gron, Jesper; Kock, Kirsten; Nielsen, Rasmus G

    2008-01-01

    UNLABELLED: A case of perinatally acquired spinal cord injury (SCI) is presented. The foetus was vigorous until birth, the breech presented and delivery was performed by a non-traumatic Caesarean section. The infant displayed symptoms of severe SCI but diagnosis was delayed due to severe co...

  13. Alterations in cardiac autonomic control in spinal cord injury

    DEFF Research Database (Denmark)

    Biering-Sørensen, Fin; Biering-Sørensen, Tor; Liu, Nan

    2018-01-01

    A spinal cord injury (SCI) interferes with the autonomic nervous system (ANS). The effect on the cardiovascular system will depend on the extent of damage to the spinal/central component of ANS. The cardiac changes are caused by loss of supraspinal sympathetic control and relatively increased...... spinal cord injury 3. Spinal shock and neurogenic shock 3.1 Pathophysiology of spinal shock 3.2 Pathophysiology of neurogenic shock 4. Autonomic dysreflexia 4.1 Pathophysiology of autonomic dysreflexia 4.2 Diagnosis of autonomic dysreflexia 5. Heart rate/electrocardiography following spinal cord injury 5.......1 Acute phase 5.2 Chronic phase 6. Heart rate variability 6.1 Time domain analysis 6.2 Frequency domain analysis 6.3 QT-variability index 6.4 Nonlinear (fractal) indexes 7. Echocardiography 7.1 Changes in cardiac structure following spinal cord injury 7.2 Changes in cardiac function following spinal cord...

  14. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... After Pediatric Spinal Injury Dawn Sheaffer, MSW Rehabilitation Psychological Realities ... play_arrow What factors are important in choosing a rehabilitation facility after ...

  15. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Experiences by Topic Resources Peer Counseling Blog About Media Donate ... Transition from Hospital to Home Kim Eberhardt Muir, MS Coping with a New Injury Robin Dorman, PsyD Sex and Fertility After ...

  16. Osteoporosis after spinal cord injury

    OpenAIRE

    Džidić, Ivan; MOSLAVAC, Saša

    2006-01-01

    Spinal cord injury (SCI) and its impact on trabecular bone atrophy has been extensively studied in recent years. These patients are at increased risk for fractures, and evaluation of developed ostoporosis may be important in establishing adequate rehabilitation training. Clinical and biochemical investigations indicate that assesment of bone mineral density (BMD) by dual-energy x-ray absorptiometry is useful index of neurogenic osteoporosis. We present 36 patients who have sustained trauma...

  17. Spasticity following spinal cord injury.

    Science.gov (United States)

    Rekand, Tiina; Hagen, Ellen Merete; Grønning, Marit

    2012-04-30

    Up to 70% of patients with spinal cord injuries develop spasticity. The main aim of the paper is to provide an overview of spasticity management, primarily in patients with spinal cord injuries. The article is based on literature searches in PubMed using the keyphrases «spasticity» and «spasticity AND spinal cord injury», and own clinical experience and research. Spasticity may be general, regional or localised. Factors such as an over-filled bladder, obstipation, acute infections, syringomyelia or bone fractures may substantially influence the degree of spasticity and must be determined. An assessment of the clinical and functional consequences for the patient is decisive before management. Active exercise, physiotherapy and peroral drugs are the simplest and cheapest options. Baclofen is the only centrally acting spasmolytic registered in Norway and is the first choice for peroral treatment. Benzodiazepines can also be used. The effect of the tablets is generally limited and there are often pronounced side effects. Local spasticity can be treated with botulinum toxin injections. The effect is time-limited and the treatment must be repeated. International guidelines recommend a combination of botulinum toxin injections and physiotherapy. In cases of regional spasticity, particularly in the lower limbs, intrathecal baclofen administered via a programmable pump may provide a continuous spasm-reducing effect. Orthopaedic surgery or neurosurgery may be an option for selected patients with intractable spasticity. Spasticity following a spinal cord injury must be assessed regularly. The treatment strategy depends on the degree of functional failure caused by the spasticity and its location.

  18. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... arrow Why are high-dose steroids often used right after an injury? play_arrow What is meant ... Donate Contact Us Terms of Use Site Map Privacy Statement 312-284-2525 info@facingdisability.com SIGN ...

  19. Muscle after spinal cord injury

    DEFF Research Database (Denmark)

    Biering-Sørensen, Bo; Kristensen, Ida Bruun; Kjaer, Michael

    2009-01-01

    The morphological and contractile changes of muscles below the level of the lesion after spinal cord injury (SCI) are dramatic. In humans with SCI, a fiber-type transformation away from type I begins 4-7 months post-SCI and reaches a new steady state with predominantly fast glycolytic IIX fibers...... years after the injury. There is a progressive drop in the proportion of slow myosin heavy chain (MHC) isoform fibers and a rise in the proportion of fibers that coexpress both the fast and slow MHC isoforms. The oxidative enzymatic activity starts to decline after the first few months post-SCI. Muscles...

  20. Sexuality for women with spinal cord injury.

    Science.gov (United States)

    Cramp, Jackie D; Courtois, Frédérique J; Ditor, David S

    2015-01-01

    The authors conducted a review of the literature on women's sexuality after spinal cord injury, including studies from 1990 to 2011 retrieved from PubMed. Several facets of a woman's sexuality are negatively affected by after spinal cord injury, and consequently, sexual satisfaction has been shown to decrease, which also negatively affects quality of life. Neurogenic bladder is common after spinal cord injury, and the resulting urinary incontinence is a top therapeutic priority of this population. To improve sexual satisfaction and quality of life for women with spinal cord injury, future research needs to explore the effects of urinary incontinence on various aspects of sexuality.

  1. Testosterone Plus Finasteride Treatment After Spinal Cord Injury

    Science.gov (United States)

    2017-12-14

    Spinal Cord Injury; Spinal Cord Injuries; Trauma, Nervous System; Wounds and Injuries; Central Nervous System Diseases; Nervous System Diseases; Spinal Cord Diseases; Gonadal Disorders; Endocrine System Diseases; Hypogonadism; Genital Diseases, Male

  2. Transcription factor Nrf2 protects the spinal cord from inflammation produced by spinal cord injury.

    Science.gov (United States)

    Mao, Lei; Wang, Handong; Wang, Xiaoliang; Liao, Hong; Zhao, Xianzhong

    2011-09-01

    Inflammation plays an important role in the pathogenesis of secondary damage after spinal cord injury (SCI). Previous studies have suggested that nuclear factor-erythroid 2-related factor 2 (Nrf2), a pleiotropic transcription factor, may play a key role in modulating inflammation in a variety of experimental models. This study evaluated the neuroprotective role of Nrf2 in the inflammatory response after SCI in mice. Nrf2-deficient (Nrf2(-/-)) and wild-type (Nrf2(+/+)) mice spinal cord compression injury was induced by the application of vascular clips (force of 10 g) to the dura. Sulforaphane (SFN) was used to activate Nrf2 after SCI. Inflammatory cytokines, NF-κB activity, histologic injury score, dying neurons count in grey matter, water content of impaired spinal cord, and Basso open-field motor score (BMS) were assessed to determine the extent of SCI-mediated damage. The results showed that SFN activated Nrf2 in impaired spinal cord tissue, improved hindlimb locomotor function assessed by BMS, reduced inflammatory damage, histologic injury, dying neurons count, and spinal cord edema caused by SCI. Nrf2(-/-) mice demonstrated more severe neurologic deficit and spinal cord edema after SCI and did not benefit from the protective effect of SFN. Taken together, our results suggest that Nrf2 may represent a strategic target for SCI therapies. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Tracking Changes following Spinal Cord Injury

    Science.gov (United States)

    Curt, Armin; Friston, Karl; Thompson, Alan

    2013-01-01

    Traumatic spinal cord injury is often disabling and recovery of function is limited. As a consequence of damage, both spinal cord and brain undergo anatomical and functional changes. Besides clinical measures of recovery, biomarkers that can detect early anatomical and functional changes might be useful in determining clinical outcome—during the course of rehabilitation and recovery—as well as furnishing a tool to evaluate novel treatment interventions and their mechanisms of action. Recent evidence suggests an interesting three-way relationship between neurological deficit and changes in the spinal cord and of the brain and that, importantly, noninvasive magnetic resonance imaging techniques, both structural and functional, provide a sensitive tool to lay out these interactions. This review describes recent findings from multimodal imaging studies of remote anatomical changes (i.e., beyond the lesion site), cortical reorganization, and their relationship to clinical disability. These developments in this field may improve our understanding of effects on the nervous system that are attributable to the injury itself and will allow their distinction from changes that result from rehabilitation (i.e., functional retraining) and from interventions affecting the nervous system directly (i.e., neuroprotection or regeneration). PMID:22730072

  4. Risk factors in iatrogenic spinal cord injury.

    Science.gov (United States)

    Montalva-Iborra, A; Alcanyis-Alberola, M; Grao-Castellote, C; Torralba-Collados, F; Giner-Pascual, M

    2017-09-01

    In the last years, there has been a change in the aetiology of spinal cord injury. There has been an increase in the number of elderly patients with spinal cord injuries caused by diseases or medical procedures. The aim of this study is to investigate the frequency of the occurrence of iatrogenic spinal cord injury in our unit. The secondary aim is to study what variables can be associated with a higher risk of iatrogenesis. A retrospective, descriptive, observational study of patients with acute spinal cord injury admitted from June 2009 to May 2014 was conducted. The information collected included the patient age, aetiology, neurological level and grade of injury when admitted and when discharged, cardiovascular risk factors, a previous history of depression and any prior treatment with anticoagulant or antiplatelet drugs. We applied a logistic regression. The grade of statistical significance was established as Pinjury was the thoracic level (48%). The main aetiology of spinal cord injury caused by iatrogenesis was surgery for degenerative spine disease, in patients under the age of 30 were treated with intrathecal chemotherapy. Iatrogenic spinal cord injury is a frequent complication. A statistically significant association between a patient history of depression and iatrogenic spinal cord injury was found as well as with anticoagulant and antiplatelet drug use prior to iatrogenic spinal cord injury.

  5. The puerperium alters spinal cord plasticity following peripheral nerve injury

    OpenAIRE

    Gutierrez, Silvia; Hayashida, Ken-ichiro; Eisenach, James C

    2012-01-01

    Tissue and nerve damage can result in chronic pain. Yet, chronic pain after cesarean delivery is remarkably rare in women and hypersensitivity from peripheral nerve injury in rats resolves rapidly if the injury occurs in the puerperium. Little is known regarding the mechanisms of this protection except for a reliance on central nervous system oxytocin signaling. Here we show that density of inhibitory noradrenergic fibers in the spinal cord is greater when nerve injury is performed in rats du...

  6. An update on spinal cord injury research

    National Research Council Canada - National Science Library

    Yimin Zou

    2013-01-01

    Spinal cord injury (SCI) is an ever-increasing challenge. Severe injury can cause long-term loss of sensory and motor functions, as well as other chronic conditions, such as neuropathic pain and autonomic dysreflexia...

  7. How Is Spinal Cord Injury (SCI) Diagnosed?

    Science.gov (United States)

    ... a pinprick. Doctors use the standard ASIA (American Spinal Injury Association) Impairment Scale for this diagnosis. X-rays, ... National Institute of Neurological Disorders and Stroke. (2012). Spinal cord injury: Hope through research . Retrieved June 26, 2012, from ...

  8. New Prophylactic and Therapeutic Strategies for Spinal Cord Injury

    OpenAIRE

    Park, Sookyoung; Park, Kanghui; Lee, Youngjeon; Chang, Kyu-Tae; HONG, Yonggeun

    2013-01-01

    Melatonin production by the pineal gland in the vertebrate brain has attracted much scientific attention. Pineal melatonin is regulated by photoperiodicity, whereas circadian secretion of melatonin produced in the gastrointestinal tract is regulated by food intake. Thus, the circadian rhythm of pineal melatonin depends upon whether a species is diurnal or nocturnal. Spinal cord injury (SCI) involves damage to the spinal cord caused by trauma or disease that results in compromise or loss of bo...

  9. What to call spinal cord damage not due to trauma? Implications for literature searching.

    Science.gov (United States)

    New, Peter W; Delafosse, Veronica

    2012-03-01

    To illustrate the importance of multiple search terms and databases when searching publications on spinal cord damage not due to trauma. To develop comprehensive search filter for this subject, compare the results for 2000-2009 with the Medical Subject Headings (MeSH) and Emtree term 'spinal cord diseases' and determine changes in the number of articles over this period. Literature searches and search filter development. Australia. Titles and abstracts searched in MEDLINE and EMBASE (2000-2009) for articles involving humans using search terms 'non-traumatic spinal cord injury' and 'nontraumatic spinal cord injury' (concise search). Develop comprehensive search filter for 'spinal cord damage not due to trauma' and compare the results with the MeSH term 'spinal cord diseases.' Annual publications (2000-2009) identified in MEDLINE and EMBASE literature searches. Concise search identified 35 articles published during 2000-2009. More publications were identified using the term 'nontraumatic spinal cord injury' (n = 20) than 'non-traumatic spinal cord injury' (n = 16). Publications increased for both terms 'spinal cord diseases' (2000 = 279; 2009 = 415) and 'spinal cord damage not due to trauma' identified by the comprehensive search filter (2000 = 1251; 2009 = 1921). Concise searches using terms 'non-traumatic spinal cord injury' and 'nontraumatic spinal cord injury' fail to identify relevant articles unless combinations of terms and databases are used. These are inadequate search terms for a comprehensive search. Further research is needed to validate our comprehensive search filter. An international consensus process is required to establish an agreed term for 'spinal cord damage not due to trauma.'

  10. Spinal Cord Injury Model System Information Network

    Science.gov (United States)

    ... the UAB-SCIMS Contact the UAB-SCIMS UAB Spinal Cord Injury Model System Newly Injured Health Daily Living Consumer ... Information Network The University of Alabama at Birmingham Spinal Cord Injury Model System (UAB-SCIMS) maintains this Information Network ...

  11. Spinal cord injury drives chronic brain changes

    Directory of Open Access Journals (Sweden)

    Ignacio Jure

    2017-01-01

    Full Text Available Only a few studies have considered changes in brain structures other than sensory and motor cortex after spinal cord injury, although cognitive impairments have been reported in these patients. Spinal cord injury results in chronic brain neuroinflammation with consequent neurodegeneration and cognitive decline in rodents. Regarding the hippocampus, neurogenesis is reduced and reactive gliosis increased. These long-term abnormalities could explain behavioral impairments exhibited in humans patients suffering from spinal cord trauma.

  12. Inhibition of EGFR/MAPK signaling reduces microglial inflammatory response and the associated secondary damage in rats after spinal cord injury

    Directory of Open Access Journals (Sweden)

    Qu Wen-sheng

    2012-07-01

    Full Text Available Abstract Background Emerging evidence indicates that reactive microglia-initiated inflammatory responses are responsible for secondary damage after primary traumatic spinal cord injury (SCI; epidermal growth factor receptor (EGFR signaling may be involved in cell activation. In this report, we investigate the influence of EGFR signaling inhibition on microglia activation, proinflammatory cytokine production, and the neuronal microenvironment after SCI. Methods Lipopolysaccharide-treated primary microglia/BV2 line cells and SCI rats were used as model systems. Both C225 and AG1478 were used to inhibit EGFR signaling activation. Cell activation and EGFR phosphorylation were observed after fluorescent staining and western blot. Production of interleukin-1beta (IL-1β and tumor necrosis factor alpha (TNFα was tested by reverse transcription PCR and ELISA. Western blot was performed to semi-quantify the expression of EGFR/phospho-EGFR, and phosphorylation of Erk, JNK and p38 mitogen-activated protein kinases (MAPK. Wet-dry weight was compared to show tissue edema. Finally, axonal tracing and functional scoring were performed to show recovery of rats. Results EGFR phosphorylation was found to parallel microglia activation, while EGFR blockade inhibited activation-associated cell morphological changes and production of IL-1β and TNFα. EGFR blockade significantly downregulated the elevated MAPK activation after cell activation; selective MAPK inhibitors depressed production of cytokines to a certain degree, suggesting that MAPK mediates the depression of microglia activation brought about by EGFR inhibitors. Subsequently, seven-day continual infusion of C225 or AG1478 in rats: reduced the expression of phospho-EGFR, phosphorylation of Erk and p38 MAPK, and production of IL-1β and TNFα; lessened neuroinflammation-associated secondary damage, like microglia/astrocyte activation, tissue edema and glial scar/cavity formation; and enhanced axonal

  13. Spinal cord injury : Mechanical and molecular aspects

    OpenAIRE

    Josephson, Anna

    2002-01-01

    Traumatic spinal cord injury leads to full or partial paralysis and loss of sensation below the level of injury. The annual incidence of spinal cord injury in the United States is 3-5 per 100,000 and in Sweden is 1.5-2 per 100,000. This translates to 11,000 new cases of traumatic spinal cord injury in the US and 150 in Sweden each year. Axon regeneration takes place in peripheral nerves but is limited in the central nervous system. The lack of regenerative capacity in the sp...

  14. Alterations in cardiac autonomic control in spinal cord injury.

    Science.gov (United States)

    Biering-Sørensen, Fin; Biering-Sørensen, Tor; Liu, Nan; Malmqvist, Lasse; Wecht, Jill Maria; Krassioukov, Andrei

    2018-01-01

    A spinal cord injury (SCI) interferes with the autonomic nervous system (ANS). The effect on the cardiovascular system will depend on the extent of damage to the spinal/central component of ANS. The cardiac changes are caused by loss of supraspinal sympathetic control and relatively increased parasympathetic cardiac control. Decreases in sympathetic activity result in heart rate and the arterial blood pressure changes, and may cause arrhythmias, in particular bradycardia, with the risk of cardiac arrest in those with cervical or high thoracic injuries. The objective of this review is to give an update of the current knowledge related to the alterations in cardiac autonomic control following SCI. With this purpose the review includes the following subheadings: 2. Neuro-anatomical plasticity and cardiac control 2.1 Autonomic nervous system and the heart 2.2 Alteration in autonomic control of the heart following spinal cord injury 3. Spinal shock and neurogenic shock 3.1 Pathophysiology of spinal shock 3.2 Pathophysiology of neurogenic shock 4. Autonomic dysreflexia 4.1 Pathophysiology of autonomic dysreflexia 4.2 Diagnosis of autonomic dysreflexia 5. Heart rate/electrocardiography following spinal cord injury 5.1 Acute phase 5.2 Chronic phase 6. Heart rate variability 6.1 Time domain analysis 6.2 Frequency domain analysis 6.3 QT-variability index 6.4 Nonlinear (fractal) indexes 7. Echocardiography 7.1 Changes in cardiac structure following spinal cord injury 7.2 Changes in cardiac function following spinal cord injury 8. International spinal cord injury cardiovascular basic data set and international standards to document the remaining autonomic function in spinal cord injury. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Obesity after spinal cord injury.

    Science.gov (United States)

    Gater, David R

    2007-05-01

    America is in the midst of an obesity epidemic, and individuals who have spinal cord injury (SCI) are perhaps at greater risk than any other segment of the population. Recent changes in the way obesity has been defined have lulled SCI practitioners into a false sense of security about the health of their patients regarding the dangers of obesity and its sequelae. This article defines and uses a definition of obesity that is more relevant to persons who have SCI, reviews the physiology of adipose tissue, and discusses aspects of heredity and environment that contribute to obesity in SCI. The pathophysiology of obesity is discussed relative to health risks for persons who have SCI, particularly those contributing to cardiovascular disease. Prevalence of obesity and its comorbidities are discussed and management options reviewed.

  16. [Acute traumatic spinal cord injuries: Epidemiology and prospects].

    Science.gov (United States)

    Lonjon, N; Perrin, F E; Lonjon, M; Fattal, C; Segnarbieux, F; Privat, A; Bauchet, L

    2012-10-01

    Specify the epidemiological data on the acute spinal cord injuries and define a group of patients that could benefit from cellular transplantation therapy designed with the aim of repair and regeneration of damaged spinal cord tissues. Five years monocentric (Gui-de-Chauliac Hospital, Montpellier, France) retrospective analysis of patients suffering from spinal cord injury (SCI). Spinal cord injured-patients, defined as sensory-motor complete, underwent a clinical evaluation following American Spinal Injury Association (ASIA) and functional type 2 Spinal Cord Independence Measure (SCIM2) scorings as well as radiological evaluation through spinal cord magnetic resonance imaging (MRI). One hundred and fifty-seven medical records were reviewed and we selected and re-examined 20 patients with complete thoracic spinal cord lesion. Clinical and radiological evaluations of these patients demonstrated, in 75 % of the cases, an absence of clinical progression after a mean of 49months. Radiological abnormalities were constantly present in the initial (at the admission to hospital) and control (re-evaluation) MRI and no reliable predictive criteria of prognosis had been found. We compare our results to the literature and discuss advantages and limits of cellular transplantation strategies for these patients. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  17. Arterial Blood Supply to the Spinal Cord in Animal Models of Spinal Cord Injury. A Review.

    Science.gov (United States)

    Mazensky, David; Flesarova, Slavka; Sulla, Igor

    2017-12-01

    Animal models are used to examine the results of experimental spinal cord injury. Alterations in spinal cord blood supply caused by complex spinal cord injuries contribute significantly to the diversity and severity of the spinal cord damage, particularly ischemic changes. However, the literature has not completely clarified our knowledge of anatomy of the complex three-dimensional arterial system of the spinal cord in experimental animals, which can impede the translation of experimental results to human clinical applications. As the literary sources dealing with the spinal cord arterial blood supply in experimental animals are limited and scattered, the authors performed a review of the anatomy of the arterial blood supply to the spinal cord in several experimental animals, including pigs, dogs, cats, rabbits, guinea pigs, rats, and mice and created a coherent format discussing the interspecies differences. This provides researchers with a valuable tool for the selection of the most suitable animal model for their experiments in the study of spinal cord ischemia and provides clinicians with a basis for the appropriate translation of research work to their clinical applications. Anat Rec, 300:2091-2106, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  18. Nutrition of People with Spinal Cord Injuries

    Science.gov (United States)

    This conference proceeding summarizes current knowledge about the nutritional status and needs of the spinal cord injured patient. Topics covered include the aspects of spinal cord injury that influence nutrient intakes and status, and the nutrients most likely to be problematic in this diverse gro...

  19. Bodysurfing injuries of the spinal cord

    African Journals Online (AJOL)

    5. Nordquist L The sagittal diameter of the spinal cord and subarachnoid space in different age groups. Acta Radial Supp/ (Stockh) 1964; 227: 1-240. 6. Scher AT. Cervical spinal cord injury without evidence of fracture or dislocation. S Atr. Med J 1976; 50: 962-965. 7. Brieg A. Biomechanics of the Central Nervous System.

  20. Management of severe spinal cord injury following hyperbaric exposure.

    Science.gov (United States)

    Mathew, Bruce; Laden, Gerard

    2015-09-01

    There is an increasing body of evidence that drainage of lumbar cerebrospinal fluid (CSF) improves functional neurological outcome after reperfusion injury to the spinal cord that occasionally follows aortic reconstructive surgery. This beneficial effect is considered owing to lowering of the CSF pressure thereby normalising spinal cord blood flow and reducing the 'secondary' cord injury caused by vascular congestion and cord swelling in the relatively confined spinal canal. Whilst lacking definitive proof, there are convincing randomised controlled trials (RCTs), cohort data and systematic reviews supporting this intervention. The therapeutic window for lumbar CSF drainage requires further elucidation; however, it appears to be days rather than hours post insult. We contend that the same benefit is likely to be achieved following other primary spinal cord injuries that cause cord swelling and elicit the 'secondary' injury. Traditionally the concept of CSF drainage has been considered more applicable to the brain as contained in a 'closed box' by lowering intracranial pressure (ICP) to improve cerebral perfusion pressure (CPP). The control of CPP is intended to limit 'secondary' brain injury and is a key concept of brain injury management. Using microdialysis in the spinal cords of trauma patients, it has been shown that intraspinal pressure (ISP) needs to be kept below 20 mmHg and spinal cord perfusion pressure (SCPP) above 70 mmHg to avoid biochemical evidence of secondary cord damage. Vasopressor have also been used in spinal cord injury to improve perfusion, however complications are common, typically cardiac in nature, and require very careful monitoring; the evidence supporting this approach is notably less convincing. Decompression illness (DCI) of the spinal cord is treated with recompression, hyperbaric oxygen, various medications designed to reduce the inflammatory response and fluid administration to normalise blood pressure and haematocrit. These

  1. Body image distortions following spinal cord injury

    National Research Council Canada - National Science Library

    Fuentes, Christina T; Pazzaglia, Mariella; Longo, Matthew R; Scivoletto, Giorgio; Haggard, Patrick

    2013-01-01

    Following spinal cord injury (SCI) or anaesthesia, people may continue to experience feelings of the size, shape and posture of their body, suggesting that the conscious body image is not fully determined by immediate sensory signals...

  2. Spinal Cord Injury without Radiological Abnormality in an 8 Months Old Female Child: A Case Report

    OpenAIRE

    Bansal, Kunal R.; Chandanwale, Ajay S

    2016-01-01

    Introduction: Spinal cord injury in children frequently occurs without fracture or dislocation. SCIWORA is a syndrome occurring when the spinal cord sustains neural damage during a traumatic event without positive radiographic findings. The incidence of SCIWORA was found to be 8% to 32% in various studies with very few cases documented in children below the age of 1 year. We report such a case of spinal cord injury without radiological abnormality in an 8 months old female child. Case Report:...

  3. Inflammogenesis of Secondary Spinal Cord Injury

    Science.gov (United States)

    Anwar, M. Akhtar; Al Shehabi, Tuqa S.; Eid, Ali H.

    2016-01-01

    Spinal cord injury (SCI) and spinal infarction lead to neurological complications and eventually to paraplegia or quadriplegia. These extremely debilitating conditions are major contributors to morbidity. Our understanding of SCI has certainly increased during the last decade, but remains far from clear. SCI consists of two defined phases: the initial impact causes primary injury, which is followed by a prolonged secondary injury consisting of evolving sub-phases that may last for years. The underlying pathophysiological mechanisms driving this condition are complex. Derangement of the vasculature is a notable feature of the pathology of SCI. In particular, an important component of SCI is the ischemia-reperfusion injury (IRI) that leads to endothelial dysfunction and changes in vascular permeability. Indeed, together with endothelial cell damage and failure in homeostasis, ischemia reperfusion injury triggers full-blown inflammatory cascades arising from activation of residential innate immune cells (microglia and astrocytes) and infiltrating leukocytes (neutrophils and macrophages). These inflammatory cells release neurotoxins (proinflammatory cytokines and chemokines, free radicals, excitotoxic amino acids, nitric oxide (NO)), all of which partake in axonal and neuronal deficit. Therefore, our review considers the recent advances in SCI mechanisms, whereby it becomes clear that SCI is a heterogeneous condition. Hence, this leads towards evidence of a restorative approach based on monotherapy with multiple targets or combinatorial treatment. Moreover, from evaluation of the existing literature, it appears that there is an urgent requirement for multi-centered, randomized trials for a large patient population. These clinical studies would offer an opportunity in stratifying SCI patients at high risk and selecting appropriate, optimal therapeutic regimens for personalized medicine. PMID:27147970

  4. Spinal cord injury rehabilitation in Nepal.

    Science.gov (United States)

    Shah, Nabina; Shrestha, Binav; Subba, Kamana

    2013-01-01

    Spinal cord injury is a major trauma, with its short and long term effects and consequences to the patient, his friends and family. Spinal cord injury is addressed in the developed countries with standard trauma care system commencing immediately after injury and continuing to the specialized rehabilitation units. Rehabilitation is important to those with spinal injury for both functional and psychosocial reintegration. It has been an emerging concept in Nepal, which has been evident with the establishment of the various hospitals with rehabilitation units, rehabilitation centres and physical therapy units in different institutions. However, the spinal cord injury rehabilitation setting and scenario is different in Nepal from those in the developed countries since spinal cord injury rehabilitation care has not been adequately incorporated into the health care delivery system nor its importance has been realized within the medical community of Nepal. To name few, lack of human resource for the rehabilitation care, awareness among the medical personnel and general population, adequate scientific research evidence regarding situation of spinal injury and exorbitant health care policy are the important hurdles that has led to the current situation. Hence, it is our responsibility to address these apparent barriers to successful implementation and functioning of rehabilitation so that those with spinal injury would benefit from enhanced quality of life.

  5. Transcranial magnetic stimulation after spinal cord injury.

    Science.gov (United States)

    Awad, Basem I; Carmody, Margaret A; Zhang, Xiaoming; Lin, Vernon W; Steinmetz, Michael P

    2015-02-01

    To review the basic principles and techniques of transcranial magnetic stimulation (TMS) and provide information and evidence regarding its applications in spinal cord injury clinical rehabilitation. A review of the available current and historical literature regarding TMS was conducted, and a discussion of its potential use in spinal cord injury rehabilitation is presented. TMS provides reliable information about the functional integrity and conduction properties of the corticospinal tracts and motor control in the diagnostic and prognostic assessment of various neurological disorders. It allows one to follow the evolution of motor control and to evaluate the effects of different therapeutic procedures. Motor-evoked potentials can be useful in follow-up evaluation of motor function during treatment and rehabilitation, specifically in patients with spinal cord injury and stroke. Although studies regarding somatomotor functional recovery after spinal cord injury have shown promise, more trials are required to provide strong and substantial evidence. TMS is a promising noninvasive tool for the treatment of spasticity, neuropathic pain, and somatomotor deficit after spinal cord injury. Further investigation is needed to demonstrate whether different protocols and applications of stimulation, as well as alternative cortical sites of stimulation, may induce more pronounced and beneficial clinical effects. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Therapeutic Potential of Olfactory Ensheathing Cells and Mesenchymal Stem Cells in Spinal Cord Injuries

    Science.gov (United States)

    Anna, Zadroga; Joanna, Czarzasta; Barczewska, Monika; Wojciech, Maksymowicz

    2017-01-01

    Spinal cord injury (SCI) is a devastating neurological condition that affects individuals worldwide, significantly reducing quality of life, for both patients and their families. In recent years there has been a growing interest in cell therapy potential in the context of spinal cord injuries. The present review aims to discuss and compare the restorative approaches based on the current knowledge, available spinal cord restorative cell therapies, and use of selected cell types. However, treatment options for spinal cord injury are limited, but rehabilitation and experimental technologies have been found to help maintain or improve remaining nerve function in some cases. Mesenchymal stem cells as well as olfactory ensheathing cells seem to show therapeutic impact on damaged spinal cord and might be useful in neuroregeneration. Recent research in animal models and first human trials give patients with spinal cord injuries hope for recovery. PMID:28298927

  7. Spinal Cord Injury: Facts and Figures at a Glance

    Science.gov (United States)

    Spinal Cord Injury Facts and Figures at a Glance https://www.nscisc.uab.edu February 2012 This is a publication of the National Spinal Cord Injury Statistical Center, Birmingham, Alabama. I ncidence : It is ...

  8. Pressure ulcers in spinal cord injury patients in Gombe, Nigeria ...

    African Journals Online (AJOL)

    Pressure ulcers in spinal cord injury patients in Gombe, Nigeria. ... PROMOTING ACCESS TO AFRICAN RESEARCH. AFRICAN ... Key Words: Spinal cord injury, neurological impairment, pressure ulcer, prevention, pressure relieving devices

  9. The puerperium alters spinal cord plasticity following peripheral nerve injury.

    Science.gov (United States)

    Gutierrez, S; Hayashida, K; Eisenach, J C

    2013-01-03

    Tissue and nerve damage can result in chronic pain. Yet, chronic pain after cesarean delivery is remarkably rare in women and hypersensitivity from peripheral nerve injury in rats resolves rapidly if the injury occurs in the puerperium. Little is known regarding the mechanisms of this protection except for a reliance on central nervous system oxytocin signaling. Here we show that the density of inhibitory noradrenergic fibers in the spinal cord is greater when nerve injury is performed in rats during the puerperium, whereas the expression of the excitatory regulators dynorphin A and neuregulin-1 in the spinal cord is reduced. The puerperium did not alter spinal cord microgial and astrocyte activation. Astrocyte activation, as measured by glial fibrillary acidic protein (GFAP) expression, was not evident in female rats with injury, regardless of delivery status suggesting sex differences in spinal astrocyte activation after injury. These results suggest a change in the descending inhibitory/facilitating balance on spinal nociception neurotransmission during the puerperium, as mechanisms for its protective effect against injury-induced hypersensitivity. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  10. Neuroprotective effect corilagin in spinal cord injury rat model by ...

    African Journals Online (AJOL)

    Background: Neurological functions get altered in a patient suffering from spinal cord injury (SCI). Present study evaluates the neuroprotective effect of corilagin in spinal cord injury rats by inhibiting nuclear factor-kappa B (NF-κB), inflammatory mediators and apoptosis. Materials and method: Spinal cord injury was ...

  11. Hyperbaric oxygen therapy of spinal cord injury

    Directory of Open Access Journals (Sweden)

    Nitesh P Patel

    2017-01-01

    Full Text Available Spinal cord injury (SCI is a complex disease process that involves both primary and secondary mechanisms of injury and can leave patients with devastating functional impairment as well as psychological debilitation. While no curative treatment is available for spinal cord injury, current therapeutic approaches focus on reducing the secondary injury that follows SCI. Hyperbaric oxygen (HBO therapy has shown promising neuroprotective effects in several experimental studies, but the limited number of clinical reports have shown mixed findings. This review will provide an overview of the potential mechanisms by which HBO therapy may exert neuroprotection, provide a summary of the clinical application of HBO therapy in patients with SCI, and discuss avenues for future studies.

  12. Spinal cord injuries in Ilorin, Nigeria

    African Journals Online (AJOL)

    passenger and load carriage, use of manual or motorised wheel barrow as against bearing heavy load on the head, principles of moving spinal injured patients taught every road traveller and establishment of spinal centres and training of specialised personnel. Keywords: Spinal Cord, Injury, Poraplegia, Quadriplegia.

  13. Spinal Cord Injury Research in Mice: 2008 Review

    Directory of Open Access Journals (Sweden)

    Inge Steuer

    2009-01-01

    Full Text Available Spinal cord injury (SCI is an irreversible condition causing damage to myelinated fiber tracts that carry sensation and motor signals to and from the brain. SCI is also associated with gray matter damage and often life-threatening secondary complications. This mini-review aims to provide the nonspecialist reader with a comprehensive description of recent advances made in 2008 using murine models of SCI. A variety of approaches, including advanced genetics and molecular techniques, have allowed a number of key findings in the field of secondary degeneration, repair, regeneration (including insights from peripheral nerve lesion models, metabolic dysfunctions, and pharmacological neuromodulation.

  14. Characteristics and rehabilitation for patients with spinal cord stab injury

    OpenAIRE

    Wang, Fangyong; Zhang, Junwei; Tang, Hehu; Li, Xiang; Jiang, Shudong; Lv, Zhen; Liu, Shujia; Chen, Shizheng; Liu, Jiesheng; Hong, Yi

    2015-01-01

    [Purpose] The objective of the study was to compare the incidence, diagnosis, treatment, and prognosis of patients with spinal cord stab injury to those with the more common spinal cord contusion injury. [Subjects] Of patients hospitalized in China Rehabilitation Research Center from 1994 to 2014, 40 of those having a spinal cord stab injury and 50 with spinal cord contusion were selected. [Methods] The data of all patients were analyzed retrospectively. The cases were evaluated by collecting...

  15. Complete rat spinal cord transection as a faithful model of spinal cord injury for translational cell transplantation

    Science.gov (United States)

    Lukovic, Dunja; Moreno-Manzano, Victoria; Lopez-Mocholi, Eric; Rodriguez-Jiménez, Francisco Javier; Jendelova, Pavla; Sykova, Eva; Oria, Marc; Stojkovic, Miodrag; Erceg, Slaven

    2015-01-01

    Spinal cord injury (SCI) results in neural loss and consequently motor and sensory impairment below the injury. There are currently no effective therapies for the treatment of traumatic SCI in humans. Various animal models have been developed to mimic human SCI. Widely used animal models of SCI are complete or partial transection or experimental contusion and compression, with both bearing controversy as to which one more appropriately reproduces the human SCI functional consequences. Here we present in details the widely used procedure of complete spinal cord transection as a faithful animal model to investigate neural and functional repair of the damaged tissue by exogenous human transplanted cells. This injury model offers the advantage of complete damage to a spinal cord at a defined place and time, is relatively simple to standardize and is highly reproducible. PMID:25860664

  16. Molecular Imaging in Stem Cell Therapy for Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Fahuan Song

    2014-01-01

    Full Text Available Spinal cord injury (SCI is a serious disease of the center nervous system (CNS. It is a devastating injury with sudden loss of motor, sensory, and autonomic function distal to the level of trauma and produces great personal and societal costs. Currently, there are no remarkable effective therapies for the treatment of SCI. Compared to traditional treatment methods, stem cell transplantation therapy holds potential for repair and functional plasticity after SCI. However, the mechanism of stem cell therapy for SCI remains largely unknown and obscure partly due to the lack of efficient stem cell trafficking methods. Molecular imaging technology including positron emission tomography (PET, magnetic resonance imaging (MRI, optical imaging (i.e., bioluminescence imaging (BLI gives the hope to complete the knowledge concerning basic stem cell biology survival, migration, differentiation, and integration in real time when transplanted into damaged spinal cord. In this paper, we mainly review the molecular imaging technology in stem cell therapy for SCI.

  17. Urinary calculi following traumatic spinal cord injury

    DEFF Research Database (Denmark)

    Hansen, Rikke Bølling; Biering-Sørensen, Fin; Kristensen, Jørgen Kvist

    2007-01-01

    OBJECTIVE: To investigate the time aspect of the development of renal and bladder calculi in individuals with traumatic spinal cord injury (SCI) and a possible relation between the development of calculi and the bladder-emptying method. MATERIAL AND METHODS: The study comprised a retrospective data...... calculus was highest within the first 6 months post-injury. The cumulative proportion of calculi-free participants 45 years post-injury was 62% for renal calculi and 85% for bladder calculi. For participants who did not develop renal calculi within the first 2 years post-injury, the risk of having a renal...... calculi was higher in the SCI population compared to the normal population. Bladder calculi primarily occur early post-injury and renal calculi appear both early post-injury and years later. Therefore, it is important to follow individuals with SCI regularly by means of urological investigations from...

  18. Characteristics and rehabilitation for patients with spinal cord stab injury.

    Science.gov (United States)

    Wang, Fangyong; Zhang, Junwei; Tang, Hehu; Li, Xiang; Jiang, Shudong; Lv, Zhen; Liu, Shujia; Chen, Shizheng; Liu, Jiesheng; Hong, Yi

    2015-12-01

    [Purpose] The objective of the study was to compare the incidence, diagnosis, treatment, and prognosis of patients with spinal cord stab injury to those with the more common spinal cord contusion injury. [Subjects] Of patients hospitalized in China Rehabilitation Research Center from 1994 to 2014, 40 of those having a spinal cord stab injury and 50 with spinal cord contusion were selected. [Methods] The data of all patients were analyzed retrospectively. The cases were evaluated by collecting admission and discharge ASIA (American Spinal Injury Association) and ADL (activity of daily living) scores. [Results] After a comprehensive rehabilitation program, ASIA and ADL scores of patients having both spinal cord stab injury and spinal cord contusion significantly increase. However, the increases were noted to be higher in patients having a spinal cord stab injury than those having spinal cord contusion. [Conclusion] Comprehensive rehabilitation is effective both for patients having spinal cord stab injury and those with spinal cord contusion injury. However, the prognosis of patients having spinal cord stab injury is better than that of patients with spinal cord contusion.

  19. Characteristics and rehabilitation for patients with spinal cord stab injury

    Science.gov (United States)

    Wang, Fangyong; Zhang, Junwei; Tang, Hehu; Li, Xiang; Jiang, Shudong; Lv, Zhen; Liu, Shujia; Chen, Shizheng; Liu, Jiesheng; Hong, Yi

    2015-01-01

    [Purpose] The objective of the study was to compare the incidence, diagnosis, treatment, and prognosis of patients with spinal cord stab injury to those with the more common spinal cord contusion injury. [Subjects] Of patients hospitalized in China Rehabilitation Research Center from 1994 to 2014, 40 of those having a spinal cord stab injury and 50 with spinal cord contusion were selected. [Methods] The data of all patients were analyzed retrospectively. The cases were evaluated by collecting admission and discharge ASIA (American Spinal Injury Association) and ADL (activity of daily living) scores. [Results] After a comprehensive rehabilitation program, ASIA and ADL scores of patients having both spinal cord stab injury and spinal cord contusion significantly increase. However, the increases were noted to be higher in patients having a spinal cord stab injury than those having spinal cord contusion. [Conclusion] Comprehensive rehabilitation is effective both for patients having spinal cord stab injury and those with spinal cord contusion injury. However, the prognosis of patients having spinal cord stab injury is better than that of patients with spinal cord contusion. PMID:26834329

  20. Management of Penetrating Spinal Cord Injuries in a Non Spinal ...

    African Journals Online (AJOL)

    Five (23%) patients with injury at cervical level died from respiratory failure. Conclusion: Penetrating spinal cord injuries are relatively rare and demand extra care. Early recognition of associated injuries, minimal wound excision and antibiotic therapy give good result. Keywords: Penetrating spinal cord injuries, pattern,

  1. Outcome of conservative treatment of spinal cord injuries in Lagos ...

    African Journals Online (AJOL)

    Outcome of conservative treatment of spinal cord injuries in Lagos, Nigeria. K Kawu, G.T Adebule, A.A Gbadegesin, M.F Alimi, A.O Salami. Abstract. Background: The major cause of spinal cord injuries (SCI) is motor vehicular accident (MVA). Most centres still manage all their spinal cord injured patients conservatively.

  2. Levetiracetam in spinal cord injury pain: a randomized controlled trial

    DEFF Research Database (Denmark)

    Finnerup, N B; Grydehøj, Jolanta; Bing, J

    2009-01-01

    . OBJECTIVES: The objective of the study was primarily to evaluate the efficacy of the anticonvulsant levetiracetam in patients with spinal cord injury (SCI) at- and below-level pain and secondarily to evaluate the effect on spasm severity. SETTING: Outpatients at two spinal cord units and a pain center...... severity following spinal cord injury....

  3. Value of MRI and DTI as Biomarkers for Classifying Acute Spinal Cord Injury

    Science.gov (United States)

    2014-10-29

    direction perpendicular to the fibers. These barriers are believed to be cellular membranes and myelin sheaths , which result in a low transverse apparent...the only means to directly inspect the damaged spinal cord, therefore it has the potential to complement the assessment provided by the subjective...DTI slice locations were also mapped to the span of injury in the visible damaged segment of spinal cord on sagittal T2 weighted images. Whole slice

  4. Brain and spinal cord interaction: protective effects of exercise prior to spinal cord injury.

    Directory of Open Access Journals (Sweden)

    Fernando Gomez-Pinilla

    Full Text Available We have investigated the effects of a spinal cord injury on the brain and spinal cord, and whether exercise provided before the injury could organize a protective reaction across the neuroaxis. Animals were exposed to 21 days of voluntary exercise, followed by a full spinal transection (T7-T9 and sacrificed two days later. Here we show that the effects of spinal cord injury go beyond the spinal cord itself and influence the molecular substrates of synaptic plasticity and learning in the brain. The injury reduced BDNF levels in the hippocampus in conjunction with the activated forms of p-synapsin I, p-CREB and p-CaMK II, while exercise prior to injury prevented these reductions. Similar effects of the injury were observed in the lumbar enlargement region of the spinal cord, where exercise prevented the reductions in BDNF, and p-CREB. Furthermore, the response of the hippocampus to the spinal lesion appeared to be coordinated to that of the spinal cord, as evidenced by corresponding injury-related changes in BDNF levels in the brain and spinal cord. These results provide an indication for the increased vulnerability of brain centers after spinal cord injury. These findings also imply that the level of chronic activity prior to a spinal cord injury could determine the level of sensory-motor and cognitive recovery following the injury. In particular, exercise prior to the injury onset appears to foster protective mechanisms in the brain and spinal cord.

  5. Delayed injection of polypyrrole doped with iodine particle suspension after spinal cord injury in rats improves functional recovery and decreased tissue damage evaluated by 3.0 Tesla in vivo magnetic resonance imaging.

    Science.gov (United States)

    Mondragon-Lozano, Rodrigo; Ríos, Camilo; Roldan-Valadez, Ernesto; Cruz, Guillermo J; Olayo, Maria G; Olayo, Roberto; Salgado-Ceballos, Hermelinda; Morales, Juan; Mendez-Armenta, Marisela; Alvarez-Mejia, Laura; Fabela, Omar; Morales-Guadarrama, Axayacatl; Sánchez-Torres, Stephanie; Diaz-Ruiz, Araceli

    2017-04-01

    Traumatic spinal cord injury (SCI) causes irreversible damage with loss of motor, sensory, and autonomic functions. Currently, there is not an effective treatment to restore the lost neurologic functions. Injection of polypyrrole-iodine(PPy-I) particle suspension is proposed as a therapeutic strategy. This is an in vivo animal study. This study evaluates the use of such particles in rats after SCI by examining spared nervous tissue and the Basso, Beattie, and Bresnahan (BBB) scale to evaluate the functional outcome. Diffusive magnetic resonance imaging (MRI) was employed to measure the apparent diffusion coefficient (ADC) and fractional anisotropy (FA) as non-invasive biomarkers of damage after SCI. Fractional anisotropy decreased, whereas ADC increased in all groups after the lesion. There were significant differences in FA when compared with the SCI-PPy-I group versus the SCI group (p<.05). Significant positive correlations between BBB and FA (r(2)=0.449, p<.05) and between FA and preserved tissue (r(2)=0.395, p<.05) were observed, whereas significant negative associations between BBB and ADC (r(2)=0.367, p<.05) and between ADC and preserved tissue (r(2)=0.421, p<.05) were observed. The results suggested that PPy-I is neuroprotective as it decreased the amount of damaged tissue while improving the motor function. Non-invasive MRI proved to be useful in the characterization of SCI and recovery. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Cardiac arrhythmias associated with spinal cord injury

    DEFF Research Database (Denmark)

    Hector, Sven Magnus; Biering-Sørensen, Tor; Krassioukov, Andrei

    2013-01-01

    CONTEXT/OBJECTIVES: To review the current literature to reveal the incidence of cardiac arrhythmias and its relation to spinal cord injury (SCI). METHODS: Data source: MEDLINE database, 304 hits, and 32 articles were found to be relevant. The relevant articles all met the inclusion criteria: (1......) contained original data (2) on cardiac arrhythmias (3) in humans with (4) traumatic SCI. RESULTS: In the acute phase of SCI (1-14 days after injury) more cranial as well as more severe injuries seemed to increase the incidence of bradycardia. Articles not covering the first 14 days after injury, thus...... as during procedures such as penile vibro-stimulation and tracheal suction. These episodes of bradycardia were seen more often in individuals with cervical injuries. Longitudinal studies with continuous electrocardiogram recordings are needed to uncover the true relation between cardiac arrhythmias and SCI....

  7. Gene therapy approaches for spinal cord injury

    Science.gov (United States)

    Bright, Corinne

    As the biomedical engineering field expands, combination technologies are demonstrating enormous potential for treating human disease. In particular, intersections between the rapidly developing fields of gene therapy and tissue engineering hold promise to achieve tissue regeneration. Nonviral gene therapy uses plasmid DNA to deliver therapeutic proteins in vivo for extended periods of time. Tissue engineering employs biomedical materials, such as polymers, to support the regrowth of injured tissue. In this thesis, a combination strategy to deliver genes and drugs in a polymeric scaffold was applied to a spinal cord injury model. In order to develop a platform technology to treat spinal cord injury, several nonviral gene delivery systems and polymeric scaffolds were evaluated in vitro and in vivo. Nonviral vector trafficking was evaluated in primary neuronal culture to develop an understanding of the barriers to gene transfer in neurons and their supporting glia. Although the most efficient gene carrier in vitro differed from the optimal gene carrier in vivo, confocal and electron microscopy of these nonviral vectors provided insights into the interaction of these vectors with the nucleus. A novel pathway for delivering nanoparticles into the nuclei of neurons and Schwann cells via vesicle trafficking was observed in this study. Reporter gene expression levels were evaluated after direct and remote delivery to the spinal cord, and the optimal nonviral vector, dose, and delivery strategy were applied to deliver the gene encoding the basic fibroblast growth factor (bFGF) to the spinal cord. An injectable and biocompatible gel, composed of the amphiphillic polymer poly(ethylene glycol)-poly(epsilon-caprolactone)-poly(ethylene glycol) (PEG-PCL-PEG) was evaluated as a drug and gene delivery system in vitro, and combined with the optimized nonviral gene delivery system to treat spinal cord injury. Plasmid DNA encoding the bFGF gene and the therapeutic NEP1--40 peptide

  8. Neural plasticity after spinal cord injury.

    Science.gov (United States)

    Liu, Jian; Yang, Xiaoyu; Jiang, Lianying; Wang, Chunxin; Yang, Maoguang

    2012-02-15

    Plasticity changes of uninjured nerves can result in a novel neural circuit after spinal cord injury, which can restore sensory and motor functions to different degrees. Although processes of neural plasticity have been studied, the mechanism and treatment to effectively improve neural plasticity changes remain controversial. The present study reviewed studies regarding plasticity of the central nervous system and methods for promoting plasticity to improve repair of injured central nerves. The results showed that synaptic reorganization, axonal sprouting, and neurogenesis are critical factors for neural circuit reconstruction. Directed functional exercise, neurotrophic factor and transplantation of nerve-derived and non-nerve-derived tissues and cells can effectively ameliorate functional disturbances caused by spinal cord injury and improve quality of life for patients.

  9. Assessment of rat spinal cord injury models

    OpenAIRE

    Xu, Ning

    2015-01-01

    Traumatic spinal cord injury (SCI) is a complicated and devastating condition, causing different extents of motor, sensory and autonomic dysfunctions. In addition, there is a risk for secondary complications after SCI including posttraumatic syringomyelia (PTS) that can cause further functional loss. Since there is no available effective treatment, tremendous efforts have been made to develop new therapeutic strategies to promote functional recovery after SCI. In experimental r...

  10. Neurogenic bladder in spinal cord injury patients

    OpenAIRE

    Al Taweel W; Seyam R

    2015-01-01

    Waleed Al Taweel, Raouf SeyamDepartment of Urology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi ArabiaAbstract: Neurogenic bladder dysfunction due to spinal cord injury poses a significant threat to the well-being of patients. Incontinence, renal impairment, urinary tract infection, stones, and poor quality of life are some complications of this condition. The majority of patients will require management to ensure low pressure reservoir function of the bladder, complete...

  11. Three-dimensional imaging of microvasculature in the rat spinal cord following injury.

    Science.gov (United States)

    Cao, Yong; Wu, Tianding; Yuan, Zhou; Li, Dongzhe; Ni, Shuangfei; Hu, Jianzhong; Lu, Hongbin

    2015-07-29

    Research studies on the three-dimensional (3D) morphological alterations of the spinal cord microvasculature after injury provide insight into the pathology of spinal cord injury (SCI). Knowledge in this field has been hampered in the past by imaging technologies that provided only two-dimensional (2D) information on the vascular reactions to trauma. The aim of our study is to investigate the 3D microstructural changes of the rat spinal cord microvasculature on day 1 post-injury using synchrotron radiation micro-tomography (SRμCT). This technology provides high-resolution 3D images of microvasculature in both normal and injured spinal cords, and the smallest vessel detected is approximately 7.4 μm. Moreover, we optimized the 3D vascular visualization with color coding and accurately calculated quantitative changes in vascular architecture after SCI. Compared to the control spinal cord, the damaged spinal cord vessel numbers decreased significantly following injury. Furthermore, the area of injury did not remain concentrated at the epicenter; rather, the signs of damage expanded rostrally and caudally along the spinal cord in 3D. The observed pathological changes were also confirmed by histological tests. These results demonstrate that SRμCT is an effective technology platform for imaging pathological changes in small arteries in neurovascular disease and for evaluating therapeutic interventions.

  12. Neurogenic bladder in spinal cord injury patients

    Directory of Open Access Journals (Sweden)

    Al Taweel W

    2015-06-01

    Full Text Available Waleed Al Taweel, Raouf SeyamDepartment of Urology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi ArabiaAbstract: Neurogenic bladder dysfunction due to spinal cord injury poses a significant threat to the well-being of patients. Incontinence, renal impairment, urinary tract infection, stones, and poor quality of life are some complications of this condition. The majority of patients will require management to ensure low pressure reservoir function of the bladder, complete emptying, and dryness. Management typically begins with anticholinergic medications and clean intermittent catheterization. Patients who fail this treatment because of inefficacy or intolerability are candidates for a spectrum of more invasive procedures. Endoscopic managements to relieve the bladder outlet resistance include sphincterotomy, botulinum toxin injection, and stent insertion. In contrast, patients with incompetent sphincters are candidates for transobturator tape insertion, sling surgery, or artificial sphincter implantation. Coordinated bladder emptying is possible with neuromodulation in selected patients. Bladder augmentation, usually with an intestinal segment, and urinary diversion are the last resort. Tissue engineering is promising in experimental settings; however, its role in clinical bladder management is still evolving. In this review, we summarize the current literature pertaining to the pathology and management of neurogenic bladder dysfunction in patients with spinal cord injury.Keywords: neurogenic bladder, spinal cord injury, urodynamics, intestine, intermittent catheterization

  13. Skeletal Muscle Hypertrophy and Cardiometabolic Benefits after Spinal Cord Injury

    Science.gov (United States)

    2016-10-01

    AWARD NUMBER: W81XWH-15-1-0671 TITLE: Skeletal Muscle Hypertrophy and Cardiometabolic Benefits after Spinal Cord Injury PRINCIPAL...29 Sep 2016 4. TITLE AND SUBTITLE Spinal Cord Injury 5a. CONTRACT NUMBER Skeletal Muscle Hypertrophy and Cardiometabolic Benefits after Spinal...metabolism, increasing leg muscle size and preventing an increase in leg fat mass. 15. SUBJECT TERMS RESISTANCE TRAINING, SPINAL CORD INJURY , BODY

  14. Stem cell transplantation for treating spinal cord injury

    OpenAIRE

    Xiang, Liangbi; Chen, Yu

    2012-01-01

    OBJECTIVE: To identify global research trends of stem cell transplantation for treating spinal cord injury using a bibliometric analysis of the Web of Science. DATA RETRIEVAL: We performed a bibliometric analysis of data retrievals for stem cell transplantation for treating spinal cord injury from 2002 to 2011 using the Web of Science. SELECTION CRITERIA: Inclusion criteria: (a) peer-reviewed articles on stem cell transplantation for treating spinal cord injury that were published and indexed...

  15. New Prophylactic and Therapeutic Strategies for Spinal Cord Injury.

    Science.gov (United States)

    Park, Sookyoung; Park, Kanghui; Lee, Youngjeon; Chang, Kyu-Tae; Hong, Yonggeun

    2013-03-01

    Melatonin production by the pineal gland in the vertebrate brain has attracted much scientific attention. Pineal melatonin is regulated by photoperiodicity, whereas circadian secretion of melatonin produced in the gastrointestinal tract is regulated by food intake. Thus, the circadian rhythm of pineal melatonin depends upon whether a species is diurnal or nocturnal. Spinal cord injury (SCI) involves damage to the spinal cord caused by trauma or disease that results in compromise or loss of body function. Melatonin is the most efficient and commonly used pharmacological antioxidant treatment for SCI. Melatonin is an indolamine secreted by the pineal gland during the dark phase of the circadian cycle. Neurorehabilitation is a complex medical process that focuses on improving function and repairing damaged connections in the brain and nervous system following injury. Physical activity associated with an active lifestyle reduces the risk of obesity, cardiovascular disease, type 2 diabetes, osteoporosis, and depression and protects against neurological conditions, including Parkinson's disease, Alzheimer's disease, and ischemic stroke. Physical activity has been shown to increase the gene expression of several brain neurotrophins (brain-derived neurotrophic factor [BDNF], nerve growth factor, and galanin) and the production of mitochondrial uncoupling protein 2, which promotes neuronal survival, differentiation, and growth. In summary, melatonin is a neural protectant, and when combined with therapeutic exercise, the hormone prevents the progression of secondary neuronal degeneration in SCI. The present review briefly describes the pathophysiological mechanisms underlying SCI, focusing on therapeutic targets and combined melatonin and exercise therapy, which can attenuate secondary injury mechanisms with minimal side effects.

  16. Spinal cord injury reveals multilineage differentiation of ependymal cells.

    Directory of Open Access Journals (Sweden)

    Konstantinos Meletis

    2008-07-01

    Full Text Available Spinal cord injury often results in permanent functional impairment. Neural stem cells present in the adult spinal cord can be expanded in vitro and improve recovery when transplanted to the injured spinal cord, demonstrating the presence of cells that can promote regeneration but that normally fail to do so efficiently. Using genetic fate mapping, we show that close to all in vitro neural stem cell potential in the adult spinal cord resides within the population of ependymal cells lining the central canal. These cells are recruited by spinal cord injury and produce not only scar-forming glial cells, but also, to a lesser degree, oligodendrocytes. Modulating the fate of ependymal progeny after spinal cord injury may offer an alternative to cell transplantation for cell replacement therapies in spinal cord injury.

  17. RhoA/Rho kinase in spinal cord injury

    Directory of Open Access Journals (Sweden)

    Xiangbing Wu

    2016-01-01

    Full Text Available A spinal cord injury refers to an injury to the spinal cord that is caused by a trauma instead of diseases. Spinal cord injury includes a primary mechanical injury and a much more complex secondary injury process involving inflammation, oxidation, excitotoxicity, and cell death. During the secondary injury, many signal pathways are activated and play important roles in mediating the pathogenesis of spinal cord injury. Among them, the RhoA/Rho kinase pathway plays a particular role in mediating spinal degeneration and regeneration. In this review, we will discuss the role and mechanism of RhoA/Rho kinase-mediated spinal cord pathogenesis, as well as the potential of targeting RhoA/Rho kinase as a strategy for promoting both neuroprotection and axonal regeneration.

  18. Role of Melatonin in Traumatic Brain Injury and Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Mehar Naseem

    2014-01-01

    Full Text Available Brain and spinal cord are implicated in incidences of two of the most severe injuries of central nervous system (CNS. Traumatic brain injury (TBI is a devastating neurological deficit involving primary and secondary injury cascades. The primary and secondary mechanisms include complex consequences of activation of proinflammatory cytokines, cerebral edema, upregulation of NF-κβ, disruption of blood-brain barrier (BBB, and oxidative stress. Spinal cord injury (SCI includes primary and secondary injury cascades. Primary injury leads to secondary injury in which generation of free radicals and oxidative or nitrative damage play an important pathophysiological role. The indoleamine melatonin is a hormone secreted or synthesized by pineal gland in the brain which helps to regulate sleep and wake cycle. Melatonin has been shown to be a versatile hormone having antioxidative, antiapoptotic, neuroprotective, and anti-inflammatory properties. It has a special characteristic of crossing BBB. Melatonin has neuroprotective role in the injured part of the CNS after TBI and SCI. A number of studies have successfully shown its therapeutic value as a neuroprotective agent in the treatment of neurodegenerative diseases. Here in this review we have compiled the literature supporting consequences of CNS injuries, TBI and SCI, and the protective role of melatonin in it.

  19. Effect of lycopene on the blood-spinal cord barrier after spinal cord injury in mice.

    Science.gov (United States)

    Zhang, Qian; Wang, Jianbo; Gu, Zhengsong; Zhang, Qing; Zheng, Hong

    2016-09-05

    The current study aimed to investigate the effect of lycopene on the blood-spinal cord barrier (BSCB) after spinal cord injury (SCI) in a mouse model. Lycopene inhibited lipid peroxidation and oxidative DNA damage as a highly efficient antioxidant and free radical scavenger. Lycopene (4 mg/kg/d) was administrated immediately following SCI. The permeability of the BSCB and water content in the spinal cord tissue were evaluated. Additionally, levels of expression of tight junction proteins and heme oxygenase-1 (HO-1) were determined with Western blotting. An enzyme-linked immunosorbent assay analysis of spinal cord tissue homogenates was performed 48 h after SCI to evaluate the expression of inflammation-related cytokines. In addition, recovery of motor function was assessed 1 d, 2 d, 5 d, 10 d, and 15 d after SCI using the Basso Mouse Scale to score locomotion. Compared to the group with an untreated SCI, mice with an SCI treated with lycopene had significantly reduced spinal cord tissue water content and BSCB permeability. Furthermore, motor function of mice with an SCI was also greatly improved by lycopene administration. The expression of the proinflammatory factors TNF-α and NF-kB increased markedly 48 h after SCI, and their upregulation was significantly attenuated by lycopene treatment. The expression of molecules that protect tight junctions, zonula occluden-1 and claudin-5, was upregulated by lycopene treatment after SCI. Taken together, these results clearly indicate that lycopene attenuated SCI by promoting repair of the damaged BSCB, so lycopene is a novel and promising treatment for SCI in humans.

  20. Weight change after spinal cord injury.

    Science.gov (United States)

    Powell, Danielle; Affuso, Olivia; Chen, Yuying

    2017-03-01

    To study the patterns of weight change after spinal cord injury (SCI) and identify associated risk factors. Cohort study. Sixteen Spinal Cord Injury Model Systems (SCIMS), USA. One thousand and ninety-four individuals with an SCI who were entered into the SCIMS and had a 1-year follow-up between October 2006 and November 2012. Not applicable. Change in body mass index (BMI) during the first year of injury. Height and weight were assessed during inpatient rehabilitation and 1 year after injury. Mean BMI decreased from 26.3 to 25.8 kg/m² during the first year after SCI (mean change: -0.5 kg/m² (standard deviation: 3.58)). Weight loss was mainly observed among individuals classified as overweight or obese during rehabilitation (n  =  576) with a BMI decrease of 1.4 kg/m², which varied significantly by sex, education, neurological level, and the presence of vertebral injury. Weight gain was noted among individuals classified as underweight or normal weight during rehabilitation (n = 518) with a BMI increase of 0.5 kg/m², with the greatest increase among individuals of Hispanic origin (1.2 kg/m²), other marital status (1.2 kg/m²), age group 31-45 years (1.1 kg/m²), with less than high school education (1.1 kg/m²), without spinal surgery (0.9 kg/m²), and with motor functionally incomplete injury (0.8 kg/m²). Our findings suggest that strategies for weight management should be addressed after a SCI to ameliorate the potential for unhealthful weight change, particularly among at-risk groups.

  1. Sleep disordered breathing following spinal cord injury

    DEFF Research Database (Denmark)

    Biering-Sørensen, Fin; Jennum, Poul; Laub, Michael

    2009-01-01

    with SCI, especially with regard to obstructive sleep apnea. In addition, there is a correlation between the incidence of sleep disturbances and the spinal cord level injured, age, body mass index, neck circumference, abdominal girth, and use of sedating medications. Regulation of respiration is dependent...... be a potential disparity between daytime and nocturnal ventilation, as individuals with partially reduced muscle tone are susceptible to not only sleep apnea, but also sleep-related hypoventilation which may be aggravated during rapid eye movement sleep.......Individuals with spinal cord injury (SCI) commonly complain about difficulty in sleeping. Although various sleep disordered breathing definitions and indices are used that make comparisons between studies difficult, it seems evident that the frequency of sleep disorders is higher in individuals...

  2. DISTANT DAMAGES IN PATIENTS WITH TRAUMATIC DISEASE OF SPINAL CORD

    Directory of Open Access Journals (Sweden)

    O. I. Dulub

    2010-01-01

    Full Text Available Were marked 3 groups of patients with distant damages of spine: with develope of it at early time after vertebro-spinal cord trauma, posttraumatic distant myelopathy and posttraumatic syringogydromyelia. Develope of distant damage was in 54 patients and it was by high powerfulls traumatic action, ft connected to a hard prime damage of spinal cord (79.6% had a completely disturbance of spine cord conduction. Periods of improvement conductions changed for the worse. Confirmation of defeation and level of disturbance of spine cord conduction were done by MRI and different methods of electrophysiology. Medical support and surgical operations (decompressive and bypass operations guarantee the positive neurological results gettin almost patients.

  3. Definition of complete spinal cord injury.

    Science.gov (United States)

    Waters, R L; Adkins, R H; Yakura, J S

    1991-11-01

    Prospective serial neurological examinations were performed on 445 consecutive traumatic spinal cord injury (SCI) patients admitted for rehabilitation on an average of 22.8 +/- 15.6 days after injury. Patients were categorized by both the ASIA and Sacral Sparing (SS) definitions of complete SCI, in order to compare the definitions in terms of consistency and prognostic ability. Recovery during follow-up was determined by sensory scores for light touch, sharp/dull discrimination, proprioception, and the ASIA Motor Index Score. Change in complete status was unidirectional using the SS definition and bidirectional using the ASIA definition. Twelve patients with SS complete injuries on initial examination converted to SS incomplete injuries at follow-up. No patients converted from SS incomplete to SS complete injury. Twenty three patients with ASIA complete injuries upon admission converted to ASIA incomplete status and 6 converted from ASIA incomplete status on admission to ASIA complete status at follow-up. For quadriplegics, the average motor recovery for patients changing complete status according to the ASIA definition was 11.7 +/- 10.3, which was significantly less (p less than .05) than the average recovery using the SS definition (group 1), 17.9 +/- 9.3. For paraplegics, the average motor recovery using the ASIA definition, 8.3 +/- 6.7, did not differ significantly from the value using the SS definition, 6.8 +/- 4.0.

  4. Traumatic spinal cord injuries--incidence, mechanisms and course.

    Science.gov (United States)

    Hagen, Ellen Merete; Rekand, Tiina; Gilhus, Nils Erik; Grønning, Marit

    2012-04-17

    The primary purpose of this article is to provide an overview of demography, neurological level of injury, extent of lesion, incidence, prevalence, injury mechanisms as well as lethality and causes of death associated with traumatic spinal cord injuries. A literature search was carried out in PubMed, with the search words "traumatic spinal cord injury"/"traumatic spinal cord injuries" together with "epidemiology", and "spinal cord injury"/"spinal cord injuries" together with "epidemiology". The reported annual incidence of traumatic spinal cord injuries varies from 2.3 per million in a study from Canada to 83 per million in Alaska. The prevalence is given as ranging from 236 per million in India to 1800 per million in the USA. The average age at the time of injury varies from 26.8 years in Turkey to 55.5 years in the USA. The ratio of men to women varies from 0.9 in Taiwan to 12.0 in Nigeria. The most frequent cause of injury is traffic accidents, followed by falls, violence and sports/leisure activity incidents. Patients with traumatic spinal cord injuries have a higher lethality than the normal population. The most frequent causes of death today are airway problems, heart disease and suicide. There are large geographical differences in reported incidence, prevalence and lethality. This is attributable to differences in definition, inclusion, classification and patient identification procedures in the various studies, together with geographical and cultural differences and differences in prehospital and hospital treatment.

  5. Spinal cord injury medicine and rehabilitation.

    Science.gov (United States)

    Stampas, Argyrios; Tansey, Keith E

    2014-11-01

    The rehabilitation of spinal cord injury (SCI) is a complicated process, but one in which new research is developing novel and increasingly promising methods of restorative neurology. Spinal cord injury medicine addresses not only the neurologic injury, but all the secondary complications in other organ systems whose regulation is disrupted after SCI. To some degree, the rehabilitation of SCI is focused on return to the community and functional goals are paramount, regardless of whether they can be achieved through some mechanism of compensation or due to a growing effort at engendering neurologic plasticity and recovery. The authors present a typical case of cervical incomplete SCI and discuss the medical complications and considerations for care during acute rehabilitation. They also review current methods of planning and executing rehabilitation, along with emerging methods that are leading to, in varying degrees, greater neurologic recovery. Finally, new approaches in SCI rehabilitation, namely neuromodulation, are discussed as efforts are made to further augment neural plasticity and recovery in SCI. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  6. What are the Causes of Spinal Cord Injury?

    Science.gov (United States)

    ... design independance kids Love marriage mother movement Occupational therapy Paralysis paralyzed Paraplegia parents post-injury power chair progress Quadriplegia Rehabilitation sci sex Spinal Cord Injury sports support Tetraplegia Travel Video wheelchair wife Archives February ...

  7. Functional electrical stimulation and spinal cord injury.

    Science.gov (United States)

    Ho, Chester H; Triolo, Ronald J; Elias, Anastasia L; Kilgore, Kevin L; DiMarco, Anthony F; Bogie, Kath; Vette, Albert H; Audu, Musa L; Kobetic, Rudi; Chang, Sarah R; Chan, K Ming; Dukelow, Sean; Bourbeau, Dennis J; Brose, Steven W; Gustafson, Kenneth J; Kiss, Zelma H T; Mushahwar, Vivian K

    2014-08-01

    Spinal cord injuries (SCI) can disrupt communications between the brain and the body, resulting in loss of control over otherwise intact neuromuscular systems. Functional electrical stimulation (FES) of the central and peripheral nervous system can use these intact neuromuscular systems to provide therapeutic exercise options to allow functional restoration and to manage medical complications following SCI. The use of FES for the restoration of muscular and organ functions may significantly decrease the morbidity and mortality following SCI. Many FES devices are commercially available and should be considered as part of the lifelong rehabilitation care plan for all eligible persons with SCI. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. The Spinal Cord Injury-Interventions Classification System

    NARCIS (Netherlands)

    van Langeveld, A.H.B.

    2010-01-01

    Title: The Spinal Cord Injury-Interventions Classification System: development and evaluation of a documentation tool to record therapy to improve mobility and self-care in people with spinal cord injury. Background: Many rehabilitation researchers have emphasized the need to examine the actual

  9. Epidemiology of acute spinal cord injuries in the Groote Schuur ...

    African Journals Online (AJOL)

    admitted within the first week of injury,. Table 1. Acute spinal cord injury admissions to ASCI Unit, priority scale*. P1. Incomplete acute SCI in need of urgent spinal cord decompression operation/procedure. P2. Acute SCI with unstable cervical spine fracture in need of spinal fusion operation. P3. Acute SCI with unstable ...

  10. International spinal cord injury cardiovascular function basic data set

    DEFF Research Database (Denmark)

    Krassioukov, A; Alexander, M S; Karlsson, Anders Hans

    2010-01-01

    To create an International Spinal Cord Injury (SCI) Cardiovascular Function Basic Data Set within the framework of the International SCI Data Sets.......To create an International Spinal Cord Injury (SCI) Cardiovascular Function Basic Data Set within the framework of the International SCI Data Sets....

  11. International Spinal Cord Injury Male Sexual Function Basic Data Set

    DEFF Research Database (Denmark)

    Alexander, M S; Biering-Sørensen, F; Elliott, S

    2011-01-01

    To create the International Spinal Cord Injury (SCI) Male Sexual Function Basic Data Set within the International SCI Data Sets.......To create the International Spinal Cord Injury (SCI) Male Sexual Function Basic Data Set within the International SCI Data Sets....

  12. Barriers to Physical Activity in Individuals with Spinal Cord Injury

    DEFF Research Database (Denmark)

    Roberton, Terri; Bucks, Romola S.; Skinner, Timothy C.

    2011-01-01

    This study examined barriers to physical activity reported individuals with spinal cord injury (SCI) and the degree to which these barriers differed across varying degrees of independence. Participants were 65 individuals recruited from the Western Australian Spinal Cord Injury database. Data...

  13. Shriners Hospital Spinal Cord Injury Self Care Manual.

    Science.gov (United States)

    Fox, Carol

    This manual is intended for young people with spinal cord injuries who are receiving rehabilitation services within the Spinal Cord Injury Unit at Shriners Hospital (San Francisco, California). An introduction describes the rehabilitation program, which includes family conferences, an individualized program, an independent living program,…

  14. Using the Spinal Cord Injury Common Data Elements

    DEFF Research Database (Denmark)

    Biering-Sørensen, Fin; Charlifue, Susan; Devivo, Michael J

    2012-01-01

    International Spinal Cord Injury (SCI) Data Sets include core, basic, and extended data sets. To date, 13 data sets have been published on the Web site of the International Spinal Cord Injury Society (ISCoS; www.iscos.org.uk), and several more are forthcoming. The data sets are constituted of data...

  15. Cervical spine cord injury in pregnancy. Conservative management ...

    African Journals Online (AJOL)

    Study design A prospective study of 3 patients with incomplete cervical spinal cord injury in the 3rd trimester of pregnancy. Objectives To determine the effect of spinal cord injury and treatment with Gardner-Wells\\' Tong traction on pregnancy, labour and parturition; and ascertain the effectiveness and safety of this ...

  16. Cardiac arrhythmias associated with spinal cord injury.

    Science.gov (United States)

    Hector, Sven Magnus; Biering-Sørensen, Tor; Krassioukov, Andrei; Biering-Sørensen, Fin

    2013-11-01

    To review the current literature to reveal the incidence of cardiac arrhythmias and its relation to spinal cord injury (SCI). MEDLINE database, 304 hits, and 32 articles were found to be relevant. The relevant articles all met the inclusion criteria: (1) contained original data (2) on cardiac arrhythmias (3) in humans with (4) traumatic SCI. In the acute phase of SCI (1-14 days after injury) more cranial as well as more severe injuries seemed to increase the incidence of bradycardia. Articles not covering the first 14 days after injury, thus describing the chronic phase of SCI, showed that individuals with SCI did not have a higher incidence of cardiac arrhythmias compared with able-bodied controls. Furthermore, their heart rate did not differ significantly. Penile vibro-stimulation was the procedure investigated most likely to cause bradycardia, which in turn was associated with episodes of autonomic dysreflexia. The incidence of bradycardia was found to be 17-77% for individuals with cervical SCI. For individuals with thoracolumbar SCI, the incidence was 0-13%. Bradycardia was commonly seen in the acute stage after SCI as well as during procedures such as penile vibro-stimulation and tracheal suction. These episodes of bradycardia were seen more often in individuals with cervical injuries. Longitudinal studies with continuous electrocardiogram recordings are needed to uncover the true relation between cardiac arrhythmias and SCI.

  17. Parents with a spinal cord injury

    DEFF Research Database (Denmark)

    Rasul, A; Biering-Sørensen, F

    2016-01-01

    STUDY DESIGN: This is a cross-sectional questionnaire. OBJECTIVES: The objective of this study was to describe the impact of parenting young children with a spinal cord injury (SCI) on various life situations (for example, personal, vocational and social). SETTING: Community; Denmark. METHODS......: A postal survey was designed to collect data in persons with SCI regarding the following: (1) socio-demographics, injury characteristics and parental status; (2) employment status; (3) environmental adjustments to support parenting roles; (4) childcare institution use and experiences; (5) network support...... for parenting; and (6) parenting advice for others. RESULTS: A total of 62 persons (58% men) responded to the survey, with 56% having paraplegia and 44% having tetraplegia. The majority of men (83%) and women (62%) were employed during the first 10 years of their child's lives. Half of the sample (50%) did...

  18. Neurogenic bladder in spinal cord injury patients

    Science.gov (United States)

    Taweel, Waleed Al; Seyam, Raouf

    2015-01-01

    Neurogenic bladder dysfunction due to spinal cord injury poses a significant threat to the well-being of patients. Incontinence, renal impairment, urinary tract infection, stones, and poor quality of life are some complications of this condition. The majority of patients will require management to ensure low pressure reservoir function of the bladder, complete emptying, and dryness. Management typically begins with anticholinergic medications and clean intermittent catheterization. Patients who fail this treatment because of inefficacy or intolerability are candidates for a spectrum of more invasive procedures. Endoscopic managements to relieve the bladder outlet resistance include sphincterotomy, botulinum toxin injection, and stent insertion. In contrast, patients with incompetent sphincters are candidates for transobturator tape insertion, sling surgery, or artificial sphincter implantation. Coordinated bladder emptying is possible with neuromodulation in selected patients. Bladder augmentation, usually with an intestinal segment, and urinary diversion are the last resort. Tissue engineering is promising in experimental settings; however, its role in clinical bladder management is still evolving. In this review, we summarize the current literature pertaining to the pathology and management of neurogenic bladder dysfunction in patients with spinal cord injury. PMID:26090342

  19. Evaluation of pain syndromes in war veterans with spinal cord injury

    Directory of Open Access Journals (Sweden)

    Ahmad Zeinali

    2016-07-01

    Full Text Available Chronic pain is one of the most important problems in patients with spinal cord injury. The pain may occur for unknown reasons, but in most cases it is due to damage to the nerves due to spinal cord injury or musculoskeletal problems. The aim of this study was to investigate the epidemiology of pain syndromes in veterans of war and relationship between age, gender and severity of spinal cord injury with treatment response in such people. This was is a descriptive study on spinal cord injury victims in Yazd and Isfahan from May to November 2015. First, a questionnaire was prepared in which information such as age, duration of disease, pain, level of injury and the type of drug were included. The patients were examined individually to determine the level of damage properly. Finally, by statistical analysis of data obtained, their relationship was examined. In this study, 50 people with injured spinal cord in the provinces of Yazd and Isfahan (18 out of Yazd Province and 32 from the province were evaluated, of which 13 complexities were in the cervical level (neck, 27 in the thoracic region and 10 in the lumbar region. The lowest age was 39 years and oldest age was 50 years. Statistical analysis of the relationship between pain and level of spinal cord injury showed that no significant relationship between severity of pain and level of spinal cord injury. Statistical analysis of the relationship between severity of pain and age suggested that older patients had complained of less pain than patients with lower ages. It seems that due to the problems facing patients with spinal defects, especially disabled veterans, comprehensive program must be carried out by relevant institutions to facilitate the treatment of these people and increase the quality of their life.

  20. International Standards for Neurological Classification of Spinal Cord Injury:

    DEFF Research Database (Denmark)

    Kirshblum, S C; Biering-Sørensen, Fin; Betz, R

    2014-01-01

    The International Standards for the Neurological Classification of Spinal Cord Injury (ISNCSCI) is routinely used to determine levels of injury and to classify the severity of the injury. Questions are often posed to the International Standards Committee of the American Spinal Injury Association...

  1. International Standards for Neurological Classification of Spinal Cord Injury

    DEFF Research Database (Denmark)

    Kirshblum, S C; Biering-Sorensen, F; Betz, R

    2014-01-01

    The International Standards for the Neurological Classification of Spinal Cord Injury (ISNCSCI) is routinely used to determine the levels of injury and to classify the severity of the injury. Questions are often posed to the International Standards Committee of the American Spinal Injury...

  2. In vivo imaging of spinal cord in contusion injury model mice by multi-photon microscopy

    Science.gov (United States)

    Oshima, Y.; Horiuchi, H.; Ogata, T.; Hikita, A.; Miura, H.; Imamura, T.

    2014-03-01

    Fluorescent imaging technique is a promising method and has been developed for in vivo applications in cellular biology. In particular, nonlinear optical imaging technique, multi-photon microscopy has make it possible to analyze deep portion of tissues in living animals such as axons of spinal code. Traumatic spinal cord injuries (SCIs) are usually caused by contusion damages. Therefore, observation of spinal cord tissue after the contusion injury is necessary for understanding cellular dynamics in response to traumatic SCI and development of the treatment for traumatic SCI. Our goal is elucidation of mechanism for degeneration of axons after contusion injuries by establishing SCI model and chronic observation of injured axons in the living animals. Firstly we generated and observed acute SCI model by contusion injury. By using a multi-photon microscope, axons in dorsal cord were visualized approximately 140 micron in depth from the surface. Immediately after injury, minimal morphological change of spinal cord was observed. At 3 days after injury, spinal cord was swelling and the axons seem to be fragmented. At 7 days after injury, increased degradation of axons could be observed, although the image was blurred due to accumulation of the connective tissue. In the present study, we successfully observed axon degeneration after the contusion SCI in a living animal in vivo. Our final goal is to understand molecular mechanisms and cellular dynamics in response to traumatic SCIs in acute and chronic stage.

  3. An ex vivo spinal cord injury model to study ependymal cells in adult mouse tissue.

    Science.gov (United States)

    Fernandez-Zafra, Teresa; Codeluppi, Simone; Uhlén, Per

    2017-08-15

    Traumatic spinal cord injury is characterized by an initial cell loss that is followed by a concerted cellular response in an attempt to restore the damaged tissue. Nevertheless, little is known about the signaling mechanisms governing the cellular response to injury. Here, we have established an adult ex vivo system that exhibits multiple hallmarks of spinal cord injury and allows the study of complex processes that are difficult to address using animal models. We have characterized the ependymal cell response to injury in this model system and found that ependymal cells can become activated, proliferate, migrate out of the central canal lining and differentiate in a manner resembling the in vivo situation. Moreover, we show that these cells respond to external adenosine triphosphate and exhibit spontaneous Ca(2+) activity, processes that may play a significant role in the regulation of their response to spinal cord injury. This model provides an attractive tool to deepen our understanding of the ependymal cell response after spinal cord injury, which may contribute to the development of new treatment options for spinal cord injury. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Stereotactic radiosurgery improves locomotor recovery after spinal cord injury in rats.

    Science.gov (United States)

    Zeman, Richard J; Wen, Xialing; Ouyang, Nengtai; Rocchio, Ronald; Shih, Lynn; Alfieri, Alan; Moorthy, Chitti; Etlinger, Joseph D

    2008-11-01

    Currently, because of the precision of stereotactic radiosurgery, radiation can now be delivered by techniques that shape the radiation beam to the tissue target for a variety of clinical applications. This avoids unnecessary and potentially damaging irradiation of surrounding tissues inherent in conventional irradiation, so that irradiation of the minimum volume of tissue necessary for optimal therapeutic benefit can be achieved. Although conventional x-irradiation has been shown to improve recovery from spinal cord injury in animals, the efficacy of targeted irradiation of the injured spinal cord has not been demonstrated previously. The purpose of these studies was to determine whether stereotactic x-irradiation of the injured spinal cord can enhance locomotor function and spare spinal cord tissue after contusion injury in a standard experimental model of spinal cord injury. Contusion injury was produced in rats at the level of T10 with a weight-drop device, and doses of x-irradiation were delivered 2 hours after injury via a Novalis, 6-MeV linear accelerator shaped beam radiosurgery system (BrainLAB USA, Westchester, IL) in 4 sequential fractions, with beam angles 60 to 70 degrees apart, at a rate of 6.4 Gy/minute. The target volume was a 4 x 15-mm cylinder along the axis of the spinal cord, with the isocenter positioned at the contusion epicenter. Locomotor function was determined for 6 weeks after injury with the 21-point Basso, Beattie, and Bresnahan (BBB) locomotor scale and tissue sparing in histological sections of the spinal cord. Locomotor function recovered progressively during the 6-week postinjury observation period. BBB scores were significantly greater in the 10-Gy x-irradiated group compared with controls (9.4 versus 7.3; P radiosurgery in a rat model of acute spinal cord contusion injury and raise hopes for human treatment strategies. Additional animal studies are needed to further define potential benefits.

  5. Transplantation of placenta-derived mesenchymal stem cell-induced neural stem cells to treat spinal cord injury.

    Science.gov (United States)

    Li, Zhi; Zhao, Wei; Liu, Wei; Zhou, Ye; Jia, Jingqiao; Yang, Lifeng

    2014-12-15

    Because of their strong proliferative capacity and multi-potency, placenta-derived mesenchymal stem cells have gained interest as a cell source in the field of nerve damage repair. In the present study, human placenta-derived mesenchymal stem cells were induced to differentiate into neural stem cells, which were then transplanted into the spinal cord after local spinal cord injury in rats. The motor functional recovery and pathological changes in the injured spinal cord were observed for 3 successive weeks. The results showed that human placenta-derived mesenchymal stem cells can differentiate into neuron-like cells and that induced neural stem cells contribute to the restoration of injured spinal cord without causing transplant rejection. Thus, these cells promote the recovery of motor and sensory functions in a rat model of spinal cord injury. Therefore, human placenta-derived mesenchymal stem cells may be useful as seed cells during the repair of spinal cord injury.

  6. Neurocontrol of Movement in Humans With Spinal Cord Injury.

    Science.gov (United States)

    Dimitrijevic, Milan R; Danner, Simon M; Mayr, Winfried

    2015-10-01

    In this review of neurocontrol of movement after spinal cord injury, we discuss neurophysiological evidences of conducting and processing mechanisms of the spinal cord. We illustrate that external afferent inputs to the spinal cord below the level of the lesion can modify, initiate, and maintain execution of movement in absence or partial presence of brain motor control after chronic spinal cord injury. We review significant differences between spinal reflex activity elicited by single and repetitive stimulation. The spinal cord can respond with sensitization, habituation, and dis-habituation to regular repetitive stimulation. Therefore, repetitive spinal cord reflex activity can contribute to the functional configuration of the spinal network. Moreover, testing spinal reflex activity in individuals with motor complete spinal cord injury provided evidences for subclinical residual brain influence, suggesting the existence of axons traversing the injury site and influencing the activities below the level of lesion. Thus, there are two motor control models of chronic spinal cord injury in humans: "discomplete" and "reduced and altered volitional motor control." We outline accomplishments in modification and initiation of altered neurocontrol in chronic spinal cord injury people with epidural and functional electrical stimulation. By nonpatterned electrical stimulation of lumbar posterior roots, it is possible to evoke bilateral extension as well as rhythmic motor outputs. Epidural stimulation during treadmill stepping shows increased and/or modified motor activity. Finally, volitional efforts can alter epidurally induced rhythmic activities in incomplete spinal cord injury. Overall, we highlight that upper motor neuron paralysis does not entail complete absence of connectivity between cortex, brain stem, and spinal motor cells, but there can be altered anatomy and corresponding neurophysiological characteristics. With specific input to the spinal cord below the level

  7. Cell Therapy in Spinal Cord Injury: a Mini- Reivew

    Science.gov (United States)

    Mehrabi, Soraya; Eftekhari, Sanaz; Moradi, Fateme; Delaviz, Hamdollah; Pourheidar, Bagher; Azizi, Monir; Zendehdel, Adib; Shahbazi, Ali; Joghataei, Mohammad Taghi

    2013-01-01

    Spinal cord injury (SCI) is a debilitating disease which leads to progressive functional damages. Because of limited axonal regeneration in the central nervous system, there is no or little recovery expected in the patients. Different cellular and molecular approaches were investigated in SCI animal models. Cellular transplantation of stem cells can potentially replace damaged tissue and provide a suitable microenvironment for axons to regenerate. Here, we reviewed the last approaches applied by our colleagues and others in order to improve axonal regeneration following SCI. We used different types of stem cells via different methods. First, fetal olfactory mucosa, schwann, and bone marrow stromal cells were transplanted into the injury sites in SCI models. In later studies, was applied simultaneous transplantation of stem cells with chondroitinase ABC in SCI models with the aid of nanoparticles. Using these approaches, considerable functional recovery was observed. However, considering some challenges in stem cell therapy such as rejection, infection, and development of a new cancer, our more recent strategy was application of cytokines. We observed a significant improvement in motor function of rats when stromal derived factor-1 was used to attract innate stem cells to the injury site. In conclusion, it seems that co-transplantation of different cells accompanies with other factors like enzymes and growth factors via new delivery systems may yield better results in SCI. PMID:25337345

  8. Earnings among people with spinal cord injury.

    Science.gov (United States)

    Krause, James S; Terza, Joseph V; Dismuke, Clara

    2008-08-01

    To identify differences in conditional and unconditional earnings among participants with spinal cord injury (SCI) attributable to biographic, injury, educational, and employment factors by using a 2-part model (employment, earnings). A secondary analysis of cross-sectional survey data. A Midwestern university hospital and a private hospital in the Southeastern United States. All participants (N=1296) were adults between the ages of 18 and 64 who had a traumatic SCI at least 1 year before study initiation. Not applicable. Earnings were defined by earnings within the previous 12 months and were measured by a single categoric item. Conditional earnings reflect the earnings of employed participants, whereas unconditional earnings reflect all participants with $0 in earnings recorded for those unemployed. Sex and race were significantly related to conditional earnings, even after controlling for educational and vocational variables. Additionally, conditional earnings (employed participants only) were related to 16 or more years of education, number of years employed, the percentage of time after SCI spent employed, and working in either government or private industry (not self-employed or family business). There was a greater number of significant variables for unconditional earnings, largely reflective of the influence of the portion employed (those not working having $0 in earnings). Efforts to improve employment outcomes should focus on facilitating return to work immediately after injury, returning to preinjury job, maintaining regular employment, and working for placement in government or private industry. Special efforts may be needed to promote vocational outcomes among women and nonwhites.

  9. Sexuality in Pediatric Spinal Cord Injury.

    Science.gov (United States)

    Papadakis, Jaclyn Lennon; Zebracki, Kathy; Chlan, Kathleen M; Vogel, Lawrence C

    2017-01-01

    Sexual development and sexuality in youth with pediatric spinal cord injury (SCI) are critical areas clinicians must be aware of and discuss when working with youth and their families. In addition to the general sexuality issues and challenges of adolescence and adult development, youth with SCI face unique physical and psychosocial issues. The goal of this article is to provide a developmentally based discussion of sexuality in individuals with SCI from infancy through emerging adulthood. An overview of psychosocial issues related to sexual development and sexuality are presented for each stage of sexual development along with recommendations for clinical practice, including patient and caregiver education and counseling. In order to establish expectations for youth with SCI, long-term outcomes related to sexuality and fertility of adults with pediatric-onset SCI are presented.

  10. Women's Sex Life After Spinal Cord Injury.

    Science.gov (United States)

    Sramkova, Tatana; Skrivanova, Katerina; Dolan, Igor; Zamecnik, Libor; Sramkova, Katerina; Kriz, Jiri; Muzik, Vladimir; Fajtova, Radmila

    2017-12-01

    After spinal cord injury (SCI), individuals are typically considered by the general public to be asexual. Handicapped women have more problems with socio-sexual adaptation, stemming from low self-confidence, low self-esteem, and the absence of spontaneity. To determine changes in the sexual lives of women after SCI. A self-constructed questionnaire was used to map sexual function after SCI. We retrospectively compared sexual function in 30 women with SCI with that in 30 without SCI who led an active sexual life. Descriptive and inductive statistics were applied using the Student paired and non-paired t-tests and the Levene test. The main variables were presence vs absence of sexual dysfunction in a group of women after SCI and a comparison of the incidence of sexual dysfunctions in women after SCI with that of a control group. A significant difference was ascertained in women with SCI in sexual desire (P < .001), lubrication (P < .001), and reaching orgasm before and after injury (P = .030). A comparison of the two groups showed a significant difference in the realization of coital sexual activity (P < .001), erotogenous zones of the mouth (P = .016), nipples (P = .022), and genitals (P < .001), and in the ability to reach orgasm (P = .033). The negative impact of incontinence on the sexual life of women with SCI proved significant (P < .001). Negative factors for sexual activity in women with SCI were lower sensitivity in 16 (53%), spasms and mobility problems in 12 (40%), lower desire in 11 (36%), pain in 4 (13%), and a less accommodating partner in 3 (10%). Intercourse was the preferred sexual activity in women with SCI. Compared with the period before injury, there was significant lowering of sexual desire, impaired lubrication, and orgasmic ability after SCI. A comparison of the two groups showed a difference in erotogenous zones and in reaching orgasm. Sramkova T, Skrivanova K, Dolan I, et al. Women's Sex Life After Spinal Cord Injury. Sex Med 2017

  11. Could cord blood cell therapy reduce preterm brain injury?

    Directory of Open Access Journals (Sweden)

    Jingang eLi

    2014-10-01

    Full Text Available Major advances in neonatal care have led to significant improvements in survival rates for preterm infants, but this occurs at a cost, with a strong causal link between preterm birth and neurological deficits, including cerebral palsy (CP. Indeed, in high-income countries, up to 50% of children with CP were born preterm. The pathways that link preterm birth and brain injury are complex and multifactorial, but it is clear that preterm birth is strongly associated with damage to the white matter of the developing brain. Nearly 90% of preterm infants who later develop spastic CP have evidence of periventricular white matter injury. There are currently no treatments targeted at protecting the immature preterm brain. Umbilical cord blood (UCB contains a diverse mix of stem and progenitor cells, and is a particularly promising source of cells for clinical applications, due to ethical and practical advantages over other potential therapeutic cell types. Recent studies have documented the potential benefits of UCB cells in reducing brain injury, particularly in rodent models of term neonatal hypoxia-ischemia. These studies indicate that UCB cells act via anti-inflammatory and immuno-modulatory effects, and release neurotrophic growth factors to support the damaged and surrounding brain tissue. The etiology of brain injury in preterm-born infants is less well understood than in term infants, but likely results from episodes of hypoperfusion, hypoxia-ischemia, and/or inflammation over a developmental period of white matter vulnerability. This review will explore current knowledge about the neuroprotective actions of UCB cells and their potential to ameliorate preterm brain injury through neonatal cell administration. We will also discuss the characteristics of UCB derived from preterm and term infants for use in clinical applications.

  12. Race-Ethnicity, Education, and Employment after Spinal Cord Injury

    Science.gov (United States)

    Krause, James S.; Saunders, Lee; Staten, David

    2010-01-01

    The objective of this article was to identify the relationship between race-ethnicity and employment after spinal cord injury (SCI), while evaluating interrelationships with gender, injury severity, and education. The authors used a cohort design using the most current status from a post-injury interview from the National SCI Statistical Center.…

  13. The pathologic mechanisms underlying lumbar distraction spinal cord injury in rabbits.

    Science.gov (United States)

    Wu, Di; Zheng, Chao; Wu, Ji; Xue, Jing; Huang, Rongrong; Wu, Di; Song, Yueming

    2017-11-01

    A reliable experimental rabbit model of distraction spinal cord injury (SCI) was established to successfully simulate gradable and replicable distraction SCI. However, further research is needed to elucidate the pathologic mechanisms underlying distraction SCI. The aim of this study was to investigate the pathologic mechanisms underlying lumbar distraction SCI in rabbits. This is an animal laboratory study. Using a self-designed spine distractor, the experimental animals were divided into a control group and 10%, 20%, and 30% distraction groups. Pathologic changes to the spinal cord microvessels in the early stage of distraction SCI were identified by perfusion of the spinal cord vasculature with ink, production of transparent specimens, observation by light microscopy, and observation of corrosion casts of the spinal cord microvascular architecture by scanning electron microscopy. Malondialdehyde (MDA) and superoxide dismutase (SOD) concentrations in the injured spinal cord tissue were measured after 8 hours. With an increasing degree and duration of distraction, the spinal cord microvessels were only partially filled and had the appearance of spasm until rupture and hemorrhage were observed. The MDA concentration increased and the SOD concentration decreased in the spinal cord tissue. Changes to the internal and external spinal cord vessels led to spinal cord ischemia, which is a primary pathologic mechanism of distraction SCI. Lipid peroxidation mediated by free radicals took part in secondary pathologic damage of distraction SCI. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Magnetic resonance imaging of acute spinal-cord injury

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Hideki; Nakagawa, Hiroshi; Yamada, Takahisa; Iwata, Kinjiro (Aichi Medical Univ., Nagakute (Japan)); Okumura, Terufumi; Hoshino, Daisaku

    1992-04-01

    Magnetic resonance imaging (MRI) provides a noninvasive and very important method of investigating spinal-cord injuries. By means of MRI we examined 36 patients with spinal injuries, 34 of them in the acute stage. 19 cases had complete spinal-cord injury with paraplegia, while 17 cases had incomplete spinal-cord injury. MRI showed the injured spinal-cord in the acute stage to be partially swollen, with a high signal intensity in the T[sub 2]-weighted images. In the chronic stage, the injured cord may show atrophic changes with a post-traumatic cavity or myelomalacia, which appears as a high-signal-intensity lesion in the T[sub 2]-weighted images and as a low-signal intensity in the T[sub 1]-weighted images. The cases with complete spinal injuries showed a high signal intensity at the wide level, and these prognoses were poor. The cases with incomplete injuries showed normal findings or a high-signal-intensity spot. In the Gd-DTPA enhanced images, the injured cords were enhanced very well in the subchronic stage. MRI is thus found to be useful in the diagnosis of spinal injuries; it also demonstrates a potential for predicting the neurological prognosis. (author).

  15. Magnetic resonance imaging of spinal cord injury in chronic stage

    Energy Technology Data Exchange (ETDEWEB)

    Tobimatsu, Haruki; Nihei, Ryuichi; Kimura, Tetsuhiko; Yano, Hideo; Touyama, Tetsuo; Tobimatsu, Yoshiko; Suyama, Naoto; Yoshino, Yasumasa (National Rehabilitation Center for the Disabled, Tokorozawa, Saitama (Japan))

    1991-10-01

    Magnetic resonance (MR) images of a total of 195 patients with cervical (125) or thoracic (70) spinal cord injury were reviewed. The imaging studies of the spinal cord lesions were correlated with clinical manifestations. Sequential MR imaging revealed hypointensity on T1-weighted images (T1WI) and hyperintensity on T2-weighted images (T2WI) in all patients, except for five patients showing no signal changes and two showing isointensity, suggesting gliosis, myelomalacia, and syringomyelia. Spinal cord lesions were classified into four types: small lesions, large lesions, complete transverse, and longitudinal rupture. These lesions were well correlated with the severity of injury and paralysis. Complete paralysis was frequently associated with enlarged, complete transverse for cervical spinal cord injury, and longitudinal ruptured or thinned complete transverse for thoracic spinal cord injury. The height of paralysis was well in agreement with that of lesions. For incomplete paralysis, localized lesions were seen within the spinal cord, coinciding with the paralysis or severity. Traumatic syringomyelia was seen in 17 patients (8.7%)-- for the cervical site (10 patients, 8%) and the thoracic site (7 patients, 10%). When homogeneous and marginally clear hypointensity is shown on T1-weighted images and vacuolated hyperintensity is shown on T2-weighted images, in addition to lesions spreading two or more cords or 1.5 or more cords above the nervous root level of paralysis, traumatic syringomyelia is strongly suspected, requiring the follow up observation. (N.K.).

  16. Intravenous immune-modifying nanoparticles as a therapy for spinal cord injury in mice.

    Science.gov (United States)

    Jeong, Su Ji; Cooper, John G; Ifergan, Igal; McGuire, Tammy L; Xu, Dan; Hunter, Zoe; Sharma, Sripadh; McCarthy, Derrick; Miller, Stephen D; Kessler, John A

    2017-12-01

    Intravenously infused synthetic 500nm nanoparticles composed of poly(lactide-co-glycolide) are taken up by blood-borne inflammatory monocytes via a macrophage scavenger receptor (macrophage receptor with collagenous structure), and the monocytes no longer traffic to sites of inflammation. Intravenous administration of the nanoparticles after experimental spinal cord injury in mice safely and selectively limited infiltration of hematogenous monocytes into the injury site. The nanoparticles did not bind to resident microglia, and did not change the number of microglia in the injured spinal cord. Nanoparticle administration reduced M1 macrophage polarization and microglia activation, reduced levels of inflammatory cytokines, and markedly reduced fibrotic scar formation without altering glial scarring. These findings thus implicate early-infiltrating hematogenous monocytes as highly selective contributors to fibrosis that do not play an indispensable role in gliosis after SCI. Further, the nanoparticle treatment reduced accumulation of chondroitin sulfate proteoglycans, increased axon density inside and caudal to the lesion site, and significantly improved functional recovery after both moderate and severe injuries to the spinal cord. These data provide further evidence that hematogenous monocytes contribute to inflammatory damage and fibrotic scar formation after spinal cord injury in mice. Further, since the nanoparticles are simple to administer intravenously, immunologically inert, stable at room temperature, composed of an FDA-approved material, and have no known toxicity, these findings suggest that the nanoparticles potentially offer a practical treatment for human spinal cord injury. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Restoring voluntary control of locomotion after paralyzing spinal cord injury

    NARCIS (Netherlands)

    van den Brand, Rubia; Heutschi, Janine; Barraud, Quentin; DiGiovanna, Jack; Bartholdi, Kay; Huerlimann, Michèle; Friedli, Lucia; Vollenweider, Isabel; Moraud, Eduardo Martin; Duis, Simone; Dominici, Nadia; Micera, Silvestro; Musienko, Pavel; Courtine, Grégoire

    2012-01-01

    Half of human spinal cord injuries lead to chronic paralysis. Here, we introduce an electrochemical neuroprosthesis and a robotic postural interface designed to encourage supraspinally mediated movements in rats with paralyzing lesions. Despite the interruption of direct supraspinal pathways, the

  18. Sensory and Motor Responses to Spinal Cord Injury

    National Research Council Canada - National Science Library

    Yezierski, Robert P

    1999-01-01

    The goal of Dr. Yezierski's research was to gain a better understanding of the anatomical, neurochemical and functional changes that occur within the central nervous system following spinal cord injury...

  19. Treatment of infertility in men with spinal cord injury

    DEFF Research Database (Denmark)

    Brackett, N.L.; Lynne, C.M.; El Dib, Hussein Ibrahim El Desouki Hussein

    2010-01-01

    Most men with spinal cord injury (SCI) are infertile. Erectile dysfunction, ejaculatory dysfunction and semen abnormalities contribute to the problem. Treatments for erectile dysfunction include phosphodiesterase type 5 inhibitors, intracavernous injections of alprostadil, penile prostheses...

  20. Restoring voluntary control of locomotion after paralyzing spinal cord injury

    National Research Council Canada - National Science Library

    van den Brand, Rubia; Heutschi, Janine; Barraud, Quentin; DiGiovanna, Jack; Bartholdi, Kay; Huerlimann, Michèle; Friedli, Lucia; Vollenweider, Isabel; Moraud, Eduardo Martin; Duis, Simone; Dominici, Nadia; Micera, Silvestro; Musienko, Pavel; Courtine, Grégoire

    2012-01-01

    Half of human spinal cord injuries lead to chronic paralysis. Here, we introduce an electrochemical neuroprosthesis and a robotic postural interface designed to encourage supraspinally mediated movements in rats with paralyzing lesions...

  1. Stem cell based therapies for spinal cord injury.

    Science.gov (United States)

    Muheremu, Aikeremujiang; Peng, Jiang; Ao, Qiang

    2016-08-01

    Treatment of spinal cord injury has always been a challenge for clinical practitioners and scientists. The development in stem cell based therapies has brought new hopes to patients with spinal cord injuries. In the last a few decades, a variety of stem cells have been used to treat spinal cord injury in animal experiments and some clinical trials. However, there are many technical and ethical challenges to overcome before this novel therapeutic method can be widely applied in clinical practice. With further research in pluripotent stem cells and combined application of genetic and tissue engineering techniques, stem cell based therapies are bond to play increasingly important role in the management of spinal cord injuries. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Two cases of Brown-Séquard syndrome in penetrating spinal cord injuries.

    Science.gov (United States)

    Amendola, L; Corghi, A; Cappuccio, M; De Iure, F

    2014-01-01

    Brown-Séquard syndrome due to a stab injuries is uncommon and results from a lesion in one half of the spinal cord. The role of surgery in the treatment of penetrating spinal injury often remain controversial. To discuss the current diagnostic and therapeutic approach for these types of injuries. The Authors describe two rare cases of Brown-Séquard syndrome due to civilian stab injuries differently treated. Mechanism of damage, clinical features and neurological outcome are reported. The recovery of neurological function in the first case indicates that the spinal tracts were injured by a contusion, rather than by a direct injury as in the second case. Moreover, surgery was required in the second patient to remove the weapon and to stabilize the spine, presenting bony and ligamentous instability. The diagnostic and therapeutic management are debated. An overview on clinical research in sperimental medical treatment of spinal cord injury was considered to evaluate future possible approaches to these injuries. As the neurologic improvement depends on the type and severity of the spinal cord damage, the indications for acute surgical management are limited and conservative management should be preferred.

  3. Clinical assessment of spasticity in individuals with spinal cord injury

    OpenAIRE

    Tancredo, Janaina Roland; Maria, Renata Manzano; de Azevedo, Eliza Regina Ferreira Braga Machado; Alonso,Karina Cristina; Varoto,Renato; Cliquet Junior, Alberto

    2013-01-01

    OBJECTIVE: To evaluate the effect of neuromuscular electrical stimulation on spasticity in patients with spinal cord injury. METHODS: The study included eleven subjects with spinal cord injuries (C4 to T5). The modified Ashworth scale and pendulum test, which is accomplished through the Pendular Test Device - PTD (equipment which has a quartz crystal transducer accelerometer and optic fiber flexible electrogoniometer measuring the tensions and angular displacements). Patients underwent neurom...

  4. Emotional Intelligence in Patients with Spinal Cord Injury (SCI)

    OpenAIRE

    Saberi, Hooshang; Ghajarzadeh, Mahsa

    2017-01-01

    Background: Spinal Cord Injury (SCI) is a devastating situation. Spinal Cord Injury affects functional, psychological and socioeconomic aspects of patients? lives. The ability to accomplish and explicate the one?s own and other?s feelings and emotions to spread over appropriate information for confirming thoughts and actions is defined as emotional intelligence (EI). The goal of this study was to evaluate depression and EI in SCI patients in comparison with healthy subjects. Methods: One-hund...

  5. International spinal cord injury pulmonary function basic data set

    DEFF Research Database (Denmark)

    Biering-Sørensen, Fin; Krassioukov, A; Alexander, M S

    2012-01-01

    To develop the International Spinal Cord Injury (SCI) Pulmonary Function Basic Data Set within the framework of the International SCI Data Sets in order to facilitate consistent collection and reporting of basic bronchopulmonary findings in the SCI population.......To develop the International Spinal Cord Injury (SCI) Pulmonary Function Basic Data Set within the framework of the International SCI Data Sets in order to facilitate consistent collection and reporting of basic bronchopulmonary findings in the SCI population....

  6. International Spinal Cord Injury Urinary Tract Infection Basic Data Set

    DEFF Research Database (Denmark)

    Goetz, L L; Cardenas, D D; Kennelly, M

    2013-01-01

    To develop an International Spinal Cord Injury (SCI) Urinary Tract Infection (UTI) Basic Data Set presenting a standardized format for the collection and reporting of a minimal amount of information on UTIs in daily practice or research.......To develop an International Spinal Cord Injury (SCI) Urinary Tract Infection (UTI) Basic Data Set presenting a standardized format for the collection and reporting of a minimal amount of information on UTIs in daily practice or research....

  7. International spinal cord injury musculoskeletal basic data set

    DEFF Research Database (Denmark)

    Biering-Sørensen, Fin; Burns, A S; Curt, A

    2012-01-01

    To develop an International Spinal Cord Injury (SCI) Musculoskeletal Basic Data Set as part of the International SCI Data Sets to facilitate consistent collection and reporting of basic musculoskeletal findings in the SCI population.Setting:International.......To develop an International Spinal Cord Injury (SCI) Musculoskeletal Basic Data Set as part of the International SCI Data Sets to facilitate consistent collection and reporting of basic musculoskeletal findings in the SCI population.Setting:International....

  8. Directing Spinal Cord Plasticity: The Impact of Stretch Therapy on Functional Recovery after Spinal Cord Injury

    Science.gov (United States)

    2015-10-01

    therapy maneuvers involving force or torque applied to specific muscle groups) on functional recovery after spinal cord injury in a rat model. We have...animals show a similar time course of recovery. Finally, in very preliminary studies, we have found that the torque being applied during stretching of...situation. Key Words: spinal cord injury, locomotor recovery, physical therapy, muscle stretch, joint range- of-motion, rat. Overall Project Summary

  9. Neuroprotective effect of atorvastatin in spinal cord ischemia-reperfusion injury

    Directory of Open Access Journals (Sweden)

    Yunus Nazli

    2015-01-01

    Full Text Available OBJECTIVES: Prevention of the development of paraplegia during the repair of the damage caused by descending thoracic and thoracoabdominal aneurysms remains an important issue. Therefore, we investigated the protective effect of atorvastatin on ischemia-induced spinal cord injury in a rabbit model. METHOD: Thirty-two rabbits were divided into the following four equally sized groups: group I (control, group II (ischemia-reperfusion, group III (atorvastatin treatment and group IV (atorvastatin withdrawal. Spinal cord ischemia was induced by clamping the aorta both below the left renal artery and above the iliac bifurcation. Seventy-two hours postoperatively, the motor function of the lower limbs of each animal was evaluated according to the Tarlov score. Spinal cord and blood samples were obtained for histopathological and biochemical analyses. RESULTS: All of the rabbits in group II exhibited severe neurological deficits. Atorvastatin treatment (groups III and IV significantly reduced the level of motor dysfunction. No significant differences were observed between the motor function scores of groups III and IV at the evaluated time points. Light microscopic examination of spinal cord tissue samples obtained at the 72nd hour of reperfusion indicated greater tissue preservation in groups III and IV than in group II. CONCLUSION: This study demonstrates the considerable neuroprotective effect of atorvastatin on the neurological, biochemical and histopathological status of rabbits with ischemia-induced spinal cord injury. Moreover, the acute withdrawal of atorvastatin therapy following the induction of spinal cord ischemia did not increase the neuronal damage in this rabbit model.

  10. Reflecting on subjective well-being and spinal cord injury.

    Science.gov (United States)

    Migliorini, Christine; Tonge, Bruce

    2009-05-01

    The aim of this study was to examine factors associated with the subjective well-being of individuals with spinal cord injuries, while acknowledging theories that describe the subjective well-being tendency to homeostasis. A representative community cross-sectional cohort of 443 adults with traumatic and non-traumatic spinal cord injury completed a self-report survey (by internet, telephone or hard copy) that included reliable and valid measures of quality of life, depression, anxiety and stress, post-traumatic stress disorder, coping strategies, and emotional consequences. The subjective well-being of half of the population with spinal cord injury lay above the normative subjective well-being set-point threshold. Despite the inclusion of many biopsychosocial factors, only Intimacy, Safety, Acceptance, and Helplessness were significantly associated with normative subjective well-being. Comparatively few factors were significantly associated with normative subjective well-being, but the results help to explain observed contradictions noted in previous research into subjective well-being after spinal cord injuries. The results highlight the resilience of individuals in general and are in keeping with the disability paradox. However, many individuals with spinal cord injuries do not live satisfactory lives. It is for them that further psychological care and rehabilitation is necessary to create a good life after spinal cord injury.

  11. Cervical Cord-Canal Mismatch: A New Method for Identifying Predisposition to Spinal Cord Injury.

    Science.gov (United States)

    Nouri, Aria; Montejo, Julio; Sun, Xin; Virojanapa, Justin; Kolb, Luis E; Abbed, Khalid M; Cheng, Joseph S

    2017-12-01

    The risk for spinal cord injuries (SCIs) ranging from devastating traumatic injuries, compression because of degenerative pathology, and neurapraxia is increased in patients with congenital spinal stenosis. Classical diagnostic criteria include an absolute anteroposterior diameter of cord, which varies across patients, independent of canal size. Recent large magnetic resonance imaging studies of population cohorts have allowed newer methods to emerge that account for both cord and canal size by measuring a spinal cord occupation ratio (SCOR). A SCOR defined as ≥70% on midsagittal imaging or ≥80% on axial imaging appears to be an effective method of identifying cord-canal mismatch, but requires further validation. Cord-canal size mismatch predisposes patients to SCI because of 1) less space within the canal lowering the amount of degenerative changes needed for cord compression, and 2) less cerebrospinal fluid surrounding the spinal cord decreasing the ability to absorb kinetic forces directed at the spine. Patients with cord-canal mismatch have been reported to be at a substantially higher risk of traumatic SCI, and present with degenerative cervical myelopathy at a younger age than patients without cord-canal mismatch. However, neurologic outcome after SCI has occurred does not appear to be different in patients with or without a cord-canal mismatch. Recognition that canal and cord size are both factors which predispose to SCI supports that cord-canal size mismatch rather than a narrow cervical canal in isolation should be viewed as the underlying mechanism predisposing to SCI. Copyright © 2017. Published by Elsevier Inc.

  12. Employment after spinal cord injury: an analysis of cases from the Model Spinal Cord Injury Systems.

    Science.gov (United States)

    Krause, J S; Kewman, D; DeVivo, M J; Maynard, F; Coker, J; Roach, M J; Ducharme, S

    1999-11-01

    To describe the relationship of multiple biographic, injury-related, and educational factors with employment outcomes after spinal cord injury (SCI). Cross-sectional. Data were collected through 18 model SCI systems, a nationwide network of hospitals that treat approximately 14% of all SCIs in the United States. A total of 3,756 persons with traumatic SCI who completed the Form II data collection during their annual follow-up at years 1, 2, 5, 10, 15, 20, or 25 years (the most recent Form II was accepted). The Model Systems Forms I and II were used to identify biographic, injury-related status, employment at injury, and productivity status upon follow-up (Form I is used to elicit basic demographic and discharge information, whereas Form II is used to track multiple outcomes during annual follow-ups). The Craig Handicap Assessment Reporting Technique (CHART) was used to assess hours spent in gainful employment and other productive activities. CHART data revealed only a modestly higher Employment rate (24.8%) than that of the traditional single Form II item (22%). Being Caucasian, younger at injury, having lived more years with SCI, having a less severe injury, and having more years of education were all predictive of being employed. Violence at injury was associated with lower employment rates (only 12.9% employed), especially among Caucasians (only 24% employed). Being employed at injury was associated with a greater probability of postinjury employment, but only in the first few years after injury. Among employed participants, women and those who had been injured fewer years averaged fewer hours spent at work. Findings were consistent with those in previous studies. Interventions to improve employability should focus on education and the needs of individuals from minority backgrounds.

  13. Sulforaphane attenuates matrix metalloproteinase-9 expression following spinal cord injury in mice.

    Science.gov (United States)

    Mao, Lei; Wang, Han Dong; Wang, Xiao Liang; Qiao, Liang; Yin, Hong Xia

    2010-01-01

    Inflammation plays an important role in the pathogenesis of secondary damage after spinal cord injury (SCI). The present study explored the effect of sulforaphane (SFN), a potent anti-inflammatory extract of cruciferous vegetables, on the expression of two inflammatory mediators, metalloproteinase (MMP)-9 and TNF-α, in a murine model of SCI. Murine spinal cord injury was induced by the application of vascular clips (force of 10 g) to the dura after a three-level T8-T10 laminectomy. The wet/dry weight ratio was used to reflect the percentage of water content of impaired spinal cord tissue at 48 hr after SCI. The mRNA levels of MMP-9 were determined using the reverse-transcriptase polymerase chain reaction (RT-PCR), and protein levels of TNF-α and MMP-9 were detected by enzyme-linked immunosorbent assays (ELISA) at 24 hr after SCI. Gelatin zymography was used to determine MMP-9 activity of spinal cord tissue at 24 hr after SCI. Mice treated with SFN at 1 hr after SCI had lower expression and activity of MMP-9 compared to mice with SCI. The decrease of MMP-9 in mice treated with SFN was associated with decreased levels of spinal cord water content and TNF-α. In summary, suforaphane decreases MMP-9 and TNF-α expression and vascular permeability changes following spinal cord injury in mice.

  14. Cervical Spinal Cord Injury at the Victorian Spinal Cord Injury Service: Epidemiology of the Last Decade

    Directory of Open Access Journals (Sweden)

    Simon C.P. Lau

    2014-01-01

    Full Text Available Introduction Cervical spinal cord injury (CSCI is a significant medical and socioeconomic problem. In Victoria, Australia, there has been limited research into the incidence of CSCI. The Austin Hospital's Victorian Spinal Cord Injury Service (VSCIS is a tertiary referral hospital that accepts referrals for surgical management and ongoing neurological rehabilitation for south eastern Australia. The aim of this study was to characterise the epidemiology of CSCI managed operatively at the VSCIS over the last decade, in order to help fashion public health campaigns. Methods This was a retrospective review of medical records from January 2000 to December 2009 of all patients who underwent surgical management of acute CSCI in the VSCIS catchment region. Patients treated non-operatively were excluded. Outcome measures included: demographics, mechanism of injury and associated factors (like alcohol and patient neurological status. Results Men were much more likely to have CSCI than women, with a 4:1 ratio, and the highest incidence of CSCI for men was in their 20s (39%. The most common cause of CSCI was transport related (52%, followed by falls (23% and water-related incidents (16%. Falls were more prevalent among those >50 years. Alcohol was associated in 22% of all CSCIs, including 42% of water-related injuries. Discussion Our retrospective epidemiological study identified at-risk groups presenting to our spinal injury service. Young males in their 20s were associated with an increased risk of transport-related accidents, water-related incidents in the summer months and accidents associated with alcohol. Another high risk group were men >50 years who suffer falls, both from standing and from greater heights. Public awareness campaigns should target these groups to lower incidence of CSCI.

  15. Double-level Incomplete Spinal Cord Injuries: A case report

    Directory of Open Access Journals (Sweden)

    Saeed Bin Ayaz

    2014-04-01

    Full Text Available Brown-Séquard Syndrome is a type of Incomplete Spinal Cord Injury characterized by a relatively greater ipsilateral loss of proprioception and motor function, with contralateral loss of pain and temperature sensations. The residual deficits in balance produced by such injury may render a person liable to fall that may result in vertebral fracture and another injury to the spinal cord. We present here a case who initially had Brown-Séquard Syndrome due to penetrating knife injury to the neck and later on developed Cauda Equina Syndrome (another Incomplete Spinal Cord Injury due to fractured LV1 following a fall. The fracture was fixed through Pedicle Screws and the patient underwent effective rehabilitation to gain maximum achievable independence in functional activities. [Cukurova Med J 2014; 39(2.000: 392-398

  16. Optical measurement of blood flow changes in spinal cord injury

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, J P; Kyriacou, P A [Biomedical Engineering Research Group, City University London, Northampton Square, London (United Kingdom); George, K J [Neuroscience Centre, Queen Mary, University of London, Mile End, London (United Kingdom); Langford, R M, E-mail: justin.phillips.1@city.ac.u [Pain and Anaesthesia Research Centre, St Bartholomew' s Hospital, West Smithfield, London (United Kingdom)

    2010-07-01

    Little is known about cell death in spinal cord tissue following compression injury, despite compression being a key component of spinal injuries. Currently models are used to mimic compression injury in animals and the effects of the compression evaluated by observing the extent and duration of recovery of normal motor function in the days and weeks following the injury. A fibreoptic photoplethysmography system was used to investigate whether pulsation of the small arteries in the spinal cord occurred before, during and after compressive loads were applied to the tissue. It was found that the signal amplitudes were reduced and this reduction persisted for at least five minutes after the compression ceased. It is hoped that results from this preliminary study may improve knowledge of the mechanism of spinal cord injury.

  17. Photodynamic damage of glial cells in crayfish ventral nerve cord

    Science.gov (United States)

    Kolosov, M. S.; Duz, E.; Uzdensky, A. B.

    2011-03-01

    Photodynamic therapy (PDT) is a promising method for treatment of brain tumors, the most of which are of glial origin. In the present work we studied PDT-mediated injury of glial cells in nerve tissue, specifically, in abdominal connectives in the crayfish ventral nerve cord. The preparation was photosensitized with alumophthalocyanine Photosens and irradiated 30 min with the diode laser (670 nm, 0.1 or 0.15 W/cm2). After following incubation in the darkness during 1- 10 hours it was fluorochromed with Hoechst 33342 and propidium iodide to reveal nuclei of living, necrotic and apoptotic cells. The chain-like location of the glial nuclei allowed visualization of those enveloping giant axons and blood vessels. The level of glial necrosis in control preparations was about 2-5 %. Apoptosis was not observed in control preparations. PDT significantly increased necrosis of glial cells to 52 or 67 % just after irradiation with 0.1 or 0.15 W/cm2, respectively. Apoptosis of glial cells was observed only at 10 hours after light exposure. Upper layers of the glial envelope of the connectives were injured stronger comparing to deep ones: the level of glial necrosis decreased from 100 to 30 % upon moving from the connective surface to the plane of the giant axon inside the connective. Survival of glial cells was also high in the vicinity of blood vessels. One can suggest that giant axons and blood vessels protect neighboring glial cells from photodynamic damage. The mechanism of such protective action remains to be elucidated.

  18. Pathological changes in spinal cord injury of rabbit with seawater immersion

    Directory of Open Access Journals (Sweden)

    Di ZHANG

    2013-09-01

    Full Text Available Objectives To explore the pathological changes in spinal cord injury with seawater immersion, and provide guidance for the treatment of such injury. Methods The rabbit model of spinal cord injury was reproduced by the modified Allen's method. Ninety-six rabbits were randomly divided into 4 groups: group A (normal control, n=6, in them only the vertebral plate was cut off but the spinal cord was not injured; group B (n=30, vertebral plate was resected and the spinal cord was damaged without sea water immersion; group C (n=30, the vertebral plate was resected and the spinal cord was damaged and treated with normal saline; and group D (n=30, the vertebral plate was resected and the spinal cord was damaged followed by seawater immersion. The immersion time was 60 minutes. In group B, C and D, 6 rabbits were randomly selected from each group at 1, 6, 12, 24 and 48 hours after immersion, and the neurological function of rabbits were evaluated using the Tarlov scale, then the animals were sacrificed, and the histopathological features were studied with light microscopy, the expressions of Bax and Bcl-2 were determined by immunohistochemistry, and the apoptosis of neurons in spinal cord was evaluated by TUNEL method. Results Compared with group A, the Tarlov scores of group B, C and D decreased significantly, but no significant difference was found between the 3 groups at 1h after treatment, while the Tarlov scores were higher at 6h and lower at 12h in group D as compared with those in group B and C (P<0.05. Edema of spinal cord was observed in group B, C and D after injury. Distinct traumatic spinal cord edema was found at 6h in group B and C and at 12h in group D, but no significant difference was observed between group B and C. Compared with group B and C, the spinal cord edema in group D was less distinct at 6h and more serious at 12h. The spinal cord edema and hyperemia were alleviated in all 3 groups at 24h and 48h. Positive expression of

  19. Bladder cancer mortality after spinal cord injury over 4 decades.

    Science.gov (United States)

    Nahm, Laura S; Chen, Yuying; DeVivo, Michael J; Lloyd, L Keith

    2015-06-01

    We estimate bladder cancer mortality in people with spinal cord injury compared to the general population. Data and statistics were retrieved from the National Spinal Cord Injury Statistical Center and the National Center for Health Statistics. The mortality experience of the 45,486 patients with traumatic spinal cord injury treated at a Spinal Cord Injury Model System or Shriners Hospital was compared to the general population using a standardized mortality ratio. The standardized mortality ratio data were further stratified by age, gender, race, time since injury and injury severity. Our study included 566,532 person-years of followup between 1960 and 2009, identified 10,575 deaths and categorized 99 deaths from bladder cancer. The expected number of deaths from bladder cancer would have been 14.8 if patients with spinal cord injury had the same bladder cancer mortality as the general population. Thus, the standardized mortality ratio is 6.7 (95% CI 5.4-8.1). Increased mortality risk from bladder cancer was observed for various ages, races and genders, as well as for those injured for 10 or more years and with motor complete injuries. Bladder cancer mortality was not significantly increased for ventilator users, those with motor incomplete injuries or those injured less than 10 years. Individuals with a spinal cord injury can potentially live healthier and longer by reducing the incidence and mortality of bladder cancer. Study findings highlight the need to identify at risk groups and contributing factors for bladder cancer death, leading to the development of prevention, screening and management strategies. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  20. Corticospinal circuit plasticity in motor rehabilitation from spinal cord injury.

    Science.gov (United States)

    Serradj, Najet; Agger, Sydney F; Hollis, Edmund R

    2017-06-23

    Restoring corticospinal function after spinal cord injury is a significant challenge as the corticospinal tract elicits no substantive, spontaneous regeneration, and its interruption leaves a permanent deficit. The corticospinal circuit serves multiple motor and sensory functions within the mammalian nervous system as the direct link between isocortex and spinal cord. Maturation of the corticospinal circuit involves the refinement of projections within the spinal cord and a subsequent refinement of motor maps within the cortex. The plasticity of these cortical motor maps mirrors the acquisition of skilled motor learning, and both the maps and motor skills are disrupted following injury to the corticospinal tract. The motor cortex exhibits the capacity to incorporate changes in corticospinal projections induced by both spontaneous and therapeutic-mediated plasticity of corticospinal axons through appropriate rehabilitation. An understanding of the mechanisms of corticospinal plasticity in motor learning will undoubtedly help inform strategies to improve motor rehabilitation after spinal cord injury. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. The International Spinal Cord Injury Pain Basic Data Set

    DEFF Research Database (Denmark)

    Widerstrom-Noga, E.; Bryce, T.; Cardenas, D.D.

    2008-01-01

    Objective:To develop a basic pain data set (International Spinal Cord Injury Basic Pain Data Set, ISCIPDS:B) within the framework of the International spinal cord injury (SCI) data sets that would facilitate consistent collection and reporting of pain in the SCI population....... The members were appointed by four major organizations with an interest in SCI-related pain (International Spinal Cord Society, ISCoS; American Spinal Injury Association, ASIA; American Pain Society, APS and International Association for the Study of Pain, IASP). The initial ISCIPDS:B was revised based...... classification and questions related to the temporal pattern of pain for each specific pain problem. The impact of pain on physical, social and emotional function, and sleep is evaluated for each pain.Spinal Cord (2008) 46, 818-823; doi:10.1038/sc.2008.64; published online 3 June 2008 Udgivelsesdato: 2008/12...

  2. in athletes with spinal cord injuries

    Directory of Open Access Journals (Sweden)

    RC Pritchett

    2015-09-01

    Full Text Available Sweat production is crucial for thermoregulation. However, sweating can be problematic for individuals with spinal cord injuries (SCI, as they display a blunting of sudomotor and vasomotor responses below the level of the injury. Sweat gland density and eccrine gland metabolism in SCI are not well understood. Consequently, this study examined sweat lactate (S-LA (reflective of sweat gland metabolism, active sweat gland density (SGD, and sweat output per gland (S/G in 7 SCI athletes and 8 able-bodied (AB controls matched for arm ergometry VO2peak. A sweat collection device was positioned on the upper scapular and medial calf of each subject just prior to the beginning of the trial, with iodine sweat gland density patches positioned on the upper scapular and medial calf. Participants were tested on a ramp protocol (7 min per stage, 20 W increase per stage in a common exercise environment (21±1°C, 45-65% relative humidity. An independent t-test revealed lower (p<0.05 SGD (upper scapular for SCI (22.3 ±14.8 glands · cm-2 vs. AB. (41.0 ± 8.1 glands · cm-2. However, there was no significant difference for S/G between groups. S-LA was significantly greater (p<0.05 during the second exercise stage for SCI (11.5±10.9 mmol · l-1 vs. AB (26.8±11.07 mmol · l-1. These findings suggest that SCI athletes had less active sweat glands compared to the AB group, but the sweat response was similar (SLA, S/G between AB and SCI athletes. The results suggest similar interglandular metabolic activity irrespective of overall sweat rate.

  3. MRI and clinical symptoms in chronic cervical cord injury

    Energy Technology Data Exchange (ETDEWEB)

    Soeda, Shuichi; Maruiwa, Hirofumi; Yokoi, Masahiro; Saitoh, Seiya (Tsukigase Rehabilitation Center, Shizuoka (Japan)); Yamauchi, Kenji

    1992-08-01

    To assess the ability of magnetic resonance (MR) imaging to determine the prognosis of spinal cord injury in the chronic stage and to detect the injured myelomere, 39 patients were examined with MR images obtained by T1-weighted spin echo method 5 months to 4 years and 8 months (mean, one year and 5 months) after they had sustained spinal cord injury. According to hypointensity area of the ventrodorsad diameter of the spinal cord, MR images were classified as non-hypointensity (I), discrete (II), central (III), large cavity (IV), and transverse (V). The most common type was III (25%), followed by IV (26%), II (18%), V (15%), and I (13%). In 21 patients with bone injury, 14 (67%) had type IV or V, in contrast to 2 (11%) of 18 patients without bone injury. Increased hypointensity on MR images was associated with severer injury of the spinal cord. When hypointensity accounted for less than 1/2 of the ventrodorsad diameter of the spinal cord, walking ability was recovered in more than 80% of the patients. When less than 1/3 of the ventrodorsad diameter of the spinal cord was seen as hypointensity, arm function was well preserved, and the anterior horn of gray matter was found less injured. In 60% of the patients, there was difference in the injured level of myelomere between MR images and the neurological examination; the injured level of myelomere tended to be more cephalad level in the neurological examination than MR appearance.(N.K.).

  4. Tracheostomy timing in traumatic spinal cord injury.

    Science.gov (United States)

    Romero, Javier; Vari, Alessandra; Gambarrutta, Claudia; Oliviero, Antonio

    2009-10-01

    The study conducted is the retrospective study and the main objective is to evaluate the benefits and safety of early versus late tracheostomy in traumatic spinal cord injury (SCI) patients requiring mechanical ventilation. Tracheostomy offers many advantages in critical patients who require prolonged mechanical ventilation. Despite the large amount of patients treated, there is still an open debate about advantages of early versus late tracheostomy. Early tracheostomy following the short orotracheal intubation is probably beneficial in appropriately selected patients. It is a retrospective clinical study and we evaluated clinical records of 152 consecutive trauma patients who required mechanical ventilation and who received tracheostomy. The results show that the early placement (before day 7 of mechanical ventilation) offers clear advantages for shortening of mechanical ventilation, reducing ICU stay and lowering rates of severe orotracheal intubation complication, such as tracheal granulomas and concentric tracheal stenosis. On the other hand, we could not demonstrate that early tracheostomy avoids neither risk of ventilator-associated pneumonia nor the mortality rate. In SCI patients, the early tracheostomy was associated with shorter duration of mechanical ventilation, shorter length of ICU stay and decreased laryngotracheal complications. We conclude by suggesting early tracheostomy in traumatic SCI patients who are likely to require prolonged mechanical ventilation.

  5. The Role of Hope in Spinal Cord Injury Rehabilitation.

    Science.gov (United States)

    Heinemann, Allen; And Others

    Hope has motivational importance to individuals who have suffered a major physical loss. Theories of adjustment to a spinal cord injury take one of three approaches: (1) premorbid personality, which highlights the individual's past experiences, personal meanings, and body image; (2) typologies of injury reactions, which range from normal to…

  6. Stem cell-based therapies for spinal cord injury.

    NARCIS (Netherlands)

    Nandoe, R.D.S.; Hurtado, A.; Bartels, R.H.M.A.; Grotenhuis, A.; Oudega, M.

    2009-01-01

    Spinal cord injury (SCI) results in loss of nervous tissue and consequently loss of motor and sensory function. There is no treatment available that restores the injury-induced loss of function to a degree that an independent life can be guaranteed. Transplantation of stem cells or progenitors may

  7. ORIGINAL ARTICLES Spinal cord injuries in South African Rugby ...

    African Journals Online (AJOL)

    2010-04-01

    Apr 1, 2010 ... Fiona J Hermanus, Catherine E Draper, Timothy D Noakes. Concerns about spinal cord injuries (SCIs) in ... and mortality in rugby.5,6 Of all organised sports in South. Africa (SA), rugby has the highest incidence of ..... 17. Silver JR. Professionalism and injuries in rugby union. Br J Sports Med 2001; 35: 138.

  8. Dipsacus asperoides (Xue Duan) inhibits spinal cord injury-induced ...

    African Journals Online (AJOL)

    The results for MPO activity also revealed significantly reduced infiltration of leukocytes to the injury site (p < 0.01). Conclusion: This study reveals the positive effect of the plant material in reducing inflammation in rats with traumatic SCI. Keywords: IKK/NF-kB pathway, MPO activity, Spinal cord injury, Inflammation, Xue Duan ...

  9. Reflex mechanisms for motor impairment in spinal cord injury.

    Science.gov (United States)

    Schmit, Brian D; Benz, Ela N; Rymer, William Z

    2002-01-01

    Spasticity is common feature of human spinal cord injury. It contributes to motor impairment and it also promotes joint deformity in patients who have sustained such injury. The classical definition of spasticity highlights the increased resistance of a joint to externally imposed motion. This resistance is attributable largely to changes in stretch reflex excitability, and it is manifested primarily in those muscles being stretched by the motion. Under this definition, there would be little activity in muscles crossing other joints. In spinal cord injury, however, muscles innervated from distal spinal segments often exhibit little hypertonia, yet patients report the occurrence of disabling spasms. These spasms appear as coordinated patterns of muscle activation throughout the limb, involving either limb flexors or extensors. These patterns are therefore quite different from those of classical spasticity. The receptor origins and neural pathways responsible for the spasms in spinal cord injury will be addressed.

  10. Corticospinal neuroprostheses to restore locomotion after spinal cord injury.

    Science.gov (United States)

    Borton, David; Bonizzato, Marco; Beauparlant, Janine; DiGiovanna, Jack; Moraud, Eduardo M; Wenger, Nikolaus; Musienko, Pavel; Minev, Ivan R; Lacour, Stéphanie P; Millán, José del R; Micera, Silvestro; Courtine, Grégoire

    2014-01-01

    In this conceptual review, we highlight our strategy for, and progress in the development of corticospinal neuroprostheses for restoring locomotor functions and promoting neural repair after thoracic spinal cord injury in experimental animal models. We specifically focus on recent developments in recording and stimulating neural interfaces, decoding algorithms, extraction of real-time feedback information, and closed-loop control systems. Each of these complex neurotechnologies plays a significant role for the design of corticospinal neuroprostheses. Even more challenging is the coordinated integration of such multifaceted technologies into effective and practical neuroprosthetic systems to improve movement execution, and augment neural plasticity after injury. In this review we address our progress in rodent animal models to explore the viability of a technology-intensive strategy for recovery and repair of the damaged nervous system. The technical, practical, and regulatory hurdles that lie ahead along the path toward clinical applications are enormous - and their resolution is uncertain at this stage. However, it is imperative that the discoveries and technological developments being made across the field of neuroprosthetics do not stay in the lab, but instead reach clinical fruition at the fastest pace possible. Copyright © 2013 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  11. Repair of spinal cord injury with neuronal relays: From fetal grafts to neural stem cells.

    Science.gov (United States)

    Bonner, Joseph F; Steward, Oswald

    2015-09-04

    Spinal cord injury (SCI) disrupts the long axonal tracts of the spinal cord leading to devastating loss of function. Cell transplantation in the injured spinal cord has the potential to lead to recovery after SCI via a variety of mechanisms. One such strategy is the formation of neuronal relays between injured long tract axons and denervated neurons. The idea of creating a neuronal relay was first proposed over 25 years ago when fetal tissue was first successfully transplanted into the injured rodent spinal cord. Advances in labeling of grafted cells and the development of neural stem cell culturing techniques have improved the ability to create and refine such relays. Several recent studies have examined the ability to create a novel neuronal circuit between injured axons and denervated targets. This approach is an alternative to long-distance regeneration of damaged axons that may provide a meaningful degree of recovery without direct recreation of lost pathways. This brief review will examine the contribution of fetal grafting to current advances in neuronal grafting. Of particular interest will be the ability of transplanted neurons derived from fetal grafts, neural precursor cells and neural stem cells to reconnect long distance motor and sensory pathways of the injured spinal cord. This article is part of a Special Issue entitled SI: Spinal cord injury. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Timing of Surgery in Spinal Cord Injury.

    Science.gov (United States)

    El Tecle, Najib E; Dahdaleh, Nader S; Hitchon, Patrick W

    2016-08-15

    A systematic review of the literature for clinical and preclinical evidence related to timing of decompression following spinal cord injury (SCI). A review of the literature in search of consensus on what constitutes the ideal time frame for surgical management of SCI. Optimal timing for surgical management of SCI remains poorly defined. Despite multiple preclinical and clinical studies, there is still lack of consensus on the optimal time for surgery in SCI. We systematically reviewed the literature for clinical and preclinical evidence related to timing of decompression following SCI. For clinical studies, our review included papers published in English after January 1, 1990. For preclinical studies, we limited our review to papers published after January 2001. The OVID-Medline and Web of Science databases were reviewed for preclinical studies, and the OVID-Medline, Cochrane, and Embase databases were reviewed for clinical studies. A total of 8792 preclinical articles were identified. Of those, only 14 met our inclusion criteria and were included in the analysis. A total of 25,190 clinical articles were identified. Of those, only 30 studies met our inclusion criteria and were included for analysis. Clinical studies reported on a total of 5236 patients, of whom 1665 underwent early decompression and 3571 underwent late decompression. There was significant variability in the definition of early and late decompression in both clinical and preclinical studies. Preclinical data were in favor of early decompression. From a clinical standpoint, there was only level II evidence proving safety and feasibility of early decompression with no definite evidence of improved outcome for any of the two groups. There is growing evidence in favor of early decompression following SCI. Early decompression was proven to be clinically safe and feasible, but there is still no definite proof that early decompression leads to improved outcomes. 5.

  13. Spinal cord injury and partner relationships.

    Science.gov (United States)

    Kreuter, M

    2000-01-01

    Among the many issues confronting a newly spinal cord injured (SCI) person are apprehension about the potential impact of the acquired disability on present or future intimate relationships. To summarize the research regarding partner relationships and SCI. Medline, Psychlit and Cinahl database researches were undertaken. Several studies have focused on the issue of marital status before and after the onset of the injury. The results of the studies carried out on the prevalence of divorce are conflicting. Divorce rates have been reported to be anywhere from 8% to 48%. It appears that divorce rates tend to decline to the normal rate for the general population after the initial high risk period. Some studies have shown that marital status is a powerful predictor of independent-living outcome variables. Thus, marital stability is a concern in SCI care. The study investigating why able-bodied women might choose to marry men with a permanent physical disability, such as a SCI, showed a substantial overlap with existing models of courtship. It was also shown that a SCI person who strives to minimise the impact of the disability on a potential partner makes a more attractive candidate for a long-term relationship than an individual who has come to rely on others. Partner relationships seem to be affected by a SCI, although not as much as is widely believed. There are, however, problems interpreting the varying results of the studies due to culture differences, changes in family life in society in general and the different methodologies used. Systematic research that puts the patients' and partners' problems into perspective is necessary. Uniformity in measurement instruments would facilitate comparisons of studies.

  14. Coping and adaptation in adults living with spinal cord injury.

    Science.gov (United States)

    Barone, Stacey Hoffman; Waters, Katherine

    2012-10-01

    Biopsychosocial adaptation remains a multifaceted challenge for individuals with spinal cord injury, their families, and healthcare providers alike. The development of frequent medical complications necessitating healthcare interventions is an ongoing, debilitating, and costly problem for those living with spinal cord injuries. Although several demographic variables have been correlated with positive adaptation in individuals with spinal cord injury, the research outcome data present limitations in understanding and facilitating which coping techniques work best to augment biopsychosocial adaptation in this population. Coping facilitates adaptation and adjustment to stress and can help to increase quality of life in people living with spinal cord injury and reduce common complications. The purpose of this study was to determine the extent to which sociodemographic characteristics and hardiness explain coping in 243 adults living with a spinal cord injury. In addition, this study examined which predictors of coping explain biopsychosocial adaptation. A descriptive explanatory design was utilized. Standardized instruments were administered nationally to assess hardiness, coping, and physiological and psychosocial adaptation. Canonical correlation and multiple regression analyses indicated that less educated, less hardy, and recently injured participants were more likely to use escape-avoidance coping and less likely to use social support, problem solving, and positive reappraisal coping behaviors (p adaptation within this sample.

  15. Therapeutic Stimulation for Restoration of Function After Spinal Cord Injury.

    Science.gov (United States)

    Ievins, Aiva; Moritz, Chet T

    2017-09-01

    Paralysis due to spinal cord injury can severely limit motor function and independence. This review summarizes different approaches to electrical stimulation of the spinal cord designed to restore motor function, with a brief discussion of their origins and the current understanding of their mechanisms of action. Spinal stimulation leads to impressive improvements in motor function along with some benefits to autonomic functions such as bladder control. Nonetheless, the precise mechanisms underlying these improvements and the optimal spinal stimulation approaches for restoration of motor function are largely unknown. Finally, spinal stimulation may augment other therapies that address the molecular and cellular environment of the injured spinal cord. The fact that several stimulation approaches are now leading to substantial and durable improvements in function following spinal cord injury provides a new perspectives on the previously "incurable" condition of paralysis. Copyright © 2017 the American Physiological Society.

  16. Neuropathic pain and spasticity: intricate consequences of spinal cord injury

    DEFF Research Database (Denmark)

    Finnerup, Nanna Brix

    2017-01-01

    STUDY DESIGN: The 2016 International Spinal Cord Society Sir Ludwig Guttmann Lecture. OBJECTIVES: The aim of this review is to identify different symptoms and signs of neuropathic pain and spasticity after spinal cord injury (SCI) and to present different methods of assessing them. The objective......', 'neuropathic', 'spasticity', 'spasms' and 'spinal cord injury'. RESULTS: This review identified different domains of neuropathic pain and spasticity after SCI and methods to assess them in preclinical and clinical research. Different factors important for pain description include location, onset, pain...... of SCI, and a careful examination and characterization of the symptoms and signs, are a prerequisite for understanding the relationship between neuropathic pain and spasticity and the intricate underlying mechanisms.Spinal Cord advance online publication, 11 July 2017; doi:10.1038/sc.2017.70....

  17. Biomaterial Design Strategies for the Treatment of Spinal Cord Injuries

    Science.gov (United States)

    Straley, Karin S.; Po Foo, Cheryl Wong

    2010-01-01

    Abstract The highly debilitating nature of spinal cord injuries has provided much inspiration for the design of novel biomaterials that can stimulate cellular regeneration and functional recovery. Many experts agree that the greatest hope for treatment of spinal cord injuries will involve a combinatorial approach that integrates biomaterial scaffolds, cell transplantation, and molecule delivery. This manuscript presents a comprehensive review of biomaterial-scaffold design strategies currently being applied to the development of nerve guidance channels and hydrogels that more effectively stimulate spinal cord tissue regeneration. To enhance the regenerative capacity of these two scaffold types, researchers are focusing on optimizing the mechanical properties, cell-adhesivity, biodegradability, electrical activity, and topography of synthetic and natural materials, and are developing mechanisms to use these scaffolds to deliver cells and biomolecules. Developing scaffolds that address several of these key design parameters will lead to more successful therapies for the regeneration of spinal cord tissue. PMID:19698073

  18. Interleukin-33 treatment reduces secondary injury and improves functional recovery after contusion spinal cord injury.

    Science.gov (United States)

    Pomeshchik, Yuriy; Kidin, Iurii; Korhonen, Paula; Savchenko, Ekaterina; Jaronen, Merja; Lehtonen, Sarka; Wojciechowski, Sara; Kanninen, Katja; Koistinaho, Jari; Malm, Tarja

    2015-02-01

    Interleukin-33 (IL-33) is a member of the interleukin-1 cytokine family and highly expressed in the naïve mouse brain and spinal cord. Despite the fact that IL-33 is known to be inducible by various inflammatory stimuli, its cellular localization in the central nervous system and role in pathological conditions is controversial. Administration of recombinant IL-33 has been shown to attenuate experimental autoimmune encephalomyelitis progression in one study, yet contradictory reports also exist. Here we investigated for the first time the pattern of IL-33 expression in the contused mouse spinal cord and demonstrated that after spinal cord injury (SCI) IL-33 was up-regulated and exhibited a nuclear localization predominantly in astrocytes. Importantly, we found that treatment with recombinant IL-33 alleviated secondary damage by significantly decreasing tissue loss, demyelination and astrogliosis in the contused mouse spinal cord, resulting in dramatically improved functional recovery. We identified both central and peripheral mechanisms of IL-33 action. In spinal cord, IL-33 treatment reduced the expression of pro-inflammatory tumor necrosis factor-alpha and promoted the activation of anti-inflammatory arginase-1 positive M2 microglia/macrophages, which chronically persisted in the injured spinal cord for up to at least 42 days after the treatment. In addition, IL-33 treatment showed a tendency towards reduced T-cell infiltration into the spinal cord. In the periphery, IL-33 treatment induced a shift towards the Th2 type cytokine profile and reduced the percentage and absolute number of cytotoxic, tumor necrosis factor-alpha expressing CD4+ cells in the spleen. Additionally, IL-33 treatment increased expression of T-regulatory cell marker FoxP3 and reduced expression of M1 marker iNOS in the spleen. Taken together, these results provide the first evidence that IL-33 administration is beneficial after CNS trauma. Treatment with IL33 may offer a novel therapeutic

  19. Mesenchymal stem cells improve locomotor recovery in traumatic spinal cord injury

    DEFF Research Database (Denmark)

    Oliveri, Roberto S; Bello, Segun; Biering-Sørensen, Fin

    2013-01-01

    Traumatic spinal cord injury (SCI) is a devastating event with huge personal and societal costs. A limited number of treatments exist to ameliorate the progressive secondary damage that rapidly follows the primary mechanical impact. Mesenchymal stem or stromal cells (MSCs) have anti-inflammatory ......Traumatic spinal cord injury (SCI) is a devastating event with huge personal and societal costs. A limited number of treatments exist to ameliorate the progressive secondary damage that rapidly follows the primary mechanical impact. Mesenchymal stem or stromal cells (MSCs) have anti...... of 1,568 rats. Between-study heterogeneity was large. Fifty-three studies (64%) were reported as randomised, but only four reported adequate methodologies for randomisation. Forty-eight studies (58%) reported the use of a blinded outcome assessment. A random-effects meta-analysis yielded a difference...

  20. The Sur1-Trpm4 Channel in Spinal Cord Injury

    OpenAIRE

    Simard, J. Marc; Woo, Seung Kyoon; Aarabi, Bizhan; Gerzanich, Volodymyr

    2013-01-01

    Spinal cord injury (SCI) is a major unsolved challenge in medicine. Impact trauma to the spinal cord shears blood vessels, causing an immediate ‘primary hemorrhage’. During the hours following trauma, the region of hemorrhage enlarges progressively, with delayed or ‘secondary hemorrhage’ adding to the primary hemorrhage, and effectively doubling its volume. The process responsible for the secondary hemorrhage that results in early expansion of the hemorrhagic lesion is termed ‘progressive hem...

  1. Melatonin prevents blood vessel loss and neurological impairment induced by spinal cord injury in rats.

    Science.gov (United States)

    Jing, Yingli; Bai, Fan; Chen, Hui; Dong, Hao

    2017-03-01

    Melatonin can be neuroprotective in models of neurological injury, but its effects on blood vessel loss and neurological impairment following spinal cord injury (SCI) are unclear. Our goal herein was to evaluate the possible protective action of melatonin on the above SCI-induced damage in rats. Sixty-three female Sprague-Dawley rats were randomly divided into three equal groups: sham, SCI and melatonin groups. Melatonin (10 mg/kg) was injected intraperitoneally and further administered twice a day at indicated time after a moderate injury at T10 in melatonin group. Blood vessel was assessed by CD31staining and FITC-LEA, the permeability of blood-spinal cord barrier (BSCB) was detected by Evan's Blue. Neuron was assessed by NeuN staining and the expression of Nissl bodies in the neurons was assessed by Nissl staining. The expressions of brain-derived neurotrophic factor (BDNF), synapsin I, or growth associated protein-43 (GAP-43) in the spinal cord and hippocampus were evaluated by Western blotting. At 7 days post-injury, melatonin treatment rescued blood vessels, increased CD31 levels, ameliorated BSCB permeability. Additionally, melatonin significantly increased the number of neurons and the expression of Nissl bodies in neurons at the injury epicenter. Furthermore, our data showed that SCI reduced levels of the molecular substrates of neurological plasticity, including BDNF, synapsin I, or GAP-43 in the spinal cord and hippocampus. Melatonin treatment partially prevented these reductions. The neuroprotective effect of melatonin was associated with melioration of the microcirculation in the spinal cord and reduction of neurological impairment in the spinal cord and brain.

  2. Extremely low-frequency electromagnetic fields: A possible non-invasive therapeutic tool for spinal cord injury rehabilitation.

    Science.gov (United States)

    Kumar, Suneel; Dey, Soumil; Jain, Suman

    2017-01-01

    Traumatic insults to the spinal cord induce both immediate mechanical damage and subsequent tissue degeneration. The latter involves a range of events namely cellular disturbance, homeostatic imbalance, ionic and neurotransmitters derangement that ultimately result in loss of sensorimotor functions. The targets for improving function after spinal cord injury (SCI) are mainly directed toward limiting these secondary injury events. Extremely low-frequency electromagnetic field (ELF-EMF) is a possible non-invasive therapeutic intervention for SCI rehabilitation which has the potential to constrain the secondary injury-induced events. In the present review, we discuss the effects of ELF-EMF on experimental and clinical SCI as well as on biological system.

  3. Men with spinal cord injury have a smaller prostate than men without

    DEFF Research Database (Denmark)

    Hvarness, Helle; Jakobsen, Henrik; Biering-Sørensen, Fin

    2007-01-01

    To compare prostate volume and number of ejaculations in men with and without spinal cord injury (SCI).......To compare prostate volume and number of ejaculations in men with and without spinal cord injury (SCI)....

  4. Pregnancy after assisted ejaculation procedures in men with spinal cord injury

    DEFF Research Database (Denmark)

    Sønksen, J; Sommer, P; Biering-Sørensen, F

    1997-01-01

    To present the results of fertility treatment in 28 men with spinal cord injury (SCI) and their partners.......To present the results of fertility treatment in 28 men with spinal cord injury (SCI) and their partners....

  5. How Do I Deal with Depression and Adjustment to My Spinal Cord Injury?

    Science.gov (United States)

    ... to arm yourself with information on what a spinal cord injury is, and what it means in terms of ... or negative thoughts. Depression is common in the spinal cord injury population -- affecting about 1 in 5 people. There ...

  6. How Do I Deal with Depression and Adjustment to My Spinal Cord Injury?

    Medline Plus

    Full Text Available ... yourself with information on what a spinal cord injury is, and what it means in terms of ... thoughts. Depression is common in the spinal cord injury population -- affecting about 1 in 5 people. There ...

  7. How Do I Deal with Depression and Adjustment to My Spinal Cord Injury?

    Medline Plus

    Full Text Available ... arm yourself with information on what a spinal cord injury is, and what it means in terms ... negative thoughts. Depression is common in the spinal cord injury population -- affecting about 1 in 5 people. ...

  8. Electroejaculation in patients with spinal cord injuries : A 21-year, single-center experience

    NARCIS (Netherlands)

    Soeterik, Timo F W; Veenboer, Paul W; Oude-Ophuis, Ralph Ja; Lock, Tycho Mtw

    OBJECTIVES: To evaluate treatment results of electroejaculation in patients with spinal cord injuries and the additional value of repeated electroejaculation. METHODS: We carried out a retrospective chart analysis of all spinal cord injury patients treated with electroejaculation at University

  9. How Do I Deal with Depression and Adjustment to My Spinal Cord Injury?

    Medline Plus

    Full Text Available ... on navigating depression following a spinal cord injury. University of Washington provides pamphlets on depression with spinal cord injury and ... Contact us Connect with us t f ...

  10. Spinal cord injury - Symptoms and causes

    Science.gov (United States)

    ... immediate medical evaluation for the possibility of a spinal injury. In fact, it's safest to assume that trauma victims have a spinal injury until proved otherwise because: A serious spinal injury ...

  11. Spinal Cord Injury: Hope through Research

    Science.gov (United States)

    ... level of the injury, so the higher the spinal injury, the greater the loss of function. A whitish ... assess autonomic function also have been established (American Spinal Injury Association, or ASIA, Autonomic Standards Classification). Emergency medical ...

  12. Cardiovascular response during urodynamics in individuals with spinal cord injury

    DEFF Research Database (Denmark)

    Liu, N; Zhou, M-W; Biering-Sørensen, F

    2017-01-01

    STUDY DESIGN: Retrospective chart review. OBJECTIVES: To establish the frequency and severity of autonomic dysreflexia (AD) during urodynamics among individuals with chronic spinal cord injury (SCI) and to investigate the possible effect of the number of years since SCI on the severity of AD...... was more severe in individuals with complete (American Spinal Cord Association (ASIA) impairment scale (AIS) A) injuries, worse with greater time after SCI. CONCLUSION: Individuals with cervical SCI, DSD, poor bladder compliance or >2 years after SCI were associated with a higher possibility of developing...... AD during urodynamics. Furthermore, AD was more severe in complete (AIS A) individuals and was exacerbated with time after injury.Spinal Cord advance online publication, 2 August 2016; doi:10.1038/sc.2016.110....

  13. Bilateral complex regional pain syndrome following spinal cord injury and bilateral calcaneus fracture

    Directory of Open Access Journals (Sweden)

    Ahmet Boyacı

    2013-09-01

    Full Text Available Complex regional pain syndrome (CRPS is a disease affectingone or more extremities, characterized by spontaneouspain, allodynia, hyperpathia and hyperalgesia.CRPS is separated into Type 1 and Type 2. CRPS whichdevelops after a nociceptive event is labeled as Type 1and when it develops following peripheral nerve damage,Type 2. Although the pathogenesis is not fully understood,peripheral and central sensitivity are held responsible.Bilateral lower extremity involvement is extremely rare.However, it should be borne in mind that it can develop intraumatic injuries which occur in more than one area anddiagnosis and commencement of a rehabilitation programshould be made in the early period. The case is presentedhere of bilateral Type 1 CRPS developing after incompletespinal cord injury and bilateral calcaneus fracture. JClin Exp Invest 2013; 4 (3: 360-363Key words: complex regional pain syndrome, calcaneusfracture, spinal cord injury

  14. Human amniotic epithelial cells combined with silk fibroin scaffold in the repair of spinal cord injury

    Directory of Open Access Journals (Sweden)

    Ting-gang Wang

    2016-01-01

    Full Text Available Treatment and functional reconstruction after central nervous system injury is a major medical and social challenge. An increasing number of researchers are attempting to use neural stem cells combined with artificial scaffold materials, such as fibroin, for nerve repair. However, such approaches are challenged by ethical and practical issues. Amniotic tissue, a clinical waste product, is abundant, and amniotic epithelial cells are pluripotent, have low immunogenicity, and are not the subject of ethical debate. We hypothesized that amniotic epithelial cells combined with silk fibroin scaffolds would be conducive to the repair of spinal cord injury. To test this, we isolated and cultured amniotic epithelial cells, and constructed complexes of these cells and silk fibroin scaffolds. Implantation of the cell-scaffold complex into a rat model of spinal cord injury resulted in a smaller glial scar in the damaged cord tissue than in model rats that received a blank scaffold, or amniotic epithelial cells alone. In addition to a milder local immunological reaction, the rats showed less inflammatory cell infiltration at the transplant site, milder host-versus-graft reaction, and a marked improvement in motor function. These findings confirm that the transplantation of amniotic epithelial cells combined with silk fibroin scaffold can promote the repair of spinal cord injury. Silk fibroin scaffold can provide a good nerve regeneration microenvironment for amniotic epithelial cells.

  15. Prophylactic Riluzole Attenuates Oxidative Stress Damage in Spinal Cord Distraction.

    Science.gov (United States)

    Shimizu, Eileen Nicole; Seifert, Jennifer L; Johnson, Kevin J; Romero-Ortega, Mario

    2018-01-02

    Spinal cord injury (SCI) without radiographic abnormalities (SCIWORA) presents a significant challenge due the loss of function despite an apparent normal anatomy. The cause of dysfunction is not understood and specific treatment options are lacking. Some scoliosis corrective surgeries result in SCIWORA, where stretching of the spinal cord can lead to vascular compromise and hypoxia. This procedure allows for the implantation of neuroprotective strategies designed to prevent iatrogenic SCI. We utilized a model of atraumatic SCI to evaluate the efficacy of the sodium channel blocker Riluzole, as a prophylactic neuroprotectant. As expected, the stretch injury caused a significant reduction in intraparenchymal oxygen in distraction (-53.09 ± 22.23 %) and Riluzole pre-treated distraction animals (-43.04 ±22.86%). However, in contrast to the oxidative stress and metabolic impairments observed in distraction animals, in which protein carbonylation increased significantly (5.88 ± 1.3 nmol/ml), Riluzole kept these levels within normal range (1.8 ± 1.0nmol/ml). This neurprotection also prevented ventral motor neuron hypoplasia and pyknosis, characteristic features of this atraumatic SCI model, and maintained normal gait function (e.g., stride length and stance time), otherwise observed as a result of distraction injury. This study provides evidence for the use of prophylactic neuroprotective strategies in which thoracic or spine surgeries present the risk of causing atraumatic SCI.

  16. Segmental hypersensitivity and spinothalamic function in spinal cord injury pain

    DEFF Research Database (Denmark)

    Finnerup, Nanna Brix; Sørensen, Leif Hougaard; Biering-Sørensen, Fin

    2007-01-01

    The mechanisms underlying central pain following spinal cord injury (SCI) are unsettled. The purpose of the present study was to examine differences in spinothalamic tract function below injury level and evoked pain in incomplete SCI patients with neuropathic pain below injury level (central pain...... in central SCI pain and furthermore - in contrast to previous findings - that loss of spinothalamic functions does not appear to be a predictor for central neuropathic pain in spinal cord injury....... and thermal detection thresholds below injury level. SCI patients with central pain had sensory hypersensitivity in dermatomes corresponding to the lesion level more frequently than SCI patients without pain, but this may in part be explained by the exclusion of at-level spontaneous pain in the pain...

  17. Effect of nimodipine on rat spinal cord injury.

    Science.gov (United States)

    Jia, Y-F; Gao, H-L; Ma, L-J; Li, J

    2015-02-13

    We evaluated the potentially protective effect of nimodipine on rat spinal cord injury. Sprague-Dawley rats received spinal cord injury, and were separated into nimodipine (N = 12) and saline groups (N = 12). Within 1 h of the injury, rats were treated intraperitoneally with nimodipine (1.0 mg/kg) or an equal amount of saline. Treatment was performed 3 times a day for 1 week. Operation BBB score and track experiment were used to measure the physical function of the hind legs 1 and 2 weeks after injury. Two weeks after the injury, malondialdehyde (MDA) content and spinal cord myeloperoxidase (MPO) activity of the injured part were determined, and the glial scar and dead room were studied using the immune tissue chemical test. ED1 was used to observe active gitter cell and macrophages. The physical function of the nimodipine group improved significantly (P nimodipine group (nmol/g, 25.6 ± 9.7 vs 68.5 ± 16.7) and MPO activity (U/g, 252.2 ± 63.9 vs 382.8 ± 108.2) decreased significantly (P nimodipine whole dead space (mm2, 4.45 ± 1.28 vs 6.16 ± 2.65) and ED1 antibody immunity colored positive room (mm2, 1.87 ± 0.42 vs 2.86 ± 1.01) reduced significantly (P Nimodipine treatment could reduce oxidative injury after spinal cord injury, reduce the whole dead space and inflammation, and repair spinal cord injury.

  18. Nogo-A expression dynamically varies after spinal cord injury

    Directory of Open Access Journals (Sweden)

    Jian-wei Wang

    2015-01-01

    Full Text Available The mechanism involved in neural regeneration after spinal cord injury is unclear. The myelin-derived protein Nogo-A, which is specific to the central nervous system, has been identified to negatively affect the cytoskeleton and growth program of axotomized neurons. Studies have shown that Nogo-A exerts immediate and chronic inhibitory effects on neurite outgrowth. In vivo, inhibitors of Nogo-A have been shown to lead to a marked enhancement of regenerative axon extension. We established a spinal cord injury model in rats using a free-falling weight drop device to subsequently investigate Nogo-A expression. Nogo-A mRNA and protein expression and immunoreactivity were detected in spinal cord tissue using real-time quantitative PCR, immunohistochemistry and western blot analysis. At 24 hours after spinal cord injury, Nogo-A protein and mRNA expression was low in the injured group compared with control and sham-operated groups. The levels then continued to drop further and were at their lowest at 3 days, rapidly rose to a peak after 7 days, and then gradually declined again after 14 days. These changes were observed at both the mRNA and protein level. The transient decrease observed early after injury followed by high levels for a few days indicates Nogo-A expression is time dependent. This may contribute to the lack of regeneration in the central nervous system after spinal cord injury. The dynamic variation of Nogo-A should be taken into account in the treatment of spinal cord injury.

  19. The Animal Model of Spinal Cord Injury as an Experimental Pain Model

    OpenAIRE

    Aya Nakae; Kunihiro Nakai; Kenji Yano; Ko Hosokawa; Masahiko Shibata; Takashi Mashimo

    2011-01-01

    Pain, which remains largely unsolved, is one of the most crucial problems for spinal cord injury patients. Due to sensory problems, as well as motor dysfunctions, spinal cord injury research has proven to be complex and difficult. Furthermore, many types of pain are associated with spinal cord injury, such as neuropathic, visceral, and musculoskeletal pain. Many animal models of spinal cord injury exist to emulate clinical situations, which could help to determine common mechanisms of patholo...

  20. Progress in the study of stem cell transplantation for the repair of spinal cord injury

    OpenAIRE

    Chao Zhang(Brookhaven National Lab); Karen A. Egiazaryan; Andrei Р. Ratyev; Victor M. Feniksov; Haixiao Wu; Vladimir Р. Chekhonin

    2017-01-01

    Spinal cord injury is a critical medical emergency that severely jeopardizes human health. Such injuries can cause lifelong paralysis and lead to various complications, including death, and there are often tremendous economic and emotional burdens placed on the society and family. Therefore, the study of spinal cord injury repair has important significance. The use of stem cell transplantation to repair spinal cord injury has been the focus and cause of difficulty in studies of spinal cord in...

  1. Cell Therapy Augments Functional Recovery Subsequent to Spinal Cord Injury under Experimental Conditions

    OpenAIRE

    Vikram Sabapathy; George Tharion; Sanjay Kumar

    2015-01-01

    The spinal cord injury leads to enervation of normal tissue homeostasis ultimately leading to paralysis. Until now there is no proper cure for the treatment of spinal cord injury. Recently, cell therapy in animal spinal cord injury models has shown some progress of recovery. At present, clinical trials are under progress to evaluate the efficacy of cell transplantation for the treatment of spinal cord injury. Different types of cells such as pluripotent stem cells derived neural cells, mesenc...

  2. Spinal cord injury and its association with blunt head trauma

    Directory of Open Access Journals (Sweden)

    Paiva WS

    2011-09-01

    Full Text Available Wellingson S Paiva, Arthur MP Oliveira, Almir F Andrade, Robson LO Amorim, Leonardo JO Lourenço, Manoel J TeixeiraDivision of Neurosurgery, University of São Paulo, BrazilBackground: Severe and moderate head injury can cause misdiagnosis of a spinal cord injury, leading to devastating long-term consequences. The objective of this study is to identify risk factors involving spine trauma and moderate-to-severe brain injury.Methods: A prospective study involving 1617 patients admitted in the emergency unit was carried out. Of these patients, 180 with moderate or severe head injury were enrolled. All patients were submitted to three-view spine series X-ray and thin cut axial CT scans for spine trauma investigations.Results: 112 male patients and 78 female patients, whose ages ranged from 11 to 76 years (mean age, 34 years. The most common causes of brain trauma were pedestrians struck by motor vehicles (31.1%, car crashes (27.7%, and falls (25%. Systemic lesions were present in 80 (44.4% patients and the most common were fractures, and lung and spleen injuries. 52.8% had severe and 47.2% moderate head trauma. Fourteen patients (7.8% suffered spinal cord injury (12 in cervical spine, one in lumbar, and one thoracic spine. In elderly patients, the presence of associated lesions and Glasgow Coma Scale (GCS < 9 were statistically significant as risk factors (P < 0.05 for spine injury.Conclusion: Spinal cord injury related to moderate and severe brain trauma usually affects the cervical spine. The incidence of spinal lesions and GCS < 9 points were related to greater incidence of spinal cord injury.Keywords: head injury, spine trauma, risk factors

  3. The occurrence of the Babinski sign in complete spinal cord injury.

    Science.gov (United States)

    Petersen, Jens A; Schubert, Martin; Dietz, Volker

    2010-01-01

    The purpose of the present study was to explore factors that influence the occurrence of the Babinski sign (BS) in complete spinal cord injury patients. At Balgrist University Hospital, Zurich, Switzerland, thirty-five subjects suffering from a complete traumatic spinal cord injury (ASIA A) were examined for the occurrence of the BS, tendon reflex excitability and spastic muscle tone (Modified Ashworth Scale). Five subjects were acute/subacute (1-6 months after spinal cord injury (SCI)), 30 were chronic (SCI > 1 year). In one subject, the measures were examined before and after injection of intrathecal Baclofen. Subjects with a negative BS were investigated electrophysiologically for possible peripheral nerve damage. In 17 subjects (49%), the BS was present, while it was absent in 18 subjects (51%). The occurrence of the BS did not depend on the level of lesion. Most patients with a positive BS also presented a high spastic muscle tone, while those with a negative BS showed low level or absent spastic muscle tone. In 11 SCI subjects, absence of the BS was associated with peripheral nerve damage. In one patient, the BS along with spastic signs disappeared after intrathecal injection of Baclofen. In complete SCI subjects, the occurrence of the BS is connected with spastic muscle tone. The absence of the BS is frequently due to associated peripheral nerve damage.

  4. Magnetic resonance imaging tractography as a diagnostic tool in patients with spinal cord injury treated with human embryonic stem cells.

    Science.gov (United States)

    Shroff, Geeta

    2017-02-01

    Introduction Spinal cord injury is a cause of severe disability and mortality. The pharmacological and non-pharmacological methods used, are unable to improve the quality of life in spinal cord injury. Spinal disorders have been treated with human embryonic stem cells. Magnetic resonance imaging and tractography were used as imaging modality to document the changes in the damaged cord, but the magnetic resonance imaging tractography was seen to be more sensitive in detecting the changes in the spinal cord. The present study was conducted to evaluate the diagnostic modality of magnetic resonance imaging tractography to determine the efficacy of human embryonic stem cells in chronic spinal cord injury. Materials and methods The study included the patients with spinal cord injury for whom magnetic resonance imaging tractography was performed before and after the therapy. Omniscan (gadodiamide) magnetic resonance imaging tractography was analyzed to assess the spinal defects and the improvement by human embryonic stem cell treatment. The patients were also scored by American Spinal Injury Association scale. Results Overall, 15 patients aged 15-44 years with clinical manifestations of spinal cord injury had magnetic resonance imaging tractography performed. The average treatment period was nine months. The majority of subjects ( n = 13) had American Spinal Injury Association score A, and two patients were at score C at the beginning of therapy. At the end of therapy, 10 patients were at score A, two patients were at score B and three patients were at score C. Improvements in patients were clearly understood through magnetic resonance imaging tractography as well as in clinical signs and symptoms. Conclusion Magnetic resonance imaging tractography can be a crucial diagnostic modality to assess the improvement in spinal cord injury patients.

  5. Cell therapy for spinal cord injury informed by electromagnetic waves.

    Science.gov (United States)

    Finnegan, Jack; Ye, Hui

    2016-10-01

    Spinal cord injury devastates the CNS, besetting patients with symptoms including but not limited to: paralysis, autonomic nervous dysfunction, pain disorders and depression. Despite the identification of several molecular and genetic factors, a reliable regenerative therapy has yet to be produced for this terminal disease. Perhaps the missing piece of this puzzle will be discovered within endogenous electrotactic cellular behaviors. Neurons and stem cells both show mediated responses (growth rate, migration, differentiation) to electromagnetic waves, including direct current electric fields. This review analyzes the pathophysiology of spinal cord injury, the rationale for regenerative cell therapy and the evidence for directing cell therapy via electromagnetic waves shown by in vitro experiments.

  6. International urodynamic basic spinal cord injury data set

    DEFF Research Database (Denmark)

    Craggs, M.; Kennelly, M.; Schick, E.

    2008-01-01

    OBJECTIVE: To create the International Urodynamic Basic Spinal Cord Injury (SCI) Data Set within the framework of the International SCI Data Sets. SETTING: International working group. METHODS: The draft of the data set was developed by a working group consisting of members appointed...... by the Neurourology Committee of the International Continence Society, the European Association of Urology, the American Spinal Injury Association (ASIA), the International Spinal Cord Society (ISCoS) and a representative of the Executive Committee of the International SCI Standards and Data Sets. The final version...

  7. International urinary tract imaging basic spinal cord injury data set

    DEFF Research Database (Denmark)

    Biering-Sørensen, F; Craggs, M; Kennelly, M

    2008-01-01

    OBJECTIVE: To create an International Urinary Tract Imaging Basic Spinal Cord Injury (SCI) Data Set within the framework of the International SCI Data Sets. SETTING: An international working group. METHODS: The draft of the Data Set was developed by a working group comprising members appointed...... by the Neurourology Committee of the International Continence Society, the European Association of Urology, the American Spinal Injury Association (ASIA), the International Spinal Cord Society (ISCoS) and a representative of the Executive Committee of the International SCI Standards and Data Sets. The final version...

  8. Progress in the study of stem cell transplantation for the repair of spinal cord injury

    Directory of Open Access Journals (Sweden)

    Chao Zhang

    2017-08-01

    Full Text Available Spinal cord injury is a critical medical emergency that severely jeopardizes human health. Such injuries can cause lifelong paralysis and lead to various complications, including death, and there are often tremendous economic and emotional burdens placed on the society and family. Therefore, the study of spinal cord injury repair has important significance. The use of stem cell transplantation to repair spinal cord injury has been the focus and cause of difficulty in studies of spinal cord injury repair in recent years. However, there are numerous types of stem cells, diverse cell transplantation methods and different injury models that often cause confusion for investigators. The goal of this paper is to review the studies of spinal cord injury repair with various stem cells and summarize the bottleneck of stem cell transplantation for spinal cord injury repair to reveal the future direction of stem cell transplantation studies for spinal cord injury repair.

  9. Neuroprotective effects of sildenafil in experimental spinal cord injury in rabbits

    Directory of Open Access Journals (Sweden)

    Hasan Kara

    2015-01-01

    Full Text Available Neuroprotective agents such as methylprednisolone and sildenafil may limit damage after spinal cord injury. We evaluated the effects of methylprednisolone and sildenafil on biochemical and histologic changes after spinal cord injury in a rabbit model. Female New Zealand rabbits (32 rabbits were allocated to 4 equal groups: laminectomy only (sham control or laminectomy and spinal trauma with no other treatment (trauma control or treatment with either methylprednisolone or sildenafil. Gelsolin and caspase-3 levels in cerebrospinal fluid and plasma were determined, and spinal cord histology was evaluated at 24 hours after trauma. There were no differences in mean cerebrospinal fluid or plasma levels of caspase-3 between the groups or within the groups from 0 to 24 hours after injury. From 0 to 24 hours after trauma, mean cerebrospinal fluid gelsolin levels significantly increased in the sildenafil group and decreased in the sham control and the trauma control groups. Mean plasma gelsolin level was significantly higher at 8 and 24 hours after trauma in the sildenafil than other groups. Histologic examination indicated that general structural integrity was better in the methylprednisolone in comparison with the trauma control group. General structural integrity, leptomeninges, white and grey matter hematomas, and necrosis were significantly improved in the sildenafil compared with the trauma control group. Caspase-3 levels in the cerebrospinal fluid and blood were not increased but gelsolin levels were decreased after spinal cord injury in trauma control rabbits. Sildenafil caused an increase in gelsolin levels and may be more effective than methylprednisolone at decreasing secondary damage to the spinal cord

  10. [Pregnancy in women with spinal cord injuries: State of knowledge].

    Science.gov (United States)

    Boisseau, B; Perrouin-Verbe, B; Le Guillanton, N; Derrendinger, I; Riteau, A-S; Idiard-Chamois, B; Winer, N

    2016-11-01

    Updating knowledge of health professionals about pregnant women with spinal cord injuries. Development of maternity hospitals to make them accessible to spinal cord injured pregnant women to improve their care in pre-, per- and post-partum. Cross-sectional declarative study based on a questionnaire distributed to health professionals in the maternity hospital of the University Hospital of Nantes and liberal midwives of Nantes conurbation, based on their knowledge, their difficulties and their expectations for obstetrical care for spinal cord injured women. An inventory was carried out in parallel at the maternity hospital of the University Hospital of Nantes. Seventy-two percent of health professionals surveyed rated their level of knowledge on spinal cord injuries insufficient or even non-existent. Among the professionals, 84.8% said they encountered difficulties to take care of spinal cord injured women. The main cited difficulty relates to unsuitable equipment or premises, obstacle indeed found during the inventory made on the maternity hospital. Several proposals are being considered, including specific trainings, the execution of a management protocol for spinal cord injured women, the establishment of a situation's form of handicap, the layout of the maternity hospitals premises, and finally, the creation of reference's centers in the region to optimize the follow-up of these patients. Copyright © 2016. Published by Elsevier Masson SAS.

  11. Spontaneous axonal regeneration in rodent spinal cord after ischemic injury

    DEFF Research Database (Denmark)

    von Euler, Mia; Janson, A M; Larsen, Jytte Overgaard

    2002-01-01

    Here we present evidence for spontaneous and long-lasting regeneration of CNS axons after spinal cord lesions in adult rats. The length of 200 kD neurofilament (NF)-immunolabeled axons was estimated after photochemically induced ischemic spinal cord lesions using a stereological tool. The total l...... lesions in rodents and that the fibers remain several months after injury. The findings of tyrosine hydroxylase- and serotonin-immunoreactivity in the axons suggest that descending central fibers contribute to this endogenous repair of ischemic spinal cord injury.......Here we present evidence for spontaneous and long-lasting regeneration of CNS axons after spinal cord lesions in adult rats. The length of 200 kD neurofilament (NF)-immunolabeled axons was estimated after photochemically induced ischemic spinal cord lesions using a stereological tool. The total...... cells, while other fibers were unmyelinated. Immunohistochemistry demonstrated that some of the regenerated fibers were tyrosine hydroxylase- or serotonin-immunoreactive, indicating a central origin. These findings suggest that there is a considerable amount of spontaneous regeneration after spinal cord...

  12. Neuroprotective effect of allicin in a rat model of acute spinal cord injury.

    Science.gov (United States)

    Lv, Runxiao; Mao, Ningfang; Wu, Jinhui; Lu, Chunwen; Ding, Muchen; Gu, Xiaochuan; Wu, Yungang; Shi, Zhicai

    2015-12-15

    This study aims to investigate the effect of allicin on motor functions and histopathologic changes after spinal cord injury and the mechanism underlying its neuroprotective effects. The motor function of rats was evaluated with the Basso, Beattie, and Bresna test. Histopathologic changes were evaluated by hematoxylin and eosin and Nissl staining. Spinal cord oxidative stress markers were determined by measuring glutathione and malondialdehyde content and superoxide dismutase activity using commercial kits. Inflammatory factors were determined by measuring tumor necrosis factor-α, interleukin-1β and interleukin-6 using ELISA assay. Apoptosis was examined using TUNEL staining. The effect of allicin on Nrf2 protein levels and localization was assessed using immunofluorescence staining and Western blotting analysis. Results demonstrated that allicin accelerated the motor functional recovery and protected neuron damage against spinal cord injury (SCI). SCI-induced oxidative stress, inflammatory response and cell apoptosis in the spinal cord were also prevented by allicin. In addition, we observed that SCI increased Nrf2 nuclear expression, and allicin treatment further increased Nrf2 nuclear translocation in neurons and astrocytes. siRNA-mediated Nrf2 gene knockdown completely blocked the effect of allicin on spinal cord tissue. Our finding suggests that allicin promotes the recovery of motor function after SCI in rats, and this effect may be related to its anti-oxidant, anti-inflammatory and anti-apoptotic effects. Allicin mediated Nrf2 nuclear translocation may be involved in the protective effect as well. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Regulation of autophagy by AMP-activated protein kinase/ sirtuin 1 pathway reduces spinal cord neurons damage

    Directory of Open Access Journals (Sweden)

    Peng Yan

    2017-09-01

    Full Text Available Objective(s: AMP-activated protein kinase/sirtuin 1 (AMPK/SIRT1 signaling pathway has been proved to be involved in the regulation of autophagy in various models. The aim of this study was to evaluate the effect of AMPK/SIRT1 pathway on autophagy after spinal cord injury (SCI. Materials and Methods:The SCI model was established in rats in vivo and the primary spinal cord neurons were subjected to mechanical injury (MI in vitro. The apoptosis in spinal cord tissue and neurons was assessed by TUNEL staining and Hoechst 33342 staining, respectively. The autophagy-related proteins levels were detected by Western blot. The activation of AMPK/SIRT1 pathway was determined by Western blot and immunohistochemical staining. Results: We found that the apoptosis of spinal cord tissue and cell damage of spinal cord neurons was obvious after the trauma. The ratio of LC3II/LC3I and level of p62 were first increased significantly and then decreased after the trauma in vivo and in vitro, indicating the defect in autophagy. The levels of p-AMPK and SIRT1 were increased obviously after the trauma in vivo and in vitro. Further activation of the AMPK/SIRT1 pathway by pretreatment with resveratrol, a confirmed activator of the AMPK/SIRT1 pathway, alleviated the cell damage and promoted the autophagy flux via downregulation of p62 in spinal cord neurons at 24 hr after MI. Conclusion: Our results demonstrate that regulation of autophagy by AMPK/SIRT1 pathway can restrain spinal cord neurons damage, which may be a potential intervention of SCI.

  14. Oral mucosa stem cells alleviates spinal cord injury-induced neurogenic bladder symptoms in rats.

    Science.gov (United States)

    Cho, Young-Sam; Ko, Il-Gyu; Kim, Sung-Eun; Lee, Sung-Min; Shin, Mal-Soon; Kim, Chang-Ju; Kim, Sang-Hoon; Jin, Jun-Jang; Kim, Khae-Hawn

    2014-05-13

    Spinal cord injury (SCI) deteriorates various physical functions, in particular, bladder problems occur as a result of damage to the spinal cord. Stem cell therapy for SCI has been focused as the new strategy to treat the injuries and to restore the lost functions. The oral mucosa cells are considered as the stem cells-like progenitor cells. In the present study, we investigated the effects of oral mucosa stem cells on the SCI-induced neurogenic bladder in relation with apoptotic neuronal cell death and cell proliferation. The contraction pressure and the contraction time in the urinary bladder were increased after induction of SCI, in contrast, transplantation of the oral mucosa stem cells decreased the contraction pressure and the contraction time in the SCI-induced rats. Induction of SCI initiated apoptosis in the spinal cord tissues, whereas treatment with the oral mucosa stem cells suppressed the SCI-induced apoptosis. Disrupted spinal cord by SCI was improved by transplantation of the oral mucosa stem cells, and new tissues were increased around the damaged tissues. In addition, transplantation of the oral mucosa stem cells suppressed SCI-induced neuronal activation in the voiding centers. Transplantation of oral mucosa stem cells ameliorates the SCI-induced neurogenic bladder symptoms by inhibiting apoptosis and by enhancing cell proliferation. As the results, SCI-induced neuronal activation in the neuronal voiding centers was suppressed, showing the normalization of voiding function.

  15. Cell Therapy Augments Functional Recovery Subsequent to Spinal Cord Injury under Experimental Conditions

    Directory of Open Access Journals (Sweden)

    Vikram Sabapathy

    2015-01-01

    Full Text Available The spinal cord injury leads to enervation of normal tissue homeostasis ultimately leading to paralysis. Until now there is no proper cure for the treatment of spinal cord injury. Recently, cell therapy in animal spinal cord injury models has shown some progress of recovery. At present, clinical trials are under progress to evaluate the efficacy of cell transplantation for the treatment of spinal cord injury. Different types of cells such as pluripotent stem cells derived neural cells, mesenchymal stromal cells, neural stem cells, glial cells are being tested in various spinal cord injury models. In this review we highlight both the advances and lacuna in the field of spinal cord injury by discussing epidemiology, pathophysiology, molecular mechanism, and various cell therapy strategies employed in preclinical and clinical injury models and finally we discuss the limitations and ethical issues involved in cell therapy approach for treating spinal cord injury.

  16. Design and criteria of electrospun fibrous scaffolds for the treatment of spinal cord injury

    Directory of Open Access Journals (Sweden)

    Barbara Vigani

    2017-01-01

    Full Text Available The complex pathophysiology of spinal cord injury may explain the current lack of an effective therapeutic approach for the regeneration of damaged neuronal cells and the recovery of motor functions. Many efforts have been performed to design and develop suitable scaffolds for spinal cord regeneration, keeping in mind that the reconstruction of a pro-regenerative environment is the key challenge for an effective neurogenesis. The aim of this review is to outline the main features of an ideal scaffold, based on biomaterials, produced by the electrospinning technique and intended for the spinal cord regeneration. An overview of the polymers more investigated in the production of neural fibrous scaffolds is also provided.

  17. Elevation of hydrogen peroxide after spinal cord injury detected by using the Fenton reaction.

    Science.gov (United States)

    Liu, D; Liu, J; Wen, J

    1999-08-01

    To reveal whether reactive oxygen species (ROS) play a role after spinal cord injury, we developed a unique method for assaying hydrogen peroxide (H2O2) and determined the time course of its concentration changes following impact injury to the rat spinal cord. Microdialysis was used to sample H2O2 in the extracellular space and the dialysates were collected into a vial containing salicylate and ferrous chloride (FeCl2). H2O2 collected in the vial was converted to hydroxyl radicals (*OH) by FeCl2 catalysis. 2,3- and 2,5-dihydroxybenzoic acid produced by reaction of *OH with salicylate in the collecting vial were measured by HPLC and calibrated to H2O2 concentrations. The postinjury levels of H2O2 were significantly increased (p = 0.02) for over 11 h. FeCl2 administered through the dialysis fiber catalyzes H2O2 conversion in the cord to *OH. This *OH does not reach the collecting vial due to its extremely short lifetime (nanoseconds). The reduced H2O2 levels in the vials validate the measurement of H2O2. The relatively long-lasting formation of H2O2 and superoxide reported herein and previously suggests that ROS may be important in secondary spinal cord damage and that removal of ROS may be a realistic treatment strategy for reducing injury caused by free radicals.

  18. [Traumatic spinal cord injury in people over 65 in Asturias].

    Science.gov (United States)

    Álvarez Pérez, María José; López Llano, María Luisa

    to assess incidence, causes and socio-demographicaspects of traumatic spinal cord injury among patients over 65 in Asturias (Spain). A census was performed between 1951 and 2013 of patients in Asturias, over 65 years-old coded as «traumatic spinal cord injury with or without vertebral fracture». Socio-demographic, hospital and clinical variables were recorded. In total 180 patients were registered, most of them males (60%), with a mean age of 73 years (maximum 91). The estimated incidence in 2010 was found to be 24.9, in 2011, 28.9 and in 2012, 32.9 cases/million/year. The distribution in the type of injury was homogeneous and location in the cervical spine (40%) was found to be more common. There was bone injury in 71.4%, with multilevel injury in more than half of the cases. The main cause was accidental fall (52.1%), mainly at own height (68.6%), and most of them located in the cervical spine (38.5%), followed by traffic accidents with 57.6% located in the cervical spine. A change was observed in the epidemiological profile of the patients over 65 years old with spinal cord injury. There were more cases associated with accidental fall. It is necessary to create specific preventive and therapeutic strategies for this group. Copyright © 2015 SEGG. Publicado por Elsevier España, S.L.U. All rights reserved.

  19. Sexual health of women with spinal cord injury in Bangladesh

    NARCIS (Netherlands)

    Lubbers, N.P.M; Nuri, R.P; van Brakel, W.H.; Cornielje, H.

    2012-01-01

    Purpose: To identify factors influencing the sexual health of women with spinal cord injury (SCI) in Bangladesh. Methods: This study used both qualitative and quantitative methods. The quantitative part used a case-control design. Cases were women with SCI and controls were age-matched women without

  20. CORD INJURY USING GA RDNER-WELLS' TONGS TRACTION

    African Journals Online (AJOL)

    June 2005: Vol. 8(1): 46-50. CONSERVATIVE MANAGEMENT OF THIRD TRIMESTER CERVICAL SPINAL. CORD INJURY USING GA RDNER-WELLS' TONGS TRACTION. 'A.o. Malomo, 2J.c. Emejulu, “AA. ()dukogbe, 4W. A. Shokunnbi, 5M. T. Shokunbi,. Neurological Surgery Division, Department of surgery; Department ...

  1. Cellular therapy after spinal cord injury using neural progenitor cells

    NARCIS (Netherlands)

    Vroemen, Maurice

    2006-01-01

    In this thesis, the possibilities and limitations of cell-based therapies after spinal cord injury are explored. Particularly, the potential of adult derived neural progenitor cell (NPC) grafts to function as a permissive substrate for axonal regeneration was investigated. It was found that syngenic

  2. Activity-dependent plasticity in spinal cord injury

    National Research Council Canada - National Science Library

    Lynskey, James V; Belanger, Adam; Jung, Ranu

    2008-01-01

    ... after spinal cord injury (SCI) by promoting adaptive structural and functional plasticity while mitigating maladaptive changes at multiple levels of the neuraxis. In this review, we will discuss CNS plasticity that occurs both spontaneously after SCI and in response to rehabilitative therapies.

  3. Vocational reintegration following spinal cord injury : expectations, participation and interventions

    NARCIS (Netherlands)

    Schönherr, M.C.; Groothoff, J.W.; Mulder, G.A.; Schoppen, T.; Eisma, W.H.

    Study design: Survey. Objectives: To explore the process of reintegration in paid work following a traumatic spinal cord injury (SCI), including the role of early expectations of individual patients regarding return to work, indicators of success of job reintegration and a description of

  4. Quality of Life in Patients with Spinal Cord Injury

    Science.gov (United States)

    Gurcay, Eda; Bal, Ajda; Eksioglu, Emel; Cakci, Aytul

    2010-01-01

    The primary objective of this study was to assess the quality of life (QoL) in spinal cord injury (SCI) survivors. Secondary objectives were to determine the effects of various sociodemographic and clinical characteristics on QoL. This cross-sectional study included 54 patients with SCI. The Turkish version of the Short-Form-36 Health Survey was…

  5. International Spinal Cord Injury Upper Extremity Basic Data Set

    DEFF Research Database (Denmark)

    Biering-Sørensen, F; Bryden, A; Curt, A

    2014-01-01

    OBJECTIVE: To develop an International Spinal Cord Injury (SCI) Upper Extremity Basic Data Set as part of the International SCI Data Sets, which facilitates consistent collection and reporting of basic upper extremity findings in the SCI population. SETTING: International. METHODS: A first draft...

  6. Peripheral nervous system involvement in chronic spinal cord injury

    DEFF Research Database (Denmark)

    Tankisi, Hatice; Pugdahl, Kirsten; Rasmussen, Mikkel Mylius

    2015-01-01

    Introduction: Upper motor neuron disorders are believed to leave the peripheral nervous system (PNS) intact. In this study we examined whether there is evidence of PNS involvement in spinal cord injury (SCI). Methods: Twelve subjects with chronic low cervical or thoracic SCI were included...

  7. Surgical Decompression for Traumatic Spinal Cord Injury in a ...

    African Journals Online (AJOL)

    2018-01-24

    Jan 24, 2018 ... The common complications of spine decompression and fixation in this series were surgical site infections (11.4%) and chest infections (11.4%), especially in high cervical injury. Conclusion: Spinal cord decompression with spinal stabilization enhances the rehabilitation of patients with unstable spine and ...

  8. Sexual function and infertility following spinal cord injury.

    Science.gov (United States)

    Linsenmeyer, T A

    2000-02-01

    Changes in sexual function and fertility frequently occur following spinal cord injury (SCI). This article presents an overview of human sexual response and the changes that occur in that response following SCI. This article addresses the issues of childbearing for women with SCI, erectile function for men with SCI, and the issues of fertility and parenting for men and women with SCI.

  9. Postpartum spinal cord injury in a woman with HELLP syndrome.

    NARCIS (Netherlands)

    Groothuis, J.T.; Kuppevelt, DH van

    2008-01-01

    OBJECTIVE: To report a rare cause of spinal cord injury. STUDY DESIGN: Case report. CASE REPORT: A 36-year-old woman presented with acute onset of paresis of the upper and lower extremity (level C5, ASIA B) the day after delivering a healthy daughter (39 weeks' gestation). Prior to giving birth, she

  10. Bilateral vocal cord injury following anterior cervical discectomy ...

    African Journals Online (AJOL)

    We recommend a more detailed preoperative airway exam to include a voice exam with specific voice fatigue questioning on all patients coming for ACD/F. Such detailed assessment may uncover hidden UVCI and allow a safer perioperative period. Keywords: Anterior cervical discectomy, Bilateral vocal cord injury, Vocal ...

  11. Neuroprotective Effect of Ginsenoside Rd in Spinal Cord Injury Rats.

    Science.gov (United States)

    Cong, Lin; Chen, Wenting

    2016-08-01

    In this study, the neuroprotective effects of ginsenoside Rd (GS Rd) were evaluated in a rat model of spinal cord injury (SCI). Rats in SCI groups received a T8 laminectomy and a spinal contusion injury. GS Rd 12.5, 25 and 50 mg/kg were administered intraperitoneally 1 hr before the surgery and once daily for 14 days. Dexamethasone 1 mg/kg was administered as a positive control. Locomotor function was evaluated using the BBB score system. H&E staining and Nissl staining were performed to observe the histological changes in the spinal cord. The levels of MDA and GSH and the activity of SOD were assessed to reflect the oxidative stress state. The production of TNF-α, IL-1β and IL-1 was assessed using ELISA kits to examine the inflammatory responses in the spinal cord. TUNEL staining was used to detect the cell apoptosis in the spinal cord. Western blot analysis was used to examine the expression of apoptosis-associated proteins and MAPK proteins. The results demonstrated that GS Rd 25 and 50 mg/kg significantly improved the locomotor function of rats after SCI, reduced tissue injury and increased neuron survival in the spinal cord. Mechanically, GS Rd decreased MDA level, increased GSH level and SOD activity, reduced the production of pro-inflammatory cytokines and prevented cell apoptosis. The effects were equivalent to those of dexamethasone. In addition, GS Rd effectively inhibited the activation of MAPK signalling pathway induced by SCI, which might be involved in the protective effects of GS Rd against SCI. In conclusion, GS Rd attenuates SCI-induced secondary injury through reversing the redox-state imbalance, inhibiting the inflammatory response and apoptosis in the spinal cord tissue. © 2016 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  12. Treating Chronic Pain after Spinal Cord Injury

    Science.gov (United States)

    2016-09-01

    maintained under isoflurane anesthesia while the head was immobilized in a stereotaxic frame and an incision approximately 1 cm in length was made along the...12):818-823. [56] Xu XJ, Hao JX, Aldskogius H, Seiger A, Wiesenfeld-Hallin Z. Chronic pain-related syndrome in rats after ischemic spinal cord

  13. Propofol promotes spinal cord injury repair by bone marrow mesenchymal stem cell transplantation

    OpenAIRE

    Ya-jing Zhou; Jian-min Liu; Shu-ming Wei; Yun-hao Zhang; Zhen-hua Qu; Shu-bo Chen

    2015-01-01

    Propofol is a neuroprotective anesthetic. Whether propofol can promote spinal cord injury repair by bone marrow mesenchymal stem cells remains poorly understood. We used rats to investigate spinal cord injury repair using bone marrow mesenchymal stem cell transplantation combined with propofol administration via the tail vein. Rat spinal cord injury was clearly alleviated; a large number of newborn non-myelinated and myelinated nerve fibers appeared in the spinal cord, the numbers of CM-Dil-l...

  14. Mitochondria Targeted Peptide Attenuates Mitochondrial Dysfunction, Controls Inflammation and Protects Against Spinal Cord Injury-Induced Lung Injury

    Directory of Open Access Journals (Sweden)

    Liu-Long Zhu

    2017-11-01

    Full Text Available Background/Aims: Spinal cord injury (SCI is a common and devastating disease, which results in systemic inflammatory response syndrome and secondary lung injury. Mitochondrial dysfunction and inflammation are closely related to lung injury in diverse disease models. No studies have demonstrated the effects of mitochondrial targeted peptide SS-31 in a mouse model of SCI-induced lung injury. Methods: Immediately after injury, mice in the treatment groups received a daily, single-dose intraperitoneal injection of SS-31 and for the next 2 days. The sham and SCI groups also received a daily single dose of vehicle (DMSO and 0.9% NaCl, 1: 3. The lung tissue of mice was examined after SCI, and tissue damage, apoptosis, inflammation, and mitochondrial dysfunction were recorded. Results: SS-31 treatment attenuated lung edema and tissue damage. Furthermore, SS-31 treatment reduced apoptosis of alveolar type II cells, the number of total macrophages and M1 macrophages, and neutrophil infiltration. Moreover, SS-31 treatment attenuated reactive oxygen species levels, reversed mitochondrial dysfunction and inhibited NLRP3 inflammasome activation. Conclusions: Collectively, our results demonstrate that SS-31 attenuates mitochondrial dysfunction, controls inflammatory responses, and alleviates the severity of lung damage in a mouse model of SCI-induced lung injury.

  15. Spinal Cord Injury without Radiological Abnormality in an 8 Months Old Female Child: A Case Report.

    Science.gov (United States)

    Bansal, Kunal R; Chandanwale, Ajay S

    2016-01-01

    Spinal cord injury in children frequently occurs without fracture or dislocation. SCIWORA is a syndrome occurring when the spinal cord sustains neural damage during a traumatic event without positive radiographic findings. The incidence of SCIWORA was found to be 8% to 32% in various studies with very few cases documented in children below the age of 1 year. We report such a case of spinal cord injury without radiological abnormality in an 8 months old female child. An 8 months old female child was brought to the emergency room after a history of fall from the bed four days back. External spine examination revealed no abnormality. She had no upper or lower limb movements, both active and withdrawal movements with painful tactile stimuli, power was grade 0; are flexic; abdominal cremasteric and anal reflexes were absent, bladder was palpable and urine could be expressed on manual pressure. MRI of cervical spine with screening of whole spine: suggestive of non hemorrhagic cord edema at C4 level, with suspicious tear of anterior longitudinal ligament at that level. The child was immobilized in pediatric cervical collar and treatment was initiated with corticosteroids and the dose adjusted as per age of the patient. A paediatric physiotherapist started with physical therapy after four days of commencement of treatment. In present times with wide spread use of MRI, the definition of SCIWORA is slowly turning towards spinal cord injury without neuroimaging abnormality [4]. Traumatic spinal cord infarction is a special type of SCIWORA which presents with normal radiology with delayed neurological deterioration [1]. Corticosteroid usage has been useful in cases of SCIWORA as proved by NASCISII Trial.

  16. GRAFTING OF HUMAN BONE MARROW STROMAL CELLS INTO SPINAL CORD INJURY: A COMPARISON OF DELIVERY METHODS

    Science.gov (United States)

    Paul, Courtney; Samdani, Amer F.; Betz, Randal R.; Fischer, Itzhak; Neuhuber, Birgit

    2011-01-01

    Study Design Three groups of 6 rats received subtotal cervical spinal cord hemisections followed with marrow stromal cell (MSC) transplants by lumbar puncture (LP), intravenous delivery (IV) or direct injection into the injury (control). Animals survived for 4 or 21 days. Objective Cell therapy is a promising strategy for the treatment of spinal cord injury (SCI). The mode of cell delivery is crucial for the translation to the clinic. Injections directly into the parenchyma may further damage already compromised tissue; therefore, less invasive methods like LP or IV delivery are preferable. Summary of Background Data Human bone marrow stromal cells (MSC) are multipotent mesenchymal adult stem cells that have a potential for autologous transplantation, obviating the need for immune suppression. While previous studies have established that MSC can be delivered to the injured spinal cord by both LP and IV, the efficacy of cell delivery has not been directly compared with respect to efficacy of delivery and effects on the host. Methods Purified MSC from a human donor were transplanted into the CSF at the lumbar region (LP), into the femoral vein (IV), or directly into the injury (control). After sacrifice, spinal cord sections were analyzed for MSC graft size, tissue sparing, host immune response, and glial scar formation, using specific antibodies as well as Nissl-myelin staining. Results LP delivery of MSC to the injured spinal cord is superior to IV delivery. Cell engraftment and tissue sparing were significantly better after LP delivery and host immune response after LP delivery was reduced compared to IV delivery. Conclusions LP is an ideal minimally-invasive technique to deliver cellular transplants to the injured spinal cord. It is superior to IV delivery and, together with the potential for autologous transplantation, lends itself for clinical application. PMID:19182705

  17. Diffusion tensor MR imaging in spinal cord injury.

    Science.gov (United States)

    D'souza, Maria M; Choudhary, Ajay; Poonia, Mahesh; Kumar, Pawan; Khushu, Subash

    2017-04-01

    The ability of diffusion tensor imaging (DTI) to complement conventional MR imaging by diagnosing subtle injuries to the spinal cord is a subject of intense research. We attempted to study change in the DTI indices, namely fractional anisotropy (FA) and mean diffusivity (MD) after traumatic cervical spinal cord injury and compared these with corresponding data from a control group of individuals with no injury. The correlation of these quantitative indices to the neurological profile of the patients was assessed. 20 cases of acute cervical trauma and 30 age and sex matched healthy controls were enrolled. Scoring of extent of clinical severity was done based on the Frankel grading system. MRI was performed on a 3T system. Following the qualitative tractographic evaluation of white matter tracts, quantitative datametrics were calculated. In patients, the Mean FA value at the level of injury (0.43+/-0.08) was less than in controls (0.62+/-0.06), which was statistically significant (p value injury (1.30+/-0.24) in cases was higher than in controls (1.07+/-0.12, p value injury (r value=0.86). Negative correlation was found between clinical grade and Mean MD at the level of injury (r value=-0.38) which was however statistically not significant. Quantitative DTI indices are a useful parameter for detection of spinal cord injury. FA value was significantly decreased while MD value was significantly increased at the level of injury in cases as compared to controls. Further, FA showed significant correlation with clinical grade. DTI could thus serve as a reliable objective imaging tool for assessment of white matter integrity and prognostication of functional outcome. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Endogenous Proliferation after Spinal Cord Injury in Animal Models

    Science.gov (United States)

    McDonough, Ashley; Martínez-Cerdeño, Verónica

    2012-01-01

    Spinal cord injury (SCI) results in motor and sensory deficits, the severity of which depends on the level and extent of the injury. Animal models for SCI research include transection, contusion, and compression mouse models. In this paper we will discuss the endogenous stem cell response to SCI in animal models. All SCI animal models experience a similar peak of cell proliferation three days after injury; however, each specific type of injury promotes a specific and distinct stem cell response. For example, the transection model results in a strong and localized initial increase of proliferation, while in contusion and compression models, the initial level of proliferation is lower but encompasses the entire rostrocaudal extent of the spinal cord. All injury types result in an increased ependymal proliferation, but only in contusion and compression models is there a significant level of proliferation in the lateral regions of the spinal cord. Finally, the fate of newly generated cells varies from a mainly oligodendrocyte fate in contusion and compression to a mostly astrocyte fate in the transection model. Here we will discuss the potential of endogenous stem/progenitor cell manipulation as a therapeutic tool to treat SCI. PMID:23316243

  19. Endogenous Proliferation after Spinal Cord Injury in Animal Models

    Directory of Open Access Journals (Sweden)

    Ashley McDonough

    2012-01-01

    Full Text Available Spinal cord injury (SCI results in motor and sensory deficits, the severity of which depends on the level and extent of the injury. Animal models for SCI research include transection, contusion, and compression mouse models. In this paper we will discuss the endogenous stem cell response to SCI in animal models. All SCI animal models experience a similar peak of cell proliferation three days after injury; however, each specific type of injury promotes a specific and distinct stem cell response. For example, the transection model results in a strong and localized initial increase of proliferation, while in contusion and compression models, the initial level of proliferation is lower but encompasses the entire rostrocaudal extent of the spinal cord. All injury types result in an increased ependymal proliferation, but only in contusion and compression models is there a significant level of proliferation in the lateral regions of the spinal cord. Finally, the fate of newly generated cells varies from a mainly oligodendrocyte fate in contusion and compression to a mostly astrocyte fate in the transection model. Here we will discuss the potential of endogenous stem/progenitor cell manipulation as a therapeutic tool to treat SCI.

  20. Screw driver: an unusual cause of cervical spinal cord injury

    Science.gov (United States)

    Rabiu, Taopheeq Bamidele; Aremu, Abayomi Adeniran; Amao, Olusegun Adetunji; Awoleke, Jacob Olumuyiwa

    2011-01-01

    Non-missile penetrating spinal injuries are rare. Screw driver injury, more especially to the cervical spine, represents an even rarer subset. To our knowledge, this is the first reported case from West Africa of cervical spinal cord injury from a screw driver. A middle-aged man was stabbed from the back with a screw driver. He presented with right-sided C4 Brown-Sequard syndrome with the impaling object in situ. Cervical spine x-rays showed the screw driver to have gone into the spine between the spinous processes of C4 and C5, traversing the spinal canal and lodged in the anterior part of the C4/5 intervertebral disc space. C4 and C5 laminectomies were performed and the screw driver removed under vision. The object was found to have traversed the right side of the cervical spinal cord. The dural tear was repaired. He had some neurologic improvement initially, but later declined. He died from severe pulmonary complications 2 weeks postinjury. Screw driver represents an unusual cause of non-missile penetrating cervical spinal injury. Its neurological effects and complications of the cord injury lead to significant morbidity and mortality. PMID:22679187

  1. Acute sports-related spinal cord injury: contemporary management principles.

    Science.gov (United States)

    Kim, David H; Vaccaro, Alexander R; Berta, Scott C

    2003-07-01

    Improvements in helmet and equipment design have led to significant decreases in overall injury incidence, but no available helmet can prevent catastrophic injury to the neck and cervical spine. The most effective strategy for preventing this type of injury appears to be careful instruction, training, and regulations designed to eliminate head-first contact. The incidence of football-related quadriplegia has decreased from a peak of 13 cases per one million players between 1976 and 1980 to 3 per million from 1991 to 1993, mostly as a result of systematic research and an organized effort to eliminate high-risk behavior. An episode of transient quadriparesis does not appear to be a risk factor for catastrophic spinal cord injury. Torg reported that 0 of 117 quadriplegics in the National Football Head and Neck Injuries Registry recalled a prior episode of transient quadriparesis, and 0 of the 45 patients originally studied in his transient quadriparesis cohort have subsequently suffered quadriplegia. The significance of developmental spinal stenosis is unclear. Plain radiographic identification of a narrow spinal canal in a player sustaining cervical cord neurapraxia warrants further evaluation by MRI to rule out functional stenosis. The presence of actual cord deformation or compression on MRI should preclude participation in high-risk contact or collision sports.

  2. Acute traumatic spinal cord injury induces glial activation in the cynomolgus macaque (Macaca fascicularis).

    Science.gov (United States)

    Miller, A D; Westmoreland, S V; Evangelous, N R; Graham, A; Sledge, J; Nesathurai, S

    2012-06-01

    Traumatic spinal cord injury leads to direct myelin and axonal damage and leads to the recruitment of inflammatory cells to site of injury. Although rodent models have provided the greatest insight into the genesis of traumatic spinal cord injury (TSCI), recent studies have attempted to develop an appropriate non-human primate model. We explored TSCI in a cynomolgus macaque model using a balloon catheter to mimic external trauma to further evaluate the underlying mechanisms of acute TSCI. Following 1hour of spinal cord trauma, there were focal areas of hemorrhage and necrosis at the site of trauma. Additionally, there was a marked increased expression of macrophage-related protein 8, MMP9, IBA-1, and inducible nitric oxide synthase in macrophages and microglia at the site of injury. This data indicate that acute TSCI in the cynomolgus macaque is an appropriate model and that the earliest immunohistochemical changes noted are within macrophage and microglia populations. © 2012 John Wiley & Sons A/S.

  3. Concise review: reactive astrocytes and stem cells in spinal cord injury: good guys or bad guys?

    Science.gov (United States)

    Lukovic, Dunja; Stojkovic, Miodrag; Moreno-Manzano, Victoria; Jendelova, Pavla; Sykova, Eva; Bhattacharya, Shomi S; Erceg, Slaven

    2015-04-01

    Spinal cord injury (SCI) usually results in long lasting locomotor and sensory neuron degeneration below the injury. Astrocytes normally play a decisive role in mechanical and metabolic support of neurons, but in the spinal cord they cause injury, exerting well-known detrimental effects that contribute to glial scar formation and inhibition of axon outgrowth. Cell transplantation is considered a promising approach for replacing damaged cells and promoting neuroprotective and neuroregenerative repair, but the effects of the grafted cells on local tissue and the regenerative properties of endogenous neural stem cells in the injured spinal cord are largely unknown. During the last 2 decades cumulative evidence from diverse animal models has indicated that reactive astrocytes in synergy with transplanted cells could be beneficial for injury in multiple ways, including neuroprotection and axonal growth. In this review, we specifically focus on the dual opposing roles of reactive astrocytes in SCI and how they contribute to the creation of a permissive environment when combined with transplanted cells as the influential components for a local regenerative niche. Modulation of reactive astrocyte function might represent an extremely attractive new therapy to enhance the functional outcomes in patients. © 2015 AlphaMed Press.

  4. Common data elements for spinal cord injury clinical research

    DEFF Research Database (Denmark)

    Biering-Sørensen, F; Alai, S; Anderson, K.

    2015-01-01

    OBJECTIVES: To develop a comprehensive set of common data elements (CDEs), data definitions, case report forms and guidelines for use in spinal cord injury (SCI) clinical research, as part of the CDE project at the National Institute of Neurological Disorders and Stroke (NINDS) of the US National...... with and cross-referenced to development of the International Spinal Cord Society (ISCoS) International SCI Data Sets. The recommendations were compiled, subjected to internal review and posted online for external public comment. The final version was reviewed by all working groups and the NINDS CDE team before...

  5. Extracellular matrix components as therapeutics for spinal cord injury.

    Science.gov (United States)

    Haggerty, Agnes E; Marlow, Megan M; Oudega, Martin

    2017-06-23

    There is no treatment for people with spinal cord injury that leads to significant functional improvements. The extracellular matrix is an intricate, 3-dimensional, structural framework that defines the environment for cells in the central nervous system. The components of extracellular matrix have signaling and regulatory roles in the fate and function of neuronal and non-neuronal cells in the central nervous system. This review discusses the therapeutic potential of extracellular matrix components for spinal cord repair. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Motor cortex changes in spinal cord injury: a TMS study.

    Science.gov (United States)

    Saturno, Eleonora; Bonato, Claudio; Miniussi, Carlo; Lazzaro, Vincenzodi; Callea, Leonardo

    2008-12-01

    Using paired pulse transcranial magnetic stimulation (TMS) paradigms, we studied cortical excitability in a patient with spinal cord lesion. During posterior tibial nerve stimulation, the contextual flexion of hand fingers contralateral to the stimulated lower limb had suggested a change in motor cortex excitability. Results showed a decrease in the activity of motor cortex inhibitory circuits. This could suggest that in spinal cord injury, just as in stroke and peripheral deafferentation, a disinhibition of latent synapses within the motor cortex and the rewriting of a new motor map can occur.

  7. 76 FR 56504 - Proposed Information Collection (Spinal Cord Injury Patient Care Survey) Activity: Comment Request

    Science.gov (United States)

    2011-09-13

    ... AFFAIRS Proposed Information Collection (Spinal Cord Injury Patient Care Survey) Activity: Comment Request... spinal cord patients' satisfaction with VA rehabilitation and health care system. Affected Public... Cord Injury Patient Care Survey, VA Form 10-0515. OMB Control Number: OMB Control No. 2900-New. Type of...

  8. Developing a Meaningful Life: Social Reintegration of Service-Members and Veterans with Spinal Cord Injury

    Science.gov (United States)

    2013-10-01

    Reintegration of Service-Members and Veterans with Spinal Cord Injury PRINCIPAL INVESTIGATOR: Seth D. Messinger...SUBTITLE Developing a Meaningful Life: Social Reintegration of Service- Social Reintegration of Service Me Members and Veterans with Spinal Cord...communities and cultural identities that is key to long-term success . 15. SUBJECT TERMS Spinal Cord Injury, Community Reintegration , Qualitative

  9. A progressive compression model of thoracic spinal cord injury in mice: function assessment and pathological changes in spinal cord.

    Science.gov (United States)

    Sun, Guo-Dong; Chen, Yan; Zhou, Zhi-Gang; Yang, Shu-Xian; Zhong, Cheng; Li, Zhi-Zhong

    2017-08-01

    Non-traumatic injury accounts for approximately half of clinical spinal cord injury, including chronic spinal cord compression. However, previous rodent spinal cord compression models are mainly designed for rats, few are available for mice. Our aim is to develop a thoracic progressive compression mice model of spinal cord injury. In this study, adult wild-type C57BL/6 mice were divided into two groups: in the surgery group, a screw was inserted at T9 lamina to compress the spinal cord, and the compression was increased by turning it further into the canal (0.2 mm) post-surgery every 2 weeks up to 8 weeks. In the control group, a hole was drilled into the lamina without inserting a screw. The results showed that Basso Mouse Scale scores were lower and gait worsened. In addition, the degree of hindlimb dysfunction in mice was consistent with the degree of spinal cord compression. The number of motor neurons in the anterior horn of the spinal cord was reduced in all groups of mice, whereas astrocytes and microglia were gradually activated and proliferated. In conclusion, this progressive compression of thoracic spinal cord injury in mice is a preferable model for chronic progressive spinal cord compression injury.

  10. Neural Stem Cell Transplantation in Experimental Contusive Model of Spinal Cord Injury

    OpenAIRE

    Carelli, Stephana; Giallongo, Toniella; Gerace, Claudio; De Angelis, Anthea; Basso, Michele D.; Di Giulio, Anna Maria; Gorio, Alfredo

    2014-01-01

    Spinal cord injury is a devastating clinical condition, characterized by a complex of neurological dysfunctions. Animal models of spinal cord injury can be used both to investigate the biological responses to injury and to test potential therapies. Contusion or compression injury delivered to the surgically exposed spinal cord are the most widely used models of the pathology. In this report the experimental contusion is performed by using the Infinite Horizon (IH) Impactor device, which allow...

  11. Early access to vocational rehabilitation for spinal cord injury inpatients.

    Science.gov (United States)

    Middleton, James W; Johnston, Deborah; Murphy, Gregory; Ramakrishnan, Kumaran; Savage, Nerida; Harper, Rachel; Compton, Jacquelyn; Cameron, Ian D

    2015-08-18

    To describe a novel early vocational rehabilitation programme (In-Voc) for inpatients with spinal cord injury and to report early vocational outcomes. Observational longitudinal cohort study. One hundred adults with spinal cord injury admitted to spinal units in Sydney, Australia within a 24-month period. In-Voc was offered to all inpatients within the first 6 months of acquired spinal cord injury and was provided by trained vocational consultants. Baseline demographics, opinions about work readiness, details of the vocational services provided and preliminary employment outcomes were documented. The In-Voc programme was relatively short in duration (median 11 weeks, range 3-39 weeks) with a median total of 9.1 h (range 1-75.2 h) of service delivered per participant. At case closure (median 3 weeks post-discharge), 29/84 (34.5%) of participants were in paid employment (7% full-time, 8% part-time, 7% on sick leave, and 12% working with hours unknown), 36% were unemployed (6% seeking work, 16% not seeking work, 14% job seeking status unknown), 13% were students or in-training, and 17% were in vocational rehabilitation. Our research suggests that implementing an early vocational rehabilitation programme with individuals in the hospital setting is feasible and has good potential for enhancing post-injury labour-force participation.

  12. Observational study of the effectiveness of spinal cord injury rehabilitation using the Spinal Cord Injury-Ability Realization Measurement Index.

    Science.gov (United States)

    Scivoletto, G; Bonavita, J; Torre, M; Baroncini, I; Tiberti, S; Maietti, E; Laurenza, L; China, S; Corallo, V; Guerra, F; Buscaroli, L; Candeloro, C; Brunelli, E; Catz, A; Molinari, M

    2016-06-01

    Retrospective observational study. The objective of this study was to determine the rehabilitation potential and the extent to which it is realized in a cohort of spinal cord injury patients using the Spinal Cord Injury-Ability Realization Measurement Index (SCI-ARMI) and to study the clinical factors that influence this realization. Two spinal units in Italy. Consecutive patients were assessed at the end of an in-patient rehabilitation program using the Spinal Cord Independence Measure and the International Standards for Neurological Classification of Spinal Cord Injury. On the basis of these data and of the age and gender of the patients, we calculated the SCI-ARMI score. Regression analyses were performed to study the relationship between clinical factors and the extent to which rehabilitation potential is realized. We examined the data for 306 patients. Most patients were discharged without having reached their rehabilitation potential, with an SCI-ARMI score rehabilitation. The SCI-ARMI is an effective tool that can be used to measure the achievement of rehabilitation potential in SCI patients and to identify groups of patients who are at risk of not meeting their rehabilitative potential.

  13. A Clinical Perspective and Definition of Spinal Cord Injury.

    Science.gov (United States)

    Kretzer, Ryan M

    2016-04-01

    Spinal cord injury (SCI) can be complete or incomplete. The level of injury in SCI is defined as the most caudal segment with motor function rated at greater than or equal to 3/5, with pain and temperature preserved. The standard neurological classification of SCI provided by the American Spinal Injury Association (ASIA) assigns grades from ASIA A (complete SCI) through ASIA E (normal sensory/motor), with B, C, and D representing varying degrees of injury between these extremes. The most common causes of SCI include trauma (motor vehicle accidents, sports, violence, falls), degenerative spinal disease, vascular injury (anterior spinal artery syndrome, epidural hematoma), tumor, infection (epidural abscess), and demyelinating processes (). (SDC Figure 1, http://links.lww.com/BRS/B91)(Figure is included in full-text article.).

  14. Therapeutic effects of neurotrophic factors in experimental spinal cord injury models

    Directory of Open Access Journals (Sweden)

    Enomoto M

    2016-03-01

    Full Text Available Mitsuhiro Enomoto1,21Department of Orthopaedic and Spinal Surgery, Graduate School, 2Hyperbaric Medical Center, Tokyo Medical and Dental University, Tokyo, JapanAbstract: Neurotrophic factors (NFs play important roles in regenerative medicine approaches to mitigate primary and secondary damage after spinal cord injury (SCI because their receptors are still present in the injured spinal cord even though the expression of the NFs themselves is decreased. Several reports have shown that NF administration increases regenerative signaling after SCI, particularly by stimulating axonal growth. However, few NFs cross the blood–brain barrier, and most of them show low stability and limited diffusion within the central nervous system. To overcome this problem, transplantation strategies using genetically modified NF-secreting Schwann cells, neural and glial progenitor cells, and mesenchymal stem cells have been applied to animal models of SCI. In particular, multifunctional NFs that bind to TrkB, TrkC, and p75NTR receptors have been discovered in the last decade and utilized in preclinical cell therapies for spinal cord repair. To achieve functional recovery after SCI, it is important to consider the different effects of each NF on axonal regeneration, and strategies should be established to specifically harness the multifunctional properties of NFs. This review provides an overview of multifunctional NFs combined with cell therapy in experimental SCI models and a proposal to implement their use as a clinically viable therapy.Keywords: spinal cord injury, neurotrophic factor, multineurotrophin, regeneration, cell transplantation

  15. Review of Epidural Spinal Cord Stimulation for Augmenting Cough after Spinal Cord Injury.

    Science.gov (United States)

    Hachmann, Jan T; Calvert, Jonathan S; Grahn, Peter J; Drubach, Dina I; Lee, Kendall H; Lavrov, Igor A

    2017-01-01

    Spinal cord injury (SCI) remains a debilitating condition for which there is no cure. In addition to loss of somatic sensorimotor functions, SCI is also commonly associated with impairment of autonomic function. Importantly, cough dysfunction due to paralysis of expiratory muscles in combination with respiratory insufficiency can render affected individuals vulnerable to respiratory morbidity. Failure to clear sputum can aggravate both risk for and severity of respiratory infections, accounting for frequent hospitalizations and even mortality. Recently, epidural stimulation of the lower thoracic spinal cord has been investigated as novel means for restoring cough by evoking expiratory muscle contraction to generate large positive airway pressures and expulsive air flow. This review article discusses available preclinical and clinical evidence, current challenges and clinical potential of lower thoracic spinal cord stimulation (SCS) for restoring cough in individuals with SCI.

  16. The Effect of Injury-Related Characteristics on Changes in Marital Status after Spinal Cord Injury.

    Science.gov (United States)

    Merghati Khoi, Effat; Latifi, Sahar; Rahdari, Fereshteh; Shakeri, Hania; Arman, Farid; Koushki, Davood; Norouzi Javidan, Abbas; Taheri Otaghsara, Seyede-Mohadeseh

    2015-10-01

    Spinal cord injury (SCI) imposes a significant burden on the social and marital life. Here, we assessed the divorce rate and changes in marital status among a sample of Iranian individuals with SCI. Referred patients to Brain and Spinal Cord Injury Research Center were invited to participate in this cross-sectional investigation. The Main exclusion criteria were coincidental brain injury, history of chronic diseases before SCI and substance use. Demographic characteristics (including age, gender, educational level, marital status before and after injury and duration of marriage) and Injury characteristics (level of the injury, American spinal injury association (ASIA) scale and Spinal cord independence measure III (SCIM)) were collected. Total of 241 subjects with SCI participated in this investigation (164 (68%) male and 77 (32%) female). Among men, 16.5% [95% CI: 10.81%-22.18%] and among women 18.2% [95% CI: 9.58%-26.81%] got divorced after injury. Duration of marriage before injury was significantly related to lower divorce rate (Pdivorce rate of 17% [95% CI: 13%-20.9%] after SCI in a sample of Iranian population. The protective influence of age in maintenance of marriage was only detected in men, which proposes existence of a sexual polymorphism in the role of age. Divorce rate was similar between two genders and injury characteristics were not related to divorce rate as well.

  17. Ketogenic Metabolism Inhibits Histone Deacetylase (HDAC) and Reduces Oxidative Stress After Spinal Cord Injury in Rats.

    Science.gov (United States)

    Wang, Xiaomeng; Wu, Xiaoliang; Liu, Qi; Kong, Ganggang; Zhou, Jian; Jiang, Jie; Wu, Xiuhua; Huang, Zhiping; Su, Wanhan; Zhu, Qingan

    2017-12-16

    The aim of this study is to investigate the effect of ketogenic metabolism, induced by different diet interventions, on histone acetylation and its potential antioxidant capacity to injured spinal cord tissue in rats. 72 male Sprague-Dawley rats were randomly divided into 4 groups, fed with ketogenic diet (KD), every other day fasting (EODF), every other day ketogenic diet (EODKD) and standard diet (SD) respectively for 2 weeks. β-Hydroxybutyrate (βOHB) concentration was measured both in serum and cerebrospinal fluid (CSF). C5 spinal cord tissue was harvested before, at 3 h and 24 h after injury for analysis of HDAC activity, histone acetylation and oxidative makers. All three dietary interventions resulted in a significant increase of βOHB level in both serum and CSF, and inhibited HDAC activity by 31-43% in spinal cord. Moreover, the expressions of acetylated histone AcH3K9 and AcH3K14 were significantly increased. Anti-oxidative stress genes Foxo3a and Mt2 and related proteins, such as mitochondrial superoxide dismutase (SOD), FOXO3a, catalase were increased in dietary intervention groups. After SCI, high ketogenic metabolism demonstrated significant reduction of the expression of lipid peroxidation factors malondialdehyde (MDA), and this might contribute to the reported neuroprotection of the spinal cord from oxidative damage possibly mediated by increasing SOD. The result of this study suggested that by inhibiting HDAC activity and modifying related gene transcription, ketogenic metabolism, induced by KD, EODF or EODKD, might reduce oxidative damage in the spinal cord tissue after acute injury. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. MicroRNA dysregulation in Spinal Cord Injury: causes, consequences and therapeutics

    Directory of Open Access Journals (Sweden)

    Manuel eNieto-Díaz

    2014-02-01

    Full Text Available Trauma to the spinal cord causes permanent disability to more than 180,000 people every year worldwide. The initial mechanical damage triggers a complex set of secondary events involving the neural, vascular, and immune systems that largely determine the functional outcome of the spinal cord injury (SCI. Cellular and biochemical mechanisms responsible for this secondary injury largely depend on activation and inactivation of specific gene programs. Recent studies indicate that microRNAs function as gene expression switches in key processes of the SCI. Microarray data from rodent contusion models reveal that SCI induces changes in the global microRNA expression patterns. Variations in microRNA abundance largely result from alterations in the expression of the cells at the damaged spinal cord. However, microRNA expression levels after SCI are also influenced by the infiltration of immune cells to the injury site and the death and migration of specific neural cells after injury. Evidences on the role of microRNAs in the SCI pathophysiology have come from different sources. Bioinformatic analysis of microarray data has been used to identify specific variations in microRNA expression underlying transcriptional changes in target genes, which are involved in key processes in the SCI. Direct evidences on the role of microRNAs in SCI are scarcer, although recent studies have identified several microRNAs (miR-21, miR/486, miR-20 involved in key mechanisms of the SCI such as cell death or astrogliosis, among others. From a clinical perspective, different evidences make clear that microRNAs can be potent therapeutic tools to manipulate cell state and molecular processes in order to enhance functional recovery. The present article reviews the actual knowledge on how injury affects microRNA expression and the meaning of these changes in the SCI pathophysiology, to finally explore the clinical potential of microRNAs in the SCI.

  19. A Structured Approach to Capture the Lived Experience of Spinal Cord Injury : Data Model and Questionnaire of the International Spinal Cord Injury Community Survey

    NARCIS (Netherlands)

    Fekete, Christine; Post, Marcel W M; Bickenbach, Jerome; Middleton, James; Prodinger, Birgit; Selb, Melissa; Stucki, Gerold

    The International Spinal Cord Injury (InSCI) community survey has been developed to collect internationally comparable data on the lived experience of persons with spinal cord injury (SCI) in all 6 WHO regions. The InSCI survey provides a crucial first step to generate evidence on functioning,

  20. A Structured Approach to Capture the Lived Experience of Spinal Cord Injury : Data Model and Questionnaire of the International Spinal Cord Injury Community Survey

    NARCIS (Netherlands)

    Fekete, Christine; Post, Marcel W. M.; Bickenbach, Jerome; Middleton, James; Prodinger, Birgit; Selb, Melissa; Stucki, Gerold

    2017-01-01

    The International Spinal Cord Injury (InSCI) community survey has been developed to collect internationally comparable data on the lived experience of persons with spinal cord injury (SCI) in all 6 WHO regions. The InSCI survey provides a crucial first step to generate evidence on functioning,

  1. Relationship between Spinal Cord Volume and Spinal Cord Injury due to Spinal Shortening.

    Directory of Open Access Journals (Sweden)

    Feng Qiu

    Full Text Available Vertebral column resection is associated with a risk of spinal cord injury. In the present study, using a goat model, we aimed to investigate the relationship between changes in spinal cord volume and spinal cord injury due to spinal shortening, and to quantify the spinal cord volume per 1-mm height in order to clarify a safe limit for shortening. Vertebral column resection was performed at T10 in 10 goats. The spinal cord was shortened until the somatosensory-evoked potential was decreased by 50% from the baseline amplitude or delayed by 10% relative to the baseline peak latency. A wake-up test was performed, and the goats were observed for two days postoperatively. Magnetic resonance imaging was used to measure the spinal cord volume, T10 height, disc height, osteotomy segment height, and spinal segment height pre- and postoperatively. Two of the 10 goats were excluded, and hence, only data from eight goats were analyzed. The somatosensory-evoked potential of these eight goats demonstrated meaningful changes. With regard to neurologic function, five and three goats were classified as Tarlov grades 5 and 4 at two days postoperatively. The mean shortening distance was 23.6 ± 1.51 mm, which correlated with the d-value (post-pre of the spinal cord volume per 1-mm height of the osteotomy segment (r = 0.95, p < 0.001 and with the height of the T10 body (r = 0.79, p = 0.02. The mean d-value (post-pre of the spinal cord volume per 1-mm height of the osteotomy segment was 142.87 ± 0.59 mm3 (range, 142.19-143.67 mm3. The limit for shortening was approximately 106% of the vertebral height. The mean volumes of the osteotomy and spinal segments did not significantly change after surgery (t = 0.310, p = 0.765 and t = 1.241, p = 0.255, respectively. Thus, our results indicate that the safe limit for shortening can be calculated using the change in spinal cord volume per 1-mm height.

  2. Diffusion tensor imaging of spinal cord parenchyma lesion in rat with chronic spinal cord injury.

    Science.gov (United States)

    Zhao, Can; Rao, Jia-Sheng; Pei, Xiao-Jiao; Lei, Jian-Feng; Wang, Zhan-Jing; Zhao, Wen; Wei, Rui-Han; Yang, Zhao-Yang; Li, Xiao-Guang

    2017-11-14

    Adequate evaluation of spinal cord parenchyma and accurate identification of injury range are considered two premises for the research and treatment of chronic spinal cord injury (SCI). Diffusion tensor imaging (DTI) provides information about water diffusion in spinal cord, and thus makes it possible to realize these premises. In this study, we conducted magnetic resonance imaging (MRI) for Wistar rats 84days after spinal cord contusion. DTI metrics including fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) from different positions of the injured cord were collected, analyzed, and compared with the histological results and locomotor outcomes. Moreover, we performed fiber tractography, and examined the difference in cavity percentage obtained respectively via conventional MRI, DTI and histology. Results showed that the chronic SCI rats had the largest changes of all DTI metrics at the epicenter; the farther away from the epicenter, the smaller the variation. FA, AD and RD were all influenced by SCI in a greater space range than MD. The good consistency of FA values and histological results in specific regions evidenced FA's capability of reflecting Wallerian degeneration after SCI. DTI metrics at the epicenter in ventral funiculus also showed a close correlation with the BBB scores. Additionally, supported by the histological results, DTI enables a more accurate measurement of cavity percentage compared to the conventional MRI. DTI parameters might comprehensively reflect the post-SCI pathological status of spinal cord parenchyma at the epicenter and distal parts during the chronic stage, while showing good consistency with locomotor performance. DTI combined with tractography could intuitively display the distribution of spared fibers after SCI and accurately provide information such as cavity area. This may shed light on the research and treatment of chronic SCI. Copyright © 2017 Elsevier Inc. All rights

  3. 2009 review and revisions of the international standards for the neurological classification of spinal cord injury

    DEFF Research Database (Denmark)

    Waring, William P; Biering-Sorensen, Fin; Burns, Stephen

    2010-01-01

    The International Standards for the Neurological Classification of Spinal Cord Injury (ISNCSCI) were recently reviewed by the ASIA's Education and Standards Committees, in collaboration with the International Spinal Cord Society's Education Committee. Available educational materials for the ISNCSCI...

  4. Microtubule stabilization reduces scarring and causes axon regeneration after spinal cord injury

    NARCIS (Netherlands)

    F. Hellal (Farida); A. Hurtado (Andres); J. Ruschel (Jörg); K.C. Flynn (Kevin); C.J. Laskowski (Claudia); M. Umlauf (Martina); L.C. Kapitein (Lukas); D. Strikis (Dinara); V. Lemmon (Vance); J. Bixby (John); C.C. Hoogenraad (Casper); F. Bradke (Frank)

    2011-01-01

    textabstractHypertrophic scarring and poor intrinsic axon growth capacity constitute major obstacles for spinal cord repair. These processes are tightly regulated by microtubule dynamics. Here, moderate microtubule stabilization decreased scar formation after spinal cord injury in rodents through

  5. Spinal cord stimulation: therapeutic benefits and movement generation after spinal cord injury.

    Science.gov (United States)

    Tator, Charles H; Minassian, Karen; Mushahwar, Vivian K

    2012-01-01

    Spinal cord injury (SCI) is a devastating neurological condition that leads to loss of motor and sensory function. It commonly causes impairments in limb movements, respiration, bowel and bladder function, as well as secondary complications including pain, spasticity, and pressure ulcers. Numerous interventions such as neuroprotection, regeneration, pharmacology, rehabilitation training, and functional electrical stimulation are under investigation for improving function after SCI. This chapter discusses the use of spinal cord stimulation (epidural and intraspinal electrical stimulation) for alleviating pain and spasticity, and restoring standing and walking. Epidural stimulation is effective in reducing the intensity of intractable pain, but its effectiveness in the treatment of spasticity remains unclear. It can induce rhythmic, locomotor-like movements in the legs, presumably due to the activation of afferent pathways. Intraspinal microstimulation is a new electrical stimulation approach that activates locomotor-related networks within the ventral regions of the lumbosacral spinal cord. In animals, this approach is capable of producing prolonged, fatigue-resistant standing and stepping of the hindlegs. While the results in animals have been very encouraging, technical advancements are necessary prior to its implementation in humans with SCI. Taken collectively, spinal cord stimulation holds substantial promise in restoring function after neural injury or disease. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Clinical usefulness of urodynamic assessment for maintenance of bladder function in patients with spinal cord injury.

    Science.gov (United States)

    Nosseir, Michael; Hinkel, Andreas; Pannek, Jürgen

    2007-01-01

    The vast majority of spinal cord lesions cause neurogenic bladder disorders. Detrusor hyperreflexia presents a major risk factor for renal damage in these patients. We evaluated the long-term results of patients with spinal cord injury treated at our institution. Eighty spinal cord injury patients (60 male, 20 female; mean age 29.6 years) with at least one follow-up visit a year for a minimum of five consecutive years, were included in this retrospective analysis. Follow-up included urodynamic evaluation, sonography of the upper and lower urinary tract, urine examination, and evaluation of renal function. Treatment modifications were based on the urodynamic findings. Mean follow-up was 67.3 months (range 60-103 months). At initial presentation, 51 patients performed intermittent catheterization, 7 had indwelling catheters, 10 utilized reflex voiding, 2 patients presented with a Brindley stimulator, 10 patients used abdominal straining. At the end of our study, no patient had signs of renal damage. To achieve that goal, 8 patients underwent sphincterotomy, 3 received a Brindley stimulator, 3 underwent bladder augmentation, one Kock pouch was performed, and 12 patients were treated with botulinum-A-toxin injections in the detrusor. Twenty-two patients received intravesical anticholinergic therapy. In merely three patients, treatment was not modified during the entire follow-up. In the long term, treatment strategy of neurogenic bladder dysfunction in patients with spinal cord injury had to be modified in almost all patients. 18.8% underwent surgery. For protection of the upper urinary tract and maintenance of continence, regular urodynamic follow-up is warranted. (c) 2006 Wiley-Liss, Inc.

  7. Assessment of Hyperactive Reflexes in Patients with Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Dali Xu

    2015-01-01

    Full Text Available Hyperactive reflexes are commonly observed in patients with spinal cord injury (SCI but there is a lack of convenient and quantitative characterizations. Patellar tendon reflexes were examined in nine SCI patients and ten healthy control subjects by tapping the tendon using a hand-held instrumented hammer at various knee flexion angles, and the tapping force, quadriceps EMG, and knee extension torque were measured to characterize patellar tendon reflexes quantitatively in terms of the tendon reflex gain (Gtr, contraction rate (Rc, and reflex loop time delay (td. It was found that there are significant increases in Gtr and Rc and decrease in td in patients with spinal cord injury as compared to the controls (P<0.05. This study presented a convenient and quantitative method to evaluate reflex excitability and muscle contraction dynamics. With proper simplifications, it can potentially be used for quantitative diagnosis and outcome evaluations of hyperreflexia in clinical settings.

  8. Exercise and sport for persons with spinal cord injury.

    Science.gov (United States)

    Martin Ginis, Kathleen A; Jörgensen, Sophie; Stapleton, Jessica

    2012-11-01

    This review article provides an overview of the evidence that links exercise and sports participation to physical and psychological well-being among people with spinal cord injury. Two aspects of physical well-being are examined, including the prevention of chronic disease and the promotion of physical fitness. Multiple aspects of psychosocial well-being are discussed, including mental health, social participation, and life satisfaction. The review concludes with future research recommendations and a discussion of challenges and opportunities for using exercise and sports to promote health and well-being among people living with spinal cord injury. Copyright © 2012 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  9. Shedding light on restoring respiratory function after spinal cord injury

    Directory of Open Access Journals (Sweden)

    Warren J Alilain

    2009-10-01

    Full Text Available Loss of respiratory function is one of the leading causes of death following spinal cord injury. Because of this, much work has been done in studying ways to restore respiratory function following SCI - including pharmacological and regeneration strategies. With the emergence of new and powerful tools from molecular neuroscience, new therapeutically relevant alternatives to these approaches have become available, including expression of light sensitive proteins called channelrhodopsins. In this article we briefly review the history of various attempts to restore breathing after C2 hemisection, and focus on our recent work using the activation of light sensitive channels to restore respiratory function after experimental spinal cord injury. We also discuss how such light induced activity can help shed light on the inner workings of the central nervous system respiratory circuitry that controls diaphragmatic function.

  10. International spinal cord injury endocrine and metabolic extended data set

    DEFF Research Database (Denmark)

    Bauman, W A; Wecht, J M; Biering-Sørensen, F

    2017-01-01

    OBJECTIVE: The objective of this study was to develop the International Spinal Cord Injury (SCI) Endocrine and Metabolic Extended Data Set (ISCIEMEDS) within the framework of the International SCI Data Sets that would facilitate consistent collection and reporting of endocrine and metabolic...... (ISCoS) Executive and Scientific Committees, American Spinal Injury Association (ASIA) Board, other interested organizations, societies and individual reviewers. The data set was posted for two months on ISCoS and ASIA websites for comments. Variable names were standardized, and a suggested database...... findings in the SCI population. SETTING: This study was conducted in an international setting. METHODS: The ISCIEMEDS was developed by a working group. The initial ISCIEMEDS was revised based on suggestions from members of the International SCI Data Sets Committee, the International Spinal Cord Society...

  11. Oxidative stress and antioxidant therapy in traumatic spinal cord injuries.

    Science.gov (United States)

    Bedreag, Ovidiu Horea; Rogobete, Alexandru Florin; Sărăndan, Mirela; Cradigati, Alina; Păpurică, Marius; Roşu, Oana Maria; Dumbuleu, Corina Maria; Săndesc, Dorel

    2014-10-01

    Spinal cord injury (SCI) is often accompanied by motor, vegetative and sensitive dysfunctions that can significantly decrease the chance of the complete recovery of the patients. The pathophysiological implication of these dysfunctions is represented by the increased production of the reactive species that are extremely aggressive to the surrounding tissue. The combination of massive production of free radicals, low concentration of antioxidants and the hypermetabolism present in patients with SCI leads to enhancement of the oxidative stress. Current studies are focused on several biological active compounds that are able to reduce the effects of free radicals - tissue necrosis, inflammation, infection, apoptosis. In this paper, the mechanism of the action of several biological active compounds that are able to significantly reduce oxidative stress in critical patients with spinal cord injury is presented.

  12. Functional recovery in acute traumatic spinal cord injury after transplantation of human umbilical cord mesenchymal stem cells.

    Science.gov (United States)

    Hu, Sheng-Li; Luo, Hai-Shui; Li, Jiang-Tao; Xia, Yong-Zhi; Li, Lan; Zhang, Li-Jun; Meng, Hui; Cui, Gao-Yu; Chen, Zhi; Wu, Nan; Lin, Jiang-Kai; Zhu, Gang; Feng, Hua

    2010-11-01

    Spinal cord injury results in loss of neurons, degeneration of axons, formation of glial scar, and severe functional impairment. Human umbilical cord mesenchymal stem cells can be induced to form neural cells in vitro. Thus, these cells have a potential therapeutic role for treating spinal cord injury. Rats were randomly divided into three groups: sham operation group, control group, and human umbilical cord mesenchymal stem cell group. All groups were subjected to spinal cord injury by weight drop device except for sham group. Thirty-six female Sprague-Dawley rats. The control group received Dulbecco's modified essential media/nutrient mixture F-12 injections, whereas the human umbilical cord mesenchymal stem cell group undertook cells transplantation at the dorsal spinal cord 2 mm rostrally and 2 mm caudally to the injury site at 24 hrs after spinal cord injury. Rats from each group were examined for neurologic function and contents of brain-derived neurotrophic factor, glial cell line-derived neurotrophic factor, and neurotrophin-3. Survival, migration, and differentiation of human umbilical cord mesenchymal stem cells, regeneration of axons, and formation of glial scar were also explored by using immunohistochemistry and immunofluorescence. Recovery of hindlimb locomotor function was significantly enhanced in the human umbilical cord mesenchymal stem cells grafted animals at 5 wks after transplantation. This recovery was accompanied by increased length of neurofilament-positive fibers and increased numbers of growth cone-like structures around the lesion site. Transplanted human umbilical cord-mesenchymal stem cells survived, migrated over short distances, and produced large amounts of glial cell line-derived neurotrophic factor and neurotrophin-3 in the host spinal cord. There were fewer reactive astrocytes in both the rostral and caudal stumps of the spinal cord in the human umbilical cord-mesenchymal stem cell group than in the control group. Treatment with

  13. Rat hair follicle stem cells differentiate and promote recovery following spinal cord injury

    OpenAIRE

    Najafzadeh, Nowruz; Nobakht, Maliheh; Pourheydar, Bagher; Golmohammadi, Mohammad Ghasem

    2013-01-01

    Emerging studies of treating spinal cord injury (SCI) with adult stem cells led us to evaluate the effects of transplantation of hair follicle stem cells in rats with a compression-induced spinal cord lesion. Here, we proposed a hypothesis that rat hair follicle stem cell transplantation can promote the recovery of injured spinal cord. Compression-induced spinal cord injury was induced in Wistar rats in this study. The bulge area of the rat vibrissa follicles was isolated, cultivated and char...

  14. Metabolite profiles correlate closely with neurobehavioral function in experimental spinal cord injury in rats.

    Directory of Open Access Journals (Sweden)

    Yusuke Fujieda

    Full Text Available Traumatic spinal cord injury (SCI results in direct physical damage and the generation of local factors contributing to secondary pathogenesis. Untargeted metabolomic profiling was used to uncover metabolic changes and to identify relationships between metabolites and neurobehavioral functions in the spinal cord after injury in rats. In the early metabolic phase, neuronal signaling, stress, and inflammation-associated metabolites were strongly altered. A dynamic inflammatory response consisting of elevated levels of prostaglandin E2 and palmitoyl ethanolamide as well as pro- and anti-inflammatory polyunsaturated fatty acids was observed. N-acetyl-aspartyl-glutamate (NAAG and N-acetyl-aspartate (NAA were significantly decreased possibly reflecting neuronal cell death. A second metabolic phase was also seen, consistent with membrane remodeling and antioxidant defense response. These metabolomic changes were consistent with the pathology and progression of SCI. Several metabolites, including NAA, NAAG, and the ω-3 fatty acids docosapentaenoate and docosahexaenoate correlated greatly with the established Basso, Beattie and Bresnahan locomotive score (BBB score. Our findings suggest the possibility of a biochemical basis for BBB score and illustrate that metabolites may correlate with neurobehavior. In particular the NAA level in the spinal cord might provide a meaningful biomarker that could help to determine the degree of injury severity and prognosticate neurologic recovery.

  15. Neural substrates for the motivational regulation of motor recovery after spinal-cord injury.

    Directory of Open Access Journals (Sweden)

    Yukio Nishimura

    Full Text Available It is believed that depression impedes and motivation enhances functional recovery after neuronal damage such as spinal-cord injury and stroke. However, the neuronal substrate underlying such psychological effects on functional recovery remains unclear. A longitudinal study of brain activation in the non-human primate model of partial spinal-cord injury using positron emission tomography (PET revealed a contribution of the primary motor cortex (M1 to the recovery of finger dexterity through the rehabilitative training. Here, we show that activity of the ventral striatum, including the nucleus accumbens (NAc, which plays a critical role in processing of motivation, increased and its functional connectivity with M1 emerged and was progressively strengthened during the recovery. In addition, functional connectivities among M1, the ventral striatum and other structures belonging to neural circuits for processing motivation, such as the orbitofrontal cortex, anterior cingulate cortex and pedunculopontine tegmental nucleus were also strengthened during the recovery. These results give clues to the neuronal substrate for motivational regulation of motor learning required for functional recovery after spinal-cord injury.

  16. Dendritic spine dysgenesis contributes to hyperreflexia after spinal cord injury

    Science.gov (United States)

    Bandaru, Samira P.; Liu, Shujun; Waxman, Stephen G.

    2014-01-01

    Hyperreflexia and spasticity are chronic complications in spinal cord injury (SCI), with limited options for safe and effective treatment. A central mechanism in spasticity is hyperexcitability of the spinal stretch reflex, which presents symptomatically as a velocity-dependent increase in tonic stretch reflexes and exaggerated tendon jerks. In this study we tested the hypothesis that dendritic spine remodeling within motor reflex pathways in the spinal cord contributes to H-reflex dysfunction indicative of spasticity after contusion SCI. Six weeks after SCI in adult Sprague-Dawley rats, we observed changes in dendritic spine morphology on α-motor neurons below the level of injury, including increased density, altered spine shape, and redistribution along dendritic branches. These abnormal spine morphologies accompanied the loss of H-reflex rate-dependent depression (RDD) and increased ratio of H-reflex to M-wave responses (H/M ratio). Above the level of injury, spine density decreased compared with below-injury spine profiles and spine distributions were similar to those for uninjured controls. As expected, there was no H-reflex hyperexcitability above the level of injury in forelimb H-reflex testing. Treatment with NSC23766, a Rac1-specific inhibitor, decreased the presence of abnormal dendritic spine profiles below the level of injury, restored RDD of the H-reflex, and decreased H/M ratios in SCI animals. These findings provide evidence for a novel mechanistic relationship between abnormal dendritic spine remodeling in the spinal cord motor system and reflex dysfunction in SCI. PMID:25505110

  17. Experiences of Living with Pain after a Spinal Cord Injury

    Science.gov (United States)

    2014-09-01

    guess that’s, the, the different things that do work with the pain they don’t you know they don’t cover. Like you said the massage therapy and, and um... Therapy , University of Toronto, Toronto, ON Aim of Investigation: Persistent pain after spinal cord injury (SCI) has been investigated in numerous...change of position, massage, thermal and electrical stimulation, meditation and music . Despite multiple pharmacological treatment options, pain is

  18. Successful Strategies for Activity and Wellness after Spinal Cord Injury

    Science.gov (United States)

    2015-10-01

    submitted in the FY16 CDMRP-SCIRP round, entitled, “Keeping Veterans Healthy after Spinal Cord Injury: A Qualitative Study of Nutrition Practices” (SC150235...VA Rehab R&D Role: Co-Investigator Current Support: Project Title: Evaluating Neural Adaptation after Tendon Transfer and Task-Based Training in...fMRI) and functional performance measures to evaluate neural predictors and correlates of successful muscle re-education after tendon transfer. PI

  19. Magnetic Resonance Characterization of Axonal Response to Spinal Cord Injury

    Science.gov (United States)

    2015-06-01

    NOTES 14. ABSTRACT Assessment of axon health in spinal cord injury (SCI) is vital for proper diagnosis and treatment. Magnetic resonance imaging (MRI...Deficiencies of myelin lay at the core of nu- merous neurodegenerative disorders, such as multiple sclerosis and schizophrenia (1). These deficiencies may...numerous neurodegenerative disorders such as multiple sclerosis and schizophrenia (1). At present, there are few alternatives to destructive histologic

  20. Biomarkers of Spontaneous Recovery from Traumatic Spinal Cord Injury

    Science.gov (United States)

    2016-10-01

    The goal is evaluate the safety of ajulemic acid (AjA) in SLE patients with mild to moderate musculoskeletal pain and to determine an optimum dose...community oncology program to promote research protocol treatment of cancer patients . Role: Statistician Peter Gregersen MD, Key Personnel: New...coordinator and/or the PI meets daily with clinical study personnel to screen potential participants. Within Year 1, 19 patients with spinal cord injury were

  1. 17 CFR 256.925 - Injuries and damages.

    Science.gov (United States)

    2010-04-01

    ... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Injuries and damages. 256.925... COMPANY ACT OF 1935 2. Expense § 256.925 Injuries and damages. (a) This account shall include the cost of premiums for insurance to protect the service company against claims for injury, liability and damage...

  2. Directing Spinal Cord Plasticity: The Impact of Stretch Therapy on Functional Recovery after Spinal Cord Injury

    Science.gov (United States)

    2013-10-01

    them to recover after several weeks of stretching. These findings are extremely significant and will be strengthened as all the data is analyzed...Louisville, KY After spinal cord injury (SCI) patients commonly develop spasticity and contractures as secondary complications of “upper motor neuron...lesions. Physical therapists use stretching maneuvers to maintain extensibility of soft tissues and to manage spasticity . Previous studies in our lab

  3. Epidemiology of worldwide spinal cord injury: a literature review

    Directory of Open Access Journals (Sweden)

    Kang Y

    2017-12-01

    Full Text Available Yi Kang,1,2,* Han Ding,1,2,* Hengxing Zhou,1,2 Zhijian Wei,1,2 Lu Liu,1,2 Dayu Pan,1,2 Shiqing Feng1,2 1Department of Orthopaedics, Tianjin Medical University General Hospital, 2Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, People’s Republic of China *These authors contributed equally to this work Study design: A literature review of worldwide epidemiology of spinal cord injury (SCI. Objectives: To review the epidemiological indicators of SCI, such as incidence, prevalence, demographic characteristics, etiology, level and severity of injury, complications and mortality. Setting: The Department of Orthopaedics, Tianjin Medical University General Hospital, ­Heping District, Tianjin, People’s Republic of China. Methods: We searched articles published in PubMed, Medline, EMBASE and the Web of ­Science between January 1993 and June 2017 using the key words “spinal cord injury”, “­traumatic spinal cord injury”, “non-traumatic spinal cord injury” and “epidemiology”. The incidence, etiology, prevalence, patient demographics, level and severity of injury, complications and mortality were reviewed from the articles. Results: The epidemiology of SCI has changed. Motor vehicle accidents and falls have become the most common reasons of injury gradually. Incidence of SCI varies by regions or countries, and it has gradually increased with the expansion of human activities. The number of male patients were significantly more than female, the average age of patients with SCI had a tendency to increase gradually. The cervical level of spine was the most common part of injury; there were more number of patients with tetraplegia than patients with paraplegia. Electrolyte disturbances, pulmonary infections, urinary tract infections and bedsores were the four most common complications. Conclusion: We must have a greater

  4. Neuroarthropathy of the hip following spinal cord injury

    Directory of Open Access Journals (Sweden)

    Bibek Banskota

    2011-01-01

    Full Text Available We present the case of a 33-year-old male who sustained a burst fracture D12 vertebrae with spinal cord injury (ASIA impairment scale A and a right mid-diaphysial femoral shaft fracture around 1.5 years back. The patient reported 1.5 years later with a swelling over the right buttock. Arthrotomy revealed serous fluid and fragmented bone debris. The biopsy showed a normal bony architecture with no evidence of infection and malignant cells. Hence, a diagnosis of Charcot′s hip was made. Charcot′s neuroarthropathy of the feet is a well-recognized entity in the setting of insensate feet resulting from causes such as diabetes or spina bifida. Although Charcot′s disease of the hips has been described, it is uncommon in association with spinal cord injury, syphilis and even with the use of epidural injection. The present case highlights the fact that neuroarthropathy of the hip can occur in isolation in the setting of a spinal cord injury, and this can lead to considerable morbidity.

  5. Estimating the global incidence of traumatic spinal cord injury.

    Science.gov (United States)

    Fitzharris, M; Cripps, R A; Lee, B B

    2014-02-01

    Population modelling--forecasting. To estimate the global incidence of traumatic spinal cord injury (TSCI). An initiative of the International Spinal Cord Society (ISCoS) Prevention Committee. Regression techniques were used to derive regional and global estimates of TSCI incidence. Using the findings of 31 published studies, a regression model was fitted using a known number of TSCI cases as the dependent variable and the population at risk as the single independent variable. In the process of deriving TSCI incidence, an alternative TSCI model was specified in an attempt to arrive at an optimal way of estimating the global incidence of TSCI. The global incidence of TSCI was estimated to be 23 cases per 1,000,000 persons in 2007 (179,312 cases per annum). World Health Organization's regional results are provided. Understanding the incidence of TSCI is important for health service planning and for the determination of injury prevention priorities. In the absence of high-quality epidemiological studies of TSCI in each country, the estimation of TSCI obtained through population modelling can be used to overcome known deficits in global spinal cord injury (SCI) data. The incidence of TSCI is context specific, and an alternative regression model demonstrated how TSCI incidence estimates could be improved with additional data. The results highlight the need for data standardisation and comprehensive reporting of national level TSCI data. A step-wise approach from the collation of conventional epidemiological data through to population modelling is suggested.

  6. Synergistic impact of acute kidney injury and high level of cervical spinal cord injury on the weaning outcome of patients with acute traumatic cervical spinal cord injury.

    Science.gov (United States)

    Yu, Wen-Kuang; Ko, Hsin-Kuo; Ho, Li-Ing; Wang, Jia-Horng; Kou, Yu Ru

    2015-07-01

    Respiratory neuromuscular impairment severity is known to predict weaning outcome among patients with cervical spinal cord injury; however, the impact of non-neuromuscular complications remains unexplored. This study was to evaluate possible neuromuscular and non-neuromuscular factors that may negatively impact weaning outcome. From September 2002 to October 2012, acute traumatic cervical spinal cord injury patients who had received mechanical ventilation for >48h were enrolled and divided into successful (n=54) and unsuccessful weaning groups (n=19). Various neuromuscular, non-neuromuscular factors and events during the intensive care unit stay were extracted from medical charts and electronic medical records. Variables presenting with a significant difference (pspinal cord injury (C1-3), lower pulse rates, and lower Glasgow Coma Scale score on admission, higher peak blood urea nitrogen, lower trough albumin, and lower trough blood leukocyte counts. Furthermore, unsuccessful weaning patients had a higher incidence of pneumonia, acute respiratory distress syndrome, shock and acute kidney injury during the intensive care unit stay. Multivariate logistic regression analysis revealed acute kidney injury and high level of cervical spinal cord injury were independent risk factors for failure of weaning. Importantly, patients with both risk factors showed a large increase in odds ratio for unsuccessful weaning from mechanical ventilation (pinjury during the intensive care unit stay and high level of cervical spinal injury are two independent risk factors that synergistically work together producing a negative impact on weaning outcome. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Abdominal pain in long-term spinal cord injury

    DEFF Research Database (Denmark)

    Finnerup, Nanna Brix; Faaborg, Pia Møller; Krogh, Klaus

    2008-01-01

    Objectives:To describe the prevalence and character of chronic abdominal pain in a group of patients with long-term spinal cord injury (SCI) and to assess predictors of abdominal pain.Study design:Postal survey.Setting:Members of the Danish Paraplegic Association.Methods:We mailed a questionnaire...... to 284 members of the Danish Paraplegic Association who met the inclusion criteria (member for at least 10 years). The questionnaire contained questions about cause and level of spinal injury, colorectal function and pain/discomfort.Results:Seventy percent returned the questionnaire (133 men and 70 women...... compared to patients without abdominal pain/discomfort. The most common descriptors were annoying, cramping/tightening, tender, sickening and shooting/jolting. There was no relation to age, time since injury or level of injury, but more women than men reported abdominal pain...

  8. Specific Deficit in Implicit Motor Sequence Learning following Spinal Cord Injury.

    Directory of Open Access Journals (Sweden)

    Ayala Bloch

    Full Text Available Physical and psychosocial rehabilitation following spinal cord injury (SCI leans heavily on learning and practicing new skills. However, despite research relating motor sequence learning to spinal cord activity and clinical observations of impeded skill-learning after SCI, implicit procedural learning following spinal cord damage has not been examined.To test the hypothesis that spinal cord injury (SCI in the absence of concomitant brain injury is associated with a specific implicit motor sequence learning deficit that cannot be explained by depression or impairments in other cognitive measures.Ten participants with SCI in T1-T11, unharmed upper limb motor and sensory functioning, and no concomitant brain injury were compared to ten matched control participants on measures derived from the serial reaction time (SRT task, which was used to assess implicit motor sequence learning. Explicit generation of the SRT sequence, depression, and additional measures of learning, memory, and intelligence were included to explore the source and specificity of potential learning deficits.There was no between-group difference in baseline reaction time, indicating that potential differences between the learning curves of the two groups could not be attributed to an overall reduction in response speed in the SCI group. Unlike controls, the SCI group showed no decline in reaction time over the first six blocks of the SRT task and no advantage for the initially presented sequence over the novel interference sequence. Meanwhile, no group differences were found in explicit learning, depression, or any additional cognitive measures.The dissociation between impaired implicit learning and intact declarative memory represents novel empirical evidence of a specific implicit procedural learning deficit following SCI, with broad implications for rehabilitation and adjustment.

  9. What to call spinal cord damage not due to trauma? Implications for literature searching

    Science.gov (United States)

    New, Peter W.; Delafosse, Veronica

    2012-01-01

    Objectives To illustrate the importance of multiple search terms and databases when searching publications on spinal cord damage not due to trauma. To develop comprehensive search filter for this subject, compare the results for 2000–2009 with the Medical Subject Headings (MeSH) and Emtree term ‘spinal cord diseases’ and determine changes in the number of articles over this period. Design Literature searches and search filter development. Setting Australia. Interventions Titles and abstracts searched in MEDLINE and EMBASE (2000–2009) for articles involving humans using search terms ‘non-traumatic spinal cord injury’ and ‘nontraumatic spinal cord injury’ (concise search). Develop comprehensive search filter for ‘spinal cord damage not due to trauma’ and compare the results with the MeSH term ‘spinal cord diseases.’ Outcome measures Annual publications (2000–2009) identified in MEDLINE and EMBASE literature searches. Results Concise search identified 35 articles published during 2000–2009. More publications were identified using the term ‘nontraumatic spinal cord injury’ (n = 20) than ‘non-traumatic spinal cord injury’ (n = 16). Publications increased for both terms ‘spinal cord diseases’ (2000 = 279; 2009 = 415) and ‘spinal cord damage not due to trauma’ identified by the comprehensive search filter (2000 = 1251; 2009 = 1921). Conclusions Concise searches using terms ‘non-traumatic spinal cord injury’ and ‘nontraumatic spinal cord injury’ fail to identify relevant articles unless combinations of terms and databases are used. These are inadequate search terms for a comprehensive search. Further research is needed to validate our comprehensive search filter. An international consensus process is required to establish an agreed term for ‘spinal cord damage not due to trauma.’ PMID:22333497

  10. Functional assessment of the acute local and distal transplantation of human neural stem cells after spinal cord injury.

    Science.gov (United States)

    Cheng, Ivan; Mayle, Robert E; Cox, Christopher A; Park, Don Y; Smith, Robert L; Corcoran-Schwartz, Ian; Ponnusamy, Karthikeyan E; Oshtory, Rayshad; Smuck, Matthew W; Mitra, Raj; Kharazi, Alexander I; Carragee, Eugene J

    2012-11-01

    Spinal cord injury can lead to severe functional impairments secondary to axonal damage, neuronal loss, and demyelination. The injured spinal cord has limited regrowth of damaged axons. Treatment remains controversial, given inconsistent functional improvement. Previous studies demonstrated functional recovery of rats with spinal cord contusion after transplantation of rat fetal neural stem cells. We hypothesized that acute transplantation of human fetal neural stem cells (hNSCs) both locally at the injury site as well as distally via intrathecal injection would lead to improved functional recovery compared with controls. Twenty-four adult female Long-Evans hooded rats were randomized into four groups with six animals in each group: two experimental and two control. Functional assessment was measured after injury and then weekly for 6 weeks using the Basso, Beattie, and Bresnahan Locomotor Rating Score. Data were analyzed using two-sample t test and linear mixed-effects model analysis. Posterior exposure and laminectomy at T10 level was used. Moderate spinal cord contusion was induced by the Multicenter Animal Spinal Cord Injury Study Impactor with 10-g weight dropped from a height of 25 mm. Experimental subjects received either a subdural injection of hNSCs locally at the injury site or intrathecal injection of hNSCs through a separate distal laminotomy. Controls received control media injection either locally or distally. Statistically significant functional improvement was observed in local or distal hNSCs subjects versus controls (p=.034 and 0.016, respectively). No significant difference was seen between local or distal hNSC subjects (p=.66). Acute local and distal transplantation of hNSCs into the contused spinal cord led to significant functional recovery in the rat model. No statistical difference was found between the two techniques. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. The delivery of specialist spinal cord injury services in Queensland and the potential for telehealth

    NARCIS (Netherlands)

    Pol, van de Eileen; Lucas, Karen; Geraghty, Timothy; Pershouse, Kiley; Harding, Sandra; Atresh, Sridhar; Wagemakers, A.; Smith, Anthony C.

    2016-01-01

    Background
    The Queensland Spinal Cord Injuries Service (QSCIS) is a statewide service in Brisbane at the Princess Alexandra Hospital (PAH). The QSCIS assists individuals with a spinal cord injury (SCI) through three services: the Spinal Injuries Unit (SIU), Transitional Rehabilitation Program

  12. Axonal Regeneration in Mammals with Spinal Cord Injury

    Science.gov (United States)

    1983-09-14

    allergic encephalotr^yelitis (E.A.E,), may be induced 32 when homogenates of CNS tissue are parenterally administered (Paterson, 1966; Feringa , et. al... Feringa , et. al., 1975; Willenborg, et. al., 1977). Since damage to the spinal cord may release potentially antigenic substances into the blood...it was hypothesized that autoimmune response analogous to E.A.E. may occur (Berry and Riches, 1974; Feringa , et. al., 1975). It was further suggested

  13. Effects of Aloe Vera on Spinal Cord Ischemia-Reperfusion Injury of Rats.

    Science.gov (United States)

    Yuksel, Yasemin; Guven, Mustafa; Kaymaz, Burak; Sehitoglu, Muserref Hilal; Aras, Adem Bozkurt; Akman, Tarik; Tosun, Murat; Cosar, Murat

    2016-12-01

    The purpose of this study was to evaluate the possible protective/therapeutic effects of aloe vera (AV) on ischemia-reperfusion injury (I/R) of spinal cord in rats. A total of 28 Wistar Albino rats were divided into four random groups of equal number (n = 7). Group I (control) had no medication or surgery; Group II underwent spinal cord ischemia and was given no medication; Group III was administered AV by gastric gavage for 30 days as pre-treatment; Group IV was administered single dose intraperitoneal methylprednisolone (MP) after the ischemia. Nuclear respiratory factor-1 (NRF1), malondialdehyde (MDA) and superoxide dismutase (SOD) levels were evaluated. Tissue samples were examined histopathologically and neuronal nitric oxide synthase (nNOS) and nuclear factor-kappa B (NF-κB) protein expressions were assessed by immunohistochemical staining. NRF1 and SOD levels of ischemia group were found to be lower compared to the other groups. MDA levels significantly increased after I/R. Treatment with AV and MP resulted in reduced MDA levels and also alleviated hemorrhage, edema, inflammatory cell migration and neurons were partially protected from ischemic injury. When AV treatment was compared with MP, there was no statistical difference between them in terms of reduction of neuronal damage. I/R injury increased NF-κB and nNOS expressions. AV and MP treatments decreased NF-κB and nNOS expressions. It was observed that aloe vera attenuated neuronal damage histopathologically and biochemically as pretreatment. Further studies may provide more evidence to determine the additional role of aloe vera in spinal cord ischemia reperfusion injury.

  14. Neuroinflammation in spinal cord injury: therapeutic targets for neuroprotection and regeneration.

    Science.gov (United States)

    Alexander, Jessica K; Popovich, Phillip G

    2009-01-01

    Traumatic spinal cord injury triggers a complex local inflammatory reaction capable of enhancing repair and exacerbating pathology. The composition and effector potential of the post-injury cellular and molecular immune cascade changes as a function of time and distance from the lesion. Production along this time-space continuum of cytokines, proteases, and growth factors establishes dynamic environments that lead to the death, damage, repair or growth of affected neurons and glia. Microenvironmental cues, therefore, generated by the cells therein, may determine these distinct fates of repair versus pathology. To harness repair, it is necessary to manipulate the assembly and phenotype of cells that comprise the neuroinflammatory response to injury. Here, the potential of the neuroinflammatory response to cause outcomes such as pain, regeneration, and functional recovery is reviewed.

  15. A Multicenter, Randomized Controlled Trial of Cerebrospinal Fluid Drainage in Acute Spinal Cord Injury

    Science.gov (United States)

    2017-10-01

    AWARD NUMBER: W81XWH-14-2-0191 TITLE: A Multicenter, Randomnized Controlled Trial of Cerebrospinal Fluid Drainage in Acute Spinal Cord Injury ...CSFD and elevation of mean arterial pressure (MAP) in patients with acute spinal cord injury . This study is currently screening and enrolling patients...in Tucson and the University of Alabama in Birmingham. Steps have been initiated to add a high-volume spinal cord injury site from the East Coast to

  16. Functional effect of mouse embryonic stem cell implantation after spinal cord injury

    OpenAIRE

    Lee, Tae-Hoon

    2013-01-01

    We transplanted mouse embryonic stem cells (mESCs) to improve functional loss in a rat model of clip-compression spinal cord injury (SCI). The mouse embryonic stem cells were transplanted to injured cord 7 days after injury. We include minimizing the progression of secondary injury, manipulating the neuroinhibitory environment of the spinal cord, replacing lost tissue with transplanted cells and substantial improvement of motor. A number of potential approaches optimize functional recovery af...

  17. Injuries and Falls in an Aging Cohort with Spinal Cord Injury: SCI Aging Study.

    Science.gov (United States)

    Saunders, Lee L; Krause, James S

    2015-01-01

    Limited research suggests that additional "subsequent" injuries occur frequently among persons with an existing spinal cord injury (SCI), which may result in further significant complications and added disability. The purpose of this study was to (a) report the 12-month incidence of injuries by age in an aging SCI cohort, (b) report the 12-month incidence of falls, (c) assess the impact of injuries on participation by age, and (d) assess the relationship of age with injuries and falls while controlling for potential confounding factors. Participants (N = 759) responded to questions about injuries and falls resulting in injury in the past year. Demographic and SCI characteristics, binge drinking, and prescription medication use were measured. A total of 19.2% reported 1 or more injuries in the past year, and 10.4% reported a fall resulting in an injury in the past year. Among those who sustained 1 or more injuries, 22.8% had at least 1 hospitalization for an injury within the past 12 months. Additionally, 47.6% were limited in their normal daily activities for a week or more due to injury. Prescription medication use was associated with injury in the past year and falls resulting in injury. Equal time between walking and wheelchair use as the primary mode of locomotion was also associated with falls in the past year. Future research should investigate circumstances surrounding subsequent injuries to aid in prevention efforts. Additionally, information is needed on whether subsequent injuries further contribute to physical disability.

  18. Motor levels in high cervical spinal cord injuries: Implications for the International Standards for Neurological Classification of Spinal Cord Injury.

    Science.gov (United States)

    Franz, Steffen; Kirshblum, Steven C; Weidner, Norbert; Rupp, Rüdiger; Schuld, Christian

    2016-09-01

    To verify the hypothesis that motor levels (ML) inferred from sensory levels in the upper cervical segments C2-C4 according to the current version of the International Standards for Neurological Classification of Spinal Cord Injury (ISNCSCI) are counterintuitive in cases where the most rostral myotomes C5 and C6 are graded as intact. Prospective cohort study of ISNCSCI instructional course participants completing a post-test after the workshop to determine the MLs in two variants of a complete, high cervical spinal cord injury (SCI) case scenario. Both variants were based on the same ISNCSCI sensory and MLs of C2. In the first variant myotomes C5 and C6 were bilaterally graded as intact, while in variant 2 only active movements against gravity were possible (grade 3). Eight ISNCSCI instructional courses conducted during the study period from November 2012 until March 2015 in the framework of the European Multicenter Study on Human Spinal Cord Injury (EMSCI- http//emsci.org ). Ninety-two clinicians from twenty-two SCI centers. Most of the attendees were physicians (58.7%) or physical therapists (33.7%) and had less than one year (44.6%) experience in SCI medicine. Not applicable. The classification performance described as percentage of correctly determined MLs by the clinicians. Variant 2 (89.13%) was significantly (P definition in ISNCSCI may be needed.

  19. Tablet Technology for Rehabilitation after Spinal Cord Injury: a Proof-of-Concept.

    Science.gov (United States)

    Fizzotti, Gabriella; Rognoni, Carla; Imarisio, Arianna; Meneghini, Alessandro; Pistarini, Caterina; Quaglini, Silvana

    2015-01-01

    Spinal cord injury (SCI) is a damage to the spinal cord resulting in a change, either temporary or permanent, in motor, sensory, or autonomic functions. Patients with SCI usually have permanent and often devastating neurologic deficits and disability. Trunk motor control is crucial for postural stability and propulsion after low thoracic SCI and several rehabilitative strategies are aimed at trunk stability and control. Tablet technology and gaming systems are novel and potentially useful strategies that apply relevant concepts in rehabilitation for these patients. In this study we combined the traditional training of trunk control with exercises administered through two iPad games apps, 2 or 3 times a week. All the participant patients showed increasing game scores during the treatment, as well as increasing Trunk Recovery Scale scores, showing a significant improvement in trunk control. Also the personal judgment of the patients, collected through evaluation questionnaires, was very positive.

  20. Review of transplantation of neural stem/progenitor cells for spinal cord injury.

    Science.gov (United States)

    Mothe, Andrea J; Tator, Charles H

    2013-11-01

    Spinal cord injury (SCI) is a debilitating condition often resulting in paralysis, yet currently there is no effective treatment. Stem cell transplantation is a promising therapeutic strategy for promoting tissue repair after SCI. Stem cells offer a renewable source of cells with inherent plasticity for tissue regeneration. Neural stem/progenitor cells (NSPCs) are multipotent cells that self-renew and are committed to the neural lineage, and thus, they are especially suited to SCI repair. NSPCs may differentiate into neural cells after transplantation into the injured spinal cord, replacing lost or damaged cells, providing trophic support, restoring connectivity, and facilitating regeneration. Here, we review experimental studies and considerations for clinical translation of NSPC transplantation for SCI. Copyright © 2013 ISDN. Published by Elsevier Ltd. All rights reserved.

  1. Alleviating Autonomic Dysreflexia after Spinal Cord Injury

    Science.gov (United States)

    2016-10-01

    the  graft  that,  in  turn,  synapse  upon  sympathetic   preganglionic  neurons).  As   serotonin  is  a  normal  modulator  of  SPN  activity  and...or depressed below the level of injury (Grigorean et al., 2009). Subsequently, neurogenic shock is experienced shortly after SCI at high levels...dysre- flexia. J Physiol 577:539-548. Lavdas AA, Blue ME, Lincoln J, Parnavelas JG (1997) Serotonin promotes the differentiation of glutamate neurons

  2. [The influence factors and meanings of tracheotomy after cervical spinal cord injury].

    Science.gov (United States)

    Zhang, Pu; Zhang, Xun

    2015-06-01

    Cervical spinal cord injury is a common and serious disease in clinic, and tracheotomy combined with mechanical ventilation is an effective way to prevent respiratory complications. Although tracheotomy is used widely, there are not unified indications of tracheotomy after cervical spinal cord injury in the practical application. At the same time, the advantages and disadvantages of the application of tracheotomy in patients with cervical spinal cord injury are still on dispute. Based on the recent literature, we summarize the influence factors and meanings of tracheotomy after cervical spinal cord injury.

  3. Dexmedetomidine Attenuates Blood-Spinal Cord Barrier Disruption Induced by Spinal Cord Ischemia Reperfusion Injury in Rats

    Directory of Open Access Journals (Sweden)

    Bo Fang

    2015-05-01

    Full Text Available Background/Aims: Dexmedetomidine has beneficial effects on ischemia reperfusion (I/R injury to the spinal cord, but the underlying mechanisms are not fully understood. This study investigated the effects and possible mechanisms of dexmedetomidine on blood-spinal cord barrier (BSCB disruption induced by spinal cord I/R injury. Methods: Rats were intrathecally pretreated with dexmedetomidine or PBS control 30 minutes before undergoing 14-minute occlusion of aortic arch. Hind-limb motor function was assessed using Tarlov criteria, and motor neurons in the ventral gray matter were counted by histological examination. The permeability of the BSCB was examined using Evans blue (EB as a vascular tracer. The spinal cord edema was evaluated using the wet-dry method. The expression and localization of matrix metalloproteinase-9 (MMP-9, Angiopoietin-1 (Ang1 and Tie2 were assessed by western blot, real-time polymerase chain reaction, and immunofluorescence. Results: Intrathecal preconditioning with dexmedetomidine minimized the neuromotor dysfunction and histopathological deficits, and attenuated EB extravasation after spinal cord I/R injury. In addition, dexmedetomidine preconditioning suppressed I/R-induced increase in MMP-9. Finally, Dexmedetomidine preconditioning enhanced the Ang1-Tie2 system activity after spinal cord I/R injury. Conclusions: Dexmedetomidine preconditioning stabilized the BSCB integrity against spinal cord I/R injury by inhibition of MMP-9, and enhancing the Ang1-Tie2 system.

  4. Induced Pluripotent Stem Cell Therapies for Cervical Spinal Cord Injury.

    Science.gov (United States)

    Doulames, Vanessa M; Plant, Giles W

    2016-04-09

    Cervical-level injuries account for the majority of presented spinal cord injuries (SCIs) to date. Despite the increase in survival rates due to emergency medicine improvements, overall quality of life remains poor, with patients facing variable deficits in respiratory and motor function. Therapies aiming to ameliorate symptoms and restore function, even partially, are urgently needed. Current therapeutic avenues in SCI seek to increase regenerative capacities through trophic and immunomodulatory factors, provide scaffolding to bridge the lesion site and promote regeneration of native axons, and to replace SCI-lost neurons and glia via intraspinal transplantation. Induced pluripotent stem cells (iPSCs) are a clinically viable means to accomplish this; they have no major ethical barriers, sources can be patient-matched and collected using non-invasive methods. In addition, the patient's own cells can be used to establish a starter population capable of producing multiple cell types. To date, there is only a limited pool of research examining iPSC-derived transplants in SCI-even less research that is specific to cervical injury. The purpose of the review herein is to explore both preclinical and clinical recent advances in iPSC therapies with a detailed focus on cervical spinal cord injury.

  5. Induced Pluripotent Stem Cell Therapies for Cervical Spinal Cord Injury

    Science.gov (United States)

    Doulames, Vanessa M.; Plant, Giles W.

    2016-01-01

    Cervical-level injuries account for the majority of presented spinal cord injuries (SCIs) to date. Despite the increase in survival rates due to emergency medicine improvements, overall quality of life remains poor, with patients facing variable deficits in respiratory and motor function. Therapies aiming to ameliorate symptoms and restore function, even partially, are urgently needed. Current therapeutic avenues in SCI seek to increase regenerative capacities through trophic and immunomodulatory factors, provide scaffolding to bridge the lesion site and promote regeneration of native axons, and to replace SCI-lost neurons and glia via intraspinal transplantation. Induced pluripotent stem cells (iPSCs) are a clinically viable means to accomplish this; they have no major ethical barriers, sources can be patient-matched and collected using non-invasive methods. In addition, the patient’s own cells can be used to establish a starter population capable of producing multiple cell types. To date, there is only a limited pool of research examining iPSC-derived transplants in SCI—even less research that is specific to cervical injury. The purpose of the review herein is to explore both preclinical and clinical recent advances in iPSC therapies with a detailed focus on cervical spinal cord injury. PMID:27070598

  6. 34 CFR 359.1 - What is the Special Projects and Demonstrations for Spinal Cord Injuries Program?

    Science.gov (United States)

    2010-07-01

    ... Spinal Cord Injuries Program? 359.1 Section 359.1 Education Regulations of the Offices of the Department... INJURIES General § 359.1 What is the Special Projects and Demonstrations for Spinal Cord Injuries Program... needs of individuals with spinal cord injuries. (Authority: Sec. 204(b)(4); 29 U.S.C. 762(b)(4)) ...

  7. New surgical approach for late complications from spinal cord injury

    Directory of Open Access Journals (Sweden)

    Reis Antonio J

    2006-10-01

    Full Text Available Abstract Background The most frequent late complications in spinal cord injury result from arachnoiditis and consequent alterations in dynamics of cerebrospinal fluid flow. A surgical procedure carried out on patients with these alterations, resolved the various pathologies more efficiently in all cases. Methods From October 2000 to March 2006, 23 patients were selected for surgery: three showed signs of syringomyelia, three presented with microcystic lesions, three presented with arachnoid cysts in different locations but always confluent to the scar area, and 14 showed evidence of tethered cords. The surgery consisted of laminectomy at four levels, followed by dural opening in order to remove all the arachnoiditis at the level of the scar and to remove the altered arachnoid and its cysts, at least at two levels above and below the lesion. The dentate ligaments were cut at all exposed levels. Results The patients had no postoperative problems and not only retained all neurological functions but also showed neurological recovery. According to the motor and sensory scale of the American Spinal Injury Association, the recoveries were motor 20.6% (P Conclusion This alternative surgery resolved the pathologies provoking neurological deterioration by releasing the complete spinal cord at the level of the scar and the levels above and below it. It thus avoids myelotomies and the use of shunts and stents, which have a high long-term failure rate and consequent relapses. Nevertheless, this surgical procedure allows patients the chance to opt for any further treatment that may evolve in the future.

  8. Trigemino-cervical-spinal reflexes after traumatic spinal cord injury.

    Science.gov (United States)

    Nardone, Raffaele; Höller, Yvonne; Orioli, Andrea; Brigo, Francesco; Christova, Monica; Tezzon, Frediano; Golaszewski, Stefan; Trinka, Eugen

    2015-05-01

    After spinal cord injury (SCI) reorganization of spinal cord circuits occur both above and below the spinal lesion. These functional changes can be determined by assessing electrophysiological recording. We aimed at investigating the trigemino-cervical reflex (TCR) and trigemino-spinal reflex (TSR) responses after traumatic SCI. TCR and TSR were registered after stimulation of the infraorbital nerve from the sternocleidomastoid, splenius, deltoid, biceps and first dorsal interosseous muscles in 10 healthy subjects and 10 subjects with incomplete cervical SCI. In the control subjects reflex responses were registered from the sternocleidomastoid, and splenium muscles, while no responses were obtained from upper limb muscles. In contrast, smaller but clear short latency EMG potentials were recorded from deltoid and biceps muscles in about half of the SCI patients. Moreover, the amplitudes of the EMG responses in the neck muscles were significantly higher in patients than in control subjects. The reflex responses are likely to propagate up the brainstem and down the spinal cord along the reticulospinal tracts and the propriospinal system. Despite the loss of corticospinal axons, synaptic plasticity in pre-existing pathways and/or formation of new circuits through sprouting processes above the injury site may contribute to the findings of this preliminary study and may be involved in the functional recovery. Trigemino-cervical-spinal reflexes can be used to demonstrate and quantify plastic changes at brainstem and cervical level following SCI. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  9. [Effects of chondroitinase ABC combined with bone marrow mesenchymal stem cells transplantation on repair of spinal cord injury in rats].

    Science.gov (United States)

    Zhang, Chun; He, Xijing; Li, Haopeng

    2013-05-01

    To investigate the effects of chondroitinase ABC (ChABC) combined with bone marrow mesenchymal stem cells (BMSCs) in repair spinal cord injury of rats. Primary BMSCs were isolated and cultured from the femur and tibia of neonatal Sprague Dawley (SD) rats. The spinal cord injury model was established in 24 adult SD male rats (weighing, 200-230 g), which were randomly divided into control group (group A), BMSCs transplantation group (group B), ChABC injection group (group C), and ChABC and BMSCs transplantation group (group D), 6 rats in each group. At 7 and 14 days after injury, Basso-Beattie-Bresnahan (BBB) score criteria was used to evaluate the hindlimb motor function; at 14 days after injury, the injured spinal cord tissue was perfused and stained by HE for further calculation of the injury area. Immunofluorescence staining were used for observing the expressions of glial fibrillary acidic protein (GFAP)/chondroitin sulfate proteoglycan (CSPG) and GFAP/growth associated protein 43 (GAP43). At 7 days after injury, three joints movement of the hindlimbs were recovered in all groups, and no significant difference in the BBB score was found among 4 groups (P > 0.05). At 14 days after injury, no load drag was observed in 3 joints of the hindlimbs in groups A, B, and C, but weight-bearing plantar or occasional dorsalis pedis weight-bearing walking was observed in group D with no plantar walking. The BBB score of group D was significantly higher than that of the other 3 groups (P injury, the GFAP/CSPG double immunofluorescence staining showed that the astroglial scar damage zone in group D was significantly reduced, and no cavity formation was found. And the fluorescence intensity in groups C and D was significantly lower than that in group B (P transplantation in early injury may promote the regeneration of nerve fibers, and repair spinal cord injury in rats.

  10. An update on application of nanotechnology and stem cells in spinal cord injury regeneration.

    Science.gov (United States)

    Nejati-Koshki, Kazem; Mortazavi, Yousef; Pilehvar-Soltanahmadi, Younes; Sheoran, Sumit; Zarghami, Nosratollah

    2017-06-01

    Spinal cord injury (SCI) is damage to the spinal cord that leads to sudden loss of motor and autonomic function and sensory under the level of the injury. The pathophysiological advancement of SCI is divided into two categories: primary injury and secondary injury. Due to the loss of motor, sensory, or cognitive function, a patient's quality of life is likely reduced and places a great burden on society in order to supply health care costs. Therefore, it is important to develop suitable therapeutic strategies for SCI therapy. Nano biomedical systems and stem cell based therapy have the potential to provide new therapeutic availability and efficacy over conventional medicine. Due to their unique properties, nanomaterials and mesenchymal stem cells can be used to offer efficient treatments. Nanoparticles have a potential to deliver therapeutic molecules to the target tissue of interest, reducing side effects of untargeted therapies in unwanted areas. Mesenchymal stem cells (MSCs) can reduce activating inflammation responses that lead to cell death and promote functional recovery and cell growth. We review recent uses of nanomaterials and stem cells in regeneration of SCI. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  11. Emotional Intelligence in Patients with Spinal Cord Injury (SCI).

    Science.gov (United States)

    Saberi, Hooshang; Ghajarzadeh, Mahsa

    2017-05-01

    Spinal Cord Injury (SCI) is a devastating situation. Spinal Cord Injury affects functional, psychological and socioeconomic aspects of patients' lives. The ability to accomplish and explicate the one's own and other's feelings and emotions to spread over appropriate information for confirming thoughts and actions is defined as emotional intelligence (EI). The goal of this study was to evaluate depression and EI in SCI patients in comparison with healthy subjects. One-hundred-ten patients with SCI and 80 healthy subjects between Aug 2014 and Aug 2015 were enrolled. The study was conducted in Imam Hospital, Tehran, Iran. All participants were asked to fill valid and reliable Persian version Emotional Quotient inventory (EQ-i) and Beck Depression Inventory (BDI). All data were analyzed using SPSS. Data were presented as Mean±SD for continuous or frequencies for categorical variables. Continuous variables compared by means of independent sample t -test. P -values less than 0.05 were considered as significant. Mean age of patients was 28.7 and mean age of controls was 30.2 yr. Spinal cord injury in 20 (18.3%) were at cervical level, in 83 (75.4%) were thoracic and in 7 (6.3%) were lumbar. Mean values of independence, stress tolerance, self-actualization, emotional Self-Awareness, reality testing, Impulse Control, flexibility, responsibility, and assertiveness were significantly different between cases and controls. Mean values of stress tolerance, optimism, self-regard, and responsibility were significantly different between three groups with different injury level. Most scales were not significantly different between male and female cases. Emotional intelligence should be considered in SCI cases as their physical and psychological health is affected by their illness.

  12. The paradox of chronic neuroinflammation, systemic immune suppression and autoimmunity after traumatic chronic spinal cord injury

    Science.gov (United States)

    Kopp, Marcel A.; Brommer, Benedikt; Popovich, Phillip G.

    2014-01-01

    During the transition from acute to chronic stages of recovery after spinal cord injury (SCI), there is an evolving state of immunologic dysfunction that exacerbates the problems associated with the more clinically obvious neurologic deficits. Since injury directly affects cells embedded within the “immune privileged/specialized” milieu of the spinal cord, maladaptive or inefficient responses are likely to occur. Collectively, these responses qualify as part of the continuum of “SCI disease” and are important therapeutic targets to improve neural repair and neurological outcome. Generic immune suppressive therapies have been largely unsuccessful, mostly because nflammation and immunity exert both beneficial (plasticity enhancing) and detrimental (e.g. glia- and neurodegenerative; secondary damage) effects and these functions change over time. Moreover, “compartmentalized” investigations, limited to only intraspinal inflammation and associated cellular or molecular changes in the spinal cord, neglect the reality that the structure and function of the CNS is influenced by systemic immune challenges and that the immune system is hardwired into the nervous system. Here, we consider this interplay during the progression from acute to chronic SCI. Specifically, we survey impaired/non-resolving intraspinal inflammation and the paradox of systemic inflammatory responses in the face of ongoing chronic immune suppression and autoimmunity. The concepts of systemic inflammatory response syndrome (SIRS), compensatory anti-inflammatory response syndrome (CARS) and ‘neurogenic’ spinal cord injury-induced immune depression syndrome (SCI-IDS) are discussed as determinants of impaired ‘host-defense’ and trauma-induced autoimmunity. PMID:25017893

  13. Schwann cell transplantation and descending propriospinal regeneration after spinal cord injury.

    Science.gov (United States)

    Deng, Ling-Xiao; Walker, Chandler; Xu, Xiao-Ming

    2015-09-04

    After spinal cord injury (SCI), poor ability of damaged axons of the central nervous system (CNS) to regenerate causes very limited functional recovery. Schwann cells (SCs) have been widely explored as promising donors for transplantation to promote axonal regeneration in the CNS including the spinal cord. Compared with other CNS axonal pathways, injured propriospinal tracts display the strongest regenerative response to SC transplantation. Even without providing additional neurotrophic factors, propriospinal axons can grow into the SC environment which is rarely seen in supraspinal tracts. Propriospinal tract has been found to respond to several important neurotrophic factors secreted by SCs. Therefore, the SC is considered to be one of the most promising candidates for cell-based therapies for SCI. Since many reviews have already appeared on topics of SC transplantation in SCI repair, this review will focus particularly on the rationale of SC transplantation in mediating descending propriospinal axonal regeneration as well as optimizing such regeneration by using different combinatorial strategies. This article is part of a Special Issue entitled SI: Spinal cord injury. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Stem Cells: New Hope For Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Gazdic Marina

    2015-03-01

    Full Text Available Stem cell therapy offers several attractive strategies for spinal cord repair. The regenerative potential of pluripotent stem cells was confirmed in an animal model of Spinal Cord Injury (SCI; nevertheless, optimized growth and differentiation protocols along with reliable safety assays should be established prior to the clinical application of hESCs and iPSCs. Th e therapeutic effects of mesenchymal stem cells (MSCs in SCI result from neurotrophin secretion, angiogenesis, and antiinflammatory actions. Several preclinical SCI studies have reported that the occurrence of axonal extension, remyelination and neuroprotection occur after the transplantation of olfactory ensheathing cells (OECs. The transplantation of neural stem cells NSCs (NSCs promotes partial functional improvement after SCI because of their potential to differentiate into neurons, oligodendrocytes, and astrocytes. The ideal source of stem cells for safe and efficient cell-based therapy for SCI remains a challenging issue that requires further investigation.

  15. Stem Cells and Labeling for Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Marina Gazdic

    2016-12-01

    Full Text Available Spinal cord injury (SCI is a devastating condition that usually results in sudden and long-lasting locomotor and sensory neuron degeneration below the lesion site. During the last two decades, the search for new therapies has been revolutionized with the improved knowledge of stem cell (SC biology. SCs therapy offers several attractive strategies for spinal cord repair. The transplantation of SCs promotes remyelination, neurite outgrowth and axonal elongation, and activates resident or transplanted progenitor cells across the lesion cavity. However, optimized growth and differentiation protocols along with reliable safety assays should be established prior to the clinical application of SCs. Additionally, the ideal method of SCs labeling for efficient cell tracking after SCI remains a challenging issue that requires further investigation. This review summarizes the current findings on the SCs-based therapeutic strategies, and compares different SCs labeling approaches for SCI.

  16. Stem Cells and Labeling for Spinal Cord Injury.

    Science.gov (United States)

    Gazdic, Marina; Volarevic, Vladislav; Arsenijevic, Aleksandar; Erceg, Slaven; Moreno-Manzano, Victoria; Arsenijevic, Nebojsa; Stojkovic, Miodrag

    2016-12-26

    Spinal cord injury (SCI) is a devastating condition that usually results in sudden and long-lasting locomotor and sensory neuron degeneration below the lesion site. During the last two decades, the search for new therapies has been revolutionized with the improved knowledge of stem cell (SC) biology. SCs therapy offers several attractive strategies for spinal cord repair. The transplantation of SCs promotes remyelination, neurite outgrowth and axonal elongation, and activates resident or transplanted progenitor cells across the lesion cavity. However, optimized growth and differentiation protocols along with reliable safety assays should be established prior to the clinical application of SCs. Additionally, the ideal method of SCs labeling for efficient cell tracking after SCI remains a challenging issue that requires further investigation. This review summarizes the current findings on the SCs-based therapeutic strategies, and compares different SCs labeling approaches for SCI.

  17. Ischemic Preconditioning Protects against Spinal Cord Ischemia-Reperfusion Injury in Rabbits by Attenuating Blood Spinal Cord Barrier Disruption

    Directory of Open Access Journals (Sweden)

    Bo Fang

    2013-05-01

    Full Text Available Ischemic preconditioning has been reported to protect against spinal cord ischemia-reperfusion (I-R injury, but the underlying mechanisms are not fully understood. To investigate this, Japanese white rabbits underwent I-R (30 min aortic occlusion followed by reperfusion, ischemic preconditioning (three cycles of 5 min aortic occlusion plus 5 min reperfusion followed by I-R, or sham surgery. At 4 and 24 h following reperfusion, neurological function was assessed using Tarlov scores, blood spinal cord barrier permeability was measured by Evan’s Blue extravasation, spinal cord edema was evaluated using the wet-dry method, and spinal cord expression of zonula occluden-1 (ZO-1, matrix metalloproteinase-9 (MMP-9, and tumor necrosis factor-α (TNF-α were measured by Western blot and a real-time polymerase chain reaction. ZO-1 was also assessed using immunofluorescence. Spinal cord I-R injury reduced neurologic scores, and ischemic preconditioning treatment ameliorated this effect. Ischemic preconditioning inhibited I-R-induced increases in blood spinal cord barrier permeability and water content, increased ZO-1 mRNA and protein expression, and reduced MMP-9 and TNF-α mRNA and protein expression. These findings suggest that ischemic preconditioning attenuates the increase in blood spinal cord barrier permeability due to spinal cord I-R injury by preservation of tight junction protein ZO-1 and reducing MMP-9 and TNF-α expression.

  18. Transplantation of mononuclear cells from human umbilical cord blood promotes functional recovery after traumatic spinal cord injury in Wistar rats

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, L.P. [Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Iglesias, D. [Laboratório de Hematologia e Células-Tronco, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Nicola, F.C. [Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Steffens, D. [Laboratório de Hematologia e Células-Tronco, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Valentim, L.; Witczak, A.; Zanatta, G. [Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Achaval, M. [Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Pranke, P. [Laboratório de Hematologia e Células-Tronco, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Netto, C.A. [Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil)

    2011-12-23

    Cell transplantation is a promising experimental treatment for spinal cord injury. The aim of the present study was to evaluate the efficacy of mononuclear cells from human umbilical cord blood in promoting functional recovery when transplanted after a contusion spinal cord injury. Female Wistar rats (12 weeks old) were submitted to spinal injury with a MASCIS impactor and divided into 4 groups: control, surgical control, spinal cord injury, and one cell-treated lesion group. Mononuclear cells from umbilical cord blood of human male neonates were transplanted in two experiments: a) 1 h after surgery, into the injury site at a concentration of 5 x 10{sup 6} cells diluted in 10 µL 0.9% NaCl (N = 8-10 per group); b) into the cisterna magna, 9 days after lesion at a concentration of 5 x 10{sup 6} cells diluted in 150 µL 0.9% NaCl (N = 12-14 per group). The transplanted animals were immunosuppressed with cyclosporin-A (10 mg/kg per day). The BBB scale was used to evaluate motor behavior and the injury site was analyzed with immunofluorescent markers to label human transplanted cells, oligodendrocytes, neurons, and astrocytes. Spinal cord injury rats had 25% loss of cord tissue and cell treatment did not affect lesion extension. Transplanted cells survived in the injured area for 6 weeks after the procedure and both transplanted groups showed better motor recovery than the untreated ones (P < 0.05). The transplantation of mononuclear cells from human umbilical cord blood promoted functional recovery with no evidence of cell differentiation.

  19. Traumatic spinal cord injury in MR imaging; Urazowe przerwanie ciaglosci rdzenia kregowego w obrazie MR

    Energy Technology Data Exchange (ETDEWEB)

    Bronarski, J.; Wozniak, E. [Stoleczne Centrum Rehabilitacji, Konstancin (Poland)]|[Inst. Psychiatrii i Neurologii, Warsaw (Poland)

    1993-12-31

    Spinal cord injuries in tetraplegics were briefly discussed on the basis of MR imaging. It was found that severe cervical spine trauma usually results in concussion - the complete transection of the cord is rare. A case of 19 years old male with total cord transection confirmed by MR imaging is described. (author). 5 refs, 3 figs.

  20. Retrospective study of spinal cord injury patients admitted to spinal injury rehabilitation center, Sanga, Banepa, Nepal.

    Science.gov (United States)

    Shrestha, P; Shrestha, S; Shrestha, R K

    2014-12-01

    Spinal cord injury is a serious problem that affects many facets of an individual's life. This was a retrospective study which included data from all patients admitted to the Spinal Injury Rehabilitation Center (SIRC), Sanga with spinal injuries over a 4 year period between January 2008 and January 2011. The overall objective of the study was to determine the epidemiology of spinal injury patients admitted at the center. Socio-demographic details, mechanism of injury, level of injury, ASIA score and length of hospital stay of the subjects were recorded and analyzed. An incremental pattern was observed in the number of spinal injury patients attending SIRC. In the year 2008, 81 patients of spinal injury were recorded which increased to 122 in 2011. A total of 381 spinal injury patients were included in the study out of which a majority, 73.50% were male, 30.45% belonged to the 21-30 years age group and 23.10% belonged to the 31-40 years age group. A majority of Spinal injury patients, 189 (49.60%), were from the Central region followed by 89 (23.36%) from the Western region. Fall from height (68.24%) was the predominant cause of spinal injury followed by road traffic accident (18.63%). In the study, 213 subjects (55.91%) had ASIA A scoring and thoracic injury (49.34%) was most common followed by lumbar injury (29.66%), cervical injury (17.84%) and sacral injury (3.15%). About Two-fifths (40.42%) of the spinal injury patients were conservatively managed whereas three-fifths (59.58%) underwent surgery and length of stay of patients ranged from 2 to 305 days. This study shows that the young adults, predominantly males in their most productive years of life, are prone to traumatic spinal cord injury which results in personal and family tragedies along with socioeconomic burden to the nation. Thus, recognizing the pattern of traumatic spinal cord injuries, relevant etiological factors and identification of high-risk groups is necessary in designing better methods of

  1. High incidence of traumatic spinal cord injury in Estonia.

    Science.gov (United States)

    Sabre, L; Pedai, G; Rekand, T; Asser, T; Linnamägi, U; Kõrv, J

    2012-10-01

    Retrospective population-based cohort study. To provide national data on epidemiology of traumatic spinal cord injury (TSCI) among the population of Estonia from 1997 to 2007. All Estonian hospitals. Medical records of patients with TSCI from all regional, central, general and rehabilitation hospitals in Estonia were retrospectively reviewed. Epidemiological characteristics, etiology, neurological level and severity of injury, concomitant injuries were analyzed. A total of 595 patients with TSCI from 1 January 1997 to 31 December 2007 were identified. The male to female ratio was 5.5:1. The mean age at injury was 39.0 years. The crude incidence rate was 39.7 (95% confidence interval: 36.6-43.0) per million population. The most frequent cause of TSCI was falls (41%), followed by traffic accidents (29%). Alcohol consumption preceded 43% of injuries. The lesion level was cervical in 59.4%, thoracic in 18.3% and lumbar/sacral in 22.3%. Compared to recent studies from Europe, where the incidence of TSCI is between 15 and 30 per million population, the incidence of TSCI in Estonia is among the highest. The rates are significantly higher in men compared with women and especially among the youngest men. The leading cause of TSCI is falls. A significant proportion of injuries are related to alcohol consumption before trauma in Estonia.

  2. Extrinsic and Intrinsic Regulation of Axon Regeneration by MicroRNAs after Spinal Cord Injury.

    Science.gov (United States)

    Li, Ping; Teng, Zhao-Qian; Liu, Chang-Mei

    2016-01-01

    Spinal cord injury is a devastating disease which disrupts the connections between the brain and spinal cord, often resulting in the loss of sensory and motor function below the lesion site. Most injured neurons fail to regenerate in the central nervous system after injury. Multiple intrinsic and extrinsic factors contribute to the general failure of axonal regeneration after injury. MicroRNAs can modulate multiple genes' expression and are tightly controlled during nerve development or the injury process. Evidence has demonstrated that microRNAs and their signaling pathways play important roles in mediating axon regeneration and glial scar formation after spinal cord injury. This article reviews the role and mechanism of differentially expressed microRNAs in regulating axon regeneration and glial scar formation after spinal cord injury, as well as their therapeutic potential for promoting axonal regeneration and repair of the injured spinal cord.

  3. The impact of spinal cord injury on South African youth

    Directory of Open Access Journals (Sweden)

    E. Njoki

    2007-02-01

    Full Text Available Approximately 500 South Africans, mainly young people,sustain a spinal cord injury every year leading to severe lifetime physical disabilities. With advances in medicine and assistive technology, these young people are able to reach adulthood. The physical, social and  emotional adjustments, which determine the eventual successful outcome following injury, vary considerably from person to person. Some make satisfactory adjustments whereas others remain chronically distressed.This study aimed to determine the impact of SCI on youth in community settings after discharge from rehabilitation.  A qualitative approach, that utilised face-to-face interviews and focus group methods of data collection, was used. Data were drawn from ten participants selected at Conradie Spinal Rehabilitation Unit, using purposive sampling. Audiotape recorded interviews were transcribed verbatim. Strong themes that ran through the data were identified. The results of the study revealed that spinal cord injury impacts on more than just the physical capabilities of an individual. Participants identified issues such as social identity, intrapersonal and interpersonal factors, social support and employment opportunities as having a major impact on their lives once back in the community.  It is  recommended that rehabilitation professionals include issues such as identity and psychosocial adjustment into their health promotion interventions.

  4. Zinc and osteoporosis in patients with spinal cord injury.

    Science.gov (United States)

    Ohry, A; Shemesh, Y; Zak, R; Herzberg, M

    1980-06-01

    Thirty-eight patients (8 women and 30 men) with spinal cord injury were investigated. All had been immobilised after the traumatic event. The time elapsed since their accidents varied from 2 to 74 weeks. Blood and urine samples were collected to investigated calcium, zinc, magnesium, sodium, alkaline phosphate, phosphore, haemoglobin, creatinine, uric acid and proteins in blood, and the urinary excretion of phosphore, hydroxyproline, creatinine, amino acids, calcium, calcium, magnesium and zinc. The methods were estimately by atomic absorption spectrophotometry. The serum zinc levels did not differ statistically from normal and the calcium and magnesium levels in the serum were lower among the patients than in normal controls. The urinary excretion of zinc, calcium, phosphore and hydroxyproline was higher among the patients without correlation to the patients' age. The zinc excretion is negatively correlated to the time elapsed since the injury, but it is still high 3 months after trauma. The highly significant correlation between urinary zinc and hydroxyproline excretion, together with increased calcium and phosphore excretion, suggests that zinc may be involved in the process of osteoporosis in patients with spinal cord injury.

  5. Incidence and patterns of spinal cord injury in Australia.

    Science.gov (United States)

    O'Connor, Peter

    2002-07-01

    The objective of this paper is to report on the epidemiology of spinal cord injury (SCI) based on the Australian SCI register and to discuss the implications for prevention. All adult cases of SCI are reported to the registry. The case reports for 1998/1999 were aggregated and described. The age adjusted rate of persisting SCI was 14.5 per million of population. Rates were highest in young adults and in males. The vast majority of cases (93%) were due to unintentional injury. Forty-three percent were due to motor vehicle crashes, principally from motor vehicle rollover. Cases of SCI from falls, aquatic activities, and working for income are also described. Incomplete cervical cord injuries were most common (38%), particularly as a result of motor vehicle crashes and low falls. The study indicates that the surveillance of SCI needs to be improved internationally so that comparative studies can be undertaken. It is recommended that the Centers for Disease Control case definition be adopted. Australia is one of the few countries that have a register based on that case definition, and the only one that has a register covering a full national adult population. The results presented on the basis of this data source provide some hitherto unavailable information on the incidence rates and patterns of SCI. National population based surveillance is fundamental to an understanding of the epidemiology, and hence the prevention, of this severe and costly health and welfare problem.

  6. Feasibility of 3.0 T diffusion-weighted nuclear magnetic resonance imaging in the evaluation of functional recovery of rats with complete spinal cord injury

    Directory of Open Access Journals (Sweden)

    Duo Zhang

    2015-01-01

    Full Text Available Diffusion tensor imaging is a sensitive way to reflect axonal necrosis and degeneration, glial cell regeneration and demyelination following spinal cord injury, and to display microstructure changes in the spinal cord in vivo. Diffusion tensor imaging technology is a sensitive method to diagnose spinal cord injury fiber tractography visualizes the white matter fibers, and directly displays the structural integrity and resultant damage of the fiber bundle. At present, diffusion tensor imaging is restricted to brain examinations, and is rarely applied in the evaluation of spinal cord injury. This study aimed to explore the fractional anisotropy and apparent diffusion coefficient of diffusion tensor magnetic resonance imaging and the feasibility of diffusion tensor tractography in the evaluation of complete spinal cord injury in rats. The results showed that the average combined scores were obviously decreased after spinal cord transection in rats, and then began to increase over time. The fractional anisotropy scores after spinal cord transection in rats were significantly lower than those in normal rats (P <0.05 the apparent diffusion coefficient was significantly increased compared with the normal group (P < 0.05. Following spinal cord transection, fractional anisotropy scores were negatively correlated with apparent diffusion coefficient values (r = -0.856, P < 0.01, and positively correlated with the average combined scores (r = 0.943, P < 0.01, while apparent diffusion coefficient values had a negative correlation with the average combined scores (r = -0.949, P < 0.01. Experimental findings suggest that, as a non-invasive examination, diffusion tensor magnetic resonance imaging can provide qualitative and quantitative information about spinal cord injury. The fractional anisotropy score and apparent diffusion coefficient have a good correlation with the average combined scores, which reflect functional recovery after spinal cord injury.

  7. Employment Trajectories After Spinal Cord Injury : Results From a 5-Year Prospective Cohort Study

    NARCIS (Netherlands)

    Ferdiana, Astri; Post, Marcel W.; Hoekstra, Trynke; van der Woude, Luccas H.; van der Klink, Jac J.; Bultmann, Ute

    2014-01-01

    Objectives: To identify different employment trajectories in individuals with spinal cord injury (SCI) after discharge from initial rehabilitation and to determine predictors of different trajectories from demographic, injury, functional, and psychological characteristics. Design: Prospective cohort

  8. [Direct cost of spinal cord injuries].

    Science.gov (United States)

    Jiménez-Ávila, José María; Calderón-Granados, Alejandra; Bitar-Alatorre, Wadih Emilio

    2012-01-01

    High prevalence and high costs in the treatment of spine injuries make a cost study necessary. The objective of this paper is to analyze, from the economic point of view, the behavior of traumatic and non-traumatic spinal pathologies in relation to hospital stay. Analysis of economic cost per hospital stay (January 2000 to May 2010). 4,173 cases studied, 45% women and 55% men, predominantly elderly and a mean age of 48.9, standard deviation 16.8 years, with a notable increase in hospital expenses in prevalence and peak months: January, February and April; and a decrease in July, October and December. Total expenses for hospital stay were estimated as $85,565,288.00. Traumatic entities consumed $40,404,477.00, and degenerative $21,866,815.00. The months of highest spending were: April, $11,072,683.00, December, $8,423,773.00 and February $8,154,152.00; whereas July showed the lowest spending: $4,874,261.00. Inflation up to July 2011 remained at 3.55% on average, down 2.98 percentage points from 2008 figures. there is a clear increase in spending connected with spine condition treatment at hospitals, in particular those resulting from traumatic events. The definition of risk groups for preventive measures is also reflected in the spending records. Spending on hospital treatment of spinal conditions of the elderly reflects an increment in degenerative conditions. It is necessary to plan a timely resource distribution by month and year in order to achieve a better and more efficient scheme for health services. The epidemiological basis for the reorientation of the current models is now clear.

  9. The Rehabilitation of Spinal Cord Injury Patients in Europe.

    Science.gov (United States)

    Scivoletto, Giorgio; Miscusi, Massimo; Forcato, Stefano; Ricciardi, Luca; Serrao, Mariano; Bellitti, Roberto; Raco, Antonino

    2017-01-01

    In Western European countries there is an incidence of traumatic spinal cord injury (SCI) of 16 to 19.4 new cases per million inhabitants per year. Since World War II, European physicians have been fundamental in the development of SCI medicine, starting from Sir Ludwig Guttman, who developed the idea of the integrated treatment of these patients. More recently, scientists from Germany and Switzerland have developed a new rehabilitative approach, Body Weight Support Treadmill Training, based on the concept of activity-based therapy and aimed at restoring walking in SCI patients. This review highlights issues concerning different organizational systems and health policies within and outside Europe.

  10. Acute spinal cord injury: tetraplegia and paraplegia in small animals.

    Science.gov (United States)

    Granger, Nicolas; Carwardine, Darren

    2014-11-01

    Spinal cord injury (SCI) is a common problem in animals for which definitive treatment is lacking, and information gained from its study has benefit for both companion animals and humans in developing new therapeutic approaches. This review provides an overview of the main concepts that are useful for clinicians in assessing companion animals with severe acute SCI. Current available advanced ancillary tests and those in development are reviewed. In addition, the current standard of care for companion animals following SCI and recent advances in the development of new therapies are presented, and new predictors of recovery discussed. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. International bowel function extended spinal cord injury data set

    DEFF Research Database (Denmark)

    Krogh, K; Perkash, I; Stiens, S A

    2008-01-01

    consisting of members appointed by the American Spinal Injury Association (ASIA) and the International Spinal Cord Society (ISCoS). METHODS: A draft prepared by the working group was reviewed by Executive Committee of the International SCI Standards and Data Sets and later by the ISCoS Scientific Committee...... and the ASIA Board. Relevant and interested scientific and professional organizations and societies (around 40) were also invited to review the data set and it was posted on the ISCoS and ASIA websites for 3 months to allow comments and suggestions. The ISCoS Scientific Committee, ISCoS Council and ASIA Board...

  12. Complications following spinal cord injury: occurrence and risk factors in a longitudinal study during and after inpatient rehabilitation

    NARCIS (Netherlands)

    Haisma, H.J.; van der Woude, L.H.V.; Stam, H.J.; Bergen, M.P.; Sluis, T.A.; Post, M.W.; Bussmann, J.B.

    2007-01-01

    Objective: To assess the occurrence and risk factors for complications following spinal cord injury during and after inpatient rehabilitation. Design: Multicentre longitudinal study. Subjects: A total of 212 persons with a spinal cord injury admitted to specialized rehabilitation centres. Methods:

  13. A Direct Comparison Between Norepinephrine and Phenylephrine for Augmenting Spinal Cord Perfusion in a Porcine Model of Spinal Cord Injury.

    Science.gov (United States)

    Streijger, Femke; So, Kitty; Manouchehri, Neda; Gheorghe, Ana; Okon, Elena B; Chan, Ryan M; Ng, Benjamin; Shortt, Katelyn; Sekhon, Mypinder Singh; Griesdale, Donald E; Kwon, Brian K

    2018-01-16

    Current clinical guidelines recommend elevating the mean arterial blood pressure (MAP) to increase spinal cord perfusion in patients with acute spinal cord injury (SCI). This is typically achieved with vasopressors such as norepinephrine (NE) and phenylephrine (PE). These drugs differ in their pharmacologic properties and potentially have different effects on spinal cord blood flow (SCBF), oxygenation (PO2), and downstream metabolism after injury. Using a porcine model of thoracic SCI, we evaluated how these vasopressors influenced intraparenchymal SCBF, PaPO2, hydrostatic pressure, and metabolism within the spinal cord adjacent to the injury site. Yorkshire pigs underwent a contusion/compression SCI at T10 and were randomized to receive either NE or PE for MAP elevation of 20 mm Hg, or no MAP augmentation. Prior to injury, a combined SCBF/PO2 sensor, a pressure sensor, and a microdialysis probe were inserted into the spinal cord adjacent to T10 at two locations: a 'proximal' site and 'distal' site, 2 mm and 22 mm from the spinal cord injury, respectively. At the proximal site, NE and PE resulted in little improvement in SCBF during cord compression. Following decompression, NE resulted in increased SCBF and PO2, while decreased levels were observed for PE. However, both NE and PE were associated with a gradual decrease in the L/P ratio after decompression. PE was associated with greater hemorrhage through the injury site than control animals. Combined, our results suggest that NE promotes better restoration of blood flow and oxygenation than PE in the traumatically injured spinal cord, thus providing a physiologic rationale for selecting NE over PE in the hemodynamic management of acute SCI.

  14. Propofol promotes spinal cord injury repair by bone marrow mesenchymal stem cell transplantation.

    Science.gov (United States)

    Zhou, Ya-Jing; Liu, Jian-Min; Wei, Shu-Ming; Zhang, Yun-Hao; Qu, Zhen-Hua; Chen, Shu-Bo

    2015-08-01

    Propofol is a neuroprotective anesthetic. Whether propofol can promote spinal cord injury repair by bone marrow mesenchymal stem cells remains poorly understood. We used rats to investigate spinal cord injury repair using bone marrow mesenchymal stem cell transplantation combined with propofol administration via the tail vein. Rat spinal cord injury was clearly alleviated; a large number of newborn non-myelinated and myelinated nerve fibers appeared in the spinal cord, the numbers of CM-Dil-labeled bone marrow mesenchymal stem cells and fluorogold-labeled nerve fibers were increased and hindlimb motor function of spinal cord-injured rats was markedly improved. These improvements were more prominent in rats subjected to bone marrow mesenchymal cell transplantation combined with propofol administration than in rats receiving monotherapy. These results indicate that propofol can enhance the therapeutic effects of bone marrow mesenchymal stem cell transplantation on spinal cord injury in rats.

  15. Propofol promotes spinal cord injury repair by bone marrow mesenchymal stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Ya-jing Zhou

    2015-01-01

    Full Text Available Propofol is a neuroprotective anesthetic. Whether propofol can promote spinal cord injury repair by bone marrow mesenchymal stem cells remains poorly understood. We used rats to investigate spinal cord injury repair using bone marrow mesenchymal stem cell transplantation combined with propofol administration via the tail vein. Rat spinal cord injury was clearly alleviated; a large number of newborn non-myelinated and myelinated nerve fibers appeared in the spinal cord, the numbers of CM-Dil-labeled bone marrow mesenchymal stem cells and fluorogold-labeled nerve fibers were increased and hindlimb motor function of spinal cord-injured rats was markedly improved. These improvements were more prominent in rats subjected to bone marrow mesenchymal cell transplantation combined with propofol administration than in rats receiving monotherapy. These results indicate that propofol can enhance the therapeutic effects of bone marrow mesenchymal stem cell transplantation on spinal cord injury in rats.

  16. Transplantation of neural progenitor cells in chronic spinal cord injury.

    Science.gov (United States)

    Jin, Y; Bouyer, J; Shumsky, J S; Haas, C; Fischer, I

    2016-04-21

    Previous studies demonstrated that neural progenitor cells (NPCs) transplanted into a subacute contusion injury improve motor, sensory, and bladder function. In this study we tested whether transplanted NPCs can also improve functional recovery after chronic spinal cord injury (SCI) alone or in combination with the reduction of glial scar and neurotrophic support. Adult rats received a T10 moderate contusion. Thirteen weeks after the injury they were divided into four groups and received either: 1. Medium (control), 2. NPC transplants, 3. NPC+lentivirus vector expressing chondroitinase, or 4. NPC+lentivirus vectors expressing chondroitinase and neurotrophic factors. During the 8 weeks post-transplantation the animals were tested for functional recovery and eventually analyzed by anatomical and immunohistochemical assays. The behavioral tests for motor and sensory function were performed before and after injury, and weekly after transplantation, with some animals also tested for bladder function at the end of the experiment. Transplant survival in the chronic injury model was variable and showed NPCs at the injury site in 60% of the animals in all transplantation groups. The NPC transplants comprised less than 40% of the injury site, without significant anatomical or histological differences among the groups. All groups also showed similar patterns of functional deficits and recovery in the 12 weeks after injury and in the 8 weeks after transplantation using the Basso, Beattie, and Bresnahan rating score, the grid test, and the Von Frey test for mechanical allodynia. A notable exception was group 4 (NPC together with chondroitinase and neurotrophins), which showed a significant improvement in bladder function. This study underscores the therapeutic challenges facing transplantation strategies in a chronic SCI in which even the inclusion of treatments designed to reduce scarring and increase neurotrophic support produce only modest functional improvements. Further

  17. The Healing of Bone Marrow-Derived Stem Cells on Motor Functions in Acute Spinal Cord Injury of Mice

    Directory of Open Access Journals (Sweden)

    N Gashmardi

    2016-10-01

    Full Text Available Background & aim: Spinal cord injury is a devastating damage that can cause motor and sensory deficits reducing quality of life and life expectancy of patients. Stem cell transplantation can be one of the promising therapeutic strategies. Bone marrow is a rich source of stem cells that is able to differentiate into various cell types. In this study, bone marrow stem cells were transplanted into mice spinal cord injury model to evaluate the motor function test. Methods: Bone marrow stem cells were isolated from 3 mice. Thirty six mice were randomly divided into 3 groups: the control, sham and experimental. In sham group, mice were subjected to spinal cord compression. In experimental group, one day after lesion, isolated stem cells (200,000 were injected intravenously. Assessment of locomotor function was done by Toyama Mouse Score (TMS after 1, 2, 3, 4, 5 week post-injury. The data were analyzed using one-way Analysis of Variance and Tukey tests and statistical software Graph Pad and SPSS.P > 0/05 was considered as significant difference.  Results: The score of TMS after cell transplantation was higher in cell transplantation group (experimental, while it was significantly higher after fifth week when compared to other groups. Conclusion: The increase in TMS score in cell transplantation group showed that injection of stem cells in acute spinal cord injury can have a therapeutic effect and promote locomotor function.

  18. Depression in Spinal Cord Injury : Assessing the Role of Psychological Resources

    NARCIS (Netherlands)

    Peter, Claudio; Mueller, Rachel; Post, Marcel W. M.; van Leeuwen, Christel M. C.; Werner, Christina S.; Geyh, Szilvia

    Purpose: To test the spinal cord injury adjustment model (SCIAM) and to examine how psychological resources may influence depressive symptoms in persons with spinal cord injury (SCI). We expect that (a) higher general self-efficacy (GSE) and higher purpose in life (PIL) are associated with lower

  19. International standards to document remaining autonomic function after spinal cord injury

    DEFF Research Database (Denmark)

    Krassioukov, Andrei; Biering-Sørensen, Fin; Donovan, William

    2012-01-01

    This is the first guideline describing the International Standards to document remaining Autonomic Function after Spinal Cord Injury (ISAFSCI). This guideline should be used as an adjunct to the International Standards for Neurological Classification of Spinal Cord Injury (ISNCSCI) including the ...

  20. Religiosity and Spirituality among Persons with Spinal Cord Injury: Attitudes, Beliefs, and Practices

    Science.gov (United States)

    Marini, Irmo; Glover-Graf, Noreen M.

    2011-01-01

    A total of 157 persons with spinal cord injury completed the "Spirituality and Spinal Cord Injury Survey" in relation to their spiritual and/or religious attitudes, beliefs, and practices in terms of adapting to their disability. Factor analysis accounting for 69% of the variance revealed four factors related to Spiritual Help and Improvement…

  1. Outcome of spinal cord injuries managed in a centre without modern ...

    African Journals Online (AJOL)

    BACKGROUND: The paucity of published reports from West Africa on the outcome of spinal cord injuries (SCI) reflects the limitations of the developing health care delivery system in this part of the world. OBJECTIVE: To review the outcome of the spinal cord injuries managed in our centre and relate same to those of ...

  2. How Do I Deal with Depression and Adjustment to My Spinal Cord Injury?

    Medline Plus

    Full Text Available ... to arm yourself with information on what a spinal cord injury is, and what it means in terms of ... or negative thoughts. Depression is common in the spinal cord injury population -- affecting about 1 in 5 people. There ...

  3. Trajectories and predictors of the course of mental health after spinal cord injury

    NARCIS (Netherlands)

    van Leeuwen, C.M.; Hoekstra, T.; van Koppenhagen, C.F.; de Groot, S.; Post, M.W.

    2012-01-01

    van Leeuwen CM, Hoekstra T, van Koppenhagen CF, de Groot S, Post MW. Trajectories and predictors of the course of mental health after spinal cord injury. Objective: To study the course and predictors of mental health in the period between the start of active spinal cord injury (SCI) rehabilitation

  4. Seat height : effects on submaximal hand rim wheelchair performance during spinal cord injury rehabilitation

    NARCIS (Netherlands)

    van der Woude, Lucas H V; Bouw, Arianne; van Wegen, Joeri; van As, Harry; Veeger, DirkJan (H. E. J.); de Groot, Sonja

    OBJECTIVE: To evaluate the effects of wheelchair seat height on wheeling efficiency and technique during rehabilitation in subjects with a spinal cord injury. DESIGN: Laboratory-based study. SUBJECTS: Twelve persons with spinal cord injury (age range 19-77 years, lesion level: C5/C6-L2; 7 men; 8

  5. International Spinal Cord Injury Female Sexual and Reproductive Function Basic Data Set

    DEFF Research Database (Denmark)

    Alexander, M S; Biering-Sørensen, F; Elliott, S

    2011-01-01

    To create the International Spinal Cord Injury (SCI) Female Sexual and Reproductive Function Basic Data Set within the International SCI Data Sets.......To create the International Spinal Cord Injury (SCI) Female Sexual and Reproductive Function Basic Data Set within the International SCI Data Sets....

  6. International spinal cord injury skin and thermoregulation function basic data set

    DEFF Research Database (Denmark)

    Karlsson, Annette; Krassioukov, A; Alexander, M S

    2012-01-01

    To create an international spinal cord injury (SCI) skin and thermoregulation basic data set within the framework of the International SCI Data Sets.......To create an international spinal cord injury (SCI) skin and thermoregulation basic data set within the framework of the International SCI Data Sets....

  7. Maresin 1 Promotes Inflammatory Resolution, Neuroprotection, and Functional Neurological Recovery After Spinal Cord Injury.

    Science.gov (United States)

    Francos-Quijorna, Isaac; Santos-Nogueira, Eva; Gronert, Karsten; Sullivan, Aaron B; Kopp, Marcel A; Brommer, Benedikt; David, Samuel; Schwab, Jan M; López-Vales, Ruben

    2017-11-29

    resolution leads to detrimental effects, including propagated tissue damage and impaired wound healing, as occurs after spinal cord injury (SCI). We report that inflammation after SCI is dysregulated in part due to inappropriate synthesis of proresolving lipid mediators. We demonstrate that the administration of the resolution agonist referred to as maresin 1 (MaR1) after SCI actively propagates resolution processes at the lesion site and improves neurological outcome. MaR1 is identified as an interventional candidate to attenuate dysregulated lesional inflammation and to restore functional recovery after SCI. Copyright © 2017 the authors 0270-6474/17/3711732-13$15.00/0.

  8. Prehospital transport of spinal cord-injured patients in Nigeria

    African Journals Online (AJOL)

    Spinal cord injury in Nigeria is associated with significant morbid- ... factors11-21 for morbidity and mortality after spinal cord injury, but .... Transferring patients in a crouched position may further com- promise the damaged neurons in the spinal cord. In an injury above the third cervical vertebra, this could cause paralysis of ...

  9. [Spinal cord injuries resulting from diving accidents in the Canary Islands].

    Science.gov (United States)

    Bárbara-Bataller, Enrique; Méndez-Suárez, José Luis; Alemán-Sánchez, Carolina; Sánchez-Enríquez, Jesús; Sosa-Henríquez, Manuel

    Diving accidents is one of the leading causes of spinal cord injury after falls and car accidents. The objective of this study was to determine the epidemiological and clinical characteristics of these patients in our setting to better prevent these injuries. We performed a retrospective, descriptive study of patients who have suffered from a traumatic spinal cord injury after a diving accident in the Canary Islands, Spain from 2000 to 2014. These patients were admitted to the Spinal Cord Unit of Hospital Universitario Insular de Gran Canaria. Of the 264 patients admitted to our unit for acute traumatic spinal cord injury, 23 (8.7%) cases were due to diving. Grouping the patients into 5years periods, 56% of the injuries occurred in 2000-2005, 17% in 2006-2010 and 26% in 2011-2014. All patients were male, with a mean age of 29years. Approximately 65% were under 30years. A total of 22/23 patients had a fracture and injury most commonly occurred to the C5 vertebra. Burst fractures were the most common. A total of 86% of cases underwent surgery. All the spinal cord injuries were cervical, with C6 being the neurological level most often affected. A total of 65% of spinal cord injuries were complete injuries. Spinal cord injury secondary to diving accidents is the third leading cause of traumatic spinal cord injury in our setting. It affects young males and the most common clinical presentation is a complete cervical spinal cord injury. Given the irreversible nature of the injury, prevention, aimed mainly at young people, is of great importance. Copyright © 2017 Sociedad Española de Neurocirugía. Publicado por Elsevier España, S.L.U. All rights reserved.

  10. Role of biomaterials in neurorestoration after spinal cord injuries

    Directory of Open Access Journals (Sweden)

    Ioana Stanescu

    2016-05-01

    Full Text Available Despite advances in knowledge and technology SCI remains one of the most severe and disabling disorders affecting young people. Spinal cord lesions result in permanent loss of motor, sensory and autonomic functions, causing an enormous impact on patient’s personal, social, familial and professional life. There is currently no effective treatment available to improve severe neurologic deficits and to decrease disability. Tissue-engineering techniques have developed a variety of scaffolds, made by biomaterials, used alone, incapsulated with cells or embedded with molecules, which are delivered to lesion site to achieve neural regeneration. Biomaterials may provide structural support and/or serve as a delivery vehicle for factors to arrest growth inhibition and promote axonal growth. Biomaterials acts like cell-carriers for the injury site, but also as reservoirs for growth factors or biomolecules. Hydrogels are a promising therapeutical strategy in spinal cord repair. Nano-fibers provide a three-dimensional network, which mimic closely the native extracellular matrix, thus offering a better support for cell attachment and proliferation than traditional micro-structure. New strategies like pharmacologic treatments, cell therapies, gene therapies and biomaterial tissue engineering should combine to increase their synergistic effect and to obtain the expected functional recovery in spinal cord injured patients

  11. Electrical Neuromodulation of the Respiratory System After Spinal Cord Injury.

    Science.gov (United States)

    Hachmann, Jan T; Grahn, Peter J; Calvert, Jonathan S; Drubach, Dina I; Lee, Kendall H; Lavrov, Igor A

    2017-09-01

    Spinal cord injury (SCI) is a complex and devastating condition characterized by disruption of descending, ascending, and intrinsic spinal circuitry resulting in chronic neurologic deficits. In addition to limb and trunk sensorimotor deficits, SCI can impair autonomic neurocircuitry such as the motor networks that support respiration and cough. High cervical SCI can cause complete respiratory paralysis, and even lower cervical or thoracic lesions commonly result in partial respiratory impairment. Although electrophrenic respiration can restore ventilator-independent breathing in select candidates, only a small subset of affected individuals can benefit from this technology at this moment. Over the past decades, spinal cord stimulation has shown promise for augmentation and recovery of neurologic function including motor control, cough, and breathing. The present review discusses the challenges and potentials of spinal cord stimulation for restoring respiratory function by overcoming some of the limitations of conventional respiratory functional electrical stimulation systems. Copyright © 2017 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.

  12. Epidural spinal cord stimulation for recovery from spinal cord injury: its place in therapy

    Directory of Open Access Journals (Sweden)

    Jacques L

    2016-09-01

    Full Text Available Line Jacques, Michael Safaee Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA Abstract: This paper is a review of some of the current research focused on using existing epidural spinal cord stimulation technologies in establishing the effectiveness in the recovery of independent standing, ambulation, or intentional movement of spinal cord injury patients. From a clinician’s perspective, the results have been intriguing, from a restorative perspective they are promising, and from a patient’s perspective they are hopeful. The outcomes, although still in the experimental phase, show some proof of theory and support further research. From a high volume university based clinician’s perspective, the resources needed to integrate this type of restorative care into a busy clinical practice are highly challenging without a well-structured and resource rich institutional restorative program. Patient selection is profoundly critical due to the extraordinary resources needed, and the level of motivation required to participate in such an intense and arduous rehabilitation process. Establishing an algorithmic approach to patient selection and treatment will be paramount to effectively utilize scarce resources and optimize outcomes. Further research is warranted, and the development of dedicated technological hardware and software for this therapeutic treatment versus using traditional spinal cord stimulation devices may yield more robust and efficacious outcomes. Keywords: independent standing, ambulation, intentional movement, recovery, rehabilitation, locomotion

  13. Experiential Avoidance, Mindfulness and Depression in Spinal Cord Injuries

    DEFF Research Database (Denmark)

    Skinner, Timothy C.; Roberton, Terri; Allison, Garry T.

    2010-01-01

    This preliminary study sought to explore the link between depression, experiential avoidance and mindfulness in people with a spinal cord injury (SCI). We surveyed patients listed on the SCI database at Royal Perth Hospital who had experienced an injury over the last 10 years. Respondents (62......) completed a questionnaire including the depression subscale of the Depression Anxiety Stress Scale, the Acceptance and Action Questionnaire (AAQ-2; Bond et al., 2007) and the Mindful Attention Awareness Scale (MAAS; Brown & Ryan, 2003). Thirty per cent of participants scored above the cut-off for possible...... depression, with equal numbers experiencing mild, moderate or severe depression. Mindfulness and experiential avoidance were significantly associated with depression, and were intercorrelated. Further, regression analysis indicated that experiential avoidance mediated the relationship between depression...

  14. Respiratory Management in the Patient with Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Rita Galeiras Vázquez

    2013-01-01

    Full Text Available Spinal cord injuries (SCIs often lead to impairment of the respiratory system and, consequently, restrictive respiratory changes. Paresis or paralysis of the respiratory muscles can lead to respiratory insufficiency, which is dependent on the level and completeness of the injury. Respiratory complications include hypoventilation, a reduction in surfactant production, mucus plugging, atelectasis, and pneumonia. Vital capacity (VC is an indicator of overall pulmonary function; patients with severely impaired VC may require assisted ventilation. It is best to proceed with intubation under controlled circumstances rather than waiting until the condition becomes an emergency. Mechanical ventilation can adversely affect the structure and function of the diaphragm. Early tracheostomy following short orotracheal intubation is probably beneficial in selected patients. Weaning should start as soon as possible, and the best modality is progressive ventilator-free breathing (PVFB. Appropriate candidates can sometimes be freed from mechanical ventilation by electrical stimulation. Respiratory muscle training regimens may improve patients’ inspiratory function following a SCI.

  15. SnoN facilitates axonal regeneration after spinal cord injury.

    Directory of Open Access Journals (Sweden)

    Jiun L Do

    Full Text Available Adult CNS neurons exhibit a reduced capacity for growth compared to developing neurons, due in part to downregulation of growth-associated genes as development is completed. We tested the hypothesis that SnoN, an embryonically regulated transcription factor that specifies growth of the axonal compartment, can enhance growth in injured adult neurons. In vitro, SnoN overexpression in dissociated adult DRG neuronal cultures significantly enhanced neurite outgrowth. Moreover, TGF-β1, a negative regulator of SnoN, inhibited neurite outgrowth, and SnoN over-expression overcame this inhibition. We then examined whether SnoN influenced axonal regeneration in vivo: indeed, expression of a mutant form of SnoN resistant to degradation significantly enhanced axonal regeneration following cervical spinal cord injury, despite peri-lesional upregulation of TGF-β1. Thus, a developmental mechanism that specifies extension of the axonal compartment also promotes axonal regeneration after adult CNS injury.

  16. Predicting Injury Severity and Neurological Recovery after Acute Cervical Spinal Cord Injury: A Comparison of Cerebrospinal Fluid and Magnetic Resonance Imaging Biomarkers.

    Science.gov (United States)

    Dalkilic, Turker; Fallah, Nader; Noonan, Vanessa K; Salimi Elizei, Sanam; Dong, Kevin; Belanger, Lise; Ritchie, Leanna; Tsang, Angela; Bourassa-Moreau, Etienne; Heran, Manraj K S; Paquette, Scott J; Ailon, Tamir; Dea, Nicolas; Street, John; Fisher, Charles G; Dvorak, Marcel F; Kwon, Brian K

    2017-11-06

    Biomarkers of acute human spinal cord injury (SCI) could provide a more objective measure of spinal cord damage and a better predictor of neurological outcome than current standardized neurological assessments. In SCI, there is growing interest in establishing biomarkers from cerebrospinal fluid (CSF) and from magnetic resonance imaging (MRI). Here, we compared the ability of CSF and MRI biomarkers to classify injury severity and predict neurological recovery in a cohort of acute cervical SCI patients. CSF samples and MRI scans from 36 acute cervical SCI patients were examined. From the CSF samples taken 24 h post-injury, the concentrations of inflammatory cytokines (interleukin [IL]-6, IL-8, monocyte chemotactic protein-1), and structural proteins (tau, glial fibrillary acidic protein, and S100β) were measured. From the pre-operative MRI scans, we measured intramedullary lesion length, hematoma length, hematoma extent, CSF effacement, cord expansion, and maximal spinal cord compression. Baseline and 6-month post-injury assessments of American Spine Injury Association Impairment Scale (AIS) grade and motor score were conducted. Both MRI measures and CSF biomarker levels were found to correlate with baseline injury grade, and in combination they provided a stronger model for classifying baseline AIS grade than CSF or MRI biomarkers alone. For predicting neurological recovery, the inflammatory CSF biomarkers best predicted AIS grade conversion, whereas structural biomarker levels best predicted motor score improvement. A logistic regression model utilizing CSF biomarkers alone had a 91.2% accuracy at predicting AIS conversion, and was not strengthened by adding MRI features or even knowledge of the baseline AIS grade. In a direct comparison of MRI and CSF biomarkers, the CSF biomarkers discriminate better between different injury severities, and are stronger predictors of neurological recovery in terms of AIS grade and motor score improvement. These findings

  17. Sustained release of estrogens from PEGylated nanoparticles for treatment of secondary spinal cord injury

    Science.gov (United States)

    Barry, John

    Spinal Cord Injury (SCI) is a debilitating condition which causes neurological damage and can result in paralysis. SCI results in immediate mechanical damage to the spinal cord, but secondary injuries due to inflammation, oxidative damage, and activated biochemical pathways leading to apoptosis exacerbate the injury. The only currently available treatment, methylprednisolone, is controversial because there is no convincing data to support its therapeutic efficacy for SCI treatment. In the absence of an effective SCI treatment option, 17beta-estradiol has gained significant attention for its anti-oxidant, anti-inflammatory, and anti-apoptotic abilities, all events associated with secondary. Sadly, 17beta-estradiol is associated with systemic adverse effects preclude the use of free estrogen even for local administration due to short drug half-life in the body. Biodegradable nanoparticles can be used to increase half-life after local administration and to bestow sustained release. Sustained release using PEGylated biodegradable polymeric nanoparticles constructed from poly(lactic-co-glycolic acid) (PLGA) will endow a consistent, low, but effective dose to be delivered locally. This will limit systemic effects due to local administration and low dose, sustained release. PLGA was chosen because it has been used extensively for sustained release, and has a record of safety in humans. Here, we show the in vitro efficacy of PEGylated nanoparticles loaded with 17beta-estradiol for treatment of secondary SCI. We achieved a high loading efficiency and controlled release from the particles over a several day therapeutic window. The particles also show neuroprotection in two in vitro cell culture models. Both the dose and pretreatment time with nanoparticles was evaluated in an effort to translate the treatment into an animal model for further study.

  18. Neuronal regeneration after acute spinal cord injury in adult rats.

    Science.gov (United States)

    He, Bo; Nan, Guoxin

    2016-12-01

    The most common causes of spinal cord injury (SCI) are traumatic traffic accidents, falls, and violence. Spinal cord injury greatly affects a patient's mental and physical conditions and causes substantial economic impact to society. There are many methods, such as high doses of corticosteroids, surgical stabilization, decompression, and stem cell transplantation, for functional recovery after SCI, but the effect is still not satisfactory. This study investigated the role of neuronal regeneration and the location of the neuronal regeneration after SCI in rats. This is an experimental animal study of acute spinal cord injury investigating the neuronal regeneration after SCI. Double immunofluorescence staining of NF-200 and BrdU was performed to detect the location of the neuronal regeneration. Forty-five adult Wistar rats were tested. Allen hit model (10 g) induced acute SCI sites targeted at the T10 segments. Nestin expression was detected via immunohistochemistry. Double immunofluorescence staining of neurofilament 200 (NF-200) and 5-bromo-2'-deoxyuridine (BrdU) was performed 10 mm away from the spinal cord center. Neural functional recovery was determined using the Basso, Beattie, and Bresnahan (BBB) score and electro-physiological examination. The study was funded by the Natural Science Foundation of China (NSFC, 81272172). The funder of this study had no capacity to influence the scholarly conduct of the research, interpretation of results, or dissemination of study outcomes. BrdU- and NF-200-positive cells were rarely detected and absent at 3 weeks and 4 weeks, respectively. We also detected the BrdU and NF-200 co-expressed cells are at 3 to 5 mm away from the injured site, and no co-expressed cells were detected at the injured site in this SCI model. The BBB score and electro-physiological examination of the nervous system were significantly different at 4 weeks. To our knowledge, this is the first study to demonstrate that neurons are regenerated 3 to

  19. 76 FR 33734 - Applications for New Awards; Spinal Cord Injury Model Systems (SCIMS) Centers and SCIMS Multi...

    Science.gov (United States)

    2011-06-09

    ... Rehabilitation Research Projects (DRRPs) and Special Projects and Demonstrations for Spinal Cord Injury Program... that provide comprehensive rehabilitation services to individuals with spinal cord injuries and... Applications for New Awards; Spinal Cord Injury Model Systems (SCIMS) Centers and SCIMS Multi-Site...

  20. Inpatient treatment time across disciplines in spinal cord injury rehabilitation

    Science.gov (United States)

    Whiteneck, Gale; Gassaway, Julie; Dijkers, Marcel; Backus, Deborah; Charlifue, Susan; Chen, David; Hammond, Flora; Hsieh, Ching-Hui; Smout, Randall J.

    2011-01-01

    Background/objective Length of stay (LOS) for rehabilitation treatment after spinal cord injury (SCI) has been documented extensively. However, there is almost no published research on the nature, extent, or intensity of the various treatments patients receive during their stay. This study aims at providing such information on a large sample of patients treated by specialty rehabilitation inpatient programs. Methods Six hundred patients with traumatic SCI admitted to six rehabilitation centers were enrolled. Time spent on various therapeutic activities was documented by each rehabilitation clinician after each patient encounter. Patients were grouped by neurologic level and completeness of injury. Total time spent by each rehabilitation discipline over a patient's stay and total minutes of treatment per week were calculated. Ordinary least squares stepwise regression models were used to identify patient and injury characteristics associated with time spent in rehabilitation treatment overall and within each discipline. Results Average LOS was 55 days (standard deviation 37), during which 180 (106) hours of treatment were received, or 24 (5) hours per week. Extensive variation was found in the amount of treatment received, between and within neurologic groups. Total hours of treatment provided throughout a patient's stay were primarily determined by LOS, which in turn was primarily predicted by medical acuity. Variation in minutes per week of treatment delivered by individual disciplines was predicted poorly by patient and injury characteristics. Conclusions Variations between and within SCI rehabilitation patient groups in LOS, minutes of treatment per week overall, and for each rehabilitation discipline are large. Variation in treatment intensity was not well explained by patient and injury characteristics. In accordance with practice-based evidence methodology, the next step in the SCIRehab study will be to determine which treatment interventions are related with

  1. Understanding the NG2 glial scar after spinal cord injury

    Directory of Open Access Journals (Sweden)

    Amber R Hackett

    2016-11-01

    Full Text Available NG2 cells, also known as oligodendrocyte progenitor cells, are located throughout the central nervous system and serve as a pool of progenitors to differentiate into oligodendrocytes. In response to spinal cord injury, NG2 cells increase their proliferation and differentiation into remyelinating oligodendrocytes. While astrocytes are typically associated with being the major cell type in the glial scar, many NG2 cells also accumulate within the glial scar but their function remains poorly understood. Similar to astrocytes, these cells hypertrophy, upregulate expression of chondroitin sulfate proteoglycans, inhibit axon regeneration, contribute to the glial-fibrotic scar border, and some even differentiate into astrocytes. Whether NG2 cells also have a role in other astrocyte functions, such as preventing the spread of infiltrating leukocytes and expression of inflammatory cytokines, is not yet known. Thus, NG2 cells are not only important for remyelination after spinal cord injury, but are also a major component of the glial scar with functions that overlap with astrocytes in this region. In this review, we describe the signaling pathways important for the proliferation and differentiation of NG2 cells, as well as the role of NG2 cells in scar formation and tissue repair.

  2. Training a Spinal Cord Injury Rehabilitation Team in Motivational Interviewing

    Directory of Open Access Journals (Sweden)

    Pilar Lusilla-Palacios

    2015-01-01

    Full Text Available Background. An acute spinal cord injury (ASCI is a severe condition that requires extensive and very specialized management of both physical and psychological dimensions of injured patients. Objective. The aim of the part of the study reported here was twofold: (1 to describe burnout, empathy, and satisfaction at work of these professionals and (2 to explore whether a tailored program based on motivational interviewing (MI techniques modifies and improves such features. Methods. This paper presents findings from an intervention study into a tailored training for professionals (N=45 working in a spinal cord injury (SCI unit from a general hospital. Rehabilitation professionals’ empathy skills were measured with the Jefferson Scale of Physician Empathy (JSPE, burnout was measured with the Maslach Burnout Inventory (MBI, and additional numeric scales were used to assess the perceived job-related stress and perceived satisfaction with job. Results. Findings suggest that professionals are performing quite well and they refer to satisfactory empathy, satisfaction at work, and no signs of burnout or significant stress both before and after the training. Conclusions. No training effect was observed in the variables considered in the study. Some possible explanations for these results and future research directions are discussed in depth in this paper. The full protocol of this study is registered in ClinicalTrials.gov (identifier: NCT01889940.

  3. Psychological impact of sports activity in spinal cord injury patients.

    Science.gov (United States)

    Gioia, M C; Cerasa, A; Di Lucente, L; Brunelli, S; Castellano, V; Traballesi, M

    2006-12-01

    To investigate whether sports activity is associated with better psychological profiles in patients with spinal cord injury (SCI) and to evaluate the effect of demographic factors on psychological benefits. The State-Trait Anxiety Inventory, Form X2 (STAI-X2), the Eysenck Personality Questionnaire for extraversion (EPQ-R (E)) and the questionnaire for depression (QD) were administered in a cross-sectional study of 137 males with spinal cord injury including 52 tetraplegics and 85 paraplegics. The subjects were divided into two groups according to sports activity participation (high frequency vs no sports participation). Moreover, multiple regression analysis was adopted to investigate the influence of demographic variables, such as age, educational level, occupational status and marital status, on psychological variables. Analysis of variance revealed significant differences among the groups for anxiety (STAI-X2), extraversion (EPQ-R (E)) and depression (QD). In particular, SCI patients who did not practice sports showed higher anxiety and depression scores and lower extraversion scores than sports participants. In addition, with respect to the paraplegics, the tetraplegic group showed the lowest depression scores. Following multiple regression analysis, only the sports activity factor remained as an independent factor of anxiety scores. These findings demonstrate that sports activity is associated with better psychological status in SCI patients, irrespective of tetraplegia and paraplegia, and that psychological benefits are not emphasized by demographic factors.

  4. Plasminogen activator promotes recovery following spinal cord injury.

    Science.gov (United States)

    Seeds, Nicholas; Mikesell, Steve; Vest, Rebekah; Bugge, Thomas; Schaller, Kristin; Minor, Kenneth

    2011-08-01

    Plasminogen activators play an important role in synaptic plasticity associated with the crossed phrenic phenomenon (CPP) and recovery of respiratory function after spinal cord injury. A genetic approach using knockout mice lacking various genes in the plasminogen activator/plasmin system has shown that induction of urokinase plasminogen activator (uPA) is required during the first hour after a C2-hemisection for the acquisition of the CPP response. The uPA knockout mice do not show the structural remodeling of phrenic motor neuron synapses characteristic of the CPP response. As shown here uPA acts in a cell signaling manner via binding to its receptor uPAR rather than as a protease, since uPAR knockout mice or knock-in mice possessing a modified uPA that is unable to bind to uPAR both fail to generate a CPP and recover respiratory function. Microarray data and real-time PCR analysis of mRNAs induced in the phrenic motor nucleus after C2-hemisection in C57Bl/6 mice as compared to uPA knockout mice indicate a potential cell signaling cascade downstream possibly involving β-integrin and Src, and other pathways. Identification of these uPA-mediated signaling pathways may provide the opportunity to pharmacologically upregulate the synaptic plasticity necessary for recovery of phrenic motoneuron activity following cervical spinal cord injury.

  5. Anesthetic considerations for patients with acute cervical spinal cord injury

    Directory of Open Access Journals (Sweden)

    Fang-ping Bao

    2017-01-01

    Full Text Available Anesthesiologists work to prevent or minimize secondary injury of the nervous system and improve the outcome of medical procedures. To this end, anesthesiologists must have a thorough understanding of pathophysiology and optimize their skills and equipment to make an anesthesia plan. Anesthesiologists should conduct careful physical examinations of patients and consider neuroprotection at preoperative interviews, consider cervical spinal cord movement and compression during airway management, and suggest awake fiberoptic bronchoscope intubation for stable patients and direct laryngoscopy with manual in-line immobilization in emergency situations. During induction, anesthesiologists should avoid hypotension and depolarizing muscle relaxants. Mean artery pressure should be maintained within 85–90 mmHg (1 mmHg = 0.133 kPa; vasoactive drug selection and fluid management. Normal arterial carbon dioxide pressure and normal blood glucose levels should be maintained. Intraoperative neurophysiological monitoring is a useful option. Anesthesiologists should be attentive to postoperative respiratory insufficiency (carefully considering postoperative extubation, thrombus, and infection. In conclusion, anesthesiologists should carefully plan the treatment of patients with acute cervical spinal cord injuries to protect the nervous system and improve patient outcome.

  6. Inosine Improves Neurogenic Detrusor Overactivity following Spinal Cord Injury.

    Directory of Open Access Journals (Sweden)

    Yeun Goo Chung

    Full Text Available Neurogenic detrusor overactivity and the associated loss of bladder control are among the most challenging complications of spinal cord injury (SCI. Anticholinergic agents are the mainstay for medical treatment of detrusor overactivity. However, their use is limited by significant side effects such that a search for new treatments is warranted. Inosine is a naturally occurring purine nucleoside with neuroprotective, neurotrophic and antioxidant effects that is known to improve motor function in preclinical models of SCI. However, its effect on lower urinary tract function has not been determined. The objectives of this study were to determine the effect of systemic administration of inosine on voiding function following SCI and to delineate potential mechanisms of action. Sprague-Dawley rats underwent complete spinal cord transection, or cord compression by application of an aneurysm clip at T8 for 30 sec. Inosine (225 mg/kg or vehicle was administered daily via intraperitoneal injection either immediately after injury or after a delay of 8 wk. At the end of treatment, voiding behavior was assessed by cystometry. Levels of synaptophysin (SYP, neurofilament 200 (NF200 and TRPV1 in bladder tissues were measured by immunofluorescence imaging. Inosine administration decreased overactivity in both SCI models, with a significant decrease in the frequency of spontaneous non-voiding contractions during filling, compared to vehicle-treated SCI rats (p<0.05, including under conditions of delayed treatment. Immunofluorescence staining demonstrated increased levels of the pan-neuronal marker SYP and the Adelta fiber marker NF200, but decreased staining for the C-fiber marker, TRPV1 in bladder tissues from inosine-treated rats compared to those from vehicle-treated animals, including after delayed treatment. These findings demonstrate that inosine prevents the development of detrusor overactivity and attenuates existing overactivity following SCI, and may

  7. Development of telmisartan in the therapy of spinal cord injury: pre-clinical study in rats

    Directory of Open Access Journals (Sweden)

    Lin CM

    2015-08-01

    Full Text Available Chien-Min Lin,1,* Jo-Ting Tsai,2,* Chen Kuei Chang,1 Juei-Tang Cheng,3 Jia-Wei Lin11Department of Neurosurgery, 2Department of Radiation Oncology, Shuang Ho Hospital-Taipei Medical University, 3Institute of Medical Science, College of Health Science, Chang Jung Christian University, Tainan City, Taiwan*These authors contributed equally to this workBackground: Decrease of peroxisome proliferator-activated receptors-δ (PPARδ expression has been observed after spinal cord injury (SCI. Increase of PPARδ may improve the damage in SCI. Telmisartan, the antihypertensive agent, has been mentioned to increase the expression of PPARδ. Thus, we are going to screen the effectiveness of telmisartan in SCI for the development of it in clinical application.Methods: In the present study, we used compressive SCI in rats. Telmisartan was then used to evaluate the influence in rats after SCI. Change in PPARδ expression was identified by Western blots. Also, behavioral tests were performed to check the recovery of damage.Results: Recovery of damage from SCI was observed in telmisartan-treated rats. Additionally, this action of telmisartan was inhibited by GSK0660 at the dose sufficient to block PPARδ. However, metformin at the dose enough to activate adenosine monophosphate-activated protein kinase failed to produce similar action as telmisartan. Thus, mediation of adenosine monophosphate-activated protein kinase in this action of telmisartan can be rule out. Moreover, telmisartan reversed the expressions of PPARδ in rats with SCI.Conclusion: The obtained data suggest that telmisartan can improve the damage of SCI in rats through an increase in PPARδ expression. Thus, telmisartan is useful to be developed as an agent in the therapy of SCI.Keywords: PPARδ, AMPK, spinal cord injury, angiotensin receptor blocker, metformin

  8. Sexual concerns after Spinal Cord Injury: An update on management.

    Science.gov (United States)

    Alexander, Marcalee Sipski; Aisen, Carrie Mlynarczyk; Alexander, Sterling Morrison; Aisen, Mindy Lipson

    2017-01-01

    Spinal Cord Injury (SCI) causes neurological impairment with resultant neurogenic sexual dysfunction which can compound preexisting psychological and medical sexual concerns. Understanding these concerns is important in managing the lifelong needs of persons with SCIs. To provide an overview of the impact of SCI on sexuality along with a framework for treatment of sexual concerns. To briefly review male infertility and its treatments and pregnancy in females after SCI. Interdisciplinary literature review and synthesis of information. The average age at SCI is increased, thus persons with SCIs may have preexisting sexual concerns. Sexual activity and satisfaction are decreased after SCI. Psychogenic sexual arousal is related to remaining sensation in the T11-L2 dermatomes. Orgasm occurs in approximately 50% of persons with SCIs with all injuries except subjects with complete lower motor neuron (LMN) injuries affecting the lowest sacral segments A structured approach to treatment including assessing preinjury function, determining the impact of injury, education, assessing and treating iatrogenic sexual dysfunction and treatment of concomitant problems is recommended. Basic and advanced methods to improve sexual arousal and orgasm are discussed and treatment of anejaculation and issues associated with pregnancy and SCI are reviewed. Sexual satisfaction is impaired after SCI; however, education and new therapies can improve responsiveness. Future research is warranted to improve sexual function and fertility potential in persons with SCIs.

  9. Wnt/β-catenin signaling promotes regeneration after adult zebrafish spinal cord injury.

    Science.gov (United States)

    Strand, Nicholas S; Hoi, Kimberly K; Phan, Tien M T; Ray, Catherine A; Berndt, Jason D; Moon, Randall T

    2016-09-02

    Unlike mammals, zebrafish can regenerate their injured spinal cord and regain control of caudal tissues. It was recently shown that Wnt/β-catenin signaling is necessary for spinal cord regeneration in the larval zebrafish. However, the molecular mechanisms of regeneration may or may not be conserved between larval and adult zebrafish. To test this, we assessed the role of Wnt/β-catenin signaling after spinal cord injury in the adult zebrafish. We show that Wnt/β-catenin signaling is increased after spinal cord injury in the adult zebrafish. Moreover, overexpression of Dkk1b inhibited Wnt/β-catenin signaling in the regenerating spinal cord of adult zebrafish. Dkk1b overexpression also inhibited locomotor recovery, axon regeneration, and glial bridge formation in the injured spinal cord. Thus, our data illustrate a conserved role for Wnt/β-catenin signaling in adult and larval zebrafish spinal cord regeneration. Published by Elsevier Inc.

  10. Rat models of spinal cord injury: from pathology to potential therapies

    Directory of Open Access Journals (Sweden)

    Jacob Kjell

    2016-10-01

    Full Text Available A long-standing goal of spinal cord injury research is to develop effective spinal cord repair strategies for the clinic. Rat models of spinal cord injury provide an important mammalian model in which to evaluate treatment strategies and to understand the pathological basis of spinal cord injuries. These models have facilitated the development of robust tests for assessing the recovery of locomotor and sensory functions. Rat models have also allowed us to understand how neuronal circuitry changes following spinal cord injury and how recovery could be promoted by enhancing spontaneous regenerative mechanisms and by counteracting intrinsic inhibitory factors. Rat studies have also revealed possible routes to rescuing circuitry and cells in the acute stage of injury. Spatiotemporal and functional studies in these models highlight the therapeutic potential of manipulating inflammation, scarring and myelination. In addition, potential replacement therapies for spinal cord injury, including grafts and bridges, stem primarily from rat studies. Here, we discuss advantages and disadvantages of rat experimental spinal cord injury models and summarize knowledge gained from these models. We also discuss how an emerging understanding of different forms of injury, their pathology and degree of recovery has inspired numerous treatment strategies, some of which have led to clinical trials.

  11. Rat models of spinal cord injury: from pathology to potential therapies

    Science.gov (United States)

    2016-01-01

    ABSTRACT A long-standing goal of spinal cord injury research is to develop effective spinal cord repair strategies for the clinic. Rat models of spinal cord injury provide an important mammalian model in which to evaluate treatment strategies and to understand the pathological basis of spinal cord injuries. These models have facilitated the development of robust tests for assessing the recovery of locomotor and sensory functions. Rat models have also allowed us to understand how neuronal circuitry changes following spinal cord injury and how recovery could be promoted by enhancing spontaneous regenerative mechanisms and by counteracting intrinsic inhibitory factors. Rat studies have also revealed possible routes to rescuing circuitry and cells in the acute stage of injury. Spatiotemporal and functional studies in these models highlight the therapeutic potential of manipulating inflammation, scarring and myelination. In addition, potential replacement therapies for spinal cord injury, including grafts and bridges, stem primarily from rat studies. Here, we discuss advantages and disadvantages of rat experimental spinal cord injury models and summarize knowledge gained from these models. We also discuss how an emerging understanding of different forms of injury, their pathology and degree of recovery has inspired numerous treatment strategies, some of which have led to clinical trials. PMID:27736748

  12. Spinal cord injuries in older children: is there a role for high-dose methylprednisolone?

    Science.gov (United States)

    Arora, Bhawana; Suresh, Srinivasan

    2011-12-01

    We present a retrospective case series of 15 children (aged 8-16 years) with blunt traumatic spinal cord injury who were treated with methylprednisolone as per the National Acute Spinal Cord Injury Study protocol. Of all patients, 12 (80%) were male. Causes were sports injuries (n = 9), motor vehicle crashes (n = 2), and falls (n = 4). Most injuries were nonskeletal (n = 14), and all patients had incomplete injury of the spinal cord. The most common location of tenderness was cervical (n = 7). Of the 15 patients, methylprednisolone was initiated within 3 hours in 13 patients and between 3 and 8 hours in 2 patients. All patients received the medication for 23 hours as per the National Acute Spinal Cord Injury Study protocol. Of the 15 patients, 13 recovered completely by 24 hours and were discharged with a diagnosis of spinal cord concussion. One patient had compression fracture of T5 and T3-T5 spinal contusion but no long-term neurological deficit. One patient was discharged with diagnosis of C1-C3 spinal cord contusion (by magnetic resonance imaging) and had partial recovery at 2 years after injury. All patients with a diagnosis of cord concussion had normal plain films of the spine and computed tomographic and magnetic resonance imaging findings. None of the patients had any associated major traumatic injuries to other organ systems. The high-dose steroid therapy did not result in any serious bacterial infections.

  13. Intraoperative contrast-enhanced ultrasonography for microcirculatory evaluation in rhesus monkey with spinal cord injury.

    Science.gov (United States)

    Huang, Lin; Chen, Keng; Chen, Fu-Chao; Shen, Hui-Yong; Ye, Ji-Chao; Cai, Zhao-Peng; Lin, Xi

    2017-06-20

    This study tried to quantify spinal cord perfusion by using contrast-enhanced ultrasound (CEUS) in rhesus monkey models with acute spinal cord injury. Acute spinal cord perfusion after injury was detected by CEUS, coupling with conventional ultrasound (US) and Color Doppler US (CDFI). Time-intensity curves and perfusion parameters were obtained by autotracking contrast quantification (ACQ) software in the epicenter and adjacent regions of injury, respectively. Neurological and histological examinations were performed to confirm the severity of injury. US revealed spinal cords were hypoechoic and homogeneous, whereas dura maters, pia maters, and cerebral aqueducts were hyperechoic. After spinal cord contusion, the injured spinal cord was hyperechoic on US, and intramedullary vessels of adjacent region of injury were increased and dilated on CDFI. On CEUS hypoperfusion were found in the epicenter of injury, while hyperperfusion in its adjacent region. Quantitative analysis showed that peak intensity (PI) decreased in epicenters of injury but significantly increased in adjacent regions at all time points (p spinal cord injury in overall views and real-time.

  14. Extending technology-aided leisure and communication programs to persons with spinal cord injury and post-coma multiple disabilities.

    Science.gov (United States)

    Lancioni, Giulio E; Singh, Nirbhay N; O'Reilly, Mark F; Sigafoos, Jeff; Ricciuti, Riccardo A; Trignani, Roberto; Oliva, Doretta; Signorino, Mario; D'Amico, Fiora; Sasanelli, Giovanni

    2015-01-01

    These two studies extended technology-aided programs to promote leisure and communication opportunities to a man with cervical spinal cord injury and a post-coma man with multiple disabilities. The studies involved the use of ABAB designs, in which A and B represented baseline and intervention phases, respectively. The programs focused on enabling the participants to activate songs, videos, requests, text messages, and telephone calls. These options were presented on a computer screen and activated through a small pressure microswitch by the man with spinal cord injury and a special touch screen by the post-coma man. To help the latter participant, who had no verbal skills, with requests and telephone calls, series of words and phrases were made available that he could activate in those situations. Data showed that both participants were successful in managing the programs arranged for them. The man with spinal cord injury activated mean frequencies of above five options per 10-min session. The post-coma man activated mean frequencies of about 12 options per 20-min session. Technology-aided programs for promoting leisure and communication opportunities might be successfully tailored to persons with spinal cord injury and persons with post-coma multiple disabilities. Implications for Rehabilitation Technology-aided programs may be critical to enable persons with pervasive motor impairment to engage in leisure activities and communication events independently. Persons with spinal cord injury, post-coma extended brain damage, and forms of neurodegenerative disease, such as amyotrophic lateral sclerosis, may benefit from those programs. The programs could be adapted to the participants' characteristics, both in terms of technology and contents, so as to improve their overall impact on the participants' functioning and general mood.

  15. Transplantation of human umbilical cord blood or amniotic epithelial stem cells alleviates mechanical allodynia after spinal cord injury in rats.

    Science.gov (United States)

    Roh, Dae-Hyun; Seo, Min-Soo; Choi, Hoon-Seong; Park, Sang-Bum; Han, Ho-Jae; Beitz, Alvin J; Kang, Kyung-Sun; Lee, Jang-Hern

    2013-01-01

    Stem cell therapy is a potential treatment for spinal cord injury (SCI), and a variety of different stem cell types have been grafted into humans suffering from spinal cord trauma or into animal models of spinal injury. Although several studies have reported functional motor improvement after transplantation of stem cells into injured spinal cord, the benefit of these cells for treating SCI-induced neuropathic pain is not clear. In this study, we investigated the therapeutic effect of transplanting human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) or amniotic epithelial stem cells (hAESCs) on SCI-induced mechanical allodynia (MA) and thermal hyperalgesia (TH) in T13 spinal cord hemisected rats. Two weeks after SCI, hUCB-MSCs or hAESCs were transplanted around the spinal cord lesion site, and behavioral tests were performed to evaluate changes in SCI-induced MA and TH. Immunohistochemical and Western blot analyses were also performed to evaluate possible therapeutic effects on SCI-induced inflammation and the nociceptive-related phosphorylation of the NMDA NR1 receptor subunit. While transplantation of hUCB-MSCs showed a tendency to reduce MA, transplantation of hAESCs significantly reduced MA. Neither hUCB-MSC nor hAESC transplantation had any effect on SCI-induced TH. Transplantation of hAESCs also significantly reduced the SCI-induced increase in NMDA receptor NR1 subunit phosphorylation (pNR1) expression in the spinal cord. Both hUCB-MSCs and hAESCs reduced the SCI-induced increase in spinal cord expression of the microglial marker, F4/80, but not the increased expression of GFAP or iNOS. Taken together, these findings demonstrate that the transplantation of hAESCs into the injured spinal cord can suppress mechanical allodynia, and this effect seems to be closely associated with the modulation of spinal cord microglia activity and NR1 phosphorylation.

  16. Targeting the NLRP3 inflammasome to attenuate spinal cord injury in mice.

    Science.gov (United States)

    Jiang, Wu; Li, Maoqiang; He, Fan; Zhou, Shaobo; Zhu, Liulong

    2017-10-25

    Spinal cord injury (SCI) is a devastating disease, which results in tissue loss and neurologic dysfunction. NLRP3 inflammasome plays an important role in the mechanism of diverse diseases. However, no studies have demonstrated the role of NLRP3 inflammasome and the effects of NLRP3 inflammasome inhibitors in a mouse model of SCI. We investigated whether inhibition of NLRP3 inflammasome activation by the pharmacologic inhibitor BAY 11-7082 or A438079 could exert neuroprotective effects in a mouse model of SCI. SCI was performed using an aneurysm clip with a closing force of 30 g at the level of the T6-T7 vertebra for 1 min. Motor recovery was evaluated by an open-field test. Neuronal death was assessed by terminal deoxynucleotidyl transferase dUTP nick end labeling and Nissl staining. Mitochondrial dysfunction was determined by quantitative real-time polymerase chain reaction (qPCR), western blot, and detection of mitochondrial membrane potential level. Microglia/macrophage activation and astrocytic response were evaluated by immunofluorescence labeling. Inhibition of NLRP3 inflammasome activation by pharmacologic inhibitor BAY 11-7082 or A438079 reduced neuronal death, attenuated spinal cord anatomic damage, and promoted motor recovery. Furthermore, BAY 11-7082 or A438079 directly attenuated the levels of NLRP3 inflammasome and proinflammatory cytokines. Moreover, BAY 11-7082 or A438079 alleviated microglia/macrophage activation, neutrophils infiltration, and reactive gliosis, as well as mitochondrial dysfunction. Collectively, our results demonstrate that pharmacologic suppression of NLRP3 inflammasome activation controls neuroinflammation, attenuates mitochondrial dysfunction, alleviates the severity of spinal cord damage, and improves neurological recovery after SCI. These data strongly indicate that the NLRP3 inflammasome is a vital contributor to the secondary damage of SCI in mice.

  17. Ginsenoside Rd inhibits apoptosis following spinal cord ischemia/reperfusion injury.

    Science.gov (United States)

    Wang, Baogang; Zhu, Qingsan; Man, Xiaxia; Guo, Li; Hao, Liming

    2014-09-15

    Ginsenoside Rd has a clear neuroprotective effect against ischemic stroke. We aimed to verify the neuroprotective effect of ginsenoside Rd in spinal cord ischemia/reperfusion injury and explore its anti-apoptotic mechanisms. We established a spinal cord ischemia/reperfusion injury model in rats through the occlusion of the abdominal aorta below the level of the renal artery for 1 hour. Successfully established models were injected intraperitoneally with 6.25, 12.5, 25 or 50 mg/kg per day ginsenoside Rd. Spinal cord morphology was observed at 1, 3, 5 and 7 days after spinal cord ischemia/reperfusion injury. Intraperitoneal injection of ginsenoside Rd in ischemia/reperfusion injury rats not only improved hindlimb motor function and the morphology of motor neurons in the anterior horn of the spinal cord, but it also reduced neuronal apoptosis. The optimal dose of ginsenoside Rd was 25 mg/kg per day and the optimal time point was 5 days after ischemia/reperfusion. Immunohistochemistry and western blot analysis showed ginsenoside Rd dose-dependently inhibited expression of pro-apoptotic Caspase 3 and down-regulated the expression of the apoptotic proteins ASK1 and JNK in the spinal cord of rats with spinal cord ischemia/reperfusion injury. These findings indicate that ginsenoside Rd exerts neuroprotective effects against spinal cord ischemia/reperfusion injury and the underlying mechanisms are achieved through the inhibition of ASK1-JNK pathway and the down-regulation of Caspase 3 expression.

  18. Macrophage activation and its role in repair and pathology after spinal cord injury.

    Science.gov (United States)

    Gensel, John C; Zhang, Bei

    2015-09-04

    The injured spinal cord does not heal properly. In contrast, tissue repair and functional recovery occur after skin or muscle injuries. The reason for this dichotomy in wound repair is unclear but inflammation, and specifically macrophage activation, likely plays a key role. Macrophages have the ability to promote the repair of injured tissue by regulating transitions through different phase of the healing response. In the current review we compare and contrast the healing and inflammatory responses between spinal cord injuries and tissues that undergo complete wound resolution. Through this comparison, we identify key macrophage phenotypes that are inaptly triggered or absent after spinal cord injury and discuss spinal cord stimuli that contribute to this maladaptive response. Sequential activation of classic, pro-inflammatory, M1 macrophages and alternatively activated, M2a, M2b, and M2c macrophages occurs during normal healing and facilitates transitions through the inflammatory, proliferative, and remodeling phases of repair. In contrast, in the injured spinal cord, pro-inflammatory macrophages potentiate a prolonged inflammatory phase and remodeling is not properly initiated. The desynchronized macrophage activation after spinal cord injury is reminiscent of the inflammation present in chronic, non-healing wounds. By refining the role macrophages play in spinal cord injury repair we bring to light important areas for future neuroinflammation and neurotrauma research. This article is part of a Special Issue entitled SI: Spinal cord injury. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Simvastatin protects ischemic spinal cord injury from cell death and cytotoxicity through decreasing oxidative stress: in vitro primary cultured rat spinal cord model under oxygen and glucose deprivation-reoxygenation conditions.

    Science.gov (United States)

    Sohn, Hye-Min; Hwang, Jin-Young; Ryu, Jung-Hee; Kim, Jinhee; Park, Seongjoo; Park, Jin-Woo; Han, Sung-Hee

    2017-02-27

    Ischemia and the following reperfusion damage are critical mechanisms of spinal cord injury. Statins have been reported to decrease ischemia-reperfusion injury in many organs including the spinal cord. Anti-oxidative effect is one of the main protective mechanisms of statin against neuronal death and cytotoxicity. We hypothesized that statins' anti-oxidative property would yield neuroprotective effects on spinal cord ischemia-reperfusion injury METHODS: Primary cultured spinal cord motor neurons were isolated from Sprague-Dawley rat fetuses. Ischemia-reperfusion injury model was induced by 60 min of oxygen and glucose deprivation (OGD) and 24 h of reoxygenation. Healthy and OGD cells were treated with simvastatin at concentrations of 0.1, 1, and 10 μM for 24 h. Cell viability was assessed using water-soluble tetrazolium salt (WST)-8, cytotoxicity with LDH, and production of free radicals with DCFDA (2',7'-dichlorofluorescein diacetate). OGD reduced neuronal viability compared to normoxic control by 35.3%; however, 0.1-10 μM of simvastatin treatment following OGD improved cell survival. OGD increased LDH release up to 214%; however, simvastatin treatment attenuated its cytotoxicity at concentrations of 0.1-10 μM (p spinal cord neuronal death and cytotoxicity against ischemia-reperfusion injury, probably via modification of oxidative stress.

  20. Behavioral and physiological methods for early quantitative assessment of spinal cord injury and prognosis in rats

    Directory of Open Access Journals (Sweden)

    C.A. Giglio

    2006-12-01

    Full Text Available Methods for reliable evaluation of spinal cord (SC injury in rats at short periods (2 and 24 h after lesion were tested to characterize the mechanisms implicated in primary SC damage. We measured the physiological changes occurring after several procedures for producing SC injury, with particular emphasis on sensorimotor functions. Segmental and suprasegmental reflexes were tested in 39 male Wistar rats weighing 250-300 g divided into three control groups that were subjected to a anesthesia, b dissection of soft prevertebral tissue, and c laminectomy of the vertebral segments between T10 and L1. In the lesion group the SC was completely transected, hemisected or subjected to vertebral compression. All animals were evaluated 2 and 24 h after the experimental procedure by the hind limb motility index, Bohlman motor score, open-field, hot-plate, tail flick, and paw compression tests. The locomotion scale proved to be less sensitive than the sensorimotor tests. A reduction in exploratory movements was detected in the animals 24 h after the procedures. The hot-plate was the most sensitive test for detecting sensorimotor deficiencies following light, moderate or severe SC injury. The most sensitive and simplest test of reflex function was the hot-plate. The hemisection model promoted reproducible moderate SC injury which allowed us to quantify the resulting behavior and analyze the evolution of the lesion and its consequences during the first 24 h after injury. We conclude that hemisection permitted the quantitation of behavioral responses for evaluation of the development of deficits after lesions. Hind limb evaluation scores and spontaneous exploration events provided a sensitive index of immediate injury effects after SC lesion at 2 and 24 h. Taken together, locomotion scales, open-field, and hot-plate tests represent reproducible, quantitatively sensitive methods for detecting functional deficiencies within short periods of time, indicating their

  1. Serum Albumin Predicts Long-Term Neurological Outcomes After Acute Spinal Cord Injury.

    Science.gov (United States)

    Tong, Bobo; Jutzeler, Catherine R; Cragg, Jacquelyn J; Grassner, Lukas; Schwab, Jan M; Casha, Steve; Geisler, Fred; Kramer, John L K

    2017-12-01

    There is a need to identify reliable biomarkers of spinal cord injury recovery for clinical practice and clinical trials. Our objective was to correlate serum albumin levels with spinal cord injury neurological outcomes. We performed a secondary analysis of patients with traumatic spinal cord injury (n = 591) participating in the Sygen clinical trial. Serum albumin concentrations were obtained as part of routine blood chemistry analysis, at trial entry (24-72 hours), 1, 2, and 4 weeks after injury. The primary outcomes were "marked recovery" and lower extremity motor scores, derived from the International Standards for the Neurological Classification of Spinal Cord Injury. Data were analyzed with multivariable logistic and linear regression to adjust for potential confounders. Serum albumin was significantly associated with spinal cord injury neurological outcomes. Higher serum albumin concentrations at 1, 2, and 4 weeks were associated with higher 52-week lower extremity motor score. Similarly, the odds of achieving "marked neurological recovery" was greater for individuals with higher serum albumin concentrations. The association between serum albumin concentrations and neurological outcomes was independent of initial injury severity, treatment with GM-1, and polytrauma. In spinal cord injury, serum albumin is an independent marker of long-term neurological outcomes. Serum albumin could serve as a feasible biomarker for prognosis at the time of injury and stratification in clinical trials.

  2. Bone biomarkers in patients with chronic traumatic spinal cord injury.

    Science.gov (United States)

    Sabour, Hadis; Norouzi Javidan, Abbas; Latifi, Sahar; Larijani, Bagher; Shidfar, Farzad; Vafa, Mohammad Reza; Heshmat, Ramin; Emami Razavi, Hassan

    2014-07-01

    Bone loss after spinal cord injury (SCI) occurs because of pathologic changes in osteoblastic and osteoclastic activities due to mechanical unloading. Some biochemical changes in bone metabolism after SCI are described before that were related to bone mineral loss. Our purpose was to determine bone markers' changes and related effective factors in patients with chronic traumatic SCI. This investigation was designed as an observational cross-sectional study. All patients with chronic SCI who were referred to Brain and Spinal Injury Research Center and did not meet our exclusion criteria entered the study. Self-reporting measures including patient's demographic features and date of accident were obtained using a questionnaire and physiologic measures including spinal magnetic resonance imaging to determine the level of injury accompanied with physical examination along with dual-energy X-ray absorptiometry were performed. Blood samples were analyzed in the laboratory. Dual-energy X-ray was used to determine bone mineral density in femoral and spinal vertebrae bone sites. Serum level of C-telopeptide cross-linked Type 1 collagen (CTX), parathyroid hormone, calcitonin, osteocalcin, and bone alkaline phosphatase (BALP) were measured. We detected a negative association between CTX level and bone mineral density in femoral and spinal bone sites that confirms that CTX is a bone resorption marker. C-telopeptide cross-linked Type 1 collagen and BALP levels did not show any significant correlation with postduration injury. Patients with spinal injury at lumbar level had the highest calcitonin level (pmarkers also revealed different site of action as osteocalcin level only affected femoral intertrochanteric bone mineral density. Generally, it seems that the coincidental consideration of these factors that influence bone mineral density can lead to a better understanding of bone changes after SCI. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Mesoporous silica nanoparticles for treating spinal cord injury

    Science.gov (United States)

    White-Schenk, Désirée.; Shi, Riyi; Leary, James F.

    2013-02-01

    An estimated 12,000 new cases of spinal cord injury (SCI) occur every year in the United States. A small oxidative molecule responsible for secondary injury, acrolein, is an important target in SCI. Acrolein attacks essential proteins and lipids, creating a feed-forward loop of oxidative stress in both the primary injury area and the surrounding areas. A small molecule used and FDA-approved for hypertension, hydralazine, has been found to "scavenge" acrolein after injury, but its delivery and short half-life, as well as its hypertension effects, hinder its application for SCI. Nanomedical systems broaden the range of therapeutic availability and efficacy over conventional medicine. They allow for targeted delivery of therapeutic molecules to tissues of interest, reducing side effects of untargeted therapies in unwanted areas. Nanoparticles made from silica form porous networks that can carry therapeutic molecules throughout the body. To attenuate the acrolein cascade and improve therapeutic availability, we have used a one-step, modified Stober method to synthesize two types of silica nanoparticles. Both particles are "stealth-coated" with poly(ethylene) glycol (PEG) (to minimize interactions with the immune system and to increase circulation time), which is also a therapeutic agent for SCI by facilitating membrane repair. One nanoparticle type contains an amine-terminal PEG (SiNP-mPEG-Am) and the other possesses a terminal hydrazide group (SiNP-mPEG-Hz). The former allows for exploration of hydralazine delivery, loading, and controlled release. The latter group has the ability to react with acrolein, allowing the nanoparticle to scavenge directly. The nanoparticles have been characterized and are being explored using neuronal PC-12 cells in vitro, demonstrating the potential of novel silica nanoparticles for use in attenuating secondary injury after SCI.

  4. Nimodipine alleviates apoptosis-mediated impairments through the mitochondrial pathway after spinal cord injury

    Directory of Open Access Journals (Sweden)

    Yafei CAI, Rui FAN, Tianmiao HUA, Huiling LIU, Jing LI

    2011-06-01

    Full Text Available Spinal cord injury (SCI remains an unsolved human health challenge. To alleviate the impairments of SCI, we studied the therapeutic effect of nimodipine (an L-type Ca2+ channel antagonist on functional recovery from SCI using Nystrom’s method in a mouse model. Eighty-four mice were divided into three groups: control group in which only vertebral plates were cut off without causing any spinal injuries; SCI; and SCI with nimodipine treatment. We assessed the histopathology, apoptosis detection, cell cycle, mitochondrial transmembrane potential, bcl-2/bax and caspase-3 levels of tissue 8 h, 1 d, 3 d and 4 d after trauma to evaluate rehabilitation. Behavioral performances were also assessed before and after nimodipine treatment. Results from inclined plane tests, motor score assessment and histological observations indicated that mice in the nimodipine-treated group rehabilitated better than those in the SCI group. The ratio of apoptosis, caspase-3 and bax expression in the nimodipine-treated group were significantly lower than those in the SCI group. The mitochondrial membrane potential and bcl-2 expression were up-regulated in the nimodipine-treated group. Taken together, our results indicate that the inhibition of calcium flux by nimodipine could reduce apoptosis processes and tissue damage through a mitochondrial pathway after spinal cord trauma [Current Zoology 57 (3: 340–349, 2011].

  5. Spinal cord injury effectively ameliorated by neuroprotective effects of rosmarinic acid.

    Science.gov (United States)

    Shang, Ai-Jia; Yang, Ying; Wang, Hang-Yan; Tao, Ben-Zhang; Wang, Jing; Wang, Zhong-Feng; Zhou, Ding-Biao

    2017-04-01

    Pathophysiology of spinal cord injury (SCI) causes primary and secondary effects leading to loss of neuronal function. The aim of the present study was to investigate the role of rosmarinic acid (RA) in protection against SCI. The experimental study was carried out in male wistar rats categorized into three groups. Group I - sham operated rats; Group II - SCI; Group III - SCI followed by RA treatment (10 mg/kg). The spinal tissues after treatment schedule were analyzed for oxidative stress status through determination of reactive oxygen species (ROS), lipid peroxidation, protein damage (carbonyl and sulfhydryl contents), and antioxidant enzyme activities. The expression of oxidative stress factors NF-κB and Nrf-2 was determined by Western blot analysis. Further pro-inflammatory cytokines (TNF-α, IL-6, MCP-1, and IL-1β) were measured by enzyme-linked immunosorbent assay (ELISA). The results show that treatment with RA significantly enhances the antioxidant status and decrease the oxidative stress in wistar rats post-SCI. RA effectively ameliorated inflammatory mechanisms by downregulation of NF-κB and pro-inflammatory cytokines post-SCI. The study demonstrates for the first time on the role of RA in protecting the spinal cord from injury and demonstrates its neuroprotection in wistar rats.

  6. Stem cell therapy in spinal cord injury: Hollow promise or promising science?

    Directory of Open Access Journals (Sweden)

    Aimee Goel

    2016-01-01

    Full Text Available Spinal cord injury (SCI remains one of the most physically, psychologically and socially debilitating conditions worldwide. While rehabilitation measures may help limit disability to some extent, there is no effective primary treatment yet available. The efficacy of stem cells as a primary therapeutic option in spinal cord injury is currently an area under much scrutiny and debate. Several laboratory and some primary clinical studies into the use of bone marrow mesenchymal stem cells or embryonic stem cell-derived oligodentrocyte precursor cells have shown some promising results in terms of remyelination and regeneration of damaged spinal nerve tracts. More recently,laboratory and early clinical experiments into the use of Olfactory Ensheathing Cells, a type of glial cell derived from olfactory bulb and mucosa have provided some phenomenal preliminary evidence as to their neuroregenerative and neural bridging capacity. This report compares and evaluates some current research into selected forms of embryonic and mesenchymal stem cell therapy as well as olfactory ensheathing cell therapy in SCI, and also highlights some legal and ethical issues surrounding their use. While early results shows promise, more rigorous large scaleclinical trials are needed to shed light on the safety, efficacy and long term viability of stem cell and cellular transplant techniques in SCI.

  7. Using surface electromyography to detect changes in innervation zones pattern after human cervical spinal cord injury.

    Science.gov (United States)

    Afsharipour, Babak; Sandhu, Milap S; Rasool, Ghulam; Suresh, Nina L; Rymer, William Z

    2016-08-01

    Human spinal cord injuries (SCI) disrupt the pathways between brain and spinal cord, resulting in substantial impairment and loss of function. Currently, we do not have the ability to precisely quantify the "functional" level of motor injury. The aim of this study is to determine if high-density surface electromyography imaging (SEI) can be used to characterize the location and extent of the spinal lesion. SEI is a safe and non-invasive technique, which uses several electrodes to provide a map of muscle activity. We applied the SEI technique to characterize muscle activity in individuals with chronic incomplete cervical SCI. Surface electromyogram signals (sEMG) from Biceps Brachii (BB) were recorded at submaximal levels (20%, 40%, and 60%) of maximum voluntary contractions (MVC) during isometric elbow flexion, shoulder flexion, and elbow abduction in two individuals with SCI. Through time-domain analysis of the collected data, we detected signs of de-innervation and re-innervations by analyzing the innervation zones (IZ) on the left and right BB muscles. We found that the distribution of IZs was different between the two sides. In addition, analysis of sEMG data collected at rest (no voluntary contraction) showed evidence of superficial active motor units that were active during rest (in the absence of spasms). These findings highlight the potential of SEI technique as a potential clinical tool to quantitatively describe the extent of the damage to motor spinal circuitry, and provide added precision to the clinical examinations and radiological findings.

  8. Tamoxifen: an FDA approved drug with neuroprotective effects for spinal cord injury recovery

    Directory of Open Access Journals (Sweden)

    Jennifer M Colón

    2016-01-01

    Full Text Available Spinal cord injury (SCI is a condition without a cure, affecting sensory and/or motor functions. The physical trauma to the spinal cord initiates a cascade of molecular and cellular events that generates a non-permissive environment for cell survival and axonal regeneration. Among these complex set of events are damage of the blood-brain barrier, edema formation, inflammation, oxidative stress, demyelination, reactive gliosis and apoptosis. The multiple events activated after SCI require a multi-active drug that could target most of these events and produce a permissive environment for cell survival, regeneration, vascular reorganization and synaptic formation. Tamoxifen, a selective estrogen receptor modulator, is an FDA approved drug with several neuroprotective properties that should be considered for the treatment of this devastating condition. Various investigators using different animal models and injury parameters have demonstrated the beneficial effects of this drug to improve functional locomotor recovery after SCI. Results suggest that the mechanism of action of Tamoxifen administration is to modulate anti-oxidant, anti-inflammatory and anti-gliotic responses. A gap of knowledge exists regarding the sex differences in response to Tamoxifen and the therapeutic window available to administer this treatment. In addition, the effects of Tamoxifen in axonal outgrowth or synapse formation needs to be investigated. This review will address some of the mechanisms activated by Tamoxifen after SCI and the results recently published by investigators in the field.

  9. Spinal cord injury in rats: inability of nimodipine or anti-neutrophil serum to improve spinal cord blood flow or neurologic status

    Energy Technology Data Exchange (ETDEWEB)

    Holtz, A.; Nystroem, B. (Department of Neurosurgery, University Hospital, Uppsala (Sweden)); Gerdin, B. (Department of General Surgery, University Hospital, Uppsala (Sweden))

    1989-01-01

    The role of a calcium-mediated increase in vascular resistance and of vascular damage caused by polymorphonuclear leukocytes (PMNLs) in the development of neurologic deficit and disturbance of spinal cord circulation following spinal cord compression was studied in the rat. Spinal cord injury was induced by 5 min of compression with a load of 35 g on a 2.2 x 5.0 mm compression plate. This caused transient paraparesis. The rats received either the calcium receptor antagonist nimodipine or an anti-rat neutrophil serum (ANS). Nimodipine was infused i.v. for 4 h in an amount of 1.5 {mu}g/kg/min starting 60 min after trauma. The number of circulating PMNLs was depleted by intraperiotoneal injection of an ANS raised in sheep given 12 h before trauma. This caused a reduction to about 2% of the pre-ANS value. Controls received saline or normal sheep serum. The motor performance was assessed daily on the inclined plane. On day one, the day after injury, the capacity angle had decreased from about 63 deg. preoperatively to close to 32 deg. in the experimental groups. There was then a slow improvement in both the control and experimental groups and on day 4 the capacity angle was close to 43 deg. in all 3 groups. Spinal cord blood flow, as measured with the {sup 14}C-iodoantipyrine autoradiography method, was similar in all groups on day 4. As neither the neurologic dysfunction nor the spinal cord blood flow was affected by post-trauma treatment with nimodipine or pretreatment with ANS, the possibility that calcium-mediated vasoconstriction or PMNLs play a role in the development of posttraumatic neuroligic disability was not supported by this study. (author).

  10. Brain White Matter Impairment in Patients with Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Weimin Zheng

    2017-01-01

    Full Text Available It remains unknown whether spinal cord injury (SCI could indirectly impair or reshape the white matter (WM of human brain and whether these changes are correlated with injury severity, duration, or clinical performance. We choose tract-based spatial statistics (TBSS to investigate the possible changes in whole-brain white matter integrity and their associations with clinical variables in fifteen patients with SCI. Compared with the healthy controls, the patients exhibited significant decreases in WM fractional anisotropy (FA in the left angular gyrus (AG, right cerebellum (CB, left precentral gyrus (PreCG, left lateral occipital region (LOC, left superior longitudinal fasciculus (SLF, left supramarginal gyrus (SMG, and left postcentral gyrus (PostCG (p<0.01, TFCE corrected. No significant differences were found in all diffusion indices between the complete and incomplete SCI. However, significantly negative correlation was shown between the increased radial diffusivity (RD of left AG and total motor scores (uncorrected p<0.05. Our findings provide evidence that SCI can cause not only direct degeneration but also transneuronal degeneration of brain WM, and these changes may be irrespective of the injury severity. The affection of left AG on rehabilitation therapies need to be further researched in the future.

  11. Spinal cord injury and substance use: a systematic review.

    Science.gov (United States)

    Lusilla-Palacios, P; Castellano-Tejedor, Carmina

    2015-12-15

    The objective of this study was to review recent findings about the prevalence of substance use (SU) and substance use disorders (SUD), and to discuss the related impact on health in spinal cord injury (SCI) population. For this purpose, computer-aided searches of MEDLINE (PubMed) and the Cochrane Library were conducted. From an initial pool of 59 articles, 52 met the inclusion criteria. Most of the studies referred to alcohol and tobacco and only a few studies reported on other substances. Study designs were mainly cross-sectional and descriptive, with scarce intervention and longitudinal studies.  Although a high prevalence of post-injury SU has been documented among SCI patients, limited research exists on pre-injury SU and on longitudinal studies. Moreover, when exploring SUD, it has not been systematically studied in accordance with CIE or DSM criteria. Alcohol appears to be the most consumed substance among this population. Additionally, those patients with SU have shown poorer outcomes in different health indicators. Therefore, more insight is required to increase scientific knowledge in this field and to recommend tailored preventive interventions and research priorities in relation to this population.

  12. Transplantation of Cerebral Dopamine Neurotrophic Factor Transducted BMSCs in Contusion Spinal Cord Injury of Rats: Promotion of Nerve Regeneration by Alleviating Neuroinflammation.

    Science.gov (United States)

    Zhao, Hua; Cheng, Lei; Du, Xinwen; Hou, Yong; Liu, Yi; Cui, Zhaoqiang; Nie, Lin

    2016-01-01

    Traumatic spinal cord injury (SCI) causes neuron death and axonal damage resulting in functional motor and sensory loss, showing limited regeneration because of adverse microenvironment such as neuroinflammation and glial scarring. Currently, there is no effective therapy to treat SCI in clinical practice. Bone marrow-derived mesenchymal stem cells (BMSCs) are candidates for cell therapies but its effect is limited by neuroinflammation and adverse microenvironment in the injured spinal cord. In this study, we developed transgenic BMSCs overexpressing cerebral dopamine neurotrophic factor (CDNF), a secretory neurotrophic factor that showed potent effects on neuron protection, anti-inflammation, and sciatic nerve regeneration in previous studies. Our results showed that the transplantation of CDNF-BMSCs suppressed neuroinflammation and decreased the production of proinflammatory cytokines after SCI, resulting in the promotion of locomotor function and nerve regeneration of the injured spinal cord. This study presents a novel promising strategy for the treatment of spinal cord injury.

  13. Targeted Iron Chelation Will Improve Recovery after Spinal Cord Injury

    Science.gov (United States)

    2014-10-01

    life. Even though sub- stantial improvements in care have increased survival rates, people with SCI now live with significant deficits for many...can re- duce tissue damage and promote functional improvement (Klapka et al., 2005; Paterniti et al., 2010; Rathore et al., 2008; Schultke et al...attenuate post-SCI pathology ( Paterniti et al., 2010). A caveat, however, is that the drug was given 30 min prior to injury. The iron chelator

  14. Spinal cord injury rehabilitation and mental health, SCReaM.

    Science.gov (United States)

    Warner, N; Ikkos, G; Gall, A

    2017-03-01

    The aim of the study was to investigate whether people with a pre-existing mental health disorder (MHD) benefit from rehabilitation following a spinal cord injury (SCI) and how their outcomes differ from those without a pre-existing MHD. Rehabilitation outcomes of a cohort of patients with pre-existing MHD discharged from the London SCI Centre over a 6-year period were investigated. A retrospective matched case-control study design was used to compare the Spinal Cord Independence Measure III between those with an SCI and pre-existing MHD and those without and both compared with published expected outcomes. The study found that, overall, those with MHD do benefit from SCI rehabilitation and that their outcomes do not significantly differ from those without MHD. Furthermore, the outcomes were favourable when compared with published expected outcomes. Having a pre-existing MHD does not preclude patients with an SCI from benefiting from rehabilitation. These findings are an important basis on which to ensure equal access to rehabilitation for patients with a pre-existing MHD.

  15. Gut dysbiosis impairs recovery after spinal cord injury.

    Science.gov (United States)

    Kigerl, Kristina A; Hall, Jodie C E; Wang, Lingling; Mo, Xiaokui; Yu, Zhongtang; Popovich, Phillip G

    2016-11-14

    The trillions of microbes that exist in the gastrointestinal tract have emerged as pivotal regulators of mammalian development and physiology. Disruption of this gut microbiome, a process known as dysbiosis, causes or exacerbates various diseases, but whether gut dysbiosis affects recovery of neurological function or lesion pathology after traumatic spinal cord injury (SCI) is unknown. Data in this study show that SCI increases intestinal permeability and bacterial translocation from the gut. These changes are associated with immune cell activation in gut-associated lymphoid tissues (GALTs) and significant changes in the composition of both major and minor gut bacterial taxa. Postinjury changes in gut microbiota persist for at least one month and predict the magnitude of locomotor impairment. Experimental induction of gut dysbiosis in naive mice before SCI (e.g., via oral delivery of broad-spectrum antibiotics) exacerbates neurological impairment and spinal cord pathology after SCI. Conversely, feeding SCI mice commercial probiotics (VSL#3) enriched with lactic acid-producing bacteria triggers a protective immune response in GALTs and confers neuroprotection with improved locomotor recovery. Our data reveal a previously unknown role for the gut microbiota in influencing recovery of neurological function and neuropathology after SCI. © 2016 Kigerl et al.

  16. Methylprednisolone for acute spinal cord injury: an increasingly philosophical debate.

    Science.gov (United States)

    Bowers, Christian A; Kundu, Bornali; Hawryluk, Gregory W J

    2016-06-01

    Following publication of NASCIS II, methylprednisolone sodium succinate (MPSS) was hailed as a breakthrough for patients with acute spinal cord injury (SCI). MPSS use for SCI has since become very controversial and it is our opinion that additional evidence is unlikely to break the stalemate amongst clinicians. Patient opinion has the potential to break this stalemate and we review our recent findings which reported that spinal cord injured patients informed of the risks and benefits of MPSS reported a preference for MPSS administration. We discuss the implications of the current MPSS debate on translational research and seek to address some misconceptions which have evolved. As science has failed to resolve the MPSS debate we argue that the debate is an increasingly philosophical one. We question whether SCI might be viewed as a serious condition like cancer where serious side effects of therapeutics are tolerated even when benefits may be small. We also draw attention to the similarity between the side effects of MPSS and isotretinoin which is prescribed for the cosmetic disorder acne vulgaris. Ultimately we question how patient autonomy should be weighed in the context of current SCI guidelines and MPSS's status as a historical standard of care.

  17. Methylprednisolone for acute spinal cord injury: an increasingly philosophical debate

    Directory of Open Access Journals (Sweden)

    Christian A Bowers

    2016-01-01

    Full Text Available Following publication of NASCIS II, methylprednisolone sodium succinate (MPSS was hailed as a breakthrough for patients with acute spinal cord injury (SCI. MPSS use for SCI has since become very controversial and it is our opinion that additional evidence is unlikely to break the stalemate amongst clinicians. Patient opinion has the potential to break this stalemate and we review our recent findings which reported that spinal cord injured patients informed of the risks and benefits of MPSS reported a preference for MPSS administration. We discuss the implications of the current MPSS debate on translational research and seek to address some misconceptions which have evolved. As science has failed to resolve the MPSS debate we argue that the debate is an increasingly philosophical one. We question whether SCI might be viewed as a serious condition like cancer where serious side effects of therapeutics are tolerated even when benefits may be small. We also draw attention to the similarity between the side effects of MPSS and isotretinoin which is prescribed for the cosmetic disorder acne vulgaris. Ultimately we question how patient autonomy should be weighed in the context of current SCI guidelines and MPSS′s status as a historical standard of care.

  18. Spatiotemporal expression of Ski after rat spinal cord injury.

    Science.gov (United States)

    Zhou, Kaisheng; Nan, Wei; Feng, Dongliang; Yi, Zhigang; Zhu, Yandong; Long, Zaiyun; Li, Sen; Zhang, Haihong; Wu, Yamin

    2017-02-08

    Ski is an evolutionarily conserved protein and widely participates in the regulation of various pathological and physiological processes such as wound healing, liver regeneration, development of the embryonic nervous system, muscle differentiation, and progression of many kinds of tumors. However, the distribution and function of Ski in central nervous system lesion and disease remain unclear. In this study, we investigated the spatiotemporal expression of Ski in a spinal cord injury (SCI) model in adult rats. Western Blot analysis indicated that Ski was expressed in both normal and injured spinal cord, and showed a significant upregulation after SCI compared with the sham group. Double-labeled immunofluorescence staining showed that Ski was significantly expressed in astrocytes, but not in the neurons. Western Blot analyses of glial fibrillary acidic protein (GFAP) and BBB scores were carried out and correlation analysis showed a positive correlation between them. In addition, the relative expression level of Ski was also positively correlated with the relative expression level of GFAP. Moreover, the conspicuous co-expression band of Ski and GFAP at the lesion border was found in the results of immunofluorescence staining combined with the pattern of glial scar formation reflected by H&E staining; in addition, it was found that Ski was also highly associated with glial scar. On the basis of our data, we speculated that Ski might play an important role in the process of reactive astrogliosis after SCI and our study might provide a basis for further study on the detailed role of Ski in astrocytes.

  19. Roles of Mesenchymal Stem Cells in Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Jing Qu

    2017-01-01

    Full Text Available Spinal cord injury (SCI represents one of the most complicated and heterogeneous pathological processes of central nervous system (CNS impairments, which is still beyond functional regeneration. Transplantation of mesenchymal stem cells (MSCs has been shown to promote the repair of the injured spinal cord tissues in animal models, and therefore, there is much interest in the clinical use of these cells. However, many questions which are essential to improve the therapy effects remain unanswered. For instance, the functional roles and related molecular regulatory mechanisms of MSCs in vivo are not yet completely determined. It is important for transplanted cells to migrate into the injured tissue, to survive and undergo neural differentiation, or to play neural protection roles by various mechanisms after SCI. In this review, we will focus on some of the recent knowledge about the biological behavior and function of MSCs in SCI. Meanwhile, we highlight the function of biomaterials to direct the behavior of MSCs based on our series of work on silk fibroin biomaterials and attempt to emphasize combinational strategies such as tissue engineering for functional improvement of SCI.

  20. Cytosolic Phospholipase A2 Protein as a Novel Therapeutic Target for Spinal Cord Injury

    Science.gov (United States)

    Liu, Nai-Kui; Deng, Ling-Xiao; Zhang, Yi Ping; Lu, Qing-Bo; Wang, Xiao-Fei; Hu, Jian-Guo; Oakes, Eddie; Bonventre, Joseph V; Shields, Christopher B; Xu, Xiao-Ming

    2014-01-01

    Objective The objective of this study was to investigate whether cytosolic phospholipase A2 (cPLA2), an important isoform of PLA2 that mediates the release of arachidonic acid, plays a role in the pathogenesis of spinal cord injury (SCI). Methods A combination of molecular, histological, immunohistochemical, and behavioral assessments were used to test whether blocking cPLA2 activation pharmacologically or genetically reduced cell death, protected spinal cord tissue, and improved behavioral recovery after a contusive SCI performed at the 10th thoracic level in adult mice. Results SCI significantly increased cPLA2 expression and activation. Activated cPLA2 was localized mainly in neurons and oligodendrocytes. Notably, the SCI-induced cPLA2 activation was mediated by the extracellular signal-regulated kinase signaling pathway. In vitro, activation of cPLA2 by ceramide-1-phosphate or A23187 induced spinal neuronal death, which was substantially reversed by arachidonyl trifluoromethyl ketone, a cPLA2 inhibitor. Remarkably, blocking cPLA2 pharmacologically at 30 minutes postinjury or genetically deleting cPLA2 in mice ameliorated motor deficits, and reduced cell loss and tissue damage after SCI. Interpretation cPLA2 may play a key role in the pathogenesis of SCI, at least in the C57BL/6 mouse, and as such could be an attractive therapeutic target for ameliorating secondary tissue damage and promoting recovery of function after SCI. PMID:24623140

  1. International bowel function basic spinal cord injury data set

    DEFF Research Database (Denmark)

    Krogh, K; Perkash, I; Stiens, S A

    2008-01-01

    . SETTING: Working group consisting of members appointed by the American Spinal Injury Association (ASIA) and the International Spinal Cord Society (ISCoS). METHODS: A draft prepared by the working group was reviewed by Executive Committee of the International SCI Standards and Data Sets, and later by ISCo......S Scientific Committee and the ASIA Board. Relevant and interested scientific and professional (international) organizations and societies (approximately 40) were also invited to review the data set and it was posted on the ISCoS and ASIA websites for 3 months to allow comments and suggestions. The ISCo......S Scientific Committee, Council and ASIA Board received the data set for final review and approval. RESULTS: The International Bowel Function Basic SCI Data Set includes the following 12 items: date of data collection, gastrointestinal or anal sphincter dysfunction unrelated to SCI, surgical procedures...

  2. Race-ethnicity and poverty after spinal cord injury.

    Science.gov (United States)

    Krause, J S; Dismuke, C E; Acuna, J; Sligh-Conway, C; Walker, E; Washington, K; Reed, K S

    2014-02-01

    Secondary analysis of existing data. Our objective was to examine the relationship between race-ethnicity and poverty status after spinal cord injury (SCI). A large specialty hospital in the southeastern United States. Participants were 2043 adults with traumatic SCI in the US. Poverty status was measured using criteria from the US Census Bureau. Whereas only 14% of non-Hispanic White participants were below the poverty level, 41.3% of non-Hispanic Blacks were in poverty. Logistic regression with three different models identified several significant predictors of poverty, including marital status, years of education, level of education, age and employment status. Non-Hispanic Blacks had 2.75 greater odds of living in poverty after controlling for other factors, including education and employment. We may need to consider quality of education and employment to better understand the elevated risk of poverty among non-Hispanic Blacks in the US.

  3. Salmonella prostatitis in a man with spinal cord injury.

    Science.gov (United States)

    Krebs, Jörg; Göcking, Konrad; Pannek, Jürgen

    2014-01-01

    Prostatitis is a very unusual manifestation of Salmonella urinary tract infection and has not been reported in men with spinal cord injury (SCI). A 57-year-old man with paraplegia and a history of recurrent symptomatic urinary tract infections presented with Salmonella typhimurium prostatitis. Clinical and sonographic examination of the urinary tract, as well as urinalysis including microbiologic examination, revealed no relevant abnormalities. The microbiologic analysis of the ejaculate revealed growth of monophasic Salmonella enterica ssp. enterica serotype 4,12:i:-. A 6-week course of antibiotic treatment was initiated. There were no recurrent symptomatic urinary tract infections during follow-up. Salmonellosis is a reportable disease and carriers have to refrain from activities in the food sector. Therefore, Salmonella prostatitis should be considered and excluded in men with SCI and a history of recurrent urinary tract infection who use intermittent catheterization for bladder management.

  4. Sexual functioning in women with spinal cord injury.

    Science.gov (United States)

    Griffith, E R; Trieschmann, R B

    1975-01-01

    The literature on women with spinal cord injury deals primarily with the factors of hormonal function, fertility and delivery. Unfortunately, information is limited concerning issues which are relevant to the total sexual functioning of these women. Little is known about potential hazards of contraceptives, the incidence of gynecological problems, the reactivity of vagina and external genitalia during sexual excitement, the nature of orgasmic experience, factors leading to orgasm and responsivity of nongenital erogenous zones. Sociocultural restrictions on vomen's sexual responsivity and willingness to discuss such issues are considered along with areas for future research, The authors emphasize the need to consider the totality of sexual functioning in future research and the need for women professionals to join research teams on this topic.

  5. Spinal cord damage in Zalcitabine maternally treated mice foetuses ...

    African Journals Online (AJOL)

    The present article explores the impacts of the anti-Aids drug (Zalcitabine) on the histological structure and morphometric analysis of the spinal cord of 14-day old mice fetuses. Pregnant mice received two oral concentrations of Zalcitabine (600 and 1000 mg/kg) for five consecutive days (from day 9 to day 13 of gestation).

  6. 18 CFR 367.9250 - Account 925, Injuries and damages.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Account 925, Injuries... GAS ACT Operation and Maintenance Expense Chart of Accounts § 367.9250 Account 925, Injuries and... company against injuries and damages claims of employees or others, losses of such character not covered...

  7. Psychosocial outcomes following spinal cord injury in Iran.

    Science.gov (United States)

    Khazaeipour, Zahra; Norouzi-Javidan, Abbas; Kaveh, Mahboobeh; Khanzadeh Mehrabani, Fatemeh; Kazazi, Elham; Emami-Razavi, Seyed-Hasan

    2014-05-01

    Objective/background In patients with spinal cord injury (SCI), SCI causes psychosocial complications that vary based on culture, conditions, and the amenities of each community. Health planners and social services should have full knowledge of these issues in order to plan schedules that address them. In this study, we aimed to understand the psychosocial problems of persons with SCI in Iran and to explore the requirements for minimizing these difficulties. Design This was a descriptive cross-sectional study. Setting Brain and Spinal Cord Injury Research (BASIR) Center, Tehran University of Medical Sciences, Tehran, Iran. Participants One hundred nineteen persons with SCI referred to BASIR clinic to receive outpatient rehabilitation. Methods In this study, trained interviewers administered a questionnaire to the participants. The questionnaire consisted of socio-demographic variables and psychosocial questions about finances, employment, housing, education, and social communication problems. Results Psychosocial problems for persons with SCI are mainly associated with financial hardship due to unemployment and the high cost of living, followed by difficulties with transportation, house modification, education, marriage, social communication, sports, and entertainment. Psychological problems include sadness, depression, irritability/anger, suicidal thoughts, and a lack of self-confidence. The levels of the aforementioned problems differ with respect to sex. Conclusion Persons suffering from SCI can face some serious psychosocial problems that may vary according to sex. For example, transportation difficulties can lead to problems such as unsociability. After recognizing these problems, the next step would be providing services to facilitate a productive lifestyle, enhancing social communication and psychological health, and ultimately creating a higher quality of life.

  8. Fumaric Acid Esters Attenuate Secondary Degeneration after Spinal Cord Injury.

    Science.gov (United States)

    Cordaro, Marika; Casili, Giovanna; Paterniti, Irene; Cuzzocrea, Salvatore; Esposito, Emanuela

    2017-11-01

    Spinal cord injury (SCI) causes permanent changes in motor, sensory, and autonomic functions. Unfortunately, there are no stable cures and current treatments include surgical decompression, methylprednisolone, and hemodynamic control that lead to modest function recovery. Fumaric acid esters (FAEs) were firstly used in the management of an immunological skin disorder, such as psoriasis. Because of their potent anti-inflammatory effects, they have been introduced in multiple sclerosis (MS). Investigation has shown not only an anti-inflammatory, but also supposed neuroprotective mechanism of action. The goal of the present work was to evaluate the potential beneficial effects of dimethyl fumarate (DMF) and monomethyl fumarate (MMF) in a mouse model of traumatic SCI. SCI was produced by extradural compression for 1 min of the spinal cord at the T6-7 level using an aneurysm clip, and DMF and MMF (both at 30 mg/kg) were administered by oral gavage to the mice 1 and 6 h after SCI. For locomotor activity, study mice were treated with FAEs once daily for 10 days. We observed that mice treated with DMF exhibited a significant and sustained recovery of motor function. FAEs significantly reduced the severity of inflammation by a modulation of pro-inflammatory cytokines and apoptosis factors, and increased neutrophic factors such as anti-brain-derived neurotrophic factor (BDNF), anti-glial cell-derived neurotrophic factor (GDNF), and neurotrophin-3 (NT3). Our results showed important protective effects of DMF in an animal model of SCI, considerably improving recovery of motor function, possibly by reducing the secondary inflammation and tissue injury that characterize this model. DMF may constitute a promising target for future SCI therapies.

  9. The International Spinal Cord Injury Pain Extended Data Set (Version 1.0)

    DEFF Research Database (Denmark)

    Widerström-Noga, E; Biering-Sørensen, F; Bryce, T N

    2016-01-01

    OBJECTIVES: The objective of this study was to develop the International Spinal Cord Injury Pain Extended Data Set (ISCIPEDS) with the purpose of guiding the assessment and treatment of pain after spinal cord injury (SCI). SETTING: International. METHODS: The ISCIPEDS was reviewed by members...... of the International SCI Data Sets Committee, the International Spinal Cord Society Executive and Scientific Committees, American Spinal Injury Association and American Pain Society Boards, and the Neuropathic Pain Special Interest Group of the International Association for the Study of Pain, individual reviewers...

  10. The effect of Sativex in neuropathic pain and spasticity in spinal cord injury

    DEFF Research Database (Denmark)

    Andresen, Sven Robert; Hansen, Rikke Bod Middelhede; Johansen, Inger Lauge

    2014-01-01

    often receive incomplete relief from present available and recommended treatment. Cannabinoids has shown efficacy on both neuropathic pain and spasticity in patients with spinal cord injury, but the studies one the topic has been too small to make a general conclusion for patients with spinal cord...... injury. Aims: To investigate the effect of Sativex (cannabinoid agonist given as an oral mucosal spray), on neuropathic pain and spasticity in patients with spinal cord injury. Methods: A randomized, double-blind, placebo-controlled crossover study. We will include 30 patients with neuropathic pain...

  11. MRI Prognostication Factors in the Setting of Cervical Spinal Cord Injury Secondary to Trauma.

    Science.gov (United States)

    Martínez-Pérez, Rafael; Cepeda, Santiago; Paredes, Igor; Alen, Jose F; Lagares, Alfonso

    2017-05-01

    Several studies have looked for an association between radiologic findings and neurologic outcome after cervical trauma. In the current literature, there is a paucity of evidence proving the prognostic role of soft tissue damage or bony integrity. Our objective is to determine radiologic findings related to neurologic prognosis in patients after incomplete acute traumatic cervical spinal cord injury, regardless of initial neurologic examination results. We retrospectively reviewed patients with acute traumatic cervical spinal cord injury who had a magnetic resonance imaging (MRI) performed within the first 96 hours. Clinical and epidemiologic data were recorded from the medical records along with several radiologic findings from the initial computed tomographic scan and MRI. Data were analyzed using a non-parametric test. Significant prognostic factors were analyzed through a stepwise multivariable logistic regression, adjusted by neurologic status at baseline. The receiver-operating characteristic curve was used to test the discriminative capacity of the model. Eighty-six patients (68 males and 18 females) were included for the analysis. Mean age was 49 years. Ligamentum flavum injury, intramedullary edema larger than 36 mm, and facet dislocation were demonstrated to be associated with a lack of neurologic improvement at follow-up. Multivariable analysis showed that edema larger than 36 mm and facet dislocation were strong predictors of clinical outcome, regardless of the initial neurologic examination result. Early MRI has an intrinsic prognostic value. Ligamentous injury and larger edema are strong predicting factors of a bad neurologic outcome at long-term follow-up. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Propofol injection combined with bone marrow mesenchymal stem cell transplantation better improves electrophysiological function in the hindlimb of rats with spinal cord injury than monotherapy.

    Science.gov (United States)

    Wang, Yue-Xin; Sun, Jing-Jing; Zhang, Mei; Hou, Xiao-Hua; Hong, Jun; Zhou, Ya-Jing; Zhang, Zhi-Yong

    2015-04-01

    The repair effects of bone marrow mesenchymal stem cell transplantation on nervous system damage are not satisfactory. Propofol has been shown to protect against spinal cord injury. Therefore, this study sought to explore the therapeutic effects of their combination on spinal cord injury. Rat models of spinal cord injury were established using the weight drop method. Rats were subjected to bone marrow mesenchymal stem cell transplantation via tail vein injection and/or propofol injection via tail vein using an infusion pump. Four weeks after cell transplantation and/or propofol treatment, the cavity within the spinal cord was reduced. The numbers of PKH-26-positive cells and horseradish peroxidase-positive nerve fibers apparently increased in the spinal cord. Latencies of somatosensory evoked potentials and motor evoked potentials in the hindlimb were noticeably shortened, amplitude was increased and hindlimb motor function was obviously improved. Moreover, the combined effects were better than cell transplantation or propofol injection alone. The above data suggest that the combination of propofol injection and bone marrow mesenchymal stem cell transplantation can effectively improve hindlimb electrophysiological function, promote the recovery of motor funtion, and play a neuroprotective role in spinal cord injury in rats.

  13. Leveraging biomedical informatics for assessing plasticity and repair in primate spinal cord injury.

    Science.gov (United States)

    Nielson, Jessica L; Haefeli, Jenny; Salegio, Ernesto A; Liu, Aiwen W; Guandique, Cristian F; Stück, Ellen D; Hawbecker, Stephanie; Moseanko, Rod; Strand, Sarah C; Zdunowski, Sharon; Brock, John H; Roy, Roland R; Rosenzweig, Ephron S; Nout-Lomas, Yvette S; Courtine, Gregoire; Havton, Leif A; Steward, Oswald; Reggie Edgerton, V; Tuszynski, Mark H; Beattie, Michael S; Bresnahan, Jacqueline C; Ferguson, Adam R

    2015-09-04

    Recent preclinical advances highlight the therapeutic potential of treatments aimed at boosting regeneration and plasticity of spinal circuitry damaged by spinal cord injury (SCI). With several promising candidates being considered for translation into clinical trials, the SCI community has called for a non-human primate model as a crucial validation step to test efficacy and validity of these therapies prior to human testing. The present paper reviews the previous and ongoing efforts of the California Spinal Cord Consortium (CSCC), a multidisciplinary team of experts from 5 University of California medical and research centers, to develop this crucial translational SCI model. We focus on the growing volumes of high resolution data collected by the CSCC, and our efforts to develop a biomedical informatics framework aimed at leveraging multidimensional data to monitor plasticity and repair targeting recovery of hand and arm function. Although the main focus of many researchers is the restoration of voluntary motor control, we also describe our ongoing efforts to add assessments of sensory function, including pain, vital signs during surgery, and recovery of bladder and bowel function. By pooling our multidimensional data resources and building a unified database infrastructure for this clinically relevant translational model of SCI, we are now in a unique position to test promising therapeutic strategies' efficacy on the entire syndrome of SCI. We review analyses highlighting the intersection between motor, sensory, autonomic and pathological contributions to the overall restoration of function. This article is part of a Special Issue entitled SI: Spinal cord injury. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Epidemiology of spinal cord injury in Hospital Kuala Lumpur.

    Science.gov (United States)

    Ibrahim, Asiah; Lee, Kun Yun; Kanoo, Lina Lohshini; Tan, Cheong How; Hamid, Muneer Abdul; Hamedon, Nurina Mustaʼani; Haniff, Jamaiyah

    2013-03-01

    Cross-sectional study. To examine the demographic characteristics, etiology, and the type and degree of disability of both traumatic and nontraumatic spinal cord injuries (SCIs) managed in a tertiary care hospital in Malaysia. There is a lack of data on the epidemiology of SCIs in Malaysia. These data are needed to plan for an effective implementation of primary prevention strategies, appropriate management programs, and proper allocation of health resource in this area. All patients with newly diagnosed SCIs and who were admitted to the Department of Rehabilitation Medicine, Hospital Kuala Lumpur, from 2006 to 2009 were reviewed. The data were extracted from the case records of the patients. The variables of interest analyzed included demographic profiles, etiology of the injury, the types of disabilities, and the degree of impairment. Two hundred ninety-two patients were included in the study, of which 224 (77%) were males. Their mean age was 39 years, with a range between 2 and 82 years. Malays formed the majority (59%). Forty-six percent of the patients were in the lower income group, earning less than $180 per month. More than half of the injuries (57%) were traumatic in origin, involving mainly young males between age 16 and 30 of years of age. Among traumatic SCIs, motor vehicle accidents were identified as the main cause (66%), followed by falls (28%). Of those admitted, 63% subsequently became paraplegic and 37% became tetraplegic. About half (51%) of the patients had experienced severe SCI (American Spinal Injury Association Impairment Scale of A and B). Rehabilitation of patients with SCI is a burden to the health resources. Prevention strategies are the answer and should focus on increasing awareness and compliance to road and workplace safety especially among young men.

  15. Urothelial proliferation and regeneration after spinal cord injury.

    Science.gov (United States)

    Kullmann, F Aura; Clayton, Dennis R; Ruiz, Wily G; Wolf-Johnston, Amanda; Gauthier, Christian; Kanai, Anthony; Birder, Lori A; Apodaca, Gerard

    2017-07-01

    The basal, intermediate, and superficial cell layers of the urothelium undergo rapid and complete recovery following acute injury; however, the effects of chronic injury on urothelial regeneration have not been well defined. To address this discrepancy, we employed a mouse model to explore urothelial changes in response to spinal cord injury (SCI), a condition characterized by life-long bladder dysfunction. One day post SCI there was a focal loss of umbrella cells, which are large cells that populate the superficial cell layer and normally express uroplakins (UPKs) and KRT20, but not KRT5, KRT14, or TP63. In response to SCI, regions of urothelium devoid of umbrella cells were replaced with small superficial cells that lacked KRT20 expression and appeared to be derived in part from the underlying intermediate cell layer, including cells positive for KRT5 and TP63. We also observed KRT14-positive basal cells that extended thin cytoplasmic extensions, which terminated in the bladder lumen. Both KRT14-positive and KRT14-negative urothelial cells proliferated 1 day post SCI, and by 7 days, cells in the underlying lamina propria, detrusor, and adventitia were also dividing. At 28 days post SCI, the urothelium appeared morphologically patent, and the number of proliferative cells decreased to baseline levels; however, patches of small superficial cells were detected that coexpressed UPKs, KRT5, KRT14, and TP63, but failed to express KRT20. Thus, unlike the rapid and complete restoration of the urothelium that occurs in response to acute injuries, regions of incompletely differentiated urothelium were observed even 28 days post SCI. Copyright © 2017 the American Physiological Society.

  16. Effect of oscillating electrical field stimulation on motor function recovery and myelin regeneration after spinal cord injury in rats.

    Science.gov (United States)

    Tian, Da-Sheng; Jing, Jue-Hua; Qian, Jun; Chen, Lei; Zhu, Bin

    2016-05-01

    [Purpose] The aim of this study was to evaluate the effect of oscillating electrical field stimulation on motor function recovery and myelin regeneration in rats with spinal cord injury. [Subjects and Methods] A rat model of spinal cord injury was constructed by using the Allen weight-drop method. These rats were randomly divided into normal, spinal cord injury, and spinal cord injury + oscillating electrical field stimulation groups. The experimental group received the intervention with oscillating electrical field stimulation, and the control group received the intervention with an electrical field stimulator without oscillating electrical field stimulation. Each group was then randomly divided into seven subgroups according to observation time (1, 2, 4, 6, 8, 10, and 12 weeks). Basso-Beattie-Bresnahan score and inclined plate test score evaluation, motor evoked potential detection, and histological observation were performed. [Results] In the first 2 weeks of oscillating electrical field stimulation, the oscillating electrical field stimulation and inclined plate test scores of spinal cord injury group and spinal cord injury + oscillating electrical field stimulation group were not significantly different. In the fourth week, the scores of the spinal cord injury group were significantly lower than those of the spinal cord injury + oscillating electrical field stimulation group. The motor evoked potential incubation period in the spinal cord injury + oscillating electrical field stimulation group at the various time points was shorter than that in the spinal cord injury group. In the sixth week, the relative area of myelin in the spinal cord injury + oscillating electrical field stimulation group was evidently larger than that in the spinal cord injury group. [Conclusion] Oscillating electrical field stimulation could effectively improve spinal cord conduction function and promote motor function recovery in rats with spinal cord injury, as well as promote myelin

  17. Delayed paraplegia after spinal cord ischemic injury requires caspase-3 activation in mice.

    Science.gov (United States)

    Kakinohana, Manabu; Kida, Kotaro; Minamishima, Shizuka; Atochin, Dmitriy N; Huang, Paul L; Kaneki, Masao; Ichinose, Fumito

    2011-08-01

    Delayed paraplegia remains a devastating complication after ischemic spinal cord injury associated with aortic surgery and trauma. Although apoptosis has been implicated in the pathogenesis of delayed neurodegeneration, mechanisms responsible for the delayed paraplegia remain incompletely understood. The aim of this study was to elucidate the role of apoptosis in delayed motor neuron degeneration after spinal cord ischemia. Mice were subjected to spinal cord ischemia induced by occlusion of the aortic arch and left subclavian artery for 5 or 9 minutes. Motor function in the hind limb was evaluated up to 72 hours after spinal cord ischemia. Histological studies were performed to detect caspase-3 activation, glial activation, and motor neuron survival in the serial spinal cord sections. To investigate the impact of caspase-3 activation on spinal cord ischemia, outcome of the spinal cord ischemia was examined in mice deficient for caspase-3. In wild-type mice, 9 minutes of spinal cord ischemia caused immediate paraplegia, whereas 5 minutes of ischemia caused delayed paraplegia. Delayed paraplegia after 5 minutes of spinal cord ischemia was associated with histological evidence of caspase-3 activation, reactive astrogliosis, microglial activation, and motor neuron loss starting at approximately 24 to 48 hours after spinal cord ischemia. Caspase-3 deficiency prevented delayed paraplegia and motor neuron loss after 5 minutes of spinal cord ischemia, but not immediate paraplegia after 9 minutes of ischemia. The present results suggest that caspase-3 activation is required for delayed paraplegia and motor neuron degeneration after spinal cord ischemia.

  18. Transplantation of Neural Stem Cells Cultured in Alginate Scaffold for Spinal Cord Injury in Rats.

    Science.gov (United States)

    Hosseini, Seyed Mojtaba; Sharafkhah, Ali; Koohi-Hosseinabadi, Omid; Semsar-Kazerooni, Maryam

    2016-08-01

    This study investigated the effects of transplantation of alginate encapsulated neural stem cells (NSCs) on spinal cord injury in Sprague-Dawley male rats. The neurological functions were assessed for 6 weeks after transplantation along with a histological study and measurement of caspase-3 levels. The aim of this study was to discover whether NSCs cultured in alginate transplantation improve recovery from spinal cord injury. Spinal cord injury is one of the leading causes of disability and it has no effective treatment. Spinal cord injury can also cause sensory impairment. With an impetus on using stem cells therapy in various central nervous system settings, there is an interest in using stem cells for addressing spinal cord injury. Neural stem cell is one type of stem cells that is able to differentiate to all three neural lineages and it shows promise in spinal injury treatment. Furthermore, a number of studies have shown that culturing NSCs in three-dimensional (3D) scaffolds like alginate could enhance neural differentiation. The NSCs were isolated from 14-day-old rat embryos. The isolated NSCs were cultured in growth media containing basic fibroblast growth factor and endothelial growth factor. The cells were characterized by differentiating to three neural lineages and they were cultured in an alginate scaffold. After 7 days the cells were encapsulated and transplanted in a rat model of spinal cord injury. Our data showed that culturing in an alginate 3D scaffold and transplantation of the NSCs could improve neurological outcome in a rat model of spinal cord injury. The inflammation scores and lesion sizes and also the activity of caspase-3 (for apoptosis evaluation) were less in encapsulated neural stem cell transplantation cases. Transplantation of NSCs that were cultured in an alginate scaffold led to a better clinical and histological outcome for recovery from spinal cord injury in a rat model.

  19. Survey of spinal cord injury-induced neurogenic bladder studies using the Web of Science.

    Science.gov (United States)

    Zou, Benjing; Zhang, Yongli; Li, Yucheng; Wang, Zantao; Zhang, Ping; Zhang, Xiyin; Wang, Bingdong; Long, Zhixin; Wang, Feng; Song, Guo; Wang, Yan

    2012-08-15

    To identify global trends in research on spinal cord injury-induced neurogenic bladder, through a bibliometric analysis using the Web of Science. We performed a bibliometric analysis of studies on spinal cord injury-induced neurogenic bladder using the Web of Science. Data retrieval was performed using key words "spinal cord injury", "spinal injury", "neurogenic bladder", "neuropathic bladder", "neurogenic lower urinary tract dysfunction", "neurogenic voiding dysfunction", "neurogenic urination disorder" and "neurogenic vesicourethral dysfunction". (a) published peer-reviewed articles on spinal cord injury-induced neurogenic bladder indexed in the Web of Science; (b) type of articles: original research articles and reviews; (c) year of publication: no limitation. (a) articles that required manual searching or telephone access; (b) Corrected papers and book chapters. (1) Annual publication output; (2) distribution according to journals; (3) distribution according to subject areas; (4) distribution according to country; (5) distribution according to institution; and (6) top cited publications. There were 646 research articles addressing spinal cord injury-induced neurogenic bladder in the Web of Science. Research on spinal cord injury-induced neurogenic bladder was found in the Science Citation Index-Expanded as of 1946. The United States, Ireland and Switzerland were the three major countries contributing to studies in spinal cord injury-induced neurogenic bladder in the 1970s. However, in the 1990s, the United States, the United Kingdom, the Netherlands, Germany and Japan published more papers on spinal cord injury-induced neurogenic bladder than Switzerland, and Ireland fell off the top ten countries list. In this century, the United States ranks first in spinal cord injury-induced neurogenic bladder studies, followed by France, the United Kingdom, Germany, Switzerland and Japan. Subject categories including urology, nephrology and clinical neurology, as well as

  20. Perceived impact of environmental barriers on participation among people living with spinal cord injury in Switzerland

    NARCIS (Netherlands)

    Reinhardt, Jan D; Ballert, Carolina; Brinkhof, Martin W G; Post, Marcel W M

    Objective: To describe the impact of environmental barriers perceived by people living with spinal cord injury in the Swiss community and to compare this across subpopulations. Design: Cross-sectional study. Subjects: A total of 1,549 participants in the community survey of the Swiss spinal cord

  1. Spinal cord injuries from road traffic crashes in southeastern Iran.

    Science.gov (United States)

    Rasouli, Mohammad R; Nouri, Mohsen; Rahimi-Movaghar, Vafa

    2007-12-01

    To analyze the data of patients with spinal cord injury (SCI) induced by road traffic crashes in southeastern Iran for better understanding the pattern of these injuries and therefore for better designing health system planning. In this historical cohort study, the patients who had been transferred to Level I trauma center in southeastern Iran due to road traffic accidents with radiographic documented SCI were evaluated. Among 64 patients with SCI, 38 patients (59.4%, 36 males and 2 females, aged 27.42 years+/-9.44 years on average) were injured by road traffic accidents. Car and motorcycle accidents were responsible for 26 cases (68.4%) and 12 cases (31.6%), respectively. And 31 patients (81.6%) had complete SCI. Conus medularis (T12-L2) was the most affected level. Results are discussed in terms of preventive measures, specifically those concerning the use of restraint and helmet and driving behavior. This study should be extended nationally to gain a larger case series so that the SCI risk of particular vehicle configurations, considering other crash factors, can be more precisely quantified and the characteristics for low occurrence of SCI can be more precisely identified.

  2. Neural plasticity and locomotor recovery after spinal cord injury.

    Science.gov (United States)

    Tansey, Keith E

    2010-12-01

    The discussion of neural plasticity and locomotor recovery after spinal cord injury (SCI) focuses on 2 main themes, the issues associated with detecting neural plasticity in human beings and the issue of how to translate information from animal models, in which neural plasticity can be more readily studied, to human clinical research and application. This article discusses the importance of studying neural plasticity to better understand the effects of current rehabilitation interventions and to devise the next generation of therapies. It reviews the current spectrum of clinical, functional, anatomical, and neurophysiological assessments of patients that can be made in neurorehabilitation and the relationship between those measures and the study of neural plasticity. Then the similarities and differences between animal models and human SCI are discussed in relation to the severity of injury, the effect of locomotor training on gait recovery, the localization of neural plasticity associated with that gait recovery, and the implications for interpreting the "translatability" of animal model data to human study and clinical practice. In summary, it is concluded that the study of neural plasticity and locomotor recovery after SCI is really in its infancy but that it is critical for the advancement of the science of neurorehabilitation and "restorative neurology." Copyright © 2010 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  3. Deficiency of TREK-1 potassium channel exacerbates secondary injury following spinal cord injury in mice.

    Science.gov (United States)

    Fang, Yongkang; Huang, Xiaojiang; Wan, Yue; Tian, Hao; Tian, Yeye; Wang, Wei; Zhu, Suiqiang; Xie, Minjie

    2017-04-01

    Spinal cord injury (SCI) involves complex pathological process which can be complicated by secondary injury. TREK-1 is a member of the two-pore domain potassium (K2P) channel family, which can be modulated by a number of physiological and pathological stimuli. Recent studies suggest that TREK-1 plays an active role in depression, pain and neuroprotection. However, its role in the pathological process after SCI remains unclear. In this study, we tested the expression and function of TREK-1 in spinal cord of mice after traumatic SCI. TREK-1 was widely expressed in mice spinal cord, including astrocytes and neurons. Deficiency of TREK-1 significantly exacerbated focal inflammatory responses as indicated by the increased accumulation of microglia/macrophage as well as pro-inflammatory factor interleukin-1 beta (IL-1β) and tumor necrosis factor alpha expression. Meanwhile, TREK-1 knockout mice showed enhanced reactive astrogliosis, chondroitin sulphate proteoglycans (CSPGs) production and decreased glutamate transporter-1 expression compared to the wide-type mice after SCI. Furthermore, TREK-1 deficiency promoted neurons and oligodendrocytes apoptosis, aggravated demyelination, cavity formation and retarded motor recovery. In summary, our findings provide the first in vivo evidence suggesting that TREK-1 may thereby constitute a promising therapeutic target to treat acute SCI. © 2017 International Society for Neurochemistry.

  4. Assessment of the neuroprotective effects of Lavandula angustifolia extract on the contusive model of spinal cord injury in Wistar rats

    Directory of Open Access Journals (Sweden)

    Gholamreza eKaka

    2016-02-01

    Full Text Available IntroductionSpinal cord injury (SCI involves a primary trauma and secondary cellular processes that can lead to severe damage to the nervous system, resulting in long-term spinal deficits. At the cellular level, SCI causes astrogliosis, of which glial fibrillary acidic protein (GFAP is a major index. ObjectiveThe aim of this study was to investigate the neuroprotective effects of Lavandula angustifolia (Lav on the repair of spinal cord injuries in Wistar rats.Materials and MethodsForty-five female rats were randomly divided into six groups of seven rats each: the intact, sham, control (SCI, Lav 100, Lav 200, and Lav 400 groups. Every week after SCI onset, all animals were evaluated for behavior outcomes by the Basso, Beattie, and Bresnahan (BBB score. H&E staining was performed to examine the lesions post-injury. GFAP expression was assessed for astrogliosis. Somatosensory evoked potential (SEP testing was performed to detect the recovery of neural conduction.Results BBB scores were significantly increased and delayed responses on sensory tests were significantly decreased in the Lav 200 and Lav 400 groups compared to the control group. The greatest decrease of GFAP was evident in the Lav 200 and Lav 400 groups. EMG results showed significant improvement in the hindlimbs in the Lav 200 and Lav 400 groups compared to the control group. Cavity areas significantly decreased and the number of ventral motor neurons significantly increased in the Lav 200 and Lav 400 groups.ConclusionLav at doses of 200 mg/kg and 400 mg/kg can promote structural and functional recovery after SCI. The neuroprotective effects of L. angustifolia can lead to improvement in the contusive model of spinal cord injury in Wistar rats.Keywords Spinal cord injury (SCI; Lavandula angustifolia; neuroprotection; Basso, Beattie, and Bresnahan (BBB; glial fibrillary acidic protein (GFAP; somatosensory evoked potential (SEP

  5. Health service use in adults 20-64 years with traumatic brain injury, spinal cord injury or pelvic fracture. A cohort study with 9-year follow-up

    DEFF Research Database (Denmark)

    Laursen, Bjarne; Helweg-Larsen, Karin

    2012-01-01

    To estimate the health service use over 9 years after the injury year for patients with traumatic brain injury (TBI), spinal cord injury (SCI) and pelvic fracture (PF), and compare with non-injured....

  6. Reliability of the International Spinal Cord Injury Bowel Function Basic and Extended Data Sets

    DEFF Research Database (Denmark)

    Juul, Therese; Bazzochi, G; Coggrave, M

    2011-01-01

    .20) in 5 items. Conclusion: Most items within the International Spinal Cord Injury Bowel Function Data sets have acceptable inter-rater reliability and are useful tools for data collection in international clinical practice and research. However, minor adjustments are recommended......Study design: This study was designed as an international validation study. Objective: The objective of this study was to assess the inter-rater reliability of the International Spinal Cord Injury Bowel Function Basic and Extended Data Sets. Setting: Three European spinal cord injury centers....... Methods: In total, 73 subjects with spinal cord injury and a history of bowel dysfunction, out of which 77% were men and median age of the subjects was 49 years (range 20–81), were studied. The inter-rater reliability was estimated by having two raters complete both data sets on the same subject. First...

  7. Occurrence and predictors of pressure ulcers during primary in-patient spinal cord injury rehabilitation

    NARCIS (Netherlands)

    Verschueren, J. H. M.; Post, M. W. M.; de Groot, S.; van der Woude, L. H. V.; van Asbeck, F. W. A.; Rol, M.

    Study design: Multicenter prospective cohort study. Objectives: To determine the occurrence and predictors for pressure ulcers in patients with spinal cord injury (SCI) during primary in-patient rehabilitation. Setting: Eight Dutch rehabilitation centres with specialized SCI units. Methods: The

  8. How Do I Deal with Depression and Adjustment to My Spinal Cord Injury?

    Medline Plus

    Full Text Available ... University of Washington provides pamphlets on depression with spinal cord injury and potential ... do I find a rehabilitation facility? How can I locate funding for rehabilitation ...

  9. How Do I Deal with Depression and Adjustment to My Spinal Cord Injury?

    Medline Plus

    Full Text Available ... what it means in terms of short-term planning and long-range goals. However, depression can be ... on navigating depression following a spinal cord injury. University of Washington provides pamphlets on depression with spinal ...

  10. RESTORING LOCOMOTION IN SPINAL CORD INJURY: A RANDOMIZED CONTROLLED TRIAL OF THE LION PROCEDURE

    DEFF Research Database (Denmark)

    Elmgreen, Søren Bruno; Forman, Axel; Possover, Marc

    2017-01-01

    that four patients with chronic traumatic spinal cord 153 injury (SCI) regained significant sensory and motor function following this laparoscopic implantation of neuroprosthesis (LION). Our aim is, therefore, to conduct a prospective randomized activecontrolled trial with elaborate neurophysiological...

  11. How Do I Deal with Depression and Adjustment to My Spinal Cord Injury?

    Medline Plus

    Full Text Available ... affecting about 1 in 5 people. There are treatments available to ease the symptoms of depression using ... on depression with spinal cord injury and potential treatment options. Related pages What is a complete vs ...

  12. Development of hybrid orthosis for standing, walking, and stair climbing after spinal cord injury

    National Research Council Canada - National Science Library

    Kobetic, Rudi; To, Curtis S; Schnellenberger, John R; Audu, Musa L; Bulea, Thomas C; Gaudio, Richard; Pinault, Gilles; Tashman, Scott; Triolo, Ronald J

    2009-01-01

    ...) to facilitate standing, walking, and stair climbing after spinal cord injury (SCI). The orthotic components consist of electromechanical joints that lock and unlock automatically to provide upright stability and free movement powered by FES...

  13. How Do I Deal with Depression and Adjustment to My Spinal Cord Injury?

    Medline Plus

    Full Text Available ... If you or a loved one is facing challenges that are overwhelming due to paralysis or would ... on navigating depression following a spinal cord injury. University of Washington provides pamphlets on depression with spinal ...

  14. How Do I Deal with Depression and Adjustment to My Spinal Cord Injury?

    Medline Plus

    Full Text Available ... what a spinal cord injury is, and what it means in terms of short-term planning and ... life. Depression can cause physical and psychological symptoms. It can worsen pain, make sleep difficult, cause loss ...

  15. Functional electrical stimulation for the upper limb in tetraplegic spinal cord injury: a systematic review.

    Science.gov (United States)

    Patil, Siddeshwar; Raza, Wajid A; Jamil, Firas; Caley, Richard; O'Connor, Rory J

    2014-01-01

    Technological advances have helped to improve functional ability in spinal cord injury survivors. The aim of this study is to systematically review the evidence for functional electrical stimulation (FES) on functional tasks involving the upper limb in people with spinal cord injuries. The authors systematically searched from September 2009 to September 2014 in relevant databases using a combination of keywords covering spinal cord injury and FES. Studies were selected using pre-determined criteria. The search yielded 144 studies. Only five studies met the inclusion criteria. All five reported improvements immediately and at follow-up in functional ability as a result of FES or FES combined with conventional therapy. There is some preliminary evidence that FES may reduce disability due to upper limb-related activity limitations in tetraplegic spinal cord injury. Further work needs to examine the role of FES in more detail and in combination with other treatments.

  16. Optical stimulation for restoration of motor function after spinal cord injury.

    Science.gov (United States)

    Mallory, Grant W; Grahn, Peter J; Hachmann, Jan T; Lujan, J Luis; Lee, Kendall H

    2015-02-01

    Spinal cord injury can be defined as a loss of communication between the brain and the body due to disrupted pathways within the spinal cord. Although many promising molecular strategies have emerged to reduce secondary injury and promote axonal regrowth, there is still no effective cure, and recovery of function remains limited. Functional electrical stimulation (FES) represents a strategy developed to restore motor function without the need for regenerating severed spinal pathways. Despite its technological success, however, FES has not been widely integrated into the lives of spinal cord injury survivors. In this review, we briefly discuss the limitations of existing FES technologies. Additionally, we discuss how optogenetics, a rapidly evolving technique used primarily to investigate select neuronal populations within the brain, may eventually be used to replace FES as a form of therapy for functional restoration after spinal cord injury. Copyright © 2015 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.

  17. How Do I Deal with Depression and Adjustment to My Spinal Cord Injury?

    Medline Plus

    Full Text Available ... helplessness and confusion is to arm yourself with information on what a spinal cord injury is, and ... Karp Resources If you are looking for more information on how to manage depression or have a ...

  18. PARTICIPATION AND INTEGRATION FROM THE PERSPECTIVE OF PERSONS WITH SPINAL CORD INJURY FROM FIVE EUROPEAN COUNTRIES

    NARCIS (Netherlands)

    Ruoranen, Kaisa; Post, Marcel W. M.; Juvalta, Sibylle; Reinhardt, Jan D.

    Objective: To examine the subjective understanding of participation and integration of persons with spinal cord injuries from 5 European countries and to compare these findings with the International Classification of Functioning, Disability and Health (ICF)'s conceptualization of participation.

  19. Angiogenic microspheres promote neural regeneration and motor function recovery after spinal cord injury in rats

    Science.gov (United States)

    Yu, Shukui; Yao, Shenglian; Wen, Yujun; Wang, Ying; Wang, Hao; Xu, Qunyuan

    2016-01-01

    This study examined sustained co-delivery of vascular endothelial growth factor (VEGF), angiopoietin-1 and basic fibroblast growth factor (bFGF) encapsulated in angiogenic microspheres. These spheres were delivered to sites of spinal cord contusion injury in rats, and their ability to induce vessel formation, neural regeneration and improve hindlimb motor function was assessed. At 2–8 weeks after spinal cord injury, ELISA-determined levels of VEGF, angiopoietin-1, and bFGF were significantly higher in spinal cord tissues in rats that received angiogenic microspheres than in those that received empty microspheres. Sites of injury in animals that received angiogenic microspheres also contained greater numbers of isolectin B4-binding vessels and cells positive for nestin or β III-tubulin (P spinal cord injury and markedly stimulate angiogenesis and neurogenesis, accelerating recovery of neurologic function. PMID:27641997

  20. Low-Grade Inflammation and Spinal Cord Injury: Exercise as Therapy?

    Science.gov (United States)

    da Silva Alves, Eduardo; de Aquino Lemos, Valdir; Ruiz da Silva, Francieli; Lira, Fabio Santos; dos Santos, Ronaldo Vagner Thomathieli; Rosa, João Paulo Pereira; Caperuto, Erico; Tufik, Sergio; de Mello, Marco Tulio

    2013-01-01

    An increase in the prevalence of obesity in people with spinal cord injury can contribute to low-grade chronic inflammation and increase the risk of infection in this population. A decrease in sympathetic activity contributes to immunosuppression due to the lower activation of immune cells in the blood. The effects of physical exercise on inflammatory parameters in individuals with spinal cord injury have not been well described. We conducted a review of the literature published from 1974 to 2012. This review explored the relationships between low-grade inflammation, spinal cord injury, and exercise to discuss a novel mechanism that might explain the beneficial effects of exercise involving an increase in catecholamines and cytokines in people with spinal cord injury. PMID:23533315