WorldWideScience

Sample records for cord formation promotes

  1. Intact fetal ovarian cord formation promotes mouse oocyte survival and development

    Directory of Open Access Journals (Sweden)

    Pera Renee

    2010-01-01

    Full Text Available Abstract Background Female reproductive potential, or the ability to propagate life, is limited in mammals with the majority of oocytes lost before birth. In mice, surviving perinatal oocytes are enclosed in ovarian follicles for subsequent oocyte development and function in the adult. Before birth, fetal germ cells of both sexes develop in clusters, or germline cysts, in the undifferentiated gonad. Upon sex determination of the fetal gonad, germ cell cysts become organized into testicular or ovarian cord-like structures and begin to interact with gonadal somatic cells. Although germline cysts and testicular cords are required for spermatogenesis, the role of cyst and ovarian cord formation in mammalian oocyte development and female fertility has not been determined. Results Here, we examine whether intact fetal ovarian germ and somatic cell cord structures are required for oocyte development using mouse gonad re-aggregation and transplantation to disrupt gonadal organization. We observed that germ cells from disrupted female gonad prior to embryonic day e13.5 completed prophase I of meiosis but did not survive following transplantation. Furthermore, re-aggregated ovaries from e13.5 to e15.5 developed with a reduced number of oocytes. Oocyte loss occurred before follicle formation and was associated with an absence of ovarian cord structure and ovary disorganization. However, disrupted ovaries from e16.5 or later were resistant to the re-aggregation impairment and supported robust oocyte survival and development in follicles. Conclusions Thus, we demonstrate a critical window of oocyte development from e13.5 to e16.5 in the intact fetal mouse ovary, corresponding to the establishment of ovarian cord structure, which promotes oocyte interaction with neighboring ovarian somatic granulosa cells before birth and imparts oocytes with competence to survive and develop in follicles. Because germline cyst and ovarian cord structures are conserved in the

  2. A Novel Growth-Promoting Pathway Formed by GDNF-Overexpressing Schwann Cells Promotes Propriospinal Axonal Regeneration, Synapse formation, and Partial Recovery of Function after Spinal Cord Injury

    Science.gov (United States)

    Deng, Lingxiao; Deng, Ping; Ruan, Yiwen; Xu, Zao Cheng; Liu, Naikui; Wen, Xuejun; Smith, George M.; Xu, Xiao-Ming

    2013-01-01

    Descending propriospinal neurons (DPSN) are known to establish functional relays for supraspinal signals, and they display a greater growth response after injury than do the long projecting axons. However, their regenerative response is still deficient due to their failure to depart from growth supportive cellular transplants back into the host spinal cord, which contains numerous impediments to axon growth. Here we report the construction of a continuous growth-promoting pathway in adult rats, formed by grafted Schwann cells (SCs) overexpressing glial cell line-derived neurotrophic factor (GDNF). We demonstrate that such a growth-promoting pathway, extending from the axonal cut ends to the site of innervation in the distal spinal cord, promoted regeneration of DPSN axons through and beyond the lesion gap of a spinal cord hemisection. Within the distal host spinal cord, regenerated DPSN axons formed synapses with host neurons leading to the restoration of action potentials and partial recovery of function. PMID:23536080

  3. Variations in the formation of the human caudal spinal cord.

    Science.gov (United States)

    Saraga-Babić, M; Sapunar, D; Wartiovaara, J

    1995-01-01

    Collection of 15 human embryos between 4-8 developmental weeks was used to histologically investigate variations in the development of the caudal part of the spinal cord and the neighboring axial organs (notochord and vertebral column). In the 4-week embryo, two types of neurulation were parallelly observed along the anteroposterior body axis: primary in the areas cranial to the neuroporus caudalis and secondary in the more caudal tail regions. In the 5-week embryos, both parts of the neural tube fused, forming only one continuous lumen in the developing spinal cord. In the three examined embryos we found anomalous pattern of spinal cord formation. Caudal parts of these spinal cords displayed division of their central canal into two or three separate lumina, each surrounded by neuroepithelial layer. In the caudal area of the spinal cord, derived by secondary neurulation, formation of separate lumina was neither connected to any anomalous notochord or vertebral column formation, nor the appearance of any major axial disturbances. We suggest that development of the caudal part of the spinal cord differs from its cranial region not only in the type of neurulation, but also in the destiny of its derivatives and possible modes of abnormality formation.

  4. Mechanisms underlying the promotion of functional recovery by deferoxamine after spinal cord injury in rats

    Directory of Open Access Journals (Sweden)

    Jian Hao

    2017-01-01

    Full Text Available Deferoxamine, a clinically safe drug used for treating iron overload, also repairs spinal cord injury although the mechanism for this action remains unknown. Here, we determined whether deferoxamine was therapeutic in a rat model of spinal cord injury and explored potential mechanisms for this effect. Spinal cord injury was induced by impacting the spinal cord at the thoracic T10 vertebra level. One group of injured rats received deferoxamine, a second injured group received saline, and a third group was sham operated. Both 2 days and 2 weeks after spinal cord injury, total iron ion levels and protein expression levels of the proinflammatory cytokines tumor necrosis factor-α and interleukin-1β and the pro-apoptotic protein caspase-3 in the spinal cords of the injured deferoxamine-treated rats were significantly lower than those in the injured saline-treated group. The percentage of the area positive for glial fibrillary acidic protein immunoreactivity and the number of terminal deoxynucleotidyl transferase dUTP nick end labeling-positive cells were also significantly decreased both 2 days and 2 weeks post injury, while the number of NeuN-positive cells and the percentage of the area positive for the oligodendrocyte marker CNPase were increased in the injured deferoxamine-treated rats. At 14–56 days post injury, hind limb motor function in the deferoxamine-treated rats was superior to that in the saline-treated rats. These results suggest that deferoxamine decreases total iron ion, tumor necrosis factor-α, interleukin-1β, and caspase-3 expression levels after spinal cord injury and inhibits apoptosis and glial scar formation to promote motor function recovery.

  5. Propofol promotes spinal cord injury repair by bone marrow mesenchymal stem cell transplantation

    OpenAIRE

    Zhou, Ya-jing; Liu, Jian-min; Wei, Shu-ming; Zhang, Yun-hao; Qu, Zhen-hua; Chen, Shu-bo

    2015-01-01

    Propofol is a neuroprotective anesthetic. Whether propofol can promote spinal cord injury repair by bone marrow mesenchymal stem cells remains poorly understood. We used rats to investigate spinal cord injury repair using bone marrow mesenchymal stem cell transplantation combined with propofol administration via the tail vein. Rat spinal cord injury was clearly alleviated; a large number of newborn non-myelinated and myelinated nerve fibers appeared in the spinal cord, the numbers of CM-Dil-l...

  6. Improving Survival and Promoting Respiratory Motor Function After Cervical Spinal Cord Injury

    Science.gov (United States)

    2017-09-01

    AWARD NUMBER: W81XWH-15-1-0378 TITLE: Improving Survival and Promoting Respiratory Motor Function After Cervical Spinal Cord Injury PRINCIPAL...TITLE AND SUBTITLE CordCorInjury 5a. CONTRACT NUMBER Improvi g Survival and Promoting Respiratory Motor Function After Cervical Spinal Cord...care. However, despite these drastic interventions, the cervical injured patient is still susceptible to death due to respiratory complications

  7. Transplantation of mononuclear cells from human umbilical cord blood promotes functional recovery after traumatic spinal cord injury in Wistar rats

    International Nuclear Information System (INIS)

    Rodrigues, L.P.; Iglesias, D.; Nicola, F.C.; Steffens, D.; Valentim, L.; Witczak, A.; Zanatta, G.; Achaval, M.; Pranke, P.; Netto, C.A.

    2011-01-01

    Cell transplantation is a promising experimental treatment for spinal cord injury. The aim of the present study was to evaluate the efficacy of mononuclear cells from human umbilical cord blood in promoting functional recovery when transplanted after a contusion spinal cord injury. Female Wistar rats (12 weeks old) were submitted to spinal injury with a MASCIS impactor and divided into 4 groups: control, surgical control, spinal cord injury, and one cell-treated lesion group. Mononuclear cells from umbilical cord blood of human male neonates were transplanted in two experiments: a) 1 h after surgery, into the injury site at a concentration of 5 x 10 6 cells diluted in 10 µL 0.9% NaCl (N = 8-10 per group); b) into the cisterna magna, 9 days after lesion at a concentration of 5 x 10 6 cells diluted in 150 µL 0.9% NaCl (N = 12-14 per group). The transplanted animals were immunosuppressed with cyclosporin-A (10 mg/kg per day). The BBB scale was used to evaluate motor behavior and the injury site was analyzed with immunofluorescent markers to label human transplanted cells, oligodendrocytes, neurons, and astrocytes. Spinal cord injury rats had 25% loss of cord tissue and cell treatment did not affect lesion extension. Transplanted cells survived in the injured area for 6 weeks after the procedure and both transplanted groups showed better motor recovery than the untreated ones (P < 0.05). The transplantation of mononuclear cells from human umbilical cord blood promoted functional recovery with no evidence of cell differentiation

  8. Transplantation of mononuclear cells from human umbilical cord blood promotes functional recovery after traumatic spinal cord injury in Wistar rats

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, L.P. [Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Iglesias, D. [Laboratório de Hematologia e Células-Tronco, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Nicola, F.C. [Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Steffens, D. [Laboratório de Hematologia e Células-Tronco, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Valentim, L.; Witczak, A.; Zanatta, G. [Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Achaval, M. [Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Pranke, P. [Laboratório de Hematologia e Células-Tronco, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Netto, C.A. [Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil)

    2011-12-23

    Cell transplantation is a promising experimental treatment for spinal cord injury. The aim of the present study was to evaluate the efficacy of mononuclear cells from human umbilical cord blood in promoting functional recovery when transplanted after a contusion spinal cord injury. Female Wistar rats (12 weeks old) were submitted to spinal injury with a MASCIS impactor and divided into 4 groups: control, surgical control, spinal cord injury, and one cell-treated lesion group. Mononuclear cells from umbilical cord blood of human male neonates were transplanted in two experiments: a) 1 h after surgery, into the injury site at a concentration of 5 x 10{sup 6} cells diluted in 10 µL 0.9% NaCl (N = 8-10 per group); b) into the cisterna magna, 9 days after lesion at a concentration of 5 x 10{sup 6} cells diluted in 150 µL 0.9% NaCl (N = 12-14 per group). The transplanted animals were immunosuppressed with cyclosporin-A (10 mg/kg per day). The BBB scale was used to evaluate motor behavior and the injury site was analyzed with immunofluorescent markers to label human transplanted cells, oligodendrocytes, neurons, and astrocytes. Spinal cord injury rats had 25% loss of cord tissue and cell treatment did not affect lesion extension. Transplanted cells survived in the injured area for 6 weeks after the procedure and both transplanted groups showed better motor recovery than the untreated ones (P < 0.05). The transplantation of mononuclear cells from human umbilical cord blood promoted functional recovery with no evidence of cell differentiation.

  9. Biodegradable chitin conduit tubulation combined with bone marrow mesenchymal stem cell transplantation for treatment of spinal cord injury by reducing glial scar and cavity formation

    Directory of Open Access Journals (Sweden)

    Feng Xue

    2015-01-01

    Full Text Available We examined the restorative effect of modified biodegradable chitin conduits in combination with bone marrow mesenchymal stem cell transplantation after right spinal cord hemisection injury. Immunohistochemical staining revealed that biological conduit sleeve bridging reduced glial scar formation and spinal muscular atrophy after spinal cord hemisection. Bone marrow mesenchymal stem cells survived and proliferated after transplantation in vivo, and differentiated into cells double-positive for S100 (Schwann cell marker and glial fibrillary acidic protein (glial cell marker at 8 weeks. Retrograde tracing showed that more nerve fibers had grown through the injured spinal cord at 14 weeks after combination therapy than either treatment alone. Our findings indicate that a biological conduit combined with bone marrow mesenchymal stem cell transplantation effectively prevented scar formation and provided a favorable local microenvironment for the proliferation, migration and differentiation of bone marrow mesenchymal stem cells in the spinal cord, thus promoting restoration following spinal cord hemisection injury.

  10. Biodegradable chitin conduit tubulation combined with bone marrow mesenchymal stem cell transplantation for treatment of spinal cord injury by reducing glial scar and cavity formation

    Science.gov (United States)

    Xue, Feng; Wu, Er-jun; Zhang, Pei-xun; Li-ya, A; Kou, Yu-hui; Yin, Xiao-feng; Han, Na

    2015-01-01

    We examined the restorative effect of modified biodegradable chitin conduits in combination with bone marrow mesenchymal stem cell transplantation after right spinal cord hemisection injury. Immunohistochemical staining revealed that biological conduit sleeve bridging reduced glial scar formation and spinal muscular atrophy after spinal cord hemisection. Bone marrow mesenchymal stem cells survived and proliferated after transplantation in vivo, and differentiated into cells double-positive for S100 (Schwann cell marker) and glial fibrillary acidic protein (glial cell marker) at 8 weeks. Retrograde tracing showed that more nerve fibers had grown through the injured spinal cord at 14 weeks after combination therapy than either treatment alone. Our findings indicate that a biological conduit combined with bone marrow mesenchymal stem cell transplantation effectively prevented scar formation and provided a favorable local microenvironment for the proliferation, migration and differentiation of bone marrow mesenchymal stem cells in the spinal cord, thus promoting restoration following spinal cord hemisection injury. PMID:25788929

  11. Propofol promotes spinal cord injury repair by bone marrow mesenchymal stem cell transplantation

    Science.gov (United States)

    Zhou, Ya-jing; Liu, Jian-min; Wei, Shu-ming; Zhang, Yun-hao; Qu, Zhen-hua; Chen, Shu-bo

    2015-01-01

    Propofol is a neuroprotective anesthetic. Whether propofol can promote spinal cord injury repair by bone marrow mesenchymal stem cells remains poorly understood. We used rats to investigate spinal cord injury repair using bone marrow mesenchymal stem cell transplantation combined with propofol administration via the tail vein. Rat spinal cord injury was clearly alleviated; a large number of newborn non-myelinated and myelinated nerve fibers appeared in the spinal cord, the numbers of CM-Dil-labeled bone marrow mesenchymal stem cells and fluorogold-labeled nerve fibers were increased and hindlimb motor function of spinal cord-injured rats was markedly improved. These improvements were more prominent in rats subjected to bone marrow mesenchymal cell transplantation combined with propofol administration than in rats receiving monotherapy. These results indicate that propofol can enhance the therapeutic effects of bone marrow mesenchymal stem cell transplantation on spinal cord injury in rats. PMID:26487860

  12. An anti vimentin antibody promotes tube formation

    DEFF Research Database (Denmark)

    Jørgensen, Mathias Lindh; Møller, Carina Kjeldahl; Rasmussen, Lasse

    2017-01-01

    antibody technology, promotes tube formation of endothelial cells in a 2D matrigel assay. By binding vimentin, the antibody increases the tube formation by 21% after 5 hours of incubation. Addition of the antibody directly to cultured endothelial cells does not influence endothelial cell migration...... or proliferation. The enhanced tube formation can be seen for up to 10 hours where after the effect decreases. It is shown that the antibody-binding site is located on the coil 2 domain of vimentin. To our knowledge this is the first study that demonstrates an enhanced tube formation by binding vimentin in a 2D...

  13. Promoting proximal formative assessment with relational discourse

    Science.gov (United States)

    Scherr, Rachel E.; Close, Hunter G.; McKagan, Sarah B.

    2012-02-01

    The practice of proximal formative assessment - the continual, responsive attention to students' developing understanding as it is expressed in real time - depends on students' sharing their ideas with instructors and on teachers' attending to them. Rogerian psychology presents an account of the conditions under which proximal formative assessment may be promoted or inhibited: (1) Normal classroom conditions, characterized by evaluation and attention to learning targets, may present threats to students' sense of their own competence and value, causing them to conceal their ideas and reducing the potential for proximal formative assessment. (2) In contrast, discourse patterns characterized by positive anticipation and attention to learner ideas increase the potential for proximal formative assessment and promote self-directed learning. We present an analysis methodology based on these principles and demonstrate its utility for understanding episodes of university physics instruction.

  14. Working mechanisms of a behavioural intervention promoting physical activity in persons with subacute spinal cord injury

    NARCIS (Netherlands)

    Nooijen, Carla F. J.; Stam, Henk J.; Schoenmakers, Imte; Sluis, Tebbe; Post, Marcel; Twisk, Jos; van den Berg-Emons, Rita J. G.

    OBJECTIVE: In order to unravel the working mechanisms that underlie the effectiveness of a behavioural intervention promoting physical activity in persons with subacute spinal cord injury, the aim of this study was to assess the mediating effects of physical and psychosocial factors on the

  15. The endogenous proteoglycan-degrading enzyme ADAMTS-4 promotes functional recovery after spinal cord injury

    Directory of Open Access Journals (Sweden)

    Tauchi Ryoji

    2012-03-01

    Full Text Available Abstract Background Chondroitin sulfate proteoglycans are major inhibitory molecules for neural plasticity under both physiological and pathological conditions. The chondroitin sulfate degrading enzyme chondroitinase ABC promotes functional recovery after spinal cord injury, and restores experience-dependent plasticity, such as ocular dominance plasticity and fear erasure plasticity, in adult rodents. These data suggest that the sugar chain in a proteoglycan moiety is essential for the inhibitory activity of proteoglycans. However, the significance of the core protein has not been studied extensively. Furthermore, considering that chondroitinase ABC is derived from bacteria, a mammalian endogenous enzyme which can inactivate the proteoglycans' activity is desirable for clinical use. Methods The degradation activity of ADAMTS-4 was estimated for the core proteins of chondroitin sulfate proteoglycans, that is, brevican, neurocan and phosphacan. To evaluate the biological significance of ADMATS-4 activity, an in vitro neurite growth assay and an in vivo neuronal injury model, spinal cord contusion injury, were employed. Results ADAMTS-4 digested proteoglycans, and reversed their inhibition of neurite outgrowth. Local administration of ADAMTS-4 significantly promoted motor function recovery after spinal cord injury. Supporting these findings, the ADAMTS-4-treated spinal cord exhibited enhanced axonal regeneration/sprouting after spinal cord injury. Conclusions Our data suggest that the core protein in a proteoglycan moiety is also important for the inhibition of neural plasticity, and provides a potentially safer tool for the treatment of neuronal injuries.

  16. Impaired T-lymphocyte colony formation by cord blood mononuclear cells

    International Nuclear Information System (INIS)

    Herrod, H.G.; Valenski, W.R.

    1982-01-01

    When compared to adult mononuclear cells, cord blood mononuclear cells demonstrated significantly decreased T-lymphocyte colony formation (1351 +/- 643 vs 592 +/- 862, P less than 0.01). This diminished colony-forming activity did not appear to be associated with impaired responsiveness to the stimulant phytohemagglutinin or with excessive suppressor-cell activity. Irradiation reduced the colony-forming capacity of cord blood mononuclear cells more than it did that of adult mononuclear cells. Depletion of adherent cells reduced cord blood mononuclear-cell colony-forming capacity by 40%, while similar treatment reduced adult colony formation by 10%. Lymphocyte proliferation in liquid culture of cord and adult cells was minimally affected by these procedures. The colony-forming capacity of cord blood could be enhanced by the addition of irradiated adult cells (284 +/- 72 vs 752 +/- 78, P less than 0.01). This enhancement was demonstrated to be due to a soluble factor produced by a population of irradiated adult cells depleted of the OKT8+ subpopulation of lymphocytes. These results indicate that the progenitor cells of T-lymphocyte colonies in cord blood have distinct biologic characteristics when compared to colony progenitors present in adult blood. This assay may prove to be useful in our efforts to understand the differentiation of T-cell function in man

  17. Cu(II) promotes amyloid pore formation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hangyu, E-mail: hangyuz@uw.edu [Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907 (United States); Rochet, Jean-Christophe [Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907 (United States); Stanciu, Lia A. [Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907 (United States); School of Materials Engineering, Purdue University, West Lafayette, IN 47907 (United States)

    2015-08-14

    The aggregation of α-synuclein is associated with dopamine neuron death in Parkinson's disease. There is controversy in the field over the question of which species of the aggregates, fibrils or protofibrils, are toxic. Moreover, compelling evidence suggested the exposure to heavy metals to be a risk of PD. Nevertheless, the mechanism of metal ions in promoting PD remains unclear. In this research, we investigated the structural basis of Cu(II) induced aggregation of α-synuclein. Using transmission electron microscopy experiments, Cu(II) was found to promote in vitro aggregation of α-synuclein by facilitating annular protofibril formation rather than fibril formation. Furthermore, neuroprotective baicalein disaggregated annular protofibrils accompanied by considerable decrease of β-sheet content. These results strongly support the hypothesis that annular protofibrils are the toxic species, rather than fibrils, thereby inspiring us to search novel therapeutic strategies for the suppression of the toxic annular protofibril formation. - Highlights: • Cu(II) promoted the annular protofibril formation of α-synuclein in vitro. • Cu(II) postponed the in vitro fibrillization of α-synuclein. • Neuroprotective baicalein disaggregated annular protofibrils.

  18. Cu(II) promotes amyloid pore formation

    International Nuclear Information System (INIS)

    Zhang, Hangyu; Rochet, Jean-Christophe; Stanciu, Lia A.

    2015-01-01

    The aggregation of α-synuclein is associated with dopamine neuron death in Parkinson's disease. There is controversy in the field over the question of which species of the aggregates, fibrils or protofibrils, are toxic. Moreover, compelling evidence suggested the exposure to heavy metals to be a risk of PD. Nevertheless, the mechanism of metal ions in promoting PD remains unclear. In this research, we investigated the structural basis of Cu(II) induced aggregation of α-synuclein. Using transmission electron microscopy experiments, Cu(II) was found to promote in vitro aggregation of α-synuclein by facilitating annular protofibril formation rather than fibril formation. Furthermore, neuroprotective baicalein disaggregated annular protofibrils accompanied by considerable decrease of β-sheet content. These results strongly support the hypothesis that annular protofibrils are the toxic species, rather than fibrils, thereby inspiring us to search novel therapeutic strategies for the suppression of the toxic annular protofibril formation. - Highlights: • Cu(II) promoted the annular protofibril formation of α-synuclein in vitro. • Cu(II) postponed the in vitro fibrillization of α-synuclein. • Neuroprotective baicalein disaggregated annular protofibrils

  19. Co-ultramicronized palmitoylethanolamide/luteolin promotes neuronal regeneration after spinal cord injury

    Directory of Open Access Journals (Sweden)

    Rosalia eCrupi

    2016-03-01

    Full Text Available Spinal cord injury (SCI stimulates activation of astrocytes and infiltration of immune cells at the lesion site; however, the mechanism that promotes the birth of new neurons is still under debate. Neuronal regeneration is restricted after spinal cord injury, but can be stimulated by experimental intervention. Previously we demonstrated that treatment co-ultramicronized palmitoylethanolamide and luteolin, namely co-ultraPEALut, reduced inflammation. The present study was designed to explore the neuroregenerative properties of co-ultra PEALut in an estabished murine model of SCI. A vascular clip was applied to the spinal cord dura at T5 to T8 to provoke injury. Mice were treated with co-ultraPEALut (1 mg/kg, intraperitoneally daily for 72 h after SCI. Co-ultraPEALut increased the numbers of both bromodeoxyuridine-positive nuclei and doublecortin-immunoreactive cells in the spinal cord of injured mice. To correlate neuronal development with synaptic plasticity a Golgi method was employed to analyze dendritic spine density. Co-ultraPEALut administration stimulated expression of the neurotrophic factors brain-derived neurotrophic factor, glial cell-derived neurotrophic factor, nerve growth factor and neurotrophin-3. These findings show a prominent effect of co-ultraPEALut administration in the management of survival and differentiation of new neurons and spine maturation, and may represent a therapeutic treatment for spinal cord and other traumatic diseases.

  20. Erythropoietin promotes oligodendrogenesis and myelin repair following lysolecithin-induced injury in spinal cord slice culture

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Yun Kyung; Kim, Gunha; Park, Serah; Sim, Ju Hee; Won, You Jin [Department of Anatomy and Cell Biology, University of Ulsan College of Medicine, 388-1 Pungnap-dong, Songpa-gu, Seoul 138-736 (Korea, Republic of); Hwang, Chang Ho [Department of Physical Medicine and Rehabilitation, Ulsan University Hospital, University of Ulsan College of Medicine, 290-3 Jeonha-dong, Dong-gu, Ulsan 682-714 (Korea, Republic of); Yoo, Jong Yoon, E-mail: jyyoo@amc.seoul.kr [Department of Rehabilitation Medicine, University of Ulsan College of Medicine, 388-1 Pungnap-dong, Songpa-gu, Seoul 138-736 (Korea, Republic of); Hong, Hea Nam, E-mail: hnhong@amc.seoul.kr [Department of Anatomy and Cell Biology, University of Ulsan College of Medicine, 388-1 Pungnap-dong, Songpa-gu, Seoul 138-736 (Korea, Republic of)

    2012-01-13

    Highlights: Black-Right-Pointing-Pointer Lysolecithin-induced demyelination elevated EpoR expression in OPCs. Black-Right-Pointing-Pointer In association with elevated EpoR, EPO increased OPCs proliferation. Black-Right-Pointing-Pointer EPO enhanced the oligodendrogenesis via activation of JAK2 pathway. Black-Right-Pointing-Pointer EPO promoted myelin repair following lysolecithin-induced demyelination. -- Abstract: Here, we sought to delineate the effect of EPO on the remyelination processes using an in vitro model of demyelination. We report that lysolecithin-induced demyelination elevated EPO receptor (EpoR) expression in oligodendrocyte progenitor cells (OPCs), facilitating the beneficial effect of EPO on the formation of oligodendrocytes (oligodendrogenesis). In the absence of EPO, the resultant remyelination was insufficient, possibly due to a limiting number of oligodendrocytes rather than their progenitors, which proliferate in response to lysolecithin-induced injury. By EPO treatment, lysolecithin-induced proliferation of OPCs was accelerated and the number of myelinating oligodendrocytes and myelin recovery was increased. EPO also enhanced the differentiation of neural progenitor cells expressing EpoR at high level toward the oligodendrocyte-lineage cells through activation of cyclin E and Janus kinase 2 pathways. Induction of myelin-forming oligodendrocytes by high dose of EPO implies that EPO might be the key factor influencing the final differentiation of OPCs. Taken together, our data suggest that EPO treatment could be an effective way to enhance remyelination by promoting oligodendrogenesis in association with elevated EpoR expression in spinal cord slice culture after lysolecithin-induced demyelination.

  1. Electroacupuncture in the repair of spinal cord injury: inhibiting the Notch signaling pathway and promoting neural stem cell proliferation

    Directory of Open Access Journals (Sweden)

    Xin Geng

    2015-01-01

    Full Text Available Electroacupuncture for the treatment of spinal cord injury has a good clinical curative effect, but the underlying mechanism is unclear. In our experiments, the spinal cord of adult Sprague-Dawley rats was clamped for 60 seconds. Dazhui (GV14 and Mingmen (GV4 acupoints of rats were subjected to electroacupuncture. Enzyme-linked immunosorbent assay revealed that the expression of serum inflammatory factors was apparently downregulated in rat models of spinal cord injury after electroacupuncture. Hematoxylin-eosin staining and immunohistochemistry results demonstrated that electroacupuncture contributed to the proliferation of neural stem cells in rat injured spinal cord, and suppressed their differentiation into astrocytes. Real-time quantitative PCR and western blot assays showed that electroacupuncture inhibited activation of the Notch signaling pathway induced by spinal cord injury. These findings indicate that electroacupuncture repaired the injured spinal cord by suppressing the Notch signaling pathway and promoting the proliferation of endogenous neural stem cells.

  2. Structural and functional reorganization of propriospinal connections promotes functional recovery after spinal cord injury

    Directory of Open Access Journals (Sweden)

    Linard Filli

    2015-01-01

    Full Text Available Axonal regeneration and fiber regrowth is limited in the adult central nervous system, but research over the last decades has revealed a high intrinsic capacity of brain and spinal cord circuits to adapt and reorganize after smaller injuries or denervation. Short-distance fiber growth and synaptic rewiring was found in cortex, brain stem and spinal cord and could be associated with restoration of sensorimotor functions that were impaired by the injury. Such processes of structural plasticity were initially observed in the corticospinal system following spinal cord injury or stroke, but recent studies showed an equally high potential for structural and functional reorganization in reticulospinal, rubrospinal or propriospinal projections. Here we review the lesion-induced plastic changes in the propriospinal pathways, and we argue that they represent a key mechanism triggering sensorimotor recovery upon incomplete spinal cord injury. The formation or strengthening of spinal detour pathways bypassing supraspinal commands around the lesion site to the denervated spinal cord were identified as prominent neural substrate inducing substantial motor recovery in different species from mice to primates. Indications for the existence of propriospinal bypasses were also found in humans after cortical stroke. It is mandatory for current research to dissect the biological mechanisms underlying spinal circuit remodeling and to investigate how these processes can be stimulated in an optimal way by therapeutic interventions (e.g., fiber-growth enhancing interventions, rehabilitation. This knowledge will clear the way for the development of novel strategies targeting the remarkable plastic potential of propriospinal circuits to maximize functional recovery after spinal cord injury.

  3. Physical activity promotion for people with spinal cord injury: physiotherapists' beliefs and actions.

    Science.gov (United States)

    Williams, Toni L; Smith, Brett; Papathomas, Anthony

    2018-01-01

    It is vital that people with spinal cord injury (SCI) lead a physically active lifestyle to promote long term health and well-being. Yet within rehabilitation and upon discharge into the community, people with SCI are largely inactive. Physiotherapists are well placed to promote a physically active lifestyle and are valued and trusted messengers of physical activity (PA) by people with SCI. Therefore this study aimed to explore the perceptions of physiotherapists in SCI rehabilitation on PA for people with SCI, and what is done to promote PA. Semi-structured interviews were completed with 18 neurological physiotherapists (2-22 years experience) from SCI centres in the United Kingdom and Ireland. Framed by interpretivism, an inductive thematic analysis was conducted. Three themes were identified: (1) perceived importance of PA; (2) inconsistent PA promotion efforts; and (3) concern regarding community PA. This article makes a significant contribution to the literature by identifying that although physiotherapists value PA, active promotion of PA remains largely absent from their practice. To enable physiotherapists to promote and prescribe PA as a structured and integral component of their practice, effective knowledge strategies need designing and implementing at the macro, meso, and micro levels of healthcare. Implications for Rehabilitation Physiotherapists are well placed to promote a physically active lifestyle and are perceived as valued and trusted messengers of physical activity (PA). The importance of PA for patients with spinal cord injury (SCI) is valued by physiotherapists yet PA promotion is largely absent from their practice. Physiotherapists lack specific education and training on PA and SCI and hold certain beliefs which restrict their promotion of PA. Knowledge translation across the macro, meso, and micro levels of healthcare are essential to facilitate effective PA promotion.

  4. Transplantation of specific human astrocytes promotes functional recovery after spinal cord injury.

    Directory of Open Access Journals (Sweden)

    Stephen J A Davies

    2011-03-01

    Full Text Available Repairing trauma to the central nervous system by replacement of glial support cells is an increasingly attractive therapeutic strategy. We have focused on the less-studied replacement of astrocytes, the major support cell in the central nervous system, by generating astrocytes from embryonic human glial precursor cells using two different astrocyte differentiation inducing factors. The resulting astrocytes differed in expression of multiple proteins thought to either promote or inhibit central nervous system homeostasis and regeneration. When transplanted into acute transection injuries of the adult rat spinal cord, astrocytes generated by exposing human glial precursor cells to bone morphogenetic protein promoted significant recovery of volitional foot placement, axonal growth and notably robust increases in neuronal survival in multiple spinal cord laminae. In marked contrast, human glial precursor cells and astrocytes generated from these cells by exposure to ciliary neurotrophic factor both failed to promote significant behavioral recovery or similarly robust neuronal survival and support of axon growth at sites of injury. Our studies thus demonstrate functional differences between human astrocyte populations and suggest that pre-differentiation of precursor cells into a specific astrocyte subtype is required to optimize astrocyte replacement therapies. To our knowledge, this study is the first to show functional differences in ability to promote repair of the injured adult central nervous system between two distinct subtypes of human astrocytes derived from a common fetal glial precursor population. These findings are consistent with our previous studies of transplanting specific subtypes of rodent glial precursor derived astrocytes into sites of spinal cord injury, and indicate a remarkable conservation from rat to human of functional differences between astrocyte subtypes. In addition, our studies provide a specific population of human

  5. The role of formative feedback in promoting higher order thinking ...

    African Journals Online (AJOL)

    The role of formative feedback in promoting higher order thinking skills in ... activities, task characteristics, validating students' thinking, and providing feedback. ... Keywords: classroom environment, formative assessment, formative feedback, ...

  6. Motor cortex and spinal cord neuromodulation promote corticospinal tract axonal outgrowth and motor recovery after cervical contusion spinal cord injury.

    Science.gov (United States)

    Zareen, N; Shinozaki, M; Ryan, D; Alexander, H; Amer, A; Truong, D Q; Khadka, N; Sarkar, A; Naeem, S; Bikson, M; Martin, J H

    2017-11-01

    Cervical injuries are the most common form of SCI. In this study, we used a neuromodulatory approach to promote skilled movement recovery and repair of the corticospinal tract (CST) after a moderately severe C4 midline contusion in adult rats. We used bilateral epidural intermittent theta burst (iTBS) electrical stimulation of motor cortex to promote CST axonal sprouting and cathodal trans-spinal direct current stimulation (tsDCS) to enhance spinal cord activation to motor cortex stimulation after injury. We used Finite Element Method (FEM) modeling to direct tsDCS to the cervical enlargement. Combined iTBS-tsDCS was delivered for 30min daily for 10days. We compared the effect of stimulation on performance in the horizontal ladder and the Irvine Beattie and Bresnahan forepaw manipulation tasks and CST axonal sprouting in injury-only and injury+stimulation animals. The contusion eliminated the dorsal CST in all animals. tsDCS significantly enhanced motor cortex evoked responses after C4 injury. Using this combined spinal-M1 neuromodulatory approach, we found significant recovery of skilled locomotion and forepaw manipulation skills compared with injury-only controls. The spared CST axons caudal to the lesion in both animal groups derived mostly from lateral CST axons that populated the contralateral intermediate zone. Stimulation enhanced injury-dependent CST axonal outgrowth below and above the level of the injury. This dual neuromodulatory approach produced partial recovery of skilled motor behaviors that normally require integration of posture, upper limb sensory information, and intent for performance. We propose that the motor systems use these new CST projections to control movements better after injury. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Small GTPase R-Ras participates in neural tube formation in zebrafish embryonic spinal cord.

    Science.gov (United States)

    Ohata, Shinya; Uga, Hideko; Okamoto, Hitoshi; Katada, Toshiaki

    2018-06-27

    Ras related (R-Ras), a small GTPase, is involved in the maintenance of apico-basal polarity in neuroepithelial cells of the zebrafish hindbrain, axonal collapse in cultured murine hippocampal neurons, and maturation of blood vessels in adult mice. However, the role of R-Ras in neural tube formation remains unknown. Using antisense morpholino oligonucleotides (AMOs), we found that in the spinal cord of zebrafish embryos, the lumen was formed bilaterally in rras morphants, whereas it was formed at the midline in control embryos. As AMO can cause off-target effects, we generated rras mutant zebrafish lines using CRISPR/Cas9 technology. Although these rras mutant embryos did not have a bilateral lumen in the spinal cord, the following findings suggest that the phenotype is unlikely due to an off-target effect of rras AMO: 1) The rras morphant phenotype was rescued by an injection of AMO-resistant rras mRNA, and 2) a bilaterally segregated spinal cord was not observed in rras mutant embryos injected with rras AMO. The results suggest that the function of other ras family genes may be redundant in rras mutants. Previous research reported a bilaterally formed lumen in the spinal cord of zebrafish embryos with a mutation in a planar cell polarity (PCP) gene, van gogh-like 2 (vangl2). In the present study, in cultured cells, R-Ras was co-immunoprecipitated with Vangl2 but not with another PCP regulator, Pricke1. Interestingly, the interaction between R-Ras and Vangl2 was stronger in guanine-nucleotide free point mutants of R-Ras than in wild-type or constitutively active (GTP-bound) forms of R-Ras. R-Ras may regulate neural tube formation in cooperation with Vangl2 in the developing zebrafish spinal cord. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Human hepatocyte growth factor promotes functional recovery in primates after spinal cord injury.

    Science.gov (United States)

    Kitamura, Kazuya; Fujiyoshi, Kanehiro; Yamane, Jun-Ichi; Toyota, Fumika; Hikishima, Keigo; Nomura, Tatsuji; Funakoshi, Hiroshi; Nakamura, Toshikazu; Aoki, Masashi; Toyama, Yoshiaki; Okano, Hideyuki; Nakamura, Masaya

    2011-01-01

    Many therapeutic interventions for spinal cord injury (SCI) using neurotrophic factors have focused on reducing the area damaged by secondary, post-injury degeneration, to promote functional recovery. Hepatocyte growth factor (HGF), which is a potent mitogen for mature hepatocytes and a mediator of the inflammatory responses to tissue injury, was recently highlighted as a potent neurotrophic factor in the central nervous system. We previously reported that introducing exogenous HGF into the injured rodent spinal cord using a herpes simplex virus-1 vector significantly reduces the area of damaged tissue and promotes functional recovery. However, that study did not examine the therapeutic effects of administering HGF after injury, which is the most critical issue for clinical application. To translate this strategy to human treatment, we induced a contusive cervical SCI in the common marmoset, a primate, and then administered recombinant human HGF (rhHGF) intrathecally. Motor function was assessed using an original open field scoring system focusing on manual function, including reach-and-grasp performance and hand placement in walking. The intrathecal rhHGF preserved the corticospinal fibers and myelinated areas, thereby promoting functional recovery. In vivo magnetic resonance imaging showed significant preservation of the intact spinal cord parenchyma. rhHGF-treatment did not give rise to an abnormal outgrowth of calcitonin gene related peptide positive fibers compared to the control group, indicating that this treatment did not induce or exacerbate allodynia. This is the first study to report the efficacy of rhHGF for treating SCI in non-human primates. In addition, this is the first presentation of a novel scale for assessing neurological motor performance in non-human primates after contusive cervical SCI.

  9. Human hepatocyte growth factor promotes functional recovery in primates after spinal cord injury.

    Directory of Open Access Journals (Sweden)

    Kazuya Kitamura

    Full Text Available Many therapeutic interventions for spinal cord injury (SCI using neurotrophic factors have focused on reducing the area damaged by secondary, post-injury degeneration, to promote functional recovery. Hepatocyte growth factor (HGF, which is a potent mitogen for mature hepatocytes and a mediator of the inflammatory responses to tissue injury, was recently highlighted as a potent neurotrophic factor in the central nervous system. We previously reported that introducing exogenous HGF into the injured rodent spinal cord using a herpes simplex virus-1 vector significantly reduces the area of damaged tissue and promotes functional recovery. However, that study did not examine the therapeutic effects of administering HGF after injury, which is the most critical issue for clinical application. To translate this strategy to human treatment, we induced a contusive cervical SCI in the common marmoset, a primate, and then administered recombinant human HGF (rhHGF intrathecally. Motor function was assessed using an original open field scoring system focusing on manual function, including reach-and-grasp performance and hand placement in walking. The intrathecal rhHGF preserved the corticospinal fibers and myelinated areas, thereby promoting functional recovery. In vivo magnetic resonance imaging showed significant preservation of the intact spinal cord parenchyma. rhHGF-treatment did not give rise to an abnormal outgrowth of calcitonin gene related peptide positive fibers compared to the control group, indicating that this treatment did not induce or exacerbate allodynia. This is the first study to report the efficacy of rhHGF for treating SCI in non-human primates. In addition, this is the first presentation of a novel scale for assessing neurological motor performance in non-human primates after contusive cervical SCI.

  10. EphA4 blockers promote axonal regeneration and functional recovery following spinal cord injury in mice.

    Directory of Open Access Journals (Sweden)

    Yona Goldshmit

    Full Text Available Upregulation and activation of developmental axon guidance molecules, such as semaphorins and members of the Eph receptor tyrosine kinase family and their ligands, the ephrins, play a role in the inhibition of axonal regeneration following injury to the central nervous system. Previously we have demonstrated in a knockout model that axonal regeneration following spinal cord injury is promoted in the absence of the axon guidance protein EphA4. Antagonism of EphA4 was therefore proposed as a potential therapy to promote recovery from spinal cord injury. To further assess this potential, two soluble recombinant blockers of EphA4, unclustered ephrin-A5-Fc and EphA4-Fc, were examined for their ability to promote axonal regeneration and to improve functional outcome following spinal cord hemisection in wildtype mice. A 2-week administration of either of these blockers following spinal cord injury was sufficient to promote substantial axonal regeneration and functional recovery by 5 weeks following injury. Both inhibitors produced a moderate reduction in astrocytic gliosis, indicating that much of the effect of the blockers may be due to promotion of axon growth. These studies provide definitive evidence that soluble inhibitors of EphA4 function offer considerable therapeutic potential for the treatment of spinal cord injury and may have broader potential for the treatment of other central nervous system injuries.

  11. Co-culture with Sertoli cells promotes proliferation and migration of umbilical cord mesenchymal stem cells

    International Nuclear Information System (INIS)

    Zhang, Fenxi; Hong, Yan; Liang, Wenmei; Ren, Tongming; Jing, Suhua; Lin, Juntang

    2012-01-01

    Highlights: ► Co-culture of Sertoli cells (SCs) with human umbilical cord mesenchymal stem cells (UCMSCs). ► Presence of SCs dramatically increased proliferation and migration of UCMSCs. ► Presence of SCs stimulated expression of Mdm2, Akt, CDC2, Cyclin D, CXCR4, MAPKs. -- Abstract: Human umbilical cord mesenchymal stem cells (hUCMSCs) have been recently used in transplant therapy. The proliferation and migration of MSCs are the determinants of the efficiency of MSC transplant therapy. Sertoli cells are a kind of “nurse” cells that support the development of sperm cells. Recent studies show that Sertoli cells promote proliferation of endothelial cells and neural stem cells in co-culture. We hypothesized that co-culture of UCMSCs with Sertoli cells may also promote proliferation and migration of UCMSCs. To examine this hypothesis, we isolated UCMSCs from human cords and Sertoli cells from mouse testes, and co-cultured them using a Transwell system. We found that UCMSCs exhibited strong proliferation ability and potential to differentiate to other cell lineages such as osteocytes and adipocytes. The presence of Sertoli cells in co-culture significantly enhanced the proliferation and migration potential of UCMSCs (P < 0.01). Moreover, these phenotypic changes were accompanied with upregulation of multiple genes involved in cell proliferation and migration including phospho-Akt, Mdm2, phospho-CDC2, Cyclin D1, Cyclin D3 as well as CXCR4, phospho-p44 MAPK and phospho-p38 MAPK. These findings indicate that Sertoli cells boost UCMSC proliferation and migration potential.

  12. Co-culture with Sertoli cells promotes proliferation and migration of umbilical cord mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fenxi, E-mail: fxzhang0824@gmail.com [Department of Anatomy, Sanquan College, Xinxiang Medical University, Henan 453003, People' s Republic of China (China); Hong, Yan; Liang, Wenmei [Department of Histology and Embryology, Guiyang Medical University, Guizhou 550004, People' s Republic of China (China); Ren, Tongming [Department of Anatomy, Sanquan College, Xinxiang Medical University, Henan 453003, People' s Republic of China (China); Jing, Suhua [ICU Center, The Third Hospital of Xinxiang Medical University, Henan 453003, People' s Republic of China (China); Lin, Juntang [Stem Cell Center, Xinxiang Medical University, Henan 453003, People' s Republic of China (China)

    2012-10-12

    Highlights: Black-Right-Pointing-Pointer Co-culture of Sertoli cells (SCs) with human umbilical cord mesenchymal stem cells (UCMSCs). Black-Right-Pointing-Pointer Presence of SCs dramatically increased proliferation and migration of UCMSCs. Black-Right-Pointing-Pointer Presence of SCs stimulated expression of Mdm2, Akt, CDC2, Cyclin D, CXCR4, MAPKs. -- Abstract: Human umbilical cord mesenchymal stem cells (hUCMSCs) have been recently used in transplant therapy. The proliferation and migration of MSCs are the determinants of the efficiency of MSC transplant therapy. Sertoli cells are a kind of 'nurse' cells that support the development of sperm cells. Recent studies show that Sertoli cells promote proliferation of endothelial cells and neural stem cells in co-culture. We hypothesized that co-culture of UCMSCs with Sertoli cells may also promote proliferation and migration of UCMSCs. To examine this hypothesis, we isolated UCMSCs from human cords and Sertoli cells from mouse testes, and co-cultured them using a Transwell system. We found that UCMSCs exhibited strong proliferation ability and potential to differentiate to other cell lineages such as osteocytes and adipocytes. The presence of Sertoli cells in co-culture significantly enhanced the proliferation and migration potential of UCMSCs (P < 0.01). Moreover, these phenotypic changes were accompanied with upregulation of multiple genes involved in cell proliferation and migration including phospho-Akt, Mdm2, phospho-CDC2, Cyclin D1, Cyclin D3 as well as CXCR4, phospho-p44 MAPK and phospho-p38 MAPK. These findings indicate that Sertoli cells boost UCMSC proliferation and migration potential.

  13. Mdivi-1 inhibits astrocyte activation and astroglial scar formation and enhances axonal regeneration after spinal cord injury in rats

    Directory of Open Access Journals (Sweden)

    gang li

    2016-10-01

    Full Text Available After spinal cord injury (SCI, astrocytes become hypertrophic and proliferative, forming a dense network of astroglial processes at the site of the lesion. This constitutes a physical and biochemical barrier to axonal regeneration. Mitochondrial fission regulates cell cycle progression; inhibiting the cell cycle of astrocytes can reduce expression levels of axon growth-inhibitory molecules as well as astroglial scar formation after SCI. We therefore investigated how an inhibitor of mitochondrial fission, Mdivi-1, would affect astrocyte proliferation, astroglial scar formation, and axonal regeneration following SCI in rats. Western blot and immunofluorescent double-labeling showed that Mdivi-1 markedly reduced the expression of the astrocyte marker glial fibrillary acidic protein (GFAP, and a cell proliferation marker, proliferating cell nuclear antigen, in astrocytes 3 days after SCI. Moreover, Mdivi-1 decreased the expression of GFAP and neurocan, a chondroitin sulfate proteoglycan. Notably, immunofluorescent labeling and Nissl staining showed that Mdivi-1 elevated the production of growth-associated protein-43 and increased neuronal survival at 4 weeks after SCI. Finally, hematoxylin-eosin staining and behavioral evaluation of motor function indicated that Mdivi-1 also reduced cavity formation and improved motor function 4 weeks after SCI. Our results confirm that Mdivi-1 promotes motor function after SCI, and indicate that inhibiting mitochondrial fission using Mdivi-1 can inhibit astrocyte activation and astroglial scar formation and contribute to axonal regeneration after SCI in rats.

  14. Energy metabolism during activity-promoting video games practice in subjects with spinal cord injury: evidences for health promotion.

    Science.gov (United States)

    Gaffurini, P; Bissolotti, L; Calza, S; Calabretto, C; Orizio, C; Gobbo, M

    2013-02-01

    Activity promoting video game (APVG) practice significantly affects energy metabolism through energy expenditure (EE) increase and has been recently included in strategies for health promotion. It is not known if the APVG practice provides similar outcomes in subjects with spinal cord injury (SCI). Aim of the study was to evaluate cardio-pulmonary and metabolic adaptations during APVG practice and to find whether EE increase above resting condition could suggest the inclusion of this exercise in a more general strategy for health promotion and body weight control in subjects with SCI. Repeated measures study. Rehabilitation Institute. Ten male subjects with SCI (lesion levels from C7 to L1) age 26 to 55 years. We recorded pulmonary ventilation (VE), oxygen consumption (VO2) for EE esteem and heart rate (HR) at rest and while playing virtual bowling, tennis and boxing games using a portable metabolimeter equipped with ECG electrodes. The standard metabolic equivalent of task (METs) was calculated offline. The metabolic and functional parameters were referred to the 10th minute of each activity. Metabolic and functional parameters increased significantly from rest to bowling, tennis and boxing. METs exceeded in average 3 during boxing. One hour of APVG can increase daily EE by about 6% (bowling), 10% (tennis) and 15% (boxing). These considerable results suggest that physical exertion during APVG practice in subjects with SCI could contribute to health promotion as well as caloric balance control, especially when boxing is considered. This can be safely achieved at home with regular activity. These findings substantiate the potential for novel exercise modalities to counteract deconditioning due to inactivity in subjects with SCI by promoting physical activity through implementation of APVG exercise programs.

  15. Combining neurotrophin-transduced schwann cells and rolipram to promote functional recovery from subacute spinal cord injury.

    Science.gov (United States)

    Flora, Govinder; Joseph, Gravil; Patel, Samik; Singh, Amanpreet; Bleicher, Drew; Barakat, David J; Louro, Jack; Fenton, Stephanie; Garg, Maneesh; Bunge, Mary Bartlett; Pearse, Damien D

    2013-01-01

    Following spinal cord injury (SCI), both an inhibitory environment and lack of intrinsic growth capacity impede axonal regeneration. In a previous study, prevention of cyclic adenosine monophosphate (AMP) hydrolysis by the phosphodiesterase-4 inhibitor rolipram, in combination with Schwann cell (SC) grafts, promoted significant supraspinal and proprioceptive fiber growth and/or sparing and improved locomotion. In another study, transplanted SCs transduced to generate a bifunctional neurotrophin (D15A) led to significant increases in graft SCs and axons, including supraspinal and myelinated axons. Here we studied the growth and myelination of local and supraspinal axons and functional outcome following the combination of rolipram administration and neurotrophin-transduced SC implantation after SCI. Rolipram was administered subcutaneously for 4 weeks immediately after contusion at vertebral T8 (25.0-mm weight drop, MASCIS impactor). GFP or GFP-D15A-transduced SCs were injected into the injury epicenter 1 week after SCI. GFP-D15A SC grafts and GFP SC grafts with rolipram contained significantly more serotonergic fibers compared to GFP SCs. SC myelinated axons were increased significantly in GFP SC with rolipram-treated animals compared to animals receiving SCI alone. Rolipram administered with either GFP or GFP-D15A SCs significantly increased numbers of brain stem-derived axons below the lesion/implant area and improved hindlimb function. Compared to the single treatments, the combination led to the largest SC grafts, the highest numbers of serotonergic fibers in the grafts, and increased numbers of axons from the reticular formation below the lesion/implant area and provided the greatest improvement in hindlimb function. These findings demonstrate the therapeutic potential for a combination therapy involving the maintenance of cyclic AMP levels and neurotrophin-transduced SCs to repair the subacutely injured spinal cord.

  16. Taurine Promotes the Cartilaginous Differentiation of Human Umbilical Cord-Derived Mesenchymal Stem Cells in Vitro.

    Science.gov (United States)

    Yao, Xiuhua; Huang, Huiling; Li, Zhou; Liu, Xiaohua; Fan, Weijia; Wang, Xinping; Sun, Xuelian; Zhu, Jianmin; Zhou, Hongrui; Wei, Huaying

    2017-08-01

    Taurine has been reported to influence osteogenic differentiation, but the role of taurine on cartilaginous differentiation using human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) remains unclear. In this study, we investigated the effect of taurine (0, 1, 5 and 10 mM) on the proliferation and chondrogenesis of hUC-MSCs by analyzing cell proliferation, accumulation of glycosaminoglycans and expression of cartilage specific mRNA. The results show though taurine did not affected the proliferation of hUC-MSCs, 5 mM of taurine is sufficient to enhanced the accumulation of glycosaminoglycans and up-regulate cartilage specific mRNA expression, namely collagen type II, aggrecan and SOX9. Taurine also inhibits chondrocyte dedifferentiation by reducing expression of collagen type I mRNA. Taken together, our study reveals that taurine promotes and maintains the chondrogenesis of hUC-MSCs.

  17. Young People's Safety Beliefs after a Spinal Cord Injury Health Promotion and Awareness Presentation

    Science.gov (United States)

    Watling, David P.; Bishara, Jason D.; Zeeman, Heidi

    2018-01-01

    Objective: Adolescence is presented as a vulnerable period for accidental injury, particularly spinal cord injury, given young people's propensity for risky behaviours. School-based health promotion initiatives provide opportunities for education about the risks associated with dangerous behaviours. In this study, we aimed to describe young…

  18. Association between presence of pneumonia and pressure ulcer formation following traumatic spinal cord injury.

    Science.gov (United States)

    Krishnan, Shilpa; Karg, Patricia E; Boninger, Michael L; Brienza, David M

    2017-07-01

    To determine if the presence of pneumonia and pressure ulcers are associated in individuals with an acute spinal cord injury during acute care and rehabilitation hospitalizations. Retrospective, secondary analyses of data obtained from the Spinal Cord Injury Model Systems enrolled from 1993 until 2006 Setting: Acute care hospitalization and inpatient rehabilitation facilities Participants: A cohort of individuals hospitalized in acute care (n = 3,098) and inpatient rehabilitation (n = 1,768) was included in the analysis. Frequencies of pressure ulcer formation and episodes of pneumonia were noted in both settings. Not applicable. Pressure ulcer formation and diagnosis of pneumonia Results: The development of pressure ulcers, including stage I, was 20.3% acute care and 21.1% during in inpatient rehabilitation. Multivariate logistic regression analyses revealed a significant association of pneumonia with occurrence of pressure ulcers (P ≤ 0.001, OR = 2.3 and 2.2 respectively), the American Spinal Injury Association Impairment Scale grades (P pneumonia, after adjusting for injury severity, age, sex, and utilization of mechanical ventilation. Impaired inflammatory response and decreased mobility in individuals with pneumonia may predispose these individuals to develop pressure ulcers. Surveillance and preventive measures for pressure ulcers should be rigorous in individuals with SCI and pneumonia.

  19. Biofabrication enables efficient interrogation and optimization of sequential culture of endothelial cells, fibroblasts and cardiomyocytes for formation of vascular cords in cardiac tissue engineering

    International Nuclear Information System (INIS)

    Iyer, Rohin K; Radisic, Milica; Chiu, Loraine L Y; Vunjak-Novakovic, Gordana

    2012-01-01

    We previously reported that preculture of fibroblasts (FBs) and endothelial cells (ECs) prior to cardiomyocytes (CMs) improved the structural and functional properties of engineered cardiac tissue compared to culture of CMs alone or co-culture of all three cell types. However, these approaches did not result in formation of capillary-like cords, which are precursors to vascularization in vivo. Here we hypothesized that seeding the ECs first on Matrigel and then FBs 24 h later to stabilize the endothelial network (sequential preculture) would enhance cord formation in engineered cardiac organoids. Three sequential preculture groups were tested by seeding ECs (D4T line) at 8%, 15% and 31% of the total cell number on Matrigel-coated microchannels and incubating for 24 h. Cardiac FBs were then seeded (32%, 25% and 9% of the total cell number, respectively) and incubated an additional 24 h. Finally, neonatal rat CMs (60% of the total cell number) were added and the organoids were cultivated for seven days. Within 24 h, the 8% EC group formed elongated cords which eventually developed into beating cylindrical organoids, while the 15% and 31% EC groups proliferated into flat EC monolayers with poor viability. Excitation threshold (ET) in the 8% EC group (3.4 ± 1.2 V cm −1 ) was comparable to that of the CM group (3.3 ± 1.4 V cm −1 ). The ET worsened with increasing EC seeding density (15% EC: 4.4 ± 1.5 V cm −1 ; 31% EC: 4.9 ± 1.5 V cm −1 ). Thus, sequential preculture promoted vascular cord formation and enhanced architecture and function of engineered heart tissues. (paper)

  20. Spinal cord injury triggers an intrinsic growth-promoting state in nociceptors.

    Science.gov (United States)

    Bedi, Supinder S; Lago, Michael T; Masha, Luke I; Crook, Robyn J; Grill, Raymond J; Walters, Edgar T

    2012-03-20

    Although most investigations of the mechanisms underlying chronic pain after spinal cord injury (SCI) have examined the central nervous system (CNS), recent studies have shown that nociceptive primary afferent neurons display persistent hyperexcitability and spontaneous activity in their peripheral branches and somata in dorsal root ganglia (DRG) after SCI. This suggests that SCI-induced alterations of primary nociceptors contribute to central sensitization and chronic pain after SCI. Does SCI also promote growth of these neurons' fibers, as has been suggested in some reports? The present study tests the hypothesis that SCI induces an intrinsic growth-promoting state in DRG neurons. This was tested by dissociating DRG neurons 3 days or 1 month after spinal contusion injury at thoracic level T10 and measuring neuritic growth 1 day later. Neurons cultured 3 days after SCI exhibited longer neurites without increases in branching ("elongating growth"), compared to neurons from sham-treated or untreated (naïve) rats. Robust promotion of elongating growth was found in small and medium-sized neurons (but not large neurons) from lumbar (L3-L5) and thoracic ganglia immediately above (T9) and below (T10-T11) the contusion site, but not from cervical DRG. Elongating growth was also found in neurons immunoreactive to calcitonin gene-related peptide (CGRP), suggesting that some of the neurons exhibiting enhanced neuritic growth were nociceptors. The same measurements made on neurons dissociated 1 month after SCI revealed no evidence of elongating growth, although evidence for accelerated initiation of neurite outgrowth was found. Under certain conditions this transient growth-promoting state in nociceptors might be important for the development of chronic pain and hyperreflexia after SCI.

  1. Formative assessment promotes learning in undergraduate clinical ...

    African Journals Online (AJOL)

    Introduction. Clinical clerkships, typically situated in environments lacking educational structure, form the backbone of undergraduate medical training. The imperative to develop strategies that enhance learning in this context is apparent. This study explored the impact of longitudinal bedside formative assessment on ...

  2. Local injection of Lenti-Olig2 at lesion site promotes functional recovery of spinal cord injury in rats.

    Science.gov (United States)

    Tan, Bo-Tao; Jiang, Long; Liu, Li; Yin, Ying; Luo, Ze-Ru-Xin; Long, Zai-Yun; Li, Sen; Yu, Le-Hua; Wu, Ya-Min; Liu, Yuan

    2017-06-01

    Olig2 is one of the most critical factors during CNS development, which belongs to b-HLH transcription factor family. Previous reports have shown that Olig2 regulates the remyelination processes in CNS demyelination diseases models. However, the role of Olig2 in contusion spinal cord injury (SCI) and the possible therapeutic effects remain obscure. This study aims to investigate the effects of overexpression Olig2 by lentivirus on adult spinal cord injury rats. Lenti-Olig2 expression and control Lenti-eGFP vectors were prepared, and virus in a total of 5 μL (10 8 TU/mL) was locally injected into the injured spinal cord 1.5 mm rostral and caudal near the epicenter. Immunostaining, Western blot, electron microscopy, and CatWalk analyzes were employed to investigate the effects of Olig2 on spinal cord tissue repair and functional recovery. Injection of Lenti-Olig2 significantly increased the number of oligodendrocytes lineage cells and enhanced myelination after SCI. More importantly, the introduction of Olig2 greatly improved hindlimb locomotor performances. Other oligodendrocyte-related transcription factors, which were downregulated or upregulated after injury, were reversed by Olig2 induction. Our findings provided the evidence that overexpression Olig2 promotes myelination and locomotor recovery of contusion SCI, which gives us more understanding of Olig2 on spinal cord injury treatment. © 2017 John Wiley & Sons Ltd.

  3. Bone marrow mesenchymal stem cells repair spinal cord ischemia/reperfusion injury by promoting axonal growth and anti-autophagy

    Science.gov (United States)

    Yin, Fei; Meng, Chunyang; Lu, Rifeng; Li, Lei; Zhang, Ying; Chen, Hao; Qin, Yonggang; Guo, Li

    2014-01-01

    Bone marrow mesenchymal stem cells can differentiate into neurons and astrocytes after transplantation in the spinal cord of rats with ischemia/reperfusion injury. Although bone marrow mesenchymal stem cells are known to protect against spinal cord ischemia/reperfusion injury through anti-apoptotic effects, the precise mechanisms remain unclear. In the present study, bone marrow mesenchymal stem cells were cultured and proliferated, then transplanted into rats with ischemia/reperfusion injury via retro-orbital injection. Immunohistochemistry and immunofluorescence with subsequent quantification revealed that the expression of the axonal regeneration marker, growth associated protein-43, and the neuronal marker, microtubule-associated protein 2, significantly increased in rats with bone marrow mesenchymal stem cell transplantation compared with those in rats with spinal cord ischemia/reperfusion injury. Furthermore, the expression of the autophagy marker, microtubule-associated protein light chain 3B, and Beclin 1, was significantly reduced in rats with the bone marrow mesenchymal stem cell transplantation compared with those in rats with spinal cord ischemia/reperfusion injury. Western blot analysis showed that the expression of growth associated protein-43 and neurofilament-H increased but light chain 3B and Beclin 1 decreased in rats with the bone marrow mesenchymal stem cell transplantation. Our results therefore suggest that bone marrow mesenchymal stem cell transplantation promotes neurite growth and regeneration and prevents autophagy. These responses may likely be mechanisms underlying the protective effect of bone marrow mesenchymal stem cells against spinal cord ischemia/reperfusion injury. PMID:25374587

  4. Embryonic Cell Grafts in a Culture Model of Spinal Cord Lesion: Neuronal Relay Formation is Essential for Functional Regeneration

    Directory of Open Access Journals (Sweden)

    Anne Tscherter

    2016-09-01

    Full Text Available Presently there exists no cure for spinal cord injury. However, transplantation of embryonic tissue into spinal cord lesions resulted in axon outgrowth across the lesion site and some functional recovery, fostering hope for future stem cell therapies. Although in vivo evidence for functional recovery is given, the exact cellular mechanism of the graft support remains elusive: either the grafted cells provide a permissive environment for the host tissue to regenerate itself or the grafts actually integrate functionally into the host neuronal network reconnecting the separated spinal cord circuits. We tested the two hypotheses in an in vitro spinal cord lesion model that is based on propagation of activity between two rat organotypic spinal cord slices in culture. Transplantation of dissociated cells from E14 rat spinal cord or forebrain re-established the relay of activity over the lesion site and, thus, provoked functional regeneration. Combining patch-clamp recordings from transplanted cells with network activity measurements from the host tissue on multi-electrode arrays we here show that neurons differentiate from the grafted cells and integrate into the host circuits. Optogenetic silencing of neurons developed from transplanted embryonic mouse forebrain cells provides clear evidence that they replace the lost neuronal connections to relay and synchronize activity between the separated spinal cord circuits. In contrast, transplantation of neurospheres induced neither the differentiation of mature neurons from the grafts nor an improvement of functional regeneration. Together these findings suggest, that the formation of neuronal relays from grafted embryonic cells is essential to re-connect segregated spinal cord circuits.

  5. Spaceflight promotes biofilm formation by Pseudomonas aeruginosa.

    Directory of Open Access Journals (Sweden)

    Wooseong Kim

    Full Text Available Understanding the effects of spaceflight on microbial communities is crucial for the success of long-term, manned space missions. Surface-associated bacterial communities, known as biofilms, were abundant on the Mir space station and continue to be a challenge on the International Space Station. The health and safety hazards linked to the development of biofilms are of particular concern due to the suppression of immune function observed during spaceflight. While planktonic cultures of microbes have indicated that spaceflight can lead to increases in growth and virulence, the effects of spaceflight on biofilm development and physiology remain unclear. To address this issue, Pseudomonas aeruginosa was cultured during two Space Shuttle Atlantis missions: STS-132 and STS-135, and the biofilms formed during spaceflight were characterized. Spaceflight was observed to increase the number of viable cells, biofilm biomass, and thickness relative to normal gravity controls. Moreover, the biofilms formed during spaceflight exhibited a column-and-canopy structure that has not been observed on Earth. The increase in the amount of biofilms and the formation of the novel architecture during spaceflight were observed to be independent of carbon source and phosphate concentrations in the media. However, flagella-driven motility was shown to be essential for the formation of this biofilm architecture during spaceflight. These findings represent the first evidence that spaceflight affects community-level behaviors of bacteria and highlight the importance of understanding how both harmful and beneficial human-microbe interactions may be altered during spaceflight.

  6. CD14+ monocytes promote the immunosuppressive effect of human umbilical cord matrix stem cells

    International Nuclear Information System (INIS)

    Wang, Ding; Chen, Ke; Du, Wei Ting; Han, Zhi-Bo; Ren, He; Chi, Ying

    2010-01-01

    Here, the effect of CD14 + monocytes on human umbilical cord matrix stem cell (hUC-MSC)-mediated immunosuppression was studied in vitro. hUC-MSCs exerted a potent inhibitory effect on the proliferation and interferon-γ (IFN-γ) secretion capacities of CD4 + and CD8 + T cells in response to anti-CD3/CD28 stimulation. Transwell co-culture system revealed that the suppressive effect was primarily mediated by soluble factors. Addition of prostaglandin synthesis inhibitors (indomethacin or NS-398) almost completely abrogated the immunosuppression activity of hUC-MSCs, identifying prostaglandin E 2 (PGE 2 ) as an important soluble mediator. CD14 + monocytes were found to be able to enhance significantly the immunosuppressive effect of hUC-MSCs in a dose-dependent fashion. Moreover, the inflammatory cytokine IL-1β, either exogenously added or produced by CD14 + monocytes in culture, could trigger expression of high levels of PGE 2 by hUC-MSCs, whereas inclusion of the IL-1 receptor antagonist (IL-1RA) in the culture down-regulated not only PGE 2 expression, but also reversed the promotional effect of CD14 + monocytes and partially restored CD4 + and CD8 + T cell proliferation and IFN-γ secretion. Our data demonstrate an important role of monocytes in the hUC-MSC-induced immunomodulation, which may have important implications in future efforts to explore the clinical potentials of hUC-MSCs.

  7. Human umbilical cord mesenchymal stem cells promote peripheral nerve repair via paracrine mechanisms

    Directory of Open Access Journals (Sweden)

    Zhi-yuan Guo

    2015-01-01

    Full Text Available Human umbilical cord-derived mesenchymal stem cells (hUCMSCs represent a promising young-state stem cell source for cell-based therapy. hUCMSC transplantation into the transected sciatic nerve promotes axonal regeneration and functional recovery. To further clarify the paracrine effects of hUCMSCs on nerve regeneration, we performed human cytokine antibody array analysis, which revealed that hUCMSCs express 14 important neurotrophic factors. Enzyme-linked immunosorbent assay and immunohistochemistry showed that brain-derived neurotrophic factor, glial-derived neurotrophic factor, hepatocyte growth factor, neurotrophin-3, basic fibroblast growth factor, type I collagen, fibronectin and laminin were highly expressed. Treatment with hUCMSC-conditioned medium enhanced Schwann cell viability and proliferation, increased nerve growth factor and brain-derived neurotrophic factor expression in Schwann cells, and enhanced neurite growth from dorsal root ganglion explants. These findings suggest that paracrine action may be a key mechanism underlying the effects of hUCMSCs in peripheral nerve repair.

  8. Neuromuscular stimulation therapy after incomplete spinal cord injury promotes recovery of interlimb coordination during locomotion

    Science.gov (United States)

    Jung, R.; Belanger, A.; Kanchiku, T.; Fairchild, M.; Abbas, J. J.

    2009-10-01

    The mechanisms underlying the effects of neuromuscular electrical stimulation (NMES) induced repetitive limb movement therapy after incomplete spinal cord injury (iSCI) are unknown. This study establishes the capability of using therapeutic NMES in rodents with iSCI and evaluates its ability to promote recovery of interlimb control during locomotion. Ten adult female Long Evans rats received thoracic spinal contusion injuries (T9; 156 ± 9.52 Kdyne). 7 days post-recovery, 6/10 animals received NMES therapy for 15 min/day for 5 days, via electrodes implanted bilaterally into hip flexors and extensors. Six intact animals served as controls. Motor function was evaluated using the BBB locomotor scale for the first 6 days and on 14th day post-injury. 3D kinematic analysis of treadmill walking was performed on day 14 post-injury. Rodents receiving NMES therapy exhibited improved interlimb coordination in control of the hip joint, which was the specific NMES target. Symmetry indices improved significantly in the therapy group. Additionally, injured rodents receiving therapy more consistently displayed a high percentage of 1:1 coordinated steps, and more consistently achieved proper hindlimb touchdown timing. These results suggest that NMES techniques could provide an effective therapeutic tool for neuromotor treatment following iSCI.

  9. Intraspinal Delivery of Polyethylene Glycol-coated Gold Nanoparticles Promotes Functional Recovery After Spinal Cord Injury.

    Science.gov (United States)

    Papastefanaki, Florentia; Jakovcevski, Igor; Poulia, Nafsika; Djogo, Nevena; Schulz, Florian; Martinovic, Tamara; Ciric, Darko; Loers, Gabrielle; Vossmeyer, Tobias; Weller, Horst; Schachner, Melitta; Matsas, Rebecca

    2015-06-01

    Failure of the mammalian central nervous system (CNS) to regenerate effectively after injury leads to mostly irreversible functional impairment. Gold nanoparticles (AuNPs) are promising candidates for drug delivery in combination with tissue-compatible reagents, such as polyethylene glycol (PEG). PEG administration in CNS injury models has received interest for potential therapy, but toxicity and low bioavailability prevents clinical application. Here we show that intraspinal delivery of PEG-functionalized 40-nm-AuNPs at early stages after mouse spinal cord injury is beneficial for recovery. Positive outcome of hind limb motor function was accompanied by attenuated inflammatory response, enhanced motor neuron survival, and increased myelination of spared or regrown/sprouted axons. No adverse effects, such as body weight loss, ill health, or increased mortality were observed. We propose that PEG-AuNPs represent a favorable drug-delivery platform with therapeutic potential that could be further enhanced if PEG-AuNPs are used as carriers of regeneration-promoting molecules.

  10. Recognition of the mycobacterial cord factor by Mincle: relevance for granuloma formation and resistance to tuberculosis

    Directory of Open Access Journals (Sweden)

    Roland eLang

    2013-01-01

    Full Text Available The world’s most successful intracellular bacterial pathogen, Mycobacterium tuberculosis (MTB, survives inside macrophages by blocking phagosome maturation and establishes chronic infection characterized by the formation of granulomas. Trehalose-6,6-dimycolate (TDM, the mycobacterial cord factor, is the most abundant cell wall lipid of virulent mycobacteria, is sufficient to cause granuloma formation, and has long been known to be a major virulence factor of MTB. Recently, TDM has been shown to activate the Syk-Card9 signaling pathway in macrophages through binding to the C-type lectin receptor Mincle. The Mincle-Card9 pathway is required for activation of macrophages by TDM in vitro and for granuloma formation in vivo following injection of TDM. Whether this pathway is also exploited by MTB to reprogram the macrophage into a comfortable niche has not been explored yet. Several recent studies have investigated the phenotype of Mincle-deficient mice in mycobacterial infection, yielding divergent results in terms of a role for Mincle in host resistance. Here, we review these studies, discuss possible reasons for discrepant results and highlight open questions in the role of Mincle and other C-type lectin receptors in the infection biology of MTB.

  11. Human Umbilical Cord MSCs as New Cell Sources for Promoting Periodontal Regeneration in Inflammatory Periodontal Defect.

    Science.gov (United States)

    Shang, Fengqing; Liu, Shiyu; Ming, Leiguo; Tian, Rong; Jin, Fang; Ding, Yin; Zhang, Yongjie; Zhang, Hongmei; Deng, Zhihong; Jin, Yan

    2017-01-01

    Human periodontal ligament stem cells (hPDLSCs) transplantation represents a promising approach for periodontal regeneration; however, the cell source is limited due to the invasive procedure required for cell isolation. As human umbilical cord mesenchymal stem cells (hUCMSCs) can be harvested inexpensively and inexhaustibly, here we evaluated the regenerative potentials of hUCMSCs as compared with hPDLSCs to determine whether hUCMSCs could be used as new cell sources for periodontal regeneration. Methods The characteristics of hUCMSCs, including multi-differentiation ability and anti-inflammatory capability, were determined by comparison with hPDLSCs. We constructed cell aggregates (CA) using hUCMSCs and hPDLSCs respectively. Then hPDLSCs-CA and hUCMSCs-CA were combined with β-tricalcium phosphate bioceramic (β-TCP) respectively and their regenerative potentials were determined in a rat inflammatory periodontal defect model. Results hPDLSCs showed higher osteogenic differentiation potentials than hUCMSCs. Meanwhile, hUCMSCs showed higher extracellular matrix secretion and anti-inflammatory abilities than hPDLSCs. Similar to hPDLSCs, hUCMSCs were able to contribute to regeneration of both soft and hard periodontal tissues under inflammatory periodontitis condition. There were more newly formed bone and periodontal ligaments in hPDLSCs and hUCMSCs groups than in non-cell treated group. Moreover, no significant differences of regenerative promoting effects between hPDLSCs and hUCMSCs were found. Conclusion : hUCMSCs generated similar promoting effects on periodontal regeneration compared with hPDLSCs, and can be used as new cell sources for periodontal regeneration.

  12. Re-theorising mobility and the formation of culture and language among the Corded Ware Culture in Europe

    DEFF Research Database (Denmark)

    Kristiansen, Kristian; Allentoft, Morten E.; Frei, Karin M.

    2017-01-01

    North European Neolithic cultures. The original herding economy of the Yamnaya migrants gradually gave way to new practices of crop cultivation, which led to the adoption of new words for those crops. The result of this hybridisation process was the formation of a new material culture, the Corded Ware......Recent genetic, isotopic and linguistic research has dramatically changed our understanding of how the Corded Ware Culture in Europe was formed. Here the authors explain it in terms of local adaptations and interactions between migrant Yamnaya people from the Pontic-Caspian steppe and indigenous...... Culture, and of a new dialect, Proto-Germanic. Despite a degree of hostility between expanding Corded Ware groups and indigenous Neolithic groups, stable isotope data suggest that exogamy provided a mechanism facilitating their integration. This article should be read in conjunction with that by Heyd...

  13. UV-activated 7-dehydrocholesterol-coated titanium implants promote differentiation of human umbilical cord mesenchymal stem cells into osteoblasts.

    Science.gov (United States)

    Satué, María; Ramis, Joana M; Monjo, Marta

    2016-01-01

    Vitamin D metabolites are essential for bone regeneration and mineral homeostasis. The vitamin D precursor 7-dehydrocholesterol can be used after UV irradiation to locally produce active vitamin D by osteoblastic cells. Furthermore, UV-irradiated 7-dehydrocholesterol is a biocompatible coating for titanium implants with positive effects on osteoblast differentiation. In this study, we examined the impact of titanium implants surfaces coated with UV-irradiated 7-dehydrocholesterol on the osteogenic differentiation of human umbilical cord mesenchymal stem cells. First, the synthesis of cholecalciferol (D3) was achieved through the incubation of the UV-activated 7-dehydrocholesterol coating for 48 h at 23℃. Further, we investigated in vitro the biocompatibility of this coating in human umbilical cord mesenchymal stem cells and its potential to enhance their differentiation towards the osteogenic lineage. Human umbilical cord mesenchymal stem cells cultured onto UV-irradiated 7-dehydrocholesterol-coated titanium implants surfaces, combined with osteogenic supplements, upregulated the gene expression of several osteogenic markers and showed higher alkaline phosphatase activity and calcein blue staining, suggesting increased mineralization. Thus, our results show that the use of UV irradiation on 7-dehydrocholesterol -treated titanium implants surfaces generates a bioactive coating that promotes the osteogenic differentiation of human umbilical cord mesenchymal stem cells, with regenerative potential for improving osseointegration in titanium-based bone anchored implants. © The Author(s) 2015.

  14. A Computational, Tissue-Realistic Model of Pressure Ulcer Formation in Individuals with Spinal Cord Injury.

    Directory of Open Access Journals (Sweden)

    Cordelia Ziraldo

    2015-06-01

    Full Text Available People with spinal cord injury (SCI are predisposed to pressure ulcers (PU. PU remain a significant burden in cost of care and quality of life despite improved mechanistic understanding and advanced interventions. An agent-based model (ABM of ischemia/reperfusion-induced inflammation and PU (the PUABM was created, calibrated to serial images of post-SCI PU, and used to investigate potential treatments in silico. Tissue-level features of the PUABM recapitulated visual patterns of ulcer formation in individuals with SCI. These morphological features, along with simulated cell counts and mediator concentrations, suggested that the influence of inflammatory dynamics caused simulations to be committed to "better" vs. "worse" outcomes by 4 days of simulated time and prior to ulcer formation. Sensitivity analysis of model parameters suggested that increasing oxygen availability would reduce PU incidence. Using the PUABM, in silico trials of anti-inflammatory treatments such as corticosteroids and a neutralizing antibody targeted at Damage-Associated Molecular Pattern molecules (DAMPs suggested that, at best, early application at a sufficiently high dose could attenuate local inflammation and reduce pressure-associated tissue damage, but could not reduce PU incidence. The PUABM thus shows promise as an adjunct for mechanistic understanding, diagnosis, and design of therapies in the setting of PU.

  15. A Computational, Tissue-Realistic Model of Pressure Ulcer Formation in Individuals with Spinal Cord Injury.

    Science.gov (United States)

    Ziraldo, Cordelia; Solovyev, Alexey; Allegretti, Ana; Krishnan, Shilpa; Henzel, M Kristi; Sowa, Gwendolyn A; Brienza, David; An, Gary; Mi, Qi; Vodovotz, Yoram

    2015-06-01

    People with spinal cord injury (SCI) are predisposed to pressure ulcers (PU). PU remain a significant burden in cost of care and quality of life despite improved mechanistic understanding and advanced interventions. An agent-based model (ABM) of ischemia/reperfusion-induced inflammation and PU (the PUABM) was created, calibrated to serial images of post-SCI PU, and used to investigate potential treatments in silico. Tissue-level features of the PUABM recapitulated visual patterns of ulcer formation in individuals with SCI. These morphological features, along with simulated cell counts and mediator concentrations, suggested that the influence of inflammatory dynamics caused simulations to be committed to "better" vs. "worse" outcomes by 4 days of simulated time and prior to ulcer formation. Sensitivity analysis of model parameters suggested that increasing oxygen availability would reduce PU incidence. Using the PUABM, in silico trials of anti-inflammatory treatments such as corticosteroids and a neutralizing antibody targeted at Damage-Associated Molecular Pattern molecules (DAMPs) suggested that, at best, early application at a sufficiently high dose could attenuate local inflammation and reduce pressure-associated tissue damage, but could not reduce PU incidence. The PUABM thus shows promise as an adjunct for mechanistic understanding, diagnosis, and design of therapies in the setting of PU.

  16. A Computational, Tissue-Realistic Model of Pressure Ulcer Formation in Individuals with Spinal Cord Injury

    Science.gov (United States)

    Ziraldo, Cordelia; Solovyev, Alexey; Allegretti, Ana; Krishnan, Shilpa; Henzel, M. Kristi; Sowa, Gwendolyn A.; Brienza, David; An, Gary; Mi, Qi; Vodovotz, Yoram

    2015-01-01

    People with spinal cord injury (SCI) are predisposed to pressure ulcers (PU). PU remain a significant burden in cost of care and quality of life despite improved mechanistic understanding and advanced interventions. An agent-based model (ABM) of ischemia/reperfusion-induced inflammation and PU (the PUABM) was created, calibrated to serial images of post-SCI PU, and used to investigate potential treatments in silico. Tissue-level features of the PUABM recapitulated visual patterns of ulcer formation in individuals with SCI. These morphological features, along with simulated cell counts and mediator concentrations, suggested that the influence of inflammatory dynamics caused simulations to be committed to “better” vs. “worse” outcomes by 4 days of simulated time and prior to ulcer formation. Sensitivity analysis of model parameters suggested that increasing oxygen availability would reduce PU incidence. Using the PUABM, in silico trials of anti-inflammatory treatments such as corticosteroids and a neutralizing antibody targeted at Damage-Associated Molecular Pattern molecules (DAMPs) suggested that, at best, early application at a sufficiently high dose could attenuate local inflammation and reduce pressure-associated tissue damage, but could not reduce PU incidence. The PUABM thus shows promise as an adjunct for mechanistic understanding, diagnosis, and design of therapies in the setting of PU. PMID:26111346

  17. Exercise Guidelines to Promote Cardiometabolic Health in Spinal Cord Injured Humans: Time to Raise the Intensity?

    Science.gov (United States)

    Nightingale, Tom E; Metcalfe, Richard S; Vollaard, Niels B; Bilzon, James L

    2017-08-01

    Spinal cord injury (SCI) is a life-changing event that, as a result of paralysis, negatively influences habitual levels of physical activity and hence cardiometabolic health. Performing regular structured exercise therefore appears extremely important in persons with SCI. However, exercise options are mainly limited to the upper body, which involves a smaller activated muscle mass compared with the mainly leg-based activities commonly performed by nondisabled individuals. Current exercise guidelines for SCI focus predominantly on relative short durations of moderate-intensity aerobic upper-body exercise, yet contemporary evidence suggests this is not sufficient to induce meaningful improvements in risk factors for the prevention of cardiometabolic disease in this population. As such, these guidelines and their physiological basis require reappraisal. In this special communication, we propose that high-intensity interval training (HIIT) may be a viable alternative exercise strategy to promote vigorous-intensity exercise and prevent cardiometabolic disease in persons with SCI. Supplementing the limited data from SCI cohorts with consistent findings from studies in nondisabled populations, we present strong evidence to suggest that HIIT is superior to moderate-intensity aerobic exercise for improving cardiorespiratory fitness, insulin sensitivity, and vascular function. The potential application and safety of HIIT in this population is also discussed. We conclude that increasing exercise intensity could offer a simple, readily available, time-efficient solution to improve cardiometabolic health in persons with SCI. We call for high-quality randomized controlled trials to examine the efficacy and safety of HIIT in this population. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  18. CD14{sup +} monocytes promote the immunosuppressive effect of human umbilical cord matrix stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ding, E-mail: qqhewd@gmail.com [The State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union of Medical College, 288 Nanjing Road, Tianjin 300020 (China); TEDA Life and Technology Research Center, Institute of Hematology, Chinese Academy of Medical Sciences, TEDA, Tianjin (China); Chen, Ke, E-mail: chenke_59@hotmail.com [The State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union of Medical College, 288 Nanjing Road, Tianjin 300020 (China); TEDA Life and Technology Research Center, Institute of Hematology, Chinese Academy of Medical Sciences, TEDA, Tianjin (China); Du, Wei Ting, E-mail: duwtpumc@yahoo.com.cn [The State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union of Medical College, 288 Nanjing Road, Tianjin 300020 (China); Han, Zhi-Bo, E-mail: zhibohan@hotmail.com [The State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union of Medical College, 288 Nanjing Road, Tianjin 300020 (China); TEDA Life and Technology Research Center, Institute of Hematology, Chinese Academy of Medical Sciences, TEDA, Tianjin (China); Ren, He, E-mail: knifesharp2000@hotmail.com [National Engineering Research Center of Cell Products, AmCellGene Co. Ltd, TEDA, Tianjin (China); Chi, Ying, E-mail: caizhuying@hotmail.com [The State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union of Medical College, 288 Nanjing Road, Tianjin 300020 (China); TEDA Life and Technology Research Center, Institute of Hematology, Chinese Academy of Medical Sciences, TEDA, Tianjin (China); and others

    2010-09-10

    Here, the effect of CD14{sup +} monocytes on human umbilical cord matrix stem cell (hUC-MSC)-mediated immunosuppression was studied in vitro. hUC-MSCs exerted a potent inhibitory effect on the proliferation and interferon-{gamma} (IFN-{gamma}) secretion capacities of CD4{sup +} and CD8{sup +} T cells in response to anti-CD3/CD28 stimulation. Transwell co-culture system revealed that the suppressive effect was primarily mediated by soluble factors. Addition of prostaglandin synthesis inhibitors (indomethacin or NS-398) almost completely abrogated the immunosuppression activity of hUC-MSCs, identifying prostaglandin E{sub 2} (PGE{sub 2}) as an important soluble mediator. CD14{sup +} monocytes were found to be able to enhance significantly the immunosuppressive effect of hUC-MSCs in a dose-dependent fashion. Moreover, the inflammatory cytokine IL-1{beta}, either exogenously added or produced by CD14{sup +} monocytes in culture, could trigger expression of high levels of PGE{sub 2} by hUC-MSCs, whereas inclusion of the IL-1 receptor antagonist (IL-1RA) in the culture down-regulated not only PGE{sub 2} expression, but also reversed the promotional effect of CD14{sup +} monocytes and partially restored CD4{sup +} and CD8{sup +} T cell proliferation and IFN-{gamma} secretion. Our data demonstrate an important role of monocytes in the hUC-MSC-induced immunomodulation, which may have important implications in future efforts to explore the clinical potentials of hUC-MSCs.

  19. Regulated viral BDNF delivery in combination with Schwann cells promotes axonal regeneration through capillary alginate hydrogels after spinal cord injury.

    Science.gov (United States)

    Liu, Shengwen; Sandner, Beatrice; Schackel, Thomas; Nicholson, LaShae; Chtarto, Abdelwahed; Tenenbaum, Liliane; Puttagunta, Radhika; Müller, Rainer; Weidner, Norbert; Blesch, Armin

    2017-09-15

    Grafting of cell-seeded alginate capillary hydrogels into a spinal cord lesion site provides an axonal bridge while physically directing regenerating axonal growth in a linear pattern. However, without an additional growth stimulus, bridging axons fail to extend into the distal host spinal cord. Here we examined whether a combinatory strategy would support regeneration of descending axons across a cervical (C5) lateral hemisection lesion in the rat spinal cord. Following spinal cord transections, Schwann cell (SC)-seeded alginate hydrogels were grafted to the lesion site and AAV5 expressing brain-derived neurotrophic factor (BDNF) under control of a tetracycline-regulated promoter was injected caudally. In addition, we examined whether SC injection into the caudal spinal parenchyma would further enhance regeneration of descending axons to re-enter the host spinal cord. Our data show that both serotonergic and descending axons traced by biotinylated dextran amine (BDA) extend throughout the scaffolds. The number of regenerating axons is significantly increased when caudal BDNF expression is activated and transient BDNF delivery is able to sustain axons after gene expression is switched off. Descending axons are confined to the caudal graft/host interface even with continuous BDNF expression for 8weeks. Only with a caudal injection of SCs, a pathway facilitating axonal regeneration through the host/graft interface is generated allowing axons to successfully re-enter the caudal spinal cord. Recovery from spinal cord injury is poor due to the limited regeneration observed in the adult mammalian central nervous system. Biomaterials, cell transplantation and growth factors that can guide axons across a lesion site, provide a cellular substrate, stimulate axon growth and have shown some promise in increasing the growth distance of regenerating axons. In the present study, we combined an alginate biomaterial with linear channels with transplantation of Schwann cells within

  20. Factors influencing bladder stone formation in patients with spinal cord injury.

    Science.gov (United States)

    Favazza, Terry; Midha, Meena; Martin, Jessicca; Grob, B Mayer

    2004-01-01

    Bladder stones that form in patients with spinal cord injury (SCI) can cause significant morbidity. This study sought to analyze factors associated with bladder stone formation to determine which patients might be at increased risk to develop bladder stones. A review of 56 SCI patients treated for bladder calculi over a 10-year period at a single institution was performed. These patients were compared with a control population of general SCI patients known to be stone free. The factors compared were patient age, duration of injury, level of injury, completeness of injury, method of bladder management, and the presence of documented urinary tract infections with urease-producing organisms. All patients with stones were male and had a median age of 58.5 years. The median level of injury was C6, the median time since injury was 21 years, 66% had complete injuries, 68% managed their bladders with indwelling catheters or suprapubic tubes, and 83% had a history of infections with urease-producing organisms. When compared with the control group, patients forming bladder stones were older (P = 0.03), were more likely to have indwelling catheters (P < 0.0001), had a history of infections with urease-producing organisms (P = 0.04), and had complete injuries (P = 0.018). This information can be used to identify patients who have an increased risk of bladder stones and measures can be taken to reduce their incidence and morbidity.

  1. Human umbilical cord mesenchymal stem cells transplantation promotes cutaneous wound healing of severe burned rats.

    Directory of Open Access Journals (Sweden)

    Lingying Liu

    Full Text Available BACKGROUND: Severe burns are a common and highly lethal trauma. The key step for severe burn therapy is to promote the wound healing as early as possible, and reports indicate that mesenchymal stem cell (MSC therapy contributes to facilitate wound healing. In this study, we investigated effect of human umbilical cord MSCs (hUC-MSCs could on wound healing in a rat model of severe burn and its potential mechanism. METHODS: Adult male Wistar rats were randomly divided into sham, burn, and burn transplanted hUC-MSCs. GFP labeled hUC-MSCs or PBS was intravenous injected into respective groups. The rate of wound closure was evaluated by Image Pro Plus. GFP-labeled hUC-MSCs were tracked by in vivo bioluminescence imaging (BLI, and human-specific DNA expression in wounds was detected by PCR. Inflammatory cells, neutrophils, macrophages, capillaries and collagen types I/III in wounds were evaluated by histochemical staining. Wound blood flow was evaluated by laser Doppler blood flow meter. The levels of proinflammatory and anti-inflammatory factors, VEGF, collagen types I/III in wounds were analyzed using an ELISA. RESULTS: We found that wound healing was significantly accelerated in the hUC-MSC therapy group. The hUC-MSCs migrated into wound and remarkably decreased the quantity of infiltrated inflammatory cells and levels of IL-1, IL-6, TNF-α and increased levels of IL-10 and TSG-6 in wounds. Additionally, the neovascularization and levels of VEGF in wounds in the hUC-MSC therapy group were markedly higher than those in other control groups. The ratio of collagen types I and III in the hUC-MSC therapy group were markedly higher than that in the burn group at indicated time after transplantation. CONCLUSION: The study suggests that hUC-MSCs transplantation can effectively improve wound healing in severe burned rat model. Moreover, these data might provide the theoretical foundation for the further clinical application of hUC-MSC in burn areas.

  2. Apolipoprotein E Mimetic Promotes Functional and Histological Recovery in Lysolecithin-Induced Spinal Cord Demyelination in Mice.

    Science.gov (United States)

    Gu, Zhen; Li, Fengqiao; Zhang, Yi Ping; Shields, Lisa B E; Hu, Xiaoling; Zheng, Yiyan; Yu, Panpan; Zhang, Yongjie; Cai, Jun; Vitek, Michael P; Shields, Christopher B

    2013-04-01

    Considering demyelination is the pathological hallmark of multiple sclerosis (MS), reducing demyelination and/or promoting remyelination is a practical therapeutic strategy to improve functional recovery for MS. An apolipoprotein E (apoE)-mimetic peptide COG112 has previously demonstrated therapeutic efficacy on functional and histological recovery in a mouse experimental autoimmune encephalomyelitis (EAE) model of human MS. In the current study, we further investigated whether COG112 promotes remyelination and improves functional recovery in lysolecithin induced focal demyelination in the white matter of spinal cord in mice. A focal demyelination model was created by stereotaxically injecting lysolecithin into the bilateral ventrolateral funiculus (VLF) of T8 and T9 mouse spinal cords. Immediately after lysolecithin injection mice were treated with COG112, prefix peptide control or vehicle control for 21 days. The locomotor function of the mice was measured by the beam walking test and Basso Mouse Scale (BMS) assessment. The nerve transmission of the VLF of mice was assessed in vivo by transcranial magnetic motor evoked potentials (tcMMEPs). The histological changes were also examined by by eriochrome cyanine staining, immunohistochemistry staining and electron microscopy (EM) method. The area of demyelination in the spinal cord was significantly reduced in the COG112 group. EM examination showed that treatment with COG112 increased the thickness of myelin sheaths and the numbers of surviving axons in the lesion epicenter. Locomotor function was improved in COG112 treated animals when measured by the beam walking test and BMS assessment compared to controls. TcMMEPs also demonstrated the COG112-mediated enhancement of amplitude of evoked responses. The apoE-mimetic COG112 demonstrates a favorable combination of activities in suppressing inflammatory response, mitigating demyelination and in promoting remyelination and associated functional recovery in animal model

  3. Testing the feasibility of training peers with a spinal cord injury to learn and implement brief action planning to promote physical activity to people with spinal cord injury

    Science.gov (United States)

    Gainforth, Heather L.; Latimer-Cheung, Amy E.; Davis, Connie; Casemore, Sheila; Martin Ginis, Kathleen A.

    2015-01-01

    Objective The present study tested the feasibility of training peers with spinal cord injury (SCI) to learn brief action planning (BAP), an application of motivational interviewing principles, to promote physical activity to mentees with SCI. Method Thirteen peers with SCI attended a half-day BAP workshop. Using a one-arm, pre-, post-test design, feasibility to learn BAP was assessed in terms of peers' (1) BAP and motivational interviewing spirit competence; (2) training satisfaction; and (3) motivations to use BAP as assessed by measures of the theory of planned behavior constructs. Measures were taken at baseline, immediately post-training, and 1 month follow up. Results Following the training, participants' BAP and motivational interviewing competence significantly increased (P's  2.27). Training satisfaction was very positive with all means falling above the scale midpoint. Participants' perceived behavioral control to use BAP increased from baseline to post (P  0.05). Conclusion Training peers with a SCI to learn to use BAP is feasible. Practical implications BAP is a tool that can be feasibly learned by peers to promote physical activity to their mentees. PMID:25429692

  4. Effect of the anti-androgenic endocrine disruptor vinclozolin on embryonic testis cord formation and postnatal testis development and function.

    Science.gov (United States)

    Uzumcu, Mehmet; Suzuki, Hiroetsu; Skinner, Michael K

    2004-01-01

    Vinclozolin is a systemic dicarboximide fungicide that is used on fruits, vegetables, ornamental plants, and turf grass. Vinclozolin and its metabolites are known to be endocrine disruptors and act as androgen receptor antagonists. The hypothesis tested in the current study is that transient embryonic exposure to an anti-androgenic endocrine disruptor at the time of testis determination alters testis development and subsequently influences adult spermatogenic capacity and male reproduction. The effects of vinclozolin on embryonic testicular cord formation in vitro were examined, as well as the effects of transient in utero vinclozolin exposure on postnatal testis development and function. Embryonic day 13 (E13, sperm-positive vaginal smear day = E0) gonads were cultured in the absence or presence of vinclozolin (50-500microM). Vinclozolin treated gonads had significantly fewer cords (P vinclozolin (100 mg/kg/day) between embryonic days 8 and 14 (E8-E14) of development. Testis morphology and function were analyzed from postnatal day (P) 0, pubertal P20, and adult P60. No significant effect of vinclozolin on testis histology or germ cell viability was observed in P0 testis. The pubertal P20 testis from vinclozolin exposed animals had significantly higher numbers of apoptotic germ cells (P vinclozolin exposed males (P vinclozolin exposed animals was higher in adult P60 animals. Observations demonstrate that vinclozolin can effect embryonic testicular cord formation in vitro and that transient in utero exposure to vinclozolin increases apoptotic germ cell numbers in the testis of pubertal and adult animals. This correlated to reduced sperm motility in the adult. In conclusion, transient exposure to vinclozolin during the time of testis differentiation (i.e. cord formation) alters testis development and function. Observations indicate that transient exposure to an anti-androgenic endocrine disruptor during embryonic development causes delayed effects later in adult life

  5. Inflammatory Human Umbilical Cord-Derived Mesenchymal Stem Cells Promote Stem Cell-Like Characteristics of Cancer Cells in an IL-1β-Dependent Manner

    Directory of Open Access Journals (Sweden)

    Xiaohe Luo

    2018-01-01

    Full Text Available To ensure the safety of clinical applications of MSCs, thorough understanding of their impacts on tumor initiation and progression is essential. Here, to further explore the complex dialog between MSCs and tumor cells, umbilical cord-derived mesenchymal stem cells (UC-MSCs were employed to be cocultured with either breast or ovarian cancer cells. Though having no obvious influence on proliferation or apoptosis, UC-MSCs exerted intense stem cell-like properties promoting effects on both cancer models. Cocultured cancer cells showed enriched side population, enhanced sphere formation ability, and upregulated pluripotency-associated stem cell markers. Human cytokine array and real-time PCR revealed a panel of MSC-derived prostemness cytokines CCL2, CXCL1, IL-8, and IL-6 which were induced upon coculturing. We further revealed IL-1β, a well-characterized proinflammatory cytokine, to be the inducer of these prostemness cytokines, which was generated from inflammatory UC-MSCs in an autocrine manner. Additionally, with introduction of IL-1RA (an IL-1 receptor antagonist into the coculturing system, the stem cell-like characteristics promoting effects of inflammatory UC-MSCs were partially blocked. Taken together, these findings suggest that transduced inflammatory MSCs work as a major source of IL-1β in tumor microenvironment and initiate the formation of prostemness niche via regulating their secretome in an IL-1β-dependent manner.

  6. Promoting Gait Recovery and Limiting Neuropathic Pain After Spinal Cord Injury.

    Science.gov (United States)

    Mercier, Catherine; Roosink, Meyke; Bouffard, Jason; Bouyer, Laurent J

    2017-04-01

    Most persons living with a spinal cord injury experience neuropathic pain in the months following their lesion, at the moment where they receive intensive gait rehabilitation. Based on studies using animal models, it has been proposed that central sensitization in nociceptive pathways (maladaptive plasticity) and plasticity related to motor learning (adaptive plasticity) share common neural mechanisms and compete with each other. This article aims to address the discrepancy between the growing body of basic science literature supporting this hypothesis and the general belief in rehabilitation research that pain and gait rehabilitation represent two independent problems. First, the main findings from basic research showing interactions between nociception and learning in the spinal cord will be summarized, focusing both on evidence demonstrating the impact of nociception on motor learning and of motor learning on central sensitization. Then, the generalizability of these findings in animal models to humans will be discussed. Finally, the way potential interactions between nociception and motor learning are currently taken into account in clinical research in patients with spinal cord injury will be presented. To conclude, recommendations will be proposed to better integrate findings from basic research into future clinical research in persons with spinal cord injury.

  7. FORMATION AND FURTHER DEVELOPMENT OF MODERN PROMOTION OF PHARMACEUTICAL PRODUCTS

    Directory of Open Access Journals (Sweden)

    Юрий Владимирович Тарасов

    2014-02-01

    Full Text Available The articles addresses key notions and elements of marketing of pharmaceutical companies. Key stages and particularities of formation of pharmaceutical marketing are considered. It is proved that in general pharmaceutical market is developing under general marketing rules, however while developing strategy of promotion of pharmaceutical products specific features of the industry must be taken into consideration. The authors describes specific features of modern pharmaceutical market, which must be considered while developing policy of promotion of pharmaceutical products.The analysis is made of modern state of Russian pharmaceutical industry, its place in world pharmaceutical market. It is found that development of pharmaceutical market is directly influenced by the reform of pharmaceutical industry initiated by the Government of our country in 2008. Characteristic of current stage of market development is more strict conditions in marketing sphere and promotion of drugs. DOI: http://dx.doi.org/10.12731/2218-7405-2013-12-2

  8. Pre-evaluated safe human iPSC-derived neural stem cells promote functional recovery after spinal cord injury in common marmoset without tumorigenicity.

    Directory of Open Access Journals (Sweden)

    Yoshiomi Kobayashi

    Full Text Available Murine and human iPSC-NS/PCs (induced pluripotent stem cell-derived neural stem/progenitor cells promote functional recovery following transplantation into the injured spinal cord in rodents. However, for clinical applicability, it is critical to obtain proof of the concept regarding the efficacy of grafted human iPSC-NS/PCs (hiPSC-NS/PCs for the repair of spinal cord injury (SCI in a non-human primate model. This study used a pre-evaluated "safe" hiPSC-NS/PC clone and an adult common marmoset (Callithrix jacchus model of contusive SCI. SCI was induced at the fifth cervical level (C5, followed by transplantation of hiPSC-NS/PCs at 9 days after injury. Behavioral analyses were performed from the time of the initial injury until 12 weeks after SCI. Grafted hiPSC-NS/PCs survived and differentiated into all three neural lineages. Furthermore, transplantation of hiPSC-NS/PCs enhanced axonal sparing/regrowth and angiogenesis, and prevented the demyelination after SCI compared with that in vehicle control animals. Notably, no tumor formation occurred for at least 12 weeks after transplantation. Quantitative RT-PCR showed that mRNA expression levels of human neurotrophic factors were significantly higher in cultured hiPSC-NS/PCs than in human dermal fibroblasts (hDFs. Finally, behavioral tests showed that hiPSC-NS/PCs promoted functional recovery after SCI in the common marmoset. Taken together, these results indicate that pre-evaluated safe hiPSC-NS/PCs are a potential source of cells for the treatment of SCI in the clinic.

  9. Electro-acupuncture promotes survival, differentiation of the bone marrow mesenchymal stem cells as well as functional recovery in the spinal cord-transected rats

    Science.gov (United States)

    Ding, Ying; Yan, Qing; Ruan, Jing-Wen; Zhang, Yan-Qing; Li, Wen-Jie; Zhang, Yu-Jiao; Li, Yan; Dong, Hongxin; Zeng, Yuan-Shan

    2009-01-01

    Background Bone marrow mesenchymal stem cells (MSCs) are one of the potential tools for treatment of the spinal cord injury; however, the survival and differentiation of MSCs in an injured spinal cord still need to be improved. In the present study, we investigated whether Governor Vessel electro-acupuncture (EA) could efficiently promote bone marrow mesenchymal stem cells (MSCs) survival and differentiation, axonal regeneration and finally, functional recovery in the transected spinal cord. Results The spinal cords of adult Sprague-Dawley (SD) rats were completely transected at T10, five experimental groups were performed: 1. sham operated control (Sham-control); 2. operated control (Op-control); 3. electro-acupuncture treatment (EA); 4. MSCs transplantation (MSCs); and 5. MSCs transplantation combined with electro-acupuncture (MSCs+EA). After 2-8 weeks of MSCs transplantation plus EA treatment, we found that the neurotrophin-3 (NT-3), cAMP level, the differentiation of MSCs, the 5-HT positive and CGRP positive nerve fibers in the lesion site and nearby tissue of injured spinal cord were significantly increased in the MSCs+EA group as compared to the group of the MSCs transplantation or the EA treated alone. Furthermore, behavioral test and spinal cord evoked potentials detection demonstrated a significantly functional recovery in the MSCs +EA group. Conclusion These results suggest that EA treatment may promote grafted MSCs survival and differentiation; MSCs transplantation combined with EA treatment could promote axonal regeneration and partial locomotor functional recovery in the transected spinal cord in rats and indicate a promising avenue of treatment of spinal cord injury. PMID:19374777

  10. Chronic mild hypoxia promotes profound vascular remodeling in spinal cord blood vessels, preferentially in white matter, via an α5β1 integrin-mediated mechanism.

    Science.gov (United States)

    Halder, Sebok K; Kant, Ravi; Milner, Richard

    2018-05-01

    Spinal cord injury (SCI) leads to rapid destruction of neuronal tissue, resulting in devastating motor and sensory deficits. This is exacerbated by damage to spinal cord blood vessels and loss of vascular integrity. Thus, approaches that protect existing blood vessels or stimulate the growth of new blood vessels might present a novel approach to minimize loss or promote regeneration of spinal cord tissue following SCI. In light of the remarkable power of chronic mild hypoxia (CMH) to stimulate vascular remodeling in the brain, the goal of this study was to examine how CMH (8% O 2 for up to 7 days) affects blood vessel remodeling in the spinal cord. We found that CMH promoted the following: (1) endothelial proliferation and increased vascularity as a result of angiogenesis and arteriogenesis, (2) increased vascular expression of the angiogenic extracellular matrix protein fibronectin as well as concomitant increases in endothelial expression of the fibronectin receptor α5β1 integrin, (3) strongly upregulated endothelial expression of the tight junction proteins claudin-5, ZO-1 and occludin and (4) astrocyte activation. Of note, the vascular remodeling changes induced by CMH were more extensive in white matter. Interestingly, hypoxic-induced vascular remodeling in spinal cord blood vessels was markedly attenuated in mice lacking endothelial α5 integrin expression (α5-EC-KO mice). Taken together, these studies demonstrate the considerable remodeling potential of spinal cord blood vessels and highlight an important angiogenic role for the α5β1 integrin in promoting endothelial proliferation. They also imply that stimulation of the α5β1 integrin or controlled use of mild hypoxia might provide new approaches for promoting angiogenesis and improving vascular integrity in spinal cord blood vessels.

  11. Anxiolytics may promote locomotor function recovery in spinal cord injury patients

    Directory of Open Access Journals (Sweden)

    Pierre A Guertin

    2008-09-01

    Full Text Available Pierre A GuertinNeuroscience Unit, Laval University Medical Center (CHUL, Quebec City, CanadaAbstract: Recent findings in animal models of paraplegia suggest that specific nonbenzodiazepine anxiolytics may temporarily restore locomotor functions after spinal cord injury (SCI. Experiments using in vitro models have revealed, indeed, that selective serotonin receptor (5-HTR ligands such as 5-HTR1A agonists, known as relatively safe anxiolytics, can acutely elicit episodes of rhythmic neuronal activity refered to as fictive locomotion in isolated spinal cord preparations. Along the same line, in vivo studies have recently shown that this subclass of anxiolytics can induce, shortly after systemic administration (eg, orally or subcutaneously, some locomotor-like hindlimb movements during 45–60 minutes in completely spinal cord-transected (Tx rodents. Using ‘knock-out’ mice (eg, 5-HTR7-/- and selective antagonists, it has been clearly established that both 5-HTR1A and 5-HTR7 were critically involved in mediating the pro-locomotor effects induced by 8-OH-DPAT (typically referred to as a 5-HTR1A agonist in Tx animals. Taken together, these in vitro and in vivo data strongly support the idea that 5-HTR1A agonists may eventually become constitutive elements of a novel first-in-class combinatorial treatment aimed at periodically inducing short episodes of treadmill stepping in SCI patients.Keywords: 5-HT agonists, anxiolytics, locomotion, SCI

  12. Oral Administration of α-Asarone Promotes Functional Recovery in Rats With Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Min-Jae Jo

    2018-05-01

    Full Text Available α-asarone, a bioactive compound found in Acorus plant species, has been shown to exhibit neuroprotective, anti-oxidative, anti-inflammatory, and cognitive-enhancing effects. However, the effects of α-asarone on spinal cord injury (SCI have not yet been elucidated. The present study investigated the effects of α-asarone on the mRNA of pro-inflammatory cytokines, macrophage polarization toward an anti-inflammatory M2 phenotype, and angiogenesis in rats with compressive SCI. α-Asarone was orally administered (10 mg/kg once per day for 14 days following moderate static compression SCI. Compared to controls, α-asarone treatment significantly improved locomotor score, prevented neuroinflammation, and facilitated angiogenesis in the spinal cord at 14 days after SCI. Furthermore, α-asarone significantly reduced the TNF-α, IL-1β, IL-6, monocyte chemoattractant protein 1 (MCP-1, macrophage inflammatory protein 2 (MIP-2, and inducible nitric oxide synthase (iNOS levels but increased the IL-4, IL-10, and arginase 1 levels at 24 h after SCI. At 7 and 14 days after SCI, immunohistochemistry showed reduced reactive gliosis and neuroinflammation and an increased expression of M2 macrophage markers and angiogenesis. The results suggest that the inhibition of pro-inflammatory cytokines, macrophage polarization toward an anti-inflammatory M2 phenotype, and angiogenesis by α-asarone may be some of the mechanisms underlying the α-asarone-mediated neuroprotective effects on an injured spinal cord.

  13. Methylprednisolone promotes recovery of neurological function after spinal cord injury: association with Wnt/β-catenin signaling pathway activation

    Science.gov (United States)

    Lu, Gong-biao; Niu, Fu-wen; Zhang, Ying-chun; Du, Lin; Liang, Zhi-yuan; Gao, Yuan; Yan, Ting-zhen; Nie, Zhi-kui; Gao, Kai

    2016-01-01

    Some studies have indicated that the Wnt/β-catenin signaling pathway is activated following spinal cord injury, and expression levels of specific proteins, including low-density lipoprotein receptor related protein-6 phosphorylation, β-catenin, and glycogen synthase kinase-3β, are significantly altered. We hypothesized that methylprednisolone treatment contributes to functional recovery after spinal cord injury by inhibiting apoptosis and activating the Wnt/β-catenin signaling pathway. In the current study, 30 mg/kg methylprednisolone was injected into rats with spinal cord injury immediately post-injury and at 1 and 2 days post-injury. Basso, Beattie, and Bresnahan scores showed that methylprednisolone treatment significantly promoted locomotor functional recovery between 2 and 6 weeks post-injury. The number of surviving motor neurons increased, whereas the lesion size significantly decreased following methylprednisolone treatment at 7 days post-injury. Additionally, caspase-3, caspase-9, and Bax protein expression levels and the number of apoptotic cells were reduced at 3 and 7 days post-injury, while Bcl-2 levels at 7 days post-injury were higher in methylprednisolone-treated rats compared with saline-treated rats. At 3 and 7 days post-injury, methylprednisolone up-regulated expression and activation of the Wnt/β-catenin signaling pathway, including low-density lipoprotein receptor related protein-6 phosphorylation, β-catenin, and glycogen synthase kinase-3β phosphorylation. These results indicate that methylprednisolone-induced neuroprotection may correlate with activation of the Wnt/β-catenin signaling pathway. PMID:28123427

  14. Coke formation on hydrodesulphurization catalysts. [Including effects of different promoters

    Energy Technology Data Exchange (ETDEWEB)

    Ternan, M.; Furimsky, E.; Parsons, B.I.

    1979-02-01

    The extent of coke formation was measured on a number of different hydrodesulfurization catalysts, primarily as a function of the catalyst chemical composition. Variations in the concentration of MoO/sub 3/ on the alumina, the type of catalyst promoter, the promoter/MoO/sub 3/ ratio, the presulfiding material and the reaction temperature were made. Increases in the reaction rate caused by either changes in the catalyst composition or by moderate changes in the reaction temperature were compared to the catalyst coke content. It was suggested that two types of coke were present on the catalyst, a reactive coke which is subsequently converted to reaction products and an unreactive coke which blocks catalytic sites.

  15. Adult-type myogenesis of the frog Xenopus laevis specifically suppressed by notochord cells but promoted by spinal cord cells in vitro.

    Science.gov (United States)

    Yamane, Hitomi; Ihara, Setsunosuke; Kuroda, Masaaki; Nishikawa, Akio

    2011-08-01

    Larval-to-adult myogenic conversion occurs in the dorsal muscle but not in the tail muscle during Xenopus laevis metamorphosis. To know the mechanism for tail-specific suppression of adult myogenesis, response character was compared between adult myogenic cells (Ad-cells) and larval tail myogenic cells (La-cells) to a Sonic hedgehog (Shh) inhibitor, notochord (Nc) cells, and spinal cord (SC) cells in vitro. Cyclopamine, an Shh inhibitor, suppressed the differentiation of cultured Ad (but not La) cells, suggesting the significance of Shh signaling in promoting adult myogenesis. To test the possibility that Shh-producing axial elements (notochord and spinal cord) regulate adult myogenesis, Ad-cells or La-cells were co-cultured with Nc or SC cells. The results showed that differentiation of Ad-cells were strongly inhibited by Nc cells but promoted by SC cells. If Ad-cells were "separately" co-cultured with Nc cells without direct cell-cell interactions, adult differentiation was not inhibited but rather promoted, suggesting that Nc cells have two roles, one is a short-range suppression and another is a long-range promotion for adult myogenesis. Immunohistochemical analysis showed both notochord and spinal cord express the N-terminal Shh fragment throughout metamorphosis. The "spinal cord-promotion" and long-range effect by Nc cells on adult myogenesis is thus involved in Shh signaling, while the signaling concerning the short-range "Nc suppression" will be determined by future studies. Interestingly, these effects, "Nc suppression" and "SC promotion" were not observed for La-cells. Situation where the spinal cord/notochord cross-sectional ratio is quite larger in tadpole trunk than in the tail seems to contribute to trunk-specific promotion and tail-specific suppression of adult myogenesis during Xenopus metamorphosis.

  16. Maresin 1 Promotes Inflammatory Resolution, Neuroprotection, and Functional Neurological Recovery After Spinal Cord Injury.

    Science.gov (United States)

    Francos-Quijorna, Isaac; Santos-Nogueira, Eva; Gronert, Karsten; Sullivan, Aaron B; Kopp, Marcel A; Brommer, Benedikt; David, Samuel; Schwab, Jan M; López-Vales, Ruben

    2017-11-29

    Resolution of inflammation is defective after spinal cord injury (SCI), which impairs tissue integrity and remodeling and leads to functional deficits. Effective pharmacological treatments for SCI are not currently available. Maresin 1 (MaR1) is a highly conserved specialized proresolving mediator (SPM) hosting potent anti-inflammatory and proresolving properties with potent tissue regenerative actions. Here, we provide evidence that the inappropriate biosynthesis of SPM in the lesioned spinal cord hampers the resolution of inflammation and leads to deleterious consequences on neurological outcome in adult female mice. We report that, after spinal cord contusion injury in adult female mice, the biosynthesis of SPM is not induced in the lesion site up to 2 weeks after injury. Exogenous administration of MaR1, a highly conserved SPM, propagated inflammatory resolution after SCI, as revealed by accelerated clearance of neutrophils and a reduction in macrophage accumulation at the lesion site. In the search of mechanisms underlying the proresolving actions of MaR1 in SCI, we found that this SPM facilitated several hallmarks of resolution of inflammation, including reduction of proinflammatory cytokines (CXCL1, CXCL2, CCL3, CCL4, IL6, and CSF3), silencing of major inflammatory intracellular signaling cascades (STAT1, STAT3, STAT5, p38, and ERK1/2), redirection of macrophage activation toward a prorepair phenotype, and increase of the phagocytic engulfment of neutrophils by macrophages. Interestingly, MaR1 administration improved locomotor recovery significantly and mitigated secondary injury progression in a clinical relevant model of SCI. These findings suggest that proresolution, immunoresolvent therapies constitute a novel approach to improving neurological recovery after acute SCI. SIGNIFICANCE STATEMENT Inflammation is a protective response to injury or infection. To result in tissue homeostasis, inflammation has to resolve over time. Incomplete or delayed

  17. Non-invasive brain stimulation to promote motor and functional recovery following spinal cord injury

    Directory of Open Access Journals (Sweden)

    Aysegul Gunduz

    2017-01-01

    Full Text Available We conducted a systematic review of studies using non-invasive brain stimulation (NIBS: repetitive transcranial magnetic stimulation (rTMS and transcranial direct current stimulation (tDCS as a research and clinical tool aimed at improving motor and functional recovery or spasticity in patients following spinal cord injury (SCI under the assumption that if the residual corticospinal circuits could be stimulated appropriately, the changes might be accompanied by functional recovery or an improvement in spasticity. This review summarizes the literature on the changes induced by NIBS in the motor and functional recovery and spasticity control of the upper and lower extremities following SCI.

  18. Hydrogen-rich saline injection into the subarachnoid cavity within 2 weeks promotes recovery after acute spinal cord injury

    Directory of Open Access Journals (Sweden)

    Jian-long Wang

    2015-01-01

    Full Text Available Hydrogen can relieve tissue-damaging oxidative stress, inflammation and apoptosis. Injection of hydrogen-rich saline is an effective method for transporting molecular hydrogen. We hypothesized that hydrogen-rich saline would promote the repair of spinal cord injury induced by Allen′s method in rats. At 0.5, 1, 2, 4, 8, 12 and 24 hours after injury, then once daily for 2 weeks, 0.25 mL/kg hydrogen-rich saline was infused into the subarachnoid space through a catheter. Results at 24 hours, 48 hours, 1 week and 2 weeks after injury showed that hydrogen-rich saline markedly reduced cell death, inflammatory cell infiltration, serum malondialdehyde content, and caspase-3 immunoreactivity, elevated serum superoxide dismutase activity and calcitonin gene-related peptide immunoreactivity, and improved motor function in the hindlimb. The present study confirms that hydrogen-rich saline injected within 2 weeks of injury effectively contributes to the repair of spinal cord injury in the acute stage.

  19. Early application of tail nerve electrical stimulation-induced walking training promotes locomotor recovery in rats with spinal cord injury.

    Science.gov (United States)

    Zhang, S-X; Huang, F; Gates, M; Shen, X; Holmberg, E G

    2016-11-01

    This is a randomized controlled prospective trial with two parallel groups. The objective of this study was to determine whether early application of tail nerve electrical stimulation (TANES)-induced walking training can improve the locomotor function. This study was conducted in SCS Research Center in Colorado, USA. A contusion injury to spinal cord T10 was produced using the New York University impactor device with a 25 -mm height setting in female, adult Long-Evans rats. Injured rats were randomly divided into two groups (n=12 per group). One group was subjected to TANES-induced walking training 2 weeks post injury, and the other group, as control, received no TANES-induced walking training. Restorations of behavior and conduction were assessed using the Basso, Beattie and Bresnahan open-field rating scale, horizontal ladder rung walking test and electrophysiological test (Hoffmann reflex). Early application of TANES-induced walking training significantly improved the recovery of locomotor function and benefited the restoration of Hoffmann reflex. TANES-induced walking training is a useful method to promote locomotor recovery in rats with spinal cord injury.

  20. Tamoxifen Promotes Axonal Preservation and Gait Locomotion Recovery after Spinal Cord Injury in Cats

    Directory of Open Access Journals (Sweden)

    Braniff de la Torre Valdovinos

    2016-01-01

    Full Text Available We performed experiments in cats with a spinal cord penetrating hemisection at T13-L1 level, with and without tamoxifen treatment. The results showed that the numbers of the ipsilateral and contralateral ventral horn neurons were reduced to less than half in the nontreated animals compared with the treated ones. Also, axons myelin sheet was preserved to almost normal values in treated cats. On the contrary, in the untreated animals, their myelin sheet was reduced to 28% at 30 days after injury (DAI, in both the ipsilateral and contralateral regions of the spinal cord. Additionally, we made hindlimb kinematics experiments to study the effects of tamoxifen on cat locomotion after the injury: at 4, 16, and 30 DAI. We observed that the ipsilateral hindlimb angular displacement (AD of the pendulum-like movements (PLM during gait locomotion was recovered to almost normal values in treated cats. Contralateral PLM acquired similar values to those obtained in intact cats. At 4 DAI, untreated animals showed a compensatory increment of PLM occurring in the contralateral hindlimb, which was partially recovered at 30 DAI. Our findings indicate that tamoxifen exerts a neuroprotective effect and preserves or produces myelinated axons, which could benefit the locomotion recovery in injured cats.

  1. Multi-protein delivery by nanodiamonds promotes bone formation.

    Science.gov (United States)

    Moore, L; Gatica, M; Kim, H; Osawa, E; Ho, D

    2013-11-01

    Bone morphogenetic proteins (BMPs) are well-studied regulators of cartilage and bone development that have been Food and Drug Administration (FDA)-approved for the promotion of bone formation in certain procedures. BMPs are seeing more use in oral and maxillofacial surgeries because of recent FDA approval of InFUSE(®) for sinus augmentation and localized alveolar ridge augmentation. However, the utility of BMPs in medical and dental applications is limited by the delivery method. Currently, BMPs are delivered to the surgical site by the implantation of bulky collagen sponges. Here we evaluate the potential of detonation nanodiamonds (NDs) as a delivery vehicle for BMP-2 and basic fibroblast growth factor (bFGF). Nanodiamonds are biocompatible, 4- to 5-nm carbon nanoparticles that have previously been used to deliver a wide variety of molecules, including proteins and peptides. We find that both BMP-2 and bFGF are readily loaded onto NDs by physisorption, forming a stable colloidal solution, and are triggered to release in slightly acidic conditions. Simultaneous delivery of BMP-2 and bFGF by ND induces differentiation and proliferation in osteoblast progenitor cells. Overall, we find that NDs provide an effective injectable alternative for the delivery of BMP-2 and bFGF to promote bone formation.

  2. Tridax procumbens flavonoids promote osteoblast differentiation and bone formation

    Directory of Open Access Journals (Sweden)

    Md. Abdullah Al Mamun

    Full Text Available BACKGROUND: Tridaxprocumbens flavonoids (TPFs are well known for their medicinal properties among local natives. Besides traditionally used for dropsy, anemia, arthritis, gout, asthma, ulcer, piles, and urinary problems, it is also used in treating gastric problems, body pain, and rheumatic pains of joints. TPFs have been reported to increase osteogenic functioning in mesenchymal stem cells. Our previous study showed that TPFs were significantly suppressed the RANKL-induced differentiation of osteoclasts and bone resorption. However, the effects of TPFs to promote osteoblasts differentiation and bone formation remain unclear. TPFs were isolated from Tridax procumbens and investigated for their effects on osteoblasts differentiation and bone formation by using primary mouse calvarial osteoblasts RESULTS: TPFs promoted osteoblast differentiation in a dose-dependent manner demonstrated by up-regulation of alkaline phosphatase and osteocalcin. TPFs also upregulated osteoblast differentiation related genes, including osteocalcin, osterix, and Runx2 in primary osteoblasts. TPFs treated primary osteoblast cells showed significant upregulation of bone morphogenetic proteins (BMPs including Bmp-2, Bmp-4, and Bmp-7. Addition of noggin, a BMP specific-antagonist, inhibited TPFs induced upregulation of the osteocalcin, osterix, and Runx2 CONCLUSION: Our findings point towards the induction of osteoblast differentiation by TPFs and suggested that TPFs could be a potential anabolic agent to treat patients with bone loss-associated diseases such as osteoporosis

  3. Control of nerve cord formation by Engrailed and Gooseberry-Neuro: A multi-step, coordinated process.

    Science.gov (United States)

    Bonneaud, Nathalie; Layalle, Sophie; Colomb, Sophie; Jourdan, Christophe; Ghysen, Alain; Severac, Dany; Dantec, Christelle; Nègre, Nicolas; Maschat, Florence

    2017-12-15

    One way to better understand the molecular mechanisms involved in the construction of a nervous system is to identify the downstream effectors of major regulatory proteins. We previously showed that Engrailed (EN) and Gooseberry-Neuro (GsbN) transcription factors act in partnership to drive the formation of posterior commissures in the central nervous system of Drosophila. In this report, we identified genes regulated by both EN and GsbN through chromatin immunoprecipitation ("ChIP on chip") and transcriptome experiments, combined to a genetic screen relied to the gene dose titration method. The genomic-scale approaches allowed us to define 175 potential targets of EN-GsbN regulation. We chose a subset of these genes to examine ventral nerve cord (VNC) defects and found that half of the mutated targets show clear VNC phenotypes when doubly heterozygous with en or gsbn mutations, or when homozygous. This strategy revealed new groups of genes never described for their implication in the construction of the nerve cord. Their identification suggests that, to construct the nerve cord, EN-GsbN may act at three levels, in: (i) sequential control of the attractive-repulsive signaling that ensures contralateral projection of the commissural axons, (ii) temporal control of the translation of some mRNAs, (iii) regulation of the capability of glial cells to act as commissural guideposts for developing axons. These results illustrate how an early, coordinated transcriptional control may orchestrate the various mechanisms involved in the formation of stereotyped neuronal networks. They also validate the overall strategy to identify genes that play crucial role in axonal pathfinding. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Predictive Ability of Pender's Health Promotion Model for Physical Activity and Exercise in People with Spinal Cord Injuries: A Hierarchical Regression Analysis

    Science.gov (United States)

    Keegan, John P.; Chan, Fong; Ditchman, Nicole; Chiu, Chung-Yi

    2012-01-01

    The main objective of this study was to validate Pender's Health Promotion Model (HPM) as a motivational model for exercise/physical activity self-management for people with spinal cord injuries (SCIs). Quantitative descriptive research design using hierarchical regression analysis (HRA) was used. A total of 126 individuals with SCI were recruited…

  5. ROCK inhibition with Y27632 promotes the proliferation and cell cycle progression of cultured astrocyte from spinal cord.

    Science.gov (United States)

    Yu, Zhiyuan; Liu, Miao; Fu, Peicai; Xie, Minjie; Wang, Wei; Luo, Xiang

    2012-12-01

    Rho-associated Kinase (ROCK) has been identified as an important regulator of proliferation and cell cycle progression in a number of cell types. Although its effects on astrocyte proliferation have not been well characterized, ROCK has been reported to play important roles in gap junction formation, morphology, and migration of astrocytes. In the present study, our aim was to investigate the effect of ROCK inhibition by [(+)-(R)-trans-4-(1-aminoethyl)-N-(4-pyridyl) cyclohexanecarboxamide dihydrochloride] (Y27632) on proliferation and DNA synthesis in cultured astrocytes from rat spinal cord and the possible mechanism involved. Western blots showed that treatment of astrocytes with Y27632 increased their expression of cyclin D1, CDK4, and cyclin E, thereby causing cell cycle progression. Furthermore, Y27632-induced astrocyte proliferation was mediated through the extracellular-signal-regulated kinase signaling cascade. These results indicate the importance of ROCK in astrocyte proliferation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Biomimetic hydrogels direct spinal progenitor cell differentiation and promote functional recovery after spinal cord injury

    Science.gov (United States)

    Geissler, Sydney A.; Sabin, Alexandra L.; Besser, Rachel R.; Gooden, Olivia M.; Shirk, Bryce D.; Nguyen, Quan M.; Khaing, Zin Z.; Schmidt, Christine E.

    2018-04-01

    Objective. Demyelination that results from disease or traumatic injury, such as spinal cord injury (SCI), can have a devastating effect on neural function and recovery. Many researchers are examining treatments to minimize demyelination by improving oligodendrocyte availability in vivo. Transplantation of stem and oligodendrocyte progenitor cells is a promising option, however, trials are plagued by undirected differentiation. Here we introduce a biomaterial that has been optimized to direct the differentiation of neural progenitor cells (NPCs) toward oligodendrocytes as a cell delivery vehicle after SCI. Approach. A collagen-based hydrogel was modified to mimic the mechanical properties of the neonatal spinal cord, and components present in the developing extracellular matrix were included to provide appropriate chemical cues to the NPCs to direct their differentiation toward oligodendrocytes. The hydrogel with cells was then transplanted into a unilateral cervical contusion model of SCI to examine the functional recovery with this treatment. Six behavioral tests and histological assessment were performed to examine the in vivo response to this treatment. Main results. Our results demonstrate that we can achieve a significant increase in oligodendrocyte differentiation of NPCs compared to standard culture conditions using a three-component biomaterial composed of collagen, hyaluronic acid, and laminin that has mechanical properties matched to those of neonatal neural tissue. Additionally, SCI rats with hydrogel transplants, with and without NPCs, showed functional recovery. Animals transplanted with hydrogels with NPCs showed significantly increased functional recovery over six weeks compared to the media control group. Significance. The three-component hydrogel presented here has the potential to provide cues to direct differentiation in vivo to encourage regeneration of the central nervous system.

  7. Combined motor cortex and spinal cord neuromodulation promotes corticospinal system functional and structural plasticity and motor function after injury.

    Science.gov (United States)

    Song, Weiguo; Amer, Alzahraa; Ryan, Daniel; Martin, John H

    2016-03-01

    An important strategy for promoting voluntary movements after motor system injury is to harness activity-dependent corticospinal tract (CST) plasticity. We combine forelimb motor cortex (M1) activation with co-activation of its cervical spinal targets in rats to promote CST sprouting and skilled limb movement after pyramidal tract lesion (PTX). We used a two-step experimental design in which we first established the optimal combined stimulation protocol in intact rats and then used the optimal protocol in injured animals to promote CST repair and motor recovery. M1 was activated epidurally using an electrical analog of intermittent theta burst stimulation (iTBS). The cervical spinal cord was co-activated by trans-spinal direct current stimulation (tsDCS) that was targeted to the cervical enlargement, simulated from finite element method. In intact rats, forelimb motor evoked potentials (MEPs) were strongly facilitated during iTBS and for 10 min after cessation of stimulation. Cathodal, not anodal, tsDCS alone facilitated MEPs and also produced a facilitatory aftereffect that peaked at 10 min. Combined iTBS and cathodal tsDCS (c-tsDCS) produced further MEP enhancement during stimulation, but without further aftereffect enhancement. Correlations between forelimb M1 local field potentials and forelimb electromyogram (EMG) during locomotion increased after electrical iTBS alone and further increased with combined stimulation (iTBS+c-tsDCS). This optimized combined stimulation was then used to promote function after PTX because it enhanced functional connections between M1 and spinal circuits and greater M1 engagement in muscle contraction than either stimulation alone. Daily application of combined M1 iTBS on the intact side and c-tsDCS after PTX (10 days, 27 min/day) significantly restored skilled movements during horizontal ladder walking. Stimulation produced a 5.4-fold increase in spared ipsilateral CST terminations. Combined neuromodulation achieves optimal motor

  8. Service Innovation by Industrial Cluster Formation and Export Promotion

    Directory of Open Access Journals (Sweden)

    Noleen Pisa

    2017-12-01

    Full Text Available Service innovation drives economic growth and structural change by stimulating the development of new sectors and productivity improvements in existing sectors. Resource based sectors are the main contributors to South Africa’s North West province’s economic output This paper illustrates how such a region can use industrial cluster formation and focused export promotion as a strategy to enhance service innovation. Four service clusters were identified within the above mentioned province through structural path analysis and power of pull methods. An export market selection model is applied to the identified service industrial clusters to reveal realistic export opportunities associated with each cluster. Finally, trade multipliers are used to show the spill-over benefits given an increase in the clusters’ exports. Policymakers can use these results to inform actions that may assist in the development of these services clusters to strengthen the province’s competitive advantage and diversify its output.

  9. Oxidative stress specifically downregulates survivin to promote breast tumour formation.

    Science.gov (United States)

    Pervin, S; Tran, L; Urman, R; Braga, M; Parveen, M; Li, S A; Chaudhuri, G; Singh, R

    2013-03-05

    Breast cancer, a heterogeneous disease has been broadly classified into oestrogen receptor positive (ER+) or oestrogen receptor negative (ER-) tumour types. Each of these tumours is dependent on specific signalling pathways for their progression. While high levels of survivin, an anti-apoptotic protein, increases aggressive behaviour in ER- breast tumours, oxidative stress (OS) promotes the progression of ER+ breast tumours. Mechanisms and molecular targets by which OS promotes tumourigenesis remain poorly understood. DETA-NONOate, a nitric oxide (NO)-donor induces OS in breast cancer cell lines by early re-localisation and downregulation of cellular survivin. Using in vivo models of HMLE(HRAS) xenografts and E2-induced breast tumours in ACI rats, we demonstrate that high OS downregulates survivin during initiation of tumourigenesis. Overexpression of survivin in HMLE(HRAS) cells led to a significant delay in tumour initiation and tumour volume in nude mice. This inverse relationship between survivin and OS was also observed in ER+ human breast tumours. We also demonstrate an upregulation of NADPH oxidase-1 (NOX1) and its activating protein p67, which are novel markers of OS in E2-induced tumours in ACI rats and as well as in ER+ human breast tumours. Our data, therefore, suggest that downregulation of survivin could be an important early event by which OS initiates breast tumour formation.

  10. Host-race formation: promoted by phenology, constrained by heritability.

    Science.gov (United States)

    Whipple, A V; Abrahamson, W G; Khamiss, M A; Heinrich, P L; Urian, A G; Northridge, E M

    2009-04-01

    Host-race formation is promoted by genetic trade-offs in the ability of herbivores to use alternate hosts, including trade-offs due to differential timing of host-plant availability. We examined the role of phenology in limiting host-plant use in the goldenrod gall fly (Eurosta solidaginis) by determining: (1) whether phenology limits alternate host use, leading to a trade-off that could cause divergent selection on Eurosta emergence time and (2) whether Eurosta has the genetic capacity to respond to such selection in the face of existing environmental variation. Experiments demonstrated that oviposition and gall induction on the alternate host, Solidago canadensis, were the highest on young plants, whereas the highest levels of gall induction on the normal host, Solidago gigantea, occurred on intermediate-age plants. These findings indicate a phenological trade-off for host-plant use that sets up the possibility of divergent selection on emergence time. Heritability, estimated by parent-offspring regression, indicated that host-race formation is impeded by the amount of genetic variation, relative to environmental, for emergence time.

  11. TMEM59 potentiates Wnt signaling by promoting signalosome formation.

    Science.gov (United States)

    Gerlach, Jan P; Jordens, Ingrid; Tauriello, Daniele V F; van 't Land-Kuper, Ineke; Bugter, Jeroen M; Noordstra, Ivar; van der Kooij, Johanneke; Low, Teck Y; Pimentel-Muiños, Felipe X; Xanthakis, Despina; Fenderico, Nicola; Rabouille, Catherine; Heck, Albert J R; Egan, David A; Maurice, Madelon M

    2018-04-09

    Wnt/β-catenin signaling controls development and adult tissue homeostasis by regulating cell proliferation and cell fate decisions. Wnt binding to its receptors Frizzled (FZD) and low-density lipoprotein-related 6 (LRP6) at the cell surface initiates a signaling cascade that leads to the transcription of Wnt target genes. Upon Wnt binding, the receptors assemble into large complexes called signalosomes that provide a platform for interactions with downstream effector proteins. The molecular basis of signalosome formation and regulation remains elusive, largely due to the lack of tools to analyze its endogenous components. Here, we use internally tagged Wnt3a proteins to isolate and characterize activated, endogenous Wnt receptor complexes by mass spectrometry-based proteomics. We identify the single-span membrane protein TMEM59 as an interactor of FZD and LRP6 and a positive regulator of Wnt signaling. Mechanistically, TMEM59 promotes the formation of multimeric Wnt-FZD assemblies via intramembrane interactions. Subsequently, these Wnt-FZD-TMEM59 clusters merge with LRP6 to form mature Wnt signalosomes. We conclude that the assembly of multiprotein Wnt signalosomes proceeds along well-ordered steps that involve regulated intramembrane interactions. Copyright © 2018 the Author(s). Published by PNAS.

  12. A Conditioned Medium of Umbilical Cord Mesenchymal Stem Cells Overexpressing Wnt7a Promotes Wound Repair and Regeneration of Hair Follicles in Mice

    Directory of Open Access Journals (Sweden)

    Liang Dong

    2017-01-01

    Full Text Available Mesenchymal stem cells (MSCs can affect the microenvironment of a wound and thereby accelerate wound healing. Wnt proteins act as key mediators of skin development and participate in the formation of skin appendages such as hair. The mechanisms of action of MSCs and Wnt proteins on skin wounds are largely unknown. Here, we prepared a Wnt7a-containing conditioned medium (Wnt-CM from the supernatant of cultured human umbilical cord-MSCs (UC-MSCs overexpressing Wnt7a in order to examine the effects of this CM on cutaneous healing. Our results revealed that Wnt-CM can accelerate wound closure and induce regeneration of hair follicles. Meanwhile, Wnt-CM enhanced expression of extracellular matrix (ECM components and cell migration of fibroblasts but inhibited the migratory ability and expression of K6 and K16 in keratinocytes by enhancing expression of c-Myc. However, we found that the CM of fibroblasts treated with Wnt-CM (HFWnt-CM-CM can also promote wound repair and keratinocyte migration; but there was no increase in the number of hair follicles of regeneration. These data indicate that Wnt7a and UC-MSCs have synergistic effects: they can accelerate wound repair and induce hair regeneration via cellular communication in the wound microenvironment. Thus, this study opens up new avenues of research on the mechanisms underlying wound repair.

  13. Trehalose Polyphleates, External Cell Wall Lipids in Mycobacterium abscessus, Are Associated with the Formation of Clumps with Cording Morphology, Which Have Been Associated with Virulence

    Directory of Open Access Journals (Sweden)

    Marta Llorens-Fons

    2017-07-01

    Full Text Available Mycobacterium abscessus is a reemerging pathogen that causes pulmonary diseases similar to tuberculosis, which is caused by Mycobacterium tuberculosis. When grown in agar medium, M. abscessus strains generate rough (R or smooth colonies (S. R morphotypes are more virulent than S morphotypes. In searching for the virulence factors responsible for this difference, R morphotypes have been found to form large aggregates (clumps that, after being phagocytozed, result in macrophage death. Furthermore, the aggregates released to the extracellular space by damaged macrophages grow, forming unphagocytosable structures that resemble cords. In contrast, bacilli of the S morphotype, which do not form aggregates, do not damage macrophages after phagocytosis and do not form cords. Cording has also been related to the virulence of M. tuberculosis. In this species, the presence of mycolic acids and surface-exposed cell wall lipids has been correlated with the formation of cords. The objective of this work was to study the roles of the surface-exposed cell wall lipids and mycolic acids in the formation of cords in M. abscessus. A comparative study of the pattern and structure of mycolic acids was performed on R (cording and S (non-cording morphotypes derived from the same parent strains, and no differences were observed between morphotypes. Furthermore, cords formed by R morphotypes were disrupted with petroleum ether (PE, and the extracted lipids were analyzed by thin layer chromatography, nuclear magnetic resonance spectroscopy and mass spectrometry. Substantial amounts of trehalose polyphleates (TPP were recovered as major lipids from PE extracts, and images obtained by transmission electron microscopy suggested that these lipids are localized to the external surfaces of cords and R bacilli. The structure of M. abscessus TPP was revealed to be similar to those previously described in Mycobacterium smegmatis. Although the exact role of TPP is unknown, our

  14. Lentiviral-mediated expression of polysialic acid in spinal cord and conditioning lesion promote regeneration of sensory axons into spinal cord

    NARCIS (Netherlands)

    Zhang, Yi; Zhang, Xinyu; Wu, Dongsheng; Verhaagen, J.; Richardson, Peter M; Yeh, John; Bo, Xuenong

    2007-01-01

    In adult mammals, sensory axons that regenerate in the dorsal root are unable to grow across the dorsal root entry zone (DREZ) into the spinal cord. In this study we examined whether, by inducing expression of polysialic acid (PSA) (a large carbohydrate attached to molecules on the cell surface), in

  15. Vibration acceleration promotes bone formation in rodent models.

    Directory of Open Access Journals (Sweden)

    Ryohei Uchida

    BV in the centrifuge acceleration group had no significant difference compared those in control-CA group. Union rate and BV in the low-magnitude group of RFH model were also significantly higher than those in the other groups (Union rate: 60% v.s. 0% in the high-magnitude group and 10% in the control-VA group, BV: 0.69±0.30mm3 v.s. 0.15±0.09mm3 in high-magnitude group and 0.22±0.17mm3 in control-VA group. BV/TV in the low-magnitude group of RFH model was significantly higher than that in control-VA group (59.4±14.9% v.s. 35.8±13.5%. On the other hand, radiographic union rate (10% in centrifuge acceleration group v.s. 20% in control-CA group and micro-CT parameters in RFH model were not significantly different between two groups in the constant acceleration studies. Radiographic images of non-union rib fractures showed cartilage at the fracture site and poor new bone formation, whereas union samples showed only new bone. In conclusion, low-magnitude vibration acceleration promoted bone formation at the trunk in both BMP-induced ectopic bone formation and rib fracture healing models. However, the micro-CT parameters were not similar between two models, which suggested that there might be difference in the mechanism of effect by vibration between two models.

  16. Three-dimensional spheroid culture of human umbilical cord mesenchymal stem cells promotes cell yield and stemness maintenance.

    Science.gov (United States)

    Li, Yi; Guo, Gang; Li, Li; Chen, Fei; Bao, Ji; Shi, Yu-Jun; Bu, Hong

    2015-05-01

    Mesenchymal stem cell (MSC) transplantation is a promising treatment of many diseases. However, conventional techniques with cells being cultured as a monolayer result in slow cell proliferation and insufficient yield to meet clinical demands. Three-dimensional (3D) culture systems are gaining attention with regard to recreating a complex microenvironment and to understanding the conditions experienced by cells. Our aim is to establish a novel 3D system for the culture of human umbilical cord MSCs (hUC-MSCs) within a real 3D microenvironment but with no digestion or passaging. Primary hUC-MSCs were isolated and grown in serum-free medium (SFM) on a suspension Rocker system. Cell characteristics including proliferation, phenotype and multipotency were recorded. The therapeutic effects of 3D-cultured hUC-MSCs on carbon tetrachloride (CCl4)-induced acute liver failure in mouse models were examined. In the 3D Rocker system, hUC-MSCs formed spheroids in SFM and maintained high viability and active proliferation. Compared with monolayer culture, the 3D-culture system yielded more hUC-MSCs cells within the same volume. The spheroids expressed higher levels of stem cell markers and displayed stronger multipotency. After transplantation into mouse, 3D hUC-MSCs significantly promoted the secretion of interferon-γ and interleukin-6 but inhibited that of tumor necrosis factor-α, thereby alleviating liver necrosis and promoting regeneration following CCl4 injury. The 3D culture of hUC-MSCs thus promotes cell yield and stemness maintenance and represents a promising strategy for hUC-MSCs expansion on an industrial scale with great potential for cell therapy and biotechnology.

  17. Tailless-like (TLX) protein promotes neuronal differentiation of dermal multipotent stem cells and benefits spinal cord injury in rats.

    Science.gov (United States)

    Wang, Tao; Ren, Xiaobao; Xiong, Jianqiong; Zhang, Lei; Qu, Jifu; Xu, Wenyue

    2011-04-01

    Spinal cord injury (SCI) remains a formidable challenge in the clinic. In the current study, we examined the effects of the TLX gene on the proliferation and neuronal differentiation of dermal multipotent stem cells (DMSCs) in vitro and the potential of these cells to improve SCI in rats in vivo. DMSCs were stably transfected with TLX-expressing plasmid (TLX/DMSCs). Cell proliferation was examined using the MTT assay, and neuronal differentiation was characterized by morphological observation combined with immunocytochemical/immunofluorescent staining. The in vivo functions of these cells were evaluated by transplantation into rats with SCI, followed by analysis of hindlimb locomotion and post-mortem histology. Compared to parental DMSCs, TLX/DMSCs showed enhanced proliferation and preferential differentiation into NF200-positive neurons in contrast to GFAP-positive astrocytes. When the undifferentiated cells were transplanted into rats with SCI injury, TLX/DMSCs led to significant improvement in locomotor recovery and healing of SCI, as evidenced by reduction in scar tissues and cavities, increase in continuous nerve fibers/axons and enrichment of NF200-positive neurons on the histological level. In conclusion, TLX promotes the proliferation and neuronal differentiation of DMSCs and thus, may serve as a promising therapy for SCI in the clinic.

  18. A 3D nanofibrous hydrogel and collagen sponge scaffold promotes locomotor functional recovery, spinal repair, and neuronal regeneration after complete transection of the spinal cord in adult rats

    International Nuclear Information System (INIS)

    Kaneko, Ai; Matsushita, Akira; Sankai, Yoshiyuki

    2015-01-01

    Central nervous system neurons in adult mammals display limited regeneration after injury, and functional recovery is poor following complete transection (>4 mm gap) of a rat spinal cord. A novel combination scaffold composed of 3D nanofibrous hydrogel PuraMatrix and a honeycomb collagen sponge was used to promote spinal repair and locomotor functional recovery following complete transection of the spinal cord in rats. We transplanted this scaffold into 5 mm spinal cord gaps and assessed spinal repair and functional recovery using the Basso, Beattie, and Bresnahan (BBB) locomotor scale. The BBB score of the scaffold-transplanted group was significantly higher than that of the PBS-injected control group from 24 d to 4 months after the operation (P < 0.001–0.01), reaching 6.0  ±  0.75 (mean ± SEM) in the transplant and 0.70  ±  0.46 in the control groups. Neuronal regeneration and spinal repair were examined histologically using Pan Neuronal Marker, glial fibrillary acidic protein, growth-associated protein 43, and DAPI. The scaffolds were well integrated into the spinal cords, filling the 5 mm gaps with higher numbers of regenerated and migrated neurons, astrocytes, and other cells than in the control group. Mature and immature neurons and astrocytes in the scaffolds became colocalized and aligned longitudinally over >2 mm, suggesting their differentiation, maturation, and function. The spinal cord NF200 content of the transplant group, analyzed by western blot, was more than twice that of the control group, supporting the histological results. Transplantation of this novel scaffold promoted functional recovery, spinal repair, and neuronal regeneration. (paper)

  19. Alpha-Toxin Promotes Mucosal Biofilm Formation by Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Michele J Anderson

    2012-05-01

    Full Text Available Staphylococcus aureus causes numerous diseases in humans ranging from the mild skin infections to serious, life-threatening, superantigen-mediated Toxic Shock Syndrome (TSS. S. aureus may also be asymptomatically carried in the anterior nares, vagina or on the skin, which serve as reservoirs for infection. Pulsed-field gel electrophoresis clonal type USA200 is the most widely disseminated colonizer and a major cause of TSS. Our prior studies indicated that α-toxin was a major epithelial proinflammatory exotoxin produced by TSS S. aureus USA200 isolates. It also facilitated the penetration of TSS Toxin-1 (TSST-1 across vaginal mucosa. However, the majority of menstrual TSS isolates produce low α-toxin due to a nonsense point mutation at codon 113, designated hly, suggesting mucosal adaptation. The aim of this study was to characterize the differences between TSS USA200 strains [high (hla+ and low (hly+ α-toxin producers] in their abilities to infect and disrupt vaginal mucosal tissue. A mucosal model was developed using ex vivo porcine vaginal mucosa, LIVE/DEAD® staining and confocal microscropy to characterize biofilm formation and tissue viability of TSS USA 200 isolates CDC587 and MN8, which contain the α-toxin pseudogene (hly, MNPE (hla+ and MNPE isogenic hla knockout (hlaKO. All TSS strains grew to similar bacterial densities (1-5 x 108 CFU on the mucosa and were proinflammatory over 3 days. However, MNPE formed biofilms with significant reductions in the mucosal viability whereas neither CDC587, MN8 (hly+, or MNPE hlaKO, formed biofilms and were less cytotoxic. The addition of exogenous, purified α-toxin to MNPE hlaKO restored the biofilm phenotype. Our studies suggest α-toxin affects S. aureus phenotypic growth on vaginal mucosa, by promoting tissue disruption and biofilm formation; and α–toxin mutants (hly are not benign colonizers, but rather form a different type of infection, which we have termed high density pathogenic

  20. Photoaffinity Labeling Studies on a Promoter of Dendritic Spine Formation

    Science.gov (United States)

    Sibucao, Kevin Carlo Abril

    The small molecule BTA-EG4 has been shown to be a promoter of dendritic spine formation. The mechanism behind this phenomenon, however, is not well understood. The work in this dissertation is motivated by this gap in knowledge. The first part of this dissertation focuses on photoaffinity labeling studies to identify the cellular targets of BTA-EG4. Chapter 1 provides a summary of Alzheimer's disease, the rational design of BTA-EG 4, and methods to determine targets of small molecules. In Chapter 2, the synthesis of a BTA-EG4-based photoaffinity labeling probe and photodegradation studies are presented. Kinetic studies demonstrate that the probe photolyzes rapidly under UV light. In Chapter 3, photoaffinity labeling studies and subsequent protein identification experiments are reported. Competition experiments with the photoaffinity labeling probe and BTA-EG4 demonstrate that the probe labels a 55-kDa protein specifically. Tandem mass spectrometry revealed that the 55-kDa protein is the actin binding protein fascin 1. The second part of this dissertation focuses on the major protein identified from photoaffinity labeling studies, fascin 1. Chapter 4 provides a brief survey of the structure and function of fascin 1. In Chapter 5, characterizations of the interaction between BTA-EG4 and fascin 1 are reported. Isothermal titration calorimetry confirms the physical binding between fascin 1 and BTA-EG6, a BTA-EG4 analog. Slow speed sedimentation assays reveal that BTA-EG4 does not affect the actin-bundling activity of fascin 1. However, GST pull-down experiments show that BTA-EG4 inhibits the binding of fascin 1 with the GTPase Rab35. In addition, this work demonstrates that BTA-EG4 may be mechanistically distinct from the known fascin inhibitor G2.

  1. Long-term effects of ionizing radiation on the rat spinal cord: intramedullary connective tissue formation

    International Nuclear Information System (INIS)

    Gilmore, S.A.

    1973-01-01

    Light microscopy was used to evaluate the effects of ionizing radiation on spinal cords of rats irradiated when three days of age and killed at intervals up to 28 months after irradiation. The amounts of x-rays administered (2,000 R; 1,000 R; 500 R) were those which had been demonstrated by short-term studies to cause either no histopathologic changes or only transient, reparable alterations. The most significant and previously unreported finding was the development, usually restricted to the gray matter, of elongated, spindle-shaped cells that produce prodigious amounts of fibers clearly demonstrated by the Wilder's reticular stain. In cases where extensive cellular development had occurred, these cells were oriented around the perikarya of the large ventral motor neurons and formed a well-developed capsule of reticular fibers. This phenomenon occurred more frequently in rats receiving the greater amounts of radiation and killed 12 months or more after exposure. The other observation of interest was the development of lesser amounts of connective tissue-producing cells in the dorsal gray matter, where these cells were seen initially in the substantia gelatinosa. The significance of these changes is discussed in relation to previously reported long-term effects of ionizing radiation on the central nervous system

  2. Low-energy extracorporeal shock wave therapy promotes vascular endothelial growth factor expression and improves locomotor recovery after spinal cord injury.

    Science.gov (United States)

    Yamaya, Seiji; Ozawa, Hiroshi; Kanno, Haruo; Kishimoto, Koshi N; Sekiguchi, Akira; Tateda, Satoshi; Yahata, Kenichiro; Ito, Kenta; Shimokawa, Hiroaki; Itoi, Eiji

    2014-12-01

    Extracorporeal shock wave therapy (ESWT) is widely used for the clinical treatment of various human diseases. Recent studies have demonstrated that low-energy ESWT upregulates the expression of vascular endothelial growth factor (VEGF) and promotes angiogenesis and functional recovery in myocardial infarction and peripheral artery disease. Many previous reports suggested that VEGF produces a neuroprotective effect to reduce secondary neural tissue damage after spinal cord injury (SCI). The purpose of the present study was to investigate whether low-energy ESWT promotes VEGF expression and neuroprotection and improves locomotor recovery after SCI. Sixty adult female Sprague-Dawley rats were randomly divided into 4 groups: sham group (laminectomy only), sham-SW group (low-energy ESWT applied after laminectomy), SCI group (SCI only), and SCI-SW group (low-energy ESWT applied after SCI). Thoracic spinal cord contusion injury was inflicted using an impactor. Low-energy ESWT was applied to the injured spinal cord 3 times a week for 3 weeks. Locomotor function was evaluated using the Basso, Beattie, and Bresnahan (BBB) Scale (open field locomotor score) at different time points over 42 days after SCI. Hematoxylin and eosin staining was performed to assess neural tissue damage in the spinal cord. Neuronal loss was investigated by immunostaining for NeuN. The mRNA expressions of VEGF and its receptor, Flt-1, in the spinal cord were assessed using real-time polymerase chain reaction. Immunostaining for VEGF was performed to evaluate VEGF protein expression in the spinal cord. In both the sham and sham-SW groups, no animals showed locomotor impairment on BBB scoring. Histological analysis of H & E and NeuN stainings in the sham-SW group confirmed that no neural tissue damage was induced by the low-energy ESWT. Importantly, animals in the SCI-SW group demonstrated significantly better locomotor improvement than those in the SCI group at 7, 35, and 42 days after injury (p

  3. Freeze-drying of mononuclear cells derived from umbilical cord blood followed by colony formation.

    Directory of Open Access Journals (Sweden)

    Dity Natan

    Full Text Available BACKGROUND: We recently showed that freeze-dried cells stored for 3 years at room temperature can direct embryonic development following cloning. However, viability, as evaluated by membrane integrity of the cells after freeze-drying, was very low; and it was mainly the DNA integrity that was preserved. In the present study, we improved the cells' viability and functionality after freeze-drying. METHODOLOGY/PRINCIPAL FINDINGS: We optimized the conditions of directional freezing, i.e. interface velocity and cell concentration, and we added the antioxidant EGCG to the freezing solution. The study was performed on mononuclear cells (MNCs derived from human umbilical cord blood. After freeze-drying, we tested the viability, number of CD34(+-presenting cells and ability of the rehydrated hematopoietic stem cells to differentiate into different blood cells in culture. The viability of the MNCs after freeze-drying and rehydration with pure water was 88%-91%. The total number of CD34(+-presenting cells and the number of colonies did not change significantly when evaluated before freezing, after freeze-thawing, and after freeze-drying (5.4 x 10(4+/-4.7, 3.49 x 10(4+/-6 and 6.31 x 10(4+/-12.27 cells, respectively, and 31+/-25.15, 47+/-45.8 and 23.44+/-13.3 colonies, respectively. CONCLUSIONS: This is the first report of nucleated cells which have been dried and then rehydrated with double-distilled water remaining viable, and of hematopoietic stem cells retaining their ability to differentiate into different blood cells.

  4. Sustained release of neurotrophin-3 via calcium phosphate-coated sutures promotes axonal regeneration after spinal cord injury.

    Science.gov (United States)

    Hanna, Amgad; Thompson, Daniel L; Hellenbrand, Daniel J; Lee, Jae-Sung; Madura, Casey J; Wesley, Meredith G; Dillon, Natalie J; Sharma, Tapan; Enright, Connor J; Murphy, William L

    2016-07-01

    Because of the dynamics of spinal cord injury (SCI), the optimal treatment will almost certainly be a combination approach to control the environment and promote axonal growth. This study uses peripheral nerve grafts (PNGs) as scaffolds for axonal growth while delivering neurotrophin-3 (NT-3) via calcium phosphate (CaP) coatings on surgical sutures. CaP coating was grown on sutures, and NT-3 binding and release were characterized in vitro. Then, the NT-3-loaded sutures were tested in a complete SCI model. Rats were analyzed for functional improvement and axonal growth into the grafts. The CaP-coated sutures exhibited a burst release of NT-3, followed by a sustained release for at least 20 days. Functionally, the rats with PNGs + NT-3-loaded sutures and the rats treated with PNGs scored significantly higher than controls on day 56 postoperatively. However, functional scores in rats treated with PNGs + NT-3-loaded suture were not significantly different from those of rats treated with PNGs alone. Cholera toxin subunit B (CTB) labeling rostral to the graft was not observed in any controls, but CTB labeling rostral to the graft was observed in almost all rats that had had a PNG. Neurofilament labeling on transverse sections of the graft revealed that the rats treated with the NT-3-loaded sutures had significantly more axons per graft than rats treated with an NT-3 injection and rats without NT-3. These data demonstrate that PNGs serve as scaffolds for axonal growth after SCI and that CaP-coated sutures can efficiently release NT-3 to increase axonal regeneration. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  5. Sphingosine-1-phosphate promotes the differentiation of human umbilical cord mesenchymal stem cells into cardiomyocytes under the designated culturing conditions

    Directory of Open Access Journals (Sweden)

    Zhang Henggui

    2011-06-01

    Full Text Available Abstract Background It is of growing interest to develop novel approaches to initiate differentiation of mesenchymal stem cells (MSCs into cardiomyocytes. The purpose of this investigation was to determine if Sphingosine-1-phosphate (S1P, a native circulating bioactive lipid metabolite, plays a role in differentiation of human umbilical cord mesenchymal stem cells (HUMSCs into cardiomyocytes. We also developed an engineered cell sheet from these HUMSCs derived cardiomyocytes by using a temperature-responsive polymer, poly(N-isopropylacrylamide (PIPAAm cell sheet technology. Methods Cardiomyogenic differentiation of HUMSCs was performed by culturing these cells with either designated cardiomyocytes conditioned medium (CMCM alone, or with 1 μM S1P; or DMEM with 10% FBS + 1 μM S1P. Cardiomyogenic differentiation was determined by immunocytochemical analysis of expression of cardiomyocyte markers and patch clamping recording of the action potential. Results A cardiomyocyte-like morphology and the expression of α-actinin and myosin heavy chain (MHC proteins can be observed in both CMCM culturing or CMCM+S1P culturing groups after 5 days' culturing, however, only the cells in CMCM+S1P culture condition present cardiomyocyte-like action potential and voltage gated currents. A new approach was used to form PIPAAm based temperature-responsive culture surfaces and this successfully produced cell sheets from HUMSCs derived cardiomyocytes. Conclusions This study for the first time demonstrates that S1P potentiates differentiation of HUMSCs towards functional cardiomyocytes under the designated culture conditions. Our engineered cell sheets may provide a potential for clinically applicable myocardial tissues should promote cardiac tissue engineering research.

  6. Transplanted Peripheral Blood Stem Cells Mobilized by Granulocyte Colony-Stimulating Factor Promoted Hindlimb Functional Recovery After Spinal Cord Injury in Mice.

    Science.gov (United States)

    Takahashi, Hiroshi; Koda, Masao; Hashimoto, Masayuki; Furuya, Takeo; Sakuma, Tsuyoshi; Kato, Kei; Okawa, Akihiko; Inada, Taigo; Kamiya, Koshiro; Ota, Mitsutoshi; Maki, Satoshi; Takahashi, Kazuhisa; Yamazaki, Masashi; Mannoji, Chikato

    2016-01-01

    Granulocyte colony-stimulating factor (G-CSF) mobilizes peripheral blood stem cells (PBSCs) derived from bone marrow. We hypothesized that intraspinal transplantation of PBSCs mobilized by G-CSF could promote functional recovery after spinal cord injury. Spinal cords of adult nonobese diabetes/severe immunodeficiency mice were injured using an Infinite Horizon impactor (60 kdyn). One week after the injury, 3.0 µl of G-CSF-mobilized human mononuclear cells (MNCs; 0.5 × 10(5)/µl), G-CSF-mobilized human CD34-positive PBSCs (CD34; 0.5 × 10(5)/µl), or normal saline was injected to the lesion epicenter. We performed immunohistochemistry. Locomotor recovery was assessed by Basso Mouse Scale. The number of transplanted human cells decreased according to the time course. The CD31-positive area was significantly larger in the MNC and CD34 groups compared with the vehicle group. The number of serotonin-positive fibers was significantly larger in the MNC and CD34 groups than in the vehicle group. Immunohistochemistry revealed that the number of apoptotic oligodendrocytes was significantly smaller in cell-transplanted groups, and the areas of demyelination in the MNC- and CD34-transplanted mice were smaller than that in the vehicle group, indicating that cell transplantation suppressed oligodendrocyte apoptosis and demyelination. Both the MNC and CD34 groups showed significantly better hindlimb functional recovery compared with the vehicle group. There was no significant difference between the two types of transplanted cells. Intraspinal transplantation of G-CSF-mobilized MNCs or CD34-positive cells promoted angiogenesis, serotonergic fiber regeneration/sparing, and preservation of myelin, resulting in improved hindlimb function after spinal cord injury in comparison with vehicle-treated control mice. Transplantation of G-CSF-mobilized PBSCs has advantages for treatment of spinal cord injury in the ethical and immunological viewpoints, although further exploration

  7. ROLE OF MONOCYTE PHAGOCYTIC SYSTEM IN FORMATION OF ANTIVIRAL RESISTANCE IN MICE AFTER PRELIMINARY INJECTION OF CRYOPRESERVED CORD BLOOD

    Directory of Open Access Journals (Sweden)

    Kozhina OYu

    2013-03-01

    Full Text Available Now the task of preventive maintenance and search of biologically active substances, capable to make active the nonspecific immune response, remains an actual during flu epidemic. It has been previously established, that cryopreserved leucoconcentrate of human cord blood (cLHCB can act as modulator of activity of immunity. In the given work there was estimated influence of preventive injection of cLHCB and its components on functional activity of monocyte phagocytic system cells (MPSC in mice in the conditions of the induced influenzal infection. Preliminary introduction of cLHCB and its components 6 months prior to infection by flu virus makes 2 times increase of functional activity of macrophages, preventing inhibition of a nonspecific link of immunity. Thus, cLHCB inhibit of secondary immune deficiency development. The found increase in phagocytic activity of peritoneal cavity cells and 3 times increasesing of CD11b-marker expression after preventive injection of cLHCB testifies to rise of adherence and protective potential of MPSC that is one of possible mechanisms of formation of resistance to a flu virus. It is shown, that intranasal cLHCB injection before development of viral infection it can be o recommended as the method of preventive maintenance of flu.

  8. Delayed expression of cell cycle proteins contributes to astroglial scar formation and chronic inflammation after rat spinal cord contusion

    Directory of Open Access Journals (Sweden)

    Wu Junfang

    2012-07-01

    Full Text Available Abstract Background Traumatic spinal cord injury (SCI induces secondary tissue damage that is associated with astrogliosis and inflammation. We previously reported that acute upregulation of a cluster of cell-cycle-related genes contributes to post-mitotic cell death and secondary damage after SCI. However, it remains unclear whether cell cycle activation continues more chronically and contributes to more delayed glial change. Here we examined expression of cell cycle-related proteins up to 4 months following SCI, as well as the effects of the selective cyclin-dependent kinase (CDKs inhibitor CR8, on astrogliosis and microglial activation in a rat SCI contusion model. Methods Adult male rats were subjected to moderate spinal cord contusion injury at T8 using a well-characterized weight-drop model. Tissue from the lesion epicenter was obtained 4 weeks or 4 months post-injury, and processed for protein expression and lesion volume. Functional recovery was assessed over the 4 months after injury. Results Immunoblot analysis demonstrated a marked continued upregulation of cell cycle-related proteins − including cyclin D1 and E, CDK4, E2F5 and PCNA − for 4 months post-injury that were highly expressed by GFAP+ astrocytes and microglia, and co-localized with inflammatory-related proteins. CR8 administrated systemically 3 h post-injury and continued for 7 days limited the sustained elevation of cell cycle proteins and immunoreactivity of GFAP, Iba-1 and p22PHOX − a key component of NADPH oxidase − up to 4 months after SCI. CR8 treatment significantly reduced lesion volume, which typically progressed in untreated animals between 1 and 4 months after trauma. Functional recovery was also significantly improved by CR8 treatment after SCI from week 2 through week 16. Conclusions These data demonstrate that cell cycle-related proteins are chronically upregulated after SCI and may contribute to astroglial scar

  9. Low-energy extracorporeal shock wave therapy for promotion of vascular endothelial growth factor expression and angiogenesis and improvement of locomotor and sensory functions after spinal cord injury.

    Science.gov (United States)

    Yahata, Kenichiro; Kanno, Haruo; Ozawa, Hiroshi; Yamaya, Seiji; Tateda, Satoshi; Ito, Kenta; Shimokawa, Hiroaki; Itoi, Eiji

    2016-12-01

    OBJECTIVE Extracorporeal shock wave therapy (ESWT) is widely used to treat various human diseases. Low-energy ESWT increases expression of vascular endothelial growth factor (VEGF) in cultured endothelial cells. The VEGF stimulates not only endothelial cells to promote angiogenesis but also neural cells to induce neuroprotective effects. A previous study by these authors demonstrated that low-energy ESWT promoted expression of VEGF in damaged neural tissue and improved locomotor function after spinal cord injury (SCI). However, the neuroprotective mechanisms in the injured spinal cord produced by low-energy ESWT are still unknown. In the present study, the authors investigated the cell specificity of VEGF expression in injured spinal cords and angiogenesis induced by low-energy ESWT. They also examined the neuroprotective effects of low-energy ESWT on cell death, axonal damage, and white matter sparing as well as the therapeutic effect for improvement of sensory function following SCI. METHODS Adult female Sprague-Dawley rats were divided into the SCI group (SCI only) and SCI-SW group (low-energy ESWT applied after SCI). Thoracic SCI was produced using a New York University Impactor. Low-energy ESWT was applied to the injured spinal cord 3 times a week for 3 weeks after SCI. Locomotor function was evaluated using the Basso, Beattie, and Bresnahan open-field locomotor score for 42 days after SCI. Mechanical and thermal allodynia in the hindpaw were evaluated for 42 days. Double staining for VEGF and various cell-type markers (NeuN, GFAP, and Olig2) was performed at Day 7; TUNEL staining was also performed at Day 7. Immunohistochemical staining for CD31, α-SMA, and 5-HT was performed on spinal cord sections taken 42 days after SCI. Luxol fast blue staining was performed at Day 42. RESULTS Low-energy ESWT significantly improved not only locomotion but also mechanical and thermal allodynia following SCI. In the double staining, expression of VEGF was observed in Neu

  10. The Role of Formative Feedback in Promoting Higher Order ...

    African Journals Online (AJOL)

    DrNneka

    An International Multi-disciplinary Journal, Ethiopia. AFRREV ... make contribution to this research gap by proposing a theoretical feedback model that can promote higher order thinking skills in the classroom. The proposed ..... process; students provided with tasks that are novel, complex, creative, and non- algorithmic ...

  11. Human neural stem cells differentiate and promote locomotor recovery in an early chronic spinal cord injury NOD-scid mouse model.

    Directory of Open Access Journals (Sweden)

    Desirée L Salazar

    2010-08-01

    Full Text Available Traumatic spinal cord injury (SCI results in partial or complete paralysis and is characterized by a loss of neurons and oligodendrocytes, axonal injury, and demyelination/dysmyelination of spared axons. Approximately 1,250,000 individuals have chronic SCI in the U.S.; therefore treatment in the chronic stages is highly clinically relevant. Human neural stem cells (hCNS-SCns were prospectively isolated based on fluorescence-activated cell sorting for a CD133(+ and CD24(-/lo population from fetal brain, grown as neurospheres, and lineage restricted to generate neurons, oligodendrocytes and astrocytes. hCNS-SCns have recently been transplanted sub-acutely following spinal cord injury and found to promote improved locomotor recovery. We tested the ability of hCNS-SCns transplanted 30 days post SCI to survive, differentiate, migrate, and promote improved locomotor recovery.hCNS-SCns were transplanted into immunodeficient NOD-scid mice 30 days post spinal cord contusion injury. hCNS-SCns transplanted mice demonstrated significantly improved locomotor recovery compared to vehicle controls using open field locomotor testing and CatWalk gait analysis. Transplanted hCNS-SCns exhibited long-term engraftment, migration, limited proliferation, and differentiation predominantly to oligodendrocytes and neurons. Astrocytic differentiation was rare and mice did not exhibit mechanical allodynia. Furthermore, differentiated hCNS-SCns integrated with the host as demonstrated by co-localization of human cytoplasm with discrete staining for the paranodal marker contactin-associated protein.The results suggest that hCNS-SCns are capable of surviving, differentiating, and promoting improved locomotor recovery when transplanted into an early chronic injury microenvironment. These data suggest that hCNS-SCns transplantation has efficacy in an early chronic SCI setting and thus expands the "window of opportunity" for intervention.

  12. Umbilical Cord Blood-Derived Mononuclear Cells Exhibit Pericyte-Like Phenotype and Support Network Formation of Endothelial Progenitor Cells In Vitro.

    Science.gov (United States)

    Peters, Erica B; Liu, Betty; Christoforou, Nicolas; West, Jennifer L; Truskey, George A

    2015-10-01

    Umbilical cord blood represents a promising cell source for pro-angiogenic therapies. The present study examined the potential of mononuclear cells (MNCs) from umbilical cord blood to support endothelial progenitor cell (EPC) microvessel formation. MNCs were isolated from the cord blood of 20 separate donors and selected for further characterization based upon their proliferation potential and morphological resemblance to human vascular pericytes (HVPs). MNCs were screened for their ability to support EPC network formation using an in vitro assay (Matrigel™) as well as a reductionist, coculture system consisting of no additional angiogenic cytokines beyond those present in serum. In less than 15% of the isolations, we identified a population of highly proliferative MNCs that phenotypically resembled HVPs as assessed by expression of PDGFR-β, NG2, α-SMA, and ephrin-B2. Within a Matrigel™ system, MNCs demonstrated pericyte-like function through colocalization to EPC networks and similar effects as HVPs upon total EPC tubule length (p = 0.95) and number of branch points (p = 0.93). In a reductionist coculture system, MNCs served as pro-angiogenic mural cells by supporting EPC network formation to a significantly greater extent than HVP cocultures, by day 14 of coculture, as evidenced through EPC total tubule length (p < 0.0001) and number of branch points (p < 0.0001). Our findings are significant as we demonstrate mural cell progenitors can be isolated from umbilical cord blood and develop culture conditions to support their use in microvascular tissue engineering applications.

  13. Spermine oxidase promotes bile canalicular lumen formation through acrolein production.

    Science.gov (United States)

    Uemura, Takeshi; Takasaka, Tomokazu; Igarashi, Kazuei; Ikegaya, Hiroshi

    2017-11-01

    Spermine oxidase (SMOX) catalyzes oxidation of spermine to generate spermidine, hydrogen peroxide (H 2 O 2 ) and 3-aminopropanal, which is spontaneously converted to acrolein. SMOX is induced by a variety of stimuli including bacterial infection, polyamine analogues and acetaldehyde exposure. However, the physiological functions of SMOX are not yet fully understood. We investigated the physiological role of SMOX in liver cells using human hepatocellular carcinoma cell line HepG2. SMOX localized to the bile canalicular lumen, as determined by F-actin staining. Knockdown of SMOX reduced the formation of bile canalicular lumen. We also found that phospho-Akt (phosphorylated protein kinase B) was localized to canalicular lumen. Treatment with Akt inhibitor significantly reduced the formation of bile canalicular lumen. Acrolein scavenger also inhibited the formation of bile canalicular lumen. PTEN, phosphatase and tensin homolog and an inhibitor of Akt, was alkylated in a SMOX-dependent manner. Our results suggest that SMOX plays a central role in the formation of bile canalicular lumen in liver cells by activating Akt pathway through acrolein production.

  14. Industasis, a promotion of tumor formation by nontumorigenic stray cells

    Czech Academy of Sciences Publication Activity Database

    Pajer, Petr; Karafiát, Vít; Pečenka, Vladimír; Průková, Dana; Dudlová, J.; Plachý, Jiří; Kašparová, P.; Dvořák, Michal

    2009-01-01

    Roč. 69, č. 11 (2009), s. 4605-4612 ISSN 0008-5472 R&D Projects: GA ČR GA204/06/1728; GA MŠk(CZ) LC06061; GA AV ČR IAA500520608 Institutional research plan: CEZ:AV0Z50520514 Keywords : tumor promotion * lung tumors * Fyn-related kinase Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 7.543, year: 2009

  15. Comparative Analysis of Gelsemine and Gelsemium sempervirens Activity on Neurosteroid Allopregnanolone Formation in the Spinal Cord and Limbic System

    Directory of Open Access Journals (Sweden)

    Christine Venard

    2011-01-01

    Full Text Available Centesimal dilutions (5, 9 and 15 cH of Gelsemium sempervirens are claimed to be capable of exerting anxiolytic and analgesic effects. However, basic results supporting this assertion are rare, and the mechanism of action of G. sempervirens is completely unknown. To clarify the point, we performed a comparative analysis of the effects of dilutions 5, 9 and 15 cH of G. sempervirens or gelsemine (the major active principle of G. sempervirens on allopregnanolone (3α,5α-THP production in the rat limbic system (hippocampus and amygdala or H-A and spinal cord (SC. Indeed, H-A and SC are two pivotal structures controlling, respectively, anxiety and pain that are also modulated by the neurosteroid 3α,5α-THP. At the dilution 5 cH, both G. sempervirens and gelsemine stimulated [3H]progesterone conversion into [3H]3α,5α-THP by H-A and SC slices, and the stimulatory effect was fully (100% reproducible in all assays. The dilution 9 cH of G. sempervirens or gelsemine also stimulated 3α,5α-THP formation in H-A and SC but the reproducibility rate decreased to 75%. At 15 cH of G. sempervirens or gelsemine, no effect was observed on 3α,5α-THP neosynthesis in H-A and SC slices. The stimulatory action of G. sempervirens and gelsemine (5 cH on 3α,5α-THP production was blocked by strychnine, the selective antagonist of glycine receptors. Altogether, these results, which constitute the first basic demonstration of cellular effects of G. sempervirens, also offer interesting possibilities for the improvement of G. sempervirens-based therapeutic strategies.

  16. Extending the bidding format to promote demand response

    International Nuclear Information System (INIS)

    Liu, Yanchao; Holzer, Jesse T.; Ferris, Michael C.

    2015-01-01

    We propose an extended bidding structure to allow more realistic demand characteristics and behaviors to be expressed via flexible bids. In today's ISO-run energy markets, demand bid formats are all separable over time. However, a significant and growing segment of demand can be shifted across time and therefore has no way to bid its true valuation of consumption. We propose additional bid types that allow deferrable, adjustable and storage-type loads to better express their value, and thus elicit demand response in the most natural way – via direct participation in the market. We show that the additional bid types are easily incorporated into the existing market with no technological barrier and that they preserve the market's efficiency and incentive-compatibility properties. Using real market data, we give a numerical demonstration that the extended bid format could substantially increase social welfare, and also present additional insight on storage expansion scenarios. - Highlights: • Three new bid types are proposed to enrich demand-side participation. • Time value of electricity demand can be clearly conveyed to central dispatcher. • The extended format preserves market efficiency and incentive compatibility. • Energy storage is most effective to neutralize price volatility, with a limitation.

  17. Single-stranded nucleic acids promote SAMHD1 complex formation.

    Science.gov (United States)

    Tüngler, Victoria; Staroske, Wolfgang; Kind, Barbara; Dobrick, Manuela; Kretschmer, Stefanie; Schmidt, Franziska; Krug, Claudia; Lorenz, Mike; Chara, Osvaldo; Schwille, Petra; Lee-Kirsch, Min Ae

    2013-06-01

    SAM domain and HD domain-containing protein 1 (SAMHD1) is a dGTP-dependent triphosphohydrolase that degrades deoxyribonucleoside triphosphates (dNTPs) thereby limiting the intracellular dNTP pool. Mutations in SAMHD1 cause Aicardi-Goutières syndrome (AGS), an inflammatory encephalopathy that mimics congenital viral infection and that phenotypically overlaps with the autoimmune disease systemic lupus erythematosus. Both disorders are characterized by activation of the antiviral cytokine interferon-α initiated by immune recognition of self nucleic acids. Here we provide first direct evidence that SAMHD1 associates with endogenous nucleic acids in situ. Using fluorescence cross-correlation spectroscopy, we demonstrate that SAMHD1 specifically interacts with ssRNA and ssDNA and establish that nucleic acid-binding and formation of SAMHD1 complexes are mutually dependent. Interaction with nucleic acids and complex formation do not require the SAM domain, but are dependent on the HD domain and the C-terminal region of SAMHD1. We finally demonstrate that mutations associated with AGS exhibit both impaired nucleic acid-binding and complex formation implicating that interaction with nucleic acids is an integral aspect of SAMHD1 function.

  18. RNA-binding IMPs promote cell adhesion and invadopodia formation

    DEFF Research Database (Denmark)

    Vikesaa, Jonas; Hansen, Thomas V O; Jønson, Lars

    2006-01-01

    Oncofetal RNA-binding IMPs have been implicated in mRNA localization, nuclear export, turnover and translational control. To depict the cellular actions of IMPs, we performed a loss-of-function analysis, which showed that IMPs are necessary for proper cell adhesion, cytoplasmic spreading and inva......Oncofetal RNA-binding IMPs have been implicated in mRNA localization, nuclear export, turnover and translational control. To depict the cellular actions of IMPs, we performed a loss-of-function analysis, which showed that IMPs are necessary for proper cell adhesion, cytoplasmic spreading...... and invadopodia formation. Loss of IMPs was associated with a coordinate downregulation of mRNAs encoding extracellular matrix and adhesion proteins. The transcripts were present in IMP RNP granules, implying that IMPs were directly involved in the post-transcriptional control of the transcripts. In particular......-mediated invadopodia formation. Taken together, our results indicate that RNA-binding proteins exert profound effects on cellular adhesion and invasion during development and cancer formation....

  19. Mutant IDH1 Promotes Glioma Formation In Vivo

    Directory of Open Access Journals (Sweden)

    Beatrice Philip

    2018-05-01

    Full Text Available Summary: Isocitrate dehydrogenase 1 (IDH1 is the most commonly mutated gene in grade II–III glioma and secondary glioblastoma (GBM. A causal role for IDH1R132H in gliomagenesis has been proposed, but functional validation in vivo has not been demonstrated. In this study, we assessed the role of IDH1R132H in glioma development in the context of clinically relevant cooperating genetic alterations in vitro and in vivo. Immortal astrocytes expressing IDH1R132H exhibited elevated (R-2-hydroxyglutarate levels, reduced NADPH, increased proliferation, and anchorage-independent growth. Although not sufficient on its own, IDH1R132H cooperated with PDGFA and loss of Cdkn2a, Atrx, and Pten to promote glioma development in vivo. These tumors resembled proneural human mutant IDH1 GBM genetically, histologically, and functionally. Our findings support the hypothesis that IDH1R132H promotes glioma development. This model enhances our understanding of the biology of IDH1R132H-driven gliomas and facilitates testing of therapeutic strategies designed to combat this deadly disease. : Philip et al. show that mutant IDH1 cooperates with PDGFA and loss of Cdkn2a, Atrx, and Pten to promote gliomagenesis in vivo in a mouse model of glioma. These tumors resemble proneural human mutant IDH1 glioblastoma and exhibit enhanced sensitivity to PARP inhibition in combination with chemotherapy. Keywords: IDH1, Cdkn2a, Atrx, Pten, glioma, mouse model, RCAS/TVA

  20. Fixed cord

    International Nuclear Information System (INIS)

    Levy, L.M.; DiChiro, G.; DeSouza, B.; McCullough, D.C.; McVeigh, E.; Hefffez, D.

    1989-01-01

    Pulsatile longitudinal motion of the spinal cord was examined with MR phase imaging in healthy subjects and in cases involving cord tethering and compression. Asymptomatic patients with a low conus medullaris demonstrated normal cord motion. Clinical improvement was associated with improved cord motion after surgical untethering, provided permanent neurologic damage had not occurred. Decreased and unchanged cord motion was associated with unchanged neurologic deficits. In cases of normal cord motion and possible retethering versus syringomyelia, clinical improvement occurred after shunting only. MR imaging of pulsatile cord motion can be clinically useful in the evaluation of diseases restricting motion of the neuraxis

  1. SCCRO Promotes Glioma Formation and Malignant Progression in Mice

    Directory of Open Access Journals (Sweden)

    Stephen R. Broderick

    2010-06-01

    Full Text Available Originally identified as an oncogene activated by amplification in squamous cell carcinomas, several lines of evidence now suggest that squamous cell carcinoma-related oncogene (SCCRO; aka DCUN1D1 may play a role in the pathogenesis of a wide range of human cancers including gliomas. SCCRO's oncogenic function is substantiated by its ectopic expression, resulting in transformation of cells in culture and xenograft formation in nude mice. The aim of this study was to assess the in vivo oncogenicity of SCCRO in a murine model. Ubiquitous expression of SCCRO resulted in early embryonic lethality. Because SCCRO overexpression was detected in human gliomas, its in vivo oncogenic activity was assessed in an established murine glioma model. Conditional expression of SCCRO using a replication-competent ASLV long terminal repeat with splice acceptor/nestin-(tumor virus-A tv-a model system was not sufficient to induce tumor formation in a wild-type genetic background, but tumors formed with increasing frequency and decreasing latency in facilitated background containing Ink4a deletion alone or in combination with PTEN loss. Ectopic expression of SCCRO in glial progenitor cells resulted in lower-grade gliomas in Ink4a-/- mice, whereas its expression in Ink4a-/-/PTEN-/- background produced high-grade glioblastoma-like lesions that were indistinguishable from human tumors. Expression of SCCRO with platelet-derived growth factor-beta (PDGF-β resulted in an increased proportion of mice forming glioblastoma-like tumors compared with those induced by PDGF-β alone. This work substantiates SCCRO's function as an oncogene by showing its ability to facilitate malignant transformation and carcinogenic progression in vivo and supports a role for SCCRO in the pathogenesis of gliomas and other human cancers.

  2. Morphological changes in different populations of bladder afferent neurons detected by herpes simplex virus (HSV) vectors with cell-type-specific promoters in mice with spinal cord injury.

    Science.gov (United States)

    Shimizu, Nobutaka; Doyal, Mark F; Goins, William F; Kadekawa, Katsumi; Wada, Naoki; Kanai, Anthony J; de Groat, William C; Hirayama, Akihide; Uemura, Hirotsugu; Glorioso, Joseph C; Yoshimura, Naoki

    2017-11-19

    Functional and morphological changes in C-fiber bladder afferent pathways are reportedly involved in neurogenic detrusor overactivity (NDO) after spinal cord injury (SCI). This study examined the morphological changes in different populations of bladder afferent neurons after SCI using replication-defective herpes simplex virus (HSV) vectors encoding the mCherry reporter driven by neuronal cell-type-specific promoters. Spinal intact (SI) and SCI mice were injected into the bladder wall with HSV mCherry vectors driven by the cytomegalovirus (CMV) promoter, CGRP promoter, TRPV1 promoter or neurofilament 200 (NF200) promoter. Two weeks after vector inoculation into the bladder wall, L1 and L6 dorsal root ganglia (DRG) were removed bilaterally for immunofluorescent staining using anti-mCherry antibody. The number of CMV promoter vector-labeled neurons was not altered after SCI. The number of CGRP and TRPV1 promoter vector-labeled neurons was significantly increased whereas the number of NF200 vector-labeled neurons was decreased in L6 DRG after SCI. The median size of CGRP promoter-labeled C-fiber neurons was increased from 247.0 in SI mice to 271.3μm 2 in SCI mice whereas the median cell size of TRPV1 promoter vector-labeled neurons was decreased from 245.2 in SI mice to 216.5μm 2 in SCI mice. CGRP and TRPV1 mRNA levels of laser-captured bladder afferent neurons labeled with Fast Blue were significantly increased in SCI mice compared to SI mice. Thus, using a novel HSV vector-mediated neuronal labeling technique, we found that SCI induces expansion of the CGRP- and TRPV1-expressing C-fiber cell population, which could contribute to C-fiber afferent hyperexcitability and NDO after SCI. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  3. Different phase delays of peripheral input to primate motor cortex and spinal cord promote cancellation at physiological tremor frequencies.

    Science.gov (United States)

    Koželj, Saša; Baker, Stuart N

    2014-05-01

    Neurons in the spinal cord and motor cortex (M1) are partially phase-locked to cycles of physiological tremor, but with opposite phases. Convergence of spinal and cortical activity onto motoneurons may thus produce phase cancellation and a reduction in tremor amplitude. The mechanisms underlying this phase difference are unknown. We investigated coherence between spinal and M1 activity with sensory input. In two anesthetized monkeys, we electrically stimulated the medial, ulnar, deep radial, and superficial radial nerves; stimuli were timed as independent Poisson processes (rate 10 Hz). Single units were recorded from M1 (147 cells) or cervical spinal cord (61 cells). Ninety M1 cells were antidromically identified as pyramidal tract neurons (PTNs); M1 neurons were additionally classified according to M1 subdivision (rostral/caudal, M1r/c). Spike-stimulus coherence analysis revealed significant coupling over a broad range of frequencies, with the strongest coherence at <50 Hz. Delays implied by the slope of the coherence phase-frequency relationship were greater than the response onset latency, reflecting the importance of late response components for the transmission of oscillatory inputs. The spike-stimulus coherence phase over the 6-13 Hz physiological tremor band differed significantly between M1 and spinal cells (phase differences relative to the cord of 2.72 ± 0.29 and 1.72 ± 0.37 radians for PTNs from M1c and M1r, respectively). We conclude that different phases of the response to peripheral input could partially underlie antiphase M1 and spinal cord activity during motor behavior. The coordinated action of spinal and cortical feedback will act to reduce tremulous oscillations, possibly improving the overall stability and precision of motor control. Copyright © 2014 the American Physiological Society.

  4. Mesenchymal stem cells promote augmented response of endogenous neural stem cells in spinal cord injury of rats

    Directory of Open Access Journals (Sweden)

    Marta Rocha Araujo

    2016-06-01

    Full Text Available Traumatic spinal cord injury results in severe neurological deficits, mostly irreversible. The cell therapy represents a strategy for treatment particularly with the use of stem cells with satisfactory results in several experimental models. The aim of the study was to compare the treatment of spinal cord injury (SCI with and without mesenchymal stem cells (MSC, to investigate whether MSCs migrate and/or remain at the site of injury, and to analyze the effects of MSCs on inflammation, astrocytic reactivity and activation of endogenous stem cells. Three hours after SCI, animals received bone marrow-derived MSCs (1×107 in 1mL PBS, IV. Animals were euthanized 24 hours, 7 and 21 days post-injury. The MSC were not present in the site of the lesion and the immunofluorescent evaluation showed significant attenuation of inflammatory response with reduction in macrophages labeled with anti-CD68 antibody (ED1, decreased immunoreactivity of astrocytes (GFAP+ and greater activation of endogenous stem cells (nestin+ in the treated groups. Therefore, cell transplantation have a positive effect on recovery from traumatic spinal cord injury possibly due to the potential of MSCs to attenuate the immune response.

  5. Ozone Promotes Chloropicrin Formation by Oxidizing Amines to Nitro Compounds.

    Science.gov (United States)

    McCurry, Daniel L; Quay, Amanda N; Mitch, William A

    2016-02-02

    Chloropicrin formation has been associated with ozonation followed by chlorination, but the reaction pathway and precursors have been poorly characterized. Experiments with methylamine demonstrated that ozonation converts methylamine to nitromethane at ∼100% yield. Subsequent chlorination converts nitromethane to chloropicrin at ∼50% yield under the conditions evaluated. Similarly high yields from other primary amines were limited to those with functional groups on the β-carbon (e.g., the carboxylic acid in glycine) that facilitate carbon-carbon bond cleavage to release nitromethyl anion. Secondary amines featuring these reactive primary amines as functional groups (e.g., secondary N-methylamines) formed chloropicrin at high yields, likely by facile dealkylation to release the primary nitro compound. Chloropicrin yields from tertiary amines were low. Natural water experiments, including derivatization to transform primary and secondary amines to less reactive carbamate functional groups, indicated that primary and secondary amines were the dominant chloropicrin precursors during ozonation/chlorination. Ozonation followed by chlorination of the primary amine side chain of lysine demonstrated low yields (∼0.2%) of chloropicrin, but high yields (∼17%) of dichloronitrolysine, a halonitroalkane structural analogue to chloropicrin. However, chloropicrin yields increased and dichloronitrolysine yields decreased in the absence of hydroxyl radical scavengers, suggesting that future research should characterize the potential occurrence of such halonitroalkane analogues relative to natural radical scavenger (e.g., carbonate) concentrations.

  6. BRCA1-IRIS Overexpression Promotes Formation of Aggressive Breast Cancers

    Science.gov (United States)

    Shimizu, Yoshiko; Luk, Hugh; Horio, David; Miron, Penelope; Griswold, Michael; Iglehart, Dirk; Hernandez, Brenda; Killeen, Jeffrey; ElShamy, Wael M.

    2012-01-01

    Introduction Women with HER2+ or triple negative/basal-like (TN/BL) breast cancers succumb to their cancer rapidly due, in part to acquired Herceptin resistance and lack of TN/BL-targeted therapies. BRCA1-IRIS is a recently discovered, 1399 residue, BRCA1 locus alternative product, which while sharing 1365 residues with the full-length product of this tumor suppressor gene, BRCA1/p220, it has oncoprotein-like properties. Here, we examine whether BRCA1-IRIS is a valuable treatment target for HER2+ and/or TN/BL tumors. Methodology/Principal Findings Immunohistochemical staining of large cohort of human breast tumor samples using new monoclonal anti-BRCA1-IRIS antibody, followed by correlation of BRCA1-IRIS expression with that of AKT1, AKT2, p-AKT, survivin and BRCA1/p220, tumor status and age at diagnosis. Generation of subcutaneous tumors in SCID mice using human mammary epithelial (HME) cells overexpressing TERT/LT/BRCA1-IRIS, followed by comparing AKT, survivin, and BRCA1/p220 expression, tumor status and aggressiveness in these tumors to that in tumors developed using TERT/LT/RasV12-overexpressing HME cells. Induction of primary and invasive rat mammary tumors using the carcinogen N-methyl-N-nitrosourea (NMU), followed by analysis of rat BRCA1-IRIS and ERα mRNA levels in these tumors. High BRCA1-IRIS expression was detected in the majority of human breast tumors analyzed, which was positively correlated with that of AKT1-, AKT2-, p-AKT-, survivin, but negatively with BRCA1/p220 expression. BRCA1-IRIS-positivity induced high-grade, early onset and metastatic HER2+ or TN/BL tumors. TERT/LT/BRCA1-IRIS overexpressing HME cells formed invasive subcutaneous tumors that express high AKT1, AKT2, p-AKT and vimentin, but no CK19, p63 or BRCA1/p220. NMU-induced primary and invasive rat breast cancers expressed high levels of rat BRCA1-IRIS mRNA but low levels of rat ERα mRNA. Conclusion/Significance BRCA1-IRIS overexpression triggers aggressive breast tumor formation

  7. Re-theorising mobility and the formation of culture and language among the Corded Ware Culture in Europe

    DEFF Research Database (Denmark)

    Kristiansen, Kristian; Allentoft, Morten E.; Frei, Karin M.

    2017-01-01

    Recent genetic, isotopic and linguistic research has dramatically changed our understanding of how the Corded Ware Culture in Europe was formed. Here the authors explain it in terms of local adaptations and interactions between migrant Yamnaya people from the Pontic-Caspian steppe and indigenous ...

  8. Human dental pulp-derived stem cells promote locomotor recovery after complete transection of the rat spinal cord by multiple neuro-regenerative mechanisms.

    Science.gov (United States)

    Sakai, Kiyoshi; Yamamoto, Akihito; Matsubara, Kohki; Nakamura, Shoko; Naruse, Mami; Yamagata, Mari; Sakamoto, Kazuma; Tauchi, Ryoji; Wakao, Norimitsu; Imagama, Shiro; Hibi, Hideharu; Kadomatsu, Kenji; Ishiguro, Naoki; Ueda, Minoru

    2012-01-01

    Spinal cord injury (SCI) often leads to persistent functional deficits due to loss of neurons and glia and to limited axonal regeneration after injury. Here we report that transplantation of human dental pulp stem cells into the completely transected adult rat spinal cord resulted in marked recovery of hind limb locomotor functions. Transplantation of human bone marrow stromal cells or skin-derived fibroblasts led to substantially less recovery of locomotor function. The human dental pulp stem cells exhibited three major neuroregenerative activities. First, they inhibited the SCI-induced apoptosis of neurons, astrocytes, and oligodendrocytes, which improved the preservation of neuronal filaments and myelin sheaths. Second, they promoted the regeneration of transected axons by directly inhibiting multiple axon growth inhibitors, including chondroitin sulfate proteoglycan and myelin-associated glycoprotein, via paracrine mechanisms. Last, they replaced lost cells by differentiating into mature oligodendrocytes under the extreme conditions of SCI. Our data demonstrate that tooth-derived stem cells may provide therapeutic benefits for treating SCI through both cell-autonomous and paracrine neuroregenerative activities.

  9. High-Frequency Promoter Firing Links THO Complex Function to Heavy Chromatin Formation

    DEFF Research Database (Denmark)

    Mouaikel, John; Causse, Sébastien Z; Rougemaille, Mathieu

    2013-01-01

    The THO complex is involved in transcription, genome stability, and messenger ribonucleoprotein (mRNP) formation, but its precise molecular function remains enigmatic. Under heat shock conditions, THO mutants accumulate large protein-DNA complexes that alter the chromatin density of target genes...... (heavy chromatin), defining a specific biochemical facet of THO function and a powerful tool of analysis. Here, we show that heavy chromatin distribution is dictated by gene boundaries and that the gene promoter is necessary and sufficient to convey THO sensitivity in these conditions. Single......-molecule fluorescence insitu hybridization measurements show that heavy chromatin formation correlates with an unusually high firing pace of the promoter with more than 20 transcription events per minute. Heavy chromatin formation closely follows the modulation of promoter firing and strongly correlates with polymerase...

  10. Delivery of the Sox9 gene promotes chondrogenic differentiation of human umbilical cord blood-derived mesenchymal stem cells in an in vitro model

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Z.H. [Department of Otolaryngology - Head and Neck Surgery, The Second Hospital, Xi' an Jiaotong University, Xi' an (China); Li, X.L. [Department of Dermatology, The Second Hospital, Xi' an Jiaotong University, Xi' an (China); He, X.J. [Department of Orthopedics, The Second Hospital, Xi' an Jiaotong University, Xi' an (China); Wu, B.J.; Xu, M. [Department of Otolaryngology - Head and Neck Surgery, The Second Hospital, Xi' an Jiaotong University, Xi' an (China); Chang, H.M. [Department of Otolaryngology - Head and Neck Surgery, Affiliated Hospital of Xi' an Medical University, Xi' an (China); Zhang, X.H. [Department of Otolaryngology - Head and Neck Surgery, The Second Hospital, Xi' an Jiaotong University, Xi' an (China); Xing, Z. [Department of Clinical Dentistry, Faculty of Dentistry, Center for Clinical Dental Research, University of Bergen, Bergen (Norway); Jing, X.H.; Kong, D.M.; Kou, X.H.; Yang, Y.Y. [Department of Otolaryngology - Head and Neck Surgery, The Second Hospital, Xi' an Jiaotong University, Xi' an (China)

    2014-03-18

    SRY-related high-mobility-group box 9 (Sox9) gene is a cartilage-specific transcription factor that plays essential roles in chondrocyte differentiation and cartilage formation. The aim of this study was to investigate the feasibility of genetic delivery of Sox9 to enhance chondrogenic differentiation of human umbilical cord blood-derived mesenchymal stem cells (hUC-MSCs). After they were isolated from human umbilical cord blood within 24 h after delivery of neonates, hUC-MSCs were untreated or transfected with a human Sox9-expressing plasmid or an empty vector. The cells were assessed for morphology and chondrogenic differentiation. The isolated cells with a fibroblast-like morphology in monolayer culture were positive for the MSC markers CD44, CD105, CD73, and CD90, but negative for the differentiation markers CD34, CD45, CD19, CD14, or major histocompatibility complex class II. Sox9 overexpression induced accumulation of sulfated proteoglycans, without altering the cellular morphology. Immunocytochemistry demonstrated that genetic delivery of Sox9 markedly enhanced the expression of aggrecan and type II collagen in hUC-MSCs compared with empty vector-transfected counterparts. Reverse transcription-polymerase chain reaction analysis further confirmed the elevation of aggrecan and type II collagen at the mRNA level in Sox9-transfected cells. Taken together, short-term Sox9 overexpression facilitates chondrogenesis of hUC-MSCs and may thus have potential implications in cartilage tissue engineering.

  11. Delivery of the Sox9 gene promotes chondrogenic differentiation of human umbilical cord blood-derived mesenchymal stem cells in an in vitro model

    Directory of Open Access Journals (Sweden)

    Z.H. Wang

    2014-04-01

    Full Text Available SRY-related high-mobility-group box 9 (Sox9 gene is a cartilage-specific transcription factor that plays essential roles in chondrocyte differentiation and cartilage formation. The aim of this study was to investigate the feasibility of genetic delivery of Sox9 to enhance chondrogenic differentiation of human umbilical cord blood-derived mesenchymal stem cells (hUC-MSCs. After they were isolated from human umbilical cord blood within 24 h after delivery of neonates, hUC-MSCs were untreated or transfected with a human Sox9-expressing plasmid or an empty vector. The cells were assessed for morphology and chondrogenic differentiation. The isolated cells with a fibroblast-like morphology in monolayer culture were positive for the MSC markers CD44, CD105, CD73, and CD90, but negative for the differentiation markers CD34, CD45, CD19, CD14, or major histocompatibility complex class II. Sox9 overexpression induced accumulation of sulfated proteoglycans, without altering the cellular morphology. Immunocytochemistry demonstrated that genetic delivery of Sox9 markedly enhanced the expression of aggrecan and type II collagen in hUC-MSCs compared with empty vector-transfected counterparts. Reverse transcription-polymerase chain reaction analysis further confirmed the elevation of aggrecan and type II collagen at the mRNA level in Sox9-transfected cells. Taken together, short-term Sox9 overexpression facilitates chondrogenesis of hUC-MSCs and may thus have potential implications in cartilage tissue engineering.

  12. Delivery of the Sox9 gene promotes chondrogenic differentiation of human umbilical cord blood-derived mesenchymal stem cells in an in vitro model

    International Nuclear Information System (INIS)

    Wang, Z.H.; Li, X.L.; He, X.J.; Wu, B.J.; Xu, M.; Chang, H.M.; Zhang, X.H.; Xing, Z.; Jing, X.H.; Kong, D.M.; Kou, X.H.; Yang, Y.Y.

    2014-01-01

    SRY-related high-mobility-group box 9 (Sox9) gene is a cartilage-specific transcription factor that plays essential roles in chondrocyte differentiation and cartilage formation. The aim of this study was to investigate the feasibility of genetic delivery of Sox9 to enhance chondrogenic differentiation of human umbilical cord blood-derived mesenchymal stem cells (hUC-MSCs). After they were isolated from human umbilical cord blood within 24 h after delivery of neonates, hUC-MSCs were untreated or transfected with a human Sox9-expressing plasmid or an empty vector. The cells were assessed for morphology and chondrogenic differentiation. The isolated cells with a fibroblast-like morphology in monolayer culture were positive for the MSC markers CD44, CD105, CD73, and CD90, but negative for the differentiation markers CD34, CD45, CD19, CD14, or major histocompatibility complex class II. Sox9 overexpression induced accumulation of sulfated proteoglycans, without altering the cellular morphology. Immunocytochemistry demonstrated that genetic delivery of Sox9 markedly enhanced the expression of aggrecan and type II collagen in hUC-MSCs compared with empty vector-transfected counterparts. Reverse transcription-polymerase chain reaction analysis further confirmed the elevation of aggrecan and type II collagen at the mRNA level in Sox9-transfected cells. Taken together, short-term Sox9 overexpression facilitates chondrogenesis of hUC-MSCs and may thus have potential implications in cartilage tissue engineering

  13. Transient activation of Wnt/β-catenin signaling reporter in fibrotic scar formation after compression spinal cord injury in adult mice.

    Science.gov (United States)

    Yamagami, Takashi; Pleasure, David E; Lam, Kit S; Zhou, Chengji J

    2018-02-19

    After traumatic spinal cord injury (SCI), a scar may form with a fibrotic core (fibrotic scar) and surrounding reactive astrocytes (glial scar) at the lesion site. The scar tissue is considered a major obstacle preventing regeneration both as a physical barrier and as a source for secretion of inhibitors of axonal regeneration. Understanding the mechanism of scar formation and how to control it may lead to effective SCI therapies. Using a compression-SCI model on adult transgenic mice, we demonstrate that the canonical Wnt/β-catenin signaling reporter TOPgal (TCF/Lef1-lacZ) positive cells appeared at the lesion site by 5 days, peaked on 7 days, and diminished by 14 days post injury. Using various representative cell lineage markers, we demonstrate that, these transiently TOPgal positive cells are a group of Fibronectin(+);GFAP(-) fibroblast-like cells in the core scar region. Some of them are proliferative. These results indicate that Wnt/β-catenin signaling may play a key role in fibrotic scar formation after traumatic spinal cord injury. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Human umbilical cord derived mesenchymal stem cells promote interleukin-17 production from human peripheral blood mononuclear cells of healthy donors and systemic lupus erythematosus patients.

    Science.gov (United States)

    Ren, S; Hu, J; Chen, Y; Yuan, T; Hu, H; Li, S

    2016-03-01

    Inflammation instigated by interleukin (IL)-17-producing cells is central to the development and pathogenesis of several human autoimmune diseases and animal models of autoimmunity. The expansion of IL-17-producing cells from healthy donors is reportedly promoted by mesenchymal stem cells derived from fetal bone marrow. In the present study, human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) were examined for their effects on lymphocytes from healthy donors and from patients with systemic lupus erythematosus (SLE). Significantly higher levels of IL-17 were produced when CD4(+) T cells from healthy donors were co-cultured with hUC-MSCs than those that were cultured alone. Blocking experiments identified that this effect might be mediated partially through prostaglandin E2 (PGE2 ) and IL-1β, without IL-23 involvement. We then co-cultured hUC-MSCs with human CD4(+) T cells from systemic lupus erythematosus patients. Ex-vivo inductions of IL-17 by hUC-MSCs in stimulated lymphocytes were significantly higher in SLE patients than in healthy donors. This effect was not observed for IL-23. Taken together, our results represent that hUC-MSCs can promote the IL-17 production from CD4(+) T cells in both healthy donor and SLE patients. PGE2 and IL-1β might also be partially involved in the promotive effect of hUC-MSCs. © 2015 British Society for Immunology.

  15. Hybrid equation/agent-based model of ischemia-induced hyperemia and pressure ulcer formation predicts greater propensity to ulcerate in subjects with spinal cord injury.

    Directory of Open Access Journals (Sweden)

    Alexey Solovyev

    Full Text Available Pressure ulcers are costly and life-threatening complications for people with spinal cord injury (SCI. People with SCI also exhibit differential blood flow properties in non-ulcerated skin. We hypothesized that a computer simulation of the pressure ulcer formation process, informed by data regarding skin blood flow and reactive hyperemia in response to pressure, could provide insights into the pathogenesis and effective treatment of post-SCI pressure ulcers. Agent-Based Models (ABM are useful in settings such as pressure ulcers, in which spatial realism is important. Ordinary Differential Equation-based (ODE models are useful when modeling physiological phenomena such as reactive hyperemia. Accordingly, we constructed a hybrid model that combines ODEs related to blood flow along with an ABM of skin injury, inflammation, and ulcer formation. The relationship between pressure and the course of ulcer formation, as well as several other important characteristic patterns of pressure ulcer formation, was demonstrated in this model. The ODE portion of this model was calibrated to data related to blood flow following experimental pressure responses in non-injured human subjects or to data from people with SCI. This model predicted a higher propensity to form ulcers in response to pressure in people with SCI vs. non-injured control subjects, and thus may serve as novel diagnostic platform for post-SCI ulcer formation.

  16. The investigation of influence of adhesion promoters on adhesion bond between vulcanisate and zinc coated steel cord in products based on mixtures of natural and 1,4-cis-polybutadiene rubber

    Directory of Open Access Journals (Sweden)

    Gojić Mirko T.

    2007-01-01

    Full Text Available The mixtures of elastomer compounds based on natural and 1,4-cispolybutadiene rubber of 80:20 ratio, were used for the investigation of adhesion promoters influence on adhesion of vulcanisate to steel cord. Ni-stearate and resorsynol-formaldehyde resin combined with hexamethylenetetramine in various mass ratios were included as adhesion promoters. Elastomer mixtures were prepared using a laboratory double mill, and the rheological and vulcanization characteristics were examined on a vulcameter provided with an oscillating disc, a higher temperature of 145 °C. The crosslinking of the mixture was carried out by press, at a temperature of 145 °C and specific pressure of 40 bar, in period of 45 minutes. A wide number of standardized methods for physical mechanical characterization of vulcanization prior and after accelerated aging were used. The adhesion of vulcanizate bond with zinc coated steel cord was determined according to the so called H-test, by measuring the pulling-out force of the cord from the vulcanized block, and the degree of coverage of cord with vulcanizate after separation. The results of examinations show significant dependence of physico-mechanical characteristics and adhesion forces on the type and amount of used adhesion promoters in experimental elastomer mixtures.

  17. CO_2 capture from flue gas using clathrate formation in the presence of thermodynamic promoters

    International Nuclear Information System (INIS)

    Kim, Soyoung; Choi, Sung-Deuk; Seo, Yongwon

    2017-01-01

    Tetrahydrofuran (THF) as a water-soluble sII clathrate former, cyclopentane (CP) as a water-insoluble sII clathrate former, and tetra n-butyl ammonium chloride (TBAC) as a water-soluble semiclathrate former were used to investigate their thermodynamic promotion effects on clathrate-based CO_2 capture from simulated flue gas. The phase equilibria of CO_2 (20%) + N_2 (80%) + promoter clathrates at different promoter concentrations revealed that the presence of THF, CP, and TBAC could significantly reduce the clathrate formation pressure. THF solutions provided the highest gas uptake and steepest CO_2 concentration changes in the vapor phase, whereas TBAC solutions showed the highest CO_2 selectivity (∼61%) in the clathrate phase. CP solutions exhibited a slower formation rate, but their final gas uptake and CO_2 selectivity in the clathrate phase were comparable to the THF solutions. Raman spectroscopy confirmed the enclathration of both CO_2 and N_2 in the clathrate cages and a structural transition due to the inclusion of promoters in the clathrate phase. The overall experimental results indicate that TBAC is a viable thermodynamic promoter for clathrate-based CO_2 capture from simulated flue gas, considering the lower pressure requirement for clathrate formation, higher CO_2 enrichment in the clathrate phase, non-toxicity, and non-volatility. - Highlights: • Clathrate-based CO_2 capture was investigated in the presence of thermodynamic promoters. • THF, CP, and TBAC demonstrated a significant thermodynamic promotion for CO_2 (20%) + N_2 (80%) clathrates. • The highest gas uptake was observed for the THF (5.6 mol%) solution. • TBAC solutions showed the highest CO_2 selectivity in the clathrate phase (∼61%). • Raman spectroscopy confirmed the guest gas enclathration and clathrate structure.

  18. Cord Blood

    Directory of Open Access Journals (Sweden)

    Saeed Abroun

    2014-05-01

    Full Text Available   Stem cells are naïve or master cells. This means they can transform into special 200 cell types as needed by body, and each of these cells has just one function. Stem cells are found in many parts of the human body, although some sources have richer concentrations than others. Some excellent sources of stem cells, such as bone marrow, peripheral blood, cord blood, other tissue stem cells and human embryos, which last one are controversial and their use can be illegal in some countries. Cord blood is a sample of blood taken from a newborn baby's umbilical cord. It is a rich source of stem cells, umbilical cord blood and tissue are collected from material that normally has no use following a child’s birth. Umbilical cord blood and tissue cells are rich sources of stem cells, which have been used in the treatment of over 80 diseases including leukemia, lymphoma and anemia as bone marrow stem cell potency.  The most common disease category has been leukemia. The next largest group is inherited diseases. Patients with lymphoma, myelodysplasia and severe aplastic anemia have also been successfully transplanted with cord blood. Cord blood is obtained by syringing out the placenta through the umbilical cord at the time of childbirth, after the cord has been detached from the newborn. Collecting stem cells from umbilical blood and tissue is ethical, pain-free, safe and simple. When they are needed to treat your child later in life, there will be no rejection or incompatibility issues, as the procedure will be using their own cells. In contrast, stem cells from donors do have these potential problems. By consider about cord blood potency, cord blood banks (familial or public were established. In IRAN, four cord blood banks has activity, Shariati BMT center cord blood bank, Royan familial cord blood banks, Royan public cord blood banks and Iranian Blood Transfusion Organ cord blood banks. Despite 50,000 sample which storage in these banks, but the

  19. Thyroid dysfunction, either hyper or hypothyroidism, promotes gallstone formation by different mechanisms*

    Science.gov (United States)

    Wang, Yong; Yu, Xing; Zhao, Qun-zi; Zheng, Shu; Qing, Wen-jie; Miao, Chun-di; Sanjay, Jaiswal

    2016-01-01

    We have investigated comprehensively the effects of thyroid function on gallstone formation in a mouse model. Gonadectomized gallstone-susceptible male C57BL/6 mice were randomly distributed into three groups each of which received an intervention to induce hyperthyroidism, hypothyroidism, or euthyroidism. After 5 weeks of feeding a lithogenic diet of 15% (w/w) butter fat, 1% (w/w) cholesterol, and 0.5% (w/w) cholic acid, mice were killed for further experiments. The incidence of cholesterol monohydrate crystal formation was 100% in mice with hyperthyroidism, 83% in hypothyroidism, and 33% in euthyroidism, the differences being statistically significant. Among the hepatic lithogenic genes, Trβ was found to be up-regulated and Rxr down-regulated in the mice with hypothyroidism. In contrast, Lxrα, Rxr, and Cyp7α1 were up-regulated and Fxr down-regulated in the mice with hyperthyroidism. In conclusion, thyroid dysfunction, either hyperthyroidism or hypothyroidism, promotes the formation of cholesterol gallstones in C57BL/6 mice. Gene expression differences suggest that thyroid hormone disturbance leads to gallstone formation in different ways. Hyperthyroidism induces cholesterol gallstone formation by regulating expression of the hepatic nuclear receptor genes such as Lxrα and Rxr, which are significant in cholesterol metabolism pathways. However, hypothyroidism induces cholesterol gallstone formation by promoting cholesterol biosynthesis. PMID:27381728

  20. The combined effect of thermodynamic promoters tetrahydrofuran and cyclopentane on the kinetics of flue gas hydrate formation

    DEFF Research Database (Denmark)

    Daraboina, Nagu; von Solms, Nicolas

    2015-01-01

    ) hydrate formation using a rocking cell apparatus. Hydrate formation and decomposition kinetics were investigated by constant cooling (hydrate nucleation temperature) and isothermal (hydrate nucleation time) methods. Improved (synergistic) hydrate formation kinetics (hydrate nucleation and growth) were...... of these two promoters is favorable both thermodynamically and kinetically for hydrate formation from flue gas....

  1. Conditioned Media from Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells Inhibits Melanogenesis by Promoting Proteasomal Degradation of MITF.

    Directory of Open Access Journals (Sweden)

    Eun Sung Kim

    Full Text Available Human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs secrete various beneficial molecules, which have anti-apoptotic activity and cell proliferation. However, the effect of hUCB-MSCs in melanogenesis is largely unclear. In this study, we show that conditioned media (CM derived from hUCB-MSCs inhibit melanogenesis by regulating microphthalmia-associated transcription factor (MITF expression via the ERK signalling pathway. Treatment of hUCB-MSC-CM strongly inhibited the alpha-melanocyte stimulating hormone-induced hyperpigmentation in melanoma cells as well as melanocytes. Treatment of hUCB-MSC-CM induced ERK1/2 activation in melanocytes. In addition, inhibition of ERK1/2 suppressed the anti-pigmentation activity of the hUCB-MSC-CM in melanocytes and in vitro artificial skin models. We also found that the expression of MITF was appreciably diminished while expression of phosphorylated MITF, which leads to its proteasomal degradation, was increased in cells treated with hUCB-MSC-CM. These results suggested that hUCB-MSC-CM significantly suppresses melanin synthesis via MITF degradation by the ERK pathway activation.

  2. 3D printed scaffolds of calcium silicate-doped β-TCP synergize with co-cultured endothelial and stromal cells to promote vascularization and bone formation.

    Science.gov (United States)

    Deng, Yuan; Jiang, Chuan; Li, Cuidi; Li, Tao; Peng, Mingzheng; Wang, Jinwu; Dai, Kerong

    2017-07-17

    Synthetic bone scaffolds have potential application in repairing large bone defects, however, inefficient vascularization after implantation remains the major issue of graft failure. Herein, porous β-tricalcium phosphate (β-TCP) scaffolds with calcium silicate (CS) were 3D printed, and pre-seeded with co-cultured human umbilical cord vein endothelial cells (HUVECs) and human bone marrow stromal cells (hBMSCs) to construct tissue engineering scaffolds with accelerated vascularization and better bone formation. Results showed that in vitro β-TCP scaffolds doped with 5% CS (5%CS/β-TCP) were biocompatible, and stimulated angiogenesis and osteogenesis. The results also showed that 5%CS/β-TCP scaffolds not only stimulated co-cultured cells angiogenesis on Matrigel, but also stimulated co-cultured cells to form microcapillary-like structures on scaffolds, and promoted migration of BMSCs by stimulating co-cultured cells to secrete PDGF-BB and CXCL12 into the surrounding environment. Moreover, 5%CS/β-TCP scaffolds enhanced vascularization and osteoinduction in comparison with β-TCP, and synergized with co-cultured cells to further increase early vessel formation, which was accompanied by earlier and better ectopic bone formation when implanted subcutaneously in nude mice. Thus, our findings suggest that porous 5%CS/β-TCP scaffolds seeded with co-cultured cells provide new strategy for accelerating tissue engineering scaffolds vascularization and osteogenesis, and show potential as treatment for large bone defects.

  3. Spinal cord compression injury in lysophosphatidic acid 1 receptor-null mice promotes maladaptive pronociceptive descending control.

    Science.gov (United States)

    Suardíaz, M; Galan-Arriero, I; Avila-Martin, G; Estivill-Torrús, G; de Fonseca, F R; Chun, J; Gómez-Soriano, J; Bravo-Esteban, E; Taylor, J

    2016-02-01

    Although activation of the lysophosphatidic acid receptor 1 (LPA1) is known to mediate pronociceptive effects in peripheral pain models, the role of this receptor in the modulation of spinal nociception following spinal cord injury (SCI) is unknown. In this study, LPA1 regulation of spinal excitability mediated by supraspinal descending antinociceptive control systems was assessed following SCI in both wild-type (WT) and maLPA1-null receptor mice. The effect of a T8 spinal compression in WT and maLPA1-null mice was assessed up to 1 month after SCI using histological, immunohistochemical and behavioural techniques analysis including electrophysiological recording of noxious toes-Tibialis Anterior (TA) stimulus-response reflex activity. The effect of a T3 paraspinal transcutaneous electrical conditioning stimulus on TA noxious reflex temporal summation was also assessed. Histological analysis demonstrated greater dorsolateral funiculus damage after SCI in maLPA1-null mice, without a change in the stimulus-response function of the TA noxious reflex when compared to WT mice. While T3 conditioning stimulation in the WT group inhibited noxious TA reflex temporal summation after SCI, this stimulus strongly excited TA reflex temporal summation in maLPA1-null mice. The functional switch from descending inhibition to maladaptive facilitation of central excitability of spinal nociception demonstrated in maLPA1-null mice after SCI was unrelated to a general change in reflex activity. These data suggest that the LPA1 receptor is necessary for inhibition of temporal summation of noxious reflex activity, partly mediated via long-tract descending modulatory systems acting at the spinal level. © 2015 European Pain Federation - EFIC®

  4. Constitutively reduced sensory capacity promotes better recovery after spinal cord-injury (SCI) in blind rats of the dystrophic RCS strain.

    Science.gov (United States)

    Rink, Svenja; Bendella, Habib; Alsolivany, Kurdin; Meyer, Carolin; Woehler, Aliona; Jansen, Ramona; Isik, Zeynep; Stein, Gregor; Wennmachers, Sina; Nakamura, Makoto; Angelov, Doychin N

    2018-01-01

    We compared functional, electrophysiological and morphological parameters after SCI in two groups of rats Sprague Dawley (SD) rats with normal vision and blind rats from a SD-substrain "Royal College of Surgeons" (SD/RCS) who lose their photoreceptor cells after birth due to a genetic defect in the retinal pigment epithelium. For these animals skin-, intramuscular-, and tendon receptors are major available means to resolve spatial information. The purpose of this study was to check whether increased sensitivity in SD/RCS rats would promote an improved recovery after SCI. All rats were subjected to severe compression of the spinal cord at vertebra Th8, spinal cord segment Th10. Recovery of locomotion was analyzed at 1, 3, 6, 9, and 12 weeks after SCI using video recordings of beam walking and inclined ladder climbing. Five functional parameters were studied: foot-stepping angle (FSA), rump-height index (RHI) estimating paw placement and body weight support, respectively, number of correct ladder steps (CLS) assessing skilled hindlimb movements, the BBB-locomotor score and an established urinary bladder score (BS). Sensitivity tests were followed by electrophysiological measurement of M- and H-wave amplitudes from contractions of the plantar musculature after stimulation of the tibial nerve. The closing morphological measurements included lesion volume and expression of astro- and microglia below the lesion. Numerical assessments of BBB, FSA, BS, lesion volume and GFAP-expression revealed no significant differences between both strains. However, compared to SD-rats, the blind SD/RCS animals significantly improved RHI and CLS by 6 - 12 weeks after SCI. To our surprise the withdrawal latencies in the blind SD/RCS rats were longer and the amplitudes of M- and H-waves lower. The expression of IBA1-immunoreactivity in the lumbar enlargement was lower than in the SD-animals. The longer withdrawal latencies suggest a decreased sensitivity in the blind SD/RCS rats, which

  5. HOXB4 Promotes Hemogenic Endothelium Formation without Perturbing Endothelial Cell Development

    Directory of Open Access Journals (Sweden)

    Nadine Teichweyde

    2018-03-01

    Full Text Available Summary: Generation of hematopoietic stem cells (HSCs from pluripotent stem cells, in vitro, holds great promise for regenerative therapies. Primarily, this has been achieved in mouse cells by overexpression of the homeotic selector protein HOXB4. The exact cellular stage at which HOXB4 promotes hematopoietic development, in vitro, is not yet known. However, its identification is a prerequisite to unambiguously identify the molecular circuits controlling hematopoiesis, since the activity of HOX proteins is highly cell and context dependent. To identify that stage, we retrovirally expressed HOXB4 in differentiating mouse embryonic stem cells (ESCs. Through the use of Runx1(−/− ESCs containing a doxycycline-inducible Runx1 coding sequence, we uncovered that HOXB4 promoted the formation of hemogenic endothelium cells without altering endothelial cell development. Whole-transcriptome analysis revealed that its expression mediated the upregulation of transcription of core transcription factors necessary for hematopoiesis, culminating in the formation of blood progenitors upon initiation of Runx1 expression. : In this article, Klump and colleagues demonstrate that the human homeotic selector protein HOXB4 promotes ESC-derived hematopoiesis by inducing hemogenic endothelium formation, in vitro. It propels hematopoietic specification by upregulating the transcription of genes essential for hematopoietic development, such as those encoding members of the so-called heptad transcription factors. Keywords: HOXB4, hematopoietic stem cells, hemangioblast, hemogenic endothelium, hematopoietic specification, EHT, RUNX1, pluripotent stem cells

  6. A specific role of iron in promoting meristematic cell division during adventitious root formation.

    Science.gov (United States)

    Hilo, Alexander; Shahinnia, Fahimeh; Druege, Uwe; Franken, Philipp; Melzer, Michael; Rutten, Twan; von Wirén, Nicolaus; Hajirezaei, Mohammad-Reza

    2017-07-10

    Adventitious root (AR) formation is characterized by a sequence of physiological and morphological processes and determined by external factors, including mineral nutrition, the impacts of which remain largely elusive. Morphological and anatomical evaluation of the effects of mineral elements on AR formation in leafy cuttings of Petunia hybrida revealed a striking stimulation by iron (Fe) and a promotive action of ammonium (NH4+). The optimal application period for these nutrients corresponded to early division of meristematic cells in the rooting zone and coincided with increased transcript levels of mitotic cyclins. Fe-localization studies revealed an enhanced allocation of Fe to the nuclei of meristematic cells in AR initials. NH4+ supply promoted AR formation to a lesser extent, most likely by favoring the availability of Fe. We conclude that Fe acts locally by promoting cell division in the meristematic cells of AR primordia. These results highlight a specific biological function of Fe in AR development and point to an unexploited importance of Fe for the vegetative propagation of plants from cuttings. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  7. A unified approach for description of gas hydrate formation kinetics in the presence of kinetic promoters in gas hydrate converters

    International Nuclear Information System (INIS)

    ZareNezhad, Bahman; Varaminian, Farshad

    2013-01-01

    Highlights: • A unified kinetic model for description of promoted and non-promoted gas hydrate formation processes is presented. • Effects of impeller speed, promoter concentration and different kinetic promoters are investigated. • A unique region of gas hydrate formation is identified regarding gas hydrate formation processes. • The proposed model is useful for understanding the behavior of gas hydrate formation processes and design of GTH converters. - Abstract: The kinetic promoters have found wide applications in enhancing the rate of energy conversion and storage via gas hydrate formation processes. Effects of different kinetic promoters such as anionic surfactants sodium dodecyl sulfate (SDS), dodecylbenzene sulfonic acid (DBSA), and sodium dodecyl benzene sulfonate (SDBS); cationic surfactants, Cetyl trimethyl ammonium bromide (CTAB), dodecyl trimethyl ammonium bromide (DTAB) and non-ionic surfactants, alkylpolyglucoside (APG), dodecyl polysaccharide glycoside (DPG), TritonX-100 (TX100) on methane (CH 4 ), ethane (C 2 H 6 ) and propane (C 3 H 8 ) gas hydrate formation processes are investigated in this work. A macroscopic kinetic model based on the time variations of reaction chemical potential is also presented for global description of gas hydrate formation processes. Experimental gas hydrate formation data are employed to validate the proposed kinetic model. Effects of promoter’s concentrations and agitation intensities on the gas consumption profiles are also investigated. A universal correlation and a unified kinetic map have been proposed for macroscopic description of gas hydrate formation kinetics in the presence or absence of kinetic promoters. According to the presented unified kinetic map, a unique region of gas hydrate formation is identified for the first time. For negligible amounts of kinetic promoters, the presented region disappears and approaches to a unique path at high agitation intensities. The presented unified approach is

  8. Apolipoprotein E Mimetic Promotes Functional and Histological Recovery in Lysolecithin-Induced Spinal Cord Demyelination in Mice

    OpenAIRE

    Gu, Zhen; Li, Fengqiao; Zhang, Yi Ping; Shields, Lisa B.E.; Hu, Xiaoling; Zheng, Yiyan; Yu, Panpan; Zhang, Yongjie; Cai, Jun; Vitek, Michael P.; Shields, Christopher B.

    2014-01-01

    Objective Considering demyelination is the pathological hallmark of multiple sclerosis (MS), reducing demyelination and/or promoting remyelination is a practical therapeutic strategy to improve functional recovery for MS. An apolipoprotein E (apoE)-mimetic peptide COG112 has previously demonstrated therapeutic efficacy on functional and histological recovery in a mouse experimental autoimmune encephalomyelitis (EAE) model of human MS. In the current study, we further investigated whether COG1...

  9. Bone Marrow Mesenchymal Stem-Cell Transplantation Promotes Functional Improvement Associated with CNTF-STAT3 Activation after Hemi-Sectioned Spinal Cord Injury in Tree Shrews

    Directory of Open Access Journals (Sweden)

    Liu-Lin Xiong

    2017-06-01

    Full Text Available Hemi-sectioned spinal cord injury (hSCI can lead to spastic paralysis on the injured side, as well as flaccid paralysis on the contralateral side, which can negatively affect a patient’s daily life. Stem-cell therapy may offer an effective treatment option for individuals with hSCI. To examine the role of bone marrow mesenchymal stem cells (BMSCs transplantation on hSCI and explore related mechanisms in the tree shrews, here, we created a model of hSCI by inducing injury at the tenth thoracic vertebra (T10. Hoechst 33342-labeled BMSCs derived from adult tree shrews were isolated, cultured, and implanted into the spinal cord around the injury site at 9 days after injury. The isolated BMSCs were able to survive, proliferate and release a variety of neurotrophic factors (NTFs both in vitro and in vivo. At 28 days after injury, compared with the sham group, the hSCI group displayed scar formation and dramatic elevations in the mean interleukin 1 beta (IL-1β density and cell apoptosis level, whereas the expression of signal transducer and activator of transcription 3 (STAT3 and ciliary neurotrophic factor (CNTF mRNA was reduced. Following BMSC transplantation, motoneurons extent of shrinkage were reduced and the animals’ Basso, Beattie, and Bresnahan (BBB locomotion scale scores were significantly higher at 21 and 28 days after injury when compared with the injured group. Moreover, the hSCI-induced elevations in scar formation, IL-1β, and cell apoptosis were reduced by BMSC transplantation to levels that were close to those of the sham group. Corresponding elevations in the expression of STAT3 and CNTF mRNA were observed in the hSCI + BMSCs group, and the levels were not significantly different from those observed in the sham group. Together, our results support that grafted BMSCs can significantly improve locomotor function in tree shrews subjected to hSCI and that this improvement is associated with the upregulation of CNTF and STAT3

  10. Nitrite promotes protein carbonylation and Strecker aldehyde formation in experimental fermented sausages: are both events connected?

    Science.gov (United States)

    Villaverde, A; Ventanas, J; Estévez, M

    2014-12-01

    The role played by curing agents (nitrite, ascorbate) on protein oxidation and Strecker aldehyde formation is studied. To fulfill this objective, increasing concentrations of nitrite (0, 75 and 150ppm) and ascorbate (0, 250 and 500ppm) were added to sausages subjected to a 54day drying process. The concurrence of intense proteolysis, protein carbonylation and formation of Strecker aldehydes during processing of sausages suggests that α-aminoadipic semialdehyde (AAS) and γ-glutamic semialdehyde (GGS) may be implicated in the formation of Strecker aldehydes. The fact that nitrite (150ppm, ingoing amount) significantly promoted the formation of protein carbonyls at early stages of processing and the subsequent formation of Strecker aldehydes provides strength to this hypothesis. Ascorbate (125 and 250ppm) controlled the overall extent of protein carbonylation in sausages without declining the formation of Strecker aldehydes. These results may contribute to understanding the chemistry fundamentals of the positive influence of nitrite on the flavor and overall acceptability of cured muscle foods. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Insulin Promotes the Proliferation of Human Umbilical Cord Matrix-Derived Mesenchymal Stem Cells by Activating the Akt-Cyclin D1 Axis

    Directory of Open Access Journals (Sweden)

    Peng Li

    2017-01-01

    Full Text Available Background. The functions of insulin in mesenchymal stem cells (MSC remain poorly understood. Methods. MSC from human umbilical cord matrix (UCM cultured in serum-free media (SFM with or without insulin were subjected to various molecular biological analyses to determine their proliferation and growth states, expression levels of Akt-cyclin D1 signaling molecules, and in vitro differentiation capacities. Results. Insulin accelerated the G1-S cell cycle progression of UCM-MSC and significantly stimulated their proliferation and growth in SFM. The pro-proliferative action of insulin was associated with augmented cyclin D1 and phosphorylated Akt expression levels. Akt inactivation remarkably abrogated insulin-induced increases in cyclin D1 expression and cell proliferation, indicating that insulin enhances the proliferation of UCM-MSC via acceleration of the G1-S transition mediated by the Akt-cyclin D1 pathway. Additionally, the UCM-MSC propagated in SFM supplemented with insulin exhibited similar specific surface antigen profiles and differentiation capacities as those generated in conventional media containing fetal bovine serum. Conclusions. These findings suggest that insulin acts solely to promote UCM-MSC proliferation without affecting their immunophenotype and differentiation potentials and thus have important implications for utilizing insulin to expand clinical-grade MSC in vitro.

  12. Low nuclear body formation and tax SUMOylation do not prevent NF-kappaB promoter activation

    Directory of Open Access Journals (Sweden)

    Bonnet Amandine

    2012-09-01

    Full Text Available Abstract Background The Tax protein encoded by Human T-lymphotropic virus type 1 (HTLV-1 is a powerful activator of the NF-κB pathway, a property critical for HTLV-1-induced immortalization of CD4+ T lymphocytes. Tax permanently stimulates this pathway at a cytoplasmic level by activating the IκB kinase (IKK complex and at a nuclear level by enhancing the binding of the NF-κB factor RelA to its cognate promoters and by forming nuclear bodies, believed to represent transcriptionally active structures. In previous studies, we reported that Tax ubiquitination and SUMOylation play a critical role in Tax localization and NF-κB activation. Indeed, analysis of lysine Tax mutants fused or not to ubiquitin or SUMO led us to propose a two-step model in which Tax ubiquitination first intervenes to activate IKK while Tax SUMOylation is subsequently required for promoter activation within Tax nuclear bodies. However, recent studies showing that ubiquitin or SUMO can modulate Tax activities in either the nucleus or the cytoplasm and that SUMOylated Tax can serve as substrate for ubiquitination suggested that Tax ubiquitination and SUMOylation may mediate redundant rather than successive functions. Results In this study, we analyzed the properties of a new Tax mutant that is properly ubiquitinated, but defective for both nuclear body formation and SUMOylation. We report that reducing Tax SUMOylation and nuclear body formation do not alter the ability of Tax to activate IKK, induce RelA nuclear translocation, and trigger gene expression from a NF-κB promoter. Importantly, potent NF-κB promoter activation by Tax despite low SUMOylation and nuclear body formation is also observed in T cells, including CD4+ primary T lymphocytes. Moreover, we show that Tax nuclear bodies are hardly observed in HTLV-1-infected T cells. Finally, we provide direct evidence that the degree of NF-κB activation by Tax correlates with the level of Tax ubiquitination, but not

  13. Low nuclear body formation and tax SUMOylation do not prevent NF-kappaB promoter activation.

    Science.gov (United States)

    Bonnet, Amandine; Randrianarison-Huetz, Voahangy; Nzounza, Patrycja; Nedelec, Martine; Chazal, Maxime; Waast, Laetitia; Pene, Sabrina; Bazarbachi, Ali; Mahieux, Renaud; Bénit, Laurence; Pique, Claudine

    2012-09-25

    The Tax protein encoded by Human T-lymphotropic virus type 1 (HTLV-1) is a powerful activator of the NF-κB pathway, a property critical for HTLV-1-induced immortalization of CD4⁺ T lymphocytes. Tax permanently stimulates this pathway at a cytoplasmic level by activating the IκB kinase (IKK) complex and at a nuclear level by enhancing the binding of the NF-κB factor RelA to its cognate promoters and by forming nuclear bodies, believed to represent transcriptionally active structures. In previous studies, we reported that Tax ubiquitination and SUMOylation play a critical role in Tax localization and NF-κB activation. Indeed, analysis of lysine Tax mutants fused or not to ubiquitin or SUMO led us to propose a two-step model in which Tax ubiquitination first intervenes to activate IKK while Tax SUMOylation is subsequently required for promoter activation within Tax nuclear bodies. However, recent studies showing that ubiquitin or SUMO can modulate Tax activities in either the nucleus or the cytoplasm and that SUMOylated Tax can serve as substrate for ubiquitination suggested that Tax ubiquitination and SUMOylation may mediate redundant rather than successive functions. In this study, we analyzed the properties of a new Tax mutant that is properly ubiquitinated, but defective for both nuclear body formation and SUMOylation. We report that reducing Tax SUMOylation and nuclear body formation do not alter the ability of Tax to activate IKK, induce RelA nuclear translocation, and trigger gene expression from a NF-κB promoter. Importantly, potent NF-κB promoter activation by Tax despite low SUMOylation and nuclear body formation is also observed in T cells, including CD4⁺ primary T lymphocytes. Moreover, we show that Tax nuclear bodies are hardly observed in HTLV-1-infected T cells. Finally, we provide direct evidence that the degree of NF-κB activation by Tax correlates with the level of Tax ubiquitination, but not SUMOylation. These data reveal that the

  14. Kartogenin with PRP promotes the formation of fibrocartilage zone in the tendon-bone interface.

    Science.gov (United States)

    Zhou, Yiqin; Zhang, Jianying; Yang, Jinsong; Narava, Manoj; Zhao, Guangyi; Yuan, Ting; Wu, Haishan; Zheng, Nigel; Hogan, MaCalus V; Wang, James H-C

    2017-12-01

    Treatment of tendon-bone junction injuries is a challenge because tendon-bone interface often heals poorly and the fibrocartilage zone, which reduces stress concentration, at the interface is not formed. In this study, we used a compound called kartogenin (KGN) with platelet-rich plasma (PRP) to induce the formation of fibrocartilage zone in a rat tendon graft-bone tunnel model. The experimental rats received KGN-PRP or PRP injections in the tendon graft-bone tunnel interface. The control group received saline. After 4, 8 and 12 weeks, Safranin O staining of the tendon graft-bone tunnels revealed abundant proteoglycans in the KGN-PRP group indicating the formation of cartilage-like transition zone. Immunohistochemical and immuno-fluorescence staining revealed collagen types I (Col-I) and II (Col-II) in the newly formed fibrocartilage zone. Both fibrocartilage zone formation and maturation were healing time dependent. In contrast, the PRP and saline control groups had no cartilage-like tissues and minimal Col-I and Col-II staining. Some gaps were also present in the saline control group. Finally, pull-out strength in the KGN-PRP-treated group at 8 weeks was 1.4-fold higher than the PRP-treated group and 1.6-fold higher than the saline control group. These findings indicate that KGN, with PRP as a carrier, promotes the formation of fibrocartilage zone between the tendon graft and bone interface. Thus, KGN-PRP may be used as a convenient cell-free therapy in clinics to promote fibrocartilage zone formation in rotator calf repair and anterior cruciate ligament reconstruction, thereby enhancing the mechanical strength of the tendon-bone interface and hence the clinical outcome of these procedures. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  15. [Three-dimensional parallel collagen scaffold promotes tendon extracellular matrix formation].

    Science.gov (United States)

    Zheng, Zefeng; Shen, Weiliang; Le, Huihui; Dai, Xuesong; Ouyang, Hongwei; Chen, Weishan

    2016-03-01

    To investigate the effects of three-dimensional parallel collagen scaffold on the cell shape, arrangement and extracellular matrix formation of tendon stem cells. Parallel collagen scaffold was fabricated by unidirectional freezing technique, while random collagen scaffold was fabricated by freeze-drying technique. The effects of two scaffolds on cell shape and extracellular matrix formation were investigated in vitro by seeding tendon stem/progenitor cells and in vivo by ectopic implantation. Parallel and random collagen scaffolds were produced successfully. Parallel collagen scaffold was more akin to tendon than random collagen scaffold. Tendon stem/progenitor cells were spindle-shaped and unified orientated in parallel collagen scaffold, while cells on random collagen scaffold had disorder orientation. Two weeks after ectopic implantation, cells had nearly the same orientation with the collagen substance. In parallel collagen scaffold, cells had parallel arrangement, and more spindly cells were observed. By contrast, cells in random collagen scaffold were disorder. Parallel collagen scaffold can induce cells to be in spindly and parallel arrangement, and promote parallel extracellular matrix formation; while random collagen scaffold can induce cells in random arrangement. The results indicate that parallel collagen scaffold is an ideal structure to promote tendon repairing.

  16. Study on the Promotion Effect of Ionic Liquid on CH4 Hydrate Formation

    International Nuclear Information System (INIS)

    Shin, Ju-Young; Mun, Sungyong; Kang, Seong-Pil; Kim, Kisub

    2013-01-01

    In this study, we investigated the kinetics of gas hydrate formation in the presence of ionic liquid (IL). Hydroxyethyl-methyl-morpholinium chloride (HEMM-Cl) was chosen as a material for the promotion effect test. Phase equilibrium curve for CH 4 hydrate with aqueous IL solution was obtained and its induction time and consumed amount of CH 4 gas were also measured. Aqueous solutions containing 20-20,000 ppm of HEMM-Cl was prepared and studied at 70 bar and 274.15 K. To compare the measured results to those of the conventional promoter, sodium dodecyl sulfate was also tested at the same condition. Result showed that the hydrate equilibrium curve was shifted toward higher pressure and lower temperature region. In addition, the induction time on CH 4 hydrate formation in the presence of IL was not shown. The amount of consumed CH 4 was increased with the whole range of tested concentration of IL and the highest consumption of CH 4 happened at 1,000 ppm of HEMM-Cl. HEMM-Cl induced and enhanced the CH 4 hydrate formation with a small amount of addition. Obtained result is expected to be applied for the development of technologies such as gas storage and transport using gas hydrates

  17. Vascular niche promotes hematopoietic multipotent progenitor formation from pluripotent stem cells

    Science.gov (United States)

    Gori, Jennifer L.; Butler, Jason M.; Chan, Yan-Yi; Chandrasekaran, Devikha; Poulos, Michael G.; Ginsberg, Michael; Nolan, Daniel J.; Elemento, Olivier; Wood, Brent L.; Adair, Jennifer E.; Rafii, Shahin; Kiem, Hans-Peter

    2015-01-01

    Pluripotent stem cells (PSCs) represent an alternative hematopoietic stem cell (HSC) source for treating hematopoietic disease. The limited engraftment of human PSC–derived (hPSC-derived) multipotent progenitor cells (MPP) has hampered the clinical application of these cells and suggests that MPP require additional cues for definitive hematopoiesis. We hypothesized that the presence of a vascular niche that produces Notch ligands jagged-1 (JAG1) and delta-like ligand-4 (DLL4) drives definitive hematopoiesis. We differentiated hes2 human embryonic stem cells (hESC) and Macaca nemestrina–induced PSC (iPSC) line-7 with cytokines in the presence or absence of endothelial cells (ECs) that express JAG1 and DLL4. Cells cocultured with ECs generated substantially more CD34+CD45+ hematopoietic progenitors compared with cells cocultured without ECs or with ECs lacking JAG1 or DLL4. EC-induced cells exhibited Notch activation and expressed HSC-specific Notch targets RUNX1 and GATA2. EC-induced PSC-MPP engrafted at a markedly higher level in NOD/SCID/IL-2 receptor γ chain–null (NSG) mice compared with cytokine-induced cells, and low-dose chemotherapy-based selection further increased engraftment. Long-term engraftment and the myeloid-to-lymphoid ratio achieved with vascular niche induction were similar to levels achieved for cord blood–derived MPP and up to 20-fold higher than those achieved with hPSC-derived MPP engraftment. Our findings indicate that endothelial Notch ligands promote PSC-definitive hematopoiesis and production of long-term engrafting CD34+ cells, suggesting these ligands are critical for HSC emergence. PMID:25664855

  18. Membrane culture and reduced oxygen tension enhances cartilage matrix formation from equine cord blood mesenchymal stromal cells in vitro.

    Science.gov (United States)

    Co, C; Vickaryous, M K; Koch, T G

    2014-03-01

    Ongoing research is aimed at increasing cartilage tissue yield and quality from multipotent mesenchymal stromal cells (MSC) for the purpose of treating cartilage damage in horses. Low oxygen culture has been shown to enhance chondrogenesis, and novel membrane culture has been proposed to increase tissue yield and homogeneity. The objective of this study was to evaluate and compare the effect of reduced oxygen and membrane culture during in vitro chondrogenesis of equine cord blood (CB) MSC. CB-MSC (n = 5 foals) were expanded at 21% oxygen prior to 3-week differentiation in membrane or pellet culture at 5% and 21% oxygen. Assessment included histological examination (H&E, toluidine Blue, immunohistochemistry (IHC) for collagen type I and II), protein quantification by hydroxyproline assay and dimethylmethylene assay, and mRNA analysis for collagen IA1, collagen IIA1, collagen XA1, HIF1α and Sox9. Among treatment groups, 5% membrane culture produced neocartilage most closely resembling hyaline cartilage. Membrane culture resulted in increased wet mass, homogenous matrix morphology and an increase in total collagen content, while 5% oxygen culture resulted in higher GAG and type II collagen content. No significant differences were observed for mRNA analysis. Membrane culture at 5% oxygen produces a comparatively larger amount of higher quality neocartilage. Matrix homogeneity is attributed to a uniform diffusion gradient and reduced surface tension. Membrane culture holds promise for scale-up for therapeutic purposes, for cellular preconditioning prior to cytotherapeutic applications, and for modeling system for gas-dependent chondrogenic differentiation studies. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  19. Activation of Wnt Planar Cell Polarity (PCP) signaling promotes growth plate column formation in vitro.

    Science.gov (United States)

    Randall, Rachel M; Shao, Yvonne Y; Wang, Lai; Ballock, R Tracy

    2012-12-01

    Disrupting the Wnt Planar Cell Polarity (PCP) signaling pathway in vivo results in loss of columnar growth plate architecture, but it is unknown whether activation of this pathway in vitro is sufficient to promote column formation. We hypothesized that activation of the Wnt PCP pathway in growth plate chondrocyte cell pellets would promote columnar organization in these cells that are normally oriented randomly in culture. Rat growth plate chondrocytes were transfected with plasmids encoding the Fzd7 cell-surface Wnt receptor, a Fzd7 deletion mutant lacking the Wnt-binding domain, or Wnt receptor-associated proteins Ror2 or Vangl2, and then cultured as three-dimensional cell pellets in the presence of recombinant Wnt5a or Wnt5b for 21 days. Cellular morphology was evaluated using histomorphometric measurements. Activation of Wnt PCP signaling components promoted the initiation of columnar morphogenesis in the chondrocyte pellet culture model, as measured by histomorphometric analysis of the column index (ANOVA p = 0.01). Activation of noncanonical Wnt signaling through overexpression of both the cell-surface Wnt receptor Fzd7 and receptor-associated protein Ror2 with addition of recombinant Wnt5a promotes the initiation of columnar architecture of growth plate chondrocytes in vitro, representing an important step toward growth plate regeneration. Copyright © 2012 Orthopaedic Research Society.

  20. Sfp-type PPTase inactivation promotes bacterial biofilm formation and ability to enhance wheat drought tolerance

    Directory of Open Access Journals (Sweden)

    Salme eTimmusk

    2015-05-01

    Full Text Available Paenibacillus polymyxa is a common soil bacterium with broad range of practical applications. An important group of secondary metabolites in P. polymyxa are nonribosomal peptide and polyketide derived metabolites (NRP/PK. Modular nonribosomal peptide synthetases catalyse main steps in the biosynthesis of the complex secondary metabolites. Here we report on the inactivation of an A26 sfp-type phosphopantetheinyl transferase. The inactivation of the gene resulted in loss of NRP/PK production. In contrast to the former Bacillus spp. model the mutant strain compared to wild type showed greatly enhanced biofilm formation ability. Its biofilm promotion is directly mediated by NRP/PK, as exogenous addition of the wild type metabolite extracts restores its biofilm formation level. Wheat inoculation with bacteria that had lost their sfp-type PPTase gene resulted in two times higher plant survival and about three times increased biomass under severe drought stress compared to wild type.

  1. Inter-organizational relationships: promoters and restrictive factors in the formation of cooperation network

    Directory of Open Access Journals (Sweden)

    Marcos Antonio Gaspar

    2014-04-01

    Full Text Available The present paper had as aim to identify factors of inter-organizational relationships which promotes and restricts the formation of companies’ cooperation network, from two levels of analysis (organizational and inter-organizational. To achieve this goal, it was developed a descriptive-qualitative study, with prospecting for primary and secondary data on a cooperation network. The universe was composed by 41 participating companies associated to the analyzed network. The sampling procedure was for researcher’s accessibility and convenience. As a result, it was identified that the network is guided by goals of cooperation among the participating companies, in addition to representing the sector and provide services in the interests of the associates. The main factors influencing the formation of the network were: business center, marketing and training; but only training has been achieved satisfactorily. The business center and marketing factors have not yet been fully developed, being both identified as restrictive factors.

  2. Oxytocin promotes bone formation during the alveolar healing process in old acyclic female rats.

    Science.gov (United States)

    Colli, Vilma Clemi; Okamoto, Roberta; Spritzer, Poli Mara; Dornelles, Rita Cássia Menegati

    2012-09-01

    OT was reported to be a direct regulator of bone mass in young rodents, and this anabolic effect on bone is a peripheral action of OT. The goal of this study was to investigate the peripheral action of oxytocin (OT) in the alveolar healing process in old female rats. Females Wistar rats (24-month-old) in permanent diestrus phase, received two ip (12h apart) injections of saline (NaCl 0.15M - control group) or OT (45μg/rat - treated group). Seven days later, the right maxillary incisor was extracted and analyses were performed up to 28 days of the alveolar healing process (35 days after saline or OT administration). Calcium and phosphorus plasma concentrations did not differ between the groups. The plasma biochemical bone formations markers, alkaline phosphatase (ALP) and osteocalcin were significantly higher in the treated group. Histomorphometric analyses confirmed bone formation as the treated group presented the highest mean value of post-extraction bone formation. Tartrate-resistant acid phosphatase (TRAP) was significantly reduced in the treated group indicating an anti-resorptive effect of OT. Immunohistochemistry reactions performed in order to identify the presence of osteocalcin and TRAP in the bone cells of the dental socket confirmed these outcomes. OT was found to promote bone formation and to inhibit bone resorption in old acyclic female rats during the alveolar healing process. Published by Elsevier Ltd.

  3. Cisplatin upregulates mitochondrial nitric oxide synthase and peroxynitrite formation to promote renal injury

    International Nuclear Information System (INIS)

    Jung, Michaela; Hotter, Georgina; Vinas, Jose Luis; Sola, Anna

    2009-01-01

    The mitochondria are a critical target for cisplatin-associated nephrotoxicity. Though nitric oxide formation has been implicated in the toxicity of cisplatin, this formation has not so far been related to a possible activation of mitochondrial nitric oxide synthase (mNOS). We show here that the upregulation of oxide mNOS and peroxynitrite formation in cisplatin treatment are key events that influence the development of the harmful parameters described in cisplatin-associated kidney failure. We confirm this by isolating the mitochondrial fraction of the kidney and across different access routes such as the use of a specific inhibitor of neuronal NOS, L-NPA, a peroxynitrite scavenger, FeTMPyP, and a peroxynitrite donor, SIN-1. The in vitro studies corroborated the information obtained in the in vivo experiments. The administration of cisplatin reveals a clear upregulation in the transcription of neuronal NOS and an increase in the levels of nitrites in the mitochondrial fractions of the kidneys. The upregulated transcription directly affects the cytoskeleton structure and the apoptosis. The inhibition of neuronal NOS reduces the levels of nitrites, cell death, and cytoskeleton derangement. Peroxynitrite is involved in the mechanism promoting the NOS transcription. In addition, in controls SIN-1 imitates the effects of cisplatin. In summary, we demonstrate that upregulation of mNOS in cisplatin treatment is a key component in both the initiation and the spread of cisplatin-associated damage in the kidney. Furthermore, peroxynitrite formation is directly involved in this process

  4. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Cord Injury What is a Spinal Cord Injury Levels of Injury and What They Mean Animated Spinal ... Cord Injury What is a Spinal Cord Injury Levels of Injury and What They Mean Animated Spinal ...

  5. Spinal Cord Injury 101

    Medline Plus

    Full Text Available menu Understanding Spinal Cord Injury What is a Spinal Cord Injury Levels of Injury and What They Mean Animated Spinal Cord Injury Chart Spinal Cord Injury Facts and Figures Care and Treatment After SCI Spinal ...

  6. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Spinal Cord Injury Facts and Figures Care and Treatment After SCI Spinal Cord Injury Rehabilitation Pediatric Spinal ... Spinal Cord Injury Facts and Figures Care and Treatment After SCI Spinal Cord Injury Rehabilitation Pediatric Spinal ...

  7. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Cord Injury Rehabilitation Pediatric Spinal Cord Injuries Video Library SCI Medical Experts People Living with SCI Personal ... Cord Injury Rehabilitation Pediatric Spinal Cord Injuries Video Library SCI Medical Experts People Living with SCI Personal ...

  8. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Animated Spinal Cord Injury Chart Spinal Cord Injury Facts and Figures Care and Treatment After SCI Spinal ... Animated Spinal Cord Injury Chart Spinal Cord Injury Facts and Figures Care and Treatment After SCI Spinal ...

  9. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Injury Chart Spinal Cord Injury Facts and Figures Care and Treatment After SCI Spinal Cord Injury Rehabilitation ... Injury Chart Spinal Cord Injury Facts and Figures Care and Treatment After SCI Spinal Cord Injury Rehabilitation ...

  10. First-in-Man Intrathecal Application of Neurite Growth-Promoting Anti-Nogo-A Antibodies in Acute Spinal Cord Injury.

    Science.gov (United States)

    Kucher, Klaus; Johns, Donald; Maier, Doris; Abel, Rainer; Badke, Andreas; Baron, Hagen; Thietje, Roland; Casha, Steven; Meindl, Renate; Gomez-Mancilla, Baltazar; Pfister, Christian; Rupp, Rüdiger; Weidner, Norbert; Mir, Anis; Schwab, Martin E; Curt, Armin

    2018-05-01

    Neutralization of central nervous system neurite growth inhibitory factors, for example, Nogo-A, is a promising approach to improving recovery following spinal cord injury (SCI). In animal SCI models, intrathecal delivery of anti-Nogo-A antibodies promoted regenerative neurite growth and functional recovery. This first-in-man study assessed the feasibility, safety, tolerability, pharmacokinetics, and preliminary efficacy of the human anti-Nogo-A antibody ATI355 following intrathecal administration in patients with acute, complete traumatic paraplegia and tetraplegia. Patients (N = 52) started treatment 4 to 60 days postinjury. Four consecutive dose-escalation cohorts received 5 to 30 mg/2.5 mL/day continuous intrathecal ATI355 infusion over 24 hours to 28 days. Following pharmacokinetic evaluation, 2 further cohorts received a bolus regimen (6 intrathecal injections of 22.5 and 45 mg/3 mL, respectively, over 4 weeks). ATI355 was well tolerated up to 1-year follow-up. All patients experienced ≥1 adverse events (AEs). The 581 reported AEs were mostly mild and to be expected following acute SCI. Fifteen patients reported 16 serious AEs, none related to ATI355; one bacterial meningitis case was considered related to intrathecal administration. ATI355 serum levels showed dose-dependency, and intersubject cerebrospinal fluid levels were highly variable after infusion and bolus injection. In 1 paraplegic patient, motor scores improved by 8 points. In tetraplegic patients, mean total motor scores increased, with 3/19 gaining >10 points, and 1/19 27 points at Week 48. Conversion from complete to incomplete SCI occurred in 7/19 patients with tetraplegia. ATI335 was well tolerated in humans; efficacy trials using intrathecal antibody administration may be considered in acute SCI.

  11. Plasticity and regeneration in the injured spinal cord after cell transplantation therapy.

    Science.gov (United States)

    Nori, Satoshi; Nakamura, Masaya; Okano, Hideyuki

    2017-01-01

    Spinal cord injury (SCI) typically damages the long axonal tracts of the spinal cord which results in permanent disability. However, regeneration of the injured spinal cord is approaching reality according to the advances in stem cell biology. Cell transplantation therapy holds potential to lead to recovery following SCI through some positive mechanisms. Grafted cells induce plasticity and regeneration in the injured spinal cord by promoting remyelination of damaged axons, reconstruction of neural circuits by synapse formation between host neurons and graft-derived neurons, and secreting neurotrophic factors to promote axonal elongation as well as reduce retrograde axonal degeneration. In this review, we will delineate (1) the microenvironment of the injured spinal cord that influence the plasticity and regeneration capacity after SCI, (2) a number of different kinds of cell transplantation therapies for SCI that has been extensively studied by researchers, and (3) potential mechanisms of grafted cell-induced regeneration and plasticity in the injured spinal cord. © 2017 Elsevier B.V. All rights reserved.

  12. Subinhibitory concentrations of triclosan promote Streptococcus mutans biofilm formation and adherence to oral epithelial cells.

    Directory of Open Access Journals (Sweden)

    Telma Blanca Lombardo Bedran

    Full Text Available Triclosan is a general membrane-active agent with a broad-spectrum antimicrobial activity that is commonly used in oral care products. In this study, we investigated the effect of sub-minimum inhibitory concentrations (MICs of triclosan on the capacity of the cariogenic bacterium Streptococcus mutans to form biofilm and adhere to oral epithelial cells. As quantified by crystal violet staining, biofilm formation by two reference strains of S. mutans was dose-dependently promoted, in the range of 2.2- to 6.2-fold, by 1/2 and 1/4 MIC of triclosan. Observations by scanning electron microscopy revealed the presence of a dense biofilm attached to the polystyrene surface. Growth of S. mutans in the presence of triclosan at sub-MICs also increased its capacity to adhere to a monolayer of gingival epithelial cells. The expression of several genes involved in adherence and biofilm formation in S. mutans was investigated by quantitative RT-PCR. It was found that sub-MICs of triclosan significantly increased the expression of comD, gtfC, and luxS, and to a lesser extent of gtfB and atlA genes. These findings stress the importance of maintaining effective bactericidal concentrations of therapeutic triclosan since sub-MICs may promote colonization of the oral cavity by S. mutans.

  13. Cordão Formation: loess deposits in the southern coastal plain of the state of Rio Grande do Sul, Brazil

    Directory of Open Access Journals (Sweden)

    RENATO P. LOPES

    Full Text Available ABSTRACT Loess consists of silt-dominated sediments that cover ~10% of the Earth's surface. In southern South America it occurs in Argentina, Bolivia, Paraguay and Uruguay, and its presence in southern Brazil was never studied in detail. Here is proposed a new lithostratigraphic unit, Cordão Formation, consisting of loess deposits in the southern Brazilian coastal plain. It consists of fine-very fine silt with subordinate sand and clay, found mostly in lowland areas between Pleistocene coastal barriers. These sediments are pale-colored (10YR hue and forms ~1,5-2,0 meter-thick stable vertical walls. The clay minerals include illite, smectite, interstratified illite/smectite and kaolinite, the coarser fraction is mostly quartz and plagioclase. Caliche and iron-manganese nodules are also present. The only fossils found so far are rodent teeth and a tooth of a camelid (Hemiauchenia paradoxa. Luminescence ages indicate that this loess was deposited in the latest Pleistocene, between ~30 and 10 kyrs ago, and its upper portion was modified by erosion and accumulation of clay and organic matter in the Holocene. The estimated accumulation rate was ~630 g/m2/year. The probable source of this loess is the Pampean Aeolian System of Argentina and it would have been deposited by the increased aeolian processes of the last glacial.

  14. [Human umbilical cord blood mononuclear cell transplantation promotes long-term neurobehavioral functional development of newborn SD rats with hypoxic ischemic brain injury].

    Science.gov (United States)

    Huang, Hui-zhi; Wen, Xiao-hong; Liu, Hui; Huang, Jin-hua; Liu, Shang-quan; Ren, Wei-hua; Fang, Wen-xiang; Qian, Yin-feng; Hou, Wei-zhu; Yan, Ming-jie; Yao, You-heng; Li, Wei-Zu; Li, Qian-Jin

    2013-06-01

    To explore the effect of human umbilical cord blood mononuclear cells (UCBMC) promoting nerve behavior function and brain tissue recovery of neonatal SD rat with hypoxic ischemic brain injury (HIBI). A modified newborn rat model that had a combined hypoxic and ischemic brain injury as described by Rice-Vannucci was used, early nervous reflex, the Morris water maze and walking track analysis were used to evaluate nervous behavioral function, and brain MRI, HE staining to evaluate brain damage recovery. Newborn rat Rice-Vannucci model showed significant brain atrophy, obvious hemiplegia of contralateral limbs,e.g right step length [(7.67 ± 0.46) cm vs. (8.22 ± 0.50) cm, F = 1.494] and toe distance [(0.93 ± 0.06) cm vs. (1.12 ± 0.55) cm, F = 0.186] were significantly reduced compared with left side, learning and memory ability was significantly impaired compared with normal control group (P vs.(14.22 ± 5.07) s, t = 4.618] and negative geotaxis reflex time [(7.26 ± 2.00) s vs. (11.76 ± 3.73) s, t = 4.755] on postnatal 14 days of HIBI+ transplantation group were significantly reduced compared with HIBI+NaCl group (P vs. (34.04 ± 12.95) s, t = 3.356] and swimming distance [ (9.12 ± 1.21) cm vs.(12.70 ± 1.53) cm, t = 17.095] of HIBI+transplantation group were significantly reduced compared with those of HIBI+NaCl group (P brain volume on postnatal 10 d [ (75.37 ± 4.53)% vs. (67.17 ± 4.08)%, t = -6.017] and 67 d [ (69.05 ± 3.58)% vs.(60.83 ± 3.69)%, t = -7.148]of HIBI+ transplantation group were significantly larger than those of HIBI+NaCl group (P left cortical edema significantly reduced and nerve cell necrosis of HIBI+ transplantation group is not obvious compared with HIBI+NaCl group. Human UCBMC intraperitoneal transplantation significantly promoted recovery of injured brain cells and neurobehavioral function development.

  15. Podoplanin promotes progression of malignant pleural mesothelioma by regulating motility and focus formation.

    Science.gov (United States)

    Takeuchi, Shinji; Fukuda, Koji; Yamada, Tadaaki; Arai, Sachiko; Takagi, Satoshi; Ishii, Genichiro; Ochiai, Atsushi; Iwakiri, Shotaro; Itoi, Kazumi; Uehara, Hisanori; Nishihara, Hiroshi; Fujita, Naoya; Yano, Seiji

    2017-04-01

    Malignant pleural mesothelioma (MPM) is characterized by dissemination and aggressive growth in the thoracic cavity. Podoplanin (PDPN) is an established diagnostic marker for MPM, but the function of PDPN in MPM is not fully understood. The purpose of this study was to determine the pathogenetic function of PDPN in MPM. Forty-seven of 52 tumors (90%) from Japanese patients with MPM and 3/6 (50%) MPM cell lines tested positive for PDPN. Knocking down PDPN in PDPN-high expressing MPM cells resulted in decreased cell motility. In contrast, overexpression of PDPN in PDPN-low expressing MPM cells enhanced cell motility. PDPN stimulated motility was mediated by activation of the RhoA/ROCK pathway. Moreover, knocking down PDPN with short hairpin (sh) RNA in PDPN-high expressing MPM cells resulted in decreased development of a thoracic tumor in mice with severe combined immune deficiency (SCID). In sharp contrast, transfection of PDPN in PDPN-low expressing MPM cells resulted in an increase in the number of Ki-67-positive proliferating tumor cells and it promoted progression of a thoracic tumor in SCID mice. Interestingly, PDPN promoted focus formation in vitro, and a low level of E-cadherin expression and YAP1 activation was observed in PDPN-high MPM tumors. These findings indicate that PDPN is a diagnostic marker as well as a pathogenetic regulator that promotes MPM progression by increasing cell motility and inducing focus formation. Therefore, PDPN might be a pathogenetic determinant of MPM dissemination and aggressive growth and may thus be an ideal therapeutic target. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  16. Thromboxane A(2 receptor stimulation promotes closure of the rat ductus arteriosus through enhancing neointima formation.

    Directory of Open Access Journals (Sweden)

    Tomohiro Yokota

    Full Text Available Ductus arteriosus (DA closure follows constriction and remodeling of the entire vessel wall. Patent ductus arteriosus occurs when the DA does not close after birth, and this condition is currently treated using cyclooxygenase inhibitors. However, the efficacy of cyclooxygenase inhibitors is often limited. Our previous study demonstrated that low-dose thromboxane A2 receptor (TP stimulation constricted the DA with minimal adverse effects in rat neonates. However, its effect on DA remodeling remains unknown. In this study, we focused on the impact of the exogenous TP stimulation on the DA remodeling, especially intimal thickening. Using DA explants from rat fetuses at embryonic day 19 as a ex vivo model and primary cultured rat DA smooth muscle cells from embryonic day 21 as a in vitro model, we evaluated the effect of TP stimulation on the DA remodeling. The selective TP agonists U46619 and I-BOP promoted neointima formation in the ex vivo DA explants, and TP stimulation increased DA SMC migration in a dose-dependent manner. Both effects were inhibited by the selective TP antagonist SQ29548 or the siRNA against TP. TP stimulation also increased DA SMC proliferation in the presence of 10% fetal bovine serum. LC/MS/MS analysis revealed that TP stimulation increased secretion of several extracellular matrix proteins that may contribute to an increase in neointima formation. In conclusion, we uncovered that exogenous administration of TP agonist promotes neointima formation through the induction of migration and proliferation of DA SMC, which could contribute to DA closure and also to its vasoconstrictive action.

  17. Substance P Promotes the Proliferation, but Inhibits Differentiation and Mineralization of Osteoblasts from Rats with Spinal Cord Injury via RANKL/OPG System.

    Directory of Open Access Journals (Sweden)

    Hai-Juan Liu

    Full Text Available Spinal cord injury (SCI causes a significant amount of bone loss, which results in osteoporosis (OP. The neuropeptide substance P (SP and SP receptors may play important roles in the pathogenesis of OP after SCI. To identify the roles of SP in the bone marrow mesenchymal stem cell derived osteoblasts (BMSC-OB in SCI rats, we investigated the expression of neurokinin-1 receptors (NK1R in BMSC-OB and the effects of SP on bone formation by development of BMSC-OB cultures. Sixty young male Sprague-Dawley rats were randomized into two groups: SHAM and SCI. The expression of NK1R protein in BMSC-OB was observed using immunohistochemistry and Western blot analysis. The dose- and time-dependent effects of SP on the proliferation, differentiation and mineralization of BMSC-OB and the expression of osteoblastic markers by in vitro experiments. The expression of NK1R in BMSC-OB was observed on plasma membranes and in cytoplasm. One week after osteogenic differentiation, the expression of NK1R was significantly increased after SCI at mRNA and protein levels. However, this difference was gradually attenuated at 2 or 3 weeks later. SP have the function to enhance cell proliferation, inhibite cell differentiation and mineralization at a proper concentration and incubation time, and this effect would be inhibited by adding SP or NK1R antagonist. The expression of RANKL/OPG was significantly increased in tibiae after SCI. Similarly, the RANKL/OPG expression in SCI rats was significantly increased when treating with 10-8 M SP. SP plays a very important role in the pathogenesis of OP after SCI. The direct effect of SP may lead to increased bone resorption through the RANKL/OPG axis after SCI. In addition, high expression of SP also results in the suppression of osteogenesis in SCI rats. Then, the balance between bone resorption and bone formation was broken and finally osteoporosis occurred.

  18. Aging promotes todorokite formation from layered manganese oxide at near-surface conditions

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Haojie [Chinese Academy of Sciences, Xiamen (China). Key Lab. of Urban Environment and Health; Huazhong Agricultural Univ., Ministry of Agriculture, Wuhan (China). Key Lab. of Subtropical Agricultural Resources and Environment; Liu, Fan; Feng, Xionghan; Tan, Wenfeng [Huazhong Agricultural Univ., Ministry of Agriculture, Wuhan (China). Key Lab. of Subtropical Agricultural Resources and Environment; Wang, Ming Kuang [National Taiwan Univ., Taipei (China). Dept. of Agricultural Chemistry

    2010-12-15

    Todorokite is one common manganese oxide in soils and sediments and is commonly formed from layered Na-buserite. Aging processes can alter the physicochemical properties of freshly formed Na-buserite in natural environments. However, it is not clear whether and how aging affects the formation of todorokites. In the present paper, Na-buserite with aging treatment was employed to prepare todorokite at atmospheric pressure to investigate the effects of aging treatment of Na-buserite on the formation of todorokite. Four aged Na-buserite samples, which are produced through oxidation of Mn{sup 2+} in concentrated NaOH medium by O{sub 2} with aging for 3, 6, 9, and 12 months, were employed to investigate the effects of aging processes on the transformation from Na-buserite to todorokite by Mg{sup 2+}-templating reaction at atmospheric pressure. The manganese oxides were examined using X-ray diffraction (XRD), elemental analysis, determinations of the average manganese oxidation number, infrared spectroscopy (IR), and transmission electron microscopy (TEM). The XRD, IR, and elemental analyses indicate that aging treatment can alter the substructure of the freshly synthesized Na-buserite. During the aging process, some of the Mn(III) may migrate into the interlayer region or disproportionate to form Mn{sup 2+} and Mn{sup 4+} from the layer of Na-buserite and the concomitant formation of layer vacancies. The interlayer Mn{sup 3+} or Mn{sup 2+} occupied above or below the layer vacancy sites and become corner-sharing octahedral. XRD analyses and TEM clearly show that the transformation from Na-buserite to todorokite was promoted by aging treatments. The alterations of substructure of aged Na-buserites can promote the rearrangement of manganese to construct a tunnel structure during the transformation from layered manganese oxides to tunnel-structure todorokite at atmospheric pressure. The transformation from Na-buserite to todorokite was promoted by aging treatments at

  19. Paired motor cortex and cervical epidural electrical stimulation timed to converge in the spinal cord promotes lasting increases in motor responses.

    Science.gov (United States)

    Mishra, Asht M; Pal, Ajay; Gupta, Disha; Carmel, Jason B

    2017-11-15

    Pairing motor cortex stimulation and spinal cord epidural stimulation produced large augmentation in motor cortex evoked potentials if they were timed to converge in the spinal cord. The modulation of cortical evoked potentials by spinal cord stimulation was largest when the spinal electrodes were placed over the dorsal root entry zone. Repeated pairing of motor cortex and spinal cord stimulation caused lasting increases in evoked potentials from both sites, but only if the time between the stimuli was optimal. Both immediate and lasting effects of paired stimulation are likely mediated by convergence of descending motor circuits and large diameter afferents onto common interneurons in the cervical spinal cord. Convergent activity in neural circuits can generate changes at their intersection. The rules of paired electrical stimulation are best understood for protocols that stimulate input circuits and their targets. We took a different approach by targeting the interaction of descending motor pathways and large diameter afferents in the spinal cord. We hypothesized that pairing stimulation of motor cortex and cervical spinal cord would strengthen motor responses through their convergence. We placed epidural electrodes over motor cortex and the dorsal cervical spinal cord in rats; motor evoked potentials (MEPs) were measured from biceps. MEPs evoked from motor cortex were robustly augmented with spinal epidural stimulation delivered at an intensity below the threshold for provoking an MEP. Augmentation was critically dependent on the timing and position of spinal stimulation. When the spinal stimulation was timed to coincide with the descending volley from motor cortex stimulation, MEPs were more than doubled. We then tested the effect of repeated pairing of motor cortex and spinal stimulation. Repetitive pairing caused strong augmentation of cortical MEPs and spinal excitability that lasted up to an hour after just 5 min of pairing. Additional physiology

  20. Melatonin Inhibits Neural Cell Apoptosis and Promotes Locomotor Recovery via Activation of the Wnt/β-Catenin Signaling Pathway After Spinal Cord Injury.

    Science.gov (United States)

    Shen, Zhaoliang; Zhou, Zipeng; Gao, Shuang; Guo, Yue; Gao, Kai; Wang, Haoyu; Dang, Xiaoqian

    2017-08-01

    The spinal cord is highly sensitive to spinal cord injury (SCI) by external mechanical damage, resulting in irreversible neurological damage. Activation of the Wnt/β-catenin signaling pathway can effectively reduce apoptosis and protect against SCI. Melatonin, an indoleamine originally isolated from bovine pineal tissue, exerts neuroprotective effects after SCI through activation of the Wnt/β-catenin signaling pathway. In this study, we demonstrated that melatonin exhibited neuroprotective effects on neuronal apoptosis and supported functional recovery in a rat SCI model by activating the Wnt/β-catenin signaling pathway. We found that melatonin administration after SCI significantly upregulated the expression of low-density lipoprotein receptor related protein 6 phosphorylation (p-LRP-6), lymphoid enhancer factor-1 (LEF-1) and β-catenin protein in the spinal cord. Melatonin enhanced motor neuronal survival in the spinal cord ventral horn and improved the locomotor functions of rats after SCI. Melatonin administration after SCI also reduced the expression levels of Bax and cleaved caspase-3 in the spinal cord and the proportion of terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling (TUNEL) positive cells, but increased the expression level of Bcl-2. These results suggest that melatonin attenuated SCI by activating the Wnt/β-catenin signaling pathway.

  1. Cell transplantation for the treatment of spinal cord injury - bone marrow stromal cells and choroid plexus epithelial cells

    Directory of Open Access Journals (Sweden)

    Chizuka Ide

    2016-01-01

    Full Text Available Transplantation of bone marrow stromal cells (BMSCs enhanced the outgrowth of regenerating axons and promoted locomotor improvements of rats with spinal cord injury (SCI. BMSCs did not survive long-term, disappearing from the spinal cord within 2-3 weeks after transplantation. Astrocyte-devoid areas, in which no astrocytes or oligodendrocytes were found, formed at the epicenter of the lesion. It was remarkable that numerous regenerating axons extended through such astrocyte-devoid areas. Regenerating axons were associated with Schwann cells embedded in extracellular matrices. Transplantation of choroid plexus epithelial cells (CPECs also enhanced axonal regeneration and locomotor improvements in rats with SCI. Although CPECs disappeared from the spinal cord shortly after transplantation, an extensive outgrowth of regenerating axons occurred through astrocyte-devoid areas, as in the case of BMSC transplantation. These findings suggest that BMSCs and CPECs secret neurotrophic factors that promote tissue repair of the spinal cord, including axonal regeneration and reduced cavity formation. This means that transplantation of BMSCs and CPECs promotes "intrinsic" ability of the spinal cord to regenerate. The treatment to stimulate the intrinsic regeneration ability of the spinal cord is the safest method of clinical application for SCI. It should be emphasized that the generally anticipated long-term survival, proliferation and differentiation of transplanted cells are not necessarily desirable from the clinical point of view of safety.

  2. Topical hemostatic powder promotes reepithelialization and reduces scar formation after extensive esophageal mucosal resection.

    Science.gov (United States)

    Beye, B; Barret, M; Alatawi, A; Beuvon, F; Nicco, C; Pratico, C A; Chereau, C; Chaussade, S; Batteux, F; Prat, F

    2016-08-01

    The development of techniques for endoscopic resection has provided new strategies for radical conservative treatment of superficial esophageal neoplasms, even those that are circumferential, such as Barrett's neoplasia. However, it is necessary to prevent the formation of scar tissue that can be responsible for esophageal strictures following circumferential resection. Preliminary data have suggested the possible efficacy of a hemostatic powder in the promotion of wound healing. The study aims to assess the effectiveness of Hemospray (Cook Medical) in a swine model of post-endoscopic esophageal stricture. Our prospective controlled study included 21 pigs. A 6-cm circumferential submucosal dissection of the esophagus (CESD) was performed in each pig. Group 1 (n = 11) only underwent CESD and Group 2 (n = 10) had repeated Hemospray applications after CESD. Clinical, endoscopic, and radiological monitoring were performed, blood levels of four inflammatory or pro-fibrotic cytokines were assessed, and histological analysis was performed. Median esophageal diameter was greater in the group treated with Hemospray (2 mm [1-3] vs. 3 mm [2-4], P = 0.01), and the rate of symptomatic esophageal stricture was 100% and 60% in Groups 1 and 2, respectively (P = 0.09). The thicknesses of esophageal fibrosis and inflammatory cell infiltrate were significantly lower in Group 2 than in Group 1 (P = 0.002 and 0.0003, respectively). The length of the neoepithelium was greater in Group 2 than in Group 1 (P = 0.0004). Transforming growth factor-β levels were significantly lower in Group 2 than in Group 1 (P = 0.01). The application of Hemospray after esophageal CESD reduces scar tissue formation and promotes reepithelialization, and therefore is a promising therapeutic approach in the prevention of post-endoscopic esophageal stricture. © 2015 International Society for Diseases of the Esophagus.

  3. The hemostatic agent ethamsylate promotes platelet/leukocyte aggregate formation in a model of vascular injury.

    Science.gov (United States)

    Hernandez, Maria Rosa; Alvarez-Guerra, Miriam; Escolar, Ginés; Chiavaroli, Carlo; Hannaert, Patrick; Garay, Ricardo P

    2004-08-01

    The hemostatic agent ethamsylate enhances membrane expression of P-selectin in human platelets, but whether this promotes platelet-leukocyte aggregate formation is unknown. Here we investigated this point by flow cytometry determination of human platelet-leukocyte aggregates under basal conditions and after whole-blood perfusion through a damaged rabbit aorta segment. Actions of ethamsylate on adhesive molecules of platelets and leukocytes were investigated in parallel. Under basal conditions, ethamsylate was unable to modify whole-blood platelet-leukocyte aggregation, but following whole-blood perfusion through a damaged vessel, ethamsylate produced a modest, but significant increase in platelet-leukocyte aggregates (48+/-21 and 45+/-26% above control levels at ethamsylate 20 and 40 microm respectively). In isolated leukocyte plasma membranes, 14C-ethamsylate specifically bound up to an amount of 660 pmol/mg protein. Moreover, at concentrations > or =1 microm, ethamsylate induced an important (100-200%) and significant increase in the P-selectin glycoprotein ligand 1 (PSGL-1) fluorescence signal in isolated leukocytes and was unable to significantly modify the percentage of CD11b-positive cells. However, no significant changes in aggregate formation were found when ethamsylate was incubated with isolated leukocytes and blood was reconstituted and perfused. In isolated platelet cell membranes, anti-P-selectin antibody and the anti-integrin RGD-containing pentapeptide (GRDGS) were unable to displace 14C-ethamsylate binding. In conclusion, ethamsylate specifically binds to plasma membranes of leukocytes, enhances membrane PSGL-1 expression and promotes leukocyte-platelet aggregation in whole-blood perfused through a damaged vascular segment. These results together with the previously observed enhancement of platelet P-selectin membrane expression [Thromb. Res. (2002)107:329-335] confirms and extends the view that ethamsylate acts on the first step of hemostasis, by

  4. BDNF-hypersecreting human umbilical cord blood mesenchymal stem cells promote erectile function in a rat model of cavernous nerve electrocautery injury.

    Science.gov (United States)

    Song, Lujie; Zhu, Jianqiang; Zhang, Xiong; Cui, Zhiqiang; Fu, Qiang; Huang, Jianwen; Lu, Hongkai

    2016-01-01

    Erectile dysfunction (ED) continues to be a significant problem for men following radical prostatectomy. We hypothesize that intracavernous injection of BDNF-hypersecreting human umbilical cord blood mesenchymal stem cells (hUCB-MSCs) can ameliorate ED in a rat model of cavernous nerve electrocautery injury (CNEI). Forty-two male Sprague-Dawley rats were randomly divided into four groups: sham + PBS (n = 6), CNEI + PBS (n = 12), CNEI + hUCB-MSCs (n = 12) and CNEI + BDNF-hUCB-MSCs (n = 12). At day 28 post-surgery, erectile function was examined and specimens were harvested for histology. Immunofluorescence staining, Masson's trichrome staining and transmission electron microscopy were performed to determine the structural changes in corpus cavernosum. Cells that are injected into penis were labeled by BrdU and tracked by immunofluorescence staining. Three days post-surgery, the concentration of BDNF protein in penile tissues was measured by Western blotting. Rats intracavernosally injected with BDNF-hUCB-MSCs showed the most significant improvement in the ratio of maximal ICP to MAP (ICP/MAP). Histological examinations showed moderate recovery of nNOS-positive nerve fibers, ratio of smooth muscle to collagen and smooth muscle content in the CNEI + hUCB-MSCs group and remarkable recovery in the CNEI + BDNF-hUCB-MSCs group compared to the CNEI + PBS group. By TEM examination, atrophy of myelinated and non-myelinated nerve fibers was noted in CNEI + PBS group and significant recovery was observed in two treated groups. There were more BrdU-positive cells in the BDNF-hUCB-MSCs group than in the hUCB-MSCs group both in the penis and in the MPG. Three days post-surgery, the concentration of BDNF protein in penile tissues in BDNF-hUCB-MSCs group was much higher than in other groups. Intracavernous injection of BDNF-hypersecreting hUCB-MSCs can enhance the recovery of erectile function, promote the CNs regeneration and inhibit corpus cavernosum fibrosis after CNEI in a rat

  5. Subinhibitory concentrations of cell wall synthesis inhibitors promote biofilm formation of Enterococcus faecalis

    Science.gov (United States)

    Yu, Wen; Hallinen, Kelsey; Wood, Kevin

    Enterococcus faecalis are commonly associated with hospital acquired infections, because they readily form biofilms on instruments and medical devices. Biofilms are inherently more resistant to killing by antibiotics compared to planktonic bacteria, in part because of their heterogeneous spatial structure. Surprisingly, however, subminimal inhibitory concentrations (sub-MICs) of some antibiotics can actually promote biofilm formation. Unfortunately, much is still unknown about how low drug doses affect the composition and spatial structure of the biofilm. In this work, we investigate the effects of sub-MICs of ampicillin on the formation of E. faecalis biofilms. First, we quantified biofilm mass using crystal violet staining in polystyrene microtiter plates. We found that total biofilm mass is increased over a narrow range of ampicillin concentrations before ultimately declining at higher concentrations. Second, we show that sub-MICs of ampicillin can increase mass of E. faecalis biofilms while simultaneously increasing extracellular DNA/RNA and changing total number of viable cells under confocal microscopy. Further, we use RNA-seq to identify genes differentially expressed under sub-MICs of ampicillin. Finally, we show a mathematical model to explain this phenomenon. This work was funded by The Hartwell Foundation Individual Biomedical Research Award and NSF CAREER 1553208 to KBW.

  6. Formation of human hepatocyte-like cells with different cellular phenotypes by human umbilical cord blood-derived cells in the human-rat chimeras

    International Nuclear Information System (INIS)

    Sun, Yan; Xiao, Dong; Zhang, Ruo-Shuang; Cui, Guang-Hui; Wang, Xin-Hua; Chen, Xi-Gu

    2007-01-01

    We took advantage of the proliferative and permissive environment of the developing pre-immune fetus to develop a noninjury human-rat xenograft small animal model, in which the in utero transplantation of low-density mononuclear cells (MNCs) from human umbilical cord blood (hUCB) into fetal rats at 9-11 days of gestation led to the formation of human hepatocyte-like cells (hHLCs) with different cellular phenotypes, as revealed by positive immunostaining for human-specific alpha-fetoprotein (AFP), cytokeratin 19 (CK19), cytokeratin 8 (CK8), cytokeratin 18 (CK18), and albumin (Alb), and with some animals exhibiting levels as high as 10.7% of donor-derived human cells in the recipient liver. More interestingly, donor-derived human cells stained positively for CD34 and CD45 in the liver of 2-month-old rat. Human hepatic differentiation appeared to partially follow the process of hepatic ontogeny, as evidenced by the expression of AFP gene at an early stage and albumin gene at a later stage. Human hepatocytes generated in this model retained functional properties of normal hepatocytes. In this xenogeneic system, the engrafted donor-derived human cells persisted in the recipient liver for at least 6 months after birth. Taken together, these findings suggest that the donor-derived human cells with different cellular phenotypes are found in the recipient liver and hHLCs hold biological activity. This humanized small animal model, which offers an in vivo environment more closely resembling the situations in human, provides an invaluable approach for in vivo investigating human stem cell behaviors, and further in vivo examining fundamental mechanisms controlling human stem cell fates in the future

  7. Polyethylene glycol as a promising synthetic material for repair of spinal cord injury

    Directory of Open Access Journals (Sweden)

    Xian-bin Kong

    2017-01-01

    Full Text Available Polyethylene glycol is a synthetic, biodegradable, and water-soluble polyether. Owing to its good biological and material properties, polyethylene glycol shows promise in spinal cord tissue engineering applications. Although studies have examined repairing spinal cord injury with polyethylene glycol, these compelling findings have not been recently reviewed or evaluated as a whole. Thus, we herein review and summarize the findings of studies conducted both within and beyond China that have examined the repair of spinal cord injury using polyethylene glycol. The following summarizes the results of studies using polyethylene glycol alone as well as coupled with polymers or hydrogels: (1 polyethylene glycol as an adjustable biomolecule carrier resists nerve fiber degeneration, reduces the inflammatory response, inhibits vacuole and scar formation, and protects nerve membranes in the acute stage of spinal cord injury. (2 Polyethylene glycol-coupled polymers not only promote angiogenesis but also carry drugs or bioactive molecules to the injury site. Because such polymers cross both the blood-spinal cord and blood-brain barriers, they have been widely used as drug carriers. (3 Polyethylene glycol hydrogels have been used as supporting substrates for the growth of stem cells after injury, inducing cell migration, proliferation, and differentiation. Simultaneously, polyethylene glycol hydrogels isolate or reduce local glial scar invasion, promote and guide axonal regeneration, cross the transplanted area, and re-establish synaptic connections with target tissue, thereby promoting spinal cord repair. On the basis of the reviewed studies, we conclude that polyethylene glycol is a promising synthetic material for use in the repair of spinal cord injury

  8. Polyethylene glycol as a promising synthetic material for repair of spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Xian-bin Kong; Qiu-yan Tang; Xu-yi Chen; Yue Tu; Shi-zhong Sun; Zhong-lei Sun

    2017-01-01

    Polyethylene glycol is a synthetic, biodegradable, and water-soluble polyether. Owing to its good biological and material properties, polyethylene glycol shows promise in spinal cord tissue engineering applications. Although studies have examined repairing spinal cord injury with polyethylene glycol, these compellingfindings have not been recently reviewed or evaluated as a whole. Thus, we herein review and summarize the findings of studies conducted both within and beyond China that have examined the repair of spinal cord injury using polyethylene glycol. The following summarizes the results of studies using polyethylene glycol alone as well as coupled with polymers or hydrogels: (1) polyethylene glycol as an adjustable bio-molecule carrier resists nerve fiber degeneration, reduces the inflammatory response, inhibits vacuole and scar formation, and protects nerve membranes in the acute stage of spinal cord injury. (2) Polyethylene glycol-coupled polymers not only promote angiogenesis but also carry drugs or bioactive molecules to the injury site. Because such polymers cross both the blood-spinal cord and blood-brain barriers, they have been widely used as drug carriers. (3) Polyethylene glycol hydrogels have been used as supporting sub-strates for the growth of stem cells after injury, inducing cell migration, proliferation, and differentiation. Simultaneously, polyethylene glycol hydrogels isolate or reduce local glial scar invasion, promote and guide axonal regeneration, cross the transplanted area, and re-establish synaptic connections with target tissue, thereby promoting spinal cord repair. On the basis of the reviewed studies, we conclude that polyethylene glycol is a promising synthetic material for use in the repair of spinal cord injury.

  9. Mesenchymal stem cells encapsulated into biomimetic hydrogel scaffold gradually release CCL2 chemokine in situ preserving cytoarchitecture and promoting functional recovery in spinal cord injury.

    Science.gov (United States)

    Papa, S; Vismara, I; Mariani, A; Barilani, M; Rimondo, S; De Paola, M; Panini, N; Erba, E; Mauri, E; Rossi, F; Forloni, G; Lazzari, L; Veglianese, P

    2018-04-03

    Spinal cord injury (SCI) is an acute neurodegenerative disorder caused by traumatic damage of the spinal cord. The neuropathological evolution of the primary trauma involves multifactorial processes that exacerbate the pathology, worsening the neurodegeneration and limiting neuroregeneration. This complexity suggests that multi-therapeutic approaches, rather than any single treatment, might be more effective. Encouraging preclinical results indicate that stem cell-based treatments may improve the disease outcome due to their multi-therapeutic ability. Mesenchymal Stem Cells (MSCs) are currently considered one of the most promising approaches. Significant improvement in the behavioral outcome after MSC treatment sustained by hydrogel has been demonstrated. However, it is still not known how hydrogel contribute to the delivery of factors secreted from MSCs and what factors are released in situ. Among different mediators secreted by MSCs after seeding into hydrogel, we have found CCL2 chemokine, which could account for the neuroprotective mechanisms of these cells. CCL2 secreted from human MSCs is delivered efficaciously in the lesioned spinal cord acting not only on recruitment of macrophages, but driving also their conversion to an M2 neuroprotective phenotype. Surprisingly, human CCL2 delivered also plays a key role in preventing motor neuron degeneration in vitro and after spinal cord trauma in vivo, with a significant improvement of the motor performance of the rodent SCI models. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Cord Blood and Transplants

    Science.gov (United States)

    ... donate their baby’s umbilical cord blood to a public cord blood bank. We have more than 249,000 cord blood ... stored as a cord blood unit at a public cord blood bank for future use. It can then be listed ...

  11. Spinal Cord Injury Model System Information Network

    Science.gov (United States)

    ... the UAB-SCIMS More The UAB-SCIMS Information Network The University of Alabama at Birmingham Spinal Cord Injury Model System (UAB-SCIMS) maintains this Information Network as a resource to promote knowledge in the ...

  12. Using formative research to develop CHANGE!: a curriculum-based physical activity promoting intervention

    Directory of Open Access Journals (Sweden)

    Knowles Zoe R

    2011-10-01

    Full Text Available Abstract Background Low childhood physical activity levels are currently one of the most pressing public health concerns. Numerous school-based physical activity interventions have been conducted with varied success. Identifying effective child-based physical activity interventions are warranted. The purpose of this formative study was to elicit subjective views of children, their parents, and teachers about physical activity to inform the design of the CHANGE! (Children's Health, Activity, and Nutrition: Get Educated! intervention programme. Methods Semi-structured mixed-gender interviews (group and individual were conducted in 11 primary schools, stratified by socioeconomic status, with 60 children aged 9-10 years (24 boys, 36 girls, 33 parents (4 male, 29 female and 10 teachers (4 male, 6 female. Questions for interviews were structured around the PRECEDE stage of the PRECEDE-PROCEDE model and addressed knowledge, attitudes and beliefs towards physical activity, as well as views on barriers to participation. All data were transcribed verbatim. Pen profiles were constructed from the transcripts in a deductive manner using the Youth Physical Activity Promotion Model framework. The profiles represented analysis outcomes via a diagram of key emergent themes. Results Analyses revealed an understanding of the relationship between physical activity and health, although some children had limited understanding of what constitutes physical activity. Views elicited by children and parents were generally consistent. Fun, enjoyment and social support were important predictors of physical activity participation, though several barriers such as lack of parental support were identified across all group interviews. The perception of family invested time was positively linked to physical activity engagement. Conclusions Families have a powerful and important role in promoting health-enhancing behaviours. Involvement of parents and the whole family is a

  13. Local delivery of thyroid hormone enhances oligodendrogenesis and myelination after spinal cord injury

    Science.gov (United States)

    Shultz, Robert B.; Wang, Zhicheng; Nong, Jia; Zhang, Zhiling; Zhong, Yinghui

    2017-06-01

    Objective. Traumatic spinal cord injury (SCI) causes apoptosis of myelin-forming oligodendrocytes (OLs) and demyelination of surviving axons, resulting in conduction failure. Remyelination of surviving denuded axons provides a promising therapeutic target for spinal cord repair. While cell transplantation has demonstrated efficacy in promoting remyelination and functional recovery, the lack of ideal cell sources presents a major obstacle to clinical application. The adult spinal cord contains oligodendrocyte precursor cells and multipotent neural stem/progenitor cells that have the capacity to differentiate into mature, myelinating OLs. However, endogenous oligodendrogenesis and remyelination processes are limited by the upregulation of remyelination-inhibitory molecules in the post-injury microenvironment. Multiple growth factors/molecules have been shown to promote OL differentiation and myelination. Approach. In this study we screened these therapeutics and found that 3, 3‧, 5-triiodothyronine (T3) is the most effective in promoting oligodendrogenesis and OL maturation in vitro. However, systemic administration of T3 to achieve therapeutic doses in the injured spinal cord is likely to induce hyperthyroidism, resulting in serious side effects. Main results. In this study we developed a novel hydrogel-based drug delivery system for local delivery of T3 to the injury site without eliciting systemic toxicity. Significance. Using a clinically relevant cervical contusion injury model, we demonstrate that local delivery of T3 at doses comparable to safe human doses promoted new mature OL formation and myelination after SCI.

  14. Arsenic promotes centrosome abnormalities and cell colony formation in p53 compromised human lung cells

    International Nuclear Information System (INIS)

    Liao Weiting; Lin Pinpin; Cheng, T.-S.; Yu, H.-S.; Chang, Louis W.

    2007-01-01

    Epidemiological evidence indicated that residents, especially cigarette smokers, in arseniasis areas had significantly higher lung cancer risk than those living in non-arseniasis areas. Thus, an interaction between arsenic and cigarette smoking in lung carcinogenesis was suspected. p53 dysfunction or mutation in lung epithelial cells was frequently observed in cigarette smokers. Our present study was to explore the differential effects by arsenic on H1355 cells (human lung adenocarcinoma cell line with mutation in p53), BEAS-2B (immortalized lung epithelial cell with functional p53) and pifithrin-α-treated BEAS-2B cells (p53-inhibited cells). These cells were treated with different doses of sodium arsenite (0, 0.1, 1, 5 and 10 μM) for 48 h. A greater reduction in cell viability was observed in the BEAS-2B cells vs. p53 compromised cells (H1355 or p53-inhibited BEAS-2B). Similar observation was also made on 7-day cell survival (growth) study. TUNEL analysis confirmed that there was indeed a significantly reduced arsenite-induced apoptosis found in p53-compromised cells. Centrosomal abnormality has been attributed to eventual chromosomal missegregation, aneuploidy and tumorigenesis. In our present study, reduced p21 and Gadd45a expressions and increased centrosomal abnormality (atopic and multiple centrosomes) were observed in both arsenite-treated H1355 and p53-inhibited BEAS-2B cells as compared with similarly treated BEAS-2B cells. Increased anchorage-independent growth (colony formation) of BEAS-2B cells co-treated with pifithrin-α and 5 μM sodium arsenite was also observed in soft agar. Our present investigation demonstrated that arsenic would act specifically on p53 compromised cells (either with p53 dysfunction or inhibited) to induce centrosomal abnormality and colony formation. These findings provided strong evidence on the carcinogenic promotional role of arsenic, especially under the condition of p53 dysfunction

  15. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... spinal cord injury? play_arrow What kind of surgery is common after a spinal cord injury? play_ ... How soon after a spinal cord injury should surgery be performed? play_arrow Is it common to ...

  16. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... L Sarah Harrison, OT Anne Bryden, OT The Role of the Social Worker after Spinal Cord Injury ... a spinal cord injury important? play_arrow What role does “compression” play in a spinal cord injury? ...

  17. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Cord Injury Diane M. Rowles, MS, NP How Family Life Changes After Spinal Cord Injury Nancy Rosenberg, ... Children with Spinal Cord Injury Patricia Mucia, RN Family Life After Pediatric Spinal Injury Dawn Sheaffer, MSW ...

  18. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Counseling Blog About Media Donate Spinal Cord Injury Medical Expert Videos Topics menu Topics Spinal Cord Injury ... Jennifer Piatt, PhD David Chen, MD Read Bio Medical Director, Spinal Cord Injury Rehabilitation Program, Rehabilitation Institute ...

  19. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Blog About Media Donate Spinal Cord Injury Medical Expert Videos Topics menu Topics Spinal Cord Injury 101 ... arrow What is the “Spinal Cord Injury Model Systems” program? play_arrow What are the most promising ...

  20. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Topic Resources Peer Counseling Blog About Media Donate Spinal Cord Injury Medical Expert Videos Topics menu Topics Spinal Cord Injury 101 Adult Injuries Spinal Cord Injury 101 David ...

  1. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Topic Resources Peer Counseling Blog About Media Donate Spinal Cord Injury Medical Expert Videos Topics menu Topics Spinal Cord Injury 101 Adult Injuries Spinal Cord Injury 101 ...

  2. Spinal Cord Diseases

    Science.gov (United States)

    Your spinal cord is a bundle of nerves that runs down the middle of your back. It carries signals back ... of the spine, this can also injure the spinal cord. Other spinal cord problems include Tumors Infections such ...

  3. Spinal cord contusion.

    Science.gov (United States)

    Ju, Gong; Wang, Jian; Wang, Yazhou; Zhao, Xianghui

    2014-04-15

    Spinal cord injury is a major cause of disability with devastating neurological outcomes and limited therapeutic opportunities, even though there are thousands of publications on spinal cord injury annually. There are two major types of spinal cord injury, transaction of the spinal cord and spinal cord contusion. Both can theoretically be treated, but there is no well documented treatment in human being. As for spinal cord contusion, we have developed an operation with fabulous result.

  4. Okara promoted acrylamide and carboxymethyl-lysine formation in bakery products.

    Science.gov (United States)

    Palermo, Mariantonella; Fiore, Alberto; Fogliano, Vincenzo

    2012-10-10

    Soybeans are widely used in bakery products because of their technological advantages and, recently, soybean-containing products have been marketed as functional foods thanks to several health benefits. Okara is a soybean-based ingredient obtained after elimination of the water-soluble component from ground soybeans. In this paper the effect of okara addition to bakery products on the formation of some potentially harmful Maillard reaction products was evaluated. Cookies obtained by replacing 15% of wheat flour with okara showed a visible browning increase and a more intense Maillard reaction development as shown by higher concentrations of 5-hydroxymethyl-2-furaldehyde (HMF) (+100%), acrylamide (+60%), and carboxymethyl-lysine (CML) (+400%) with respect to the control. This phenomenon could be related to the presence in okara of about 50% of insoluble dietary fiber: the fiber reduces water activity during cooking, thus promoting Maillard reaction. To confirm this hypothesis, cookies obtained by replacing 7% of wheat flour with three different types of dietary fiber (cellulose, chitosan, and pea fiber) were prepared: these experimental cookies showed higher Maillard reaction product concentration with respect to the control and, in particular, HMF and CML values were directly related to the fiber water-holding capacity (WHC). To extend the observation to the food market, a sampling of soybean-containing commercial bakery products was analyzed by comparing the concentrations of Maillard reaction products with those of similar bakery products without soy. Soybean-containing samples showed higher concentrations of acrylamide and CML than corresponding controls.

  5. Epithelial membrane protein-2 promotes endometrial tumor formation through activation of FAK and Src.

    Directory of Open Access Journals (Sweden)

    Maoyong Fu

    Full Text Available Endometrial cancer is the most common gynecologic malignancy diagnosed among women in developed countries. One recent biomarker strongly associated with disease progression and survival is epithelial membrane protein-2 (EMP2, a tetraspan protein known to associate with and modify surface expression of certain integrin isoforms. In this study, we show using a xenograft model system that EMP2 expression is necessary for efficient endometrial tumor formation, and we have started to characterize the mechanism by which EMP2 contributes to this malignant phenotype. In endometrial cancer cells, the focal adhesion kinase (FAK/Src pathway appears to regulate migration as measured through wound healing assays. Manipulation of EMP2 levels in endometrial cancer cells regulates the phosphorylation of FAK and Src, and promotes their distribution into lipid raft domains. Notably, cells with low levels of EMP2 fail to migrate and poorly form tumors in vivo. These findings reveal the pivotal role of EMP2 in endometrial cancer carcinogenesis, and suggest that the association of elevated EMP2 levels with endometrial cancer prognosis may be causally linked to its effect on integrin-mediated signaling.

  6. From the Rodent Spinal Cord Injury Model to Human Application: Promises and Challenges.

    Science.gov (United States)

    Dietz, Volker; Schwab, Martin E

    2017-05-01

    Repair of the spinal cord and improvement of mobility after injury has been a matter of basic and clinical research for several decades. A number of repair approaches were performed in animals, mainly rodent models of spinal cord injury (SCI). Some of these experimental therapies resulted in significant regeneration of tract fibers, formation of new connections and circuits, and associated improvement of mobility. Some clinical trials aiming at translating these approaches to the human condition of an SCI are currently on-going. The present therapy, however, remains rehabiliation: Mobility of patients with an SCI can be improved to a limited extent by the exploition of neuroplasticity. In this article the present state of the art in the field of SCI research will be discussed. Studies dealing with the promotion of spinal cord repair and those directed to improve mobility by exploition of neuroplasticity will be summarized. The promises and challenges of translational basic research in rodent SCI models will be presented.

  7. Inflammation induced mTORC2-Akt-mTORC1 signaling promotes macrophage foam cell formation.

    Science.gov (United States)

    Banerjee, Dipanjan; Sinha, Archana; Saikia, Sudeshna; Gogoi, Bhaskarjyoti; Rathore, Arvind K; Das, Anindhya Sundar; Pal, Durba; Buragohain, Alak K; Dasgupta, Suman

    2018-06-05

    The transformation of macrophages into lipid loaded foam cells is a critical and early event in the pathogenesis of atherosclerosis. Several recent reports highlighted that induction of TLR4 signaling promotes macrophage foam cell formation; however, the underlying molecular mechanisms have not been clearly elucidated. Here, we found that the TLR4 mediated inflammatory signaling communicated with mTORC2-Akt-mTORC1 metabolic cascade in macrophage and thereby promoting lipid uptake and foam cell formation. Mechanistically, LPS treatment markedly upregulates TLR4 mediated inflammatory pathway which by activating mTORC2 induces Akt phosphorylation at serine 473 and that aggravate mTORC1 dependent scavenger receptors expression and consequent lipid accumulation in THP-1 macrophages. Inhibition of mTORC2 either by silencing Rictor expression or inhibiting its association with mTOR notably prevents LPS induced Akt activation, scavenger receptors expression and macrophage lipid accumulation. Although suppression of mTORC1 expression by genetic knockdown of Raptor did not produce any significant change in Akt S473 phosphorylation, however, incubation with Akt activator in Rictor silenced cells failed to promote scavenger receptors expression and macrophage foam cell formation. Thus, present research explored the signaling pathway involved in inflammation induced macrophage foam cells formation and therefore, targeting this pathway might be useful for preventing macrophage foam cell formation. Copyright © 2018 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  8. Dermatopontin interacts with fibronectin, promotes fibronectin fibril formation, and enhances cell adhesion.

    Science.gov (United States)

    Kato, Aiko; Okamoto, Osamu; Ishikawa, Kazushi; Sumiyoshi, Hideaki; Matsuo, Noritaka; Yoshioka, Hidekatsu; Nomizu, Motoyoshi; Shimada, Tatsuo; Fujiwara, Sakuhei

    2011-04-29

    We report that dermatopontin (DP), an abundant dermal extracellular matrix protein, is found in the fibrin clot and in the wound fluid, which comprise the provisional matrix at the initial stage of wound healing. DP was also found in the serum but at a lower concentration than that in wound fluid. DP co-localized with both fibrin and fibronectin on fibrin fibers and interacted with both proteins. Both normal fibroblast and HT1080 cell adhesion to the fibrin-fibronectin matrix were dose-dependently enhanced by DP, and the adhesion was mediated by α5β1 integrin. The cytoskeleton was more organized in the cells that adhered to the fibrin-fibronectin-DP complex. When incubated with DP, fibronectin formed an insoluble complex of fibronectin fibrils as visualized by electron microscopy. The interacting sites of fibronectin with DP were the first, thirteenth, and fourteenth type III repeats (III(1), III(13), and III(14)), with III(13) and III(14) assumed to be the major sites. The interaction between III(2-3) and III(12-14) was inhibited by DP, whereas the interaction between I(1-5) and III(12-14) was specifically and strongly enhanced by DP. Because the interaction between III(2-3) and III(12-14) is involved in forming a globular conformation of fibronectin, and that between I(1-5) and III(12-14) is required for forming fibronectin fibrils, DP promotes fibronectin fibril formation probably by changing the fibronectin conformation. These results suggest that DP has an accelerating role in fibroblast cell adhesion to the provisional matrix in the initial stage of wound healing.

  9. Dietary omega-3 polyunsaturated fatty acids improve the neurolipidome and restore the DHA status while promoting functional recovery after experimental spinal cord injury.

    Science.gov (United States)

    Figueroa, Johnny D; Cordero, Kathia; Llán, Miguel S; De Leon, Marino

    2013-05-15

    Omega-3 polyunsaturated fatty acids (ω-3 PUFAs) confer multiple health benefits and decrease the risk of neurological disorders. Studies are needed, however, to identify promising cellular targets and to assess their prophylactic value against neurodegeneration. The present study (1) examined the efficacy of a preventive diet enriched with ω-3 PUFAs to reduce dysfunction in a well-established spinal cord injury (SCI) animal model and (2) used a novel metabolomics data analysis to identify potential neurolipidomic targets. Rats were fed with either control chow or chow enriched with ω-3 PUFAs (750 mg/kg/day) for 8 weeks before being subjected to a sham or a contusion SCI operation. We report new evidence showing that rats subjected to SCI after being pre-treated with a diet enriched with ω-3 PUFAs exhibit significantly better functional outcomes. Pre-treated animals exhibited lower sensory deficits, autonomic bladder recovery, and early improvements in locomotion that persisted for at least 8 weeks after trauma. We found that SCI triggers a robust alteration in the cord PUFA neurolipidome, which was characterized by a marked docosahexaenoic acid (DHA) deficiency. This DHA deficiency was associated with dysfunction and corrected with the ω-3 PUFA-enriched diet. Multivariate data analyses revealed that the spinal cord of animals consuming the ω-3 PUFA-enriched diet had a fundamentally distinct neurolipidome, particularly increasing the levels of essential and long chain ω-3 fatty acids and lysolipids at the expense of ω-6 fatty acids and its metabolites. Altogether, dietary ω-3 PUFAs prophylaxis confers resiliency to SCI mediated, at least in part, by generating a neuroprotective and restorative neurolipidome.

  10. Dietary Omega-3 Polyunsaturated Fatty Acids Improve the Neurolipidome and Restore the DHA Status while Promoting Functional Recovery after Experimental Spinal Cord Injury

    Science.gov (United States)

    Figueroa, Johnny D.; Cordero, Kathia; llán, Miguel S.

    2013-01-01

    Abstract Omega-3 polyunsaturated fatty acids (ω-3 PUFAs) confer multiple health benefits and decrease the risk of neurological disorders. Studies are needed, however, to identify promising cellular targets and to assess their prophylactic value against neurodegeneration. The present study (1) examined the efficacy of a preventive diet enriched with ω-3 PUFAs to reduce dysfunction in a well-established spinal cord injury (SCI) animal model and (2) used a novel metabolomics data analysis to identify potential neurolipidomic targets. Rats were fed with either control chow or chow enriched with ω-3 PUFAs (750 mg/kg/day) for 8 weeks before being subjected to a sham or a contusion SCI operation. We report new evidence showing that rats subjected to SCI after being pre-treated with a diet enriched with ω-3 PUFAs exhibit significantly better functional outcomes. Pre-treated animals exhibited lower sensory deficits, autonomic bladder recovery, and early improvements in locomotion that persisted for at least 8 weeks after trauma. We found that SCI triggers a robust alteration in the cord PUFA neurolipidome, which was characterized by a marked docosahexaenoic acid (DHA) deficiency. This DHA deficiency was associated with dysfunction and corrected with the ω-3 PUFA-enriched diet. Multivariate data analyses revealed that the spinal cord of animals consuming the ω-3 PUFA-enriched diet had a fundamentally distinct neurolipidome, particularly increasing the levels of essential and long chain ω-3 fatty acids and lysolipids at the expense of ω-6 fatty acids and its metabolites. Altogether, dietary ω-3 PUFAs prophylaxis confers resiliency to SCI mediated, at least in part, by generating a neuroprotective and restorative neurolipidome. PMID:23294084

  11. Self-Assembled Matrix by Umbilical Cord Stem Cells

    Directory of Open Access Journals (Sweden)

    Biagio Saitta

    2011-09-01

    Full Text Available Corneal integrity is critical for vision. Corneal wounds frequently heal with scarring that impairs vision. Recently, human umbilical cord mesenchymal stem cells (cord stem cells have been investigated for tissue engineering and therapy due to their availability and differentiation potential. In this study, we used cord stem cells in a 3-dimensional (3D stroma-like model to observe extracellular matrix organization, with human corneal fibroblasts acting as a control. For 4 weeks, the cells were stimulated with a stable Vitamin C (VitC derivative ±TGF-b1. After 4 weeks, the mean thickness of the constructs was ~30 mm; however, cord stem cell constructs had 50% less cells per unit volume, indicating the formation of a dense matrix. We found minimal change in decorin and lumican mRNA, and a significant increase in perlecan mRNA in the presence of TGF-b1. Keratocan on the other hand decreased with TGF-b1 in both cell lineages. With both cell types, the constructs possessed aligned collagen fibrils and associated glycosaminoglycans. Fibril diameters did not change with TGF-b1 stimulation or cell lineage; however, highly sulfated glycosaminoglycans associated with the collagen fibrils significantly increased with TGF-b1. Overall, we have shown that cord stem cells can secrete their own extracellular matrix and promote the deposition and sulfation of various proteoglycans. Furthermore, these cells are at least comparable to commonly used corneal fibroblasts and present an alternative for the 3D in vitro tissue engineered model.

  12. Promotion of chlamydoconidium formation in Candida albicans by corn meal broth incubation.

    Science.gov (United States)

    Nakamoto, S

    1998-04-01

    Chlamydoconidium formation can be used as a tool for the identification of Candida albicans. While chlamydoconidia are known to be inducible on corn meal agar, this report demonstrates that testing in liquid media supplemented with milk or serum enhances chlamydoconidium formation and the formation of complex mycelial clusters.

  13. Deletion of beta-2-microglobulin ameliorates spinal cord lesion load and promotes recovery of brainstem NAA levels in a murine model of multiple sclerosis.

    Science.gov (United States)

    Denic, Aleksandar; Pirko, Istvan; Wootla, Bharath; Bieber, Allan; Macura, Slobodan; Rodriguez, Moses

    2012-09-01

    We used genetic deletion of β2-microglobulin to study the influence of CD8(+) T cells on spinal cord demyelination, remyelination, axonal loss and brainstem N-acetyl aspartate levels during the acute and chronic phases of Theiler's murine encephalomyelitis virus (TMEV) infection. We used β2m(-/-) and β2m(+/+) B10.Q mice (of H-2(q) background) normally susceptible to TMEV-induced demyelination. Over the disease course, β2m(+/+) mice had increasing levels of demyelination and minimal late-onset remyelination. In contrast, β2m(-/-) mice had steady levels of demyelination from 45-390 dpi and remyelination was extensive and more complete. Early in the disease, brainstem NAA levels drop in both strains, but accordingly with remyelination and axonal preservation, NAA recover in β2m(-/-) mice despite equivalent brainstem pathology. At 270 dpi, β2m(+/+) mice had significantly fewer spinal cord axons than β2m(-/-) mice (up to 28% less). In addition, β2m(+/+) mice lost axons of all calibers, whereas β2m(-/-) mice had a modest loss of only medium- and large-caliber axons. This study further supports the hypothesis that CD8(+) T cells are involved in demyelination, and axonal loss following Theiler's virus-induced demyelination. © 2012 The Authors; Brain Pathology © 2012 International Society of Neuropathology.

  14. Torakal Ventral Cord Herniation

    Directory of Open Access Journals (Sweden)

    Sermin Tok

    2015-11-01

    Full Text Available  Ventral cord herniation is a rare cause of focal myelopathy due to herniation of the thoracic cord through a dural defect.It is also known by a variety of other terms such as spontaneous thoracic cord herniation or idiopathic spinal cord herniation.The key feature is focal distortion and rotation of the cord with no CSF seen between it and the ventral theca.

  15. Family-directed umbilical cord blood banking.

    Science.gov (United States)

    Gluckman, Eliane; Ruggeri, Annalisa; Rocha, Vanderson; Baudoux, Etienne; Boo, Michael; Kurtzberg, Joanne; Welte, Kathy; Navarrete, Cristina; van Walraven, Suzanna M

    2011-11-01

    Umbilical cord blood transplantation from HLA-identical siblings provides good results in children. These results support targeted efforts to bank family cord blood units that can be used for a sibling diagnosed with a disease which can be cured by allogeneic hematopoietic stem cell transplantation or for research that investigates the use of allogeneic or autologous cord blood cells. Over 500 patients transplanted with related cord blood units have been reported to the Eurocord registry with a 4-year overall survival of 91% for patients with non-malignant diseases and 56% for patients with malignant diseases. Main hematologic indications in children are leukemia, hemoglobinopathies or inherited hematologic, immunological or metabolic disorders. However, family-directed cord blood banking is not widely promoted; many cord blood units used in sibling transplantation have been obtained from private banks that do not meet the necessary criteria required to store these units. Marketing by private banks who predominantly store autologous cord blood units has created public confusion. There are very few current validated indications for autologous storage but some new indications might appear in the future. Little effort is devoted to provide unbiased information and to educate the public as to the distinction between the different types of banking, economic models and standards involved in such programs. In order to provide a better service for families in need, directed-family cord blood banking activities should be encouraged and closely monitored with common standards, and better information on current and future indications should be made available.

  16. Spinal cord injury reveals multilineage differentiation of ependymal cells.

    Directory of Open Access Journals (Sweden)

    Konstantinos Meletis

    2008-07-01

    Full Text Available Spinal cord injury often results in permanent functional impairment. Neural stem cells present in the adult spinal cord can be expanded in vitro and improve recovery when transplanted to the injured spinal cord, demonstrating the presence of cells that can promote regeneration but that normally fail to do so efficiently. Using genetic fate mapping, we show that close to all in vitro neural stem cell potential in the adult spinal cord resides within the population of ependymal cells lining the central canal. These cells are recruited by spinal cord injury and produce not only scar-forming glial cells, but also, to a lesser degree, oligodendrocytes. Modulating the fate of ependymal progeny after spinal cord injury may offer an alternative to cell transplantation for cell replacement therapies in spinal cord injury.

  17. Wave energy focusing to subsurface poroelastic formations to promote oil mobilization

    KAUST Repository

    Karve, P. M.; Kallivokas, L. F.

    2015-01-01

    We discuss an inverse source formulation aimed at focusing wave energy produced by ground surface sources to target subsurface poroelastic formations. The intent of the focusing is to facilitate or enhance the mobility of oil entrapped within

  18. Spermidine promotes Bacillus subtilis biofilm formation by activating expression of the matrix regulator slrR.

    Science.gov (United States)

    Hobley, Laura; Li, Bin; Wood, Jennifer L; Kim, Sok Ho; Naidoo, Jacinth; Ferreira, Ana Sofia; Khomutov, Maxim; Khomutov, Alexey; Stanley-Wall, Nicola R; Michael, Anthony J

    2017-07-21

    Ubiquitous polyamine spermidine is not required for normal planktonic growth of Bacillus subtilis but is essential for robust biofilm formation. However, the structural features of spermidine required for B. subtilis biofilm formation are unknown and so are the molecular mechanisms of spermidine-stimulated biofilm development. We report here that in a spermidine-deficient B. subtilis mutant, the structural analogue norspermidine, but not homospermidine, restored biofilm formation. Intracellular biosynthesis of another spermidine analogue, aminopropylcadaverine, from exogenously supplied homoagmatine also restored biofilm formation. The differential ability of C-methylated spermidine analogues to functionally replace spermidine in biofilm formation indicated that the aminopropyl moiety of spermidine is more sensitive to C -methylation, which it is essential for biofilm formation, but that the length and symmetry of the molecule is not critical. Transcriptomic analysis of a spermidine-depleted B. subtilis speD mutant uncovered a nitrogen-, methionine-, and S -adenosylmethionine-sufficiency response, resulting in repression of gene expression related to purine catabolism, methionine and S -adenosylmethionine biosynthesis and methionine salvage, and signs of altered membrane status. Consistent with the spermidine requirement in biofilm formation, single-cell analysis of this mutant indicated reduced expression of the operons for production of the exopolysaccharide and TasA protein biofilm matrix components and SinR antagonist slrR Deletion of sinR or ectopic expression of slrR in the spermidine-deficient Δ speD background restored biofilm formation, indicating that spermidine is required for expression of the biofilm regulator slrR Our results indicate that spermidine functions in biofilm development by activating transcription of the biofilm matrix exopolysaccharide and TasA operons through the regulator slrR . © 2017 by The American Society for Biochemistry and

  19. Detachment-induced E-cadherin expression promotes 3D tumor spheroid formation but inhibits tumor formation and metastasis of lung cancer cells.

    Science.gov (United States)

    Powan, Phattrakorn; Luanpitpong, Sudjit; He, Xiaoqing; Rojanasakul, Yon; Chanvorachote, Pithi

    2017-11-01

    The epithelial-to-mesenchymal transition is proposed to be a key mechanism responsible for metastasis-related deaths. Similarly, cancer stem cells (CSCs) have been proposed to be a key driver of tumor metastasis. However, the link between the two events and their control mechanisms is unclear. We used a three-dimensional (3D) tumor spheroid assay and other CSC-indicating assays to investigate the role of E-cadherin in CSC regulation and its association to epithelial-to-mesenchymal transition in lung cancer cells. Ectopic overexpression and knockdown of E-cadherin were found to promote and retard, respectively, the formation of tumor spheroids in vitro but had opposite effects on tumor formation and metastasis in vivo in a xenograft mouse model. We explored the discrepancy between the in vitro and in vivo results and demonstrated, for the first time, that E-cadherin is required as a component of a major survival pathway under detachment conditions. Downregulation of E-cadherin increased the stemness of lung cancer cells but had an adverse effect on their survival, particularly on non-CSCs. Such downregulation also promoted anoikis resistance and invasiveness of lung cancer cells. These results suggest that anoikis assay could be used as an alternative method for in vitro assessment of CSCs that involves dysregulated adhesion proteins. Our data also suggest that agents that restore E-cadherin expression may be used as therapeutic agents for metastatic cancers. Copyright © 2017 the American Physiological Society.

  20. Nicotinamide Promotes Adipogenesis in Umbilical Cord-Derived Mesenchymal Stem Cells and Is Associated with Neonatal Adiposity: The Healthy Start BabyBUMP Project.

    Directory of Open Access Journals (Sweden)

    Allison L B Shapiro

    Full Text Available The cellular mechanisms whereby excess maternal nutrition during pregnancy increases adiposity of the offspring are not well understood. However, nicotinamide (NAM, a fundamental micronutrient that is important in energy metabolism, has been shown to regulate adipogenesis through inhibition of SIRT1. Here we tested three novel hypotheses: 1 NAM increases the adipogenic response of human umbilical cord tissue-derived mesenchymal stem cells (MSCs through a SIRT1 and PPARγ pathway; 2 lipid potentiates the NAM-enhanced adipogenic response; and 3 the adipogenic response to NAM is associated with increased percent fat mass (%FM among neonates. MSCs were derived from the umbilical cord of 46 neonates born to non-obese mothers enrolled in the Healthy Start study. Neonatal %FM was measured using air displacement plethysmography (Pea Pod shortly after birth. Adipogenic differentiation was induced for 21 days in the 46 MSC sets under four conditions, +NAM (3mM/-lipid (200 μM oleate/palmitate mix, +NAM/+lipid, -NAM/+lipid, and vehicle-control (-NAM/-lipid. Cells incubated in the presence of NAM had significantly higher PPARγ protein (+24%, p <0.01, FABP4 protein (+57%, p <0.01, and intracellular lipid content (+51%, p <0.01. Lipid did not significantly increase either PPARγ protein (p = 0.98 or FABP4 protein content (p = 0.82. There was no evidence of an interaction between NAM and lipid on adipogenic response of PPARγ or FABP4 protein (p = 0.99 and p = 0.09. In a subset of 9 MSC, SIRT1 activity was measured in the +NAM/-lipid and vehicle control conditions. SIRT1 enzymatic activity was significantly lower (-70%, p <0.05 in the +NAM/-lipid condition than in vehicle-control. In a linear model with neonatal %FM as the outcome, the percent increase in PPARγ protein in the +NAM/-lipid condition compared to vehicle-control was a significant predictor (β = 0.04, 95% CI 0.01-0.06, p <0.001. These are the first data to support that chronic NAM exposure

  1. Downregulation of miR-199b promotes the acute spinal cord injury through IKKβ-NF-κB signaling pathway activating microglial cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Heng-Jun [Department of Neurosurgery, the First Affiliated Hospital, Zhejiang University, 79 Qingchun Road, Hangzhou 310003, Zhejiang (China); Wang, Li-Qing [Department of Anesthesia, the First Affiliated Hospital, Zhejiang University, Hangzhou 310003 (China); Xu, Qing-Sheng; Fan, Zuo-Xu; Zhu, Yu; Jiang, Hao; Zheng, Xiu-Jue; Ma, Yue-Hui [Department of Neurosurgery, the First Affiliated Hospital, Zhejiang University, 79 Qingchun Road, Hangzhou 310003, Zhejiang (China); Zhan, Ren-Ya, E-mail: zhanry148@163.com [Department of Neurosurgery, the First Affiliated Hospital, Zhejiang University, 79 Qingchun Road, Hangzhou 310003, Zhejiang (China)

    2016-11-15

    Inflammatory response played an important role in the progression of spinal cord injury (SCI). Several miRNAs were associated with the pathology of SCI. However, the molecular mechanism of miRNA involving in inflammatory response in acute SCI (ASCI) was poorly understood. Sprague-Dawley (SD) rats were divided into 2 groups: control group (n=6) and acute SCI (ASCI) group (n=6). The expression of miR-199b and IκB kinase β-nuclear factor-kappa B (IKKβ-NF-κB) signaling pathway were evaluated by quantitative reverse transcription-PCR (qRT-PCR) in rats with ASCI and in primary microglia activated by lipopolysaccharide (LPS). We found that downregulation of miR-199b and activation of IKKβ/NF-κB were observed in rats after ASCI and in activated microglia. miR-199b negatively regulated IKKβ by targeting its 3′- untranslated regions (UTR) through using luciferase reporter assay. Overexpression of miR-199b reversed the up-regulation of IKKβ, p-p65, tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) in LPS-treated BV2 cells assessed by western blotting analysis. In addition, BMS-345541 reversed the up-regulation effects of miR-199b inhibitor on the expression of TNF-α and IL-1β. In the SCI rats, overexpression of miR-199b attenuated ASCI and decreased the expression of IKKβ-NF-κB signaling pathway and TNF-α and IL-1β. These results indicated that miR-199b attenuated ASCI at least partly through IKKβ-NF-κB signaling pathway and affecting the function of microglia. Our findings suggest that miR-199b may be employed as therapeutic for spinal cord injury. - Highlights: • Downregulation of miR-199b and activation of IKKβ/NF-κB were observed in rat after SCI. • miR-199b negatively regulated IKKβ by targeting its 3′-UTR. • miR-199b overexpression reversed the increasing IKKβ, p-p65, TNF-α and IL-1β in LPS-treated BV2. • BMS-345541 reversed the up-regulation of TNF-α and IL-1β induced by miR-199b inhibitor. • Overexpression of miR-199b

  2. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... About Media Donate Spinal Cord Injury Medical Expert Videos ... Home Kim Eberhardt Muir, MS Coping with a New Injury Robin Dorman, PsyD Sex and Fertility After Spinal Cord Injury Diane M. ...

  3. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... of Spinal Cord Injury Rehabilitation Kristine Cichowski, MS Occupational Therapy after Spinal Cord Injury Katie Powell, OT ... does not provide medical advice, recommend or endorse health care products or services, or control the information ...

  4. Spinal Cord Dysfunction (SCD)

    Data.gov (United States)

    Department of Veterans Affairs — The Spinal Cord Dysfunction (SCD) module supports the maintenance of local and national registries for the tracking of patients with spinal cord injury and disease...

  5. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Injury Facts and Figures Care and Treatment After SCI Spinal Cord Injury Rehabilitation Pediatric Spinal Cord Injuries Video Library SCI Medical Experts People Living with SCI Personal Experiences ...

  6. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... of spinal cord injuries? play_arrow What does stem-cell research on animals tell us? play_arrow When can we expect stem-cell treatments to become available for spinal cord injuries? ...

  7. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... spinal cord injuries? play_arrow What does stem-cell research on animals tell us? play_arrow When can we expect stem-cell treatments to become available for spinal cord injuries? ...

  8. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Spinal Cord Injuries Video Library SCI Medical Experts People Living with SCI Personal Experiences by Topic Resources ... Spinal Cord Injuries Video Library SCI Medical Experts People Living with SCI Personal Experiences by Topic Resources ...

  9. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... play_arrow What are the chances of regaining feeling and mobility after a spinal cord injury? play_arrow How long does it usually take for feeling and movement to return after a spinal cord ...

  10. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... RN Pediatric Injuries Pediatric Spinal Cord Injury 101 Lawrence Vogel, MD The Basics of Pediatric SCI Rehabilitation ... Rogers, PT Recreational Therapy after Spinal Cord Injury Jennifer Piatt, PhD David Chen, MD Read Bio Medical ...

  11. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Disabilities Photography by Rona Talcott Website by Mobile Marketing LLC Understanding Spinal Cord Injury About Us Expert Videos Contact Us Personal Experience Videos Blog Videos By Topic Media Resources Donate to support families facing spinal cord ...

  12. Tethered Spinal Cord Syndrome

    Science.gov (United States)

    ... cord over time and may be exacerbated during sports or pregnancy, or may be due to narrowing of the ... cord over time and may be exacerbated during sports or pregnancy, or may be due to narrowing of the ...

  13. Spinal cord stimulation

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/007560.htm Spinal cord stimulation To use the sharing features on this page, please enable JavaScript. Spinal cord stimulation is a treatment for pain that uses ...

  14. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Spinal Cord Injury 101 Lawrence Vogel, MD The Basics of Pediatric SCI Rehabilitation Sara Klaas, MSW Transitions for Children with Spinal Cord Injury Patricia Mucia, RN Family Life After Pediatric Spinal Injury Dawn Sheaffer, MSW Rehabilitation ...

  15. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Spinal Cord Injury 101 David Chen, MD Preventing Pressure Sores Mary Zeigler, MS Transition from Hospital to ... a spinal cord injury? play_arrow Why are high-dose steroids often used right after an injury? ...

  16. The "Balance Intervention" for Promoting Caloric Compensatory Behaviours in Response to Overeating: A Formative Evaluation

    Science.gov (United States)

    Wammes, Birgitte; Breedveld, Boudewijn; Kremers, Stef; Brug, Johannes

    2006-01-01

    To help people prevent weight gain, the Netherlands Nutrition Centre initiated the "balance intervention", which promotes moderation of food intake and/or increased physical activity in response to occasions of overeating. The aim of this study was to determine whether intervention materials were appreciated, encouraged information…

  17. Milk-Derived Nanoparticle Fraction Promotes the Formation of Small Osteoclasts But Reduces Bone Resorption

    NARCIS (Netherlands)

    Oliveira, M.C.; Di Ceglie, I.; Arntz, O.J.; Berg, W.B. van den; Hoogen, F.H.J. van den; Ferreira, A.V.; Lent, P.L.E.M. van; Loo, F.A.J. van de

    2017-01-01

    The general consensus is that milk promotes bone growth and density because is a source of calcium and contains components that enhance intestinal calcium uptake or directly affect bone metabolism. In this study, we investigated the effect of bovine-derived milk 100,000 g pellet (P100), which

  18. Lactate has the potential to promote hydrogen sulphide formation in the human colon.

    Science.gov (United States)

    Marquet, Perrine; Duncan, Sylvia H; Chassard, Christophe; Bernalier-Donadille, Annick; Flint, Harry J

    2009-10-01

    High concentrations of sulphide are toxic for the gut epithelium and may contribute to bowel disease. Lactate is a favoured cosubstrate for the sulphate-reducing colonic bacterium Desulfovibrio piger, as shown here by the stimulation of sulphide formation by D. piger DSM749 by lactate in the presence of sulphate. Sulphide formation by D. piger was also stimulated in cocultures with the lactate-producing bacterium Bifidobacterium adolescentis L2-32. Other lactate-utilizing bacteria such as the butyrate-producing species Eubacterium hallii and Anaerostipes caccae are, however, expected to be in competition with the sulphate-reducing bacteria (SRB) for the lactate formed in the human colon. Strains of E. hallii and A. caccae produced 65% and 96% less butyrate from lactate, respectively, in a coculture with D. piger DSM749 than in a pure culture. In triculture experiments involving B. adolescentis L2-32, up to 50% inhibition of butyrate formation by E. hallii and A. caccae was observed in the presence of D. piger DSM749. On the other hand, sulphide formation by D. piger was unaffected by E. hallii or A. caccae in these cocultures and tricultures. These experiments strongly suggest that lactate can stimulate sulphide formation by SRB present in the colon, with possible consequences for conditions such as colitis.

  19. The virulence regulator PrfA promotes biofilm formation by Listeria monocytogenes.

    Science.gov (United States)

    Lemon, Katherine P; Freitag, Nancy E; Kolter, Roberto

    2010-08-01

    Listeria monocytogenes is a food-borne facultative intracellular pathogen. It is widespread in the environment and has several distinct life-styles. The key transcriptional activator PrfA positively regulates L. monocytogenes virulence genes to mediate the transition from extracellular, flagellum-propelled cell to intracellular pathogen. Here we report the first evidence that PrfA also has a significant positive impact on extracellular biofilm formation. Mutants lacking prfA were defective in surface-adhered biofilm formation. The DeltaprfA mutant exhibited wild-type flagellar motility, and its biofilm defect occurred after initial surface adhesion. We also observed that mutations that led to the constitutive expression of PrfA-dependent virulence genes had a minimal impact on biofilm formation. Furthermore, biofilm development was enhanced in a mutant encoding a PrfA protein variant unable to fully transition from the extracellular form to the virulent, intracellular activity conformation. These results indicate that PrfA positively regulates biofilm formation and suggest that PrfA has a global role in modulating the life-style of L. monocytogenes. The requirement of PrfA for optimal biofilm formation may provide selective pressure to maintain this critical virulence regulator when L. monocytogenes is outside host cells in the environment.

  20. Chinese red yeast rice (Monascus purpureus-fermented rice promotes bone formation

    Directory of Open Access Journals (Sweden)

    Rabie Bakr

    2008-03-01

    Full Text Available Abstract Background Statin can induce the gene expression of bone morphogenetic protein-2. Red yeast rice (RYR, Hongqu, i.e. rice fermented with Monascus purpureus, contains a natural form of statin. This study demonstrates the effects of RYR extract on bone formation. Methods Bone defects were created in the parietal bones of two New Zealand white rabbits. In the test animal, two defects were grafted with collagen matrix mixed with RYR extract. In the control animal, two defects were grafted with collagen matrix alone. UMR 106 cell line was used to test RYR extract in vitro. In the control group, cells were cultured for three durations (24 hours, 48 hours and 72 hours without any intervention. In the RYR group, cells were cultured for the same durations with various concentrations of RYR extract (0.001 g/ml, 0.005 g/ml and 0.01 g/ml. Bicinchoninic acid (BCA assay, 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay and alkaline phosphatase (ALP assay were performed to measure total protein, mitochondrial activity and bone cell formation respectively. Results The test animal showed more formation of new bone in the defects than the control animal. RYR significantly increased the optical density in the MTT assay and ALP activity in vitro. Conclusion RYR extract stimulated new bone formation in bone defects in vivo and increased bone cell formation in vitro.

  1. GABA promotes elastin synthesis and elastin fiber formation in normal human dermal fibroblasts (HDFs).

    Science.gov (United States)

    Uehara, Eriko; Hokazono, Hideki; Hida, Mariko; Sasaki, Takako; Yoshioka, Hidekatsu; Matsuo, Noritaka

    2017-06-01

    The multiple physiological effects of γ-aminobutyric acid (GABA) as a functional food component have been recently reported. We previously reported that GABA upregulated the expression of type I collagen in human dermal fibroblasts (HDFs), and that oral administration of GABA significantly increased skin elasticity. However, details of the regulatory mechanism still remain unknown. In this study, we further examined the effects of GABA on elastin synthesis and elastin fiber formation in HDFs. Real-time PCR indicated that GABA significantly increased the expression of tropoelastin transcript in a dose-dependent manner. Additionally, the expression of fibrillin-1, fibrillin-2, and fibulin-5/DANCE, but not lysyl oxidase and latent transforming factor-β-binding protein 4, were also significantly increased in HDFs. Finally, immunohistochemical analysis confirmed that treatment with GABA dramatically increased the formation of elastic fibers in HDFs. Taken together, our results showed that GABA improves skin elasticity in HDFs by upregulating elastin synthesis and elastin fiber formation.

  2. Low temperature and Daphnia-associated infochemicals promote colony formation of Scenedesmus obliquus and its harvesting.

    Science.gov (United States)

    Zhu, Xuexia; Yang, Jingwen; Zhang, Xingxing; Zhang, Lu; Wang, Xiaojun; Huang, Yuan; Yang, Zhou

    2017-01-01

    To explore the combined effects of temperature and Daphnia-associated infochemicals on colony formation of Scenedesmus obliquus to faciliate harvesting the algal biomass. A three-parameter modified Gaussian model fitted the changes of the number of cells per particle in S. obliquus induced by Daphnia culture filtrate well under any temperature. Decreases in temperature enhanced the induced-colony formation of Scenedesmus. The maximum colony size at 15-25 °C was significantly larger than those at 30-35 °C. An additional 1 or 2 days at low temperature was needed to reach the maximum colony size, which indicates the best harvest time for algal biomass. Induced-colony formation of Scenedesmus by Daphnia culture filtrate at 15-25 °C is recommended to settle algal cells. This condition facilitates harvesting the biomass.

  3. Germ Cell-less Promotes Centrosome Segregation to Induce Germ Cell Formation

    Directory of Open Access Journals (Sweden)

    Dorothy A. Lerit

    2017-01-01

    Full Text Available The primordial germ cells (PGCs specified during embryogenesis serve as progenitors to the adult germline stem cells. In Drosophila, the proper specification and formation of PGCs require both centrosomes and germ plasm, which contains the germline determinants. Centrosomes are microtubule (MT-organizing centers that ensure the faithful segregation of germ plasm into PGCs. To date, mechanisms that modulate centrosome behavior to engineer PGC development have remained elusive. Only one germ plasm component, Germ cell-less (Gcl, is known to play a role in PGC formation. Here, we show that Gcl engineers PGC formation by regulating centrosome dynamics. Loss of gcl leads to aberrant centrosome separation and elaboration of the astral MT network, resulting in inefficient germ plasm segregation and aborted PGC cellularization. Importantly, compromising centrosome separation alone is sufficient to mimic the gcl loss-of-function phenotypes. We conclude Gcl functions as a key regulator of centrosome separation required for proper PGC development.

  4. EXPANSINA17 up-regulated by LBD18/ASL20 promotes lateral root formation during the auxin response.

    Science.gov (United States)

    Lee, Han Woo; Kim, Jungmook

    2013-10-01

    Expansins are non-hydrolytic cell wall-loosening proteins involved in a variety of plant developmental processes during which cell wall modification occurs. Cell wall remodeling proteins including expansins have been suggested to be involved in cell separation to facilitate the emergence of lateral roots (LRs) through the overlaying tissues of the primary root. LBD18/ASL20 activates EXPANSINA14 (EXPA14) expression by directly binding to the EXPA14 promoter to enhance LR emergence in Arabidopsis thaliana. Here we show that EXPA17 is another target gene regulated by LBD18 to promote LR formation in Arabidopsis. We showed that nuclear translocation of the LBD18:GR fusion protein expressed under the Cauliflower mosaic virus (CaMV) 35S promoter or under the LBD18 promoter by dexamethasone treatment results in an increase in EXPA17 transcript levels. β-Glucuronidase (GUS) expression under the EXPA17 promoter, which is detected only in the roots of the wild type, was reduced in the LR primordium and overlaying tissues in an lbd18 mutant background. The number of emerged LRs of the EXPA17 RNAi (RNA interference) Arabidopsis lines was significantly lower than that of the wild type. Overexpression of EXPA17 in Arabidopsis increased the density of emerged LRs in the presence of auxin compared with the wild type. LR induction experiments with a gravitropic stimulus showed that LR emergence is delayed in the EXPA17 RNAi plants compared with the wild type. In addition, EXPA4 expression was also detected in overlaying tissues of the LR primordium and was inducible by LBD18. Taken together, these results support the notion that LBD18 up-regulates a subset of EXP genes to enhance cell separation to promote LR emergence in Arabidopsis.

  5. Human geminin promotes pre-RC formation and DNA replication by stabilizing CDT1 in mitosis

    DEFF Research Database (Denmark)

    Ballabeni, Andrea; Melixetian, Marina; Zamponi, Raffaella

    2004-01-01

    -mediated degradation by inhibiting its ubiquitination. In particular, Geminin ensures basal levels of CDT1 during S phase and its accumulation during mitosis. Consistently, inhibition of Geminin synthesis during M phase leads to impairment of pre-RC formation and DNA replication during the following cell cycle....... Moreover, we show that inhibition of CDK1 during mitosis, and not Geminin depletion, is sufficient for premature formation of pre-RCs, indicating that CDK activity is the major mitotic inhibitor of licensing in human cells. Taken together with recent data from our laboratory, our results demonstrate...

  6. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... the spinal cord work? play_arrow Why is the level of a spinal cord injury important? play_arrow What role does “compression” play in a spinal cord injury? play_arrow Why are high-dose steroids often used right after an injury? play_arrow What is meant ...

  7. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... arrow What is the “Spinal Cord Injury Model Systems” program? play_arrow What are the most promising new treatments for spinal cord injuries? play_arrow What are the latest developments in the use of electrical stimulation for spinal cord injuries? play_arrow ...

  8. Spinal Cord Injuries

    Science.gov (United States)

    ... forth between your body and your brain. A spinal cord injury disrupts the signals. Spinal cord injuries usually begin with a blow that fractures or ... down on the nerve parts that carry signals. Spinal cord injuries can be complete or incomplete. With a complete ...

  9. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... injury? play_arrow How does the spinal cord work? play_arrow Why is the level of a spinal cord injury important? play_arrow What role does “compression” play in a spinal cord injury? play_arrow Why are high-dose steroids often used right after an injury? play_arrow What is meant ...

  10. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Abuse and Spinal Cord Injury Allen Heinemann, PhD How Peer Counseling Works Julie Gassaway, MS, RN Pediatric Injuries Pediatric Spinal ... What is a spinal cord injury? play_arrow How does the spinal cord work? play_arrow Why is the level of a ...

  11. Sam37 is crucial for formation of the mitochondrial TOM-SAM supercomplex, thereby promoting β-barrel biogenesis.

    Science.gov (United States)

    Wenz, Lena-Sophie; Ellenrieder, Lars; Qiu, Jian; Bohnert, Maria; Zufall, Nicole; van der Laan, Martin; Pfanner, Nikolaus; Wiedemann, Nils; Becker, Thomas

    2015-09-28

    Biogenesis of mitochondrial β-barrel proteins requires two preprotein translocases, the general translocase of the outer membrane (TOM) and the sorting and assembly machinery (SAM). TOM and SAM form a supercomplex that promotes transfer of β-barrel precursors. The SAM core complex contains the channel protein Sam50, which cooperates with Sam35 in precursor recognition, and the peripheral membrane protein Sam37. The molecular function of Sam37 has been unknown. We report that Sam37 is crucial for formation of the TOM-SAM supercomplex. Sam37 interacts with the receptor domain of Tom22 on the cytosolic side of the mitochondrial outer membrane and links TOM and SAM complexes. Sam37 thus promotes efficient transfer of β-barrel precursors to the SAM complex. We conclude that Sam37 functions as a coupling factor of the translocase supercomplex of the mitochondrial outer membrane. © 2015 Wenz et al.

  12. Etanercept Promotes Bone Formation via Suppression of Dickkopf-1 Expression in Rats with Collagen-Induced Arthritis

    Science.gov (United States)

    Tanida, Atsushi; Kishimoto, Yuji; Okano, Toru; Hagino, Hiroshi

    2013-01-01

    Background Various clinical reports suggest etanercept (ETN) has some efficacy in bone formation in rheumatoid arthritis (RA). To examine this effect, we investigated the gene expression of cytokines relevant to osteoblast/osteoclast differentiation, and evaluated histomorphometric findings in mature rats with collagen-induced arthritis (CIA). Methods Total RNA was extracted from knee joints with CIA after ETN or placebo administration. Subsequently, realtime-PCR was carried out to quantify the mRNAs encoding Wnt-1, Dickkopf-1 (DKK-1), receptor activator of nuclear factor kappa-B ligand (RANKL), osteoprotegelin (OPG) and TNF (tumor necrosis factor)-alpha. In histomorphometric analysis, the infiltrating pannus volume and pannus surface, and the following items in contact with pannus surface were measured: osteoclast number, osteoid surface, osteoid volume and labeling surface. These were evaluated in the distal femur with CIA with or without ETN administration. Results TNF-alpha, RANKL and OPG mRNA expressions, linked to osteoclastogenesis, were not significantly different with or without ETN administration. ETN administration significantly increased Wnt-1 mRNA expression, the osteoblast promoter, and decreased DKK-1 mRNA expression, the Wnt signal inhibitor. In histomorphometric analysis, pannus volume, pannus surface and osteoclast number, parameters of bone destruction, were not significantly different among groups. Osteoid volume, osteoid surface and labeling surface, parameters of bone formation, increased significantly with ETN administration. Conclusion Our results suggest that ETN suppresses DDK-1 expression, and, as a result, Wnt expression is promoted and osteoblastogenesis becomes more active, independent of the regulation of osteoclast activity. Marked bone formation is attributed to the fact that ETN directly promotes osteoblastogenesis, not as a result of suppressing osteoclastogenesis. PMID:24031147

  13. An Undergraduate Study of Two Transcription Factors that Promote Lateral Root Formation

    Science.gov (United States)

    Bargmann, Bastiaan O. R.; Birnbaum, Kenneth D.; Brenner, Eric D.

    2014-01-01

    We present a lab that enables students to test the role of genes involved in the regulation of lateral roots growth in the model plant "Arabidopsis thaliana." Here, students design an experiment that follows the effects of the hormone auxin on the stimulation of genes involved in the formation of lateral root initials. These genes, known…

  14. Identification of genes that promote or inhibit olfactory memory formation in Drosophila.

    Science.gov (United States)

    Walkinshaw, Erica; Gai, Yunchao; Farkas, Caitlin; Richter, Daniel; Nicholas, Eric; Keleman, Krystyna; Davis, Ronald L

    2015-04-01

    Genetic screens in Drosophila melanogaster and other organisms have been pursued to filter the genome for genetic functions important for memory formation. Such screens have employed primarily chemical or transposon-mediated mutagenesis and have identified numerous mutants including classical memory mutants, dunce and rutabaga. Here, we report the results of a large screen using panneuronal RNAi expression to identify additional genes critical for memory formation. We identified >500 genes that compromise memory when inhibited (low hits), either by disrupting the development and normal function of the adult animal or by participating in the neurophysiological mechanisms underlying memory formation. We also identified >40 genes that enhance memory when inhibited (high hits). The dunce gene was identified as one of the low hits and further experiments were performed to map the effects of the dunce RNAi to the α/β and γ mushroom body neurons. Additional behavioral experiments suggest that dunce knockdown in the mushroom body neurons impairs memory without significantly affecting acquisition. We also characterized one high hit, sickie, to show that RNAi knockdown of this gene enhances memory through effects in dopaminergic neurons without apparent effects on acquisition. These studies further our understanding of two genes involved in memory formation, provide a valuable list of genes that impair memory that may be important for understanding the neurophysiology of memory or neurodevelopmental disorders, and offer a new resource of memory suppressor genes that will aid in understanding restraint mechanisms employed by the brain to optimize resources. Copyright © 2015 by the Genetics Society of America.

  15. A Needs Assessment, Development, and Formative Evaluation of a Health Promotion Smartphone Application for College Students

    Science.gov (United States)

    Miller, Tiffany; Chandler, Laura; Mouttapa, Michele

    2015-01-01

    Background: Approximately half of college students who completed the National College Health Assessment 2013 indicated a greater need for health-related information. University-based smartphone applications may help students better access this information. Purpose: This study describes the needs assessment, development, and formative evaluation of…

  16. Promoting Prospective Elementary Teachers' Learning to Use Formative Assessment for Life Science Instruction

    Science.gov (United States)

    Sabel, Jaime L.; Forbes, Cory T.; Zangori, Laura

    2015-06-01

    To support elementary students' learning of core, standards-based life science concepts highlighted in the Next Generation Science Standards, prospective elementary teachers should develop an understanding of life science concepts and learn to apply their content knowledge in instructional practice to craft elementary science learning environments grounded in students' thinking. To do so, teachers must learn to use high-leverage instructional practices, such as formative assessment, to engage students in scientific practices and connect instruction to students' ideas. However, teachers may not understand formative assessment or possess sufficient science content knowledge to effectively engage in related instructional practices. To address these needs, we developed and conducted research within an innovative course for preservice elementary teachers built upon two pillars—life science concepts and formative assessment. An embedded mixed methods study was used to evaluate the effect of the intervention on preservice teachers' (n = 49) content knowledge and ability to engage in formative assessment practices for science. Findings showed that increased life content knowledge over the semester helped preservice teachers engage more productively in anticipating and evaluating students' ideas, but not in identifying effective instructional strategies to respond to those ideas.

  17. Promoting Creativity through Assessment: A Formative Computer-Assisted Assessment Tool for Teachers

    Science.gov (United States)

    Cropley, David; Cropley, Arthur

    2016-01-01

    Computer-assisted assessment (CAA) is problematic when it comes to fostering creativity, because in educational thinking the essence of creativity is not finding the correct answer but generating novelty. The idea of "functional" creativity provides rubrics that can serve as the basis for forms of CAA leading to either formative or…

  18. Loss of expression and promoter methylation of SLIT2 are associated with sessile serrated adenoma formation.

    Directory of Open Access Journals (Sweden)

    Andrew D Beggs

    2013-05-01

    Full Text Available Serrated adenomas form a distinct subtype of colorectal pre-malignant lesions that may progress to malignancy along a different molecular pathway than the conventional adenoma-carcinoma pathway. Previous studies have hypothesised that BRAF mutation and promoter hypermethylation plays a role, but the evidence for this is not robust. We aimed to carry out a whole-genome loss of heterozygosity analysis, followed by targeted promoter methylation and expression analysis to identify potential pathways in serrated adenomas. An initial panel of 9 sessile serrated adenomas (SSA and one TSA were analysed using Illumina Goldengate HumanLinkage panel arrays to ascertain regions of loss of heterozygosity. This was verified via molecular inversion probe analysis and microsatellite analysis of a further 32 samples. Methylation analysis of genes of interest was carried out using methylation specific PCR (verified by pyrosequencing and immunohistochemistry used to correlate loss of expression of genes of interest. All experiments used adenoma samples and normal tissue samples as control. SSA samples were found on whole-genome analysis to have consistent loss of heterozygosity at 4p15.1-4p15.31, which was not found in the sole TSA, adenomas, or normal tissues. Genes of interest in this region were PDCH7 and SLIT2, and combined MSP/IHC analysis of these genes revealed significant loss of SLIT2 expression associated with promoter methylation of SLIT2. Loss of expression of SLIT2 by promoter hypermethylation and loss of heterozygosity events is significantly associated with serrated adenoma development, and SLIT2 may represent a epimutated tumour suppressor gene according to the Knudson "two hit" hypothesis.

  19. Preformed template fluctuations promote fibril formation: Insights from lattice and all-atom models

    Energy Technology Data Exchange (ETDEWEB)

    Kouza, Maksim, E-mail: mkouza@chem.uw.edu.pl; Kolinski, Andrzej [Faculty of Chemistry, University of Warsaw, ul. Pasteura 1, 02-093 Warszaw (Poland); Co, Nguyen Truong [Department of Physics, Institute of Technology, National University of HCM City, 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City (Viet Nam); Institute for Computational Science and Technology, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City (Viet Nam); Nguyen, Phuong H. [Laboratoire de Biochimie Theorique, UPR 9080 CNRS, IBPC, Universite Paris 7, 13 rue Pierre et Marie Curie, 75005 Paris (France); Li, Mai Suan, E-mail: masli@ifpan.edu.pl [Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw (Poland)

    2015-04-14

    Fibril formation resulting from protein misfolding and aggregation is a hallmark of several neurodegenerative diseases such as Alzheimer’s and Parkinson’s diseases. Despite the fact that the fibril formation process is very slow and thus poses a significant challenge for theoretical and experimental studies, a number of alternative pictures of molecular mechanisms of amyloid fibril formation have been recently proposed. What seems to be common for the majority of the proposed models is that fibril elongation involves the formation of pre-nucleus seeds prior to the creation of a critical nucleus. Once the size of the pre-nucleus seed reaches the critical nucleus size, its thermal fluctuations are expected to be small and the resulting nucleus provides a template for sequential (one-by-one) accommodation of added monomers. The effect of template fluctuations on fibril formation rates has not been explored either experimentally or theoretically so far. In this paper, we make the first attempt at solving this problem by two sets of simulations. To mimic small template fluctuations, in one set, monomers of the preformed template are kept fixed, while in the other set they are allowed to fluctuate. The kinetics of addition of a new peptide onto the template is explored using all-atom simulations with explicit water and the GROMOS96 43a1 force field and simple lattice models. Our result demonstrates that preformed template fluctuations can modulate protein aggregation rates and pathways. The association of a nascent monomer with the template obeys the kinetics partitioning mechanism where the intermediate state occurs in a fraction of routes to the protofibril. It was shown that template immobility greatly increases the time of incorporating a new peptide into the preformed template compared to the fluctuating template case. This observation has also been confirmed by simulation using lattice models and may be invoked to understand the role of template fluctuations in

  20. Erythorbic acid promoted formation of CdS QDs in a tube-in-tube micro-channel reactor

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Yan; Tan, Jiawei; Wang, Jiexin; Chen, Jianfeng [State Key Laboratory of Organic–Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 (China); Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029 (China); Sun, Baochang, E-mail: sunbc@mail.buct.edu.cn [State Key Laboratory of Organic–Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 (China); Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029 (China); Shao, Lei, E-mail: shaol@mail.buct.edu.cn [State Key Laboratory of Organic–Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 (China); Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029 (China)

    2014-12-15

    Erythorbic acid assistant synthesis of CdS quantum dots (QDs) was conducted by homogeneous mixing of two continuous liquids in a high-throughput microporous tube-in-tube micro-channel reactor (MTMCR) at room temperature. The effects of the micropore size of the MTMCR, liquid flow rate, mixing time and reactant concentration on the size and size distribution of CdS QDs were investigated. It was found that the size and size distribution of CdS QDs could be tuned in the MTMCR. A combination of erythorbic acid promoted formation technique with the MTMCR may be a promising pathway for controllable mass production of QDs.

  1. Convergence of bone morphogenetic protein and laminin-1 signaling pathways promotes proliferation and colony formation by fetal mouse pancreatic cells

    International Nuclear Information System (INIS)

    Jiang Fangxu; Harrison, Leonard C.

    2005-01-01

    We previously reported that bone morphogenetic proteins (BMPs), members of the transforming growth factor superfamily, together with the basement membrane glycoprotein laminin-1 (Ln-1), promote proliferation of fetal pancreatic cells and formation of colonies containing peripheral insulin-positive cells. Here, we further investigate the cross-talk between BMP and Ln-1 signals. By RT-PCR, receptors for BMP (BMPR) (excepting BMPR-1B) and Ln-1 were expressed in the fetal pancreas between E13.5 and E17.5. Specific blocking antibodies to BMP-4 and -6 and selective BMP antagonists partially inhibited colony formation by fetal pancreas cells. Colony formation induced by BMP-6 and Ln-1 was completely abolished in a dose-dependent manner by blocking Ln-1 binding to its α 6 integrin and α-dystroglycan receptors or by blocking the Ln-1 signaling molecules, phosphatidyl-inositol-3-kinase (P13K) and MAP kinase kinase-1. These results demonstrate a convergence of BMP and Ln-1 signaling through P13K and MAP kinase pathways to induce proliferation and colony formation in E15.5 fetal mouse pancreatic cells

  2. Reactive oxidation products promote secondary organic aerosol formation from green leaf volatiles

    Directory of Open Access Journals (Sweden)

    J. F. Hamilton

    2009-06-01

    Full Text Available Green leaf volatiles (GLVs are an important group of chemicals released by vegetation which have emission fluxes that can be significantly increased when plants are damaged or stressed. A series of simulation chamber experiments has been conducted at the European Photoreactor in Valencia, Spain, to investigate secondary organic aerosol (SOA formation from the atmospheric oxidation of the major GLVs cis-3-hexenylacetate and cis-3-hexen-1-ol. Liquid chromatography-ion trap mass spectrometry was used to identify chemical species present in the SOA. Cis-3-hexen-1-ol proved to be a more efficient SOA precursor due to the high reactivity of its first generation oxidation product, 3-hydroxypropanal, which can hydrate and undergo further reactions with other aldehydes resulting in SOA dominated by higher molecular weight oligomers. The lower SOA yields produced from cis-3-hexenylacetate are attributed to the acetate functionality, which inhibits oligomer formation in the particle phase. Based on observed SOA yields and best estimates of global emissions, these compounds may be calculated to be a substantial unidentified global source of SOA, contributing 1–5 TgC yr−1, equivalent to around a third of that predicted from isoprene. Molecular characterization of the SOA, combined with organic mechanistic information, has provided evidence that the formation of organic aerosols from GLVs is closely related to the reactivity of their first generation atmospheric oxidation products, and indicates that this may be a simple parameter that could be used in assessing the aerosol formation potential for other unstudied organic compounds in the atmosphere.

  3. Wave energy focusing to subsurface poroelastic formations to promote oil mobilization

    KAUST Repository

    Karve, P. M.

    2015-04-22

    We discuss an inverse source formulation aimed at focusing wave energy produced by ground surface sources to target subsurface poroelastic formations. The intent of the focusing is to facilitate or enhance the mobility of oil entrapped within the target formation. The underlying forward wave propagation problem is cast in two spatial dimensions for a heterogeneous poroelastic target embedded within a heterogeneous elastic semi-infinite host. The semi-infiniteness of the elastic host is simulated by augmenting the (finite) computational domain with a buffer of perfectly matched layers. The inverse source algorithm is based on a systematic framework of partial-differential-equation-constrained optimization. It is demonstrated, via numerical experiments, that the algorithm is capable of converging to the spatial and temporal characteristics of surface loads that maximize energy delivery to the target formation. Consequently, the methodology is well-suited for designing field implementations that could meet a desired oil mobility threshold. Even though the methodology, and the results presented herein are in two dimensions, extensions to three dimensions are straightforward.

  4. Bovine binder-of-sperm protein BSP1 promotes protrusion and nanotube formation from liposomes

    International Nuclear Information System (INIS)

    Lafleur, Michel; Courtemanche, Lesley; Karlsson, Goeran; Edwards, Katarina; Schwartz, Jean-Louis; Manjunath, Puttaswamy

    2010-01-01

    Research highlights: → Binder-of-sperm protein 1 (BSP1) modifies the morphology of lipidic vesicles inducing bead necklace-like and thread-like structures. → In the presence of multilamellar liposomes, BSP1 leads to the formation of long nanotubes. → The insertion of BSP1 in the external lipid leaflet of membranes induces local changes in bilayer curvature. -- Abstract: Binder-of-sperm (BSP) proteins interact with sperm membranes and are proposed to extract selectively phosphatidylcholine and cholesterol from these. This change in lipid composition is a key step in sperm capacitation. The present work demonstrates that the interactions between the protein BSP1 and model membranes composed with phosphatidylcholine lead to drastic changes in the morphology of the lipidic self-assemblies. Using cryo-electron microscopy and fluorescence microscopy, we show that, in the presence of the protein, the lipid vesicles elongate, and form bead necklace-like structures that evolve toward small vesicles or thread-like structures. In the presence of multilamellar vesicles, where a large reservoir of lipid is available, the presence of BSP proteins lead to the formation of long nanotubes. Long spiral-like threads, associated with lipid/protein complexes, are also observed. The local curvature of lipid membranes induced by the BSP proteins may be involved in lipid domain formation and the extraction of some lipids during the sperm maturation process.

  5. Gut microbiota induce IGF-1 and promote bone formation and growth

    Science.gov (United States)

    Yan, Jing; Herzog, Jeremy W.; Tsang, Kelly; Brennan, Caitlin A.; Bower, Maureen A.; Garrett, Wendy S.; Sartor, Balfour R.; Charles, Julia F.

    2016-01-01

    Appreciation of the role of the gut microbiome in regulating vertebrate metabolism has exploded recently. However, the effects of gut microbiota on skeletal growth and homeostasis have only recently begun to be explored. Here, we report that colonization of sexually mature germ-free (GF) mice with conventional specific pathogen-free (SPF) gut microbiota increases both bone formation and resorption, with the net effect of colonization varying with the duration of colonization. Although colonization of adult mice acutely reduces bone mass, in long-term colonized mice, an increase in bone formation and growth plate activity predominates, resulting in equalization of bone mass and increased longitudinal and radial bone growth. Serum levels of insulin-like growth factor 1 (IGF-1), a hormone with known actions on skeletal growth, are substantially increased in response to microbial colonization, with significant increases in liver and adipose tissue IGF-1 production. Antibiotic treatment of conventional mice, in contrast, decreases serum IGF-1 and inhibits bone formation. Supplementation of antibiotic-treated mice with short-chain fatty acids (SCFAs), products of microbial metabolism, restores IGF-1 and bone mass to levels seen in nonantibiotic-treated mice. Thus, SCFA production may be one mechanism by which microbiota increase serum IGF-1. Our study demonstrates that gut microbiota provide a net anabolic stimulus to the skeleton, which is likely mediated by IGF-1. Manipulation of the microbiome or its metabolites may afford opportunities to optimize bone health and growth. PMID:27821775

  6. Incorporating catechol into electroactive polypyrrole nanowires on titanium to promote hydroxyapatite formation

    Directory of Open Access Journals (Sweden)

    Zhengao Wang

    2018-03-01

    Full Text Available To improve the osteointegration property of biomedical titanium, nano-architectured electroactive coating was synthesized through the electrochemical polymerization of dopamine and pyrrole. The highly binding affinity of Ca2+ to the catechol moiety of doped dopamine enabled efficient interaction between polypyrrole/polydopamine nanowires and mineral ions. The results indicate that the PPy/PDA nanowires preserved its efficient electro-activity and accelerated the hydroxyapatite deposition in a simulated body fluid. The PPy/PDA nanowires coating could be applied to promote the osteointegration of titanium implant.

  7. MFAP4 Promotes Vascular Smooth Muscle Migration, Proliferation and Accelerates Neointima Formation

    DEFF Research Database (Denmark)

    Schlosser, Anders; Pilecki, Bartosz; Hemstra, Line E.

    2016-01-01

    in the vascular wall. The role of MFAP4 in vascular biology is unknown. We aimed to test the hypothesis that MFAP4 would enhance integrin-dependent VSMC activation. APPROACH AND RESULTS: We produced Mfap4-deficient (Mfap4(-/-)) mice and performed carotid artery ligation to explore the role of MFAP4 in vascular...... kinase and downstream kinases. In addition, we showed that MFAP4 promotes monocyte chemotaxis in integrin αVβ3-dependent manner. CONCLUSIONS: MFAP4 regulates integrin αVβ3-induced VSMC proliferation and migration, as well as monocyte chemotaxis, and accelerates neointimal hyperplasia after vascular...

  8. Arterial Blood Supply to the Spinal Cord in Animal Models of Spinal Cord Injury. A Review.

    Science.gov (United States)

    Mazensky, David; Flesarova, Slavka; Sulla, Igor

    2017-12-01

    Animal models are used to examine the results of experimental spinal cord injury. Alterations in spinal cord blood supply caused by complex spinal cord injuries contribute significantly to the diversity and severity of the spinal cord damage, particularly ischemic changes. However, the literature has not completely clarified our knowledge of anatomy of the complex three-dimensional arterial system of the spinal cord in experimental animals, which can impede the translation of experimental results to human clinical applications. As the literary sources dealing with the spinal cord arterial blood supply in experimental animals are limited and scattered, the authors performed a review of the anatomy of the arterial blood supply to the spinal cord in several experimental animals, including pigs, dogs, cats, rabbits, guinea pigs, rats, and mice and created a coherent format discussing the interspecies differences. This provides researchers with a valuable tool for the selection of the most suitable animal model for their experiments in the study of spinal cord ischemia and provides clinicians with a basis for the appropriate translation of research work to their clinical applications. Anat Rec, 300:2091-2106, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  9. The Arabidopsis Transcription Factor MYB112 Promotes Anthocyanin Formation during Salinity and under High Light Stress.

    Science.gov (United States)

    Lotkowska, Magda E; Tohge, Takayuki; Fernie, Alisdair R; Xue, Gang-Ping; Balazadeh, Salma; Mueller-Roeber, Bernd

    2015-11-01

    MYB transcription factors (TFs) are important regulators of flavonoid biosynthesis in plants. Here, we report MYB112 as a formerly unknown regulator of anthocyanin accumulation in Arabidopsis (Arabidopsis thaliana). Expression profiling after chemically induced overexpression of MYB112 identified 28 up- and 28 down-regulated genes 5 h after inducer treatment, including MYB7 and MYB32, which are both induced. In addition, upon extended induction, MYB112 also positively affects the expression of PRODUCTION OF ANTHOCYANIN PIGMENT1, a key TF of anthocyanin biosynthesis, but acts negatively toward MYB12 and MYB111, which both control flavonol biosynthesis. MYB112 binds to an 8-bp DNA fragment containing the core sequence (A/T/G)(A/C)CC(A/T)(A/G/T)(A/C)(T/C). By electrophoretic mobility shift assay and chromatin immunoprecipitation coupled to quantitative polymerase chain reaction, we show that MYB112 binds in vitro and in vivo to MYB7 and MYB32 promoters, revealing them as direct downstream target genes. We further show that MYB112 expression is up-regulated by salinity and high light stress, environmental parameters that both require the MYB112 TF for anthocyanin accumulation under these stresses. In contrast to several other MYB TFs affecting anthocyanin biosynthesis, MYB112 expression is not controlled by nitrogen limitation or an excess of carbon. Thus, MYB112 constitutes a regulator that promotes anthocyanin accumulation under abiotic stress conditions. © 2015 American Society of Plant Biologists. All Rights Reserved.

  10. Translocations of chromosome end-segments and facultative heterochromatin promote meiotic ring formation in evening primroses.

    Science.gov (United States)

    Golczyk, Hieronim; Massouh, Amid; Greiner, Stephan

    2014-03-01

    Due to reciprocal chromosomal translocations, many species of Oenothera (evening primrose) form permanent multichromosomal meiotic rings. However, regular bivalent pairing is also observed. Chiasmata are restricted to chromosomal ends, which makes homologous recombination virtually undetectable. Genetic diversity is achieved by changing linkage relations of chromosomes in rings and bivalents via hybridization and reciprocal translocations. Although the structural prerequisite for this system is enigmatic, whole-arm translocations are widely assumed to be the mechanistic driving force. We demonstrate that this prerequisite is genome compartmentation into two epigenetically defined chromatin fractions. The first one facultatively condenses in cycling cells into chromocenters negative both for histone H3 dimethylated at lysine 4 and for C-banding, and forms huge condensed middle chromosome regions on prophase chromosomes. Remarkably, it decondenses in differentiating cells. The second fraction is euchromatin confined to distal chromosome segments, positive for histone H3 lysine 4 dimethylation and for histone H3 lysine 27 trimethylation. The end-segments are deprived of canonical telomeres but capped with constitutive heterochromatin. This genomic organization promotes translocation breakpoints between the two chromatin fractions, thus facilitating exchanges of end-segments. We challenge the whole-arm translocation hypothesis by demonstrating why reciprocal translocations of chromosomal end-segments should strongly promote meiotic rings and evolution toward permanent translocation heterozygosity. Reshuffled end-segments, each possessing a major crossover hot spot, can furthermore explain meiotic compatibility between genomes with different translocation histories.

  11. A single cysteine post-translational oxidation suffices to compromise globular proteins kinetic stability and promote amyloid formation

    Directory of Open Access Journals (Sweden)

    Patrizia Marinelli

    2018-04-01

    Full Text Available Oxidatively modified forms of proteins accumulate during aging. Oxidized protein conformers might act as intermediates in the formation of amyloids in age-related disorders. However, it is not known whether this amyloidogenic conversion requires an extensive protein oxidative damage or it can be promoted just by a discrete, localized post-translational modification of certain residues. Here, we demonstrate that the irreversible oxidation of a single free Cys suffices to severely perturb the folding energy landscape of a stable globular protein, compromise its kinetic stability, and lead to the formation of amyloids under physiological conditions. Experiments and simulations converge to indicate that this specific oxidation-promoted protein aggregation requires only local unfolding. Indeed, a large scale analysis indicates that many cellular proteins are at risk of undergoing this kind of deleterious transition; explaining how oxidative stress can impact cell proteostasis and subsequently lead to the onset of pathological states. Keywords: Protein oxidation, Protein misfolding, Protein aggregation, Oxidative stress, Post-translational modification

  12. PROMOVER (PROMOTE) - A participative methodology in socio-environmental project formation and management

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Edison; Danciguer, Lucilene; Virginio, Geraldo; Del Carlo, Sylene

    2010-09-15

    We present a program's findings in socio-environmental sustainable development (PROMOVER), implemented by GAIA/Shell Brasil partnership. Benefited communities were leaders in artisanal fisher communities, governmental and non-governmental organizations within Shell influence areas, at Rio de Janeiro and Espirito Santo states, Brazil. The main objective is to improve its economic activities in sustainable way. The program consisted of formation on socio-environmental project elaboration, follow-up and seminar presentation. It was an interactive and dynamic training, in which leaders discussed the importance of social entrepreneurship, citizen organizations, and the establishment of networks aimed to sustainable development. Community leaders concluded 10 projects, one was awarded.

  13. PROMOVER (PROMOTE) - A participative methodology in socio-environmental project formation and management

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Edison; Danciguer, Lucilene; Virginio, Geraldo; Del Carlo, Sylene

    2010-09-15

    We present a program's findings in socio-environmental sustainable development (PROMOVER), implemented by GAIA/Shell Brasil partnership. Benefited communities were leaders in artisanal fisher communities, governmental and non-governmental organizations within Shell influence areas, at Rio de Janeiro and Espirito Santo states, Brazil. The main objective is to improve its economic activities in sustainable way. The program consisted of formation on socio-environmental project elaboration, follow-up and seminar presentation. It was an interactive and dynamic training, in which leaders discussed the importance of social entrepreneurship, citizen organizations, and the establishment of networks aimed to sustainable development. Community leaders concluded 10 projects, one was awarded.

  14. Polymer nanocomposites enhance S-nitrosoglutathione intestinal absorption and promote the formation of releasable nitric oxide stores in rat aorta.

    Science.gov (United States)

    Wu, Wen; Perrin-Sarrado, Caroline; Ming, Hui; Lartaud, Isabelle; Maincent, Philippe; Hu, Xian-Ming; Sapin-Minet, Anne; Gaucher, Caroline

    2016-10-01

    Alginate/chitosan nanocomposite particles (GSNO-acNCPs), i.e. S-nitrosoglutathione (GSNO) loaded polymeric nanoparticles incorporated into an alginate and chitosan matrix, were developed to increase the effective GSNO loading capacity, a nitric oxide (NO) donor, and to sustain its release from the intestine following oral administration. Compared with free GSNO and GSNO loaded nanoparticles, GSNO-acNCPs promoted 2.7-fold GSNO permeation through a model of intestinal barrier (Caco-2 cells). After oral administration to Wistar rats, GSNO-acNCPs promoted NO storage into the aorta during at least 17h, as highlighted by (i) a long-lasting hyporeactivity to phenylephrine (decrease in maximum vasoconstrictive effect of aortic rings) and (ii) N-acetylcysteine (a thiol which can displace NO from tissues)-induced vasodilation of aorxxtic rings preconstricted with phenylephrine. In conclusion, GSNO-acNCPs enhance GSNO intestinal absorption and promote the formation of releasable NO stores into the rat aorta. GSNO-acNCPs are promising carriers for chronic oral application devoted to the treatment of cardiovascular diseases. Copyright © 2016. Published by Elsevier Inc.

  15. The extracellular matrix component laminin promotes gap junction formation in the rat anterior pituitary gland.

    Science.gov (United States)

    Horiguchi, Kotaro; Kouki, Tom; Fujiwara, Ken; Kikuchi, Motoshi; Yashiro, Takashi

    2011-03-01

    Folliculo-stellate (FS) cells in the anterior pituitary gland are believed to have multifunctional properties. FS cells connect to each other not only by mechanical means, but also by gap junctional cell-to-cell communication. Using transgenic rats that express green fluorescent protein (GFP) specifically in FS cells in the anterior pituitary gland (S100b-GFP rats), we recently revealed that FS cells in primary culture markedly change their shape, and form numerous interconnections with neighboring FS cells in the presence of laminin, an extracellular matrix (ECM) component of the basement membrane. Morphological and functional changes in cells are believed to be partly modified by matricrine signaling, by which ECM components function as cellular signals. In the present study, we examined whether gap junction formation between FS cells is affected by matricrine cues. A cell sorter was used to isolate FS cells from male S100b-GFP rat anterior pituitary for primary culture. We observed that mRNA and protein levels of connexin 43 in gap junction channels were clearly higher in the presence of laminin. In addition, we confirmed the formation of gap junctions between FS cells in primary culture by electron microscopy. Interestingly, we also observed that FS cells in the presence of laminin displayed well-developed rough endoplasmic reticulum and Golgi apparatus. Our findings suggest that, in anterior pituitary gland, FS cells may facilitate functional roles such as gap junctional cell-to-cell communication by matricrine signaling.

  16. Prophage spontaneous activation promotes DNA release enhancing biofilm formation in Streptococcus pneumoniae.

    Directory of Open Access Journals (Sweden)

    Margarida Carrolo

    Full Text Available Streptococcus pneumoniae (pneumococcus is able to form biofilms in vivo and previous studies propose that pneumococcal biofilms play a relevant role both in colonization and infection. Additionally, pneumococci recovered from human infections are characterized by a high prevalence of lysogenic bacteriophages (phages residing quiescently in their host chromosome. We investigated a possible link between lysogeny and biofilm formation. Considering that extracellular DNA (eDNA is a key factor in the biofilm matrix, we reasoned that prophage spontaneous activation with the consequent bacterial host lysis could provide a source of eDNA, enhancing pneumococcal biofilm development. Monitoring biofilm growth of lysogenic and non-lysogenic pneumococcal strains indicated that phage-infected bacteria are more proficient at forming biofilms, that is their biofilms are characterized by a higher biomass and cell viability. The presence of phage particles throughout the lysogenic strains biofilm development implicated prophage spontaneous induction in this effect. Analysis of lysogens deficient for phage lysin and the bacterial major autolysin revealed that the absence of either lytic activity impaired biofilm development and the addition of DNA restored the ability of mutant strains to form robust biofilms. These findings establish that limited phage-mediated host lysis of a fraction of the bacterial population, due to spontaneous phage induction, constitutes an important source of eDNA for the S. pneumoniae biofilm matrix and that this localized release of eDNA favors biofilm formation by the remaining bacterial population.

  17. Cholesterol gallstones and bile host diverse bacterial communities with potential to promote the formation of gallstones.

    Science.gov (United States)

    Peng, Yuhong; Yang, Yang; Liu, Yongkang; Nie, Yuanyang; Xu, Peilun; Xia, Baixue; Tian, Fuzhou; Sun, Qun

    2015-01-01

    The prevalence of cholesterol gallstones has increased in recent years. Bacterial infection correlates with the formation of gallstones. We studied the composition and function of bacterial communities in cholesterol gallstones and bile from 22 cholesterol gallstone patients using culture-dependent and culture-independent methods. Altogether fourteen and eight bacterial genera were detected in cholesterol gallstones and bile, respectively. Pseudomonas spp. were the dominant bacteria in both cholesterol gallstones and bile. As judged by diversity indices, hierarchical clustering and principal component analysis, the bacterial communities in gallstones were different from those in bile. The gallstone microbiome was considered more stable than that of bile. The different microbial communities may be partially explained by differences in their habitats. We found that 30% of the culturable strains from cholesterol gallstones secreted β-glucuronidase and phospholipase A2. Pseudomonas aeruginosa strains showed the highest β-glucuronidase activity and produced the highest concentration of phospholipase A2, indicating that Ps. aeruginosa may be a major agent in the formation of cholesterol gallstones. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Resveratrol inhibits myeloma cell growth, prevents osteoclast formation, and promotes osteoblast differentiation

    DEFF Research Database (Denmark)

    Boissy, Patrice; Andersen, Thomas L; Abdallah, Basem M

    2005-01-01

    , a challenge for treating multiple myeloma is discovering drugs targeting not only myeloma cells but also osteoclasts and osteoblasts. Because resveratrol (trans-3,4',5-trihydroxystilbene) is reported to display antitumor activities on a variety of human cancer cells, we investigated the effects...... of this natural compound on myeloma and bone cells. We found that resveratrol reduces dose-dependently the growth of myeloma cell lines (RPMI 8226 and OPM-2) by a mechanism involving cell apoptosis. In cultures of human primary monocytes, resveratrol inhibits dose-dependently receptor activator of nuclear factor......RNA and cell surface protein levels and a decrease of NFATc1 stimulation and NF-kappaB nuclear translocation, whereas the gene expression of c-fms, CD14, and CD11a is up-regulated. Finally, resveratrol promotes dose-dependently the expression of osteoblast markers like osteocalcin and osteopontin in human bone...

  19. Thermodynamic promotion of carbon dioxide-clathrate hydrate formation by tetrahydrofuran, cyclopentane and their mixtures

    DEFF Research Database (Denmark)

    Herslund, Peter Jørgensen; Thomsen, Kaj; Abildskov, Jens

    2013-01-01

    Gas clathrate hydrate dissociation pressures are reported for mixtures of carbon dioxide, water and thermodynamic promoters forming structure II hydrates.Hydrate (H)-aqueous liquid (Lw)-vapour (V) equilibrium pressures for the ternary system composed of water, tetrahydrofuran (THF), and carbon....... It is shown that upon adding THF to the pure aqueous phase to form a 4mass percent solution, the equilibrium pressure of the formed hydrates may be lowered compared to the ternary system of water, cyclopentane and carbon dioxide. © 2013 Elsevier Ltd....... dioxide (CO2), with 5.0mole percent THF in the initial aqueous phase, are presented in the temperature range from 283.3K to 285.2K. At 283.3K, the three-phase equilibrium pressure is determined to be 0.61MPa (absolute pressure).Four-phase hydrate (H)-aqueous liquid (Lw)-organic liquid (La)-vapour (V...

  20. An Exploration of Teachers' Narratives: What Are the Facilitators and Constraints Which Promote or Inhibit "Good" Formative Assessment Practices in Schools?

    Science.gov (United States)

    Sach, Elizabeth

    2015-01-01

    This paper set out to explore teachers' narratives in order to understand some of the facilitators and constraints which promote or inhibit good formative assessment practices in schools. A "responsive interview" approach was used to probe a small sample of lower and middle school teachers' perceptions of formative assessment.…

  1. Wnt3a Promotes the Vasculogenic Mimicry Formation of Colon Cancer via Wnt/β-Catenin Signaling.

    Science.gov (United States)

    Qi, Lisha; Song, Wangzhao; Liu, Zhiyong; Zhao, Xiulan; Cao, Wenfeng; Sun, Baocun

    2015-08-10

    Our previous study provided evidence that non-canonical Wnt signaling is involved in regulating vasculogenic mimicry (VM) formation. However, the functions of canonical Wnt signaling in VM formation have not yet been explored. In this study, we found the presence of VM was related to colon cancer histological differentiation (p colon cancer samples showed increased Wnt3a expression (p colon cancer cells promoted the capacity to form tube-like structures in the three-dimensional (3-D) culture together with increased expression of endothelial phenotype-associated proteins such as VEGFR2 and VE-cadherin. The mouse xenograft model showed that Wnt3a-overexpressing cells grew into larger tumor masses and formed more VM than the control cells. In addition, the Wnt/β-catenin signaling antagonist Dickkopf-1(Dkk1) can reverse the capacity to form tube-like structures and can decrease the expressions of VEGFR2 and VE-cadherin in Wnt3a-overexpressing cells. Taken together, our results suggest that Wnt/β-catenin signaling is involved in VM formation in colon cancer and might contribute to the development of more accurate treatment modalities aimed at VM.

  2. Using formative research to promote antenatal care attendance and iron folic acid supplementation in Zinder, Niger.

    Science.gov (United States)

    Hess, Sonja Y; Ouédraogo, Césaire T; Bamba, Ibrahim F; Wessells, K Ryan; Keith, Nancy; Faye, Thierno; Ndiaye, Banda; Doudou, Maimouna; Nielsen, Jennifer

    2018-04-01

    In Niger, use of antenatal care (ANC) and iron folic acid (IFA) supplements is suboptimal. The objectives of this paper are as follows: (a) to conduct formative research to understand barriers and beliefs among pregnant women related to ANC, IFA supplementation, and pregnancy outcomes; (b) assess the quality of currently provided ANC services; (c) use the findings to guide the development of programmatic interventions to improve coverage of ANC services and IFA supplementation of pregnant women. Structured in-home interviews (n = 72) and focus groups (n = 4) were conducted with pregnant women in 4 randomly selected villages in rural Zinder. ANC consultations (n = 33) were observed in 5 randomly selected health centres, and exit interviews were conducted with all pregnant women and seven health agents following these observations. During workshops with stakeholders, results of the formative research were interpreted, and programmatic interventions were developed. In home interviews, 72% of women reported having attended at least one ANC visit. They also reported husbands (71%), mothers (40%), and friends (33%) supporting ANC attendance. Among those having attended ANC, only 65% reported taking IFA the day prior to the interview. Three of five health centres visited had IFA in stock. Health staff did not provide IFA supplements during 18 of 33 observed ANC consultations of which only 7 cases could be explained by the lack of IFA supplements in stock. Findings were used to design a 3-pronged intervention: (a) behaviour change communication activities in communities; (b) quality improvement activities in health centres to strengthen ANC; and (c) provision of key supplies required for ANC. © 2017 John Wiley & Sons Ltd.

  3. Designing new catalytic C-C and C-N bond formations promoted by organoactinides

    International Nuclear Information System (INIS)

    Eisen, M.S.; Straub, T.; Haskel, A.

    1998-01-01

    Organoactinides of the type Cp 2 * AcMe 2 (Cp * =C 5 Me 5 ; Ac=Th; U) are active catalytic precursors for the oligomerization of terminal alkynes HC≡CR (R=alkyl, aryl, SiMe 3 ). The regioselectivity and the extent of oligomerization depend strongly on the alkyne substituent R, whereas the catalytic reactivity is similar for both organoactinides. Reaction with tert-butylacetylene yields regioselectively the E-2,4-disubstituted 1-buten-3-yne dimer whereas trimethylsilylacetylene is regioselective trimerized to the E,E-1,4,6-tris(trimethylsilyl)-1,3-hexa diene-5-yne, with small amounts (3-5%) of the corresponding E-2,4-disubstituted 1-buten-3-yne dimer. Oligomerization with less bulky alkyl and aryl substituted alkynes produces a mixture of higher oligomers with no regioselectivity. Using the Cp 2 * ThMe 2 catalyst, we have recently developed a strategic method to control the extent and in some cases the regioselectivity of the catalyzed oligomerization of nonbulky terminal alkynes to dimers and/or trimers. The metallocene catalytic precursors ensure the selective synthesis of small oligomers by the addition of specific amines. Catalytic ''tailoring'' to dimer and trimers can be achieved by using small or bulky amines, respectively. Kinetic and mechanistic data for the controlling experiments argue that the turnover-limiting step involves the acetylide actinide complex formation with the rapid insertion of the alkyne and protonolysis by the amine. The analog Cp 2 * UMe 2 in the presence of primary amines induce the selective C-N bond formation, producing enamines which are tautomerized to the corresponding imines. (orig.)

  4. Insulin at pH 2: structural analysis of the conditions promoting insulin fibre formation.

    Science.gov (United States)

    Whittingham, Jean L; Scott, David J; Chance, Karen; Wilson, Ashley; Finch, John; Brange, Jens; Guy Dodson, G

    2002-04-26

    When insulin solutions are subjected to acid, heat and agitation, the normal pattern of insulin assembly (dimers-->tetramers-->hexamers) is disrupted; the molecule undergoes conformational changes allowing it to follow an alternative aggregation pathway (via a monomeric species) leading to the formation of insoluble amyloid fibres. To investigate the effect of acid pH on the conformation and aggregation state of the protein, the crystal structure of human insulin at pH 2.1 has been determined to 1.6 A resolution. The structure reveals that the native fold is maintained at low pH, and that the molecule is still capable of forming dimers similar to those found in hexameric insulin structures at higher pH. Sulphate ions are incorporated into the molecule and the crystal lattice where they neutralise positive charges on the protein, stabilising its structure and facilitating crystallisation. The sulphate interactions are associated with local deformations in the protein, which may indicate that the structure is more plastic at low pH. Transmission electron microscopy analysis of insulin fibres reveals that the appearance of the fibres is greatly influenced by the type of acid employed. Sulphuric acid produces distinctive highly bunched, truncated fibres, suggesting that the sulphate ions have a sophisticated role to play in fibre formation, rather as they do in the crystal structure. Analytical ultracentrifugation studies show that in the absence of heating, insulin is predominantly dimeric in mineral acids, whereas in acetic acid the equilibrium is shifted towards the monomer. Hence, the effect of acid on the aggregation state of insulin is also complex. These results suggest that acid conditions increase the susceptibility of the molecule to conformational change and dissociation, and enhance the rate of fibrillation by providing a charged environment in which the attractive forces between the protein molecules is increased. (c) 2002 Elsevier Science Ltd.

  5. Silicon-Doped Titanium Dioxide Nanotubes Promoted Bone Formation on Titanium Implants.

    Science.gov (United States)

    Zhao, Xijiang; Wang, Tao; Qian, Shi; Liu, Xuanyong; Sun, Junying; Li, Bin

    2016-02-26

    While titanium (Ti) implants have been extensively used in orthopaedic and dental applications, the intrinsic bioinertness of untreated Ti surface usually results in insufficient osseointegration irrespective of the excellent biocompatibility and mechanical properties of it. In this study, we prepared surface modified Ti substrates in which silicon (Si) was doped into the titanium dioxide (TiO₂) nanotubes on Ti surface using plasma immersion ion implantation (PIII) technology. Compared to TiO₂ nanotubes and Ti alone, Si-doped TiO₂ nanotubes significantly enhanced the expression of genes related to osteogenic differentiation, including Col-I, ALP, Runx2, OCN, and OPN, in mouse pre-osteoblastic MC3T3-E1 cells and deposition of mineral matrix. In vivo, the pull-out mechanical tests after two weeks of implantation in rat femur showed that Si-doped TiO₂ nanotubes improved implant fixation strength by 18% and 54% compared to TiO₂-NT and Ti implants, respectively. Together, findings from this study indicate that Si-doped TiO₂ nanotubes promoted the osteogenic differentiation of osteoblastic cells and improved bone-Ti integration. Therefore, they may have considerable potential for the bioactive surface modification of Ti implants.

  6. Promoted new bone formation in maxillary distraction osteogenesis using a tissue-engineered osteogenic material.

    Science.gov (United States)

    Kinoshita, Kazuhiko; Hibi, Hideharu; Yamada, Yoichi; Ueda, Minoru

    2008-01-01

    Bilateral maxillary distraction was performed at a higher rate in rabbits to determine whether locally applied tissue-engineered osteogenic material (TEOM) enhances bone regeneration. The material was an injectable gel composed of autologous mesenchymal stem cells, which were cultured then induced to be osteogenic in character, and platelet-rich plasma (PRP). After a 5-day latency period, distraction devices were activated at a rate of 2.0 mm once daily for 4 days. Twelve rabbits were divided into 2 groups. At the end of distraction, the experimental group of rabbits received an injection of TEOM into the distracted tissue on one side, whereas, saline solution was injected into the distracted tissue on the contralateral side as the internal control. An additional control group received an injection of PRP or saline solution into the distracted tissue in the same way as the experimental group. The distraction regenerates were assessed by radiological and histomorphometric analyses. The radiodensity of the distraction gap injected with TEOM was significantly higher than that injected with PRP or saline solution at 2, 3, and 4 weeks postdistraction. The histomorphometric analysis also showed that both new bone zone and bony content in the distraction gap injected with TEOM were significantly increased when compared with PRP or saline solution. Our results demonstrated that the distraction gap injected with TEOM showed significant new bone formation. Therefore, injections of TEOM may be able to compensate for insufficient distraction gaps.

  7. CD147 promotes the formation of functional osteoclasts through NFATc1 signalling

    International Nuclear Information System (INIS)

    Nishioku, Tsuyoshi; Terasawa, Mariko; Baba, Misaki; Yamauchi, Atsushi; Kataoka, Yasufumi

    2016-01-01

    CD147, a membrane glycoprotein of the immunoglobulin superfamily, is highly upregulated during dynamic cellular events including tissue remodelling. Elevated CD147 expression is present in the joint of rheumatoid arthritis patients. However, the role of CD147 in bone destruction remains unclear. To determine whether CD147 is involved in osteoclastogenesis, we studied its expression in mouse osteoclasts and its role in osteoclast differentiation and function. CD147 expression was markedly upregulated during osteoclast differentiation. To investigate the role of CD147 in receptor activator of nuclear factor-kappa B ligand (RANKL)-induced osteoclastogenesis and bone resorption activity, osteoclast precursor cells were transfected with CD147 siRNA. Decreased CD147 expression inhibited osteoclast formation and bone resorption, inhibited RANKL-induced nuclear translocation of the nuclear factor of activated T cells (NFAT) c1 and decreased the expression of the d2 isoform of vacuolar ATPase Vo domain and cathepsin K. Therefore, CD147 plays a critical role in the differentiation and function of osteoclasts by upregulating NFATc1 through the autoamplification of its expression in osteoclastogenesis. - Highlights: • CD147 expression was markedly upregulated during osteoclast differentiation. • Downregulation of CD147 expression inhibited osteoclastgenesis and bone resorption. • Decreased CD147 expression inhibited RANKL-induced nuclear translocation of NFATc1.

  8. CD147 promotes the formation of functional osteoclasts through NFATc1 signalling.

    Science.gov (United States)

    Nishioku, Tsuyoshi; Terasawa, Mariko; Baba, Misaki; Yamauchi, Atsushi; Kataoka, Yasufumi

    2016-04-29

    CD147, a membrane glycoprotein of the immunoglobulin superfamily, is highly upregulated during dynamic cellular events including tissue remodelling. Elevated CD147 expression is present in the joint of rheumatoid arthritis patients. However, the role of CD147 in bone destruction remains unclear. To determine whether CD147 is involved in osteoclastogenesis, we studied its expression in mouse osteoclasts and its role in osteoclast differentiation and function. CD147 expression was markedly upregulated during osteoclast differentiation. To investigate the role of CD147 in receptor activator of nuclear factor-kappa B ligand (RANKL)-induced osteoclastogenesis and bone resorption activity, osteoclast precursor cells were transfected with CD147 siRNA. Decreased CD147 expression inhibited osteoclast formation and bone resorption, inhibited RANKL-induced nuclear translocation of the nuclear factor of activated T cells (NFAT) c1 and decreased the expression of the d2 isoform of vacuolar ATPase Vo domain and cathepsin K. Therefore, CD147 plays a critical role in the differentiation and function of osteoclasts by upregulating NFATc1 through the autoamplification of its expression in osteoclastogenesis. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. The Gαo Activator Mastoparan-7 Promotes Dendritic Spine Formation in Hippocampal Neurons

    Directory of Open Access Journals (Sweden)

    Valerie T. Ramírez

    2016-01-01

    Full Text Available Mastoparan-7 (Mas-7, an analogue of the peptide mastoparan, which is derived from wasp venom, is a direct activator of Pertussis toxin- (PTX- sensitive G proteins. Mas-7 produces several biological effects in different cell types; however, little is known about how Mas-7 influences mature hippocampal neurons. We examined the specific role of Mas-7 in the development of dendritic spines, the sites of excitatory synaptic contact that are crucial for synaptic plasticity. We report here that exposure of hippocampal neurons to a low dose of Mas-7 increases dendritic spine density and spine head width in a time-dependent manner. Additionally, Mas-7 enhances postsynaptic density protein-95 (PSD-95 clustering in neurites and activates Gαo signaling, increasing the intracellular Ca2+ concentration. To define the role of signaling intermediates, we measured the levels of phosphorylated protein kinase C (PKC, c-Jun N-terminal kinase (JNK, and calcium-calmodulin dependent protein kinase IIα (CaMKIIα after Mas-7 treatment and determined that CaMKII activation is necessary for the Mas-7-dependent increase in dendritic spine density. Our results demonstrate a critical role for Gαo subunit signaling in the regulation of synapse formation.

  10. CD147 promotes the formation of functional osteoclasts through NFATc1 signalling

    Energy Technology Data Exchange (ETDEWEB)

    Nishioku, Tsuyoshi, E-mail: nishiokut@niu.ac.jp [Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Nagasaki International University, 2825-7 Huis Ten Bosch, Sasebo, Nagasaki 859-3298 (Japan); Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180 (Japan); Terasawa, Mariko; Baba, Misaki; Yamauchi, Atsushi; Kataoka, Yasufumi [Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180 (Japan)

    2016-04-29

    CD147, a membrane glycoprotein of the immunoglobulin superfamily, is highly upregulated during dynamic cellular events including tissue remodelling. Elevated CD147 expression is present in the joint of rheumatoid arthritis patients. However, the role of CD147 in bone destruction remains unclear. To determine whether CD147 is involved in osteoclastogenesis, we studied its expression in mouse osteoclasts and its role in osteoclast differentiation and function. CD147 expression was markedly upregulated during osteoclast differentiation. To investigate the role of CD147 in receptor activator of nuclear factor-kappa B ligand (RANKL)-induced osteoclastogenesis and bone resorption activity, osteoclast precursor cells were transfected with CD147 siRNA. Decreased CD147 expression inhibited osteoclast formation and bone resorption, inhibited RANKL-induced nuclear translocation of the nuclear factor of activated T cells (NFAT) c1 and decreased the expression of the d2 isoform of vacuolar ATPase Vo domain and cathepsin K. Therefore, CD147 plays a critical role in the differentiation and function of osteoclasts by upregulating NFATc1 through the autoamplification of its expression in osteoclastogenesis. - Highlights: • CD147 expression was markedly upregulated during osteoclast differentiation. • Downregulation of CD147 expression inhibited osteoclastgenesis and bone resorption. • Decreased CD147 expression inhibited RANKL-induced nuclear translocation of NFATc1.

  11. Studies of the structure and function of Mms6, a bacterial protein that promotes the formation of magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lijun [Iowa State Univ., Ames, IA (United States)

    2011-01-01

    Here we report structural and functional studies of Mms6, a biomineralization protein that can promote the formation in vitro of magnetic nanoparticles with sizes and morphologies similar to the magnetites synthesized by magnetotactic bacteria. We found the binding pattern of Mms6 to ferric ion to be two-phase and multivalent. We quantatively determined that Mms6 binds one Fe3+ with a very high affinity (Kd = 1016 M). The second phase of iron binding is multivalent and cooperative with respect to iron with a Kd in the μM range and a stoichiometry of about 20 ferric ion per protein molecule. We found that Mms6 exists in large particles of two sizes, one consisting of 20-40 monomeric units and the other of 200 units. From proteolytic digestion, ultracentrifugation and liposome fusion studies, we found that Mms6 forms a large micellar quaternary structure with the N-terminal domain self-assembling into a uniformly sized micelle and the C-terminal domain on the surface. The two-phase iron-binding pattern may be relevant to iron crystal formation. We propose that the first high affinity phase may stabilize a new conformation of the C-terminal domain that allows interaction with other C-terminal domains leading to a structural change in the multimeric protein complex that enables the second low affinity iron binding phase to organize iron and initiate crystal formation. We also observed a dimeric apparent molecular mass of the Mms6 C-terminal peptide (C21Mms6). We speculate that the C-terminal domain may form higher order quaternary arrangements on the surface of the micelle or when anchored to a membrane by the N-terminal domain. The change in fluorescence quenching in the N-terminal domain with iron binding suggests a structural integrity between the C- and N-terminal domains. The slow change in trp fluorescence as a function of time after adding iron suggests a very slow conformational change in the protein that involves

  12. Mitochondrial Respiration Is Reduced in Atherosclerosis, Promoting Necrotic Core Formation and Reducing Relative Fibrous Cap Thickness.

    Science.gov (United States)

    Yu, Emma P K; Reinhold, Johannes; Yu, Haixiang; Starks, Lakshi; Uryga, Anna K; Foote, Kirsty; Finigan, Alison; Figg, Nichola; Pung, Yuh-Fen; Logan, Angela; Murphy, Michael P; Bennett, Martin

    2017-12-01

    Mitochondrial DNA (mtDNA) damage is present in murine and human atherosclerotic plaques. However, whether endogenous levels of mtDNA damage are sufficient to cause mitochondrial dysfunction and whether decreasing mtDNA damage and improving mitochondrial respiration affects plaque burden or composition are unclear. We examined mitochondrial respiration in human atherosclerotic plaques and whether augmenting mitochondrial respiration affects atherogenesis. Human atherosclerotic plaques showed marked mitochondrial dysfunction, manifested as reduced mtDNA copy number and oxygen consumption rate in fibrous cap and core regions. Vascular smooth muscle cells derived from plaques showed impaired mitochondrial respiration, reduced complex I expression, and increased mitophagy, which was induced by oxidized low-density lipoprotein. Apolipoprotein E-deficient (ApoE -/- ) mice showed decreased mtDNA integrity and mitochondrial respiration, associated with increased mitochondrial reactive oxygen species. To determine whether alleviating mtDNA damage and increasing mitochondrial respiration affects atherogenesis, we studied ApoE -/- mice overexpressing the mitochondrial helicase Twinkle (Tw + /ApoE -/- ). Tw + /ApoE -/- mice showed increased mtDNA integrity, copy number, respiratory complex abundance, and respiration. Tw + /ApoE -/- mice had decreased necrotic core and increased fibrous cap areas, and Tw + /ApoE -/- bone marrow transplantation also reduced core areas. Twinkle increased vascular smooth muscle cell mtDNA integrity and respiration. Twinkle also promoted vascular smooth muscle cell proliferation and protected both vascular smooth muscle cells and macrophages from oxidative stress-induced apoptosis. Endogenous mtDNA damage in mouse and human atherosclerosis is associated with significantly reduced mitochondrial respiration. Reducing mtDNA damage and increasing mitochondrial respiration decrease necrotic core and increase fibrous cap areas independently of changes in

  13. Calcium carbonate hybrid coating promotes the formation of biomimetic hydroxyapatite on titanium surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, Marcos Antônio E.; Ruiz, Gilia C.M. [Departamento de Química-Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, SP (Brazil); Faria, Amanda N. [Departamento de Química-Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, SP (Brazil); Departamento de Bioquímica e Imunologia-Faculdade de Medicina de Ribeirão Preto Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Zancanela, Daniela C.; Pereira, Lourivaldo S.; Ciancaglini, Pietro [Departamento de Química-Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, SP (Brazil); Ramos, Ana P., E-mail: anapr@ffclrp.usp.br [Departamento de Química-Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, SP (Brazil)

    2016-05-01

    Graphical abstract: - Highlights: • CaCO{sub 3} continuous films were deposited on titanium discs using a biomimetic approach. • The coatings origin hydroxyapatite when immersed in simulated body fluid. • The wettability and the free energy of the surfaces were increased after the treatment. • The coated titanium discs are bioactive and non-toxic to osteoblasts. - Abstract: CaCO{sub 3} particles dispersed in liquid media have proven to be good inductors of hydroxyapatite (HAp) growth. However, the use of CaCO{sub 3} deposited as thin films for this propose is unknown. Here, we report the growth of CaCO{sub 3} continuous films on Langmuir–Blodgett (LB) modified titanium surfaces and its use as HAp growth inductor. The Ti surfaces were modified with two, four, and six layers of dihexadecylphosphate (DHP)-LB films containing Ca{sup 2+}, exposed to CO{sub 2} (g) for 12 h. The modified surfaces were immersed in simulated body fluid (SBF) at 37 °C for 36 h and submitted to bioactivity studies. This procedure originates bioactive coatings composed by non-stoichiometric HAp as evidenced by Fourier-Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), and X-ray Photoelectron Spectroscopy (XPS). The presence of the CaCO{sub 3} film as pre-coating diminished the time necessary to growth continuous and homogeneous HAp films using a biomimetic approach. The surface properties of the films regarding their roughness, composition, charge, wettability, and surface free energy (γ{sub s}) were accessed. The presence of HAp increased the wettability and γ{sub s} of the surfaces. The coatings are not toxic for osteoblasts as observed for cell viability assays obtained after 7 and 14 days of culture. Moreover, the CaCO{sub 3} thin films promote the recovery of the osteoblasts viability more than the Ti surfaces themselves.

  14. Putative DNA G-quadruplex formation within the promoters of Plasmodium falciparum var genes

    Directory of Open Access Journals (Sweden)

    Rowe J

    2009-08-01

    Full Text Available Abstract Background Guanine-rich nucleic acid sequences are capable of folding into an intramolecular four-stranded structure called a G-quadruplex. When found in gene promoter regions, G-quadruplexes can downregulate gene expression, possibly by blocking the transcriptional machinery. Here we have used a genome-wide bioinformatic approach to identify Putative G-Quadruplex Sequences (PQS in the Plasmodium falciparum genome, along with biophysical techniques to examine the physiological stability of P. falciparum PQS in vitro. Results We identified 63 PQS in the non-telomeric regions of the P. falciparum clone 3D7. Interestingly, 16 of these PQS occurred in the upstream region of a subset of the P. falciparum var genes (group B var genes. The var gene family encodes PfEMP1, the parasite's major variant antigen and adhesin expressed at the surface of infected erythrocytes, that plays a key role in malaria pathogenesis and immune evasion. The ability of the PQS found in the upstream regions of group B var genes (UpsB-Q to form stable G-quadruplex structures in vitro was confirmed using 1H NMR, circular dichroism, UV spectroscopy, and thermal denaturation experiments. Moreover, the synthetic compound BOQ1 that shows a higher affinity for DNA forming quadruplex rather than duplex structures was found to bind with high affinity to the UpsB-Q. Conclusion This is the first demonstration of non-telomeric PQS in the genome of P. falciparum that form stable G-quadruplexes under physiological conditions in vitro. These results allow the generation of a novel hypothesis that the G-quadruplex sequences in the upstream regions of var genes have the potential to play a role in the transcriptional control of this major virulence-associated multi-gene family.

  15. Calcium carbonate hybrid coating promotes the formation of biomimetic hydroxyapatite on titanium surfaces

    International Nuclear Information System (INIS)

    Cruz, Marcos Antônio E.; Ruiz, Gilia C.M.; Faria, Amanda N.; Zancanela, Daniela C.; Pereira, Lourivaldo S.; Ciancaglini, Pietro; Ramos, Ana P.

    2016-01-01

    Graphical abstract: - Highlights: • CaCO 3 continuous films were deposited on titanium discs using a biomimetic approach. • The coatings origin hydroxyapatite when immersed in simulated body fluid. • The wettability and the free energy of the surfaces were increased after the treatment. • The coated titanium discs are bioactive and non-toxic to osteoblasts. - Abstract: CaCO 3 particles dispersed in liquid media have proven to be good inductors of hydroxyapatite (HAp) growth. However, the use of CaCO 3 deposited as thin films for this propose is unknown. Here, we report the growth of CaCO 3 continuous films on Langmuir–Blodgett (LB) modified titanium surfaces and its use as HAp growth inductor. The Ti surfaces were modified with two, four, and six layers of dihexadecylphosphate (DHP)-LB films containing Ca 2+ , exposed to CO 2 (g) for 12 h. The modified surfaces were immersed in simulated body fluid (SBF) at 37 °C for 36 h and submitted to bioactivity studies. This procedure originates bioactive coatings composed by non-stoichiometric HAp as evidenced by Fourier-Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), and X-ray Photoelectron Spectroscopy (XPS). The presence of the CaCO 3 film as pre-coating diminished the time necessary to growth continuous and homogeneous HAp films using a biomimetic approach. The surface properties of the films regarding their roughness, composition, charge, wettability, and surface free energy (γ s ) were accessed. The presence of HAp increased the wettability and γ s of the surfaces. The coatings are not toxic for osteoblasts as observed for cell viability assays obtained after 7 and 14 days of culture. Moreover, the CaCO 3 thin films promote the recovery of the osteoblasts viability more than the Ti surfaces themselves.

  16. PrP P102L and Nearby Lysine Mutations Promote Spontaneous In Vitro Formation of Transmissible Prions.

    Science.gov (United States)

    Kraus, Allison; Raymond, Gregory J; Race, Brent; Campbell, Katrina J; Hughson, Andrew G; Anson, Kelsie J; Raymond, Lynne D; Caughey, Byron

    2017-11-01

    Accumulation of fibrillar protein aggregates is a hallmark of many diseases. While numerous proteins form fibrils by prion-like seeded polymerization in vitro , only some are transmissible and pathogenic in vivo To probe the structural features that confer transmissibility to prion protein (PrP) fibrils, we have analyzed synthetic PrP amyloids with or without the human prion disease-associated P102L mutation. The formation of infectious prions from PrP molecules in vitro has required cofactors and/or unphysiological denaturing conditions. Here, we demonstrate that, under physiologically compatible conditions without cofactors, the P102L mutation in recombinant hamster PrP promoted prion formation when seeded by minute amounts of scrapie prions in vitro Surprisingly, combination of the P102L mutation with charge-neutralizing substitutions of four nearby lysines promoted spontaneous prion formation. When inoculated into hamsters, both of these types of synthetic prions initiated substantial accumulation of prion seeding activity and protease-resistant PrP without transmissible spongiform encephalopathy (TSE) clinical signs or notable glial activation. Our evidence suggests that PrP's centrally located proline and lysine residues act as conformational switches in the in vitro formation of transmissible PrP amyloids. IMPORTANCE Many diseases involve the damaging accumulation of specific misfolded proteins in thread-like aggregates. These threads (fibrils) are capable of growing on the ends by seeding the refolding and incorporation of the normal form of the given protein. In many cases such aggregates can be infectious and propagate like prions when transmitted from one individual host to another. Some transmitted aggregates can cause fatal disease, as with human iatrogenic prion diseases, while other aggregates appear to be relatively innocuous. The factors that distinguish infectious and pathogenic protein aggregates from more innocuous ones are poorly understood

  17. Alleviating Autonomic Dysreflexia after Spinal Cord Injury

    Science.gov (United States)

    2017-12-01

    tracts originating from cortex, we may eventually be able to use cell transplantation as a bridge to promote targeted, functional axon regeneration ...13. SUPPLEMENTARY NOTES 14. ABSTRACT 15. SUBJECT TERMS autonomic dysreflexia, spinal cord injury, transplantation, axon regeneration 16. SECURITY...different root causes – i.e. using neural precursor cells to restore more normal innervation of sympathetic preganglionic neurons and

  18. The combined use of kartogenin and platelet-rich plasma promotes fibrocartilage formation in the wounded rat Achilles tendon entheses.

    Science.gov (United States)

    Zhang, J; Yuan, T; Zheng, N; Zhou, Y; Hogan, M V; Wang, J H-C

    2017-04-01

    After an injury, the biological reattachment of tendon to bone is a challenge because healing takes place between a soft (tendon) and a hard (bone) tissue. Even after healing, the transition zone in the enthesis is not completely regenerated, making it susceptible to re-injury. In this study, we aimed to regenerate Achilles tendon entheses (ATEs) in wounded rats using a combination of kartogenin (KGN) and platelet-rich plasma (PRP). Wounds created in rat ATEs were given three different treatments: kartogenin platelet-rich plasma (KGN-PRP); PRP; or saline (control), followed by histological and immunochemical analyses, and mechanical testing of the rat ATEs after three months of healing. Histological analysis showed well organised arrangement of collagen fibres and proteoglycan formation in the wounded ATEs in the KGN-PRP group. Furthermore, immunohistochemical analysis revealed fibrocartilage formation in the KGN-PRP-treated ATEs, evidenced by the presence of both collagen I and II in the healed ATE. Larger positively stained collagen III areas were found in both PRP and saline groups than those in the KGN-PRP group. Chondrocyte-related genes, SOX9 and collagen II, and tenocyte-related genes, collagen I and scleraxis (SCX), were also upregulated by KGN-PRP. Moreover, mechanical testing results showed higher ultimate tensile strength in the KGN-PRP group than in the saline control group. In contrast, PRP treatment appeared to have healed the injured ATE but induced no apparent formation of fibrocartilage. The saline-treated group showed poor healing without fibrocartilage tissue formation in the ATEs. Our results show that injection of KGN-PRP induces fibrocartilage formation in the wounded rat ATEs. Hence, KGN-PRP may be a clinically relevant, biological approach to regenerate injured enthesis effectively. Cite this article: J. Zhang, T. Yuan, N. Zheng, Y. Zhou, M. V. Hogan, J. H-C. Wang. The combined use of kartogenin and platelet-rich plasma promotes

  19. The transcription factor Mlc promotes Vibrio cholerae biofilm formation through repression of phosphotransferase system components.

    Science.gov (United States)

    Pickering, Bradley S; Lopilato, Jane E; Smith, Daniel R; Watnick, Paula I

    2014-07-01

    The phosphoenol phosphotransferase system (PTS) is a multicomponent signal transduction cascade that regulates diverse aspects of bacterial cellular physiology in response to the availability of high-energy sugars in the environment. Many PTS components are repressed at the transcriptional level when the substrates they transport are not available. In Escherichia coli, the transcription factor Mlc (for makes large colonies) represses transcription of the genes encoding enzyme I (EI), histidine protein (HPr), and the glucose-specific enzyme IIBC (EIIBC(Glc)) in defined media that lack PTS substrates. When glucose is present, the unphosphorylated form of EIIBC(Glc) sequesters Mlc to the cell membrane, preventing its interaction with DNA. Very little is known about Vibrio cholerae Mlc. We found that V. cholerae Mlc activates biofilm formation in LB broth but not in defined medium supplemented with either pyruvate or glucose. Therefore, we questioned whether V. cholerae Mlc functions differently than E. coli Mlc. Here we have shown that, like E. coli Mlc, V. cholerae Mlc represses transcription of PTS components in both defined medium and LB broth and that E. coli Mlc is able to rescue the biofilm defect of a V. cholerae Δmlc mutant. Furthermore, we provide evidence that Mlc indirectly activates transcription of the vps genes by repressing expression of EI. Because activation of the vps genes by Mlc occurs under only a subset of the conditions in which repression of PTS components is observed, we conclude that additional inputs present in LB broth are required for activation of vps gene transcription by Mlc. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  20. Hedgehog Signaling Promotes the Proliferation and Subsequent Hair Cell Formation of Progenitor Cells in the Neonatal Mouse Cochlea

    Science.gov (United States)

    Chen, Yan; Lu, Xiaoling; Guo, Luo; Ni, Wenli; Zhang, Yanping; Zhao, Liping; Wu, Lingjie; Sun, Shan; Zhang, Shasha; Tang, Mingliang; Li, Wenyan; Chai, Renjie; Li, Huawei

    2017-01-01

    Hair cell (HC) loss is the major cause of permanent sensorineural hearing loss in mammals. Unlike lower vertebrates, mammalian cochlear HCs cannot regenerate spontaneously after damage, although the vestibular system does maintain limited HC regeneration capacity. Thus HC regeneration from the damaged sensory epithelium has been one of the main areas of research in the field of hearing restoration. Hedgehog signaling plays important roles during the embryonic development of the inner ear, and it is involved in progenitor cell proliferation and differentiation as well as the cell fate decision. In this study, we show that recombinant Sonic Hedgehog (Shh) protein effectively promotes sphere formation, proliferation, and differentiation of Lgr5+ progenitor cells isolated from the neonatal mouse cochlea. To further explore this, we determined the effect of Hedgehog signaling on cell proliferation and HC regeneration in cultured cochlear explant from transgenic R26-SmoM2 mice that constitutively activate Hedgehog signaling in the supporting cells of the cochlea. Without neomycin treatment, up-regulation of Hedgehog signaling did not significantly promote cell proliferation or new HC formation. However, after injury to the sensory epithelium by neomycin treatment, the over-activation of Hedgehog signaling led to significant supporting cell proliferation and HC regeneration in the cochlear epithelium explants. RNA sequencing and real-time PCR were used to compare the transcripts of the cochleae from control mice and R26-SmoM2 mice, and multiple genes involved in the proliferation and differentiation processes were identified. This study has important implications for the treatment of sensorineural hearing loss by manipulating the Hedgehog signaling pathway. PMID:29311816

  1. Hedgehog Signaling Promotes the Proliferation and Subsequent Hair Cell Formation of Progenitor Cells in the Neonatal Mouse Cochlea

    Directory of Open Access Journals (Sweden)

    Yan Chen

    2017-12-01

    Full Text Available Hair cell (HC loss is the major cause of permanent sensorineural hearing loss in mammals. Unlike lower vertebrates, mammalian cochlear HCs cannot regenerate spontaneously after damage, although the vestibular system does maintain limited HC regeneration capacity. Thus HC regeneration from the damaged sensory epithelium has been one of the main areas of research in the field of hearing restoration. Hedgehog signaling plays important roles during the embryonic development of the inner ear, and it is involved in progenitor cell proliferation and differentiation as well as the cell fate decision. In this study, we show that recombinant Sonic Hedgehog (Shh protein effectively promotes sphere formation, proliferation, and differentiation of Lgr5+ progenitor cells isolated from the neonatal mouse cochlea. To further explore this, we determined the effect of Hedgehog signaling on cell proliferation and HC regeneration in cultured cochlear explant from transgenic R26-SmoM2 mice that constitutively activate Hedgehog signaling in the supporting cells of the cochlea. Without neomycin treatment, up-regulation of Hedgehog signaling did not significantly promote cell proliferation or new HC formation. However, after injury to the sensory epithelium by neomycin treatment, the over-activation of Hedgehog signaling led to significant supporting cell proliferation and HC regeneration in the cochlear epithelium explants. RNA sequencing and real-time PCR were used to compare the transcripts of the cochleae from control mice and R26-SmoM2 mice, and multiple genes involved in the proliferation and differentiation processes were identified. This study has important implications for the treatment of sensorineural hearing loss by manipulating the Hedgehog signaling pathway.

  2. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Disabilities Photography by Rona Talcott Website by Mobile Marketing LLC Understanding Spinal Cord Injury About ... Your email address * This iframe contains the logic required to ...

  3. Silicon Promotes Exodermal Casparian Band Formation in Si-Accumulating and Si-Excluding Species by Forming Phenol Complexes.

    Directory of Open Access Journals (Sweden)

    Alexander T Fleck

    Full Text Available We studied the effect of Silicon (Si on Casparian band (CB development, chemical composition of the exodermal CB and Si deposition across the root in the Si accumulators rice and maize and the Si non-accumulator onion. Plants were cultivated in nutrient solution with and without Si supply. The CB development was determined in stained root cross-sections. The outer part of the roots containing the exodermis was isolated after enzymatic treatment. The exodermal suberin was transesterified with MeOH/BF3 and the chemical composition was measured using gas chromatography-mass spectroscopy (GC-MS and flame ionization detector (GC-FID. Laser ablation-inductively coupled plasma-mass spectroscopy (LA-ICP-MS was used to determine the Si deposition across root cross sections. Si promoted CB formation in the roots of Si-accumulator and Si non-accumulator species. The exodermal suberin was decreased in rice and maize due to decreased amounts of aromatic suberin fractions. Si did not affect the concentration of lignin and lignin-like polymers in the outer part of rice, maize and onion roots. The highest Si depositions were found in the tissues containing CB. These data along with literature were used to suggest a mechanism how Si promotes the CB development by forming complexes with phenols.

  4. Hypertonic Saline Suppresses NADPH Oxidase-Dependent Neutrophil Extracellular Trap Formation and Promotes Apoptosis

    Directory of Open Access Journals (Sweden)

    Ajantha Nadesalingam

    2018-03-01

    Full Text Available Tonicity of saline (NaCl is important in regulating cellular functions and homeostasis. Hypertonic saline is administered to treat many inflammatory diseases, including cystic fibrosis. Excess neutrophil extracellular trap (NET formation, or NETosis, is associated with many pathological conditions including chronic inflammation. Despite the known therapeutic benefits of hypertonic saline, its underlying mechanisms are not clearly understood. Therefore, we aimed to elucidate the effects of hypertonic saline in modulating NETosis. For this purpose, we purified human neutrophils and induced NETosis using agonists such as diacylglycerol mimetic phorbol myristate acetate (PMA, Gram-negative bacterial cell wall component lipopolysaccharide (LPS, calcium ionophores (A23187 and ionomycin from Streptomyces conglobatus, and bacteria (Pseudomonas aeruginosa and Staphylococcus aureus. We then analyzed neutrophils and NETs using Sytox green assay, immunostaining of NET components and apoptosis markers, confocal microscopy, and pH sensing reagents. This study found that hypertonic NaCl suppresses nicotinamide adenine dinucleotide phosphate oxidase (NADPH2 or NOX2-dependent NETosis induced by agonists PMA, Escherichia coli LPS (0111:B4 and O128:B12, and P. aeruginosa. Hypertonic saline also suppresses LPS- and PMA- induced reactive oxygen species production. It was determined that supplementing H2O2 reverses the suppressive effect of hypertonic saline on NOX2-dependent NETosis. Many of the aforementioned suppressive effects were observed in the presence of equimolar concentrations of choline chloride and osmolytes (d-mannitol and d-sorbitol. This suggests that the mechanism by which hypertonic saline suppresses NOX2-dependent NETosis is via neutrophil dehydration. Hypertonic NaCl does not significantly alter the intracellular pH of neutrophils. We found that hypertonic NaCl induces apoptosis while suppressing NOX2-dependent NETosis. In contrast, hypertonic

  5. Interval and continuous exercise regimens suppress neutrophil-derived microparticle formation and neutrophil-promoted thrombin generation under hypoxic stress.

    Science.gov (United States)

    Chen, Yi-Ching; Ho, Ching-Wen; Tsai, Hsing-Hua; Wang, Jong-Shyan

    2015-04-01

    Acute hypoxic exposure increases vascular thrombotic risk. The release of procoagulant-rich microparticles from neutrophils accelerates the pathogenesis of inflammatory thrombosis. The present study explicates the manner in which interval and continuous exercise regimens affect neutrophil-derived microparticle (NDMP) formation and neutrophil/NDMP-mediated thrombin generation (TG) under hypoxic condition. A total of 60 sedentary males were randomized to perform either aerobic interval training [AIT; 3-min intervals at 40% and 80% V̇O2max (maximal O2 consumption)] or moderate continuous training (MCT; sustained 60% V̇O2max) for 30 min/day, 5 days/week for 5 weeks, or to a control (CTL) group who did not receive any form of training. At rest and immediately after hypoxic exercise test (HE, 100 W under 12% O2 for 30 min), the NDMP characteristics and dynamic TG were measured by flow cytometry and thrombinography respectively. Before the intervention, HE (i) elevated coagulant factor VIII/fibrinogen concentrations and shortened activated partial thromboplastin time (aPTT), (ii) increased total and tissue factor (TF)-rich/phosphatidylserine (PS)-exposed NDMP counts and (iii) enhanced the peak height and rate of TG promoted by neutrophils/NDMPs. Following the 5-week intervention, AIT exhibited higher enhancement of V̇O2max than did MCT. Notably, both MCT and AIT attenuated the extents of HE-induced coagulant factor VIII/fibrinogen elevations and aPTT shortening. Furthermore, the two exercise regimens significantly decreased TF-rich/PS-exposed NDMP formation and depressed neutrophil/NDMP-mediated dynamic TG at rest and following HE. Hence, we conclude that AIT is superior to MCT for enhancing aerobic capacity. Moreover, either AIT or MCT effectively ameliorates neutrophil/NDMP-promoted TG by down-regulating expression of procoagulant factors during HE, which may reduce thrombotic risk evoked by hypoxia. Moreover, either AIT or MCT effectively ameliorates neutrophil/NDMP-promoted

  6. Exploring DNA methylation changes in promoter, intragenic, and intergenic regions as early and late events in breast cancer formation

    International Nuclear Information System (INIS)

    Rauscher, Garth H.; Kresovich, Jacob K.; Poulin, Matthew; Yan, Liying; Macias, Virgilia; Mahmoud, Abeer M.; Al-Alem, Umaima; Kajdacsy-Balla, Andre; Wiley, Elizabeth L.; Tonetti, Debra; Ehrlich, Melanie

    2015-01-01

    Breast cancer formation is associated with frequent changes in DNA methylation but the extent of very early alterations in DNA methylation and the biological significance of cancer-associated epigenetic changes need further elucidation. Pyrosequencing was done on bisulfite-treated DNA from formalin-fixed, paraffin-embedded sections containing invasive tumor and paired samples of histologically normal tissue adjacent to the cancers as well as control reduction mammoplasty samples from unaffected women. The DNA regions studied were promoters (BRCA1, CD44, ESR1, GSTM2, GSTP1, MAGEA1, MSI1, NFE2L3, RASSF1A, RUNX3, SIX3 and TFF1), far-upstream regions (EN1, PAX3, PITX2, and SGK1), introns (APC, EGFR, LHX2, RFX1 and SOX9) and the LINE-1 and satellite 2 DNA repeats. These choices were based upon previous literature or publicly available DNA methylome profiles. The percent methylation was averaged across neighboring CpG sites. Most of the assayed gene regions displayed hypermethylation in cancer vs. adjacent tissue but the TFF1 and MAGEA1 regions were significantly hypomethylated (p ≤0.001). Importantly, six of the 16 regions examined in a large collection of patients (105 – 129) and in 15-18 reduction mammoplasty samples were already aberrantly methylated in adjacent, histologically normal tissue vs. non-cancerous mammoplasty samples (p ≤0.01). In addition, examination of transcriptome and DNA methylation databases indicated that methylation at three non-promoter regions (far-upstream EN1 and PITX2 and intronic LHX2) was associated with higher gene expression, unlike the inverse associations between cancer DNA hypermethylation and cancer-altered gene expression usually reported. These three non-promoter regions also exhibited normal tissue-specific hypermethylation positively associated with differentiation-related gene expression (in muscle progenitor cells vs. many other types of normal cells). The importance of considering the exact DNA region analyzed and the

  7. International Spinal Cord Injury Urinary Tract Infection Basic Data Set

    DEFF Research Database (Denmark)

    Goetz, L L; Cardenas, D D; Kennelly, M

    2013-01-01

    To develop an International Spinal Cord Injury (SCI) Urinary Tract Infection (UTI) Basic Data Set presenting a standardized format for the collection and reporting of a minimal amount of information on UTIs in daily practice or research.......To develop an International Spinal Cord Injury (SCI) Urinary Tract Infection (UTI) Basic Data Set presenting a standardized format for the collection and reporting of a minimal amount of information on UTIs in daily practice or research....

  8. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... spinal cord injuries? play_arrow What is “Braingate” research? play_arrow How would stem-cell therapies work ... cord injuries? play_arrow What does stem-cell research on animals tell us? play_arrow When can ...

  9. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Cord Injury Allen Heinemann, PhD How Peer Counseling Works Julie Gassaway, MS, RN Pediatric Injuries Pediatric Spinal ... injury? play_arrow How does the spinal cord work? play_arrow Why is the level of a ...

  10. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... arrow What are the latest developments in the use of electrical stimulation for spinal cord injuries? play_arrow What is “Braingate” research? play_arrow How would stem-cell therapies work in the treatment of spinal cord ...

  11. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Spinal Cord Injury Guy W. Fried, MD Substance Abuse and Spinal Cord Injury Allen Heinemann, PhD How ... arrow Why are high-dose steroids often used right after an injury? play_arrow What is meant ...

  12. Effects of umbilical cord blood stem cells on healing factors for diabetic foot injuries.

    Science.gov (United States)

    Çil, N; Oğuz, E O; Mete, E; Çetinkaya, A; Mete, G A

    2017-01-01

    The use of stem or progenitor cells from bone marrow, or peripheral or umbilical cord blood is becoming more common for treatment of diabetic foot problems. These cells promote neovascularization by angiogenic factors and they promote epithelium formation by stimulating cell replication and migration under certain pathological conditions. We investigated the role of CD34 + stem cells from human umbilical cord blood in wound healing using a rat model. Rats were randomly divided into a control group and two groups with diabetes induced by a single dose of 55 mg/kg intraperitoneal streptozocin. Scarred areas 5 mm in diameter were created on the feet of all rats. The diabetic rats constituted the diabetes control group and a diabetes + stem cell group with local injection into the wound site of 0.5 × 106 CD34 + stem cells from human umbilical cord blood. The newly formed skin in the foot wounds following CD34 + stem cell treatment showed significantly improvement by immunohistochemistry and TUNEL staining, and were closer to the wound healing of the control group than the untreated diabetic animals. The increase in FGF expression that accompanied the local injection of CD34 + stem cells indicates that FGF stimulation helped prevent apoptosis. Our findings suggest a promising new treatment approach to diabetic wound healing.

  13. Matrix metalloproteinase inhibition delays wound healing and blocks the latent transforming growth factor-beta1-promoted myofibroblast formation and function

    DEFF Research Database (Denmark)

    Mirastschijski, Ursula; Schnabel, Reinhild; Claes, Juliane

    2010-01-01

    applied topically to full-thickness skin excisional wounds in rats and its ability to inhibit the promotion of myofibroblast formation and function by the latent transforming-growth factor-beta1 (TGF-beta1). BB-94 delayed wound contraction, as well as all other associated aspects of wound healing examined......, including myofibroblast formation, stromal cell proliferation, blood vessel formation, and epithelial wound coverage. Interestingly, BB-94 dramatically increased the level of latent and active MMP-9. The increased levels of active MMP-9 may eventually overcome the ability of BB-94 to inhibit this MMP...... and may explain why wound contraction and other associated events of wound healing were only delayed and not completely inhibited. BB-94 was also found to inhibit the ability of latent TGF-beta1 to promote the formation and function of myofibroblasts. These results suggest that BB-94 could delay wound...

  14. Human recombinant cementum attachment protein (hrPTPLa/CAP) promotes hydroxyapatite crystal formation in vitro and bone healing in vivo.

    Science.gov (United States)

    Montoya, Gonzalo; Arenas, Jesús; Romo, Enrique; Zeichner-David, Margarita; Alvarez, Marco; Narayanan, A Sampath; Velázquez, Ulises; Mercado, Gabriela; Arzate, Higinio

    2014-12-01

    Cementum extracellular matrix is similar to other mineralized tissues; however, this unique tissue contains molecules only present in cementum. A cDNA of these molecules, cementum attachment protein (hrPTPLa/CAP) was cloned and expressed in a prokaryotic system. This molecule is an alternative splicing of protein tyrosine phosphatase-like A (PTPLa). In this study, we wanted to determine the structural and functional characteristics of this protein. Our results indicate that hrPTPLa/CAP contains a 43.2% α-helix, 8.9% β-sheet, 2% β-turn and 45.9% random coil secondary structure. Dynamic light scattering shows that this molecule has a size distribution of 4.8 nm and aggregates as an estimated mass of 137 kDa species. AFM characterization and FE-SEM studies indicate that this protein self-assembles into nanospheres with sizes ranging from 7.0 to 27 nm in diameter. Functional studies demonstrate that hrPTPLa/CAP promotes hydroxyapatite crystal nucleation: EDS analysis revealed that hrPTPLa/CAP-induced crystals had a 1.59 ± 0.06 Ca/P ratio. Further confirmation with MicroRaman spectrometry and TEM confirm the presence of hydroxyapatite. In vivo studies using critical-size defects in rat cranium showed that hrPTPLa/CAP promoted 73% ± 2.19% and 87% ± 1.97% new bone formation at 4 and 8 weeks respectively. Although originally identified in cementum, PTPLa/CAP is very effective at inducing bone repair and healing and therefore this novel molecule has a great potential to be used for mineralized tissue bioengineering and tissue regeneration. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. A charged residue at the subunit interface of PCNA promotes trimer formation by destabilizing alternate subunit interactions

    International Nuclear Information System (INIS)

    Freudenthal, Bret D.; Gakhar, Lokesh; Ramaswamy, S.; Washington, M. Todd

    2009-01-01

    Eukaryotic proliferating cell nuclear antigen (PCNA), an essential accessory factor in DNA replication and repair, is a ring-shaped homotrimer. A novel nontrimeric structure of E113G-mutant PCNA protein is reported, which shows that this protein forms alternate subunit interactions. It is concluded that the charged side chain of Glu113 promotes normal trimer formation by destabilizing these alternate subunit interactions. Eukaryotic proliferating cell nuclear antigen (PCNA) is an essential replication accessory factor that interacts with a variety of proteins involved in DNA replication and repair. Each monomer of PCNA has an N-terminal domain A and a C-terminal domain B. In the structure of the wild-type PCNA protein, domain A of one monomer interacts with domain B of a neighboring monomer to form a ring-shaped trimer. Glu113 is a conserved residue at the subunit interface in domain A. Two distinct X-ray crystal structures have been determined of a mutant form of PCNA with a substitution at this position (E113G) that has previously been studied because of its effect on translesion synthesis. The first structure was the expected ring-shaped trimer. The second structure was an unanticipated nontrimeric form of the protein. In this nontrimeric form, domain A of one PCNA monomer interacts with domain A of a neighboring monomer, while domain B of this monomer interacts with domain B of a different neighboring monomer. The B–B interface is stabilized by an antiparallel β-sheet and appears to be structurally similar to the A–B interface observed in the trimeric form of PCNA. The A–A interface, in contrast, is primarily stabilized by hydrophobic interactions. Because the E113G substitution is located on this hydrophobic surface, the A–A interface should be less favorable in the case of the wild-type protein. This suggests that the side chain of Glu113 promotes trimer formation by destabilizing these possible alternate subunit interactions

  16. The immobilized NaHSO4·H2O on activated charcoal: a highly efficient promoter system for N-formylation of amines with ethyl formate

    Directory of Open Access Journals (Sweden)

    Behzad Zeynizadeh

    2016-03-01

    Full Text Available The immobilized NaHSO4·H2O on activated charcoal was used as a highly efficient promoter system for facile N-formylation of amines with ethyl formate. All reactions were carried out in refluxing ethyl formate (54 ºC under mild conditions within 10-100 min to afford the product formamides in high to excellent yields (80-94%.

  17. Shoot bending promotes flower bud formation by miRNA-mediated regulation in apple (Malus domestica Borkh.).

    Science.gov (United States)

    Xing, Libo; Zhang, Dong; Zhao, Caiping; Li, Youmei; Ma, Juanjuan; An, Na; Han, Mingyu

    2016-02-01

    Flower induction in apple (Malus domestica Borkh.) trees plays an important life cycle role, but young trees produce fewer and inferior quality flower buds. Therefore, shoot bending has become an important cultural practice, significantly promoting the capacity to develop more flower buds during the growing seasons. Additionally, microRNAs (miRNAs) play essential roles in plant growth, flower induction and stress responses. In this study, we identified miRNAs potentially involved in the regulation of bud growth, and flower induction and development, as well as in the response to shoot bending. Of the 195 miRNAs identified, 137 were novel miRNAs. The miRNA expression profiles revealed that the expression levels of 68 and 27 known miRNAs were down-regulated and up-regulated, respectively, in response to shoot bending, and that the 31 differentially expressed novel miRNAs between them formed five major clusters. Additionally, a complex regulatory network associated with auxin, cytokinin, abscisic acid (ABA) and gibberellic acid (GA) plays important roles in cell division, bud growth and flower induction, in which related miRNAs and targets mediated regulation. Among them, miR396, 160, 393, and their targets associated with AUX, miR159, 319, 164, and their targets associated with ABA and GA, and flowering-related miRNAs and genes, regulate bud growth and flower bud formation in response to shoot bending. Meanwhile, the flowering genes had significantly higher expression levels during shoot bending, suggesting that they are involved in this regulatory process. This study provides a framework for the future analysis of miRNAs associated with multiple hormones and their roles in the regulation of bud growth, and flower induction and formation in response to shoot bending in apple trees. © 2015 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  18. Neuronal sFlt1 and Vegfaa determine venous sprouting and spinal cord vascularization

    DEFF Research Database (Denmark)

    Wild, Raphael; Klems, Alina; Takamiya, Masanari

    2017-01-01

    Formation of organ-specific vasculatures requires cross-talk between developing tissue and specialized endothelial cells. Here we show how developing zebrafish spinal cord neurons coordinate vessel growth through balancing of neuron-derived Vegfaa, with neuronal sFlt1 restricting Vegfaa......-Kdrl mediated angiogenesis at the neurovascular interface. Neuron-specific loss of flt1 or increased neuronal vegfaa expression promotes angiogenesis and peri-neural tube vascular network formation. Combining loss of neuronal flt1 with gain of vegfaa promotes sprout invasion into the neural tube. On loss...... of neuronal flt1, ectopic sprouts emanate from veins involving special angiogenic cell behaviours including nuclear positioning and a molecular signature distinct from primary arterial or secondary venous sprouting. Manipulation of arteriovenous identity or Notch signalling established that ectopic sprouting...

  19. Laminin-521 Promotes Rat Bone Marrow Mesenchymal Stem Cell Sheet Formation on Light-Induced Cell Sheet Technology

    Directory of Open Access Journals (Sweden)

    Zhiwei Jiang

    2017-01-01

    Full Text Available Rat bone marrow mesenchymal stem cell sheets (rBMSC sheets are attractive for cell-based tissue engineering. However, methods of culturing rBMSC sheets are critically limited. In order to obtain intact rBMSC sheets, a light-induced cell sheet method was used in this study. TiO2 nanodot films were coated with (TL or without (TN laminin-521. We investigated the effects of laminin-521 on rBMSCs during cell sheet culturing. The fabricated rBMSC sheets were subsequently assessed to study cell sheet viability, reattachment ability, cell sheet thickness, collagen type I deposition, and multilineage potential. The results showed that laminin-521 could promote the formation of rBMSC sheets with good viability under hyperconfluent conditions. Cell sheet thickness increased from an initial 26.7 ± 1.5 μm (day 5 up to 47.7 ± 3.0 μm (day 10. Moreover, rBMSC sheets maintained their potential of osteogenic, adipogenic, and chondrogenic differentiation. This study provides a new strategy to obtain rBMSC sheets using light-induced cell sheet technology.

  20. Phenylethanol promotes adhesion and biofilm formation of the antagonistic yeast Kloeckera apiculata for the control of blue mold on citrus.

    Science.gov (United States)

    Pu, Liu; Jingfan, Fang; Kai, Chen; Chao-an, Long; Yunjiang, Cheng

    2014-06-01

    The yeast Kloeckera apiculata strain 34-9 is an antagonist with biological control activity against postharvest diseases of citrus fruit. In a previous study it was demonstrated that K. apiculata produced the aromatic alcohol phenylethanol. In the present study, we found that K. apiculata was able to form biofilm on citrus fruit and embed in an extracellular matrix, which created a mechanical barrier interposed between the wound surface and pathogen. As a quorum-sensing molecule, phenylethanol can promote the formation of filaments by K. apiculata in potato dextrose agar medium, whereas on the citrus fruit, the antagonist remains as yeast after being treated with the same concentration of phenylethanol. It only induced K. apiculata to adhere and form biofilm. Following genome-wide computational and experimental identification of the possible genes associated with K. apiculata adhesion, we identified nine genes possibly involved in triggering yeast adhesion. Six of these genes were significantly induced after phenylethanol stress treatment. This study provides a new model system of the biology of the antagonist-pathogen interactions that occur in the antagonistic yeast K. apiculata for the control of blue mold on citrus caused by Penicillium italicum. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  1. Elastin-derived peptides promote abdominal aortic aneurysm formation by modulating M1/M2 macrophage polarization1

    Science.gov (United States)

    Dale, Matthew A; Xiong, Wanfen; Carson, Jeffrey S; Suh, Melissa K; Karpisek, Andrew D.; Meisinger, Trevor M.; Casale, George P.; Baxter, B. Timothy

    2016-01-01

    Abdominal aortic aneurysm (AAA) is a dynamic vascular disease characterized by inflammatory cell invasion and extracellular matrix (ECM) degradation. Damage to elastin in the ECM results in release of elastin-derived peptides (EDPs), which are chemotactic for inflammatory cells such as monocytes. Their effect on macrophage polarization is less well known. Pro-inflammatory M1 macrophages initially are recruited to sites of injury but, if their effects are prolonged, they can lead to chronic inflammation that prevents normal tissue repair. Conversely, anti-inflammatory M2 macrophages reduce inflammation and aid in wound healing. Thus, a proper M1/M2 ratio is vital for tissue homeostasis. AAA tissue reveals a high M1/M2 ratio where pro-inflammatory cells and their associated markers dominate. In the present study, in vitro treatment of bone marrow-derived macrophages with EDPs induced M1 macrophage polarization. By using C57Bl/6 mice, antibody-mediated neutralization of EDPs reduced aortic dilation, matrix metalloproteinase activity, and pro-inflammatory cytokine expression at early and late time points after aneurysm induction. Furthermore, direct manipulation of the M1/M2 balance altered aortic dilation. Injection of M2 polarized macrophages reduced aortic dilation after aneurysm induction. EDPs promoted a pro-inflammatory environment in aortic tissue by inducing M1 polarization and neutralization of EDPs attenuated aortic dilation. The M1/M2 imbalance is vital to aneurysm formation. PMID:27183603

  2. G4-DNA formation in the HRAS promoter and rational design of decoy oligonucleotides for cancer therapy.

    Directory of Open Access Journals (Sweden)

    Alexandro Membrino

    Full Text Available HRAS is a proto-oncogene involved in the tumorigenesis of urinary bladder cancer. In the HRAS promoter we identified two G-rich elements, hras-1 and hras-2, that fold, respectively, into an antiparallel and a parallel quadruplex (qhras-1, qhras-2. When we introduced in sequence hras-1 or hras-2 two point mutations that block quadruplex formation, transcription increased 5-fold, but when we stabilized the G-quadruplexes by guanidinium phthalocyanines, transcription decreased to 20% of control. By ChIP we found that sequence hras-1 is bound only by MAZ, while hras-2 is bound by MAZ and Sp1: two transcription factors recognizing guanine boxes. We also discovered by EMSA that recombinant MAZ-GST binds to both HRAS quadruplexes, while Sp1-GST only binds to qhras-1. The over-expression of MAZ and Sp1 synergistically activates HRAS transcription, while silencing each gene by RNAi results in a strong down-regulation of transcription. All these data indicate that the HRAS G-quadruplexes behave as transcription repressors. Finally, we designed decoy oligonucleotides mimicking the HRAS quadruplexes, bearing (R-1-O-[4-(1-Pyrenylethynyl phenylmethyl] glycerol and LNA modifications to increase their stability and nuclease resistance (G4-decoys. The G4-decoys repressed HRAS transcription and caused a strong antiproliferative effect, mediated by apoptosis, in T24 bladder cancer cells where HRAS is mutated.

  3. Trauma: Spinal Cord Injury.

    Science.gov (United States)

    Eckert, Matthew J; Martin, Matthew J

    2017-10-01

    Injuries to the spinal column and spinal cord frequently occur after high-energy mechanisms of injury, or with lower-energy mechanisms, in select patient populations like the elderly. A focused yet complete neurologic examination during the initial evaluation will guide subsequent diagnostic procedures and early supportive measures to help prevent further injury. For patients with injury to bone and/or ligaments, the initial focus should be spinal immobilization and prevention of inducing injury to the spinal cord. Spinal cord injury is associated with numerous life-threatening complications during the acute and long-term phases of care that all acute care surgeons must recognize. Published by Elsevier Inc.

  4. A Peptide Derived from the HIV-1 gp120 Coreceptor-Binding Region Promotes Formation of PAP248-286 Amyloid Fibrils to Enhance HIV-1 Infection.

    Directory of Open Access Journals (Sweden)

    Jinquan Chen

    Full Text Available Semen is a major vehicle for HIV transmission. Prostatic acid phosphatase (PAP fragments, such as PAP248-286, in human semen can form amyloid fibrils to enhance HIV infection. Other endogenous or exogenous factors present during sexual intercourse have also been reported to promote the formation of seminal amyloid fibrils.Here, we demonstrated that a synthetic 15-residue peptide derived from the HIV-1 gp120 coreceptor-binding region, designated enhancing peptide 2 (EP2, can rapidly self-assemble into nanofibers. These EP2-derivated nanofibers promptly accelerated the formation of semen amyloid fibrils by PAP248-286, as shown by Thioflavin T (ThT and Congo red assays. The amyloid fibrils presented similar morphology, assessed via transmission electron microscopy (TEM, in the presence or absence of EP2. Circular dichroism (CD spectroscopy revealed that EP2 accelerates PAP248-286 amyloid fibril formation by promoting the structural transition of PAP248-286 from a random coil into a cross-β-sheet. Newly formed semen amyloid fibrils effectively enhanced HIV-1 infection in TZM-bl cells and U87 cells by promoting the binding of HIV-1 virions to target cells.Nanofibers composed of EP2 promote the formation of PAP248-286 amyloid fibrils and enhance HIV-1 infection.

  5. Research on the promoting role of apelin-13 in proliferation, migration and capillary-like tube formation of RF/6A cells

    Directory of Open Access Journals (Sweden)

    Kun-Peng Xie

    2017-05-01

    Full Text Available AIM: To investigate the effects of apelin-13 on proliferation, migration and capillary-like tube formation of a monkey choroid / retinal endothelial cell line, RF/6A, to clarify whether apelin-13 could promote retinal angiogenesis in vitro.METHODS: RF/6A cells in good conditions were administrated with DMSO(the control group, apelin-13 at 0.1μmol/L(low dose groupor apelin-13 at 1μmol/L(high dose group. Cell proliferation, migration and capillary-like tube formation were detected by using the MTT assay, scratch assay and matrigel assay, respectively, at 24h after plating the cells. RESULTS: Cell proliferation was promoted in both low and high dose apelin-13 groups compared to the control cells(PPPCONCLUSION: Apelin-13 could obviously promote the angiogenesis capacity of RF/6A cells, suggesting that apelin-13 was an important pro-angiogenic factor in retinal endothelial cells.

  6. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Disabilities Photography by Rona Talcott Website by Mobile Marketing LLC Understanding Spinal Cord Injury About Us Expert ... Disabilities Photography by Rona Talcott Website by Mobile Marketing LLC close close

  7. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Life in a Wheelchair Lisa Rosen, MS Spasticity, Physical Therapy-Lokomat T. George Hornby, PhD, PT Empowering ... Rogers, SW Marguerite David, MSW Kathy Hulse, MSW Physical Therapy after Spinal Cord Injury Laura Wehrli, PT ...

  8. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... How Peer Counseling Works Julie Gassaway, MS, RN Pediatric Injuries Pediatric Spinal Cord Injury 101 Lawrence Vogel, MD The Basics of Pediatric SCI Rehabilitation Sara Klaas, MSW Transitions for Children ...

  9. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... com is an informational and support website for families facing spinal cord injuries. The website does not provide medical advice, recommend or endorse health care products or ...

  10. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... OT Anne Bryden, OT The Role of the Social Worker after Spinal Cord Injury Patti Rogers, SW Marguerite ... play_arrow What are the latest developments in the use of electrical stimulation for spinal ...

  11. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Diane M. Rowles, MS, NP How Family Life Changes After Spinal Cord Injury Nancy Rosenberg, PsyD Understanding SCI Rehabilitation Donald Peck Leslie, MD Adjusting to Social Life in a Wheelchair Lisa Rosen, MS Spasticity, ...

  12. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... with SCI Personal Experiences by Topic Resources Peer Counseling Blog About Media Donate close search Understanding Spinal ... with SCI Personal Experiences by Topic Resources Peer Counseling Blog About Media Donate Spinal Cord Injury Medical ...

  13. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... does not provide medical advice, recommend or endorse health care products or services, or control the information ... With Disabilities Photography by Rona Talcott Website by Mobile Marketing LLC Understanding Spinal Cord Injury About Us ...

  14. Parachute Cord Tension Sensor

    Data.gov (United States)

    National Aeronautics and Space Administration — To design and fabricate a light weight (few oz), very small (~2 inch length) parachute cord tension sensor demonstrator device.A major challenge for the CPAS (The...

  15. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Resources Peer Counseling Blog About Media Donate close search Understanding Spinal Cord Injury What is a Spinal ... health care products or services, or control the information found on external websites. The Hill Foundation is ...

  16. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Anne Bryden, OT The Role of the Social Worker after Spinal Cord Injury Patti Rogers, SW Marguerite ... arrow Why are high-dose steroids often used right after an injury? play_arrow What is meant ...

  17. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Living with SCI Personal Experiences by Topic Resources Peer Counseling Blog About Media Donate close search Understanding ... Living with SCI Personal Experiences by Topic Resources Peer Counseling Blog About Media Donate Spinal Cord Injury ...

  18. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Injury Diane M. Rowles, MS, NP How Family Life Changes After Spinal Cord Injury Nancy Rosenberg, PsyD ... Rehabilitation Donald Peck Leslie, MD Adjusting to Social Life in a Wheelchair Lisa Rosen, MS Spasticity, Physical ...

  19. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... With Disabilities Photography by Rona Talcott Website by Mobile Marketing LLC Understanding Spinal Cord Injury About Us ... With Disabilities Photography by Rona Talcott Website by Mobile Marketing LLC close close

  20. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Anne Bryden, OT The Role of the Social Worker after Spinal Cord Injury Patti Rogers, SW Marguerite ... or endorse health care products or services, or control the information found on external websites. The Hill ...

  1. Spinal Cord Injury 101

    Science.gov (United States)

    ... With Disabilities Photography by Rona Talcott Website by Mobile Marketing LLC Understanding Spinal Cord Injury About Us Expert ... With Disabilities Photography by Rona Talcott Website by Mobile Marketing LLC close close

  2. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... With Disabilities Photography by Rona Talcott Website by Mobile Marketing LLC Understanding Spinal Cord Injury About Us Expert ... With Disabilities Photography by Rona Talcott Website by Mobile Marketing LLC close close

  3. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Medical Experts People Living with SCI Personal Experiences by Topic Resources Peer ... Injuries Spinal Cord Injury 101 David Chen, MD Preventing Pressure Sores Mary Zeigler, MS Transition from Hospital to ...

  4. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... OT Anne Bryden, OT The Role of the Social Worker after Spinal Cord Injury Patti Rogers, SW ... Experiences By Topic Resources Blog Peer Counseling About Media Donate Contact Us Terms of Use Site Map ...

  5. Cord-Blood Banking

    Science.gov (United States)

    ... cord blood mainly because of the promise that stem cell research holds for the future. Most of us would have little use for stem cells now, but research into using them to treat diseases is ongoing — ...

  6. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... SCI Rehabilitation Donald Peck Leslie, MD Adjusting to Social Life in a Wheelchair Lisa Rosen, MS Spasticity, ... OT Anne Bryden, OT The Role of the Social Worker after Spinal Cord Injury Patti Rogers, SW ...

  7. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Living with SCI Personal Experiences by Topic Resources Peer ... Adult Injuries Spinal Cord Injury 101 David Chen, MD Preventing Pressure Sores Mary Zeigler, MS Transition from Hospital to ...

  8. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... arrow What is the “Spinal Cord Injury Model Systems” program? play_arrow ... recommend or endorse health care products or services, or control the information found on external websites. The Hill Foundation is ...

  9. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... arrow What is the “Spinal Cord Injury Model Systems” program? play_arrow What are the most promising ... health care products or services, or control the information found on external websites. The Hill Foundation is ...

  10. mTOR signaling promotes foam cell formation and inhibits foam cell egress through suppressing the SIRT1 signaling pathway.

    Science.gov (United States)

    Zheng, Haixiang; Fu, Yucai; Huang, Yusheng; Zheng, Xinde; Yu, Wei; Wang, Wei

    2017-09-01

    Atherosclerosis (AS) is a chronic immuno‑inflammatory disease accompanied by dyslipidemia. The authors previously demonstrated that sirtuin 1 (SIRT1) may prevent atherogenesis through influencing the liver X receptor/C‑C chemokine receptor type 7/nuclear factor‑κB (LXR‑CCR7/NF‑κB) signaling pathway. Previous studies have suggested a role for mammalian target of rapamycin (mTOR) signaling in the pathogenesis of cardiovascular diseases. The present study investigated the potential association between mTOR signaling and SIRT1‑LXR‑CCR7/NF‑κB signaling (SIRT1 signaling) in AS pathogenesis. To induce foam cell formation, U937 cells were differentiated into macrophages by exposure to phorbol 12‑myristate 13‑acetate (PMA) for 24 h, followed by treatment with palmitate and oxidized low density lipoprotein for a further 24 h. Oil red O staining revealed a large accumulation of lipid droplets present in foam cells. Western blot analysis demonstrated increased protein levels of phosphorylated (p)‑mTOR and its downstream factor p‑ribosomal protein S6 kinase (p70S6K). Reverse transcription‑quantitative polymerase chain reaction and western blot analyses additionally revealed decreased expression of SIRT1, LXRα and CCR7 and increased expression of NF‑κB and its downstream factor tumor necrosis factor‑α (TNF‑α) in an atherogenetic condition induced by lysophosphatidic acid (LPA). In addition, abundant lipid droplets accumulated in U937‑LPA‑treated foam cells. Rapamycin, an mTOR inhibitor, suppressed the expression and activity of mTOR and p70S6K, however enhanced expression of SIRT1, LXRα, and CCR7. Conversely, rapamycin deceased TNF‑α and NF‑κB activity, the latter of which was further confirmed by immunofluorescence analysis demonstrating increased levels of NF‑κB present in the cytoplasm compared with the nucleus. The findings of the present study suggest that mTOR signaling promotes foam cell formation and inhibits foam

  11. Steviol reduces MDCK Cyst formation and growth by inhibiting CFTR channel activity and promoting proteasome-mediated CFTR degradation.

    Directory of Open Access Journals (Sweden)

    Chaowalit Yuajit

    Full Text Available Cyst enlargement in polycystic kidney disease (PKD involves cAMP-activated proliferation of cyst-lining epithelial cells and transepithelial fluid secretion into the cyst lumen via cystic fibrosis transmembrane conductance regulator (CFTR chloride channel. This study aimed to investigate an inhibitory effect and detailed mechanisms of steviol and its derivatives on cyst growth using a cyst model in Madin-Darby canine kidney (MDCK cells. Among 4 steviol-related compounds tested, steviol was found to be the most potent at inhibiting MDCK cyst growth. Steviol inhibition of cyst growth was dose-dependent; steviol (100 microM reversibly inhibited cyst formation and cyst growth by 72.53.6% and 38.2±8.5%, respectively. Steviol at doses up to 200 microM had no effect on MDCK cell viability, proliferation and apoptosis. However, steviol acutely inhibited forskolin-stimulated apical chloride current in MDCK epithelia, measured with the Ussing chamber technique, in a dose-dependent manner. Prolonged treatment (24 h with steviol (100 microM also strongly inhibited forskolin-stimulated apical chloride current, in part by reducing CFTR protein expression in MDCK cells. Interestingly, proteasome inhibitor, MG-132, abolished the effect of steviol on CFTR protein expression. Immunofluorescence studies demonstrated that prolonged treatment (24 h with steviol (100 microM markedly reduced CFTR expression at the plasma membrane. Taken together, the data suggest that steviol retards MDCK cyst progression in two ways: first by directly inhibiting CFTR chloride channel activity and second by reducing CFTR expression, in part, by promoting proteasomal degradation of CFTR. Steviol and related compounds therefore represent drug candidates for treatment of polycystic kidney disease.

  12. A new platelet cryoprecipitate glue promoting bone formation after ectopic mesenchymal stromal cell-loaded biomaterial implantation in nude mice.

    Science.gov (United States)

    Trouillas, Marina; Prat, Marie; Doucet, Christelle; Ernou, Isabelle; Laplace-Builhé, Corinne; Blancard, Patrick Saint; Holy, Xavier; Lataillade, Jean-Jacques

    2013-01-04

    This study investigated the promising effect of a new Platelet Glue obtained from Cryoprecipitation of Apheresis Platelet products (PGCAP) used in combination with Mesenchymal Stromal Cells (MSC) loaded on ceramic biomaterials to provide novel strategies enhancing bone repair. PGCAP growth factor content was analyzed by ELISA and compared to other platelet and plasma-derived products. MSC loaded on biomaterials (65% hydroxyapatite/35% beta-TCP or 100% beta-TCP) were embedded in PGCAP and grown in presence or not of osteogenic induction medium for 21 days. Biomaterials were then implanted subcutaneously in immunodeficient mice for 28 days. Effect of PGCAP on MSC was evaluated in vitro by proliferation and osteoblastic gene expression analysis and in vivo by histology and immunohistochemistry. We showed that PGCAP, compared to other platelet-derived products, allowed concentrating large amount of growth factors and cytokines which promoted MSC and osteoprogenitor proliferation. Next, we found that PGCAP improves the proliferation of MSC and osteogenic-induced MSC. Furthermore, we demonstrated that PGCAP up-regulates the mRNA expression of osteogenic markers (Collagen type I, Osteonectin, Osteopontin and Runx2). In vivo, type I collagen expressed in ectopic bone-like tissue was highly enhanced in biomaterials embedded in PGCAP in the absence of osteogenic pre-induction. Better results were obtained with 65% hydroxyapatite/35% beta-TCP biomaterials as compared to 100% beta-TCP. We have demonstrated that PGCAP is able to enhance in vitro MSC proliferation, osteoblastic differentiation and in vivo bone formation in the absence of osteogenic pre-induction. This clinically adaptable platelet glue could be of interest for improving bone repair.

  13. Identification of Fic-1 as an enzyme that inhibits bacterial DNA replication by AMPylating GyrB, promoting filament formation.

    Science.gov (United States)

    Lu, Canhua; Nakayasu, Ernesto S; Zhang, Li-Qun; Luo, Zhao-Qing

    2016-01-26

    The morphology of bacterial cells is important for virulence, evasion of the host immune system, and coping with environmental stresses. The widely distributed Fic proteins (filamentation induced by cAMP) are annotated as proteins involved in cell division because of the presence of the HPFx[D/E]GN[G/K]R motif. We showed that the presence of Fic-1 from Pseudomonas fluorescens significantly reduced the yield of plasmid DNA when expressed in Escherichia coli or P. fluorescens. Fic-1 interacted with GyrB, a subunit of DNA gyrase, which is essential for bacterial DNA replication. Fic-1 catalyzed the AMPylation of GyrB at Tyr(109), a residue critical for binding ATP, and exhibited auto-AMPylation activity. Mutation of the Fic-1 auto-AMPylated site greatly reduced AMPylation activity toward itself and toward GyrB. Fic-1-dependent AMPylation of GyrB triggered the SOS response, indicative of DNA replication stress or DNA damage. Fic-1 also promoted the formation of elongated cells when the SOS response was blocked. We identified an α-inhibitor protein that we named anti-Fic-1 (AntF), encoded by a gene immediately upstream of Fic-1. AntF interacted with Fic-1, inhibited the AMPylation activity of Fic-1 for GyrB in vitro, and blocked Fic-1-mediated inhibition of DNA replication in bacteria, suggesting that Fic-1 and AntF comprise a toxin-antitoxin module. Our work establishes Fic-1 as an AMPylating enzyme that targets GyrB to inhibit DNA replication and may target other proteins to regulate bacterial morphology. Copyright © 2016, American Association for the Advancement of Science.

  14. Platelet rich plasma promotes skeletal muscle cell migration in association with up-regulation of FAK, paxillin, and F-Actin formation.

    Science.gov (United States)

    Tsai, Wen-Chung; Yu, Tung-Yang; Lin, Li-Ping; Lin, Mioa-Sui; Tsai, Ting-Ta; Pang, Jong-Hwei S

    2017-11-01

    Platelet rich plasma (PRP) contains various cytokines and growth factors which may be beneficial to the healing process of injured muscle. The aim of this study was to investigate the effect and molecular mechanism of PRP on migration of skeletal muscle cells. Skeletal muscle cells intrinsic to Sprague-Dawley rats were treated with PRP. The cell migration was evaluated by transwell filter migration assay and electric cell-substrate impedance sensing. The spreading of cells was evaluated microscopically. The formation of filamentous actin (F-actin) cytoskeleton was assessed by immunofluorescence staining. The protein expressions of paxillin and focal adhesion kinase (FAK) were assessed by Western blot analysis. Transfection of paxillin small-interfering RNA (siRNAs) to muscle cells was performed to validate the role of paxillin in PRP-mediated promotion of cell migration. Dose-dependently PRP promotes migration of and spreading and muscle cells. Protein expressions of paxillin and FAK were up-regulated dose-dependently. F-actin formation was also enhanced by PRP treatment. Furthermore, the knockdown of paxillin expression impaired the effect of PRP to promote cell migration. It was concluded that PRP promoting migration of muscle cells is associated with up-regulation of proteins expression of paxillin and FAK as well as increasing F-actin formation. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2506-2512, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  15. IL-10 Promotes Neurite Outgrowth and Synapse Formation in Cultured Cortical Neurons after the Oxygen-Glucose Deprivation via JAK1/STAT3 Pathway.

    Science.gov (United States)

    Chen, Hongbin; Lin, Wei; Zhang, Yixian; Lin, Longzai; Chen, Jianhao; Zeng, Yongping; Zheng, Mouwei; Zhuang, Zezhong; Du, Houwei; Chen, Ronghua; Liu, Nan

    2016-07-26

    As a classic immunoregulatory and anti-inflammatory cytokine, interleukin-10 (IL-10) provides neuroprotection in cerebral ischemia in vivo or oxygen-glucose deprivation (OGD)-induced injury in vitro. However, it remains blurred whether IL-10 promotes neurite outgrowth and synapse formation in cultured primary cortical neurons after OGD injury. In order to evaluate its effect on neuronal apoptosis, neurite outgrowth and synapse formation, we administered IL-10 or IL-10 neutralizing antibody (IL-10NA) to cultured rat primary cortical neurons after OGD injury. We found that IL-10 treatment activated the Janus kinase 1 (JAK1)/signal transducers and activators of transcription 3 (STAT3) signaling pathway. Moreover, IL-10 attenuated OGD-induced neuronal apoptosis by down-regulating the Bax expression and up-regulating the Bcl-2 expression, facilitated neurite outgrowth by increasing the expression of Netrin-1, and promoted synapse formation in cultured primary cortical neurons after OGD injury. These effects were partly abolished by JAK1 inhibitor GLPG0634. Contrarily, IL-10NA produced opposite effects on the cultured cortical neurons after OGD injury. Taken together, our findings suggest that IL-10 not only attenuates neuronal apoptosis, but also promotes neurite outgrowth and synapse formation via the JAK1/STAT3 signaling pathway in cultured primary cortical neurons after OGD injury.

  16. Mechanisms of spinal cord injury regeneration in zebrafish: a systematic review

    Directory of Open Access Journals (Sweden)

    Zeynab Noorimotlagh

    2017-12-01

    Full Text Available Objective(s:To determine the molecular and cellular mechanisms of spinal cord regeneration in zebrafish. Materials and Methods: Medical databases of PubMed and Scopus were searched with following key words: Zebrafish; spinal cord injuries; regeneration; recovery of function. The map of mechanisms was performed using Xmind software. Results: Wnt/ß-catenin signaling, L1.1, L1.2, Major vault protein (MVP, contactin-2 and High mobility group box1 (HMGB1 had positive promoting effects on axonal re-growth while Ptena had an inhibitory effect. Neurogenesis is stimulated by Wnt/ß-catenin signaling as well as HMGB1, but inhibited by Notch signaling. Glial cells proliferate in response to fibroblast growth factor (fgf signaling and Lysophosphatidic acid (LPA. Furthermore, fgf signaling pathway causes glia bridge formation in favor of axonal regeneration. LPA and HMGB1 in acute phase stimulate inflammatory responses around injury and suppress regeneration. LPA also induces microglia activation and neuronal death in addition to glia cell proliferation, but prevents neurite sprouting. Conclusion: This study provides a comprehensive review of the known molecules and mechanisms in the current literature involved in the spinal cord injury (SCI regeneration in zebrafish, in a time course manner. A better understanding of the whole determining mechanisms for the SCI regeneration should be considered as a main goal for future studies.

  17. Improved Neural Regeneration with Olfactory Ensheathing Cell Inoculated PLGA Scaffolds in Spinal Cord Injury Adult Rats

    Directory of Open Access Journals (Sweden)

    Changxing Wang

    2017-03-01

    Full Text Available Background/Aims: Every year, around the world, between 250000 and 500000 people suffer from spinal cord injury (SCI. This study investigated the potential for poly (lactic-co-glycolic acid (PLGA complex inoculated with olfactory ensheathing cells (OECs to treat spinal cord injury in a rat model. Methods: OECs were identified by immunofluorescence based on the nerve growth factor receptor (NGFR p75. The Basso, Beattie, and Bresnahan (BBB score, together with an inclined plane (IP test were used to detect functional recovery. Nissl staining along with the luxol fast blue (LFB staining were independently employed to illustrate morphological alterations. More so, immunofluorescence labeling of the glial fibrillary acidic protein (GFAP and the microtubule-associated protein-2 (MAP-2, representing astrocytes and neurons respectively, were investigated at time points of weeks 2 and 8 post-operation. Results: The findings showed enhanced locomotor recovery, axon myelination and better protected neurons post SCI when compared with either PLGA or untreated groups (P < 0.05. Conclusion: PLGA complexes inoculated with OECs improve locomotor functional recovery in transected spinal cord injured rat models, which is most likely due to the fact it is conducive to a relatively benevolent microenvironment, has nerve protective effects, as well as the ability to enhance remyelination, via a promotion of cell differentiation and inhibition of astrocyte formation.

  18. The C. elegans DSB-2 protein reveals a regulatory network that controls competence for meiotic DSB formation and promotes crossover assurance.

    Directory of Open Access Journals (Sweden)

    Simona Rosu

    Full Text Available For most organisms, chromosome segregation during meiosis relies on deliberate induction of DNA double-strand breaks (DSBs and repair of a subset of these DSBs as inter-homolog crossovers (COs. However, timing and levels of DSB formation must be tightly controlled to avoid jeopardizing genome integrity. Here we identify the DSB-2 protein, which is required for efficient DSB formation during C. elegans meiosis but is dispensable for later steps of meiotic recombination. DSB-2 localizes to chromatin during the time of DSB formation, and its disappearance coincides with a decline in RAD-51 foci marking early recombination intermediates and precedes appearance of COSA-1 foci marking CO-designated sites. These and other data suggest that DSB-2 and its paralog DSB-1 promote competence for DSB formation. Further, immunofluorescence analyses of wild-type gonads and various meiotic mutants reveal that association of DSB-2 with chromatin is coordinated with multiple distinct aspects of the meiotic program, including the phosphorylation state of nuclear envelope protein SUN-1 and dependence on RAD-50 to load the RAD-51 recombinase at DSB sites. Moreover, association of DSB-2 with chromatin is prolonged in mutants impaired for either DSB formation or formation of downstream CO intermediates. These and other data suggest that association of DSB-2 with chromatin is an indicator of competence for DSB formation, and that cells respond to a deficit of CO-competent recombination intermediates by prolonging the DSB-competent state. In the context of this model, we propose that formation of sufficient CO-competent intermediates engages a negative feedback response that leads to cessation of DSB formation as part of a major coordinated transition in meiotic prophase progression. The proposed negative feedback regulation of DSB formation simultaneously (1 ensures that sufficient DSBs are made to guarantee CO formation and (2 prevents excessive DSB levels that could

  19. Inhibition of the NLRP3 inflammasome attenuates foam cell formation of THP-1 macrophages by suppressing ox-LDL uptake and promoting cholesterol efflux.

    Science.gov (United States)

    Chen, Liang; Yao, Qiying; Xu, Siwei; Wang, Hongyan; Qu, Peng

    2018-01-01

    The NOD-like receptor family, pyrin domain-containing protein 3 (NLRP3) inflammasome plays an important role in the development of atherosclerosis. The activated NLRP3 inflammasome has been reported to promote macrophage foam cell formation, but not all studies have obtained the same result, and how NLRP3 inflammasome is involved in the formation of foam cells remains elusive. We used selective NLRP3 inflammasome inhibitors and NLRP3-deficient THP-1 cells to assess the effect of NLRP3 inflammasome inhibition on macrophage foam cell formation, oxidized low-density lipoprotein (ox-LDL) uptake, esterification, and cholesterol efflux, as well as the expression of associated proteins. Inhibition of the NLRP3 inflammasome attenuated foam cell formation, diminished ox-LDL uptake, and promoted cholesterol efflux from THP-1 macrophages. Moreover, it downregulated CD36, acyl coenzyme A: cholesterol acyltransferase-1 and neutral cholesterol ester hydrolase expression; upregulated ATP-binding cassette transporter A1 (ABCA1) and scavenger receptor class B type I (SR-BI) expression; but had no effect on the expression of scavenger receptor class A and ATP-binding cassette transporter G1. Collectively, our findings show that inhibition of the NLRP3 inflammasome decreases foam cell formation of THP-1 macrophages via suppression of ox-LDL uptake and enhancement of cholesterol efflux, which may be due to downregulation of CD36 expression and upregulation of ABCA1 and SR-BI expression, respectively. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Fluid-Phase Pinocytosis of Native Low Density Lipoprotein Promotes Murine M-CSF Differentiated Macrophage Foam Cell Formation

    Science.gov (United States)

    Xu, Qing; Bohnacker, Thomas; Wymann, Matthias P.; Kruth, Howard S.

    2013-01-01

    During atherosclerosis, low-density lipoprotein (LDL)-derived cholesterol accumulates in macrophages to form foam cells. Macrophage uptake of LDL promotes foam cell formation but the mechanism mediating this process is not clear. The present study investigates the mechanism of LDL uptake for macrophage colony-stimulating factor (M-CSF)-differentiated murine bone marrow-derived macrophages. LDL receptor-null (LDLR−/−) macrophages incubated with LDL showed non-saturable accumulation of cholesterol that did not down-regulate for the 24 h examined. Incubation of LDLR−/− macrophages with increasing concentrations of 125I-LDL showed non-saturable macrophage LDL uptake. A 20-fold excess of unlabeled LDL had no effect on 125I-LDL uptake by wild-type macrophages and genetic deletion of the macrophage scavenger receptors CD36 and SRA did not affect 125I-LDL uptake, showing that LDL uptake occurred by fluid-phase pinocytosis independently of receptors. Cholesterol accumulation was inhibited approximately 50% in wild-type and LDLR−/− mice treated with LY294002 or wortmannin, inhibitors of all classes of phosphoinositide 3-kinases (PI3K). Time-lapse, phase-contrast microscopy showed that macropinocytosis, an important fluid-phase uptake pathway in macrophages, was blocked almost completely by PI3K inhibition with wortmannin. Pharmacological inhibition of the class I PI3K isoforms alpha, beta, gamma or delta did not affect macrophage LDL-derived cholesterol accumulation or macropinocytosis. Furthermore, macrophages from mice expressing kinase-dead class I PI3K beta, gamma or delta isoforms showed no decrease in cholesterol accumulation or macropinocytosis when compared with wild-type macrophages. Thus, non-class I PI3K isoforms mediated macropinocytosis in these macrophages. Further characterization of the components necessary for LDL uptake, cholesterol accumulation, and macropinocytosis identified dynamin, microtubules, actin, and vacuolar type H(+)-ATPase as

  1. Pregnancy Complications: Umbilical Cord Abnormalities

    Science.gov (United States)

    ... Umbilical cord abnormalities Umbilical cord abnormalities Now playing: E-mail to a friend Please fill in all fields. ... blood supply) to the baby. The two arteries transport waste from the baby to the placenta (where ...

  2. Support vector regression-guided unravelling: antioxidant capacity and quantitative structure-activity relationship predict reduction and promotion effects of flavonoids on acrylamide formation

    Science.gov (United States)

    Huang, Mengmeng; Wei, Yan; Wang, Jun; Zhang, Yu

    2016-09-01

    We used the support vector regression (SVR) approach to predict and unravel reduction/promotion effect of characteristic flavonoids on the acrylamide formation under a low-moisture Maillard reaction system. Results demonstrated the reduction/promotion effects by flavonoids at addition levels of 1-10000 μmol/L. The maximal inhibition rates (51.7%, 68.8% and 26.1%) and promote rates (57.7%, 178.8% and 27.5%) caused by flavones, flavonols and isoflavones were observed at addition levels of 100 μmol/L and 10000 μmol/L, respectively. The reduction/promotion effects were closely related to the change of trolox equivalent antioxidant capacity (ΔTEAC) and well predicted by triple ΔTEAC measurements via SVR models (R: 0.633-0.900). Flavonols exhibit stronger effects on the acrylamide formation than flavones and isoflavones as well as their O-glycosides derivatives, which may be attributed to the number and position of phenolic and 3-enolic hydroxyls. The reduction/promotion effects were well predicted by using optimized quantitative structure-activity relationship (QSAR) descriptors and SVR models (R: 0.926-0.994). Compared to artificial neural network and multi-linear regression models, SVR models exhibited better fitting performance for both TEAC-dependent and QSAR descriptor-dependent predicting work. These observations demonstrated that the SVR models are competent for predicting our understanding on the future use of natural antioxidants for decreasing the acrylamide formation.

  3. Spinal cord swelling and candidiasis

    International Nuclear Information System (INIS)

    Ho, K.; Gronseth, G.; Aldrich, M.; Williams, A.

    1982-01-01

    Fusiform swelling of the spinal cord was noted myelographically in a patient with Hodgkin's disease. Autopsy revealed that the swelling was cauused by Candida infection of the spinal cord. It is suggested that fungal infection be included in the differential diagnosis of spinal cord swelling in the immunsupporessed cancer patient. (orig.)

  4. Spinal cord swelling and candidiasis

    Energy Technology Data Exchange (ETDEWEB)

    Ho, K.; Gronseth, G.; Aldrich, M.; Williams, A.

    1982-11-01

    Fusiform swelling of the spinal cord was noted myelographically in a patient with Hodgkin's disease. Autopsy revealed that the swelling was caused by Candida infection of the spinal cord. It is suggested that fungal infection be included in the differential diagnosis of spinal cord swelling in the immunosuppressed cancer patient.

  5. Influence of temperature and rooting-promoter on the formation of root-primodia and on the rooting of chrysanthemum cuttings under storage

    International Nuclear Information System (INIS)

    Nishio, J.; Fukuda, M.

    1998-01-01

    In order to promote rooting for direct planting cuttings in a lighting cultivation of chrysanthemum, we clarified the effects of light, temperature and term of storage of the cuttings, and analyzed ways of using rooting promoters as a pre-treatment of cuttings for root-primodia formation and rooting. Light as a pre-treatment had little effect, so it seemed to be not necessary for the formation of root primodia. The formation of the root-primodia was most hastened at 25 degrees C; inversely, it was slowed down at low temperatures, that is, the root-primodia were formed in four days at 25 degrees C, five days at 20 degrees C, and seven days at 15 degrees C. With the use of rooting promoters as a pre-treatment for the rooting of cuttings, the root-primodia were formed faster when the whole of cuttings were dipped in 40 mg/L solution of indelebutyric acid (IBA) than when the base of cuttings were dipped or sprayed 400 mg/L solution of IBA. It was appropriate that cuttings were dipped in IBA then put in in plastic-pots (7.5cm) vertically, packed in polyethylene-bags and stored in a corrugated carton box

  6. Spinal Cord Stimulation

    DEFF Research Database (Denmark)

    Meier, Kaare

    2014-01-01

    Spinal cord stimulation (SCS) is a surgical treatment for chronic neuropathic pain that is refractory to other treatment. Originally described by Shealy et al. in 1967(1), it is used to treat a range of conditions such as complex regional pain syndrome (CRPS I)(2), angina pectoris(3), radicular...... pain after failed back surgery syndrome (FBSS)(4), pain due to peripheral nerve injury, stump pain(5), peripheral vascular disease(6) and diabetic neuropathy(7,8); whereas phantom pain(9), postherpetic neuralgia(10), chronic visceral pain(11), and pain after partial spinal cord injury(12) remain more...

  7. A Model Formative Assessment Strategy to Promote Student-Centered Self-Regulated Learning in Higher Education

    Science.gov (United States)

    Bose, Jayakumar; Rengel, Zed

    2009-01-01

    Adult learners are already involved in the process of self-regulation; hence, higher education institutions should focus on strengthening students' self-regulatory skills. Self-regulation can be facilitated through formative assessment. This paper proposes a model formative assessment strategy that would complement existing university teaching,…

  8. Splenectomy after partial hepatectomy accelerates liver regeneration in mice by promoting tight junction formation via polarity protein Par 3-aPKC.

    Science.gov (United States)

    Liu, Guoxing; Xie, Chengzhi; Fang, Yu; Qian, Ke; Liu, Qiang; Liu, Gao; Cao, Zhenyu; Du, Huihui; Fu, Jie; Xu, Xundi

    2018-01-01

    Several experimental studies have demonstrated that removal of the spleen accelerates liver regeneration after partial hepatectomy. While the mechanism of splenectomy promotes liver regeneration by the improvement of the formation of tight junction and the establishment of hepatocyte polarity is still unknown. We analyzed the cytokines, genes and proteins expression between 70% partial hepatectomy mice (PHx) and simultaneous 70% partial hepatectomy and splenectomy mice (PHs) at predetermined timed points. Compared with the PHx group mice, splenectomy accelerated hepatocyte proliferation in PHs group. The expression of Zonula occludens-1 (ZO-1) indicated that splenectomy promotes the formation of tight junction during liver regeneration. TNF-α, IL-6, HGF, TSP-1 and TGF-β1 were essential factors for the formation of tight junction and the establishment of hepatocytes polarity in liver regeneration. After splenectomy, Partitioning defective 3 homolog (Par 3) and atypical protein kinase C (aPKC) regulate hepatocyte localization and junctional structures in regeneration liver. Our data suggest that the time course expression of TNF-α, IL-6, HGF, TSP-1, and TGF-β1 and the change of platelets take part in liver regeneration. Combination with splenectomy accelerates liver regeneration by improvement of the tight junction formation which may help to establish hepatocyte polarity via Par 3-aPKC. This may provide a clue for us that splenectomy could accelerate liver regeneration after partial hepatectomy of hepatocellular carcinoma and living donor liver transplantation. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Fixed cord in spinal stenosis

    International Nuclear Information System (INIS)

    Levy, L.M.; Wang, H.; Francomano, C.; Hurko, O.; Carson, B.; Heffez, D.S.; DiChiro, G.; Bryan, R.N.

    1990-01-01

    This paper evaluates patients with cervical spinal canal compromise due to congenital anomalies (achondroplasia, Chiari malformation) and degenerative diseases using MR cord motion and cerebrospinal fluid (CSF) flow studies. Pulsatile longitudinal motion of the cervical cord was determined by means of cardiac-gated velocity phase contrast methods, including cine. Pathology included dwarfism (n = 15), Chiari malformation (n = 10), spondylosis (n = 10), and acute cord compression (n = 9). Symptomatic cases of congenital cervical stenosis had decreased cord motion, although CSF flow was not always significantly compromised. Postoperative cases demonstrated good cord and CSF motion, unless compression or obstruction was present

  10. Vocal Cord Paralysis

    Science.gov (United States)

    ... Viral infections. Some viral infections, such as Lyme disease, Epstein-Barr and herpes, can cause inflammation and damage directly to the nerves in the larynx. Neurological conditions. If you have certain ... disease, you may experience vocal cord paralysis. Risk factors ...

  11. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Home Kim Eberhardt Muir, MS Coping with a New Injury Robin Dorman, PsyD Sex and Fertility After ... program? play_arrow What are the most promising new treatments for spinal cord injuries? play_arrow What ...

  12. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... What is “Braingate” research? play_arrow How would stem-cell therapies work in the treatment of spinal cord injuries? play_arrow What does stem-cell research on animals tell us? play_arrow When ...

  13. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... is “Braingate” research? play_arrow How would stem-cell therapies work in the treatment of spinal cord injuries? play_arrow What does stem-cell research on animals tell us? play_arrow When ...

  14. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Braingate” research? play_arrow How would stem-cell therapies work in the treatment of spinal cord injuries? play_arrow What does stem-cell research on animals tell us? play_arrow When can we expect ...

  15. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Anne Bryden, OT The Role of the Social Worker after Spinal Cord Injury Patti Rogers, SW Marguerite David, ... injuries. The website does not provide medical advice, recommend or endorse health care products or services, or control the information ...

  16. Maladaptive spinal plasticity opposes spinal learning and recovery in spinal cord injury

    Directory of Open Access Journals (Sweden)

    Adam R Ferguson

    2012-10-01

    Full Text Available Synaptic plasticity within the spinal cord has great potential to facilitate recovery of function after spinal cord injury (SCI. Spinal plasticity can be induced in an activity-dependent manner even without input from the brain after complete SCI. The mechanistic basis for these effects is provided by research demonstrating that spinal synapses have many of the same plasticity mechanisms that are known to underlie learning and memory in the brain. In addition, the lumbar spinal cord can sustain several forms of learning and memory, including limb-position training. However, not all spinal plasticity promotes recovery of function. Central sensitization of nociceptive (pain pathways in the spinal cord may emerge with certain patterns of activity, demonstrating that plasticity within the spinal cord may contribute to maladaptive pain states. In this review we discuss interactions between adaptive and maladaptive forms of activity-dependent plasticity in the spinal cord. The literature demonstrates that activity-dependent plasticity within the spinal cord must be carefully tuned to promote adaptive spinal training. Stimulation that is delivered in a limb position-dependent manner or on a fixed interval can induce adaptive plasticity that promotes future spinal cord learning and reduces nociceptive hyper-reactivity. On the other hand, stimulation that is delivered in an unsynchronized fashion, such as randomized electrical stimulation or peripheral skin injuries, can generate maladaptive spinal plasticity that undermines future spinal cord learning, reduces recovery of locomotor function, and promotes nociceptive hyper-reactivity after spinal cord injury. We review these basic phenomena, discuss the cellular and molecular mechanisms, and discuss implications of these findings for improved rehabilitative therapies after spinal cord injury.

  17. Anterior spinal cord syndrome of unknown etiology

    OpenAIRE

    Klakeel, Merrine; Thompson, Justin; Srinivasan, Rajashree; McDonald, Frank

    2015-01-01

    A spinal cord injury encompasses a physical insult to the spinal cord. In the case of anterior spinal cord syndrome, the insult is a vascular lesion at the anterior spinal artery. We present the cases of two 13-year-old boys with anterior spinal cord syndrome, along with a review of the anatomy and vasculature of the spinal cord and an explanation of how a lesion in the cord corresponds to anterior spinal cord syndrome.

  18. Kaempferol-immobilized titanium dioxide promotes formation of new bone: effects of loading methods on bone marrow stromal cell differentiation in vivo and in vitro.

    Science.gov (United States)

    Tsuchiya, Shuhei; Sugimoto, Keisuke; Kamio, Hisanobu; Okabe, Kazuto; Kuroda, Kensuke; Okido, Masazumi; Hibi, Hideharu

    2018-01-01

    Surface modification of titanium dioxide (TiO 2 ) implants promotes bone formation and shortens the osseointegration period. Kaempferol is a flavonoid that has the capacity to promote osteogenic differentiation in bone marrow stromal cells. The aim of this study was to promote bone formation around kaempferol immobilized on TiO 2 implants. There were four experimental groups. Alkali-treated TiO 2 samples (implants and discs) were used as a control and immersed in Dulbecco's phosphate-buffered saline (DPBS) (Al-Ti). For the coprecipitation sample (Al-cK), the control samples were immersed in DPBS containing 50 µg kaempferol/100% ethanol. For the adsorption sample (Al-aK), 50 µg kaempferol/100% ethanol was dropped onto control samples. The surface topography of the TiO 2 implants was observed by scanning electron microscopy with energy-dispersive X-ray spectroscopy, and a release assay was performed. For in vitro experiments, rat bone marrow stromal cells (rBMSCs) were cultured on each of the TiO 2 samples to analyze cell proliferation, alkaline phosphatase activity, calcium deposition, and osteogenic differentiation. For in vivo experiments, TiO 2 implants placed on rat femur bones were analyzed for bone-implant contact by histological methods. Kaempferol was detected on the surface of Al-cK and Al-aK. The results of the in vitro study showed that rBMSCs cultured on Al-cK and Al-aK promoted alkaline phosphatase activity, calcium deposition, and osteogenic differentiation. The in vivo histological analysis revealed that Al-cK and Al-aK stimulated new bone formation around implants. TiO 2 implant-immobilized kaempferol may be an effective tool for bone regeneration around dental implants.

  19. A 3' UTR-derived non-coding RNA RibS increases expression of cfa and promotes biofilm formation of Salmonella enterica serovar Typhi.

    Science.gov (United States)

    Zhao, Xin; Liu, Rui; Tang, Hao; Osei-Adjei, George; Xu, Shungao; Zhang, Ying; Huang, Xinxiang

    2018-05-08

    Bacterial non-coding RNAs (ncRNAs) are widely studied and found to play important roles in regulating various cellular processes. Recently, many ncRNAs have been discovered to be transcribed or processed from 3' untranslated regions (3' UTRs). Here we reported a novel 3' UTR-derived ncRNA, RibS, which could influence biofilm formation of Salmonella enterica serovar Typhi (S. Typhi). RibS was confirmed to be a ∼700 nt processed product produced by RNase III-catalyzed cleavage from the 3' UTR of riboflavin synthase subunit alpha mRNA, RibE. Overexpression of RibS increased the expression of the cyclopropane fatty acid synthase gene, cfa, which was located at the antisense strand. Biofilm formation of S. Typhi was enhanced by overexpressing RibS both in the wild type strain and cfa deletion mutant. Deletion of cfa attenuated biofilm formation of S. Typhi, while complementation of cfa partly restored the phenotype. Moreover, overexpressing cfa enhanced the biofilm formation of S. Typhi. In summary, RibS has been identified as a novel ncRNA derived from the 3' UTR of RibE that promotes biofilm formation of S. Typhi, and it appears to do so, at least in part, by increasing the expression of cfa. Copyright © 2018 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  20. A synthetic peptide from the COOH-terminal heparin-binding domain of fibronectin promotes focal adhesion formation

    DEFF Research Database (Denmark)

    Woods, A; McCarthy, J B; Furcht, L T

    1993-01-01

    Cell adhesion to extracellular matrix molecules such as fibronectin involves complex transmembrane signaling processes. Attachment and spreading of primary fibroblasts can be promoted by interactions of cell surface integrins with RGD-containing fragments of fibronectin, but the further process o...

  1. Corticotropin-Releasing Hormone (CRH Promotes Macrophage Foam Cell Formation via Reduced Expression of ATP Binding Cassette Transporter-1 (ABCA1.

    Directory of Open Access Journals (Sweden)

    Wonkyoung Cho

    Full Text Available Atherosclerosis, the major pathology of cardiovascular disease, is caused by multiple factors involving psychological stress. Corticotropin-releasing hormone (CRH, which is released by neurosecretory cells in the hypothalamus, peripheral nerve terminals and epithelial cells, regulates various stress-related responses. Our current study aimed to verify the role of CRH in macrophage foam cell formation, the initial critical stage of atherosclerosis. Our quantitative real-time reverse transcriptase PCR (qRT-PCR, semi-quantitative reverse transcriptase PCR, and Western blot results indicate that CRH down-regulates ATP-binding cassette transporter-1 (ABCA1 and liver X receptor (LXR-α, a transcription factor for ABCA1, in murine peritoneal macrophages and human monocyte-derived macrophages. Oil-red O (ORO staining and intracellular cholesterol measurement of macrophages treated with or without oxidized LDL (oxLDL and with or without CRH (10 nM in the presence of apolipoprotein A1 (apoA1 revealed that CRH treatment promotes macrophage foam cell formation. The boron-dipyrromethene (BODIPY-conjugated cholesterol efflux assay showed that CRH treatment reduces macrophage cholesterol efflux. Western blot analysis showed that CRH-induced down-regulation of ABCA1 is dependent on phosphorylation of Akt (Ser473 induced by interaction between CRH and CRH receptor 1(CRHR1. We conclude that activation of this pathway by CRH accelerates macrophage foam cell formation and may promote stress-related atherosclerosis.

  2. Alpinumisoflavone and abyssinone V 4'-methylether derived from Erythrina lysistemon (Fabaceae) promote HDL-cholesterol synthesis and prevent cholesterol gallstone formation in ovariectomized rats.

    Science.gov (United States)

    Mvondo, Marie A; Njamen, Dieudonné; Kretzschmar, Georg; Imma Bader, Manuela; Tanee Fomum, Stephen; Wandji, Jean; Vollmer, Günter

    2015-07-01

    Erythrina lysistemon was found to improve lipid profile in ovariectomized rats. Alpinumisoflavone (AIF) and abyssinone V 4'-methylether (AME) derived from this plant induced analogous effects on lipid profile and decreased atherogenic risks. To highlight the molecular mechanism of action of these natural products, we evaluated their effects on the expression of some estrogen-sensitive genes associated with cholesterol synthesis (Esr1 and Apoa1) and cholesterol clearance (Ldlr, Scarb1 and Cyp7a1). Ovariectomized rats were subcutaneously treated for three consecutive days with either compound at the daily dose of 0.1, 1 and 10 mg/kg body weight (BW). Animals were sacrificed thereafter and their liver was collected. The mRNA of genes of interest was analysed by quantitative real-time polymerase chain reaction. Both compounds downregulated the mRNA expression of Esr1, a gene associated with cholesterogenesis and cholesterol gallstone formation. AME leaned the Apoa1/Scarb1 balance in favour of Apoa1, an effect promoting high-density lipoprotein (HDL)-cholesterol formation. It also upregulated the mRNA expression of Ldlr at 1 mg/kg/BW per day (25%) and 10 mg/kg/BW per day (133.17%), an effect favouring the clearance of low-density lipoprotein (LDL)-cholesterol. Both compounds may also promote the conversion of cholesterol into bile acids as they upregulated Cyp7a1 mRNA expression. AIF and AME atheroprotective effects may result from their ability to upregulate mechanisms promoting HDL-cholesterol and bile acid formation. © 2015 Royal Pharmaceutical Society.

  3. Coinfection with Haemophilus influenzae promotes pneumococcal biofilm formation during experimental otitis media and impedes the progression of pneumococcal disease.

    Science.gov (United States)

    Weimer, Kristin E D; Armbruster, Chelsie E; Juneau, Richard A; Hong, Wenzhou; Pang, Bing; Swords, W Edward

    2010-10-01

    Otitis media is an extremely common pediatric infection and is mostly caused by bacteria that are carried within the nasopharyngeal microbiota. It is clear that most otitis media cases involve simultaneous infection with multiple agents. Chinchillas were infected with nontypeable Haemophilus influenzae, Streptococcus pneumoniae, or a combination of both organisms, and the course of disease was compared. In vitro experiments were also performed to address how coinfection impacts biofilm formation. The incidence of systemic disease was reduced in coinfected animals, compared with those infected with pneumococcus alone. Pneumococci were present within surface-attached biofilms in coinfected animals, and a greater proportion of translucent colony type was observed in the coinfected animals. Because this colony type has been associated with pneumococcal biofilms, the impact of coinfection on pneumococcal biofilm formation was investigated. The results clearly show enhanced biofilm formation in vitro by pneumococci in the presence of H. influenzae. Based on these data, we conclude that coinfection with H. influenzae facilitates pneumococcal biofilm formation and persistence on the middle ear mucosal surface. This enhanced biofilm persistence correlates with delayed emergence of opaque colony variants within the bacterial population and a resulting decrease in systemic infection.

  4. Formative Research on a Social Marketing Campaign to Promote the Consumption of Healthy Breakfast and Snacks: A Qualitative Study

    Directory of Open Access Journals (Sweden)

    Fatemeh Bastami

    2018-03-01

    Full Text Available Background: The elimination of breakfast and the high consumption of low-value snacks are becoming more frequent and common among adolescents. Nutrition is a complex behavioral phenomenon that is associated with the specific cultural and environmental issues of each society as well as psychological features.This qualitative research was conducted to identify factors affecting breakfast consumption behavior in adolescents using the social marketing framework. Materials and Methods: A qualitative research based on the social marketing framework was conducted through directed content analysis in the high schools of Isfahan and Khorramabad, Iran, in 2016. Data were collected through seven focus group discussions and 33 in-depth, semi-structured; interviews conducted in person with both male and female students, the parents, and the teachers and were analyzed simultaneously in three phases, namely preparation, organization and reporting. Results: The results obtained in the present study within the social marketing framework were coded into the four categories of product, place, price and promotion. The product category had four subcategories, including favorite taste sought in breakfast, breakfast preparation, breakfast serving style, variety and the healthful features of breakfast. The price category had four subcategories, including time, psychological, social and financial prices. The promotion category had three subcategories, including official channels, unofficial channels, and educational materials and equipment. The place category had two subcategories, including having breakfast at school or having breakfast in an outdoor space. Conclusion: The promotion of healthy breakfast as a product, requires that first its important features be considered, including the favorite taste sought in breakfast, second that it be promoted through channels most popular with students, and most importantly, that its price be reduced by using incentives such as

  5. Acute spinal cord injuries

    International Nuclear Information System (INIS)

    Takahashi, M.; Izunaga, H.; Sato, R.; Shinzato, I.; Korogi, Y.; Yamashita, Y.

    1991-01-01

    This paper reports on sequential MR images and neurologic findings that were correlated in 40 acute spinal cord injuries. Within 1 week after injury, frequent initial MR changes appeared isointense on both T1- and T2-weighted images and isointense on T1- and hyperintense on T2-weighted images. After 2 months, hypointensity appeared on T1-weighted images and hyperintensity persisted or appeared on T2-weighted images. Clinical improvements were observed in patients with isointensity on both T1- and T2-weighted images at the initial examination. A larger area of hyperintensity on subsequent T2-weighted images was correlated with no neurologic improvement. MR findings were good indicators of the spinal cord injury

  6. International Spinal Cord Injury

    DEFF Research Database (Denmark)

    Dvorak, M F; Itshayek, E; Fehlings, M G

    2015-01-01

    STUDY DESIGN: Survey of expert opinion, feedback and final consensus. OBJECTIVE: To describe the development and the variables included in the International Spinal Cord Injury (SCI) Spinal Interventions and Surgical Procedures Basic Data set. SETTING: International working group. METHODS......: A committee of experts was established to select and define data elements. The data set was then disseminated to the appropriate committees and organizations for comments. All suggested revisions were considered and both the International Spinal Cord Society and the American Spinal Injury Association endorsed...... spinal intervention and procedure is coded (variables 1 through 7) and the spinal segment level is described (variables 8 and 9). Sample clinical cases were developed to illustrate how to complete it. CONCLUSION: The International SCI Spinal Interventions and Surgical Procedures Basic Data Set...

  7. Formative Research to Design a Promotional Campaign to Increase Drinking Water among Central American Latino Youth in an Urban Area.

    Science.gov (United States)

    Barrett, Nicole; Colón-Ramos, Uriyoán; Elkins, Allison; Rivera, Ivonne; Evans, W Douglas; Edberg, Mark

    2017-06-01

    Latinos consume more sugary drinks and less water than other demographic groups. Our objective was to understand beverage choice motivations and test promotional concepts that can encourage Central American Latino urban youth to drink more water. Two rounds of focus group discussions were conducted (n = 10 focus groups, 61 participants, 6-18 years old). Data were transcribed verbatim and analyzed using inductive and deductive coding approaches. Youth motivations for drinking water were shaped by level of thirst, weather, energy, and perceptions of health benefits. Youth were discouraged from drinking water due to its taste and perceptions of the safety and cleanliness of tap water. Youth beverage preference depended on what their friends were drinking. Availability of water versus other beverages at home and other settings influenced their choice. Promotional materials that included mixed language, informative messages about the benefits of drinking water, and celebrities or athletes who were active, energized, and drinking water were preferred. A promotional campaign to increase water consumption among these Latino youth should include bicultural messages to underscore the power of water to quench true thirst, highlight the health benefits of drinking water, and address the safety of tap water.

  8. Umbilical cord care in Ethiopia and implications for behavioral change: a qualitative study.

    Science.gov (United States)

    Amare, Yared

    2014-04-18

    Infections account for up to a half of neonatal deaths in low income countries. The umbilicus is a common source of infection in such settings. This qualitative study investigates practices and perspectives related to umbilical cord care in Ethiopia. In-depth interviews (IDI) were conducted in a district in each of the four most populous regions in the country: Oromia, Amhara, Tigray and Southern Nations, Nationalities and Peoples Region (SNNPR). In each district, one community was purposively selected; and in each study community, IDIs were conducted with 6 mothers, 4 grandmothers, 2 Traditional Birth Attendants and 2 Health Extension Workers (HEWs). The two main questions in the interview guide related to cord care were: How was the umbilical cord cut and tied? Was anything applied to the cord stump immediately after cutting/in the first 7 days? Why was it applied/not applied? The study elucidates local cord care practices and the rational for these practices. Concepts underlying cord tying practices were how to stem blood flow and facilitate delivery of the placenta. Substances were applied on the cord to moisturize it, facilitate its separation and promote healing. Locally recognized cord problems were delayed healing, bleeding or swelling. Few respondents reported familiarity with redness of the cord - a sign of infection. Grandmothers, TBAs and HEWs were influential regarding cord care. This study highlights local rationale for cord practices, concerns about cord related problems and recognition of signs of infection. Behavioral change messages aimed at improving cord care including cleansing with CHX should address these local perspectives. It is suggested that HEWs and health facility staff target mothers, grandmothers, TBAs and other community women with messages and counseling.

  9. Concise review: Bone marrow for the treatment of spinal cord injury: mechanisms and clinical applications.

    OpenAIRE

    Wright, KT; El Masri, W; Osman, A; Chowdhury, J; Johnson, WEB

    2011-01-01

    Transplantation of bone marrow stem cells into spinal cord lesions enhances axonal regeneration and promotes functional recovery in animal studies. There are two types of adult bone marrow stem cell; hematopoietic stem cells (HSCs), and mesenchymal stem cells (MSCs). The mechanisms by which HSCs and MSCs might promote spinal cord repair following transplantation have been extensively investigated. The objective of this review is to discuss these mechanisms; we briefly consider the controversi...

  10. miR-29b promotes skin wound healing and reduces excessive scar formation by inhibition of the TGF-β1/Smad/CTGF signaling pathway.

    Science.gov (United States)

    Guo, Jingdong; Lin, Quan; Shao, Ying; Rong, Li; Zhang, Duo

    2017-04-01

    The hypertrophic scar is a medical difficulty of humans, which has caused great pain to patients. Here, we investigated the inhibitory effect of miR-29b on scar formation. The scalded model was established in mice and miR-29b mimics or a negative control was subcutaneously injected into the injury skin. Then various molecular biological experiments were performed to assess the effect of miR-29b on scar formation. According to our present study, first, the results demonstrated that miR-29b was down-regulated in thermal injury tissue and miR-29b treatment could promote wound healing, inhibit scar formation, and alleviate histopathological morphologic alteration in scald tissues. Additionally, miR-29b treatment suppressed collagen deposition and fibrotic gene expression in scar tissues. Finally, we found that miR-29b treatment inhibited the TGF-β1/Smad/CTGF signaling pathway. Taken together, our data suggest that miR-29b treatment has an inhibitory effect against scar formation via inhibition of the TGF-β1/Smad/CTGF signaling pathway and may provide a potential molecular basis for future treatments for hypertrophic scars.

  11. High Glucose Concentration Promotes Vancomycin-Enhanced Biofilm Formation of Vancomycin-Non-Susceptible Staphylococcus aureus in Diabetic Mice.

    Directory of Open Access Journals (Sweden)

    Chi-Yu Hsu

    Full Text Available We previously demonstrated that vancomycin treatment increased acquisition of eDNA and enhanced biofilm formation of drug-resistant Staphylococcus aureus through a cidA-mediated autolysis mechanism. Recently we found that such enhancement became more significant under a higher glucose concentration in vitro. We propose that besides improper antibiotic treatment, increased glucose concentration environment in diabetic animals may further enhance biofilm formation of drug-resistant S. aureus. To address this question, the diabetic mouse model infected by vancomycin-resistant S. aureus (VRSA was used under vancomycin treatment. The capacity to form biofilms was evaluated through a catheter-associated biofilm assay. A 10- and 1000-fold increase in biofilm-bound bacterial colony forming units was observed in samples from diabetic mice without and with vancomycin treatment, respectively, compared to healthy mice. By contrast, in the absence of glucose vancomycin reduced propensity to form biofilms in vitro through the increased production of proteases and DNases from VRSA. Our study highlights the potentially important role of increased glucose concentration in enhancing biofilm formation in vancomycin-treated diabetic mice infected by drug-resistant S. aureus.

  12. Monosodium Urate in the Presence of RANKL Promotes Osteoclast Formation through Activation of c-Jun N-Terminal Kinase

    Directory of Open Access Journals (Sweden)

    Jung-Yoon Choe

    2015-01-01

    Full Text Available The aim of this study was to clarify the role of monosodium urate (MSU crystals in receptor activator of nuclear factor kB ligand- (RANKL- RANK-induced osteoclast formation. RAW 264.7 murine macrophage cells were incubated with MSU crystals or RANKL and differentiated into osteoclast-like cells as confirmed by staining for tartrate-resistant acid phosphatase (TRAP and actin ring, pit formation assay, and TRAP activity assay. MSU crystals in the presence of RANKL augmented osteoclast differentiation, with enhanced mRNA expression of NFATc1, cathepsin K, carbonic anhydrase II, and matrix metalloproteinase-9 (MMP-9, in comparison to RAW 264.7 macrophages incubated in the presence of RANKL alone. Treatment with both MSU crystals and RANKL induced osteoclast differentiation by activating downstream molecules in the RANKL-RANK pathway including tumor necrosis factor receptor-associated factor 6 (TRAF-6, JNK, c-Jun, and NFATc1. IL-1b produced in response to treatment with both MSU and RANKL is involved in osteoclast differentiation in part through the induction of TRAF-6 downstream of the IL-1b pathway. This study revealed that MSU crystals contribute to enhanced osteoclast formation through activation of RANKL-mediated pathways and recruitment of IL-1b. These findings suggest that MSU crystals might be a pathologic causative agent of bone destruction in gout.

  13. Capsicum annuum S (CaS) promotes reproductive transition and is required for flower formation in pepper (Capsicum annuum).

    Science.gov (United States)

    Cohen, Oded; Borovsky, Yelena; David-Schwartz, Rakefet; Paran, Ilan

    2014-05-01

    The genetic control of the transition to flowering has mainly been studied in model species, while few data are available in crop species such as pepper (Capsicum spp.). To elucidate the genetic control of the transition to flowering in pepper, mutants that lack flowers were isolated and characterized. Genetic mapping and sequencing allowed the identification of the gene disrupted in the mutants. Double mutants and expression analyses were used to characterize the relationships between the mutated gene and other genes controlling the transition to flowering and flower differentiation. The mutants were characterized by a delay in the initiation of sympodial growth, a delay in the termination of sympodial meristems and complete inhibition of flower formation. Capsicum annuum S (CaS), the pepper (Capsicum annuum) ortholog of tomato (Solanum lycopersicum) COMPOUND INFLORESCENCE and petunia (Petunia hybrida) EVERGREEN, was found to govern the mutant phenotype. CaS is required for the activity of the flower meristem identity gene Ca-ANANTHA and does not affect the expression of CaLEAFY. CaS is epistatic over other genes controlling the transition to flowering with respect to flower formation. Comparative homologous mutants in the Solanaceae indicate that CaS has uniquely evolved to have a critical role in flower formation, while its role in meristem maturation is conserved in pepper, tomato and petunia. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  14. The Arabidopsis Transcription Factor MYB112 Promotes Anthocyanin Formation during Salinity and under High Light Stress1[OPEN

    Science.gov (United States)

    Lotkowska, Magda E.; Tohge, Takayuki; Fernie, Alisdair R.; Xue, Gang-Ping; Balazadeh, Salma; Mueller-Roeber, Bernd

    2015-01-01

    MYB transcription factors (TFs) are important regulators of flavonoid biosynthesis in plants. Here, we report MYB112 as a formerly unknown regulator of anthocyanin accumulation in Arabidopsis (Arabidopsis thaliana). Expression profiling after chemically induced overexpression of MYB112 identified 28 up- and 28 down-regulated genes 5 h after inducer treatment, including MYB7 and MYB32, which are both induced. In addition, upon extended induction, MYB112 also positively affects the expression of PRODUCTION OF ANTHOCYANIN PIGMENT1, a key TF of anthocyanin biosynthesis, but acts negatively toward MYB12 and MYB111, which both control flavonol biosynthesis. MYB112 binds to an 8-bp DNA fragment containing the core sequence (A/T/G)(A/C)CC(A/T)(A/G/T)(A/C)(T/C). By electrophoretic mobility shift assay and chromatin immunoprecipitation coupled to quantitative polymerase chain reaction, we show that MYB112 binds in vitro and in vivo to MYB7 and MYB32 promoters, revealing them as direct downstream target genes. We further show that MYB112 expression is up-regulated by salinity and high light stress, environmental parameters that both require the MYB112 TF for anthocyanin accumulation under these stresses. In contrast to several other MYB TFs affecting anthocyanin biosynthesis, MYB112 expression is not controlled by nitrogen limitation or an excess of carbon. Thus, MYB112 constitutes a regulator that promotes anthocyanin accumulation under abiotic stress conditions. PMID:26378103

  15. Translocations of Chromosome End-Segments and Facultative Heterochromatin Promote Meiotic Ring Formation in Evening Primroses[W][OPEN

    Science.gov (United States)

    Golczyk, Hieronim; Massouh, Amid; Greiner, Stephan

    2014-01-01

    Due to reciprocal chromosomal translocations, many species of Oenothera (evening primrose) form permanent multichromosomal meiotic rings. However, regular bivalent pairing is also observed. Chiasmata are restricted to chromosomal ends, which makes homologous recombination virtually undetectable. Genetic diversity is achieved by changing linkage relations of chromosomes in rings and bivalents via hybridization and reciprocal translocations. Although the structural prerequisite for this system is enigmatic, whole-arm translocations are widely assumed to be the mechanistic driving force. We demonstrate that this prerequisite is genome compartmentation into two epigenetically defined chromatin fractions. The first one facultatively condenses in cycling cells into chromocenters negative both for histone H3 dimethylated at lysine 4 and for C-banding, and forms huge condensed middle chromosome regions on prophase chromosomes. Remarkably, it decondenses in differentiating cells. The second fraction is euchromatin confined to distal chromosome segments, positive for histone H3 lysine 4 dimethylation and for histone H3 lysine 27 trimethylation. The end-segments are deprived of canonical telomeres but capped with constitutive heterochromatin. This genomic organization promotes translocation breakpoints between the two chromatin fractions, thus facilitating exchanges of end-segments. We challenge the whole-arm translocation hypothesis by demonstrating why reciprocal translocations of chromosomal end-segments should strongly promote meiotic rings and evolution toward permanent translocation heterozygosity. Reshuffled end-segments, each possessing a major crossover hot spot, can furthermore explain meiotic compatibility between genomes with different translocation histories. PMID:24681616

  16. Perilipin-mediated lipid droplet formation in adipocytes promotes sterol regulatory element-binding protein-1 processing and triacylglyceride accumulation.

    Directory of Open Access Journals (Sweden)

    Yu Takahashi

    Full Text Available Sterol regulatory element-binding protein-1 (SREBP-1 has been thought to be a critical factor that assists adipogenesis. During adipogenesis SREBP-1 stimulates lipogenic gene expression, and peroxisome proliferator-activated receptor γ (PPARγ enhances perilipin (plin gene expression, resulting in generating lipid droplets (LDs to store triacylglycerol (TAG in adipocytes. Plin coats adipocyte LDs and protects them from lipolysis. Here we show in white adipose tissue (WAT of plin-/- mice that nuclear active SREBP-1 and its target gene expression, but not nuclear SREBP-2, significantly decreased on attenuated LD formation. When plin-/- mouse embryonic fibroblasts (MEFs differentiated into adipocytes, attenuated LDs were formed and nuclear SREBP-1 decreased, but enforced plin expression restored them to their original state. Since LDs are largely derived from the endoplasmic reticulum (ER, alterations in the ER cholesterol content were investigated during adipogenesis of 3T3-L1 cells. The ER cholesterol greatly reduced in differentiated adipocytes. The ER cholesterol level in plin-/- WAT was significantly higher than that of wild-type mice, suggesting that increased LD formation caused a change in ER environment along with a decrease in cholesterol. When GFP-SREBP-1 fusion proteins were exogenously expressed in 3T3-L1 cells, a mutant protein lacking the S1P cleavage site was poorly processed during adipogenesis, providing evidence of the increased canonical pathway for SREBP processing in which SREBP-1 is activated by two cleavage enzymes in the Golgi. Therefore, LD biogenesis may create the ER microenvironment favorable for SREBP-1 activation. We describe the novel interplay between LD formation and SREBP-1 activation through a positive feedback loop.

  17. Increase in Bacterial Colony Formation from a Permafrost Ice Wedge Dosed with a Tomitella biformata Recombinant Resuscitation-Promoting Factor Protein.

    Science.gov (United States)

    Puspita, Indun Dewi; Kitagawa, Wataru; Kamagata, Yoichi; Tanaka, Michiko; Nakatsu, Cindy H

    2015-01-01

    Resuscitation-promoting factor (Rpf) is a protein that has been found in a number of different Actinobacteria species and has been shown to promote the growth of active cells and resuscitate dormant (non-dividing) cells. We previously reported the biological activity of an Rpf protein in Tomitella biformata AHU 1821(T), an Actinobacteria isolated from a permafrost ice wedge. This protein is excreted outside the cell; however, few studies have investigated its contribution in environmental samples to the growth or resuscitation of bacteria other than the original host. Therefore, the aim of the present study was to determine whether Rpf from T. biformata impacted the cultivation of other bacteria from the permafrost ice wedge from which it was originally isolated. All experiments used recombinant Rpf proteins produced using a Rhodococcus erythropolis expression system. Dilutions of melted surface sterilized ice wedge samples mixed with different doses of the purified recombinant Rpf (rRpf) protein indicated that the highest concentration tested, 1250 pM, had a significantly (p permafrost sediments. The results of the present study demonstrated that rRpf not only promoted the growth of T. biformata from which it was isolated, but also enhanced colony formation by another Actinobacteria in an environmental sample.

  18. Poly-MVA attenuates 7,12- dimethylbenz[a]anthracene initiated and croton oil promoted skin papilloma formation on mice skin.

    Science.gov (United States)

    Veena, Ravindran K; Ajith, Thekkuttuparambil A; Janardhanan, Kainoor K; Antonawich, Francis

    2017-09-01

    Chemopreventive agents which exhibit activities such as anti-inflammation, inhibition of carcinogen induced mutagenesis and scavenging of free radical might play a decisive role in the inhibition of chemical carcinogenesis either at the initiation or promotion stage. Many synthesized palladium (Pd) complexes tested experimentally for antitumor activity are found effective. Poly-MVA is a liquid blend preparation containing B complex vitamins, ruthenium with Pd complexed with alpha lipoic acid as the major ingredients. The antitumor effect of Poly-MVA was evaluated against 7,12-dimethylbenz[a] anthracene-initiated croton oil-promoted papilloma formation on mice skin. Skin tumor was initiated with a single application of 390 nmol of DMBA in 20 µl acetone. The effect of Poly-MVA against croton oil- induced inflammation and lipid peroxidation on the mice skin was also evaluated. Topical application of Poly-MVA (100 µl, twice weekly for 18 weeks) 30 minutes prior to each croton oil application, significantly decreased the tumor incidence (11%) and the average number of tumor per animals. Application of Poly-MVA (100 µl) before croton oil significantly (p < 0.05) protected the mouse skin from inflammation (36%) and lipid peroxidation (14%) when compared to the croton oil alone treated group. Experimental results indicate that Poly-MVA attenuate the tumor promoting effects of croton oil and the effect may probably be due to its anti-inflammatory and antioxidant activity.

  19. Elevated AKR1C3 expression promotes prostate cancer cell survival and prostate cell-mediated endothelial cell tube formation: implications for prostate cancer progressioan

    International Nuclear Information System (INIS)

    Dozmorov, Mikhail G; Lin, Hsueh-Kung; Azzarello, Joseph T; Wren, Jonathan D; Fung, Kar-Ming; Yang, Qing; Davis, Jeffrey S; Hurst, Robert E; Culkin, Daniel J; Penning, Trevor M

    2010-01-01

    Aldo-keto reductase (AKR) 1C family member 3 (AKR1C3), one of four identified human AKR1C enzymes, catalyzes steroid, prostaglandin, and xenobiotic metabolism. In the prostate, AKR1C3 is up-regulated in localized and advanced prostate adenocarcinoma, and is associated with prostate cancer (PCa) aggressiveness. Here we propose a novel pathological function of AKR1C3 in tumor angiogenesis and its potential role in promoting PCa progression. To recapitulate elevated AKR1C3 expression in cancerous prostate, the human PCa PC-3 cell line was stably transfected with an AKR1C3 expression construct to establish PC3-AKR1C3 transfectants. Microarray and bioinformatics analysis were performed to identify AKR1C3-mediated pathways of activation and their potential biological consequences in PC-3 cells. Western blot analysis, reverse transcription-polymerase chain reaction (RT-PCR), enzyme-linked immunosorbent assay (ELISA), and an in vitro Matrigel angiogenesis assays were applied to validate the pro-angiogenic activity of PC3-AKR1C3 transfectants identified by bioinformatics analysis. Microarray and bioinformatics analysis suggested that overexpression of AKR1C3 in PC-3 cells modulates estrogen and androgen metabolism, activates insulin-like growth factor (IGF)-1 and Akt signaling pathways, as well as promotes tumor angiogenesis and aggressiveness. Levels of IGF-1 receptor (IGF-1R) and Akt activation as well as vascular endothelial growth factor (VEGF) expression and secretion were significantly elevated in PC3-AKR1C3 transfectants in comparison to PC3-mock transfectants. PC3-AKR1C3 transfectants also promoted endothelial cell (EC) tube formation on Matrigel as compared to the AKR1C3-negative parental PC-3 cells and PC3-mock transfectants. Pre-treatment of PC3-AKR1C3 transfectants with a selective IGF-1R kinase inhibitor (AG1024) or a non-selective phosphoinositide 3-kinases (PI3K) inhibitor (LY294002) abolished ability of the cells to promote EC tube formation. Bioinformatics

  20. Is early cord clamping, delayed cord clamping or cord milking best?

    Science.gov (United States)

    Vatansever, Binay; Demirel, Gamze; Ciler Eren, Elif; Erel, Ozcan; Neselioglu, Salim; Karavar, Hande Nur; Gundogdu, Semra; Ulfer, Gozde; Bahadir, Selcen; Tastekin, Ayhan

    2018-04-01

    To compare the antioxidant status of three cord clamping procedures (early clamping, delayed clamping and milking) by analyzing the thiol-disulfide balance. This randomized controlled study enrolled 189 term infants who were divided into three groups according to the cord clamping procedure: early clamping, delayed clamping and milking. Blood samples were collected from the umbilical arteries immediately after clamping, and the thiol/disulfide homeostasis was analyzed. The native and total thiol levels were significantly (p total thiol ratio was significantly (p = .026) lower in the delayed cord clamping and milking groups compared with the early clamping groups. Early cord clamping causes the production of more disulfide bonds and lower thiol levels, indicating that oxidation reactions are increased in the early cord clamping procedure compared with the delayed cord clamping and milking procedures. The oxidant capacity is greater with early cord clamping than with delayed clamping or cord milking. Delayed cord clamping or milking are beneficial in neonatal care, and we suggest that they be performed routinely in all deliveries.

  1. Geochemical factors promoting die-back gap formation in colonizing patches of Spartina densiflora in an irregularly flooded marsh

    Science.gov (United States)

    Mirlean, Nicolai; Costa, Cesar S. B.

    2017-04-01

    Circular (RP) and ring-shape (RP) patches of vegetation in intertidal flats have been associated with the radial expansion of tussock growth forms and die-back gap in older central stands, respectively. RP formation has not yet been sufficiently explained. We accomplished a comparative geochemical study of CP and RP structures of Spartina densiflora within a single saltmarsh in a microtidal estuary (changing in water level and salinity. During high-water period dissolved H2S was frequently low in pore waters of S. densiflora structures due to reactive-Fe, which scavenge the sulfide from solution and form solid sulfides. During less flooded-brackish water period, pore water pH goes down below 4 inside the vegetated bordering areas of RP. In these locations the concentration of soluble sulfides dramatically increases up to 140 μM L-1. The high concentration of protons in pore water is the result of solid sulfides atmospheric oxidation to sulfuric acid. High dissolution of H2S, along with the low pH, creates a toxic environment for S. densiflora and die-back central gap formation in RP. CP structure was 5 cm higher in the intertidal than RP but shows frequent presence of a water layer, less severe oxidation of sulfides and limited building-up of toxic condition to plants. Development of S. densiflora RP probably indicates the uplift of sediment by this bioengineer grass and/or periodic lowering of the water surface below a certain critical level.

  2. Loss of metal ions, disulfide reduction and mutations related to familial ALS promote formation of amyloid-like aggregates from superoxide dismutase.

    Directory of Open Access Journals (Sweden)

    Zeynep A Oztug Durer

    Full Text Available Mutations in the gene encoding Cu-Zn superoxide dismutase (SOD1 are one of the causes of familial amyotrophic lateral sclerosis (FALS. Fibrillar inclusions containing SOD1 and SOD1 inclusions that bind the amyloid-specific dye thioflavin S have been found in neurons of transgenic mice expressing mutant SOD1. Therefore, the formation of amyloid fibrils from human SOD1 was investigated. When agitated at acidic pH in the presence of low concentrations of guanidine or acetonitrile, metalated SOD1 formed fibrillar material which bound both thioflavin T and Congo red and had circular dichroism and infrared spectra characteristic of amyloid. While metalated SOD1 did not form amyloid-like aggregates at neutral pH, either removing metals from SOD1 with its intramolecular disulfide bond intact or reducing the intramolecular disulfide bond of metalated SOD1 was sufficient to promote formation of these aggregates. SOD1 formed amyloid-like aggregates both with and without intermolecular disulfide bonds, depending on the incubation conditions, and a mutant SOD1 lacking free sulfhydryl groups (AS-SOD1 formed amyloid-like aggregates at neutral pH under reducing conditions. ALS mutations enhanced the ability of disulfide-reduced SOD1 to form amyloid-like aggregates, and apo-AS-SOD1 formed amyloid-like aggregates at pH 7 only when an ALS mutation was also present. These results indicate that some mutations related to ALS promote formation of amyloid-like aggregates by facilitating the loss of metals and/or by making the intramolecular disulfide bond more susceptible to reduction, thus allowing the conversion of SOD1 to a form that aggregates to form resembling amyloid. Furthermore, the occurrence of amyloid-like aggregates per se does not depend on forming intermolecular disulfide bonds, and multiple forms of such aggregates can be produced from SOD1.

  3. Effect of lycopene on the blood-spinal cord barrier after spinal cord injury in mice.

    Science.gov (United States)

    Zhang, Qian; Wang, Jianbo; Gu, Zhengsong; Zhang, Qing; Zheng, Hong

    2016-09-05

    The current study aimed to investigate the effect of lycopene on the blood-spinal cord barrier (BSCB) after spinal cord injury (SCI) in a mouse model. Lycopene inhibited lipid peroxidation and oxidative DNA damage as a highly efficient antioxidant and free radical scavenger. Lycopene (4 mg/kg/d) was administrated immediately following SCI. The permeability of the BSCB and water content in the spinal cord tissue were evaluated. Additionally, levels of expression of tight junction proteins and heme oxygenase-1 (HO-1) were determined with Western blotting. An enzyme-linked immunosorbent assay analysis of spinal cord tissue homogenates was performed 48 h after SCI to evaluate the expression of inflammation-related cytokines. In addition, recovery of motor function was assessed 1 d, 2 d, 5 d, 10 d, and 15 d after SCI using the Basso Mouse Scale to score locomotion. Compared to the group with an untreated SCI, mice with an SCI treated with lycopene had significantly reduced spinal cord tissue water content and BSCB permeability. Furthermore, motor function of mice with an SCI was also greatly improved by lycopene administration. The expression of the proinflammatory factors TNF-α and NF-kB increased markedly 48 h after SCI, and their upregulation was significantly attenuated by lycopene treatment. The expression of molecules that protect tight junctions, zonula occluden-1 and claudin-5, was upregulated by lycopene treatment after SCI. Taken together, these results clearly indicate that lycopene attenuated SCI by promoting repair of the damaged BSCB, so lycopene is a novel and promising treatment for SCI in humans.

  4. Comparison of mesenchymal stem cells derived from fat, bone marrow, Wharton's jelly, and umbilical cord blood for treating spinal cord injuries in dogs.

    Science.gov (United States)

    Ryu, Hak-Hyun; Kang, Byung-Jae; Park, Sung-Su; Kim, Yongsun; Sung, Gyu-Jin; Woo, Heung-Myong; Kim, Wan Hee; Kweon, Oh-Kyeong

    2012-12-01

    Previous animal studies have shown that transplantation of mesenchymal stem cells (MSCs) into spinal cord lesions enhances axonal regeneration and promotes functional recovery. We isolated the MSCs derived from fat, bone marrow, Wharton's jelly and umbilical cord blood (UCB) positive for MSC markers and negative for hematopoietic cell markers. Their effects on the regeneration of injured canine spinal cords were compared. Spinal cord injury was induced by balloon catheter compression. Dogs with injured spinal cords were treated with only matrigel or matrigel mixed with each type of MSCs. Olby and modified Tarlov scores, immunohistochemistry, ELISA and Western blot analysis were used to evaluate the therapeutic effects. The different MSC groups showed significant improvements in locomotion at 8 weeks after transplantation (Pin the lesion site. Compared to the control, the lesion sizes were smaller, and fewer microglia and reactive astrocytes were found in the spinal cord epicenter of all MSC groups. Although there were no significant differences in functional recovery among the MSCs groups, UCB-derived MSCs (UCSCs) induced more nerve regeneration and anti-inflammation activity (Pin the spinal cord. Our data suggest that transplantation of MSCs promotes functional recovery after SCI. Furthermore, application of UCSCs led to more nerve regeneration, neuroprotection and less inflammation compared to other MSCs.

  5. The N-succinyl-l,l-diaminopimelic acid desuccinylase DapE acts through ZapB to promote septum formation in Escherichia coli.

    Science.gov (United States)

    Du, Shishen; Lutkenhaus, Joe

    2017-07-01

    Spatial regulation of cell division in Escherichia coli occurs at the stage of Z ring formation. It consists of negative (the Min and NO systems) and positive (Ter signal mediated by MatP/ZapA/ZapB) regulators. Here, we find that N-succinyl-L,L-diaminopimelic acid desuccinylase (DapE) facilitates functional Z ring formation by strengthening the Ter signal via ZapB. DapE depends on ZapB to localize to the Z ring and its overproduction suppresses the division defect caused by loss of both the Min and NO systems. DapE shows a strong interaction with ZapB and requires the presence of ZapB to exert its function in division. Consistent with the idea that DapE strengthens the Ter signal, overproduction of DapE supports cell division with reduced FtsZ levels and provides some resistance to the FtsZ inhibitors MinCD and SulA, while deletion of dapE, like deletion of zapB, exacerbates the phenotypes of cells impaired in Z ring formation such as ftsZ84 or a min mutant. Taken together, our results report DapE as a new component of the divisome that promotes the integrity of the Z ring by acting through ZapB and raises the possibility of the existence of additional divisome proteins that also function in other cellular processes. © 2017 John Wiley & Sons Ltd.

  6. 99mTechnetium-methylene diphosphonate bone imaging using low-intensity pulsed ultrasound: promotion of bone formation during mandibular distraction osteogenesis in dogs.

    Science.gov (United States)

    Ding, Yuxiang; Li, Guoquan; Ao, Jianhua; Zhou, Libin; Ma, Qin; Liu, Yanpu

    2010-03-01

    Our objective was to assess the value of (99m)technetium-methylene diphosphonate ((99m)Tc-MDP) bone imaging in the use of low-intensity pulsed ultrasound to promote bony formation during mandibular distraction osteogenesis in dogs. The body of the mandibles in 7 dogs were cut between the first and the second premolar and were lengthened at the rate of 1mm/day, twice a day, for 20 days. During the period of distraction one lateral distraction gap was irradiated with low-intensity pulsed ultrasound (LIPUS) for 10min twice a day, and the other side was used as control. Serial radiographic inspections were made at different periods (0, 1, 2, 4, 6, 8, and 12 weeks) during the consolidation phase, followed by a plain radiograph and histological examination. The (99m)Tc-MDP imaging showed that the ratio of bone formation on the LIPUS-treated side was significantly higher than that on the control side during the early period of consolidation (before the 4th week), but later this was reversed and there were no significant differences between the two sides by the 12th week. Plain radiographs and histological examination showed that the new bone on the experimental side had matured earlier than that on the control side. Radionuclide bone imaging is a good way to assess the formation of bone after distraction osteogenesis.

  7. Evolution and role of corded cell aggregation in Mycobacterium tuberculosis cultures.

    Science.gov (United States)

    Caceres, Neus; Vilaplana, Cristina; Prats, Clara; Marzo, Elena; Llopis, Isaac; Valls, Joaquim; Lopez, Daniel; Cardona, Pere-Joan

    2013-11-01

    The aim of this study was to evaluate the evolution and role of corded cell aggregation in Mycobacterium tuberculosis cultures according to growth time and conditions. Thus, in standard culture using aerated 7H9 Middlebrook broth supplemented with 0.05% Tween 80, a dramatic CFU decrease was observed at the end of the exponential phase. This phase was followed by a stable stationary phase that led to dissociation between the optical density (O.D.) and CFU values, together with the formation of opaque colonies in solid culture. Further analysis revealed that this was due to cording. Scanning electron microscopy showed that cording led to the formation of very stable coiled structures and corded cell aggregations which proved impossible to disrupt by any of the physical means tested. Modulation of cording with a high but non-toxic concentration of Tween 80 led to a slower growth rate, avoidance of a sudden drop-off to the stationary phase, the formation of weaker cording structures and the absence of opaque colonies, together with a lower survival at later time-points. An innovative automated image analysis technique has been devised to characterize the cording process. This analysis has led to important practical consequences for the elaboration of M. tuberculosis inocula and suggests the importance of biofilm formation in survival of the bacilli in the extracellular milieu. Copyright © 2013. Published by Elsevier Ltd.

  8. The anti-cancerous drug doxorubicin decreases the c-di-GMP content in Pseudomonas aeruginosa but promotes biofilm formation

    DEFF Research Database (Denmark)

    Groizeleau, Julie; Rybtke, Morten; Andersen, Jens Bo

    2016-01-01

    Current antibiotic treatments are insufficient in eradicating bacterial biofilms, which represent the primary cause of chronic bacterial infections. Thus, there is an urgent need for new strategies to eradicate biofilm infections. The second messenger c-di-GMP is a positive regulator of biofilm...... formation in many clinically relevant bacteria. It is hypothesized that drugs lowering the intracellular level of c-di-GMP will force biofilm bacteria into a more treatable planktonic lifestyle. To identify compounds capable of lowering c-di-GMP levels in Pseudomonas aeruginosa, we screened 5000 compounds...... for their potential c-di-GMP-lowering effect using a recently developed c-di-GMP biosensor strain. Our screen identified the anti-cancerous drug doxorubicin as a potent c-di-GMP inhibitor. In addition, the drug decreased the transcription of many biofilm-related genes. However, despite its effect on the c-di-GMP...

  9. Cutting the Cord-2

    Science.gov (United States)

    2004-01-01

    This animation shows the view from the rear hazard avoidance cameras on the Mars Exploration Rover Spirit as the rover turns 45 degrees clockwise. This maneuver is the first step in a 3-point turn that will rotate the rover 115 degrees to face west. The rover must make this turn before rolling off the lander because airbags are blocking it from exiting from the front lander petal. Before this crucial turn took place, engineers instructed the rover to cut the final cord linking it to the lander. The turn took around 30 minutes to complete.

  10. Cutting the Cord

    Science.gov (United States)

    2004-01-01

    This animation shows the view from the front hazard avoidance cameras on the Mars Exploration Rover Spirit as the rover turns 45 degrees clockwise. This maneuver is the first step in a 3-point turn that will rotate the rover 115 degrees to face west. The rover must make this turn before rolling off the lander because airbags are blocking it from exiting off the front lander petal. Before this crucial turn could take place, engineers instructed the rover to cut the final cord linking it to the lander. The turn took around 30 minutes to complete.

  11. Single-Molecule Kinetics Reveal Cation-Promoted DNA Duplex Formation Through Ordering of Single-Stranded Helices

    Science.gov (United States)

    Dupuis, Nicholas F.; Holmstrom, Erik D.; Nesbitt, David J.

    2013-01-01

    In this work, the kinetics of short, fully complementary oligonucleotides are investigated at the single-molecule level. Constructs 6–9 bp in length exhibit single exponential kinetics over 2 orders of magnitude time for both forward (kon, association) and reverse (koff, dissociation) processes. Bimolecular rate constants for association are weakly sensitive to the number of basepairs in the duplex, with a 2.5-fold increase between 9 bp (k′on = 2.1(1) × 106 M−1 s−1) and 6 bp (k′on = 5.0(1) × 106 M−1 s−1) sequences. In sharp contrast, however, dissociation rate constants prove to be exponentially sensitive to sequence length, varying by nearly 600-fold over the same 9 bp (koff = 0.024 s−1) to 6 bp (koff = 14 s−1) range. The 8 bp sequence is explored in more detail, and the NaCl dependence of kon and koff is measured. Interestingly, konincreases by >40-fold (kon = 0.10(1) s−1 to 4.0(4) s−1 between [NaCl] = 25 mM and 1 M), whereas in contrast, koffdecreases by fourfold (0.72(3) s−1 to 0.17(7) s−1) over the same range of conditions. Thus, the equilibrium constant (Keq) increases by ≈160, largely due to changes in the association rate, kon. Finally, temperature-dependent measurements reveal that increased [NaCl] reduces the overall exothermicity (ΔΔH° > 0) of duplex formation, albeit by an amount smaller than the reduction in entropic penalty (−TΔΔS° duplex formation. PMID:23931323

  12. Early elective colostomy following spinal cord injury.

    Science.gov (United States)

    Boucher, Michelle

    Elective colostomy is an accepted method of bowel management for patients who have had a spinal cord injury (SCI). Approximately 2.4% of patients with SCI have a colostomy, and traditionally it is performed as a last resort several years after injury, and only if bowel complications persist when all other methods have failed. This is despite evidence that patients find a colostomy easier to manage and frequently report wishing it had been performed earlier. It was noticed in the author's spinal unit that increasing numbers of patients were requesting colostomy formation during inpatient rehabilitation following SCI. No supporting literature was found for this; it appears to be an emerging and untested practice. This article explores colostomy formation as a method of bowel management in patients with SCI, considers the optimal time for colostomy formation after injury and examines issues for health professionals.

  13. Vocal cord dysfunction in children.

    Science.gov (United States)

    Noyes, Blakeslee E; Kemp, James S

    2007-06-01

    Vocal cord dysfunction is characterised by paradoxical vocal cord adduction that occurs during inspiration, resulting in symptoms of dyspnoea, wheeze, chest or throat tightness and cough. Although the condition is well described in children and adults, confusion with asthma often triggers the use of an aggressive treatment regimen directed against asthma. The laryngoscopic demonstration of vocal cord adduction during inspiration has been considered the gold standard for the diagnosis of vocal cord dysfunction, but historical factors and pulmonary function findings may provide adequate clues to the correct diagnosis. Speech therapy, and in some cases psychological counselling, is often beneficial in this disorder. The natural course and prognosis of vocal cord dysfunction are still not well described in adults or children.

  14. Spinal cord injury: overview of experimental approaches used to restore locomotor activity.

    Science.gov (United States)

    Fakhoury, Marc

    2015-01-01

    Spinal cord injury affects more than 2.5 million people worldwide and can lead to paraplegia and quadriplegia. Anatomical discontinuity in the spinal cord results in disruption of the impulse conduction that causes temporary or permanent changes in the cord's normal functions. Although axonal regeneration is limited, damage to the spinal cord is often accompanied by spontaneous plasticity and axon regeneration that help improve sensory and motor skills. The recovery process depends mainly on synaptic plasticity in the preexisting circuits and on the formation of new pathways through collateral sprouting into neighboring denervated territories. However, spontaneous recovery after spinal cord injury can go on for several years, and the degree of recovery is very limited. Therefore, the development of new approaches that could accelerate the gain of motor function is of high priority to patients with damaged spinal cord. Although there are no fully restorative treatments for spinal injury, various rehabilitative approaches have been tested in animal models and have reached clinical trials. In this paper, a closer look will be given at the potential therapies that could facilitate axonal regeneration and improve locomotor recovery after injury to the spinal cord. This article highlights the application of several interventions including locomotor training, molecular and cellular treatments, and spinal cord stimulation in the field of rehabilitation research. Studies investigating therapeutic approaches in both animal models and individuals with injured spinal cords will be presented.

  15. Exosomes Derived from Human Umbilical Cord Mesenchymal Stem Cells Relieve Acute Myocardial Ischemic Injury

    Directory of Open Access Journals (Sweden)

    Yuanyuan Zhao

    2015-01-01

    Full Text Available This study is aimed at investigating whether human umbilical cord mesenchymal stem cell- (hucMSC- derived exosomes (hucMSC-exosomes have a protective effect on acute myocardial infarction (AMI. Exosomes were characterized under transmission electron microscopy and the particles of exosomes were further examined through nanoparticle tracking analysis. Exosomes (400 μg protein were intravenously administrated immediately following ligation of the left anterior descending (LAD coronary artery in rats. Cardiac function was evaluated by echocardiography and apoptotic cells were counted using TUNEL staining. The cardiac fibrosis was assessed using Masson’s trichrome staining. The Ki67 positive cells in ischemic myocardium were determined using immunohistochemistry. The effect of hucMSC-exosomes on blood vessel formation was evaluated through tube formation and migration of human umbilical vein endothelial cells (EA.hy926 cells. The results indicated that ligation of the LAD coronary artery reduced cardiac function and induced cardiomyocyte apoptosis. Administration of hucMSC-exosomes significantly improved cardiac systolic function and reduced cardiac fibrosis. Moreover, hucMSC-exosomes protected myocardial cells from apoptosis and promoted the tube formation and migration of EA.hy926 cells. It is concluded that hucMSC-exosomes improved cardiac systolic function by protecting myocardial cells from apoptosis and promoting angiogenesis. These effects of hucMSC-exosomes might be associated with regulating the expression of Bcl-2 family.

  16. Maladaptive spinal plasticity opposes spinal learning and recovery in spinal cord injury

    Science.gov (United States)

    Ferguson, Adam R.; Huie, J. Russell; Crown, Eric D.; Baumbauer, Kyle M.; Hook, Michelle A.; Garraway, Sandra M.; Lee, Kuan H.; Hoy, Kevin C.; Grau, James W.

    2012-01-01

    Synaptic plasticity within the spinal cord has great potential to facilitate recovery of function after spinal cord injury (SCI). Spinal plasticity can be induced in an activity-dependent manner even without input from the brain after complete SCI. A mechanistic basis for these effects is provided by research demonstrating that spinal synapses have many of the same plasticity mechanisms that are known to underlie learning and memory in the brain. In addition, the lumbar spinal cord can sustain several forms of learning and memory, including limb-position training. However, not all spinal plasticity promotes recovery of function. Central sensitization of nociceptive (pain) pathways in the spinal cord may emerge in response to various noxious inputs, demonstrating that plasticity within the spinal cord may contribute to maladaptive pain states. In this review we discuss interactions between adaptive and maladaptive forms of activity-dependent plasticity in the spinal cord below the level of SCI. The literature demonstrates that activity-dependent plasticity within the spinal cord must be carefully tuned to promote adaptive spinal training. Prior work from our group has shown that stimulation that is delivered in a limb position-dependent manner or on a fixed interval can induce adaptive plasticity that promotes future spinal cord learning and reduces nociceptive hyper-reactivity. On the other hand, stimulation that is delivered in an unsynchronized fashion, such as randomized electrical stimulation or peripheral skin injuries, can generate maladaptive spinal plasticity that undermines future spinal cord learning, reduces recovery of locomotor function, and promotes nociceptive hyper-reactivity after SCI. We review these basic phenomena, how these findings relate to the broader spinal plasticity literature, discuss the cellular and molecular mechanisms, and finally discuss implications of these and other findings for improved rehabilitative therapies after SCI. PMID

  17. CSA-90 Promotes Bone Formation and Mitigates Methicillin-resistant Staphylococcus aureus Infection in a Rat Open Fracture Model.

    Science.gov (United States)

    Mills, Rebecca; Cheng, Tegan L; Mikulec, Kathy; Peacock, Lauren; Isaacs, David; Genberg, Carl; Savage, Paul B; Little, David G; Schindeler, Aaron

    2018-06-01

    Infection of open fractures remains a significant cause of morbidity and mortality to patients worldwide. Early administration of prophylactic antibiotics is known to improve outcomes; however, increasing concern regarding antimicrobial resistance makes finding new compounds for use in such cases a pressing area for further research. CSA-90, a synthetic peptidomimetic compound, has previously demonstrated promising antimicrobial action against Staphylococcus aureus in rat open fractures. However, its efficacy against antibiotic-resistant microorganisms, its potential as a therapeutic agent in addition to its prophylactic effects, and its proosteogenic properties all require further investigation. (1) Does prophylactic treatment with CSA-90 reduce infection rates in a rat open fracture model inoculated with S aureus, methicillin-resistant S aureus (MRSA), and methicillin-resistant Staphylococcus epidermidis (MRSE) as measured by survival, radiographic union, and deep tissue swab cultures? (2) Does CSA-90 reduce infection rates when administered later in the management of an open fracture as measured by survival, radiographic union, and deep tissue swab cultures? (3) Does CSA-90 demonstrate a synergistic proosteogenic effect with bone morphogenetic protein 2 (BMP-2) in a noninfected rat ectopic bone formation assay as assessed by micro-CT bone volume measurement? (4) Can CSA-90 elute and retain its antimicrobial efficacy in vitro when delivered using clinically relevant agents measured using a Kirby-Bauer disc diffusion assay? All in vivo studies were approved by the local animal ethics committee. In the open fracture studies, 12-week-old male Wistar rats underwent open midshaft femoral fractures stabilized with a 1.1-mm Kirschner wire and 10 µg BMP-2 ± 500 µg CSA-90 was applied to the fracture site using a collagen sponge along with 1 x 10 colony-forming units of bacteria (S aureus/MRSA/MRSE; n = 10 per group). In the delayed treatment study, débridement and

  18. Reduce, reuse, recycle - Developmental signals in spinal cord regeneration.

    Science.gov (United States)

    Cardozo, Marcos Julian; Mysiak, Karolina S; Becker, Thomas; Becker, Catherina G

    2017-12-01

    Anamniotes, fishes and amphibians, have the capacity to regenerate spinal cord tissue after injury, generating new neurons that mature and integrate into the spinal circuitry. Elucidating the molecular signals that promote this regeneration is a fundamental question in regeneration research. Model systems, such as salamanders and larval and adult zebrafish are used to analyse successful regeneration. This shows that many developmental signals, such as Notch, Hedgehog (Hh), Bone Morphogenetic Protein (BMP), Wnt, Fibroblast Growth Factor (FGF), Retinoic Acid (RA) and neurotransmitters are redeployed during regeneration and activate resident spinal progenitor cells. Here we compare the roles of these signals in spinal cord development and regeneration of the much larger and fully patterned adult spinal cord. Understanding how developmental signalling systems are reactivated in successfully regenerating species may ultimately lead to ways to reactivate similar systems in mammalian progenitor cells, which do not show neurogenesis after spinal injury. Copyright © 2017. Published by Elsevier Inc.

  19. Lifestyle and health conditions of adults with spinal cord injury

    Directory of Open Access Journals (Sweden)

    Inacia Sátiro Xavier de França

    2014-07-01

    Full Text Available Objective. To describe the lifestyle of adults with spinal cord injury and explore its relation with some health conditions. Methodology. Cross sectional study, in which a questionnaire containing sociodemographic, habits and health conditions variables was used. Forty-seven people with spinal cord injury participated and answered the self-report questionnaire. Results. The group under study was predominantly male (92%, under 40 years of age (47%, and had low educational level (76%. The most frequent risk factors related to the lifestyle were: smoking (28%, alcohol consumption (36%, coffee consumption (92% and being physically inactive (64%. Association was found between having four or more risk factors related to lifestyle and the loss of appetite, as well as constipation. Conclusion. The actual inadequate lifestyle is associated with the health conditions of patients, and the nursing team should pay special attention to the education and promotion of health related to people with spinal cord injury.

  20. Lifestyle and health conditions of adults with spinal cord injury.

    Science.gov (United States)

    Xavier de França, Inacia Sátiro; Cruz Enders, Bertha; Silva Coura, Alexsandro; Pereira Cruz, Giovanna Karinny; da Silva Aragão, Jamilly; Carvalho de Oliveira, Déborah Raquel

    2014-01-01

    . To describe the lifestyle of adults with spinal cord injury and explore its relation with some health conditions. Cross sectional study, in which a questionnaire containing sociodemographic, habits and health conditions variables was used. Forty-seven people with spinal cord injury participated and answered the self-report questionnaire. The group under study was predominantly male (92%), under 40 years of age (47%), and had low educational level (76%). The most frequent risk factors related to the lifestyle were: smoking (28%), alcohol consumption (36%), coffee consumption (92%) and being physically inactive (64%). Association was found between having four or more risk factors related to lifestyle and the loss of appetite, as well as constipation. . The actual inadequate lifestyle is associated with the health conditions of patients, and the nursing team should pay special attention to the education and promotion of health related to people with spinal cord injury.

  1. Glia co-culture with neurons in microfluidic platforms promotes the formation and stabilization of synaptic contacts.

    Science.gov (United States)

    Shi, Mingjian; Majumdar, Devi; Gao, Yandong; Brewer, Bryson M; Goodwin, Cody R; McLean, John A; Li, Deyu; Webb, Donna J

    2013-08-07

    Two novel microfluidic cell culture schemes, a vertically-layered set-up and a four chamber set-up, were developed for co-culturing central nervous system (CNS) neurons and glia. The cell chambers in these devices were separated by pressure-enabled valve barriers, which permitted us to control communication between the two cell types. The unique design of these devices facilitated the co-culture of glia with neurons in close proximity (∼50-100 μm), differential transfection of neuronal populations, and dynamic visualization of neuronal interactions, such as the development of synapses. With these co-culture devices, initial synaptic contact between neurons transfected with different fluorescent markers, such as green fluorescent protein (GFP) and mCherry-synaptophysin, was imaged using high-resolution fluorescence microscopy. The presence of glial cells had a profound influence on synapses by increasing the number and stability of synaptic contacts. Interestingly, as determined by liquid chromatography-ion mobility-mass spectrometry, neuron-glia co-cultures produced elevated levels of soluble factors compared to that secreted by individual neuron or glia cultures, suggesting a potential mechanism by which neuron-glia interactions could modulate synaptic function. Collectively, these results show that communication between neurons and glia is critical for the formation and stability of synapses and point to the importance of developing neuron-glia co-culture systems such as the microfluidic platforms described in this study.

  2. Fluxes of water through aquaporin 9 weaken membrane-cytoskeleton anchorage and promote formation of membrane protrusions.

    Directory of Open Access Journals (Sweden)

    Thommie Karlsson

    Full Text Available All modes of cell migration require rapid rearrangements of cell shape, allowing the cell to navigate within narrow spaces in an extracellular matrix. Thus, a highly flexible membrane and a dynamic cytoskeleton are crucial for rapid cell migration. Cytoskeleton dynamics and tension also play instrumental roles in the formation of different specialized cell membrane protrusions, viz. lamellipodia, filopodia, and membrane blebs. The flux of water through membrane-anchored water channels, known as aquaporins (AQPs has recently been implicated in the regulation of cell motility, and here we provide novel evidence for the role of AQP9 in the development of various forms of membrane protrusion. Using multiple imaging techniques and cellular models we show that: (i AQP9 induced and accumulated in filopodia, (ii AQP9-associated filopodial extensions preceded actin polymerization, which was in turn crucial for their stability and dynamics, and (iii minute, local reductions in osmolarity immediately initiated small dynamic bleb-like protrusions, the size of which correlated with the reduction in osmotic pressure. Based on this, we present a model for AQP9-induced membrane protrusion, where the interplay of water fluxes through AQP9 and actin dynamics regulate the cellular protrusive and motile activity of cells.

  3. Surface Topography and Mechanical Strain Promote Keratocyte Phenotype and Extracellular Matrix Formation in a Biomimetic 3D Corneal Model.

    Science.gov (United States)

    Zhang, Wei; Chen, Jialin; Backman, Ludvig J; Malm, Adam D; Danielson, Patrik

    2017-03-01

    The optimal functionality of the native corneal stroma is mainly dependent on the well-ordered arrangement of extracellular matrix (ECM) and the pressurized structure. In order to develop an in vitro corneal model, it is crucial to mimic the in vivo microenvironment of the cornea. In this study, the influence of surface topography and mechanical strain on keratocyte phenotype and ECM formation within a biomimetic 3D corneal model is studied. By modifying the surface topography of materials, it is found that patterned silk fibroin film with 600 grooves mm -1 optimally supports cell alignment and ECM arrangement. Furthermore, treatment with 3% dome-shaped mechanical strain, which resembles the shape and mechanics of native cornea, significantly enhances the expression of keratocyte markers as compared to flat-shaped strain. Accordingly, a biomimetic 3D corneal model, in the form of a collagen-modified, silk fibroin-patterned construct subjected to 3% dome-shaped strain, is created. Compared to traditional 2D cultures, it supports a significantly higher expression of keratocyte and ECM markers, and in conclusion better maintains keratocyte phenotype, alignment, and fusiform cell shape. Therefore, the novel biomimetic 3D corneal model developed in this study serves as a useful in vitro 3D culture model to improve current 2D cultures for corneal studies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Rho kinase inhibition drives megakaryocyte polyploidization and proplatelet formation through MYC and NFE2 downregulation.

    Science.gov (United States)

    Avanzi, Mauro P; Goldberg, Francine; Davila, Jennifer; Langhi, Dante; Chiattone, Carlos; Mitchell, William Beau

    2014-03-01

    The processes of megakaryocyte polyploidization and demarcation membrane system (DMS) formation are crucial for platelet production, but the mechanisms controlling these processes are not fully determined. Inhibition of Rho kinase (ROCK) signalling leads to increased polyploidization in umbilical cord blood-derived megakaryocytes. To extend these findings we determined the effect of ROCK inhibition on development of the DMS and on proplatelet formation. The underlying mechanisms were explored by analysing the effect of ROCK inhibition on the expression of MYC and NFE2, which encode two transcription factors critical for megakaryocyte development. ROCK inhibition promoted DMS formation, and increased proplatelet formation and platelet release. Rho kinase inhibition also downregulated MYC and NFE2 expression in mature megakaryocytes, and this down-regulation correlated with increased proplatelet formation. Our findings suggest a model whereby ROCK inhibition drives polyploidization, DMS growth and proplatelet formation late in megakaryocyte maturation through downregulation of MYC and NFE2 expression. © 2014 John Wiley & Sons Ltd.

  5. Novel Apo E-Derived ABCA1 Agonist Peptide (CS-6253 Promotes Reverse Cholesterol Transport and Induces Formation of preβ-1 HDL In Vitro.

    Directory of Open Access Journals (Sweden)

    Anouar Hafiane

    Full Text Available Apolipoprotein (apo mimetic peptides replicate some aspects of HDL function. We have previously reported the effects of compound ATI-5261 on its ability to replicate many functions of native apo A-I in the process of HDL biogenesis. ATI-5261 induced muscle toxicity in wild type C57Bl/6 mice, increased CPK, ALT and AST and increase in triglyceride (Tg levels. Aromatic phenylalanine residues on the non-polar face of ATI-5261, together with positively charged arginine residues at the lipid-water interface were responsible for these effects. This information was used to create a novel analog (CS-6253 that was non-toxic. We evaluated this peptide designed from the carboxyl terminus of apo E, in its ability to mimic apo A-I functionality. Our data shows that the lipidated particles generated by incubating cells overexpressing ABCA1 with lipid free CS-6253 enhances the rate of ABCA1 lipid efflux with high affinity interactions with native ABCA1 oligomeric forms and plasma membrane micro-domains. Interaction between ABCA1 and lipid free CS-6253 resulted in formation of nascent HDL-CS-6253 particles that are actively remodeled in plasma. Mature HDL-CS-6253 particles deliver cholesterol to liver cells via SR-BI in-vitro. CS-6253 significantly increases cholesterol efflux in murine macrophages and in human THP-1 macrophage-derived foam cells expressing ABCA1. Addition of CS-6253 to plasma dose-dependently displaced apo A-I from α-HDL particles and led to de novo formation of preβ-1 HDL that stimulates ABCA1 dependent cholesterol efflux efficiently. When incubated with human plasma CS-6253 was also found to bind with HDL and LDL and promoted the transfer of cholesterol from HDL to LDL predominantly. Our data shows that CS-6253 mimics apo A-I in its ability to promote ABCA1-mediated formation of nascent HDL particles, and enhances formation of preβ-1 HDL with increase in the cycling of apo A-I between the preβ and α-HDL particles in-vitro. These

  6. A paracrine mechanism involving renal tubular cells, adipocytes and macrophages promotes kidney stone formation in a simulated metabolic syndrome environment.

    Science.gov (United States)

    Zuo, Li; Tozawa, Keiichi; Okada, Atsushi; Yasui, Takahiro; Taguchi, Kazumi; Ito, Yasuhiko; Hirose, Yasuhiko; Fujii, Yasuhiro; Niimi, Kazuhiro; Hamamoto, Shuzo; Ando, Ryosuke; Itoh, Yasunori; Zou, Jiangang; Kohri, Kenjiro

    2014-06-01

    We developed an in vitro system composed of renal tubular cells, adipocytes and macrophages to simulate metabolic syndrome conditions. We investigated the molecular communication mechanism of these cells and their involvement in kidney stone formation. Mouse renal tubular cells (M-1) were cocultured with adipocytes (3T3-L1) and/or macrophages (RAW264.7). Calcium oxalate monohydrate crystals were exposed to M-1 cells after 48-hour coculture and the number of calcium oxalate monohydrate crystals adherent to the cells was quantified. The expression of cocultured medium and M-1 cell inflammatory factors was analyzed by enzyme-linked immunosorbent assay and quantitative polymerase chain reaction, respectively. The inflammatory markers MCP-1, OPN and TNF-α were markedly up-regulated in cocultured M-1 cells. OPN expression increased in M-1 cells cocultured with RAW264.7 cells while MCP-1 and TNF-α were over expressed in M-1 cells cocultured with 3T3-L1 cells. Coculturing M-1 cells simultaneously with 3T3-L1 and RAW264.7 cells resulted in a significant increase in calcium oxalate monohydrate crystal adherence to M-1 cells. Inflammatory cytokine changes were induced by coculturing renal tubular cells with adipocytes and/or macrophages without direct contact, indicating that crosstalk between adipocytes/macrophages and renal tubular cells was mediated by soluble factors. The susceptibility to urolithiasis of patients with metabolic syndrome might be due to aggravated inflammation of renal tubular cells triggered by a paracrine mechanism involving these 3 cell types. Copyright © 2014 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  7. Hydrothermal Alteration Promotes Humic Acid Formation in Sediments: A Case Study of the Central Indian Ocean Basin

    Science.gov (United States)

    Sarma, Nittala S.; Kiran, Rayaprolu; Rama Reddy, M.; Iyer, Sridhar D.; Peketi, A.; Borole, D. V.; Krishna, M. S.

    2018-01-01

    Anomalously high concentrations of humic-rich dissolved organic matter (DOM) in extant submarine hydrothermal vent plumes traveled far from source are increasingly being reported. This DOM, able to mobilize trace metals (e.g., Fe2+) has been hypothesized as originating from organic matter produced by thermogenic bacteria. To eliminate a possible abiogenic origin of this DOM, study is required of well-preserved organic compounds that can be attributed to thermogenic bacteria. The Central Indian Ocean Basin (CIOB) is part of a diffuse plate boundary and an intraplate deformation zone. Coarse fraction (>63 µ) characteristics, mineralogy, magnetic susceptibility, and geochemistry were examined in sediments of a core raised close to a north-south fracture zone near the Equator. Two horizons of distinctly brown-colored sediments were shown as hydrothermally altered from their charred fragments and geochemistry (CaCO3, Corg, Ti/Al, Al/(Al + Fe + Mn), Sr/Ba, Mg/Li, Mn micronodules, Fe/Mn). We examined whether humic substances were preserved in these sediments, and if so whether their carbon isotope distribution would support their hydrothermal origin. Alkali extraction of sediments afforded humic acids (HA) in yields up to 1.2% in the brown sediments. The remaining portions of the core had nil or low concentrations of HA. The carbon of hydrothermal HA is isotopically heavier (average δ13C, ˜ -16.3‰) compared to nonhydrothermal HA (-18.1‰), suggesting that they were probably formed from organic matter that remained after elimination of lighter carbon enriched functional groups during diagenesis. The results provide compelling evidence of HA formation from lipids originating from thermogenic bacteria.

  8. Retrograde tracing of fluorescent gold after autogenous nerve transplantation on spinal cord injured in rats

    DEFF Research Database (Denmark)

    Lin, X; Liu, W; Ding, Ming

    2016-01-01

    , the transplantation group using autologous sural nerve graft to repair spinal cord injury period and non-transplantation group was only exposed incision without treatment. In the 4, 6 and 8 weeks after operation, the retrograde tracing of FG Fluoro-Gold was performed to discover the recovery of the axial plasma......Objective To investigate the changes of the fluorescent gold retrograde tracing autogenous nerve transplantation on spinal cord injured in rats. Methods The animals were divided into two groups, with modified Allen impact method to establish model of spinal cord injury. After 4 weeks.......01). Conclusion After spinal cord injury, autologous nerve graft was repaired and survived well and promote the recovery of spinal cord injury segment shaft pulp transportation function....

  9. Spinal Plasticity and Behavior: BDNF-Induced Neuromodulation in Uninjured and Injured Spinal Cord

    Science.gov (United States)

    Huie, J. Russell

    2016-01-01

    Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophic factor family of signaling molecules. Since its discovery over three decades ago, BDNF has been identified as an important regulator of neuronal development, synaptic transmission, and cellular and synaptic plasticity and has been shown to function in the formation and maintenance of certain forms of memory. Neural plasticity that underlies learning and memory in the hippocampus shares distinct characteristics with spinal cord nociceptive plasticity. Research examining the role BDNF plays in spinal nociception and pain overwhelmingly suggests that BDNF promotes pronociceptive effects. BDNF induces synaptic facilitation and engages central sensitization-like mechanisms. Also, peripheral injury-induced neuropathic pain is often accompanied with increased spinal expression of BDNF. Research has extended to examine how spinal cord injury (SCI) influences BDNF plasticity and the effects BDNF has on sensory and motor functions after SCI. Functional recovery and adaptive plasticity after SCI are typically associated with upregulation of BDNF. Although neuropathic pain is a common consequence of SCI, the relation between BDNF and pain after SCI remains elusive. This article reviews recent literature and discusses the diverse actions of BDNF. We also highlight similarities and differences in BDNF-induced nociceptive plasticity in naïve and SCI conditions. PMID:27721996

  10. Spinal Plasticity and Behavior: BDNF-Induced Neuromodulation in Uninjured and Injured Spinal Cord

    Directory of Open Access Journals (Sweden)

    Sandra M. Garraway

    2016-01-01

    Full Text Available Brain-derived neurotrophic factor (BDNF is a member of the neurotrophic factor family of signaling molecules. Since its discovery over three decades ago, BDNF has been identified as an important regulator of neuronal development, synaptic transmission, and cellular and synaptic plasticity and has been shown to function in the formation and maintenance of certain forms of memory. Neural plasticity that underlies learning and memory in the hippocampus shares distinct characteristics with spinal cord nociceptive plasticity. Research examining the role BDNF plays in spinal nociception and pain overwhelmingly suggests that BDNF promotes pronociceptive effects. BDNF induces synaptic facilitation and engages central sensitization-like mechanisms. Also, peripheral injury-induced neuropathic pain is often accompanied with increased spinal expression of BDNF. Research has extended to examine how spinal cord injury (SCI influences BDNF plasticity and the effects BDNF has on sensory and motor functions after SCI. Functional recovery and adaptive plasticity after SCI are typically associated with upregulation of BDNF. Although neuropathic pain is a common consequence of SCI, the relation between BDNF and pain after SCI remains elusive. This article reviews recent literature and discusses the diverse actions of BDNF. We also highlight similarities and differences in BDNF-induced nociceptive plasticity in naïve and SCI conditions.

  11. The Lncrna-TUG1/EZH2 Axis Promotes Pancreatic Cancer Cell Proliferation, Migration and EMT Phenotype Formation Through Sponging Mir-382.

    Science.gov (United States)

    Zhao, Liang; Sun, Hongwei; Kong, Hongru; Chen, Zongjing; Chen, Bicheng; Zhou, Mengtao

    2017-01-01

    Pancreatic carcinoma (PC) is the one of the most common and malignant cancers worldwide. LncRNA taurine upregulated gene 1 (TUG1) was initially identified as a transcript upregulated by taurine, and the abnormal expression of TUG1 has been reported in many cancers. However, the biological role and molecular mechanism of TUG1 in PC still needs further investigation. Quantitative real-time PCR (qRT-PCR) was performed to measure the expression of TUG1 in PC cell lines and tissues. MTT and colony formation assays were used to measure the effect of TUG1 on cell proliferation. A wound healing assay, transwell assay and western blot assay were employed to determine the effect of TUG1 on cell migration and the epithelial mesenchymal transition (EMT) phenotype. RNA-binding protein immunoprecipitation (RIP) and a biotin-avidin pulldown system were performed to confirm the interaction between miR-328 and TUG1. A gene expression array analysis using clinical samples and RT-qPCR suggested that enhancer of zeste homolog 2 (EZH2) was a target of miR-382 in PC. In this study, we reported that TUG1 was overexpressed in PC tissues and cell lines, and high expression of TUG1 predicted poor prognosis. Further experiments revealed that overexpressed TUG1 promoted cell proliferation, migration and contributed to EMT formation, whereas silenced TUG1 led to opposing results. Additionally, luciferase reporter assays, an RIP assay and an RNA-pulldown assay demonstrated that TUG1 could competitively sponge miR-382 and thereby regulate EZH2. Collectively, these findings revealed that TUG1 functions as an oncogenic lncRNA that promotes tumor progression, at least partially, by functioning as an endogenous 'sponge' and competing for miR-382 binding to the miRNA target EZH2. © 2017 The Author(s). Published by S. Karger AG, Basel.

  12. The Lncrna-TUG1/EZH2 Axis Promotes Pancreatic Cancer Cell Proliferation, Migration and EMT Phenotype Formation Through Sponging Mir-382

    Directory of Open Access Journals (Sweden)

    Liang Zhao

    2017-08-01

    Full Text Available Background/Aims: Pancreatic carcinoma (PC is the one of the most common and malignant cancers worldwide. LncRNA taurine upregulated gene 1 (TUG1 was initially identified as a transcript upregulated by taurine, and the abnormal expression of TUG1 has been reported in many cancers. However, the biological role and molecular mechanism of TUG1 in PC still needs further investigation. Methods: Quantitative real-time PCR (qRT-PCR was performed to measure the expression of TUG1 in PC cell lines and tissues. MTT and colony formation assays were used to measure the effect of TUG1 on cell proliferation. A wound healing assay, transwell assay and western blot assay were employed to determine the effect of TUG1 on cell migration and the epithelial mesenchymal transition (EMT phenotype. RNA-binding protein immunoprecipitation (RIP and a biotin-avidin pulldown system were performed to confirm the interaction between miR-328 and TUG1. A gene expression array analysis using clinical samples and RT-qPCR suggested that enhancer of zeste homolog 2 (EZH2 was a target of miR-382 in PC. Results: In this study, we reported that TUG1 was overexpressed in PC tissues and cell lines, and high expression of TUG1 predicted poor prognosis. Further experiments revealed that overexpressed TUG1 promoted cell proliferation, migration and contributed to EMT formation, whereas silenced TUG1 led to opposing results. Additionally, luciferase reporter assays, an RIP assay and an RNA-pulldown assay demonstrated that TUG1 could competitively sponge miR-382 and thereby regulate EZH2. Conclusion: Collectively, these findings revealed that TUG1 functions as an oncogenic lncRNA that promotes tumor progression, at least partially, by functioning as an endogenous ‘sponge’ and competing for miR-382 binding to the miRNA target EZH2.

  13. SclR, a basic helix-loop-helix transcription factor, regulates hyphal morphology and promotes sclerotial formation in Aspergillus oryzae.

    Science.gov (United States)

    Jin, Feng Jie; Takahashi, Tadashi; Matsushima, Ken-ichiro; Hara, Seiichi; Shinohara, Yasutomo; Maruyama, Jun-ichi; Kitamoto, Katsuhiko; Koyama, Yasuji

    2011-07-01

    Most known basic-region helix-loop-helix (bHLH) proteins belong to a superfamily of transcription factors often involved in the control of growth and differentiation. Therefore, inappropriate expression of genes encoding bHLH proteins is frequently associated with developmental dysfunction. In our previously reported study, a novel bHLH protein-encoding gene (AO090011000215) of Aspergillus oryzae was identified. The gene-disrupted strain was found to produce dense conidia, but sparse sclerotia, relative to the parent strain. Here, to further analyze its function, we generated an overexpressing strain using the A. oryzae amyB gene promoter. Genetic overexpression led to a large number of initial hyphal aggregations and then the formation of mature sclerotia; it was therefore designated sclR (sclerotium regulator). At the same time, the sclR-overexpressing strain also displayed both delayed and decreased conidiation. Scanning electron microscopy indicated that the aerial hyphae of the sclR-overexpressing strain were extremely branched and intertwined with each other. In the generation of the SclR-enhanced green fluorescent protein (EGFP) expression strain, the SclR-EGFP protein fusion was conditionally detected in the nuclei. In addition, the loss of sclR function led to rapid protein degradation and cell lysis in dextrin-polypeptone-yeast extract liquid medium. Taken together, these observations indicate that SclR plays an important role in hyphal morphology, asexual conidiospore formation, and the promotion of sclerotial production, even retaining normal cell function, at least in submerged liquid culture.

  14. A Direct Comparison between Norepinephrine and Phenylephrine for Augmenting Spinal Cord Perfusion in a Porcine Model of Spinal Cord Injury.

    Science.gov (United States)

    Streijger, Femke; So, Kitty; Manouchehri, Neda; Gheorghe, Ana; Okon, Elena B; Chan, Ryan M; Ng, Benjamin; Shortt, Katelyn; Sekhon, Mypinder S; Griesdale, Donald E; Kwon, Brian K

    2018-03-28

    Current clinical guidelines recommend elevating the mean arterial blood pressure (MAP) to increase spinal cord perfusion in patients with acute spinal cord injury (SCI). This is typically achieved with vasopressors such as norepinephrine (NE) and phenylephrine (PE). These drugs differ in their pharmacological properties and potentially have different effects on spinal cord blood flow (SCBF), oxygenation (PO 2 ), and downstream metabolism after injury. Using a porcine model of thoracic SCI, we evaluated how these vasopressors influenced intraparenchymal SCBF, PO 2 , hydrostatic pressure, and metabolism within the spinal cord adjacent to the injury site. Yorkshire pigs underwent a contusion/compression SCI at T10 and were randomized to receive either NE or PE for MAP elevation of 20 mm Hg, or no MAP augmentation. Prior to injury, a combined SCBF/PO 2 sensor, a pressure sensor, and a microdialysis probe were inserted into the spinal cord adjacent to T10 at two locations: a "proximal" site and a "distal" site, 2 mm and 22 mm from the SCI, respectively. At the proximal site, NE and PE resulted in little improvement in SCBF during cord compression. Following decompression, NE resulted in increased SCBF and PO 2 , whereas decreased levels were observed for PE. However, both NE and PE were associated with a gradual decrease in the lactate to pyruvate (L/P) ratio after decompression. PE was associated with greater hemorrhage through the injury site than that in control animals. Combined, our results suggest that NE promotes better restoration of blood flow and oxygenation than PE in the traumatically injured spinal cord, thus providing a physiological rationale for selecting NE over PE in the hemodynamic management of acute SCI.

  15. Efficiently engineered cell sheet using a complex of polyethylenimine–alginate nanocomposites plus bone morphogenetic protein 2 gene to promote new bone formation

    Science.gov (United States)

    Jin, Han; Zhang, Kai; Qiao, Chunyan; Yuan, Anliang; Li, Daowei; Zhao, Liang; Shi, Ce; Xu, Xiaowei; Ni, Shilei; Zheng, Changyu; Liu, Xiaohua; Yang, Bai; Sun, Hongchen

    2014-01-01

    Regeneration of large bone defects is a common clinical problem. Recently, stem cell sheet has been an emerging strategy in bone tissue engineering. To enhance the osteogenic potential of stem cell sheet, we fabricated bone morphogenetic protein 2 (BMP-2) gene-engineered cell sheet using a complex of polyethylenimine–alginate (PEI–al) nanocomposites plus human BMP-2 complementary(c)DNA plasmid, and studied its osteogenesis in vitro and in vivo. PEI–al nanocomposites carrying BMP-2 gene could efficiently transfect bone marrow mesenchymal stem cells. The cell sheet was made by culturing the cells in medium containing vitamin C for 10 days. Assays on the cell culture showed that the genetically engineered cells released the BMP-2 for at least 14 days. The expression of osteogenesis-related gene was increased, which demonstrated that released BMP-2 could effectively induce the cell sheet osteogenic differentiation in vitro. To further test the osteogenic potential of the cell sheet in vivo, enhanced green fluorescent protein or BMP-2-producing cell sheets were treated on the cranial bone defects. The results indicated that the BMP-2-producing cell sheet group was more efficient than other groups in promoting bone formation in the defect area. Our results suggested that PEI–al nanocomposites efficiently deliver the BMP-2 gene to bone marrow mesenchymal stem cells and that BMP-2 gene-engineered cell sheet is an effective way for promoting bone regeneration. PMID:24855355

  16. Ethanol-induced oxidative stress and acetaldehyde formation in rat mammary tissue: Potential factors involved in alcohol drinking promotion of breast cancer

    International Nuclear Information System (INIS)

    Castro, Gerardo D.; Rodriguez de Castro, Carmen; Maciel, Maria E.; Fanelli, Silvia L.; Cignoli de Ferreyra, Elida; Gomez, Maria I. Diaz; Castro, Jose A.

    2006-01-01

    Recent studies from our laboratory provided evidence that part of the carcinogenic effects of ethanol consumption might be related to its in situ metabolism at cytosolic and microsomal levels, to the mutagen acetaldehyde and to hydroxyl and 1-hydroxyethyl radicals. In this work, we report on our experiments where Sprague-Dawley female rats were exposed to the standard Lieber and De Carli diet for 28 days. We observed: the induction of the (xanthineoxidoreductase mediated) cytosolic and microsomal (lipoxygenase mediated) pathways of ethanol metabolism; promotion of oxidative stress as shown by increased formation of lipid hydroperoxides; delay in the t-butylhydroperoxide induced chemiluminiscence, and a significant decrease in protein sulfhydryls. In addition, the epithelial cells showed ultrastructural alterations consisting of markedly irregular nuclei, with frequent invaginations at the level of the nuclear envelope, condensation of chromatin around the inner nuclear membrane, and marked dilatation of the nuclear pores showing filamentous material exiting to the cytoplasm. In conclusion, the presence in mammary epithelial cells of cytosolic and microsomal pathways of ethanol bioactivation to carcinogenic and to tumorigenic metabolites might play a role in alcohol promotion of breast cancer

  17. Plant Natural Product Formononetin Protects Rat Cardiomyocyte H9c2 Cells against Oxygen Glucose Deprivation and Reoxygenation via Inhibiting ROS Formation and Promoting GSK-3β Phosphorylation

    Directory of Open Access Journals (Sweden)

    Yuanyuan Cheng

    2016-01-01

    Full Text Available The opening of mitochondrial permeability transition pore (mPTP is a major cause of cell death in ischemia reperfusion injury. Based on our pilot experiments, plant natural product formononetin enhanced the survival of rat cardiomyocyte H9c2 cells during oxygen glucose deprivation (OGD and reoxygenation. For mechanistic studies, we focused on two major cellular factors, namely, reactive oxygen species (ROS and glycogen synthase kinase 3β (GSK-3β, in the regulation of mPTP opening. We found that formononetin suppressed the formation of ROS and superoxide in a concentration-dependent manner. Formononetin also rescued OGD/reoxygenation-induced loss of mitochondrial membrane integrity. Further studies suggested that formononetin induced Akt activation and GSK-3β (Ser9 phosphorylation, thereby reducing GSK-3β activity towards mPTP opening. PI3K and PKC inhibitors abolished the effects of formononetin on mPTP opening and GSK-3β phosphorylation. Immunoprecipitation experiments further revealed that formononetin increased the binding of phosphor-GSK-3β to adenine nucleotide translocase (ANT while it disrupted the complex of ANT with cyclophilin D. Moreover, immunofluorescence revealed that phospho-GSK-3β (Ser9 was mainly deposited in the space between mitochondria and cell nucleus. Collectively, these results indicated that formononetin protected cardiomyocytes from OGD/reoxygenation injury via inhibiting ROS formation and promoting GSK-3β phosphorylation.

  18. HEROs: Design of a Mixed-Methods Formative Research Phase for an Ecocultural Intervention to Promote Healthy Eating and Activity Behaviors in Rural Families With Preschoolers.

    Science.gov (United States)

    Bellows, Laura L; McCloskey, Morgan; Clark, Lauren; Thompson, Darcy A; Bekelman, Traci A; Chamberlin, Barbara; Johnson, Susan L

    2018-04-10

    To describe the mixed-methods formative research phase in the development of the Healthy Environments Study (HEROs), a technology-based, interactive family intervention to promote healthy eating and activity behaviors for young children in the home environment. A mixed-method iterative approach, using ecocultural theory as a framework, will guide the development of both quantitative and qualitative formative research assessments. Rural eastern Colorado. Low-income families (n = 200) with preschool-aged children enrolled at 6 Head Start/preschool centers. Quantitative and qualitative methodologies will garner insights into 4 key topic areas: (1) food behaviors and environments (Remote Food Photography Method, parent focus group, and survey), (2) physical activity behaviors and environments (parent interview and survey), (3) mobile device use (parent survey and interview), and (4) daily life (ecocultural family interview and teacher/staff group discussions). Results will be interpreted in combination to allow for a holistic understanding of participant behaviors, beliefs, attitudes and values related to each of the 4 topic areas. Collectively, outcomes will provide a comprehensive picture of preschoolers' daily life and inform intervention design and strategies to enhance preschoolers' eating and activity behaviors in the home environment. Copyright © 2018 Society for Nutrition Education and Behavior. Published by Elsevier Inc. All rights reserved.

  19. Brassica napusGLABRA3-1 promotes anthocyanin biosynthesis and trichome formation in true leaves when expressed in Arabidopsis thaliana.

    Science.gov (United States)

    Gao, C; Guo, Y; Wang, J; Li, D; Liu, K; Qi, S; Jin, C; Duan, S; Gong, J; Li, Z; Chen, M

    2018-01-01

    Previous studies have shown that GLABRA3 (AtGL3), a bHLH transcription factor, plays essential roles in anthocyanin biosynthesis and trichome formation in Arabidopsis thaliana. However, there have been no such studies of a homologue, BnGL3, from the closely related crop, Brassica napus. Here, we analysed the BnGL3-1 coding domain sequence from the B. napus cultivar QINYOU Seven, identified conserved protein domains and performed a phylogenetic analysis to elucidate its relationship with homologues form a range of plant species. When expressed in tobacco leaves as a fusion protein with green fluorescent protein, BnGL3-1 accumulated in the nucleus, consistent with its predicted function as a transcription factor. Ectopic expression of the BnGL3-1 gene in the A. thaliana gl3-3 mutant resulted in levels of anthocyanins and numbers of trichomes in true leaves that were higher than in wild-type plants. Moreover, overexpression of BnGL3-1 in gl3-3 compensated for the promotion and repression of genes involved in anthocyanin biosynthesis and trichome formation, respectively, that has been reported in gl3-3 young shoots and expanding true leaves. This study provides new insights into GL3 function in anthocyanin biosynthesis and trichome formation in crucifers, and represents a promising target for genetic manipulation of B. napus. © 2017 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.

  20. Polysaccharides and proteins added to flowing drinking water at microgram-per-liter levels promote the formation of biofilms predominated by bacteroidetes and proteobacteria.

    Science.gov (United States)

    Sack, Eveline L W; van der Wielen, Paul W J J; van der Kooij, Dick

    2014-04-01

    Biopolymers are important substrates for heterotrophic bacteria in (ultra)oligotrophic freshwater environments, but information about their utilization at microgram-per-liter levels by attached freshwater bacteria is lacking. This study aimed at characterizing biopolymer utilization in drinking-water-related biofilms by exposing such biofilms to added carbohydrates or proteins at 10 μg C liter(-1) in flowing tap water for up to 3 months. Individually added amylopectin was not utilized by the biofilms, whereas laminarin, gelatin, and caseinate were. Amylopectin was utilized during steady-state biofilm growth with simultaneously added maltose but not with simultaneously added acetate. Biofilm formation rates (BFR) at 10 μg C liter(-1) per substrate were ranked as follows, from lowest to highest: blank or amylopectin (≤6 pg ATP cm(-2) day(-1)), gelatin or caseinate, laminarin, maltose, acetate alone or acetate plus amylopectin, and maltose plus amylopectin (980 pg ATP cm(-2) day(-1)). Terminal restriction fragment length polymorphism (T-RFLP) and 16S rRNA gene sequence analyses revealed that the predominant maltose-utilizing bacteria also dominated subsequent amylopectin utilization, indicating catabolic repression and (extracellular) enzyme induction. The accelerated BFR with amylopectin in the presence of maltose probably resulted from efficient amylopectin binding to and hydrolysis by inductive enzymes attached to the bacterial cells. Cytophagia, Flavobacteriia, Gammaproteobacteria, and Sphingobacteriia grew during polysaccharide addition, and Alpha-, Beta-, and Gammaproteobacteria, Cytophagia, Flavobacteriia, and Sphingobacteriia grew during protein addition. The succession of bacterial populations in the biofilms coincided with the decrease in the specific growth rate during biofilm formation. Biopolymers can clearly promote biofilm formation at microgram-per-liter levels in drinking water distribution systems and, depending on their concentrations, might

  1. Polysaccharides and Proteins Added to Flowing Drinking Water at Microgram-per-Liter Levels Promote the Formation of Biofilms Predominated by Bacteroidetes and Proteobacteria

    Science.gov (United States)

    Sack, Eveline L. W.; van der Kooij, Dick

    2014-01-01

    Biopolymers are important substrates for heterotrophic bacteria in (ultra)oligotrophic freshwater environments, but information about their utilization at microgram-per-liter levels by attached freshwater bacteria is lacking. This study aimed at characterizing biopolymer utilization in drinking-water-related biofilms by exposing such biofilms to added carbohydrates or proteins at 10 μg C liter−1 in flowing tap water for up to 3 months. Individually added amylopectin was not utilized by the biofilms, whereas laminarin, gelatin, and caseinate were. Amylopectin was utilized during steady-state biofilm growth with simultaneously added maltose but not with simultaneously added acetate. Biofilm formation rates (BFR) at 10 μg C liter−1 per substrate were ranked as follows, from lowest to highest: blank or amylopectin (≤6 pg ATP cm−2 day−1), gelatin or caseinate, laminarin, maltose, acetate alone or acetate plus amylopectin, and maltose plus amylopectin (980 pg ATP cm−2 day−1). Terminal restriction fragment length polymorphism (T-RFLP) and 16S rRNA gene sequence analyses revealed that the predominant maltose-utilizing bacteria also dominated subsequent amylopectin utilization, indicating catabolic repression and (extracellular) enzyme induction. The accelerated BFR with amylopectin in the presence of maltose probably resulted from efficient amylopectin binding to and hydrolysis by inductive enzymes attached to the bacterial cells. Cytophagia, Flavobacteriia, Gammaproteobacteria, and Sphingobacteriia grew during polysaccharide addition, and Alpha-, Beta-, and Gammaproteobacteria, Cytophagia, Flavobacteriia, and Sphingobacteriia grew during protein addition. The succession of bacterial populations in the biofilms coincided with the decrease in the specific growth rate during biofilm formation. Biopolymers can clearly promote biofilm formation at microgram-per-liter levels in drinking water distribution systems and, depending on their concentrations, might

  2. Macrophage activation and its role in repair and pathology after spinal cord injury.

    Science.gov (United States)

    Gensel, John C; Zhang, Bei

    2015-09-04

    The injured spinal cord does not heal properly. In contrast, tissue repair and functional recovery occur after skin or muscle injuries. The reason for this dichotomy in wound repair is unclear but inflammation, and specifically macrophage activation, likely plays a key role. Macrophages have the ability to promote the repair of injured tissue by regulating transitions through different phase of the healing response. In the current review we compare and contrast the healing and inflammatory responses between spinal cord injuries and tissues that undergo complete wound resolution. Through this comparison, we identify key macrophage phenotypes that are inaptly triggered or absent after spinal cord injury and discuss spinal cord stimuli that contribute to this maladaptive response. Sequential activation of classic, pro-inflammatory, M1 macrophages and alternatively activated, M2a, M2b, and M2c macrophages occurs during normal healing and facilitates transitions through the inflammatory, proliferative, and remodeling phases of repair. In contrast, in the injured spinal cord, pro-inflammatory macrophages potentiate a prolonged inflammatory phase and remodeling is not properly initiated. The desynchronized macrophage activation after spinal cord injury is reminiscent of the inflammation present in chronic, non-healing wounds. By refining the role macrophages play in spinal cord injury repair we bring to light important areas for future neuroinflammation and neurotrauma research. This article is part of a Special Issue entitled SI: Spinal cord injury. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Change in the profile of traumatic spinal cord injury over 15 years in Spain.

    Science.gov (United States)

    Bárbara-Bataller, Enrique; Méndez-Suárez, José Luis; Alemán-Sánchez, Carolina; Sánchez-Enríquez, Jesús; Sosa-Henríquez, Manuel

    2018-04-05

    Traumatic spinal cord injury remains a serious public health and social problem. Although incidence rates are decreasing in our environment, it is a high cost condition that is associated with great disability. The objective of this study was to describe the epidemiological and demographic characteristics of traumatic spinal cord injury and to analyse its epidemiological changes. This study was an observational study with prospective monitoring of all traumatic spinal cord injury patients in the Canary Islands, Spain (2.1 million inhabitants) between 2001 and 2015. Over the specified period of the study, 282 patients suffered a traumatic spinal cord injury. The crude incidence rate was 9.3 cases per million people/year. The patients' mean age increased from 38 years (2001-2005) to 48 years (2011-2015) (p spinal cord injury were falls in 44%, traffic accidents in 36.5%, diving accidents in 8.9% and others in 10.7%. While traffic accidents decreased, falls increased, particularly in the elderly (p injuries and injuries associated with poor functionality (p spinal cord injury in our environment. This change in the profile of new traumatic spinal cord injuries led us to reformulate the functional objectives planned for these patients upon admission to specialized units, to plan destination-upon-discharge in advance and to promote campaigns to prevent spinal cord injury in older adults.

  4. Spinal cord: motor neuron diseases.

    Science.gov (United States)

    Rezania, Kourosh; Roos, Raymond P

    2013-02-01

    Spinal cord motor neuron diseases affect lower motor neurons in the ventral horn. This article focuses on the most common spinal cord motor neuron disease, amyotrophic lateral sclerosis, which also affects upper motor neurons. Also discussed are other motor neuron diseases that only affect the lower motor neurons. Despite the identification of several genes associated with familial amyotrophic lateral sclerosis, the pathogenesis of this complex disease remains elusive. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. The Lesioned Spinal Cord Is a “New” Spinal Cord: Evidence from Functional Changes after Spinal Injury in Lamprey

    Science.gov (United States)

    Parker, David

    2017-01-01

    Finding a treatment for spinal cord injury (SCI) focuses on reconnecting the spinal cord by promoting regeneration across the lesion site. However, while regeneration is necessary for recovery, on its own it may not be sufficient. This presumably reflects the requirement for regenerated inputs to interact appropriately with the spinal cord, making sub-lesion network properties an additional influence on recovery. This review summarizes work we have done in the lamprey, a model system for SCI research. We have compared locomotor behavior (swimming) and the properties of descending inputs, locomotor networks, and sensory inputs in unlesioned animals and animals that have received complete spinal cord lesions. In the majority (∼90%) of animals swimming parameters after lesioning recovered to match those in unlesioned animals. Synaptic inputs from individual regenerated axons also matched the properties in unlesioned animals, although this was associated with changes in release parameters. This suggests against any compensation at these synapses for the reduced descending drive that will occur given that regeneration is always incomplete. Compensation instead seems to occur through diverse changes in cellular and synaptic properties in locomotor networks and proprioceptive systems below, but also above, the lesion site. Recovery of locomotor performance is thus not simply the reconnection of the two sides of the spinal cord, but reflects a distributed and varied range of spinal cord changes. While locomotor network changes are insufficient on their own for recovery, they may facilitate locomotor outputs by compensating for the reduction in descending drive. Potentiated sensory feedback may in turn be a necessary adaptation that monitors and adjusts the output from the “new” locomotor network. Rather than a single aspect, changes in different components of the motor system and their interactions may be needed after SCI. If these are general features, and where

  6. Blocking weight-induced spinal cord injury in rats: effects of TRH or naloxone on motor function recovery and spinal cord blood flow

    International Nuclear Information System (INIS)

    Holtz, A.; Nystroem, B.; Gerdin, B.

    1989-01-01

    The ability of thyotropin releasing hormone (TRH) or naloxone to reduce the motor function deficit and to improve the spinal cord blood flow (SCBF) was investigated in a rat spinal cord compression injury model. Spinal cord injury was induced by compression for 5 min with a load of 35 g on a 2.2 x 5.0 mm sized compression plate causing a transient paraparesis. One group of animals was given TRH, one group naloxone and one group saline alone. Each drug was administered intravenously as a bolus dose of 2 mg/kg 60 min after injury followed by a continuous infusion of 2 mg/kg/h for 4 h. The motor performance was assessed daily on the inclined plant until Day 4, when SCBF was measured with the 14 C-iodoantipyrine autoradiographic method. It was found that neither TRH nor naloxone had promoted motor function recovery or affected SCBF 4 days after spinal cord injury. (author)

  7. Potential of human dental stem cells in repairing the complete transection of rat spinal cord

    Science.gov (United States)

    Yang, Chao; Li, Xinghan; Sun, Liang; Guo, Weihua; Tian, Weidong

    2017-04-01

    Objective. The adult spinal cord of mammals contains a certain amount of neural precursor cells, but these endogenous cells have a limited capacity for replacement of lost cells after spinal cord injury. The exogenous stem cells transplantation has become a therapeutic strategy for spinal cord repairing because of their immunomodulatory and differentiation capacity. In addition, dental stem cells originating from the cranial neural crest might be candidate cell sources for neural engineering. Approach. Human dental follicle stem cells (DFSCs), stem cells from apical papilla (SCAPs) and dental pulp stem cells (DPSCs) were isolated and identified in vitro, then green GFP-labeled stem cells with pellets were transplanted into completely transected spinal cord. The functional recovery of rats and multiple neuro-regenerative mechanisms were explored. Main results. The dental stem cells, especially DFSCs, demonstrated the potential in repairing the completely transected spinal cord and promote functional recovery after injury. The major involved mechanisms were speculated below: First, dental stem cells inhibited the expression of interleukin-1β to reduce the inflammatory response; second, they inhibited the expression of ras homolog gene family member A (RhoA) to promote neurite regeneration; third, they inhibited the sulfonylurea receptor1 (SUR-1) expression to reduce progressive hemorrhagic necrosis; lastly, parts of the transplanted cells survived and differentiated into mature neurons and oligodendrocytes but not astrocyte, which is beneficial for promoting axons growth. Significance. Dental stem cells presented remarkable tissue regenerative capability after spinal cord injury through immunomodulatory, differentiation and protection capacity.

  8. Stress relaxing hyaluronic acid-collagen hydrogels promote cell spreading, fiber remodeling, and focal adhesion formation in 3D cell culture.

    Science.gov (United States)

    Lou, Junzhe; Stowers, Ryan; Nam, Sungmin; Xia, Yan; Chaudhuri, Ovijit

    2018-02-01

    The physical and architectural cues of the extracellular matrix (ECM) play a critical role in regulating important cellular functions such as spreading, migration, proliferation, and differentiation. Natural ECM is a complex viscoelastic scaffold composed of various distinct components that are often organized into a fibrillar microstructure. Hydrogels are frequently used as synthetic ECMs for 3D cell culture, but are typically elastic, due to covalent crosslinking, and non-fibrillar. Recent work has revealed the importance of stress relaxation in viscoelastic hydrogels in regulating biological processes such as spreading and differentiation, but these studies all utilize synthetic ECM hydrogels that are non-fibrillar. Key mechanotransduction events, such as focal adhesion formation, have only been observed in fibrillar networks in 3D culture to date. Here we present an interpenetrating network (IPN) hydrogel system based on HA crosslinked with dynamic covalent bonds and collagen I that captures the viscoelasticity and fibrillarity of ECM in tissues. The IPN hydrogels exhibit two distinct processes in stress relaxation, one from collagen and the other from HA crosslinking dynamics. Stress relaxation in the IPN hydrogels can be tuned by modulating HA crosslinker affinity, molecular weight of the HA, or HA concentration. Faster relaxation in the IPN hydrogels promotes cell spreading, fiber remodeling, and focal adhesion (FA) formation - behaviors often inhibited in other hydrogel-based materials in 3D culture. This study presents a new, broadly adaptable materials platform for mimicking key ECM features of viscoelasticity and fibrillarity in hydrogels for 3D cell culture and sheds light on how these mechanical and structural cues regulate cell behavior. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. MRI signal intensity as a maker of impairment in incomplete cervical spinal cord injuries

    International Nuclear Information System (INIS)

    Chiba, Hidefumi; Aoki, Haruhito; Hamabe, Masaki; Sasao, Yutaka; Miura, Takehiko

    1998-01-01

    Incomplete cervical spinal cord injuries such as central cord syndrome may result in prolonged spasticity of the limbs, especially disabilities of the upper extremities, even if the patient is able to walk. In this study, relationship between cord impairment and clinical outcome was investigated using MRI. Results showed that small foci of low signal intensity in T 1 -weighted imaging combined with foci of high signal intensity in T 2 -weighted imaging in follow-up MRI are closely related to the severity of sequelae. Small foci of low signal intensity in T 1 -weighted imaging are considered in the literature to indicate myelomalacia or cyst formation with gliosis. (author)

  10. SPINAL CORD- A CADAVERIC STUDY

    Directory of Open Access Journals (Sweden)

    Vijayamma K. N

    2018-01-01

    Full Text Available BACKGROUND Spinal cord is situated within the vertebral canal extending from the lower end of the medulla oblongata at the upper border of first cervical vertebra. In early foetal life, it extends throughout the length of the vertebral canal, and at the time of birth, it reaches the level of third lumbar vertebra. In adult, it ends at the lower border of first lumbar vertebra and thereafter continued as filum terminale, which gets attached to tip of coccyx. Spinal cord is covered by three protective membranes called spinal meninges, diameter, arachnoid and pia mater. The diameter and arachnoid mater extent up to second sacral vertebra and the pia mater forms filum terminale and extend at the tip of coccyx. MATERIALS AND METHODS Forty spinal cord cadaveric specimen were studied by dissection method after exposing the vertebral canal. The roots of spinal nerve were sectioned on both sides and the cord is released along with its coverings. The dura and arachnoid mater were incised longitudinally and the subarachnoid space, blood vessels, nerve roots, ligament denticulata, cervical and lumbar enlargements were observed. The blood vessels including radicular arteries were also studied photographed. RESULTS The spinal cord is a highly vascular structure situated within the vertebral canal, covered by diameter, arachnoid mater and pia mater. Spinal dura is thicker anteriorly than posteriorly. The pia mater forms linea splendens, which extend along the whole length of the cord in front of the anterior median fissure. The average length of the cord is 38 cm. The length and breadth of cervical enlargement was more compared to lumbar enlargement. The number of rootlets in both dorsal and ventral roots accounts more in cervical compared to other regions of the cord. The ligament denticulata is a thin transparent bands of pia mater attached on either sides of the cord between the dorsal and ventral roots of spinal nerves. The tooth like extensions are well

  11. Combinatorial actions of Tgfβ and Activin ligands promote oligodendrocyte development and CNS myelination.

    Science.gov (United States)

    Dutta, Dipankar J; Zameer, Andleeb; Mariani, John N; Zhang, Jingya; Asp, Linnea; Huynh, Jimmy; Mahase, Sean; Laitman, Benjamin M; Argaw, Azeb Tadesse; Mitiku, Nesanet; Urbanski, Mateusz; Melendez-Vasquez, Carmen V; Casaccia, Patrizia; Hayot, Fernand; Bottinger, Erwin P; Brown, Chester W; John, Gareth R

    2014-06-01

    In the embryonic CNS, development of myelin-forming oligodendrocytes is limited by bone morphogenetic proteins, which constitute one arm of the transforming growth factor-β (Tgfβ) family and signal canonically via Smads 1/5/8. Tgfβ ligands and Activins comprise the other arm and signal via Smads 2/3, but their roles in oligodendrocyte development are incompletely characterized. Here, we report that Tgfβ ligands and activin B (ActB) act in concert in the mammalian spinal cord to promote oligodendrocyte generation and myelination. In mouse neural tube, newly specified oligodendrocyte progenitors (OLPs) are first exposed to Tgfβ ligands in isolation, then later in combination with ActB during maturation. In primary OLP cultures, Tgfβ1 and ActB differentially activate canonical Smad3 and non-canonical MAP kinase signaling. Both ligands enhance viability, and Tgfβ1 promotes proliferation while ActB supports maturation. Importantly, co-treatment strongly activates both signaling pathways, producing an additive effect on viability and enhancing both proliferation and differentiation such that mature oligodendrocyte numbers are substantially increased. Co-treatment promotes myelination in OLP-neuron co-cultures, and maturing oligodendrocytes in spinal cord white matter display strong Smad3 and MAP kinase activation. In spinal cords of ActB-deficient Inhbb(-/-) embryos, apoptosis in the oligodendrocyte lineage is increased and OLP numbers transiently reduced, but numbers, maturation and myelination recover during the first postnatal week. Smad3(-/-) mice display a more severe phenotype, including diminished viability and proliferation, persistently reduced mature and immature cell numbers, and delayed myelination. Collectively, these findings suggest that, in mammalian spinal cord, Tgfβ ligands and ActB together support oligodendrocyte development and myelin formation. © 2014. Published by The Company of Biologists Ltd.

  12. Combinatorial actions of Tgfβ and Activin ligands promote oligodendrocyte development and CNS myelination

    Science.gov (United States)

    Dutta, Dipankar J.; Zameer, Andleeb; Mariani, John N.; Zhang, Jingya; Asp, Linnea; Huynh, Jimmy; Mahase, Sean; Laitman, Benjamin M.; Argaw, Azeb Tadesse; Mitiku, Nesanet; Urbanski, Mateusz; Melendez-Vasquez, Carmen V.; Casaccia, Patrizia; Hayot, Fernand; Bottinger, Erwin P.; Brown, Chester W.; John, Gareth R.

    2014-01-01

    In the embryonic CNS, development of myelin-forming oligodendrocytes is limited by bone morphogenetic proteins, which constitute one arm of the transforming growth factor-β (Tgfβ) family and signal canonically via Smads 1/5/8. Tgfβ ligands and Activins comprise the other arm and signal via Smads 2/3, but their roles in oligodendrocyte development are incompletely characterized. Here, we report that Tgfβ ligands and activin B (ActB) act in concert in the mammalian spinal cord to promote oligodendrocyte generation and myelination. In mouse neural tube, newly specified oligodendrocyte progenitors (OLPs) are first exposed to Tgfβ ligands in isolation, then later in combination with ActB during maturation. In primary OLP cultures, Tgfβ1 and ActB differentially activate canonical Smad3 and non-canonical MAP kinase signaling. Both ligands enhance viability, and Tgfβ1 promotes proliferation while ActB supports maturation. Importantly, co-treatment strongly activates both signaling pathways, producing an additive effect on viability and enhancing both proliferation and differentiation such that mature oligodendrocyte numbers are substantially increased. Co-treatment promotes myelination in OLP-neuron co-cultures, and maturing oligodendrocytes in spinal cord white matter display strong Smad3 and MAP kinase activation. In spinal cords of ActB-deficient Inhbb−/− embryos, apoptosis in the oligodendrocyte lineage is increased and OLP numbers transiently reduced, but numbers, maturation and myelination recover during the first postnatal week. Smad3−/− mice display a more severe phenotype, including diminished viability and proliferation, persistently reduced mature and immature cell numbers, and delayed myelination. Collectively, these findings suggest that, in mammalian spinal cord, Tgfβ ligands and ActB together support oligodendrocyte development and myelin formation. PMID:24917498

  13. Cord Blood Chimerism And Relapse After Haplo-Cord Transplantation

    Science.gov (United States)

    van Besien, Koen; Koshy, Nebu; Gergis, Usama; Mayer, Sebastian; Cushing, Melissa; Rennert, Hannah; Slotky, Ronit; Mark, Tomer; Pearse, Roger; Rossi, Adriana; Phillips, Adrienne; Vasovic, Liljana; Ferrante, Rosanna; Hsu, Michael; Shore, Tsiporah

    2018-01-01

    Haplo-cord stem cell transplantation combines the infusion of CD34 selected hematopoietic progenitors from a haplo-identical donor with an umbilical cord blood graft from an unrelated donor and allows faster count recovery, with low rates of disease recurrence and chronic GVHD. But the contribution of the umbilical cord blood graft to long-term transplant outcome remains unclear. We analyzed 39 recipients of haplo-cord transplants with AML and MDS, engrafted and in remission at 2 months. Median age was 66 (18-72) and all had intermediate, high, or very high risk disease. Less than 20% UCB chimerism in the CD33 lineage was associated with an increased rate of disease recurrence (54% vs 11% Pdisease recurrence (46% vs 12%, P=0.007) Persistent haplo-chimerism in the CD3 lineage was associated with an increased rate of disease recurrence (40% vs 15%, P=0.009) Chimerism did not predict for treatment related mortality. The cumulative incidence of acute GVHD by day 100 was 43%. The cumulative incidence of moderate/severe chronic GVHD was only 5%. Engraftment of the umbilical cord blood grafts provides powerful GVL effects which protect against disease recurrence and is associated with low risk of chronic GVHD. Engraftment of CD34 selected haplo-identical cells can lead to rapid development of circulating T-cells, but when these cells dominate, GVL-effects are limited and rates of disease recurrence are high. PMID:27333804

  14. Knockdown of miR-27a sensitizes colorectal cancer stem cells to TRAIL by promoting the formation of Apaf-1-caspase-9 complex.

    Science.gov (United States)

    Zhang, Rui; Xu, Jian; Zhao, Jian; Bai, Jinghui

    2017-07-11

    MicroRNAs have been proved to participate in multiple biological processes in cancers. For developing resistance to cytotoxic drug, cancer cells, especially the cancer stem cells, usually change their microRNA expression profile to survive in hostile environments. In the present study, we found that expression of microRNA-27a was increased in colorectal cancer stem cells. High level of microRNA-27a was indicated to induce the resistance to TNF-related apoptosis-inducing ligand (TRAIL). Knockdown of microRNA-27a resensitized colorectal cancer stem cells to TRAIL-induced cell death. Mechanically, the gene of Apaf-1, which is associated with the mitochondrial apoptosis, was demonstrated to be the target of microRNA-27a in colorectal cancer stem cells. Knockdown of microRNA-27a increased the expression level of Apaf-1, thus enhancing the formation of Apaf-1-caspase-9 complex and subsequently promoting the TRAIL-induced apoptosis in colorectal cancer stem cells. These findings suggested that knockdown of microRNA-27a in colorectal cancer stem cells by the specific antioligonucleotides was potential to reverse the chemoresistance to TRAIL. It may represent a novel therapeutic strategy for treating the colorectal cancer more effectively.

  15. Strong transcription blockage mediated by R-loop formation within a G-rich homopurine-homopyrimidine sequence localized in the vicinity of the promoter.

    Science.gov (United States)

    Belotserkovskii, Boris P; Soo Shin, Jane Hae; Hanawalt, Philip C

    2017-06-20

    Guanine-rich (G-rich) homopurine-homopyrimidine nucleotide sequences can block transcription with an efficiency that depends upon their orientation, composition and length, as well as the presence of negative supercoiling or breaks in the non-template DNA strand. We report that a G-rich sequence in the non-template strand reduces the yield of T7 RNA polymerase transcription by more than an order of magnitude when positioned close (9 bp) to the promoter, in comparison to that for a distal (∼250 bp) location of the same sequence. This transcription blockage is much less pronounced for a C-rich sequence, and is not significant for an A-rich sequence. Remarkably, the blockage is not pronounced if transcription is performed in the presence of RNase H, which specifically digests the RNA strands within RNA-DNA hybrids. The blockage also becomes less pronounced upon reduced RNA polymerase concentration. Based upon these observations and those from control experiments, we conclude that the blockage is primarily due to the formation of stable RNA-DNA hybrids (R-loops), which inhibit successive rounds of transcription. Our results could be relevant to transcription dynamics in vivo (e.g. transcription 'bursting') and may also have practical implications for the design of expression vectors. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. Umbilical cord-care practices in low- and middle-income countries: a systematic review

    Directory of Open Access Journals (Sweden)

    Patricia S. Coffey

    2017-02-01

    Full Text Available Abstract Background Neonatal sepsis is the third leading cause of deaths for infants in their first month of life. The newly cut umbilical cord can be a pathway for bacteria that can cause newborn sepsis and death. Optimal umbilical cord care practices for newborns and during the first week of life, especially in settings with poor hygiene, has the potential to avoid these preventable neonatal deaths. The purpose of this review of cord care practices is to assist in the development of behavior-change strategies to support introduction of novel cord-care regimens, particularly 7.1% chlorhexidine digluconate for umbilical cord care. Methods We searched domestic and international databases for articles that were published in English between January 1, 2000, and August 24, 2016. We found 321 articles and reviewed 65 full-text articles using standardized inclusion criteria. The primary criteria for inclusion was a description of substances applied to the umbilical cord stump in the days following birth. Results We included 46 articles in this review of umbilical cord-care practices. Articles included data from 15 low- and middle-income countries in sub-Saharan Africa (8 countries, Asia (5 countries, North Africa (1 country, and Latin America and the Caribbean (1 country. Findings from this review suggest that documentation of cord-care practices is not consistent throughout low- and middle-income countries, yet existing literature depicts a firm tradition of umbilical cord care in every culture. Cord-care practices vary by country and by regions or cultural groups within a country and employ a wide range of substances. The desire to promote healing and hasten cord separation are the underlying beliefs related to application of substances to the umbilical cord. The frequency of application of the substance (either the number of days or the number of times per day the substance was applied, and source and cost of products used is not well

  17. Suicide in a spinal cord injured population

    DEFF Research Database (Denmark)

    Hartkopp, A; Brønnum-Hansen, Henrik; Seidenschnur, A M

    1998-01-01

    To determine the relation between functional status and risk of suicide among individuals with spinal cord injury (SCI).......To determine the relation between functional status and risk of suicide among individuals with spinal cord injury (SCI)....

  18. Pericytes Make Spinal Cord Breathless after Injury.

    Science.gov (United States)

    Almeida, Viviani M; Paiva, Ana E; Sena, Isadora F G; Mintz, Akiva; Magno, Luiz Alexandre V; Birbrair, Alexander

    2017-09-01

    Traumatic spinal cord injury is a devastating condition that leads to significant neurological deficits and reduced quality of life. Therapeutic interventions after spinal cord lesions are designed to address multiple aspects of the secondary damage. However, the lack of detailed knowledge about the cellular and molecular changes that occur after spinal cord injury restricts the design of effective treatments. Li and colleagues using a rat model of spinal cord injury and in vivo microscopy reveal that pericytes play a key role in the regulation of capillary tone and blood flow in the spinal cord below the site of the lesion. Strikingly, inhibition of specific proteins expressed by pericytes after spinal cord injury diminished hypoxia and improved motor function and locomotion of the injured rats. This work highlights a novel central cellular population that might be pharmacologically targeted in patients with spinal cord trauma. The emerging knowledge from this research may provide new approaches for the treatment of spinal cord injury.

  19. The mechanism of Naringin-enhanced remyelination after spinal cord injury

    Directory of Open Access Journals (Sweden)

    Wei Rong

    2017-01-01

    Full Text Available Our previous study revealed that intragastric administration of naringin improved remyelination in rats with spinal cord injury and promoted the recovery of neurological function of the injured spinal cord. This study sought to reveal the mechanisms by which naringin improves oligodendrocyte precursor cell differentiation and maturation, and promotes remyelination. Spinal cord injury was induced in rats by the weight-drop method. Naringin was intragastrically administered daily (20, 40 mg/kg for 4 weeks after spinal cord injury induction. Behavioral assessment, histopathological staining, immunofluorescence spectroscopy, ultrastructural analysis and biochemical assays were employed. Naringin treatment remarkably mitigated demyelination in the white matter, increased the quality of myelinated nerve fibers and myelin sheath thickness, promoted oligodendrocyte precursor cell differentiation by upregulating the expression of NKx2.2 and 2′3′-cyclic nucleotide 3′-phosphodiesterase, and inhibited β-catenin expression and glycogen synthase kinase-3β (GSK-3β phosphorylation. These findings indicate that naringin treatment regulates oligodendrocyte precursor cell differentiation and promotes remyelination after spinal cord injury through the β-catenin/GSK-3β signaling pathway.

  20. Rat models of spinal cord injury: from pathology to potential therapies

    Science.gov (United States)

    2016-01-01

    ABSTRACT A long-standing goal of spinal cord injury research is to develop effective spinal cord repair strategies for the clinic. Rat models of spinal cord injury provide an important mammalian model in which to evaluate treatment strategies and to understand the pathological basis of spinal cord injuries. These models have facilitated the development of robust tests for assessing the recovery of locomotor and sensory functions. Rat models have also allowed us to understand how neuronal circuitry changes following spinal cord injury and how recovery could be promoted by enhancing spontaneous regenerative mechanisms and by counteracting intrinsic inhibitory factors. Rat studies have also revealed possible routes to rescuing circuitry and cells in the acute stage of injury. Spatiotemporal and functional studies in these models highlight the therapeutic potential of manipulating inflammation, scarring and myelination. In addition, potential replacement therapies for spinal cord injury, including grafts and bridges, stem primarily from rat studies. Here, we discuss advantages and disadvantages of rat experimental spinal cord injury models and summarize knowledge gained from these models. We also discuss how an emerging understanding of different forms of injury, their pathology and degree of recovery has inspired numerous treatment strategies, some of which have led to clinical trials. PMID:27736748

  1. A Novel Translational Model of Spinal Cord Injury in Nonhuman Primate.

    Science.gov (United States)

    Le Corre, Marine; Noristani, Harun N; Mestre-Frances, Nadine; Saint-Martin, Guillaume P; Coillot, Christophe; Goze-Bac, Christophe; Lonjon, Nicolas; Perrin, Florence E

    2017-11-27

    Spinal cord injuries (SCI) lead to major disabilities affecting > 2.5 million people worldwide. Major shortcomings in clinical translation result from multiple factors, including species differences, development of moderately predictive animal models, and differences in methodologies between preclinical and clinical studies. To overcome these obstacles, we first conducted a comparative neuroanatomical analysis of the spinal cord between mice, Microcebus murinus (a nonhuman primate), and humans. Next, we developed and characterized a new model of lateral spinal cord hemisection in M. murinus. Over a 3-month period after SCI, we carried out a detailed, longitudinal, behavioral follow-up associated with in vivo magnetic resonance imaging ( 1 H-MRI) monitoring. Then, we compared lesion extension and tissue alteration using 3 methods: in vivo 1 H-MRI, ex vivo 1 H-MRI, and classical histology. The general organization and glial cell distribution/morphology in the spinal cord of M. murinus closely resembles that of humans. Animals assessed at different stages following lateral hemisection of the spinal cord presented specific motor deficits and spinal cord tissue alterations. We also found a close correlation between 1 H-MRI signal and microglia reactivity and/or associated post-trauma phenomena. Spinal cord hemisection in M. murinus provides a reliable new nonhuman primate model that can be used to promote translational research on SCI and represents a novel and more affordable alternative to larger primates.

  2. Efficiently engineered cell sheet using a complex of polyethylenimine–alginate nanocomposites plus bone morphogenetic protein 2 gene to promote new bone formation

    Directory of Open Access Journals (Sweden)

    Jin H

    2014-05-01

    Full Text Available Han Jin,1 Kai Zhang,2 Chunyan Qiao,1 Anliang Yuan,1 Daowei Li,1 Liang Zhao,1 Ce Shi,1 Xiaowei Xu,1 Shilei Ni,1 Changyu Zheng,3 Xiaohua Liu,4 Bai Yang,2 Hongchen Sun11Department of Pathology, School of Stomatology, Jilin University, Changchun, People’s Republic of China; 2State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, People’s Republic of China; 3Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA; 4Department of Biomedical Sciences, Texas A&M University Baylor College of Dentistry, Dallas, TX, USAAbstract: Regeneration of large bone defects is a common clinical problem. Recently, stem cell sheet has been an emerging strategy in bone tissue engineering. To enhance the osteogenic potential of stem cell sheet, we fabricated bone morphogenetic protein 2 (BMP-2 gene-engineered cell sheet using a complex of polyethylenimine–alginate (PEI–al nanocomposites plus human BMP-2 complementary(cDNA plasmid, and studied its osteogenesis in vitro and in vivo. PEI–al nanocomposites carrying BMP-2 gene could efficiently transfect bone marrow mesenchymal stem cells. The cell sheet was made by culturing the cells in medium containing vitamin C for 10 days. Assays on the cell culture showed that the genetically engineered cells released the BMP-2 for at least 14 days. The expression of osteogenesis-related gene was increased, which demonstrated that released BMP-2 could effectively induce the cell sheet osteogenic differentiation in vitro. To further test the osteogenic potential of the cell sheet in vivo, enhanced green fluorescent protein or BMP-2-producing cell sheets were treated on the cranial bone defects. The results indicated that the BMP-2-producing cell sheet group was more efficient than other groups in promoting bone formation in the defect area. Our results suggested that PEI

  3. Radiation treatment of spinal cord neoplasms

    International Nuclear Information System (INIS)

    Smirnov, R.V.

    1982-01-01

    Results of radiation treatment of spinal cord neoplasms are presented. The results of combined (surgical and radiation) treatment of tumors are studied. On the whole it is noted that radiation treatment of initial spinal cord tumours is not practised on a large scale because of low radiostability of spinal cord

  4. Traumatic spinal cord injury in MR imaging

    International Nuclear Information System (INIS)

    Bronarski, J.; Wozniak, E.

    1993-01-01

    Spinal cord injuries in tetraplegics were briefly discussed on the basis of MR imaging. It was found that severe cervical spine trauma usually results in concussion - the complete transection of the cord is rare. A case of 19 years old male with total cord transection confirmed by MR imaging is described. (author)

  5. CORD PROLAPSE, ASSOCIATED FACTORS AND FETAL OUTCOME

    African Journals Online (AJOL)

    Several factors predispose to cord prolapse, amongst which are breech presentation, abnormal lie and presentation, hydramnios and long cord [2-3, 5-7]. Perinatal mortality is the most feared complication and often seen in up to 91% of cases [8-9]. Little is known about the pattern of umbilical cord prolapse in Cameroon as ...

  6. Overexpression of angiopoietin 2 promotes the formation of oral squamous cell carcinoma by increasing epithelial-mesenchymal transition-induced angiogenesis.

    Science.gov (United States)

    Li, C; Li, Q; Cai, Y; He, Y; Lan, X; Wang, W; Liu, J; Wang, S; Zhu, G; Fan, J; Zhou, Y; Sun, R

    2016-09-01

    Oral squamous cell carcinoma (OSCC) is the most common cancer of the head and neck and is associated with a high rate of lymph node metastasis. The initial step in the metastasis and transition of tumors is epithelial-mesenchymal transition (EMT)-induced angiogenesis, which can be mediated by angiopoietin 2 (ANG2), a key regulatory factor in angiogenesis. In the present study, immunohistochemistry and real-time quantitative reverse transcriptase (qRT-PCR) were used to measure the expression of ANG2 in OSCC tissues. Plasmids encoding ANG2 mRNA were used for increased ANG2 expression in the OSCC cell line TCA8113. The short interfering RNA (siRNA)-targeting ANG2 mRNA sequences were used to inhibit ANG2 expression in TCA8113 cells. Subsequently, transwell assays were performed to examine the effects of ANG2 on TCA8113 cell migration and invasion. Furthermore, in vivo assays were performed to assess the effect of ANG2 on tumor growth. Terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assays and immunohistochemistry were used to examine cell apoptosis and angiogenesis in tumor tissues, respectively. Finally, western blot analysis was performed to evaluate tumor formation-related proteins in OSCC tissues. We found that protein expression of ANG2 was remarkably upregulated in OSCC tissues. Overexpression of ANG2 increased the migration and invasion of TCA8113 cells by regulating EMT. Further investigations showed that overexpression of ANG2 increased tumor growth in nude mice, and angiogenesis of OSCC tissues increased in the presence of ANG2 overexpression. Overexpression of ANG2 also reduced cell apoptosis in tumor tissue cells. Finally, we found that overexpression of ANG2 resulted in changes in the expression of tumor formation-related proteins including vimentin, E-cadherin, Bim, PUMA, Bcl-2, Bax, Cyclin D1, PCNA and CD31. Our findings show that ANG2 has an important role in the migration and invasion of OSCC. More importantly, further

  7. Mechanical Vibration Mitigates the Decrease of Bone Quantity and Bone Quality of Leptin Receptor-Deficient Db/Db Mice by Promoting Bone Formation and Inhibiting Bone Resorption.

    Science.gov (United States)

    Jing, Da; Luo, Erping; Cai, Jing; Tong, Shichao; Zhai, Mingming; Shen, Guanghao; Wang, Xin; Luo, Zhuojing

    2016-09-01

    Leptin, a major hormonal product of adipocytes, is involved in regulating appetite and energy metabolism. Substantial studies have revealed the anabolic actions of leptin on skeletons and bone cells both in vivo and in vitro. Growing evidence has substantiated that leptin receptor-deficient db/db mice exhibit decreased bone mass and impaired bone microstructure despite several conflicting results previously reported. We herein systematically investigated bone microarchitecture, mechanical strength, bone turnover and its potential molecular mechanisms in db/db mice. More importantly, we also explored an effective approach for increasing bone mass in leptin receptor-deficient animals in an easy and noninvasive manner. Our results show that deterioration of trabecular and cortical bone microarchitecture and decreases of skeletal mechanical strength-including maximum load, yield load, stiffness, energy, tissue-level modulus and hardness-in db/db mice were significantly ameliorated by 12-week, whole-body vibration (WBV) with 0.5 g, 45 Hz via micro-computed tomography (μCT), three-point bending, and nanoindentation examinations. Serum biochemical analysis shows that WBV significantly decreased serum tartrate-resistant acid phosphatase 5b (TRACP5b) and CTx-1 levels and also mitigated the reduction of serum osteocalcin (OCN) in db/db mice. Bone histomorphometric analysis confirmed that decreased bone formation-lower mineral apposition rate, bone formation rate, and osteoblast numbers in cancellous bone-in db/db mice were suppressed by WBV. Real-time PCR assays show that WBV mitigated the reductions of tibial alkaline phosphatase (ALP), OCN, Runt-related transcription factor 2 (RUNX2), type I collagen (COL1), BMP2, Wnt3a, Lrp6, and β-catenin mRNA expression, and prevented the increases of tibial sclerostin (SOST), RANK, RANKL, RANL/osteoprotegerin (OPG) gene levels in db/db mice. Our results show that WBV promoted bone quantity and quality in db/db mice with obvious

  8. Matrix stiffness-upregulated LOXL2 promotes fibronectin production, MMP9 and CXCL12 expression and BMDCs recruitment to assist pre-metastatic niche formation.

    Science.gov (United States)

    Wu, Sifan; Zheng, Qiongdan; Xing, Xiaoxia; Dong, Yinying; Wang, Yaohui; You, Yang; Chen, Rongxin; Hu, Chao; Chen, Jie; Gao, Dongmei; Zhao, Yan; Wang, Zhiming; Xue, Tongchun; Ren, Zhenggang; Cui, Jiefeng

    2018-05-04

    strengthened CTCs settlement on the remodeled matrix "soil". Integrin β1/α5/JNK/c-JUN signaling pathway participates in higher matrix stiffness-induced LOXL2 upregulation in HCC cells. The secreted LOXL2 promotes fibronectin production, MMP9 and CXCL12 expression and BMDCs recruitment to assist pre-metastatic niche formation.

  9. Lymphangioma of the spermatic cord

    OpenAIRE

    Campos, Antônio Carlos Ligocki; Costa, Marco Aurélio Raeder da; Salvalaggio, Paolo Rogério de Oliveira; Torres, Luiz Fernando Bleggi; Coelho, Júlio Cézar Uili

    1998-01-01

    We describe a case of a 22-year-old man that had been submitted to a left herniorraphy 11 years previously to the present admission. He returned to our hospital with another mass in the same side of the groin. At operation, several small cysts linked to the spermatic cord were demonstrated. At this time, an histological exam demonstrated the presence of conective tissue. The final histology report confirmed the diagnosis of lymphangioma of the spermatic cord in the groin region. The patient w...

  10. Determinants of participating in life after spinal cord injury - advice for health professionals arising from an examination of shared narratives.

    Science.gov (United States)

    Amsters, Delena; Duncan, James; Field, Victoria; Smales, Alastair; Zillmann, Leanne; Kendall, Melissa; Kuipers, Pim

    2017-08-23

    To explore the perceived determinants of participation in life after spinal cord injury and incorporate these into a framework for the promotion of participation suitable for use by rehabilitation professionals. Four people with spinal cord injury and one health service researcher engaged in a process of sharing narratives of life after spinal cord injury over a period of one year. The narratives were distilled using thematic analysis. The relevant subset of data from the narratives categorized as This is what we think determines our participation in life was analyzed in depth to reveal nine themes (1) The world can be my friend or foe; (2) I am who I am; (3) It is a personal journey; (4) Some like to talk, others like to do; (5) We have the technology; (6) A support network is vital and it can be built; (7) Life involves tradeoffs; (8) Push; and (9) Be flexible. These themes were combined into a framework for the promotion of participation to be used by rehabilitation professionals. The collaboratively developed framework has three aspects - Help me, Encourage me and Accept. The proposed participation promotion framework is grounded in the narratives of the research group but needs to be tested before it can be endorsed for practice. Implications for Rehabilitation In order to promote participation in life after spinal cord injury rehabilitation professionals can help people with spinal cord injury to negotiate the world, build and maintain a support crew and access equipment and technology. Spinal cord injury rehabilitation professionals can encourage people with spinal cord injury to push themselves, be assertive and be flexible, as these attributes can assist participation in life after spinal cord injury. In the pursuit of participation goals, rehabilitation professionals must accept the individuality of each person with spinal cord injury, respect that they may or may not be willing to make tradeoffs to achieve participation goals and that they are on an ever

  11. Spinal cord injury with central cord syndrome from surfing.

    Science.gov (United States)

    Steinfeld, Yaniv; Keren, Yaniv; Haddad, Elias

    2018-01-01

    Central cord syndrome (CCS) is an injury to the center of the spinal cord. It is well known as a hyperextension injury, but it has never been described as a surfing injury. Our report describes this injury in detail. A 35-year-old male novice surfer presented to the emergency department with acute tetraplegia following falling off his surfboard and hitting sea floor at a shallow beach break. He was rescued by a fellow surfer while floating in the sea and unable to raise his head above sea level. Upon arrival at the hospital, tetraplegia and sensory deficits were noted. Radiological investigations showed advanced spinal stenosis at C4-6 levels. T2 magnetic resonance imaging (MRI) demonstrated myelopathy at C5-C6 level. He was diagnosed as having central cord syndrome, treated conservatively, and regained near full neurologic recovery after a month of rehabilitation. Unique sport activities lead to unique injuries. It is important to accurately describe these injuries in order to create protective measures against them. Neurologic injuries in surfers are uncommon. With low-energy trauma, surfer's myelopathy is still the most common diagnosis, but central cord syndrome should be in the differential diagnosis.

  12. Daintain/AIF-1 Plays Roles in Coronary Heart Disease via Affecting the Blood Composition and Promoting Macrophage Uptake and Foam Cell Formation

    Directory of Open Access Journals (Sweden)

    Junhan Wang

    2013-07-01

    Full Text Available Background: Daintain/AIF-1 is an inflammatory polypeptide factor/allograft inflammatory factor 1 derived from macrophages. It is characterized in APOE-/- mice as a novel inflammatory factor associated with atherosclerosis. The purpose of this study was to characterize its function in human atherosclerosis. Methods: Immunohistochemistry was used to identify the expression of daintain/AIF-1 in vessel segments within and far from atherosclerotic plaques; High-performance liquid chromatography (HPLC was used to display the effects of daintain/AIF-1 on C-reactive protein (CRP, oxidative capacity and superoxide dismutase (SOD in vivo; Oil Red O Staining was used to show the effects of daintain/AIF-1 on uptake of oxidized low density lipoprotein (ox-LDL into U937 cells, a macrophage line; Western Blot was used to test scavenger receptor A (SRA expression. Results: A high density of daintain/AIF-1 was observed in the tunica intima and media of coronary artery with atherosclerotic plaque, and fewer daintain/AIF-1 in the vessels without atherosclerotic plaque; Daintain/AIF-1 injected intravenously into BALB/c mice boosted oxidative capacity, significantly impaired SOD activities and augmented the CRP level in blood. According to the oil red O test, daintain/AIF-1 profoundly facilitated the uptake of ox-LDL in U937 macrophages and formation of foam cells in the endothelium. We also found that the molecular mechanisms are effective by promoting overexpression of SRA on macrophages. Conclusion: These findings implicate that the inflammatory factor daintain/AIF-1 is closely associated with atherogenesis, and could be further characterized as a novel risk factor for atherosclerosis

  13. Banking on cord blood stem cells.

    Science.gov (United States)

    Sullivan, Michael J

    2008-07-01

    Umbilical cord blood gifted to non-profit public cord blood banks is now routinely used as an alternative source of haematopoietic stem cells for allogeneic transplantation for children and adults with cancer, bone marrow failure syndromes, haemoglobinopathies and many genetic metabolic disorders. Because of the success and outcomes of public cord banking, many companies now provide private cord banking services. However, in the absence of any published transplant evidence to support autologous and non-directed family banking, commercial cord banks currently offer a superfluous service.

  14. MR imaging and spinal cord injury

    International Nuclear Information System (INIS)

    Azar-Kia, B.; Fine, M.; Naheedy, M.; Elias, D.

    1987-01-01

    MR imaging has significantly improved diagnostic capability of spinal cord injuries. Other available diagnostic modalities such as plain films, myelography, CT, and post-CT myelography have failed to consistently show the secific evidence of spinal cord injuries and their true extent. The authors are presenting our experiences with MR imaging in spinal column injury. They have found MR imaging to be the procedure of choice for prognostic evaluation of spinal cord trauma. They are showing examples of recent and old spinal cord injury such as hematomyelia, myelomalacia, transection, spinal cord edema, and cavitation

  15. Distribution of elements in human spinal cord

    International Nuclear Information System (INIS)

    Yukawa, Masae; Kobayashi, T.; Qiu, Y.; Kameda, N.; Ito, Y.; Otomo, E.

    1992-01-01

    The distribution of elements in human spinal cord was investigated on unfixed frozen cord material using PIXE technique. Distribution of Cu, Zn and Fe were not uniform in the cross section of the spinal cord and concentrations of these elements were higher in the anterior gray horn than in the other areas, while K and Cl distributed uniformly. The content of K changed along the spinal cord from the cervical to the lumbar level. These findings are discussed in relation to current understanding of the physiology of the spinal cord. (author)

  16. International spinal cord injury cardiovascular function basic data set.

    Science.gov (United States)

    Krassioukov, A; Alexander, M S; Karlsson, A-K; Donovan, W; Mathias, C J; Biering-Sørensen, F

    2010-08-01

    To create an International Spinal Cord Injury (SCI) Cardiovascular Function Basic Data Set within the framework of the International SCI Data Sets. An international working group. The draft of the data set was developed by a working group comprising members appointed by the American Spinal Injury Association (ASIA), the International Spinal Cord Society (ISCoS) and a representative of the executive committee of the International SCI Standards and Data Sets. The final version of the data set was developed after review by members of the executive committee of the International SCI Standards and Data Sets, the ISCoS scientific committee, ASIA board, relevant and interested international organizations and societies, individual persons with specific interest and the ISCoS Council. To make the data set uniform, each variable and each response category within each variable have been specifically defined in a way that is designed to promote the collection and reporting of comparable minimal data. The variables included in the International SCI Cardiovascular Function Basic Data Set include the following items: date of data collection, cardiovascular history before the spinal cord lesion, events related to cardiovascular function after the spinal cord lesion, cardiovascular function after the spinal cord lesion, medications affecting cardiovascular function on the day of examination; and objective measures of cardiovascular functions, including time of examination, position of examination, pulse and blood pressure. The complete instructions for data collection and the data sheet itself are freely available on the websites of both ISCoS (http://www.iscos.org.uk) and ASIA (http://www.asia-spinalinjury.org).

  17. Spinal cord toxoplasmosis in AIDS

    International Nuclear Information System (INIS)

    Carteret, M.; Petit, E.; Granat, O.; Marichez, M.; Gilquin, J.

    1995-01-01

    Toxoplasmosis is the most common brain parasitic infection in acquired immunodeficiency syndrome (AIDS). Spinal cord localizations are still rare (2 cases with cerebral involvement, 2 cases without). A case of both spinal cord and cerebral involvement is reported. Magnetic resonance imaging (MR imaging) was performed because of sensory level (L 1). A focal conus medullaris enlargement was seen, iso intense on T 1 weighted images. This lesion was hyperintense on T 2 weighted sequence, and was homogeneously enhanced after Gadolinium on T 1 weighted images. A medullary oedema was noted. A toxoplasmosis treatment was initiated, without cortico therapy. MR imaging performed one month later (D 30), while important clinical improvements were seen, pointed out normal thickness of conus medullaris, without enhancement after Gadolinium. Disease lesions in AIDS with focal spinal cord processes are reviewed, and diagnostic work-up is discussed. Spinal cord single lesion, associated or not with brain involvements should be treated as a toxoplasmic infection, with MR imaging follow up. This work up should avoid medullary biopsy, still required in case of treatment failure. Cerebral involvements, with multiples lesions can mask medullary localization. (authors